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EXTREME-SCALE COMPUTING

Xiaolong Cui, PhD

University of Pittsburgh, 2017

Two major trends in large-scale computing are the rapid growth in HPC with in particu-

lar an international exascale initiative, and the dramatic expansion of Cloud infrastructures

accompanied by the Big Data passion. To satisfy the continuous demands for increasing

computing capacity, future extreme-scale systems will embrace a multi-fold increase in the

number of computing, storage, and communication components, in order to support an un-

precedented level of parallelism. Despite the capacity and economies benefits, making the

upward transformation to extreme-scale poses numerous scientific and technological chal-

lenges, two of which are the power consumption and fault tolerance. With the increase in

system scale, failure would become a norm rather than an exception, driving the system to

significantly lower efficiency with unforeseen power consumption.

This thesis aims at simultaneously addressing the above two challenges by introduc-

ing a novel fault-tolerant computational model, referred to as Leaping Shadows. Based on

Shadow Replication, Leaping Shadows associates with each main process a suite of coor-

dinated shadow processes, which execute in parallel but at differential rates, to deal with

failures and meet the QoS requirements of the underlying application under strict power/en-

ergy constraints. In failure-prone extreme-scale computing environments, this new model

addresses the limitations of the basic Shadow Replication model, and achieves adaptive and

power-aware fault tolerance that is more time and energy efficient than existing techniques.

In this thesis, we first present an analytical model based optimization framework that

demonstrates Shadow Replication’s adaptivity and flexibility in achieving multi-dimensional
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QoS requirements. Then, we introduce Leaping Shadows as a novel power-aware fault tol-

erance model, which tolerates multiple types of failures, guarantees forward progress, and

maintains a consistent level of resilience. Lastly, the details of a Leaping Shadows imple-

mentation in MPI is discussed, along with extensive performance evaluation that includes

comparison to checkpoint/restart. Collectively, these efforts advocate an adaptive and power-

aware fault tolerance alternative for future extreme-scale computing.
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1.0 INTRODUCTION

By applying computing to all kinds of areas, information technology (IT) has been trans-

forming the way we understand and change the world. Over the past few decades, IT

has realized the fast analysis of massive quantities of data and the rapid transmission of

tremendous amount of information, facilitating countless advances in areas of science and

technology. As our reliance on IT continues to increase, the complexity and urgency of the

problems our society will face in the future necessitate the building of more powerful and

ubiquitous computing systems.

Since CPU frequency flattened out in early 2000s, parallelism from all levels has become

the “golden rule” to boost performance in the computer industry. Among the different types

of modern computing systems, large-scale High Performance Computing (HPC) and Cloud

Computing systems are the two most powerful ones. For both of them, the extraordinary

computing capacity attributes to a massive amount of parallelism, which is achieved by

equipping the system with hundreds or thousands of CPUs, accelerators, communication

devices, storage components, etc.

With the increase in the number of components, it become more and more challenging

for researchers to continuously offer more computing capacity with sustainable performance

and reliability. As today’s HPC and Cloud systems grow to meet tomorrow’s demands, the

behavior of the systems will be increasingly difficult to specify, predict and manage. This

upward trend, in terms of scale and complexity, has a direct negative effect on the overall

system reliability. At the same time, the rapid growing power consumption is another major

concern. It is reported that the power required to run the machines as well as cool them

has become the largest cost factor in a large-scale system’s operating expenses [119]. In

future-generation large-scale computing systems, failure would become a norm rather than
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an exception, driving the system to significantly lower efficiency with unprecedented amount

of power consumption.

1.1 EXTREME-SCALE COMPUTING

Nowadays, large-scale computing systems are embracing two transformative trends, i.e., the

rapid growth in HPC with in particular an international exascale initiative, and the dramatic

expansion of Cloud infrastructures accompanied by the Big Data explosion. With concerted

efforts from researchers in various disciplines, a race is underway in the HPC community

to build the world’s first exascale machine, featuring a computing capability of exaFLOPS,

to accelerate scientific discoveries and breakthroughs. It is projected that within the next

decade an exascale machine will achieve billion-way parallelism by using one million sockets

each supporting 1,000 cores [4, 90].

Similarly, remarkable expansion is happening in Cloud Computing. Due to its incom-

parable advantages, such as low entry cost and on demand resource provisioning, Cloud

Computing has become the fastest growing segment in the software industry [8]. As the

demand for Cloud Computing accelerates, cloud service providers will be faced with the

need to expand their underlying infrastructure to ensure the expected levels of performance,

reliability and cost-effectiveness. As a result, numerous large-scale data centers have been

and are being built by IT companies to exploit the power and economies of scale. For

example, Google and Rackspace have hundreds of thousands of web servers in dedicated

geo-distributed data centers to support their business.

The path to future extreme-scale computing involves several major roadblocks and nu-

merous challenges inherent to the complexity and scale of these systems. The system scale

needed to address our future computing needs will come at the cost of increasing unpre-

dictability and operating expenses. As we approach extreme-scale, two of the biggest chal-

lenges will be power consumption and system resilience, both being direct consequences of

the dramatic increase in the number of system components [9, 129].

As a result of the continuous growth in system scale, there has been a steady rise in

2



power consumption in large-scale systems. Google engineers, operating thousands of servers,

warned that if power consumption continues to grow, power costs can easily overtake hard-

ware costs by a large margin [12]. Figure 1 reveals the same concern in supercomputers. In

2005, the peak power consumption of a single supercomputer reached 3.2 Megawatts (MW).

This number was doubled only after 5 years, and further climbed to 17.8 MW in 2013 with

a machine of 3,120,000 cores [1]. Recognizing this upward trend, the U.S. Department of

Energy has set 20 MW as the power limit for future exascale systems, so that a power budget

of $20 million per year is preserved for any supercomputer [4]. Although largely pragmatic,

this constraint challenges the HPC community to design future systems capable of sustain-

ing 50 GFlops per Watt (GF/W). According to the Green500 list released in June 2017,

the most energy-efficient supercomputer is the new TSUBAME 3.0 at the Tokyo Institute

of Technology [1]. It achieved 14.110 GF/W during its 1.998-petaflop Linpack performance

run. To enable future exascale system, combined efforts from hardware, OS, and software

must improve energy efficiency by a factor of over 3.5X, making system power a leading

design constraint on the path to exascale.

Due to the expected complexity and scale of future extreme-scale systems, another major

roadblock is the increasing propensity of the system to diverse types of failures. Regardless

of the reliability of individual component, the system level failure rate will continue to

increase as the number of components increases, possibly by several orders of magnitude. It

is projected that the Mean Time Between Failures (MTBF) of future extreme-scale systems

will be at the order of hours or even minutes, implying that many failures will occur every

day [15]. Without an efficient fault tolerance mechanism, faults will be so frequent that the

applications running on the systems will be constantly interrupted and restarted.

Today, fault tolerance in computing systems mainly relies on rollback recovery, which

rolls back and restarts the execution every time there is a failure. This approach is often

equipped with checkpointing to periodically save the execution state to a stable storage, so

that execution can be restarted from a recent checkpoint in the case of a failure [47, 74, 28].

Although checkpoint/restart is the most widely used technique in today’s HPC systems, sev-

eral studies predict that it is not likely to scale to future extreme-scale systems [54, 44, 103].

Given the anticipated increase in system level failure rates and the time to checkpoint large-

3



Figure 1: System power consumption of the top 500 supercomputers as of June 2017 [1].

scale compute-intensive and data-intensive applications, the time required to periodically

checkpoint an application and restart its execution will approach the system’s MTBF [23].

Consequently, applications will make little forward progress, thereby reducing considerably

the overall system efficiency and wasting a lot of energy. Table 1 shows that at 100k nodes,

only 35% of the time will be spent on useful work, while 55% of the time will be wasted on

checkpointing and restarting. Furthermore, the nature and diversity of failures in extreme-

scale systems are such that checkpoint/restart alone may not be an adequate approach.

Based on this observation, recent work has proposed state machine replication as a scalable

solution to handling diverse types of faults [55, 54].

State machine replication exploits hardware redundancy and executes multiple instances

of a task across compute nodes in parallel to overcome failure [13, 137, 54]. Although this

approach is extensively used to deal with failures in Cloud Computing and mission critical

systems, it has never been used in any production HPC system due to its waste of resources.

To replicate each process, state machine replication not only requires twice the amount of
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Table 1: Projection of time spent on each part when using checkpoint/restart to guard a
168-hour job at different system scales [55]. 5 years MTBF per node, 15 minutes checkpoint
time. Optimal checkpoint interval is derived using Daly’s model [36].

# Nodes work checkpoint recompute restart

100 96% 1% 3% 0%

1,000 92% 7% 1% 0%

10,000 75% 15% 6% 4%

100,000 35% 20% 10% 35%

compute nodes at least, but also increases the power consumption proportionally, which

might exceed any imposed power budget.

Based on above analysis, neither of the two existing approaches would efficiently tolerate

failure for future extreme-scale systems. And unfortunately, neither of them addresses the

power cap issue. Therefore, achieving high resilience to failures under strict power constraints

is a daunting and critical challenge that requires new fault tolerance models with scalability

and power-awareness in mind.

1.2 RESEARCH OVERVIEW

There is a delicate interplay between fault tolerance and power consumption. Process replica-

tion and checkpoint/restart require additional power to achieve fault tolerance. Conversely,

it has been shown that lowering supply voltages, a commonly used technique to conserve

power, increases the probability of transient faults [27, 146]. The trade-off between fault

free operation and optimal power consumption has been explored in the literature [94, 97].

Limited insights have emerged, however, with respect to how adherence to application’s de-

sired QoS requirements affects and is affected by the fault tolerance and power consumption

dichotomy. In addition, abrupt and unpredictable changes in system behavior may lead

5



to unexpected fluctuations in performance, which can be detrimental to applications QoS

requirements. The inherent instability of extreme-scale computing systems, in terms of the

envisioned high-rate and diversity of faults, together with the demanding power constraints

under which these systems will be designed to operate, calls for a reconsideration of the fault

tolerance problem.

To this end, this thesis aims at developing a novel fault-tolerant computational model

that simultaneously addresses the power and resilience challenges for emerging extreme-scale

computing systems. Our goal is to study the viability of and provide the justification for the

following thesis statement:

“It is possible to persistently achieve Quality of Service with sustainable system efficiency,

while operating under diverse types of failures and stringent power constraints, in future

extreme-scale computing systems.”

We seek to achieve this objective by developing an adaptive and power-aware fault toler-

ance model, referred to as Leaping Shadows. It builds on top of the recently proposed Shadow

Replication model, and exploits novel techniques to address the limitations of Shadow Repli-

cation to meet the performance and resilience requirements of extreme-scale computing.

With an extensive evaluation through the combination of analytical models and empiri-

cal experiments, this thesis demonstrates the viability of Leaping Shadows to achieve high

tolerance to failure that is more time and energy efficient that state-of-the-art approaches.

The basic tenet of Shadow Replication is to associate with each original process a suite of

coordinated “shadow processes”, whose size depends on the criticality of the application and

its QoS requirements. To tolerate failure while minimizing energy, the shadows are scheduled

to execute in parallel with the original process, but on different nodes and at reduced rates.

A shadow is an exact replica of its associated original process. If an original process fails, one

of the associated shadows takes over and resumes the execution, with a potential increase in

execution rate to mitigate delay.

Relying on Dynamic Voltage and Frequency Scaling (DVFS) to control execution rates,

Mills studied the execution dynamics of Shadow Replication and its performance in HPC

systems [96, 98, 95]. Through the use of modeling, simulation, and experimentation, Mills
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demonstrated that Shadow Replication can achieve resilience more efficiently than both

checkpoint/restart and traditional state machine replication when power is limited. How-

ever, Mills’ study is limited to HPC systems and focuses exclusively on minimizing energy

consumption with constraints on time to completion. In contrast, QoS requirements can be

expressed in multiple dimensions that go beyond time and energy. Furthermore, the Shadow

Replication model has several drawbacks that impact performance, expose vulnerability, and

limit fault tolerance capability in extreme-scale, failure-prone computing environments.

To address the above limitations, this thesis builds on the computational model of Shadow

Replication, and seeks to tolerate high rate of diverse types of failures in emerging power-

constrained HPC and Cloud systems, while guaranteeing system efficiency and application

QoS. Specifically, we have complemented Mills’ work by developing analytical models and

optimization frameworks for different objectives in the Cloud environments [34]. This work

demonstrates Shadow Replication’s adaptivity in balancing the trade-offs among perfor-

mance, power, and resilience, and highlights its flexibility in achieving multi-dimensional

QoS requirements. Additionally, we have proposed and studied the Leaping Shadows model

which is depicted in Figure 2. Leaping Shadows exploits novel techniques of shadow col-

location, leaping, and rejuvenation to address the divergence and vulnerability issues with

Shadow Replication. Furthermore, we have applied Leaping Shadows to tolerate Silent Data

Corruption (SDC), which is another class of failure that has become prevalent in current

large-scale systems [55]. Last but not least, a prototype of Leaping Shadows in Message

Passing Interface (MPI) has been implemented, to validate the computational model as well

as measure its performance in real environments.

1.2.1 Contributions

This thesis consists of the following main contributions.

Reward-based optimal Shadow Replication. Shadow Replication is an adaptive

and flexible computational model that can achieve multi-dimensional QoS requirements. The

major challenge resides in determining jointly the execution rates of all task instances, both

before and after a failure occurs, with the objective to optimize performance, resilience, power
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Figure 2: Overview of the Leaping Shadows computational model.
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consumption, or their combinations. In this work we focus on the Service Level Agreement

(SLA) requirements in the Cloud and develop a reward-based analytical framework, in order

to derive the optimal execution rates for maximizing reward and minimizing energy costs

under strict completion time constraints [34, 33].

The Leaping Shadows model. Enabling Shadow Replication for resiliency in extreme-

scale computing brings about a number of challenges and design decisions, including the

applicability of this concept to a large number of tasks executing in parallel, the effective way

to control shadows’ execution rates, and maintenance of consistent resilience through a large

number of failures. Taking into consideration the main characteristics of compute-intensive

and highly-scalable applications, we devise novel ideas of shadow collocation, leaping, and

rejuvenation, and integrate them with Shadow Replication to establish a more efficient and

scalable model of Leaping Shadows [35].

Tolerance of Silent Data Corruption (SDC) with extended Leaping Shadows.

Different from crash failures, which terminate the execution on a faulty processor, SDC allows

a faulty processor to continue to completion but may silently generate incorrect results. In

order to detect and correct a single SDC, Leaping Shadows associates 2 shadows with each

main process. The primary shadow is scheduled to run at the same rate as its associated

main, so that voting can be used to detect SDC in a timely manner, and correct results can

be confirmed if no SDC occurs. In order to minimize energy, the secondary shadow initially

executes at a reduced rate. As a result, it can also benefit from leaping to achieve forward

progress with minimal overhead. Based on this idea, we have established precise analytical

models and optimization frameworks to quantify and optimize the performance.

A proof-of-concept implementation of Leaping Shadows in MPI. Though Leap-

ing Shadows has been evaluated analytically, a real implementation is needed for validation

and performance measurement in real systems. We have developed rsMPI as a prototype

of Leaping Shadows in Message Passing Interface (MPI), which is the de facto programming

paradigm for HPC. Instead of a full implementation of MPI, the library is designed to be

a separate layer between MPI runtime and user application, in order to take advantage of

existing MPI performance optimizations that numerous researches have spent years on. This

implementation transparently spawns a shadow for each main process during the initializa-
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tion phase, manages the coordination between mains and shadows, and guarantees order and

consistency for messages and non-deterministic events. In addition, we have implemented

leaping and rejuvenation to efficiently tolerate a large number of crash failures.

Performance evaluation of Leaping Shadows. With the rsMPI implementation,

extensive experiments have been conducted to measure its real system performance, using

benchmark applications that represent a wide range of HPC workloads. As a first step, we

measured the failure-free runtime overheads resulted from the enforced consistency protocol.

This experiment revealed that the overheads depend on application and vary from 0.04% to

2.73%. Then we measured the scalability in order to predict the performance at extreme-

scale, which suggested that the overheads would remain under 9.4% at 220 processes. Lastly,

we also implemented in-memory checkpoint/restart to compare with rsMPI in the presence of

failures. The results demonstrated Leaping Shadows’ ability to tolerate high failure rates, and

to outperform in-memory checkpoint/restart in both execution time and resource utilization.

1.3 THESIS OUTLINE

The rest of this thesis is organized as follow: Chapter 2 reviews literature. It provides a

background study of existing fault tolerance and power management techniques in large-scale

computing systems. Chapter 3 introduces the Shadow Replication computational model,

which forms the foundation of this work. In Chapter 4, we build a reward-based optimization

framework for Shadow Replication in the Cloud environment. In Chapter 5, we introduce

the Leaping Shadows model, which addresses the shortcomings of Shadow Replication in

failure-prone, extreme-scale systems. Tolerance of silent data corruption is discussed in

Chapter 6. Chapter 7 presents the details of a Leaping Shadows implementation as well as

its performance evaluation. Finally, Chapter 8 concludes the thesis.
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2.0 BACKGROUND

Research in fault tolerance and power management have been fruitful in the past few decades,

with numerous mature techniques made available for various computing platforms, spanning

from mobile devices to large-scale clusters. This chapter reviews the literature and provides

a background study for the work presented in this thesis. Firstly, definitions of fault and

failure are provided to set stage for how to achieve fault tolerance. The next two sections

discuss two families of fault tolerance strategies that are widely adopted today, with a focus

on large-scale computing systems. Finally, this chapter presents a survey of research work

in the area of power and energy management.

2.1 FAULT, FAILURE, AND FAULT TOLERANCE

There is a clear distinction between fault and failure. Generally, a fault refers to an exception

or detect in the system at its lowest level [71, 59]. For example, a common fault in storage

systems is hard disk drive malfunction. Such a fault is reproducible as it always re-occurs

until the faulty disk is removed and replaced. On the contrary, a bit flip in the main memory

caused by cosmic rays is usually transient, thus non-reproducible. Oftentimes fault is not

visible to the application or end user. Instead, the externally visible manifestation of a fault

is called a failure [59]. Using the disk fault example again, a failure when trying to read

from the disk could be corrupted data, or inability to access, or even slowing down due

to repeated read attempts. In cases where no distinction is made between a fault and the

resulting failure, these terms are used interchangeably.

Failures in computing systems can be attributed to various factors, including software,
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hardware, network, human, overloading, environment, etc [123]. The disk malfunction men-

tioned above is a hardware failure. Bugs, race conditions, and deadlock are examples of

software failure. One example of failure induced by overloading is a low priority job ter-

minated to make room for a high priority one. In the environment category, A/C failure

leading to overheat is an example.

Due to the rich causes and varied effects, faults and their resulting behavior are typically

abstracted by fault models, which are grouped in an hierarchical structure [59, 32, 121].

Below are three popular fault models.

• Fail-stop A faulty processor stops execution and this failure can easily be detected by

other processors.

• Silent data corruption A faulty processor continues execution but may silently gen-

erate incorrect results.

