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ISOTOPIC FRACTIONATION OF BARIUM IN SHALE AND PRODUCED WATER FROM 

THE APPALACHIAN BASIN, USA 

Zachary Garrison Tieman, MS

University of Pittsburgh, 2017 

Waters co-produced with oil and gas are often rich in barium (Ba), which can cause scale 

formation and fouling of wells, especially in unconventional Marcellus Shale gas wells. To 

address the source of barium in these produced waters, Ba isotope ratios were determined on 

returned water samples from a Marcellus Shale gas well in West Virginia and other oil- and gas-

producing units in Pennsylvania, as well as on exchangeable and carbonate Ba from core 

samples. This study presents the first known measurements of barium isotopes in produced 

waters from conventional and unconventional wells and from shale core material.  Previous 

studies have shown that the lighter isotopes of Ba are preferentially fractionated into solid 

aqueous Ba-rich minerals (e.g., barite, BaSO4, and witherite, BaCO3), and that Ba isotopes can 

be fractionated by biological and cation exchange processes..  A methodology for measuring 

stable barium isotope ratios is presented, including separation of Ba from the matrix and using a 

double spike to correct for mass fractionation. Barium isotope ratios are reported as δ138Ba, the 

permil (‰) deviation of the 138Ba/134Ba ratio from NIST standard SRM 3104a. A time series of 

produced water from the hydraulically fractured Marcellus well yielded values ranging from 
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δ138Ba = 0.81‰ to 1.01‰ (typical uncertainty ±0.06‰ or better).  In contrast, the barium found 

in the exchangeable sites of Marcellus rock, the largest source of labile Ba, varied from 0.45‰ to 

0.60‰, significantly lower than the produced water, suggesting that Ba in produced water is not 

sourced from shale exchange sites.  The carbonate fractions from the same rocks had similar 

values but lower Ba concentrations by a factor of 102. Produced water from Marcellus Shale 

wells in different geographic locations (Greene, Westmoreland and Tioga Counties, PA) yield 

similar δ138Ba values, although the Westmoreland Co. sample had a higher value (1.50‰).  In 

contrast, waters derived from units both below and above the Marcellus shale yielded 

significantly lower δ138Ba values, ranging from -0.81‰ to 0.09‰. This system shows promise as 

a means of differentiating fluids migrating from Marcellus Shale wells from those of nearby 

conventional oil and gas wells. 
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1.0 INTRODUCTION AND BACKGROUND 

 

1.1 THESIS OVERVIEW 

 

The pore spaces and capillaries of deep sedimentary basins—the most common sources of oil 

and natural gas—often contain aqueous fluids that have greater levels of total dissolved solids 

(TDS) than seawater (Land, 1995) and that may have been there for millions of years. When 

hydrocarbons are pumped from these formations, chloride-rich brines, here referred to as 

produced waters, are often extracted along with the oil and gas (Collins, 1975). In Pennsylvania, 

produced water TDS can exceed 300,000 mg/L (Poth, 1962; Dresel and Rose, 2010).  High-TDS 

produced waters are generated both from conventional wells, in which the hydrocarbon is 

extracted from a permeable reservoir overlying the organic-rich source rock, and from 

unconventional wells, in which the organic-rich source rock (usually shale) is also the reservoir.  

Hydrocarbons in unconventional wells are extracted by hydraulic fracturing. 

Although the composition of produced waters is dominated by sodium, barium (Ba) can 

make up a significant portion of the TDS. In Pennsylvania, conventional well produced waters 

contain up to 4,370 mg/L Ba (Dresel and Rose, 2010), while unconventional well produced 

water in some areas contain up to 13,800 mg/L (Barbot et al., 2013). High levels of Ba often 

result in precipitation of barite (BaSO4), a particularly insoluble scale that can reduce 

permeability or completely block oil and gas wells (Paukert Vankeuren et al., 2017). Therefore, 
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it is of major interest to understand the origin of Ba in produced waters, in particular those from 

unconventional reservoirs, to minimize the return of barium from the deep subsurface (Chapman 

et al., 2012; Stewart et al., 2015; Phan et al., 2015; Renock et al., 2016). 

In this study I apply stable isotopes of Ba to address the origin of Ba in produced water 

from Appalachian Basin oil and gas wells. While Ba isotope variations have been measured in 

meteorites since the 1960s (e.g., Umemeto, 1962: Eugster et al., 1969), workers have only 

recently begun addressing Ba isotope fractionation resulting from Earth surface processes, 

primarily in the oceans (e.g., von Allmen et al., 2010; Horner et al., 2015; Bates et al., 2017). 

This study represents the first known investigation of Ba isotope variations in produced waters 

and their associated reservoir rocks. 

 

1.2 PRODUCED WATERS IN THE APPALACHIAN BASIN 

1.2.1 Conventional and unconventional oil and gas wells 

Conventional oil and gas wells are those in which a permeable reservoir is tapped, and the 

overlying pressure of rock does the work in bringing hydrocarbons to the surface.  The reservoir 

rock is porous, often sandstone, overlying an organic-rich source rock (e.g., a black shale) which 

released its hydrocarbons upwards into the reservoir.  Folds or faults of an impermeable rock, 

generally shale, create an impermeable barrier that allows the oil to accumulate into an economic 

deposit (MNGD and MRH, 2017; Figure 1).  Pumping or other methods may be used to assist oil 

recovery (Terry, 2001). 
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Figure 1:  Diagram of conventional vs. unconventional well (from MNGD and MRH, 2017) 
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Unconventional wells extract hydrocarbons directly from the source rock (MNGD and 

MRH, 2017).  In Pennsylvania, this is most commonly done through hydraulic fracturing.  A 

well bore drills to the targeted formation and then goes through it laterally for thousands of feet 

(Rowan et al., 2015).  Fracking fluid, primarily water and sand, but also bearing a combination 

of chemicals to inhibit scaling and aid in other functions (Soeder et al., 2014), is pumped into the 

formation at high pressures to fracture the surrounding formation and release the bound 

hydrocarbons.  In the Appalachian Basin the Middle Devonian Marcellus Shale has been the 

primary target of unconventional natural gas extraction (Zagorski et al., 2012). 

For approximately the first two weeks after hydraulic stimulation, the fluid returning to 

the surface, called flowback, rapidly decreases in volume over time and increases in TDS.  The 

oxygen isotope composition also shifts from one similar to what was injected into the well to a 

distinct value that typically plateaus about a year after initial flowback; this is thought to be the 

δ18O of the formation water (Rowan et al., 2015).  After 2-3 weeks, the returning brine 

approaches an asymptotic plateau of TDS and chemical concentration (Haluszczak et al., 2012; 

Capo et al., 2014). Flowback and formation water both fall under the umbrella term produced 

water (Engle and Rowan, 2014). 

1.2.2 Appalachian basin produced water chemistry 

Within the Appalachian Basin, formation waters are primarily Na-Ca-Cl brines (Rowan et al., 

2015) thought to be paleoseawater, evaporated beyond halite saturation with a varying amount of 

meteoric water mixed in, especially along the northwestern edge where Pleistocene glacier melt 

has infiltrated the basin (Dresel and Rose, 2010; Engle and Rowan, 2014).  Appalachian Basin 

formation waters may also have been affected by water-rock interaction and microbial activity 

(Haluszczak et al., 2012; McIntosh et al., 2004).  The produced waters throughout the 
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Appalachian Basin have a TDS of 100,000 to 300,000 mg/L (Rowan et al., 2015) and generally 

show linear correlations of sodium, calcium, magnesium, and bromine (Dresel and Rose, 2010).  

Brines produced from unconventional wells share a broadly similar major element chemistry and 

similar Na:Cl ratio to those from conventional wells within the Appalachian Basin, although 

trace element signatures within Marcellus Shale produced waters are distinct (Barbot et al., 2013; 

Rowan et al., 2015).  Unconventional Marcellus wells return relatively high TDS and barium 

compared to other Appalachian basin wells, along with higher strontium, slightly less calcium, 

and much less magnesium (Barbot et al., 2013). 

1.2.3 Barium in produced water 

Divalent cations within the brine—particularly calcium, strontium, and barium—react with 

injected water to form carbonate and sulfate mineral scaling.  This is a known problem, and 

descalant is added to fracking solutions commonly to prevent precipitation and to break up such 

mineral buildup (Soeder et al., 2014).  This works well with calcium carbonates and to a lesser 

degree carbonates containing iron and magnesium, but barite (BaSO4) is particularly insoluble 

and difficult to dissolve once formed (Shen et al., 2009). 

