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Adolescence is characterized by heightened reward-drive and sensation seeking behavior. 

Current neurodevelopmental theories hypothesize that this behavior is driven by the development 

of the brain’s dopaminergic reward system and a developmental imbalance in the influence of the 

reward system on behavior relative to in cognitive control systems. The striatum is an ideal target 

for investigating these hypotheses because it is a central hub of the dopaminergic reward system, 

receives inputs affective and cognitive control systems, and functions to influence action selection. 

Current evidence for the development of striatal dopaminergic neurobiology during adolescence 

has been limited to animal models of adolescence due to limitations on the available techniques to 

assess striatal dopaminergic neurobiology in vivo in the human adolescent. Studies 1 and 2 of this 

dissertation assess this limitation by assessing a novel tissue property that has been linked multiple 

aspects of striatal dopamine neurobiology: tissue iron. We first use two MRI metrics sensitive to 

tissue iron concentration to investigate age-related differences in striatal tissue iron in a 

developmental sample spanning from adolescence to adulthood (ages 12 – 30) and then conduct a 

combined PET/MRI experiment in an adult sample (ages 18 - 30) to evaluate the relationship 

between striatal tissue iron concentration and indices of dopamine neurobiology. We find age-

related increases in striatal tissue iron throughout adolescence and a positive association between 

an MR metric of tissue iron concentration and a PET metric of dopamine concentration in the 

aspect of the striatum most strongly associated with reward processing, the ventral striatum. 

Finally, study 3 assesses the hypothesis that there is a developmental imbalance between the 
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influence of affective reward systems and cognitive control systems of behavior during 

adolescence by investigating corticostriatal connectivity. Specifically, we identify areas of the 

striatum that integrate corticostriatal projections for brain areas involved affect and cognitive 

control and investigate age-related differences in the balance of these inputs. We find that the 

relative integrity of affective projections, in relation to projections from cognitive control systems, 

decreases with age and is positively associated with an index of reward-driven behavior. 
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1.0 INTRODUCTION 

Adolescence is a unique stage of development occurring between childhood and adulthood, 

starting with the onset of puberty and sexual maturation and spanning the second decade of life. 

This developmental stage has been found to be prominently characterized by heightened reward 

drive (sometimes referred to as incentive motivation), leading to a peak in sensation seeking 

behavior that is evident across cultures and species (see Spear, 2000 for review). Several lines of 

evidence support this model of adolescence. Large-scale self-report studies have found that 

sensation seeking and openness to new experience peak during late adolescence and decrease into 

adulthood (Steinberg 2010; Harden and Tucker-Drob 2011) (McCrae et al. 2002). These findings 

are supported by rodent studies that find that rodents show greater preference for novelty and 

greater exploratory behavior in novel environments during puberty as compared to adult rats 

(Adriani et al. 1998; Stansfield and Kirstein 2006). Increases in sensation seeking are thought to 

play an adaptive role in motivating individuation and specialization during the transition to 

adulthood because they promote the exploration of novel environments, creating a drive to seek 

new and more complex experience (Spear 2000; Steinberg 2008, 2010; Telzer 2016). Experience 

accumulation under novel contexts is critical for shaping and specializing complex behaviors and 

for establishing new social relationships during the transition to adulthood. Indeed, adolescence is 

the period when rodents begin to leave the nest, forage for food, and interact socially with rodents 

outside the family nest (Spear 2000). Though generally adaptive, heightened sensation seeking can 
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lead to a propensity for risk-taking during adolescence that can have maladaptive consequences 

(e.g. substance use, reckless behavior, unprotected sex). These risky behaviors can undermine 

survival during this stage; despite being a period of prime physical health, there is a transient 

increase in mortality rate during adolescence that is related to accidental deaths (e.g. reckless 

driving). Adolescence is also the age of emergence of major psychopathology that is associated 

with impairments in motivation and reward-driven behavior, including mood disorders, substance 

use disorders, and suicide, suggesting that the developmental processes that guide normative 

adolescent increases in reward-driven behavior may also cause adolescents to be vulnerable to 

disease. These public health concerns have led to an impetus to understand the 

neurodevelopmental mechanisms that underlie reward-driven behaviors during adolescence. 

1.1 DUAL SYSTEMS MODELS OF ADOLESCENT NEURODEVELOPMENT 

Developmental cognitive neuroscience models of adolescent development have hypothesized that 

the adolescent behavioral profile is the result of a hyperactive affective system paired with 

immature top-down control of behavior by cognitive control systems (Shulman 2016) (Figure 1). 

These “dual systems” models emphasize the dopaminergic reward system as playing a central role 

in affective processing, motivating reward drive and sensation seeking behavior, while prefrontal 

association cortex plays a role in cognitive control, including goal directed attention and inhibitory 

control of impulsivity. The dual systems models predict that these systems follow different 

developmental trajectories such that there is an imbalance in their functional roles occurring during 

adolescence. Specifically, this developmental imbalance is driven by a hyperactive dopaminergic 

affective system that has a greater relative influence on behavior relative to the top-down 
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frontostriatal inhibitory system, leading to heightened sensation seeking during adolescence. 

Multiple variations of the dual systems model have been proposed and these models have been 

thoroughly reviewed by Shulman et al. (2016). To summarize, these models vary in terms of the 

precise developmental trajectories of these brain systems that give rise to a developmental 

imbalance—a peak vs. curvilinear increase in the affective system and a linear increase vs. 

curvilinear increase in the cognitive control system (Figure 1). At the intersection of these two 

systems is the striatum. The striatum is a central hub of the dopaminergic reward system and also 

receives dense top-down projections from the prefrontal cortex. Thus, the development of the 

striatum and its connectivity with prefrontal cortex has been a central focus of the dual systems 

models of adolescent development. In the following sections, we review human and animal studies 

of striatal development that have motivated the dual systems theoretical models of adolescent 

development. 

 

Figure 1. Dual systems models of adolescent neurodevelopment. 
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1.2 THE STRIATUM 

The striatum, including the caudate, putamen, and nucleus accumbens/ventral striatum (VS), is the 

primary input nucleus to the basal ganglia and is central to core motivational circuitry that has 

been carefully delineated in both animal models (Wise 2002; Haber and Knutson 2010) and in 

adult human neuroimaging studies (Breiter and Rosen 1999; Delgado et al. 2000; McClure et al. 

2004; Patel et al. 2013). The striatum functions to bias action selection based on both incentives 

associated with changing environmental cues and internal goals (Humphries et al. 2006; Houk et 

al. 2007; Harsay et al. 2011; de Wit et al. 2012). The VS in particular is involved in many aspects 

of motivation, including detection of incentives and reward prediction (O’Doherty 2004; Knutson 

and Cooper 2005; Cohen et al. 2010). The role of VS in these functions is facilitated by its rich 

dopamine (DA) innervation. DA is a neurotransmitter that is strongly implicated in reward-driven 

behavior and learning via neuromodulation of the mesolimbic and mesocortical circuits. 

Specifically, DA activity supports reward processing and reinforcement by signaling the reward 

expectancy and value of action outcomes (Clarke et al., 2014; Dreher et al., 2009; Frank, 2005; 

Hariri, 2009; Luciana et al., 2012; Schultz et al., 1997). Of particular relevance for adolescent 

sensation and novelty seeking behavior, DA also biases behavior toward exploration and novelty-

seeking in both humans (Zald et al., 2008) and animal models (Koob et al., 1978; Le Moal and 

Simon, 1991) as well as computational simulations (Humphries et al., 2012). The VS is a hub of 

the mesocorticolimbic DA pathway, receiving dopaminergic inputs from the ventral tegmental 

area (VTA). In addition to rich connectivity with the midbrain DA circuitry, the striatum receives 

dense projections from the cerebral cortex, including cortical brain systems involved in affective 

and cognitive control processes (Alexander et al. 1986; Haber and Knutson 2010; Choi et al. 2012). 

The striatum has long been thought to integrate cortical information within closed, parallel circuits, 
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but more recently human (Verstynen et al. 2012; Verstynen 2014; Jarbo and Verstynen 2015) and 

non-human primate (Averbeck et al. 2014; Choi et al. 2016) studies have shown that areas of the 

striatum receive convergent projections from functionally disparate cortical regions. These 

convergent zones are thought to serve as functional hubs that directly integrate and synchronize 

information to drive basal ganglia action outputs (Haber 2003; Averbeck et al. 2014; Haber 2014). 

Convergent projections from limbic and cognitive control cortical systems into the striatum then 

represent an important neuroanatomical substrate for the integration of affective and executive 

information to influence behavior. Thus, the striatum is an ideal target for investigating both the 

development of affect processing (including VS development and the development of affective 

corticostriatal inputs) and developmental shifts in the relative influence of cortical brain systems 

on behavior. 

1.3 THE DEVELOPMENT OF THE STRIATUM IN ADOLESCENCE 

1.3.1 Dopamine 

Human and animal studies investigating the development of the striatal dopamine system suggest 

a unique neurobiology during adolescence (Spear 2000; Luciana and Collins 2012). The vast 

majority of these studies have focused on animal models, particularly rodents, and these studies 

have been extensively reviewed elsewhere (for Reviews see: (Luciana et al., 2012; Padmanabhan 

and Luna, 2014; Sturman and Moghaddam, 2011; Telzer, 2016; Wahlstrom et al., 2010)). The 

multifaceted and complex nature of the dopamine system has similarly led to a complex picture of 

the development of this system during adolescence, with different indices of DA development (e.g. 
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receptor concentrations, DA innervation, activity) showing different developmental trajectories 

(plateaus vs. peaks) (Figure 2). This complexity has likely contributed to the different 

developmental trajectories of the affective system posited by variations in the dual systems models 

of development. We will synthesize these developmental studies of the adolescent striatal 

dopamine system here. 

Striatal DA concentration increases throughout adolescence until it plateaus into adulthood 

in the rat (Giorgi et al. 1987). A similar pattern is evident for the DA transporter in the striatum 

(Tarazi et al. 1998a; Moll et al. 2000). However, striatal dopamine synthesis (Andersen, Dumont, 

et al. 1997) as well as D1 and D2 receptor concentrations in the caudate and putamen show distinct 

peaks during adolescence (Gelbard et al. 1989; Teicher et al. 1995; Andersen, Rutstein, et al. 1997; 

Tarazi et al. 1998b). Across all age groups, D1 receptor density is greater than D2 receptor density 

(Gelbard et al. 1989; Andersen, Rutstein, et al. 1997). Interestingly, the adult-like medial-to-lateral 

gradient of striatal D2 receptors is established during mid-adolescence, suggesting that the spatial 

organization of D2 receptors, in addition to the quantity, is maturing during adolescence (Teicher 

et al. 1995). 

 Studies of the activity of VTA neurons that project to the ventral striatum also provide a 

complex developmental picture. One study using a rat model found that adolescent VTA neurons 

fired faster during non-burst activity and had longer burst firing patterns than adult animals both 

in-vivo and in-slice (McCutcheon et al. 2009). An important caveat to this study is that these 

recordings were in anesthetized animals (or post-mortem) and thus were not in response to reward 

stimulation (and not recorded in a natural brain state). Further, reductions in basal firing between 

adolescent and adult rodents in this study were likely related to the maturation of VTA inhibitory 

tone, which was greater in adult animals, rather than changes to DA neurons per se. A more recent 
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study recorded VTA activity in awake, behaving rats while they performed a cued reward task. 

This study found that adolescent animals had a diminished VTA response to both reward 

anticipation and reward receipt, despite a similar cue-evoked response, suggesting reduced 

dopaminergic activity in adolescent animals (Kim et al. 2016).  

 

Figure 2. Schematic of rodent studies of striatal dopamine development. 

Schematic representation of developmental trajectories of various aspects of striatal 

neurobiology. Striatal DA concentration (Giorgi et al. 1987) and DAT (Tarazi et al. 1998a; Moll 

et al. 2000) increases throughout adolescence until it plateaus into adulthood. Distinct peaks in 

D1 and D2 receptor concentrations occur in the caudate and putamen (Gelbard et al. 1989; 

Teicher et al. 1995; Andersen, Rutstein, et al. 1997; Tarazi et al. 1998b). This peak is less 

pronounced in the nucleus accumbens (Tarazi 2000, Teicher 1995). 
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1.3.2 Limitations in the ability to study DA system development in vivo during 

adolescence 

These observations from animal models have led to the hypothesis that similar developmental 

processes are unfolding in the adolescent human, informing the inverted “U” trajectories of the 

affective system proposed by dual systems models (Shulman et al. 2016). However, due to 

limitations in methodology available for assessing DA neurobiology in vivo in humans (Wahlstrom 

et al. 2010), direct evidence of DA neurobiology development in the adolescent human is scant: 

One post-mortem study found that striatal DA concentration increases from childhood to 

adolescence when it either plateaus or decreases(Haycock et al. 2003). Post-mortem studies are 

difficult to conduct and modern in-vivo DA imaging techniques like positron emission tomography 

(PET) have limited applicability to pediatric populations. As a result, the field of human 

developmental neuroscience has tried to investigate the development of the striatal DA system 

using indirect indices of striatal maturation, including functional and structural morphometry 

magnetic resonance imaging (MRI). We next review recent findings using these techniques. 

1.3.3 Structure 

Cross-sectional (Sowell et al. 1999, 2002; Koikkalainen et al. 2007; Ostby et al. 2009; Tamnes et 

al. 2009) and longitudinal (Dennison et al. 2013; Tamnes et al. 2013; Mills et al. 2014; Raznahan 

et al. 2014) studies of the development of striatal structural morphometry generally indicate 

decreasing striatal volume throughout adolescence and young-adulthood, particularly in the 

rostral-ventral striatum (Koikkalainen et al. 2007; Raznahan et al. 2014), though one study found 

age-related increases in left nucleus accumbens volume (Dennison et al. 2013). Studies comparing 
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the development of VS and PFC structural morphometry find that both structures continue to 

develop into adulthood (Sowell et al. 2002; Mills et al. 2014; Raznahan et al. 2014), and that striatal 

volume change correlates with volume changes in other nodes of the motivation/limbic circuit, 

including anterior cingulate cortex and orbitofrontal cortex (Walhovd et al. 2014). However, the 

molecular mechanisms that drive these changes and the extent they relate to DA neurobiology are 

unknown. 

1.3.4 Function 

Human fMRI studies of adolescence have focused on reward responses in the striatum. Many 

studies have indicated that adolescents exhibit increased activation of putamen and nucleus 

accumbens in response to rewarding stimuli or in anticipation of the receipt of a reward relative to 

children and adults (Abdolmaleky et al. 2006, Ernst et al. 2005, Galvan et al. 2006, 2007; Geier et 

al. 2010, Padmanabhan 2011, Van Leijenhorst 2010). However, this finding has not been 

consistent as some have shown reduced striatal responses (Bjork et al. 2004, Eshel et al. 2007, 

lamm 2014) and some have found no differences (Krain 2006, telsovich 2014). These 

inconsistencies may be resolved, in part, if these studies are separated into those investigating 

striatal responses to reward anticipation as opposed to reward receipt (Shulman 2016). Whereas 

adolescents consistently show greater responses for reward receipt (Van Leijenhorst 2010, Galvan 

McGlennen 2013, Hoogendam 2013), results for reward anticipation are mixed (Bjork 2007, 

Teslovich 2014, Geier 2010, Padmanabhan 2011). These results collectively indicate that peaks in 

striatal DA from animal models are most closely reflected in human studies by striatal responses 

to reward receipt. However, there may not be direct correspondence between reward-related fMRI 

activation and DA release in the striatum (Lohrenz et al. 2016), making it difficult to interpret 
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these findings. Nevertheless, increased reward response in the nucleus accumbens has been 

associated with a propensity to engage in risky behavior (Galvan et al. 2007), suggesting these 

functional neuroimaging studies may bear on real-world adolescent behavior. 

1.3.5 Iron accumulation 

Adolescence is also a period of rapid striatal tissue-iron (ferritin) accumulation (Hallgren and 

Sourander 1958; Aquino et al. 2009; Wang, Shaffer, et al. 2012). Ferritin, which is distinct from 

blood (heme) iron, is primarily stored in oligodendrocytes where it supports myelin synthesis and 

ATP production (Connor and Menzies 1996; Moos 2002; Todorich et al. 2009), and is also found 

in midbrain and striatal neurons (Drayer et al. 1986). In the striatum, animal models of iron 

deficiency (Erikson et al. 2000) and disease models of restless leg syndrome (Connor et al. 2009a) 

and ADHD (Adisetiyo et al. 2014) indicate that tissue-iron is highly related to the dopamine system 

(Beard and Connor 2003). Animal studies have linked tissue-iron with D2 receptor expression 

(Beard and Connor 2003; Jellen et al. 2013), dopamine transporter levels and function (Erikson et 

al. 2000; Wiesinger et al. 2007), and dopamine neuron excitability (Jellen et al. 2013). Iron is also 

a necessary cofactor in tyrosine hydroxylase, the rate limiting step in dopamine synthesis  (Ramsey 

et al. 1996). Thus, ferritin accumulation during adolescence may support age-related changes in 

the structure and function of striatal DA circuitry. Importantly, tissue iron is paramagnetic and can 

consequently be measured non-invasively using MRI, potentially providing a non-invasive 

window into developmental changes in dopamine circuitry during adolescence. Studies one and 

two of this dissertation investigate the development of tissue-iron concentration across the striatum 

during adolescence and evaluate tissue-iron as a non-invasive indirect indicator of striatal 

dopamine neurobiology. 
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1.3.6 Connectivity 

Concurrent with developmental changes in striatal structural morphometry and reward responses 

are dynamic changes to pathways linking the striatum to prefrontal cortex. Animal and post-

mortem human work provide evidence of increased myelination of cortical to subcortical axons 

and changes in axonal caliber during adolescence (Yakovlev et al. 1967; Benes et al. 1994). Human 

DWI studies of the development of structural striatal connectivity provide evidence of decreased 

radial diffusivity, thought to reflect  myelination, of frontostriatal pathways from childhood to 

adulthood, leading to developmental improvements in inhibitory control (Liston et al. 2006; Asato 

et al. 2010; Simmonds et al. 2014a) and decreases in impulsivity (Peper et al. 2013). However, 

these studies typically also find reductions in axial diffusivity along the primary fiber direction, 

suggesting there may be a more complicated pattern of development. Functional connectivity 

studies show a pattern of increases and decreases in frontostriatal connectivity that tend to be 

determined by the functional differences in the respective cortical and striatal targets. Functional 

connectivity between the ventral striatum and prefrontal areas associated with cognitive control 

(e.g. lateral PFC) tend to show age-related increases in connectivity strength while connections 

with prefrontal areas associated with more affective or limbic functions (e.g. ventral medial and 

orbitofrontal PFC, insula, cingulate) show age related decreases (Porter et al. 2015; van 

Duijvenvoorde et al. 2016). Similarly, a study that compared cortical connections to associative 

striatum (e.g. caudate) with cortical connections with affective striatum (e.g. VS) found that 

associative connections tended to increase with age while affective connections tended to decrease 

(Porter et al. 2015). Another study looking at the development of task-related functional 

connectivity found that striatal connections with lateral PFC also increased with age and correlated 

with improvements in proactive inhibition (Vink et al. 2014). Together these results suggest a 
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complex pattern of frontostriatal development whereby affective and cognitive control pathways 

follow differing developmental trajectories. However developmental changes in the specific 

functional integration of systems involved in limbic and cognitive control functions, and their 

association with reward-driven behavior, have not been probed directly. The third aim of this 

dissertation investigates this question. 

