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Sometimes not all training samples are equal in supervised machine learning due to their 

different accuracy, reliability, source, relevance, or other reasons. Non-weighted machine 

learning techniques are designed for equally important training samples: (a) the cost of 

misclassification is equal for training samples in parametric classification techniques, (b) 

residuals are equally important in parametric regression models, and (c) when voting in non-

parametric classification and regression models, training samples either have equal weights or 

their weights are determined internally by kernels in the feature space, thus no external weights. 

In this thesis, we develop the weighted versions of Bayesian predictor, perceptron, multilayer 

perceptron, SVM, and decision tree and show how their results would be different from their 

non-weighted versions. 

Applying machine learning techniques to spatial-temporal data poses the question that 

how the recorded location and time for training samples should contribute to the training and 

testing process. The prior knowledge of how spatial-temporal phenomena are autocorrelated 

cannot be properly captured by machine learning techniques which either ignore location and 

time altogether, or consider them as input features. Not to mention that the latter approach leads 

to increased sparseness of data in the feature space and more free parameters in the predictor; 
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thus demanding for larger training datasets. We use the prior knowledge about the spatial-

temporal autocorrelation to determine how relevant each training sample would be, given its 

spatial and temporal distances to the irresponsive (unlabeled) sample. Weighted machine 

learning techniques use this prior knowledge by taking the relevance of training samples with 

regard to the irresponsive sample into account as training samples’ weights. The proposed 

approach overcomes the aforementioned issues by enriching the training process with the prior 

knowledge about spatial-temporal autocorrelation. Because the spatial-temporal weight of 

training samples depends on the irresponsive sample’s location and time, the machine needs to 

be trained separately for each irresponsive sample. However, we show that in practice using only 

a small subset of training samples with largest spatial-temporal weights not only mitigates the 

training time but also results in the best accuracy in most cases. 
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1.0  INTRODUCTION 

1.1 DEFINITIONS AND SYMBOLOGY 

In this thesis, for the purpose of clarification and unification: 

• We refer to the machine learning technique’s inputs as features or feature vector. They are 

also called predictors, independent, or explanatory variables in some literature. 

• If the output of a machine learning technique is continuous, it is a regressor, otherwise, if 

the output is categorical, it is a classifier. Predictor refers to both of them. 

• The terms estimate and label are used to refer to the output of regressors and classifiers, 

respectively, and the term response is used to refer to the output of either. 

• If the response is known for an observation, it is called a responsive 

sample/point/observation and if the response is not known (only the feature vector is 

observed), it is called an irresponsive sample/point/observation. 

• Training samples (responsive or irresponsive) are the samples used to train the predictor 

and test samples are the ones used to test its accuracy. Note that, although this thesis is only 

focused on supervised learning, we avoid using the terms training and test samples to 

distinguish between samples with and without responses because unsupervised (e.g., 

autoencoders) and hybrid (e.g., pre-trained MLPs) learners are trained by irresponsive 

samples [1]. 
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• We represent the number of features or the length of the feature vector with l and the 

number of training samples with N. 

• Matrices are shown with uppercase and vectors with lowercase letters. 

• The feature vector of the i-th training sample is represented by xi which is a l×1 vector and 

its response, either numerical or categorical, is shown with yi. 

• The features or inputs matrix is represented by X, where each row is one feature vector. 

Therefore, X is a N×l matrix where N is the number of training samples and l is the number 

of features. 

• The bold xi indicates a feature vector with an additional element of 1 at its end; therefore, xi 

has l+1 elements. 

• The bold X indicates the features matrix with an additional column of length N with all its 

elements being 1; therefore, X has N rows and l+1 columns. Adding this column to the 

features matrix simplifies the calculation of intercept for some machine learning 

techniques. 

• The vector containing all training sample responses is indicated by y which is a vector of 

length N. 

• The weight vector for the linear predictors is shown with w and the threshold (intercept) 

with w0. The bold w shows the weight vector including the threshold (intercept) as its last 

element. 

• The weight for the training sample i is denoted by gi. Without the subscript, g represents all 

weights in one N×1 vector and G indicates the N×N diagonal matrix including g as its 

diagonal. 

• The identity matrix is represented with I. 
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1.2 PROBLEM STATEMENT 

“Data from locations near one another in space are more likely to be similar than data from 

locations remote from one another” [2; 3; 4; 5]. This observational fact is called spatial 

autocorrelation [6; 7; 8; 9; 10; 11; 12; 13; 3; 4] and makes spatial data different from other types 

of data. More formally, spatial autocorrelation is the result of first- and second-order effects in 

spatial processes [2; 14; 3], where the former refers to environmental effects and the latter refers 

to interactions between samples. The same definition is true in time [4; 15; 16], referred to as 

temporal autocorrelation. Temporal data also might have an additional cyclic autocorrelation [17; 

18; 19; 20; 21] termed cyclic temporal autocorrelation. Because of spatial and temporal 

autocorrelations, spatial-temporal data are not truly random. In other words, phenomena do not 

vary randomly through space and time. 

Spatial autocorrelation and temporal autocorrelation are the backbone of spatial and 

temporal data analytics. For example, if the temperature at location A is 30°C, the temperature at 

location B, 1 m away from A, is also 30°C, the temperature at location C, 100 m away from A 

would be very close to 30°C, and the temperature at location D, 2 km away from A, is more 

uncertain and can be different (less or more) than 30°C. More examples can be found in the 

related literature [6; 7; 8; 9; 10; 11; 12; 13; 3; 4]. This temperature example can also be used to 

explain the temporal autocorrelation; more we temporally distance from the time that the 

temperature was measured at location A, more different the temperature can be from 30°C, and 

less certain we are about the temperature at location A. Temperature also has a strong cyclic 

temporal autocorrelation; temperature rises from winter to spring and keeps rising until summer, 

then starts falling from summer to autumn and keeps falling until winter and this cycle repeats 

itself. More examples can be found in the literature [17; 18; 19; 20; 21]. This cyclic behavior 
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makes temporal autocorrelation more complicated to model than spatial autocorrelation. Other 

examples of spatial-temporal data are elevation, air or water pollution, soil type, weather, 

population, landuse, and landslide. 

Franklin [22], in her review paper, introduced the spatial dependence/autocorrelation as a 

source of information which has yet to be exploited in vegetation prediction models. O'Sullivan 

and Unwin [2] raised the concern with applying machine learning techniques to spatial data by 

briefly mentioning, in their book on geographic information analysis, that special characteristics 

of spatial data are ignored in regression and classification models applied by geographers. 

Shekhar et al. [23; 11; 13; 4] showed that spatial autocorrelation limits the usefulness of 

conventional classification and regression techniques for extracting spatial patterns. Santibanez 

et al. [6; 7] also raised this issue by stating that “machine learning algorithms are in general, not 

designed to deal with spatially autocorrelated data.” The assumption of independent and 

identically distributed random variables is not valid for spatial data because spatial 

autocorrelation causes the prediction residuals to exhibit clustering over geographic space [6; 7; 

8; 9; 10; 11; 13; 4; 24; 25]. With respect to this issue, some researchers [8; 9; 10] suggested a 

spatial version of the linear least squares model which computes the weight vector as       

(XTCX)-1XTCy by defining C as some indicator of spatial neighborhood among responsive 

samples, X as the feature matrix, and y as the response vector. Other extensions of the linear least 

squares model, attempting to incorporate the spatial neighborhood, have also been proposed in 

the literature [26; 27; 28; 29] and have been able to improve the prediction accuracy. However, 

this issue is not the main focus of their work as they apply spatial neighborhood rather than 

spatial autocorrelation, do not consider the time, and do not go farther than linear least squares. 

On the other hand, spatial interpolation methods such as kriging or k-nearest neighbors (kNN) in 
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Euclidean space rather than feature space [2; 23; 13; 3; 4] ignore non-spatial features which 

makes them unreliable when spatial autocorrelation is weak or useless when the irresponsive 

sample is spatially far from responsive samples. 

On the other hand, some researchers [17; 18; 19; 20] showed the reversibility (cyclic 

behavior) of landuse changes in time. Mertens and Lambin [17] showed that landuse predictions 

are more reliable in long term when more historic training samples are available. However, 

developing machine learning techniques that capture the cyclic behavior of temporal phenomena 

and adjust their predictions based on the irresponsive sample’s time is not addressed in the 

literature. 

1.3 PROPOSED APPROACH 

Figure  1.1 shows a schematic spatial-temporal training dataset with four patterns and two 

features. Machine learning techniques learn to distinguish among patterns based on features. 

These patterns are recognized by measuring the similarity among features of training samples. 

Spatial-temporal data [30; 31] record the location and time of each observation (denoted by Lati, 

Loni, Timei in Figure  1.1) along with other features. Current machine learning techniques treat 

spatial-temporal problems no differently than other types of problems. Current machine learning 

techniques do not take into account spatial and/or temporal autocorrelations, neither in training 

nor in testing the predictor. That results in poor performance of machine learning techniques in 

the presence of spatial-temporal data [6; 7; 8; 9; 10; 11; 13; 4; 32; 15]. On the other hand, taking 

location and time as features in the training process is not the best way to incorporate the result 

of autocorrelation [23; 11; 13; 4] as it leaves autocorrelated prediction residuals behind [24; 25; 
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33], not to mention it will increase the sparseness of training samples in the feature space, as 

schematically shown in Figure  1.2. It also increases the number of free parameters in the 

predictor and consequently the demand for larger training datasets, referred to as curse of 

dimensionality [34; 35; 36]. 

 
 
 

l1

l2 (Lati, Loni, Timei)

 

Figure  1.1. A 2D dataset with four 
patterns. 

l1

l2

Lat Lon Time
 

Figure  1.2. Considering space and time as features increases the 
sparseness of training samples in the feature space and the number of free 

parameters in the predictor. 
 
 
 
We develop weighted machine learning techniques which are different from non-

weighted ones in that they consider the weights of training samples and bias the predictor in 

favor of more important training samples, rather than being fair with regard to all training 

samples. Weighted versions of Bayesian classifier [37; 38], linear predictors (least squares [39], 

perceptron [40], and SVM [41; 42; 43]), and nonlinear predictors (decision tree [44], multilayer 

perceptron [45; 46; 47], and nonlinear SVM [48]) will be developed. 

The spatial-temporal autocorrelation model shows how the autocorrelation (similarity 

between observations as a function of the space or time lag between them) among observations 

changes over space and time. The autocorrelation model considers general behaviors of spatial-
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temporal phenomena: (a) as spatial or temporal distance between observations increases, their 

systematic similarity decreases, and (b) observations show periodic similarities over time. 

Instances of these behaviors are abundant in real life. For example, (a) temperature is more 

similar between two locations/times that are close to each other but we do not expect it to be 

similar between two locations/times that are too far from each other, and (b) temperature has a 

well-known yearly cycle. As another example, if it is raining in a city, (a) it is expected that it is 

also raining in nearby cities but we are uncertain about far cities and we are less certain about 

raining next week than next hour, and (b) raining shows periodic behaviors with different cycles 

with the yearly cycle being the most conspicuous. These behaviors can be extended to other 

spatial-temporal phenomena such as, elevation, air or water pollution, soil type, population, 

landuse, and landslide. 

Figure  1.3 shows training samples in the space-time domain. Spatial and temporal 

autocorrelations are schematically shown in this figure, where samples close to each other in the 

space-time domain have similar responses and the responses also repeat themselves periodically 

over time. Due to the nature of spatial-temporal data, where spatial and temporal autocorrelations 

are directly related to spatial and temporal distances, not all training samples are equally 

important in predicting the output of a new sample. We develop a model that captures the 

characteristics of spatial-temporal autocorrelations and uses it to assign a spatial-temporal weight 

to each training sample based on its spatial-temporal distance to the irresponsive sample. Figure 

 1.4 schematically shows the spatial-temporal weights assigned to training samples with respect 

to the irresponsive sample in the space-time domain. In fact, training samples which are spatially 

and temporally uncorrelated with the irresponsive sample are less constructive to the training 

process. Training the predictor in the feature space must be biased in favor of training samples 
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with larger spatial-temporal weights, as shown in Figure  1.5. The weighted machine learning 

techniques take advantage of the spatial-temporal weight for training samples to bias the 

predictor in favor of more important training samples and exclude the location and time from 

input features to the machine. 

 
 
 

Lat

Time

Lon

 

Figure  1.3. Spatial-
temporal data in the space-time 

domain. 

Lat

Time

Lon

 

Figure  1.4. Training samples 
shaded based on their spatial-temporal 
weight with regard to the irresponsive 
sample (red cross) in the space-time 

domain. 

l1

l2

 

Figure  1.5. Predicting the 
output of a new sample (red cross) in 

the feature space where training 
samples are shaded based on their 

spatial-temporal weight. 

 
 
 
The proposed approach prevents occurrence of the problems associated with considering 

location and time as features, potentially improves the prediction accuracy by biasing the 

predictor in favor of more important training samples, and expedites the training process by 

leaving out training samples with very low spatial-temporal weights. We need to train the 

predictor separately and independently for each irresponsive sample because the spatial-temporal 

weight for training samples depend on the location and time of the irresponsive sample. 
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It is also worth mentioning that our approach is different than active training/learning 

with support vectors [38; 49; 50]. Active learning trains the predictor using only a subset of 

training samples which are considered the most uncertain ones. The most uncertain training 

samples are those lying closest to the classifier’s boundary decision. In our approach, we assign a 

spatial-temporal weight to each training sample, prune training samples with very low spatial-

temporal weights, and bias the predictor in favor of more important training samples. The 

importance of training samples, in our approach, is determined based on the strength of their 

spatial-temporal autocorrelation with the irresponsive sample. 

Our approach is also different than mixture of experts [51]. Mixture of experts is an 

ensemble method for combining different learners, where the feature space is divided between 

different learners/experts. The position of an irresponsive sample in the feature space determines 

which learner should be used for predicting a response. The mixture of experts has two main 

parts: individual learner/expert networks and the gating network. The gating network decides 

which learner should be used to predict the irresponsive sample’s output and passes the 

irresponsive sample to the appropriate learner. Then the selected learner would predict the 

irresponsible sample’s output. Training consists of optimizing the parameters of individual 

learners and the parameters of the gating network. Figure  1.6 shows a mixture of k experts, 

where θ1 to θk are the gating network’s parameters, x is an input feature vector, and y is its 

output. The gating network decides which learner is appropriate for this input sample and assigns 

a higher probability (θ) to that learner’s output. Mixture of experts is a local machine learning 

technique, where an irresponsive sample’s output is predicted trough a learner that has been 

trained using training samples close to that irresponsive sample in the feature space. In other 

words, training samples that are close to the irresponsive sample in the feature space will 
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contribute more in predicting the irresponsive sample’s output than distant training samples. It is 

different than the proposed approach in this thesis because the contribution of training samples in 

predicting an irresponsive sample’s output, in our work, is proportional to their spatial-temporal 

autocorrelation with the irresponsive sample in the space-time domain rather than the feature 

space. Besides, while in mixture of experts the contribution of training samples (the selection of 

the appropriate learner) is a function of Euclidean distance in the feature space, in our work the 

contribution of training samples is a function of autocorrelation in space-time domain. 

 
 
 

Expert 1

Gating 
network

Expert 2

Expert k

...

yx

θ1

θ2

θk

 

Figure  1.6. Mixture of experts. 
 
 
 
At the end, the accuracy and time performance of the proposed approach will be 

compared against the following approaches: 

a) ignoring location and time and using non-weighted machine learning techniques, 

b) considering location and time as additional features in non-weighted machine 

learning techniques, 
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c) considering location and time as the only features in non-weighted machine learning 

techniques, and 

d) estimating the irresponsive sample’s response based on the weighted votes (i.e., 

spatial-temporal weights) of training samples’ responses. 

1.4 RESEARCH QUESTIONS AND CONTRIBUTIONS 

In this thesis the following research questions are addressed: 

• How do we bias different machine learning techniques in favor of training samples 

with larger weights? 

• How do we determine the weight of a training sample for spatial-temporal data? 

• Will the proposed weighted machine learning significantly improve the generalization 

accuracy in comparison with simply ignoring the location and time or considering 

them as features? 

The contributions of this research are: 

• Developing weighted machine learning techniques. 

• Formulation of spatial-temporal autocorrelations of geographic phenomena and 

incorporating them as external knowledge in the training process. 
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1.5 ORGANIZATION OF THE DISSERTATION 

This chapter showed the problem addressed in this thesis, highlighted its importance in both 

spatial-temporal statistics and machine learning, stated the research questions and contributions, 

and briefly introduced the proposed approach. Chapter 2 reviews select literature on machine 

learning techniques applied to spatial-temporal data. Chapter 3 discusses the developed weighted 

versions of select machine learning algorithms. Chapter 4 explains how the training samples’ 

weights are calculated using spatial and temporal semivariograms. Chapter 5 includes 

experiments with real spatial-temporal datasets to compare the accuracy and time performance of 

the proposed approach with traditional ones. Chapter 6 concludes this work by providing insight 

into the proposed approach and future directions. 
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2.0  BACKGROUND 

Li et al. [52] showed that combining machine learning techniques such as RF, RT, or SVM with 

spatial interpolation methods such as kriging or inverse distance squared (IDS) improves the 

accuracy in predicting seabed mud content in the southwest Australian margin. For these 

combined methods, first the machine learning technique is applied to the features, then the 

spatial interpolation method is applied to the residuals of the machine learning technique, and 

finally the interpolated residual values are added to the predicted values to produce the final 

predictions. The input features include bathymetry, distance-to-coast, seabed-slope, latitude, 

longitude, as well as their second and third powers, multiplication of latitude and longitude, 

multiplication of latitude to the second power of longitude, and multiplication of longitude to the 

second power of latitude. Their results showed that RF-OK (random forest combined with 

ordinary kriging), RF-IDS (random forest combined with inverse distance squared), random 

forest (RF), and RT-OK (regression tree combined with ordinary kriging) are the most accurate 

ones, respectively. Combination of SVM (with a linear or Gaussian kernel) with ordinary kriging 

(OK) or inverse distance squared (IDS) considerably improved its prediction accuracy, although 

it is still less accurate than OK or IDS. RF [53] was more accurate than regression tree (RT) and 

RT was more accurate than SVM. 

