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Pseudomonas aeruginosa is a Gram-negative, opportunistic pathogen that chronically infects 

approximately 80% of cystic fibrosis (CF) patients by early adulthood, accounting for the 

majority of morbidity and mortality in these patients. The development of chronic P. aeruginosa 

infections in the CF lung involves the formation of highly recalcitrant biofilm communities. 

Clinical observations have noted a correlation between respiratory virus infection and the 

acquisition of chronic P. aeruginosa infection by CF patients, but the mechanism underlying this 

interaction in the CF lung is not understood. In this dissertation, we hypothesized that respiratory 

viral co-infection promotes P. aeruginosa biofilm formation on airway epithelial cells (AECs).   

We demonstrate that in the presence of respiratory syncytial virus (RSV) co-infection, P. 

aeruginosa biofilm growth is significantly increased. We observed that RSV infection increased 

the release of iron-bound transferrin, suggesting that RSV infection disrupts iron homeostasis in 

the airway epithelium. Iron is an essential nutrient for P. aeruginosa biofilm growth, and both 

iron chelation and depletion of transferrin from apical secretions collected from AECs blocked 

the biofilm stimulatory effect of RSV co-infection. We also demonstrate that RSV infection 

promotes the apical release of extracellular vesicles (EVs) from AECs, which increases the 

availability of iron-loaded transferrin in the apical secretions of AECs. Interestingly, purified 

EVs stimulate P. aeruginosa biofilm growth, suggesting that host-derived EVs interact with a 

bacterium to promote chronic bacterial infections. Finally, the innate immune response to virus 
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infection, measured by type I and type III (IFN-β and -λ, respectively) interferon production, 

peaks at the same time as virus-induced biofilms growth, and treatment of AECs with either IFN 

replicates the enhanced biofilm growth observed during virus co-infection. Our data suggest a 

novel mechanism by which the host response to viral infection contributes to the development of 

chronic pulmonary P. aeruginosa infection and provide mechanistic insight into our 

understanding of nutritional immunity in the lung. 
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 1 

1.0  INTRODUCTION 

A fundamental requirement for the survival of all living organisms, including the 

microorganisms that constantly engage in pathogenic and symbiotic relationships with their 

hosts, is the ability to acquire nutrients from the surrounding environment. For example, 

transition metals are critical to many essential biological processes including replication, 

transcription and metabolism. As a consequence, hosts and microorganisms are both involved in 

a continuous struggle to outcompete each other for nutrients. This fosters a dynamic environment 

in which many complex interactions take place between host and microbial proteins that 

ultimately dictate whether microbes successfully colonize their hosts and in the case of 

pathogenic microorganisms, cause disease. Studies at the host-pathogen interface have identified 

many mechanisms by which the host regulates the availability of essential nutrients to limit 

microbial growth and prevent infection, a collective process termed “nutritional immunity.” One 

of the most widely studied nutrients at this interface is iron.   

Epithelial cells are present at mucosal sites throughout the body and are constantly 

exposed to both resident and infectious microorganisms, as well as other environmental factors. 

The epithelium is responsible for many cellular processes critical to tissue homeostasis and 

human health including the selective absorption of nutrients, detection of the extracellular 

environment, secretion of signaling molecules and other products that mediate cell-to-cell 

communication, and protects underlying tissues from infection by serving as the first line of 
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defense microbes encounter in the human body. Consequently, epithelial cells contribute to both 

the physical and biological barriers that are utilized to prevent colonization by pathogenic 

microorganisms and preserve human health. For example, tight junctions maintain the structural 

integrity of the epithelial layer, providing a physical barrier, that prevents dissemination of 

microorganisms into deeper tissues. In addition, epithelial cells secrete antimicrobial factors, 

such as antimicrobial peptides and secretory IgA, that create an innate biological barrier 

microorganisms must first circumvent to successfully colonize host tissues. Epithelial cells also 

play a critical role in bridging the gap between the innate and adaptive immune responses to 

invading microbes by secreting chemokines and cytokines [1-3]. In addition, the epithelium is 

involved in additional mechanisms, such as nutrient sequestration, by which hosts limit microbial 

colonization and growth. Due to these selective pressures, microorganisms have established 

countermeasures to manipulate their environments and host epithelial cells to limit host immune 

responses and colonize host tissues. Ultimately, it is these back-and-forth interactions between 

the host and microbes at mucosal surfaces that determine the fate of infections and disease 

outcomes. 

In this regard, one aspect of the Bomberger lab focuses on nutritional immunity in airway 

epithelial cells, and how these processes are altered during viral-bacterial coinfections to 

promote nutrient accessibility and infection in the respiratory tract. Compared to previously 

identified mechanisms of viral-bacterial interactions, the involvement of nutritional immunity is 

unique in several aspects that will be explained in this dissertation.  
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1.1 CYSTIC FIBROSIS PULMONARY INFECTIONS 

Cystic fibrosis (CF) is a genetic disease caused by mutations in the cystic fibrosis transmembrane 

conductance regulator (CFTR). The first description of CF was made in 1938 by Dorothy 

Andersen, who originally described mucus plugging of the pancreas and pancreatic insufficiency 

in infants who experience malnutrition and died due to pulmonary infection [4]. At the time, this 

disease was characterized by mucus plugging of the exocrine glands and patients did not survive 

past early childhood due to lung infections [4]. In the last 80 years, tremendous progress has 

been made understanding the basic biology of CF including: (i) the discovery that the sweat of 

CF patients had an abnormally high salt concentration and development of the “sweat test,” 

which led to the identification of patients with milder CF disease, (ii) identification of chloride 

transport as the basic physiological defect in CF, and (iii) the identification of the CF gene [4]. 

There have now been more than 2000 CFTR mutations identified, of which 127 mutations meet 

clinical and functional criteria for disease [5]. Deletion of phenylalanine at position 508 of CFTR 

(∆F508) is the most common mutation in CF patients. It is estimated that 70,000 individuals 

globally have some form of CF, of which 30,000 individuals are in the United States. Because 

CFTR is expressed on many cell types, including epithelial cells, CF is a multi-organ disease 

characterized by disorders of endocrine, gastrointestinal, reproductive and respiratory systems. 

However, the major determinant of mortality in CF patients is pulmonary disease. Infection with 

the Gram-negative, opportunistic Pseudomonas aeruginosa in the CF lung has been associated 

with significant morbidity and eventual loss of pulmonary function in patients [6, 7]. P. 

aeruginosa is the most common bacterial species isolated from the respiratory tract of CF 

patients, where it often establishes chronic infection and persists in the airways of patients for the 

rest of their lives [6]. The lung environment is a major factor that impacts host-pathogen 
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interactions and ultimately, a determinant of colonization of the lung by invading pathogens. 

Loss of function of CFTR is associated with changes in the lung environment, many of which 

create an environment that is favorable for P. aeruginosa colonization and chronic infection.  

1.1.1 CFTR Activity and Lung Environment  

Airway epithelial cells (AECs) are the first barrier in the respiratory tract encountered by inhaled 

pathogens and foreign particles. Besides acting as a physical barrier that prevent dissemination of 

inhaled material, ciliated cells in the airways actively contribute to removal of pathogens and 

foreign material from the lungs in a process termed mucociliary clearance [8]. This process is 

dependent upon proper airway surface liquid (ASL) hydration. The ASL consists of a periciliary 

fluid layer with an overlying mucus layer. The periciliary layer acts as a barrier between the 

mucus layer and cell surface that creates an optimal depth of ∼7 µm, which allows cilia to fully 

extend and beat in the airways [9, 10]. In the non-CF airways, apical secretion of Cl- and HCO3
- 

by the CFTR anion channel promotes the movement of water into the ASL, which maintains a 

periciliary layer depth of ∼7 µm and reduces the viscosity of the mucus. This removes debris, 

including bacterial and viral pathogens, that have been trapped in the mucus from the lungs. In 

the CF lung, significantly reduced CFTR function leads to dehydration of the ASL, resulting in a 

decrease in the depth of periciliary layer and ability of cilia to beat [9]. 

In addition to its role in mucociliary transport, the composition of the ASL is very 

important innate defense mechanism of the airways. For example, antimicrobial peptides are 

produced by AECs and are important antibacterial components of the ASL [11-13]. Moreover, 

synergistic and additive killing of bacteria by antimicrobial peptides found in the ASL has been 

observed [14]. The functional activity of antimicrobial peptides is sensitive to the environment, 
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as both acidic pH and high salt concentrations decrease the antibacterial activity of antimicrobial 

peptides [14-16]. In CF, the reduction in CFTR activity has been associated with more acidic 

ASL [17-19]. In a pig model of CF, the ASL was also found to be more acidic than the ASL 

from non-CF pigs [18]. Although the concentration of antimicrobial peptides in the ASL of non-

CF and CF pigs were similar, decreased killing of Staphylococcus aureus in the presence of ASL 

from the CF pigs was observed [18]. The acidity of the ASL in CF has been associated with 

decreased HCO3
- secretion due to reduced CFTR activity, and stimulation of HCO3

- secretion 

alkalinized ASL collected from CF bronchial cells [17]. Interestingly, addition of HCO3
- to ASL 

from CF pigs increased both the pH of the ASL but also bacterial killing in the presence of the 

ASL [18], suggesting that correcting the ASL pH defect in CF patients may be a therapeutic 

target that could increase bacterial killing in the airways of CF patients. In addition, decreased 

HCO3
- secretion, lower pH and ASL dehydration have been associated with increased mucus 

viscosity in the CF lung [20-22]. MUC5AC and MUC5B, the predominant components of 

airway mucus, are abnormally compact in CF airways, which likely results from a combination 

of these changes to the ASL composition [22]. Mucus is an important part of innate immunity in 

the lung that creates a barrier between the airway surface and particulate matter, including 

infectious microorganisms. Mucociliary transport removes mucus from the airways and in the 

CF lung this process is impaired due to these mucus abnormalities, thereby creating an 

environment that is predisposed to bacterial infection. 

Iron is essential nutrient for a wide variety of cellular processes, and due to the 

requirement of iron for microbial growth, the host meticulously regulates iron so that it is 

inaccessible to pathogens. Despite this regulation, iron levels are increased in the CF lung 

compared to healthy controls (Table 1) [23-26]. Furthermore, in vitro studies have confirmed 
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that AECs with the ∆F508 CFTR mutation release greater amounts of iron than cells with 

functional CFTR [27]. Given that increased iron levels are negatively correlated with pulmonary 

function but positively correlated with bacterial burden, it has been suggested that iron may play 

an important role in facilitating P. aeruginosa infections in the CF lung [25, 28]. Taken together, 

these results suggest that defects in CFTR function are strongly associated with increased iron in 

the airways of CF patients, but it is still not understood how defects in CFTR function regulate 

iron homeostasis in the lung.  

In summary, defects in CFTR function have many consequences for innate defenses such 

as mucus clearance and iron abundance in the airways that impacts the environment in the lungs 

of CF patients. The combination of all these factors creates a setting that is conducive to bacterial 

infection in the CF airway, particularly chronic infection with P. aeruginosa, highlighting both 

the importance of all these innate defenses for normal lung function but also the broad effect that 

CFTR function has on airway physiology. However, the effect respiratory viral infection has on 

many of these components, such as iron levels, in the CF lung have not been investigated. 
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Table 1: Total Iron Concentrations in CF Airways 

Subject 
Population 

Iron Concentration Sampling 
Method 

Iron 
Detection 
Method 

Reference Non-CF 
Controls CF 

Adults 0 
ng/mg protein 

242.5 ± 2.1 
ng/mg protein 

Expectorated 
Sputum Colorimetric* [29]** 

Adults 0 µM 7.5 ± 2.1 µM BALF Colorimetric* [26]** 

Adults Not Assessed 
63 µM 

(17 – 134 
µM) 

Expectorated 
Sputum Colorimetric* [23]*** 

Adults 0 µM 
(0 – 13.2 µM) 

Acute: 44.4 
µM 

(17.0 – 128.7 
µM) 

Stable: 33.3 
(0 – 111.2 

µM) 

Expectorated 
Sputum Colorimetric* [24]*** 

Adults 0 µM 
(0 – 15.8 µM) 

Acute: 46.6 
µM 

(10.0 – 200.0 
µM) 

Stable: 34.0 
µM 

(2.4 – 78.0 
µM) 

Expectorated 
Sputum Colorimetric* [25]*** 

Adults 
13.5 µg/L 
(8.6 – 21.5 
µg/L) 

56.9 µg/L 
(24.3 – 115.3 

µg/L) 

Expectorated 
Sputum ICP-OES [30]**** 

Pediatric Not Assessed 
32 µM 

(Range: 3.7 – 
118.5 µM) 

BALF Colorimetric* [28]**** 

*Total iron measured by colorimetric iron detection kits. Assay kits based on reaction of Fe2+ 

with chromogen to form colorimetric product. Iron is released from complexes (i.e. iron-binding 

proteins) by acidic buffer, and Fe3+ is reduced to Fe2+ by reducing agent to measure total iron in 

reaction. **Data presented as mean ± standard deviation. ***Data presented as median (range). 
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Iron concentration reported for CF patients during an acute exacerbation and clinically stable CF 

patients. ****Data presented as median (range).  

1.1.2 Chronic Infection and Biofilm Formation of Pseudomonas aeruginosa in the Cystic 

Fibrosis Airway  

Environmental isolates of P. aeruginosa are responsible for initial infections in CF patients and 

occur in infancy or early adulthood. Infections are often aggressively treated and cleared by 

antibiotics, but recurrent intermittent infections commonly follow. P. aeruginosa undergoes 

genetic adaption over time to the lung environment during waves of antibiotic treatment and the 

constant pressure imposed by the host immune system. It is hypothesized that the sinuses provide 

a protected niche that allows for the genetic adaptation of P. aeruginosa occur, and bacteria from 

the sinuses can recolonize the lungs following antibiotic eradication of P. aeruginosa in the 

airways [31]. The time over which genetic adaptations occur is variable between patients and 

bacterial isolates, but eventually clonal selection of a dominate strain occurs and establishes a 

chronic infection [7, 31].  

The development of chronic P. aeruginosa infections in the CF lung involves the 

formation of highly recalcitrant biofilm communities. Biofilms are surface-associated 

communities of bacteria, which are characterized by upregulation of antibiotic resistance genes 

and polymeric matrix production that serve to protect bacteria from the antibiotic- and host 

immune system-mediated clearance in the CF airways [32]. Biofilms in the environment perform 

a similar function whereby they protect bacterial communities from stress such as heavy metal 

intoxication and antibacterial compounds [33, 34]. Biofilm development occurs in a well-

coordinated manner in response to environmental cues, such as nutrient availability. Biofilm 
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development has been described as a temporal process involving the transition through different 

stages that begin with bacterial attachment to a surface. Attached bacteria multiply on the 

surface, form microcolonies and then ultimately mature into biofilm structures. The final step in 

biofilm development is the dispersal of bacteria from the biofilm, which can seed new sites for 

infection and colonization [32, 35, 36]. Many factors are involved in the development of P. 

aeruginosa biofilm growth, including the initiation of biofilm formation by increased production 

of the second messenger cyclic-di-GMP (c-di-GMP), QS systems, production of 

exopolysaccharides Pel and Psl, and the availability of environmental factors, such as 

extracellular DNA (eDNA) and iron [34]. Iron is required for P. aeruginosa growth and biofilm 

formation [37]. In addition, QS systems are a form of intercellular communication based on cell 

density and the accumulation of small diffusible molecules produced by neighboring bacteria in 

the environment. These systems have been shown to regulate virulence factor production, some 

of which could be important for nutrient acquisition, and are important for biofilm production in 

P. aeruginosa [38-41]. For example, a mutation in the P. aeruginosa las system (one of the QS 

systems in P. aeruginosa) formed shorter, flat biofilms compared to the biofilms formed by wild 

type bacteria, suggesting that mature biofilm formation requires intact QS systems [42]. 

Furthermore, QS regulates iron limitation-induced twitching motility. Mutations in the rhl QS 

system in P. aeruginosa increased biofilm growth in iron-limited conditions, which was linked 

with decreased twitching motility under these conditions [43]. The sputum of CF patients has 

increased abundance of P. aeruginosa QS signals, N-(3oxododecanoyl)-L-homoserine lactone 

(3OC12-HSL) and N-butyryl-L-homoserine lactone (C4-HSL), produced by the las and rhl QS 

systems, respectively [44]. This was suggestive that P. aeruginosa grows in biofilms in CF 

airways, which had been hypothesized based on the observation that P. aeruginosa was highly 
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resistant to antibiotics in the CF lung [32]. In addition, microscopic examination of the explanted 

lungs from CF patients has long demonstrated the intraluminal presence of alginate-positive P. 

aeruginosa microcolonies in the lungs of CF patients, and more recently, the use of fluorescence 

in situ hybridization peptide nucleic acid probes have also shown P. aeruginosa biofilm 

architecture in the airways of CF patients [44-46].  

The development of treatments that either inhibit biofilm growth or promote dissociation 

of the biofilms in CF airways have been of great interest because biofilms contribute to 

persistence of P. aeruginosa infections and the corresponding tissue-damaging inflammation in 

patients. In this regard, DNase treatment is known to reduce P. aeruginosa biofilm formation and 

bacterial colonization has been reduced in patient airways when treated with the therapeutic 

Pulmozyme (rhDNase I) [47, 48]. In addition, iron chelation has been shown to impair P. 

aeruginosa biofilm growth and the use of iron chelation compounds increases the efficacy of 

biofilm disruption with antibiotics [27, 49].  

1.2 RESPIRATORY VIRAL INFECTIONS IN PATIENTS WITH CYSTIC FIBROSIS 

AND OTHER CHRONIC LUNG DISEASES 

Portions of this section are adapted from the published manuscript: 

Matthew R. Hendricksa and Jennifer M. Bombergera 

Digging through the Obstruction: Insight into the Epithelial Cell Response to Respiratory 

Virus Infection in Patients with Cystic Fibrosis.  Journal of Virology, 2016. 90 (9): 4258-4261 

(Copyright  American Society for Microbiology). 
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Respiratory virus infections are common but generally self-limiting infections in healthy 

individuals. In patients with chronic lung diseases, such as CF and chronic obstructive 

pulmonary disease (COPD), respiratory viral infections are associated with acute exacerbations, 

which generally involve acute episodes of increased respiratory symptoms (i.e. cough, fever, 

increased sputum production, etc.) and decreased lung function (as measured by decline in 

FEV1), that promote disease progression [50-64]. Importantly, acute exacerbations not only 

contribute to progressive declines in lung function but also lead to decreases in quality of life for 

these patients, including psychosocial health [65-69]. This highlights the important point that 

besides the physical toll that respiratory viral infections have on patients with chronic lung 

disease, there is also a psychological burden that patients and their families must confront, some 

aspects of which are measurable and others not.  

Early clinical studies reported low detection rates of viruses in patients with chronic lung 

diseases. For example, in CF patients respiratory viral infections were associated with up to 

approximately 40 to 50% of pulmonary exacerbations [51, 52, 54, 70-72]. However, these values 

likely underestimated the true impact of respiratory viral infections on disease progression 

because they are based on insufficiently sensitive detection methods, such as cell culture and 

serology. The development of molecular diagnostics techniques by polymerase chain reaction 

(PCR) has led to (i) an increased detection rate of respiratory virus infections in patients with 

chronic lung diseases, (ii) a greater diversity of respiratory viruses identified in patients, 

including picornaviruses and human metapneumovirus [53, 55], and (iii) an increased 
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recognition that respiratory virus infections are associated with morbidity and acute 

exacerbations in these patients. The more recently reported rates of detection of respiratory viral 

infection during periods of pulmonary exacerbations in CF patients are now greater than 50% 

[53, 55-58, 61]. RNA viruses influenza A virus, human rhinovirus (hRV), and respiratory 

syncytial virus (RSV) are the most common viral infections detected in CF patients, with RSV 

promoting early respiratory tract morbidity and hRV being the most common causative viral 

agent in pulmonary exacerbation. Similarly high detection rates of respiratory virus infections 

are observed in asthma (up to 80%) and COPD (up to 60%) exacerbations as well, with influenza 

virus, hRV and RSV also being the most commonly identified viruses [62-64, 73-75]. Although 

the incidence of viral infections is not greater in patients with CF than in healthy controls, the 

severity and length of viral infections were amplified in patients with CF [55, 76]. In addition, 

respiratory viral infections in CF patients are associated with increased antibiotic use [51, 53], 

deterioration of pulmonary function [50, 51, 53, 54], and longer durations of hospitalizations [54, 

71, 77]. RSV is reported to be account for 9-58% of all reported viral infections CF patients, with 

a higher incidence in young children than adults [78]. Besides the association between 

respiratory viral infections and morbidity, clinical studies have linked respiratory viral infections 

with the development of chronic infections with the Gram-negative bacterium P. aeruginosa in 

CF patients [53, 72, 79]. The mechanisms underlying the increased severity of respiratory viral 

infections and the interactions between respiratory viruses and chronic bacterial infections in 

patients with CF and other chronic lung diseases remains poorly understood despite the fact that 

these observations have been made in the clinic for the past 30 years. Interestingly, an emerging 

body of literature is beginning to suggest that the innate immune response to respiratory viral 

infection likely plays a critical role in viral pathogenesis in chronic lung diseases. Moreover, it is 
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now appreciated in the field that the protective antiviral immune response to viral infection also 

has consequences for secondary bacterial infections by making the airway more permissive for 

bacteria, suggesting that the viral-bacterial interactions are not simply direct interactions between 

viruses and bacteria but are also facilitated by intricate relationships with host cells the airway.  

In this regard, the Bomberger laboratory focuses on understanding the relationship 

between respiratory viral infections and the development of chronic P. aeruginosa infections in 

the CF lung and how the respiratory epithelium contributes to this interaction. As will be 

described in this thesis, the mechanisms that contribute to the development of chronic bacterial 

infections in the context of respiratory viral infections provide a unique perspective on viral-

bacterial interactions in the lung, as compared with previous reports that have described synergy 

between viruses and bacteria in the respiratory tract. 

1.2.1 Respiratory Syncytial Virus (RSV) 

Respiratory syncytial virus (RSV) is an enveloped, negative-sense RNA virus that belongs to the 

Orthopneumovirus genus within the Pneumoviridae family of viruses. The single-stranded RSV 

genome has 10 genes organized as 3’-NS1-NS2-N-P-M-SH-G-F-M2-L-5’ that are transcribed 

into separate mRNA encoding single viral proteins [80]. One notable exception is the M2 

mRNA, which contains two overlapping open reading frames (ORFs) for two distinct proteins, 

M2-1 and M2-2. Translation of M2-2 is dependent upon re-initiation by ribosomes at a start 

codon that overlaps the M2-1 ORF [81, 82]. The M2-1 and M2-2 proteins are important for 

regulating RSV genome transcription and the balance between genome transcription and 

replication, respectively [83, 84]. The nucleoprotein (N), phosphoprotein (P), and RNA-

dependent RNA polymerase (L) encapsulate the RSV genome to form the ribonucleoprotein 
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(RNP) complex. In addition, the RSV genome encodes three glycoproteins that are present in the 

viral envelope: the glycoprotein (G), the fusion protein (F), and small hydrophobic protein (SH). 

The G protein is important for viral attachment to host cells, whereas the F protein is important 

for fusion of the viral envelope with host membranes for release of RSV RNP complexes into 

cells [85]. Although multiple cell surface proteins, including CX3CR1, have been shown to 

interact with the G protein, recent studies identified CX3CR1 as a cellular receptor that mediates 

RSV entry in primary, well-differentiated human bronchial epithelial cells [86, 87]. The F 

protein has also been shown to interact with host proteins such as nucleolin and TLR4, albeit 

only in immortalized cell lines, and may play some role in viral attachment [88, 89]. In addition, 

studies have shown that inhibition of clathrin- and dynamin-dependent endocytosis does not 

inhibit RSV entry into host cells and that RSV can infect cells via macropinocytosis [90]. 

Together these studies suggest that RSV potentially has overlapping mechanisms by which it can 

enter host cells. Following attachment and fusion, the RSV RNP complex is released into the 

cytoplasm, where viral genomes are transcribed and replicated. Inclusion bodies are 

hypothesized to be the location of viral transcription and replication due to the accumulation of 

RNP complex proteins and viral RNA at these sites [91-93]. Progeny virions assemble and bud 

from the surface of infected cells, and these processes are dependent upon the viral F and M 

proteins [94-96]. Budding of RSV virions from the cell surface requires intact apical recycling 

endosome sorting pathways, which involves Rab11 family interacting protein 2 (FIP2), but 

interestingly, is vacuolar protein sorting-associated protein 4 (Vps4)-independent, suggesting 

that RSV release is not dependent upon endosomal sorting complexes required for transporter 

(ESCRT) proteins [97, 98]. In addition, cholesterol rich microdomains (i.e. lipid rafts) have been 

implicated in both RSV entry and release in host cells [99, 100]. However, the exact molecular 
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details of RSV replication, assembly and budding in host cells, and particularly the host factors 

that are needed for these processes, remain to be fully elucidated.  

1.2.2 Human Rhinovirus (hRV) 

Human rhinoviruses (hRVs) are non-enveloped, positive-sense RNA viruses that belong to the 

Enterovirus genus within the Picornaviridae family of viruses. They are grouped into three 

species: hRV-A, hRV-B and hRV-C. Depending on the type, hRVs use intercellular adhesion 

molecule 1 (ICAM-1), low-density lipoprotein receptor (LDLR) family members or cadherin-

related family member 3 (CDHR3) for entry [101-103]. Upon internalization, virions undergo 

conformational changes due to cues from receptor-binding and the lower pH in endosomes and 

release viral RNA into the cytoplasm of cells [104]. The single-stranded hRV genomes are 

translated into a precursor polyprotein that is processed by viral proteases into 11 proteins, four 

of which are capsid proteins. The remaining seven nonstructural proteins mediate viral 

replication, and like with other picornaviruses, cellular membranes are remodeled to form 

replication compartments, also referred to as replication organelles, at the endoplasmic reticulum 

(ER)-Golgi interface during hRV replication [105]. The formation of replication compartments 

during picornavirus infection is dependent upon both viral and host factors [105]. It was recently 

demonstrated during hRV infection that phosphatidylinositol-4 phosphate (PI4P) and cholesterol 

are highly enriched at replication compartments [106]. There are two classes of 

phosphatidylinositol-4 kinases (PI4K) that are responsible for producing PI4P from 

phosphatidylinositol (PI), and interestingly, depending on the strain of hRV, different subsets of 

PI4Ks are important for hRV replication. For example, hRV-A1A is less sensitive to PI4K3β 

inhibition but is more sensitive to PI4K2α inhibition than hRV14, hRV16 and hRV37 [106]. 
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Similarly, multiple mechanisms are utilized by diverse strains of hRVs to promote cholesterol 

accumulation in replication compartments [106]. Of particular note, oxysterol-binding protein 

(OSBP)-like proteins are intracellular proteins important for cholesterol transport and are 

involved in hRV replication. For example, inhibition of OSBP-1, which drives PI4P-cholesterol 

exchange between the ER and Golgi, broadly suppresses replication of many hRV strains, 

demonstrating lipid flow in replication compartments is required for efficient hRV replication 

[106]. Newly, synthesized hRV RNA is encapsidated by capsid proteins to form new virions, 

which according to classical dogma are released from host cells by lysis [105]. However, recent 

studies have suggested that hRV egress can occur by additional mechanisms, including non-lytic 

release of virions packaged within phosphatidylserine lipid-enriched vesicles [107]. Other 

picornaviruses, including coxsackievirus B and hepatitis A virus (HAV), can also be released in 

membrane-enclosed vesicles, suggesting this may be a release mechanism broadly utilized by 

picornaviruses and potentially other non-enveloped viruses [108, 109].  

1.2.3 Antiviral Innate Immune Response to Respiratory Virus in Airway Epithelial Cells 

The respiratory epithelium is a critical component of the innate immune system and the primary 

site of host-pathogen interactions in the lung [110]. In addition, the airway epithelium is the 

primary site of virus replication during respiratory virus infection, including RSV infections, and 

plays a critical role in viral pathogenesis [111, 112]. When microbial ligands engage various 

families of pattern recognition receptors (PRRs), distinct signaling cascades are activated within 

AECs that coordinate the host’s response to the invading microbe. In the context of respiratory 

viral infection, the most relevant PRRs are Toll-like receptors and retinoic acid-inducible gene I-

like receptors (RIG-I like), which detect double-stranded RNA (dsRNA), a by-product of virus 
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replication. Detection of dsRNA by these receptors activates signaling cascades that culminate in 

the induction of antiviral molecules called interferons (IFN). Type I and type III IFNs are the 

major IFNs produced by AECs in response to respiratory viral infection, including RSV [113-

115]. IFNs act in an autocrine and paracrine manner to induce the production of IFN-stimulated 

genes (ISGs), which establish an antiviral state within AECs.  

1.2.4 In Vitro Models of Airway Epithelial Cells from Patients with Chronic Lung Disease 

The respiratory epithelium forms a critical mucosal barrier at which the body is constantly 

exposed to the external environment. Consequently, AECs are equipped with many complex 

functions that play critical roles in surveying, responding and clearing environmental factors, 

such as infectious agents. To better mechanistically understand many of these functions, 

investigators have commonly used cell culture models of the respiratory epithelium, including 

primary human bronchial epithelial (HBE) cells cultured on porous supports at air-liquid 

interface (ALI) [9, 116, 117]. These models are beneficial to investigators in that they allow the 

specific study of epithelial function in the absence of other cell types, control of experimental 

conditions, and because primary HBE cultures are originally obtained from explanted lungs, they 

closely resemble in vivo physiology when cultured at ALI. In addition to primary HBE cells, and 

driven mostly by the intermittent availability of primary HBE cells, many immortalized cell lines 

have been developed for the study of the respiratory epithelium in chronic lung diseases, 

including CF [118]. Both primary HBE and immortalized cell lines have been critical to our 

understanding of many of the biochemical, genetic, immunological and physiological 

mechanisms that occur at the respiratory epithelium in chronic lung diseases. For example, 

investigators compared primary CF cell cultures to non-CF cells and observed airway surface 
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liquid (ASL) height was decreased in primary CF cells, resulting in reduced reduce mucus 

transport, which is now considered a hallmark of CF lung disease [9].  