The source of the great concentration of barium within the Marcellus Shale is unclear. 

Stewart et al. (2015) noted that almost all sequentially extracted Ba from core samples was from 

exchangeable sites and could be mobilized by water injected during hydraulic fracturing.  

However, very large rock:water ratios would be required to account for all of the barium seen in 

Marcellus produced waters.  They suggested that it is possible the high TDS fluids are formation 

waters from sandy lenses, fractures within the Marcellus Shale, or from adjacent, more 

permeable units.  Potentially high levels of Ba could already exist in formation water due to the 

highly reducing, sulfate-poor nature of the formation (Lash and Blood, 2014).  Renock et al. 
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(2016) suggest that both Ba from barite within the shale, mobilized by high-TDS fluids, and that 

exchangeable barium interacts with injected fluids to generate the high levels seen in Marcellus 

Shale produced water.  

For this study, the isotopes of barium found in produced water and selected leachates 

from core samples were measured in hopes that the isotopic composition could yield information 

about the source of barium within the shale and to provide new data in this relatively untested 

isotopic system.  Any relationships found in formation water between the composition in 

seawater, early flowback, and produced waters from other formations could give valuable 

information in the sourcing of the barium found in Marcellus Shale produced waters. 

 

1.3 BARIUM AND BA ISOTOPES IN NATURAL SYSTEMS 

1.3.1 Occurrence of Ba in Earth’s crust and near-surface environment 

Barium is a divalent alkaline earth metal, most often seen in minerals replacing potassium in K-

feldspar and micas due to their similar ionic radii (Ba2+ = 1.35Å; K+ = 1.38Å).  It substitutes to a 

lesser extent for Ca2+ in plagioclase, pyroxene, amphibole, apatite, and calcite.  Its most common 

ore is barite (BaSO4), which occurs in marine environments as described below, and in the 

secondary carbonate witherite (Salminen, 2005). 

In igneous rocks, barium concentration tends to increase with silica content.  Ultramafic 

rocks have around 0.4 ppm, basalts have 330 ppm, and granites have 200-840 ppm, while 

syenites often contain >1000 ppm (Salminen, 2005).  The concentration in sedimentary rocks 

depends on the existence of K-feldspar and of clays and hydrous oxides to which it may adsorb.  

Carbonates and sandstones have only about 10 ppm, while shale has the highest concentrations 

of barium in sedimentary rocks with an average of about 580 ppm (Salminen, 2005). 
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While the ocean is mostly undersaturated in barite, it does occur in micrometer-sized 

crystals throughout the water column in areas of primary productivity and at depth.  This is due 

to oxidation of organic carbon that occurs during decay of suspended phytoplankton, which is 

thought to be the primary control on barium concentration in these areas (Gonneea and Paytan, 

2006; Griffith and Paytan, 2012; Lash and Blood, 2014; Horner, et al., 2015).  Dissolved barium 

follows a nutrient-like gradient in the ocean.  It is not known to have much use in phytoplankton 

physiological processes (Horner, et al., 2015) beyond as an impurity in processes that 

preferentially use calcium (Bullen and Chadwick, 2015).  Barite crystals have been seen in 

benthic protozoa, but they are not abundant in the ocean, and the amount of barite precipitate to 

the total budget is probably inconsequential (Griffith and Paytan, 2012).  Barium also adsorbs 

onto biogenic particles.  Barium concentrations in pelagic environments can potentially be used 

as a proxy for primary productivity in the overlying water column (Cao et al., 2015; Lash and 

Blood, 2014). 

Some marine barite is formed due to hydrothermal fluids which leach barium from basalt 

and mix it with sulfates in the surrounding seawater.  Barite forms during the early and later 

stages of hydrothermal chimney growth when temperatures are cooler, and it acts as structural 

support, preserving the chimneys with its low solubility (Jamieson, et al., 2016).  Barite may also 

form due to cold seeps, in which Ba-rich fluids are driven from the sediment in tectonic or 

hydrological processes or diagenetically as tectonics or increased load causes clastic and 

sediment dewatering.  Oceanic environments near coastal regions may also have strong inputs of 

barium due to riverine dumping (Griffith and Paytan, 2012).  Witherite (BaCO3) forms in the 

same areas as a secondary mineral after barite.  It is, however, rare in nature and only known to 

occur in economic volumes in a few localities (Lü et al., 2003). 
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1.3.2 Barium isotope systematics 

Barium has seven stable isotopes: 130Ba (0.11%), 132Ba (0.10%), 134Ba (2.42%), 135Ba (6.59%), 

136Ba (7.85%), 137Ba (11.23%), and 138Ba (71.70%).  The isotopic composition of barium was 

first measured by Nier (1938). Eugster et al. (1969) accurately determined Ba isotope 

composition in meteorites and terrestrial material using an isotopic double spike technique which 

allows correction for fractionation that occurs during sample preparation and measurement.  The 

values of Eugster et al. (1969) were further refined by McCulloch and Wasserburg (1978). Multi-

collector inductively-coupled plasma mass spectrometry (MC-ICP-MS) was first used for Ba 

isotope measurement by von Allmen et al. (2010) to determine precipitation-related mass 

fractionation.  Since then, a growing number of Ba isotope studies have been carried out to 

investigate precipitation, dissolution, and biogenic fractionation under natural and experimental 

conditions (Bottcher et al., 2012; Miyazaki et al., 2014; Horner et al., 2015; Bullen and 

Chadwick, 2015; Nan et al., 2015; van Zuilen et al., 2016; Mavromatis et al., 2016; Cao et al., 

2016; Bates et al., 2017). 

Barium isotope composition is reported relative to a standard value, where the selected 

isotope ratio (in this study, 138Ba/134Ba) is normalized to the same ratio in a standard:  

𝛿138Ba = �
Ba/ Ba134138  (sample)

Ba138 / Ba134  (standard)
− 1� × 1000 

Hereafter, the δ138/134Ba will be referred to as δ138Ba. While the current most-used standard (and 

the one used in this study) is NIST 3104a, other standards, including IAEA standards (primarily 

CO-9) and a standard created by Inorganic Ventures, have also been used (Nan et al., 2015; Cao 

et al., 2015).  Positive δ138Ba values indicate higher 138Ba/134Ba values than the standard (the 

sample is “heavy”) while negative values indicate the reverse (the sample is “light”). In some 
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studies, the 137Ba/134Ba ratio is reported (as δ137Ba) rather than δ138Ba. The conversion factor can 

be approximated as: 

δ138Ba ≈ 1.33 • δ137Ba 

(Horner et al., 2015). The total range of δ138Ba measured in different natural materials (δ138Ba 

from ˗0.7 to 1.33‰) is shown in Figure 2 and discussed below. 

1.3.3 Ba isotope fractionation from mineral precipitation and dissolution 

Precipitation of minerals primarily results in a preference for lighter isotopes in crystal structures 

with the level of fractionation affected by temperature.  von Allmen et al. (2010) reported Ba 

isotope fractionation with variables of temperature and precipitation rate. They found a 

maximum isotope fractionation of -0.4‰ (when converted to δ138Ba) between a BaCl2 solution 

and barite or witherite (BaCO3). They found only minimal temperature effects in their 

experimental range of 21-80°C, while precipitation rate appeared to affect isotope fractionation 

more strongly.  

A later study (Mavromatis et al., 2016) demonstrated kinetic isotope fractionation from 

precipitation of witherite in an aqueous fluid.  The fluid became isotopically heavier (by almost 

0.3‰) as isotopically light Ba was preferentially precipitated into witherite. They found that the 

isotopically heavy fluid gradually equilibrated with the lighter witherite, approaching the fluid’s 

initial isotopic composition over a period of about seven days, suggesting little to no 

fractionation at equilibrium.  They also found that witherite dissolution resulted in no measurable 

Ba isotope fractionation between the mineral and fluid. 
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Figure 2:  Overview of δ138Ba literature values (von Allmen et al., 2010; Bullen and Chadwick, 2015; Cao et al., 2015; Horner et al., 

2015; Nian et al., 2015; Pretet et al., 2015) 
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1.3.4 Ba isotope variations in igneous rock and river water 

Barium isotope studies of igneous rocks have been limited primarily to standard materials, and 

the total range of δ138Ba values found to date is -0.2‰ to 0.2‰ (Miyazaki et al., 2014; Bullen 

and Chadwick, 2015; Nan et al., 2015). Miyazaki et al. (2014) found a total δ138Ba range in 

andesite and basalt standards of <0.1‰. Tephra and lava found in Hawaii (~650-1200 ppm) 

showed minor Ba isotope fractionation, ranging from δ138Ba values of -0.02‰ to 0.10‰ (Bullen 

and Chadwick, 2015).  Nan et al. (2015) found that most igneous rock standards yielded δ138Ba 

values in the range of 0.0-0.1‰, but one rhyolite reached 0.19%, and a late Mesozoic basalt from 

China yielded a low value of -0.18‰. Terrestrial gangue (commercially unwanted material that 

surrounds or is mixed with ore, in this case barite and double carbonate) from Germany and 

Namibia hovered between δ138Ba ˗0.13 and 0.00‰ (von Allmen et al., 2010) relative to standard 

IAEA-CO-9, which is essentially within error of NIST 3104a (Nan et al., 2015). 