1.4 SUMMARY AND CURRENT STUDIES 

Adolescent sensation seeking is thought to be related to the pronounced development of the 

mesolimbic DA reward system, with particular emphasis on the striatum. Multiple aspects of DA 

neurodevelopment have been mapped out in rodent models of adolescence, including DA receptor 

density, concentration, transporter, and midbrain activity, each following a developmental 

trajectory that highlights adolescence as a unique period of development (peak, plateau, inflection 

point; Figure 2). These studies have led to the hypothesis that similar neurodevelopmental 

processes are occurring in the human. However, limitations on the available techniques to assess 

DA in vivo in the human adolescent have made this difficult. As such, human developmental 

neuroscience has relied on indices of striatal structural and functional development, which, while 

valuable, have little known direct relationships to DA. The first two studies in this dissertation 

address this limitation by proposing new techniques to assess aspects of striatal neuroanatomy that 

have known links to the DA system. Study one uses a novel MR measure, normalized T2*-

weighted imaging (nT2*), sensitive to iron concentration, to measure age-related differences in 

striatal neuroanatomy during adolescence. Results indicate age-related differences in DA circuitry. 

Study two follows up on the findings of study one by using a quantitative measure of brain iron 
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concentration to assess developmental trajectories of iron accumulation and evaluate tissue iron as 

an indirect measure DA neurobiology. These studies jointly address the hypothesis that the striatal 

DA system continues to mature during adolescence in the human and propose tissue iron as an 

indirect indicator of striatal DA that can be measured in vivo in human subjects of all ages. 

The primary hypothesis of the dual systems model of adolescence is that there is a 

developmental imbalance between the influence of affective reward systems and cognitive control 

systems of behavior such that during adolescence the affective system is predominant. 

Corticostriatal circuitry is an ideal system to test this hypothesis as the striatum is an integration 

hub for different cortical systems, including those involved in affective processing and cognitive 

control. Though previous work has characterized developmental increases and decreases in 

cognitive and affective corticostriatal connectivity (respectively), no work has addressed 

developmental changes in the integration of these two systems at the level of the striatum and their 

relation to behavior. The final study of this dissertation addresses this hypothesis by identifying 

areas of the striatum that integrate corticostriatal projections for brain areas involved affect and 

cognitive control and investigating age-related differences in the balance of these inputs. 
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2.0  IN VIVO EVIDENCE OF NEUROPHYSIOLOGICAL MATURATION OF THE 

HUMAN ADOLESCENT STRIATUM 

This chapter is adapted from (Larsen and Luna 2015). 

2.1 INTRODUCTION 

Adolescent behavior is characterized by increases in sensation-seeking that can lead to 

maladaptive risk-taking, resulting in increased likelihood of death or serious injury (Eaton et al. 

2006). Thus, there is an impetus to understand the neurodevelopmental changes in the motivational 

system that may contribute to this behavioral profile. The striatum is of particular interest in this 

context because of its involvement in motivation and reward processing as well as learning, motor 

control, and cognition (Haber & Knutson 2010, McClure et al. 2003, Middleton & Strick 2000, 

Vo et al. 2011).  

 Rodent and non-human primate models provide evidence indicating continued striatal 

synaptogenesis in early adolescence, peaks in dopamine receptor expression and dopamine 

projections from the striatum to prefrontal cortex, and synaptic pruning in late adolescence (Crews 

et al. 2007, Kalsbeek et al. 1988, Rosenberg & Lewis 1995, Tarazi et al. 1998, Teicher et al. 1995). 

This line of evidence has led to the hypothesis that similar neurophysiological changes are 

occurring in adolescent humans (Casey et al. 2008, Spear 2000). Initial functional magnetic 

resonance imaging (fMRI) studies have found compelling evidence suggesting peak sensitivity of 

the adolescent striatum to reward stimuli relative to adults and children (Ernst et al. 2005, Galvan 
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et al. 2006, 2007; Geier et al. 2010, Leijenhorst et al. 2010, Padmanabhan et al. 2011), though this 

finding has not been consistent (Bjork et al. 2004; Eshel et al. 2007) and likely depends on the 

reward context investigated (Crone and Dahl 2012; Hoogendam et al. 2013) For example, recent 

work has suggested that striatal reactivity to reward anticipation increases into adulthood while 

reactivity to reward receipt decreases (Hoogendam et al. 2013). Currently there is a lack of in vivo 

measures with which to assess age-related differences in human striatal neurophysiology which 

limits our ability to understand neural mechanisms underlying differences in adolescent striatal 

function. Understanding the development of striatal neurophysiology is of particular significance 

given that abnormal striatal neurophysiology and function are implicated in a range of 

neuropsychological disorders that emerge during childhood and adolescence (Bradshaw & 

Sheppard 2000, Chambers et al. 2003). An improved understanding of normative 

neurophysiological maturation of the striatum can thus inform models of normal and abnormal 

adolescent behavior. 

 Tissue-iron concentration is predominant in the striatum (Haacke et al. 2005, Schenck 

2003) and has been found to support dopamine D2 receptor and dopamine transporter (DAT) 

densities in studies of iron deficiency, ADHD, and restless leg syndrome, which are related to 

abnormalities in DA processing, (Erikson et al. 2000; Wiesinger et al. 2007; Connor et al. 2009; 

Adisetiyo et al. 2014), as well as the function and regulation of dopamine neurons (Beard 2003, 

Jellen et al. 2013). As such, differences in striatal tissue iron concentration, which can be measured 

using MRI, can potentially serve as an indicator of dopaminergic differences in adolescence. 

Tissue-iron is paramagnetic and thus strongly influences the T2*-weighted MRI signal 

(Langkammer et al. 2010, 2012; Schenck 2003), which can be non-invasively collected in vivo 

throughout the lifespan (Aquino et al. 2009, Haacke et al. 2005, Wang et al. 2012). The influence 
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of iron on the T2* signal has been used to quantify iron in a variety of MR measures, including 

susceptibility weighted imaging (SWI) (Haacke et al. 2004), R2* (Haacke et al. 2010), and R2' 

(Sedlacik et al. 2014). In this study, we make use of a large of T2*-weighted echo-planar imaging 

(EPI) dataset, most akin to SWI. Initial studies have used similar data in conjunction with 

multivariate pattern analysis to investigate the striatal processes underlying learning (Vo et al. 

2011). 

 Here we use T2*-weighted EPI (T2*) to characterize age-related differences in the 

neurophysiology of the human adolescent striatum in vivo using a multivariate pattern analysis 

approach. Specifically we use spatial patterns of striatal T2* to generate highly significant age 

predictions from both task-related and resting state T2*-weighted EPI (fMRI) acquisitions, 

demonstrating the strong and robust relationship between this measure and development. 

Furthermore, we identify the ventral striatum, a central hub of dopamine reward pathways 

hypothesized to underlie adolescent risk-taking (Blum et al. 2000, Casey et al. 2008, Spear 2000), 

as a critical component of adolescent striatal maturation. This work highlights the dynamic nature 

of normative adolescent striatal development, informing models of the maturation of motivational 

systems during adolescence. 

2.2 MATERIALS AND METHODS 

2.2.1 Sample 

One hundred sixty adolescents and young adults participated in this study (ages 10-25, M = 16.56, 

SD = 3.62). Eighteen participants were excluded due to excess head movement (described below), 
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yielding a final sample of 142 (ages 10-25, M = 16.41, SD = 3.71, 71 male). A subset of these 

were also included in a replication analysis using resting-state data (described below). All subjects 

had medical histories that revealed no neurological disease, brain injury, and no history of personal 

or first-degree relative with major psychiatric illness. All experimental procedures in this study 

complied with the Code of Ethics of the World Medical Association (1964 Declaration of Helsinki) 

and the Institutional Review Board at the University of Pittsburgh. Participants were paid for their 

participation in the study. These data were initially collected for a project investigating reward 

processing and resting state functional connectivity and subsets of this dataset were included in 

previously published studies of resting state network development (Hwang et al. 2013) and 

incentive processing (Paulsen et al. 2014). 

2.2.2 Imaging procedure  

Imaging data were collected using a 3.0 Tesla Trio (Siemens) scanner at the Magnetic Resonance 

Research Center (MRRC), Presbyterian University Hospital, Pittsburgh, PA. The acquisition 

parameters were: TR = 1.5 sec; TE = 25 ms; flip angle = 70 degrees; single shot; full k-space; 64 

x 64 acquisition matrix with FOV = 20 x 20 cm. Twenty-nine 4 mm-thick axial slices with no gap 

were collected, aligned to the anterior and posterior commissure (AC-PC line), generating 3.125 

x 3.125 x 4 mm voxels, which covered the entire cortex and most of the cerebellum. We collected 

four runs of 302 TRs during the antisaccade task (4 x 302 = 1208) and one run of 200 TRs during 

the resting-state scan. A three-dimensional volume magnetization prepared rapid acquisition 

gradient echo (MPRAGE) pulse sequence with 192 slices (1 mm slice thickness) was used to 

acquire the structural images in the sagittal plane. 
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 T2*-weighted data were collected as part of a separate study investigating reward 

processing. Briefly, subjects participated in a reward modulated antisaccade task, in which they 

were instructed to make saccades to the mirror locations of peripherally presented stimuli. At the 

start of each trial, subjects were presented with either a reward, loss, or neutral cue that indicated 

the possibility of reward dependent on performance. Performance was evaluated using eye-

tracking and participants received auditory feedback for correct and incorrect trials. 

2.2.3 Resting-state Dataset 

One hundred subjects also participated in a resting state scan. Eleven were excluded due to motion 

artifacts and thus 89 subjects were included in this analysis (ages 10-25, M = 16.2, SD = 3.77; 43 

male). We collected a 5-min (200 volumes) resting-state scan for each subject using the same scan 

parameters listed above. During the resting-state scan, participants were asked to close their eyes, 

relax, but not fall asleep. 

2.2.4 Preprocessing of T2*-weighted Data 

All preprocessing was done using FMRIB Software Library (FSL; Smith et al. 2004) and the 

Analysis of Functional Neuro Images (AFNI) software package (Cox 1996). Initial preprocessing 

steps are similar to those used in conventional fMRI. T2*-weighted data was initially de-spiked 

and slice time corrected to account for sequential acquisition. To address motion, we used 

rotational and translational head motion estimates to calculate root mean square (RMS) movement 

measures, and participants with relative RMS greater than a stringent threshold of 0.3mm for more 

than 15% of volumes in a run were excluded from further analysis. For the remaining subjects, we 



 19 

applied motion correction by aligning each volume in the time series to the volume obtained in the 

middle of the acquisition. Each participant's T2*-weighted data was linearly registered to the 

MPRAGE using FSL's FLIRT utility and then the MPRAGE image was nonlinearly registered 

into MNI (Montreal Neurological Institute) space using FSL's FNIRT utility. The concatenation 

of the linear registration from EPI to MPRAGE and the nonlinear registration from MPRAGE into 

MNI space was then applied to all EPI images for each participant. Volumes were high-pass 

filtered at .008hz . Data were not smoothed so as not to perturb voxel-wise patterns for the 

subsequent MVPA analysis. Smoothing can potentially bias the performance of linear support 

vector machines (Misaki et al. 2013). Resting-state and task-related data were processed separately 

using identical procedures. 

2.2.4.1  Normalization and averaging 

Commonly, T2*-weighted EPI data are analyzed across time, quantifying small fluctuations in the 

T2*-weighted signal related to the blood-oxygen-level dependent (BOLD) response. We wish to 

emphasize that in this study, we are not interested in these small BOLD fluctuations. Rather, we 

are interested in the properties of the T2*-weighted signal which do not change with time and are 

reflective of persistent neurophysiological properties of brain tissue. Thus, the preprocessing 

stream diverges from that of conventional BOLD analysis at this point. Procedures for processing 

our T2*-weighted images closely followed Vo et al. (2011).  Each volume was first normalized to 

its own mean, and the normalized signal was then averaged, voxel-wise, across all four runs (1208 

volumes) of the task acquisition. This process resulted in one normalized T2*-weighted image for 

each participant. Resting-state data were analyzed separately and were averaged across all 200 

volumes from the five minute acquisition. The normalization step is necessary because the T2*-

weighted signal alone is sensitive to potential differences between MRI scans--either within 
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subjects across time or between subjects--that can lead to shifts in T2*-weighted signal intensity. 

Normalization thus allows for comparison of T2* values across participants. Though T2* signal 

could be calculated from a single volume, we averaged across volumes to enhance the signal to 

noise ratio.  

2.2.5 Identification of striatal regions 

We anatomically identified the putamen, caudate, and nucleus accumbens according to brain 

atlases included in the AFNI software package. Region masks were made more conservative by 

removing any voxels likely to contain cerebrospinal fluid (CSF). CSF was parcellated using FSL’s 

FAST segmentation, and voxels that had an average subject-wise probability greater than .15 of 

being CSF were removed from anatomically defined regions. 

2.2.6 Univariate analysis 

We first applied a traditional univariate analysis to assess mean level developmental differences 

in striatal T2*. For each subject, we computed the spatial mean T2*-weighted signal intensity 

across voxels within an anatomically defined region and analyzed the relationship between spatial 

means and chronological age. Specifically, we regressed age on mean T2* values using simple 

regression and computed the Pearson correlation between the fitted values of age and the true ages 

of subjects within each region of interest. 
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2.2.7 Multivariate pattern analysis 

It is well established that the striatum and its subregions (caudate, putamen) are not spatially 

homologous in function, connectivity, or neurobiology (Middleton and Strick 2000; Martinez et 

al. 2003; Postuma and Dagher 2006; Cohen et al. 2009). Further, the structural development of the 

striatum progresses in a spatially non-uniform fashion (Raznahan et al. 2014). Therefore, the 

development of underlying striatal neurophysiology, including tissue-iron concentration, is likely 

also non-uniform. Thus, we hypothesized that age-related differences in striatal T2* would be 

better captured by a more sensitive, multivariate approach. To analyze the relationship between 

fine-grained patterns of T2* intensity and age, we applied multivariate linear support vector 

machine regression (SVR) in MATLAB (The MathWorks, Inc., Natick, Massachusetts, USA) 

using LIBSVM (Chang, Chih-Chung & Lin, Chih-Jen 2011). Support vector regression has 

become a popular analysis tool in neuroimaging studies due to its ability to handle high-

dimensional datasets and generate accurate predictions (Misaki et al. 2010). The multivariate 

approach allows for the assessment of changes in voxel-wise patterns of T2* in the striatum that 

relate to age. Importantly, this analysis has advantages over conventional averaged region of 

interest univariate analyses in that it is sensitive to potential spatial heterogeneity of developmental 

T2* trajectories across the striatum that are not captured by a mass spatial average. Of particular 

relevance to this study, SVR was previously used by Vo et al. (Vo et al. 2011) to predict learning 

success from spatial patterns of striatal T2*, and by Dosenbach et al. (2010) to predict age from 

patterns of resting-state functional connectivity. Support vector machines have been described in 

detail from both a practical (Luts et al. 2010, Pereira et al. 2009) and detailed mathematical point 

of view (Burges, Christopher J.C. 1998, Chih-Wei et al. 2003, Vapnik 1999), and will only be 

described briefly here. 
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 Linear support vector regression is an extension of support vector classification that allows 

for the association of feature patterns with a real-valued variable, thus allowing for real-valued 

predictions. Samples (data points) with real-valued labels are represented in a high-dimensional 

space with dimensions equal to the amount of features of a variable of interest. SVR defines a 

regression line through the high-dimensional feature space that optimally models the functional 

relationship between the features of a variable, x (e.g. voxel-wise T2* values in a region of 

interest), and the real-valued labels of a variable, y (e.g. the age of a subject). Samples are penalized 

in proportion to their distance from the regression line. We applied epsilon insensitive SVR which 

defines a tube around the regression line with width controlled by the parameter, epsilon, inside of 

which samples incur no penalty. The trade-off between the degree to which samples that fall 

outside the epsilon insensitive tube are penalized and the flatness of the regression line is controlled 

by the constant, C. As the value of C increases, the regression line is allowed to be less flat, which 

can increase the generalizability of the model.  

 We trained and validated our SVR model across subjects (one set of voxel-wise T2* values 

and one age label per subject) using leave-one-subject-out (LOSO) cross-validation. LOSO is an 

iterative process in which one subject's data is used for validation while the other n-1 subjects are 

used for training. An age prediction is generated for the left out sample based on voxel-wise T2* 

values alone, and the process is repeated until every subject has been used for validation. This 

results in one age prediction for each subject, and the performance of the SVR model can be 

determined by the correlation between true subject ages and those predicted by the model. The 

parameter C was optimized for each fold of LOSO cross-validation using nested LOSO cross-

validation. We used the default value of epsilon from the LIBSVM toolbox of 0.001. The SVR 

analysis was repeated for resting-state T2* data. All p-values were confirmed via random 
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permutation significance tests (1000 iterations). We chose the LOSO rather than other methods of 

cross-validation in order to maximize the amount of training data used in each cross-validation 

iteration, and though our sample size is large, the number of subjects in the sample was often less 

than the number of features included in the SVR model. 