• Byzantine A faulty processor continues execution but may behave in an arbitrary or

even malicious way.

When studying fault tolerance, the correctness and efficiency of a particular approach is

assessed with respect to a specific fault model. It is not hard to see that Byzantine fault

model is the most generic in this list, as it covers the other two models, whereas fail-stop

is the most restrictive, as it requires that a processor halt in response to a failure and that

failure be detected, which may not be realistic in certain circumstances.

2.1.1 Fault Tolerance

Fault tolerance aims at guarding a system against faults, so that the system operates in

accordance with established specifications [82]. A system is fault tolerant if it has build-in

fault tolerance capability and never deviates from the expected behavior. To achieve fault

tolerance, a system requires additional resources that exceed the minimum amount needed

to satisfy the performance requirements of an application. This is referred to as redundancy

and is the foundation of all fault tolerance techniques today.

Redundancy comes in four forms: time, information, hardware, and software [78]. To

leverage time redundancy, a system re-executes partial or entire portion of lost work after a
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failure, therefore coping with failure at the sacrifice of time resource. As the name suggests,

information redundancy increases reliability through storing and processing additional in-

formation. A simple example is to replicate a file across multiple locations, such as Hadoop

distributed file system [2]. Other examples involve more complicated encoding techniques,

like Algorithm-based fault tolerance (ABFT) and RAID [68, 105]. Hardware redundancy

refers to the use of extra hardware resources to execute redundant instances of a task. Soft-

ware redundancy, on the other hand, consists of writing the same function using different

methods and then comparing the output to detect and correct failures.

Research in fault tolerance has been a fertile ground, with significant progress on how

we understand failures [122, 22, 21], detect failures [17, 55, 40], and mitigate the impact of

failures [16, 66, 52]. Rollback recovery is the direct application of time redundancy. It is often

optimized by checkpointing techniques to periodically save the execution state to a stable

storage, with the anticipation that, in case of failure, computation can be restarted from a

saved checkpoint [28]. Message logging protocols, which combine checkpointing with logging

of non-deterministic events, allow a system to recover beyond the most recent consistent

checkpoint [132]. Proactive fault tolerance relies on a prediction model to forecast faults, so

that preventive measures, such as task migration or checkpointing, can be undertaken [58,

50, 26, 86]. Algorithm-based fault tolerance uses redundant information inherent to its

algorithmic structure of the problem to achieve resilience [91, 18]. For the past 30 years,

disk-based coordinated checkpoint/restart has been the primary fault tolerance technique in

production HPC systems [54]. However, its foreseen low efficiency in emerging extreme-scale

systems re-ignited the study of state machine replication as a promising alternative.

2.2 ROLLBACK RECOVERY

Rollback recovery is the dominant mechanism to ensure correctness in the presence of fail-

ures in current HPC environments, where failures are infrequent and considered as excep-

tion [38, 47, 42]. Based on rollback recovery, techniques available today can be classified into

checkpoint-based approaches and log-based approaches [47].
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2.2.1 Checkpoint-based Approach

To avoid rolling back to the very beginning every time there is a failure, checkpointing can

be periodically invoked to save the intermediate execution state to a stable storage. Stable

storage is an abstraction of a storage medium that persists through the anticipated failures

and ensures that the stored information is available during recovery [47]. Typically, a stable

storage is implemented on top of a magnetic disk based storage subsystem that is accessible

through a network [125]. In the case of a failure, previously saved execution state can be

retrieved to resume the computation.

In distributed systems, a global state consists of a collection of process state, each saved

by its own process. In a message-passing system, however, rollback recovery is complicated

by the issue of rollback propagation due to inter-process communication. When one process

P1 sends a message m to another process P2, the event of sending at P1 and the receipt at

P2 form a “happened before” relationship [80]. The rollback propagation issue is such that,

if P1 were to roll back to a state before sending m, P2 needs to roll back to a state before

receiving m. Otherwise, the states of the two processes would end up being inconsistent

because they would show that m has not been sent but already received, which never exists

in any correct execution. Therefore, checkpoint/restart in message passing systems needs to

guarantee, either at checkpointing time or restart time, that a globally consistent state can

be constructed from the saved checkpoints.

Coordinated checkpointing is a popular approach that coordinates the checkpoint writ-

ing process to record a globally consistent state. Specifically, all processes coordinate with

each other to save individual states that collectively satisfy the “happened before” rela-

tionship [28]. As a result, only the last successfully saved checkpoint needs to be kept.

One way to perform coordination is to quiesce the communication channels before writing

a checkpoint [133, 64]. For example, barrier synchronization in the underlying application

is a natural point to produce a checkpoint. At the same time, non-blocking protocols exist

to save the communication state during the operation [31, 28, 79]. The major benefit of

coordinated checkpointing stems from its simplicity and ease of implementation. Its major

drawback, however, is the lack of scalability, as it requires global coordination [44, 113, 64].
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In uncoordinated checkpointing, processes checkpoint their states independently and

postpone creating a globally consistent view until the recovery phase. The major advantage is

the reduced overhead during fault free operation. Since each process is allowed to checkpoint

its state independently, optimizations can be explored to checkpoint when the process state

is small, or when there is abundant I/O bandwidth to access stable storage. However, the

scheme requires that each process maintains multiple checkpoints, necessary to construct

a consistent state during recovery. Furthermore, it can also suffer the well-known domino

effect [111, 6, 65], which makes all saved checkpoints useless and forces the execution to roll

back to its initial state. Although well-explored, uncoordinated checkpoint/restart has not

been widely adopted in HPC environments, due to its complexities of handling recovery and

its heavy dependency on applications [47, 62].

One hybrid approach of coordinated and uncoordinated checkpointing, known as commu-

nication induced checkpointing, aims at reducing coordination overhead by taking advantage

of the communication patterns of an application[6]. The approach, however, may cause pro-

cesses to store useless states. To address this shortcoming, “forced checkpoints” have been

proposed [65] to avoid creating useless checkpoints. This approach, however, may lead to

unpredictable checkpointing rates.

One of the largest overheads in any disk-based checkpointing technique is the time nec-

essary to write the checkpoints to a stable storage. Given the amount of system memory

and I/O bandwidth, it takes minutes to save a single global checkpoint to a centralized

storage subsystem [95]. Incremental checkpointing attempts to reduce the state saved in a

checkpoint by only writing the changes during the last checkpointing interval [3, 45, 85]. On

a memory page granularity, this can be achieved using dirty-bit page flags [108, 45]. Hash

based incremental checkpointing, on the other hand, makes use of hash algorithms to detect

changes that are finer-grained than pages, at the cost of extra computation [29, 3]. How-

ever, whether the benefits in reducing checkpoint size offset the increased computation cost

remains unclear [46, 101]. Copy-on-write checkpointing offloads the checkpointing process

to a secondary task and only writes incremental checkpoints [85].

Another proposed scheme, known as in-memory checkpointing, minimizes the overhead

of disk access by saving checkpoints in main memory [150, 149]. The main concern of these
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techniques is the increase in memory requirement to support the simultaneous execution of

the checkpointing and the application. It has been suggested that nodes in extreme-scale

systems should be configured with fast local storage [4]. Multi-level checkpointing, which

consists of writing checkpoints to multiple storage media, can benefit from such an upgrade

[100]. This, however, may lead to increased failure rates of individual nodes and complicate

the checkpoint writing process.

2.2.2 Log-based Approach

Log-based rollback-recovery is often a natural choice for applications that frequently interact

with the outside world. Log-based rollback-recovery combines checkpointing with logging of

non-deterministic events, and allows the system to recover beyond the most recent consistent

checkpoint [132]. To enforce determinism in the presence of non-deterministic events (e.g.,

message receipt), log-based rollback-recovery relies on the piecewise deterministic (PWD)

assumption, which states that all non-deterministic events can be identified and determinants

can be recorded to replay the events in their original order [7]. By replaying the non-

deterministic events according to the logged determinants, a process can re-construct its state

up to the first unlogged non-deterministic event, even if this state has not been checkpointed.

Depending on how the determinants are logged, log-based rollback-recovery has three

flavors. Pessimistic logging takes a blocking approach, such that the application execution

is suspended until the determinants have been safely stored in a stable storage [70, 72,

73]. Pessimistic logging simplifies recovery and garbage collection, at the cost of failure-

free performance. Optimistic logging makes the optimistic assumption that logging will

complete before a failure occurs, thus allowing determinants to be spooled to a stable storage

asynchronously, avoiding blocking the application [132, 126, 128]. Optimistic logging reduces

the failure-free overhead, but complicates recovery. Also, several checkpoints may need to be

kept [47]. Finally, causal logging combines the benefits of optimistic and pessimistic logging

to achieve low failure-free overhead while allowing simple recovery [92, 83, 7]. Different from

optimistic logging, causal logging limits the rollback to the most recent checkpoint. This

reduces the storage overhead and the amount of work at risk.
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2.3 STATE MACHINE REPLICATION

In contrast to rollback recovery, forward recovery allows applications to proceed in the case

of a failure instead of rolling back. The most well-know forward recovery technique is state

machine replication, which has long been used for reliability and availability in mission

critical systems and storage systems [120, 130, 151]. Potentially faulty entities are considered

as black boxes that implement state machines, delivering identical outputs when presented

with the same sequence of inputs. A similar idea to state machine replication is redundant

multi-threading, which has been implemented in both hardware and software, and used to

increase reliability in CPUs and GPUs [112, 141]. In the case where each black box is a

process, this technique is also referred to as process replication, which instantiates multiple

copies (replicas) of each process and let them execute the same code.

To ensure consistent state across replicas, all application messages must be delivered

to all replicas of a given process, typically done by using a message ordering protocol [39,

11]. Additionally, if any non-deterministic event is involved in the computation, then extra

consensus protocols must be enforced [81, 148]. By distributing replicas across the available

compute nodes and minimizing the required state comparisons, low runtime overheads can

be achieved with process replication, while masking a large number of failures from the

underlying application. However, the undesired property of this technique is the increase in

hardware resources, as well as the proportional increase in power consumption.

Although it was initially rejected in HPC communities, replication has recently been

proposed to address the deficiencies of checkpoint/restart for upcoming extreme-scale sys-

tems [22, 49, 113, 54]. These studies predict that process replication achieves better scal-

ability and system efficiency than checkpoint/restart in future failure-prone extreme-scale

computing environments. Full and partial process replication have also been studied to aug-

ment existing checkpointing techniques, and to detect and correct silent data corruption

[131, 43, 54, 55, 102, 84]. There are several different implementations of replication in the

widely used MPI library and cloud environments, each with their different trade-offs and

overheads [49, 54, 148]. The overhead can be negligible or up to 70% depending upon the

communication patterns of the application [49].
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2.4 POWER MANAGEMENT

Energy conservation is a major concern today. In computer systems, power and energy are

critical in terms of both cost and availability. In mobile, battery-operated devices, power

dissipation directly translates into a limitation on operation hours. In large-scale computing

systems, energy costs account for a significant portion of the operating expenses [119]. De-

spite large or small systems, most of the energy consumed is converted into heat, resulting

in wear and reduced reliability of hardware components [118, 5].

Energy saving can be targeted at all levels of a system, ranging from circuit level to

architecture level and operation level [99, 139]. At the operation level, a large body of

scheduling work has been explored, based on the observation that one can save energy by

leveraging execution slack [60, 67, 69, 57, 87, 114, 136]. All of them resolve around two

underlying mechanisms, i.e., power-down and dynamic speed scaling [5, 89].

Power-down, also known as dynamic resource sleeping, conserves energy by dynamically

turning resources into low-power standby or sleeping modes, and then waking them up on

demand. Each resource may be in an active running state, or in one of intermediate sleeping

states, or in the completely power-off state. For instance, in the Intel Nehalem-EP processor,

the clock and other components could be turned off to make a transition into a low-power

mode [89]. The deeper the resource sleeps, the less power it consumes, but the more energy

is needed to wake it up [5]. In addition to processor, some memory controllers support the

dynamic switch of memory ranks between on and off states [104]. Similarly, disks may also

exploit active, ready, and standby states to reduce power consumption [30, 107].

Dynamic speed scaling is another power management mechanism that allows dynamic

tuning of the performance state of the target component to save power, i.e. it slows down

when possible to reduce power consumption and speeds up when needed at the cost of greater

power consumption. Dynamic Voltage Frequency Scaling (DVFS) is probably the best known

example [51, 77, 109, 114, 57, 136, 87, 48, 106, 56]. This technique is widely available in

today’s processors, including Intel Xeon, AMD Atholon, and ATI co-processors. Generally,

the reduction in power consumption is achieved through reducing the supply voltage , which

in turn reduces the processor clock frequency [138]. Other examples of dynamic speed
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scaling include multi-frequency memories and multi-speed disks, which dynamically scale the

working frequency and thus the data rate [37, 63, 24]. In all of these methods, however, it

is unavoidable that the transition between different performance states consumes additional

energy and introduces latency [138].

2.5 SUMMARY

This chapter reviews related work in the fields of fault tolerance and power management.

We begin with a clarification of what we mean by fault and failure, followed by how fault

tolerance works in general. Then, state-of-the-art fault tolerance techniques are discussed,

each with its advantages and limitations. We recognize the dominance of checkpoint/restart

in current HPC systems, and point out the emergent process replication approach as it

attracts growing attention. Lastly, we survey a number of power management techniques

that build on top of power-down and dynamic speed scaling.

Motivated by the extreme-scale challenges, this thesis targets at work that lies at the

intersection of fault tolerance and power management. Existing work in this area has mainly

focused upon measuring power and energy consumption of fault tolerance techniques [93,

116, 97]. Instead, this thesis proposes a new fault tolerance model, Leaping Shadows, which

explores the trade-offs between time and hardware redundancy to achieve fault tolerance with

power awareness. The flexibility in balancing these trade-offs, together with the ability to

rejuvenate after failures, allows Leaping Shadows to maximize system efficiency and maintain

a persistent level of resilience to failure while minimizing energy consumption.
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3.0 SHADOW REPLICATION

It is without doubt that our understanding of how to build reliable systems out of unreli-

able components has led the development of robust and fairly reliable large-scale software

and networking systems. The inherent instability of extreme-scale distributed systems of

the future in terms of the envisioned high-rate and diversity of faults, however, calls for a

reconsideration of the fault tolerance problem as a whole.

Shadow Replication is a computational model that goes beyond adapting or optimizing

well known and proven techniques, and explores radically different methodologies to fault

tolerance [96, 98, 95]. The proposed solutions differ in the type of faults they manage, their

design, and the fault tolerance protocols they use. It is not just a scale up of “point” solutions,

but an exploration of innovative and scalable fault tolerance frameworks. When integrated,

it will lead to efficient solutions for a “tunable” resiliency that takes into consideration the

nature and requirements of the application.

The basic tenet of Shadow Replication is to associate with each main process a suite

of shadows whose size depends on the “criticality” of the application and its performance

requirements. Each shadow process is an exact replica of the original main process, and a

consistency protocol assures that each shadow process stays consistent with its associated

main process. Shadow Replication achieves power awareness under QoS requirements by

dynamically adjusting the execution rates in response to failures. To save power, the shadows

initially execute at a lower rate than the main process. If the main process completes the

task successfully, the associated shadows will be terminated immediately. If the main process

fails, however, one of the shadow processes will be promoted to a new main process, and

possibly increases its execution rate to mitigate delay.

Since the individual failure rate is extremely low, in most instances the main process
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will not encounter any failure and complete the task. Consequently, the additional energy

consumed by the slower shadow is significantly lower than that of a full-speed replica of the

main, resulting in a lot of energy savings. Furthermore, a failure of a shadow process has

no bearing on the behavior of its associated main process. These two properties make it

possible for Shadow Replication to enable fault tolerance at a much lower cost.

3.1 EXECUTION MODEL

Assuming there is a Reliability Availability and Serviceability (RAS) system for fault detec-

tion [54], the Shadow Replication fault-tolerance model is formally defined as follows:

• A main process, Pm(W, σm), whose responsibility is to executes a task of W workload

at an execution rate of σm;

• A suite of shadow processes, Ps(W, σ
s
b , σ

s
a) (1 ≤ s ≤ S), where S is the size of the suite.

The shadows execute on separate computing nodes. Each shadow process is associated

with two execution rates. All shadows start execution simultaneously with the main

process at rate σsb (1 ≤ s ≤ S). Upon failure of the main process, all shadows switch

their executions to σsa, with one shadow being designated as the new main process. This

process continues until completion of the task.

To illustrate the behavior of Shadow Replication, we limit the number of shadows to

a single process and consider the scenarios depicted in Figure 3, assuming a single process

failure. Figure 3(a) represents the case where neither the main nor the shadow fails. The

main process, executing at a higher rate, completes the task at time tmc . At this time,

the shadow process, progressing at a lower rate, stops execution immediately to save energy.

Figure 3(b) represents the case where the shadow experiences a failure. This failure, however,

has no impact on the progress of the main process, which still completes the task at tmc .

Figure 3(c) depicts the case where the main process fails while the shadow is in progress.

After detecting the failure of the main process, the shadow begins execution at a higher rate,

completing the task at time tsc.
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(a) No Failure

(b) Shadow Process Failure

(c) Main Process Failure

Figure 3: Shadow Replication for a single task using a pair of main and shadow.
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3.2 ADAPTIVITY

In HPC and Cloud systems, performance, resilience, and power consumption are more often

than not conflicting objectives. For example, achieving fault tolerance comes with a cost of

redundant resources, which unavoidably lead to additional power and energy consumption.

On the other hand, it has been shown that lowering supply voltages, a commonly used

technique to conserve power, increases the probability of transient faults [27, 146], and

introduces non-trivial performance degradation [143].

Shadow Replication is a pioneering work in exploring the trade-offs among failure-free

operation, the imposed power constraints, and the time to solution of the supported applica-

tion. Internally, Shadow Replication has a set of parameters, lying on two dimensions, that

collectively determine its behavior along with costs. By configuring the shadow suite size

based on fault tolerance needs, and dynamically adjusting the main and shadow processes’

execution rates, Shadow Replication is able to guarantee a specific performance with certain

fault tolerance capability and under a bounded power budget, thereby achieving adaptivity

to the desired balance among the three conflicting objectives.

The size of shadow suite directly reflects the amount of redundancy needed. The more

shadows in each suite, the more hardware resources are required to execute the replicas in

parallel. Furthermore, the additional hardware resources place a higher demand on the power

supply. Therefore, it is desirable to use as few shadows as possible, under the premise that

the resilience requirements are met. It is well known that one can use f+1 replicas to tolerate

f crash failures, and use 2f + 1 replicas to correct f silent failures. To deal with one crash

failure, a single shadow that runs as a slower replica of its associated main would be sufficient

to maintain acceptable response time. Like shown in Figure 3, two replicas guarantee that

at least one can complete the task, if at most one crash failure could occur. Similarly, two

shadows are sufficient to guard a main process against a silent failure. Specifically, by using

a simple voting mechanism and comparing the outputs of three replicas, one can detect as

well as correct a silent failure [55].