1.2.5 Impaired Antiviral Immune Response Contributes to Respiratory Virus-Induced 

CF Exacerbations 

Respiratory viruses cause significant morbidity in patients with chronic lung diseases, but the 

underlying mechanism to explain this clinical observation has not yet been elucidated. Because 

viral load is greater in patients with chronic lung diseases than control patients, the majority of 

studies have focused on mechanisms that contribute to increased viral replication in the 

respiratory epithelium. Although some studies suggest that alterations in interferon (IFN) 

signaling and IFN stimulated gene (ISG) induction may play a role in increased viral replication 

in the CF lung, a clear consensus on this topic has not been reached. Studies using primary AECs 

have shown that primary CF AECs produce reduced levels of antiviral mediators downstream of 

IFN signaling, specifically, nitric oxide synthase 2 (NOS2), 2’ ,5’-oligoadenylate synthetase 1 

(OAS1), and signal transducer and activator of transcription 1 (STAT1), in response to human 

parainfluenza virus 3 (HPIV3) [119]. This results in greater release of infectious virus from CF 

AECs compared to non-CF AECs [119]. Interestingly, similar levels of other known ISGs, such 

as MxA and PKR, were produced in both CF and non-CF cells in response to HPIV3 challenge 

[119]. In addition, a recent clinical study has demonstrated that the lower airway hRV burden is 

greater in patients with CF than in healthy controls and that the greater hRV load in CF patients 

is negatively associated with type I IFN levels in BAL fluid of the patients [120]. These studies 

raise the question of whether CF AECs are inefficient at responding to virus infection and IFN 

induction, have a blunted response to IFN and cannot signal efficiently, or respond to IFN 
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stimulation but do not produce certain ISGs. Recent work has demonstrated that CF AECs 

produce levels of type I and III IFNs similar to those of non-CF AECs in response to either virus 

infection or treatment with the dsRNA analog polyinosine-polycytidylic acid [poly(I:C)] [121-

124]. Although the majority of ISGs that have been investigated thus far are similarly expressed 

in both CF and non-CF cells in response to virus infection, a few notable ISGs have been 

observed to be differentially expressed in CF versus non-CF cells, including MxA, PKR, and 

viperin [119, 121, 124, 125]. So far, these studies have only measured a select subset of ISGs and 

an extensive study comparing the full antiviral response in CF and non-CF AECs has not been 

described yet, leaving open the possibility that many more ISGs are potentially dysregulated 

between CF and non-CF AECs. Viral infections, and the PAMPs produced during viral infection, 

are not the only triggers that induce the production of IFN in AECs. Recently, it was shown that 

bacterial infections and LPS treatment also induced type I and III IFN production in AECs and 

the airways of mice [122, 126, 127]. Although the ability to produce IFNs is similar between CF 

and non-CF AECs during virus infection, induction of type I IFN was reduced in CF cell lines 

compared to non-CF cell lines either infected with P. aeruginosa or treated with LPS [122]. One 

explanation for this defect is that TLR4 surface expression is reduced in CF AECs [128]. Thus, 

defects in the IFN response to stimulus may be attributed to both impaired IFN induction and/or 

reduced expression of a subset of ISGs, but it appears that IFN induction is dependent upon the 

stimulating ligand and signaling pathway triggered in CF AECs. In the context of respiratory 

viral infection, IFN induction appears fully intact, suggesting no defect in dsRNA PRRs or the 

associated signaling pathways. 

It is important to point out that inflammatory cytokine secretion is similar in CF and non-

CF AECs during respiratory viral infection [129]. Thus, the inflammatory response induced by 
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virus infection in CF patients does not contribute to increased morbidity in these patients. 

Because of the negative correlation between virus-induced cytotoxicity and inflammatory 

cytokine production in CF AECs [129, 130], a possible explanation for the lack of an 

exaggerated inflammatory response during viral infection could be the increased virus-induced 

death of AECs in CF. Taken together, these studies suggest that reduced antiviral responses to 

respiratory viral infections result in uncontrolled viral replication and increased viral burden, but 

not exaggerated inflammation, in the CF lung. It appears that ISG induction plays a critical role 

in determining viral burden in the CF lung, which likely has implications for virally-induced 

exacerbations in CF, although a link between the two has not yet been established in vivo. 

Further research will be needed to clearly define what defects exist in antiviral signaling 

pathways in the CF airway. Whether there is an opportunity to design specific therapeutics that 

target these pathways to limit virus infections and can be used to treat virus-induced 

exacerbations in CF patients remains to be seen.  

As in CF patients, the virus loads in asthma and COPD patients are higher following 

respiratory viral infection than in healthy controls [131, 132]. Interestingly, studies with primary 

HBE cultures have demonstrated that the antiviral innate immune response to respiratory virus 

infection is impaired in these patients as well. For example, type I and III IFN induction is 

reduced in primary HBE cells from asthmatics compared to non-asthmatic cells in response to 

hRV infection, and consequently, hRV replication is increased in asthmatic cells [133, 134].  

Moreover, the levels of IFN that are measured in the airways of asthmatic patients are inversely 

correlated with viral loads and exacerbation severity [134]. In contrast, it was recently reported 

that there is no significant difference in hRV replication or type I or III IFN production between 

primary HBE cells from asthmatic patients and healthy controls [135]. One potential explanation 
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for this contradictory result is that primary HBE cells were isolated from patients with well 

controlled asthma in this study, and the authors postulated that defective IFN induction in 

response to respiratory viral infections in asthmatic patients may be a feature of more severe, less 

well controlled disease [135]. Recently, it was shown that suppressor of cytokine signaling 1 

(SOCS1), a negative regulator of the IFN response to respiratory viruses, is upregulated in 

primary HBEs from asthmatic patients, suggesting a potential mechanism for the deficient 

antiviral responses observed during respiratory viral infections in asthma patients [136]. In 

addition, the production of inflammatory mediators and increased neutrophil influx during 

respiratory viral infections in asthma and COPD patients has been reported and likely contributes 

to the pulmonary damage patients experience during viral infections [131, 132]. 

1.2.6 Bacterial Coinfection During Respiratory Viral Infections in Chronic Lung Disease 

Patients 

Beyond the morbidity linked to respiratory viral infections alone, clinical studies have linked 

respiratory viral infections with the development of chronic infections with the Gram-negative 

bacterium P. aeruginosa in CF patients. P. aeruginosa is the most common bacterial pathogen in 

patients with CF and is well known to have deleterious effects on lung function. Seasonal trends 

have been noted in which the majority of patients with CF were initially infected with P. 

aeruginosa during respiratory viral seasons [79]. In addition, up to 85% of new P. aeruginosa 

colonization in CF patients occurred within 3 weeks following a respiratory viral infection [53]. 

In children hospitalized for severe respiratory symptoms in which a respiratory virus was 

identified, 25% of patients were later infected with P. aeruginosa [71]. Overall, 35% of patients 

who were hospitalized for severe respiratory symptoms were colonized with P. aeruginosa with 
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12-60 months, and although in the majority of these patients a respiratory virus was not detected, 

this study did not rely on PCR-based detection methods and likely underestimated the burden of 

respiratory virus infection [71]. In addition, it has been observed that a rise in antipseudomonal 

antibodies is preceded by a viral infection [72]. Although many viruses have been isolated from 

CF patients, RSV has been reported to be the most common respiratory virus associated with the 

development of chronic P. aeruginosa infections in CF patients [72]. However, the mechanisms 

underlying how respiratory viruses enhance the development of chronic infections by P. 

aeruginosa in CF patients remains poorly understood.  

An association between respiratory viral infections and bacterial coinfection has also 

been observed in asthma and COPD patients. Respiratory viral infection (only hRV infections 

were included in analysis) increased the likelihood of bacterial detection, and thus, bacterial 

burden in the upper respiratory tract in children with asthma [137]. Interestingly, both the 

likelihood of bacterial coinfection and bacterial infection within one week following hRV 

infection were increased in this study [137]. In clinical studies of COPD patients, it has been 

observed that up to 60% of patients with a viral infection also have a bacterial coinfection and 

that the presence of a viral infection increases bacterial burden of bacteria already in the lower 

airway [74, 75, 138]. Moreover, in a cohort of COPD patients with hRV-positive exacerbations 

who were negative for bacteria at presentation, 73% became positive for bacteria by day 14 post-

presentation [139]. The relationship between respiratory viral infection and subsequent bacterial 

infections has been further established in studies with experimental hRV infection in patients 

with COPD. In one study, it was shown that hRV infection increased secondary bacterial 

infection in 60% of virally-infected patients whose sputum tested negative for bacterial culture at 

the beginning of the study [140]. Bacteria investigated in this study were Streptococcus 
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penumoniae, Haemophilus influenzae, Moraxella catarrhalis, S. aureus, and Haemophilus 

parainfluenzae. In further studies with this model, it has been observed that hRV infection alters 

the respiratory microbiota in patients with COPD and that these changes are evident up to 42 

days post-hRV infection [141]. This suggests that respiratory viral infection potentially not only 

alters the abundance of what are thought of as traditionally pathogenic bacteria but also the 

overall microbial composition in the airways of COPD patients. Other studies have also made 

similar observations, showing that respiratory viral infection and the resulting antiviral immune 

response can alter the microbiome of the upper respiratory tract [142]. Interestingly, observations 

in asthma, COPD, and CF patients have similarly noted that bacterial acquisition can occur 

following peaks in respiratory virus infection [71, 137, 139]. This suggests that respiratory viral 

infections not only have short-term consequences that predispose patients to secondary bacterial 

infection at the time of viral infection, but also can have long-term consequences on airway 

physiology that makes the airway more permissive for secondary bacterial pathogen after the 

virus has been cleared. Again, very little is understood about the mechanisms underlying how 

respiratory viruses alter airway physiology to promote a more permissive environment for 

secondary bacterial infection. 

1.3 VIRAL-BACTERIAL COINFECTION IN THE RESPIRATORY TRACT 

Studies of viral-bacterial interactions in the respiratory tract have revealed many mechanisms by 

which a preceding virus infection promotes secondary bacterial infection. Many studies have 

focused on the interactions between influenza virus and secondary bacterial infections caused by 

commensal organisms of the upper respiratory tract, namely S. pneumoniae and S. aureus. 
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However, as our understanding of viral-bacterial co-infections continues to grow, it is now 

recognized that respiratory viral infections are associated with severe secondary bacterial 

infections in both acute, such as bacterial pneumonias, as well as chronic, such as CF, pulmonary 

disease settings. Moreover, the field of viral-bacterial co-infections has expanded to investigate 

interactions between diverse viral and bacterial pathogens. Although many mechanisms have 

been described by which viruses predispose the airways to secondary bacterial infection, they 

can be broadly categorized as: (i) the virus augmenting bacterial adherence to the respiratory 

epithelium or (ii) dysregulation of antibacterial immune responses due to viral infection. In this 

dissertation, we focus on the interaction between RSV and P. aeruginosa. Our data provides 

evidence that respiratory viral infection dysregulates nutritional immunity in the airways to 

promote P. aeruginosa biofilm growth, which represents an emerging mechanism by which 

viruses are observed to predispose the airways to secondary bacterial infection. 

1.3.1 Viral Infection Enhances Bacterial Adherence to Airway Epithelial Cells  

Viral infections have been described to increase bacterial attachment to respiratory epithelial 

cells through many distinct mechanisms that may play a role in establishing bacterial infections. 

Moreover, increased binding of bacteria to virus-infected cells does not appear to be dependent 

on any single respiratory virus infection and multiple combinations of bacterial and viral 

pathogens have been described. Respiratory viral infections are known to target ciliated cells and 

damage the respiratory epithelium [143, 144]. This benefits bacterial attachment by (i) impairing 

mucociliary clearance, which increases airway obstruction [145], and (ii) exposing basal cells 

and basement membrane, which provide additional sites where bacteria may readily adhere [146, 

147]. Moreover, RSV infection reduces the periciliary layer depth below the optima height of 7 
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µm required for cilia to beat, which would result in impaired mucociliary transport [10]. Viral 

infection can upregulate the expression of bacterial receptors on host AECs, such as intercellular 

adhesion molecule 1 (ICAM-1), platelet activating factor receptor (PAFR), and α5 integrin [148-

150]. For example, it was shown that influenza virus infection increased TGF-β signaling, which 

was required for augmented surface expression of α5 integrin and bacterial adherence to AECs 

during viral infection, demonstrating that the immune response to respiratory viral infection may 

play a role in upregulation of bacterial receptors on host AECs and bacterial coinfection in the 

respiratory tract [150]. Bacteria can also directly bind to viruses or viral structures on virally-

infected cells, which act as coupling agents to increase bacterial interaction with the respiratory 

epithelium [151-153]. In the case of RSV, the S. pneumoniae penicillin binding protein 1a binds 

to the RSV G proteins, which leads to increased attachment of S. penumoniae to AECs and 

increased virulence in vivo [154]. The magnitude of these effects have been reported to be 

dependent upon cell type and the strain of the viral or bacterial pathogens investigated [148, 

155]. In terms of in vivo infection, the likely explanation for the decreased bacterial clearance 

observed during coinfection in the respiratory tract is due to a combination of all these effects.  

1.3.2 Immunological Alterations in Antibacterial Immunity at the Respiratory 

Epithelium during Respiratory Viral Infection  

The respiratory epithelium is the primary site of viral replication and PRR-mediated detection of 

viral infection results in the production of type I and III IFNs that mediate the antiviral immune 

response. The release of IFNs has been observed to subvert many antibacterial response in the 

airways, and although this response is crucial for viral immunity and clearance, it creates an 
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environment that is unable to control bacterial growth and is predisposed to secondary bacterial 

infection. In a mouse model of influenza infection, type I IFN signaling was shown to be 

responsible for impaired phagocytic chemoattractant production in the airways and as a result, 

decreased macrophage and neutrophil responses during secondary bacterial infection [156, 157]. 

Conversely, in other studies, influenza infection did not lead to decreased neutrophil or 

macrophage recruitment to the airways during bacterial coinfection [158, 159], suggesting that 

mechanisms besides inflammatory cell recruitment likely contribute to diminished bacterial 

clearance. Type I IFN signaling in response to influenza infection was also shown to diminish 

Th17 immunity, including IL-17 and IL-22 production in the airways, resulting in decreased 

production of antimicrobial peptides and increased susceptibility of mice to bacterial infection in 

response to influenza infection [158-160]. Impaired antimicrobial peptide production has also 

been observed in the airway of chinchillas following RSV infection [161]. Interestingly, 

respiratory viral infection increases susceptibility to both Gram-negative (i.e. Escherichia coli 

and P. aeruginosa) and Gram-positive (S. pneumoniae and S. aureus) bacterial pathogens [156, 

159].  As a proof of principle that impairment of bacterial clearance in the airways is due to an 

antiviral immune response, independent of virally-mediated tissue injury or some other alteration 

in host physiology facilitated by viral proteins, it was demonstrated that intranasal administration 

of poly(I:C) was sufficient to induce type I IFNs in the airways and impair bacterial clearance 

from the lungs of animals [162]. Type III IFN production has also been shown to contribute to 

reduced clearance of P. aeruginosa from the airways [127], although the mechanism(s) by which 

type III IFN contributes to inhibition of bacterial clearance during viral-bacterial coinfection are 

even less well understood than those discussed for type I IFNs.  
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Besides inducing the production of type I and III IFNs, the pathways activated by the 

PRRs that sense respiratory viruses also culminate in the expression of pro-inflammatory 

chemokines and cytokines [163]. For example, RSV and hRV infections increase the release of 

the pro-inflammatory cytokine IL-6 and IL-8 from AECs [164, 165]. These signaling pathways 

must be tightly regulated to minimize over-activation and immune-mediated pathology. 

Consequently, these regulatory mechanisms may delay the response to secondary infections in 

the context of coinfections when cells continuously encounter multiple pathogens. In a mouse 

model of influenza infection, it was shown that macrophage and neutrophil recruitment to the 

airways was impaired during secondary S. pneumoniae infection [166]. Interestingly, 

macrophages isolated from influenza-infected mice were hypo-responsive to bacterial ligands in 

this study, but the authors did not provide a mechanism for TLR desensitization and postulated 

that the signaling molecules downstream of TLRs were either downregulated or functionally 

augmented as a result of viral infection [166]. Defects in phagocyte recruitment and function in 

response to respiratory viral infection have also been reported to lead to decreased bacterial 

clearance during coinfection in models of RSV, hRV and other models of influenza infection 

[167-169]. In regards to neutrophils, myeloperoxidase activity was the only functional 

impairment observed in neutrophils during viral-bacterial co-infections in these studies. In 

another study of influenza-S. pneumoniae co-infection, it was observed that there was an 

increased release of the anti-inflammatory cytokine IL-10 into the airways of animals and 

neutralization of IL-10 reduced bacterial burden and lethality [170]. Because the anti-

inflammatory properties of IL-10 can influence the function of various immune cells, it was 

proposed that IL-10 augments the function of phagocytes and create an immunosuppressive state 

in the airways that is permissive to secondary bacterial infection [170]. However, macrophages 
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and neutrophil recruitment to the airways was not impaired during coinfection with influenza and 

S. aureus, and the cells isolated from mice did not demonstrate a defect in phagocytosis [160]. 

Taken together, these studies suggest that respiratory viral infection may delay or impair the 

innate immune response to bacterial infection, creating a permissive environment that can be 

colonized, but the molecular details underlying these observations are still poorly understood and 

further work will be required to understand the intricacies of these interactions that contribute to 

differences observed between studies and models. 

Bacterial infections are also capable of modulating secondary viral infection in the 

respiratory tract. The attachment of hRV is enhanced on cells pretreated with H. influenzae due 

to   increased expression of ICAM-1, the cellular receptor for hRV [171, 172]. In addition, 

preceding bacterial infections may augment the immune response to secondary viral infections. 

For example, antigen presentation is an important process that is needed for an effective adaptive 

immune response to respiratory viral infection and it has been shown that P. aeruginosa can 

disrupt antigen presentation in AECs by altering the trafficking of TAP1 and promoting TAP1 

degradation, resulting in reduced cell surface expression and antigen availability to major 

histocompatibility complex (MHC) class I at the plasma membrane [173]. In addition, AECs 

infected with P. aeruginosa and hRV were observed to have decreased production of type I and 

III IFNs compared to cells infected with hRV alone [121]. Secondary viral infection has also 

been shown to induce dispersion of bacteria from established biofilms [174, 175]. This has 

important implications for our understanding of bacterial transmission in the respiratory tract and 

how bacterial biofilms are established in vivo, but the mechanisms underlying the relationship 

between bacteria and secondary viral infections remain poorly understood and require further 

attention. It is likely that the respiratory epithelium will be critical to these interactions as well. 
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1.4 NUTRITIONAL IMMUNITY 

During the course of infection, the host-pathogen interface is a dynamic environment where the 

multiple interactions ultimately determine whether the host clears or is colonized by the invading 

microorganism. One such interaction is the competition for nutrients. Bacterial pathogens must 

have mechanisms to facilitate their acquisition of nutrients, such as iron, from the environment to 

successfully colonize a host, establish a replicative niche, and survive during the course of 

infection. Conversely, host cells strongly oppose these bacterial processes by restricting nutrient 

accessibility for many different nutrients. Over four decades ago, nutritional immunity was 

originally coined to describe the restriction of iron by the host [176, 177] . At that time, it was 

known from animal models of bacterial infection that exogenous iron supplementation increased 

bacterial growth and virulence. For example, in a mouse model of Yersinia pestis, mice treated 

with 40 µg of ferrous iron were more susceptible to infection and had decreased survival [178]. 

Similar results were subsequently found in models of Listeria monocytogenes, E. coli and P. 

aeruginosa infections [179-181]. Since then, however, extensive studies have begun to identify 

the host mechanisms for limiting iron availability as well as address how microorganisms 

circumvent these mechanisms of nutrient limitation to colonize their hosts and cause disease in a 

number of disease settings [182]. In the field of viral-bacterial co-infections, an emerging body 

of literature demonstrates that an additional mechanism by which virus predispose to secondary 

bacterial infection is by viral subversion of nutritional immunity in the respiratory tract. 
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1.4.1 Host Mechanisms for Withholding Iron 

Iron is essential for numerous physiological processes, including DNA replication, gene 

expression, and energy generation. The utility of iron in many diverse biological processes is due 

to its role as a redox catalyst, where it can cycle between ferrous (Fe2+) or ferric (Fe3+) oxidation 

states. However, the redox potential of iron also makes it conducive to catalyzing the Fenton 

reaction in the presence of reactive oxygen intermediates and generating hydroxyl radicals that 

damage cells. Thus, it is critical that the host not only regulate the quantity and location of iron to 

restrict pathogen accessibility of iron but also limit cellular damage. There are many distinct 

mechanisms by which hosts limit free iron and maintain iron homeostasis.  

Dietary iron uptake is regulated in response to infection or high total body iron levels to 

systemically lower iron levels. Dietary iron is absorbed through enterocytes in the duodenum by 

the iron importer, divalent metal ion transporter (DMT1), after Fe3+ has been converted to Fe2+ 

by ferric reductases present at the apical membrane of enterocytes [182]. DMT1 is also localized 

to the membrane of phagocytes and pumps iron out of the phagosomal compartment to restrict 

access of iron to intracellular pathogens [182]. Once in enterocytes, the iron can either enter the 

labile iron pool, where it is either stored in the iron storage protein ferritin or used for cellular 

processes, or the iron is exported from the cells as Fe2+ into plasma by the iron exporter, 

ferroportin-1 (FPN-1), localized at the basolateral membrane of enterocytes. Ferrioxidases 

convert all Fe2+ released by enterocytes to Fe3+, which is then bound by transferrin and 

transported throughout the body. Hepcidin is a peptide produced in the liver that binds FPN-1 

and promotes its degradation in the lysosome [183]. This results in a loss of basolateral FPN-1 in 

enterocytes, a decrease in overall iron flux into plasma, and a reduction in dietary iron-absorption 

[184]. Because hepcidin is expressed in response to high iron levels in the body or infection, this 
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mechanism of iron limitation results in a hypoferremic response that lowers iron levels 

throughout the host. In addition, hepcidin reduces the levels of cell surface ferroportin and 

promotes iron retention in macrophages [185]. Hepcidin is also produced by neutrophils and 

macrophages in response to infection, suggesting that hepcidin-mediated control of ferroportin 

levels on phagocytes is also regulated in the local environment of an infection [186].   

The majority of human iron is bound to hemoproteins either inside host cells or 

extracellularly. For example, most of the iron in circulation is complexed with heme and heme is 

complexed within hemoglobin inside erythrocytes. Although some pathogens have evolved 

mechanisms to lyse erythrocytes, the host proteins haptoglobin and hemopexin bind free 

hemoglobin and heme, respectively [187]. In addition to its sequestration in erythrocytes, iron is 

stored in ferritin in other cell types, such as AECs. The availability of extracellular iron is 

extremely limited by iron-binding proteins in the extracellular environment, such as members of 

the transferrin family of iron-binding proteins. Typically, transferrin iron saturation is less than 

50%, and as transferrin saturation increases, the ability of transferrin to sequester iron and inhibit 

bacterial growth decreases. Interestingly, in CF patients, transferrin iron saturation is less than 

20% in the majority of patients [23, 188], but the clinical significance of this observation is 

unknown.  

1.4.2 Transferrin 

The transferrin family of iron-binding proteins consist of serum transferrin, lactoferrin and 

ovotransferrin. Due to their ability to sequester iron at the sites of infection, transferrin family 

members have been appreciated to have antimicrobial activity for nearly 7 decades [189]. Serum 

transferrin is a serum glycoprotein that plays a central role in iron metabolism by regulating the 
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transport and delivery of iron to tissues throughout the body. Lactoferrin was originally isolated 

from human milk but has since been found in a wide-range of mucosal secretions [190]. In 

addition to its iron-binding capabilities, lactoferrin has additional antimicrobial properties that 

are derived from the cationic properties of its N-terminus. In particular, lactoferricin and 

lactoferrampin are peptide fragments released from the N-terminus of lactoferrin by proteolytic 

cleavage that exhibit broad antimicrobial activity [191, 192]. Finally, ovotransferrin is the major 

component of egg white and was the first transferrin family protein discovered in 1944 after it 

was recognized a protein component of raw egg white was capable of binding iron and inhibiting 

bacterial growth [193]. 

Transferrin is an approximately 76 kDa serum glycoprotein with a high affinity for iron 

(Kd ∼10-22 M) [194]. Each molecule of transferrin is organized into two lobes (termed C- and N-

lobes), each with an Fe3+-binding sites. Because each molecule of transferrin binds two atoms of 

Fe3+, up to four different species of transferrin may be present at any one time [195]. Transferrin 

is present in mucosal secretions and due to its high affinity for iron, transferrin is very effective 

at binding extracellular iron. This property serves many purposes in the host including: (i) 

sequestration of iron from pathogens, (ii) keeping Fe3+ in an inert redox state to limit free radical 

production, (iii) maintaining Fe3+ in a soluble form in the body (Fe3+ is normally not soluble 

under physiologic conditions), and (iv) facilitating iron transport throughout body. Iron is 

delivered to target cells through a series of steps that are initiated when iron-loaded transferrin 

binds to the transferrin receptor (TfnR) on the plasma membrane of target cells with nanomolar 

affinity (Figure 1) [196]. In polarized epithelial cells, such as AECs, this initial binding event 

takes place at the basolateral membrane. The transferrin-TfnR complex is endocytosed in 

clathrin-coated pits and the pH of the endosome decreases as the endosome matures through the 
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action of ATP-dependent H+ pumps. As the pH decreases, the affinity of transferrin for Fe3+ 

decreases and ultimately Fe3+ is released at the significantly lower pH. Through the action of 

ferric reductases (Steap proteins), Fe3+ is converted to Fe2+ and transported into the cell by 

DMT1 to be stored in ferritin or used for cellular processes. In the acidic environment of the 

endosome, iron-free transferrin (apo-transferrin) remains bound to TfR with high affinity. The 

complex is recycled back to the basolateral membrane and apo-transferrin is released back into 

the serum, likely through a combination of the low (micromolar) affinity of apo-transferrin for 

the TfnR at physiological pH and the competition from iron-loaded transferrin in the serum.  

Due to the presence of transferrin in mucosal secretions and its importance in iron 

trafficking in the host, transferrin represents a potentially significant source of iron for invading 

microorganisms. Consequently, pathogens have evolved mechanisms by which they use 

transferrin as an iron source for growth [197-200]. For the majority of pathogens, the principal 

mechanism by which they acquire iron from transferrin is via the production of siderophores, 

which will be discussed further in the next section in regards to P. aeruginosa iron acquisition. 

Additionally, some pathogens have evolved transferrin uptake systems that are based on 

receptors that directly bind transferrin, including Neisseria meningitidis [201], Recently, it was 

demonstrated that transferrin has undergone rapid evolution in the C-lobe, in sites that overlap 

with the binding site of bacterial transferrin receptors [202]. This indicates that transferrin is 

involved in the evolutionary arms race between host iron sequestration and microbial iron 

acquisition, which has implications for bacterial (and likely other pathogens) colonization, 

virulence, and competition within communities. Furthermore, it has been demonstrated that 

pathogens have the ability to alter host cell physiology, without causing cellular lysis, to increase 

transferrin abundance at the site of infection. For example, in the context of Helicobacter pylori 
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infection of gastrointestinal epithelial cells, the bacteria promoted mislocalization of transferrin 

receptor from the basolateral to apical membrane of cells [203]. As a result, H. pylori increased 

transcytosis and apical secretion of transferrin, which can be utilized by the bacterium for growth 

[199, 203]. However, it is currently unknown how virus infections, including respiratory viral 

infections, alter transferrin localization at the site of an infection.  
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Figure 1: Iron Trafficking in Airway Epithelial Cells 

Transferrin binds to ferric iron (Fe3+) and delivers iron to cells throughout the body, including epithelial cells. Iron-

bound transferrin (holo-transferrin) binds to transferrin receptor (TfnR) on the basolateral cell surface and is taken 

up by epithelial cells by clathrin-mediated endocytosis. The resulting acidification of the endosome facilitates 

decreased binding affinity of transferrin for Fe3+. Iron-free transferrin (apo-transferrin) remains bound to its receptor 

at this low pH. Released Fe3+ is reduced to ferrous iron (Fe2+) and transported into the cytosol by DMT1. Apo-

transferrin is recycled back to the basolateral membrane. The low binding affinity of TfnR for apo-transferrin at 

physiological pH releases apo-transferrin into the extracellular environment, where it may bind more Fe3+. Iron is 

then utilized based on the metabolic needs of the cell. Iron can enter the mitochondria where it is incorporated into 

iron-sulfur clusters for use in DNA replication, protein synthesis, redox enzymes involved in metabolism, etc. 

Excess iron not immediately required for use is stored in the intracellular iron-binding protein ferritin. Fe2+ uptake 

and release at the plasma membrane is facilitated by the iron transporters DMT1 and ferroportin, respectively.  
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1.4.3 Pseudomonas aeruginosa Iron Acquisition  

The ability to acquire iron from the environment is essential for P. aeruginosa biofilm growth. 

When P. aeruginosa is grown under iron-limited environments or iron is limited with iron-

chelation molecules, biofilm growth is significantly impaired [27, 37, 43, 204]. Although the 

host innate immune system restricts iron availability to invading microorganisms, P. aeruginosa 

can overcome host-mediated iron limitation and acquire iron, from either heme or nonheme 

sources, through several diverse mechanisms (Figure 2). These strategies can generally be 

categorized as siderophore, heme, and free Fe2+ iron acquisition systems [187]. 

In the natural environment heme is an uncommon iron source and under aerobic 

conditions, such as the airways, iron is oxidized to insoluble Fe3+. In healthy humans, Fe3+ is 

bound to host proteins and has limited bioavailability. Consequently, P. aeruginosa other 

bacteria, and fungi, produce high-affinity Fe3+ binding proteins called siderophores that facilitate 

Fe3+ acquisition and are important for colonization [205]. P. aeruginosa produces two 

siderophores, pyoverdine and pyochelin in response to low-iron. When bound to iron, 

ferripyoverdine and ferripyochelin are first imported into the periplasm of P. aeruginosa by the 

TonB-dependent receptors FpvA and FptA, respectively (Figure 2). ATP-binding cassette 

(ABC) transporters then mediate the transfer the iron across the inner membrane (Figure 2). 

Pyoverdine has an extremely high affinity for iron, higher even than host-iron binding proteins, 

such that it is capable of displacing iron from transferrin [206]. The importance of pyoverdine to 

P. aeruginosa biofilm formation has previously been established; in bacteria unable to produce 

pyoverdine, P. aeruginosa biofilm growth was significantly decreased compared to pyoverdine-

producing bacteria [204]. Pyochelin has a lower affinity for iron than both pyoverdine and 

transferrin, and its appears to be less essential for P. aeruginosa biofilm growth than pyoverdine 
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[204]. P. aeruginosa also has the ability to utilize siderophores from other bacterial species, 

known as xenosiderophores, [205]. The use of these xenosiderophore-based iron uptake 

strategies may be beneficial in the context of multispecies communities where P. aeruginosa 

could steal ferrisiderophores from other bacterial species, but may be detrimental for chelation 

therapies that are based on siderophores produced by bacteria, such as deferoxamine (DSX).  

Although siderophores are critical to iron acquisition, siderophores also play important 

roles as signaling molecules [207]. For example, binding of FpvA by ferripyoverdine 

simultaneously initiates ferripyoverdine uptake and a signaling cascade through the anti-sigma 

factor FpvR, which controls the sigma factor PvdS. Besides the requirement of PvdS for 

expression of pyoverdine biosynthesis genes, PvdS also controls the expression of two secreted 

proteases, endoprotease (PrpL) and alkaline protease (AP) [205, 207]. Both PrpL and AP have 

been shown to degrade transferrin in vitro (Figure 2) [208, 209]. Importantly, transferrin and 

lactoferrin degradation products have been detected in the sputum of CF patients infected with P. 

aeruginosa, indicating that degradation of these host iron-binding proteins may have a role in 

iron acquisition in vivo [210]. It cannot be ruled out that other secreted P. aeruginosa proteases 

or host-derived proteases contributed to the increase in transferrin and lactoferrin degradation 

products in these patients; LasB is another protease secreted by P. aeruginosa that has been 

shown to cleave transferrin in vitro (Figure 2) [211]. 