δ138Ba values from selected rivers around the world are reported by Cao et al. (2016).  

The Changjiang, Amazon, and Yukon rivers have δ138Ba values from 0.0 to 0.13‰, while the 

Pearl, Sepik and Danube Rivers yield values of about 0.15 to 0.27‰. The Lena and Colorado 

Rivers reach values of 0.4‰. There is no apparent correlation with barium concentration, and the 

factors controlling the δ138Ba of river waters have not yet been determined. 

1.3.5 Fractionation from biologically driven processes 

Bullen and Chadwick (2015) reported δ138Ba results from a study of Hawaiian parent rock, soil, 

and vegetation. They found that biological uplift, the pulling of nutrients from deeper in soils 

upward toward roots, creates stratification seen in both exchangeable sites and soil water.  The 

barium near the surface was found to average around 0.10-0.15‰ lighter than the parent material 

(igneous rock, δ138Ba ≈ 0.08‰), while the soil exchange and soil water 25 cm down could be 
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0.15‰ to 0.35‰ heavier.  The exchangeable fraction in the soil and soil water had very similar 

values throughout, but there was perhaps a slight preference for lighter barium in the 

exchangeable sites.  The barium within the plant itself experienced extreme fractionation at the 

roots—0.75‰ lighter than the lava rock parent material—but this fractionation lessened up into 

the stem and neared again the numbers seen at the soil’s surface within the foliage. 

Pretet et al. (2016) cultured corals in a tank of known δ138Ba to study the fractionation 

that occurred in aragonite-structured witherite.  Barium present as an impurity in coral aragonite 

is isotopically lighter than surrounding seawater by 0.12‰.  They suggest that vital effects play 

an important role in the δ138Ba of the coral, rather than simple equilibration between the coral 

and ambient seawater.  

Dissolved barium follows a concentration gradient similar to nutrients in the oceanic 

water column, most likely due the formation of barite due to biological processes (Horner, et al., 

2015) and adsorption of barium onto biogenic particles (Cao, et al., 2015).  There is a definite 

correlation between concentration of barium and extent of isotope fractionation (Horner et al., 

2015; Figure 3).  Surface water in the south Atlantic (0.92° E, 39.99° S) show δ138Ba values of 

0.6‰, which drop in a linear fashion to below 0.4‰ starting around 1500 m depth, and stabilizes 

there until 3000 m before dropping again to 0.3‰ at 4000 m (Horner, et al., 2015). 
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Figure 3:  Trend of barium concentration and δ138Ba with ocean depth, southern Atlantic 

Ocean, 39.99° S, 0.92° E (modified from Horner et al., 2015) 
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Cao et al. (2016) studied barium fractionation throughout the water column in several 

areas of the East and South China Seas.  In most areas, the surface values were high, with δ138Ba 

≈ 1.3‰.  The drop in δ138Ba with increased depth was similar to that seen in the southern 

Atlantic.  The δ138Ba decreased in a regular fashion until a depth of 1000 m.  From there to the 

bottom of the recorded area (below 3500 m), values remained around 0.70—0.80‰.  One study 

area, however, was quite different.  A station in the East China Sea just beyond the Changjiang 

river estuary had a much lower δ138Ba of 0.40‰ with an extremely high concentration of barium:  

175 nm kg-1 as opposed to the average <45 seen in other stations in the area.  The δ138Ba rapidly 

increased with depth as the barium concentration decreased, the opposite of what was seen in the 

Atlantic and in even the other areas studied by Cao et al. (2016).  This could be due to the 

influence of riverine input of Ba at this site. 

The only known sample of marine and diagenetic barite is very light isotopically, around 

δ138Ba ≈ -0.7‰ in the Demerara Rise, an offshore section of South America in the equatorial 

Atlantic (von Allmen et al., 2010).   

1.3.6 Ba isotope fractionation from other processes 

Barium diffusion experiments in which a BaCl2 solution diffused through silica hydrogel (van 

Zuilen et al., 2016) resulted in significant fractionation, in which the diffusing species was 

lighter than the starting solution by up to 2.9‰. These results could be explained by a diffusion-

transport model in which the isotopes of Ba exhibited mass-dependent variations in diffusivity. 

Adsorption of Ba onto the surface of the silica gel favored the heavier isotope, but the effect was 

significantly smaller than that resulting from diffusion.  

 

  



 
  15 

 

 

 

2.0 BARIUM ISOTOPE METHOD DEVELOPMENT 

 

2.1 OVERVIEW OF BA ISOTOPE MEASUREMENT METHODOLOGY AND 

REQUIREMENTS 

 

The measurement of barium isotopes is a multi-step process.  In order to measure the barium in a 

substance, the barium must be removed from its matrix, which involves converting it into a 

solution with sufficient barium concentration and processing it through cation exchange resin to 

eliminate the other elements in the matrix.  In some cases, additional chemistry or calibrations 

must be done when matrix or residue has unwanted reactions with the resin.  The separation 

chemistry and measurement on the MC-ICP-MS can cause additional fractionation, often 

significantly larger than the natural variations in the samples.  To adjust for this, an isotopic 

double spike of precisely-known composition is added to the sample before any chemical 

processing that could cause fractionation. 

 

2.2 CATION EXCHANGE COLUMN SEPARATION OF BA 

2.2.1 Sample preparation 

In order to obtain precise measurement of the Ba isotope ratio, it is necessary to remove elements 

other than Ba from the matrix because (1) some elements have isotopes with isobaric 

interferences on one or more Ba isotopes, and (2) excess cations in the solution can cause non-
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linear fractionation effects during measurement on the MC-ICP-MS that are not replicated by the 

standards. To this end, the samples need to be prepared for purification via cation exchange.  In 

order to obtain at least 2 mL of a 500 µg/L solution of Ba for MC-ICPS analysis, each sample 

required at least one microgram of barium; however, 2.5 μg or more was generally prepared so 

that multiple measurements could be made.  For the produced water samples, preparation was 

relatively simple: the concentration of barium was measured via ICP-MS, the appropriate 

amount was aliquoted, double spike was added, and the sample was evaporated to dryness.  For 

the core samples, sequential extraction removed the portions to be measured, the concentration 

of Ba in leachates was determined, and the leachates were aliquoted, spiked, and evaporated to 

dryness. 

One mL of concentrated hydrochloric acid (HCl) was added to the dried, spiked samples, 

the sample was dried again to convert the matrix to chloride form, and then 0.5 mL of 2.0 N HCl 

was added to redissolve the sample.  Each time acid was added to the dried sample it was 

sonicated for five minutes and allowed to equilibrate for at least 30 minutes. 

2.2.2 Columns and cation exchange resin 

The cation column separation chemistry developed in this study is based on techniques described 

by von Allmen et al. (2010), Miyazaki et al. (2014), Horner et al. (2015), Nan et al. (2015), and 

Bullen and Chadwick (2015). A detailed, step-by-step description of the procedure is provided in 

the Appendix.  Teflon columns (manufactured by Savillex®) with an interior diameter of 4.8 mm, 

a height of 7.5 mm, and a 15 mL reservoir were filled to just below the base of the reservoir (6 

cm resin height above the frit) with AG-50W, 200-400 mesh, 8% cross-linkage cation exchange 

resin suspended in 2.0 N HCl. 



 
  17 

The resin is pre-cleaned by placing it in a Teflon bottle, which is filled with a series of 

cleaning solutions and shaken vigorously, then allowed to sit for five minutes (except where 

noted) before the fluid is carefully decanted.  The solutions used were in the following sequence:  

Milli-Q ultrapure (18.2 MΩ) water (four rinses); 2% ultrapure HNO3 (twice), Milli-Q water 

(twice), 6 N ultrapure HCl (allowed to sit 2-3 hours); Milli-Q water; 6 N ultrapure HCl; and 

finally Milli-Q water twice more or until the decanted water is clear in color, whichever comes 

last.  The resin is stored in Milli-Q water.   