In addition to shadow suite size, another dimension of control consists of the execution

rates of both the main and shadow processes, before and after failure. A closer look at the
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Figure 4: Illustration of Shadow Replication’s ability to converge to either re-execution or
traditional process replication.

model reveals that Shadow Replication is a generalization of traditional fault tolerance tech-

niques, namely re-execution and process replication. If it allows for flexible completion time,

Shadow Replication converges to re-execution as the shadow remains idle during the execu-

tion of the main process and only starts execution upon failure. If the target response time

is stringent, however, Shadow Replication converges to process replication, as the shadow

must execute simultaneously with the main at the maximum rate. Assuming dual modular

redundancy to deal with a crash failure, this adaptability of Shadow Replication is further

illustrated in Figure 4. It is not difficult to imagine that by exploring the combination of

execution rates, Shadow Replication covers a “spectrum” of fault tolerance strategies, in-

cluding both re-execution and process replication. The flexibility of the Shadow Replication

model provides the basis for the design of a fault tolerance strategy that strikes a balance

between task completion time and energy saving.
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3.3 EXECUTION RATE CONTROL

The Shadow Replication model relies on the fact that power savings can be achieved by

reducing process execution rate. Furthermore, Shadow Replication needs to dynamically

adjust the process execution rates to maintain satisfactory response time while saving power

and energy. So far, two techniques have been explored to achieve the desired process exe-

cution rate. The first technique directly relates to a hardware feature, while the second one

can be easily done via process mapping on any hardware platform.

DVFS is the first technique that our lab studied to reduce the execution rate of a process.

While running each main and shadow process on a separate CPU, DVFS allows to reduce

the CPU frequency by lowering the supply voltage. In the case of a failure, DVFS also allows

to dynamically increase the CPU frequency to speed up a process. It is well known that

one can reduce the dynamic CPU power consumption at least quadratically by reducing the

frequency linearly, thereby saving power and energy simultaneously.

An alternative approach to DVFS is to collocate multiple processes on a single CPU, while

keeping each CPU running at the maximum frequency [35]. The desired process execution

rate can be achieved by controlling the collocation ratio, which is defined as the number of

processes that time-share a CPU. An example of collocation is depicted in Figure 5, with

a collocation ratio of 3 for shadow processes. A shadowed set refers to a set of mains and

their collocated shadows. The advantages and disadvantages of collocation will be further

discussed in later chapters.

In terms of power and energy saving, DVFS has a different effect from collocation. When

applying collocation, it is straightforward that fewer hardware resources are required to

support the same number of processes than using DVFS. For example, only 12 cores are

required to simultaneously execute 18 processes, as shown in Figure 5. This is a 33.3%

saving in hardware resources compared to DVFS. As a result, collocation brings in reduction

in power and energy consumption proportionally to the reduction in hardware resources. On

the other hand, although DVFS requires the same amount of hardware as traditional process

replication, it saves CPU dynamic power on each process that executes at a reduced rate, thus

achieving energy savings. This thesis does not carry out a quantitative comparison between
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Figure 5: An example of collocation. Nine mains and their associated shadows are grouped
into three logical shadowed sets. By collocating every three shadows on a core, twelve cores
are required.

these two techniques, because the exact power and energy consumption largely depend on

the specific architecture, such as the ratio between CPU dynamic power and static power,

and the relationship between power reduction and frequency reduction due to DVFS.

3.4 SUMMARY

Based on DVFS, Mills studied the Shadow Replication computational model and associated

one shadow process with each main process to tolerate fail-stop failures in HPC systems. For

HPC throughput consideration, his work assumes that the main process always executes at

the maximum rate. Even with this restriction, Mills successfully demonstrates that Shadow

Replication can achieve resilience more efficiently than both checkpoint/restart and process

replication when power is limited [96, 98, 95].

Although DVFS is widely available in today’s processors, its effectiveness, however, may
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be markedly limited by the granularity of voltage control, the range of frequencies available,

and the negative effects on reliability [51, 146, 147]. At the same time, there are several

issues with the Shadow Replication model that have been later identified and that question

the applicability of Shadow Replication to tolerating high rate and diverse types of failures

in extreme-scale computing environments. In the following chapters, this thesis presents

novel work that not only addresses the limitations of the basic Shadow Replication model

to achieve better adaptivity, sustainability, and scalability, but also verifies the model with

prototype implementation and performance evaluation.
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4.0 REWARD-BASED OPTIMAL SHADOW REPLICATION

In the most straightforward form of Shadow Replication, each main is associated with one

shadow to tolerate a crash failure, and with two shadows to tolerate a silent failure. Similar

to traditional process replication, Shadow Replication ensures successful task completion

by running the mains and shadows in parallel. Contrary to process replication, however,

Shadow Replication exploits differential and dynamic execution rates, thereby enabling a

parameterized trade-off between response time, energy consumption and resilience.

After figuring out the shadow suite size according to the fault tolerance requirements,

a major challenge resides in determining jointly the execution rates of all task instances,

both before and after a failure occurs, with the consideration of any objective and any

constraint. This chapter addresses the above challenge by formulating it into a generic

optimization problem, so that standard and well-known math methods (e.g., quasi-newton)

can be naturally applied to solve it and derive the optimal execution rates. With this

optimization framework, this chapter also provides a case study in the Cloud with a series

of analytical models for failure, power, energy, etc.

4.1 GENERIC OPTIMIZATION FRAMEWORK

As mentioned in Section 3.2, large-scale computing systems typically aim at maximizing

performance, resilience, power/energy consumption, or any of their combination. Given

a specific objective, by tuning its execution rates Shadow Replication can be optimized

with respect to that objective, while satisfying the provided constraints, if any. A generic

optimization framework for this purpose is depicted in Figure 6.
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Figure 6: A generic optimization framework for Shadow Replication.

As shown in Figure 6, the inputs to the problem consist of system parameters and

application parameters. System parameters include the failure distribution, system scale, and

power consumption characteristics. Application parameters could be QoS requirements, total

workload, and/or the communication and synchronization patterns. In addition, constraints,

such as power cap and deadline, can be specified in observation of resource limitations.

Finally, the outputs are the derived execution rates for all processes, which optimize the

given objective.

The above optimization framework can be tailored to various computing environments for

different needs. For example, in HPC systems, the problem can be simplified by fixing σm and

σa at the maximum CPU rate and only optimize σb to minimize energy consumption under

deadline constraint [96]. The following section discusses another case study in the Cloud

environment that relaxes the constraints on σm and σa [34]. The resulting work, referred

to as reward-based optimal Shadow Replication, considers Service Level Agreements (SLA)

in the Cloud and optimizes a “reward” for Cloud service providers. The flexibility in the

definition of reward demonstrates the ability of Shadow Replication to achieve objectives
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that go beyond time and energy.

4.2 REWARD-BASED OPTIMAL SHADOW REPLICATION

Cloud Computing has emerged as an attractive platform for diverse compute- and data-

intensive applications, as it allows for low-entry costs, on demand resource provisioning, and

reduced complexity of maintenance [134]. As the demand for cloud computing accelerates,

cloud service providers (CSPs) will be faced with the need to expand their underlying in-

frastructure to ensure the expected levels of performance and cost-effectiveness, resulting in

a multi-fold increase in the number of computing, storage and communication components

in their data centers.

Two direct implications of the ever-growing large-scale data centers are the increasing

energy costs, which build up the operating expenditure, and service failures, which subject

the CSP to a loss of revenue. Therefore, Service Level Agreement (SLA) becomes a critical

aspect for a sustainable cloud computing business. In its basic form, an SLA is a contract

between the CSPs and consumers that specifies the terms and conditions under which the

service is to be provided, including expected response time and reliability.

To understand the question of how fault tolerance might impact power consumption and

ultimately the expected profit of CSPs, this section studies the application of Shadow Repli-

cation to satisfying SLA requirements in the presence of crash failures in Cloud computing.

The rest of the section is organized as follows. We begin by describing a parallel comput-

ing model typically used in cloud computing for compute- and data-intensive applications.

We then present our analytical models and optimization problem formulation, followed by

experiments and evaluation.

4.2.1 Cloud Workloads

Cloud computing workload ranges from business applications and intelligence, to analytics

and social networks mining and log analysis, to scientific applications in various fields of sci-
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ences and discovery. These applications exhibit different behaviors, in terms of computation

requirements and data access patterns. While some applications are compute-intensive, oth-

ers involve the processing of increasingly large amounts of data. The scope and scale of these

applications are such that an instance of a job running one of these applications requires the

sequential execution of multiple computing phases; each phase consists of thousands, if not

millions, of tasks scheduled to execute in parallel and involves the processing of a very large

amount of data [88, 53]. This model is directly reflective of the MapReduce computational

model, which is predominately used in Cloud Computing [117]. An instance of this model,

is depicted in Figure 7.

Start

task 1

task 2

task 3

task N

Merge

task 1

task 2

task 3

task N

.

.

.

End

Phase 1 Phase 2

.

.

.

Figure 7: Cloud computing execution model with 2 phases.
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Each job has a targeted response time defined by the terms of the SLA. Further, the

SLA defines the amount to be paid for completing the job by the targeted response time as

well as the penalty to be incurred if the targeted response time is not met.

Each task is mapped to one compute core and executes at a rate, σ. The partition of

the job among tasks is such that each task processes a similar workload, W . Consequently,

baring failures, tasks are expected to complete at about the same time. Therefore, the

minimal response time of each task, when no failure occurs, is tmin = W
σmax

, where σmax is

the maximum execution rate. This is also the minimal response time of the entire phase.

4.2.2 Optimization

This part describes an optimization problem for a single job on top of the Cloud computing

execution model described above. Using this framework we compute profit-optimized execu-

tion rates for Shadow Replication with dual modular redundancy (i.e., one shadow process

per main process):

max
σm,σb,σa

E[profit]

s.t.0 ≤ σm ≤ σmax

0 ≤ σb ≤ σm

0 ≤ σa ≤ σmax

(4.1)

We assume that processor execution rates are continuous and use nonlinear optimization

techniques to solve the above optimization problem.

In order to earn profit, service providers must either increase income or decrease expen-

diture. We take both factors into consideration for the purpose of maximizing profit while

meeting customer’s expectation. In our model, the expected profit is defined as the expected

reward minus the expected expense.

E[profit] = E[reward]− E[expense] (4.2)
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Figure 8: A reward model for Cloud computing.

4.2.2.1 Reward Model The Cloud SLA terms and conditions can be diverse and com-

plex. To focus on the performance and reliability aspects of the SLA, we define the reward

model based on job completion time. Platform as a Service (PaaS) companies will continue

to become more popular, causing an increase in SLAs using job completion time as their

performance metric. We are already seeing this appear in web-based remote procedure calls

and data analytic requests.

As depicted in Figure 8, customers expect that their job deployed on Cloud finishes

by a mean response time tR1 . As a return, the service provider earns a certain amount of

reward, denoted by R, for satisfying customer’s requirements. However, if the job cannot

be completed by the expected response time, the provider loses a fraction of R proportional

to the delay incurred. For large delay, the profit loss may translate into a penalty that the

CSP must pay to the customer. In this model, the maximum penalty P is paid if the delay

reaches or exceeds tR2 . The four parameters, R, P , tR1 and tR2 , completely define the reward

model. It would be trivial to extend this reward model to any convex function, but we will

not bother to do so.

When applying Shadow Replication with dual modular redundancy to deal with crash
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failures, there are two facts that the service provider must take into account when negotiating

the terms of the SLA. The first is the response time of the main process assuming no failure

(Figure 3(a) and Figure 3(b)). This results in the following completion time:

tmc = W/σm (4.3)

If the main process fails (shown in Figure 3(c)), the task completion time by shadow

process is the time of the failure, tf , plus the time necessary to complete the remaining

work.

tsc = tf +
W − tf × σb

σa
(4.4)

4.2.2.2 Failure Model Failure can occur at any point during the execution of the main

or shadow process. Our assumption is that at most one failure occurs, therefore if the main

process fails it is implied that the shadow will complete the task without failure. We can

make this assumption because we know the failure of any one node is rare, thus the failure

of any two specific nodes is very unlikely.

We assume that two probability density functions, fm(tf ) and fs(tf ), exist which express

the probabilities of the main and shadow process failing at time tf , separately. The model

does not assume a specific distribution. However, in the remainder of this section we use an

exponential probability density function, fm(tf ) = fs(tf ) = λe−λtf , of which the mean time

between failures (MTBF) is 1
λ
.

4.2.2.3 Power and Energy Models This work assumes DVFS as the underlying ex-

ecution rate control mechanism. DVFS has been widely exploited as a technique to reduce

CPU dynamic power [106, 56]. It is well known that one can reduce the dynamic CPU

power consumption at least quadratically by reducing the execution rate linearly. The dy-

namic CPU power consumption of a computing node executing at rate σ is given by the

function pd(σ) = σn where n ≥ 2.

In addition to the dynamic power, CPU leakage and other components (memory, disk,

network etc.) all contribute to static power consumption, which is independent of the CPU
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rate. In this thesis we define static power as a fixed fraction of the node power consumed

when executing at maximum rate, referred to as ρ. Hence, node power consumption is

expressed as p(σ) = ρ× σnmax + (1− ρ)× σn. When the execution rate is zero the machine is

in a sleep state, powered off or not assigned as a resource; therefore it will not be consuming

any power, static or dynamic. Throughout this thesis we assume that dynamic power is

cubic in relation to rate [115, 145], therefore the overall system power when executing at

rate σ is defined as:

p(σ) =

ρσ
3
max + (1− ρ)σ3 if σ > 0

0 if σ = 0

(4.5)

Using the power model given by Equation 4.5, the energy consumed by a process exe-

cuting at rate σ during an interval T is given by

E(σ, T ) = p(σ)× T (4.6)

Corresponding to Figure 3, there are three cases to consider: main and shadow both

succeed, shadow fails, and main fails. As described earlier, the case of both the main and

shadow failing is very rare and will be ignored. The expected energy consumption for a

single task is then the weighted average of the energy consumption in the three cases.

First consider the case where no failure occurs and the main process successfully com-

pletes the task at time tmc , corresponding to Figure 3(a).

E1 = (1−
∫ tmc

0

fm(t)dt)× (1−
∫ tmc

0

fs(t)dt)× (E(σm, t
m
c ) + E(σb, t

m
c )) (4.7)

The product of the first two factors is the probability of fault-free execution of the main

process and shadow process. Then we multiple this probability by the energy consumed by

the main and the shadow process during this fault free execution, ending at tmc .

Next, consider the case where the shadow process fails at some point before the main

process successfully completes the task, corresponding to Figure 3(b).

E2 = (1−
∫ tmc

0

fm(t)dt)×
∫ tmc

0

(E(σm, t
m
c ) + E(σb, t))× fs(t)dt (4.8)

The first factor is the probability that the main process does not fail, and the probability

of shadow fails is included in the second factor which also contains the energy consumption
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since it depends on the shadow failure time. Energy consumption comes from the main

process until the completion of the task, and the shadow process before its failure.

The one remaining case to consider is when the main process fails and the shadow process

must continue to process until the task completes, corresponding to Figure 3(c).

E3 = (1−
∫ tmc

0

fs(t)dt)×
∫ tmc

0

(E(σm, t) + E(σb, t) + E(σa, t
s
c − t))fm(t)dt (4.9)

Similarly, the first factor expresses the probability that the shadow process does not fail.

In this case, the shadow process executes from the beginning to tsc when it completes the

task. However, under our “at most one failure” assumption, the period during which shadow

process may fail ends at tmc , since the only reason why shadow process is still in execution

after tmc is that main process has already failed. There are three parts of energy consumption,

including that of main process before main’s failure, that of shadow process before main’s

failure, and that of shadow process after main’s failure, all of which depend on the failure

occurrence time.

The three equations above describe the expected energy consumption by a pair of main

and shadow processes for completing a task under different situations. However, under our

system model it might be the case that those processes that finish early will wait idly and

consume static power if failure delays one task. If it is the case that processes must wait

for all tasks to complete, then this energy needs to be accounted for in our model. The

probability of this is the probability that at least one main process fails, referred to as the

system level failure probability.

Pf = 1− (1−
∫ tmc

0

fm(t)dt)N (4.10)

Hence, we have the fourth equation corresponding to the energy consumed by some processes

while waiting in idle.

E4 =(1−
∫ tmc

0

fm(t)dt)× (1−
∫ tmc

0

fs(t)dt)× Pf × 2E(0, tjc − tmc )

+

∫ tmc

0

fs(t)dt× (1−
∫ tmc

0

fm(t)dt)× Pf × E(0, tjc − tmc )

(4.11)

Corresponding to the first case, neither main process nor shadow process fails, but both of

them have to wait in idle from task completion time tmc to the last task’s completion (by
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a shadow process) with probability Pf . Under the second case, only the main process has

to wait if some other task is delayed since its shadow process has already failed. These two

aspects are accounted in the first and second lines in E4 separately. We use the expected

shadow completion time tjc as an approximation of the latest task completion time which is

also the job completion time.

By summing these four parts and then multiplying it by N we will have the expected

energy consumed by Shadow Replication for completing a job of N tasks.

E[energy] = N × (E1 + E2 + E3 + E4) (4.12)

4.2.2.4 Reward and Expense Reward is the amount paid by customer for the cloud

computing services that they utilize. It depends on the reward function r(t), depicted in

Figure 8, and the actual job completion time. Therefore, the income should be either r(tmc ),

if all main processes can complete without failure, or r∗(tsc) otherwise. It is worth noting that

the reward in case of failure should be calculated based on the last completed task, which

we approximate by calculating the expected time of completion allowing us to derive the ex-

pected reward, i.e. r∗(tsc) =
∫ tmc
0 r(tsc)×fm(t)dt∫ tmc

0 fm(t)dt
. Therefore, the expected reward is approximated

by the following equation.

E[reward] = (1− Pf )× r(tmc ) + Pf × r∗(tsc) (4.13)

The first part is the reward earned by the main process times the probability that all

main processes would complete tasks without failure. If at least one main process fails, that

task would have to be completed by a shadow process. As a result, the second part is the

reward earned by shadow process times the system level failure probability.

If C is the charge expressed as dollars per unit of energy consumption (e.g. kilowatt

hour), then the expected expenditure would be C times the expected energy consumption

for all N tasks:

E[expense] = C × E[energy] (4.14)

However, the expenditure of running the cloud computing service is more than just

energy, and must include hardware, maintenance, and human labor. These costs can be
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accounted for by amortizing these costs into the static power factor, ρ. Because previous

studies have suggested that energy will become a dominant factor [48, 110], we decided to

focus on this challenge and leave other aspects to future work.

Table 2: Symbols used in reward-based optimal Shadow Replication.