2.2.7.1  Partial volume correction 

To ensure that multivariate age predictions were not simply reflecting potential systematic 

differences in T2* arising from partial volume effects, we used FSL’s FAST tissue segmentation 

tool to create probability masks of white and gray matter from participants’ T1-weighted images. 

We then regressed gray matter probabilities out of the T2* measure across subjects for each voxel 

and repeated the SVR analysis using the corrected data. In addition to controlling for systematic 

differences in partial voluming, this process orthogonalized age-related differences in T2* values 

with respect to potential differences in striatal volume and nonlinear spatial normalization. 

2.2.7.2  Pattern characterization 

To characterize the spatial patterns of striatal T2* and their trajectory with age, we estimated the 

developmental trajectory of T2* by regressing age on T2* signal using linear, quadratic, and 

inverse regression models for each striatal voxel used in the SVR analysis. To quantify the relative 

contribution of components (voxels) of the spatial patterns of T2*, we computed the absolute value 

of the average feature weight for each striatal voxel used in the SVR analysis across all folds of 

LOSO cross-validation.  
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2.2.8 Searchlight analysis 

To explore the relationship between T2* intensity and age beyond our a priori striatal regions, we 

performed a whole-brain searchlight analysis (Kriegeskorte et al., 2006). To conduct the analysis, 

we defined a spherical template with a diameter of 5 voxels (81 voxels total), centered the template 

on each brain voxel in turn, and performed the SVR analysis described above on the 81 voxels in 

the template. Only voxels included in a conjunction brain mask were included in this analysis. The 

correlation between true and predicted age at each template location was stored at the center voxel. 

By repeating this process for each voxel, we obtained a whole-brain mask of correlations. The 

locations of voxel clusters were estimated using atlases included in AFNI. 

2.3 RESULTS 

2.3.1 Univariate analysis 

The spatial mean of T2* across all voxels in the striatum was not significantly related to age (r = 

0.02), with the model accounting for on 0.0004% of variance in the sample. When we segmented 

the striatum into the caudate, putamen, and nucleus accumbens and repeated the analysis, we found 

that the information carried in mean T2* was sufficient to generate significant age predictions in 

the caudate (r = 0.286, p < 0.001) and putamen (r = 0.182, p < 0.05), and was particularly predictive 

in the nucleus accumbens (r = 0.506, p < 10-9, Figure 3A, white bars). However, functional and 

neurobiological subdivisions of the striatum exist at a finer scale than can be captured by spatial 

mean level analysis (Martinez et al. 2003; Postuma and Dagher 2006; Cohen et al. 2009). 
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Therefore, we hypothesized that developmental differences in striatal T2* would be better captured 

using a more sensitive, multivariate approach. 

2.3.2 Multivariate pattern analysis 

Multivariate patterns of T2* signal produced highly significant age predictions in all striatal 

regions (Figure 3A, black bars), indicating a strong relationship between this measure and 

adolescent development. The greatest correlation between predicted age and true participant age 

was observed in the whole striatum (combined caudate, putamen, and nucleus accumbens), where 

T2* patterns accounted for 63% of variance in participant age (r = .79, p < 10-30; permutation 

test: p < .001, Figure 3B). 

 Striatal gray matter volume varies with age over adolescence (Raznahan et al. 2014, Sowell 

et al. 1999). To ensure that multivariate age predictions were not reflecting systematic partial 

volume differences arising from changing striatal volume or artifacts of spatial normalization, we 

repeated the SVR analysis controlling for voxel-wise differences in gray-matter volume. We found 

no significant difference in model performance using volume controlled data (Figure 15;0). 

 The T2* signal reflects persistent neurophysiological tissue properties (Vo et al. 2011) and 

should be insensitive to task or context effects. Nevertheless, we replicated the analysis for subjects 

who had participated in a resting state study during the same scan session. We found no significant 

difference in our ability to predict age from patterns of T2* using task-related and resting state 

data (Fig. 1B, gray bars). Furthermore, we computed the voxel-wise correlation between spatial 

patterns of resting state and task-related T2* in the striatum for each participant and observed a 

median Pearson correlation of 0.97, indicating that patterns are consistent between task and rest. 
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Thus, here forward we limit our focus to T2* data collected during task, which is averaged over 

more volumes (1208 vs 200) and has a greater sample size (142 vs 89). 

 As we predicted, spatial patterns predicted age more accurately for nearly every striatal 

region of interest. The improvement was particularly striking in whole striatum where the amount 

of explained variance in participant age increased from close to 0% using spatial means to 63% 

using spatial patterns. This contrast strongly indicates that the striatum undergoes a complex 

pattern of neurophysiological development reflected throughout striatal voxels over adolescence. 

To better elucidate the nature this developmental pattern, we characterized developmental 

trajectories of T2* across the striatum. 
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Figure 3. Correlations between true age and predicted age using T2* from univariate and multivariate 

models in striatal ROIs.  

A. Bar graphs comparing correlations between true and predicted age using three models: univariate analysis (white 

bars) and multivariate pattern analysis of both task (black bars) and rest (gray bars) data. Multivariate analysis yields 

significantly greater correlation than univariate analysis in the putamen, caudate, and whole striatum. There is no 

difference between task-related and resting-state results. (*p<0.05, **p<0.01, ***p<0.001 permutation tests). B. True 

vs. predicted age from the whole striatum using multivariate pattern analysis of T2* in 142 adolescents and young 

adults. Predicted age accounts for 63% of the sample variance. 
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2.3.3 Pattern characterization 

A key advantage of SVR is the ability to quantify the features that contribute to the multivariate 

predictor. To make use of this quantitative information, we extracted the feature weights assigned 

to each voxel from the SVR analysis. A feature weight can be thought of as an index of the 

importance of a feature (voxel) in generating the multivariate age prediction. To determine the 

components of the spatial pattern of striatal T2* intensities that had the greatest relative 

contribution to the multivariate predictor, we quantified absolute feature weights to identify the 

striatal voxels with the greatest relative weight. A cluster of voxels in the ventral striatum, at the 

junction of the caudate, putamen, and nucleus accumbens were most influential, followed by a 

cluster in dorsal caudate (Figure 4. Characterizing multivariate patterns of striatal 

maturation.Figure 4A). The ventral striatal cluster had a negative linear association with age (R2 = 

0.361, p < 10-14; Figure 4B solid line), and the dorsal caudate cluster had an increasing inverse 

association with age (R2 = 0.078, p < 0.001; Figure 4B dashed line).  

 Though these clusters had the greatest relative weighting, it is important to keep in mind 

that the age prediction is a function of the multivariate relationship amongst all voxels included in 

the model. Therefore, we estimated the developmental trajectory of T2* signal for each voxel used 

in the SVR analysis using simple linear, quadratic, and inverse regression models known to 

characterize developmental change during this period (Luna et al. 2004) in order to 

comprehensively visualize maturational patterns. The majority of voxels were linearly related with 

age, with a subset being best fit by quadratic and inverse relationships. To illustrate this 

distribution, we categorized voxels based on the best fitting model – positive and negative linear, 

quadratic, and inverse relationships – and overlaid them on a standard anatomical image, creating 

a developmental T2* mask of the striatum (Figure 4D). 



 29 

Descriptively, developmental T2* trajectories largely fell along a ventral to dorsal gradient, 

ranging from highly negative relationships in ventral portions of the striatum known to have 

predominantly limbic cortical connections to positive relationships in dorsal portions known to 

have predominantly executive and motor cortical connections (Alexander et al. 1986, Cohen et al. 

2009), that was symmetric across hemispheres (Figure 4C; recall increased tissue iron 

concentration decreases the T2* signal). Negative quadratic (inverted “U”) and increasing inverse 

relationships were observed in dorsal portions of the putamen, caudate, and nucleus accumbens, 

with negative quadratic relationships (inverted “U” shaped) clustered more in the right hemisphere 

and increasing inverse relationships clustered more on the left. Negative quadratic relationships 

reached average maxima over adolescence at age 18.4 in the caudate and 17.4 in the putamen. 

Positive quadratic (“U” shaped) and decreasing inverse relationships were observed bilaterally in 

the ventral putamen, with decreasing inverse relationships occurring in rostroventral putamen and 

positive quadratic relationships occurring in the caudoventral putamen reaching minima at age 20. 

The observed heterogeneity in developmental trajectories across striatal voxels likely explains the 

greater performance of our multivariate model over the univariate model in capturing age-related 

differences. 
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Figure 4. Characterizing multivariate patterns of striatal maturation. 

A. Quantification of absolute feature weights for all striatal voxels included in the multivariate 

SVR model. Higher weights indicate greater relative contributions to the multivariate predictor. The 

highest weighted voxels were clustered in the ventral striatum and dorsal caudate. B. Average 

developmental T2* trajectories and 95% confidence intervals for voxels from peak clusters in (B) plotted 

as a function of age. Panels C-D illustrate the maturational trajectories of individual voxels included in 

the multivariate SVR analysis. C. Standardized beta estimates from voxel-wise simple linear regressions 

of age on T2*. Maturational trajectories fell along a dorsal-ventral gradient, with voxel T2* values 

generally increasing with age dorsally, to generally decreasing ventrally. This relationship is symmetric 

across hemispheres. D. Striatal voxels from (C) color-coded according to best fitting model (linear: 

red/blue, inverse: orange/magenta, quadratic: green/yellow). 
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2.3.4 Whole-brain analysis 

To investigate possible associations between spatial T2* patterns and development across the brain 

and to confirm the specificity of striatal contributions, we performed an exploratory searchlight 

analysis (Kriegeskorte et al. 2006). The searchlight revealed that age was predicted most 

significantly in the striatum and midbrain, including the red nucleus, substantia nigra, and other 

parts of the basal ganglia (Figure 5). Other regions that generated highly significant age predictions 

include perigenual anterior cingulate cortex, Brodmann Area 10, medial pre-frontal cortex, 

anterior superior frontal gyrus, insula, pre- and post-central gyrus, anterior thalamus, and the 

dentate nucleus of the cerebellum. Significant correlations were also observed in the corpus 

callosum and fronto-parietal white matter structures. Many of these regions (e.g. basal ganglia, 

midbrain, dentate nucleus, frontal white matter) are among the most iron-rich areas of the brain 

(Connor & Menzies 1996, Drayer et al. 1986, Haacke et al. 2005, 2007; Langkammer et al. 2010), 

and part of the mesolimbic/mesocortical and nigrostriatal dopamine pathways (e.g. midbrain, 

striatum, prefrontal cortex (Beaulieu & Gainetdinov 2011, Haber & Knutson 2010, Puglisi-Allegra 

& Ventura 2012). The greatest correlations were observed at the juncture of the nucleus 

accumbens, ventromedial putamen, and ventromedial caudate (peak voxel: MNI -8, 5, -11), 

indicating that T2* has a particularly strong relationship with adolescent development in this part 

of the brain, which is strongly associated with dopaminergic reward pathways and the limbic 

system (Galvan et al. 2006, 2007; McGinty et al. 2013, Puglisi-Allegra & Ventura 2012). 

The T2*-weighted signal, particularly when collected in-plane as in EPI, is susceptible to 

signal dropout due to susceptibility artifacts near the base of the brain (e.g. orbitofrontal cortex 

and inferotemporal cortex), thus raising the possibility that age-related differences in T2* could 

arise from susceptibility artifacts in these brain areas. This should not have a large effect given 
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that the gross morphometry of the brain is established by younger ages than our age group 

(Caviness et al. 1996). Moreover,  1) our most significant age effects occur in brain areas that are 

known to be high in iron concentration (e.g. basal ganglia and midbrain) and inset from areas with 

pronounced signal dropout and 2) that brain areas most prone to susceptibility artifacts (e.g. 

oribitofrontal cortex and inferotemporal cortex; Figure 16A&B) do not show significant age 

effects (Figure 16C). 

 

 



 33 

 

Figure 5. Whole-brain searchlight results highlighting regions with strong 

associations between T2* and adolescent development. 

Colors represent the correlation between true age and predicted age from the SVR 

searchlight analysis centered at that voxel. Only voxels with correlations between 

true and predicted age that are significant at p < 0.001, Bonferroni corrected (i.e. 

0.001/number of brain voxels) are displayed. The peak voxel is located in the 

ventral striatum (MNI coordinates: -8,5,-11). mPFC: medial pre-frontal cortex, 

pgAC: perigenual anterior cingulate, CC: corpus callosum, sFG: superior frontal 

gyrus, CG: central gyrus, VS: ventral striatum (including nucleus accumbens), 

SN: substantia nigra, RN: red nucleus. 
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2.3.5 Discussion 

The present study used spatial patterns of striatal task-related and resting-state normalized T2*-

weighted images to generate highly significant age predictions in a large cross-sectional sample of 

adolescents and young adults, providing in-vivo evidence of neurophysiological development of 

the human striatum over adolescence. Spatial patterns of T2* were predictive of adolescent age in 

the striatum as a whole as well as in striatal sub-regions, caudate, putamen, and nucleus accumbens 

from as little as five minutes of resting-state fMRI, demonstrating a strong association between 

T2* and adolescent development throughout the striatum. 

2.3.5.1 The T2* signal 

Critical  for  a  full  interpretation  of  these  findings  is  an  understanding  of  the 

neurophysiological components that contribute to the T2* signal. T2* is most strongly related to 

transverse (spin-spin) relaxation time, magnetic susceptibility of tissue, and magnetic field 

homogeneity. Thus, tissue-iron (non-heme) concentration and myelin concentration are the tissue 

types that contribute most strongly to the T2* signal (Aquino et al. 2009, Daugherty & Raz 2013, 

Langkammer et al. 2012, Schenck 2003). Both tissue-iron and myelin have long transverse 

relaxation times, thus causing a hypo-intense T2* signal (Aoki et al. 1989, Chavhan et al. 2009, 

He & Yablonskiy 2009). However, myelin is diamagnetic and tissue-iron is paramagnetic, so 

tissue-iron has a greater contribution to T2* (greater hypo-intensity) as a consequence of its 

magnetic susceptibility and effect on magnetic field inhomogeneity (Langkammer et al. 2010, 

Schenck 2003). Therefore, though tissue-iron and myelin both contribute to T2*, the signal should 

be most strongly influenced by tissue-iron concentration, particularly in the iron-rich striatum 

(Haacke et al. 2010, Langkammer et al. 2010). This notion is supported by the searchlight analysis 
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(Fig. 3) that shows the strongest associations with T2* and age occurring in iron-rich areas of the 

brain (basal ganglia, midbrain) rather than areas with less tissue-iron, e.g. cortex and posterior 

white matter tracts. Thus developmental differences in striatal neurophysiology as measured with 

T2* appear to be primarily driven by developmental differences in tissue-iron concentration during 

adolescence. 

It is important to note that although iron is also contained in hemoglobin, the contribution 

of heme-iron to T2* is negligible compared to that of tissue-iron (Langkammer et al. 2010, 

Vymazal et al. 1996). The contribution of hemoglobin to magnetic susceptibility only occurs in 

deoxy-hemoglobin and is greatest at low oxygen saturation (Pauling 1977), but the paramagnetism 

of tissue-iron is many times greater than even completely deoxygenated hemoglobin (Vymazal et 

al. 1996). This small effect of heme-iron is not expected to contribute to the developmental effects 

observed in this study as its influence on T2* signal should not vary systematically with age in our 

sample. The vascular system is largely stable during adolescence, with pial vessel coverage and 

capillary formation (Harris et al. 2011) and total cerebral blood flow volume to the internal carotid 

artery (the primary blood supply to the striatum) being established by early childhood (Schöning 

& Hartig 1996). 

2.3.5.2 Tissue-iron and the brain 

The sensitivity of T2* to tissue-iron is particularly relevant in the context of adolescent 

development. Iron is transported across the blood-brain barrier via the protein transferrin and 

stored in cell bodies as ferritin (Aquino et al. 2009, Daugherty & Raz 2013, Drayer et al. 1986). 

The basal ganglia and midbrain are the regions of the brain with the greatest ferritin concentration 

(Haacke et al. 2005, Schenck 2003). Cells with the greatest ferritin concentration are 

oligodendrocytes found in both white and grey matter (Haacke et al. 2005). Ferritin can also be 
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found in neurons, particularly those in the basal ganglia (Drayer et al. 1986, Moos 2002). Within 

these cells iron contributes to a host of critical neurophysiological processes. In oligodendrocytes, 

iron is necessary for myelin synthesis and is required for ATP production necessary to sustain the 

high oxidative metabolism of these cells (Connor & Menzies 1996, Moos 2002, Todorich et al. 

2009). In the basal ganglia, animal models of iron deficiency (Erikson et al. 2000) and disease 

models of restless leg syndrome (Connor et al. 2009) and ADHD (Adisetiyo et al. 2014) indicate 

that tissue-iron is highly related to the dopamine system (Beard & Connor 2003). In particular, 

striatal tissue-iron supports D2 receptor expression (Beard 2003, Jellen et al. 2013), dopamine 

transmitter function (Erikson et al. 2000; Wiesinger et al. 2007; Adisetiyo et al. 2014), and 

dopamine neuron excitability (Jellen et al. 2013). As the striatal dopamine system has been shown 

to develop during adolescence in animal models (Kalsbeek et al. 1988, Rosenberg & Lewis 1995, 

Teicher et al. 1995) and has been hypothesized to underlie characteristic behavior and brain 

function in the adolescent human (Casey et al. 2008, Padmanabhan & Luna, Spear 2000), the T2* 

signal has unique relevance to the study of adolescent striatal development. Furthermore, 

postmortem (Hallgren & Sourander 1958) and MRI (Aquino et al. 2009, Wang et al. 2012) studies 

exploring lifespan differences in tissue-iron have shown general increases in iron concentration in 

the striatum through middle age and suggest the rate of iron accumulation is greatest in the first 

two decades of life, indicating a decreased rate of change in accumulation following adolescence. 