Kanevski et al. [24] applied a similar approach in combining machine learning techniques 

with geostatistical models with the difference that the spatial coordinates of observations were 
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the only input features to machine learning techniques. They showed that nonlinear regression 

models including multilayer perceptron (MLP) and support vector regression (SVR) [54] with 

Gaussian kernel trained with spatial coordinates as input features could capture the nonlinear 

global spatial trend in the response variable. However, they leave the local spatial autocorrelation 

behind which manifests itself as spatially autocorrelated prediction residuals. Sequential 

Gaussian simulation was then applied to model these local prediction residuals. They reported a 

better generalization accuracy for the combined approach than either of machine learning or 

geostatistical models alone in predicting the radioactive soil contamination. In another effort to 

apply local regression models rather than global ones in predicting the radioactive soil 

contamination, Kanevski et al. [55] used spatial coordinates as the only input features to train a 

kNN and a general regression neural network (GRNN). GRNN is a non-parametric regression 

model based on Parzen windows [56]. They considered two versions of GRNN, one isotropic 

where the kernel bandwidth is the same in all directions and another anisotropic where the kernel 

has different bandwidths in different directions. To consider different bandwidths for different 

directions in a kernel, a matrix can be used as the bandwidth instead of a constant value. They 

considered two directions in their anisotropic GRNN model and found the optimal directions and 

bandwidths for those directions using leave-one-out cross-validation. KNN, isotropic and 

anisotropic GRNN resulted in an RMSE of 22.1, 12.4, and 11.9, respectively. This result 

indicates that (a) assigning different weights to neighbors based on Parzen windows, as in 

GRNN, improves the accuracy compared with equal weights for neighbors, as in kNN, and (b) 

considering different bandwidths in different directions for the kernel, as in anisotropic GRNN, 

improves the accuracy compared with a single bandwidth, as in isotropic GRNN. 
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Gilardi and Bengio [25; 33] compared the generalization accuracy of four regression 

techniques in estimating the rainfall based on spatial coordinates of observations. Their results, 

in line with Kanevski et al. [24] results, confirmed that global regression models, including MLP 

and SVR [54] with Gaussian kernel, trained with spatial coordinates as input features capture the 

nonlinear global spatial trend in the response variable but leave the local spatial autocorrelation 

behind. On the other hand, local regression techniques, including mixture of experts (ME) [57] 

and local SVR (which is the standard SVR trained only by responsive samples near the 

irresponsive sample in the feature space), achieved slightly better generalization accuracies 

because they were able to partly capture the local spatial autocorrelation. They reported an 

RMSE of 63.4, 59, 57.1, and 53.2 for SVR, MLP, local SVR, and ME, respectively. 

Santibanez et al. [6] compared the accuracy of different machine learning techniques in 

regressing median rent price per zip code of a two bedroom two bathroom apartment in the 

Miami-Fort Lauderdale-West Palm Beach metropolitan area in Florida, USA, based on 23 

demographic features. Location and time were not among the features. The best accuracy was 

achieved by MLP combined with PCA, followed by SVM with Gaussian kernel, RF, cubist, 

partial least squares, MLP, gradient boosting machine, SVM with linear  kernel, and general least 

squares. Santibanez et al. [7] compared the accuracy of the same machine learning techniques 

with the same input features but with simulated data of varying degrees of spatial 

autocorrelation. SVM with Gaussian kernel resulted in the highest accuracy for weaker spatial 

autocorrelations, MLP with PCA achieved the same accuracy as SVM with Gaussian kernel as 

spatial autocorrelation was increased, and finally cubist performed best when the spatial 

autocorrelation was very strong. 
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Cracknell and Reading [58] applied five machine learning techniques, Naïve Bayes (NB), 

kNN, RF, SVM (using the one-against-one scheme), and MLP, in classifying lithology based on 

airborne geophysics (containing a digital elevation model, total magnetic intensity, and four 

gamma-ray spectrometry channels comprising Potassium, Thorium, Uranium, and total count 

channels) and Landsat ETM+ images. RF achieved the highest accuracy followed by SVM, 

kNN, MLP, and NB where kNN ran fastest and SVM slowest. They considered different 

scenarios for spatial distribution of training samples with/without considering location as an 

input feature. They observed that regardless of including/excluding location as an input feature, 

substantial higher accuracies are achieved by all machine learning techniques as training samples 

become more spatially dispersed across the geographic region. This is not surprising as spatial 

autocorrelation among responses of training samples limits proper training when training 

samples are not well scattered in the geographic region. Another observation was that higher 

generalization accuracies are achieved when location is considered as the only feature compared 

to the other two scenarios that either exclude location or consider it as an additional feature. 

Although, it is plausible that considering location as an additional feature would improve the 

generalization accuracy, the better accuracy achieved with using location as the only feature than 

using it in combination with other features is surprising. This can be true if the spatial 

distribution of training samples is dense and well engineered and even in that case the trained 

machine will not perform as well if an irresponsive sample is beyond the autocorrelation range of 

all training samples. 

Table  2.1 provides a list of select scientific articles that do not consider location and time, 

as features, when applying machine learning techniques for predicting spatial-temporal 

responses. 
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Table  2.1. Machine learning methods applied to spatial-temporal data in the literature ignoring location and time. 

 Response Features Machine learning method Accuracy 

[17] 

Classification 
with two 
classes: 
Propensity of 
forests in 
southern 
Cameroon for 
deforestation 

• Distance to the nearest road weighted by the 
average transportation cost 

• Distance to the nearest market town weighted by 
the average transportation cost and the price of the 
agricultural products at the market town 

• Soil aptitude for agriculture 
• Shortest distance to the nearest forest/nonforest 

edge 
• Spatial fragmentation of the forest cover in the 

immediate surroundings of each location 

Logistic regression 
(different models are 
developed for different 
time scales) 

Precision = 
89% 

[59] 
Classification 
with 9 classes: 
Landuse 

• Bands 2, 4, 5, and 7 of Landsat TM data 
• Geology 
• Hydrology (flow accumulation) 
• Surface morphology (slope, aspect) 

MLP 
overall 
accuracy = 
72.61% 

[60] 
Classification 
with 6 classes: 
Landuse 

• All four bands of SPOT 6 image (blue, green, red, 
and near-infrared) 

• A cluster number assigned to each pixel based on 
Fuzzy k-means clustering algorithm from all four 
bands of the image 

• NDVI calculated for each pixel from the red and 
near-infrared bands 

SVM with Gaussian 
kernel (using the one-
against-all scheme). A 3 
× 3 pixel majority filter 
was applied to all 
classifications to 
eliminate the salt and 
pepper noise. 

Overall 
accuracy = 
98% 

[61] 

Classification 
with 13 
classes: 
Landuse 

Global 8 km resolution AVHRR Pathfinder Land data 
for 1984 with 24 metrics including, the maximum 
annual, minimum annual, mean annual, and, amplitude 
(maximum minus minimum) for 
• the normalized difference vegetation index 

(NDVI), 
• Channel 1 (visible reflectance, 0.58–0.69 μm), 
• Channel 2 (near-infrared reflectance, 0.725–1.1 

μm), 
• Channel 3 (thermal infrared, 3.55–3.93 μm), 
• Channel 4 (thermal, 10.3–11.3 μm), and 
• Channel 5 (thermal, 11.5–12.5 μm) 

Decision tree 
Overall 
accuracy = 
85% 

Decision tree with 
bagging 

Overall 
accuracy = 
87% 

Decision tree with 
boosting 

Overall 
accuracy = 
89.5% 

Classification 
with 6 classes: 
Landuse 

Landsat Thematic Mapper scene around Pucallpa, Peru 
acquired 16 October 1996 including 
• five bands at 30 m resolution (.45–.53 μm, .52–.60 

μm, .63–.69 μm, .76–.90 μm, and 1.55–1.75 μm) 

Decision tree 
Overall 
accuracy = 
84.5% 

Decision tree with 
bagging 

Overall 
accuracy = 
87% 

Decision tree with 
boosting 

Overall 
accuracy = 
89.5% 

[62] 
Classification 
with 5 classes: 
Grassland type 

• SAR data (a total of 12 ENVISAT ASAR images 
operated at C-band, 15 ERS-2 images operated at 
C-band, and 12 ALOS PALSAR images operated 
at L-band), 

• Ancillary data (soils, sub-soils, elevation, and 
slope) 

SVM with Gaussian 
kernel (using the one-
against-one scheme) 

Overall 
accuracy = 
92.5- 97.9% 

RF 
Overall 
accuracy = 
92.4-98% 

Extremely randomized 
trees 

Overall 
accuracy = 
94.1- 98.7% 
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[63] 

Classification 
with 2 classes: 
Miscanthus 
presence/abse
nce at the 
level of the 
farmer’s block 

• Agronomical variables (topsoil water capacity, soil 
texture, and distance to rivers) 

• Morphological variables (size, shape, and 
maximum values of elevation and slope for each 
farmer’s block) 

• Contextual variables (the farmer’s block distance 
to the overall farmland, to the transformation plant, 
and to the road, proximity to the built-up areas, and 
length of the parcel boundaries shared with the  
neighboring woods) 

Boosted regression tree 

AUC (for 
training 
data) = 
0.793 

[21] 

Classification 
with 2 classes: 
Presence or 
absence of 
harmful algal 
blooms in the 
Gulf of 
Mexico 

• The level-2 SeaWiFS sensor data (bands at 443, 
490, 510, and 555 nm, and Chlorophyll-a) for the 
period 1999–2004 with a spatial resolution of 1.1 
Km. 

• The level-2 MODIS-A sensor data (bands at 412, 
443, 488, 531, and 551 nm and Chlorophyll-a) for 
the period 2002–2004 with a spatial resolution of 1 
Km. 

• Ancillary data (meteorological and ozone data) 
• The feature vector (spectral data) at each sample is 

the average of features in a cubical window of size 
3° of latitudes, 3° of longitudes, and 3 days 
centered at that sample. 

• Kernel PCA was used to transform features and 
only the first 300 components for SeaWiFS 
features and 72 components for MODIS-A features 
are used. 

SVM with HTRBF 
kernel (the classifier’s 
parameters are optimized 
trough cross validation 
with Genetic Algorithm 
applied to narrow down 
the search space) 

Kappa 
coefficient = 
0.75 

[64] 

Classification 
with 2 classes: 
Landslide 
prone/non-
prone areas 

• Convergence index (characterizes soil and debris 
erosion and deposition within the landscape) 

• Compound terrain index (the logarithm of the ratio 
between upslope contributing area and slope 
gradient) 

• Distance from channel base level (the limiting level 
below which a stream cannot erode its channel) 

• Distance from faults 
• Distance from thrust 
• Downslope distance gradient (how far a given 

amount of water must travel in the landscape to 
lose a certain amount of potential energy) 

• Elevation 
• Insolation (the amount of radiation reflected by the 

terrain) 
• Internal relief (maximum elevation change per unit 

area) 
• Morphological protection index (the positive 

openness which expresses the degree of dominance 
or enclosure of a location within the landscape) 

• Slope 
• Stream power index (expresses the erosive 

potential of overland flow) 
• The presence of clay and marl-rich sedimentary 

formations 
• Attitude of rock strata 
• Landuse 

ν-SVM with radial basis 
function Gaussian kernel 
(the classifier’s 
parameters are optimized 
trough cross validation) 

AUC = 0.83 

Logistic regression AUC = 0.79 

Linear discriminant 
analysis AUC = 0.79 

Naïve Bayes AUC = 0.76 

[65] 

Regression: 
Intra-and-inter 
species forest 
aboveground 
biomass level 

• All five bands of 5m RapidEye images (blue, 
green, red, near infrared, and red-edge) 

• NDVI and 13 other vegetation indices calculated 
for each pixel from different bands of RapidEye 
images 

Stochastic gradient 
boosting regression tree R2 = 0.61 

RF R2 = 0.37 
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3.0  WEIGHTED MACHINE LEARNING 

In this chapter, machine learning algorithms are modified to take the training samples’ weights 

into account. The weighted machine learning techniques developed in this chapter, not only 

provide users with the opportunity to give different weights to training samples, but also can be 

embedded into other algorithms such as AdaBoost [66; 67], where there is a hierarchy of 

classifiers, each requiring to be trained using a different weighting over training samples. Figure 

 3.1 shows, schematically, how non-weighted linear predictors become biased when the training 

samples’ weights are taken into account. Figure  3.2 shows the same for nonlinear predictors. 

There are two classes, one indicated with circles and the other with squares. Darkness of training 

samples shows their weights and the classifier is represented with a dashed line. The weighted 

classifier decides in favor of more important samples by keeping more distance from them. 

 
 
 

l1

l2

l1

l2

If training samples’ weights 
are taken into account

 

Figure  3.1. A non-weighted linear classifier (left) vs. a weighted linear classifier (right). 
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l1

l2

l1

l2

If training samples’ weights 
are taken into account

 

Figure  3.2. A non-weighted nonlinear classifier (left) vs. a weighted nonlinear classifier (right). 
 
 
 
To bias the predictor in favor of more important training samples, we embed the training 

samples’ weights into the cost function. This way we regulate the misclassification cost based on 

the weights during training. In other words, misclassifying more important training samples 

would be more costly and the predictor will attempt to avoid it. This approach is possible only 

for machine learning algorithms which are based on minimizing a cost function. For Bayesian 

predictors, we embed the training samples’ weights into the probability distribution functions. 

This way we increase the likelihood of a class when the irresponsive sample (the sample with an 

unknown output) is close to training samples with large weights in that class. In short, training 

the weighted predictor is more concerned about correct prediction of training samples with larger 

weights than those with smaller weights. As a result, the trained model predicts in favor of 

training samples with larger weights. This makes the weighted predictor different than its non-

weighted counterpart. 

In this chapter, we use the training dataset in Table  3.1 to show the difference between 

the weighted machine learning techniques developed here and their non-weighted counterparts. 

We consider two classes ω1 and ω2, each with 10 samples, and two features l1 and l2 to simplify 

the visualization. Training samples and their weights in this table are chosen carefully to 

emphasize the difference between weighted and non-weighted predictors. The training dataset is 
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shown in Figure  3.3. Circles represent class ω1 and squares represent class ω2. Darkness of 

training samples shows their weight. 

 
 
 

Table  3.1. Training samples and their weights. 

l1 l2 Class Spatial-temporal weight 
1 2 ω1 1 
1 3 ω1 1 
2 1 ω1 1 
2 2 ω1 1 
2 3 ω1 1 
2 4 ω1 1 
3 2 ω1 1 
3 3 ω1 1 
4 1 ω1 2 
4 4 ω1 4 
3 1 ω2 1 
3 4 ω2 1 
4 2 ω2 1 
4 3 ω2 1 
5 1 ω2 1 
5 2 ω2 1 
5 3 ω2 1 
5 4 ω2 1 
6 2 ω2 1 
6 3 ω2 1 

 

1

2

3

4

1 2 3 4
l1

l2

5 6

ω1 ω2

 

Figure  3.3. Training samples from two classes, circles and squares, shaded based on their weights. 
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3.1 BAYESIAN PREDICTOR 

3.1.1 Classification 

The Bayes classifier calculates the probability of different classes given the observed feature 

vector as p(ωj|x)=p(ωj)p(x|ωj)/p(x) and then assigns x to the class with the highest probability 

[37; 38]; where p(ωj|x) is the posterior probability, p(ωj) is the prior probability, and p(x|ωj) is 

the likelihood. The denominator, p(x), is usually ignored in calculations as it is the same for all 

classes. A simple way to embed weights (gi) for training samples into the Bayes classifier is to 

define the prior probability (p(ωj)) as the sum of weights of training samples belonging to class 

ωj divided by the sum of all weights (Equation ( 3.1)). 

𝑝�𝜔𝑗� = � 𝑔𝑖
∀𝑖|𝑥𝑖∈𝜔𝑗

�𝑔𝑖
∀𝑖

�  ( 3.1) 

Regardless of parametric or non-parametric definition of the likelihood (p(x|ωj)), an 

important drawback with this simple approach is that it does not consider where the irresponsive 

sample (x) is situated with respect to more important training samples in each class. For example, 

the irresponsive sample in Figure  3.4, shown with a cross, is closer to more important samples 

(darker ones in the figure) in ω2 and one expects it to be classified in ω2. However, based on the 

aforementioned approach, it will be classified in ω1 because ω1 has a larger prior (p(ω1)>p(ω2)) 

and the likelihoods for two classes are equal (p(x|ω1)=p(x|ω2)). Likelihoods, p(x|ω1) and p(x|ω2), 

are calculated without considering the weights. To solve this problem, weights need to be 

considered in likelihoods. 
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ω2ω1

 

Figure  3.4. Two classes shown with circles and squares where the darkness of samples shows their weight with 
respect to the irresponsive sample, shown with a cross. 

 
 
 
To take into account the position of x with respect to more important training samples in 

each class, we define the likelihood (p(x|ωj)) based on non-parametric Parzen windows [56], 

shown in Equation ( 3.2), instead of calculating the priors from Equation ( 3.1). 

𝑝�𝑥|𝜔𝑗� =
1
𝑁𝑗

� 𝑔𝑖𝐾(𝑥 − 𝑥𝑖 ,𝛴𝑗)
∀𝑖|𝑥𝑖∈𝜔𝑗

 ( 3.2) 

In this equation, Nj is the size of the class ωj, xi represents the feature vector of the i-th 

training sample, x represents the irresponsive sample’s feature vector, gi is the i-th training 

sample’ weight, K is the kernel function, and Σj is the covariance matrix for class ωj. The step 

kernel in Equation ( 3.3) or the Gaussian kernel in Equation ( 3.4) can be used in Equation ( 3.2), 

where l is the dimension of feature space and the subscript k in xk and 𝑥𝑖𝑘 refers to the k-th 

feature in the corresponding feature vector. More kernels are available in Hardle [68] and Fan 

and Gijbels [69]. Instead of choosing the kernel bandwidth to be a constant value, which is the 

common practice, we choose the covariance matrix for class ωj (shown by Σj) divided by a 

constant value (shown by σ) as the kernel bandwidth for class j. The constant value (σ) can be 

tuned using cross-validation. 

𝐾�𝑥 − 𝑥𝑖 ,𝛴𝑗� = �
1

�𝛴𝑗 𝜎⁄ �1/2       �𝑥𝑘 − 𝑥𝑖𝑘� <
1
2
�𝛴𝑗 𝜎⁄ �

1
2𝑙

0                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� ( 3.3) 
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𝐾�𝑥 − 𝑥𝑖 ,𝛴𝑗� =
1

(2𝜋)𝑙/2�𝛴𝑗 𝜎⁄ �1/2 𝑒𝑥𝑝 (−
1
2

(𝑥 − 𝑥𝑖)𝑇�𝛴𝑗 𝜎⁄ �−1(𝑥 − 𝑥𝑖)) ( 3.4) 

Applying Equation ( 3.2) to calculate the likelihoods in Figure  3.4 results in 

p(x|ω1)<p(x|ω2) and consequently p(ω1|x)<p(ω2|x) which classifies the irresponsive sample in ω2. 

3.1.2 Regression 

In case of regression, Equation ( 3.5) can be used to estimate the response at the irresponsive 

sample x. This equation estimates the response at x as the weighted average of other training 

samples’ responses, where each training sample’s weight is the multiplication of its original 

weight (gi) by the output of the kernel for that training sample (K(x-xi,Σ)). In other words, a 

training sample’s weight in this equation (giK(x-xi,Σ)) is the combination of its importance as 

well as its distance to the irresponsive sample in the feature space. The latter is what the kernel is 

concerned about. 

𝑦(𝑥) =
∑ 𝑦𝑖𝑔𝑖𝐾(𝑥 − 𝑥𝑖 ,𝛴)𝑁
𝑖=1
∑ 𝑔𝑖𝐾(𝑥 − 𝑥𝑖 ,𝛴)𝑁
𝑖=1

 ( 3.5) 

Since there are no classes in regression, the covariance matrix (Σ) in Equation ( 3.5) is 

defined as the covariance matrix over all training samples. 

3.1.3 Experiment 

Here we use the dataset in Table  3.1 to show the effect of embedding training samples’ weights 

in likelihoods (Equation ( 3.2)) on the irresponsive sample’s classification. Priors are considered 

equal since the frequencies of the two classes are the same. The Gaussian kernel in Equation 

( 3.4) with a bandwidth of Σj/3 is used as Parzen window, where Σj shows the covariance matrix 
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of class ωj. Figure  3.5 shows the division of the feature space between the two classes with and 

without considering the training samples’ weights in calculating the likelihoods. It is shown that 

when the weighted Bayesian classifier is applied, the classification of the irresponsive sample 

(shown with a cross) is switched from class ω2 to class ω1 because of its proximity to some 

important samples in class ω1. 