Symbols Definition

W Task workload

N Number of tasks

r(t) Reward function

R, P Maximum reward and penalty

tR1 , tR2 Response time thresholds

C Unit price of energy

ρ Static power ratio

tmc , tsc, t
j
c Completion time of main, shadow, and the whole job

fm(), fs() Failure density function of main and shadow

λ Failure rate

Pf System level failure probability

σm, σb, σa rates of main, shadow before and after failure

Based on the above formulation of the optimization problem, the MATLAB Optimization

Toolbox was used to solve the resulting nonlinear optimization problem. The parameters of

this problem are listed in Table 2.
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4.3 PROFIT-AWARE STRETCHED REPLICATION

We compare Shadow Replication to two other replication techniques, traditional replication

and profit-aware stretched replication. Traditional replication requires that the two processes

always execute at the same rate σmax. Unlike traditional replication, Shadow Replication is

dependent upon failure detection, enabling the replica to increase its execution rate upon

failure and maintain the targeted response time, thus maximizing profit. While this is the

case in many computing environments, there are cases where failure detection may not be

possible. To address this limitation, we propose profit-aware stretched replication, whereby

both the main process and the shadow execute independently at stretched rates to meet the

expected response time, without the need for failure detection. In profit-aware stretched

replication, both the main and shadow execute at rate σr, derived by optimizing the profit

model. For both traditional replication and stretched replication, the task completion time

is independent of failure and can be directly calculated as:

tc =
W

σmax
or tc =

W

σr
(4.15)

Since all tasks will have the same completion time, the job completion time would also

be tc. Further, the expected income, which depends on negotiated reward function and job

completion time, is independent of failure:

E[reward] = r(tc) (4.16)

Since both traditional replication and profit-aware stretched replication are special cases

of our Shadow Replication paradigm where σm = σb = σa = σmax or σm = σb = σa = σr

respectively, we can easily derive the expected energy consumption using Equation 4.12 with

E4 fixed at 0 and then compute the expected expense using Equation 4.14.
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4.4 RE-EXECUTION

Contrary to replication, re-execution initially assigns a single process for the execution of a

task. If the original task fails, the process is re-executed. In the Cloud computing execution

framework, this is equivalent to a checkpoint/restart, in which the checkpoint is implicitly

taken at the end of each phase, and because the tasks are loosely coupled they can restart

independently.

Based on the one failure assumption, two cases must be considered to calculate the task

completion time. If no failure occurs, the task completion time is:

tc =
W

σmax
(4.17)

In case of failure, however, the completion time is equal to the sum of the time elapsed

until failure and the time needed for re-execution. Again, we use the expected value t∗f =∫ tc
0 t×fm(t)dt∫ tc
0 fm(t)dt

to approximate the time that successfully completed processes have to spend

waiting for the last one.

Similar to Shadow Replication, the reward for re-execution is the weighted average of

the two cases:

E[reward] = (1− Pf )× r(tc) + Pf × r(tc + t∗f ) (4.18)

For one task, if no failure occurs then the expected energy can be calculated as

E5 = (1−
∫ tc

0

fm(t)dt)× (E(σmax, tc) + Pf × E(0, t∗f )) (4.19)

If failure occurs, however, the expected energy consumption can be calculated as

E6 =

∫ tc

0

(E(σmax, t) + E(σmax, tc))× fm(t)dt (4.20)

Therefore, the expected energy by re-execution for completing a job of N tasks is

E[energy] = N × (E5 + E6) (4.21)
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4.5 EVALUATION

This section evaluates the expected profit of each of the fault tolerance methods discussed

above under different system environments. We have identified 5 important parameters

which affect the expected profit:

• Static power ratio ρ, which determines the portion of power that is unaffected by the

execution rate.

• SLA - The amount of reward, penalty and the required response times.

• N - The total number of tasks.

• MTBF - The reliability of an individual node.

• Workload - The size, W , of each individual task.

Without loss of generality, we normalize σmax to be 1, so that all the rates can be

expressed as a fraction of maximum rate. Accordingly, the task workload W is also adjusted

such that it is equal to the amount of time (in hours) required for a single task, preserving

the ratios expressed in Figure 4.3 and 4.4. The price of energy C is assumed to be 1 unit.

We assume that R in our reward model is linearly proportional to the number of tasks N

and the maximum reward for one task is 3 units, so the total reward for a job is 3×N units.

However, for the analysis we look at the average of expenditure and income on each task by

dividing the total expenditure and income by N . In our basic configuration we assume that

the static power ratio is 0.5, the task size is 1 hour, the node MTBF 5 is years, the number

of tasks is 100000, and the response time thresholds for maximum and minimum rewards

are 1.3 hours and 2.6 hours respectively. Since the maximum power consumption is 1 unit,

the energy needed for the task with one process at maximum rate is also 1 unit.

4.5.1 Sensitivity to Static Power

With various architectures and organizations, servers deployed at different data centers will

have different characteristics in terms of power consumption. The static power ratio is used

to abstract the amount of static power consumed versus dynamic power.
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Table 3: Optimal execution rates for different static power ratio. MTBF=5 years, N=100000,
W=1 hour, tR1=1.3 hours, tR2=2.6 hours.

ρ σm σb σa
0.0 0.77 0.65 1.00

0.1 0.78 0.66 1.00

0.2 0.83 0.66 1.00

0.3 0.84 0.68 1.00

0.4 0.85 0.70 1.00

0.5 0.86 0.72 1.00

0.6 0.87 0.73 1.00

0.7 0.91 0.81 1.00

0.8 1.00 1.00 1.00

0.9 1.00 1.00 1.00

1.0 1.00 1.00 1.00

Table 3 shows how the profit-optimized execution rates of Shadow Replication will change

as static power increases. The execution rates increase to reduce the execution time as static

power ratio increases. Observe that σa is always equal to σmax, which means that after

sensing the failure of the main process, the shadow process should always shift to maximum

rate. This is expected because the optimization will reduce the amount of work done by the

shadow process before failure, resulting in the maximum execution rate after failure, thus

minimizing the amount of repeated work.

The potential profit gains achievable by using profit-aware replication techniques de-

creases as static power increases, as is shown in Figure 9. The reason is that our profit-aware

techniques rely upon the fact that one can reduce energy costs by adjusting the execution

rates. Modern systems have a static power between 40%-70% [20], and it is reasonable to

suspect that this will continue to be the case in the near future. Within this target range,

Shadow Replication can achieve, on average, 19.3% more profit than traditional replication,

8.9% more than profit-aware stretched replication, and 28.8% more than re-execution.
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Figure 9: Profit for different static power ratio. MTBF=5 years, N=100000, W=1 hour,
tR1=1.3 hours, tR2=2.6 hours.

4.5.2 Sensitivity to Response Time

Response time is critical in the negotiation of SLA as customers always expect their tasks

to complete as soon as possible. In this section we show a sensitivity study with respect to

task response time. We vary the first threshold tR1 from the minimum response time tmin

to 1.9tmin, and set the second threshold tR2 to be always 2tR1 . We do not show results for

varying the reward and penalty values of the SLA. The reason is that changing these values

have no effect on the choice of fault tolerance methods because they are all affected in a

similar way.

In Table 4 we see that Shadow Replication adapts the execution rates to take advantage of

the available laxity, reducing its rates as laxity increases. It is clear that Shadow Replication

has two different execution strategies separated by tR1 = 1.4: when time is critical, it uses
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Table 4: Optimal execution rates for different response time threshold. ρ=0.5, MTBF=5
years, N=100000, W=1 hour.

tR1 σm σb σa
1.0 1.00 1.00 1.00

1.1 0.94 0.88 1.00

1.2 0.89 0.79 1.00

1.3 0.86 0.72 1.00

1.4 1.00 0.00 1.00

1.5 1.00 0.00 1.00

1.6 0.84 0.00 1.00

1.7 0.74 0.00 1.00

1.8 0.64 0.00 1.00

1.9 0.64 0.00 1.00

both a main and a shadow from the very beginning to guarantee that task can be completed

on time; when time is not critical, it mimics re-execution and starts its shadow only after a

failure. Also note that as tR1 approaches tmin, the rates of the main process and the shadow

process converge, effectively causing Shadow Replication to mimic traditional replication

when faced with time-critical jobs.

Figure 10 shows the effect that targeted response time has upon the profitability of each

fault tolerance method. Compared to traditional replication, all the other methods increase

their profit as the targeted response time increases, this is expected because each of the

other techniques can make use of increased laxity in time to increase profit. Re-execution

is the most sensitive to the target response time since it fully relies upon time redundancy,

showing that it should only be used when the targeted response time is not stringent. Again,

Shadow Replication always achieves more profit than traditional replication and profit-aware

stretched replication, and the profit gains are 52.8% and 39.0% on average.

4.5.3 Sensitivity to Number of Tasks

The number of tasks has a direct influence upon the system level failure probability because

as the number of tasks increase the probability that failure will occur to at least one task
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Figure 10: Profit for different response time threshold. ρ=0.5, MTBF=5 years, N=100000,
W=1 hour.

increases. Recall that even one failure can hurt the total reward significantly, and keep the

other processes waiting. Thus, Shadow Replication will adjust its execution rates to reduce

the waiting time.

Table 5 is similar to Table 4 in that there are also two execution strategies. When there

are few parallel tasks, shadow replication chooses to execute the main processes at nearly

full rate and keeps the shadow processes dormant. The reason is that it is very likely that all

main processes can finish their tasks successfully, and the need for redundancy is thus less

significant. The other case is when there is a huge number of tasks to execute, the shadow

process would keep running at a slower rate than the main to protect the main as well as

save energy. Since the system level failure probability is already 0.9 when N is 100000, the

rates stay the same when N ≥ 100000.

Figure 11 confirms that for small number of tasks re-execution is more profitable than
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Table 5: Optimal execution rates for different number of tasks. ρ=0.5, MTBF=5 years,
W=1 hour, tR1=1.3 hours, tR2=2.6 hours.

N σm σb σa
100 0.80 0.00 1.00

1,000 0.84 0.00 1.00

10,000 1.00 0.00 1.00

100,000 0.86 0.72 1.00

1,000,000 0.86 0.72 1.00

10,000,000 0.86 0.72 1.00

replication. However, re-execution is not scalable as its profit decreases rapidly after N

reaches 10000. At the same time, traditional replication and profit-aware stretched replica-

tion are not affected by the number of tasks because neither are affected by the system level

failure rate. On average, Shadow Replication achieves 43.5%, 59.3%, and 18.4% more profits

than profit-aware stretched replication, traditional replication and re-execution, respectively.

4.5.4 Sensitivity to Failure Vulnerability

The ratio between task size and node MTBF represents the task’s vulnerability to failure.

Specifically, it is an approximation of the probability that failure occurs during the execution

of the task. In our analysis we found that increasing task size will have the same effect as

reducing node MTBF. Therefore, we analyze these together using the vulnerability to failure,

allowing us to analyze a wider range of system parameters.

As seen in Table 6, when the vulnerability to failure is low the execution rates for the

shadow process is such that no work is done before failure. However, as the vulnerability

increases, the shadow process performs more work before failure. This is analogous to what

we observed as we increased the number of tasks (Table 5). As expected, re-execution is

desired when the vulnerability to failure is low. As always, Shadow Replication can adjust

its execution strategy to maximize the profits, as shown in Figure 12.
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Figure 11: Profit for different number of tasks. ρ=0.5, MTBF=5 years, W=1 hour, tR1=1.3
hours, tR2=2.6 hours.

Table 6: Optimal execution rates for different task size over MTBF. ρ=0.5, N=100000,
tR1=1.3 hours, tR2=2.6 hours.

W/MTBF σm σb σa
2E-10 0.79 0.00 1.00

2E-09 0.79 0.00 1.00

2E-08 0.80 0.00 1.00

2E-07 0.84 0.00 1.00

2E-06 1.00 0.00 1.00

2E-05 0.86 0.72 1.00

2E-04 0.86 0.72 1.00

2E-03 0.86 0.72 1.00
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Figure 12: Profit for different task size over MTBF. ρ=0.5, N=100000, tR1=1.3 hours,
tR2=2.6 hours.

4.5.5 Application Comparison

To compare the potential benefit of Shadow Replication, we evaluate the expected profit of

each resilience technique using three different benchmark applications representing a wide

range of Cloud workloads [117]: Business Intelligence, Bioinformatics and Recommendation

System. The business intelligence benchmark application is a decision support system for a

wholesale supplier. It emphasizes executing business-oriented ad-hoc queries using Apache

Hive. The bioinformatics application performs DNA sequencing, allowing genome analysis on

a wide range of organisms. The recommendation system is similar to those typically found

in e-commerce sites which, based upon browsing habits and history, recommends similar

products.

Using the results of the experiments reported in [117], we derived the time required to
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Table 7: Cloud benchmark applications [117].

Application Processing Rate

Business Intelligence 3.3 (MB/s)

Bioinformatics 6.6 (MB/s)

Recommendation System 13.2 (MB/s)

process data for each application type (Table 7). We assume that these processing rates per

task will not change when scaling the applications to future cloud environments. This is a

reasonable assumption given that map-reduce tasks are loosely coupled and data are widely

distributed, therefore data and task workload will scale linearly.

In Figure 13 we compare the expected profit for each application using each of the

4 resilience techniques. We consider two data sizes expected in future cloud computing

environments, 500TB and 2PB. The figure shows that for business intelligence applications,

Shadow Replication achieves significantly larger profits for both data sizes. This is because

business intelligence applications tend to be I/O intensive, resulting in longer running tasks,

whereas recommendation systems tend to require little I/O, resulting in shorter running

tasks, making re-execution as good as Shadow Replication. Bioinformatics tends to be in

between these two applications, resulting in Shadow Replication performing better when

processing large datasets (2 PB) but not outstanding on smaller datasets (500 TB). The

take-away from this evaluation is that for the shown system parameters, if phase execution

is short, then re-execution performs as well as Shadow Replication. Alternatively, if a phase

is long (20 minutes or greater), then Shadow Replication can be as much as 47.9% more

profitable than re-execution. The previous sensitivity analysis can be used to extrapolate

expected profit for different system parameters.
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Figure 13: Application comparison. ρ=0.5, N=500000, tR1=1.3tmin, tR2=2.6tmin.

4.6 SUMMARY

In this work we focus on the objective of satisfying SLA in Cloud Computing and demonstrate

that Shadow Replication is capable of achieving multi-dimensional QoS goals. To assess

the performance of the Shadow Replication, an analytical framework is developed and an

extensive performance evaluation study is carried out. In this study, system properties that

affect the profitability of fault tolerance methods, namely failure rate, targeted response

time and static power, are identified. The failure rate is affected by the number of tasks

and vulnerability of the task to failure. The targeted response time represents the clients’

desired job completion time. Our performance evaluation shows that in all cases, Shadow

Replication outperforms existing fault tolerance methods. Furthermore, Shadow Replication

will converge to traditional replication when target response time is stringent, and to re-

execution when target response time is relaxed or failure is unlikely.
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5.0 LEAPING SHADOWS

In today’s large-scale HPC systems, an increasing portion of the computing capacity is

wasted due to failures and recoveries. It is expected that future exascale machines, featur-

ing a computing capability of exaFLOPS, will decrease the mean time between failures to

a few hours, making fault tolerance extremely challenging. Enabling Shadow Replication

for resiliency in extreme-scale computing brings about a number of challenges and design

decisions, including the applicability of this concept to a large number of tasks executing in

parallel, the effective way to control shadows’ execution rates, and the runtime mechanisms

and communications support to ensure efficient coordination between a main and its shadow.

Taking into consideration the main characteristics of compute-intensive and highly-

scalable applications, we design a novel fault tolerance model of Leaping Shadows. Leaping

Shadows is a Shadow Replication based model that associates a suite of shadows to each

main process. To achieve fault tolerance, shadows execute simultaneously with the mains,

but on different nodes. Furthermore, to save power, shadows execute at a lower rate than

their associated mains. When a main fails, the corresponding shadow increases its execution

rate to speed up recovery. This chapter focuses on tolerating crash failures under the fail-

stop fault model, whereby a failed process halts and its internal state and memory content

are irretrievably lost. As a consequence, each main process is replicated with one shadow.

A study of tolerating silent failures will be discussed in Chapter 6.

To achieve higher efficiency and better scalability, however, we adopt radically different

methodologies from the Shadow Replication model in the design of Leaping Shadows. In the

original Shadow Replication model, shadows are designed to substitute for their associated

mains when failure occurs. The tight coupling and ensuing fate sharing between a main and

its associated shadow increase the implementation complexity and reduce the efficiency of
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the system to deal with failures. In this new model, we deviate from the original design,

and use each shadow as a “rescuer”, whose role is to restore the associated main to its exact

state before failure.

Instead of using DVFS to achieve the desired execution rates, this work applies collo-

cation to shadow processes for the first time, in order to simultaneously save power and

computing resources. In addition, two issues, divergence and vulnerability, have been iden-

tified that limit Shadow Replication’s effectiveness in large-scale, failure-prone computing

environments. This chapter discusses innovative techniques of leaping and rejuvenation as

the provided solutions, respectively.

5.1 SHADOW COLLOCATION

In HPC, throughput consideration requires that the rate of the main, σm, and the rate of the

shadow after failure, σa, be set to the maximum. The initial execution rate of the shadow,

σb, however, can be derived by balancing the trade-offs between delay and energy. For a

delay-tolerant, energy-stringent application, σb is set to 0, and the shadow starts executing

only upon failure of the main process. For a delay-stringent, energy-tolerant application, the

shadow starts executing at σb = σm to guarantee the completion of the task at the specified

time tm, regardless of when the failure occurs. In addition, a broad spectrum of delay and

energy trade-offs in between can be explored either empirically or by using optimization

frameworks for delay and energy tolerant applications.

To control the shadows’ execution rates, DVFS can be applied while each shadow resides

on one processor exclusively. The effectiveness of DVFS, however, may be markedly limited

by the granularity of voltage control, the number of frequencies available, and the negative

effects on reliability [51, 76, 27, 146]. An alternative is to collocate shadows. We use the

term processor to represent the resource allocation unit (e.g., a CPU core, a multi-core

CPU, or a cluster node), so that our discussion is agnostic to the granularity of the hardware

platform. While each main process occupies a processor, we collocate multiple shadows on

each processor and use time sharing to achieve the desired execution rates.
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To execute an application of M parallel tasks, N = M + S processors are required,

where M is a multiple of S. Each main is allocated one processor (referred to as main

processor), while α = M/S (referred to as collocation ratio) shadows are collocated on a

processor (referred to as shadow processor). The N processors are grouped into S sets, each

of which we call a shadowed set. Each shadowed set contains α main processors and 1 shadow

processor. This has been illustrated in Figure 5.

Contrary to traditional process replication, shadow collocation reduces the number of pro-

cessors required to achieve fault-tolerance, thereby reducing power and energy consumption.

Furthermore, the collocation ratio can be adapted to reflect the propensity of the system to

failure. This flexibility, however, comes at the increased cost of memory requirement at the

shared processor. It is to be noted that this limitation is not intrinsic to Leaping Shadows,

as in-memory checkpoint/restart and multi-level checkpoint/restart also require additional

memory to store checkpoints.

Under Shadow Replication, collocation has an important ramification with respect to

the resilience of the system. Specifically, only one failure can be tolerated in each shadowed

set. If a shadow processor fails, all the shadows in the shadowed set will be lost, although

this does not interrupt the execution of the mains. On the other hand, if a main processor

fails, the associated shadow will be promoted to a new main, and all the other collocated

shadows will be terminated to speed up the new main. Consequently, a failure, either in

main or shadow processor, will result in losing all the shadows in the shadowed set, thereby

losing the tolerance to any other failures. After the first failure, a shadowed set becomes

vulnerable. To address this issue, Leaping Shadows applies rejuvenation, to be discussed in

Section 5.3, to maintain a persistent level of system resilience.