2.3.5.3 T2* and the adolescent brain 

The developmental trajectory of T2* signal varied systematically across dorsal and ventral aspects 

of the striatum. Ventral portions of the striatum, which have predominantly limbic cortical 

connections (Cohen et al. 2009), showed strong negative relationships with age while dorsal 

portions, which have predominantly executive and motor cortical connections showed weaker 
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positive relationships with age suggesting that through adolescence and young adulthood limbic 

and executive striatal systems may have different relative neurophysiological contributions to 

behavior. Results are in agreement with findings indicating that the striatum has a spatially 

heterogeneous pattern of development, i.e. the striatal nuclei do not develop in a globally uniform 

way (Raznahan et al. 2014). The strong negative relationships in ventral striatum indicate 

consistent increases in tissue-iron concentration with inverse fits suggesting the rate of increase is 

greatest early in adolescence. Given the association of tissue-iron with both dopamine function 

and myelination, these increases may support the maturation and proliferation of the dopamine 

system and myelination of cortico-striatal connections observed in animal models of adolescent 

development (e.g. increasing dopamine projections to the primate prefrontal cortex; Rosenberg & 

Lewis 1995), supporting the maturation of motivational circuitry. 

The developmental trajectory of striatal T2* is unique over adolescence in portions of the 

caudate and putamen. In these areas, voxel values of T2* varied non-linearly with age, in some 

cases peaking over adolescence between ages 17 and 18. Of particular interest are positive 

quadratic relationships (“U” shaped) in the ventral putamen that indicate peak tissue-iron 

concentration in this region over adolescence, possibly relating peaks in dopamine D2 receptor 

expression observed in the rodent (Teicher et al. 1995) and hypothesized to occur in the human 

(Casey et al. 2008). Overall, these nonlinear developmental trajectories suggest a period of striatal 

neurophysiological maturation that may contribute to observed peaks in sensation seeking and 

risk-taking behavior and striatal reward sensitivity during this stage of development (Padmanabhan 

et al. 2011, Spear 2000), while linear relationships may reflect continued motivational system 

development through young adulthood (Arnett 1999; Hoogendam et al. 2013). Given findings in 

animal models indicating adolescent peaks in dopamine receptor expression and human fMRI 
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studies suggesting peak ventral striatal reactivity under certain incentive contexts, we were 

surprised to observe linear or inverse associations of T2* with age in portions of striatum. It is 

possible that increases in adolescent BOLD response to reward may be sensitive to additional 

aspects of DA function to which tissue-iron is not directly related, such as DA release quantity or 

probability, which may have different developmental trajectories. The observed pattern of effects 

likely also reflects the indirect nature of the relationship between tissue-iron and dopamine 

receptor density and DAT function as well as its role in many other neurophysiological processes 

(e.g. myelination and ATP production) that do not decrease in adulthood. Speculatively, it may be 

that individual differences in T2* and basal ganglia tissue-iron concentration relate to individual 

differences in indices of the structure and function of the dopamine system. Clearly, further 

research is needed to directly characterize this relationship, particularly in normative populations. 

Quantitatively, the voxel-wise distribution of feature weights from the multivariate support 

vector regression indicate that neurophysiological maturation of the striatum is most strongly 

influenced by the continued maturation of the ventral striatum, including the nucleus accumbens 

and ventromedial portions of the caudate and putamen, into adulthood. During adolescence, the 

ventral striatum exhibits peak functional reactivity to reward stimuli under certain incentive 

contexts and is associated with risk-taking behavior during this period (Ernst et al. 2005, Galvan 

et al. 2006, 2007; Geier et al. 2010, Padmanabhan et al. 2011). Furthermore, this region is highly 

dopamine innervated and is a central component of the frontostriatal dopamine reward pathways 

(Knutson & Cooper 2005, McGinty et al. 2013, Puglisi-Allegra & Ventura 2012) hypothesized to 

underlie sensation seeking and risk-taking behavior (Blum et al. 2000, Spear 2000). Speculatively, 

increases in tissue-iron concentration in this region may thus be mechanistically related to 

adolescent behavior and striatal reward reactivity through its association with dopamine receptor 
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expression, transporter function, and excitability (Erikson et al. 2000, Jellen et al. 2013, Wiesinger 

et al. 2007) and myelination (Connor and Menzies 1996; Moos 2002; Todorich et al. 2009) within 

cortico-ventral striatal pathways. 

An exploratory whole-brain analysis revealed that the strongest associations between T2* 

and age occur in ventromedial subcortical and midbrain regions known to be the most dopamine 

and iron-rich areas of the brain (Drayer et al. 1986, Haacke et al. 2005, Langkammer et al. 2010) 

with rates of iron accumulation fluctuating across the lifespan (Aquino et al. 2009, Haacke et al. 

2010, Hallgren & Sourander 1958). In the cortex, significant associations were observed in frontal 

limbic areas that fall along the mesolimbic and mesocortical dopamine pathways as well as frontal 

executive and motor regions. It should be noted that the interpretation of precise 

neurophysiological properties underlying of the T2* signal outside of the iron-rich striatum is 

somewhat less straightforward. For example, the degree to which cortical T2* reflects tissue-iron 

concentration per se is less clear as myelination should have a larger relative contribution to the 

signal in areas that contain lower levels of tissue-iron (e.g. cortex, white matter). For this reason, 

it may be advisable for future researchers to focus T2* analyses to brain areas known to have high 

concentrations of tissue-iron (e.g. the basal ganglia and midbrain). Nevertheless, this collection of 

cortical and subcortical brain regions are consistent with our striatal findings in that they are 

structurally and functionally connected within the dopamine system and have been shown to be 

sensitive to adolescent development (Casey et al. 2008, Cohen et al. 2009, Galvan et al. 2006, 

Geier et al. 2010, Giedd et al. 1999, Hwang et al. 2010, Lehéricy et al. 2004, Martino et al. 2008, 

Sowell et al. 1999). As such, these results provide evidence in support of the hypothesis that 

neurophysiological development of the frontostriatal dopamine circuit in humans occurs over 

adolescence (Casey et al. 2008, Spear 2000). 
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2.3.5.4 Limitations and future directions 

Our findings, along with those of Vo et al. (2011), suggest that T2*-weighted EPI data may be a 

useful tool for the investigation of striatal neurophysiology. An advantage of this method is that 

this measure can be derived from existing fMRI datasets, whether they be resting-state or task-

related. As mentioned above, we recommend focusing future analyses on the basal ganglia and 

other brain areas known to have relatively high concentrations of tissue-iron as the interpretability 

of the neurophysiological mechanisms contributing to T2* is greatest in these areas. Additionally, 

we recommend brain areas such as ventral orbitofrontal cortex and portions of inferotemporal 

cortex that are prone to susceptibility artifacts be avoided for T2*-weighted EPI analyses. We wish 

to note that investigators interested in specifically quantifying tissue-iron concentrations could also 

apply quantitative MR sequences, such as R2' or R2*, that have been shown to be linearly related 

to tissue-iron content (Yao et al. 2009; Sedlacik et al. 2014) to assess this tissue property more 

precisely. An important direction for future work is to directly characterize the association between 

tissue-iron concentration in the basal ganglia and indices of dopamine system function in 

normative populations, expanding on work done in RLS, ADHD, and iron-deficient populations 

and leading to greater functional interpretability and significance of T2* and related measures. Of 

course, an enhanced understanding of this relationship has powerful implications for human 

developmental studies in which more invasive imaging techniques capable of assessing the 

neurobiology of the dopamine system are not available. Finally, though this study was performed 

using a large cross-sectional dataset that covered a wide age-range, future work should employ a 

longitudinal design in order to better asses age-related changes in T2*, per se. 
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2.3.6 Conclusion 

Our results provide in vivo evidence of continued neurophysiological maturation of striatal regions 

throughout human adolescence. Our findings and the nature of the T2* signal suggest that age 

related differences in striatal neurophysiology are most strongly influenced by differences in 

tissue-iron concentration (Aoki et al. 1989, Chavhan et al. 2009, Daugherty & Raz 2013, He & 

Yablonskiy 2009, Langkammer et al. 2010, Schenck 2003). Given the contribution of this tissue 

property to brain function, including dopamine function, and the role of the striatum in learning, 

motivation, and reward processing, protracted maturation of the striatum as indexed by T2* may 

strongly contribute to known developmental changes in behavior and brain function through 

adolescence. 
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3.0 THE DEVELOPMENT OF STRIATAL TISSUE IRON AND ITS ASSOCIATION 

WITH STRIATAL DOPAMINE NEUROBIOLOGY 

3.1 INTRODUCTION 

In chapter two we used a novel MR measure, normalized T2*-weighted imaging (nT2*), to detect 

evidence of striatal tissue maturation during adolescence. The nature of the T2*-weighted signal 

suggests that nT2* strongly reflects the magnetic field inhomogeneity induced by macromolecular 

paramagnetic iron concentration. Thus, the age-related differences we observed in chapter two 

suggest pronounced iron accumulation in ventral striatum, a region associated with reward and 

limbic function, and a less-pronounced developmental decreases in dorsal striatum, more strongly 

linked to cognitive and sensorimotor processes. This pattern of results suggests qualitative 

differences in the maturational processes occurring across the striatum. However, the direct 

relationship of nT2* to tissue iron has not been quantified, and nT2* can also be influenced by 

other tissue properties that influence T2* relaxation, such as myelin (Bender and Klose 2010). In 

this chapter, we build on these findings by characterizing the development of striatal iron 

concentration using a validated, quantitative MR index of tissue iron concentration, and by 

determining the relationship between tissue iron and a critical component of striatal neurobiology, 

dopamine. 

Iron crosses the blood-brain barrier via the protein transferrin and is transported to neurons, 

oligodendrocytes, and astrocytes where it is either used or stored as ferritin (Connor and Menzies 

1996; Rouault 2013). In these cells, iron is essential for many fundamental brain processes 

including cellular respiration, myelination, and neurotransmitter synthesis (Connor and Menzies 
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1996; Rouault 2013; Ward et al. 2014). Tissue iron is heterogeneously distributed, and the brain 

areas with the greatest iron concentration are the basal ganglia and midbrain. The reason for 

pronounced iron accumulation in these brain areas and mechanism by which this heterogeneous 

iron distribution develops are unknow; however, these brain areas are among the most DA rich 

areas of the brain, and iron has been linked to multiple aspects DA neuroanatomy and 

neurophysiology. Neurological disorders that affect the mesolimbic and nigrostriatal DA systems, 

such as Parkinson’s disease, Huntington’s disease, ADHD, and restless legs syndrome (RLS), are 

also associated with atypical iron concentration (Allen and Earley 2007; Adisetiyo et al. 2014; 

Ward et al. 2014; Khan et al. 2017; Piao et al. 2017; Zucca et al. 2017). In these disorders, reduced 

iron concentration has been linked to reduced DAT function and reduced D2 receptor density 

(Connor et al. 2009b; Earley et al. 2011, 2014). In patients with Parkinson’s disease that also have 

symptoms of RLS, CSF iron levels are reduced relative to patients without RLS symptoms, and 

CSF iron levels are correlated with CSF DA levels (Piao et al. 2017). Patients with ADHD have 

reduced iron levels relative to healthy controls, and iron levels can be returned to typical levels 

after treatment with psychostimulant medication (a DA agonist), suggesting that pharmacological 

up-regulation of the DA system leads to increased iron concentration (Adisetiyo et al. 2014). 

Similarly, cocaine (also a DA agonist) addiction leads to increased basal ganglia iron concentration 

that scales with the duration of use (Ersche et al. 2017). Animal models of iron deficiency (ID) 

have revealed similar relationships between iron and dopamine as are observed in neurological 

disorders. Rodents fed iron deficient diets have reduced striatal iron concentration as well as 

reduced DAT function, D2 receptor density, and intracellular DA concentration relative to control 

animals (Erikson et al. 2000, 2001, Beard et al. 2002, 2003). ID also reduces the expression of 

genes that control the excitability of midbrain DA neurons (Jellen et al. 2013). Importantly, 
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infusion of physiologic levels of iron into either the ventral midbrain or striatum is capable of 

restoring iron concentrations of ID animals to normative levels and correspondingly increase levels 

of striatal DA (Unger et al. 2014), and dietary iron repletion can restore striatal D2 receptor density 

(Unger et al. 2008). Effects of ID on DAT levels and D2 receptor density can be replicated in in-

vitro studies of iron chelation and repletion (Wiesinger et al. 2007; Unger et al. 2008). 

Inside dopamine neurons, iron is a necessary co-factor for tyrosine hydroxylase, the rate-

limiting step of DA synthesis (Ramsey et al. 1996; Zucca et al. 2017), and iron accumulates in 

dopaminergic vesicles (Ortega et al. 2007). Further, DA-containing cells exposed to iron in-vitro 

increase in intracellular iron concentration and this effect is blocked when DA synthesis is 

inhibited (Ortega et al. 2007). Intracellular ferritin stores are also commonly bound by 

neuromelanin, a pigment that encapsulates excess cytosolic DA that is not packaged in vesicles, 

suggesting iron co-localizes with vesicular and cytosolic DA within DA neurons (Zucca et al. 

2017). 

The co-localization of iron and dopamine on the macroscopic and microscopic level, and 

the association between iron concentration and multiple aspects of striatal DA neurobiology 

suggest that iron may be a useful indirect marker of striatal DA neurobiology. Currently, 

techniques available to measure indices of striatal DA neurobiology are limited to positron 

emission tomography (PET). PET utilizes positron-emitting radiotracers that are tailored to target 

specific targets (e.g. receptors for specific neurotransmitters) in the brain to measure the 

concentrations of those targets in tissue. Though useful, PET is an invasive technique that requires 

intravenous injection of the radiotracer and exposure to a small dose of radioactivity. For these 

reasons, PET imaging is not suitable for all populations, including children and adolescents. For 

researchers interested in measuring aspects of the DA system in pediatric populations, there is no 
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currently available alternative. Importantly, tissue iron is paramagnetic and can consequently be 

measured non-invasively using MRI, potentially providing a non-invasive window into 

developmental changes in dopamine circuitry during adolescence. A number of MR acquisitions 

have been created to quantitatively measure iron concentration in the brain, including T2 and T2* 

relaxation and quantitative susceptibility mapping (Haacke et al. 2005, 2010). One such measure 

is R2’, the reversible transverse relaxation rate (1/T2’ = 1/T2* - 1/T2) (Yablonskiy 1998). R2’ is 

linearly related to postmortem tissue iron concentration (Sedlacik et al. 2014) and has been used 

to quantify striatal tissue iron in patients with Parkinson's disease (Graham et al. 2000). Similar 

measurements (e.g. R2*) have also been used to characterize the development of tissue iron across 

the lifespan (Aquino et al. 2009). 

In this chapter we use R2’ to assess age-related differences in tissue-iron concentration 

across sub-regions of the striatum in a developmental sample of adolescents and young-adults. In 

the adult cohort, we also collect two PET indices of DA, [11C]dihydrotetrabenazine (DTBZ) and 

[11C]raclopride (RAC). DTBZ binds to the vesicular monoamine transporter type 2 (VMAT2), 

which packages intracellular DA into vesicles and transports them to the synapse, and is used as 

an indicator of presynaptic terminal density (Vander Borght et al. 1995; Frey et al. 2001; Kilbourn 

2014). RAC binds to D2 receptors and can be used as an indicator of striatal D2 receptor 

concentration (Volkow et al. 1996; Ginovart 2005; Elsinga et al. 2006). Considering links between 

basal ganglia tissue iron concentration and both D2 receptor concentration and synthesis, as well 

as its co-localization with dopamine vesicles, the R2’ index of iron concentration may be linked 

to either or both DTBZ and RAC in the adult striatum. 
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3.2 MATERIALS AND METHODS 

3.2.1 Sample 

 One hundred forty adolescents and young adults were included in the sample (ages 12-30; M = 

19.87, SD = 5.01). The adult portion of the sample (N = 80; ages 18-30 years, M = 23.39, SD = 

3.57) also participated in simultaneous PET imaging in addition to iron imaging (R2’) in order to 

assess indices of striatal DA neurobiology and compare them to tissue-iron concentration. All 

participants reported no history of psychiatric or neurological disorder, and all participants 

provided informed consent to participate. 

3.2.2 R2’ 

 R2' represents the reversible transverse relaxation rate (1/T2') and is calculated as the difference 

between the effective (R2*; 1/T2*) and irreversible (R2; 1/T2) relaxation rates. This measure has 

been shown to be linearly related to tissue-iron concentration (Sedlacik et al. 2014)(Fig 3). In this 

study, we collected R2’ using mTSE with the following parameters: effective echo times 12, 86, 

and 160ms; TR = 6580 ms; 12ms spacing between spin refocusing pulses; FoV = 240X240 mm2; 

27 3mm transverse slices; 1mm slice gap. R2* was calculated using mGRE with parameters: echo 

times 3, 8, 13, 18, and 23ms; TR = 724 ms; flip angle, 25°; FoV = 240X240mm2. Both R2 and 

R2* maps were estimated using a regularized iterative algorithm to better control for noise 

amplification in the estimation process. Finally, using the estimated R2 and R2* maps, we 

estimated R2’ at the voxel level as follows: R2' = R2* - R2. All R2, R2*, and R2’ images were 

individually assessed for quality, and participants that had visible artifacts—including motion, 
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shimming, registration, or susceptibility (n = 38)—in any image were removed from all analyses 

(n = 38). 

3.2.3 PET 

Tissue-iron has been suggested to be related to multiple aspects of DA neurobiology, including 

D2 receptor density, dopamine transporter, synthesis, and energy production required for DA 

function. As such, we collected two PET indices of striatal DA neurobiology, DTBZ and RAC. 

DTBZ binds to VMAT2 that transports monoamine neurotransmitters to presynaptic vesicles. 

DTBZ binding is a stable measure of presynaptic neuronal integrity in humans since over 95% of 

striatal VMAT2 binding sites are dopaminergic. In contrast, RAC binds to D2/D3 receptors 

throughout striatum, providing an index of D2/D3 receptor density. We acquired DTBZ using a 

bolus+infusion (B+I) paradigm (Martinez et al. 2003) collected over a 60 minute acquisition. 

Similarly, RAC is acquired using a B+I paradigm collected over a 90 minute acquisition. For both 

acquisitions, PET attenuation correction is performed using a combined segmentation- and atlas-

based approach. Binding potential (BPND) is estimated voxel-wise using Ichise's Multilinear 

Reference Tissue Model (MRTM) (Ichise et al. 1998, 2003) based on the resulting time activity 

curves, using pericalcarine sulcus as a reference region. 

3.2.4 Statistical approach 

 We used regression models to assess the developmental trajectories of R2’ across the striatum. 

We tested linear, quadratic, and age-1 functional forms of age and performed model selection using 

AIC. Regression analyses were performed at the region of interest (ROI) level as well as voxel-
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wise level across the striatum. Striatal ROIs included nucleus accumbens, putamen, and caudate. 