 
 
 

1

2

3

4

1 2 3 4
l1

l2

5 6

ω1 ω2
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2

3

4

1 2 3 4
l1

l2

5 6

ω1 ω2

 

Figure  3.5. Division of the feature space between the two classes, circles and squares, without (left) and with (right) 
considering the training samples’ weights (darkness of samples) in Bayesian classifier. 

3.2 LINEAR PREDICTORS 

3.2.1 Least squares (LS) 

The output of the LS predictor is xTw where w is the extended weight vector to include the 

threshold or intercept (w0) and x is the extended feature vector to include a 1. The desired output 

is denoted with yi. The weight vector will be computed so as to minimize the sum of square 

errors between the desired and true outputs [39], that is: 
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𝐽(𝑤) = �(𝑦𝑖 − 𝒙𝑖𝑇𝒘)2
𝑁

𝑖=1

 ( 3.6) 

where N is the number of training samples. Minimizing the cost function in Equation 

( 3.6) with respect to w results in: 

𝜕𝐽(𝒘)
𝜕𝒘

= 0 →�𝒙𝑖(𝑦𝑖 − 𝒙𝑖𝑇𝒘)
𝑁

𝑖=1

= 0 → ��𝒙𝑖𝒙𝑖𝑇
𝑁

𝑖=1

�𝑤 = �𝒙𝑖𝑦𝑖

𝑁

𝑖=1

 ( 3.7) 

Let us define: 

𝑿 =

⎣
⎢
⎢
⎡𝒙1

𝑇

𝒙2𝑇
⋮
𝒙𝑁𝑇 ⎦
⎥
⎥
⎤

= �

𝑥11 𝑥12 … 𝑥1𝑙 1
𝑥21 𝑥22 … 𝑥2𝑙 1
⋮ ⋮ ⋱ ⋮ ⋮
𝑥𝑁1 𝑥𝑁2 … 𝑥𝑁𝑙 1

�  𝑎𝑛𝑑 𝑦 = �

𝑦1
𝑦2
⋮
𝑦𝑁

� ( 3.8) 

where X is an N×(l+1) matrix whose rows are the feature vectors with an additional 1, l 

is the number of features, and y is a vector consisting of the corresponding desired responses. 

Then: 

�𝒙𝑖𝒙𝑖𝑇
𝑁

𝑖=1

= 𝑿𝑇𝑿   𝑎𝑛𝑑   �𝒙𝑖𝑦𝑖

𝑁

𝑖=1

= 𝑿𝑇𝑦 ( 3.9) 

By substituting Equation ( 3.9) in Equation ( 3.7) we have: 

(𝑿𝑇𝑿)𝒘 = 𝑿𝑇𝑦 → 𝒘 = (𝑿𝑇𝑿)−1𝑿𝑇𝑦 ( 3.10) 

Matrix X+=(XTX)-1XT is known as the pseudoinverse of X and is equal to X-1 if X is 

square. To develop the weighted version of LS predictor, we adjust the cost of error based on the 

weight of training samples (gi), 

𝐽(𝑤) = �𝑔𝑖(𝑦𝑖 − 𝒙𝑖𝑇𝒘)2
𝑁

𝑖=1

 ( 3.11) 

Minimizing the cost function in Equation ( 3.11) with respect to w results in: 
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𝜕𝐽(𝒘)
𝜕𝒘

= 0 →�𝑔𝑖𝒙𝑖(𝑦𝑖 − 𝒙𝑖𝑇𝒘)
𝑁

𝑖=1

= 0 → ��𝑔𝑖𝒙𝑖𝒙𝑖𝑇
𝑁

𝑖=1

�𝑤 = �𝑔𝑖𝒙𝑖𝑦𝑖

𝑁

𝑖=1

 ( 3.12) 

Let us define: 

𝐺 = �

𝑔1 0 0 0
0 𝑔2 0 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑔𝑁

� ( 3.13) 

Then: 

�𝑔𝑖𝒙𝑖𝒙𝑖𝑇
𝑛

𝑖=1

= 𝑿𝑇𝐺𝑿   𝑎𝑛𝑑   �𝑔𝑖𝒙𝑖𝑦𝑖

𝑛

𝑖=1

= 𝑿𝑇𝐺𝑦 ( 3.14) 

Substituting Equation ( 3.14) in Equation ( 3.12) results in: 

(𝑿𝑇𝐺𝑿)𝒘 = 𝑿𝑇𝐺𝑦 → 𝒘 = (𝑿𝑇𝐺𝑿)−1𝑿𝑇𝐺𝑦 ( 3.15) 

Equation ( 3.15) is known as weighted least squares [70]. Let us investigate what happens 

if the weight of all training samples is equal to a constant c. In this case, G=c×IN×N where IN×N is 

the N×N identity matrix. Substituting this in Equation ( 3.15) results in: 

𝒘 = (𝑿𝑇𝑐𝐼𝑿)−1𝑿𝑇𝑐𝐼𝑦 = (𝑐𝑿𝑇𝑿)−1𝑐𝑿𝑇𝑦 =
1
𝑐

(𝑿𝑇𝑿)−1𝑐𝑿𝑇𝑦 = (𝑿𝑇𝑿)−1𝑿𝑇𝑦 ( 3.16) 

In other words, the weighted LS is no different than the non-weighted LS if all weights 

are equal. This is the case with all weighted predictors developed in this work. 
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3.2.1.1 Experiment Here we use the dataset in Table  3.1 to show the effect of embedding the 

training samples’ weights in LS (Equation ( 3.15)). Figure  3.6 shows the division of the feature 

space between the two classes with and without considering the training samples’ weights in 

computing the linear classifier. In the weighted LS classifier, training samples with large weights 

from ω1 push the border toward class ω2. 

1

2

3

4

1 2 3 4
l1

l2

5 6

ω1 ω2

 

Figure  3.6. Division of the feature space between the two classes, circles and squares, without (solid line) and with 
(dashed line) considering the training samples’ weights (darkness of samples) in LS classifier. 

 

3.2.2 Perceptron 

The perceptron cost function  is defined as [40]: 

𝐽(𝒘) = �𝑦𝑖𝒘𝑇𝒙𝑖

𝑁

𝑖=1

             , 𝑦𝑖 = �

+1           𝑖𝑓 𝑤𝒙𝑖 > 0 𝑏𝑢𝑡 𝒙𝑖 ∈ 𝜔2
−1           𝑖𝑓 𝑤𝒙𝑖 < 0 𝑏𝑢𝑡 𝒙𝑖 ∈ 𝜔1
   0            𝑖𝑓 𝑤𝒙𝑖 > 0 𝑎𝑛𝑑 𝒙𝑖 ∈ 𝜔1
   0            𝑖𝑓 𝑤𝒙𝑖 < 0 𝑎𝑛𝑑 𝒙𝑖 ∈ 𝜔2

� ( 3.17) 

where N is the number of training samples, xi is the i-th feature vector including an 

additional 1 as its last element, and w is the weight vector (the perpendicular vector to the 

hyperplane classifier toward class ω1) including the threshold (w0) as its last element. The cost 

function is minimized if the classifier produces a positive response for samples of class ω1 and a 
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negative response for samples of class ω2. We can iteratively find the weight vector that 

minimizes the perceptron cost function using the gradient descent scheme [40; 71]: 

𝒘𝑡+1 = 𝒘𝑡 + ∆𝒘𝑡 = 𝒘𝑡 − 𝛼
𝜕𝐽(𝒘)
𝜕𝒘

|𝒘=𝒘𝑡 = 𝒘𝑡 − 𝛼�𝑦𝑖𝒙𝑖

𝑁

𝑖=1

 ( 3.18) 

where wt is the weight vector estimate at the t-th iteration and α is the training rate which 

is a small positive number. Equation ( 3.18) is called batch mode training [72] where all training 

samples participate in calculating the gradient at each iteration. We can also apply the pattern or 

online mode [72] where the gradient at each iteration is calculated based on only one training 

sample; or the stochastic mode [73] where the gradient at each iteration is calculated based on a 

small random subset of training samples. 

We embed the training samples’ weights (gi) in the perceptron cost function (Equation 

( 3.19)) to punish the classifier more for misclassifying training samples with larger weights and 

less for training samples with smaller weights. In other words, the training samples’ weights 

enter the cost function to adjust the perceptron cost based on the importance of training samples. 

The perceptron classifier is no longer equally fair to all training samples. 

𝐽(𝒘) = �𝑔𝑖𝑦𝑖𝒘𝑇𝒙𝑖

𝑁

𝑖=1

 ( 3.19) 

With the new cost function, the iterative steps for updating the weight vector through the 

gradient descent scheme will change to: 

𝒘𝑡+1 = 𝒘𝑡 + ∆𝒘𝑡 = 𝒘𝑡 − 𝛼
𝜕𝐽(𝒘)
𝜕𝒘

|𝒘=𝒘𝑡 = 𝒘𝑡 − 𝛼�𝑔𝑖𝑦𝑖𝒙𝑖

𝑁

𝑖=1

 ( 3.20) 

If we define 𝛼𝑖∗=αgi we obtain: 
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𝒘𝑡+1 = 𝒘𝑡 −�𝛼𝑖∗𝑦𝑖𝒙𝑖

𝑁

𝑖=1

 ( 3.21) 

Therefore, the weighted perceptron classifier can be obtained by including the weights in 

the cost and defining the training rate as 𝛼𝑖∗=αgi which means a different training rate for each 

training sample based on its weight. Adjusting the training rate based on the training samples’ 

weights and including the weights in the cost function bias the trained perceptron in favor of 

training samples with larger weights. 

3.2.2.1 Experiment Here we use the dataset in Table  3.1 to show the effect of including training 

samples’ weights in perceptron classifier. Figure  3.7 shows the division of the feature space 

between the two classes with and without considering the training samples’ weights in 

computing the linear classifier. The high cost of misclassifying important samples from class ω1 

in weighted perceptron classifier pushes the border toward class ω2. 
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Figure  3.7. Division of the feature space between the two classes, circles and squares, without (solid line) and with 
(dashed line) considering the training samples’ weights (darkness of samples) in perceptron classifier (logistic 

activation function and adaptive training rate with 1000 iterations). 
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3.2.3 SVM 

3.2.3.1 Two linearly separable classes Assume ω1 and ω2 are two linearly separable classes 

shown in Figure  3.8. SVM [41; 42; 43] maximizes the margin around the hyperplane separating 

the two classes by maximizing the distance to the closest point from either class. We know that 

the distance between a sample xi and a hyperplane f(x)=wTx+w0=0 is obtained from |f(xi)|/||w||. 

Assume x1 is the nearest sample in class ω1 to the hyperplane f(x) and x2 is the nearest sample in 

class ω2 to the hyperplane f(x). Then x1 and x2 are called support vectors. To maximize the 

margin, the hyperplane f(x) must intersect the line connecting x1 and x2 at its midpoint, as shown 

in Figure  3.8. Therefore, we can scale w and w0 so that f(x1)=1 and f(x2)=-1. This leads to having 

a margin of: 

|𝑓(𝑥1)|
�|𝑤|�

+
|𝑓(𝑥2)|
�|𝑤|�

=
1

�|𝑤|�
+

1
�|𝑤|�

=
2

�|𝑤|�
 ( 3.22) 

Since x1 and x2 are the closest samples to the hyperplane f(x), the distance of other 

samples from the hyperplane is greater than 1/||w||, as shown in Figure  3.8. Therefore, we have: 

� 𝑓
(𝑥𝑖) ≥ 1       ∀𝑥𝑖 ∈ 𝜔1

𝑓(𝑥𝑖) ≤ −1     ∀𝑥𝑖 ∈ 𝜔2
� ( 3.23) 
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Figure  3.8. SVM classifier for two linearly separable classes; black points show support vectors. 
 
 
 
We define: 

𝑦𝑖 = �+1     ∀𝑥𝑖 ∈ 𝜔1
−1     ∀𝑥𝑖 ∈ 𝜔2

� ( 3.24) 

Substituting Equation ( 3.24) in Equation ( 3.23) results in: 

𝑦𝑖𝑓(𝑥𝑖) ≥ 1,   ∀𝑥𝑖 ( 3.25) 

We need to maximize the margin (2/||w||) in Equation ( 3.22) which is equivalent to 

minimizing the norm ||w||. The mathematical formulation for finding w and w0 of the hyperplane 

follows: 

�𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽(𝑤,𝑤0) =
1
2
‖𝑤‖2 =

1
2
𝑤𝑇𝑤                

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑤0) ≥ 1    ,   𝑖 = 1,2, … ,𝑁
� 

( 3.26) 

( 3.27) 

where N is the number of training samples. The above cost function is convex and the 

constraints are linear and define a convex set of feasible solutions. The corresponding 

Lagrangian function ℒ(w,w0, λ) for the above convex programming problem is defined as follows 

[74; 75; 76; 77]: 
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ℒ(𝑤,𝑤0, 𝜆) =
1
2
𝑤𝑇𝑤 −�𝜆𝑖[𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑤0) − 1]

𝑁

𝑖=1

 ( 3.28) 

where λi, i=1,2,…,N are the Lagrangian multipliers associated with the constraint in 

Equation ( 3.27). We need to find w, w0, and λ by solving the Lagrangian duality: 

𝑚𝑎𝑥𝜆≥0 𝑚𝑖𝑛𝑤,𝑤0 ℒ(𝑤,𝑤0, 𝜆) [74; 75; 76; 77]. The Karush–Kuhn–Tucker conditions that 

𝑚𝑖𝑛𝑤,𝑤0 ℒ(𝑤,𝑤0, 𝜆) has to satisfy are [74; 75; 76; 77]: 

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝜕ℒ(𝑤,𝑤0, 𝜆)

𝜕𝑤
= 0 → 𝑤 = �𝜆𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

                                                                                              

𝜕ℒ(𝑤,𝑤0, 𝜆)
𝜕𝑤0

= 0 →�𝜆𝑖𝑦𝑖

𝑁

𝑖=1

= 0                                                                                                   

𝜆𝑖 ≥ 0  ,    𝑖 = 1,2, … ,𝑁                                                                                                                     
𝜆𝑖[𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑤0) − 1] = 0  , 𝑖 = 1,2, … ,𝑁  (𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦 𝑠𝑙𝑎𝑐𝑘𝑛𝑒𝑠𝑠 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠)

� 

( 3.29) 

( 3.30) 

( 3.31) 

( 3.32) 

Equations ( 3.29) and ( 3.30) depend only on training samples whose λi≠0, referred to as 

support vectors. On the other hand, the conditions in Equation ( 3.32) state that either λi or 

yi(wTx+w0)-1 must be zero. Therefore support vectors are training samples where |wTx+w0|=1 

(yi(wTx+w0)-1=0 and λi≠0) which means they are on the boundary of the margin. Therefore, 

Equations ( 3.29) and ( 3.30) depend only on support vectors and consequently the hyperplane 

classifier is designed only based on support vectors and is independent of other training samples 

because their λi is zero. While, none of the training samples falls inside the margin (by 

construction), this is not necessarily the case for irresponsive samples. The intuition is that 

maximizing the margin on the training samples will lead to good separation on the irresponsive 

samples. 

By expanding Equation ( 3.28), we have: 

ℒ(𝑤,𝑤0, 𝜆) =
1
2
𝑤𝑇𝑤 − 𝑤𝑇�𝜆𝑖𝑦𝑖𝑥𝑖 − 𝑤0�𝜆𝑖𝑦𝑖

𝑁

𝑖=1

+ �𝜆𝑖

𝑁

𝑖=1

𝑁

𝑖=1
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By replacing ∑ 𝜆𝑖𝑦𝑖𝑁
𝑖=1 = 0 from Equation ( 3.30) in the above equation, we get: 

ℒ(𝑤,𝑤0, 𝜆) =
1
2
𝑤𝑇𝑤 − 𝑤𝑇�𝜆𝑖𝑦𝑖𝑥𝑖 + �𝜆𝑖

𝑁

𝑖=1

𝑁

𝑖=1

 

By substituting w from Equation ( 3.29) , we have: 

ℒ(𝑤,𝑤0, 𝜆) =
1
2 �
�𝜆𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

�

𝑇

��𝜆𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

� − ��𝜆𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

�

𝑇

��𝜆𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

� + �𝜆𝑖

𝑁

𝑖=1

 

ℒ(𝑤,𝑤0, 𝜆) = −
1
2 �
�𝜆𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

�

𝑇

��𝜆𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

� + �𝜆𝑖

𝑁

𝑖=1

 

ℒ(𝑤,𝑤0, 𝜆) = �𝜆𝑖

𝑁

𝑖=1

−
1
2
��𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝑥𝑖𝑇𝑥𝑗

𝑁

𝑗=1

𝑁

𝑖=1

 

Now we maximize the above Lagrangian function with respect to λ: 

⎩
⎪⎪
⎨

⎪⎪
⎧

 

𝑚𝑎𝑥
𝜆

��𝜆𝑖

𝑁

𝑖=1

−
1
2
��𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝑥𝑖𝑇𝑥𝑗

𝑁

𝑗=1

𝑁

𝑖=1

�

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 �𝜆𝑖𝑦𝑖

𝑁

𝑖=1

= 0                           

𝜆𝑖 ≥ 0                , 𝑖 = 1,2, … ,𝑁                 

� 

( 3.33) 

( 3.34) 

( 3.35) 

Once the optimal Lagrange multipliers (λi) have been computed by maximizing Equation 

( 3.33), w is obtained by replacing them in Equation ( 3.29) and w0 is computed as an average 

value obtained using complementary slackness conditions in Equation ( 3.32) for support vectors 

(λi≠0). 