5.2 LEAPING

In the basic form of Shadow Replication, failures can have a significant impact on the per-

formance. Since a shadow executes at a lower rate than its associated main, a computational

divergence will occur between the pair of processes. As shown in Figure 14, the larger this
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Figure 14: Illustration of divergence between a main and its shadow.

divergence, the more time the lagging shadow will need to “catch up” in the case of a fail-

ure, introducing delay to the recovery process. This problem deteriorates as dependencies

incurred by messages and synchronization barriers would propagate the delay of one task

to others. At the same time, divergence has another side-effect in message passing sys-

tems. Specifically, forwarding messages from mains to shadows in a message passing system

will cause undesired message accumulation. Similarly, the message buffer will bear higher

pressure as divergence increases.

Fortunately, the association with the mains provides an unique opportunity for the shad-

ows to benefit from the faster execution of their mains. By copying the state of a main to its

shadow, which is similar to the process of storing a checkpoint in a buddy in [150], forward

progress is achieved for the shadow with minimized time and energy. This technique, re-

ferred to as leaping, effectively limits the divergence between main and shadow. As a result,

there is no need of concern for buffer overflow, and the recovery time after a failure, which
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depends on the divergence between the failing main and its shadow, is also reduced.

While recovery may lead to delay due to divergence, we opportunistically overlap shadow

leaping with failure recovery to avoid extra overhead. Assuming a failure occurrence at time

tf , Figure 15 shows the concept of leaping overlapped with failure recovery. Upon failure of

a main process, its associated shadow speeds up to minimize the impact of failure recovery

on the other tasks’ progress, as illustrated in Figure 15(a). At the same time, as shown in

Figure 15(b), the remaining main processes are blocked at the next synchronization point,

which is assumed to take place shortly after tf . Leaping opportunistically takes advantage

of this idle time to leap forward the shadows, so that all processes, including shadows, can

resume execution from a consistent point afterwards. Leaping increases the shadow’s rate of

progress, at a minimal energy cost. Consequently, it reduces significantly the likelihood of a

shadow falling excessively behind, thereby ensuring fast recovery while minimizing the total

energy consumption. Note that leaping is applicable, whether shadows are collocated or use

DVFS. However, in the case of collocation, the leaping for some shadows could not overlap

with the recovery. This will be further discussed in the next section when we integrate

leaping with rejuvenation.

The main objective of leaping is to ensure forward progress in the presence of failure.

However, later on we have identified that leaping is useful in a variety of scenarios. Corre-

spondingly, we define multiple types of leaping, each of which applies to a particular scenario.

Above mentioned leaping is referred to as failure-induced leaping, as it is triggered by a fail-

ure. As also mentioned above, message buffer pressure increases with divergence in message

passing systems. If failure-induced leaping is not frequent enough, there may be a need to

force a leaping to avoid buffer overflow, thus this type of leaping is referred to as buffer-forced

leaping. Furthermore, in following chapters we will demonstrate that leaping can be used

to achieve forward progress, for both shadow and main processes, in another two scenarios,

resulting in rejuvenation-induced leaping and voting-induced leaping. In all scenarios, leap-

ing always takes place between a main and its associated shadow, and thus does not require

global coordination. The process which provides the leaping state is referred to as the leap-

provider, while the process which receives the leaping state and rolls forward is referred to

as the leap-recipient.
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(a) Faulty task behavior.

(b) Non-faulty task behavior.

Figure 15: Illustration of shadow leaping after a failure.

5.3 REJUVENATION

Another shortcoming of Shadow Replication is that failures can impact the resilience of the

system. Upon failure of a main, the system can only rely on an “orphan” shadow to complete

the task. This is even worse when shadows are collocated. As discussed in Section 5.1, each

shadowed set can only tolerate a single failure. A trivial approach to address this shortcoming

is to associate a “suite” of shadows with each main. Such an approach, however, is resource

wasteful and costly in terms of energy consumption. Instead, Leaping Shadows embraces
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rejuvenation techniques to improve resource efficiency, when a processor on which a failure

occurred can be rebooted to start new processes1.

The main objective of rejuvenation is to enable the system to maintain its intended level

of resilience, in the event of multiple failures. The proposed approach is to use the rescuer

shadow to rejuvenate the failed main. Specifically, while the shadow is executing at a high

rate to reach the state at which the main failed, a new process is launched to replace the failed

main. Furthermore, rather than starting the new process from its initial state, rejuvenation-

induced leaping is invoked to synchronize the new process’ state with that of the recovering

shadow. Similar to leaping, rejuvenation is applicable, in spite of the underlying execution

rate control mechanism. The following discussion focuses on collocation as it represents the

most comprehensive scenario.

Figure 16 illustrates the failure recovery process with rejuvenation, assuming that a main

Mi fails at time T0. In order for its shadow Si to speed up, the shadows collocated with

Si are temporarily suspended. Meanwhile, the failed processor is rebooted and then a new

process is launched for Mi. When, at T1, Si catches up with the state of Mi before its failure,

leaping is performed to advance the new process to the current state of Si.

Because of the failure of Mi, the other mains are blocked at the next synchronization

point, which is assumed to take place shortly after T0. During the idle time, a leaping is

opportunistically performed to transfer state from each living main to its shadow. Therefore,

this leaping has minimal overhead as it overlaps with the recovery, as shown in Figure 16(b).

Figure 16(c) shows that leaping for the shadows collocated with Si are delayed until they

resume execution when the recovery completes at T1. After the leaping finishes at T2, all

mains and shadow resume normal execution, thereby bringing the system back to its original

level of fault tolerance.

Figure 16 and the above description assume that the time for rebooting is no longer

than the recovery time. If the new Mi is not yet ready when Si catches up at T1, however,

two design choices are possible. In the first, Si can assume the role of a main and continue

execution. In the second, Si can wait until the launching of the new Mi is complete. The first

option requires that all non-failed processes update their internal mapping to identify the

1Equivalently, a spare processor can be used for this purpose.
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(a) Faulty task

(b) Non-faulty tasks in different shadowed sets

(c) Non-faulty tasks in the same shadowed set

Figure 16: Recovery and rejuvenation after a main process fails.
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shadow as a new main and continue to correctly receive messages. This not only complicates

the implementation, but also requires expensive global coordination that is detrimental to

scalability. We, therefore, chose the second design option.

The above analysis focuses on rejuvenating a failed main process. Failure of a shadow

can be addressed in a similar manner. Each failure requires a rebooting of the target pro-

cessor to launch replacing process(es), but the only difference is that the leap-provider and

leap-recipient are reversed, i.e., the main process becomes the leap-provider and shadow

becomes the leap-recipient. Collocation makes the rejuvenation of shadow process slightly

more complicated, since a shadow processor failure will impact all the collocated shadows on

that processor. Specifically, if a shadow processor fails, all the shadows in a shadowed set are

lost. To rejuvenate, the failed processor is rebooted and then a new process is launched to

replace each of the failed shadow processes. It is to be noted that all the mains can continue

execution while rebooting the processor. When the newly launched shadows become ready,

rejuvenation-induced leaping is invoked to synchronize every shadow with its main.

5.4 ANALYTICAL MODELS

In the following we develop analytical models to quantify the expected performance of Leap-

ing Shadows, as well as prove the bound on performance loss due to failures. All the analysis

below is under the assumption that there are a total of N processors, and W is the appli-

cation workload. M of the N processors are allocated for main processes, each having a

workload of w = W
M

, and the rest S processors are for the collocated shadow processes. Note

that process replication is a special case of Leaping Shadows where α = 1, so M = S = N
2

and w = 2W
N

.

Section 5.3 discusses rejuvenation to maintain a persistent level of system resilience.

In certain situations, the underlying assumption, that failed processor can be rebooted or

standby processors are available, may not hold. If this is the case, the scheme discussed

in Section 5.3 becomes invalid, and one has to take the risk that a task may lose both

the main and shadow processes, resulting in the entire application being re-executed. To be

conservative and emphasize on the benefits of leaping in our assessment of Leaping Shadows,
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we consider the general case where rejuvenation is not applicable.

5.4.1 Application Fatal Failure Probability

An application has to roll back when all replicas of a task have been lost. We call this

an application fatal failure, which is inevitable even when every process is replicated. In

order to take into account the overhead of rollback in the calculation of completion time and

energy consumption, we first study the probability of application fatal failure. In this work

we assume that once an application fatal failure occurs, execution always rolls back to the

very beginning.

The impact of process replication on application fatal failure has been studied in [25]

and results are presented in terms of Mean Number of Failures To Interrupt (MNFTI),

i.e., the mean number of failures to cause an application fatal failure. Applying the same

methodology, we derive the new MNFTI under collocated Leaping Shadows, as shown in

Table 8. As each shadowed set can tolerate one failure, the results are for different numbers

of shadowed sets (S). Table 8 reveals that the MNFTI almost doubles when the number of

shadowed set increases by a factor of 4. At 220 shadowed sets, the application is expected to

go through 1816 processor failures before observing an interrupt. Note that when processes

are not shadowed, every failure would interrupt the application, i.e., MNFTI=1.

Table 8: Application Mean Number of Failures To Interrupt (MNFTI) when Leaping Shad-
ows is used. Results are independent of α = M

S
.

S 22 24 26 28 210

MNFTI 4.7 8.1 15.2 29.4 57.7

S 212 214 216 218 220

MNFTI 114.4 227.9 454.7 908.5 1816.0

To further quantify the probability of application fatal failure, we use f(t) to denote
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the failure probability density function of each processor, and then F (t) =
∫ t
0
f(τ)dτ is the

probability that a processor fails in the next t time. Since each shadowed set can tolerate

one failure, then the probability that a shadowed set with α main processors and 1 shadow

processor does not fail by time t is the probability of no failure plus the probability of one

failure, i.e.,

Pg =
(

1− F (t)
)α+1

+

(
α + 1

1

)
F (t)×

(
1− F (t)

)α
(5.1)

and the probability that an fatal failure occurs to an application using N processors within

t time is the complement of the probability that none of the shadowed sets fails, i.e.,

Pa = 1− (Pg)
S (5.2)

where S = N
α+1

is the number of shadowed sets. The application fatal failure probability

can then be calculated by using t equal to the expected completion time of the application,

which will be modeled in the next subsection.

5.4.2 Expected Completion Time

There are two types of delay due to failures. If a failure does not lead to an application

fatal failure, the delay corresponds to the catching up of the shadow of the failing main

(see Figure 15(a)). Otherwise, a possibly larger (rollback) delay will be introduced by an

application fatal failure. In the following we consider both delays step by step. First we

discuss the case of k failures without application fatal failure. Should a failure occur during

the recovery of a previous failure, its recovery would overlap with the ongoing recovery. To

study the worst case behavior, we assume failures do not overlap, so that the execution is

split into k + 1 intervals, as illustrated in Figure 17. ∆i (1 ≤ i ≤ k + 1) represents the ith

execution interval, and τi (1 ≤ i ≤ k) is the recovery time after ∆i.

The following theorem expresses the completion time, T kc , as a function of k.

Theorem 1. Assuming that failures do not overlap and no application fatal failure occurs,
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Figure 17: Application progress with shadow catching up delays.

then using Leaping Shadows,

T kc = w + (1− σb)
k∑
i=1

∆i

Proof. Leaping Shadows guarantees that all the shadows reach the same execution point as

the mains (See Figure 15) after a previous recovery, so every recovery time is proportional

to its previous execution interval. That is, τi = ∆i × (1 − σb). According to Figure 17, the

completion time with k failures is T kc =
∑k+1

i=1 ∆i +
∑k

i=1 τi = w + (1− σb)
∑k

i=1 ∆i

Although it may seem that the delay would keep growing with the number of failures, it

turns out to be well bounded, as a benefit of shadow leaping:

Corollary 1.1. The delay induced by failures is bounded by (1− σb)w.

Proof. From above theorem we can see the delay from k failures is (1 − σb)
∑k

i=1 ∆i. It is

straightforward that, for any non-negative integer of k, we have the equation
∑k+1

i=1 ∆i = w.

As a result,
∑k

i=1 ∆i = w −∆k+1 ≤ w. Therefore, (1− σb)
∑k

i=1 ∆i ≤ (1− σb)w.
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Typically, the number of failures to be encountered is stochastic. Given a failure distri-

bution, however, we can calculate the probability for a specific value of k. We assume that

failures do not occur during recovery, so the failure probability of a processor during the

execution can be calculated as Pc = F (w). Then the probability that there are k failures

among the N processors is

P k
s =

(
N

k

)
Pc

k(1− Pc)N−k (5.3)

The following theorem expresses the expected completion time, Ttotal, considering all

possible number of failures.

Theorem 2. Assuming that failures do not overlap, then using Leaping Shadows, Ttotal =

Tc/(1− Pa), where Tc =
∑

i T
i
c · P i

s .

Proof. Without application fatal failure, the completion time considering all possible values

of k can be averaged as Tc =
∑

i T
i
c · P i

s . If an application fatal failure occurs, however, the

application needs to roll back to the beginning. With the probability of rollback calculated

as Pa in Section 5.4.1, the total expected completion time is Ttotal = Tc/(1− Pa).

Process replication is a special case of Leaping Shadows where the collocation ratio for

shadows is 1, so we can apply the above theorem to derive the expected completion time for

process replication, when it uses the same amount of processors:

Corollary 2.1. The expected completion time for process replication is

Ttotal = 2W/N/(1− Pa)

.

Proof. Using process replication, half of the available processors are dedicated to shadows so

that the workload assigned to each task is significantly increased, i.e., w = 2W/N . Different

from cases where α ≥ 2, failures do not incur any delay except for application fatal failures.

As a result, without application fatal failure the completion time under process replication

is constant regardless of the number of failures, i.e., Tc = T kc = w = 2W/N . Finally, the

expected completion time considering the possibility of rollback is Ttotal = Tc/(1 − Pa) =

2W/N/(1− Pa).
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5.4.3 Expected Energy Consumption

Power consumption consists of two parts, dynamic power, pd, which exists only when a

processor is executing, and static power, ps, which is constant as long as the machine is

on. This can be modeled as p = pd + ps. Note that in addition to CPU leakage, other

components, such as memory and disk, also contribute to static power.

For process replication, all processors are running all the time until the application is

complete. Therefore, the expected energy consumption, En, is proportional to the expected

execution time Ttotal:

En = N × p× Ttotal (5.4)

Even using the same amount of processors, Leaping Shadows can save power and energy,

since main processors are idle during the recovery time after each failure, and the shadows can

achieve forward progress through failure-induced leaping. During normal execution, all the

processors consume static power as well as dynamic power. During recovery time, however,

the main processors are idle and consume only static power, while the shadow processors

first perform leaping and then become idle. Altogether, the expected energy consumption

for Leaping Shadows can be modeled as

En = N × ps × Ttotal +N × pd × w + S × pl × Tl. (5.5)

with pl denoting the dynamic power consumption of each processor during leaping and Tl

the expected total time spent on leaping.

Theorem 3. If no subsequent failure happens before the recovery of the previous failure, then

using Leaping Shadows, the upper bound on expected energy consumption is (2N ∗ ps + N ∗

pd + S ∗ pl) ∗ w.

Proof. From Corollary 1.1 we know that the delay is at most (1− σb)w ≤ w, so Ttotal ≤ 2w.

Also, since the leaping time overlaps with the recovery time (delay), Tl ≤ (1 − σb)w ≤ w.

Therefore, En = N ∗ps∗Ttotal+N ∗pd∗w+S ∗pl ∗Tl ≤ N ∗ps∗(2w)+N ∗pd∗w+S ∗pl ∗w =

(2N ∗ ps +N ∗ pd + S ∗ pl) ∗ w.

64



5.5 EVALUATION

Careful analysis of the models above leads us to identify several important factors that

determine the performance. These factors can be classified into three categories, i.e., system,

application, and algorithm. The system category includes static power ratio ρ (ρ = ps/p),

total number of processors N , and MTBF of each processor; the application category is

mainly the total workload, W ; and collocation ratio α in the algorithm category determines

the number of main processors and shadow processors (N = M + S and α = M/S). In this

section, we evaluate each performance metric of Leaping Shadows, with the influence of each

of the factors considered.

5.5.1 Comparison to Checkpoint/restart and Process Replication

We compare with both process replication and checkpoint/restart, assuming the same num-

ber of processors to use. The completion time with checkpoint/restart is calculated with

Daly’s model [36] assuming 10 minutes for both checkpointing and restart. The energy con-

sumption is then derived with Equation 5.4. It is important to point out that we always

assume the same number of processors, so that process replication and Leaping Shadows do

not use extra processors for the replicas.

It is clear from THEOREM 1 that the total recovery delay
∑k

i=1 τi is determined by the

execution time
∑k

i=1 ∆i, independent of the distribution of failures. Therefore, our models

are generic with no assumption about failure probability distribution, and the expectation

of the total delay from all failures is the same as if failures are uniformly distributed [36].

Specifically, ∆i = w/(k + 1), and T kc = w + w ∗ (1 − σb) ∗ k
k+1

. Further, we assume that

each shadow gets a fair share of its processor’s execution rate so that σb = 1
α

. To calculate

Equation 5.5, we assume that the dynamic power during leaping is twice of that during

normal execution, i.e., pl = 2 ∗ pd, and the time for leaping is half of the recovery time, i.e.,

Tl = 0.5 ∗ (Ttotal − w).

The first study uses N = 1 million processors, effectively simulating future extreme-scale

computing environments, and assumes that W = 1 million hours, and static power ratio
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ρ = 0.5. Our results show that at extreme-scale, the expected completion time and energy

consumption of checkpoint/restart are orders of magnitude larger than those of Leaping

Shadows and process replication. Therefore, we choose not to plot a separate graph for

checkpoint/restart.

Figure 18(a) reveals that the most time efficient choice largely depends on MTBF. When

MTBF is high, Leaping Shadows requires less time as more processors are used for main pro-

cesses and less workload is assigned to each process. As MTBF decreases, process replication

outperforms Leaping Shadows as a result of the increased likelihood of rollback for Leaping

Shadows. In terms of energy consumption, Leaping Shadows has much more advantage over

process replication. For MTBF from 2 to 25 years, Leaping Shadows with α = 5 can achieve

9.6-17.1% energy saving, while the saving increases to 13.1- 23.3% for α = 10. The only

exception is when MTBF is extremely low (1 year), Leaping Shadows with α = 10 consumes

more energy because of extended execution time.

5.5.2 Impact of Processor Count

The system scale, measured in number of processors, has a direct impact on the failure rate

seen by the application. To study its impact, we vary N from 10,000 to 1,000,000 with

W scaled proportionally, i.e., W = N . When MTBF is 5 years, the results are shown in

Figure 19. Please note that the time and energy for checkpoint/restart when N = 1, 000, 000

are beyond the scope of the figures, so we mark their values on top of their columns. When

completion time is considered, Figure 19(a) clearly shows that each of the three fault toler-

ance alternatives has its own advantage. Specifically, checkpoint/restart is the best choice

for small systems at the scale of 10,000 processors, Leaping Shadows outperforms others for

systems with 100,000 processors, while process replication has slight advantage over Leaping

Shadows for larger systems. On the other hand, Leaping Shadows wins for all system sizes

when energy consumption is the objective.