The caudate was further sub-divided into anterior and posterior aspects using the Oxford-GSK-

Imanova structural atlas (Tziortzi et al. 2011). As iron deposition tends to monotonically increase 

throughout the first half of life and D2 receptor density is hypothesized to peak during adolescence, 

to test for relationships between R2’ and PET measures, we investigated the extent that individual 

differences (residualized with respect to age and sex) in R2’ and PET measures were related. We 

regressed the best fitting functional form of age and its interaction with sex out of both measures 

and tested for a correlation amongst the residuals. These analyses were conducted at the ROI and 

voxelwise levels. Outlier detection for all regression models was performed using Cook’s distance 

with a threshold of Cook’s distance greater than five times the mean of the Cook’s distance 

distribution. For all voxel-wise regression analyses, multiple comparison correction was 

performed using family-wise error correction implemented in AFNI (Cox 1996). It is not possible 

to quantify within-scan motion in R2’ data, however motion is highly rank-order correlated across 

subjects for within-session MR acquisitions (Savalia et al. 2017). To control for potential between-

subjects effects of motion in regression analyses, we estimated motion on an fMRI scan that 

occurred during the RAC acquisition (data not reported in this study) and used it as a covariate. 
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3.3 RESULTS 

3.3.1 Development of R2’ 

R2’ significantly increased with age in all striatal ROIs (Figure 6B; Table 1). Voxelwise analyses 

supported this finding and indicated that the most pronounced and protracted age-related increases 

occurred in the ventromedial aspect of the striatum (including VS). Voxelwise age effects followed 

a rostoventral to caudodorsal gradient such that the degree of age-related increases were 

diminished and no longer significant in the dorsocaudal aspects of the striatum (e.g. posterior 

caudate Figure 7). 

Figure 6. Age-related differences in R2’, DTBZ, and Raclopride in striatal sub-regions. 

A. Regions of interest for analyses in B-D. B. R2’, and index of iron concentration 

increased with age in all areas. The putamen was best fit by a quadratic age function, 

indicating a peak or asymptote during adulthood. C. DTBZ, an index of VMAT2, did not 

significantly differ with age in any striatal regions. D. Raclopride, and index of D2 receptor 

concentration, significantly decreased with age in the putamen and anterior caudate. 
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3.3.2 Development of RAC and DTBZ 

In the adult sample, RAC binding potential generally decreased with age throughout the striatum 

with most pronounced age-related decreases in the putamen Figure 6Error! Reference source not 

found.D). Voxelwise analyses did not reveal any significant effects of age on RAC binding 

potential after family-wise error correction. However, the spatial pattern of age effects followed a 

similar ventral to dorsal gradient as observed in the R2’ analyses (Figure 18). DTBZ did not 

significantly differ by age (Figure 6C). Again, though non-significant, the spatial pattern and 

direction of age effects followed a similar ventral to dorsal gradient as observed in the RAC R2’ 

analyses (Figure 17). 

Figure 7. Age-related differences in R2’ across the striatum. 

R2’ significantly increased with age following an age-1 function. Voxels with significant age effects, 

controlling for sex and trait motion, are outlined in black. Age effects followed a ventromedial to dorsolateral gradient, 

with greatest changes occurring in near VS and decreasing until posteriodorsal caudate where they are no longer 

significant and begin to change sign (decreasing with age, blue voxels). Color bar represents t statistics for the age-1 

term in the multiple regression (note: colors are flipped for interpretability). 
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Table 1. Age-related differences in R2', RAC, and DTBZ. 

Measure ROI Variable Estimate SE t p 

R2' 

Nucleus Accumbens 

Age-1 -65.1845 18.6435 -3.4963 .000695 

Sex 0.02685 0.49263 0.05 .9566 

Trait motion 6.51989 2.41516 2.70 .00069 

Putamen 

Age 0.6217 0.1313 4.73 .000007 

Age2 -0.0113 0.0031 -3.60 .000482 

Sex -0.4190 0.1500 -2.79 .006212 

Trait motion 0.9491 0.6337 1.50 .137224 

Anterior Caudate 

Age-1 -43.7808 7.1230 -6.15 .00000001 

Sex -0.3068 0.1906 -1.61 .110571 

Trait motion 1.0669 0.8158 1.31 .193797 

Posterior Caudate 

Age-1 -35.5954 8.9574 -3.97 .000129 

Sex -0.1236 0.2379 -0.52 .604518 

Trait motion 0.4781 1.0063 0.48 .635678 

Raclopride 

Nucleus Accumbens 

Age 9.0864 4.4470 2.04 .046314 

Sex 0.0135 0.0577 0.23 .816264 

Trait motion -0.3803 0.2665 -1.43 .159719 

Putamen 

Age -0.0297 0.0105 -2.82 .006764 

Sex 0.0321 0.0763 0.42 .675959 

Trait motion 0.1955 0.3596 0.54 .588998 

Anterior Caudate 

Age-1 22.0732 4.6567 4.74 .000018 

Sex -0.0301 0.0605 -0.50 .621514 

Trait motion 0.3140 0.2807 1.12 .268550 

Posterior Caudate 

Age -0.5527 0.2158 -2.56 .015040 

Age2 0.0103 0.0044 2.34 .025371 

Sex 0.1153 0.1054 1.09 .281534 

Trait motion 0.4157 0.4706 0.88 .383333 

DTBZ 

Nucleus Accumbens 
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Age 0.0067 0.0080 0.84 .406211 

Sex -0.0776 0.0562 -1.38 .173019 

Trait motion -0.7600 0.4014 -1.89 .063868 

Putamen 

Age 0.0063 0.0132 0.48 .634553 

Sex -0.1112 0.0925 -1.20 .234616 

Trait motion -0.4317 0.6606 -0.65 .516318 

Anterior Caudate 

Age-1 5.1826 7.1340 0.73 .470814 

Sex -0.1098 0.0901 -1.22 .228666 

Trait motion -0.2977 0.6447 -0.46 .646201 

Posterior Caudate 

Age-1 3.6660 5.3517 0.69 .496378 

Sex -0.1065 0.0676 -1.58 .121136 

Trait motion -0.3073 0.4836 -0.64 .527958 

*Bold font indicates significant after multiple comparison correction.

3.3.3 Associations between R2’ and PET 

There were no significant associations between R2’ and RAC at the ROI level. Voxel-wise 

analyses indicated a significant positive association between R2’ and RAC, residualized with 

respect to age, in the left rostral caudate, controlling for age and sex (Figure 9). 

R2’ and DTBZ, residualized with respect to age, were significantly positively associated 

in the nucleus accumbens at the ROI level (Figure 8). Voxelwise analyses reflected this pattern, 

with significant associations between R2’ and DTBZ occurring in the right VS (Figure 10). 
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Figure 8. R2’ is positively related to DTBZ in the nucleus accumbens. 

Age and sex have been regressed out of both measures. Axes reflect R2’ 

and DTBZ after the adjustment for age and sex (standardized residuals). 

Figure 9. Voxelwise results for R2' and RAC. 

R2’ and RAC were positively associated in the left 

anterior caudate after controlling for age, sex, and trait motion. 
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3.4 DISCUSSION 

3.4.1 Developmental findings 

3.4.1.1 Tissue Iron 

R2’ significantly increased throughout most of the striatum, including nucleus accumbens, 

caudate, and putamen, replicating prior work indicating age-related increases in tissue-iron 

concentration throughout the first two decades of life (Hallgren and Sourander 1958; Aquino et al. 

2009; Wang, Shaffer, et al. 2012) as well as our findings from chapter two (Larsen and Luna 2015). 

Further, the spatial pattern of age-related increases in R2’ tended to follow a ventral-rostral to 

dorsal-caudal gradient such that the greatest age effects occurred in the ventral-rostral striatum and 

became non-significant in the most dorsal-caudal aspects of the striatum, also replicating the 

gradient of age-related differences we observed in chapter two (Larsen and Luna 2015) (Figure 4). 

As VS is primarily associated with reward processing and limbic function, our results support the 

hypothesis of dual systems models that the limbic/affective circuitry continues to mature during 

adolescence. The relatively less pronounced age-related differences in dorsal striatum (Figure 7) 

Figure 10. Voxelwise results for R2' and DTBZ. 

R2’ and DTBZ were significantly positively associated in the right ventral striatum after 

controlling for age, sex, trait motion, and family-wise error. 
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suggest that associative and sensorimotor striatal circuitry may mature earlier than limbic striatum, 

supporting the “driven dual systems” version of the dual systems model that hypothesizes 

protracted affective system development in parallel with more stable cognitive control system 

development (Luna and Wright 2016). 

3.4.1.2 RAC and DTBZ 

Rodent models of adolescence have consistently indicated a peak in D1 and D2 receptor 

concentrations in the striatum during adolescence (Gelbard et al. 1989; Teicher et al. 1995; 

Andersen, Rutstein, et al. 1997; Tarazi et al. 1998b). To investigate age-related differences in D2 

receptor density in our adult sample, we used RAC, which binds to striatal D2 receptors and 

provides an estimate of receptor concentration. Our RAC findings indicated developmental 

decreases in D2 receptor concentration in the putamen and caudate in late adolescence and early 

adulthood (ages 18-30), supporting findings from animal models indicating age-related decreases 

in D2 receptor concentration from adolescence to adulthood. Studies extending into childhood 

however are needed to determine if this decline follows a peak in D2 receptor density during 

adolescence. The positive association between RAC and R2’ in the caudate paired with the 

pronounced age-related increases in R2’ in anterior caudate during early adolescence may reflect, 

in part, developmental increases in receptor concentration. Counter to our hypothesis, we did not 

observe age-related decreases in the nucleus accumbens, and voxelwise relationships, though not 

significant, suggest the relationship may become positive in VS. Interestingly, rodent studies that 

look at D2 receptor concentrations in the nucleus accumbens separately from the corpus striatum 

(caudate-putamen) suggest that accumbens receptor concentrations have either a less pronounced 

peak or plateau during late adolescence (Tarazi and Baldessarini 2000). As such, the pattern of 

results observed in this study largely reflect rodent models of striatal D2 receptor development. 
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Rodent models also indicate monotonic increases in DA levels and DAT levels during 

adolescence that begin to plateau in adulthood. DTBZ provides an index of VMAT2, which 

packages and transports vesicular DA and is concentrated in presynaptic DA terminals in the 

striatum. As such, VMAT2 should be correlated with overall striatal DA concentration; however, 

it does not account for extracellular or cytosolic DA. The lack of developmental differences in 

DTBZ may indicate that peak levels of DA concentration have already been reached by 

adolescence. Speculatively, given the positive association between DTBZ and R2’ in the VS, the 

pronounced age-related increases in R2’ in VS during early adolescence may reflect, in part, 

increases in vesicular DA concentration. 

Overall, findings the developmental findings presented here indicate a combination of 

process that have stabilized by adulthood (ages 18-30) and those that continue to develop during 

adulthood. The lack of observed age-related differences in DTBZ across all striatal ROIs suggests 

that presynaptic striatal vesicular DA may stabilize prior to adulthood. Similarly, the RAC analyses 

suggest that VS D2 receptor concentration is stabile prior to adulthood. In contrast, the observed 

decreases in RAC in the caudate and putamen indicate that D2 receptor concentration continues to 

decline into early adulthood. Tissue-iron significantly increases from early adolescence to 

adulthood (ages 12-30) for all striatal ROIs; however, age trajectories suggest that the increase 

begins to plateau earlier in the posterior caudate and putamen relative to the VS and anterior 

caudate. 

3.4.2 Striatal tissue iron concentration is associated with VMAT2 in ventral striatum 

VMAT2 functions to transport vesicular DA to the synapse for release and thus serves as an 

indicator of presynaptic vesicular DA concentration. Considering the role of iron in DA synthesis, 
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the association between iron levels and DAT function, and the tendency for co-localization of iron 

with vesicular DA at the microscopic level, we hypothesized that striatal tissue-iron concentration, 

as estimated using R2’, would be associated with VMAT2, as estimated using DTBZ. The results 

of this study provide support for this hypothesis in the VS, with the relationship being particularly 

strong in the right hemisphere. This study provides the first evidence of a relationship between 

tissue iron and DA in vivo in the human. Importantly, this relationship was estimated after 

controlling for age and age*sex interactions in both measures, suggesting it is not likely to be 

driven by age (or age*sex) covariance. 

While the relationship of R2’ and DTBZ in the VS is striking and in support of our 

hypothesis, it is somewhat surprising that the relationship was not significant across other areas of 

the striatum. This is likely due to a number of factors. First, though R2’ and DTBZ are among the 

best methods currently available for estimating striatal tissue iron and VMAT2 in vivo in the 

human, they have spatial resolution on the level of millimeters which may be several orders of 

magnitude greater than the spatial resolution of co-localization of iron and DA, reducing the spatial 

signal-to-noise ratio and thus the ability to detect relationships. In support of this explanation, we 

observed significant relationships in the areas of the striatum that have relative high R2’ signal. 

Another factor is likely the high degree of complexity of striatal DA neurobiology (e.g. complex 

interrelationships between DA synthesis, transporters, receptors, release properties, storage, etc) 

(Gainetdinov et al. 1998; Qi et al. 2008; Beaulieu and Gainetdinov 2011; Leviel 2011). This is 

compounded by the fact that many properties of DA function and neurobiology vary along spatial 

gradients in the striatum (Fusa et al. 2002). Functionally, ventromedial anterior aspects of the 

striatum are involved in limbic processes and dorsolateral posterior aspects are primarily involved 

in sensorimotor processes, and areas in between are associated with associated processes. This 
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gradation is mirrored by sources of DA innervation, with ventromedial striatum being most heavily 

innervated by VTA DA neurons and dorsolateral aspects of the striatum being more heavily 

innervated by nigrostriatal pathways (Alexander et al. 1986; Haber 2003; Haber and Knutson 

2010). This ventromedial to dorsolateral gradient is characteristic of other neurophysiological and 

neuroanatomical features of the DA system as well. The rostral ventromedial striatum has less 

DAT uptake, less DA release, and a higher ratio of VMAT2/uptake than caudal dorsolateral 

striatum (Leroux-Nicollet and Costentin 1994; Wu et al. 2001; Cragg et al. 2002; Calipari et al. 

2012). A similar gradient exists even within the nucleus accumbens, where D1 and D2 receptor 

concentrations increase from ventromedial to dorsolateral (Bardo and Hammer 1991). Two studies 

that investigated the effect of a rodent gene knockout model for iron regulation found that impaired 

iron regulation mechanisms led to reduced DAT, tyrosine hydroxylase, and VMAT2 in VS, but 

has little to no effect in dorsal striatum, indicating iron levels may have particular significance for 

the regulation of DA neurobiology in VS (Salvatore et al. 2005; Salvatore and Pruett 2012). These 

factors may jointly explain the relatively localized relationship between tissue iron and DTBZ 

observed in the ventral striatum. 

3.4.3 Tissue iron as an indirect indicator of striatal neurobiology: Limitations and future 

directions 

We have demonstrated a significant positive relationship between tissue iron concentration, as 

measured using R2’, and both VMAT2 and D2 receptor concentration, measure with DTBZ and 

RAC. These results may have important implications for researchers interested in assessing 

processes related to striatal DA in populations unsuitable for PET imaging. While the results of 

this study are promising for this purpose, there are a few important caveats. First, we have found 
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significant associations specifically in the VS for VMAT2 and anterior caudate for D2 receptors. 

Therefore, tissue iron may only be interpreted as reflecting these aspects of DA neurobiology in 

these areas, and future studies replicating these findings are needed before such interpretations can 

be made with confidence. Second, as iron concentration and DA change with age over early 

development (as well as aging), we corrected for age in both measures before assessing the 

relationships between them. Future researchers should take similar cautions in interpreting 

findings related to tissue iron in developmental samples. Between-subject comparisons made in 

same-age cohorts may be an ideal application of this technique. Lastly, we have only assessed two 

indices of DA neurobiology in this study, DTBZ and RAC. It is possible that iron may be more or 

less sensitive to other measures of DA. Given the relationships observed between iron and DAT 

in disease models and models of iron deficiency (Erikson et al. 2000; Beard et al. 2003; Wiesinger 

et al. 2007; Unger et al. 2014). Future work can test this hypothesis using readily available PET 

ligands for the quantification of striatal DAT (Stehouwer and Goodman 2009; Rami-Mark et al. 

2013). 

As iron accumulates at a decreasing rate over the second decade of life, and there is not a 

mechanism in place to clear iron from the basal ganglia (Moos and Rosengren Nielsen 2006; 

Boserup et al. 2011), it is possible that the rate of change in striatal tissue iron concentration is 

more strongly associated with age-related changes in DA measures. Future studies using 

longitudinal data can address this hypothesis and inform relationships between tissue iron and DA 

more fully. 
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4.0 DEVELOPMENTAL CHANGES IN THE INTEGRATION OF AFFECTIVE AND 

COGNITIVE CORTICOSTRIATAL PATHWAYS IS ASSOCIATED WITH REWARD-

DRIVEN BEHAVIOR 

This chapter is adapted from (Larsen et al. n.d.) 

4.1 INTRODUCTION 

Adolescence is a unique stage of development characterized, in part, by increases in reward-driven 

behavior that, while adaptive in nature, can lead to maladaptive risk-taking that undermines 

survival (Shulman et al. 2016). Developmental cognitive neuroscience models propose that this 

adolescent predisposition is driven by a unique balance between the influence of systems 

supporting affective processes, including socioemotional and reward processing (i.e., limbic 

systems), and systems supporting cognitive control on behavior, with affective systems having a 

greater relative influence on behavior in adolescence than in adulthood (Shulman et al. 2016). 

These influential models have been generated in large part from human neuroimaging observations 

that suggest unique maturational trajectories for brain areas commonly ascribed to cognitive 

control (e.g. prefrontal and related circuitry) and incentive processing (e.g. ventral striatum and 

cortical limbic circuitry). Structural MRI studies indicate protracted maturation of brain regions 

involved in in reward-processing and cognitive control (e.g. prefrontal cortex, striatum) from 

adolescence to adulthood into adulthood with unique timelines (Giedd et al. 1999; Sowell et al. 