The weighted version of SVM needs to be more sensitive to training samples with larger 

weights. In other words, the distance from training samples to the classifier hyperplane needs to 

be compromised based on their weights. From a geometric point of view, we develop the 

weighted SVM by moving training samples toward the classifier hyperplane by a factor 
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proportional to their weight (gi), which will change the selection of support vectors and 

eventually the design of the classifier. We measure the distance of a training sample (xi) from the 

classifier hyperplane (f(x)) through Equation ( 3.36), where the actual distance is reduced by a 

factor of 1/(1+gi). If a training sample’s weight is zero, its distance to the classifier hyperplane, 

in Equation ( 3.36), remains intact, and if its weight is very large, its distance will become close 

to zero. 

|𝑓(𝑥𝑖)|
�|𝑤|� × (1 + 𝑔𝑖)

=
|𝑤𝑇𝑥𝑖 + 𝑤0|

�|𝑤|� × (1 + 𝑔𝑖)
 ( 3.36) 

Assume x1 is the nearest sample in class ω1 to the classifier hyperplane based on the 

distance calculated from Equation ( 3.36) and x2 is the nearest sample in class ω2 to the classifier 

hyperplane. We can scale w and w0 so that f(x1)/(1+g1)=1 and f(x2) /(1+g2)=-1. This leads to 

having a margin of: 

|𝑓(𝑥1)|
�|𝑤|� × (1 + 𝑔1)

+
|𝑓(𝑥2)|

�|𝑤|� × (1 + 𝑔2)
=

1
�|𝑤|�

+
1

�|𝑤|�
=

2
�|𝑤|�

 ( 3.37) 

Since x1 and x2 are the closest samples to the hyperplane, the distance of other samples 

from the hyperplane (based on Equation ( 3.36)) is larger than 1. Therefore, we have: 

� 𝑓
(𝑥𝑖)/(1 + 𝑔𝑖) ≥ 1       ∀𝑥𝑖 ∈ 𝜔1

𝑓(𝑥𝑖)/(1 + 𝑔𝑖) ≤ −1     ∀𝑥𝑖 ∈ 𝜔2
� ( 3.38) 

We define: 

𝑦𝑖 = �+1     ∀𝑥𝑖 ∈ 𝜔1
−1     ∀𝑥𝑖 ∈ 𝜔2

� ( 3.39) 

Substituting Equation ( 3.39) in ( 3.38) results in: 

𝑦𝑖𝑓(𝑥𝑖)/(1 + 𝑔𝑖) ≥ 1,   ∀𝑥𝑖 ( 3.40) 
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We need to maximize the margin (2/||w||) in Equation ( 3.37) which is equivalent to 

minimizing the norm ||w||. The mathematical formulation for finding w and w0 of the hyperplane 

follows: 

⎩
⎨

⎧𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽(𝑤,𝑤0) =
1
2
‖𝑤‖2 =

1
2
𝑤𝑇𝑤                  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖 �
𝑤𝑇𝑥𝑖 + 𝑤0

1 + 𝑔𝑖
� ≥ 1    ,   𝑖 = 1,2, … ,𝑁

� 

( 3.41) 

( 3.42) 

where N is the number of training samples. The corresponding Lagrangian function 

ℒ(w,w0, λ) for the above convex programming problem is defined as follows: 

ℒ(𝑤,𝑤0, 𝜆) =
1
2
𝑤𝑇𝑤 −�𝜆𝑖 �𝑦𝑖 �

𝑤𝑇𝑥𝑖 + 𝑤0
1 + 𝑔𝑖

� − 1�
𝑁

𝑖=1

 ( 3.43) 

where λi, i=1,2,…,N are the Lagrangian multipliers associated with the constraint in 

Equation ( 3.42). We need to find w, w0, and λ by solving the Lagrangian duality: 

𝑚𝑎𝑥𝜆≥0 𝑚𝑖𝑛𝑤,𝑤0 ℒ(𝑤,𝑤0, 𝜆) [74; 75; 76; 77]. The Karush–Kuhn–Tucker conditions that 

𝑚𝑖𝑛𝑤,𝑤0 ℒ(𝑤,𝑤0, 𝜆) has to satisfy are [74; 75; 76; 77]: 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝜕ℒ(𝑤,𝑤0, 𝜆)

𝜕𝑤
= 0 → 𝑤 = �

𝜆𝑖𝑦𝑖𝑥𝑖
1 + 𝑔𝑖

𝑁

𝑖=1

                                                                                                  

𝜕ℒ(𝑤,𝑤0, 𝜆)
𝜕𝑤0

= 0 →�
𝜆𝑖𝑦𝑖

1 + 𝑔𝑖

𝑁

𝑖=1

= 0                                                                                                   

𝜆𝑖 ≥ 0  ,    𝑖 = 1,2, … ,𝑁                                                                                                                         

𝜆𝑖 �𝑦𝑖 �
𝑤𝑇𝑥𝑖 + 𝑤0

1 + 𝑔𝑖
� − 1� = 0  , 𝑖 = 1,2, … ,𝑁   (𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦 𝑠𝑙𝑎𝑐𝑘𝑛𝑒𝑠𝑠 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠)

� 

( 3.44) 

( 3.45) 

( 3.46) 
( 3.47) 

The conditions in Equation ( 3.47) state that either λi or yi[(wTx+w0)/(1+gi)]-1 must be 

zero. Therefore support vectors are training samples where |wTx+w0|/(1+gi)=1 

(yi[(wTx+w0)/(1+gi)]-1=0 and λi≠0). It is now clear how our modified distance function in 

Equation ( 3.36) affects the choice of support vectors. Before, support vectors were those 
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geometrically closest to the hyperplane but now a trade-off between the weight (gi) and the 

geometrical distance to the hyperplane determines whether a training sample is a support vector 

or not. 

By expanding Equation ( 3.43), we have: 

ℒ(𝑤,𝑤0, 𝜆) =
1
2
𝑤𝑇𝑤 − 𝑤𝑇�

𝜆𝑖𝑦𝑖𝑥𝑖
1 + 𝑔𝑖

− 𝑤0�
𝜆𝑖𝑦𝑖

1 + 𝑔𝑖

𝑁

𝑖=1

+ �𝜆𝑖

𝑁

𝑖=1

𝑁

𝑖=1

 

By replacing ∑ 𝜆𝑖𝑦𝑖
1+𝑔𝑖

𝑁
𝑖=1 = 0, from Equation ( 3.45) in the above equation, we get: 

ℒ(𝑤,𝑤0, 𝜆) =
1
2
𝑤𝑇𝑤 − 𝑤𝑇�

𝜆𝑖𝑦𝑖𝑥𝑖
1 + 𝑔𝑖

+ �𝜆𝑖

𝑁

𝑖=1

𝑁

𝑖=1

 

By substituting w from Equation ( 3.44) , we have: 

ℒ(𝑤,𝑤0, 𝜆) =
1
2 �
�

𝜆𝑖𝑦𝑖𝑥𝑖
1 + 𝑔𝑖

𝑁

𝑖=1

�

𝑇

��
𝜆𝑖𝑦𝑖𝑥𝑖
1 + 𝑔𝑖

𝑁

𝑖=1

� − ��
𝜆𝑖𝑦𝑖𝑥𝑖
1 + 𝑔𝑖

𝑁

𝑖=1

�

𝑇

��
𝜆𝑖𝑦𝑖𝑥𝑖
1 + 𝑔𝑖

�
𝑁

𝑖=1

+ �𝜆𝑖

𝑁

𝑖=1

 

ℒ(𝑤,𝑤0, 𝜆) = −
1
2 �
�

𝜆𝑖𝑦𝑖𝑥𝑖
1 + 𝑔𝑖

𝑁

𝑖=1

�

𝑇

��
𝜆𝑖𝑦𝑖𝑥𝑖
1 + 𝑔𝑖

𝑁

𝑖=1

� + �𝜆𝑖

𝑁

𝑖=1

 

ℒ(𝑤,𝑤0, 𝜆) = �𝜆𝑖

𝑁

𝑖=1

−
1
2
��

𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝑥𝑖𝑇𝑥𝑗
(1 + 𝑔𝑖)�1 + 𝑔𝑗�

𝑁

𝑗=1

𝑁

𝑖=1

 

Now we maximize the above Lagrangian function with respect to λ: 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑚𝑎𝑥
𝜆

��𝜆𝑖

𝑁

𝑖=1

−
1
2
��

𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝑥𝑖𝑇𝑥𝑗
(1 + 𝑔𝑖)�1 + 𝑔𝑗�

𝑁

𝑗=1

𝑁

𝑖=1

�

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 �
𝜆𝑖𝑦𝑖

1 + 𝑔𝑖

𝑁

𝑖=1

= 0                                 

𝜆𝑖 ≥ 0                , 𝑖 = 1,2, … ,𝑁                          

� 

( 3.48) 

( 3.49) 

( 3.50) 

Once the optimal Lagrange multipliers (λi) have been computed by maximizing Equation 

( 3.48), w is obtained by replacing them in Equation ( 3.44) and w0 is computed as an average 
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value obtained using complementary slackness conditions in Equation ( 3.47) for support vectors 

(λi≠0). Labeling a new sample is no different here; if f(x)=wTx+w0>0, x is classified in ω1, and 

otherwise in ω2. 

An interesting observation is that the term (1+gi) appears everywhere in the computations 

as a denominator of yi. It means the weighted SVM can be obtained by replacing yi with yi/(1+gi) 

in non-weighted SVM computations. 

3.2.3.2 Two linearly nonseparable classes If the two classes are not linearly separable which is 

usually the case in real-world problems, e.g., Figure  3.9, then it is not possible to find an empty 

band separating them. Each training sample will have one of the following constraints, as shown 

in Figure  3.9: 

• it falls outside the band and is correctly classified, i.e., yi(wTxi+w0)>1, 

• it falls inside the band and is correctly classified, i.e., 0≤yi(wTxi+w0)≤1, or 

• it is misclassified, i.e., yi(wTxi+w0)<0. 
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Figure  3.9. SVM classifier for two linearly nonseparable classes; black points show support vectors. 
 
 
 
We can summarize the three above constraints in one by introducing the slack variable 

(ξi) [41]: 

𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑤0) ≥ 1 − 𝜉𝑖  ,�
𝜉𝑖 = 0          𝑖𝑓 𝑥𝑖  𝑖𝑠 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑏𝑎𝑛𝑑 𝑎𝑛𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑
0 < 𝜉𝑖 ≤ 1    𝑖𝑓 𝑥𝑖  𝑖𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑏𝑎𝑛𝑑 𝑎𝑛𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑
𝜉𝑖 > 1                                                                   𝑖𝑓 𝑥𝑖  𝑖𝑠 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

� ( 3.51) 

The optimization task is now to maximize the margin (minimize the norm) while 

minimizing the slack variables [41]. The mathematical formulation for finding w and w0 of the 

hyperplane follows: 

⎩
⎪
⎨

⎪
⎧𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽(𝑤,𝑤0, 𝜉) =

1
2
‖𝑤‖2 + 𝐶�𝜉𝑖

𝑁

𝑖=1

=
1
2
𝑤𝑇𝑤 + 𝐶�𝜉𝑖

𝑁

𝑖=1
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑤0) ≥ 1 − 𝜉𝑖    , 𝑖 = 1,2, … ,𝑁                     
𝜉𝑖 ≥ 0    , 𝑖 = 1,2, … ,𝑁                                                                          

� 
( 3.52) 

( 3.53) 
( 3.54) 
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The smoothing parameter C is a positive user-defined constant that controls the trade-off 

between the two competing terms in the cost function. The two terms are against each other 

because minimizing the norm (i.e., maximizing the margin) increases the slack variables by 

increasing the number of training samples inside the band. On the other hand, decreasing the 

number of samples inside the band is equivalent to decreasing the margin. Therefore, by 

choosing a very large C→∞, the width of the margin disappears, 2/||w||→0, because we allow the 

norm to grow much faster than slack variables (ξi). The corresponding Lagrangian function 

ℒ(w,w0,ξ, λ,μ) for the above convex programming problem is defined as follows [74; 75; 76; 77]: 

ℒ(𝑤,𝑤0, 𝜉, 𝜆, 𝜇) =
1
2
𝑤𝑇𝑤 + 𝐶�𝜉𝑖

𝑁

𝑖=1

−�𝜇𝑖𝜉𝑖

𝑁

𝑖=1

−�𝜆𝑖[𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑤0) − 1 + 𝜉𝑖]
𝑁

𝑖=1

 ( 3.55) 

where λi, i=1,2,…,N are the Lagrangian multipliers associated with the constraint in 

Equation ( 3.53) and μi, i=1,2,…,N are the Lagrangian multipliers associated with the constraint 

in Equation ( 3.54). We need to find w, w0, and λ by solving the Lagrangian duality: 

𝑚𝑎𝑥𝜆≥0 𝑚𝑖𝑛𝑤,𝑤0,𝜉 ℒ(𝑤,𝑤0, 𝜉, 𝜆, 𝜇) [74; 75; 76; 77]. The Karush-Kuhn-Tucker conditions that 

𝑚𝑖𝑛𝑤,𝑤0,𝜉 ℒ(𝑤,𝑤0, 𝜉, 𝜆, 𝜇) has to satisfy are [74; 75; 76; 77]: 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧𝜕ℒ(𝑤,𝑤0, 𝜉, 𝜆, 𝜇)

𝜕𝑤
= 0 → 𝑤 = �𝜆𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

                                                            

𝜕ℒ(𝑤,𝑤0, 𝜉, 𝜆, 𝜇)
𝜕𝑤0

= 0 →�𝜆𝑖𝑦𝑖

𝑁

𝑖=1

= 0                                                                

𝜕ℒ(𝑤,𝑤0, 𝜉, 𝜆, 𝜇)
𝜕𝜉𝑖

= 0 → 𝐶 − 𝜇𝑖 − 𝜆𝑖 = 0   ,    𝑖 = 1,2, … ,𝑁                          

𝜇𝑖𝜉𝑖 = 0   ,    𝑖 = 1,2, … ,𝑁                                                                                     
𝜇𝑖 ≥ 0   ,   𝜆𝑖 ≥ 0  ,    𝑖 = 1,2, … ,𝑁                                                                       
𝜆𝑖[𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑤0) − 1 + 𝜉𝑖] = 0  , 𝑖 = 1,2, … ,𝑁                                              
                                                       (𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦 𝑠𝑙𝑎𝑐𝑘𝑛𝑒𝑠𝑠 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠)

� 

( 3.56) 

( 3.57) 

( 3.58) 

( 3.59) 
( 3.60) 
( 3.61) 
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Equations ( 3.56) and ( 3.57) depend only on training samples whose λi≠0, referred to as 

support vectors. On the other hand, the conditions in Equation ( 3.61) state that either λi or 

yi(wTx+w0)-1+ξi must be zero. Therefore support vectors are training samples where 

yi(wTx+w0)=1-ξi (yi(wTx+w0)-1+ξi=0 and λi≠0). Therefore, correctly classified training samples 

outside the margin are not support vectors because we have yi(wTx+w0)>1 and yi(wTx+w0)-1+ξi 

cannot be zero considering ξi≥0. It means that support vectors are those on the edge of the 

margin (ξi=0), correctly classified inside the margin (0<ξi<1), or misclassified (ξi≥1), as shown in 

Figure  3.9. From Equations ( 3.58) and ( 3.59), we can see that λi=C for support vectors falling 

inside the margin (ξi>0) and 0<λi<C for support vectors falling on the edge of the margin (ξi=0). 

Therefore, Equations ( 3.56) and ( 3.57) depend only on support vectors and consequently the 

hyperplane classifier is designed only based on support vectors and is independent of other 

training samples because their λi is zero. 

By expanding Equation ( 3.55), we have: 

ℒ(𝑤,𝑤0, 𝜉, 𝜆, 𝜇) =
1
2𝑤

𝑇𝑤 + �𝐶𝜉𝑖

𝑁

𝑖=1

−�𝜇𝑖𝜉𝑖

𝑁

𝑖=1

− 𝑤𝑇�𝜆𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

− 𝑤0�𝜆𝑖𝑦𝑖

𝑁

𝑖=1

+ �𝜆𝑖

𝑁

𝑖=1

−�𝜆𝑖𝜉𝑖

𝑁

𝑖=1

 

ℒ(𝑤,𝑤0, 𝜉, 𝜆, 𝜇) =
1
2
𝑤𝑇𝑤 + �(𝐶 − 𝜇𝑖 − 𝜆𝑖)𝜉𝑖

𝑁

𝑖=1

− 𝑤𝑇�𝜆𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

− 𝑤0�𝜆𝑖𝑦𝑖

𝑁

𝑖=1

+ �𝜆𝑖

𝑁

𝑖=1

 

By replacing ∑ 𝜆𝑖𝑦𝑖𝑁
𝑖=1 = 0 from Equation ( 3.57) and C-μi-λi=0 from Equation ( 3.58), we 

get: 

ℒ(𝑤,𝑤0, 𝜆) =
1
2
𝑤𝑇𝑤 − 𝑤𝑇�𝜆𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

+ �𝜆𝑖

𝑁

𝑖=1

 

By substituting w from Equation ( 3.56), we end up with: 

ℒ(𝑤,𝑤0, 𝜆) =
1
2 �
�𝜆𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

�

𝑇

��𝜆𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

� − ��𝜆𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

�

𝑇

��𝜆𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

� + �𝜆𝑖

𝑁

𝑖=1
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ℒ(𝑤,𝑤0, 𝜆) = −
1
2 �
�𝜆𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

�

𝑇

��𝜆𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

� + �𝜆𝑖

𝑁

𝑖=1

 

ℒ(𝑤,𝑤0, 𝜆) = �𝜆𝑖

𝑁

𝑖=1

−
1
2
��𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝑥𝑖𝑇𝑥𝑗

𝑁

𝑗=1

𝑁

𝑖=1

 

Now we maximize the above Lagrangian function with respect to λ: 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑚𝑎𝑥
𝜆

��𝜆𝑖

𝑁

𝑖=1

−
1
2
��𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝑥𝑖𝑇𝑥𝑗

𝑁

𝑗=1

𝑁

𝑖=1

�                          

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 �𝜆𝑖𝑦𝑖

𝑁

𝑖=1

= 0                                                     

0 ≤ 𝜆𝑖 ≤ 𝐶 (𝑑𝑢𝑒 𝑡𝑜 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.20)   , 𝑖 = 1,2, … ,𝑁

� 

( 3.62) 

( 3.63) 

( 3.64) 

Once the optimal Lagrange multipliers (λi) have been computed, by maximizing ( 3.62), w 

is obtained by replacing them in Equation ( 3.56) and w0 is computed as an average value 

obtained using complementary slackness conditions in Equation ( 3.61) for support vectors (λi≠0). 

However, ξi is also unknown in Equation ( 3.61). We know from Equations ( 3.58) and ( 3.59) that 

ξi is zero for training samples whose λi<C. Therefore, if we only use the training samples whose 

0<λi<C (support vectors falling on the edge of the margin) to find w0 via Equation ( 3.61), we can 

consider ξi=0. 

In the linearly nonseparable case the Lagrangian multipliers (λi) are bounded above by C, 

which is the only difference between the linearly separable and nonseparable cases. The slack 

variables, ξi, and their associated Lagrangian multipliers, μi, are not involved in finding the 

classifier hyperplane but their effect is indirectly felt through C [38]. 

The weighted version of SVM needs to be more sensitive to training samples with larger 

weights (gi). In other words, the distance from training samples to the classifier hyperplane needs 

to be compromised based on their weights. However, the modified distance function in case of 
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two nonseparable classes is different than separable classes. When the two classes are separable, 

we always move training samples toward the classifier hyperplane by a factor proportional to 

their weight because training samples are always on the correct side of the classifier hyperplane. 