When MTBF is changed to 25 years, the performance of checkpoint/restart improves a

lot, due to the reduced frequency of checkpointing and decreased need of restarting. How-

ever, compelled to rollback every time there is a failure, checkpoint/restart is still orders of
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Figure 18: Comparison of time and energy for different processor level MTBF. W = 106

hours, N = 106, ρ = 0.5.

magnitude worse in time and energy than that of the other two approaches. Leaping Shad-

ows benefits much more than process replication from the increased MTBF. As a result,

Leaping Shadows is able to achieve shorter completion time than process replication when

N reaches 1,000,000.
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(a) Expected completion time

(b) Expected energy consumption

Figure 19: Comparison of time and energy for different number of processors. W = N ,
MTBF=5 years, ρ = 0.5.

5.5.3 Impact of Workload

To a large extent, workload determines the time exposed to failures. With other factors being

the same, an application with a larger workload is likely to encounter more failures during its

execution. Hence, it is intuitive that workload would impact the performance comparison.
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Fixing N at 1,000,000, we increase W from 1,000,000 hours to 12,000,000 hours. Figure 20

assumes a MTBF of 25 years and shows both the time and energy. Checkpoint/restart has

the worst performance in all cases. In terms of completion time, process replication is more

efficient when workload reaches 6,000,000 hours. Considering energy consumption, however,

Leaping Shadows is able to achieve the most savings in all cases. When MTBF of 5 years is

used, the difference is that process replication consumes less energy than Leaping Shadows

when W reaches 6,000,000.

5.5.4 Impact of Static Power Ratio

With various architectures and organizations, servers vary in terms of power consumption.

The static power ratio ρ is used to abstract the amount of static power consumed versus

dynamic power. Considering modern systems, we vary ρ from 0.3 to 0.7 and study its effect

on the expected energy consumption. The results for Leaping Shadows with α = 5 are

normalized to that of process replication and shown in Figure 21. The results for other

values of α have similar behavior and thus are not shown. Leaping Shadows achieves more

energy saving when static power ratio is low, since it saves dynamic power but not static

power. When static power ratio is low (ρ = 0.3), Leaping Shadows is able to save 20%-24%

energy for the MTBF of 5 to 25 years. The saving decreases to 5%-11% when ρ reaches 0.7.

5.5.5 Adding Collocation Overhead

Leaping Shadows increases memory requirement2 when multiple shadows are collocated.

Moreover, this may have an impact on the execution rate of the shadows due to cache

contention and context switch. To capture this effect, we re-model the rate of shadows as σb =

1
α1.5 . Figure 22 shows the impact of collocation overhead on expected energy consumption for

Leaping Shadows with α = 5, with all the values normalized to that of process replication.

As expected, energy consumption is penalized because of slowing down of the shadows. It is

surprising, however, that the impact is quite small, with the largest difference being 4.4%.

2Note that this problem is not intrinsic to Leaping Shadows, as in-memory checkpoint/restart also requires
extra memory.

69



(a) Expected completion time

(b) Expected energy consumption

Figure 20: Comparison of time and energy for different workloads. N = 106, MTBF=25
years, ρ = 0.5.

The reason is that failure-induced leaping can take advantage of the recovery time after

each failure and achieve forward progress for shadow processes that fall behind. The results

for other values of α have similar behavior. When α = 10, the largest difference further

decreases to 2.5%.
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Figure 21: Impact of static power ratio on energy consumption. W = 106 hours, N = 106,
α=5. All energies are normalized to that of process replication.
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5.6 SUMMARY

As the scale and complexity of HPC systems continue to increase, both the failure rate and

power consumption are expected to increase dramatically, making it extremely challenging

to deliver the designed performance. Existing fault tolerance methods rely on either time or

hardware redundancy. Neither of them appeals to the next generation of supercomputing,

as the first approach may incur significant delay while the second one constantly wastes over

50% of the system resources.

In this work, we present a comprehensive discussion of the techniques that enable Leaping

Shadows to achieve scalable resilience in future extreme-scale computing systems. In addi-

tion, we develop a series of analytical models to assess its performance in terms of reliability,

completion time, and energy consumption. Through comparison with traditional process

replication and checkpoint/restart, we identify the scenarios where each of the alternatives

should be chosen for best performance.
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6.0 TOLERANCE OF SILENT DATA CORRUPTION

Modern scientific discoveries and business intelligence rely heavily on large-scale simulation

and data analytics. The next generation of parallel applications will require massive comput-

ing capacity to support the execution of predictive models and analysis of massive quantities

of data, with significantly higher resolution and fidelity than what is possible within existing

computing infrastructures. In order to deliver the desired performance of emerging appli-

cations, future HPC and Cloud computing infrastructure is expected to continue to grow

in both scale and complexity, resulting in an urgent need for efficient and scalable fault

tolerance solutions to all kind of causes and symptoms.

A significant body of work targets at improving the scalability of checkpoint/restart,

while also lots of efforts are devoted to making process replication based approaches a viable

alternative. Most of the existing work assumes a fail-stop fault model, such that failures are

detectable by monitoring hardware or network. Silent data corruption (SDC) is yet a another

class of failures. Different from crash failures, SDC may remain undetected and corrupt the

intermediate or final results. It materializes as bit flips in storage (both volatile and non-

volatile memory) or even within processing cores. In modern computers, a single bit flip

in memory can be detected with cyclic redundancy check (CRC) and corrected with error

correction code (ECC). Double bit flips, however, is beyond the hardware fault tolerance

capability in most systems. Meanwhile, even single bit flips in the processor core remain

undetected as only caches feature ECC while register files or even ALUs typically do not [55].

In large-scale production systems, SDC has become a major concern for the user, which

can not only cause data loss, but also has serious impact on the integrity of job outputs,

jeopardizing scientific research or business decisions. SDC is one of the most critical problems

in cloud data processing [142]. As the capacity of and memory and disks grows, the likelihood
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of SDC caused by hardware failures also increases. For example, a hard drive failure resulted

in Facebook temporarily losing over 10% of photos published on their social network [142].

Similarly, SDC due to software bugs also becomes prevalent as the scale of cloud systems

keeps expanding. For example, Amazon Simple Storage Service (S3) once experienced a

data corruption problem caused by a load balancer bug [10]. In HPC systems, SDC is also

attracting more attention. It is reported that, due to the high density of DIMMs, Cray

XT5 at Oak Ridge National Labs encounters double bit flips on a daily basis [61]. Although

previous studies have shown that disk errors and DRAM errors in large-scale production

systems are happening often enough to require attention, little research has been done to

answer to this challenge [55].

This chapter applies the Leaping Shadows model, discussed in Chapter 5, to deal with

SDC in large-scale computing systems. In order to detect and correct SDC, we come up with

a new scheme that equips Leaping Shadows with triple modular redundancy, similar to [55].

This new scheme inherits the adaptivity and power-awareness from Leaping Shadows, and

optimizes a combination of process execution rates to balance the trade-offs among time,

hardware, and power. In the following sections, we first describe a parallel programming

paradigm typically used in compute- and data-intensive applications. Next, we present the

new Leaping Shadows scheme with its execution model. Then we build analytical models to

study its performance and power requirements, and form an optimization framework, which

derive the optimal execution parameters. Lastly, comparative analysis and evaluation results

are given.

6.1 PARALLEL PROGRAMMING PARADIGM

Parallel computing frameworks, such as MPI, MapReduce, and Pregel, have been widely

adopted for large-scale data analytics and simulation. To efficiently handle the sheer amount

of data, and to utilize a cluster of nodes and/or multiple processors within a node, these

frameworks typically arrange a job into hundreds or thousands of tasks scheduled to execute

in parallel. There are two widely adopted approaches to parallelism. In task-parallelism, we
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partition the various tasks carried out in solving the problem among the processors. In data-

parallelism, we partition the data used in solving the problem among the processors, and

each processor carries out more or less similar operations on its part of the data. Despite the

parallelism approach, the parallel processing paradigm is abstracted by the Bulk Synchronous

Parallel (BSP) model [127].

According to the BSP model, there is a set of processors which may follow different

threads of computation, with each processor equipped with fast local memory and inter-

connected by a communication network. A BSP computation proceeds in a series of global

supersteps, which consists of three components:

• Computation: every participating processor may perform local computations, i.e., each

process can only make use of values stored in the local fast memory of the processor.

• Communication: The processes exchange data between themselves to facilitate remote

data storage capabilities.

• Barrier synchronization: When a process reaches this point (the barrier), it waits until

all other processes have reached the same barrier.

Pregel is directly inspired by the BSP model. In MPI programs, whose main body usually

consists of a loop, each iteration could be a BSP superstep. This is also true for iterative

MapReduce applications, in which each superstep includes a map or a reduce phase.

In today’s parallel computing frameworks, re-execution on top of a heartbeat protocol is

mainly used to provide fault tolerance and to deal with staggers. This approach works fine for

system scales such that failures are rare and applications that are delay-tolerant. If failures

are frequent, however, large delay can be incurred since one faulty task or stagger may delay

the whole job execution. In addition, re-execution only handles crash failures. This is not

acceptable for applications with strict response time requirements or applications that are

vulnerable to SDC. In contrast, Leaping Shadows, if applied, will enable these frameworks to

trade-off among multiple objectives, while respecting any hard or soft deadline and handling

both crash failures and SDC.
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6.2 LEAPING SHADOWS EXECUTION MODEL

Different from crash failures which crash a processor, silent data corruption allows a faulty

processor to continue to completion but may silently generate incorrect results. To deal with

f failures, (2f + 1) replicas are needed, and voting is required periodically to detect failure.

For example, when at most 1 silent data corruption could occur, 3 replicas are sufficient to

detect and tolerate the failure. In the following, we will focus on tolerating one silent data

corruption per task.

Compared to traditional replication techniques, Leaping Shadows can deal with silent

data corruption with higher efficiency and less resource requirement. For each task, Leaping

Shadows associates two shadows with each main process. One shadow is designated as the

primary shadow, and its duty is to compare with its associated main at a voting point to

detect SDC. Based on the BSP model, each barrier synchronization is naturally a voting

point. In order to detect failure as soon as possible, the primary shadow executes at the

same rate as its associated main. In addition to a primary shadow, a secondary shadow

is needed to correct a SDC, once occurred, through voting. To save energy, the secondary

shadow executes at a potentially lower rate than the other two replicas, and dynamically

speeds up if failure is detected.

To take advantage of the forward progress of the fast replicas, Leaping Shadows performs

a leaping at every voting point to leap forward the secondary shadow when possible. Specif-

ically, when the main and the primary shadow both arrive at a voting point and they reach

agreement, the results and execution state are copied to the secondary shadow to achieve

forward progress. This is illustrated in Figure 23. Since this leaping is triggered by a voting,

it is referred to as voting-induced leaping. If the main or the primary shadow experiences

a SDC, the failure will be detected at the next voting point. At this time, the secondary

shadow speeds up to reach the specific voting point, and participates in the voting to de-

tect which replica fails. Then a leaping from one correct replica to the failed replica can

rejuvenate the failed one, after which all replicas resume normal execution. Note that the

secondary shadow is only useful when one of the other two replicas fails. If the secondary

shadow fails, it will automatically get rejuvenated by leaping.
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Figure 23: Tolerating SDC by applying Leaping Shadows with triple modular redundancy.

6.3 ANALYTICAL MODELS AND OPTIMIZATION FRAMEWORK

To assess the efficiency of Leaping Shadows to deal with SDC, following subsections develop

analytical models for the expected response time and energy consumption under a failure

distribution. Then using these analytical models, an optimization problem is formulated

to minimize the expected energy consumption of Leaping Shadows under strict deadline

constraint. This not only demonstrates Leaping Shadows’ adaptivity to the desired trade-

off, but also provides a framework with which we can perform comparative performance

analysis to state-of-the-art approaches.

6.3.1 Notations

Let W denote the total workload to process a task. Let N denote the number of BSP

supersteps, which is also the number of voting points. Then each voting interval has a

workload of w = W
N

. Let σmax denote the maximum execution rate. Rmin = W
σmax

is the

minimal response time. Let R = (1 + α)Rmin (0 ≤ α ≤ 1), where α is called laxity factor,
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denote the target response time considering fault tolerance overhead. Let λ denote the

failure rate, and f(t) denote the failure density function. Let E(σ, [t1, t2]) denote the energy

consumption of a replica when executing at rate σ for an interval from t1 to t2. For each

leaping, let Tl denote the time overhead, and El denote the energy cost.

To deal with silent data corruption, the Leaping Shadows model associates two shadows

with the main process for each task. According to the execution model described in above

section, there are three execution rates:

• σm, the execution rate of the main and the primary shadow

• σb, the execution rate of the secondary shadow before a SDC is detected

• σa, the execution rate of the secondary shadow after a SDC is detected

6.3.2 Response Time

Assuming there is at most one silent data corruption per task, two scenarios need to be

considered, i.e., a SDC occurs to the main process or the primary shadow, or neither of

them fails. The failure of the secondary shadow has no impact on the response time, thus is

ignored in the following analysis.

In the first scenario, where no failure occurs, the execution time is determined by the

main process, as tmr = W
σm

. Considering the time for leaping, the total response time is

tmrl = W
σm

+N × Tl.

In the second scenario, where a fast replica fails, the delay is the time for the secondary

shadow to catch up with respect to a voting interval. The time for the main process to

complete a voting interval is tv = w
σm

. The time required by the secondary shadow to

complete the remaining work in the current interval is td = w−tv×σb
σa

. The execution time is

tsr = tmr + td. Considering the time for leaping, the total response time is tsrl = tsr +N × Tl.

6.3.3 Power and Energy Consumption

Dynamic voltage and frequency scaling (DVFS) is assumed in this work to achieve the desired

execution rate of a process. It is well known that one can reduce the dynamic processor

power consumption at least quadratically by reducing the frequency linearly. The dynamic

78



processor power consumption executing at rate σ is given by the function pd(σ) = σn where

n ≥ 2. Throughout this section, we assume that dynamic power is cubic in relation to the

processor frequency.

In addition to the dynamic power, processor leakage and other components (memory,

disk, network etc.) all contribute to static power consumption, which is independent of the

processor frequency. In this section, we define static power as a fixed fraction of the total

power consumed when executing at maximum rate, referred to as ρ. Hence, a processor’s

power consumption is expressed as p(σ) = ρ× σ3
max + (1− ρ)× σ3.

Next we calculate the expected energy consumption for a single task under Leaping

Shadows. Corresponding to the two scenarios in the above response time analysis, the

energy consumption also falls into two cases. If neither of the main process and primary

shadow fails, the energy consumption of the three replicas weighted by its probability is

E1 = (1−
∫ tmr

0

f(t)dt)2 × {2E(σm, [0, t
m
r ]) + E(σb, [0, t

m
r ])} (6.1)

The first factor is the probability that neither of them fails, as
∫ tmr
0
f(t)dt is the probability

that a replica encounters a SDC during task execution. The second factor models the energy

of the three replicas from task start to end, with two replicas executing at rate σm and one

replica executing at σb.

If the main or the primary shadow fails, the energy consumption weighted by its proba-

bility is

E2 =2× (1−
∫ tmr

0

f(t)dt)×
∫ tmr

0

f(t)dt×

{2E(σm, [0, t
m
r ]) + E(σb, [0, t

m
r ]) + 2E(0, [tmr , t

s
r]) + E(σa, [t

m
r , t

s
r]}

(6.2)

The first line calculates the probability that one fast replica fails while the other successfully

completes. In addition to the energy in the first scenario, also accounted is the energy

consumed during the secondary shadow catches up. This energy corresponds to the main

process and the primary shadow idly waiting and the secondary shadow speeding up to reach

the next voting point.

All in all, the total energy consumption is the sum of the above two, plus the energy cost

of leaping, i.e., Etotal = E1 + E2 +N × El.
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6.3.4 Optimization

When applying Leaping Shadows to deal with SDC, an optimization problem formulation is

also needed to derive the optimal execution rates for both the main and shadow processes.

With the generic optimization framework introduced in Chapter 3, we define the optimization

objective as minimizing energy under response time constraint:

min
σm,σb,σa

Etotal(W,N,R, ρ, λ, σmax, Tl, El)

s.t. 0 ≤ σm ≤ σmax

0 ≤ σb ≤ σm

σb ≤ σa ≤ σmax

tsrl ≤ R

(6.3)

The first constraint says the execution rate of the main process and primary shadow

should observe the physical processor limit. The second constraint indicates that the initial

rate of the secondary shadow should not exceed that of the main process and primary shadow.

The third constraint ensures that the secondary shadow could speed up after detecting a

failure. The last constraint guarantees that the deadline is met even in the case of failure.

Same as before, non-linear optimization techniques can be used to solve the above problem,

and the output will be the three optimal execution rates.

6.4 EVALUATION

Using the optimization framework developed above, this section evaluates the performance

of Leaping Shadows by comparing with traditional process replication using triple modular

redundancy [55], under various environments and different application requirements. With

an uniform treatment of the replicas, process replication requires all three replicas execute at

the same rate before and after a failure. In the comparison, however, we also optimize this

single rate for process replication in a way similar to Section 6.3.41, in order to demonstrate

1Process replication is a special case of Leaping Shadows where σm = σb = σa.
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the benefits of the unique design in Leaping Shadows.

After careful analysis of the analytical models, we identify the important parameters of

static power ratio, laxity in deadline, workload, number of voting interval, and leaping cost,

and study the impact of each parameter. With the understanding that failure rate of each

processor will remain more or less the same in the near future, We fix MTBF to be 5 years

for realistic consideration. The comparison results are shown in Figure 24.

Figure 24(a) reveals the energy consumption of the two compared approaches at different

static power ratios, when laxity is 50% and number of voting intervals is 10. When static

power ratio is less than 0.8, both approaches reduces the execution rates to minimize energy.

At 0 static power ratio, Leaping Shadows saves 25.6% energy compared to process replication.

The saving decreases as static power ratio increases, and finally Leaping Shadows converges

to process replication when static power ratio reaches 1. Modern computers has a static

power ratio between 40% and 70% [20]. Within this target range of static power ratio,

Leaping Shadows achieves 12.5% energy savings with respect to process replication.

With 10 voting intervals and 0.3 as the static power ratio, the impact of laxity is illus-

trated in Figure 24(b). When there is no laxity, Leaping Shadows is forced to execute all

three replicas at the maximum rate, which is essentially process replication. As laxity in-

creases, both compared approaches have more room to slow down, thereby reducing energy.

By coupling two fast replicas with a slow one and using leaping to achieve forward progress

for the slow replica, Leaping Shadows always saves 13.5%-16.9% energy compared to process

replication when there is laxity.

One interesting questions is how the number of voting intervals changes the picture.