1999; Gogtay et al. 2004; Mills et al. 2014). Relatedly, functional magnetic resonance imaging 
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(fMRI) studies suggest differential task-related activation of brain regions involved in in both 

systems from adolescence to adulthood (Geier and Luna 2009; van Leijenhorst et al. 2010; Bari 

and Robbins 2013). Evidence for age-related changes in the functional integration of these systems 

is more limited. Graph theoretical analyses of large-scale structural and functional network 

organization indicate developmental enhancements in the global integration of systems and 

networks including subcortical and frontal systems (Dennis et al. 2013; Hwang et al. 2013; Baker 

et al. 2015; Marek et al. 2015); however developmental changes in the specific functional 

integration of systems involved in limbic and cognitive control functions, and their association 

with reward-driven behavior, have not been probed directly. This limits our ability to understand 

the interactive dynamics underlying the relative contributions of these systems to behavior. 

An ideal target for investigating developmental shifts in the influence of cortical brain 

systems on behavior is corticostriatal circuitry. The striatum is the primary input nucleus to the 

basal ganglia and functions to bias action selection (Humphries et al. 2006; Houk et al. 2007; 

Kimchi and Laubach 2009). It is neuroanatomically well-positioned for this function, receiving 

dense projections from the cerebral cortex, including cortical brain systems involved in affective 

and cognitive control processes (Alexander et al. 1986; Choi et al. 2012). The striatum has long 

been thought to integrate cortical information within closed, parallel circuits, but more recently 

human (Verstynen et al. 2012; Verstynen 2014; Jarbo and Verstynen 2015) and non-human 

primate (Averbeck et al. 2014; Choi et al. 2016) studies have shown that areas of the striatum 

receive convergent projections from functionally disparate cortical regions. These convergent 

zones are thought to serve as functional hubs that directly integrate and synchronize information 

to drive basal ganglia action outputs (Haber 2003; Averbeck et al. 2014; Haber 2014). Convergent 

projections from limbic and cognitive control-related cortical systems into the striatum then 
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represent an important neuroanatomical substrate for the integration of affective and executive 

information to influence behavior. Further, the striatum has been shown to structurally develop 

into adulthood (Sowell et al. 1999; Raznahan et al. 2014; Larsen and Luna 2015) and play a critical 

role in increasing global network integration during adolescence (Marek et al. 2015). The 

development of convergent corticostriatal inputs from limbic and cognitive control-related systems 

may thus be an important developmental mechanism for the changing relative influence of 

cognitive control and limbic functional brain systems on adolescent behavior. 

Here we analyze diffusion MRI data to characterize the relative integrity of convergent 

corticostriatal projections from cortical systems functionally involved in affect processing (i.e., 

limbic networks) and cognitive control (i.e., frontal-parietal and attention networks) (Yeo et al. 

2011) and determine the nature of these convergent inputs changes across development. 

Specifically, we hypothesized that projections from predominantly affective cortical systems into 

striatal convergent zones would have greater relative integrity than projections from predominantly 

cognitive control-related cortical systems early in adolescence, with the affective influence 

decreasing into adulthood, and the nature of this convergence relationship would be associated 

with individual differences to reward-driven behavior. 

4.2 MATERIALS AND METHODS 

4.2.1 Sample 

A total of 115 adolescents and young-adults between the ages of 10 and 28 participated in this 

study (M = 18.43, SD = 4.67; 62 males). Eighteen participants were excluded due to either excess 
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head motion during the diffusion MRI (dMRI) scan, low temporal signal-to-noise ratio (tSNR), or 

visible distortion or artifact in the raw diffusion images (details described below). All participants 

were recruited from the community and reported no history of neurological disease or brain injury 

and no personal history or first-degree relative with major psychiatric illness. A description of the 

sample can be found in Table 2. All experimental procedures in this study complied with the Code 

of Ethics of the World Medical Association (1964 Declaration of Helsinki) and the Institutional 

Review Board at the University of Pittsburgh. Participants gave informed consent and were paid 

for their participation in the study. Aspects of this data have been previously reported in studies of 

resting state network development (Hwang et al. 2013) and incentive processing (Paulsen et al. 

2014). 
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Table 2 Sample Demographics 

Variable Mean (SD) or Count Range 

Age 18.43 (4.67) 10 – 28 

Sex 62M/53F 

Race 79 W; 17 B; 10 A; 9 O 

Mother education 5.75 (1.15) 3 – 7 

Father education 5.58 (1.13) 3 -7 

IQ 114.6 (12.7) 76 – 138 

Note. M = male, F = female; W = white, B = black, A = Asian, O = other (multiple 

endorsements = 7, not endorsed = 2); Education levels are: 1 = Less than 7th grade, 2 = Junior high 

school, 3 = Partial high school, 4 = Completed high school or equivalent, 5 = Some college, 6 = 

Completed college, 7 = Completed post-graduate training. Four participants did not indicate 

mother’s education and five participants did not indicate father’s education. 

4.2.2 dMRI acquisition 

Imaging data were collected using a 3.0 Tesla Trio (Siemens) scanner at the Magnetic Resonance 

Research Center (MRRC), Presbyterian University Hospital, Pittsburgh, PA. The images were 

acquired with a total of 60 diffusion sampling directions (TR = 6.4s, TE = 0.89s, field of view = 

255x255mm, 52 slices) and a single-shell b-value of 850 s/mm2. Two b = 0 images were collected. 

The in-plane resolution was 2.5 mm. The slice thickness was 2.5 mm. Participants viewed a movie 

of their choosing for the duration of the acquisition. 

4.2.3 dMRI preprocessing 

Eddy current and motion correction were performed using the “eddy” function (Andersson and 

Sotiropoulos 2016) from the FMRIB Software Library (FSL; (Jenkinson et al. 2012)). Participants 

with motion estimates that exceeded 2.5 standard deviations above the sample mean were excluded 
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from further analyses. Motion metrics (and means after exclusion and cutoffs) were the following: 

mean volume-by-volume translation (M = 0.35mm, cutoff = 0.85mm) and rotation (M = 0.35mm, 

cutoff = 0.95mm) and percentage of slices with signal dropout (e.g. (Benner et al. 2011; Yendiki 

et al. 2014)) (M = 0.41%, cutoff = 3.5%). For the remaining participants, these metrics were used 

as continuous covariates in all subsequent statistical analyses. Participants were also excluded if 

their tSNR exceeded 2.5 standard deviations below the sample mean (M = 8.08, cutoff = 6.5). 

Notably, this tSNR cutoff is nearly identical to the cutoff reported by Roalf and colleagues (Roalf 

et al. 2016) to optimally separate poor data from good quality data (6.47). There was no significant 

relationship between age and any of the motion metrics. There was a main effect of sex for 

percentage of slices with signal dropout such that females had a greater percentage than males, 

though both groups averaged less than one slice with signal dropout (Males = 0.2%, Females = 

0.6%, t = -4.1, p < .001). There was a significant negative association between age and tSNR, 

which was driven by an age by sex interaction such that age was negative associated with tSNR in 

males but not females (age*sex parameter estimate = 0.-0.06, SE = 0.18, p < .01; see Figure 19). 

Due to the significant association between age and tSNR, age regression models were performed 

with and without tSNR as a covariate. After eddy current and motion correction, the diffusion data 

were reconstructed and warped to standard space using q-space diffeomorphic reconstruction (Yeh 

and Tseng 2011) with a diffusion sampling length ratio of 1.25 using DSI Studio software 

(http://dsi-studio.labsolver.org). The output resolution was 2 mm. 

4.2.4 Region of interest identification 

Cortical   brain  systems  were  identified  according to the seven-network cortical atlas 

created by (Yeo et al. 2011) (Figure 11). This atlas was chosen because it contained a cortical 
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limbic system as well as cognitive control-related systems, and has been previously been used in 

studies of corticostriatal functional connectivity (Choi et al. 2012). We considered the fronto-

parietal, dorsal attention, and ventral attention systems as systems related to aspects of cognitive 

control, and we considered the cortical limbic system to be involved reward processing and 

motivation (Figure 11). The striatum was defined according to the Harvard-Oxford subcortical 

atlas distributed with FSL. Each ROI was split by left/right hemisphere. Gross identification and 

labeling of white matter fiber pathways was performed according to the MRI Atlas of Human White 

Matter (Mori et al. 2005). 

Figure 11. Regions of interest for corticostriatal tractography. 

Cortical regions of interest relating to cognitive control function are colored in blue hues and 

include dorsal attention, ventral attention, and fronto-parietal systems. The cortical limbic system 

is colored in red. The striatum is colored yellow. Cortical regions were defined according to (Yeo 

et al. 2011). 
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4.2.5 Deterministic fiber tracking 

To identify corticostriatal pathways, we applied a deterministic fiber tracking algorithm (Yeh et 

al. 2013) to each participant's reconstructed diffusion data using DSI Studio. Fiber tractography 

was performed for each cortical region of interest and the striatum, separately for each hemisphere. 

Whole brain seeding was used and fiber streamlines were identified that passed through the cortical 

ROI and terminated (“END” mask in DSI Studio) in the striatum. The anisotropy threshold was 

set at 0.06. The angular threshold was 75 degrees. The step size was 1 mm. The fiber trajectories 

were smoothed by averaging the propagation direction with 80% of the previous direction. A total 

of five million seeds were placed to ensure comprehensive detection of corticostriatal fibers across 

participants, and a connectivity map was calculated from the resulting tracts. We elected to use 

deterministic rather than probabilistic fiber tracking because our goal was to localize white matter 

targets to later quantify the connectivity value. Probabilistic fiber tracking provides a connectivity 

estimate that is solely based on computational simulation of the possible connections and a 

probability threshold is needed localize pathways. This connectivity definition is not necessarily 

related to axonal characteristics (Jbabdi and Johansen-Berg 2011) and interpretation of the results 

can be challenging. In our deterministic approach, connectivity is defined by the quantitative 

anisotropy value derived from diffusion MRI signals, which are more closely related to axonal 

characteristics. As such, deterministic fiber tracking is a better fit for this application. 
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4.2.6 Analyses 

4.2.6.1  Convergent zones 

We first sought to determine the location of areas of the striatum that receive convergent 

corticostriatal inputs from limbic and cognitive control-related brain systems. To determine striatal 

fiber streamline endpoint locations for each cortical ROI, fiber streamline endpoint counts for 

striatal voxels were smoothed with a 4mm kernel and thresholded at one percent of total striatal 

endpoints for each participant in order to estimate a more conservative endpoint map. The resulting 

maps were then binarized to form fiber tract endpoint masks. Individual participant striatal 

convergent zones were calculated as the intersections of the limbic projection field mask with the 

fronto-parietal, dorsal attention, and ventral attention projection field masks (i.e. three total 

convergent zones; limbic/fronto-parietal, limbic/dorsal attention, and limbic/ventral attention). 

Voxel-wise convergence probability masks were then generated from the entire sample. To 

determine where the convergence probability exceeded chance levels, we performed spatial 

permutation tests, randomly permuting the voxel indices of the pathway endpoint masks for all 

participants and calculating a null convergence probability distribution for each striatal voxel. 

Convergent zones were determined as clusters of voxels where the observed convergence 

probability for the sample significantly exceeded the null distribution with an alpha of 0.05, FDR 

corrected. To determine if the size or shape of convergent zones differed as a function of age, we 

performed voxel-wise logistic regression on the thresholded, binarized convergence maps across 

participants to test whether the likelihood of convergence differed by age across striatal voxels. 

Voxel-wise tests were multiple comparison corrected at a FDR alpha of 0.05. 
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4.2.6.2  Convergence ratio 

After identifying convergent zones, we quantified the integrity of fiber streamlines connecting 

each convergent zone to its corresponding limbic and cognitive cortical ROIs. To determine 

pathways linking each convergent zone to its respective set of cortical ROIs, deterministic fiber 

tractography was performed between the cortical ROIs and the convergent zones we identified 

using the above procedure. We performed deterministic tractography on the CMU60 high 

resolution diffusion template included with DSI studio using the same tracking parameters 

mentioned above. White matter regions of interest were then created from the tracked fiber 

streamlines. These white matter ROIs were used to extract corresponding mean estimates (i.e. 

mean across voxels in the white matter ROI mask) of pathway integrity (see below: Quantitative 

anisotropy) along pathways for each participant. This process resulted in measures of connection 

integrity for each pair of corticostriatal convergent fiber projections. Quantitative anisotropy (QA; 

(Yeh et al. 2010, 2013)) was used as the primary measure of fiber integrity because it is more 

robust to partial volume effects and crossing fibers than the commonly used fractional anisotropy 

(FA). To compute the relative weighting of convergent projections from limbic and cognitive-

control related cortical ROIs we calculated the limbic/cognitive control convergence ratio, defined 

as: 

Equation 1 

 

 

The convergence ratio thus varies between -1 and 1 such that a positive value indicates 

greater relative weighting of limbic projections and a negative value indicates greater weighting 

toward cognitive control projections.  
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4.2.6.3  Quantitative anisotropy 

We assessed fiber integrity with QA because this measure has been shown to be more robust to 

the influence of crossing fibers, which are common along corticostriatal tracts, and partial volume 

effects on estimates of diffusion anisotropy along the principle fiber direction than other indices, 

such as fractional anisotropy (FA) (Yeh et al. 2013; Zhang et al. 2013; Lim et al. 2015; Shen et al. 

2015). This is because QA is calculated from a spin distribution function, estimated with q-space 

diffeomorphic reconstruction, that allows for the modeling of diffusion along multiple vectors. 

Diffusion modeled along fiber orientations that are inconsistent with the primary fiber orientation 

(e.g. crossing or branching fibers) do not bias the calculation of quantitative anisotropy along the 

primary fiber direction (Yeh et al. 2013). Other indices, such as FA, can paradoxically increase 

overall when the anisotropy of an individual off-axis fiber population decreases (Pierpaoli et al. 

2001). Further, our QA based fiber tracking approach was evaluated in the 2015 ISMRM 

tractography challenge (http://www.tractometer.org/ismrm_2015_challenge/) as ID#03. The valid 

connection of the QA-based fiber tracking achieved the highest valid connections score (93%) 

among all 96 methods evaluated. In this study, we further improved the tracking results using a 

region of interest, and thus we could expect that the percentage valid connections should be greater 

than 90%. Although we still cannot assert that our tracking results are 100% accurate, the quality 

achieved should be among the best considering the state-of-the-art approach. 

4.2.6.4  Regression analyses 

All regression analyses were performed using MATLAB 2016a (The Mathworks, Inc., Natick, 

MA, United States). To determine age-related differences in the relative weighting of limbic and 

cognitive control-related convergent connections we regressed the convergence ratio on age and 

sex, covarying our three motion metrics and whole-brain (global) averaged QA using simple linear 

http://www.tractometer.org/ismrm_2015_challenge/
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regression. To determine age-related differences in QA for tracks that influence the convergence 

ratio, we regressed QA on age and sex, covarying motion and global QA, separately for each tract. 

For all regression analyses, functional forms of age that have been previously shown to 

characterize age-related change during this period (Luna et al. 2004)—linear, inverse (1/age), and 

quadratic—were separately tested and model selection was performed among these functional 

forms using AIC. Cook’s distance was used to detect influence outliers based on the default 

MATLAB threshold of greater than three times the mean cook’s distance of the sample. Multiple 

comparison correction of p-values was done using the Bonferroni correction. Age-by-sex 

interactions were further included in the initial regression models. In the case of non-significant 

interaction effects, results were reported from regression models that included main effects only. 

The age variable was centered when interaction terms were included in the model.  

4.2.7 Behavioral assessment 

As part of the original study protocol, participants performed an incentivized antisaccade task, 

which is used to assess incentive modulated inhibitory control behavior. These data were collected 

in a separate visit that occurred 1 – 77 days (median = 17.5) prior to the diffusion MRI scan. The 

design of the task has been described in detail elsewhere (Paulsen et al. 2014). Here we report on 

the initial cross-sectional sample of the longitudinal sample reported on previously (Paulsen et al. 

2014). We used these data for a follow-up analysis assessing the relationship between 

affective/cognitive control convergence ratios and incentive-modulated inhibitory control (which 

relies on both affective and cognitive control processes). In the task, participants received a cue 

indicating whether correct performance on the upcoming trial would result in an increase in points 

(reward trials), the prevention of a loss of points (loss trials), or not influence point totals (neutral 
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trials). Participants were informed that their point total and the end of the experiment would lead 

to a monetary reward of up to $25. Participants selected whether they would prefer this reward to 

be in the form of cash or a gift card of their choosing. Participants also indicated their subjective 

valuation of the $25 reward using a 7-point Likert scale. All participants were provided this 

additional compensation at the end of the study. Following the incentive cue, a fixation-cross 

appeared on the computer screen for 1.5s followed by a yellow dot that flashed in the periphery. 

To perform the trial correctly, participants had to make a saccade (monitored with eye-tracking) 

to the side of the screen opposite the stimulus. The influence of reward incentives on inhibitory 

control performance was calculated as the difference in accuracy (commission errors only) for 

reward and neutral trials (loss trials were not included in analyses for this study). For behavioral 

analyses, this difference was regressed on age, controlling for sex. For brain-behavior analyses, 

this difference was regressed on the convergence ratio and age, covarying sex, motion metrics and 

global QA. For convergent zones in which the convergence ratio was significantly related to both 

age and behavior, we tested for mediation (i.e. convergence ratio as a mediator of age-related 

differences in behavior). Mediation models were statistically evaluated using bias-corrected 

bootstrap significance values over 5000 bootstraps and were implemented using the M3 Mediation 

Toolbox 

(https://canlabweb.colorado.edu/wiki/doku.php/help/mediation/m3_mediation_fmri_toolbox 

(Wager et al. 2008). For all regression and mediation models including behavioral data, 

participants were excluded that were missing eye tracking data for greater than one third of total 

trials in either condition (N = 8) or that performed at ceiling for both conditions (N = 14). 

https://canlabweb.colorado.edu/wiki/doku.php/help/mediation/m3_mediation_fmri_toolbox
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4.3 RESULTS 

4.3.1 Convergence of corticostriatal pathways 

Convergent corticostriatal projections were identified between the cortical limbic system and the 

fronto-parietal and ventral attention systems in the rostral striatum but not the dorsal attention 

system (Figure 12). 
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Figure 12. Spatially consistent convergent zones in adolescents and adults. 