After the cation exchange resin is added to the columns, it is conditioned with 0.5 mL of 

4.0 N HCl, followed by 2 mL of 4.0 N HCl, then 4 mL of the same.  This was repeated with 2.0 

N HCl.  The resin is discarded from the column after each sample passes through. 

2.2.3 Column calibration 

Cations move through the resin at a rate determined by their size, charge, and complexation with 

H2O and Cl-. The goal is to find an elution curve that best separates Ba2+ from all other cations. 

Initial column calibrations were carried out using produced water samples of approximately 

known chemistry and were occasionally spiked with a concentrated solution of rare earth 

elements (REEs) to test the separation of barium from lanthanum (La) and cerium (Ce), which 

have isobaric interferences with 136Ba (136La) and 138Ba (138La, 138Ce).  

2.2.3.1 Produced water calibration curves  The elution of produced water was first attempted 

with 2.0 N HCl only (Bullen and Chadwick, 2015, Horner, et al., 2015), and different resin 

heights were tested to determine the best separation of Ba from the matrix. While major cations 

like Na+ and Mg2+ were eluted quickly (within the first ~12 mL), Sr2+ tended to overlap with 

Ba2+ at lower resin heights (Figure 4); ultimately, a 6 cm height was chosen as optimal. A 

relatively clean separate of Ba was eluted between 15 and 25 mL total acid added. Using 2.0 N 
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HCl only, most of the major cations were removed within the first 15 mL, and Ce3+ and La3+ 

were not significantly eluted until after 25 mL, subsequent to the elution of Ba2+ (Figure 5).  In 

order to accelerate the Ba collection process and reduce the amount of acid used, we tried 

experiments in which the Ba fraction was collected using 4.0 N HCl, 1.0 N HNO3, and 1.5 N 

HNO3 (after Miyazaki et al., 2014, and Horner et al., 2015). As shown in Figure 6, all of these 

resulted in increased overlap of Ce3+ and La3+ with Ba2+; therefore, the initial elution using 2.0 N 

HCl all the way through was used in this study. 

2.2.3.2  Sequential extraction calibration curves  Elution curves for Ba and other elements 

were found to be different in the ammonium acetate and acetic acid sequential extractions of 

shale, most likely due to interference between the column chemistry and residual acetate from 

the extraction solutions.  As noted earlier, Ba in produced waters was eluted between 15 and 25 

mL of 2.0 N HCl.  When this elution interval was with the products of sequential extraction, only 

about half of the Ba was eluted by 25 mL; the remainder came out in the next ~10 mL of 2.0 N 

HCl. Therefore, a second separation was done on these samples. In the first separation, the 16-38 

mL fraction was collected, evaporated to dryness, and put through the columns again. In the 

second pass through the column, the 15-30 fraction was collected for analysis (Figure 7). While 

this had the effect of cutting off a portion of the Ba, the double-spike technique allows correction 

for mass fractionation from incomplete sample recovery, and we deemed it more important to 

minimize interferences with the analysis. 
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Figure 4:  Cation separation using different resin heights  
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Figure 5:  Final produced water elution curve of Ba, major elements, and potential REE isobaric 

interferences (La and Ce) using 6 cm resin heights 
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Figure 6:  Elution curves of selected elements in produced waters using different acids after the first 13.5 mL of 2.0 N HCl were 

added.  
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Figure 7:  First and second elutions of sequentially extracted barium.  In the second run, Ba from the first column (15-38 mL) was put 

through a second column with new resin. 
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2.3 BARIUM DOUBLE SPIKE 

2.3.1 Theory 

Using a double spike to correct for instrumental mass fractionation is a long-established 

technique (Dodson, 1963; Eugster et al., 1969).  The process requires an element with at least 

four stable (or sufficiently stable) isotopes.  A precisely-measured solution enriched in two of the 

isotopes is added to the sample.  Knowing the relationship between the four chosen isotopes in 

the standard (NIST3104a in this study) allows fractionation between the two non-spiked isotopes  

that can occur during chemistry and instrumental measurement to be determined iteratively 

(Dodson, 1963; Rudge et al., 2009). 

2.3.2 Choice of spike isotopes 

The relatively large number of barium isotopes provides a variety of choices in creating a double 

spike.  Creation of the double spike depended primarily on balancing the variables of isobaric 

interferences, natural isotope abundances, and availability of isotope spikes of sufficient purity. 

Of the isobaric interferences (Table 1), Xe presents the most serious issue, because some level of 

Xe is always present in the Ar gas used for sample introduction in the MC-ICP-MS.  Meanwhile, 

Ce and La can be minimized by optimizing column chemistry. We chose not to analyze 130Ba 

and 132Ba due to their low abundances, and because 132Ba has the largest interference from Xe, 

and the potential tellurium (Te) interference in 130Ba could have caused additional difficulty.  To 

determine between the final five possible isotopes, Rudge’s Double Spike Toolbox (presented 

first in Rudge et al., 2009, and available on the author’s website) was consulted to determine 

which isotopes would be used in the spike, which would be measured, and what the proper 

proportions would be. 
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Ultimately, a 135Ba-137Ba spike was chosen, as 138Ba, the most abundant isotope, could be 

measured together with either 134Ba or 136Ba (Figure 8).  Between these, there was no change in 

calculated error and only minor changes to the optimal proportions of 135Ba/(135Ba+137Ba) within 

the double spike depending on which isotope pair was chosen for measurement (0.669 for 

138Ba/134Ba versus 0.682 for 138Ba/136Ba; Figure 9).  Similarly, the spike to sample proportion 

(40.32% spike for 138Ba/134Ba versus 41.72% in 138Ba/136Ba; Figure 9) was very close, so a 

 

 

 

 

Figure 8:  The isotope abundances of an optimally-spiked sample 
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Table 1:  Abundances and isobaric interferences for barium and overlapping isotopes 

 

 

 

 

 

Figure 9:  Error curves for the proportions of 135Ba (spike 4) and 137Ba (spike 6) and for the  

proportions of double spike and sample.  Left is optimized for measurement of 138Ba/134Ba; right 

is optimized for measurement of 138Ba/136Ba.  Created using the double spike toolbox (Rudge et 

al., 2009; http://www.johnrudge.com/doublespike). 
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halfway point in each of the two sets of proportions was used in creating the spike and 

determining how much would be added to samples for measurement.   

The sample-spike measurement configuration that we selected was the 135Ba-137Ba spike 

combined with the 138Ba-136Ba measurement to correct for mass fractionation. 136Ba was 

measured instead of 134Ba because (1) 136Ba is more abundant, and (2) the Xe interference on 

136Ba is smaller than that on 134Ba (Table 1). While 136Ba has a small Ce interference that is not 

present on 134Ba, Ce is effectively removed during column separations, and later measurements 

showed the interference to be negligible on all samples. The 138Ba/134Ba ratio (used to report 

δ138Ba) is calculated based on the measured 138Ba/136Ba ratio. 

2.3.3 Calculating sample 138Ba/134Ba from isotope ratio measurements 

Eight isotope masses are measured on the MC-ICPMS during a Ba isotope run: 131, 134, 135, 

136, 137, 138, 139, and 140. Of these, mass 131 is used to monitor 131Xe, mass 139 to monitor 

139La, mass 140 to monitor 140Ce, and mass 134 (primarily 134Ba) is not used directly to 

determine the δ138Ba value.  The other four isotopes are used, after appropriate corrections for 

isobaric interferences, to calculate the δ138Ba of the sample.  An exponential correction was used 

to correct for mass fractionation, as 

Ba138

Ba136
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

=
Ba138

Ba136
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

�
𝑚138

𝑚136
�
𝛼𝑚136

 

where m138  and m136 are the isotope masses of 138Ba and 136Ba (137.90523 and 135.904553 

amu, respectively) and α is the exponential fractionation factor, given by: 
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(Wasserburg et al., 1981). Here (138Ba/136Ba)N refers to the “normal” value for unfractionated 

barium (in this case, the value of standard NIST 3104a) and (138Ba/136Ba)M is the measured 

value. The value of α calculated above can be used to correct all isotope ratios with 136Ba in the 

denominator. 