On the other hand, in case of two nonseparable classes, a training sample might lie on the wrong 

side of the classifier hyperplane. Therefore, if a training sample lies on the correct side of the 

classifier hyperplane, we should move it toward the hyperplane and otherwise away from it by a 

factor proportional to its weight. This way we increase the sensitivity of the classifier to training 

samples with large weights and raise their chances to be selected as support vectors. We 

introduce the modified distance function for weighted SVM, in case of two nonseparable classes, 

as: 

⎩
⎪
⎨

⎪
⎧|𝑓(𝑥𝑖)|
‖𝑤‖

× �
1

1 + 𝑔𝑖
� =

|𝑓(𝑥𝑖)|
‖𝑤‖

− �1 −
1

1 + 𝑔𝑖
�

|𝑓(𝑥𝑖)|
‖𝑤‖

                  𝑖𝑓 𝑥𝑖  𝑖𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

|𝑓(𝑥𝑖)|
‖𝑤‖

× �1 +
𝑔𝑖

1 + 𝑔𝑖
� =

|𝑓(𝑥𝑖)|
‖𝑤‖

+ �1 −
1

1 + 𝑔𝑖
�

|𝑓(𝑥𝑖)|
‖𝑤‖

  𝑖𝑓 𝑥𝑖  𝑖𝑠 𝑛𝑜𝑡 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

� ( 3.65) 

We define: 

𝑦𝑖 = �+1       ∀𝑥 ∈ 𝜔1
−1       ∀𝑥 ∈ 𝜔2

� → 𝑦𝑖
𝑓(𝑥𝑖)

|𝑓(𝑥𝑖)|
= �+1         𝑖𝑓 𝑥𝑖 𝑖𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

−1  𝑖𝑓 𝑥𝑖  𝑖𝑠 𝑛𝑜𝑡 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑
� ( 3.66) 

Using Equation ( 3.66), we can combine the two distance functions in ( 3.65) in one: 

|𝑓(𝑥𝑖)|
‖𝑤‖

− �𝑦𝑖
𝑓(𝑥𝑖)

|𝑓(𝑥𝑖)|� �
1 −

1
1 + 𝑔𝑖

�
|𝑓(𝑥𝑖)|
‖𝑤‖

=
|𝑓(𝑥𝑖)| − 𝑦𝑖 �1 − 1

1 + 𝑔𝑖
� 𝑓(𝑥𝑖)

‖𝑤‖
   ,∀𝑥𝑖 

( 3.67) 

By scaling w and w0, and introducing the slack variable (ξi) we can define the following 

constraint for training samples: 

|𝑓(𝑥𝑖)| − 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
� 𝑓(𝑥𝑖) ≥ 1 − 𝜉𝑖   ,�

𝜉𝑖 = 0          𝑖𝑓 𝑥𝑖  𝑖𝑠 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑏𝑎𝑛𝑑 𝑎𝑛𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑
0 < 𝜉𝑖 ≤ 1    𝑖𝑓 𝑥𝑖  𝑖𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑏𝑎𝑛𝑑 𝑎𝑛𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑
𝜉𝑖 > 1                                                                   𝑖𝑓 𝑥𝑖  𝑖𝑠 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

� ( 3.68) 
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The optimization task is now to maximize the margin (minimize the norm) while 

minimizing the slack variables (ξi). The mathematical formulation for finding w and w0 of the 

hyperplane follows: 

⎩
⎪
⎨

⎪
⎧𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽(𝑤,𝑤0, 𝜉) =

1
2
‖𝑤‖2 + 𝐶�𝜉𝑖

𝑁

𝑖=1

=
1
2
𝑤𝑇𝑤 + 𝐶�𝜉𝑖

𝑁

𝑖=1

                                 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 |𝑤𝑇𝑥𝑖 + 𝑤0| − 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
� (𝑤𝑇𝑥𝑖 + 𝑤0) ≥ 1 − 𝜉𝑖    , 𝑖 = 1,2, … ,𝑁

𝜉𝑖 ≥ 0    , 𝑖 = 1,2, … ,𝑁                                                                                                            

� 

( 3.69) 

( 3.70) 

( 3.71) 

The corresponding Lagrangian function ℒ(w,w0,ξ,λ,μ) for the above convex programming 

problem is defined as follows: 

ℒ(𝑤,𝑤0, 𝜉, 𝜆, 𝜇) =
1
2
𝑤𝑇𝑤 + 𝐶�𝜉𝑖

𝑁

𝑖=1

−�𝜇𝑖𝜉𝑖

𝑁

𝑖=1

−�𝜆𝑖 �|𝑤𝑇𝑥𝑖 + 𝑤0| − 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
� (𝑤𝑇𝑥𝑖 + 𝑤0) − 1 + 𝜉𝑖�

𝑁

𝑖=1

 ( 3.72) 

where λi, i=1,2,…,N are the Lagrangian multipliers associated with the constraint in 

( 3.70) and μi, i=1,2,…,N are the Lagrangian multipliers associated with the constraint in ( 3.71). 

We need to find w, w0, and λ by solving the Lagrangian duality: 

𝑚𝑎𝑥𝜆≥0 𝑚𝑖𝑛𝑤,𝑤0,𝜉 ℒ(𝑤,𝑤0, 𝜉, 𝜆, 𝜇) [74; 75; 76; 77]. The Karush–Kuhn–Tucker conditions that 

𝑚𝑖𝑛𝑤,𝑤0,𝜉 ℒ(𝑤,𝑤0, 𝜉, 𝜆, 𝜇) has to satisfy are [74; 75; 76; 77]: 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧𝜕ℒ(𝑤,𝑤0, 𝜉, 𝜆, 𝜇)

𝜕𝑤
= 0 → 𝑤 = �𝜆𝑖𝑥𝑖 �

|𝑤𝑇𝑥𝑖 + 𝑤0|
𝑤𝑇𝑥𝑖 + 𝑤0

− 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
��

𝑁

𝑖=1

                         

𝜕ℒ(𝑤,𝑤0, 𝜉, 𝜆, 𝜇)
𝜕𝑤0

= 0 →�𝜆𝑖

𝑁

𝑖=1

�
|𝑤𝑇𝑥𝑖 + 𝑤0|
𝑤𝑇𝑥𝑖 + 𝑤0

− 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
�� = 0                               

𝜕ℒ(𝑤,𝑤0, 𝜉, 𝜆, 𝜇)
𝜕𝜉𝑖

= 0 → 𝐶 − 𝜇𝑖 − 𝜆𝑖 = 0   ,    𝑖 = 1,2, … ,𝑁                                                  

𝜇𝑖𝜉𝑖 = 0   ,    𝑖 = 1,2, … ,𝑁                                                                                                               
𝜇𝑖 ≥ 0   ,   𝜆𝑖 ≥ 0  ,    𝑖 = 1,2, … ,𝑁                                                                                                

𝜆𝑖 �|𝑤𝑇𝑥𝑖 + 𝑤0| − 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
� (𝑤𝑇𝑥𝑖 + 𝑤0) − 1 + 𝜉𝑖� = 0  , 𝑖 = 1,2, … ,𝑁                

                                                                                 (𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦 𝑠𝑙𝑎𝑐𝑘𝑛𝑒𝑠𝑠 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠)

� 

( 3.73) 

( 3.74) 

( 3.75) 

( 3.76) 
( 3.77) 
( 3.78) 

By expanding Equation ( 3.72), we have: 
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ℒ(𝑤,𝑤0, 𝜉, 𝜆, 𝜇) =
1
2
𝑤𝑇𝑤 + �𝐶𝜉𝑖

𝑁

𝑖=1

−�𝜇𝑖𝜉𝑖

𝑁

𝑖=1

−�𝜆𝑖 �|𝑤𝑇𝑥𝑖 + 𝑤0| − 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
� (𝑤𝑇𝑥𝑖 + 𝑤0)�

𝑁

𝑖=1

+ �𝜆𝑖

𝑁

𝑖=1

−�𝜆𝑖𝜉𝑖

𝑁

𝑖=1

 

ℒ(𝑤,𝑤0, 𝜉, 𝜆, 𝜇) =
1
2
𝑤𝑇𝑤 + �(𝐶 − 𝜇𝑖 − 𝜆𝑖)𝜉𝑖

𝑁

𝑖=1

−�(𝑤𝑇𝑥𝑖 + 𝑤0)𝜆𝑖 �
|𝑤𝑇𝑥𝑖 + 𝑤0|
𝑤𝑇𝑥𝑖 + 𝑤0

− 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
��

𝑁

𝑖=1

+ �𝜆𝑖

𝑁

𝑖=1

 

By replacing C-μi-λi=0 from Equation ( 3.75), we get: 

ℒ(𝑤,𝑤0, 𝜆) =
1
2
𝑤𝑇𝑤 −�(𝑤𝑇𝑥𝑖 + 𝑤0)𝜆𝑖 �

|𝑤𝑇𝑥𝑖 + 𝑤0|
𝑤𝑇𝑥𝑖 + 𝑤0

− 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
��

𝑁

𝑖=1

+ �𝜆𝑖

𝑁

𝑖=1

 

ℒ(𝑤,𝑤0, 𝜆) =
1
2𝑤

𝑇𝑤 − 𝑤𝑇�𝜆𝑖𝑥𝑖 �
|𝑤𝑇𝑥𝑖 + 𝑤0|
𝑤𝑇𝑥𝑖 + 𝑤0

− 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
��

𝑁

𝑖=1

+ 𝑤0�𝜆𝑖 �
|𝑤𝑇𝑥𝑖 + 𝑤0|
𝑤𝑇𝑥𝑖 + 𝑤0

− 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
��

𝑁

𝑖=1

+ �𝜆𝑖

𝑁

𝑖=1

 

By replacing ∑ 𝜆𝑖𝑁
𝑖=1 �|𝑤𝑇𝑥𝑖+𝑤0|

𝑤𝑇𝑥𝑖+𝑤0
− 𝑦𝑖 �1 − 1

1+𝑔𝑖
�� = 0 from Equation ( 3.74), we have: 

ℒ(𝑤,𝑤0, 𝜆) =
1
2
𝑤𝑇𝑤 − 𝑤𝑇�𝜆𝑖𝑥𝑖 �

|𝑤𝑇𝑥𝑖 + 𝑤0|
𝑤𝑇𝑥𝑖 + 𝑤0

− 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
��

𝑁

𝑖=1

+ �𝜆𝑖

𝑁

𝑖=1

 

ℒ(𝑤,𝑤0, 𝜆) = �𝜆𝑖

𝑁

𝑖=1

+ 𝑤𝑇 �
1
2
𝑤 −�𝜆𝑖𝑥𝑖 �

|𝑤𝑇𝑥𝑖 + 𝑤0|
𝑤𝑇𝑥𝑖 + 𝑤0

− 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
��

𝑁

𝑖=1

� 

By substituting w from Equation ( 3.73), we end up with: 

ℒ(𝑤,𝑤0, 𝜆) = �𝜆𝑖

𝑁

𝑖=1

+ ��𝜆𝑖𝑥𝑖 �
|𝑤𝑇𝑥𝑖 + 𝑤0|
𝑤𝑇𝑥𝑖 + 𝑤0

− 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
��

𝑁

𝑖=1

�

𝑇

�
1
2
��𝜆𝑖𝑥𝑖 �

|𝑤𝑇𝑥𝑖 + 𝑤0|
𝑤𝑇𝑥𝑖 + 𝑤0

− 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
��

𝑁

𝑖=1

�

− ��𝜆𝑖𝑥𝑖 �
|𝑤𝑇𝑥𝑖 + 𝑤0|
𝑤𝑇𝑥𝑖 + 𝑤0

− 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
��

𝑁

𝑖=1

�� 

ℒ(𝑤,𝑤0, 𝜆) = �𝜆𝑖

𝑁

𝑖=1

−
1
2
��𝜆𝑖𝑥𝑖 �

|𝑤𝑇𝑥𝑖 + 𝑤0|
𝑤𝑇𝑥𝑖 + 𝑤0

− 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
��

𝑁

𝑖=1

�

𝑇

��𝜆𝑖𝑥𝑖 �
|𝑤𝑇𝑥𝑖 + 𝑤0|
𝑤𝑇𝑥𝑖 + 𝑤0

− 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
��

𝑁

𝑖=1

� 

Now we maximize the above Lagrangian function with respect to λ: 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑚𝑎𝑥
𝜆

��𝜆𝑖

𝑁

𝑖=1

−
1
2
��𝜆𝑖𝑥𝑖 �

|𝑤𝑇𝑥𝑖 + 𝑤0|
𝑤𝑇𝑥𝑖 + 𝑤0

− 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
��

𝑁

𝑖=1

�

𝑇

��𝜆𝑖𝑥𝑖 �
|𝑤𝑇𝑥𝑖 + 𝑤0|
𝑤𝑇𝑥𝑖 + 𝑤0

− 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
��

𝑁

𝑖=1

��

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 �𝜆𝑖

𝑁

𝑖=1

�
|𝑤𝑡𝑥𝑖 + 𝑤0|
𝑤𝑡𝑥𝑖 + 𝑤0

− 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
�� = 0                                                                                                

0 ≤ 𝜆𝑖 ≤ 𝐶  (𝑑𝑢𝑒 𝑡𝑜 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.34)    ,   𝑖 = 1,2, … ,𝑁                                                                                                    

� 

( 3.79) 

( 3.80) 

( 3.81) 
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Once the optimal Lagrangian multipliers (λi) have been computed by maximizing 

Equation ( 3.79), w is obtained by replacing them in Equation ( 3.73) and w0 is computed as an 

average value obtained using complementary slackness conditions in Equation ( 3.78) for support 

vectors whose 0<λi<C and considering ξi=0. Labeling a new sample is no different here; if 

f(x)=wTx+w0>0, x is classified in ω1, and otherwise in ω2. 

Maximizing the above Lagrangian function with respect to λ is not as easy as Equation 

( 3.62) because this time w and w0 are involved in the process of finding the Lagrangian 

multipliers (λi) in Equation ( 3.79) while they are unknown. The appearance of w and w0 in 

Equation ( 3.79) originates from the dichotomy in the distance function in Equation ( 3.65). 

Therefore, an iterative optimization technique must be adopted: 

• w and w0 are initialized for a non-weighted SVM, 

• Loop: repeat until convergence 

• λi are calculated using Equation ( 3.79) 

• w and w0 are calculated using Equations ( 3.73) and ( 3.78) 

The time complexity of the above algorithm is k times more than the time complexity of 

finding the non-weighted SVM classifier hyperplane (O(N3) with a naïve implementation of a 

quadratic programming solver [38]), where k is the number of iterations in the loop. Since w and 

w0 are initialized using a non-weighted SVM, the convergence is expected to happen in a few 

iterations. 

From a geometric point of view, the loop in the above algorithm is updating the classifier 

hyperplane by redefining the distance of training samples to the hyperplane in each iteration. 

This is equivalent to relocating the training samples after each iteration with respect to the 

hyperplane classifier based on their weights and updating the classifier hyperplane based on the 

relocated training samples. Therefore, the following algorithm offers an alternative but 
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geometrically equivalent approach to the above algorithm with the same time complexity. The 

following algorithm can take advantage of existing software and libraries for non-weighted SVM 

to develop the weighted SVM. 

• w and w0 are initialized for a non-weighted SVM, 

• Loop: repeat until convergence 

𝑋�𝑡 = 𝑋 − �1 −
1

1 + 𝑔�
.�
�𝑋𝑤𝑡−1 + 𝑤0𝑡−1�

‖𝑤𝑡−1‖
� .𝑦

𝑤𝑡−1𝑇

‖𝑤𝑡−1‖
 ( 3.82) 

• find wt and w0t for the non-weighted SVM classifier hyperplane based on 𝑋�𝑡  

where the subscript t stands for the iterator inside the loop. At the first step in the loop, X 

is the input feature matrix (each row representing one training sample), y is a column vector 

containing the responses, w is a column vector representing the norm of the classifier hyperplane, 

w0 is the intercept of the classifier hyperplane, and g is a column vector containing the training 

samples’ weights. The dot shows array (or element-wise) operations versus matrix operations 

shown with a cross. In Equation ( 3.82), �1 − 1
1+𝑔

� . �|𝑋𝑤+𝑤0|
‖𝑤‖

� is the magnitude we have to move 

the training samples, and �−𝑦 𝑤𝑇

‖𝑤‖
� is the movement direction. The movement magnitude is 

proportional to the training sample’s weight. The movement is in the direction of the classifier’s 

vector (w) for training samples in class ω2 (y=-1) and in the opposite direction of w for training 

samples in class ω1 (y=1). In other words, we have to update the position of a training sample by 

moving it �1 − 1
1+𝑔𝑖

� �|𝑥𝑖𝑤+𝑤0|
‖𝑤‖

� toward the classifier hyperplane if it is correctly classified or the 

same amount away from the hyperplane if it is wrongly classified. Therefore, training samples 

with large weights which were not normally selected as support vectors, now have a higher 

chance of being selected as support vectors if the aforementioned shift has dropped them inside 

the margin. 
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3.2.3.3 Experiment Due to SVM’s stability to changes in a small part of the training data, the 

dataset in Table  3.1 cannot differentiate between the non-weighted and weighted SVM. In other 

words, the two classifiers are the same for that dataset. Instead, we use the dataset in Table  3.2 to 

show the effect of embedding training samples’ weights in SVM. Figure  3.10 shows the division 

of the feature space between the two classes with and without considering the training samples’ 

weights in computing the linear classifier. In weighted SVM, the important samples in class ω1 

will move toward class ω2, through Equation ( 3.82), and repel the border toward class ω2. 

 
 
 

Table  3.2. Training samples and their weights for SVM. 

l1 l2 Class Spatial-temporal weight 
1 1 ω1 4 
1 2 ω1 2 

1.4 1.5 ω1 2 
2 1 ω2 1 
2 2 ω2 1 

 
 
 

1

2

1 2
l1

l2

ω1 ω2

 

Figure  3.10. Division of the feature space between the two classes, circles and squares, without (solid line) and with 
(dashed line) considering the training samples’ weights (darkness of samples) in SVM classifier (C=1). 
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3.3 NONLINEAR PREDICTORS 

If two classes are linearly separable in case of classification, or if responses have a linear 

relationship with features in case of regression, the linear models optimally find the regression or 

classification hyperplane. Otherwise, they find the hyperplane minimizing the prediction error 

based on some cost function. Nonlinear predictors, on the other hand, bend and curve themselves 

to get closer to the training samples in case of regression or to put more training samples on the 

correct side of the hypersurface in case of classification. However, some training samples might 

still remain far from the regressor or on the wrong side of the classifier depending on how 

flexible the nonlinear predictor is allowed to be. 

One question which needs to be answered before designing a predictor is whether the 

relationship between responses and features is linear in case of regression, or whether the classes 

are linearly separable or not in case of classification. In other words, whether a linear or 

nonlinear predictor must be used. If training data show an approximately linear relationship 

between responses and features in case of regression, or if training samples are almost linearly 

separable in case of classification, assuming there is no more knowledge about the nature of the 

problem in hand, choosing a linear predictor is more sensible. One approach to find out whether 

a linear predictor is sufficient or not is to train a LS predictor and see how accurately it predicts 

the training samples’ responses. Noise in training data might cause slight nonlinearity among 

responses. Therefore, if the LS predictor makes few mistakes in predicting the response of 

training samples, linear predictors are a cautious and conservative choice. However, if it turns 

out that the linear regression is far from being accurate or the classes are far from being linearly 

separable, nonlinear predictors are unavoidable. Yet, one needs to be careful with choosing a 

nonlinear predictor over a linear one to avoid capturing the particularities of small training 
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datasets in the predictor. In this section, we develop the weighted version of some nonlinear 

predictors. 

3.3.1 Decision trees 

Ordinary binary decision trees (OBDTs) split the feature space into hyperrectangles with sides 

parallel to the axes [44]. Nodes in an OBDT, shown in Figure  3.11, are binary questions whose 

answers are either yes or no and the answer to these questions determines the path to a leaf which 

is equivalent to a response (nominal label in classification or numerical estimate in regression). 

Questions at nodes are of the form “is xk≤α ?” where xk is the k-th feature and α is a threshold. To 

predict the response of an irresponsive sample, one needs to answer the question at each node 

and traverse to the left or right node based on the answer until a leaf (response) is reached. 

 
 
 

Q1

Q3

YesNo
Q5

R5R4

YesNo
YesNo

Q2

R2R1

YesNo

R3

 

Figure  3.11. Ordinary binary decision trees; Q stands for question and R stands for response. 
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The training process involves designing the questions, structuring the tree, and 

associating each leaf with a response. Each node splits the training dataset into two disjoint 

groups, each corresponding to one of the answers: yes or no. Many questions can be asked at one 

node based on what feature (xk) to choose and what threshold (α) to use. Different thresholds that 

can be considered for a specific feature at a node are determined based on the training samples at 

that node. For example, if there are N samples at a node, there could be N-1 different thresholds, 

each taken halfway between consecutive distinct values of xk in the training samples at that node. 