The sample was split at the median age (18.6y) and the striatal convergence probabilities for 

each pair of cortical ROIs were calculated for each group. The convergence probability maps 

between young (left column) and old (right column) participants and spatial correlations are 

presented for all convergence pairs (Top: limbic/dorsal attention r = 0.29; Middle: limbic/ventral 

attention r = 0.63; Bottom: limbic/fronto-parietal r = 0.85). Black outlines indicate the identified 

locations of the convergent zones used to conduct all subsequent analyses (as estimated from the 

entire sample). We did not observe a significant convergent zone for the limbic and dorsal 

attention systems. 
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Zones of convergent corticostriatal projections between the fronto-parietal system, 

supporting on-line aspects of cognitive control (Dosenbach et al. 2007), and the cortical limbic 

system, supporting affective processes (reward and socioemotional processing), were observed 

bilaterally in clusters that extend from the head of the caudate to the anterior putamen (peak 

coordinates: -22,18,0 and 22,18,0 for left and right hemispheres respectively) (Figure 13A). The 

convergent zones encompassed 46.5% and 56% of the estimated limbic and fronto-parietal 

corticostriatal projection areas respectively (Figure 13A). These areas largely overlapped with 

areas of the striatum previously identified in a functional connectivity parcellation of the striatum 

to have primary functional connections with the limbic and fronto-parietal systems ((Choi et al. 

2012) Figure 20A; 0). White matter tracts connecting each convergent zone to the fronto-parietal 

system included anterior aspects of the inferior and superior fronto-occipital fasciculi and posterior 

aspects of the superior fronto-occipital fasciculus. The inferior fronto-occipital and uncinate 

fasciculi connected each convergent zone to the cortical limbic system (Figure 13B). 
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Figure 13. Limbic/Fronto-parietal convergence assessed using quantitative anisotropy. 

A. Limbic (red) and fronto-parietal (blue) corticostriatal fiber tracking striatal endpoints 

overlaid on the surface of the striatum. The convergent zone is colored in purple. B. Fiber tracts 

connecting the limbic (red) and fronto-parietal (blue) cortical regions of interest to the striatal 

convergent zone from (A). C. The convergence ratio significantly decreased with age throughout 

adolescence in both hemispheres (Table 1). D. The individual maturational trajectories of limbic 

and fronto-parietal projections to the convergent zone. +p<.05 uncorrected; *p<.05, **p<.01, 

****p<.0001 Bonferroni corrected. 
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Corticostriatal projections from the ventral attention system, supporting sustained aspects 

of cognitive control and salience-based attention (Dosenbach et al. 2006, 2007), and limbic 

systems converged bilaterally in the anterior putamen (peak coordinates: -26,10,0 and 26,12,2 for 

left and right hemispheres respectively)(Figure 14A). The convergent zones encompassed 10% 

and 6% of the limbic and ventral attention corticostriatal projection areas respectively Figure 14A). 

These areas largely overlapped with or were nearby to areas of the striatum previously identified 

in a functional connectivity parcellation of the striatum to have primary functional connections 

with the ventral attention and limbic systems ((Choi et al. 2012) Figure 20B). White matter tracts 

connecting these convergent zones to the ventral attention system originated in the insular and 

middle frontal cortices. The inferior fronto-occipital and uncinate fasciculi connected each 

convergent zone to the cortical limbic system (Figure 14B). 

We did not detect a convergent zone for the dorsal attention system and the cortical limbic 

system. Though converging projections were detected in a small number of subjects, the 

probability of convergence did not exceed 7% for our sample (Figure 12A). As such, subsequent 

analyses focus on limbic/fronto-parietal and limbic/ventral attention convergent zones. 
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Figure 14. Limbic/ventral attention convergence assessed using quantitative anisotropy 

A. Limbic (red) and ventral attention (blue) corticostriatal fiber tracking striatal endpoints 

overlaid on the surface of the striatum. The convergent zone is colored in purple. B. Fiber tracts 

connecting the limbic (red) and ventral attention (blue) cortical regions of interest to the striatal 

convergent zone from (A). C. The convergence bias significantly decreased with age throughout 

adolescence in the right hemisphere only (Table 3). D. The individual maturational trajectories of 

limbic and ventral attention projections to the convergent zone.  

+p<.05 uncorrected; *p<.05, **p<.01, ****p<.0001 Bonferroni corrected. 
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4.3.2 Maturation of convergent corticostriatal inputs 

We first sought to examine whether the location or shape of the convergent zones differs with age. 

Voxel-wise logistic regression models indicated no striatal voxels significantly differed in the 

probability of being a convergent endpoint for any of the affective/cognitive convergence pairs as 

a function of age. This suggests that the spatial extent of the convergent zones does not expand or 

contract as a function of age and suggests the macro-level circuit architecture is in place by this 

stage of development. To further illustrate this, we split our sample at the median age (18.6y), 

independently calculated convergence probabilities for both groups, and calculated the spatial 

correlation of convergence probabilities across striatal voxels. The probability maps between 

groups were highly correlated for the limbic/fronto-parietal (r = 0.85) and limbic/ventral attention 

(r = 0.63) convergent zones (Figure 12), further indicating that convergent zones are spatially 

consistent across age-groups. Notably, despite the overall low observed convergence probability 

in the limbic/dorsal attention convergent zone, there was still a spatial correlation between old and 

young groups (r = 0.29). 

We next quantified the relative integrity of the converging corticostriatal pathways that 

link affective and cognitive control-related cortical systems to the identified striatal convergent 

zones, the convergence ratio (see Convergence ratio), and examined its association with age in our 

sample. The limbic/fronto-parietal convergence ratio linearly decreases in both hemispheres 

throughout adolescence (Figure 13C, Table 3), indicating that the relative weighting of limbic 

projections decreases throughout adolescence and into adulthood. This developmental change 

towards greater relative fronto-parietal weighting appears to be driven by a trend-level inverse 

linear age-related decrease in limbic QA in the left hemisphere (1/Age coefficient = 0.27, SE = 

0.12, p < .05 uncorrected) while fronto-parietal QA remained stable (coefficient = 0.006, SE = 
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0.004, n.s.) (Figure 13D, left panel) and a greater age-related decrease in limbic QA (coefficient = 

-0.003, SE = 0.0003, p < .01 corrected) than fronto-parietal QA (coefficient = -0.001, SE = 0.0004, 

p < .05 Bonferroni corrected)(Figure 13D, right panel). These developmental effects were not 

meaningfully changed by including tSNR as a covariate. 

The limbic/ventral attention convergence ratio also linearly decreases with age, though the 

effect is only significant in the left hemisphere (Figure 14C, Table 3). The age-related decrease in 

the left hemisphere convergence ratio appeared to be driven by a trend-level inverse linear age-

related decrease in limbic QA (1/Age coefficient = 0.45, SE = 0.2, p < .05 uncorrected) while 

ventral attention QA remained stable (coefficient = -0.0009, SE = 0.0005, n.s.) (Figure 14D, left 

panel). The inclusion of tSNR as a covariate reduced the significance of the left hemisphere age 

coefficient to a trend-level effect, however tSNR itself was not a significant predictor of the 

convergence ratio, ruling out tSNR as a mediator of the relationship between age and the 

convergence ratio. 
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Convergent zone Variable Coefficient SE t p 

Limbic/Fronto-parietal      
Left      

 Age -0.0029 0.0006 -4.82 <.00001**** 

 Sex 0.0111 0.0060 1.85 .067 

 Motion     

 Translation 0.0115 0.0201 0.57 .568 

 Rotation -0.0279 0.0188 -1.48 .142 

 Slice -0.0735 0.5003 -0.15 .884 

 Global QA -0.0751 0.0428 -1.75 .083 

Right      

 Age -0.0035 0.0005 -6.93 <.00001**** 

 Sex 0.0100 0.0049 2.03 .046+ 

 Motion     

 Translation 0.0243 0.0165 1.47 .144 

 Rotation -0.0457 0.0153 -2.99 .004* 

 Slice -0.0132 0.4340 -0.03 .976 

 Global QA -0.0372 0.0339 -1.10 .276 

Limbic/Ventral Attention      
Left      

 Age -0.0041 0.0012 -3.31 .001** 

 Sex 0.0328 0.0123 2.67 .009* 

 Motion     

 Translation 0.0744 0.0385 1.93 .057 

 Rotation -0.1214 0.0385 -3.15 .002** 

 Slice 0.4232 1.0407 0.41 .685 

 Global QA -0.1426 0.0770 -1.85 .067 

Right      

 1/Age 0.3626 0.2385 1.52 .132 

 Sex -0.0119 0.0083 -1.44 .154 

 Motion     

 Translation 0.0014 0.0276 0.05 .960 

 Rotation 0.0357 0.0267 1.34 .185 

 Slice -0.1321 0.7251 -0.18 .856 

 Global QA 0.0069 0.0524 0.13 .895 

Note. Bold indicates significant after multiple comparison correction. 

 + p<.05; *p<.05, **p<.01, ***p<.001, ****p<.0001 Bonferroni corrected 
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Table 3 Convergence Ratio Maturation Regression Models  

4.3.3 Sex differences in convergence ratios 

There was a significant main effect of sex in the left limbic/ventral attention convergent zone and 

a trend-level effect (p < .05 uncorrected) in the right limbic/fronto-parietal convergent zone (see 

Table 3). In both cases, the direction of the effect was such that males had greater (i.e. more limbic) 

limbic/cognitive control convergence ratios than females. There were no significant age-by-sex 

interactions. 

4.3.4 Convergence ratio and incentive modulated inhibitory control 

To determine whether the observed age-related differences in the affective/cognitive control 

convergence ratios were related to reward-related cognitive control performance, we performed 

follow-up analyses investigating the relationship between the convergence ratio and performance 

on an incentive modulated inhibitory control task, the rewarded antisaccade.  Though reward 

incentives did not significantly improve accuracy across the entire sample (Fig 5 A), we found that 

the right limbic/fronto-parietal and right limbic/ventral attention convergence ratios were 

positively associated with accuracy improvements under reward incentives (i.e. greater relative 

limbic weighting is associated with greater performance improvement) (Fig 5 B&C). Considering 

that accuracy was high overall in both conditions (Fig 5 A), as a follow-up analysis we compared 

the mean convergence ratios for only the participants who had the greatest difference in 

performance between conditions to test the hypothesis that those who have the greatest reward-

related improvement in accuracy should have a greater (i.e. more limbic) convergence ratio. We 



 83 

found that participants who had a greater than 5% increase in accuracy in the reward condition 

(i.e. reward accuracy – neutral accuracy > 5%; N = 5) had significantly more limbic convergence 

ratios than those who had a greater than 5% increase in performance in the neutral condition (i.e. 

reward accuracy – neutral accuracy < -5%; N = 8) in the bilateral limbic/fronto-parietal (Left: t = 

2.21, p = .0495; Right: t = 2.82, p = .0155) and left limbic/ventral attention convergent zone (Left: 

t = 2.94, p = .0136; Right: t = 1.47, p = .176). Previous work using a rewarded antisaccade task 

(Padmanabhan et al. 2011) has demonstrated that the influence of reward incentives is greatest 

early in adolescence and diminishes into adulthood. Our findings generally support this pattern, 

though the effect was only significant at the trend level in this sample (Fig 5 D). Importantly, this 

effect not likely to be related to age-related differences in the subjective valuation of the reward 

incentive because we did not observe a significant association between age and the subjective 

valuations provided by participants (r = -.05, p = .57). As the right limbic/fronto-parietal 

convergence ratio is significantly associated with both age (Figure 13C) and performance (Fig 5 

B), we sought to determine whether this effect mediated the trend-level association between age 

and reward-related performance improvements. Mediation analysis indicated that the right 

limbic/fronto-parietal convergence ratio significantly mediates the association between age and 

reward-related antisaccade performance (Fig 5 E). 

4.4 DISCUSSION 

Conceptual models of the neural basis for adolescent heightened reward drive, sensation seeking, 

and risk-taking suggest a developmental imbalance in the integration of affective and cognitive 

control systems and their resulting influence on behavior (Shulman et al. 2016); however direct 
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evidence for developmental differences in the integration of these systems has been lacking. We 

addressed this by showing how age-related differences in corticostriatal circuitry that integrates 

information from cortical limbic and control systems correlates with developmental differences in 

reward-driven behavior. Converging corticostriatal pathways form an infrastructure by which 

information from functionally distinct cortical systems can be integrated to influence action 

selection (Haber 2003; Averbeck et al. 2014; Haber 2014; Verstynen 2014). Different cortical 

systems are selective for different feature representations and sensitive to different task contexts, 

stimuli, or goal states, in effect prioritizing different types of information (e.g. (Klink et al. 2014)). 

Whether competitive or complementary, this information must be integrated to select appropriate 

actions. This is accomplished, in part, by corticostriatal projections that are the inputs to the 

cortico-basal ganglia-thalamo-cortical pathways that bias action selection either directly 

(Humphries et al. 2006; Houk et al. 2007; Kimchi and Laubach 2009) or indirectly via action value 

representations (Frank 2005; Seo et al. 2012). In this way, striatal convergent zones function as 

one substrate for the integration of information from distinct cortical systems to influence 

behavior.  

The influence of cortical systems on behavior should then vary with the relative 

connectivity integrity white matter projections to striatal convergent zones. To this end, we found 

that the relative integrity of convergent cortical affective (limbic) and cognitive control-related 

(fronto-parietal and ventral attention) pathways into the striatum differs with age, such that the 

relative integrity of affective pathways reduces throughout adolescence and into adulthood, 

coinciding with developmental changes in reward-guided decision making. Thus, these findings 

not only provide support for the notion that limbic systems have greater relative influence on 

behavior during adolescence than during adulthood (Shulman et al. 2016), they also provide one 
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neurologically plausible mechanism by which these systems can influence behavior. Indeed, the 

right hemisphere limbic/fronto-parietal and limbic/ventral attention convergence ratios were 

positively associated with reward-related improvements in inhibitory control performance (Fig 5). 

The striatal convergent zones for the limbic/fronto-parietal and limbic/ventral attention 

systems identified were observed in the rostral aspects of the dorsal and ventral striatum. The 

spatial location of these convergent zones fell on or near the borders between areas of the striatum 

previously identified to be predominantly connected to the limbic and fronto-parietal or ventral 

attention regions investigated in this study (Supplementary Fig 2), providing a notable consistency 

between functional (resting-state) and structural (dMRI) indices of corticostriatal connectivity. The 

cortical limbic system forms a cognitive map that prioritizes inferred economic or hedonic value 

via the OFC (Kringelbach 2005; Stalnaker et al. 2015), as well as socioemotional information via 

the temporal pole (Olson et al. 2007). Cortical cognitive control-related systems, on the other hand, 

prioritize goal-directed control of behavior. The fronto-parietal system is involved in transient 

aspects of cognitive control, such as control initiation, task-switching, and rule updating 

(Dosenbach et al. 2007; Cole et al. 2013). The ventral attention system prioritizes context-

dependent visuospatial and perceptual salience, playing a functional role in orienting attention 

(Dosenbach et al. 2006; Fox et al. 2006; Fair et al. 2009). Considering these functional 

characteristics and the role of cortico-basal ganglia circuitry in influencing action selection (Seo 

et al. 2012; Wiecki and Frank 2013; Jin et al. 2014; Dunovan and Verstynen 2016), greater relative 

weighting of convergent cortical limbic projections in relation to projections from these cognitive 

control systems should bias adolescents to select actions or focus attention on items in the 

environment that have high inferred reward value even if those items are irrelevant to the present 

goal-state. This bias may then underlie the behavioral phenotype of greater reward sensitivity, a 
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propensity for reward-driven behavior, and inconsistent cognitive control, which are hallmarks of 

adolescent behavior (Somerville and Casey 2010; Luna et al. 2015). Accordingly, we found that 

the right hemisphere limbic/fronto-parietal convergence ratio mediated age-related reductions in 

the influence of reward on inhibitory control performance. As has been previously reported 

(Padmanabhan et al. 2011; Geier and Luna 2012), the known developmental limitations in 

antisaccade performance during adolescence can be overcome in the presence of reward 

incentives. As we report here, this effect does not seem to be a function of developmental 

differences in the subjective value of reward stimuli. Rather, our present results indicate that this 

developmental phenomenon may be associated with the affective/cognitive-control convergence 

ratio, particularly at limbic/fronto-parietal striatal convergent zones (Fig 5 E). In this experimental 

paradigm, where there is synergy between the cognitive demands and reward information, 

developmental differences in the limbic/cognitive control convergence ratio (i.e. greater relative 

weighting of limbic projections to limbic/cognitive control convergent zones during early 

adolescence) may form a neural substrate for the greater facilitation of task performance during 

rewarded trials for adolescents over adults. In this way, a greater affective/cognitive control 

convergence ratio may have adaptive qualities in early adolescence, facilitating, in this case, adult-

like inhibitory control ability with incentive motivation. 

We did not observe a convergent zone for the limbic and dorsal attention systems. This 

suggests that convergence of affective corticostriatal projections with other functional systems is 

selective even within the cognitive domain. The absence of a corticostriatal convergent zone is 

likely due to anatomical and topographical characteristics of the dorsal attention and limbic cortical 

systems. (Yeo et al. 2011). As a result, it’s corticostriatal connections are predominant in the caudal 

putamen whereas corticostriatal connections from the limbic system are predominant in the 
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rostroventral striatum (Choi et al. 2012). The dorsal attention system is functionally involved in 

goal-directed sustaining of attention and is thus associated with sustained aspects of cognitive 

control (Fox 1995; Dosenbach et al. 2007). This is in contrast to the more transient control 

functions of the fronto-parietal and, to some extent, ventral attention systems (Dosenbach et al. 

2007; Cole et al. 2013; Vossel et al. 2014). Speculatively, limbic system convergence with the 

fronto-parietal and ventral attention systems but not the dorsal attention system may indicate 

greater ability for reward information to interact with cognitive control in a transient manner, 

biasing task-switching and orienting of attention toward reward stimuli or contexts. Further, 

considering the close interaction between the ventral and dorsal attention systems to respectively 

orient and sustain attention (Vossel et al. 2014), there may not be a functional imperative for 

convergence between the limbic and dorsal attention system as the ventral attention system could 

function as an intermediary. Future work using functional imaging may help to delineate these 

complex functional interactions. 