The majority of iron in the human body is bound to hemoproteins, such as hemoglobin or 

hemopexin, where the iron is incorporated into heme. Although the concentration of free heme is 

low, P. aeruginosa has the capacity to acquire heme via two systems, the Has and Phu systems 

(Figure 2) [205]. In the Has system, a secreted heme-binding protein (HasA) captures heme 

from host-hemoproteins. The heme-HasA protein complex is recognized by the TonB-dependent 
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receptor HasR and the heme is transported into the bacterial periplasm. Conversely, heme is 

directly transported into the periplasm by the TonB-dependent receptor PhuR in the Phu system. 

ABC transporters mediate the transfer of heme from the periplasm to the cytoplasm of P. 

aeruginosa. The Has and Phu systems likely play a minimal role in iron acquisition during initial 

colonization of the CF lung when lung function is still relatively high and lung damage has not 

significantly accumulated. However, later in infection when lung damage has significantly 

accumulated in CF patients, these systems could play an important role in iron acquisition, as the 

sources of iron are likely changing. In support of this hypothesis, longitudinal analyses of 

different CF P. aeruginosa clinical isolates recently demonstrated that pyoverdine production 

decreases in clinical isolates over time, and heme utilization as the sole iron source is more 

efficient by later clinical isolates compared to earlier isolates [212, 213].  

Although Fe2+ iron abundance is relatively low in aerobic environments, Fe2+ is soluble 

and more likely to be present in anaerobic conditions. Recently, it was demonstrated that Fe2+ is 

abundant in the sputum of CF patients, and negatively correlates with disease severity in patients 

[28], suggesting Fe2+ may be a relevant iron source for bacteria in the CF lung. Soluble Fe2+ is 

acquired by P. aeruginosa by the cytoplasmic membrane Fe2+ transporter FeoB (Figure 2) [205]. 

In addition, P. aeruginosa produces redox-cycling compounds called phenazines that can convert 

Fe3+ to Fe2+ (Figure 2) [205]. It has been shown that phenazines are present in CF patient 

sputum, and similarly to Fe2+ levels, are negatively correlated with lung function, suggesting the 

importance of phenazines in vivo [214]. Phenazines have been shown to promote biofilm growth 

by a siderophore-deficient (∆pvdA∆pchE) strain of P. aeruginosa in the presence of Fe3+, as well 

as in the presence of an iron-binding proteins [215]. This last observation is of particular 

relevance as it suggests that phenazines may provide one mechanism by which P. aeruginosa 
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circumvents iron chelation, which has implications for the design and use of chelation-based 

therapeutics in CF patients to treat P. aeruginosa infections. 
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Figure 2: Iron Acquisition Systems in Pseudomonas aeruginosa 

P. aeruginosa produces two siderophores, pyoverdine and pyochelin, that bind to ferric iron (Fe3+). Ferripyoverdine 

and ferripyochelin are imported into the periplasm of the bacterium by the TonB-dependent receptors FpvA and 

FptA, respectively. Pyoverdine has a higher affinity for iron than the host-iron binding protein transferrin (Tfn), and 

thus, can directly outcompete Tfn for Fe3+. Pyochelin has a lower affinity for Fe3+ than Tfn, and does not have this 

ability. P. aeruginosa produces multiple proteases that can cleave Tfn including: AprA, Elastase, PrpL. Cleavage of 

Tfn releases free Fe3+ into the environment to be taken up by either siderophore system. Phenazines produced by P. 

aeruginosa can reduce Fe3+ to ferrous iron (Fe2+), which can be taken up by the P. aeruginosa cytoplasmic 

membrane Fe2+ transporter FeoB. P. aeruginosa can acquire heme-bound iron via two systems, the Has and Phu 

systems. The Has system produces a secreted heme-binding protein (HasA) that captures heme, and is imported into 

the periplasm by the TonB-dependent receptor HasR. The Phu system directly transports heme into the periplasm by 

the TonB-dependent receptor PhuR. ABC transporters are responsible for transporting iron from the periplasm to the 

cytoplasm of P. aeruginosa.  
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1.5 EXTRACELLULAR VESICLES IN VIRAL AND BACTERIAL INFECTIONS 

Cell-to-cell communication is a critical component of cellular physiology that regulates 

appropriate and quick responses to cellular damage and infection, among other functions. 

Extracellular vesicles (EVs) are a form of intercellular communication that have been 

increasingly studied in the context of infectious diseases. EVs are released from most cells and 

are composed of cytosolic proteins and RNA surrounded by a lipid bilayer containing 

transmembrane proteins from the cells that release them. The protective nature of the lipid 

bilayer allows the transfer of functional proteins and RNAs between cells that can change the 

physiology of recipient cells. For example, EVs have been shown to transfer ISGs between 

hepatocytes that protected recipient cells against hepatitis B virus infection [216]. In addition, 

mRNA and microRNA is packaged into EVs, and although the mRNAs can be translated into 

proteins, the majority of studies have focused on the identification of microRNAs and their 

functions in recipient cells [217-219]. Bioactive lipids are also transferred in EVs to recipient 

cells and mediate signaling that alters target cells [220]. For example, prostaglandin E2 

containing EVs were shown to promote natural killer (NK) T cell anergy [221]. Thus, EVs are 

ubiquitously produced messengers, potentially containing numerous bioactive molecules that 

may contribute to host defense or promote pathogenesis during the course of an infection. 

EVs released during an infection can either be host-derived or pathogen-derived. For 

example, Gram-negative bacteria produced outer membrane vesicles (OMVs) that impact both 

bacteria-bacteria and bacteria-host interactions [222]. Recently, Gram-positive bacteria 

membrane vesicles have also been described [223]. In addition, parasites release EVs that 

mediate parasite-parasite and parasite-host interactions [224, 225]. During viral infections, EVs 

are generated by host cells and are thought to have an important role in virus infection, but owing 
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to the biophysical similarities between viruses and EVs, the line between host-derived EV and 

virions is often blurry [217, 226]. 

EVs derived from cells during infection are divided into three categrories: exosomes, and 

microvesicles or ectosomes, and apoptotic-bodies. Originally, EVs were first described during 

studies following the trafficking of TfnR in the context of maturing reticulocytes. The 

distinguishing trait of these EVs were that they originated within endosomal compartments 

referred to as multivesicular endosomes or multivesicular bodies (MVBs) and were subsequently 

released into the extracellular environment following fusion of the MVB with the plasma 

membrane [227, 228]. Because reticulocytes lose TfnR as they mature and TfnR was present on 

these vesicles, it was believed that this was an alternative mechanism by which cells could 

downregulate receptors and dispose of components no longer needed. The term exosome was 

coined a few years following this observation to refer to this population of EVs, which generally 

have a size that is equivalent to that of the vesicles that accumulate in MVBs (less than 150 nm) 

[229]. In the mid-1990’s, however, it was found that these vesicles might have functions 

important for intercellular communication. In one study, it was demonstrated that exosomes 

isolated from B-cells contained major histocompatibility complex (MHC) class II molecules and 

were able to induce T cell proliferation and IL-2 secretion from hybridomas [230]. Additionally, 

it was demonstrated that exosomes isolated from DCs pulsed with tumor peptide could be added 

to mice and reduce the growth of established tumors in vivo [231]. Membrane-derived vesicles 

were also described and suggested to also have a function in intercellular communication around 

the same time [232-235]. Microvesicles or ectosomes are vesicles that bud off the plasma 

membrane with sizes that range from 100 nM to 1 µM [236, 237]. Both microvesices and 

exosomes have similar buoyant density and contain cytoplasmic and membrane-bound molecules 
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(i.e. proteins and RNAs), but there are generally additional protein markers associated with 

exosomes [238, 239].  Apoptotic bodies are larger vesicles up to 4 µM in size, and unlike other 

extracellular vesicles, they contain nuclear fractions (i.e. DNA) and are annexin V-positive [238, 

239]. Because of the overlapping sizes and biophysical characteristics, EVs are defined by their 

cellular origin. Since traditional EV purification methods co-isolate different subtypes of EVs, 

the general term EVs should be used when the intracellular origin of the vesicles has not been 

determined, and functional activity should be attributed to the general vesicle population and not 

to a single subtype of vesicle. 

1.5.1 EV Biogenesis 

Multiple mechanisms have been proposed as essential for EV biogenesis and release. Although 

both exosomes and plasma membrane-derived EVs have been described for approximately the 

same amount of time in the literature, much more is known about the formation of exosomes and 

the topic has been extensively reviewed recently [240, 241]. In all cases, it’s likely that a number 

of key events must take place for EV formation to occur. Notably, mechanisms that regulate lipid 

curvature are essential for budding and release of EVs from membranes. In addition, the proteins 

and other cellular components that are loaded into EVs appear to be regulated, at least at a 

certain level. In the case of an infection, signals that regulate EV formation, either by increasing 

or reducing EV biogenesis and release, are also important to consider. In the case of exosomes, 

many of these pathways have been described, while release of membrane-derived EVs is less 

well understood. 

Endocytic compartments are highly dynamic and regulate the internalization and 

subsequent degradation and/or recycling of transmembrane proteins, such as receptor-ligand 
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complexes, within cells. As endosomes mature to late endosomes, they accumulate intraluminal 

vesicles (ILVs) that are formed as a result of the inward budding of the endosome membrane and 

form MVBs [242]. Fusion of the MVB with the plasma membrane releases these ILVs as 

exosomes. Alternatively, MVBs may fuse with the lysosome, leading to the degradation of the 

ILVs and their components. Both endosomal sorting complex required for transport (ESCRT)-

dependent and ESCRT-independent mechanisms of ILV formation and thus, exosome biogenesis 

have been described [243-245]. ESCRT proteins also play an important role in plasma 

membrane-derived EV release [236], and ESCRT-independent pathways are also beginning to be 

described for membrane-derived EV release [240, 241]. In addition, Rab proteins are regulators 

of vesicular transport between endocytic compartments and the plasma membrane within cells. 

Thus, Rab proteins play an essential role in the decision in whether MVBs are directed to the 

plasma membrane or lysosome, and thus, exosome release. Rab proteins implicated in 

controlling exosome release include Rab11a, Rab27a, Rab27b and Rab35 [246-248]. 

Although many mechanisms have been implicated in EV biogenesis and release, a 

complete understanding of EV formation still has been elusive and it appears that the 

mechanisms thus far described for EV biogenesis may be cell type specific. For example, 

exosome release was reduced from MCF7 breast cancer cells following ALIX (an ESCRT-

associated protein) depletion but not in HeLa cells [243, 249]. Moreover, knockdown of some 

ESCRT components but not others decreases exosome release from cells [243]. The same 

observation has been made when Rab proteins have been examined in EV biogenesis [247]. 

Another paradox of the field is that complete inhibition of EV release from cells is never 

observed in studies when only single (ESCRT -dependent or -independent) pathways are 

inhibited [216, 250]. This suggests that the mechanisms of EV formation are not independent and 
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there is likely overlap in the previously described mechanisms of EV release, and that 

compensatory mechanisms likely exist. Because cellular physiology is altered during the course 

of infections, generally as a result of the pathogen actively manipulating host processes, further 

studies are needed to examine EVs are formed before we can fully understand the importance of 

EVs in the context of an infection and whether EVs are more beneficial to the host or the 

pathogen. 

1.5.2 The Role of EVs in Virus Infections 

EVs share many functional and structural features with viruses that make them extremely 

difficult to separate from viruses, including: (i) the size of the majority of EVs is about the size 

of many RNA viruses (<300 nm), (ii) EVs have a similar buoyant density to some RNA viruses, 

(iii) at least in the case of enveloped viruses, both EVs and viruses contain protein and RNA 

enclosed by a lipid bilayer, (iv) EVs and viruses form at the plasma membrane or at endocytic 

compartments, (v) EVs can bind to receptors on recipient cells and enter via endocytosis, (vi) 

EVs can also fuse with recipient cells, and (vii) EVs can deliver genetic material and other 

functional molecules that can change the physiology of recipient cells [217, 226]. It is likely that 

a population of diverse vesicles are released by cells during a virus infection, and that in the 

absence of techniques that sufficiently separate these vesicles, phenotypes assigned to EVs 

should be attributed to the overall population and not a specific subset of vesicles [226]. Because 

of the similarities outlined above, current techniques make it difficult to separate EVs consisting 

entirely of host cell components, on one extreme, from EVs that carry viral proteins or genomic 

elements but do not consist of all the virus-specific molecules required for infectivity on the 

other extreme [226]. This is different for nonenveloped viruses because they can be separated 
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from EV-enclosed virions and EVs with neutralizing antibodies, but it is likely that a 

heterogeneous population of EVs is still released by cells infected with noneveloped viruses. The 

release of EVs by virus-infected cells has been reported to play various roles in the pathogenesis 

of viral infections that can be categorized as either pro- or antiviral. It is currently unknown if the 

functions described for EVs produced during virus infection can be attributed to any single 

subpopulation of EV within the total EV population. Rather, it is likely that the functional 

characteristics reported thus far in the literature are the net effects of the total EV population.   

1.5.2.1   EV Facilitation of Viral Infection 

Numerous mechanisms have been described whereby EVs contribute to viral infection, but the 

potential pro-viral effects of EVs can be broadly broken into two categories: (i) host evasion or 

(ii) expansion of viral tropism.  

EVs isolated from cells infected with hepatitis C virus (HCV) replicons that do not 

produce structural viral proteins have been shown to contain HCV RNA [251]. In these studies, 

it was demonstrated that HCV RNA is transferred in EVs to naïve cells, where a new infection 

was induced [251, 252]. Because HCV RNA was spread to uninfected cells in these studies and 

was partially resistant to neutralizing antibodies [251-254], it strongly suggests that HCV spread 

in EVs is an immune evasion strategy utilized by the virus that promotes viral spread. This is 

likely a common mechanism by which viruses evade immune recognition and antibody 

neutralization, as others have found that hepatitis A virus (HAV), coxsackievirus B, poliovirus, 

and enterovirus 71 (EV71) are also released in EVs [107-109, 250]. Notably, it has been found 

that enteroviruses are released in phosphatidylserine (PS)-positive EVs originating from the 

autophagosome [107]. PS lipids are well known to be anti-inflammatory and inhibit the 

production of pro-inflammatory cytokine production in macrophages [255, 256]. As a 
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consequence, it has been proposed that PS-positive vesicles containing virus may actively 

attenuate the immune response in macrophages [257]. In addition, viral proteins can be packaged 

into EVs and transferred to uninfected immune cells, where the proteins can modulate the host 

immune responses to virus [217]. 

Besides promoting the spread of virus by protecting viral genomes from immune 

recognition during transmission from an infected cell to an uninfected cell, the packaging of viral 

RNA into EVs may have other biological implications. For example, the packaging of viral RNA 

into EVs may help expand viral tropism and induce viral infection in tissues that would 

otherwise not normally be infected by free virus particles. This was recently demonstrated with 

EV71. Mice were injected with either free-EV71 virions or EVs containing EV71 RNA (EV-

EV71) [250]. The mice that were injected with free EV71 had increased accumulation of viral 

RNA in the brain and intestines, whereas EV71 RNA was significantly more enriched in the liver 

and spleen of animals injected with EV-EV71 [250]. Moreover, EV-EV71 promoted the 

infection in a receptor-independent manner, since EV-EV71 could induce a productive infection 

in a non-permissive cell line that lacked the EV71 receptor [250]. Taken together, these 

observations demonstrate that the accumulation of viral RNA in tissues, and hence overall viral 

tropism, may be expanded when viral RNA is packaged in EVs. While this might suggest that 

viral association with EVs reduces the necessity of viral receptors on host cells for infection, this 

may not always be true and instead may be specific for the subpopulation of EV that is hijacked. 

For example, PS-positive EVs containing poliovirus were highly infective when added to naïve 

cells [107]. However, infection could be inhibited by either addition of a CD155 (poliovirus 

receptor) neutralizing antibody or by masking the PS lipids with Annexin V prior to infection 
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[107]. In the case of EV71, the authors’ data suggested that exosomes and not PS-positive EVs 

were the hijacked vesicle subpopulation [250].  

Despite extensive studies on the role of EVs during viral infections, very little is known 

about the composition and function of EVs to respiratory viral infections. Recently, rhinovirus 

infection was shown to alter the microRNA profile of EVs isolated from the nasal secretions of 

patients [258]. Analysis of the RSV secretome revealed that approximately one third of the total 

proteins secreted from AECs during RSV infection were secreted on EVs [259]. The functional 

consequences of respiratory viral infection on EVs released from AECs is still poorly defined. 

However, it is likely that many of the pro- and antiviral functions previously described for EVs 

will be broadly applicable to EV biology during respiratory viral infection.  

1.5.2.2   Suppression of Viral Infection by EVs 

As previously discussed, studies have shown that HCV RNA can be transferred from infected to 

uninfected cells via EVs [251]. However, the presence of viral genomes in EVs likely represents 

a double-edged sword that, while beneficial to the virus and viral spread, also has been shown to 

prime the immune system to viral infection. For example, it has been shown that EVs can shuttle 

HCV RNA between neighboring cells that triggers IFN-α production in neighboring dendritic 

cells (DCs) [260]. Importantly, the authors observed similar results using subgenomic replicon 

cells that replicate HCV RNA but do not produce infectious virus particles [260]. The presence 

of viral RNAs in EVs has also been reported to stimulate the innate immune response in 

uninfected cells for infections with other viruses, including Epstein-Barr virus (EBV), human 

immunodeficiency virus (HIV), and hepatitis B virus (HBV) [261-263]. For example, EVs 

released by HBV-infected hepatocytes induced NKG2D ligand expression in macrophages [263]. 

NKG2D is an immunoreceptor found on NK cells, and ligation of the receptor by NKG2D 
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ligands, including those expressed on macrophages, are known to activate NK cells and induce 

NK cell-mediated IFN-γ production, which mediates antiviral immunity [264, 265]. Studies also 

suggest that EVs prime the innate immune response to viral infection by other mechanisms that 

do not require transferring viral RNA between cells. Virus-resistant cells have been shown to 

produce EVs containing host miRNA. Delivery of the vesicle-associated miRNAs conferred viral 

resistance to recipient cells, making them resistant to a number of viral infections [266]. In 

addition, it was demonstrated that EVs produced by macrophages treated with type I IFN 

contained antiviral molecules that were transferred to hepatocytes and restricted subsequent 

HBV infection in these cells [216]. These studies imply that antiviral immunity can be 

transferred between cells by two distinct mechanisms: (i) soluble proteins (i.e. IFNs) that rely on 

receptor-mediated signaling to establish an antiviral state within cells, and (ii) the intercellular 

transfer of antiviral molecules to recipient cells via EVs.   

1.5.3 The Role of EVs in Bacterial Infections 

The role of host-derived EVs in bacterial infections is less well understood than with other 

infections. Still, it is now beginning to be appreciated that bacterial infection influences the 

content and function of EVs produced by the host. Although the majority of these studies have 

specifically focused on how mycobacterial infection alters the physiology of EVs produced by 

infected cells, new studies have shown that many similar concepts likely apply to the role of EVs 

in other bacterial infections.  
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1.5.3.1 Compositional and Functional Differences of EVs Isolated during Mycobacterial 

Infections 

Host-derived EVs have the potential to transfer bacterial proteins between mammalian cells, 

much like EVs-derived from virally infected cells. For example, during Mycobacterium 

tuberculosis infection, mycobacterial lipids and proteins are released from the phagosome and 

traffic to late endosomes in macrophages, where they can be loaded on EVs and released into the 

extracellular environment [267, 268]. In addition, EVs isolated from the serum of tuberculosis 

patients were shown to contain mycobacterial proteins, and thus, likely play some role in the 

pathogenesis of M. tuberculosis [269]. In some cases, the transfer of bacterial components leads 

to the stimulation of certain immune responses. For example, EVs isolated from macrophages 

infected with Mycobacterium bovis contain the mycobacterial components lipoarabinomannan 

(LAM) and 19-kDa lipoprotein [270]. Moreover, EVs isolated from the bronchoalveolar lavage 

fluid (BALF) of mice infected with M. bovis also contained LAM and 19-kDa lipoprotein [270]. 

LAM and 19-kDa lipoprotein are components of the mycobacterial cell wall that are well known 

mycobacterial PAMPs, and consequently, have immunomodulatory functions [271-276]. For 

example, it has also been shown that uninfected macrophages secrete pro-inflammatory 

cytokines and chemokines in response to EVs isolated from M. tuberculosis-infected 

macrophages [277]. In addition, uninfected macrophages treated with EVs isolated from M-

tuberculosis-infected macrophages in vitro or from BALF of infected mice induced a pro-

inflammatory response in uninfected macrophages, measured by TNF-α production [270]. This 

response is primarily driven by the presence of 19-kDa lipoprotein, as extracellular vesicles 

isolated from macrophages infected with a knockout strain of M. tuberculosis that lacks 19-kDa 

lipoprotein fails to induce such responses [278].  
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Proteomic analysis has also identified many other mycobacterial proteins on EVs isolated 

from monocytes infected with M. tuberculosis, as well as changes in the composition of host 

proteins on EVs isolated from these infected monocytes [279, 280]. These changes may also play 

roles in the immune responses generated by EVs isolated from monocytes, but this has not yet 

been investigated. It is important to note that many of the EV purification methods will isolate 

both host-derived, as well as bacterial-derived membrane vesicles during bacterial infection. 

Hence, many of the observations that report changes in EV composition or function during 

bacterial infection could be the net result of a mixed population of host- and bacterial-derived 

EVs. In support of this hypothesis, it was recently shown that M. tuberculosis-infected 

macrophages release two distinct EV populations; one population contains host proteins 

classically used to identify EVs, while the other population contains M. tuberculosis molecules 

[281]. It was the vesicle population that contains molecules from the bacteria that elicit an 

immune response in uninfected macrophages [281], suggesting that bacterial-derived and not 

host-derived EVs transport mycobacterial proteins between cells to drive immune response in 

uninfected cells. However, it has been observed that EVs isolated from macrophages treated with 

M. tuberculosis culture filtrate proteins (CFP) contained mycobacterial proteins, namely 19-kDa 

lipoprotein, and induced a more predominate Th1 response in mice treated with the EVs 

compared to BCG treated mice, as measured by flow cytometry  [282]. This provided evidence 

that mycobacterial proteins can be loaded onto host-derived EVs, even in the absence of bacterial 

infection in the EV-producing cell, and that host-derived EVs can stimulate immune responses. 

Conversely, EVs isolated from M. tuberculosis-infected macrophages did not activate Th1 CD4+ 

T cells in vitro [283]. Because both host-derived and bacterial-derived EVs are released from M. 

tuberculosis-infected macrophages, these observations suggest that the bacterial-derived vesicles 
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contain molecules that that inhibit T cell responses. Taken together, these studies suggest that at 

least two distinct subpopulations of EVs are produced during M. tuberculosis infection, which 

promote disparate immune responses.  

As has previously been described here, Rab27a may play an important role in EV 

biogenesis. Recently, it has been demonstrated that EVs isolated by M. tuberculosis-infected 

Rab27a-deficient macrophages produced less vesicles than wild type macrophages [284]. EVs 

isolated from Rab27a-deficient macrophages infected with M. tuberculosis induced a decreased 

pro-inflammatory response in uninfected cells compared to the response induced by EVs from 

wild type macrophages [284]. Ag85A has previously been identified on EVs produced by 

macrophages infected with M. tuberculosis [279]. Both Rab27a-deficient and wild type mice 

were infected with M. bovis expressing a DsRed-Ag85A conjugate and the number of DsRed-

specific T cells were measured. Interestingly, T cells from Rab27a-deficient animals produced 

less INF-γ in response to ex vivo stimulation with DsRed compared to T cells from WT animals 

[284]. One interpretation of this result is that host-derived EVs are important for inducing a pro-

inflammatory response and activating T cells during M. tuberculosis infection and that depletion 

of EVs impairs one mechanism by which antigens are presented to the immune system. 

However, in light of the other studies presented here, another possible interpretation of this 

observation is that the balance between pro-inflammatory host-derived EVs and immune-

dampening bacterial vesicles has been skewed, and bacterial-derived EVs have a greater 

influence on the immune system than host-derived EVs. Whether this is the case is unknown, but 

further highlights a challenge of the field moving forward will be to discriminate between host- 

and bacterial-derived EVs. In the case of M. tuberculosis infection this could have important 
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implications, namely do variations in EV production and EV-mediated antigen presentation 

predict disease outcome (i.e. latent versus active disease).  

1.5.3.2 The Role of EVs in Other Bacterial Infections  

Host-derived EVs have been shown to also be secreted from cells during the course of infection 

by a number of other bacterial pathogens besides mycobacteria. For example, Neisseria 

gonorrhoeae increases the secretion of cIAP2 on EVs derived from endocervical epithelial cells 

[285]. cIAP2 is an inhibitor of apoptosis protein (IAP) with E3 ubiquitin ligase function that 

regulates apoptosis, necroptosis, and RIPK1 signaling [286, 287], and the importance of cIAP2 

secretion on EVs has not been established. It is known that deletion of cIAP2 results in increased 

cell death in the context of both bacterial and viral infections [288, 289]. Because cIAP2 release 

on EVs corresponded to depletion of intracellular cIAp2 and cell death during N. gonorrhoeae 

infection, it has been speculated this is a host defense mechanism by which cells promote cell 

death during bacterial infection. However, this may also be a process co-opted by N. 

gonorrhoeae to transfer cIAP2 between cells to prevent highly inflammatory cell death during 

bacterial infection. Additionally, EVs isolated from Legionella pneumophila-infected 

macrophages stimulate a robust pro-inflammatory response in uninfected macrophages [290]. 

Interestingly, when host-derived EVs were depleted, either by blocking their release with neutral 

sphingomyelinase (SMase) inhibitor GW4869 or by depletion using CD63 immunoprecipitation, 

uninfected macrophages still responded to EVs [290]. Taken together, these results also suggest 

that host-derived and bacterial-derived EVs may contribute to the host response to bacterial 

infection, as was discussed during mycobacterial infection.  

In the case of some bacterial infections, EVs released by host cells during the course of 

infection have not been shown to interact with the immune system, but have other roles that 
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contribute to bacterial pathogenesis. One example is the ability of EVs to transfer bacterial toxins 

between host cells. Anthrax lethal toxin is an A-B toxin and a virulence factor produced by 

Bacillus anthracis, composed of three protein subunits know as protective antigen (PA), lethal 

factor 9LF) and edema factor (EF). The PA subunit is involved in cell binding, while the other 

two protein subunits contain enzymatic activity of the toxin. LF is a protease that targets MAPK 

kinases [291]. It has been shown that PA is found on ILVs and interestingly, disruption of ILV 

formation via ALIX knockdown by RNA interference (RNAi) resulted in increased association 

of LF with endosomes and delayed cleavage of MAPK kinases in cells treated with PA and LF 

[292]. Because MAPK kinase cleavage is also dependent upon transport of LF to late 

endosomes, it was hypothesized that LF could be loaded into ILVs. This hypothesis was recently 

confirmed and extended to show that EVs released from host cells deliver LF into naïve cells 

[293]. In addition, it has been shown that EVs released from cells treated with Clostridium 

perfringens enterotoxin (CPE) or S. aureus α-toxin contain these toxins, but it was not observed 

that the toxins were transferred to mammalian cells [294, 295]. Importantly, all these studies 

were performed with purified toxin, in the absence of live bacteria, suggesting that the EVs being 

studied were purely host-derived. This excluded the possibility that toxin-loaded bacterial EVs 

“contaminated” the EV populations being investigated and therefore, did not contribute to the 

observations. Overall, the loading of bacterial toxins onto host-derived EVs could be a common 

phenomenon during bacterial infections, but further investigation will be required to understand 

the significance of this observation and whether this is beneficial to the bacterial infection or 

host.  
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1.5.4 Bacterial-Derived Outer Membrane Vesicles 

Both Gram-negative and Gram-positive bacteria have been described to release vesicles into the 

extracellular environment [222, 223]. As discussed above, these bacterial-derived vesicles are 

potentially co-purified with host-derived EVs. Thus, further studies will be essential to determine 

the relative contribution of host EVs and bacterial EVs to many of the functions described above. 

Because these vesicles contain bioactive proteins, many of which are virulence factors, they have 

many functions that are critical to bacteria-bacteria and bacteria-host interactions. For example, 

OMVs produced by P. aeruginosa have been shown to contain many bacterial toxins, including 

CFTR inhibitory factor (Cif) [296]. Studies have shown that OMVs fuse with host cells, 

delivering Cif to the cytoplasm of host cells and induces the degradation of CFTR as well as 

TAP1 [173, 296, 297]. TAP1 plays a key role in antigen presentation, and therefore, degradation 

of TAP1 has important implications for adaptive immunity. It has been proposed that OMVs are 

a source of iron that can be utilized by bacteria for growth [298, 299], although it is unknown if 

OMVs produced by one bacterial species can be utilized by a second bacterial species. 

Additionally, data suggest that OMVs also contribute to bacterial defense by acting as decoys for 

antimicrobial peptides and bacteriophages, thereby promoting bacterial survival in the presence 

of potential antibacterial factors that target the outer membrane of Gram-negative bacteria [300]. 

Thus, OMVs and other bacterial-derived vesicles have many functions that affect host 

physiology and promote bacterial survival. Whether these vesicles will be useful for vaccines or 

other therapeutics because of the many potential antigens and PAMPs associated with them is an 

area that will require future investigation.    
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1.6 SUMMARY 

Although our fundamental understanding of viral-bacterial interactions in the airways is rapidly 

increasing, there is still very little understood about the underlying mechanisms for the clinical 

observation that respiratory viral infections are associated with P. aeruginosa colonization in the 

CF lung. In this dissertation, I report that RSV infection stimulates P. aeruginosa biofilm growth 

through the release of iron and the host-iron binding protein transferrin. Iron levels are increased 

in the CF airway, and this is the first study to directly demonstrate that respiratory viral infection 

is one mechanism by which iron levels are increased in the CF lung. In addition, I extend these 

studies to show that EVs released by AECs during RSV infection promote P. aeruginosa biofilm 

formation, and that iron-loaded transferrin is bound to the outside of EVs were it may be utilized 

by P. aeruginosa as an iron source. Taken together, the findings in this dissertation have greatly 

improved our understanding of viral-bacterial co-infections in the respiratory tract, providing 

evidence that nutritional immunity is at the interface of viral-bacterial interactions in the airways, 

as well as increasing our understanding for how the host contributes to chronic bacterial 

infections in the lung. 
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2.0  MATERIALS AND METHODS 

2.1 MATERIALS 

2.1.1 Cell Culture and Reagents 

The immortalized human CF bronchial epithelial cell line CFBE41o- (herein referred to as 

“CFBEs”), derived from a ∆F508 homozygous CF patient, were generously provided by Dr. J.P. 