Therefore, if there are l features and N training samples at a node, (N-1)×l different questions can 

be asked. The best question to ask at a node is the one which maximizes the impurity decrease 

(ΔI). The impurity decrease is calculated through Equation ( 3.83) [44]: 

∆𝐼 = 𝐼 −
𝑁𝑌
𝑁
𝐼𝑌 −

𝑁𝑁
𝑁
𝐼𝑁 ( 3.83) 

where I is the impurity of the ancestor node, N is the number of training samples in the 

ancestor node, NY is the number of training samples in the descendant node corresponding with 

the answer “yes” to the question, NN is the number of training samples in the descendant node 

corresponding with the answer “no” to the question, and IY and IN are the impurities of the 

descendent nodes. Entropy of training samples at a node, in Equation ( 3.84), is a common 

definition of node impurity in classification tasks (Iclassification) [44], where N is the number of 

training samples at this node, M is the number of classes, and N(ωi) is the number of training 

samples from class ωi at this node. Therefore, in classification, impurity at a node is proportional 

to the heterogeneity of classes among training samples at that node. The largest impurity (log2M) 

happens when training samples are equally distributed among classes and the least impurity (0) 

happens when all training samples belong to the same class. 



 52 

The impurity of a node in regression tasks (Iregression) is commonly calculated as the 

variance, in Equation ( 3.85), where yi is the response of the i-th training sample at this node and 

𝑦� is the average of responses at this node. 

𝐼𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = −�
𝑁(𝜔𝑖)
𝑁

𝑙𝑜𝑔2
𝑁(𝜔𝑖)
𝑁

𝑀

𝑖=1

 ( 3.84) 

𝐼𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =
∑ (𝑦𝑖 − 𝑦�)2𝑁
𝑖=1

𝑁
 ( 3.85) 

A node is considered a leaf if the maximum impurity decrease (ΔImax) for that node is less 

than a user-defined threshold, although other alternative conditions have been used in the 

literature [44; 78]. The majority rule in case of classification or the average rule in case of 

regression are commonly used to determine the response at that leaf [44]. 

In the weighted version of OBDT, the impurity decrease (ΔI) and impurity (I) are 

calculated through the following equations: 

∆𝐼 = 𝐼 −
∑𝑔𝑌
∑𝑔

𝐼𝑌 −
∑𝑔𝑁
∑𝑔

𝐼𝑁 ( 3.86) 

𝐼𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = −�
𝑔(𝜔𝑖)
∑𝑔

𝑀

𝑖=1

log2
𝑔(𝜔𝑖)
∑𝑔

 ( 3.87) 

𝐼𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =
∑ 𝑔𝑖(𝑦𝑖 − 𝑦�)2𝑁
𝑖=1
∑ 𝑔𝑖𝑁
𝑖=1

 ( 3.88) 

where ΣgY and ΣgN are the sum of the weight of training samples corresponding to the 

answers “yes” and “no”, respectively, Σg is the sum of the weight of all training samples at the 

ancestor node, g(ωi) is the sum of the weight of training samples belonging to class ωi, and gi is 

the i-th training sample’s weight. 

A node is considered a leaf if the maximum impurity decrease (ΔImax) for that node is less 

than a user-defined threshold. In case of classification, the class with the largest total weight 
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(𝑎𝑟𝑔𝑚𝑎𝑥𝜔𝑗 ∑ 𝑔𝑖𝑖∈𝜔𝑗 ) is associated with that leaf. In case of regression, the weighted average of 

the responses (∑ 𝑔𝑖𝑦𝑖𝑖∈𝑙𝑒𝑎𝑓 ∑ 𝑔𝑖𝑖∈𝑙𝑒𝑎𝑓⁄ ) is associated with that leaf. 

In the weighted decision tree, samples with larger weights play a more important role in 

deciding what question to ask at a node (by playing a more significant role in calculating 

impurity and impurity decrease), when to stop splitting the nodes, and what response to associate 

with a leaf. 

3.3.1.1 Experiment Here we use the dataset in Table  3.1 to show the effect of embedding 

training samples’ weights in decision tree. Figure  3.12 shows the division of the feature space 

between the two classes with and without considering the training samples’ weights in 

developing the decision tree. The important samples from class ω1 change the way the weighted 

decision tree divides the feature space between the two classes in comparison with non-weighted 

decision tree. 
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Figure  3.12. Division of the feature space between the two classes, circles and squares, without (solid line) and with 
(dashed line) considering the training samples’ weights (darkness of samples) in decision tree classifier (minimum 

impurity decrease for splitting a node is considered 0.1). 
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3.3.2 Multilayer perceptron (MLP) 

In the backpropagation algorithm [45; 46; 47], the architecture of the network is fixed and its 

synaptic weights are computed so as to minimize a cost function defined as: 

𝐽(𝒘) = �𝜀(𝑖)
𝑁

𝑖=1

 ( 3.89) 

where N is the number of training samples and ε(i) is a function of the network’s output 

(𝑦�(𝑖)) and the desired output (y(i)) for the i-th training sample. A common choice for ε(i) is the 

sum of squared errors in the output nodes [79; 80; 46; 47]: 

𝜀(𝑖) =
1
2
��𝑦�𝑗𝐿(𝑖) − 𝑦𝑗𝐿(𝑖)�

2
𝑘𝐿

𝑗=1

  , 𝑖 = 1,2, … ,𝑁 ( 3.90) 

where L refers to the output layer, kL represents the number of nodes in the output layer, 

𝑦�𝑗𝐿(𝑖) represents the output of the j-th node in the output layer, and 𝑦𝑗𝐿(𝑖) represents its 

corresponding desired value. We also have the following equation for calculating the output of 

the j-th node at the r-th layer for the i-th training sample (𝑦�𝑗𝑟(𝑖)): 

𝑦�𝑗𝑟(𝑖) = 𝑓𝑗𝑟�𝑣𝑗𝑟(𝑖)� ( 3.91) 

𝑣𝑗𝑟(𝑖) = �𝑤𝑗𝑘𝑟 𝑦�𝑘𝑟−1(𝑖)
𝑘𝑟−1

𝑘=1

 ( 3.92) 

where 𝑓𝑗𝑟 is the activation function at the j-th node of the r-th layer, kr-1 is the number of 

nodes at the (r-1)-th layer, 𝑦�𝑘𝑟−1(𝑖) is the output of the k-th node in the (r-1)-th layer, and 𝑤𝑗𝑘𝑟  is 

the synaptic weight from the k-th node at the (r-1)-th layer to the j-th node at the r-th layer. 

We can iteratively find the synaptic weight vectors that minimize the perceptron cost 

function using the gradient descent scheme [45; 46; 47]. In each iteration, the weight vector 
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(including the threshold) of the j-th node in the r-th layer (𝒘𝑗𝑟) is modified through Equation 

( 3.93): 

𝒘𝑗𝑟(𝑛𝑒𝑤) = 𝒘𝑗𝑟(𝑜𝑙𝑑) + ∆𝒘𝑗𝑟 ( 3.93) 

The modification term in Equation ( 3.93) (∆𝒘𝑗𝑟) is computed through Equation ( 3.94) 

according to the gradient descent scheme: 

∆𝒘𝑗𝑟 = −𝛼
𝜕𝐽(𝒘)
𝜕𝒘𝑗𝑟

 ( 3.94) 

By substituting the cost function from Equation ( 3.89) in Equation ( 3.94) and applying 

the chain rule in differentiation, we obtain: 

∆𝒘𝑗𝑟 = −𝛼
𝜕∑ 𝜀(𝑖)𝑁

𝑖=1

𝜕𝒘𝑗𝑟
= −𝛼�

𝜕𝜀(𝑖)
𝜕𝒘𝑗𝑟

𝑁

𝑖=1

= −𝛼�
𝜕𝜀(𝑖)
𝜕𝑣𝑗𝑟(𝑖)

𝜕𝑣𝑗𝑟(𝑖)
𝜕𝒘𝑗𝑟

𝑁

𝑖=1

 ( 3.95) 

By defining 𝛿𝑗𝑟(𝑖) = 𝜕𝜀(𝑖)
𝜕𝑣𝑗

𝑟(𝑖)
 in the above equation, we obtain: 

∆𝒘𝑗𝑟 = −𝛼�𝛿𝑗𝑟(𝑖)
𝜕𝑣𝑗𝑟(𝑖)
𝜕𝒘𝑗𝑟

𝑁

𝑖=1

 ( 3.96) 

We can calculate 
𝜕𝑣𝑗

𝑟(𝑖)

𝜕𝒘𝑗
𝑟  using Equation ( 3.92) as follows: 

𝜕𝑣𝑗𝑟(𝑖)
𝜕𝒘𝑗𝑟

=

⎣
⎢
⎢
⎢
⎢
⎡ 𝜕𝑣𝑗

𝑟(𝑖)
𝜕𝑤𝑗1𝑟

⋮
𝜕𝑣𝑗𝑟(𝑖)
𝜕𝑤𝑗𝑘𝑟−1

𝑟 ⎦
⎥
⎥
⎥
⎥
⎤

= 𝑦�𝑟−1(𝑖) ( 3.97) 

where kr-1 is the number of nodes in the (r-1)-th layer and 𝑦�𝑟−1(𝑖) is the output vector of 

the (r-1)-th layer for the i-th training sample. By substituting Equation ( 3.97) in Equation ( 3.96) 

we obtain: 
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∆𝒘𝑗𝑟 = −𝛼�𝛿𝑗𝑟(𝑖)𝑦�𝑟−1(𝑖)
𝑁

𝑖=1

 ( 3.98) 

The above equation obtains the correction term for batch mode [72]. In online or pattern 

mode, instead of summing up the corrections over all training samples and updating the weights 

at once, the weights are updated once for each individual training sample before moving on to 

the next [72]. In stochastic mode, the gradient at each iteration is calculated based on a random 

subset of training samples [73]. 

Now we have to compute 𝛿𝑗𝑟(𝑖) based on the definition of the cost function given in 

Equation ( 3.90). First we calculate this term for the output layer (r=L): 

𝛿𝑗𝐿(𝑖) =
𝜕𝜀(𝑖)
𝜕𝑣𝑗𝐿(𝑖)

 ( 3.99) 

By substituting Equations ( 3.90) and ( 3.91) in the above equation we get: 

𝛿𝑗𝐿(𝑖) =
𝜕

𝜕𝑣𝑗𝐿(𝑖)
�
1
2
� �𝑓𝑚𝐿�𝑣𝑚𝐿 (𝑖)� − 𝑦𝑚𝐿 (𝑖)�

2
𝑘𝐿

𝑚=1

� ( 3.100) 

By keeping only the terms that are dependent on 𝑣𝑗𝐿(𝑖) we get: 

𝛿𝑗𝐿(𝑖) =
𝜕

𝜕𝑣𝑗𝐿(𝑖)
�
1
2 �
𝑓𝑗𝐿 �𝑣𝑗𝐿(𝑖)� − 𝑦𝑗𝐿(𝑖)�

2
� = �𝑦�𝑗𝐿(𝑖) − 𝑦𝑗𝐿(𝑖)�

𝜕𝑓𝑗𝐿 �𝑣𝑗𝐿(𝑖)�

𝜕𝑣𝑗𝐿(𝑖)
 ( 3.101) 

where 𝑦�𝑗𝐿(𝑖) is the output of the j-th node in the output layer for the i-th training sample, 

𝑦𝑗𝐿(𝑖) is its corresponding desired value, and 𝑓𝑗𝐿 is the activation function of the j-th node in the 

output layer which takes 𝑣𝑗𝐿(𝑖) as input. 

Now we compute 𝛿𝑗𝑟(𝑖) for hidden layers (r<L): 

𝛿𝑗𝑟(𝑖) =
𝜕𝜀(𝑖)
𝜕𝑣𝑗𝑟(𝑖)

= �
𝜕𝜀(𝑖)

𝜕𝑣𝑘𝑟+1(𝑖)
𝜕𝑣𝑘𝑟+1(𝑖)
𝜕𝑣𝑗𝑟(𝑖)

𝑘𝑟+1

𝑘=1

= � 𝛿𝑘𝑟+1(𝑖)
𝜕𝑣𝑘𝑟+1(𝑖)
𝜕𝑣𝑗𝑟(𝑖)

𝑘𝑟+1

𝑘=1

 ( 3.102) 
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We use Equation ( 3.92) to calculate 𝜕𝑣𝑘
𝑟+1(𝑖)

𝜕𝑣𝑗
𝑟(𝑖)

: 

𝜕𝑣𝑘𝑟+1(𝑖)
𝜕𝑣𝑗𝑟(𝑖)

=
𝜕

𝜕𝑣𝑗𝑟(𝑖)
�� 𝑤𝑘𝑚𝑟+1𝑦�𝑚𝑟 (𝑖)
𝑘𝑟

𝑚=0

� ( 3.103) 

Replacing 𝑦�𝑚𝑟 (𝑖) with 𝑓𝑚𝑟�𝑣𝑚𝑟 (𝑖)� based on Equation ( 3.91), we get: 

𝜕𝑣𝑘𝑟+1(𝑖)
𝜕𝑣𝑗𝑟(𝑖)

=
𝜕

𝜕𝑣𝑗𝑟(𝑖)
�� 𝑤𝑘𝑚𝑟+1𝑓𝑚𝑟�𝑣𝑚𝑟 (𝑖)�
𝑘𝑟

𝑚=1

� ( 3.104) 

By keeping only the terms that are dependent on 𝑣𝑗𝑟(𝑖) we get: 

𝜕𝑣𝑘𝑟+1(𝑖)
𝜕𝑣𝑗𝑟(𝑖)

=
𝜕

𝜕𝑣𝑗𝑟(𝑖)
�𝒘𝑘𝑗

𝑟+1𝑓𝑗𝑟 �𝑣𝑗𝑟(𝑖)�� = 𝒘𝑘𝑗
𝑟+1

𝜕𝑓𝑗𝑟 �𝑣𝑗𝑟(𝑖)�
𝜕𝑣𝑗𝑟(𝑖)

 ( 3.105) 

Replacing the above equation in Equation ( 3.102), we obtain: 

𝛿𝑗𝑟(𝑖) = � 𝛿𝑘𝑟+1(𝑖)𝒘𝑘𝑗
𝑟+1

𝜕𝑓𝑗𝑟 �𝑣𝑗𝑟(𝑖)�
𝜕𝑣𝑗𝑟(𝑖)

𝑘𝑟+1

𝑘=1

 ( 3.106) 

where kr+1 is the number of nodes in the (r+1)-th layer, 𝒘𝑘𝑗
𝑟+1 is the synaptic weight from 

the j-th node in the r-th layer to the k-th node in the (r+1)-th layer, and 𝑓𝑗𝑟 is the activation 

function of the j-th node in the r-th layer which takes 𝑣𝑗𝑟(𝑖) as input. 

Now, we develop the weighted version of MLP. We include each training sample’s 

weight (g(i)) in the cost function to adjust the MLP cost based on the importance of training 

samples. The MLP classifier will no longer be equally fair to all training samples. We modify the 

MLP cost function as in Equation ( 3.107) to punish the classifier more for misclassifying 

training samples with larger weights and less for training samples with smaller weights. 

𝐽(𝒘) = �𝑔𝑖𝜀(𝑖)
𝑁

𝑖=1

 ( 3.107) 
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We can compute the modification term (∆𝒘𝑗𝑟) through gradient descent scheme as 

follows: 

∆𝒘𝑗𝑟 = −𝛼
𝜕𝐽(𝒘)
𝜕𝒘𝑗𝑟

= −𝛼
𝜕∑ 𝑔𝑖𝜀(𝑖)𝑁

𝑖=1

𝜕𝒘𝑗𝑟
= −𝛼�𝑔𝑖

𝜕𝜀(𝑖)
𝜕𝒘𝑗𝑟

𝑁

𝑖=1

 ( 3.108) 

By applying the chain rule in differentiation: 

∆𝒘𝑗𝑟 = −𝛼�𝑔𝑖
𝜕𝜀(𝑖)
𝜕𝑣𝑗𝑟(𝑖)

𝜕𝑣𝑗𝑟(𝑖)
𝜕𝒘𝑗𝑟

𝑁

𝑖=1

 ( 3.109) 

By replacing 𝜕𝜀(𝑖)
𝜕𝑣𝑗

𝑟(𝑖)
 with 𝛿𝑗𝑟(𝑖), we obtain: 

∆𝒘𝑗𝑟 = −𝛼�𝑔𝑖𝛿𝑗𝑟(𝑖)
𝜕𝑣𝑗𝑟(𝑖)
𝜕𝒘𝑗𝑟

𝑁

𝑖=1

 ( 3.110) 

By applying Equation ( 3.97), we obtain: 

∆𝒘𝑗𝑟 = −𝛼�𝑔𝑖𝛿𝑗𝑟(𝑖)𝑦�𝑟−1(𝑖)
𝑁

𝑖=1

 ( 3.111) 

Therefore, the only difference between the above equation for computing the correction 

term and Equation ( 3.98) is the presence of the training samples’ weights (gi) in the summand. If 

we define α*(i)=αgi, we obtain: 

∆𝒘𝑗𝑟 = −�𝛼∗(𝑖)𝛿𝑗𝑟(𝑖)𝑦�𝑟−1(𝑖)
𝑁

𝑖=1

 ( 3.112) 

The above equation shows that the weighted version of the backpropagation algorithm for 

MLP is obtained by defining the training rate as α*(i)=αgi, which means a different training rate 

for each training sample based on its weight; remembering that the cost must also be calculated 

through Equation ( 3.107) which includes different weights for training samples. Adjusting the 
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training rate based on the weight of training samples and including the weights in the cost 

function bias the trained MLP in favor of training samples with larger weights. 

3.3.2.1 Experiment Here we use the dataset in Table  3.1 to show the effect of embedding 

training samples’ weights in the cost function (Equation ( 3.107)) and backpropagation algorithm 

(Equation ( 3.111)). The MLP is designed with one hidden layer including 2 nodes. Including 

more hidden nodes will result in all training samples being correctly classified in both non-

weighted and weighted MLP, a zero classification cost for both non-weighted (Equation ( 3.89)) 

and weighted (Equation ( 3.107)) MLP, and consequently similar classifiers. With 2 hidden nodes 

some training samples cannot be correctly classified, so we can see the difference between non-

weighted and weighted MLP classifiers. Figure  3.13 shows the division of the feature space 

between the two classes with and without considering the training samples’ weights in the cost 

function and the backpropagation algorithm. Despite both weighted and non-weighted MLP 

misclassify the same four training samples, the weighted MLP classifier provides a better fit (a 

lower error) for the two more important samples from class ω1. 
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Figure  3.13. Division of the feature space between the two classes, circles and squares, without (solid line) and with 
(dashed line) considering the training samples’ weights (darkness of samples) in MLP classifier (logistic activation 

function and adaptive training rate with 2000 iterations). 
 
 

3.3.3 Nonlinear SVM 

In nonlinear SVM [48], training samples are nonlinearly mapped from their original l-

dimensional space (where they cannot be linearly separated) into a k-dimensional space (k>>l) 

where they are more likely to be linearly separable [81; 38]. However, there is no guarantee that 

training samples will be linearly separable in the new k-dimensional space. Therefore, linear 

SVM with slack variables is used to find the hyperplane separating the two classes in the k-

dimensional space. Although the classifier is a hyperplane in the k-dimensional space, it is a 

hypersurface in the l-dimensional space due to the nonlinear mapping, hence the name nonlinear 

SVM. The next step is to find the dimensionality of the new space (k) and the mapping function. 