When the double spike is added to the sample, it has a fractionation factor, αspike, of zero 

(by definition). Therefore, the goal is find the value of αspike after chemistry and analysis, and to 

use that to correct for post-spiking mass fractionation. This allows calculation of the sample 

fractionation prior to spiking as αsample. An iterative sequence of calculations to correct for mass 

fractionation is as follows: 

1. Calculate spike to sample ratio as 135Baspike/136Basample as a function of: 

a. (135Ba/136Ba)measured  (original measured value) 

b. (135Ba/136Ba)sample  (from previous 4) 

c. (135Ba/136Ba)spike  (from previous 8) 

 

2. Calculate (138Ba/136Ba)sample as a function of: 

a. (138Ba/136Ba)measured  (original measured value) 
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b. 135Baspike/136Basample  (from 1) 

c. (135Ba/136Ba)spike  (from previous 8) 

d. (138Ba/136Ba)spike  (from previous 9) 

 

3. Calculate αsample as a function of: 

a. (138Ba/136Ba)sample  (from 2) 

b. (138Ba/136Ba)normal  (constant) 

c. Masses of 138Ba, 136Ba (constants) 

 

4. Calculate (135Ba/136Ba)sample as a function of: 

a.  αsample  (from 3) 

b. (138Ba/136Ba)normal  (constant) 

c. Masses of 135Ba, 136Ba (constants) 

 

5. Calculate (137Ba/136Ba)sample as a function of: 

a.  αsample  (from 3) 

b. (137Ba/136Ba)normal  (constant) 

c. Masses of 137Ba, 136Ba (constants) 

 

6. Calculate (137Ba/135Ba)spike as a function of: 

a. (137Ba/136Ba)measured  (original measured value) 

b. (135Ba/136Ba)measured  (original measured value) 

c. (135Ba/136Ba)sample  (from 4) 
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d. 135Baspike/136Basample  (from 1) 

e. (137Ba/136Ba)sample  (from 5) 

 

7. Calculate αspike as a function of: 

a. (137Ba/135Ba)spike  (from 6) 

b. (137Ba/136Ba)SpikeNormal  (constant) 

c. (135Ba/136Ba)SpikeNormal  (constant) 

d. Masses of 137Ba, 135Ba (constants) 

 

8. Calculate (135Ba/136Ba)spike as a function of: 

a. αspike  (from 7) 

b. (135Ba/136Ba)SpikeNormal  (constant) 

c. Masses of 135Ba, 136Ba (constants) 

 

9. Calculate (138Ba/136Ba)spike as a function of: 

a. αspike  (from 7) 

b. (138Ba/136Ba)SpikeNormal  (constant) 

c. Masses of 138Ba, 136Ba (constants) 

 

10. REPEAT 

 

In the first iteration, the standard (NIST 3104a) ratio is used for ratio 1.b., and 

unfractionated spike ratios are used for 1.c., 2.c., and 2.d.. Thereafter, the values from the 
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previous set of iterations are used. The values typically converge after 2-3 iterations, but 10 full 

iterations are done for each measured set of ratios. Ultimately αsample (Step 3) is used to calculate 

the final (134Ba/136Ba)sample, which is then converted to (138Ba/134Ba)sample as  

(138Ba/134Ba)sample  = (138Ba/136Ba)sample /(134Ba/136Ba)sample 

The iterative calculations were tested by numerically fractionating a “sample,” 

numerically mixing it with unfractionated spike, and numerically fractionating the mixture using 

the exponential law. The isotope ratios of the fractionated mixture were run through the iteration 

program, and the precise initial composition of the “sample” was obtained. This held for all 

spike:sample ratios, and for extreme values of α (positive or negative). 

While the exponential law has been shown to be effective in correcting for fractionation 

during sample chemistry and analysis by thermal ionization mass spectrometry (e.g., Russell et 

al., 1978), some portion of the fractionation during MC-ICP-MS results from processes (possibly 

related to sample introduction in the plasma) that do not follow an exponential law. Therefore, it 

is necessary to measure a spiked standard (in this case, NIST 3104a) repeatedly throughout the 

analysis, and to normalize the double spike-corrected values to this standard. 

 

2.4 ANALYSIS BY MC-ICP-MS 

2.4.1 Run parameters 

Sample solutions containing 500 µg/L Ba in 2% HNO3 were analyzed on the NETL/University 

of Pittsburgh Thermo Neptune Plus MC-ICP-MS. The initial batch of samples was run using a 

quartz glass spray chamber, yielding 138Ba signals of 2-7 V (10-11 Ω resistor). A series of 

measurements was made on unspiked standard NIST 3104a and on the double spike solution 

before and after the sample analyses; the average of these values was used as the “normal” ratios 
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for samples analyzed during that series of measurements. An optimally-spiked solution of NIST 

3104a was analyzed before and after each sample as well, to test for drift over the course of the 

analyses (total time 24-60 hours).  For each analysis, 50 sets of ratios (i.e., 50 sets of measured 

masses 131, 134, 135, 136, 137, 138, 139 and 140) were obtained; the reported uncertainty is two 

times the standard error (2 S.E.) of these measurements, and is typically in the range of 0.042-

0.070‰ (average uncertainty ±0.052‰ 2 S.E.). The measured values for the spiked standard 

over the initial set of analyses are shown in Figure 10a. The samples (produced waters) analyzed 

during this time were normalized to the average value of all the standards. 

The second batch of samples was analyzed using the Apex® heated/cooled chamber 

sample introduction system, resulting in signals up to 20 V. Unspiked standards, double spike, 

and spiked standards were all measured as before, and the samples were again normalized to the 

average of the spiked standards. The variation in the spiked NIST 3104a standards is shown in 

Figure 10b. Uncertainties in the spiked standard analyses ranged from 0.025 to 0.049‰, with an 

average of ±0.036‰ 2 S.E. 

2.4.2 Isobaric interference corrections 

A small but steady signal of 131Xe was observed throughout the analyses. For the second batch of 

samples, the Xe interference with 136Ba was corrected by measuring the signal intensity at mass 

131 and subtracting the calculated 136Xe (based on 136Xe/131Xe = 0.417) from the total signal 

intensity at mass 136. Because the Xe signal was constant, the total correction depended on the 

intensity of the sample signal. The calculated Xe corrections to the δ138Ba ranged from 0.07‰ to 

0.69‰, with an average correction of 0.12‰. For the first batch of samples, Xe was corrected by 

subtracting the full background for each mass, and assuming that the Xe signal was constant over 

the run. Reproducibility of the standard runs indicates that this was a reasonable assumption,  
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Figure 10:  Measurements of standard during MC-ICP-MS runs; (a) initial runs (b) with 

Apex introduction system 
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although the lack of in-run Xe correction could be partly responsible for the larger uncertainty in 

the first batch of samples. 

Possible interference from 138La, 136Ce, and 138Ce were monitored at masses 139 

(138La/139La = 0.00091) and 140 (136Ce/140Ce = 0.0021; 138Ce/140Ce = 0.0028). As expected, the 

total correction for all samples and standards was negligible (largest correction from 138La = 

0.014‰; most <0.001‰); this is due to the efficient Ba separation chemistry and the relatively 

low abundance of the interfering isotopes. 

2.4.3 Data evaluation 

In addition to repeated runs of the spiked standard, nearly all samples were run in duplicate. In 

each case, the duplicates were within measurement uncertainty of the previous run. The factor 

that appeared to have the largest impact on measurement uncertainty was the overall intensity of 

the signal. In some cases, less sample than the optimal amount was available for analysis, leading 

to larger overall measurement uncertainty (up to ±0.12‰ 2 S.E.; Chapter 3). Smaller sample 

signals are correlated with higher Xe corrections, which may contribute to the higher uncertainty. 

If less Ba was present in the sample than expected prior to adding spike, the spike:sample ratio 

can also be elevated, which could contribute to the uncertainty. Accurate measurement of Ba 

concentrations in a sample prior to spiking is important for obtaining the best possible isotope 

data. 
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3.0 BARIUM ISOTOPE VARIATIONS IN THE MARCELLUS SHALE AND 

APPALACHAIN BASIN PRODUCED WATERS 

 

3.1 INTRODUCTION 

The Marcellus Shale is the largest natural gas play in the United States, covering an area of 

240,000 km2 (Figure 11) and containing as much as 489 trillion cubic feet of recoverable natural 

gas (Kargbo et al., 2010).  Around 4,000 unconventional wells were drilled into it between 2005 

and 2014 in Pennsylvania alone (Balashov et al., 2015), and more than 240,000 people in the 

state are employed in the natural gas or related industry (MSC, 2013).  Natural gas is extracted 

from the Marcellus Shale through a combination of directional drilling and hydraulic fracturing 

(Zagorski et al., 2012). Hydraulic fracturing involves injection of up to 15,000 m3 of fluid 

(Ground Water Protection Council and ALL Consulting, 2009), consisting primarily of water 

(including fresh and/or previously returned water) with smaller amounts of sand proppant, acid 

for dissolving well casing perforations, and various chemical descalants (Soeder et al., 2014).  