Clancy (University of Cincinnati). CFBE cells were cultured in MEM (Thermo Fisher, Catalog 

number: 11095098) supplemented with 10% fetal bovine serum (FBS; Gemini Bio-Products, 

Catalog number: 100-106), 2 mM L-glutamine (Fisher Scientific, Catalog number: MT2500Cl) 

and 5 U/mL penicillin-5 µg/mL streptomycin (Sigma Aldrich, Catalog number: P0781) and 0.5 

µg/mL Plasmocin prophylactic (InvivoGen, Catalog number: ant-mpp). Cells were seeded as 

monolayers onto transwell inserts with 0.4 µM pore size (Corning Life Sciences), coated with 

collagen and fibronectin, at the densities listed in Table 2 and grown at air-liquid interface (ALI) 

at 37°C and 5% CO2 for 7-10 days to allow cell polarization before assays were performed. In all 

experiments where apical secretions (referred to as conditioned media) were collected, MEM 

was added to the apical compartment of CFBE41o- cells at the volumes indicated in Table 2.  
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Table 2: Properties of Transwell Inserts 

Insert Diameter 
(mm) 

Insert Membrane 
Growth Area (cm2) 

Density of CFBE41o- 
Seeded (cells/insert) 

Volume Apical 
Compartment (mL) 

6.5 0.33 7.5 x 104 0.1 

12 1.12 2.5 x 105 0.5 

24 4.67 1 x 106 1 

75 44 4 x 106 5 

 

In biotic biofilm imaging experiments, CFBEs were seeded onto 40 mm glass coverslips 

(Bioptechs) at a density of 3 x 106 cell per coverslip and cultured for 7-10 days prior to use. 

Primary CF and non-CF human bronchial epithelial cells (HBEs) were obtained from the 

explanted lungs of CF and non-CF patients in accordance with protocols approved by the 

Institutional Review Board (IRB) of the University of Pittsburgh. Primary HBE cells were 

seeded on 6.5 mm transwell inserts with 0.4 µM pore size (Corning Life Sciences) at 2.5 x 105 

cells per filter and cultured for 4-6 weeks at air-liquid interface at 37°C and 5% CO2, prior to use 

to allow for differentiation.  

2.1.2 Bacterial and Viral Strains 

Pseudomonas aeruginosa strain PAO1 carrying the pSMC21 plasmid that constitutively 

expresses green fluorescent protein (GFP; kind gift from Dr. George O’Toole, Geisel School of 

Medicine at Dartmouth) was used for these studies.   

The following viruses were studied: respiratory syncytial virus (RSV) line A2, human 

rhinovirus serotype 14 (hRV14), human adenovirus serotype 5 (Ad5) and human 

metapneumovirus subgroup A2 (hMPV). hRV14 and Ad5 were kind gifts from Dr. Carolyn 
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Coyne (University of Pittsburgh) and hMPV was generously provided by Dr. John Williams 

(University of Pittsburgh School of Medicine).  

2.1.3 Quantitative Reverse Transcriptase PCR Primers 

Primers used in qPCR assays were purchased from Sigma Aldrich and are listed in Table 3.   

 

Table 3: qPCR Primers 

Gene Primer Sequence (5’-3’) 

Adv5 Forward 
Reverse 

CAG CGT AGC CCC GAT GTA A 
TTT TTG AGC AGC ACC TTG CA 

G3PDH Forward 
Reverse 

CGA CCA CTT TGT CAA GCT CA 
AGG GGA GAT TCA GTG TGG TG 

hRV14 Forward 
Reverse 

GGC GCC ATA TCC AAT GGT GT 
TCC ACC TGA TCG AAC GTC CA 

IFN-β Forward 
Reverse 

GAG CTA CAA CTT GCT TGG ATT CC 
CAA GCC TCC CAT TCA ATT GC 

IFN-λ1 Forward 
Reverse 

CGC CTT GGA AGA GTC ACT CA 
GAA GCC TCA GGT CCC AAT TC 

ISG56 Forward 
Reverse 

TTC GGA GAA AGG CAT TAG A 
TCC AGG GCT TCA TTC ATA T 

RSV Forward 
Reverse 

GCT CTT AGC AAA GTC AAG TTG AAT GA 
TGC TCC GTT GGA TGG TGT ATT 

 

2.1.4 Antibodies 

The primary antibodies used for western blot analysis are listed in Table 4. Secondary antibodies 

used included goat anti-mouse HRP conjugate (Bio-Rad, Catalog number: 172-1011), goat anti-

rabbit HRP conjugate (Bio-Rad, Catalog number: 172-1019) and donkey anti-goat HRP 

conjugate.  
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Table 4: Primary Antibodies 

Protein of Interest Company Catalog Number Dilution 

Actin BD Biosciences 612656 1:500 

Albumin (Mouse) GeneTex GTX77024 1:1000 

ALIX EMD Millipore ABC40 1:500 

Calnexin Santa Cruz 
Biotechnology sc-70481 1:100 

CD81 Thermo Fisher PA5-13582 1:250 

DMT1 EMD Millipore ABS983 1:500 

Ezrin BD Biosciences 610603 1:100 

Ferritin Abcam ab75972 1:500 

Ferroportin-1 EMD Millipore ABS1021 1:500 

Flotillin-1 BD Bioscience 610820 1:500 

GM130 BD Biosciences 610822 1:100 

Hsp90 Enzo Life Sciences ADI-SPA-830 1:500 

IL-28Rα GeneTex GTX46261 1:500 

Lactoferrin Santa Cruz 
Biotechnology sc-25622 1:500 

MHC Class I LifeSpan Biosciences LS-C107394 1:1000 

RSV Meridian Life 
Science, Inc. B65840G 1:1000 

Transferrin (Human) Santa Cruz 
Biotechnology sc-52256 1:250 

Transferrin (Mouse) GeneTex GTX77131 1:500 

Transferrin Receptor BD Biosciences 612125 1:500 
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Tsg101 GeneTex GTX70255 1:500 

 

The antibodies used for immunoprecipitation experiments were: rabbit anti-transferrin 

(Abcam, Catalog number: ab1223) and rabbit anti-GFP (Santa Cruz Biotechnology, Catalog 

number: sc-8334).  

2.1.5 Cytokines 

Human IFN-β was acquired from PBL Assay Science (Catalog number: 11415-1). Human IFN-

λ1 (IL-29) was purchased from R&D Systems (Catalog number: 1598-IL-25) and reconstituted 

in PBS containing carrier protein (0.1% BSA).  

2.1.6 Small Interfering RNA (siRNA) 

FlexiTube siRNA targeting IL-28Rα was acquired from Qiagen and MISSION siRNA universal 

negative control (negative control) was acquired from Sigma Aldrich. The siRNAs were used at 

a final concentration of 15 nM following dilution in HiPerfect transfection reagent (Qiagen, 

Catalog number: 301705) and 1x OptiMEM Reduced Serum Media + GlutaMAX supplement 

(Thermo Fisher, Catalog number: 51985034). 
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Table 5: Commercial siRNAs 

Gene Symbol Organism Catalog Number 

IL-28Rα Human SI03076521 

Universal Negative Control Human, Mouse, 
Rat SIC001 

 

2.2 METHODS 

2.2.1 Virus Infections 

For all virus infections, the apical and basolateral compartments of CFBE cells or primary CF 

and non-CF HBEs were washed in MEM supplemented with 2 mM L-glutamine two times. The 

media in the basolateral chamber of the transwell was replaced with MEM supplemented with 

10% FBS and 2 mM L-glutamine (antibiotic-free growth media). 

Stocks of RSV were prepared from and virus titers were determined by plaque assay on 

NY3.2 cells, an immortalized murine fibroblast cell line from STAT1-/- mice [301, 302]. For 

virus infection, CFBE or primary CF and non-CF HBE cells were inoculated with RSV 

[multiplicity of infection (MOI) of seeded cells = 1, unless otherwise noted] diluted in MEM, no 

phenol red (Thermo Fisher, Catalog number: 51200038), supplemented with 2 mM L-glutamine. 

Cells were placed at 37°C, 5% CO2 for 2 hours before the apical media was removed and cells 

were maintained at ALI. Infections were allowed to proceed for 72 hours. After 72 hours 

monolayer integrity was compromised. 
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Stocks of Ad5 and hRV14 were obtained from Dr. Carolyn Coyne, where viruses where 

expanded and tittered in HeLa cells. For virus infections, CFBE cells were washed and 

inoculated with Ad5 (MOI=1) or hRV (MOI=1, unless otherwise noted) diluted in MEM 

supplemented with 2 mM L-glutamine. Virus was prebound to cells for 2 hours at 4°C and any 

unattached virus was washed away. Infections were allowed to proceed for 24 hours before 

cellular monolayers were disrupted.  

Stocks of hMPV was acquired from Dr. John Williams, where stocks were prepared and 

tittered in LLC-MK2 cells [303]. For virus infections, CFBE cells were inoculated with hMPV 

(MOI=1) diluted in MEM supplemented with 2 mM L-glutamine. As with RSV, cells were 

placed at 37°C, 5% CO2 for 2 hours before the apical media was removed and cells were cultured 

for 72 hours. 

2.2.2 Pseudomonas aeruginosa Culture 

For all bacterial infections, overnight cultures of P. aeruginosa were grown at 37°C in Lysogeny 

Broth (LB) with continuous agitation. 

2.2.3 Biotic Biofilm Imaging 

Live cell imaging was used as previously described to image bacterial biofilm growth on 

epithelial cells in the presence or absence of virus infection (Figure 3) [27, 304, 305].  Briefly, 

CFBE cells were seeded onto 40 mm glass coverslips (Bioptechs) as described in Section 2.1.1 

and infected with RSV for 24 hours before epithelial cell nuclei were stained with Hoechst 

33342 (Thermo Fisher, Catalog number: H3570). Immediately after Hoechst staining, cells were 
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transferred into a FCS2 closed system, live-cell micro-observation chamber (Bioptechs), 

assembled according to the manufacturer’s instructions, and mounted on the stage of a Nikon Ti-

inverted microscope (Figure 2.1). In this system, MEM (no phenol red) supplemented with 2 

mM L-glutamine maintained at 37°C, 5% CO2 is continuously perfused at a flow rate of 50 

mL/hour across cells using a peristaltic pump, to simulate mucociliary movement in the airways. 

For bacterial infections, cells were infected with GFP expressing PAO1 (MOI=25, PAO1-GFP) 

via injection of PAO1-GFP into the chamber through a two-way valve. Bacteria were allowed to 

attach for 2 hours in the absence of media perfusion. Biofilms were then grown for 4 hours in the 

presence of perfusion. After a total of 6 hour PAO1-GFP infections, z-stack images of 6-10 

random fields from each flow chamber were acquired and bacterial biofilm biomass was 

quantified using COMSTAT image analysis software, as described previously [305].  

For attachment assays, P. aeruginosa attachment on CFBE cells was imaged after 1 hour 

of bacterial infection with PAO1-GFP in the absence of perfusion. Bacterial counts were 

normalized to the number of epithelial cells per field by counting cell nuclei.  
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Figure 3: The setup for live-cell biotic biofilm imaging.  

A FCS2 closed system, live-cell micro-observation chamber is placed on the stage of a Nikon Ti-inverted 

microscope. Enlargement: Cross-sectional view of the micro-observation chamber indicating the location of airway 

epithelial cells (AECs) in relation to PAO1-GFP biofilm growth and media perfusion within chamber.  

 

2.2.4 Static Co-culture Biotic Biofilm Assay 

For static co-culture biotic biofilm infection experiments, CFBE or primary CF and non-CF cells 

were infected with viruses as described in Section 2.2.1. Overnight cultures of P. aeruginosa 

were washed twice in MEM supplemented with 2 mM L-glutamine and the optical density at 600 

nm (OD600) was measured using a SpectraMax M2 Microplate Reader (Molecular Devices) and 

normalized to OD600 = 0.5 in MEM supplemented with 2 mM L-glutamine. For bacterial 

infections, cells were inoculated with OD600 normalized P. aeruginosa diluted in MEM 

supplemented with 2 mM L-glutamine. The total volume of media added to the apical 

compartment of cells is listed in Table 2 and the volume of OD600 normalized P. aeruginosa is 

listed in Table 6 for different transwell insert sizes used. These inoculation volumes correspond 

to a MOI of 25 on the respective transwell insert sizes. Bacteria were allowed to attach for 1 
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hour, after which unattached bacteria were removed and the apical media was replaced with 

MEM supplemented with 2 mM L-glutamine and 0.4% L-arginine. Biofilms were then grown for 

an additional 5 hours. After a total of 6 hour P. aeruginosa infections, apical media was 

discarded and cells were washed twice with MEM supplemented with 2 mM L-glutamine to 

remove unattached bacteria. Biofilms were disrupted and collected in MEM supplemented with 2 

mM L-glutamine and 0.1% Trition X-100 (Bio-Rad, Catalog number: 1610407). Colony-forming 

units (CFU) were determined by plating serial dilutions of bacteria on LB agar plates. The 

plating was carried out by plating 10 µL aliquots of these dilutions using the track-dilution 

method [306, 307]. These plates were incubated overnight at 37°C and then counted. CFU counts 

were divided by insert membrane growth area listed in Table 2 to normalize bacterial counts 

between transwell insert.  

 

Table 6: Properties of Transwell Inserts for Static Co-culture Biotic Biofilm Assays 

Insert Diameter (mm) Density of CFBE41o- Seeded 
(cells/insert) 

Volume of OD600 
Normalized (OD600 = 0.5) 
P. aeruginosa Used (µL) 

6.5 7.5 x 104 2 

12 2.5 x 105 7 

24 1 x 106 28 

 

2.2.5 Conditioned Media Collection 

CFBE or primary CF and non-CF cells were infected with RSV as described in Section 2.2.1. At 

48 hours post-infection (hpi), MEM (no phenol red) supplemented with 2 mM L-gluatamine 
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were added to the apical compartment for the final 24 hours of virus infection to collect apical 

secretions from cells. The volume of MEM added to the apical compartment is listed in Table 2. 

At the end of 72 hour virus infection, apical airway surface liquid [herein referred to as 

“condition media” (CM)] was collected and centrifuged at 1,400 x g for 3 minutes to remove cell 

debris.  

2.2.6 Extracellular Vesicle Isolation 

For experiments with extracellular vesicles, CFBE cells were seeded onto 75 mm transwell 

inserts at a density of 4 x 106 cells/insert and infected with viruses as described in Section 2.2.1 

and cultured in MEM supplemented with 10% exosome-depleted FBS (Systems Biosciences, 

Catalog number: EXO-FBS-250A-1) and 2 mM L-glutamine added to the basolateral 

compartment of the transwell insert. Extracellular vesicles were isolated from conditioned media 

of CFBE cells using differential ultracentrifugation, as described previously (Figure 4) [308-

311]. Briefly, CM collected from CFBE cells was centrifuged at 1,400 x g for 3 minutes to pellet 

cells. Supernatants were centrifuged at 10,000 x g for 30 minutes, transferred to new tubes and 

filtered through syringe filter unit, 0.22 µm pore size (Millipore, Catalog number: SLGV033RS). 

The filtrate was centrifuged for 90 minutes at 100,000 x g in a Optima L-90k Ultracentrifuge 

with a SW-60Ti rotor (Beckman Coulter). All pellets were resuspended in 1 mL MEM, no 

phenol red, supplemented with 2 mM L-glutamine.  
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Figure 4: Flow chart for extracellular vesicle isolation from CFBE cells. 

The length and speed of each centrifuge spin are indicated. Pellets from the first spins are discarded and the 

supernatants are kept for the next step. In the last spin, supernatants are discarded and pellets are kept.  

 

2.2.7 Static Abiotic Biofilm Assay 

For static abiotic biofilm assays, CM or extracellular vesicles were isolated as described in the 

sections 2.2.4 and 2.2.5. Overnight cultures of P. aeruginosa expressing GFP (PAO1-GFP) were 

washed twice in MEM supplemented with 2 mM L-glutamine and the optical density at 600 nm 

(OD600) was measured using a SpectraMax M2 Microplate Reader (Molecular Devices). Cultures 

were normalized to OD600 = 0.5 and added to CM or extracellular vesicles supplemented with 
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0.4% L-arginine in a volume of 7 µL. Biofilms were grown for 6 hours on 35 mm uncoated 

glass-bottom dishes (MatTek Corporation, Catalog number: P35G-1.0-14-C) at 37°C, 5% CO2. 

After 6 h hours, biofilms were fixed in 2.5% glutaraldehyde overnight at 4°C and washed one 

time in phosphate buffered saline (PBS) the next morning. Z-stacks images of at least 10 random 

images were taken for each dish using a Nikon Ti-inverted microscope. Nikon Elements Imaging 

Software version 4.11 was used to measure biofilm volume and substratum area. Biofilm 

biomass was calculated as the biofilm volume divided by substratum area.   

For attachment assays in static conditions, P. aeruginosa attachment on glass was imaged 

1 hour following the addition of OD600 normalized PAO1-GFP to extracellular vesicles in glass-

bottom dishes. Bacterial counts were measured using Nikon Elements Imaging Software version 

4.11.  

2.2.8 96-Well Microtiter Biofilm Assay 

Biofilm growth on plastic microtiter dishes was performed as previously described [312, 313], 

with minor modifications. Briefly, biofilms were grown in 96-well round bottom plates 

(Corning, Catalog number: 2797) after the addition of approximately 108 CFU P. aeruginosa 

into the indicated growth conditions for 24 hours at 37°C, 5% CO2. Biofilm growth was 

quantified by crystal violet staining as measured by absorbance at 550 nm. Absorbance readings 

were measured by a SpectraMax M2 Microplate Reader (Molecular Devices).  
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2.2.9 IFN Treatment 

Cells were washed twice with MEM supplemented with 2 mM L-glutamine. IFN-β or IFN-λ 

were diluted in MEM supplemented with 2 mM L-glutamine to a final concentration of 1000 

U/mL or 100 ng/mL, respectively. Unless otherwise specified, IFN-β was added to the 

basolateral compartment of cells for 18 hours and IFN-λ was added to the apical compartment of 

cells for 12 hours.  

2.2.10 mRNA Extraction and qPCR 

Total RNA from cells was extracted using the RNeasy Mini Kit (Qiagen), according to the 

manufacturer’s instructions. RNA concentration was measured using a nanodrop. 

Complementary DNA (cDNA) synthesis was performed with iScript cDNA Synthesis Kit (Bio-

Rad). Gene expression was evaluated using quantitative real-time PCR (qPCR) with iQ SYBR 

Green Supermix (Bio-Rad). PCR reactions were performed on a StepOne Real-Time PCR 

System (ThermoFisher). The abundance of mRNAs of interest (Primers listed in Table 3) were 

normalized to GAPDH.  

2.2.11 ELISA 

To measure apical secretion of IFN-β and IFN-λ, CM was collected from CFBE cells infected 

with RSV as outlined in Section 2.2.5 and frozen at -80°C until analyzed. IFN-β and IFN-λ (IL-

29/IL-28B) concentrations were measured using the Human IFN-β ELISA Kit (R&D Systems, 
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Catalog number: 41410-1) and Human IL-29/IL-28B DuoSet ELISA Kit (R&D Systems, 

Catalog number: DY1598B), according to the manufacturer’s instructions. 

2.2.12 Western Blot Analysis (Immunoblot) 

Total protein concentration of all samples was determined using the Pierce 660 nm Protein Assay 

Kit (Thermo Fisher, Catalog number: 22662). Equal amounts of protein were loaded for analysis 

on Mini-PROTEAN TGX Precast Gels (Bio-Rad). Protein was transferred onto PVDF 

membranes using a Trans-Blot Turbo Transfer System (Bio-Rad, Catalog number: 1704150) and 

Trans-Blot Turbo PVDF Transfer Packs (Bio-Rad, Catalog number: 1704157). Antibodies used 

are listed in Table 3. Antibodies were diluted in PBS supplemented with 0.1% bovine serum 

albumin Fraction V (ThermoFisher, Catalog number: 15260037) at the concentration indicated in 

Table 3. Western Lightning ECL Pro (PerkinElmer, Catalog number: NEL122001EA) was used 

to develop blots. ImageJ software was used for densitometry on scanned blots. 

2.2.13 siRNA Transfection 

FlexiTube siRNA targeting IL-28Rα was used to selectively reduce protein expression of IL-

28Rα, by methods described previously [297]. Briefly, MISSION siRNA universal negative 

control served as negative control for siRNA experiments. For siRNA transfection, CFBE cells 

were seeded on 24 mm transwell inserts at a density of 1 x 105 cells/insert. On day 3, post-

seeding, cells were transfected with 15 nM siRNAs using HiPerfect transfection reagent 

(Qiagen), according to the manufacturer’s protocol. 1x OptiMEM Reduced Serum Media + 

GlutaMAX supplement was used as culture media during transfections. After 24 hours, apical 



 72 

and basolateral media were removed and cells were cultured at ALI at 37°C and 5% CO2 in 

MEM supplemented with 10% FBS, 2 mM L-glutamine, 5 U/mL penicillin-5 µg/mL 

streptomycin and 0.5 µg/mL Plasmocin prophylactic. Cells were treated with IFN-λ for biofilm 

assays 4 days after transfection. The efficiency of IL-28Rα knockdown was assessed by western 

blot analysis.  

2.2.14 Divalent Metal Analysis 

To measure release of divalent metals in CM during 72 hour RSV infection of CFBE or primary 

CF and non-CF cells, MEM (no phenol red) supplemented with 2 mM L-gluatamine was added 

to the apical compartment at the beginning of virus infection and removed 72 hpi. Extracellular 

vesicles were isolated as outlined in section 2.2.5. Total amounts of copper, iron and zinc were 

measured using the QuantiChrom Copper Assay Kit (BioAssay Systems, Catalog number: 

DICU-250), QuantiChrom Iron Assay Kit (BioAssay Systems, Catalog number: DIFE-250) and 

QuantiChrom Zinc Assay Kit (BioAssay Systems, Catalog number: DIZN-250), respectively. 

2.2.15 Immunoprecipitation 

For transferrin depletion experiments, transferrin was immunoprecipitated from CM or 

extracellular vesicles. 5 µg Rabbit anti-human transferrin or rabbit anti-GFP was bound directly 

to 50 µL Protein G Agarose Beads (Thermo Fisher, Catalog number: 20398) overnight at 4°C. 

CM or extracellular vesicles was incubated with antibody-Protein G complexes for 2 hours at 

4°C with continuous rotation. Supernatants were collected and used directly in static abiotic 
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biofilm assays. Transferrin abundance bound to antibody-Protein G complexes and in 

supernatants was analyzed by western blot analysis.    

2.2.16 Plaque Assays 

Viral titers were determined by plaque assay on NY3.2 cells, as described previously [301, 302], 

with minor modifications. Briefly, NY3.2 cells were seeded in 24-well polystyrene tissue culture 

plates (Fisher Scientific, Catalog number: 08-772-1) at a density of 4 x 105 cells per well. To 

measure release of infectious viral particles from CFBE cells, CM or extracellular vesicles were 

collected as described in Section 2.2.5 and Section 2.2.6, respectively, and serially diluted in 

DMEM + GlutaMAX (Thermo Fisher, Catalog number: 10567-014) supplemented with 1% FBS 

and 25 mM HEPES acid. Serial dilutions were added to plated NY3.2 cells and incubated for 2 

hours at 37°C, 5% CO2, after which cells were overlaid with Methyl Cellulose-Polyethylene 

Glycol solution for 48 hours. Goat anti-RSV antibody (Meridian Life Science, Catalog number: 

B6580G), donkey anti-goat alkaline phosphatase conjugated antibody (Santa Cruz 

Biotechnology, Catalong number: 2355) and SigmaFast BCIP/NBT tablets (Sigma Aldrich, 

Catalog number: B5655) were used to detect plaque forming units (PFU). 

2.2.17 Bacterial Growth Curves 

Extracellular vesicles were isolated from CFBE cells as outline in Section 2.2.6. Overnight 

cultures of P. aeruginosa were washed twice in MEM supplemented with 2 mM L-glutamine 

and the optical density at 600 nm (OD600) was measured using a SpectraMax M2 Microplate 

Reader (Molecular Devices). Washed bacteria were added to extracellular vesicles to a final 
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concentration of OD600 = 0.05 and added to 96-well polystyrene tissue culture plates (Fisher 

Scientific, Catalog number: 08-772-1), covered with breathable optically clear seal (Sigma 

Aldrich, Catalog number: Z380059). Plates were placed in SpectraMax M2 Microplate Reader, 

prewarmed to 37°C, and OD600 was measured every 20 minutes.  

2.2.18 Transferrin Transcytosis 

Transferrin transcytosis was assessed as described previously with minor modifications [203, 

314]. Briefly, CFBE were infected with RSV for 48 hours as described in Section 2.2.1. After 

this time, the media in the transwell basolateral chamber was replaced with antibiotic-free 

growth media supplemented with 25 µg/mL transferrin biotin-XX-conjugate (Thermo Fisher, 

Catalog number: T23363). MEM (no phenol red) supplemented with 2 mM L-gluatamine was 

added to the apical compartment to collect apical secretions from cells. After 24 hour incubation 

at 37°C, 5% CO2, the media from the apical compartment was collected and centrifuged at 1,400 

x g for 3 minutes. Supernatants were added to Streptavidin Agarose Resin (Thermo Fisher, 

Catalog number: 20349) and incubated overnight at 4°C with continuous rotation. Resin was 

washed twice in MEM supplemented with 2 mM L-glutamine, once in high salt solution (200 

mM NaCl, 400 mM NaOAc, pH 7.4) and once more in MEM supplemented with 2 mM L-

glutamine. Affinity-purified proteins were eluted by incubation at 95°C for 5 minutes in 2X 

Laemmli Sample Buffer supplemented with 0.1 M Dithiothreitol (DTT) and analyzed by western 

blot analysis for transferrin. 
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2.2.19 Extracellular Vesicle Association with P. aeruginosa Plate Reader Assay 

AECs were infected with RSV as outlined in section 2.2.1. AECs were stained with CellTracker 

Deep Red (Thermo Fisher, Catalog number: C34565) 48 hpi, and extracellular vesicles were 

isolated from CFBE cells as outline in Section 2.2.6 24 hours later. Overnight cultures of P. 

aeruginosa were washed twice in MEM supplemented with 2 mM L-glutamine. The optical 

density at 600 nm (OD600) was measured using a SpectraMax M2 Microplate Reader (Molecular 

Devices). Washed bacteria were added to extracellular vesicles to a final concentration of OD600 

= 0.15 and grown at 37°C. At the indicated times, bacteria were washed twice in MEM 

supplemented with 2 mM L-glutamine. After final wash, bacteria were resuspended in 200 µL 

and CellTracker Deep Red fluorescence was measured using a SpectraMax M2 Microplate 

Reader [Molecular Devices); excitation: 630 nm, emission: 650 nm].  

2.2.20 In vivo RSV Infection Model 

For in vivo RSV infection studies, pathogen-free breeder BALB/cJ mice were purchased from 

The Jackson Laboratory at 6-7 weeks of age. For the duration of breeding and pregnancy, mice 

were maintained in pathogen-free facilities at the University of Pittsburgh Division of Laboratory 

Animal Resources as described previously [315]. Animal protocols were carried out in 

accordance with the guidelines in the NIH Guide for the Care and Use of Laboratory Animals 

and approved by the University of Pittsburgh Institutional Animal Care and Use Committee 

(IACUC, Protocol number: 14023340).  

The neonatal mice (pups) from the resulting pregnancies were intranasally inoculated 

with 5 x 105 PFU/gram of body weight with RSV line 19 (kindly provided by Dr. Martin Moore, 
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Emory University, Atlanta, GA) or PBS for negative controls. Stocks of RSV line 19 were 

propagated in HEp-2 cells and titred in HEp-2 cells, as described previously [315-317]. At the 

indicated time points, bronchoalveolar lavage fluid (BALF) was harvested for analysis by iron 

assay and western blot analysis for albumin and transferrin abundance or used in static abiotic 

biofilm assays. HBSS containing 3 mM EDTA was used to obtain BALF. Viral titers at the 

indicated time points were previously assessed by plaque assay [315]. 

For histological analysis, mice were infected with RSV line 19 and lungs were harvested 

7 days post-infection, fixed in 4% paraformaldehyde and embedded in paraffin blocks. Tissues 

sections were stained with H&E, as described previously [315].  

2.2.21 Statistics 

GraphPad Prism Software version 6.0 was used for all statistical analysis. Means were compared 

using Student’s t test, or for multiple comparisons, one-way analysis of variance (ANOVA) with 

Tukey’s post hoc test to evaluate statistical significance. All data are shown as mean ± SD of 

biological replicates within individual experiments. Ρ < 0.05 was considered statistically 

significant. All experiments were repeated a minimum of two times.  
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Unless otherwise specified, all data presented in this chapter is published in the Proceedings of 

the National Academy of Sciences of the United States of America. Specific author contributions 

are listed in the figure legend. Figure 19B and C was not published in this article. Data for figure 

19B and C was provided by Dr. Jeffrey A. Melvin, a post-doc in the Bomberger Lab, and is 

indicated in the figure legend. 

3.1  INTRODUCTION 

Viral-bacterial interactions impact the development and evolution of chronic infections at many 

mucosal surfaces, including in the airways [318-320]. In cystic fibrosis (CF) lung disease, viral 

infections are linked to pulmonary function decline, increased antibiotic use, prolonged 

hospitalizations and increased respiratory symptoms [78]. Respiratory syncytial virus (RSV) is 

one of the most common viral pathogens identified in CF patients and leads to disease 

progression, promoting early respiratory tract morbidity and reductions in lung function [54, 56, 

71]. Beyond the morbidity associated with virus infection alone, RSV is one of the most 

common viral pathogens identified in cases of coinfection in CF. In clinical studies, RSV, and 

other respiratory viruses, have been linked to the development of Pseudomonas aeruginosa 

coinfections and to the conversion to chronic P. aeruginosa colonization in CF patients [51, 53, 

71, 72, 321]. Although clinical associations between viral infection and the acquisition of P. 

aeruginosa is clear, the basic biology underlying this interaction is not well understood.  

The transition of acute bacterial infections to chronic infections often involves the 

development of bacterial aggregates, or biofilms. The combination of an up-regulation of 
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antibiotic resistance genes and the production of a polymeric matrix surrounding the biofilm 

serves to protect bacteria from the hostile environment in the host [322]. The development of 

biofilm in human disease has been studied intensely for its involvement in disease progression in 

CF. Biofilm development at a mucosal surface requires initial attachment of bacteria to a surface, 

followed by the formation and growth of microcolonies, resulting in the development of bacterial 

biofilms, which can undergo regulated dispersal and ultimately seed new surfaces [32, 36]. Our 

present understanding of bacterial biofilm development is largely limited to single-organism 

infections. Although we have long known of polymicrobial communities colonizing human 

tissues, there is a surprising gap in our understanding of how these communities develop, how 

they impact human disease and hot how defense mechanisms influence the relationship between 

microorganisms in polymicrobial infections. Because our current antimicrobial approaches have 

limited success for chronic infections, elucidating the mechanism by which biofilms develop 

during polymicrobial infections may identify new therapeutic targets to combat biofilm 

persistence.  

Many environmental cues have been described as contributing to the conversion of P. 

aeruginosa to biofilm mode of growth. For example, iron is known to be one such cue, as the 

lack of iron in the environment prevents the formation of P. aeruginosa biofilms [27, 37]. 