We use the following equations, obtained in Section 3.2.3.2, to find the SVM classifier 

hyperplane f(�́�)=wT�́�+w0 in the k-dimensional space, where �́�𝑖 is the i-th feature vector (xi) 

mapped into the k-dimensional space. 



 61 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑚𝑎𝑥
𝜆

��𝜆𝑖

𝑁

𝑖=1

−
1
2
��𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗�́�𝑖𝑇�́�𝑗

𝑁

𝑗=1

𝑁

𝑖=1

�                         

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 �𝜆𝑖𝑦𝑖

𝑁

𝑖=1

= 0                                                     

0 ≤ 𝜆𝑖 ≤ 𝐶 (𝑑𝑢𝑒 𝑡𝑜 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.20)   , 𝑖 = 1,2, … ,𝑁

� 

( 3.113) 

( 3.114) 

( 3.115) 

⎩
⎪
⎨

⎪
⎧𝑤 = �𝜆𝑖𝑦𝑖�́�𝑖

𝑁

𝑖=1

                                                                                                               

𝜆𝑖[𝑦𝑖(𝑤𝑇�́�𝑖 + 𝑤0) − 1 + 𝜉𝑖] = 0  , 𝑖 = 1,2, … ,𝑁                                                  
                                                           (𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦 𝑠𝑙𝑎𝑐𝑘𝑛𝑒𝑠𝑠 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠)

� 
( 3.116) 

( 3.117) 

By substituting w from Equation ( 3.116) in Equation ( 3.117) as well as in the hyperplane 

f(�́�)=wT�́�+w0 we end up with: 

⎩
⎪
⎪
⎨

⎪
⎪
⎧
𝑓(�́�) = ��𝜆𝑖𝑦𝑖�́�𝑖

𝑁

𝑖=1

�

𝑇

�́� + 𝑤0 = �𝜆𝑖𝑦𝑖(�́�𝑖𝑇�́�)
𝑁

𝑖=1

+ 𝑤0                                         

𝜆𝑖 �𝑦𝑖 ��𝜆𝑗𝑦𝑗��́�𝑗𝑇�́�𝑖�
𝑁

𝑗=1

+ 𝑤0� − 1 + 𝜉𝑖� = 0  ,                                                    

                                  𝑖 = 1,2, … ,𝑁(𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦 𝑠𝑙𝑎𝑐𝑘𝑛𝑒𝑠𝑠 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠)

� 

( 3.118) 

( 3.119) 

An elegant property of the SVM helps implicitly map the training samples into the k-

dimensional space without knowing the mapping function and k. Notice that training samples 

enter into Equations ( 3.113), ( 3.118), and ( 3.119) in pairs, in the form of inner products (�́�𝑖𝑇�́�𝑗) in 

the k-dimensional space. Therefore, for finding w and w0 of the hyperplane in the k-dimensional 

space and even for classifying a new sample using Equation ( 3.118), only the inner product of 

pairs of feature vectors in the k-dimensional space is required. Knowing the mapping function 

and the dimensionality of the new space (k) is not necessary. We can use the kernel trick to find 

the inner product of two feature vectors in the k-dimensional space without actually mapping 

them from the l-dimensional space into the k-dimensional space. According to Mercer’s theorem, 

for any kernel (K), there exists a space in which K(xi,xj)=�́�𝑖𝑇�́�𝑗 [82; 83; 84]. Equations ( 3.120), 
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( 3.121), and ( 3.122) are examples of kernel functions [83] called polynomial, radial basis 

function, and hyperbolic tangent, respectively, where σ is the kernel’s bandwidth. 

𝐾�𝑥𝑖 , 𝑥𝑗� = �𝑥𝑖𝑇𝑥𝑗 + 1�𝑞    , 𝑞 > 0 ( 3.120) 

𝐾�𝑥𝑖 , 𝑥𝑗� = exp �−
�𝑥𝑖 − 𝑥𝑗�

2

𝜎2 � ( 3.121) 

𝐾�𝑥𝑖 , 𝑥𝑗� = 𝑡𝑎𝑛ℎ�𝛽𝑥𝑖𝑇𝑥𝑗 + 𝛾�   , for appropriate values of β and γ, e.g., β=2 and γ=1 ( 3.122) 

Therefore, to convert the linear SVM to nonlinear SVM we just need to replace the inner 

product of the mapped feature vectors (�́�𝑖𝑇�́�𝑗) by a kernel function of the original feature vectors 

K(𝑥𝑖 , 𝑥𝑗): 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑚𝑎𝑥
𝜆

��𝜆𝑖
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−
1
2
��𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝐾�𝑥𝑖 , 𝑥𝑗�

𝑁

𝑗=1

𝑁

𝑖=1

�                

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 �𝜆𝑖𝑦𝑖

𝑁

𝑖=1

= 0                                                    

0 ≤ 𝜆𝑖 ≤ 𝐶 (𝑑𝑢𝑒 𝑡𝑜 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.20)   , 𝑖 = 1,2, … ,𝑁
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( 3.123) 

( 3.124) 

( 3.125) 

⎩
⎪⎪
⎨

⎪⎪
⎧𝑓(𝑥) = �𝜆𝑖𝑦𝑖𝐾(𝑥𝑖 , 𝑥)

𝑁

𝑖=1

+ 𝑤0                                                                                         

𝜆𝑖 �𝑦𝑖 ��𝜆𝑗𝑦𝑗𝐾(𝑥𝑖 , 𝑥)
𝑁

𝑗=1

+ 𝑤0� − 1 + 𝜉𝑖� = 0  , 𝑖 = 1,2, … ,𝑁                               

                                                                 (𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦 𝑠𝑙𝑎𝑐𝑘𝑛𝑒𝑠𝑠 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠)

� 

( 3.126) 

( 3.127) 

Although f(x) is linear in the k-dimensional space, it is nonlinear in the l-dimensional 

space due to the nonlinearity of the kernel function. 

Here we explain why we cannot develop the weighted version of nonlinear SVM. We use 

the following equations, obtained in Section 3.2.3.2, to find the weighted SVM classifier 

hyperplane f(�́�)=wT�́�+w0 in the k-dimensional space, where �́�𝑖 is the i-th feature vector (xi) 

mapped into the k-dimensional space. 
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( 3.128) 

( 3.129) 

( 3.130) 

⎩
⎪
⎨

⎪
⎧𝑤 = �𝜆𝑖�́�𝑖 �

|𝑤𝑇�́�𝑖 + 𝑤0|
𝑤𝑇�́�𝑖 + 𝑤0

− 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
��

𝑁

𝑖=1

                                                             

𝜆𝑖 �|𝑤𝑇�́�𝑖 + 𝑤0| − 𝑦𝑖 �1 −
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1 + 𝑔𝑖
� (𝑤𝑇�́�𝑖 + 𝑤0) − 1 + 𝜉𝑖� = 0  , 𝑖 = 1,2, … ,𝑁    

                                                                      (𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦 𝑠𝑙𝑎𝑐𝑘𝑛𝑒𝑠𝑠 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠)

� 

( 3.131) 

( 3.132) 

Training samples do not enter into Equations ( 3.128), ( 3.131), and ( 3.132) in the form of 

their inner products (�́�𝑖𝑇�́�𝑗) in the k-dimensional space, thus the kernel trick cannot be used here. 

A plausible approach for developing the weighted nonlinear SVM is to develop the 

weighted linear SVM in the k-dimensional space using the iterative algorithm at the end of 

Section 3.2.3.2: 

• w and w0 are initialized for a non-weighted SVM in the k-dimensional space, 

• Loop: repeat until convergence 

�́��𝑡 = �́� − �1 −
1

1 + 𝑔�
.�
��́�𝑤𝑡−1 + 𝑤0𝑡−1�

‖𝑤𝑡−1‖
� . 𝑦

𝑤𝑡−1𝑇

‖𝑤𝑡−1‖
 ( 3.133) 

• find wt and w0t for the non-weighted SVM classifier hyperplane based on �́��𝑡 

The above algorithm attempts to develop the non-weighted linear SVM classifier, f(�́�), in 

the k-dimensional space, iteratively relocate the mapped feature vectors (�́��𝑖) with respect to this 

hyperplane based on their weights (Equation ( 3.133)), and find the new hyperplane f(�́��𝑖) until 

convergence. However, the Mercer’s theorem provides neither the dimensionality of the new 

space (k) nor the mapping function [85]. Therefore, it is not possible to map the feature vectors 

into the k-dimensional space and we do not know �́� in Equation ( 3.133). 
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To bypass the lack of knowledge about �́� in the k-dimensional space, one might consider 

updating the position of feature vectors in the original l-dimensional space with respect to the 

nonlinear classifier hypersurface based on their weights iteratively until convergence. However, 

the hypersurface in the l-dimensional space is not known. It is worth noting that even if the 

hypersurface was known, moving the training samples perpendicularly toward/away from a 

hypersurface is a challenging mathematical problem. 

3.4 EXPERIMENT WITH BREAST CANCER DATA 

The University of Wisconsin hospital breast cancer dataset was obtained from UCI 

machine learning repository [86]. This dataset has 683 samples, after samples with missing data 

are removed. This is a classification problem with 9 input features and 2 classes. The features 

include: clump thickness, uniformity of cell size, uniformity of cell shape, marginal adhesion, 

single epithelial cell size, bare nuclei, bland chromatin, normal nucleoli, mitoses. All input 

features are numerical values between 1 and 10. The two classes, that need to be predicted, are 

benign (444 samples) and malignant (239 samples). For weighted machine learning, we need a 

weight associated with each training sample, reflecting its reliability or accuracy. Due to the lack 

of such weights in this dataset (and to our knowledge in other machine learning datasets), we 

apply the following procedure to produce artificial weights for training samples. A function runs 

through each training sample, switches its output class from what it is to the other one with a 

random probability of 0<k<1, and assigns a weight of 1-k to that training sample. This way, a 

training sample’s weight shows how reliable that training sample is and there are no changes 

imposed on test samples. Weighted machine learning techniques take advantage of these weights 
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to take the training samples’ reliability into account but non-weighted machine learning 

techniques ignore these weights. Leave-one-out or one-fold cross validation is used to estimate 

the accuracy of weighted and non-weighted machine learning techniques, reported in Table  3.3, 

where hyperparameters are optimized using cross-validation. 

 
 
 
Table  3.3. Accuracy of different classification techniques for breast cancer prediction. 

Technique Overall accuracy (%) Settings 
Non-weighted 

version 
Weighted 
version 

Bayesian 46.71 76.72 
• Non-parametric Parzen windows with Gaussian kernel 

(Equation 10) where σ=1 
• Priors are based on class frequencies 

LS 45.39 92.39  
SVM 51.24 64.86 • Smoothing parameter (C)=18 

Decision tree 48.17 89.90 • A node is considered a leaf if the maximum impurity 
decrease (ΔImax) for that node is less than 0.04 

Perceptron 51.10 93.12 

• Logistic activation function 
• Cost function: Sum of squared errors 
• Maximum number of iterations: 1000 
• Not updating the weights after those iterations resulting in 

an increase in the total cost 
• Multiply all learning rates by 1.1 or 0.8 after each step 

based on whether the total cost decreases or increases 
• Adaptive learning rate: multiply the learning rate for a 

parameter by 1.2 if the partial derivative of the loss, with 
respect to that parameter, remains the same sign in 
successive steps and multiply it by 0.7 otherwise [87] 

MLP 55.64 89.02 
In addition to the settings for the perceptron: 
• Maximum number of iterations: 2000 
• Number of hidden nodes for MLP: 2 

 
 
 
The higher accuracy of weighted machine learning techniques (see Table 3) comes as no 

surprise since they take advantage of weights while non-weighted machine learning techniques 

do not. Nevertheless, it proves the proposed weighted machine learning techniques’ efficiency in 
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appropriately taking the training samples’ weights into account, whenever such weights are 

available, in order to improve the prediction accuracy. Clearly, as mentioned earlier, the 

weighted SVM classifier shows the least difference with its non-weighted counterpart, 

underlying its relative reluctance to react to weights in comparison with other weighted 

predictors. The weighted least squares and weighted perceptron achieve the highest accuracy, 

shedding light on the linear separability of the two classes in this specific application. On the 

other hand, the weighted Bayesian classifier makes more dramatic changes in the border, 

resulting in a lower accuracy than other weighted non-linear classifiers (decision tree and MLP), 

for the same reason, i.e., the linear separability of the two classes in this specific application. 

3.5 CONCLUSIONS 

The weighted machine learning techniques developed in this chapter provide developers with the 

opportunity to give different weights to training samples. These weights are used to adjust the 

classifier/regressor in favor of more importance samples, and thereby giving a higher 

significance to more important samples. It is worth noting that the weighted linear and nonlinear 

classifiers change the division of the feature space only around the border (the most uncertain 

area) and areas far from the border are less likely to change their label. The weighted SVM 

classifier showed the least difference with its non-weighted counterpart when the training 

samples’ weights are not much variant. The reason for this is that SVM classifier is designed 

only based on support vectors not all training samples. If the weights of training samples are not 

much different, their relocation based on their weights might not be large enough to change the 

selection of support vectors. In other words, the weighted SVM classifier would be different than 
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its non-weighted version only if relocating training samples based on weights would result in a 

rearrangement of training samples significant enough to change the selection of support vectors. 

In other words, the weighted SVM has the highest stability with respect to weight changes in a 

small subset of training samples. The weighted MLP also takes the training samples’ weights 

into account through smallest adjustments in its nonlinear border. However, the MLP’s behavior 

is highly dependent on the network’s size. In other words, a larger number of hidden nodes will 

result in a more significant difference between the weighted and non-weighted MLP. On the 

other hand, the weighted decision tree and weighted Bayesian classifiers showed the most 

dramatic changes in how the feature space is divided between the two classes in comparison with 

their non-weighted counterparts. The reason is that these two models are highly local, especially 

the non-parametric Bayesian classifier. Therefore, even small changes in the training samples’ 

weights would result in a different classification of the feature space. The weighted LS and 

perceptron showed slight and similar changes in how they divide the feature space between the 

two classes in comparison with their non-weighted counterparts. The similar behavior is because 

both models minimize the sum of square errors, although in different ways. The difference 

between weighted and non-weighted versions being slight in these two cases originates from 

their linear nature and consequently their rather restricted flexibility in modifying their shape. 

How the weighted machine learning techniques developed in this work will contribute in 

improving the prediction accuracy in different real-world applications is yet to be seen. 
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4.0  SPATIAL-TEMPORAL WEIGHT FOR TRAINING SAMPLES 

In this chapter, we identify and quantify those characteristics of spatial-temporal data that make 

them different than other types of data and also affect the training process. It is the 

autocorrelation among spatial-temporal data which makes them special. If this spatial-temporal 

autocorrelation is quantitatively captured, it can be used as an external knowledge to enrich the 

training process. This external knowledge is entered in the training process as spatial-temporal 

weights assigned to training samples. Higher the spatial-temporal weight, more effective the 

training sample is and more biased the training process must be in its favor. Since machine 

learning techniques which take the training samples’ weights into account were developed in the 

previous chapter, here we focus on developing a quantitative approach to assign a spatial-

temporal weight to each training sample. 

Semivariogram is used as the basis in calculating both spatial and temporal semivariances 

and the spatial-temporal weight is proportional to the inverse of the overall semivariance at 

specific spatial and temporal distances. To develop the spatial and temporal semivariograms and 

calculate the spatial-temporal weights, we only need the location, time, and response of training 

samples. Feature vectors are not needed to calculate the spatial-temporal weights. 
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4.1 SPATIAL SEMIVARIOGRAM 

Autocorrelation or self-correlation assesses the similarity of characteristics at geographic 

locations relative to their spatial distance [2; 3]. In other words, a metric that relates the changes 

in responses to spatial distance is used. This metric will help us determine the level of similarity 

between the responses at two geographic locations, knowing their spatial distance. 

A measure of spatial autocorrelation among training samples is semivariance (γ). 

Semivariance for the lag d is calculated through Equation ( 4.1) [2; 3; 4; 23; 11; 13; 25] where Δ 

is the lag interval, nd is the number of observation pairs with a distance (dij) between d-Δ/2 and 

d+Δ/2, and yi and yj are the responses of the observations i and j, respectively. If the lags (d) are, 

for example, 10 m, 20 m, and 30 m, etc., then the lag interval (Δ) is 10 m. Only pairs of 

observations with a distance between d-Δ/2 and d+Δ/2 participate in the Σ. The hat (  �) over the 

semivariance in this equation is to emphasize that the calculated value is the mean over all pairs 

with a distance of d∓Δ/2. 

𝛾�(𝑑) =
1

2𝑛𝑑
� �𝑦𝑖 − 𝑦𝑗�

2
𝑑+∆/2

𝑑𝑖𝑗=𝑑−∆/2

 ( 4.1) 

The geographical fact that near things are more related than distant things means that the 

response of the observations which are geographically closer to each other is more likely to be 

similar than distant observations. For example, the landuse, weather, or population of people or 

animals in one region tends to be more similar to those of its surrounding regions than very far 

regions. This fact manifests itself as an increase in semivariance (𝛾�; see Equation ( 4.1)) with 

spatial lag (d) [2; 3; 4; 23; 11; 13; 24; 25] shown schematically in Figure  4.1. 
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Figure  4.1. Semivariance versus spatial distance. 
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Figure  4.2. Nugget (c0), partial sill (c1), and range (r) in a 
semivariance versus spatial distance plot. 

 
 
 
The increase in semivariance with spatial distance is not perpetual and the semivariance 

levels off and remains constant after some spatial lag [2; 3; 4; 23; 11; 13; 24; 25]. Sill (c0+c1) is 

the semivariance upper bound (see Figure  4.2). Partial sill (c1) is the sill minus the nugget and is 

defined in Equation ( 4.2) where σ2 is the variance of responses [2; 25]: 

𝑐1 = lim
𝑑𝑠→∞

𝛾�(𝑑𝑠) ≈ 𝜎2 ( 4.2) 

The range (r) is the lag at which the semivariance reaches the sill and flattens out (see 

Figure  4.2). Beyond the range, there is no particular spatial autocorrelation structure among 

observations [2; 3; 25]. The nugget effect (c0) presents a discontinuity in the semivariance at the 

origin (see Figure  4.2). The semivariance is always 0 at d=0. The nugget is the jump in the 

semivariance as soon as d>0 [88]. In other words, nugget is the semivariance at an 

infinitesimally small lag. The nugget is attributed to microscale variations (spatial variations at 

distances smaller than the shortest sampling interval) and measurement errors [89]. It is 

estimated as: 

𝑐0 ≈ 𝛾�(0) ( 4.3) 

Many empirical spatial semivariograms approximate to a spherical model [2; 3; 32; 24] 

shown in Equation ( 4.4) and visualized in Figure  4.3. The spherical model is the most frequently 

used model and is the default in many GIS software [90; 2; 3; 32; 24]. 
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Figure  4.3. A spherical semivariogram model fitted to the semivariances in Figure  4.1. 
 
 
 

𝛾��(𝑑𝑠) = �𝑐0 + 𝑐1 �
3𝑑𝑠
2𝑟

− 0.5 �
𝑑𝑠
𝑟 �

3

�         𝑑𝑠 ≤ 𝑟

𝑐0  + 𝑐1                                           𝑑𝑠 > 𝑟

� 

( 4.4) 

The second hat (  �) over the semivariance in Equation ( 4.4) is to emphasize that the 

calculated value is from the fitted semivariogram model and the subscript s in ds is to emphasize 

that the distance is in the space domain (not the time domain). 