The water is injected at high pressure to fracture the shale formation, creating permeability for 

gas flow.  Following a waiting period after injection (sometimes referred to as “marinating”), the 

well is unsealed, and up to 40% of the water is returned to the surface, most of it within the first 

1-2 weeks (Zagorski et al., 2012). During this time, the TDS (including Ba) of the returned water 

increases rapidly until it reaches a near-steady state value at a much-diminished flow rate 

(Hayes, 2009; Chapman et al., 2012; Kolesar Kohl et al., 2014). 
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Figure 11:  Depth and thickness map of the Marcellus Shale, with a 50 ft. isopach 

contour, a 1500 ft. depth contour, and sampling areas marked: M - MSEEL, G - Greene Co., W - 

Westmoreland Co., T - Tioga Co. (modified from Wang and Carr, 2013) 
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Marcellus Shale returned water is known to have very high Ba concentrations (Hayes, 

2009; Chapman et al., 2012; Haluszczak et al., 2013; Engle and Rowan, 2014). As discussed in 

Chapter 1, this can have a detrimental effect on natural gas extraction, due to the potential 

fouling of the well from precipitation of barite (Paukert Vankeuren et al., 2017). A statistical 

analysis of Marcellus produced waters by Engle and Rowan (2014) showed that waters with the 

highest Ba content tended to also be sulfate-poor. Sequential extraction experiments on 

Marcellus Shale samples by Stewart et al. (2015) demonstrated that the majority of easily-

extractable Ba in Marcellus Shale rock is held on cation exchange sites on the surfaces of 

minerals and organic matter, suggesting that this could be a source of Ba in Marcellus Shale 

returned water.  Renock et al. (2016) suggested that high Ba levels in Marcellus Shale returned 

water result from reductive weathering while the injected fluid is in contact with the shale. 

However, Stewart et al. (2015) note that unrealistically high rock:water ratios may be required to 

explain the observed Ba levels in Marcellus shale produced water. In addition, Rowan et al. 

(2015) suggest that the late-stage produced waters represent pre-existing brines within or near 

the Marcellus Shale. Motivated in part by the importance of determining the source of Ba in 

produced water, I report barium isotope data from Marcellus Shale leachates (including both 

exchangeable cations and carbonate cement), produced water from Marcellus Shale wells, and 

additional  produced water samples from conventional oil and gas wells in Pennsylvania. 

 

3.2 GEOLOGY OF THE MARCELLUS SHALE 

The Marcellus Shale is a Middle Devonian organic-rich black shale underlying portions of New 

York, Pennsylvania, Ohio, West Virginia, and Virginia (Figure 11). It consists of two primary 

members, the upper Oatka Creek and lower Union Springs, separated by a small limestone 
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interval, the Purcell Limestone (Lash and Blood, 2014). The Union Springs member is the usual 

target of gas exploration. The Marcellus is part of the Hamilton Group, which also includes the 

overlying Mahantango Formation, a gray shale.  It is underlain by the Onondaga Limestone 

(Figure 12).  In the heavily-drilled southwestern Pennsylvania region, the shale is around 6000 ft 

below the surface and 100-200 ft thick (Wang and Carr, 2013). 

The Marcellus Shale was deposited during the mid Devonian in a sheltered inland sea 

basin as part of the Catskill Delta about 30° south of the equator (Figure 13).  Clastic sediments 

were derived from the Acadian highlands to the southeast (Lash and Blood, 2014). 

 

3.3 SAMPLE MATERIALS 

3.3.1 Core and produced water from the MSEEL Drilling Site 

A series of Marcellus flowback/produced water and core samples used in this study were 

obtained from a drilling site within the Marcellus Shale Energy and Environment Laboratory 

(MSEEL), a hydraulic fracturing field site run by a variety of institutions, including the National 

Energy Technology Laboratory (NETL), West Virginia University, and the Ohio State 

University (Carr et al., 2017).  The site includes four producing horizontal wells:  two relatively 

low-producing wells that were drilled in 2011 (wells 4H and 6H), and two wells that were 

completed in December 2015 (wells 3H and 5H).  Well 3H also had a complete vertical core 

taken (Sharma et al., 2017).  The samples for this study came from well 3H, in the MIP pad, 

which is located near Morgantown, WV and 580 m laterally from the Monongahela River 

(Figure 14; Ziemkeiwicz, 2017). The natural gas produced from the wells is used in nearby 

Morgantown, and researchers have access to logs and samples.  In addition, there are sampling  
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Figure 12:  Cambrian through Permian stratigraphy in Pennsylvania (modified from Rowan et 

al., 2015) 
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Figure 13: Paleogeographic reconstruction of North America, Middle Devonian; approximate 

paleolocation of study areas marked (modified from Blakey, 2017) 
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Figure 14:  MSEEL well site and well schematic near Morgantown, WV (MSEEL, 2017) 
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stations upstream and downstream of the site on the river that have taken and continue to take 

water quality samples before, during, and after drilling and production (Ziemkiewicz, 2017). 

Marcellus Shale rock samples were taken from core of well 3H at varying depths 

(7449.25, 7484.11, 7503.98, 7512.01, and 7534.04 feet below the surface) in an area where the 

Marcellus Shale extends from 7445 to 7557 feet.  Rock samples were all powdered and then 

subjected to a sequential extraction procedure for exchangeable cations and carbonate before 

being processed through the columns as described below. 

A time series of six water samples was taken from MSEEL’s MIP 3H well starting just 

after flowback began.  All water samples were filtered to 0.45 μm and acidified with 2% HNO3.  

Samples from December 10, 11, 13 of 2015 were taken prior to gas production.  Samples from 

January 14, February 3 and April 12 of 2016 are waters co-produced with methane.  The 

produced water samples were aliquoted before being processed through the columns in 

preparation for MC-ICP-MS analysis.   

3.3.2 Produced water from other sites 

Eight additional produced water samples from around the state of Pennsylvania were analyzed.  

Produced water samples from three Middle Devonian Marcellus Shale gas wells were taken in 

Tioga County (SA14; see additional data in Rowan et al., 2015; Phan et al., 2016), 

Westmoreland County (WE-B18; Chapman et al., 2012; Phan et al., 2016), and Greene County 

(MO6 - vertical Marcellus, hydraulically fractured, ~7 years after initial fracturing; Kolesar Kohl 

et al., 2014; Phan et al., 2016).  Three water samples were taken from wells producing from 

upper Devonian/ lower Mississippian strata: one from an unconventional well tapping the Burket 

Shale in Tioga County (ST46; Rowan et al., 2015; Phan et al., 2016) and two from conventional 

wells in Greene County (MO5 and MC1; Kolesar Kohl et al., 2014; Phan et al., 2016).  Finally, 
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water samples from conventional wells tapping the Middle Silurian Newburg Sandstone (SILN-

ND; Phan et al., 2016) and the Upper Silurian Lockport Dolomite (SILN-L; Phan et al., 2016) 

were each taken from northern Pennsylvania. 

 

3.4 METHODS 

3.4.1 Sequential extraction 

Rather than dissolving the entirety of the core samples, they were sequentially leached to extract 

barium from different reservoirs within the rock that are more likely to be accessible during 

hydraulic fracturing (Stewart et al., 2015; Phan, et al., 2015).  In this study, we sought to extract 

Ba from the cation exchange sites on the surfaces of minerals and organic matter, which are 

thought to contain most of the accessible Ba (Stewart et al., 2015; Renock et al., 2016), and from 

the carbonate cement fraction. 

For the cation exchange sites, ammonium acetate buffered to a pH of 8.0 was added to 

powdered rock in a 40:1 ratio (Stewart et al., 2001, 2015; Phan et al., 2015).  The mixture was 

agitated for four hours and then centrifuged for ten minutes at 5000 rpm.  The fluid was pipetted 

out and filtered at 0.45 μm, and then the process was repeated with a 30 minute agitation time. 