Nutrient iron is tightly regulated in the host through complex interactions among uptake, storage 

and use in host cells. Nutritional immunity postulates that, because iron is required for microbial 

growth, respiration and metabolism, the host employs many regulatory pathways to sequester 

iron [182, 187]. In CF, elevated levels of iron in the airways of infections patients are correlated 

with frequency of exacerbation and have been proposed to play a role in airway colonization [24, 

323]. In addition, the sputum of CF patients contains elevated levels of ferrous iron, and these 
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levels correlate with disease severity [28]. Although increased iron in sputum is associated with 

CF lung disease severity, it is still unknown how iron homeostasis is altered in CF and how this 

alteration relates to airway infection (bacterial, fungal or viral).  

Using CF lung disease as a model to understand viral-bacterial interactions at a mucosal 

surface, we use a co-culture system for bacterial biofilm development in association with the 

airway epithelium. In this study, we use RSV to demonstrate that virus coinfection dramatically 

enhanced P. aeruginosa biofilm growth in association with airway epithelial cells. In addition, 

we show that virus infection impairs nutritional immunity, allowing the apical release of 

transferrin and thus, increasing bioavailability of iron to promote the growth of P. aeruginosa 

biofilms. These findings offer new insight into the complex interaction among two pathogens 

and the host during polymicrobial infections, and suggest a mechanism by which nutritional 

immunity plays a critical role in regulating bacterial persistence in the airways.  

3.2 RESULTS 

3.2.1 Respiratory virus infections promote P. aeruginosa biofilm growth on airway 

epithelial cells 

To determine if respiratory virus infections promote P. aeruginosa biofilm growth on airway 

epithelial cells (AECs), human ∆F508/∆F508 cystic fibrosis bronchial epithelial cells 

(CFBE41o-, hereafter referred to as “AECs”) were grown as polarized monolayers and infected 

with RSV followed by infection with GFP-tagged P. aeruginosa (strain PAO1) in a flow 

chamber (Figure 3). Biofilm growth was then analyzed by live-cell microscopy, as described 
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previously [27, 305]. We observed that RSV coinfection significantly enhanced P. aeruginosa 

biofilm growth on the surface of AECs (Figure 5A). Surprisingly, RSV coinfection increased P. 

aeruginosa biofilm growth in a time-dependent manner, with maximal biofilm growth peaking at 

72 hours post-RSV infection (Figure 5B), as measured in a static co-culture biofilm model 

[305]. We also found that RSV infection induced biofilm growth on primary CF bronchial 

epithelial (HBE) cells (Figure 5C) and increased biofilm growth of three CF clinical isolate 

strains of P. aeruginosa (Figure 6).   
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Figure 5: Respiratory viral infection promotes the growth of P. aeruginosa biofilm on AECs. 

(A, Left) P. aeruginosa (GFP) biofilms imaged by live-cell microscopy after 6 hr of growth. AEC cell nuclei are 

shown with Hoechst (blue) staining. (Right) Biofilm biomass was quantified using COMSTAT (black bars, left y 

axis). RSV RNA was measured by quantitative RT-PCR (qRT-PCR) to assess RSV infection (red bar, right y axis). 

(B) RSV-enhanced biofilm growth is time dependent. In a static coculture biofilm assay, AECs were infected with 

RSV (striped bar) or were mock infected [Eagle’s minimal essential media (MEM) control; black bars] for the 

indicated times followed by P. aeruginosa infection. P. aeruginosa biofilm was assessed by colony-forming units 

(CFU) enumeration (left y axis). RSV RNA was measured by qRT-PCR to assess RSV infection (red bars, right y 

axis). (C) RSV stimulates the growth of P. aeruginosa biofilm on well-differentiated CF HBEs. P. aeruginosa 

biofilms were grown on primary CF HBEs using the static coculture biofilm assay and were quantified by CFU 

enumeration. RSV, RSV-infected AECs. For all experiments n ≥ 3. Data are presented as mean ± SD; *P < 0.05 

versus control. Data provided by L.P.L., D.K.F., and J.M.B. 
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Figure 6: RSV-enhanced growth of P. aeruginosa biofilms with CF clinical isolates. 

RSV infection promotes biofilm formation by CF P. aeruginosa clinical isolates in a static coculture biofilm assay. 

In a static coculture biofilm assay, AECs were infected with RSV (striped bars) or were mock-infected (MEM 

control; black bars) for 72 hr and then were infected with the indicated clinical isolates of P. aeruginosa. Biofilms 

were quantified by CFU enumeration. Data provided by L.P.L., D.K.F., and J.M.B. 

 

Patients with other chronic lung diseases, such as chronic obstructive pulmonary disease 

(COPD), are also susceptible to both acute and persistent infections by P. aeruginosa [324]. This 

suggests that P. aeruginosa can form biofilms on AECs independent of the mutations in the 

cystic fibrosis transmembrane conductance regulator (CFTR) ion channel, which are the 

underlying cause of CF and CF lung disease [325]. In agreement with this hypothesis, we found 

that RSV infection increased P. aeruginosa biofilm growth on primary non-CF HBE cells in a 

static co-culture biofilm assay (Figure 7).  
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Figure 7: RSV enhances P. aeruginosa biofilm on well-differentiated non-CF HBEs. 

(A) P. aeruginosa biofilms were grown on non-CF HBEs in a static coculture biofilm assay following 72 hr RSV 

infection and were quantified by CFU enumeration. (B) RSV RNA was measured by qRT-PCR to assess RSV 

infection, which is equivalent in CF and non-CF HBE cells. RSV, RSV-infected AECs. For all experiments n ≥ 3. 

Data are presented as mean ± SD; *P < 0.05 versus control. Data provided by L.P.L., D.K.F., and J.M.B. 

 

3.2.2 Stimulation of bacterial biofilm formation is induced by infection of AECs by 

disparate viruses 

To examine whether virus-enhanced P. aeruginosa biofilm formation was specific for RSV 

coinfection, we infected AECs with human rhinovirus-14 (hRV14) or adenovirus-5 (Ad5), two 

additional respiratory viral pathogens commonly found in CF patients [78], before bacterial 

infection. Coinfection with hRV14 or Ad5 also increased the growth of P. aeruginosa biofilms 

on AECs in static co-culture biofilm assays (Figure 8). Taken together, these results indicate that 

several respiratory viruses relevant to CF lung disease can stimulate the growth of P. aeruginosa 

biofilms on AECs.  
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Figure 8: Other respiratory viruses enhance the growth of P. aeruginosa biofilm on AECs. 

P. aeruginosa biofilms were grown in a static coculture biofilm assay on AECs infected with hRV or AdV or were 

mock-infected (MEM control). Biofilms were quantified by CFU enumeration (black bars, left y axis). Viral RNA 

was measured by qRT-PCR to assess virus infection (red bars, right y axis). hRV14, hRV14-infected AECs. Ad5, 

Ad5-infected AECs. For all experiments n ≥ 3. Data are presented as mean ± SD; *P < 0.05 versus control. Data 

provided by L.P.L., D.K.F., and J.M.B. 

 

3.2.3 Viral-stimulated bacterial biofilm formation is not caused by direct virus-P. 

aeruginosa interaction  

Using an abiotic biofilm growth assay in a 96-well microtiter dish [312], we found no difference 

in biofilm formation in P. aeruginosa biofilms grown in the presence or absence of RSV (Figure 

9A). In addition, although bacterial attachment was increased when cells were infected 

simultaneously with RSV and P. aeruginosa (Figure 9B), as has been shown previously reported 

[152], P. aeruginosa attachment was not increased on cells infected with RSV (for 72 hours) 

prior to bacterial infection (Figure 9B). Although we observed increased attachment of P. 

aeruginosa to AECs that were simultaneously infected with P. aeruginosa and RSV, biofilm 

growth was only moderately increased compared to P. aeruginosa biofilm formation on cells not 

infected with RSV (Figure 9C). Whereas, on cells infected with RSV prior to bacterial infection, 
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biofilm formation was greatly and much more robustly increased (Figure 9C). Moreover, 

biofilm growth on the apical surface of AECs infected with RFP-tagged RSV (RSV-RGP) 

showed a random distribution (Figure 9D, Person correlation coefficient of 0.072 +/- 0.021), 

demonstrating that biofilms did not specifically form on virus-infected cells. 
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Figure 9: RSV-stimulated biofilm growth is not caused by direct viral-P. aeruginosa interaction. 

(A) P. aeruginosa biofilms were grown in MEM ± RSV for 24 hr in the 96-well microtiter biofilm assay. Biofilms 

were quantified by crystal violet staining and were measured as absorbance at 550 nm. Biofilms growth is presented 

as the percentage of growth in MEM alone. (B) P. aeruginosa attachment is reduced on AECs with preceding RSV 

infection. AECs were infected with P. aeruginosa (PA), simultaneously with RSV and P. aeruginosa (RSV + PA), 

or with RSV before infection with P. aeruginosa (RSV pretreat + PA). P. aeruginosa (GFP) adherence on AECs 

was imaged by live-cell microscopy after 1 hr of bacterial infection. Bacterial counts were normalized to the number 

of epithelial cells per field by counting nuclei (10 fields were counted per treatment, repeated three times). (C) The 

growth of P. aeruginosa biofilm is enhanced only on AECs with preceding RSV infection. P. aeruginosa biofilms 

were imaged by live-cell microscopy after 6 hr of growth on AECs, and biofilm biomass was quantified by 

COMSTAT. AECs were infected and are labeled along the x axis as in B. (D) P. aeruginosa biofilms are randomly 

distributed on AECs infected with RSV. Cells were infected with RSV-RFP for 24 hr followed by PAO1-GFP 

infection, and biofilm growth (green) was imaged after 5 hr by live-cell microscopy. Hoechst (blue) staining shows 



 88 

epithelial cell nuclei. For all experiments n ≥ 3. Data are presented as mean ± SD; *P < 0.05 versus control. Data 

provided by L.P.L., D.K.F., and J.M.B. 

 

Previous studies have shown that viral infection can increase bacterial attachment by 

inducing damage to the respiratory epithelium, which increases bacterial access to basal cells and 

basement membrane [146, 147]. Although we did not observe increased adherence of bacteria to 

AECs infected with RSV for 72 hours prior to bacterial infection, this does raise an interesting 

point about whether viral infection increases cellular cytotoxicity. Previously, it has been 

described that RSV infection increases damage to bronchial epithelial cell cultures by increasing 

cell death and loss of cilia [112]. However, in our study, cytotoxicity was not detected during 

RSV infection, as measured by lactate dehydrogenase release (Figure 10A) and transepithelial 

electrical resistance, a measure of epithelial barrier integrity (Figure 10B). Together, these 

results suggest that RSV infection promotes the formation of P. aeruginosa biofilm growth on 

AECs via a mechanism independent of increased adherence of bacteria to cells. 

 

 

Figure 10: The AEC monolayer is intact during RSV infection. 

(A) Epithelial integrity was assessed by the lactate dehydrogenase release assay at 72 hpi for various doses of RSV 

[Multiplicity of infection (MOI) = 0.001-5] Means are not significantly different from the uninfected control. (B) 

Transepithelial electrical resistance measurements were used to assess epithelial integrity over the course of 72-hr 
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RSV infection. AECs were infected with RSV (red triangles) or were mock-infected (MEM control, black circles) 

for the indicated times. Data provided by L.P.L. and J.M.B. 

 

3.2.4 Antiviral IFN signaling increases the growth of P. aeruginosa biofilms on AECs 

Host cells, including AECs, commonly respond to viral infections and establish an innate 

immune response against the virus through the inductions of antiviral IFNs. Because we 

observed enhanced biofilm growth by diverse respiratory viruses (Figure 8), we wanted to 

determine if the innate antiviral immune response to respiratory viral infection had a role in 

increased P. aeruginosa biofilm growth during respiratory virus infections. To do so, we first 

measured type I (IFN-β) and type III IFN (IFN-λ) production following RSV infection. We 

observed that IFN-β and IFN-λ levels in the apical airway surface liquid increased during the 

course of RSV infection, peaking at 72 hours post-RSV infection (Figure 11). Although both 

IFN-β and IFN-λ were produced by AECs in response to RSV infection, IFN-β was produced to 

a lesser extent than IFN-λ. This suggests a poor type I IFN response to RSV infection by AECs 

in our model, which is consistent with previous reports showing low type I IFN responses in 

other in vitro models of RSV infection, such as primary pediatric bronchial epithelium cell 

cultures and nasal epithelial cells [112, 113, 115]. Additionally, this reflects the low type I IFN 

levels measured in infants following RSV infection [114, 115, 326, 327].  Interestingly, P. 

aeruginosa biofilm growth also peaked at 72 hours post-respiratory viral infection (Figure 5), 

suggesting that a temporal association between IFN-β and IFN-λ production and increased P. 

aeruginosa biofilm development exists during respiratory viral infection.      
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Figure 11: IFN-β and IFN-λ secretion from AECs during RSV infection. 

Cells were infected with RSV for the indicated number of hours (hpi), and (A) IFN-β and (B) IFN-λ1/3 (IL-29/IL-

28B) release was measured by ELISA. For all experiments n ≥ 3. Data are presented as mean ± SD; *P < 0.05 

versus control. ELISA measurements performed by B.A.F.  

 

We next sought to determine if IFN signaling was sufficient to enhance P. aeruginosa 

biofilm growth in the absence of respiratory viral infection due to the temporal association 

between peak IFN production and P. aeruginosa biofilm formation during RSV infection. Due to 

the relatively robust IFN-λ response (compared to IFN-β) to RSV infection we and others have 

observed in AECs [112, 113, 115], we first focused on the role IFN-λ signaling may play in P. 

aeruginosa biofilm growth. Treatment of AECs with purified IFN-λ1 (IL-29, 100 ng/mL) 

increased the growth of P. aeruginosa biofilm on the surface of AECs in both our biotic biofilm 

imaging and static co-culture biotic biofilm assays (Figure 12A-B). We measured ISG56 

expression to confirm that IFN-λ treatment led to increased ISG expression in AECs (Figure 

12B). The IFN-λ receptor is a heterodimer composed of IL-28Rα and IL-10Rβ. To confirm that 

signaling through IFN-λ receptor was required for IFN-λ-stimulated P. aeruginosa biofilm 

growth, we used RNA interference (RNAi) to selectively knockdown IL-28Rα in AECs and 

therefore, disrupt IFN-λ receptor signaling.  In cells treated with siIL-28Rα, IFN-λ-stimulated 

biofilm formation was reduced (Figure 12C). This suggests that IFN-λ must signal through the 
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IFN-λ receptor to enhance P. aeruginosa biofilm growth. Knockdown of IL-28Rα was 

confirmed by western blot of whole cell lysate samples (Figure 12D). Together these results 

suggest that IFN-λ signaling is sufficient to stimulate P. aeruginosa biofilm growth in the 

absence of respiratory viral infection.  

 

 

Figure 12: Type III IFN (IFN-λ) signaling stimulates the growth of P. aeruginosa biofilm. 

(A and B) IFN-λ treatment stimulates the growth of P. aeruginosa biofilm on AECs. P. aeruginosa biofilm growth 

increased on AECs treated for 12 hr with IFN-λ1 (100 ng/mL, as assessed by live-cell microscopy (A) or in static 

coculture biofilm assay (B). (A) Epithelial cell nuclei are shown with Hoechst (blue) staining. The P. aeruginosa 

biofilm (GFP, green) biomass was calculated for each condition using COMSTAT. (B) P. aeruginosa biofilm was 

assessed by CFU enumeration (black bars, left y axis). IFN-λ1 signaling was confirmed with ISG56 induction by 

qRT-PCR (green bars, right y axis). (C) Signaling via IL-28Rα is required for biofilm growth during IFNλ 
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treatment. AECs were transfected with scrambled siRNA (siNeg) or siRNA targeting IL-28Rα (siIL28Rα) and were 

treated with IFN-λ1 (100 ng/mL) for 12 hr, and P. aeruginosa biofilms were grown in a static coculture biofilm 

assay. P. aeruginosa biofilm growth was quantified by CFU enumeration and displayed as fold change compared 

with siNeg-transfected cells. (D) siRNA-mediated knockdown of IL-28Rα was assessed by measuring protein 

abundance for each condition by Western blot and is displayed as the percent of IL-28Rα in cells transfected with 

siNeg (control). For all experiments n ≥ 3. Data are presented as mean ± SD; *P < 0.05 versus control. Data 

provided by L.P.L. and J.M.B. 

 

In addition to antiviral defense, the IFN response to respiratory viral infection has been 

shown to be necessary for the increase in bacterial growth in the lungs of animals during 

respiratory viral co-infection [156-158]. In these studies, targeted deletion of IFN receptors 

decreased bacterial burdens in animals co-infected with a respiratory virus to levels observed in 

PBS control animals that did not have a viral infection [157, 158]. To test whether IFN-λ 

signaling was necessary for the increase in P. aeruginosa biofilm growth observed during RSV 

co-infection, we treated cells with a neutralizing antibody against IL-10Rβ during RSV infection 

to inhibit IFN-λ signaling. This antibody has previously been shown to inhibit IL-10Rβ signaling 

in relation to IFN-λ treatment [328, 329]. In the presence of the IL-10Rβ neutralizing antibody, 

we observed reduced P. aeruginosa biofilm growth during RSV infection (Figure 13). It is 

worth noting that the decrease in P. aeruginosa biofilm growth we observed was not a complete 

reduction to biofilm formation measured on control cells. This result suggests that IFN-λ 

signaling is required for full induction of P. aeruginosa biofilm growth during RSV co-infection.  
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Figure 13: IFN-λ signaling is required for the growth of virus-stimulated P. aeruginosa biofilm. 

Cells were infected with RSV or were mock-infected (MEM control) for 72 hr and were treated with IL-10Rβ-

neutralizing antibody (IL-10Rβ antibody; 10 µg/mL) (gray bars) or were left untreated (black bars). P. aeruginosa 

biofilms were grown in static coculture biofilm assays. The growth of P. aeruginosa biofilms was quantified by 

CFU enumeration. RSV, RSV-infected AECs.  For all experiments n ≥ 3. Data are presented as mean ± SD; *P < 

0.05 versus control. Data provided by L.P.L. and J.M.B. 

 

We also investigated the role IFN-β may play in P. aeruginosa biofilm induction during 

respiratory viral infection. Similar to INF-λ treatment, we observed that IFN-β treatment 

increased P. aeruginosa biofilm growth on AECs in our biotic biofilm imaging and static co-

culture biotic biofilm assays (Figure 14A-B). We observed a reduction in IFN-β-mediated P. 

aeruginosa biofilm formation on AECs that were treated a neutralizing antibody targeting 

IFNAR (to inhibit IFN-β-mediated signaling in cells treated with IFN-β) (Figure 14C). Finally, 

we also observed a decrease in P. aeruginosa biofilm growth on AECs during RSV co-infection 

in the presence of IFNAR neutralizing antibody (Figure 14D). The decrease in P. aeruginosa 

biofilm growth was not a complete abrogation of biofilm formation in response to respiratory 

viral infection. This is similar to what we observed in experiments using a IL-10Rβ neutralizing 

antibody to block IFN-λ signaling during RSV co-infection. Taken together, these data support 
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the conclusion that IFN signaling in response to respiratory viral infection and necessary and 

sufficient to enhance the growth of P. aeruginosa biofilms. Additionally, these data suggest that 

a common target(s) of both IFN-β and IFN-λ signaling are responsible for increased P. 

aeruginosa biofilm growth during respiratory viral infection.   
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Figure 14: IFN-β treatment enhances the growth of P. aeruginosa biofilm. 

(A-B) The growth of P. aeruginosa biofilm increased on AECs treated with IFN-β (1000 U/mL) for 18 hr, as 

measured by live-cell microscopy (A) or in static coculture biofilm assays (B). (A) Epithelial cell nuclei are shown 

with Hoechst (blue) staining and P. aeruginosa biofilm (GFP, green) biomass was calculated using COMSTAT. (B) 

P. aeruginosa biofilm was assessed by CFU enumeration. (C) Signaling through IFNAR is required for biofilm 

growth induced by IFN-β treatment. AECs were treated with IFNAR-neutralizing antibody (5 µg/mL) during 18-hr 

treatment with IFN-β (1000 U/mL), and P. aeruginosa biofilms were grown in a static coculture biofilm assay. 

Control corresponds to mock IFN-β treatment in the absence of IFNAR-neutralizing antibody. The growth of P. 

aeruginosa biofilm was quantified by CFU enumeration. (D) Neutralizing IFNAR prevents the RSV-stimulated 

growth of P. aeruginosa biofilm. AECs were infected with RSV (“RSV infected”) and were treated with 

neutralizing IFNAR-antibody (5 µg/mL). P. aeruginosa biofilms were grown in a static coculture biofilm assay. The 
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growth of P. aeruginosa biofilm was quantified by CFU enumeration. Uninfected, mock infection (MEM control). 

For all experiments n ≥ 3. Data are presented as mean ± SD; *P < 0.05 versus control. Data provided by L.P.L., 

D.K.F, and J.M.B. 

 

Furthermore, these results imply that IFN-β and IFN-λ proteins do not interact directly 

with P. aeruginosa to stimulate biofilm formation and P. aeruginosa cannot utilize IFNs as a 

nutrient source to support biofilm growth. In support of this conclusion, when either IFN-β and 

IFN-λ was added directly to P. aeruginosa in a 96-well microtiter biofilm assay (in the absence 

of AECs), no biofilm growth was observed (Figure 15). 

 

 

Figure 15: IFN-λ and IFN-β do not interact directly with P. aeruginosa and stimulate biofilm growth. 

P. aeruginosa was grown in the presence or absence of (A) IFN-λ (200 ng/mL) or (B) IFN-β (1000 U/mL) diluted in 

MEM for 24 hr in the 96-well microtiter biofilm assay. Biofilm growth was measured as absorbance at 550 nm 

following crystal violet staining and is presented as OD550. n = 3; data are presented as mean ± SD. 
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3.2.5 Iron released from RSV-infected AECs stimulates P. aeruginosa biofilm growth 

Because we did not observe that RSV infection enhanced P. aeruginosa adherence to AECs, we 

next determined whether the apical airway surface liquid [hereafter termed “conditioned 

medium” (CM)] from RSV-infected cells was capable of enhancing biofilm growth in the 

absence of AECs. We found that CM from RSV-infected cells increased biofilm growth on 

abiotic surfaces, as assessed by static abiotic biofilm assay (Figure 16A) and a 96-well 

microtiter biofilm assay (Figure 16B). Because we observed that CM from RSV-infected cells 

stimulated biofilm growth, we hypothesized that RSV infection and induced the release of 

biofilm stimulatory factor(s). Iron is an essential nutrient for many bacteria and is required for 

the formation of P. aeruginosa biofilm on both abiotic and biotic surfaces [27, 37, 204]. To 

determine if iron homeostasis is altered during RSV infection, we measured total iron levels in 

CM from mock- or RSV-infected cells. RSV infection resulted in a time-dependent (Figure 

17A) and dose-dependent (Figure 17B) increase in extracellular iron in the CM collected from 

AECs. In addition, RSV infection resulted in an increased in extracellular iron in CM collected 

from primary CF HBEs (Figure 17C) and primary non-CF HBEs (Figure 17D). Importantly, the 

presence of iron in CM was required for the enhancement of biofilm growth in response to RSV 

infection because an iron-chelating agent (Chelex-100) dramatically decreased CM-induced 

biofilm growth (Figure 18). When exogenous iron (FeCl3) was added to CM from RSV-infected 

cells after treatment with Chelex-100, biofilm growth was restored (Figure 18). Collectively, 

these results indicate that RSV infection enhances iron release by AECs, thus increasing iron 

availability and biofilm formation by P. aeruginosa. 
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Figure 16: Apical secretions from RSV-infected AECs stimulate P. aeruginosa biofilm formation. 

RSV infection stimulates the release of a biofilm-stimulatory factor that promotes P. aeruginosa formation. AECs 

were infected with RSV or were mock-infected (MEM control) for 72 hr, and the apical CM was collected. (A) P. 

aeruginosa (GFP) was grown in the presence of CM in static abiotic biofilm assays. Fluorescent microscopy was 

used to measure the growth of P. aeruginosa (GFP, green), and biomass was quantified using Nikon Elements (grid 

unit = 9 µm). (B) P. aeruginosa biofilms were grown in CM for 24 hr in 96-well microtiter biofilm assays. Biomass 

was quantified by crystal violet staining and absorbance was measured at 550 nm. For all experiments n ≥ 3. Data 

are presented as mean ± SD; *P < 0.05 versus control. 
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Figure 17: RSV infection enhances iron release from AECs. 

(A) Total iron was increased in apical CM collected from AECs infected with RSV or mock-infected (MEM control) 

for the indicated number of hours post infection (hpi). (B) Total iron in the apical CM collected from AECs infected 

with RSV at the indicated MOI or mock-infected (MEM control) for 72 hours. (C and D) Total iron in the apical 

CM collected from primary CF (C) and non-CF (D) HBEs infected with RSV or mock-infected (MEM control).  

RSV, RSV-infected AECs. For all experiments n ≥ 3. Data are presented as mean ± SD; *P < 0.05 versus control. 
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Figure 18: Iron in RSV CM is required for the growth of P. aeruginosa biofilm growth. 

96-well microtiter biofilm assays were performed to measure the growth of P. aeruginosa in CM. Divalent metal 

cations were chelated with Chelex-100 (labeled “Chelex” in the figure), and iron was added back with FeCl3 (8 µM) 

after Chelex-100 treatment. RSV, RSV-infected AECs. RSV, RSV-infected AECs. For all experiments n ≥ 3. Data 

are presented as mean ± SD; *P < 0.05 versus control. 

 

3.2.6 Transferrin is apically released by AECs in response to RSV infection 

Nutritional immunity is a process by which host cells restrict access to free iron and other trace 

metals by sequestering them inside cells, across anatomical barriers and bound to molecules that 

have a high affinity for metals ions. Because increased iron abundance in CM contradicts these 

principles, we sought to identify the mechanism by which RSV infection increases luminal iron 

release. To begin to examine the mechanism by which RSV infection promotes apical iron 

release, we investigated whether the abundance of iron transporters and iron-binding proteins in 

AECs was altered by virus infection. We did not observe a significant difference in the 
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abundance of the iron exporter, ferroportin, or the iron importer, divalent metal-ion transporter 1 

(DMT1), during RSV infection (Figure 19A).  Similarly, the abundance of iron-biding proteins, 

including transferrin, ferritin and lactoferrin, was not changed by RSV infection (Figure 19A). 

Although this suggests AECs are not actively changing free iron transport during RSV infection 

by changing proteins levels of iron transporters, it does not exclude the possibility of either the 

membrane abundance or the activity of these transporters being altered by RSV infection. To 

address both of possibilities and test whether free iron was being released by AECs during RSV 

infection, we measured iron concentrations of CM filtered through 3 kDa filters, which would 

retain protein bound iron. We found that when CM was filtered through 3 kDa filters, all of the 

iron was retained by the filter in the concentrate (Figure 19B), implying that iron present in CM 

is protein-bound. Because we observed that iron was required for P. aeruginosa biofilm 

formation in CM from RSV-infected cells (Figure 18), we also probed whether CM filtered 

through 3 kDa filters was capable of stimulating biofilms. Using a 96-well microtiter biofilm 

assay, we found that P. aeruginosa biofilm growth was not increased in the presence of CM from 

RSV-infected cells that had been filtered through 3 kDa filters and the biofilm stimulatory 

activity was retained in the concentrate from these filtrations (Figure 19C). Taken together, 

these results support the conclusion that P. aeruginosa is utilizing protein-bound iron, and not 

free ionic iron, in CM to form biofilms in the presence of RSV coinfection.  
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Figure 19: RSV infection does not increase free-iron release from AECs. 

(A) RSV infection does not affect the abundance of iron transporter proteins in AECs infected with RSV or mock-

infected (MEM control) for 72 hr, as measured by Western blot analysis. (B-C) Apical CM was collected from 

AECs infected with RSV or mock-infected (MEM control) for 72 hr and subjected to 3 kDa filtration. Cond. Media, 

CM not filtered; 3 kDa Filtrate, flow-through from 3 kDa filtration; 3 kDa Concentrate, media that did not flow 

through 3 kDa filter. (B) Total iron levels in apical CM following 3 kDa filtration. (C) P. aeruginosa biofilms were 

grown in apical CM following 3 kDa filtration for 24 hr in 96-well microtiter biofilm assay. Biofilm growth was 

measured as absorbance at 550 nm following crystal violet staining. For all experiments n ≥ 3. Data are presented as 

mean ± SD; *P < 0.05 versus control. J.A.M. provided data for panels C and D.   
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Since we observed increased iron levels in CM from RSV-infected cells (Figure 17), 

with no corresponding changes in the expression of iron transporters or free iron in CM, we next 

examined whether RSV infection alters the release of iron-binding proteins into CM. Indeed, we 

found increased abundance of transferrin in the CM from RSV-infected AECs (Figure 20A). 

Transferrin is a host iron-binding protein that can be used as a source of iron and can support the 

growth of multiple bacterial species, including P aeruginosa [197-199, 211]. Notably, transferrin 

promotes biofilm growth by P. aeruginosa in a dose-dependent manner [27]. To determine 

whether transferrin is necessary for the stimulation of biofilm growth by CM from RSV-infected 

cells, we grew P. aeruginosa in transferrin-depleted CM and found that a significant reduction in 

biofilm growth when CM from RSV-infected cells was depleted of transferrin (Figure 20B). We 

confirmed that our immunoprecipitation reactions completely removed transferrin from CM by 

western blot analysis (Figure 20C). Collectively, these data suggest that RSV infection 

stimulates the apical release of transferrin from AECs to promote the formation of P. aeruginosa 

biofilms. 
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Figure 20: Transferrin release increases in response to virus infection in vitro. 

AECs were infected with RSV or were mock-infected (MEM control) for 72 hr and then apical CM was collected. 

(A) RSV infection increases transferrin abundance in apical CM, as measured by Western blot analysis. (B) 

Transferrin depletion reduces the growth of P. aeruginosa biofilm in RSV CM. Apical CM was collected from 

RSV-infected AECs depleted of transferrin by immunoprecipitation (RSV-Tfn IP). P. aeruginosa (GFP) biofilms 

were grown in transferrin-replete and –depleted RSV CM in static abiotic biofilm assays. Biofilm biomass was 

quantified using Nikon Elements (grid unit = 8.5 µm). (C) Transferrin depletion was achieved by 

immunoprecipitation of transferrin from CM using an anti-transferrin polyclonal antibody. Western blot analysis 

was used to verify transferrin depletion from CM. For all experiments n ≥ 3. Data are presented as mean ± SD; *P < 

0.05 versus control. 
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3.2.7 RSV infection increases the availability of airway iron in vivo 

To extend our in vitro findings to what might occur in vivo, we used a neonatal mouse model of 

RSV infection [315] and measured iron levels in the bronchoalveolar lavage fluid (BALF) up to 

1 week post infection. RSV infection increase iron concentrations in the airways significantly, 

compared with mock-infected controls (Figure 21A). In agreement with the increased abundance 

of iron, BALF from RSV-infected mice was able to support in vitro P. aeruginosa biofilm 

growth (Figure 21C). Although RSV infection resulted in increased inflammation, there was no 

evidence of server bronchiolar epithelial damage or of sloughing or rupture of the epithelial 

barrier, which could account for the increase of iron in the airways (Figure 21D-E). In addition, 

consistent with our finding in polarized human AECs, transferrin abundance was increased in the 

BALF of RSV-infected mice (Figure 21B), further supporting a role for iron release as a key 

mediator of biofilm formation in response to RSV infection of AECs.  
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Figure 21: Transferrin release increases in response to RSV infection in vivo.  