Without considering the overhead of leaping, intuition tells us that the more voting intervals,

the less effect a failure can have on the total execution time of Leaping Shadows, and thus

the better performance. This is mostly true, according to Figure 24(c). However, the figure

also shows that after the number of voting intervals reaches 5, its impact becomes negligible.

We also study this behavior with static power ratio changed to 0.3, as shown in Figure 24(d).

As a result, both of the two compared approaches are able to reduce energy consumption by

further slowing down. Although the difference between them decreases at a small number

of voting intervals, Leaping Shadows keeps increasing its energy savings with the number of
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(a) Impact of static power ratio. α = 50%, N =
10, W = 100 hours.

(b) Impact of laxity. ρ = 0.3, N = 10, W = 100
hours.

(c) Impact of voting interval. α = 50%, ρ = 0.5,
W = 100 hours.

(d) Impact of voting interval. α = 50%, ρ = 0.3,
W = 100 hours.

(e) Impact of task workload. α = 25%, ρ = 0.5,
N = 10.

(f) Impact of leaping cost. α = 50%, ρ = 0.5,
N = 10, W = 100 hours.

Figure 24: Comparison between Leaping Shadows and process replication for energy con-
sumption under silent data corruption. MTBF=5 years.
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voting intervals, up to 20.

The next parameter studied is the total workload, which determines the failure-free

execution time, and thus the propensity of the task to failures. For Figure 24(e), we vary

the task workload from 1 hour to 1000 hours. Compared to the 5 years’ MTBF, all the

workloads considered are relatively small, thus the failure of a given task is very unlikely.

Therefore, there is only slight change in the energy consumption.

All the above experiments ignore the overhead of leaping. Assuming each time leaping

consumes 1 unit of energy, the last experiment studies the impact of leaping overhead, which

is defined as a fraction of the minimum response time. Figure 24(f) reveals that when the

overhead is below 30%, it has negligible impact. At 40% overhead, Leaping Shadows is

forced to slightly increase its rates, and thus incurs a slightly higher energy consumption.

When overhead is 50%, it essentially offsets the laxity, which is 50%, and leaves no room for

Leaping Shadows to slow down. As a result, all replicas need to execute at the maximum rate

and end up with consuming more energy than process replication, which does not perform

leaping at all.

6.5 SUMMARY

Scientific research and engineering development are increasingly relying on computational

modeling, simulation, and data analytics to augment theoretical analysis. Behind the wheel,

data has become the ultimate driving force that yields insights and propels innovation. With

a torrent of data generated every second from distributed sensors, social media, software logs

and so on, it is critical to analyze and visualize the data in a timely manner, at massively

parallel scale, and with fault tolerance capabilities.

Leaping Shadows is a novel fault-tolerant computational model that unifies HPC and Big

Data analytics. The flexibility within the model allows it to embrace different optimization

techniques in accordance with the underlying workloads, whether compute-intensive or data-

intensive. By designing the execution model of Leaping Shadows in accordance with the

generic Bulk Synchronous Parallel model, Leaping Shadows can be applied to both HPC

83



and Cloud environments, to deal with different types of failures, or multiple types of failures

at the same time.

While previous chapters discuss on tolerance of crash failures, this chapter extends the

Leaping Shadows model and studies the tolerance of silent data corruption. By exploring the

interplay between performance, fault-tolerance, and energy consumption, Leaping Shadows

is predicted to save a significant amount of energy (up to 64.9%) compared to existing fault

tolerance approaches, while respecting strict response time requirements. In the future,

we plan to implement this model and perform intensive empirical evaluation to verify the

accuracy of the analytical models.
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7.0 rsMPI: AN IMPLEMENTATION IN MPI

In a complex system like the supercomputers we have today, the performance of Leaping

Shadows is subject to both the hardware configuration, such as failure detection ability and

the execution rate control mechanism, and software behavior, such as communication pat-

terns and the amount of synchronization. It’s extremely difficult for an analytical framework

to precisely capture every detail of Leaping Shadows when it runs in a real environment.

Therefore, an executable prototype is necessary to prove its validity as well as measure its

actual performance.

As a proof of concept, we implement Leaping Shadows in a runtime library, referred to as

rsMPI1, for Message Passing Interface (MPI), which is the de facto programming paradigm

for HPC. With the understanding that MPI standard keeps evolving to support new features

and semantics, we focus on the most essential aspects and make rsMPI MPI-1 compliant.

Currently, rsMPI focuses on tolerating crash failures and associates one shadow process with

each main process. With the rejuvenation technique introduced in Chapter 5, applying

Leaping Shadows with dual modular redundancy minimizes the hardware and power costs,

while being able to tolerate multiple failures. It is to be noted that, it is straightforward

to extend this implementation to associate two shadows with each main, for the purpose of

dealing with silent failures, as discussed in Chapter 6.

Instead of a full-feature MPI implementation, rsMPI library is designed to be a separate

layer between MPI and user application, and it uses function wrappers on top of the MPI

profiling hooks to intercept every MPI call. This is similar to the rMPI and redMPI im-

plementations [54, 55]. There are three benefits for this choice: 1) we can save tremendous

time and efforts of rebuilding MPI from scratch; 2) we can take advantage of existing MPI

1The source code is available on BitBucket at git@bitbucket.org:Michael870/lsmpi.git
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performance optimization that numerous researches have spent years on, such as leverag-

ing Remote Directory Memory Access (RDMA) and OS bypass [144]; and 3) the library is

portable across all MPI implementations. When linked to an MPI application, rsMPI trans-

parently spawns the shadow processes at the initialization phase, manages the coordination

between main and shadow processes during execution, and guarantees order and consistency

for messages and non-deterministic events.

To avoid the drawbacks of DVFS, current rsMPI applies collocation to achieve the desired

execution rates for the shadows. While each main executes on a separate processor at the

maximum rate for HPC’s throughput consideration, shadows are configured to collocate and

execute at a slower rate based on a user configuration file. According to the user-provided

number of processes and collocation ratio, rsMPI generates an MPI rankfile and provides it

to the MPI runtime to control the process to processor mapping. Note that rsMPI always

maps the main and shadow of a same task onto different nodes. This is required to prevent

a fault on one node from affecting both a main and its associated shadow.

Despite the overview of the rsMPI library above, many challenges lie in efficiently inte-

grating MPI with Leaping Shadows to support fault tolerance with high performance. One

challenge is the preservation of the rich communication semantics in MPI standard. To be

MPI-1 compliant, rsMPI needs to support both blocking and non-blocking point-to-point

communications and blocking collective communications. A second challenge lies in coor-

dination between the main and shadow process, in order to correctly terminate, carry out

leaping, and perform failure recovery. Another challenge is that state consistency between

mains and shadows needs to be maintained at all times. Last but not least, the side effects

of divergence need to be addressed. The following sections discuss solutions to the above

challenges by presenting the rsMPI implementation details.

7.1 FUNCTION WRAPPERS

As illustrated in Figure 25, rsMPI is positioned between the MPI runtime layer and the user

application layer. Externally, rsMPI a library of function wrappers, one for each MPI prim-
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itive. As a result, user applications can be linked to rsMPI without modification to use MPI

functions. When the user application makes an MPI function call, rsMPI library intercepts

this call to enforce the Leaping Shadows logic. Internally, rsMPI uses the original MPI pro-

cedures by interacting with the MPI profiling interface. For example, to hide the existence of

shadows from the user application, rsMPI adds a wrapper for the MPI Comm size() function,

which is to retrieve the number of processes (i.e., MPI ranks) in an MPI communicator. When

the user application calls MPI Comm size(), rsMPI internally calls PMPI Comm size() us-

ing the MPI profiling interface to retrieve a size, counting both mains and shadows. Then

rsMPI returns size/2 to the above application, giving an illusion that the same number of

processes are launched. This is illustrate in Figure 25(b).

(a) Position of the rsMPI library in software stack. (b) Example of MPI Comm size() function call.

Figure 25: rsMPI is inserted between the MPI and application layers to intercept MPI calls
from the above application.

A static mapping between rsMPI ranks and application-visible MPI ranks is maintained

so that each process can retrieve its identity. For example, if the user specifies N ranks
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to launch, rsMPI will automatically translate it into N + N ranks2, with the first N ranks

being the mains, and the next N ranks being their associated shadows in the corresponding

order. By maintaining this main to shadow mapping, rsMPI guarantees that each process,

whether main or shadow, gets its correct execution path. This logic is enforced by wrapping

the MPI Comm rank() function. The wrappers for the MPI communication primitives will

be discussed in the next section, where we introduce the consistency protocols.

7.2 MESSAGE PASSING AND CONSISTENCY

State consistency between mains and shadows is required both during normal execution

and following a failure to leap-forward the shadows. Specifically, rsMPI needs to maintain

sequential consistency so that each shadow sees the same message order and operation results

as its main. Instead of having two parallel replica groups in which main communicates with

main and shadow communicates with shadow [54], we choose to let the mains forward each

message to the shadows. This allows us to speed up a single lagging shadow when a main fails.

At the same time, the shadows are suppressed from sending out messages. As a consequence,

two consistency protocols are explored, as depicted in Figure 26. In the sender-forwarding

protocol, as shown in Figure 26(a), each main sender is responsible for forwarding each

application message to the shadow of the receiver. In the receiver-forwarding protocol, as

shown in Figure 26(b), the main receiver is responsible for forwarding each received message

to its associated shadow. We assume that two copies of the same message are sent in an

atomic manner.

For MPI point-to-point communication routines, we add wrappers to implement the

above consistency protocols. For sending functions, such as MPI Send() and MPI Isend(),

the sender-forwarding protocol requires the main to duplicate the message, while in the

receiver-forwarding protocol the main just does the normal sending. Again, the shadow is

suppressed from sending, in both protocols. For receiving functions, such as MPI Recv() and

MPI Irecv(), the sender-forwarding protocol requires that both the main and the shadow do

2This ignores the ranks for coordinator processes to be discussed later.
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(a) Sender-forwarding protocol. (b) Receiver-forwarding protocol.

Figure 26: Consistency protocols for rsMPI.

one receiving from the main process at the sending side. In the receiver-forwarding protocol,

MPI Recv() is modified such that the main performs a receiving followed by a sending to

forward the message, and the shadow receives from its own main. For MPI Irecv(), it is

slightly different that message forwarding is moved to MPI Test() and MPI Wait(), so that

the message is assured to have arrived.

Collective communications, such as MPI Bcast() and MPI Allreduce(), are also sup-

ported in rsMPI. To prevent the mains from slowing down by the shadows due to the

synchronous semantic of collective communication, rsMPI maintains communicators that

only contain the mains, and calls the original MPI function among the mains to perform a

collective communication. Since the original MPI collective function is used, rsMPI automat-

ically benefits from the optimization that has been put into the collective communications,

such as [135]. To keep the shadows consistent, results, if any, are forwarded from mains to

shadows, so that shadows do not need to perform collective operation.

Assuming that only MPI operations can introduce non-determinism, the SYNC message

shown in Figure 26 is used to enforce consistency when necessary. For example, under the

sender-forwarding protocol MPI ANY SOURCE receiving may result in different message

orders between a main and its shadow. To address this issue, we serialize the receiving of
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MPI ANY SOURCE messages by having the main finish the receiving and then use a SYNC

message to forward the message source to its shadow, which then performs a normal receiving

from the specific source. Other operations, such as MPI Wtime() and MPI Probe(), require

both protocols to use the SYNC messages. Similar to MPI ANY SOURCE receiving, they

are dealt with by forwarding each result from a main to its associated shadow.

Table 9: Comparison between sender-forwarding protocol and receiver-forwarding protocol.
N is the number of application message. D is the number of non-deterministic event. P is
the number of process.

Sender-forwarding Receiver-forwarding

Number of application message 2N 2N

Number of SYNC message D ≤ D

Shadow blocks main Possible Possible

Number of socket connection P 2 P

Communication optimization Hard Easy

From the above analysis, we already see differences between the sender-forwarding proto-

col and the receiver-forwarding protocol. When deployed, they are expected to have further

disparity on the cost and performance. A more detailed comparison is given in Table 9.

If an MPI application sends N messages, both protocols double the number of applica-

tion messages to be sent. Also, in both protocols, a slower shadow may block a faster

main when message is forwarded from the main to the shadow. Therefore, flow control and

buffer management need to be considered (to be discussed in following section). As men-

tioned above, the receiver-forwarding protocol does not need SYNC message in the case of

MPI ANY SOURCE receiving, thus requiring fewer SYNC messages than the number of

non-deterministic event, D. Furthermore, assuming an all-to-all connection of P processes,

the sender-forwarding protocol implies P 2 socket connections between mains and shadows,
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while the receiver-forwarding protocol only requires P connections. Lastly, since each shadow

only communicates with its associated main under the receiver-forwarding protocol, it is eas-

ier to optimize communication via process to processor mapping. For example, a heuristic

may be that each shadow is placed in the same rack as its main, but not on the same node.

Given the advantages of the receiver-forwarding protocol, we focus on this protocol in the

following discussion and performance evaluation.

7.3 COORDINATION BETWEEN MAIN AND SHADOW

To facilitate the correct execution of all processes, rsMPI adds a coordinator process to

each shadowed set. Coordinators do not execute user application code, but just wait for

rsMPI defined control messages. When a control message arrives, the coordinator carries

out a minimal amount of coordination work accordingly. There are three types of control

messages: termination, failure, and leaping. They corresponds to three actions:

• When a main process finishes, the coordinator in the shadowed set forces the associated

shadow process to terminate immediately.

• When a main process fails, the coordinator speeds up the associated shadow by tem-

porarily suspending the other collocated shadows, until the recovery is complete.

• When a main process initiates a failure-induced leaping, the coordinator triggers leaping

at the associated shadow process.

To minimize resource usage, each coordinator is collocated with the shadows in the

shadowed set. A coordinator performs minimal work, as its main task is to simply handle

incoming control messages. As such, the impact of the coordinator on the execution rate of

the collocated shadows is negligible. To separate control messages from data messages, rsMPI

uses a dedicated MPI communicator for the control messages. This Control Communicator

is created by the wrapper of the MPI Init() function. In addition, to ensure fast response

and minimize the number of messages, coordinators also use OS signals to communicate with

their collocated shadows. This is illustrated in Figure 27, assuming a collocation ratio of 2.
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Figure 27: A coordinator is added to each shadowed set. In this example, collocation ratio
is 2 and each shadowed set contains 2 mains and 2 shadows.

7.4 FLOW CONTROL

As discussed in Section 7.2, rsMPI requires that mains forward application messages to

shadows. Since the shadows are scheduled to execute at a slower rate than the mains, an

implication is that a shadow may block a main when a message is forwarded from the main

to the shadow. As a consequence, this may slow down the mains to proceed at the same

rate as the shadows, significantly hurting the performance. This has been confirmed with

our previous implementation where MPI communication is used for the forwarded messages.

In many MPI implementations, two protocols are used for the communication. The eager

protocol, which is used to transfer small messages, pushes the entire message to the receiver

side regardless of the receiver being ready or not. In the rendezvous protocol, which is

used for large messages, the sender is blocked until the receiver posts a matching receive.

In order to prevent the shadows from blocking mains, lots of efforts need to be spent on

tuning the eager threshold and buffer sizes for each application, not to mention that the

eager threshold cannot be increased infinitely3. Due to message forwarding, another issue

is that the divergence mentioned in Chapter 5 will cause messages to accumulate at the

shadow side, eventually leading to buffer overflow if no action is taken. With the previous

implementation, we are not able to monitor or manipulate the buffers, which are managed

3In OpenMPI 1.10, the limit is 160 KB
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Figure 28: A layered architecture for flow control in rsMPI.

by MPI runtime.

To simultaneously addressing these two issues, rsMPI adopts a layered architecture, as

shown in Figure 28, to establish communication channels between mains and shadows with

flow control capability. Under the receiver-forwarding protocol, each pair of main and shadow

only requires one such channel.

At the lowest level, a socket connection to transfer application messages is established be-

tween each main and its associated shadow. When Remote Direct Memory Access (RDMA)

is available, such as on the InfiniBand interconnects, rsMPI uses the rsocket library, which

provides a socket programming interface but internally uses RDMA for communication.

Rather than copying data to the buffers of the operating system, RDMA enables the net-

work adapter to transfer data directly from the main process to its shadow. The zero-copy

networking feature of RDMA considerably reduces latency, thereby enabling fast transfer of

data. When RDMA is not available, rsMPI reverts back to TCP connections.

At each shadow, a circular message queue, referred to as MQ, is implemented to store

the messages that have been sent by main but not yet consumed by shadow. Similar to
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Linux socket buffer or Unix mbuf, MQ consists of two layers. The control layer contains

fixed-length elements, each of which stores the meta-data of a message. The data layer is

the actual buffer where variable-length message contents are stored. The control layer and

data layer are connected via pointers.

At the process level, a helper thread is added to each main and shadow process. The

shadow helper thread is responsible for quickly responding to messages sent by the main

on the socket connection, thus avoiding blocking the main. Every time there is a message,

the shadow helper thread calls socket recv() to receive the message, and then stores it in its

MQ. The main helper thread is mainly used to assist buffer-forced leaping. To avoid buffer

overflow, a threshold is specified for MQ. If the threshold is reached, the shadow helper

thread initiates a buffer-forced leaping, and notifies the corresponding main helper thread

to participate in the leaping at the same time. After the buffer-forced leaping, obsolete

messages in the MQ can be safely clearly. To minimize the impact of the helper threads

on the performance of the compute threads, each helper thread is forced to relinquish CPU

until a message arrives.

7.5 LEAPING

With the focus on dealing with crash failures, three types of leaping are implemented in

rsMPI. To facilitate the following discussion, we summarize each leaping type along with the

leap-provider and leap-recipient information in Table 10.

Checkpoint/restart requires each process to save its execution state, which can be used

later to retrieve the state of the computation. Leaping, in all types, is similar to the check-

pointing process, except that the state is directly transferred between a pair of main and

shadow, thus requiring no additional storage space. To reduce the size of data involved in

saving state, rsMPI uses a similar approach as application-level checkpointing [14, 102], and

requires users to identify necessary data as process state using the following API:

void l e a p r e g i s t e r s t a t e ( void ∗addr , i n t count , MPI Datatype dt ) ;
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Table 10: Leaping types used in rsMPI.

Leaping type Leap-provider Leap-recipient

Failure-induced leaping Main process Shadow process

Buffer-forced leaping Main process Shadow process

Rejuvenation-induced leaping Shadow process Main process

For each data set to be registered, three arguments are needed: a pointer to the mem-

ory address of the data set, the number of data items in the data set, and the datatype.

Application developer could use domain knowledge to identify only necessary state data, or

use compiler techniques to automate this process [19]. Internally, rsMPI uses a linked list to

keep track of all registered data. After each call of leap register state(), rsMPI adds a node

to its internal linked list to record the three parameters. During leaping, the linked list is

traversed to retrieve all registered data as the process state.

MPI communication channels are used in rsMPI to transfer process state. Although

multiple data sets can be registered as a process’ state, only a single message needs to be

transferred, as MPI supports derived datatypes. To isolate state messages from application

messages, rsMPI uses the Control Communicator to transfer process state. By using a

coordinator to synchronize the leaping and relying on MPI messages to rapidly transfer

state, the overhead of leaping is minimized.