Acetic acid (1.0 M) was used to dissolve the carbonate fraction of the samples, while 

minimizing dissolution of silicate components (Stewart et al., 2001, 2015; Phan et al., 2015).  It 

was added in a 40:1 ratio to the residuum of the previous step, agitated vigorously, and then 

allowed to digest for thirty minutes.  The mixture was allowed to vent built-up carbon dioxide 

and then was constantly agitated for four hours, pausing to vent every thirty minutes.  The fluid 

was pipetted out and filtered to 0.45 µm. 
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All leachate samples were evaporated to dryness in a HEPA-filtered hood, redissolved in 

ultraclean 2% nitric acid, and analyzed for Ba concentration by ICP-MS. 

3.4.2 Chemistry and mass spectrometry 

Aliquots of 1-5 µg of Ba were taken from the leachate solutions and the produced waters. The 

appropriate amount of 135Ba-137Ba double spike was added as described in Chapter 2. The 

aliquots were evaporated to dryness and redissolved in 2.0 N HCl for cation column separation. 

After the column procedure, the Ba cut was evaporated to dryness and redissolved in ultrapure 

2% HNO3 for MC-ICP-MS analysis. 

All samples were analyzed on a Neptune Plus MC-ICP-MS. The MSEEL 

flowback/produced water samples (except 3H04) were analyzed using the standard sample 

introduction system, with 136Xe corrected by subtracting the full background at mass 136, but not 

monitored during the runs.  All other samples were analyzed using the Apex® sample 

introduction system, with 136Xe monitored continuously during the run by measuring 131Xe. 

Repeated measurement of the NIST 3104a standard yielded no significant variation over the 

course of the analyses, so samples were normalized to the average value of the standard. 

Duplicate runs were carried out within each analytical session on the MC-ICP-MS, and all fell 

within error of the original analysis. 

 

3.5 RESULTS 

3.5.1 Shale leachates 

The δ138Ba values of exchangeable Ba (ammonium acetate extracts; Table 2) from Marcellus 

Shale core material from different depths fall within a relatively narrow range of 0.48-0.58‰ 

(average of duplicates; Table 2) and essentially within analytical uncertainty of one another.  
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Table 2:  δ138Ba of extracted samples 
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These values are generally higher than those of bulk silicate rocks that have been measured to 

date (δ138Ba = ˗0.07 to 0.19‰; see Chapter 1) but are similar to modern seawater (Figure 15; von 

Allmen et al., 2010; Horner et al., 2015; Cao et al., 2016; Pretet et al., 2016; Bates et al., 2017). 

The carbonate (acetic acid leachate) δ138Ba values also fall within a narrow range (0.47-

0.60‰) that overlaps significantly with the exchangeable Ba (Table 2). Neither the exchangeable 

nor the carbonate δ138Ba exhibits a systematic shift with depth in the core (Figure 16). 

As demonstrated previously for other Marcellus Shale samples (Stewart et al., 2015; 

Renock et al., 2016), most of the accessible Ba is in the exchangeable sites of the shale, with 

concentrations up to 430 µg Ba per g of rock leached (Table 2). The carbonate contains less Ba 

by a factor of ~102 (3.5 μg of barium in carbonate per g of leached rock versus 325 μg on cation 

exchange).  While the δ138Ba of the exchangeable fraction seems to exhibit a slight correlation 

with Ba concentration (Figure 17), the same is not seem in the carbonate. 

3.5.2 Produced Waters 

Concentrations of Ba from the flowback/produced water time series from the MSEEL site show 

the expected trend of increasing Ba concentration over time (Table 3; Figure 18a) The δ138Ba 

values fall within a relatively narrow range of 0.81-0.99‰, and appear to show a decrease after 

day 1, followed by a gradual increase to day 56 and another decrease by day 489 (Figure 18b).  

All of the MSEEL produced water δ138Ba values are significantly higher (outside of analytical 

error) than the MSEEL exchangeable and carbonate values:  δ138Ba = 0.808—1.020‰ ± 0.055‰ 

2 S.E for the produced waters and 0.451—0.603‰ ± 0.050‰ in the extracted fractions. 

Other produced water samples from Marcellus Shale wells have positive δ138Ba values, 

ranging from 0.60‰ in Greene County, PA, to 1.52‰ in Westmoreland County, PA. The latter  
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Figure 15: Summary of δ138Ba results with some comparative literature values.  Conventional well samples are diamonds, 

unconventional are squares, leachates are triangles.  Data not from this study are from von Allmen et al., 2010, Bullen and Chadwick, 

2015, Cao et al., 2015, Horner et al., 2015, Nan et al., 2015, and Pretet et al., 2015)   
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Figure 16:  δ138Ba of leachates by depth 
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Figure 17:  Correlation of exchangeable and carbonate δ138Ba with Ba concentration (μg 

of Ba per g of sample leached) 
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Table 3:  δ138Ba of produced waters 
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Figure 18:  Plot of (a) [Ba] and (b) δ138Ba against day of sample collection after initiation of 

flowback for the MSEEL 3H well; range of δ138Ba values for the cation leachates shown in the 

shaded area 
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value appears unusually high, but Chapman et al. (2012) found that produced waters from the 

same wells (including the sample analyzed here) also yielded anomalously high 87Sr/86Sr ratios. 

Produced water from conventional wells drilled into Silurian sandstone and dolomite 

underlying the Marcellus Shale (COG and LP 3515; Table 3) yield δ138Ba values significantly 

lower than those of hydraulically fractured Marcellus Shale wells, ranging from -0.12‰ to 

0.09‰. Produced water from Upper Devonian/Lower Mississippian units overlying the 

Marcellus Shale yield even lower δ138Ba values (-0.81‰ to -0.59‰). Of these, sample ST46 is 

extracted from an unconventional Burket Shale well, while the other two are from conventional 

sandstone reservoirs. 

 

3.6 DISCUSSION 

3.6.1 Source of Ba in shale produced water 

The δ138Ba values of exchangeable sites and carbonate cement within the Marcellus Shale at the 

MSEEL site in West Virginia fall within the range measured in Ba dissolved in modern seawater, 

but are significantly below values measured in flowback and produced waters from the same 

well (Figure 15). This suggests that Ba in the produced water was not derived directly from 

interaction of injected fluids with exchangeable sites in the shale, but may come from a separate 

source. This source could be (1) micro-barite within the shale that is attacked by high ionic 

strength waters (Renock et al, 2106), (2) pre-existing formation water in lenses or fractures 

within the shale (e.g., Rowan et al., 2015), or (3) overlying or underlying units tapped by 

hydraulic fracturing (e.g., Stewart et al., 2015). 
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An alternative explanation is that Ba isotopes fractionate during interaction with the 

fracturing fluid. A typical ion exchange reaction would be expected to preferentially extract light 

(low- δ138Ba) Ba, which should yield a produced water with lower δ138Ba than that on the 

exchangeable sites. For our samples at the MSEEL site, we see the opposite effect, where the 

flowback and produced water is heavier (even early in the flowback sequence) than the 

associated exchangeable Ba.  Therefore, we suggest it is unlikely that the difference is caused by 

mass fractionation during water-rock exchange. 

3.6.2 Source of Ba in shale exchangeable sites and carbonate 

The Marcellus Shale was deposited in a shallow epicontinental seaway, west of the incipient 

Acadian Mountains and north of a set of shallows sills that restricted full circulation with the 

open ocean during the Middle Devonian Period. The source of Ba reaching the sea floor is likely 

to be a combination of continentally-derived sediments and possibly barite produced in the water 

column due to biological activity. The δ138Ba values on the exchange sites and within carbonate 

cement are broadly similar to the range of values seen in modern seawater, although marine bio-

barite is expected to be ~0.3‰ lighter than coexisting seawater (Figure 15; von Allmen et al., 

2010). The Marcellus exchangeable and carbonate barium is isotopically similar to that seen at 

the bottom of the East China Sea near the Changjiang estuary where there are high riverine 

inputs and high surface δ138Ba values (Cao et al., 2016).  This may be an analog for the 

Marcellus interior seaway with potentially high riverine inputs from the newly uplifting eastern 

Acadian Mountains. Given the general lack of Ba isotope data on potential sources (including 

Middle Devonian seawater), additional work will be required to determine the source of labile 

Ba in shale. 
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3.6.3 Ba isotope variations in produced water 

Marcellus shale produced waters from as far north as Tioga County, Pennsylvania, and as far 

south as Morgantown, West Virginia, appear to have higher δ138Ba values (0.6 to 1.5‰) than 

those of other produced waters in the Appalachian Basin, including from below the Marcellus 

(-0.1 to 0.1‰) and above (-0.8 to -0.6‰). The low δ138Ba values of Upper Devonian/Lower 

Mississippian produced waters are particularly intriguing, as the only natural samples reported to 

date with values this low are vegetation samples from Hawaii (Bullen and Chadwick, 2015), and 

one sample of marine barite from the Demerara Rise interpreted to be diagenetic (von Allmen et 

al., 2010). These data suggest distinct origins for Marcellus and other formation waters, but to 

pinpoint these sources requires more data to determine the full range of δ138Ba values in natural 

environments. 