(A and B) Total iron (A) and transferrin abundance (B) were increased in BALF recovered from neonatal mice 

infected with RSV or mock-infected (PBS control) for the indicated number of days post infection (dpi), as 

measured by iron assay or Western blot analysis, respectively. (C) BALF recovered from neonatal mice infected 

with RSV stimulates the growth of P. aeruginosa biofilm growth in vitro. P. aeruginosa (GFP) biofilms grown in 

BALF recovered from neonatal mice infected with RSV 5 dpi in static abiotic biofilm assays. Biofilm biomass was 

quantified using Nikon Elements (grid unit = 7.5 µm). (D) Lung pathology in mice following infection. Mice were 

infected with RSV for 7 days; then lungs were harvested, sliced, and stained with H&E. Each panel represents an 
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individual mouse from the indicated group. (Scale bar, 25 µm). (D) At 2 and 7 dpi, BALF was collected and assayed 

for protein content by Bradford assay. N=4 or 5 mice per treatment group. Means are not significantly different from 

PBS controls. Horizontal lines indicate mean values. Alb, albumin; RSV, RSV infection; Tfn, transferrin. All 

experiments were repeated, with at least four mice per group. * P < 0.05. Katherine Eichinger and Kerry Empey 

performed mouse infections, H&E staining, and collected BALF. All assays with BALF performed in Bomberger 

Lab by myself. 

 

3.3 DISCUSSION 

Respiratory viral infections trigger exacerbations in chronic lung disease such as CF and 

predispose patients to bacterial colonization, but identifying the molecular mechanism(s) 

underlying viral-bacterial interactions has been elusive [53, 54, 56, 71, 72, 79]. Because of the 

paucity of animal models to study the development of chronic bacterial infections, we used a 

unique coculture model in which the early stages of P. aeruginosa biofilm development in 

association with polarized human AECs can be observed by high-resolution, live-cell imaging. 

We demonstrate that respiratory virus infection of CF and non-CF AECs results in the increased 

formation of bacterial biofilm. Moreover, in this study we show that biofilm growth is increased 

through a dysregulation of host nutritional immunity mechanisms, resulting in the increased 

release of iron-bound transferrin during virus infection, which originates in at the basolateral 

membrane of AECs and is transcytosed to the apical compartment of cells. This release of iron-

bound transferrin promotes the transition of P. aeruginosa to a biofilm mode of growth. 

Importantly, our findings propose a molecular mechanism underlying the common clinical 

observation that respiratory virus infection in patients with chronic lung disease promotes 
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chronic bacterial colonization and disease progression [51, 53, 56, 71, 72, 79, 330]. Our study 

has important implications, beyond CF pathogenesis, for understanding how complex microbial 

communities interact during disease in the lung.  

Few studies have investigated the interaction between viruses and P. aeruginosa in the 

airways. It has been shown that P. aeruginosa may modulate the antiviral response, although the 

consequences of these interactions on the progression of P. aeruginosa infection and virus 

infection remain unclear [121, 173]. Previous studies have shown that RSV coinfection promotes 

bacterial adherence to nonpolarized and ciliated AECs [152, 154, 331]. In our model using well-

differentiated AECs, we show that preceding RSV infection decreased P. aeruginosa adherence 

to AECs while greatly enhancing the development of bacterial biofilm. We interpret these 

results, coupled with abiotic biofilm assays that are not altered with virus exposure, as indicating 

that a direct interaction between virus and bacteria is not responsible for enhancement of P. 

aeruginosa biofilm growth during respiratory viral infection. Instead, using a coculture model of 

biofilm development in association with the respiratory epithelium, our data suggest a 

mechanism by which the host innate immune response to the viral pathogen creates a local 

environment at the mucosal surface that promotes chronic bacterial infection. The molecular 

details of this mechanism are explored further in this dissertation. 

Although the antiviral effects of IFNs are well recognized [332], studies now suggest that 

an appropriate antiviral IFN response to respiratory viral infection has unfavorable effects on 

secondary bacterial infections. For example, in acute models of influenza-bacterial coinfections, 

the increased bacterial load in the airways of mice after influenza challenge has been attributed 

to the antiviral IFN response to the virus [156-158]. Little is known about how IFN induction or 

signaling pathways influence chronic bacterial infection. In acute models of P. aeruginosa 
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infection, the ability to clear P. aeruginosa infection is improved significantly in mice lacking 

IL-28Rα, indicating that IFN-λ signaling may contribute adversely to pulmonary P. aeruginosa 

infection in vivo [127]. Our data extend previous findings to suggest that IFN signaling also 

promotes the growth of P. aeruginosa biofilms.   

Our study suggests the dysregulation of nutritional immunity, specifically iron 

homeostasis, as a primary mechanism by which RSV promotes the transition of P. aeruginosa to 

a biofilm mode of growth. Iron plays an essential role in the development of biofilms on abiotic 

surfaces and in association with AECs for P. aeruginosa and other bacterial species [27, 37, 43, 

204]. A strong positive correlation has been reported among increased iron levels, P. aeruginosa 

burden and disease severity in the CF lung, but the effect of respiratory viral infection on iron 

levels has not been investigated [24, 25, 28]. In our studies we found that, during the corse of 

infection, RSV increased apical iron release from the airway epithelium and that iron chelation 

dramatically reduced biofilm growth, implying that iron chelation is effective in counteracting 

virus-mediated iron release and biofilm growth. Although P. aeruginosa biofilms grown on 

AECs display significantly high antibiotic resistance than biofilms formed on abiotic surfaces, 

the use of iron chelation compounds significantly increases antibiotic-mediated disruption of 

biofilms on cells [49]. Moreover, it has been demonstrated recently that P. aeruginosa dispersed 

from biofilms by chemical induction is highly sensitive to iron stress [333]. This high sensitivity 

to iron limitation suggests that iron chelation compounds may play a role in preventing the 

spread of bacteria to new infection sites. A novel approach to inhibiting P. aeruginosa growth 

and biofilm formation uses the transition metal gallium (Ga3+) to disrupt P. aeruginosa iron 

metabolism [334, 335]. Therefore, the co-administration of iron chelators that can prevent 

bacterial iron acquisition and compounds that disrupt bacterial iron metabolism may be an 



 110 

important therapeutic strategy during respiratory virus seasons to prevent the development and 

spread of chronic bacterial infections in CF patients.  

Iron is a critical nutrient for many cellular processes in humans, but the quantity and 

location of iron must be regulated tightly to prevent infection [182]. Even in the absence of 

infection, extracellular iron is bound to high-affinity iron-binding proteins, such as transferrin, to 

maintain extremely low levels of free iron. We found that RSV infection promoted the apical 

release of transferrin from AECs and that transferrin contributed significantly to the formation of 

P. aeruginosa biofilms. Moreover, our data suggest that RSV infection does not promote the 

release of free iron and therefore, that the iron released during viral infection is protein-bound. 

Our data suggest that the iron is bound to transferrin. The mechanism(s) by which P. aeruginosa 

responds to the environmental conditions imposed by RSV infection, including the presence of 

transferrin, are important to consider. One mechanism by which P. aeruginosa overcomes iron 

sequestration is through the siderophore pyoverdine, which facilitates iron acquisition from 

transferrin and is important for bacterial growth and biofilm formation [204, 206]. The presence 

of pyoverdine in CF sputum suggests the importance of pyoverdine-mediated iron uptake by P. 

aeruginosa in the CF lung [336]. Taken together, these studies suggest that pyoverdine-mediates 

acquisition of iron from transferrin may be an important mechanism by which chronic P. 

aeruginosa infections initially develop in the CF lung and that respiratory viral infection may 

instigate such a microenvironment. In support of this hypothesis, longitudinal analyses of CF 

clinical isolates suggest that P. aeruginosa pyoverdine production is high early in infection and 

then production decreases as chronic infections continue to progress over the life time of patients 

[212, 213]. 
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In summary, many clinical studies in patients with chronic lung disease report viral-

bacterial interactions that result in poor bacterial clearance and disease progression. In the 

current study, we demonstrate that respiratory viral infections dysregulate host iron homeostasis 

mechanisms, promoting harmful secondary bacterial infections. By improving our mechanistic 

understanding of viral-bacterial coinfections, these studies aid in the development of new 

treatments to target complex infectious diseases. Moreover, because mounting clinical evidence 

suggest that many infectious diseases are polymicrobial in nature, our studies likely have 

implications for studying complex microbial communities during other disease processes.  
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4.1 INTRODUCTION 

Extracellular communication is a critical component of many host processes. Extracellular 

vesicles (EVs) are small membrane-enclosed vesicles that are produced by most cell types, and 

secreted into the extracellular environment. Biologically active proteins, RNAs and lipids can be 

packaged into EVs and delivered to target cells, where they impact many biological processes 

[216, 218, 221, 337]. EVs have been isolated from lung epithelial cells, as well as from the 

bronchoalveolar lavage fluid (BALF) and sputum collected from patients with chronic lung 

diseases, such as asthma and cystic fibrosis (CF) [338-342]. Although EVs seem to play roles in 

both normal tissue homeostasis and in the progression of inflammation in the airways, little is 

known about what function EVs have in the airways during an infection [343].  

During viral infection, EVs mediate intercellular communication that is beneficial to the 

viral life cycle by delivering viral particles and genetic elements between neighboring cells that 

help establish productive infections [217]. For example, EVs released from hepatitis C virus 

(HCV) infected cells contained replication competent viral RNA that successfully establish 

infection in naïve cells [251, 252]. In addition, EVs transport molecules that promote viral 

replication by suppressing host immune responses, such as the antiviral interferon (IFN) 

response, as has been demonstrated during enterovirus 71 (EV71) infection [250]. However, 

viral infections do not often occur in isolation and there is an increasing appreciation for the 

prevalence and severity of polymicrobial infections involving viruses. Viral-bacterial interactions 

in the respiratory tract have received notable attention due to the severity of secondary bacterial 

infection following viral infection in both acute infections, such as pneumonias, and chronic 

diseases, such as CF lung disease. Although synergistic virulence is commonly observed in these 
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infections, it remains poorly understood how EVs impact viral-bacterial polymicrobial infections 

in the airways.  

CF is a genetic disease caused by mutations within the cystic fibrosis transmembrane 

conductance regulator (CFTR) ion channel. Reduced CFTR function in the airways results in 

thick mucus secretions that are difficult to clear due to decreased innate defenses, such as 

mucociliary clearance [325, 344]. This creates a favorable environment for microbial 

colonization and persistence. Pseudomonas aeruginosa is a commonly isolated bacterial 

pathogen in the CF lung that forms chronic infections in the airways of most adult CF patients, 

and causes much of morbidity and mortality in patients. The development of chronic P. 

aeruginosa infections in the CF lung often involves the transition to a biofilm-associated 

lifestyle, which can protect the bacteria from the host immune response and antibiotics [44, 46]. 

P. aeruginosa is rarely the only microbe that is present in the CF lung [6]. Extensive amount of 

research has focused on bacterial communities and bacterial-bacterial interactions in the CF lung. 

However, much less is known about the mechanisms underlying viral-bacterial interactions in 

the CF lung, despite clinical studies strongly linking respiratory viral infection with P. 

aeruginosa coinfection and the development of chronic P. aeruginosa infection in patients [53, 

55, 71, 72, 79, 330].  Because antimicrobials are ineffective at treating chronic infections in the 

CF lung, a better understanding of the factors that drive biofilm development in the airways may 

help identify alternative therapeutic strategies to either prevent chronic bacterial infections or 

treat already established biofilms. 

Many environmental factors contribute to P. aeruginosa biofilm growth, including the 

nutrient iron. Although iron is essential for microbial growth and the host tightly regulates iron 

accessibility to prevent infection, iron levels in the CF lung are significantly increased compared 
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to non-CF airways [23, 24, 26, 29]. Increased iron levels are correlated with increased bacterial 

burden and decreased pulmonary function in the CF lung, but the mechanisms that contribute to 

increased iron levels in the CF airways are unknown [25, 28]. We have shown the respiratory 

viral infection produces an environment that promotes P. aeruginosa biofilm growth through the 

increased release of iron into the airways (Chapter 3), suggesting virus infection alters iron 

homeostasis in the lung. Many proteins involved in metal homeostasis have been identified on 

EVs [345], but it is not known what function EVs have in metal homeostasis, and which metal 

and metal-binding proteins are loaded onto EVs in the lung and how airway infection alters 

metal abundance in EV populations in the airways.   

To gain a better understanding of how EVs impact viral-bacterial interactions at a 

mucosal surface, we determined whether EVs isolated from AECs influence P. aeruginosa 

biofilm development during respiratory viral coinfection in a model of CF lung disease. In this 

study, we show that EVs isolated from AECs during respiratory viral infections enhance P. 

aeruginosa biofilm growth. In addition, we show that virus infection increases iron accessibility 

to promote P. aeruginosa biofilm growth. Our results demonstrate that the release of EVs in the 

respiratory tract is an important factor in the interactions that occur during polymicrobial 

infections. Additionally, our study offers new insight into our understanding of nutritional 

immunity in the lung and how the host contributes to the development of bacterial biofilm-

associated infections during respiratory viral infection. 



 116 

4.2 RESULTS 

4.2.1 Extracellular vesicles isolated from AECs stimulate P. aeruginosa biofilm growth 

during respiratory viral infection 

Previously, we have observed that in the apical secretions collected from RSV-infected AECs 

[termed “conditioned media” (CM)], was capable of enhancing P. aeruginosa biofilm growth 

(Figure 22A). To determine if EVs were required for CM-mediated bacterial biofilm formation, 

we depleted apical secretions from RSV-infected cells of EVs and measured biofilm formation in 

the presence of vesicle-depleted CM. We found that CM from RSV-infected cells that had been 

depleted of EVs by ultracentrifugation was unable to stimulate P. aeruginosa biofilm growth 

(Figure 22A), implying that EVs are required for virally-induced P. aeruginosa growth in CM. 

In addition, we filtered CM through 100 kDa filters, which would trap any large protein 

complexes or vesicles but allow smaller, soluble proteins to flow-through. Filtrate from RSV-

infected AECs was unable to stimulate P. aeruginosa biofilm formation compared to CM 

(Figure 22B). However, we observed that concentrate from RSV-infected cells maintained the 

ability to greatly increase biofilm growth, similar to CM that had not been filtered (Figure 22B). 

Taken together, these results suggest that respiratory viral infection increases EV release from 

AECs, which can be utilized by P. aeruginosa to form biofilms. 
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Figure 22: EVs are required for P. aeruginosa biofilm growth in apical secretions from RSV-infected AECs. 

AECs were infected with RSV or mock-infected (MEM control) for 72 hr and the apical CM was collected. CM was 

depleted of EVs by (A) ultracentrifugation or (B) 100 kDa filtration. (A) P. aeruginosa (GFP) biofilms were grown 

in the presence of CM in static abiotic biofilm assays. Fluorescent microscopy was used to measure biofilm growth. 

Biomass was quantified using Nikon Elements (unit grid = 7.5 µm). (B) P. aeruginosa were grown in CM for 24 hr 

in a 96-well microtiter biofilm assay following 100 kDa filtration. Biofilm growth was measured as absorbance at 

550 nm following crystal violet staining. Cond. Media, CM not filtered; 100 kDa Filtrate, flow-through from 100 

kDa filtration; 100 kDa Concentrate, media that did not flow through 100 kDa filter. For all experiments n ≥ 3. Data 

are presented as mean ± SD; *P < 0.05 versus control. 
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To determine if EVs released from airway epithelial cells, ∆F508/∆F508 cystic fibrosis 

bronchial epithelial cells (CFBE41o-, referred to as “AECs” hereafter), during respiratory viral 

infection were capable of enhancing P. aeruginosa biofilm growth, we isolated EVs from AECs 

infected with RSV using ultracentrifugation. We measured biofilm growth in the presence of 

EVs but in the absence of AECs, as described previously [346]. Interestingly, we found that EVs 

from RSV-infected cells significantly increases biofilm growth in the absence of AECs on 

abiotic surfaces, as measured by fluorescent microscopy and 96-well microtiter biofilm assays 

(Figure 23A-B). Further experiments are planned to determine whether EVs isolated from RSV-

infected, non-CF AECs also stimulate P. aeruginosa biofilm growth. Based on our observations 

that RSV co-infection increases biotic biofilm growth of P. aeruginosa on non-CF HBEs 

(Figure 7A), we hypothesize that EVs isolated from non-CF cells infected with RSV will also 

stimulate P. aeruginosa biofilm growth. We observed that many of the proteins commonly used 

as protein markers for EVs were also present in the EVs we isolated from AECs, while the 

absence of GM130 (a Golgi marker) and calnexin (an endoplasmic reticulum marker) confirmed 

no cell debris in our EV preparations (Figure 24A). Furthermore, the size and morphology of the 

isolates EVs were confirmed by electron microscopy and Nanoparticle Tracking Analysis (NTA) 

(Figure 24B-C). RSV infection increased the release of EVs from AECs, as assessed by both 

western blot and NTA. We observed that although EVs contained RSV proteins and RNA 

(Figure 24D-E), the EVs population we isolated did not contain infectious viral particles, as 

measured by plaque assay (Figure 24F). These data suggest that infectious RSV particles are not 

responsible for the biofilm stimulatory activity of EVs isolated from RSV-infected AECs. These 

results are consistent with previous observations that purified RSV does not stimulate P. 

aeruginosa biofilm formation (Figure 9A), further suggesting that infectious RSV particles are 
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not responsible for virus-mediated biofilm growth. To examine whether EV-mediated P. 

aeruginosa biofilm growth was specific to RSV infection, we isolated EVs from AECs infected 

with another respiratory virus commonly found in CF patients, human rhinovirus (hRV). 

Interestingly, we observed that EVs from hRV-infected cells also increased P. aeruginosa 

biofilm growth in the absence of AECs, as measured by fluorescent microscopy (Figure 23C).  
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Figure 23: Respiratory viral-infected AECs release EVs that stimulate P. aeruginosa biofilm growth. 

(A and B) AECs were infected with RSV or mock infected (MEM control) for 72 hr and then EVs were isolated 

from apical CM. (A) P. aeruginosa (GFP) was grown in the presence of isolated EVs in static abiotic biofilm assays. 

Fluorescent microscopy was used to measure the growth of P. aeruginosa, and biomass was quantified by Nikon 

Elements (grid unit = 8 µm) (B) P. aeruginosa biofilms were grown for 24 hr in 96-well microtiter biofilm assay. 

Biomass was quantified by crystal violet staining and absorbance was measured at 550 nm. (C) AECs were infected 

with hRV (MOI = 0.1) or mock infected (MEM control) for 72 hr and then EVs were isolated from apical CM. P. 

aeruginosa (GFP) biofilms were grown in the presence of EVs in static abiotic biofilm assays. Biofilm biomass was 

quantified using Nikon Elements (grid unit = 10 µm). Control, EVs from mock-infected AECs; RSV, EVs from 

RSV-infected AECs. For all experiments n ≥ 3. Data are presented as mean ± SD; *P < 0.05 versus control. 
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Figure 24: Characterization of EVs released by AECs. 

EVs were prepared from AECs following 72 hr infection with RSV or mock infected (MEM control). (A) Western 

blot analysis of EV and non-EV marker proteins in whole cell lysates (WCL) and EVs. n=3. (B) Nanoparticle 

Tracking Analysis (NTA) of EVs released by AECs. n=2. (C) Electron microscopy of EVs prepared from mock-

infected AECs was performed to verify the size and morphology of AEC-released vesicles. (D) Western blot 

analysis of RSV proteins in WCL and EV preparations. IB = immunoblot. n=3. (E-F) EVs were prepared from 

AECs following 72 hr RSV infection. qRT-PCR analysis was performed for the RSV N and L genes in cells and in 

EVs prepared from those cells. n=2. (F) Plaque assay of conditioned media (Cond. Media) and EVs collected from 

AECs infected with RSV for 72 hr. n= 3. Data are presented as mean ± SD; *P < 0.05 versus control. 
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To further examine the mechanism by RSV EVs stimulate P. aeruginosa biofilm growth, 

we next investigated whether EVs from RSV-infected AECs increase bacterial attachment to an 

abiotic surface. We found that there was no difference in the number of bacteria that attached in 

the presence of EVs from uninfected and RSV-infected cells (Figure 25A). Moreover, there was 

no difference in P. aeruginosa attachment between EVs or in minimal media (MEM) (Figure 

25A). Because EVs from RSV-infected cells stimulated biofilm growth but did not increase 

bacterial attachment, we hypothesized that EVs from RSV-infected AECs increase bacterial 

growth. To test this hypothesis, we compared the growth of P. aeruginosa in EVs isolated from 

uninfected and RSV-infected AECs, and we found that RSV EVs significantly enhanced P. 

aeruginosa growth compared to EVs from uninfected cells (Figure 25B). Taken together, these 

results indicate that EVs isolated from RSV-infected cells contain biofilm stimulatory molecules, 

which are either absent or present in significantly reduced levels on EVs from uninfected AECs, 

to promote P. aeruginosa bacterial growth and biofilm formation. 
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Figure 25: RSV EVs increase P. aeruginosa growth but not adherence to abiotic surfaces. 

(A) P. aeruginosa (GFP) was grown in the presence of EVs isolated from AECs in static abiotic biofilm assays. 

After 1 hr, any unattached bacteria were washed away and attached bacteria were measured using fluorescent 

microscopy. Nikon Elements was used to count bacteria. (B) Growth kinetics in EVs isolated from AECs infected 

with RSV or mock-infected (MEM control) for 72 hr. For all experiments n ≥ 3. Data are presented as mean ± SD; 

*P < 0.05 versus control. 

 

4.2.2 RSV infection increases iron bioavailability on extracellular vesicles to promote 

biofilm growth  

Iron is required for many biological processes, including P. aeruginosa biofilm growth on both 

abiotic and biotic surfaces [27, 37, 43, 204]. We have previously observed that RSV infection 

increases extracellular iron in CM collected from AECs (Figure 17). However, it is not known if 

iron and other metals are loaded into EVs released by the respiratory epithelium. To examine if 
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EV contain iron and RSV infection altered iron abundance in EVs, we measured total iron in 

EVs collected from uninfected and RSV-infected AECs and observed that RSV infection 

increased total iron in EVs isolated from AECs (Figure 26A). Although iron is necessary for P. 

aeruginosa biofilm formation, other transition metals are abundant in biological systems and are 

involved in important physiological processes. For example, zinc supplementation has recently 

been shown to increase P. aeruginosa biofilm growth [347]. In addition, copper is a redox-active 

metal that participates in many redox reactions in bacteria and has been shown to be increased in 

the sputum of CF patients, along with zinc and iron [30, 348]. Therefore, we also measured the 

abundance of other transition metals in extracellular vesicles to determine if virus infection was 

increasing the abundance of other metals in EVs. We found that virus infection caused a slight 

increase in zinc concentrations in EVs, but that copper concentrations were unchanged by RSV 

infection (Figure 26B-C).  

 

 

Figure 26: RSV infection increases iron release on EVs. 

AECs were infected with RSV or mock-infected (MEM control) for 72 hr and EVs were isolated from apical CM. 

(A) Total iron, (B) zinc, and (C) copper in the EVs from AECs. RSV, RSV-infected AECs. For all experiments n ≥ 

3. Data are presented as mean ± SD; *P < 0.05 versus control. 
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Importantly, the presence of iron was necessary for P. aeruginosa biofilm growth in the 

presence of EVs isolated from RSV-infected cells because chelation of iron, using the iron-

chelating agent Chelex-100, significantly decreased biofilm formation in the presence of EVs 

(Figure 27A). NTA was performed after Chelex-100 treatment to verify that EV abundance or 

morphology was not changed by iron chelation (Figure 27B). Future experiments will test the 

hypothesis that adding back exogenous iron sources to chelated EVs will restore biofilm growth. 

Taken together, these results suggest that P. aeruginosa utilizes iron localized on EVs to form 

biofilms during RSV coinfection. Moreover, RSV infection increases total iron abundance in 

EVs released by AECs, thereby increasing iron bioavailability for P. aeruginosa biofilm growth. 
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Figure 27: Iron is required for P. aeruginosa biofilm growth. 

EVs were isolated from AECs infected with RSV or mock-infected (MEM control) for 72 hr. Divalent metal cations 

were chelated with Chelex-100 (labeled “+ Chelex”). (A) P. aeruginosa (GFP) was grown in the presence of EVs in 

static abiotic biofilm assays and fluorescent microscopy was used to measure biofilm growth. Nikon Elements was 

used to quantify biofilm growth (grid unit = 8.0 µm). RSV, RSV-infected AECs. For all experiments n ≥ 3. Data are 

presented as mean ± SD; *P < 0.05 versus control. (B) NTA analysis of EVs before and after Chelex-100 treatment. 

n=2. 
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4.2.3 RSV infection increases transferrin abundance on extracellular vesicles  

Nutritional immunity postulates that the host restrict the availability of nutrients from bacteria 

and other pathogenic microorganisms. In regard to metal restriction, one the strategies utilized by 

the host is the chelation of metals with high-affinity proteins that sequester metals from 

pathogens, such as lactoferrin and transferrin. In response to iron limitation P. aeruginosa 

increases the production of the siderophores pyochelin and pyoverdine [205]. Thus, we measured 

pyoverdine production during P. aeruginosa biofilm growth in the presence of EVs to determine 

whether EVs provide an iron-restricted or iron-replete environment for biofilm formation. We 

observed that pyoverdine production in the presence of EVs is not changed by RSV infection 

(Figure 28A). Moreover, the levels of pyoverdine produced by P. aeruginosa grown in the 

presence of EVs mirrored pyoverdine production in iron-restricted environments (i.e. MEM or 

iron-bound transferrin) (Figure 28A). Conversely, pyoverdine production was significantly 

higher when P. aeruginosa biofilms were grown in the presence of EVs compared to an iron-

replete environment (i.e. FeCl3) (Figure 28A). In these experiments, we grew P. aeruginosa in 

the same levels of iron as measured in our EV preparations (i.e. 10 µM FeCl3 and 5 µM holo-

transferrin). Taken together, these data suggest that iron associated with EVs is sequestered from 

P. aeruginosa and is likely bound to host-iron binding proteins loaded into the vesicles. 
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Figure 28: RSV infection increases transferrin abundance in EVs. 

EVs were isolated from AECs infected with RSV or mock-infected (MEM control). (A) P. aeruginosa was grown in 

the presence of EVs, FeCl3 (10 µM) or holo-transferrin (5 µM) in static abiotic biofilm assays. At the end of assays, 

supernatants were removed and analyzed for pyoverdine (excitation: 400 nm, emission: 447 nm) and normalized to 

the density of bacteria (OD600). (B) RSV infection increases transferrin abundance in EVs, as measured by Western 

blot analysis. RSV, RSV-infected AECs. For all experiments n ≥ 3. Data are presented as mean ± SD; *P < 0.05 

versus control. 

 

Because RSV infection increases iron abundance in our EV preparations and P. 

aeruginosa responds to EVs with increased pyoverdine production, we next examined whether 

RSV infection alters the release of iron-binding proteins on EVs that may sequester iron. 

Interestingly, we found that RSV infection increased the abundance of only transferrin within our 

preparations of EVs (Figure 28B). Transferrin supports the growth of many bacterial species, 

including P. aeruginosa, and is a component of airway secretions that can promote P. 

aeruginosa biofilm growth [27]. Importantly, we have previously shown RSV infection increases 

the apical release of transferrin, and that biofilm growth in the presence of RSV coinfection 
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requires transferrin secretion from AECs (Figure 20B). Collectively, these results demonstrate 

that RSV infection of AECs increases apical transferrin release on EVs.  

4.2.4 RSV infection increases transcytosed transferrin release on EVs in the apical 

compartment 

Because transferrin is primarily a serum glycoprotein that is taken up and recycled at the 

basolateral membrane of cells, we next determined whether transferrin in the basolateral 

compartment of cells is transcytosed and released apically on EVs. We have previously 

determined that RSV infection promotes the transcytosis of transferrin from the basolateral to 

apical compartment of cells (Appendix A), but it is unknown if the transcytosed transferrin is 

released on EVs. We determined whether transferrin is transcytosed apically and loaded on EVs 

during RSV infection by adding biotinylated transferrin to the basolateral media and then 

assayed for biotinylated transferrin on EVs 24 hours later (Figure 29A). We found that 

biotinylated transferrin was associated with EVs released apically by AECs, and that 

significantly more biotinylated transferrin was released in association with EVs during RSV 

infection (Figure 29B). Interestingly, we observed that all the transferrin that was associated 

with apically released EVs was affinity purified due to the absence of transferrin in the 

supernatant we collected from the streptavidin resin (Figure 29B), indicating that the transferrin 

loaded onto EVs originated in the basolateral compartment. Additionally, we conclude that the 

transcytosed transferrin was localized to the outside of EVs because streptavidin resin would not 

have been able to access proteins on the inside of vesicles. This suggests that we would have 

affinity purified EVs loaded with transferrin in our experiments. To test this hypothesis, probed 

for marker proteins of EVs and found that ALIX, Tsg101, Hsp90, and MHC-I were affinity 
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purified with biotinylated transferrin (Figure 29B). Interestingly, we observed that CD81 and 

Flotillin-1, as well as small amounts of ALIX, Tsg101, Hsp90 and MHC-I, were present in the 

supernatant we collected from the streptavidin resin (Figure 29B), indicating these proteins were 

not affinity purified with biotinylated transferrin. Thus, our data suggest at least two EV 

populations exist, one of which is transferrin-positive. In addition, we observed that RSV 

proteins were present in the EV population that was affinity purified with biotinylated 

transferrin, as well as the vesicle population that was negative for biotinylated transferrin 

(Figure 29C), indicating RSV proteins are present in two EV populations we purified. To 

determine whether transferrin-positive EVs were necessary for biofilm growth in the presence of 

EVs from RSV-infected AECs, we grew P. aeruginosa in EVs that had been depleted of 

transferrin-positive vesicles. We found a significant decrease in P. aeruginosa biofilm growth in 

the presence of EVs when transferrin-positive vesicles were removed from our EV preparations 

(Figure 29D). Taken together, these data support that conclusion that at least two EV 

populations are released by AECs. One of these vesicles populations contains transcytosed 

transferrin loaded on the outside of vesicles, and are necessary for P. aeruginosa biofilm growth 

in the presence of EVs isolated from RSV-infected AECs.   