To make sure a pair of main and shadow stay consistent after a leaping, not only user-

defined states should be transferred, but also lower level states, such as program counter

and message buffers, need to be correctly updated. Specifically, the leap-recipient needs

to satisfy two requirements: 1) Discard all obsolete messages, if any, after the leaping; 2)

Resume execution at the same point as the leap-provider. We discuss our solutions below,

under the assumption that the application’s main body consists of a loop of iterations, which

is true in most HPC applications.

In failure-induced and buffer-forced leaping, shadow is the leap-recipient. To correctly
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discard all obsolete messages at a shadow without throwing away useful ones, rsMPI requires

every main and shadow maintain a counter for messages consumed. During leaping, the

counter value at the main is transferred to the shadow, so that the latter knows how many

messages to discard. Then the shadow can easily remove the obsolete messages because

messages stored in MQ at the shadow are in the same order as those consumed by the

main. In rejuvenation-induced leaping, the main is the leap-recipient, so there is no obsolete

message to discard.

To resume execution from the same point, we restrict leaping to always occur at specific

points, and use an internal counter to make sure that both the leap-recipient and leap-

provider start leaping from the same point. For example, when a main initiates a failure-

induced leaping, the coordinator will trigger a rsMPI-defined signal handler at the associated

shadow. The signal handler does not carry out leaping, but sets a flag for leaping and receives

from its main a counter value that indicates the leaping point. Only when both the flag is

set and counter value matches will the shadow start leaping. In this way, it is guaranteed

that after leaping the leap-recipient and leap-provider will resume execution from the same

point. To balance the trade-off between implementation overhead and flexibility, we choose

MPI receive operations as the only possible leaping points.

7.6 EVALUATION

We deployed rsMPI on a cluster of 30 nodes (600 cores) for testing and benchmarking. Each

node consists of a 2-way SMPs with Intel Haswell E5-2660 v3 processors of 10 cores per

socket (20 cores per node). Each node is configured with 128 GB of local memory. Nodes

are connected via 56 GB/s FDR InfiniBand. To maximize the computing capacity, we used

up to 20 cores per node.

Benchmarks from the Sandia National Lab Mantevo Project and NAS Parallel Bench-

marks (NPB) are used, and we evaluated rsMPI with various problem sizes and num-

ber of processes. CoMD is a proxy for molecular dynamics application. MiniAero is an

explicit unstructured finite volume code that solves the Navier-Stokes equations. Both
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MiniFE and HPCCG are unstructured implicit finite element codes, but HPCCG uses

MPI ANY SOURCE receive operations and can demonstrate rsMPI’s capability of handling

non-deterministic events. LU, EP, and FT from NPB represent lower-upper Gauss-Seidel

solver, embarrassingly parallel, and fast Fourier Transform, respectively. In addition, we

choose the LULESH benchmark developed at the Lawrence Livermore National Lab, since it

is a widely studied proxy application in DOE co-design efforts for exascale [75]. These appli-

cations cover key simulation workloads and represent both different communication patterns

and computation-to-communication ratios.

We also implemented checkpoint/restart to compare with rsMPI in the presence of fail-

ures. To be optimistic, we chose double in-memory checkpointing that is much more scal-

able than disk-based checkpointing [150]. Same as leaping in rsMPI, our application-level

checkpointing provides an API for process state registration. This API requires the same

parameters, but internally, it allocates extra memory in order to store 2 checkpoints, one

for the local process and one for a remote “buddy” process. Another provided API is check-

point(), which inserts a checkpoint in the application code. For fairness, MPI messages are

used to transfer state between buddies. For both rsMPI and checkpoint/restart, we assume

a 60 seconds rebooting time after a failure. All figures in this section show the average of 5

runs with the standard deviation.

7.6.1 Measurement of Runtime Overhead

While the hardware overhead for rsMPI is straightforward (e.g., collocation ratio of 2 results

in the need for 50% more hardware), the runtime overhead due to the enforced consistency

and coordination depends on applications. To measure this overhead we ran each benchmark

application linked to rsMPI and compared the execution time with the baseline, in which

each application runs with unmodified OpenMPI.

Figure 29 shows the comparison of the execution time for the 8 applications in the

absence of faults. All the experiments are conducted with 256 application-visible processes,

except that LULESH requires the number of processes to be a cube of an integer. When

the baseline uses 256 MPI ranks, rsMPI uses 256 mains together with 256 shadows. The
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Figure 29: Comparison of execution time between baseline and rsMPI. 256 application-visible
processes, except 216 processes for LULESH. Collocation ratio is 2 for rsMPI.

baseline execution time varies from seconds to 15 minutes, so we plotted the time in log-scale.

From the figure we can see that rsMPI has comparable execution time to the baseline for

all applications except FT. The reason for the exception is that FT uses a lot of broadcast,

reduce, and all-to-all communication, and thus is heavily communication-intensive. This is

verified by adding fake computation to the application and we can see an immediate drop

of the overhead to negligible level. We argue that all-to-all communication applications like

FT are not scalable, and as a result, they are not suitable for massively parallel HPC. For all

others, the overhead varies from 0.04% (LULESH) to 2.73% (miniAero). Even for HPCCG,

which uses MPI ANY SOURCE, the overhead is only 0.75%, thanks to the flow control

mechanism deployed in rsMPI. Therefore, we conclude that rsMPI’s runtime overheads are

modest for applications that exhibit a fair communication-to-computation ratio.

7.6.2 Scalability

In addition to measuring the runtime overhead at a fixed process count, we also assessed

the applications’ weak scalability, which measures how the execution time varies with the

number of processes for a fixed problem size per process. Among the eight applications,

HPCCG, CoMD, and miniAero allow us to configure the problem size for weak scaling test.
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(a) HPCCG weak scalability (b) CoMD weak scalability

Figure 30: Weak scalability measurement with number of processes from 1 to 256. Colloca-
tion ratio is 2 for rsMPI. Time is normalized to that of the baseline with 1 process.

The results for miniAero are similar to those of CoMD, so we only show the results for

HPCCG and CoMD in Figure 30.

Comparing between Figure 30(a) and Figure 30(b), it is obvious that HPCCG and CoMD

have different weak scaling characteristics. While the execution time for CoMD increases

by 9.3% from 1 process to 256 processes, the execution time is almost doubled for HPCCG

(1.78X). However, further analysis shows that the execution time increases by 67.4% for

HPCCG from 8 to 16 processes. We suspect that the results are not only affected by the

scalability of the application, but also impacted by other factors, such as cache and memory

contention on the same node, and network interference from other jobs running on the

cluster. Note that each node in the cluster has 20 cores and we always use all the cores of a

node before adding another node. Therefore, it is very likely that the node level contention

leads to the substantial increase in execution time for HPCCG. The results from 16 to 256

processes show that both HPCCG and CoMD are weak scaling applications.

Similar to the results of the previous section, the runtime overhead for rsMPI is modest.

The maximum overhead observed is 1.6% when running CoMD with 256 processes. Exclud-

ing this case, the overhead is always below 1.0%. To predict the overhead at exascale, we

applied curve fitting to derive the correlation between runtime overhead and the number of
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processes. At 220 processes, it is projected that the runtime overhead is 9.4% for CoMD and

4.5% for HPCCG.

7.6.3 Performance under Failures

As one main goal of this work is to achieve fault tolerance, an integrated fault injector

is required to evaluate the effectiveness and efficiency of rsMPI to tolerate failures during

execution. To produce failures in a manner similar to naturally occurring process failures, the

failure injector is designed to be distributed and co-exist with all rsMPI processes. Failure

is injected by sending a specific signal to a randomly picked target process.

We assume that the underlying hardware platform has a Reliability, Availability and

Serviceability (RAS) system that provides failure detection. In our test system, we emulate

the RAS functionality by associating a signal handler with every process. The signal handler

catches failure signals sent from the failure injector, and uses a rsMPI defined failure message

via a dedicated communicator to notify all other processes of the failure4. To detect failure

of another process, rsMPI receiving operation checks for failure messages before performing

the actual receiving. Similar to ULFM [16], a process in rsMPI can only detect failure when

it posts an MPI receive operation.

The first step was to test the effectiveness of leaping. Figure 31 shows the execution time

of HPCCG with a single failure injected at a specific time, measured as a proportion of the

total execution of the application, at an increment of 10%. The execution time is normalized

to that of the failure-free baseline. The blue solid line and red dashed line represent rsMPI

with collocation ratio of 2 and 4, respectively. For simplicity, they are referred to as rsMPI 2

and rsMPI 4 in the following text.

As shown in Figure 31, rsMPI’s execution time increases with the failure occurrence time,

regardless of the collocation ratio. The reason is that recovery time in rsMPI is proportional

to the amount of divergence between mains and shadows, which grows with the execution.

Another factor that determines the divergence is the shadow’s execution rate. The slower

the shadows execute, the faster the divergence grows. As a result, rsMPI 2 can recover faster

4A similar idea has been tested in [52]. By using GDB to intercept OS signals generated after a fault, a
signal handler allows the failing process to continue work before crashing.
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Figure 31: Execution time of HPCCG under rsMPI with a single failure injected at various
time, normalized to that of the failure-free baseline.

than rsMPI 4, and therefore achieves better execution time.

The results in Figure 31 suggests that rsMPI is better suited to environments where

failures are frequent. This stems from the fact that, due to leaping, the divergence between

mains and shadows is eliminated after every failure recovery. As the number of failure

increases, the interval between failures decreases, thereby reducing the recovery time per

failure. To demonstrate the above analysis, we compare rsMPI with checkpoint/restart

under various failure rates. To run the same number of application-visible processes, rsMPI

needs more nodes than checkpoint/restart to host the shadow processes. For fairness, we

take into account the extra hardware cost for rsMPI by defining the weighted execution time:

Tweight = Te × Sp,

where Te is the wall-clock execution time and Sp is the projected speedup. For example,

we measured that the speedup of HPCCG from 128 processes to 256 processes is 1.88, and

rsMPI 2 needs 1.5 times more nodes than checkpoint/restart, so the projected speedup is

1.5× 1.88
2

= 1.41. Similarly, the projected speedup for rsMPI 4 is 1.25× 1.88
2

= 1.17.

In this analysis, we set the checkpointing interval to 0.1T , where T is the total execution

time. To both checkpoint/restart and rsMPI, we randomly inject over T a number of faults,
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(a) Wall-clock execution time (b) Weighted execution time

Figure 32: Comparison between checkpoint/restart and rsMPI with various number of fail-
ures injected to HPCCG. 256 application-visible processes, 10% checkpointing interval.

K, ranging from 1 to 30. This fault rate corresponds to a processor’s MTBF of NT/K,

where N is the number of processors. That is, the processor’s MTBF is proportional to the

total execution time and the number of processors. For example, when using 256 processors

and executing for 1700 seconds, injecting 10 faults corresponds to a processor’s MTBF of

12 hours. However, when using a system of 64, 000 processors and executing over 4 hours,

injecting 10 faults corresponds to a processor’s MTBF of 3 years.

Figure 32 compares checkpoint/restart and rsMPI, based on both wall-clock and weighted

execution time. Ignoring the hardware overhead, Figure 32(a) shows that, in the failure-free

case, checkpoint/restart slightly outperforms rsMPI. As the number of failures increases,

however, rsMPI achieves significantly higher performance than checkpoint/restart. For ex-

ample, when the number of failures is 20, rsMPI 2 saves 33.4% in time compared to check-

point/restart. The saving rises up to 40.8%, when the number of failures is increased to 30.

Compared to checkpoint/restart, rsMPI 4 reduces the execution time by 33.1% and 40.5%,

when the number of failures are 20 and 30, respectively.

Careful analysis of Figure 32(a) reveals that, as the number of failures increases, check-

point/restart and rsMPI exhibit different performance degradation. As expected, the exe-

cution time for checkpoint/restart increases proportionally with the number of failures. For
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rsMPI, however, the increase is sub-linear. This is due to fact that as more failures occur,

the interval between failures is reduced, and as a result, the recovery time per failure is also

reduced. Eventually, the constant rebooting time dominates the recovery overhead. This is

the reason why the execution time of rsMPI 2 and rsMPI 4 tends to converge as the number

of failure increases.

Incorporating hardware overhead, Figure 32(b) compares the weighted execution time

between checkpoint/restart and rsMPI. As expected, checkpoint/restart is better when the

number of failures is small (e.g., 5 failures). When the number of failures increases, however,

checkpoint/restart loses its advantage quickly. At 30 failures, for example, rsMPI 2 and

rsMPI 4 are 16.5% and 30.4% more efficient than checkpoint/restart, respectively. Note

that, when comparing rsMPI 2 and rsMPI 4, the former shows higher performance with

respect to wall-clock execution time, while the latter is better with respect to weighted

execution time.

7.7 SUMMARY

This chapter presents the details of a proof-of-concept implementation of Leaping Shadows

in MPI, referred to as rsMPI. To ensure correct execution while maximizing performance,

rsMPI consists of five building blocks: wrappers for MPI functions, consistency protocols to

maintain sequential consistency and resolve non-determinism, main and shadow coordination

mechanism, flow control algorithm with customized data structure, and an application-level

leaping protocol. Based on shadow collocation, this implementation associates one shadow

process with each main process to tolerate crash failures. By capturing the leaping (in-

clude failure-induced leaping, buffer-forced leaping, and rejuvenation-induced leaping) and

rejuvenation techniques, rsMPI enables MPI applications to tolerate multiple failures with

minimized hardware and power costs.

With rsMPI, extensive experiments have been done to evaluate the performance of the

Leaping Shadows fault tolerance model in real systems. To cover key HPC simulation work-

loads, we use benchmark applications that represent both different communication patterns
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and different computation-to-communication ratios. By comparing with the original Open-

MPI library, we demonstrate that rsMPI has negligible runtime overheads when there is no

failure. Also, we implement and compare to in-memory checkpoint/restart under various

failure rates. Experiment results show that rsMPI has a high potential in outperforming

in-memory checkpoint/restart in both execution time and resource utilization, especially in

failure-prone environments.
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8.0 CONCLUSION

As our reliance on IT continues to increase, the complexity and urgency of the problems our

society will face in the future will increase much faster than are our abilities to understand and

deal with them. Future IT systems are likely to exhibit a level of interconnected complexity

that makes it prone to failure and exceptional behaviors. The high risk of relying on IT

systems that are failure-prone calls for new approaches to enhance their performance and

resiliency to failure.

HPC and Cloud are two ecosystems that are designed for different applications and

with disparate design principles. However, Big data technologies, such as Hadoop, clustered

storage, and data visualization, are now merging with traditional HPC technologies. On

the one hand, an increasing portion of HPC workloads is becoming data intensive. On the

other hand, Big data applications are requiring more and more computing power. As the

boundaries between Cloud and HPC continue to blur, it is clear that there is an urgent

demand for a systematic computational model that adapts to the computing platform and

accommodates the underlying workloads.

This thesis presents Leaping Shadows as a novel fault-tolerant computational model that

unifies HPC and Big Data analytics and scales to future extreme-scale computing systems.

The flexibility in the model allows it to embrace different execution strategies in accordance

with the underlying workloads, whether it is compute-intensive or data-intensive. Leaping

Shadows takes advantage of the unique design in the Shadow Replication model that original

main processes are associated with “lazy” shadows. The differential and dynamic execution

rates control enables Leaping Shadows to achieve fault tolerance with power awareness,

as well as adaptivity to trade-offs among performance, resilience, and energy costs. Fur-

thermore, by incorporating creative optimization techniques, Leaping Shadows is able to
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maintain a consistent level of resilience across high rate and diverse types of failures, with

improved performance and reduced resource requirements.

This thesis systematically studies the viability of Leaping Shadows to enhance system

resilience in emerging extreme-scale, failure-prone computing environments. As a first step,

customized execution dynamics are designed to deal with different types of failures. Then,

analytical models and optimization frameworks are built to derive the optimal process exe-

cution rates, while at the same time multiple mechanisms are explored to effectively achieve

the desired execution rates. To further verify Leaping Shadows and to validate the analytical

models, a prototype implementation is provided in the context of HPC. Empirical evaluation

with various benchmark applications confirms that Leaping Shadows is able to outperform

state-of-the art fault tolerance approaches.

The study of the Leaping Shadows model in this thesis is not meant to be complete.

The flexibility and diversity in the model point to many future directions. In current design

of Leaping Shadows, each main is associated with the same number of shadows. This is

ignorant of the variance in the underlying hardware reliability and above application crit-

icality. Previous studies have shown that failure rates both vary across systems and vary

from node to node within the same system [124, 41]. According to [41], 19% of the nodes

account for 92% of the machine check errors on Blue Waters. At the same time, within a

system processes may have different criticality. For example, in the master-slave execution

model the master process is a single point of failure, making the failure of the master process

much more severe than that of a slave process. In fact, heterogeneous shadowing techniques

can be explored to dynamically harness all available resources to achieve the highest level

of QoS. Within the resource limitation, more shadows would be allocated for more critical

mains or mains that are more likely to fail.

Failure-induced leaping has proven to be critical in reducing the divergence between a

main and its shadow, thus reducing the recovery time for subsequent failures. Consequently,

the time to recover from a failure increases with failure intervals. Based on this observation, a

proactive approach is to “force” leaping when the divergence between a main and its shadow

exceeds a specified threshold. This is analogous to checkpoint/restart in that checkpoints are

periodically taken to minimize the cost of lost work due to a failure. Thus, it is worth studying
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this approach to determine what behavior triggers forced leaping in order to optimize the

average recovery time.

Another future direction is topology-aware process mapping [140]. Process mapping is of

vital importance in Leaping Shadows, since it not only determines the failure isolation degree,

but also impacts communication performance. For the main and shadow(s) of the same task,

we would like to place them far away so that they are unlikely to be victims of a single failure.

On the other hand, placing mains and shadows close to each other tends to minimize message

forwarding cost, especially under the receiver-forwarding protocol. Therefore, a process

mapping algorithm needs to be developed to balance the trade-offs, while considering the

interconnect topology.

In the extreme cases where hardware resources are quite limited, there may be no re-

dundant hardware to support the execution of the shadows. If this is the case, one might

still apply Leaping Shadows with every main collocated with a shadow, which is associated

with a different main. Furthermore, to prevent shadows from taking too much resources and

extensively slowing down the mains, shadows may only be allowed to “steal” CPU cycles

when mains are blocked. It is expected that Leaping Shadows with such collocation should

be able to achieve fault tolerance with comparable performance under the given limitation

on resources. However, it remains a question whether there is an efficient mechanism to pre-

cisely control the CPU sharing while ensuring performance isolation. Also, process mapping

is an important problem to study.

Lastly, the idea of approximate computing can be applied to shadows. Instead of having

shadows as exact replicas of the mains, one can assign a reduced version of the computation

to the shadows or let them process a portion of the input data. Many workloads today, such

as HPC simulation and large-scale machine learning, often have the flexibility in tuning the

fidelity of their results, such as the granularity of a simulation or the precision of convergence.

Energy and performance gains may be achieved, when relaxing the precision constraints in

the case of a failure.
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