While we cannot yet determine the precise source of Ba in produced waters, the 

difference in δ138Ba between produced waters from the Marcellus Shale and those from 

overlying formations suggests the possibility that Ba isotopes could be used to “fingerprint” 

wastewater from different types of oil and gas wells and to identify the source of migrating 

subsurface brine. Strontium, lithium and boron isotopes have been previously shown to vary 

systematically between Marcellus Shale waters and those of overlying units (Chapman et al., 

2012; Warner et al., 2012, 2014; Macpherson et al., 2014; Phan et al., 2016), but the difference 

appears to diminish somewhat in the northern part of the Appalachian Basin. If the Ba isotope 

differences are related to distinct evolutionary pathways of different formation waters, the 

differences could remain robust regardless of geographic location. 
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4.0 CONCLUSIONS 

 

Barium in the Marcellus Shale has a general range of δ138Ba 0.598-0.988‰ but is 

anomalously high in Westmoreland County, an area that also exhibits anomalous strontium 

isotope composition.  Sequentially extracted cation exchange and carbonate samples from a 

drilled core had values 0.22-0.52‰ lighter than produced water from the same well, suggesting 

that injected water-rock interactions are not the primary source of barium in Marcellus produced 

waters.  A time series of produced water taken from the well between the first day of flowback to 

well over a year later showed no trend in δ138Ba values, meaning Ba in flowback had a consistent 

primary source.  There is much more barium in exchangeable cation sites (2.48-6.13 μg per gram 

of leached sample) than in carbonate cement (272.91-431.46 μg per gram of leached sample). 

The δ138Ba of adjacent units are distinct from the Marcellus.  Produced water from older 

Silurian units range from ˗0.633‰ to 0.093‰, and those from younger Upper Devonian/Lower 

Mississippian units go from ˗0.811‰ to ˗0.591‰ for both conventional and unconventional 

wells. 

 Continuation of this work could include further study of possible Ba sources to produced 

water. Drilling mud (which often contains barite as a major component) is a potential source of 

contamination, and ongoing work is measuring the isotopic composition of Ba found there.  The 

injection fluid should be analyzed, but it is not expected to contribute much barium after the first 

day or two of flowback due to its much lower Ba concentration.  It is possible evaporates from 
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the Silurian Salina Group could contribute TDS produced waters beneath the Marcellus, 

although this is not likely to be a major source of barium.  The barium contained within shale 

silicate minerals is not expected to be easily available during water-rock interaction (Renock et 

al., 2016), but whole-rock shale data could provide valuable information on deposition, and some 

silicate contribution to the produced water Ba budget cannot be ruled out.  Additional leaching 

with high-temperature, high-ionic strength fluids also releases further barium (Renock et al., 

2016), so this should also be considered.  Finally, barium isotope measurements of different 

types of produced waters and reservoir rocks within and outside of the Appalachian Basin would 

provide a valuable baseline for future Ba isotope studies of hydrocarbon-bearing sedimentary 

systems. 
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APPENDIX 

  

STANDARD OPERATING PROCEDURE OF LOADING AND ELUTION OF BARIUM 

CATION COLUMNS 

 

Purpose of Procedure:  To collect purified separated of Ba from a dissolved sample solution 

Materials 

• Acid cleaned 15 mL centrifuge tubes (one per sample) 

• For produced water samples, acid cleaned 15 mL Teflon containers (one per sample) 

• For extracted samples, acid cleaned 30 mL Teflon containers (one per sample) 

• For extracted samples, acid cleaned 30 mL Teflon containers (one per sample) 

Reagents 

• Cleaned AG-50W, 200-400 mesh 8% cross-linkage cation exchange resin 

• Milli-Q water 

• 2.0 N HCl (ultrapure) 

• 4.0 N HCl (ultrapure) 

• Concentrated HCl (ultrapure) 

• 2% HNO3 (ultrapure) 

• Concentrated HNO3 (ultrapure) 

I.   Preparation 
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1. Gather centrifuge tubes and the appropriate number of Teflon vials depending on 

sample type. 

2. Ensure all vials and tubes are acid cleaned and labeled appropriately.  Weigh each 

(only one decimal place for the centrifuge tubes; four otherwise). 

3. Check normality of the 2.0 and 4.0 N HCl.  Adjust as needed. 

 

II.  Column Chemistry – Main Clean Lab 

For all samples: 

1. Begin with sample (already spiked if required) evaporated to dryness in Teflon. 

2. Add 1 mL of concentrated HCl.  Use only ultrapure acid throughout chemistry. 

3. Sonicate the sample for at least 10 minutes to assist dissolution of the sample into acid. 

4. Dry the sample again. 

5. Add 0.5 mL of 2.0 N HCl. 

6. Sonicate the sample for another 10 minutes. 

7. Begin microcolumn preparation: 

a. Gather the required number of clean microcolumns and place them in the stand 

with a waste beaker below each.  Make sure the top of the frit is 6 cm below the 

bottom of the column reservoir. 

b. For each microcolumn, fill partially with Milli-Q water and begin flow. 

c. Add resin to the water and allow it to fill the column until the top of the resin is 

just into the bottom of the reservoir. 

d. Make sure there are no bubbles in the resin—stir it up with a little more water if 

needed.  Pipette out excess water, but do not at any time allow the resin to dry. 
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e. Carefully add 0.5 mL of 4.0 N HCl to the edges of the reservoir, and allow it to 

run through. 

f. Repeat this with 2 mL of 4.0 N HCl, then an additional 4 mL. 

g. Do this again with 0.5 mL, 2 mL, and then 4 mL of 2.0 N HCl. 

8. Add the sample carefully to the edges of the reservoir and allow it to run through. 

9. Add 1 mL 2.0 N HCl to the column. 

10. Diverge here, depending on sample type. 

 

Produced Water Samples: 

1.  Add an additional 14 mL 2.0 N HCl and allow it to filter through.  Be sure not to let 

the resin dry out. 

2.  Remove the waste beakers and dispose of the acid properly.  Put an acid cleaned and 

labeled Teflon container under each column. 

3. Add 10 mL of 2.0 N HCl.  Collect this as the sample cut. 

4. Dry the sample. 

5. Add 1 mL of concentrated HNO3. 

6. Sonicate for 10 minutes, and then dry the sample again. 

7. Add 2 mL 2% HNO3 per expected μg of barium. 

8. Sonicate the sample for 10 minutes, and then move it to an acid cleaned and labeled 

15 mL centrifuge tube.  Add more 2% HNO3 if needed. 

Sequentially Extracted Samples: 

1. Add an additional 15 mL 2.0 N HCl and allow it to filter through.  Be sure not to let 

the resin dry out. 
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2.  Remove the waste beakers and dispose of the acid properly.  Put an appropriately-

sized acid cleaned and labeled Teflon container under each column. 

3. Add 22 mL of 2.0 N HCl.  Collect this as the sample cut. 

4. Dry the sample. 

5. Add 0.5 mL of 2.0 N HCl, and then sonicate for 10 minutes. 

6. Empty the used resin from columns and dispose of it, then add new resin and 

condition it as described above. 

7. Add 1 mL of 2.0 N HCl and allow it to run through (as in step 9 above). 

8. Add 15 mL of 2.0 N HCl and allow it to run through. 

9. Remove the waste beakers and dispose of the acid properly.  Put an appropriately-

sized acid cleaned and labeled Teflon container under each column. 

10. Add 14 mL of 2.0 N HCl.  Collect this as the sample cut. 

11. Dry the sample. 

12. Add 1 mL of concentrated HNO3. 

13. Sonicate for 10 minutes, and then dry the sample again. 

14. Add 2 mL 2% HNO3 per expected μg of barium. 

15. Sonicate the sample for 10 minutes, and then move it to an acid cleaned and labeled 

15 mL centrifuge tube.  Add more 2% HNO3 if needed. 
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