P. aeruginosa utilizes two siderophores, pyochelin and pyoverdine, to acquire iron. 

Pyoverdine has a higher affinity for iron and is capable of acquiring iron directly from transferrin 

[206]. Because we have previously observed that P. aeruginosa produces pyoverdine in the 

presence of EVs and that transferrin is on the outside of EVs, we hypothesized that P. 

aeruginosa acquires iron from EVs using its siderophores during biofilm growth. Our lab has 

previously demonstrated that a P. aeruginosa mutant (∆pvdA∆pchE) unable to produce either of 

its siderophores (pyoverdine or pyochelin) has a decreased ability to form biofilms during RSV 
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co-infection where iron-loaded transferrin abundance is increased. We found that P. aeruginosa 

biofilm growth in the presence of EVs from RSV-infected cells was reduced with a ∆pvdA∆pchE 

mutant compared to wild type P. aeruginosa (Figure 30). Collectively, these results suggest that 

P. aeruginosa siderophores are required for the full biofilm induction observed in the presence of 

EVs isolated from RSV-infected AECs. EVs are a likely source of multiple nutrients besides 

iron-loaded transferrin, and our data indicate that the nutrient-rich environment potentially 

provided by EVs is not able to overcome the absence of this iron acquisition mechanism in P. 

aeruginosa.  
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Figure 29: Transferrin released on EVs in the apical compartment of AECs is transcytosed. 

(A) AECs were infected with RSV or mock-infected (MEM control) for 48 hr. Biotin-transferrin was added to the 

basal chamber of RSV or mock-infected AECs at a final concentration of 25 µg/mL. EVs were collected from the 

apical CM of AECs 24 hours later and biotinylated-transferrin was affinity-purified from EV preparations with 

streptavidin-coated beads. Bead-bound proteins, which are positive for biotin, were eluted from the resin with 

Laemmli Sample Buffer supplemented with dithiothreitol (DTT) (Tfn IP) and separated by SDS-PAGE. Supernatant 

from the streptavidin resin (IP Sup), which are negative for biotin, was also separated by SDS-PAGE. (B) 

Transcytosed transferrin and protein markers of EVs proteins were measured by Western blot analysis in Tfn IP 

(biotin-positive) and IP Sup (biotin-negative) fractions. (C) Tfn IP (biotin-positive) and IP Sup (biotin-negative) 

fractions were analyzed by western blot analysis for RSV proteins. IB = immunoblot. (D) P. aeruginosa (GFP) was 

grown in the presence of EVs in static abiotic biofilm assays following biotin affinity purification to remove 

transferrin-positive vesicles. Biofilm growth was measured by fluorescent microscopy, and biomass quantified by 

Nikon Elements (grid unit = 7.5 µm). For all experiments n ≥ 3. Data are presented as mean ± SD; *P < 0.05 versus 

control. 
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Figure 30: Biofilm formation of P. aeruginosa ∆pvdA∆pchE mutant in presence of EVs. 

(A and B) AECs were infected with RSV or mock infected (MEM control) for 72 hr and then EVs were isolated 

from apical CM. (A) P. aeruginosa WT or ∆pvdA∆pchE mutant (GFP) was grown in the presence of isolated EVs in 

static abiotic biofilm assays. Fluorescent microscopy was used to measure the growth of P. aeruginosa, and biomass 

was quantified by Nikon Elements (grid unit = 9 µm). For all experiments n ≥ 3. Data are presented as mean ± SD; 

*P < 0.05 versus control. 

4.2.5 Extracellular vesicles interact with P. aeruginosa  

EVs commonly deliver biologically molecules (i.e. proteins, RNAs and/or lipids) to modify the 

function of recipient cells. Because we observed that EVs isolated from RSV-infected AECs 

stimulated P. aeruginosa biofilm growth, we focused on determining whether EVs deliver 

biofilm stimulatory molecules to bacteria during RSV infection. To begin testing this hypothesis, 
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we first examined whether P. aeruginosa can interact with fluorescently labeled EVs from 

uninfected and RSV-infected AECs. We used the CellTracker Deep Red, a fluorescent dye that 

labels the cytoplasm of cells, and thus, the inside of EVs released by AECs (Figure 31A). We 

then isolated EVs from uninfected and RSV-infected cells and measured the ability of P. 

aeruginosa to bind fluorescently labeled EVs when grown in the presence of these vesicles. We 

observed that EV association with P. aeruginosa increases over time, and interestingly, that P. 

aeruginosa associated with a greater amount of EVs isolated from RSV-infected than uninfected 

cells (Figure 31B). This is likely a consequence of RSV infection promoting increased EV 

release from AECs (Figure 23). However, these experiments were carried out over short 

intervals with planktonic bacteria and did not examine whether EVs associated with P. 

aeruginosa during biofilm development. Therefore, to further test whether EVs associate with P. 

aeruginosa, we performed static abiotic biofilm assays with EVs and measured EV association 

with P. aeruginosa biofilms by Western blot analysis. We observed the presence of host EV 

marker proteins (MHC-I and TfnR) in bacterial biofilms (Figure 31C), confirming an increased 

association of EVs from RSV-infected cells with P. aeruginosa biofilms. Further experiments 

will need to be performed to validate the interaction of EVs with P. aeruginosa, and we have 

plans to perform flow cytometry and fluorescent microscopy to confirm the interaction between 

P. aeruginosa and fluorescent EVs. Collectively, these results demonstrate that AEC-derived 

EVs interact with P. aeruginosa.  
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Figure 31: EVs associate with P. aeruginosa. 

AECs were infected with RSV or mock-infected (MEM control). 48 hpi AECs were stained with CellTracker Deep 

Red and EVs were isolated from cells 24 hours later. (A) Fluorescence of EV preparations was measured with 

fluorescent plate reader (excitation: 630 nm, emission: 660 nm). (B) P. aeruginosa was grown in the presence of 

fluorescent EVs for the indicated number of hours and then washed with MEM two times. P. aeruginosa 

fluorescence was measured with plate reader (excitation: 630 nm, emission: 650 nm). (C) P aeruginosa biofilms 

were grown in the presence of EVs in static abiotic biofilm assays, and Western blot analysis of P. aeruginosa 

biofilm whole cell lysate (WCL) was used to measure the association of EVs with P. aeruginosa biofilms. RSV, 

RSV-infected AECs. n=2. Data are presented as mean ± SD.  

 

To validate the importance of transferrin loading onto EVs for P. aeruginosa biofilm 

induction by EVs isolated from RSV-infected AECs, we grew P. aeruginosa in the presence of 

either free iron or free iron-bound transferrin (Figure 32) we observed that biofilm formation 

was significantly less than in the presence of EVs from RSV-infected cells. Because the iron 

amounts we used were equivalent to what was measured on EVs isolated from RSV-infected 

cells, these data imply that the delivery of iron on EVs is important for promoting P. aeruginosa 

biofilm growth during RSV coinfection. Taken together, these results are consistent with the 

conclusion that RSV infection increases transcytosed transferrin on EVs, thereby providing an 

accessible iron source for P. aeruginosa during biofilm growth. Additionally, these results 
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suggest that EVs released by AECs during RSV infection interact with P. aeruginosa and this 

may be a mechanism by which nutrient-rich microenvironments are created near the bacteria to 

promote biofilm growth.   

 

 

Figure 32: Free iron sources do not stimulate P. aeruginosa biofilm growth. 

P. aeruginosa was grown in the presence of FeCl3 or holo-transferrin in static abiotic biofilm assays. Biofilm growth 

was measured by fluorescent microscopy and Nikon Elements was used to quantify biomass (grid unit = 7.5 µm). 

Representative static abiotic biofilm assay in the presence of EVs isolated from AECs infected with RSV (72 hr 

infection) is shown for comparison. Biomass of P. aeruginosa biofilm growth in the presence of EVs isolated from 

RSV-infected cells is shown with hatched bar (data obtained from Figure 23A for comparison). No significant 

difference in P. aeruginosa biofilm growth was observed between different iron sources and MEM. RSV, RSV-

infected AECs. EVs, Extracellular Vesicles. For all experiments n = 3. Data are presented as mean ± SD.  
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4.3 DISCUSSION 

EVs are membrane-encapsulated vesicles released by most cell types, including in the airways, 

into the extracellular environment that facilitate physiological changes in neighboring cells. 

Although EVs have been studied in the context of viral pathogenesis to modify the local 

environment to the benefit of the host or the virus [217], very little is understood about the role 

of EVs in polymicrobial infections in the respiratory tract. Here, we demonstrated that EVs 

released from the respiratory epithelium during RSV infection stimulates P. aeruginosa biofilm 

growth through a mechanism dependent upon increased iron-loaded transferrin release on EVs. 

The transferrin is oriented on the outside of vesicles, which makes it an accessible iron source for 

P. aeruginosa biofilm formation. Moreover, we show the EVs associate with P. aeruginosa and 

that EVs loaded with iron-bound transferrin are much more efficient at stimulating P. aeruginosa 

biofilm growth than free iron or iron-bound transferrin of equal concentrations. Importantly, our 

findings propose a novel role for EVs during viral-bacterial co-infections as a virally-induced 

nutrient source for bacteria. Our studies provide further understanding for the clinical 

observation that respiratory viral infection promotes chronic bacterial infections in patients with 

chronic lung disease [53, 71, 72, 79]. Importantly, the findings presented here further 

demonstrate that respiratory viral infection alters the lung environment to make it more 

susceptible to secondary bacterial infection, and increases our understanding how viruses and 

bacteria interact in the lung.  

Although EVs are known to be secreted into the airways [338, 343], very little is known 

about the biological function of EVs during respiratory infections. During virus infection in other 

organs, EVs are known to facilitate viral spread by protecting the genomes from antibody-

mediated neutralization or transferring pro-viral molecules between cells [250-252]. 
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Alternatively, it is also known that EVs can transfer antiviral molecules between cells that inhibit 

virus infection [216, 266], or may contain molecules with neutralizing activity against viruses, as 

has been shown with respiratory epithelial-derived EVs that contain sialic acid [339]. How EVs 

impact the outcome of viral-bacterial infections or how host-derived EVs influence bacterial 

behavior in the airways remain unanswered questions. In our study, RSV infection increases the 

apical release of EVs from AECs to promote P. aeruginosa growth and biofilm development. 

We interpret these findings to suggest that during respiratory viral infection the airway 

epithelium releases EVs that interact with bacterial pathogens to create a local nutrient-rich 

environment at the mucosal surface that promotes bacterial biofilm growth, which are associated 

with chronic infections. The increased release of EVs from the respiratory epithelium is 

consistent with other studies that have observed epithelial cells increase EV release in response 

to stress (i.e. infection.) [250, 349-351]. Interestingly, our study demonstrates that increased EV 

release in response to one infection promotes a secondary infection.  

Previous studies of viral-bacterial interactions in the respiratory tract have mainly 

identified two mechanisms by which virus infection promotes secondary bacterial infections and 

decreases bacterial clearance: (i) increased bacterial adherence to virally infected cells, and (ii) 

alterations in the antibacterial immune response induced by viral infection [352]. Recently, 

studies have begun investigating how the nutritional environment in the airways is altered by 

respiratory viral infections to the benefit of bacteria. For example, it has been shown that 

influenza A infection increases the abundance of sialylated mucins in the airways, which is used 

as a nutrient source that promotes S. pneumoniae growth [353]. In the work presented in this 

dissertation, we have shown the RSV infection increases iron levels in the airway surface liquid 

to promote P. aeruginosa biofilm growth (Chapter 3). Here, we have extended these studies to 
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show that the release of iron on EVs released by AECs is one mechanism by which RSV 

infection promotes P. aeruginosa biofilm growth. EVs contain biologically active proteins, lipids 

and RNAs, and our study demonstrates that iron, and potentially other nutrients, are also present 

on host-derived EVs and contribute to host-pathogen interactions in the airways. 

Iron is required for many biological processes in humans, but it is tightly regulated to 

limit the levels of accessible iron during an infection and to prevent iron intoxication by a 

process that is termed nutritional immunity [182, 187]. Previous studies have demonstrated the 

requirement of iron for P. aeruginosa biofilm formation [27, 37, 43, 204]. Moreover, bacterial 

burden and decreased pulmonary function are correlated with increased iron levels in the CF 

lung [25, 28], but the impact of respiratory viral infections on the nutritional environment in the 

airways is not well understood. We have previously shown that RSV infection dysregulates this 

process to promote the apical release of iron-loaded transferrin to stimulate P. aeruginosa 

biofilm growth (Chapter 3), but the mechanism by which iron-loaded transferrin was released 

by AECs was unidentified. Our current study suggests that one mechanism by which RSV 

infection increases the release of iron-loaded transferrin is on EVs from the respiratory 

epithelium. Importantly, the transferrin is localized on the outside of EVs, making it accessible to 

bacterial pathogens, and iron chelation significantly reduced biofilm growth in the presence of 

EVs released by RSV infected cells, suggesting that iron chelation is a potential therapeutic 

strategy to disrupt EV-mediated biofilm growth during virus infection. Previous results have 

demonstrated that iron chelation inhibits P. aeruginosa biofilm growth on AECs and that iron 

chelators augment antibiotic-mediated disruption of biofilms on cells [27, 49, 354]. Due to our 

incomplete knowledge on the biological importance of EVs to airway physiology, iron chelators 

may be an important and most effective therapeutic strategy that effectively counteracts EV-
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mediated bacterial infections in the airways of CF patients during respiratory viral seasons. 

Furthermore, it will be imperative in future studies to determine if other nutrients besides iron are 

loaded onto EVs and can be utilized as a nutrient source by P. aeruginosa. 

Our study demonstrates that iron-loaded transferrin is localized to the outside of EVs, 

thereby making the iron accessible to bacterial pathogens that are able to circumvent transferrin-

mediated iron sequestration. P. aeruginosa is particularly proficient at acquiring iron from the 

environment, and has been shown to overcome transferrin-mediated iron sequestration through 

the production of siderophores [206]. Our data demonstrate that a ∆pvdA∆pchE mutant unable to 

produce siderophores has a reduced ability to form biofilms in the presence of EVs from RSV-

infected cells. Whether P. aeruginosa uses other mechanisms to overcome transferrin-mediated 

iron sequestration and acquire iron from EVs is an area of future investigation. Previously, we 

have demonstrated P. aeruginosa produces proteases capable of degrading transferrin 

(Appendix A), but determining whether transferrin and other surface proteins loaded onto EVs 

are degraded by P. aeruginosa is unknown but could help define the interaction that exists 

between P. aeruginosa and EVs. Moreover, longitudinal analysis of P. aeruginosa clinical 

isolates from CF patients suggest that pyoverdine production is higher in early isolates and that 

later isolates have increased expression of other iron-acquisition systems (i.e. heme-acquisition 

systems) [212, 213]. It will be of interest to see if EVs from RSV-infected cells stimulate P. 

aeruginosa biofilm growth with early and late clinical isolates, or if the interaction between EVs 

and P. aeruginosa changes over time. 

EVs commonly exert their biological effects on the local environment by delivering 

biologically molecules (i.e. proteins, RNAs and/or lipids) to recipient cells. Although the 

interaction between host-derived EVs and bacteria has not been investigated before, our data 
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suggest that EVs derived from the airway epithelium associate with P. aeruginosa, regardless of 

RSV infection. We interpret these results, coupled with increased iron-bound transferrin bound 

to EVs-derived from RSV infected cells, to indicate that EV association with P. aeruginosa 

during RSV coinfection creates a microenvironment that is rich in nutrients and promotes 

bacterial biofilm formation. Previous reports have demonstrated that host-derived EVs bind to 

the surface of parasites, which either protects parasites from immune-mediated lysis or promotes 

parasite killing depending upon the type of infection and cell type that produces the EVs [351, 

355]. It is not clear what mechanism is responsible for EV association with P. aeruginosa, but 

interesting areas of future investigation will be aimed at understanding if the association of EVs 

with bacteria is specific to P. aeruginosa, how EVs associate with bacteria, and what bacterial 

and host factors are required for the interaction between P. aeruginosa and EVs. Moreover, it 

will be interesting to see if host molecules are delivered directly into the periplasm of P. 

aeruginosa and thereby, bypassing its outer membrane.  Also, it is not known if EVs derived 

from other cell types also interact with bacteria. Although these questions were beyond the scope 

of this study, they are interesting areas of future investigation that could potentially have 

implications for drug delivery. 

Due to the structural similarity between RNA virus particles and EVs, which may contain 

viral components, it is extremely difficult to specifically separate virions and EVs, and it has 

been suggested that during virus infection a diverse population of vesicles are released from cells 

[217, 226]. We observed that at least two distinct subpopulations of EVs were released from 

AECs during RSV infection, one of which were transferrin-positive EVs. Because depletion of 

transferrin-positive EVs significantly reduced P. aeruginosa biofilm growth in the presence of 

EVs from RSV-infected cells, we conclude that this subpopulation of EVs was responsible for 
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the biofilm stimulatory effect of EVs released during RSV infection. Thus, we interpret our 

findings to suggest that during RSV infection a diverse population of EVs are released by AECs, 

and that it is specifically the increase in the subpopulation of transferrin-positive EVs that is 

responsible for increased P. aeruginosa biofilm growth.  

Clinical studies strongly correlate respiratory viral infection with the acquisition of 

chronic P. aeruginosa infection in CF patients, as well as poor bacterial clearance in other lung 

diseases as a result of viral-bacterial coinfections, but the mechanisms underlying these 

interactions remain poorly understood. In this report, we demonstrate that respiratory viral 

infection increases the release of EVs from epithelial cells in the airways and are utilized as a 

nutrient source for secondary bacterial infection. Our data suggest a novel nutrient acquisition 

pathway for bacteria and provide mechanistic insight into nutritional immunity in the lung. 

Because it is appreciated that many infectious diseases are polymicrobial and EVs are released 

by most cell types throughout the body, our studies likely have implications for host-pathogen 

and pathogen-pathogen interactions in other diseases.  
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5.0  IMPLICATIONS OF DISSERTATION: CONCLUSIONS AND FUTURES 

DIRECTIONS 

In this dissertation, we have provided mechanistic understanding for the clinical observation that 

respiratory viral infection is well correlated with P. aeruginosa colonization and infection in CF 

patients by coupling biochemical, cell biological and novel live-cell imaging approaches. 

Whereas the majority of studies on viral-bacterial interactions in the respiratory tract have 

focused on alterations in bacterial attachment or host immunity, our studies provide evidence that 

respiratory viral infections also alter nutrient levels in the airways. Complex and incompletely 

understood interactions between the host, virus and bacteria determine disease outcomes in these 

infections. In this body of work, we have specifically addressed questions involving P. 

aeruginosa biofilm growth during viral-bacterial coinfections in the lung, and outlined one 

mechanism by which respiratory viruses interact with P. aeruginosa to promote biofilm 

formation. Because synergy is often reported between viral and bacterial pathogens and there is a 

growing appreciation for the prevalence of polymicrobial infections, identifying functional 

relationships between viruses and bacteria likely has implications for other disease settings 

besides the CF lung and will provide new insight into important biology at mucosal surfaces. 

Our studies demonstrate that respiratory viral infection stimulates the formation of P. 

aeruginosa biofilms on the airway epithelium. We further showed that RSV infection increases 

the apical release of iron and the host-iron binding protein transferrin from AECs, which were 
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required for the P. aeruginosa biofilm growth during RSV coinfection. We extended these 

studies to a mouse model of RSV infection and showed that the virus infection increased both 

iron and transferrin in the airways of mice. Interestingly, BALF from RSV-infected mice was 

sufficient to stimulate P. aeruginosa biofilm growth in vitro. Together, these data demonstrated 

that respiratory viral infection alters iron homeostasis in the lung to increase bioavailable iron to 

promote secondary bacterial infection. Interestingly, we have also demonstrated that EVs 

isolated from RSV-infected cells stimulate P. aeruginosa biofilm growth. During RSV infection, 

EV secretion from AECs was significantly enhanced, which led to an increase in iron and 

transcytosed transferrin associated with EVs. Importantly, we observed that free iron or iron-

bound transferrin, added at the same concentration as found in EVs released by RSV-infected 

cells, did not stimulate P. aeruginosa biofilm growth, suggesting that (i) EVs interact with P. 

aeruginosa to bring nutrients into proximity with the bacteria or (ii) EVs contain other molecules 

that work in tandem with iron to promote the development of biofilms. These are not mutually 

exclusive hypotheses. We show preliminary data that suggests EVs associate with P. aeruginosa, 

but more experiments are required to validate this observation. Collectively, the two studies 

presented in this dissertation demonstrate that RSV infection alters the nutritional environment in 

the airways by promoting the release of iron-bound transferrin. Finally, the innate immune 

response to virus infection, measured by type I and III interferon (IFN–β and –λ, respectively) 

production, peaks at the same time as virus-induced biofilm growth, and interestingly, treatment 

of AECs with IFN–β or –λ replicates the enhanced biofilm formation observed during virus co-

infection. However, we did not observe that IFN treatment alone was sufficient to increase iron 

and transferrin release from AECs (Appendix B), suggesting that IFN treatment activates a 

parallel pathway that stimulates P. aeruginosa biofilm growth in the absence of virus infection. 
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Follow-up studies are now underway to address how IFN treatment enhances P. aeruginosa 

biofilm growth (Appendix B). The observations presented here provide the foundation for 

answering important questions about the early acquisition of bacterial infections in the airways 

and provide novel insight into nutritional immunity in the lung. 

5.1 THERAPEUTIC IMPLICATIONS 

By understanding the mechanisms that contribute to the development of chronic bacterial 

infections, we have an opportunity to identify new therapeutic targets that limit the development 

of these infections. The studies presented in this dissertation suggest that respiratory viral 

infection alters the nutritional environment, in the airways, making it more hospitable for P. 

aeruginosa colonization.  We specifically focused on the nutrient iron in this dissertation, but as 

we have shown, EVs play a role in the ability of respiratory viral infection to promote P. 

aeruginosa biofilm growth. Because EVs contain proteins, lipids and RNAs that can exert 

biological effects on recipient cells, it is also conceivable that EVs may also be a source of 

additional nutrients that promote secondary bacterial infection. Therefore, based on our results, 

we hypothesize that EVs are a source of metals, such as iron and other nutrients, that are utilized 

by bacteria to colonize and survive in the host. Because iron is critical for P. aeruginosa growth 

and biofilm development, targeting bacterial iron uptake may represent a novel therapeutic 

strategy to prevent and/or treat chronic P. aeruginosa infections in the CF lung. Currently, a 

number of approaches are being pursued in the CF field to develop such therapeutics that disrupt 

bacterial iron homeostasis, and we propose that these therapeutic strategies will be useful 
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prophylactics during respiratory viral seasons to limit iron availability and prevent the 

acquisition of bacterial infections in the CF lung.  

5.1.1 Iron Chelators  

In the CF lung, a strong correlation has been reported between bacterial load, disease severity, 

and increased iron levels [28]. Iron is required for P. aeruginosa growth and biofilm 

development [27, 37, 43, 204], which has led to many investigations of iron chelation as a 

therapeutic strategy to limit iron availability in the airways of CF patients and limit bacterial 

colonization. Although the effect of respiratory viral infection on iron levels has not been 

previously examined, the studies presented in this dissertation have found that RSV infection 

increases the apical iron release on EVs from the respiratory epithelium. Importantly, we 

demonstrate that iron chelation reduces virus-mediated P. aeruginosa biofilm growth, suggesting 

exogenous iron chelators may be an effective therapeutic strategy to counteract virus-mediated 

iron release and biofilm growth.      

Lactoferrin is a multifunctional glycoprotein of the transferrin-family of host iron-binding 

proteins that sequesters iron from bacteria and has been shown to inhibit P. aeruginosa biofilm 

growth  in vitro [37]. In these studies, the antibiofilm activity of lactoferrin is attributed to its 

ability to sequester iron based on the observation that iron-loaded lactoferrin was unable to 

inhibit P. aeruginosa biofilm growth, suggesting that iron saturation neutralized the antibiofilm 

activity of lactoferrin [37]. Further studies have also demonstrated that iron chelation reduces P. 

aeruginosa biofilm growth on respiratory epithelial cells [27]. In addition to its iron 

sequestration abilities, lactoferrin possesses antimicrobial activity due to the cationic domains 

found in the N lobe of the protein that facilitate interaction with microbial membranes. The dual 
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functionality of lactoferrin could make it a particularly effective therapeutic supplement that 

chelates iron and thus, neutralizes virus-mediated iron release and P. aeruginosa biofilm growth 

in the CF lung. However, lactoferrin undergoes proteolytic degradation in the airways of CF 

patients due to the presence of host and bacterial proteases; not surprisingly, P. aeruginosa 

infection was associated with greater lactoferrin cleavage [210, 356]. This may limit of the 

efficacy lactoferrin supplementation in vivo, but further studies will be required to determine the 

impact of exogenous lactoferrin on P. aeruginosa burden in the airways of CF patients.   

The effect of the FDA-approved iron chelators deferasirox (DSX) and deferoxamine 

(DFO), used for the treatment of conditions associated with iron overload (i.e. thalassemia and 

hemochromatosis), have also been investigated for their ability to inhibit P. aeruginosa biofilm 

growth on respiratory epithelial cells. These studies found that DSX is much more effective at 

chelating iron and inhibiting P. aeruginosa biofilm formation on AECs [49], which is likely due 

to the fact that P. aeruginosa can use DFO as an iron source [204]. Although P. aeruginosa 

biofilms grown on AECs have significantly higher antibiotic resistance than biofilms formed on 

abiotic surfaces, these studies demonstrated that in combination with tobramycin, both DSX and 

DFO can significantly disrupt and reduce established P. aeruginosa biofilms [49]. A 

combination of lactoferrin and hypothiocyanite have also been shown to increase the ability of 

antibiotics to disrupt established P. aeruginosa biofilms [354]. Taken together, these studies 

strongly suggest that iron chelation used in combination with other therapies may be an effective 

therapeutic strategy for preventing and treating P. aeruginosa infections in the CF lung. The 

significance of this observation is important to consider in the context of the data presented in 

this dissertation. We have shown that respiratory viral infection enhances apical iron release 

from AECs, implying that prophylactic iron chelation or co-administration of antibiotics with 
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iron chelators may be effective strategy to limit P. aeruginosa infections in the CF lung during 

respiratory viral seasons. However, it is not known if prophylactic iron chelation therapy can be 

used in CF patients or if this may exacerbate lung disease, and it is not known if these 

compounds would be stable in the CF lung. 

5.1.2 Gallium: Disruption of bacterial iron metabolism with an iron mimetic  

The transition metal gallium (Ga3+) shares many chemical properties with iron and can bind to 

iron-binding proteins, including transferrin [357]. Because of its ability to disrupt iron 

homeostasis in bacteria and P. aeruginosa biofilm growth, Ga(NO3)3 has been proposed as a 

potential therapeutic to inhibit P. aeruginosa chronic colonization in CF patients [334, 335]. 

Whereas iron has the potential to redox cycle between Fe2+ and Fe3+ oxidation states, which is 

important for many of its biological functions, Ga3+ lacks this ability. Thus, Ga3+ competitively 

inhibits iron-dependent processes by disrupting proteins that function by utilizing iron as a 

cofactor. Currently, Ga3+ is FDA-approved to treat hypercalcemia and is administered 

intravenously as gallium nitrate (Ga(NO3)3; Ganite) and its use as an antimicrobial therapeutic 

is currently being investigated. Because of the ability to interfere with iron-dependent processes, 

a potential approach to inhibiting and treating P. aeruginosa growth and biofilm formation in the 

CF lung is the use of Ga3+ to disrupt bacterial iron metabolism. In vitro studies have shown that 

Ga(NO3)3 both inhibited P. aeruginosa biofilm growth and disrupted established P. aeruginosa 

biofilms [334]. This observation is notable since current antibiotic treatment strategies do not 

prevent the establishment of chronic P. aeruginosa infections and are not effective in clearing 

chronic infections. Clinical studies are now underway to determine the efficacy Ga(NO3)3 in 

improving pulmonary function and for the treatment of P. aeruginosa infections in CF patients 
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[clinicaltrials.gov/ct2 (Identification Numbers: NCT01093521 and NCT02354859)]. Moreover, 

Ga3+ conjugated to DFO (Ga-DFO) has also been investigated, and shown to also inhibit P. 

aeruginosa biofilm growth and disrupt established biofilms [335]. Whether DFO-Ga is more 

effective than Ga(NO3)3 in the CF lung is not known. Moreover, Ga3+ compounds are also 

effective against other bacterial pathogens, suggesting the Ga3+-based therapeutics may be useful 

for the treatment of other bacterial infections in the CF lung, as well at other sites [357]. 

In regards to the data presented in this dissertation and the potential use of Ga(NO3)3 as a 

therapeutic strategy to limit virus-mediated P. aeruginosa biofilm growth, two important points 

need to be considered. First, what is the bioavailability of Ga3+ in the respiratory tract after 

Ga(NO3)3 has been administered to patients? In previous studies where the in vitro antibiofilm 

activity of Ga(NO3)3 was shown, Ga(NO3)3 was added directly to bacteria [334]. However, 

Ga(NO3)3 is currently administered intravenously, and it is currently not known how much Ga3+ 

is found in the lungs during treatment. Second, is Ga3+ able to competitively inhibit microbial 

iron homeostasis in the high iron environment of the CF lung? It has been shown that iron levels 

in the CF airway are significantly elevated [23-26, 29, 30]. Our results show that RSV infection 

further increases iron levels, respiratory viral infection may further exacerbate potential 

competition between iron and Ga3+ and reduce the effectiveness of Ga(NO3)3 as a therapeutic for 

P. aeruginosa infection in the CF lung. We have also demonstrated in this dissertation that RSV 

infection enhances the transcytosis of transferrin from the basolateral to apical compartment of 

the respiratory epithelium (Chapter 4 and Appendix A). Because Ga3+ binds transferrin and 

undergoes TfnR-dependent uptake into cells, our work also has implications for the delivery of 

Ga3+ into the airways. One hypothesis, based on our results, is that respiratory viral infection 

enhances Ga3+-loaded transferrin transcytosis from the basolateral to apical compartment of 
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AECs. This directional transport of Ga3+ corresponds to the movement of Ga3+ into the lumen of 

the respiratory tract during Ga(NO3)3 treatment. Whether respiratory viral infection facilitates 

such a process is an area of interesting investigation and should be included in future research 

that focuses on understanding Ga3+ trafficking in patients.  

5.1.3 Other treatment strategies  

It has been previously shown that respiratory viral infection predisposes the airways to secondary 

bacterial pneumonias by modifying the immune response in the lung [156-158, 160]. The 

connection between respiratory viral infection and the increased release of nutrients (i.e. iron and 

EVs) provides another mechanism by which respiratory viral infection reshapes the environment 

in the respiratory tract to promote secondary bacterial infection. Taken together, the data in the 

respiratory viral-bacterial coinfection field combined with our data emphasize that preventing 

respiratory viral infection through the use of vaccines or prophylaxis may be a strategy that 

limits the acquisition of severe secondary bacterial infections in the airways, such as the chronic 

bacterial infections that are associated with respiratory virus infection in CF patients [53, 55, 71, 

72, 79, 330].  