The development of the affective/cognitive control convergence ratio was predominantly 

driven by age-related decreases in the mean QA of cortical limbic projections to convergent zones 

while cognitive control projections generally remained stable, supporting the notion that systems 

supporting limbic function may be particularly influential in adolescence (Luna et al. 2015). 

Though developmental decreases in mean QA may appear surprising in consideration of studies 

assessing diffusion with the tensor model and reporting developmental increases in fractional 

anisotropy (FA), it is important to note that these same studies typically also report developmental 

decreases in diffusion along the parallel axis, axial diffusivity, during adolescence (Qiu et al. 2008; 

Kumar et al. 2012; Simmonds et al. 2014b), which in principle may be a more similar, though less 

robust (see Materials and methods: Quantitative anisotropy), measure to QA. This suggests that 
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decreases in QA may speculatively reflect a developmental refinement in limbic corticostriatal 

structural connectivity. Notably, a recent longitudinal study similarly found age-related reductions 

in the QA of limbic (fronto-amygdalar) white patter pathways during adolescence (Jalbrzikowski 

et al. 2017). Additionally, a recent study (Baker et al. 2015) found decreased fractional anisotropy 

of subcortical tracts during late adolescence, which suggests developmental specialization may 

continue within subcortical systems throughout adolescence. These findings agree with resting 

state functional connectivity MRI studies that find decreased fronto-striatal functional connectivity 

with age during adolescence (Supekar et al. 2009; Dosenbach et al. 2010; Padmanabhan et al. 

2013; Porter et al. 2015). Considering that myelination may increase or decrease based on neuronal 

activity (Hines et al. 2015; Mensch et al. 2015), decreased functional connectivity and decreased 

white matter integrity observed here may be mechanistically interrelated. 

We observed some evidence of hemispheric differences in our developmental and brain-

behavior analyses. The right hemisphere limbic/ventral attention convergence ratio was not 

significantly associated with age in our sample, though the direction of the effect was consistent 

with the left hemisphere. We also observed that both the left hemisphere limbic/fronto-parietal and 

limbic/ventral attention did not have a significant linear association with incentive modulated 

inhibitory control performance. However, when we focused our analyses only on participants with 

the greatest change in performance between conditions, we found that the left hemisphere 

convergence ratios did differentiate groups such that participants with greatest improvement in 

performance under reward incentives had a more limbic convergence ratio than those who had the 

greatest improvement in performance in the neutral condition, suggesting the left hemisphere 

convergent zones are still behaviorally relevant. 
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Sex differences impact many aspects of neural function and anatomy (Cahill and Aswad 

2015) including white matter development (Wang, Adamson, et al. 2012; Simmonds et al. 2014b). 

Here we find that males tended to have a greater limbic/cognitive control convergence ratio than 

females, with no significant age by sex interaction. This pattern of results suggests a greater 

influence of the cortical limbic system on male behavior relative to that of females regardless of 

age. This finding is in-line with recent work showing that adolescent males are more sensation 

seeking and have less impulse control than adolescent females (Shulman et al. 2015), and may 

play a role in sex differences in the development of striatum-related psychopathologies such as 

ADHD (Willcutt 2012) and substance abuse (Compton et al. 2007) which have greater incidence 

in males, and mood disorders, which have greater incidence in females (Cover et al. 2014).  

Based on our specific hypotheses pertaining to developmental differences in the integration 

of affective and cognitive control systems and their influence on behavior throughout adolescence, 

our current study has selectively focused on the development of convergent corticostriatal 

projections from affective and cognitive control systems. We wish to acknowledge that convergent 

zones for other functional brain systems as well as corticostriatal projections from individual brain 

are also likely to play important functional roles in cognition and behavior and may also display 

important maturational changes throughout development. Future studies may further interrogate 

the development of these corticostriatal pathways to complement the findings of this study. 

In sum, our findings indicate that early in adolescences the cortical affective system has 

the greatest relative integrity of projections into corticostriatal hubs that integrate affect and 

cognitive control information and that this neuroanatomical configuration is related to reward-

driven behavior during this period of development. Thus, we propose that cortical projections to 

striatal convergent zones serve as one important developmental mechanism for the changing 
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influence of affective and control systems on behavior, whereby the relative influence of affective 

systems decreases as adolescents make the transition to adulthood. Importantly, the greater 

influence of affective systems during early adolescence can be adaptive in nature in that it underlies 

an incentivized increase in cognitive control abilities. Developmental changes in the relative 

weighting of convergent corticostriatal projections may have implications that extend to abnormal 

development and behavior. Psychopathologies such as schizophrenia, substance abuse, and mood 

disorders emerge during adolescence and are associated with striatal abnormalities. As such, 

corticostriatal convergent zones may be a useful target for future clinical studies. 
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5.0  DISCUSSION 

Heightened sensation seeking is one of the most salient features of the adolescent behavioral 

profile. The contribution of sensation seeking to risk-taking behavior during adolescence has 

created a public health interest in understanding the neurodevelopmental processes that contribute 

to sensation seeking behavior during adolescence. Prominent neurodevelopmental models of 

adolescence hypothesize that adolescent sensation seeking is related to a functional peak in DA 

reward processing that creates a developmental imbalance in the influence of the DA system on 

behavior relative to top-down control from cognitive control systems (Shulman 2016). The studies 

presented here test key components of these models, including 1) that the striatal DA system 

continues to mature during adolescence and 2) that there is a developmental imbalance in affective 

vs. cognitive control systems on behavior during adolescence. 

 Evidence for the development of the striatal DA system during adolescence has been 

largely based on animal models of development. In particular, rodent studies have provided 

evidence of continued development of striatal DA receptor density, DA concentration, and DAT. 

These studies have led to the hypothesis that the same neurodevelopmental processes are unfolding 

during adolescence in the human; however, this hypothesis has been difficult to test directly due 

to limitations in techniques available to study DA neurobiology in vivo in the human in pediatric 

populations. The studies included in chapters 2.0 and 3.0 of this dissertation addressed this 

limitation by investigating tissue-iron concentration, a striatal tissue property that has been linked 

with multiple aspects of mesostriatal DA neurobiology (Wiesinger et al. 2007; Unger et al. 2008, 

2014; Zucca et al. 2017). In chapter 2.0 , we used a novel MR measure sensitive to tissue iron, 

nT2*, to investigate age-related differences in striatal development. The results indicated that the 
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spatial pattern of nT2* systematically differs as a function of age, with greatest age-related 

differences in VS. The direction of the effect suggests greater tissue-iron accumulation with age 

in the ventral striatum, with less pronounced changes occurring in dorsal striatum. In other words, 

greater age effects were centered on affective rather than associative/sensorimotor striatum. In 

chapter 3.0 , we replicated findings these findings using a quantitative measure of tissue iron 

concentration, R2’ (note that nT2* is inversely related to tissue iron concentration whereas R2’ is 

positively associated with tissue iron concentration, thus age-related decreases in nT2* and age-

related increases in R2’ both indicate age-related increases in striatal tissue iron concentration). 

We found that the development of R2’ roughly followed a ventral-rostral to dorsal-caudal gradient 

such that the greatest age-related increases in tissue iron were occurring in ventral striatum.  

Chapter 3 continued to build on the findings in chapter 2 by including PET indices of 

striatal neurobiology in the adult portion of the sample. Specifically, we assessed DTBZ and RAC 

across the striatum as measures of VMAT2 and D2 receptor density, respectively, and related them 

to R2’ estimates of tissue iron concentration. PET measures generally agreed with rodent studies 

of striatal development. D2 receptor concentration decreased with age in the putamen and anterior 

caudate and did not significantly decrease in the nucleus accumbens, reflecting the decline in 

receptors in late adolescence that follows an early adolescent peak in rodent caudate-putamen, and 

the less pronounced decline in nucleus accumbens (Tarazi 2000, Teicher 1995). DTBZ did not 

significantly differ by age in the adult sample, perhaps reflecting a plateau in striatal DA levels (as 

well as DAT levels) during the transition to adulthood (Giorgio 1987). Importantly, we found that 

tissue R2’ was positively associated with DTBZ in the ventral striatum, indicating that tissue iron 

concentration is associated with VMAT2 in limbic striatum. To our knowledge, this is the first 

time an association between striatal tissue iron and striatal DA neurobiology has been 
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demonstrated in vivo in the human. Considering the age-related rise in tissue iron during 

adolescence, it is possible that there is a corresponding increase in presynaptic vesicular DA during 

adolescence that occurs prior to the plateau observed using DTBZ in the adult sample. This 

increase would correspond to increases in DA levels observed in the rodent (Giorgio 1987). 

However, this inference is speculative and should be interpreted with caution until future studies 

can replicate the association between tissue iron and VMAT2 that we observe in our data. 

The studies presented in chapters two and three advance previous work assessing the 

structural development of the striatum. These prior studies have focused on striatal volume as an 

indicator of structural development and have generally reported age-related decreases in volume 

over adolescence, though one study found increased volume in the nucleus accumbens (Dennison 

et al. 2013). Interestingly, one study that examined changes in surface area across the surface of 

the striatum (Raznahan et al. 2014) found patterns of expansion and contraction that seem to be 

somewhat anti-correlated with the pattern of tissue iron accumulation we observe; that is, areas of 

the striatum that show greatest contraction with age (anterior striatum) tended to have greater age-

related increases in iron concentration, while areas showing the greatest expansion with age 

(posterior dorsal striatum) tended to have non-significant age-related differences in iron 

concentration. It is not clear how iron should directly affect volume estimates, however iron is 

inversely related to T1 relaxation time (i.e. linearly related to 1/T1) (Vymazal et al. 1995; Ogg and 

Steen 1998; Stüber et al. 2014) which is the measure used to calculate volume and surface area, so 

an anticorrelation between volume and iron is reasonable. For this reason, it is possible that striatal 

tissue iron may actually bias estimates of striatal volume due to the shortening of T1 relaxation 

time. Importantly, tissue iron is essential for a variety of neural processes, including oxidative 

metabolism, myelination, and neurotransmitter synthesis, and have been directly linked to aspects 
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of DA neurobiology (including the results presented in chapter three), making tissue iron a useful 

index of striatal development. In contrast, the factors that contribute to MR indices of structural 

morphometry are unclear. Overall, results from chapters 2 and 3 suggest that VS and anterior 

caudate iron concentration and caudate and putamen D2 receptor density are continuing to develop 

into adulthood whereas presynaptic DA concentration across the striatum and iron concentration 

in the posterior caudate and putamen stabilize at or prior to the transition from adolescence to 

adulthood (i.e. by age 18). 

Chapter 4 tested the hypothesis that the affective system has greater influence on behavior 

during adolescence by investigating the development of affective and cognitive corticostriatal 

connectivity. We found that areas of the striatum that receive convergent corticostriatal inputs from 

affective and cognitive control areas of the cortex (“convergent zones”) have greater relative 

connectivity integrity of affective inputs during adolescence. Whereas inputs from cognitive 

control systems were relatively stable during adolescence, inputs from affective cortex tended to 

decrease in integrity as a function of age, leading to a decreasing ratio of affective-to-cognitive 

control connection integrity at convergent zones (the convergence ratio). Further, the convergence 

ratio mediated age-related decreases in the impact of reward incentives on oculomotor inhibitory 

control during adolescence. These results thus support the hypothesis that there is a greater relative 

influence of affective vs. cognitive control systems on adolescent behavior (at least at the level of 

corticostriatal circuitry) that relates to elevated reward drive. Prior work has characterized 

developmental increases and decreases in cognitive and affective corticostriatal functional 

connectivity, respectively. This study builds on these studies by specifically targeting 

corticostriatal integration of information from cognitive and affective functional subdivisions of 

cortex. Corticostriatal integration at striatal convergent zones may be the ideal candidates for 
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assessing the influence of different cortical systems on behavior as these areas are thought to serve 

as functional hubs that directly integrate and synthesize information to bias future action selection 

via basal ganglia action outputs (Averbeck et al. 2014; Haber 2014). 

Overall, our findings suggest continued development of affective striatal neurobiology and 

corticostriatal connectivity in parallel with relative stable cognitive and sensorimotor striatal 

neurobiology and connectivity during adolescence. Functional sub-divisions of the striatum 

generally fall along a rostroventral to caudodorsal gradient whereby affective and limbic functions 

are associated with rostroventral striatum, sesnsorimotor functions reside in caudodorsal striatum, 

and associative/executive functions fall between (Haber 2014). Tissue-iron, measured with both 

nT2* and R2’, increased at the greatest rate in VS and followed a ventral dorsal gradient whereby 

the most dorsal (and posterior) aspects of the striatum either did not significantly differ by age 

(R2’; chapter 3) or followed an opposite developmental trajectory (nT2*; chapter 2). This 

developmental pattern thus maps on to functional gradients and indicates that the most pronounced 

development is occurring in affective/limbic striatum. Corticostriatal connectivity to 

affective/cognitive control convergent zones followed a similar pattern of development; affective 

connectivity decreased across adolescence while cognitive connectivity remained developmentally 

stable (Chapter 4). PET measures of DA could only be assessed in a late adolescence to adult 

cohort, so developmental effects can only be detected over ages 18-30. Though we did not observe 

age-related differences in VMAT2, D2 receptor density generally decreased with age. Notably, 

there was a lack of age-related differences in VS D2 receptors. While this may appear to be 

inconsistent with other findings, the lack of change again suggests unique developmental processes 

happening in ventral and dorsal striatum and suggests elevated DA neurobiology in VS that 

stabilizes into adulthood. It is possible that there is a protracted peak in receptor density in the 
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nucleus accumbens that extends further into adulthood and that the age-related decline occurs 

outside the age range included in our sample, but future research is needed to test this hypothesis. 

The overall pattern across all measures most supports the driven dual systems model (Luna and 

Wright 2016) of the dual systems family of neurodevelopmental models. The driven dual systems 

model posits that cognitive systems are largely developed by the onset of adolescence and affective 

systems continue to develop. Our results differ from the driven dual systems model in that the 

driven dual systems model hypothesizes that the affective system follows an inverted “U” 

developmental trajectory and our results depict largely linear or monotonic changes (e.g. 

curvilinear plateau). Importantly, these models are largely theoretical in nature and cannot possibly 

capture the development of these complex and multifaceted neural systems. This complexity is 

evident in the studies presented here as development of connectivity, iron accumulation, D2 

receptors, and VMAT2 do not have a 1:1 correspondence. This family of developmental processes, 

combined with others not studied here, likely combine to produce characteristic adolescent 

behavior.  

It is important to note that, while these findings represent a significant step forward into 

the investigation of the striatal DA system during adolescence, there are important limitations to 

consider. The striatal DA system is complex and multifaceted; though we have targeted two 

important aspects of the striatal DA system here, VMAT2 levels and D2/D3 receptor 

concentration, there are many additional aspects of striatal DA that are critical for striatal function 

and that we are not capable of measuring using the methods employed here. For example, we did 

not measure D1-like receptors (D1 and D5). D1-like and D2-like receptors jointly play important 

roles in striatal function based, at least in part, on their contributions to direct and indirect pathways 

in the basal ganglia which function to facilitate or inhibit actions, respectively (Surmeier et al. 
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2007; Gerfen and Surmeier 2011). Thus, increases or decreases in DA levels can have differential 

functional effects based on different patterns of post-synaptic DA receptor class distributions. 

Further, DA levels themselves are not a singular construct. Here we have used DTBZ to measure 

VMAT2 levels as an indicator of presynaptic DA concentration, however VMAT2 levels may vary 

according to multiple factors, including DA synthesis, DAT levels, and do not reflect unpackaged 

intracellular DA or extracellular DA concentrations—all factors that likely have important 

functional and developmental significance. In addition, the source of presynaptic DA neurons—

VTA or SN—also has functional significance and cannot be determined in the analyses presented 

here. Limitations in our ability to assess these critical aspects of striatal DA are related to 

limitations in techniques available to measure them in vivo in humans. Thus, in order to understand 

adolescent striatal development more fully, future work must be done that continues to rely on 

both human and animal models of adolescence and leverages techniques available on multiple 

scales to begin to characterize these aspects of striatal DA and how they interact across 

development.  

Adolescence is the age of emergence of major psychopathology that is characterized by 

abnormalities in affective processing. Though we did not assess abnormal populations, these 

findings may provide a useful normative template from which to compare disease populations and 

to form hypotheses about potential loci of impairments that correspond to symptoms of these 

disorder. These studies provide a first step in understanding the differential development of 

specific DA mesolimbic processing that can inform normative development and can motivate 

future studies. 
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APPENDIX A 

FIGURES 

Figure 15 Bar graphs comparing performance of the multivariate support vector regression with and 

without controlling for potential volume effects. 

The bars reflect the correlation between true and predicted age using both techniques. There are 

no significant differences in performance. 
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Figure 16. Susceptibility artifacts do not create spurious age effects on T2* images. 

A. Representative preprocessed T2*-weighted images (subject age 15.9). Slices highlight signal 

dropout due to susceptibility artifact in orbitofrontal cortex (OFC, left) and inferotemporal cortex 

(IFC, right). B. T2*-weighted images from A overlaid on standard anatomical T1 image. C. Whole 

brain results overlaid on T2*-weighted images with voxel showing peak age effect highlighted. 

Significant age effects do not occur in areas with greatest susceptibility artifacts. D. Results from 

C overlaid on the standard T1 anatomical image. 
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Figure 18. Map of t-statistics for the effect of age on DTBZ (controlling for sex and trait motion). 

 

Figure 17. Map of t-statistics for the effect of age on Raclopride (controlling for sex and trait motion). 
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Figure 19 Signal-to-noise-ratio for the sample. 

A. Histogram of SNR across the sample including the 2.5 standard deviation cutoff (6.5, blue line) 

for inclusion in future analyses. B. SNR is negatively associated with age after outlier removal, 

however this association is driven by and age-by-sex interaction such that SNR decreases with age 

for males and remains stable in females. 
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Figure 20 Spatial locations of convergent zones in relation to resting-state functional connectivity 

parcellation of the striatum. 

Convergent zones for the limbic/fronto parietal systems (top) and limbic/ventral attention 

systems (bottom) are shown in yellow overlaid on striatal regions from Choi and colleagues (2012) 

that are predominantly functionally connected to the cortical systems used as cortical regions of 

interest in this study (Red = limbic, Blue = Fronto-parietal (top), Teal = Ventral attention (bottom)). 

Convergent zones largely lie on or near the boundaries between the striatal areas from the 

functional connectivity parcellation. 
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