Influenza virus, hRV and RSV are the three most common viruses detected in CF 

patients. RSV is the most common cause of early respiratory tract morbidity, and palivizumab (a 

monoclonal antibody targeting RSV) prophylaxis has been investigated in CF patients to 

determine its effectiveness on RSV-related infections. These studies have indicated that CF 

patients that received palivizumab prophylaxis had slightly, but not significantly, decreased 

hospitalization rates compared to patients that did not receive prophylaxis [358, 359]. Conflicting 

results have been reported for the effect of palivizumab on first P. aeruginosa acquisition [359, 
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360]. Several factors could contribute to these results, but most importantly to our studies, 

multiple respiratory viruses trigger P. aeruginosa biofilm growth. Thus, targeting a single virus 

may not be efficacious in preventing virally–mediated exacerbations and bacterial infections in 

CF patients. Broader approaches will likely be required to successfully treat viral-bacterial 

coinfections. As an example, it was recently demonstrated by our lab that an engineered 

antimicrobial peptide, WLBU2, was effective at reducing both biomass and viability of P. 

aeruginosa biofilms as well RSV infectivity [361].  

5.2 OUTSTANDING QUESTIONS AND FUTURE DIRECTIONS 

The studies in this dissertation demonstrate that respiratory viral infections promote the 

formation of P. aeruginosa biofilms through a mechanism dependent upon the release of iron-

bound transferrin. Iron is required for P. aeruginosa biofilm growth, and our studies now extend 

the role of iron to viral-bacterial interactions in the airway. Although our research demonstrates 

that RSV increases iron-loaded transferrin in the airway, further research is required to fully 

determine the mechanism by which RSV promotes the release of iron into the airways. As a 

follow-up to the studies presented in this dissertation, we have preliminary results showing that 

iron and transferrin levels in paranasal sinus washes of CF patients are elevated during 

respiratory viral infection. These preliminary studies were conducted in collaboration with Dr. 

Stella Lee in the Department of Otolaryngology at the University of Pittsburgh, who collected 

the sinonasal washes. The therapeutic implications for this work focuses mainly on ways to limit 

iron abundance in the CF respiratory tract during respiratory viral seasons. However, this body of 

work has other important implications that will be discussed below.   
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5.2.1 Viral-bacterial interactions 

An interesting observation from this dissertation is that respiratory viral infection stimulates P. 

aeruginosa biofilm growth through the release of iron-bound transferrin. Viral-bacterial 

interactions are mostly studied in the context of a preceding or concurrent virus infection 

predisposing to secondary bacterial infection. Multiple mechanisms have been described by 

which respiratory viral infections promote secondary bacterial infection, but in general, the net 

result is a failure to clear bacterial infections due to increased bacterial adherence to cells or 

augmented mucosal immunity during a respiratory viral infection [352, 362]. Our study is one of 

the first to demonstrate that a preceding viral infection alters the nutritional landscape in the 

airways to promote secondary bacterial infection. Previously, it has been demonstrated that 

influenza infection increases the abundance of sialylated mucins in the respiratory tract, 

promoting S. pneumoniae growth [353]. Additionally, our studies demonstrate virus infection 

increases iron abundance in the airways to promote bacterial infection. This is consistent with 

previous reports that lipocalin-2 levels are decreased in the airways during influenza A virus 

infection, and exogenous lipocalin-2 decreases S. aureus growth during influenza A co-infection 

by reducing levels of iron in the airway [160]. Lipocalin-2 is a host-derived protein that 

sequesters siderophores, and thus, inhibits bacterial growth by sequestering iron from bacteria 

[363]. Collectively, these studies provide novel insight into viral-bacterial interactions in the 

lung, suggesting that viral dysregulation of nutritional immunity is another important aspect of 

viral-bacterial coinfections in the airway. Further investigation will be required to determine if 

other nutrients or host molecules are released by the airway epithelium during respiratory viral 

infection to increase bacterial colonization of the respiratory tract.  
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In this dissertation, we focused on the interaction between a preceding RSV infection and 

P. aeruginosa. However, it is important to note that bacteria influence virus infectivity as well. 

For example, in the gastrointestinal tract, the microbiome directly interacts with enteric viruses 

to promote enteric virus infection [364]. Whether such interactions occur in the respiratory tract 

is unknown, but it would be intriguing to test if bacteria in the respiratory tract interact with 

respiratory viruses to promote infection. 

5.2.2 Extracellular vesicles in respiratory viral infections 

EVs are membrane-enclosed vesicles secreted by most cell types and transfer biologically active 

molecules between cells, and were one mechanism by which we observed iron-loaded transferrin 

was present in apical secretions from RSV-infected AECs. Interestingly, EVs released by RSV-

infected cells robustly stimulate P. aeruginosa biofilm growth, indicating a unique interaction 

between host cells, viruses and bacteria in the airways that involves iron. However, whether 

other nutrients besides iron are present on EVs released by AECs during RSV infection still 

needs to be elucidated. Moreover, whether viral infections of other mucosal sites produce EVs 

that have increased amounts of iron and other nutrients will be of interest to viral-bacterial 

interactions at other sites in the host. During viral infection, EVs have been shown to have both 

pro-viral and antiviral effects on uninfected neighboring cells [217, 226]. However, no function 

has yet been described for EVs during viral infection in the airways. In this regard, several 

interesting areas of investigation remain: What are the mechanisms by which EVs affect 

respiratory viral infections? Are EVs pro-viral or antiviral in the respiratory tract? Previous 

studies have suggested that EVs transfer antiviral molecules to uninfected cells as a mechanism 

to prevent viral infection [216, 266]. Whether this also occurs in the airways still requires 
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investigation. And more generally, will new technologies be developed that allow for 

purification of functional EVs from viruses and virus-like particles during a virus infection? This 

will be key to addressing whether the net biological effect of EV production during viral 

infection is due to the entire mixed populations of EVs, or whether certain EV subpopulations 

drive biological outcomes to disease. In this regard, a two-step purification process has been 

described that utilizes CD63 (a common protein found on exosomes) immunoprecipitation to 

separate EVs from virions [250]. The limitation of this approach is that EVs are eluted from 

CD63+ beads with low pH wash. In our own studies, we have demonstrated that the biological 

activity of our EVs is sensitive to low pH wash (Figure 33). This likely occurs because low pH 

disrupts the interaction between iron and transferrin, and therefore, a low pH wash would 

potentially release iron and transferrin from EVs in our studies. This suggests that two-step 

purification approach may have limitations for studying biologically active molecules loaded on 

the outside of EVs. In addition, this selects only for CD63+ EVs, which may mask important 

biology that occurs with CD63- EVs. In our own studies, we could also use RSV antibodies to 

separate EVs from RSV virions by immunoprecipitation, but this approach has its own 

limitations. Namely, we observed that the EV population that contained transferrin and was 

responsible for the biofilm stimulatory activity of EVs isolated from RSV-infected cells also 

contained RSV antigens (Figure 29). Thus, important considerations must be made in future 

studies in the field to determine the proper method for the purification of functional EVs from 

viruses to address whether certain EV subpopulations drive biological phenotypes. 
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Figure 33: Low pH wash disrupts the biofilm stimulatory activity of EVs isolated from RSV-infected AECs. 

AECs were infected with RSV or mock-infected (MEM control). EVs were isolated from apical CM as outlined in 

section 2.2.6 after 72 hr but were resuspended in minimal essential media (MEM) supplemented with 2 mM L-

glutamine pH 7.4 or pH 5.0. EV pellets resuspended in pH 7.4 MEM are referred to as “Extracellular Vesicles – pH 

7.4 Wash” and EV pellets resuspended in pH 5.0 MEM are referred to as “Extracellular Vesicles – pH 5.0 Wash.” 

All EVs were pelleted again using ultracentrifuge and all pellets were resuspended in MEM supplemented with 2 

mM L-glutamine pH 7.4 before biofilm assays. P. aeruginosa (GFP) biofilms were grown in the presence of EVs in 

static abiotic biofilm assays. Fluorescent microscopy was used to measure the growth of P. aeruginosa. Nikon 

Elements (grid unit = 9.0 µm) was used to quantify P. aeruginosa biomass. n ≥ 3. Data are presented as mean ± SD; 

*P < 0.05 versus control. 
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Our preliminary data suggest that P. aeruginosa associates with EVs released from 

AECs, which raises several questions: Do bacteria interfere with EV functions in the airways and 

thus, affect respiratory viral infection? Do EVs interact with other bacteria besides P. 

aeruginosa? Is this interaction limited to Gram-negative pathogens or does it extend to Gram-

positive pathogens? How do EVs associate with P. aeruginosa? Understanding the interaction 

between host-derived EVs and bacteria in the respiratory tract is very exciting as it hypothesizes 

an additional component that likely influences the outcome of viral-bacterial infections in the CF 

lung and at other mucosal sites. If precise host-pathogen relationships are identified at the 

molecular level, it presents an entirely novel direction for therapeutic intervention in which 

specific processes could be targeted to minimize nutritional abundance and/or microbial 

utilization of nutrients in the airways to limit infections. 

5.2.3 Transferrin transcytosis at mucosal surfaces 

An interesting observation in this study was that respiratory viral infection increased transferrin 

transcytosis across the airway epithelium to the apical compartment of cells (Appendix A). It is 

known that cells, notably neutrophils, increases lactoferrin and calprotectin (a zinc and 

manganese-binding protein) concentration in infectious sites as part of the immune response, but 

less is known about transferrin. The ability of transferrin inhibit bacterial growth increases as 

transferrin saturation decreases due to its ability to sequester iron. Therefore, it is plausible that 

apo-transferrin would inhibit microbial growth at the site of infection. Regarding this hypothesis 

and the evolutionary arms race between iron sequestration and acquisition between host and 

microbes, an interesting question remains. That is, do pathogens actively increase the abundance 

of iron-loaded transferrin at the site of infection to promote their own growth? Recently, it was 
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shown that Helicobacter pylori, which colonizes the apical membrane of gastrointestinal 

epithelial cells, alters iron trafficking of host epithelial cells by promoting transferrin receptor 

mislocalization from the basolateral to apical membrane of cells [203]. This perturbation in 

transferrin trafficking results in the apical release of transferrin to promote H. pylori growth on 

cells [203], suggesting that pathogens have evolved mechanisms that increase the amounts of 

iron-loaded transferrin at the site of infection. More interestingly, this study demonstrated that 

microbes alter transferrin trafficking within epithelial cells, but the mechanism by which this 

trafficking pathway is altered remains undefined. It has previously been reported that transferrin 

transcytosis is increased in polarized epithelial cells due to loss of function of the epithelial 

basolateral sorting adaptor AP-1B, and that this mechanism is dependent upon Rab11a, Rab11a-

FIP2 and galectin-4 [365, 366]. The data from these studies support a model whereby transferrin 

and other basolateral proteins are trafficked to apical recycling endosomes and delivered via 

Rab11a-positive endosomes to the apical plasma membrane. Whether microbes target AP-1B or 

any of these other proteins to promote transferrin trafficking is unknown and an intriguing area 

of future investigation.  

Although our work has demonstrated that respiratory viral infection promotes transferrin 

transcytosis in AECs, a few stimulating questions remain: Why is iron-loaded transferrin 

transcytosed (i.e. why is the iron not delivered to cells)? What role do STEAP proteins play in 

transcytosis? In regards to our own work, why does RSV infection promote transferrin 

transcytosis, and are specific RSV proteins required for stimulating transcytosis? It is known that 

RSV utilizes proteins involved in the apical recycling pathway in cells to bud [97, 98]. Thus, one 

hypothesis that explains the increased transcytosis of transferrin during RSV infection is that 

while the virus hijacks apical recycling proteins it also downregulates or represses basolateral 
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recycling, which consequently would direct basolateral proteins to the apical membrane. 

Whether RSV stimulates the transcytosis of other basolateral proteins besides transferrin and if 

RSV degrades basolateral recycling proteins are interesting questions that would start testing this 

hypothesis.  

5.3 FINAL THOUGHTS 

Although clinical observations have noted for the last twenty years that respiratory viral 

infections trigger exacerbations and are associated with chronic P. aeruginosa infections in CF 

patients, the mechanisms underlying these interactions have remained poorly understood. This 

dissertation has contributed to our mechanistic understanding to fill this knowledge gap and 

demonstrated that respiratory viral infection of the airway epithelium alters nutritional 

abundance in the airways, creating an environment permissive to the growth of bacterial biofilms 

by increasing the release of iron-bound transferrin. We also observed that activation of the 

antiviral IFN response [via treatment of AECs with type I and type III IFNs (IFN-β and IFN-λ, 

respectively)] in the absence of viral infection was sufficient to stimulate P. aeruginosa biofilm 

growth. Although apical secretions from AECs infected with a respiratory virus or treated with 

IFN were sufficient to stimulate P. aeruginosa biofilms in the absence of cells, our data suggest 

the biofilm-stimulatory activity is driven by different factors in these two conditions. Whereas 

respiratory viral infection enhanced P. aeruginosa biofilm growth by increasing the abundance 

of iron and the host iron-binding protein transferrin in the airways, IFN treatment did not alter 

iron or transferrin release by AECs but still stimulated P. aeruginosa biofilm growth. Together, 

we interpret these observations to suggest that at least two parallel pathways contribute to 
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increased P. aeruginosa biofilm growth during respiratory viral infection. These two pathways 

are likely key components of the interactions that exist between respiratory viruses and 

secondary bacterial infection that determine host outcome. Although this dissertation has focused 

on P. aeruginosa biofilm formation in the airways during respiratory viral infection, the 

observations made here offer new insight into the complex interactions that occur between the 

host and pathogens at mucosal surfaces during polymicrobial infections. In addition, it is 

important to consider that while this dissertation has focused on how viral infection benefits 

secondary bacterial infection, the relationship between these two microbes is not a one-way road 

and there is a growing body of literature demonstrating the impact bacteria have on viral 

infection. For example, work in the gastrointestinal tract has shown that the intestinal 

microbiome promotes enteric viral infection through modulation of the immune system and by 

directly interacting with virions [367]. Confirming the precise interactions that exist between 

viruses and bacteria will be critical as this would be among the first steps needed for designing 

therapeutics that disrupt these relationships to limit the severity of secondary infections.  

The final portion of this thesis has demonstrated that RSV infection increases the release 

of EVs from the airway epithelium and importantly that these EVs stimulate P. aeruginosa 

biofilm growth through a mechanism dependent upon the release of iron-loaded transferrin on 

EVs. Although our studies expand our understanding of how a respiratory virus alters the 

nutritional landscape of the airways through EV release, these results set the stage for an 

interesting set of new studies that investigates the biological function of EVs in the airways 

during an infection. In particular, it will be of great interest to see what role EVs may play in 

transferring antiviral molecules between cells, and what other consequences EV association with 

P. aeruginosa has on bacterial infection besides promoting biofilm growth. In conclusion, the 
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work presented in this dissertation suggests that during viral infection, the nutritional landscape 

of the airways is altered, promoting secondary bacterial infections. Microbes do not exist in a 

vacuum and understanding the complex interplay between viruses, bacteria and the host 

environment is a very active area of research that may uncover novel therapeutic strategies for 

treating complex microbial infections, including the chronic bacterial infections found in CF 

patients.  
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APPENDIX A 

RESPIRATORY SYNCYTIAL VIRUS INFECTION DISRUPTS TRANSFERRIN 

TRAFFICKING IN THE RESPIRATORY EPITHELIUM 

The data included in this appendix is data I generated for a manuscript being prepared by Dr. 

Jeffrey Melvin, a postdoctoral associate in the Bomberger Lab, to understand how P. aeruginosa 

responds to the environment created by respiratory viral infection to form biofilms.  

A.1 RESULTS 

Our data suggest a model in which RSV infection increases apical release of transferrin to 

promote P. aeruginosa biofilm growth. To understand why increased levels of transferrin are 

released into CM during RSV infection, we looked at the transcription of transferrin in AECs, 

and found that the expression of transferrin is reduced in AECs in response to RSV infection 

(Figure 34A), implying that apically released transferrin originates outside the cell. Transferrin 

is responsible for shuttling iron throughout the body in the circulatory system. In our model, the 

only extracellular location that transferrin can originate from is the basolateral compartment of 

cells. Thus, we examined whether transferrin is transcytosed from the basolateral to apical 
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compartment of polarized AECs during RSV infection by adding biotinylated transferrin to the 

media in the basolateral compartment of cells 48 hours post-RSV infection. After 24 hours, we 

then measured the abundance of biotinylated transferrin in CM. We found that biotinylated 

transferrin was transcytosed across the epithelial layer to the apical compartment by both control 

and RSV-infected AECs, but during RSV infection there was approximately a three-fold increase 

in the amount of biotinylated transferrin in CM collected from RSV-infected cells as compared 

to uninfected monolayers after a total of 72-hour virus infection (Figure 34B). Additionally, the 

increase in transferrin transcytosis during RSV infection was time-dependent, since we observed 

no difference in the amount of biotinylated transferrin in CM collected from RSV-infected cells 

after only 24-hour virus infection (Figure 34B). We also measured the transcytosis of 

fluorescently-labeled, 70 kDa dextran from the basolateral to apical compartment of AECs 

during RSV infection to determine if the increase in transferrin transcytosis was due to 

paracellular leakage. Because paracellular leakage would rapidly increase transferrin transcytosis 

to the apical compartment, we added FITC-dextran to cells infected with RSV for 72 hours and 

measured FITC dextran transcytosis over time compared to either uninfected cells or filters alone 

(no cells; positive control for paracellular leakage). We found that the amount of dextran that 

was transported into the apical compartment of cells was unchanged after 72-hour RSV 

infection, and the overall amount of dextran transcytosed into the apical compartment by infected 

and uninfected cells was very low (Figure 34C). Because we did not observe an increase in 

dextran in the apical compartment of AECs, we concluded that RSV infection was not damaging 

the epithelial monolayers and causing non-specific leakage of basolateral proteins into the apical 

compartment of cells. This supports out earlier findings that RSV infection did not significantly 

damage the epithelial monolayer, as measured by lactate dehydrogenase (LDH) release and 
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transepithelial electrical resistance (TEER) (Figure 10). In addition, we found very little 

transcytosis from the apical to the basolateral compartment of cells, and RSV infection had no 

impact on this process (Figure 34D). This suggests that the transcytosis from the basolateral to 

apical compartment is a directionally specific process. Consistent with the transcytosis from the 

basolateral to apical compartment, we observed a slight, although not statistically significant, 

reduction in transferrin receptor (TfnR) abundance on the basolateral membrane (Figure 34E). 

Interestingly, we observed that RSV infection increased the apical release of TfnR that originated 

in the basolateral plasma membrane, suggesting that virus infection promoted the trafficking of 

TfnR from the basolateral membrane to the apical compartment of AECs. In light of our 

observations in Chapter 4 of this dissertation, we suspect this increase in basolateral TfnR that is 

secreted during RSV infection is due to the release of EVs. We hypothesize that basolateral TfnR 

is loaded onto EVs and is bound to transferrin. Whether this EV population is due to trafficking 

of the basolateral TfnR-transferrin complex to multivesicular bodies (MVBs) and released on 

exosomes, or the complex is trafficked the apical membrane of AECs and released on EVs that 

bleb from the apical plasma membrane is still to be determined and is an intriguing question 

moving forward. Taken together, these results support the conclusion that RSV infection 

promotes the transcytosis of transferrin into the apical compartment of AECs, increasing the 

abundance of accessible transferrin for P. aeruginosa biofilm growth. 
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Figure 34: RSV infection increases transferrin transcytosis. 

(A) RNA was prepared from AECs infected with RSV or mock-infected (MEM control) for 72 hr and probed by 

qRT-PCR for transferrin expression. (B) Biotin-transferrin was added to the basal chamber of RSV or mock-infected 

AECs 48 hpi at a final concentration of 25 µg/mL. The apical supernatants of AECs were collected 24 hours later. 

Biotinylated-transferrin was affinity-purified from apical secretions with streptavidin beads. Proteins were eluted 

from beads and separated by SDS-PAGE. Transcytosed transferrin was measured by Western blot analysis. (C) 70 

kDa FITC-dextran was added to the basal chamber of RSV or mock-infected AECs 72 hpi at a final concentration of 

25 µg/mL. The apical secretions were collected from cells were analyzed for FITC fluorescence by plate reader at 

the indicated time points after addition of FITC-dextran. RSV, RSV-infected AECs. (D) Biotin-transferrin was 
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added to the apical chamber of RSV or mock-infected (control MEM) AECs 48 hpi at a final concentration of 25 

µg/mL. The basolateral media was collected from AECs 24 hr later and biotinylated-transferrin was affinity-purified 

from apical secretions with streptavidin beads. Proteins were eluted from beads and separated by SDS-PAGE. 

Transcytosed transferrin was measured by Western blot analysis. (E) AECs were infected with RSV or mock-

infected (MEM control) for 72 hr. The apical and basolateral cell surface was biotinylated and biotinylated proteins 

were affinity purified from whole cell lysates (WCLs) with streptavidin beads. Proteins were eluted from beads, 

followed by SDS-PAGE and Western blot analysis to analyze the effect of RSV infection on apical and basolateral 

membrane TfnR abundance. Quantification of results found below representative blots. All quantifications were 

normalized to TfnR in whole cell lysate (WCL). (F) AECs were infected with RSV or mock-infected (MEM control) 

for 48 hr, followed by cell surface biotinylation of the apical or basolateral cell surface. CM was collected from cells 

24 hr later and biotinylated proteins from CM were affinity-purified with streptavidin beads followed by SDS-PAGE 

and Western blot analysis was performed to analyze the effect of RSV infection on the apical release of cell surface 

proteins from AECs. For all experiments n ≥ 3. Data are presented as mean ± SD; *P < 0.05 versus control. 
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APPENDIX B 

INTERFERON-STIMULATED REGULATORS OF PSEUDOMONAS AERUGINOSA 

BIOFILM GROWTH ON AIRWAY EPITHELIAL CELLS 

All data presented here is unpublished and represents a collaborative ongoing study in the 

Bomberger Lab interested in understanding how the innate antiviral IFN response and more 

specifically, individual interferon-stimulated genes (ISGs) contribute to P. aeruginosa biofilm 

growth. Dr. Jeffrey Melvin, a post-doc in the Bomberger Lab, and myself performed the ISG 

screen, and Brian R. Kocak, a laboratory technician in the Bomberger Lab, is now in the process 

of validating the hits from the ISG screen. Contributions of authors to individual figures are 

indicated in the figure legends. The cell-based screen used in this study was initially developed 

by Dr. John Schoggins (Department of Microbiology, University of Texas Southwestern Medical 

Center, Dallas, TX, United States of America), who we have collaborated with as part of the ISG 

screen described here. 
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B.1 RESULTS 

B.1.1 Apical secretions from IFN treated AECs promotes the growth of P. aeruginosa 

biofilms independent of transferrin and extracellular vesicles 

In the previous chapters, it has been established that AECs increase apical release of the host-

iron binding protein transferrin (Chapter 3) and extracellular vesicles (Chapter 4) during 

respiratory virus infection and that these factors are important for increased P. aeruginosa 

biofilm growth following viral co-infections. However, it is unknown if IFN signaling influences 

the release of iron from AECs, or whether extracellular vesicles isolated from cells treated with 

IFN interact with and stimulate bacterial growth. To begin addressing these questions, we first 

asked if CM from IFN treated AECs stimulated P. aeruginosa biofilm growth to determine if 

cells treated with IFN release factors that stimulate biofilm growth. We found that CM from 

IFN-β-treated AECs increased biofilm growth in static abiotic biofilm assays (Figure 35), 

suggesting that IFN treatment increases the release of factors that promote P. aeruginosa biofilm 

growth.  
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Figure 35: CM from IFN-β treated AECs enhance P. aeruginosa biofilm growth.  

CM was collected from AECs were treated with IFN-β (1000 U/mL) for 18 hrs, and P. aeruginosa (GFP) was 

grown in the presence of CM in static abiotic biofilm assay and epifluorescence microscopy was used to measured 

biofilm growth (GFP, green). P. aeruginosa biofilm biomass was quantified using Nikon Elements (grid unit = 6 

µm). *P < 0.05, n > 3. 

 

Because we observed that apical secretions from both RSV infected and IFN-β treated 

AECs enhanced P. aeruginosa biofilm growth and we have shown that RSV enhances iron 

release from AECs to stimulate P. aeruginosa biofilm growth, we next examined if IFN-β 

treatment alters the release of iron from AECs. Interestingly, we found that IFN-β treatment did 

not change total iron levels in CM collected from IFN-treated cells (Figure 36A). This suggests 

that IFN signaling does not mediate the release of iron from AECs, or at the very least is not 

sufficient to promote iron release. In addition, this implies that the antiviral IFN response is not 

responsible for the increased iron release we observed from AECs during respiratory viral 

infection (Chapter 3). However, this does not rule out the possibility that IFN signaling 

increases the release of non-iron bound transferrin from AECs. Such a phenotype could be 

considered an appropriate immune response during viral infection as transferrin could sequester 

any free iron that is released during the course of the infection, specifically for the purpose of 
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preventing secondary bacterial infections. However, we observed that IFN-β treatment did not 

alter the transcytosis and apical release of transferrin into CM (Figure 36B). Collectively, these 

results demonstrate that IFN signaling does not disrupt nutritional immunity in AECs and 

increase the release of iron or the iron-binding protein transferrin. This implies that iron is not 

the only factor that is altered by respiratory viral infection, and that IFN signaling activates a 

parallel biofilm stimulatory mechanism. Thus, we hypothesized that IFN treatment activates 

specific ISGs that stimulate P. aeruginosa biofilm growth. To test this hypothesis and begin to 

understand the mechanism by which IFN treatment stimulates P. aeruginosa biofilm growth, we 

performed an ISG screen that will be described in the next section. 

 

 

Figure 36: Iron release and transferrin transcytosis from AECs treated with IFN-β.  

AECs were treated with IFN-β (1000 U/mL) for 18 hrs. (A) Total iron was measured in apical CM. (B) IFN-β 

treatment does not increase transferrin transcytosis from the basolateral to apical compartment of AECs. At the time 

of IFN-β treatment, 25 µg/mL of transferrin biotin-XX-conjugate was added to the basolateral compartment of 

AECs. Transferrin biotin-XX-conjugate was affinity purified from the apical CM and transferrin was measured by 

western blot analysis. n = 3.  
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B.1.2 ISG screen identifies potential regulators of P. aeruginosa biofilm growth in 

response to IFN signaling 

Because we observed that IFN treatment did not increase iron release from AECs, we propose 

that respiratory viruses and the antiviral IFN response to virus infection stimulate P. aeruginosa 

biofilm growth by two distinct but parallel mechanisms. We utilized a gain-of-function screening 

approach to identify ISGs that increase P. aeruginosa biofilm growth in CM, to gain a better 

understanding of the mechanisms by which IFN signaling enhances the release of biofilm 

stimulatory factor(s). To screen CM from hundreds of ISGs for biofilm stimulatory activity we 

utilized our static abiotic biofilm assay. Briefly, AECs were transduced, in a one-gene one well 

format, with bicistronic lentiviral vectors driving constitutive expression of genes for a single 

ISG and red fluorescent protein [368]. CM was collected from cells 72 hours post-transduction, 

and GFP-expressing bacteria were grown in the presence of the CM in static abiotic biofilm 

assays for 6 hours and biofilm growth was assessed by fluorescent microscopy (Figure 37A). 

Firefly luciferase was used as a negative control to ensure that protein overexpression was not 

driving the biofilm stimulatory activity of cells. As has been shown throughout this dissertation, 

this method allows for visualization of biofilm growth in the absence of AECs, which makes it 

possible to ascertain whether individual ISGs stimulate biofilm growth by promoting the 

secretion of biofilm stimulatory factor(s). Additionally, by visualizing biofilm growth, biofilm 

architecture can be analyzed to identify unique structures that may result due to environment 

changes in the CM induced by individual ISGs. Finally, our Nikon Ti-inverted fluorescent 

microscope is fitted with an automated stage, which allows for automated, unbiased imaging of 

biofilm formation in CM.  
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We expressed a library of approximately 390 ISGs previously described [368], and 

performed static abiotic biofilm assays as described above. Biofilm growth of P. aeruginosa 

from the average of two screen replicates is shown as a dot plot (Figure 37B). Some ISGs very 

robustly stimulate P. aeruginosa biofilm growth, whereas the majority had relatively little effect 

on biofilm formation. We determined ISGs that enhance P. aeruginosa biofilm growth as those 

ISGs that increased biofilm biomass 1.5 standard deviations above the population mean (Z-score 

greater than 1.5). Most of the ISGs had little effect on P. aeruginosa biofilm growth, as bacterial 

biomass for the majority of ISGs had a Z-score less than 1.5 (Figure 37B). Six ISGs were 

identified based on this criteria including MYDD88, APOBEC3A, HK2, TNFRSF10A, EHD4 

and PML.  
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Figure 37: Gain-of-function screen identifies regulators of P. aeruginosa biofilm growth. 

(A) Schematic of gain-of-function screen for ISGs that enhance abiotic P. aeruginosa biofilm growth. Diagram of 

bicistronic lentiviral vector is shown; CMV, immediate early promoter from human cytomegalovirus; LTR, HIV-1 

long terminal repeat; RFP, red fluorescent protein. AECs were transduced with biscistronic lentiviral vector for 72 

hours, and CM was collected.  P. aeruginosa (GFP) was grown in the presence of CM in static abiotic biofilm 

assays. Epifluorescence microscopy was used to measure biofilm growth. (B) (Left) Dot plot of P. aeruginosa 

biofilm growth in the presence of CM in two replicate screens and presented as an averaged (error bars represent 

s.d.). n=2. (Right) Scatter plot of Z-scores of screen replicates 1 and 2. Genes selected as positive hits for further 

confirmation are boxed in scatter plot (Right) and labeled in dot plot (Left).  



 174 

 

We are currently in the process of performing repeat trials of static abiotic biofilm assays 

with full-length cDNA clones of all six ISGs to confirm the biofilm stimulatory activity of these 

ISGs. Preliminary experiments using these cDNA clones have confirmed that overexpression of 

HK2 and EHD4 increase P. aeruginosa biofilm growth (Figure 38). As a negative control, we 

are using GFP, which does not stimulate biofilm growth. In addition, we have also measured the 

expression of all six ISGs in AECs during RSV infection and found that expression of five of the 

six ISGs are significantly increased 72 hours post-RSV infection (Figure 39). 
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Figure 38: Validation of biofilm stimulatory activity of ISG screen hits. 

AECs were transfected with full-length cDNA clones of two genes identified in the gain-of-function ISG screen for 

72 hours, and CM was collected. P. aeruginosa (GFP) was grown in the presence of CM in static abiotic biofilm 

assay. Epifluorescence microscopy was used to measured biofilm growth (GFP, green) and biofilm biomass was 

quantified using Nikon Elements (grid unit = 6 µm). GFP cDNA clone was used as negative control to verify that 

gene overexpression by cDNA clones did not promote P. aeruginosa biofilm growth. Static abiotic biofilm assays 

performed by Brian R. Kocak.  n=2.  
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Figure 39: Gene expression of ISG screen hits during RSV infection. 

AECs were infected with RSV or were mock-infected (MEM control) for 72 hours and RNA was collected. Gene 

expression was measured by quantitative RT-PCR (qRT-PCR) to monitor gene expression during RSV infection 

(red bar) compared to uninfected cells (black bar). *P < 0.05, **P < 0.005, ****P < 0.00005, n=3. Data provided by 

Brian R. Kocak.  
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