Two other common semivariogram models [90] are also listed in Table  4.1, where both 

of them depend only on nugget (c0), partial sill (c1), and range (r). 

 
 
 

Table  4.1. Common semivariogram models. 

𝛾��(𝑑𝑠) = 𝑐0 + 𝑐1 �1 − exp � 
3𝑑𝑠
𝑟 �� 

Exponential 

model 

 

𝛾��(𝑑𝑠) = 𝑐0 + 𝑐1 �1 − exp� 
3𝑑𝑠2

𝑟2
�� 

Gaussian 

model 
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The spatial semivariogram model in Equation ( 4.4), after c0, c1, and r are replaced with 

their values obtained from training samples, is used to show how strong is the correlation 

between each training sample and the irresponsive sample based on their spatial distance (ds). 

4.2 TEMPORAL SEMIVARIOGRAM 

The semivariogram is also used to model the autocorrelation among the responses of 

observations over time rather than space. Equation ( 4.1) can be used to estimate the temporal 

semivariance, where d refers to the temporal distance between pairs of training samples rather 

than their spatial distance. The shape of temporal semivariogram might not necessarily be the 

same as spatial semivariogram. The autocorrelation among the responses of observations is more 

complicated over time than space because not only temporally closer observations are more 

likely to have similar responses than temporally farther observations [4; 15; 16], but also 

responses might exhibit a periodic behavior [17; 18; 19; 20; 21] over time as shown in Figure 

 4.4. For example, the temperature or weather today is more correlated with the temperature or 

weather yesterday than a month ago and it is more correlated with the temperature or weather a 

year ago than four months ago. In other words, the temporal semivariogram, shown in Figure 

 4.4, might never level off but rather show a periodic behavior. Another important point is that the 

responses might have more than one periodic behavior with different frequencies and amplitudes 

as exemplified in Figure  4.4. For example, there might be weekly, monthly, and yearly cycles 

with different amplitudes. Therefore, the temporal semivariogram, if stationary, is approximately 

the result of the random superposition of periodic components oscillating at different 

frequencies. It is important to mention that the nugget (c0) in Figure  4.2 and Figure  4.4 are the 
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same because they are both referring to the semivariance at zero spatial and temporal lags 

(ds=dt=0). 
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Figure  4.4. Semivariance versus temporal distance. 
 
 
 
The sinusoid model Acos(2πω𝑑𝑡+ϕ) captures the periodic behavior of the data at 

frequency ω where A is the amplitude and ϕ is the phase shift, determining the start point of the 

cosine function [91]. Applying the trigonometric identity (cos(𝑎 ± 𝑏) = cos 𝑎 cos 𝑏 ∓

sin𝑎 sin 𝑏)) and defining β1=Acosϕ and β2=-Asinϕ, we obtain the sinusoid in Equation ( 4.5) 

which is easier to regress on a dataset because it has two coefficients (β1 and β2) and one 

unknown parameter (ω) inside the cosine instead of one coefficient (A) and two unknown 

parameters inside the cosine (ω and ϕ) [91]. 

𝛾��(𝑑𝑡) = 𝛽1 cos(2𝜋𝜔𝑑𝑡) + 𝛽2 sin(2𝜋𝜔𝑑𝑡) ( 4.5) 

The two coefficients (β1 and β2) can be estimated through a linear regression via 

Equations ( 4.6) and ( 4.7) [91]. 

�̂�1 =
∑ 𝛾�(𝑑𝑡) cos(2𝜋𝜔𝑑𝑡)𝑛
𝑑𝑡=1

∑ cos2(2𝜋𝜔𝑑𝑡)𝑛
𝑑𝑡=1

=
2
𝑛
� 𝛾�(𝑑𝑡) cos(2𝜋𝜔𝑑𝑡)
𝑛

𝑑𝑡=1

 ( 4.6) 
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�̂�2 =
∑ 𝛾�(𝑑𝑡) sin(2𝜋𝜔𝑑𝑡)𝑛
𝑑𝑡=1

∑ sin2(2𝜋𝜔𝑑𝑡)𝑛
𝑑𝑡=1

=
2
𝑛
� 𝛾�(𝑑𝑡) sin(2𝜋𝜔𝑑𝑡)
𝑛

𝑑𝑡=1

 ( 4.7) 

However, Equation ( 4.5) captures the periodic behavior at only one frequency (ω), while 

the data might oscillate at different frequencies (ωi) with different amplitudes (A=√( β1
2 + β2

2)). 

Equation ( 4.8) shows different frequencies which need to be considered, where n is the number 

of training samples and i is the number of cycles through the life time of the data [91]. 

𝜔𝑖 =
𝑖
𝑛

         , 𝑖 = 1, 2, … , �
𝑛
2
− 1� ( 4.8) 

To consider all frequencies, Equation ( 4.9) is used to fit a periodic regression on the 

semivariances based on temporal lag (dt). 

𝛾��(𝑑𝑡) = � 𝛽𝑖1 cos(2𝜋𝜔𝑖𝑑𝑡) + 𝛽𝑖2 sin(2𝜋𝜔𝑖𝑑𝑡)

�𝑛2−1�

𝑖=1

, 𝜔𝑖 =
𝑖
𝑛

 ( 4.9) 

The coefficients (βi1 and βi2) in Equation ( 4.9) are calculated through Equations ( 4.10) 

and ( 4.11) for different frequencies (ωi). We add frequencies associated with the largest 

amplitudes to the periodic regression in Equation ( 4.9) one by one as long as it produces a closer 

fit to data points. 

�̂�𝑖1 =
2
𝑛
� 𝛾�(𝑑𝑡) cos(2𝜋𝜔𝑖𝑑𝑡)
𝑛

𝑑𝑡=1

, 𝜔𝑖 =
𝑖
𝑛

         , 𝑖 = 1, 2, … , �
𝑛
2
− 1� ( 4.10) 

�̂�𝑖2 =
2
𝑛
� 𝛾�(𝑑𝑡) sin(2𝜋𝜔𝑖𝑑𝑡)
𝑛

𝑑𝑡=1

, 𝜔𝑖 =
𝑖
𝑛

         , 𝑖 = 1, 2, … , �
𝑛
2
− 1� ( 4.11) 

Equation ( 4.9) models the semivariance of responses based on the time interval between 

observations and it can be used to determine how significant is the role of each training sample 

when we want to predict the response of a new sample. 
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4.3 SPATIAL-TEMPORAL WEIGHTS 

Equation ( 4.12) calculates the spatial-temporal weight of the i-th training sample (gi), where 

ds(ip) is the spatial distance between the i-th training sample and the irresponsive sample p, dt(ip) 

is the temporal distance between the i-th training sample and the irresponsive sample p, 

𝛾��(𝑑𝑠(𝑖𝑝)) is the spatial semivariance at ds(ip) calculated from Equation ( 4.4), 𝛾��(𝑑𝑡(𝑖𝑝)) is the 

temporal semivariance at dt(ip) calculated from Equation ( 4.9), and 𝛾��(𝑖𝑝) is the overall 

semivariance between the i-th training sample and the irresponsive sample p. 

𝑔𝑖 =
1

𝛾��(𝑖𝑝)
           𝑤ℎ𝑒𝑟𝑒,    𝛾��(𝑖𝑝) =

𝛾��(𝑑𝑠(𝑖𝑝)) + 𝛾��(𝑑𝑡(𝑖𝑝))
2

 ( 4.12) 

4.4 DATA CONSTRAINTS 

4.4.1 Fixed location or time 

When calculating the spatial semivariance, the time must be the same for each pair of yi and yj in 

Equation ( 4.1). The same time does not mean the exact same instant and depends on the dataset. 

For example, if one set of observations are observed in one day (e.g., a series of satellite images 

taken on Jan 1st, 2001) and another set are observed in another day (e.g., another set of satellite 

images for the same area taken on Feb 1st, 2002), then the same time means observed on the 

same day. On the other hand, when calculating the temporal semivariance, the location must be 

the same for each pair of yi and yj in Equation ( 4.1). Again, the same location does not 

necessarily mean the same exact coordinates (x,y) but depends on the nature of the dataset. For 
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example, if each observation belongs to a separate tree or neighborhood (e.g., the height of the 

tree or the population of the neighborhood), then the same location means the same tree or the 

same neighborhood. For a satellite image, the same location means, e.g., the same pixel in the 

image. 

4.4.2 Categorical responses 

As mentioned before, yi in Equation ( 4.1) is the response of the observation i. If the responses are 

already numerical (interval- or ratio-scaled), they are used for y. Categorical (or non-numerical) 

responses are either ordinal or nominal [92]. If the responses are ordinal such as the agricultural 

potential of different lands or purity of different water bodies (e.g., good, average, and bad), they 

can be replaced by numbers (e.g., 1, 2, and 3) somehow that the interval between numbers 

approximates the implicit interval between responses (although ordinal data do not suggest any 

quantitative interval between levels). Although converting ordinal variables to interval variables 

in this way is not precise, it is legitimate here as weighted machine learning techniques, 

developed in this thesis, are not much sensitive to small changes in training samples’ weights. If 

the responses are nominal, where the responses cannot be ordered (e.g., different landuses or 

building uses: shop, residential, etc.), assigning a number to each response incorrectly implies 

that some classes are closer to each other than others. In this case, we consider yi-yj=0 if samples 

i and j have the same response and 1 (or any desired constant value) otherwise [93; 94]. An 

alternative approach is to code responses via dummy variables [35]. In this approach responses 

are represented using vectors so as the distance between classes remains constant. The number of 

elements in the vector is equal to the number of classes. For each class, one element of the vector 

is one and the rest are zero (e.g., (1,0,0), (0,1,0), (0,0,1)). Hamming distance, L1 or L2 norms can 
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then be used to calculate the distance between response vectors. This approach has been common 

to code nominal features. 

4.4.3 Stationarity of data 

4.4.3.1 Temporal stationarity Fitting the periodogram to the temporal semivariances is only 

meaningful if the data are temporally stationary [91]. A stochastic process is strictly stationary if 

the joint statistical distribution of 𝒙𝒕𝟏 , … ,𝒙𝒕𝒍 is the same as the joint statistical distribution of 

𝒙𝒕𝟏+𝝉, … ,𝒙𝒕𝒍+𝝉 for all l and τ [95], where t represents the time. This means that statistical 

properties of all degrees (expectations, variances, third order, and higher) of the process, any 

where are the same. Since, strict stationary is too unrealistic for real-world processes, weak or 

second-order stationarity is defined as a process whose mean and variance do not vary with time 

and the autocovariance between xt and xt+τ (shown as cov(xt , xt+τ)) only depends on the lag τ 

[95]. We attempt to transform the data closer to a weakly stationary one by first stabilizing the 

variance and then stabilizing the mean. To stabilize the temporal variance, y is replaced by log(y) 

for training samples. If there are negative values among responses, we can add a constant value 

to make them all positive and then take the log. This constant value will be removed in the next 

step. To stabilize the temporal mean, after stabilizing the temporal variance, a line, called the 

trend line, is fitted to all log(yi) based on time. Then, the value on the trend line is subtracted 

from log(yi). Temporal semivariances are calculated based on these residuals. Figure  4.5 

summarizes these steps. 
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(a) Original responses (y) over time. 
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make all responses positive if 

necessary. 

(c) Taking the log to stabilize the 
variance. 

Residual of log(y+constant)

time

 Temporal lag (dt)

γ

 
Temporal lag (dt)

γ

 
(d) Subtracting the trend line. (e) Calculating the semivariances 

based on residuals. (f) Fitting the periodic semivariogram. 

Figure  4.5. Stabilizing the temporal variance and mean before developing the temporal semivariogram. 

 
 

4.4.3.2 Spatial stationarity Fitting the spherical semivariogram to the spatial semivariances is 

only meaningful if the data are spatially stationary [24; 25]. If the spatial mean is not stable or, in 

other words, if there is a trend among the responses of training samples over space, the spatial 

semivariances will show an exponential behavior over lags and never flatten out. On the other 

hand, if the spatial variance is not stable or, in other words, if the range of changes in responses 

varies dramatically over space, the spatial semivariances will be dramatically scattered around 

the spherical model. Again, because real-world processes are far from being strictly stationary, 

we resort to weak stationarity. Thus, before calculating the spatial semivariances and fitting the 
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spherical semivariogram model, the spatial variance and mean must be stabilized. The steps are 

very similar to temporal stabilization and are illustrated in Figure  4.6. It is noteworthy that 

because space has two dimensions, in comparison to time with one dimension, here we have a 

trend plane instead of a trend line. 
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(a) Original responses (y) over 

location. 
(b) Adding a constant value to make 
all responses positive if necessary. 

(c) Taking the log to stabilize the 
variance. 

Residual of log(y+constant)

 

Spatial lag (ds)

γ
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(d) Subtracting the trend plane. (e) Calculating the semivariances 
based on residuals. 

(f) Fitting the spherical 
semivariogram. 

Figure  4.6. Stabilizing the spatial variance and mean before developing the spatial semivariogram. 

 
 

4.4.3.3 Combined spatial-temporal stationarity If our dataset is only spatial or temporal, we 

use either of the previous sections to stabilize the dataset. However, if our dataset is spatial and 
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temporal, we do not need to transform the dataset twice, once over location and once over time. 

Instead, the two processes are combined as shown in Figure  4.7. First, we add a constant value to 

make all responses positive. Then we take the log to stabilize the variance. To stabilize the mean, 

a 3D hyperplane is regressed over all responses based on both location and time and subtracted 

from all responses. These residuals are both spatially and temporally stabilized and we can 

proceed with developing semivariograms. 
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log(y+constant)
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(a) Original responses (y) 
over location and time. 

(b) Adding a constant 
value to make all 

responses positive if 
necessary. 

(c) Taking the log to 
stabilize the variance. 

(d) Subtracting the trend 
plane. 

Figure  4.7. Stabilizing the variance and mean before developing the spatial and temporal semivariograms. 

4.5 CONCLUSIONS AND FUTURE DIRECTIONS 

Figure  4.8 shows the entire procedure of calculating the spatial-temporal weight for training 

samples. Spatial-temporal weights are visualized using color saturation. Darker samples have 

larger spatial-temporal weights. The red cross is the irresponsive sample and plays the central 

role in determining the spatial-temporal weight for training samples. Training samples are 

weighted based on their spatial and temporal autocorrelation with the irresponsive sample. In the 
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spatial-temporal domain, the irresponsive sample is at the origin of the coordinate system and 

spheres delineate the training samples with larger spatial-temporal weights. 
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Figure  4.8. Calculating spatial-temporal weight for training samples based on their autocorrelation with the 
irresponsive sample. 
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It is worth noting that spatial-temporal weights assigned to training samples are dynamic 

with respect to the location and time of the irresponsive sample. In other words, spatial-temporal 

weights are relative and need to be recalculated every time a new observation is to be predicted. 

As a consequence, the weighted machine learning techniques need to be trained separately for 

each irresponsive sample, as the spatial-temporal weight of training samples depends on the 

location and time of the irresponsive sample. 

The logic behind deciding in favor of spatial-temporally more important samples is that 

the output of the irresponsive sample is more likely to be similar to the output of training 

samples with larger spatial-temporal weights. This is justified because we calculate the spatial-

temporal weights based on similarity among the responses of training samples across space and 

time. Therefore, we expect the spatial-temporally weighted predictor to achieve a better out-of-

sample (test) accuracy than its non-weighted counterpart, despite it is not difficult to see that the 

non-weighted predictor achieves a better in-sample (training) accuracy since it is equally fair to 

all training samples. The scope of the proposed approach for calculating spatial-temporal weights 

is limited to spatial-temporal phenomena whose spatial semivariances approximately follow the 

spherical model and whose temporal semivariances approximately follow the periodic 

semivariogram proposed here. Additionally, the calculated spatial-temporal weights would be 

optimal when the data are stationary in the space-time domain. 

Our approach of calculating spatial weights for training samples assumes that the 

underlying phenomenon is isotropic by considering only the distance between pairs of 

observations and ignoring the direction of the vector connecting them. A future research venue is 

to increase the accuracy of spatial weights by taking into account the anisotropy or directional 

effects in the spatial variation of responses. This can be done by developing two (or more) spatial 
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semivariograms, each modeling the spatial similarity in either north-south or east-west direction. 

To calculate the semivariance in a specific direction, only pairs of samples aligned in that 

direction (at least approximately) are used. Therefore, the direction of the vector connecting the 

irresponsive sample to each training sample determines which spatial semivariogram must be 

used to calculate that training sample’s spatial weight. This way training samples aligned in a 

specific direction with respect to the irresponsive sample might gain a higher spatial weight. 

We developed spatial and temporal semivariograms separately because the former is best 

modeled with a spherical model and the latter with a periodogram. Another future research venue 

is to find a way to develop a single spatial-temporal semivariogram. 
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5.0  EVALUATION 

In Chapter 3, we developed weighted machine learning techniques which can use the training 

samples’ weights to bias the predictor in favor of more important samples. In Chapter 4, we 

calculated a spatial-temporal weight for each training sample which determines its importance in 

classifying/regressing the irresponsive observation. In this chapter, the weighted machine 

learning techniques are applied to real spatial-temporal data. The spatial-temporal weight of 

training samples are estimated using the methodology proposed in Chapter 4 and then different 

weighted machine learning techniques developed in Chapter 3 are compared with their non-

weighted versions and other baseline methodologies in terms of accuracy and time performance. 

The MATLAB software on a 64-bit platform with 8 GB RAM, a Core i7 CPU and a 2.00GHz 

processor was used for the validation of the proposed techniques. Two applications are presented 

in this chapter, regression of air temperature based on meteorological features and classification 

of land cover based on morphological and remote sensing features. A classification problem with 

simulated data is also presented at the end. 

5.1 REGRESSION OF AIR TEMPERATURE 

Oceanographic and surface meteorological readings, taken from a series of buoys positioned 

throughout the equatorial Pacific, from 1980 to 1998, are available to public in [96]. Each 
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reading includes location, date, zonal winds, meridional winds, humidity, and temperature. The 

dataset has 178,000 records. Removing records with missing features leaves the dataset with 

94,000 records. In this experiment, we will predict the air temperature based on zonal winds, 

meridional winds, and humidity. Table  5.1 shows the variances and correlation coefficients 

between different variables in this dataset. 

 
 
 

Table  5.1. Non-diagonal elements show the correlation coefficient between different variables and diagonal 
elements show the variances. 

 Zonal winds Meridional winds Humidity Temperature 
Zonal winds 11.72 0.08 0.06 0.23 
Meridional winds 0.08 9.13 0.08 -0.34 
Humidity 0.06 0.08 27.83 -0.39 
Temperature 0.23 -0.34 -0.39 2.80 

 
 
 
According to the above table, air temperature is fairly correlated with all other variables 

while other variables are not much correlated with each other. The spatial and temporal 

semivariances for the response variable (air temperature), and the spatial and temporal 

semivariograms fitted to them are shown in Figure  5.1 and Figure  5.2. These figures are 

produced using the proposed approach in Chapter 4. As required in Section 4.4.1, we consider 

two observations to be at the same time as long as their time difference is less than one day and 

we consider two observations to be at the same location as long as their distance is less than 10 

m. 
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Figure  5.1. Spatial semivariogram for temperature. 
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Figure  5.2. Temporal semivariogram for temperature with a period of one year. 
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Equation ( 4.4)) to calculate its spatial semivariance. Knowing the temporal distance of a training 

sample to the irresponsive sample, we can use the temporal semivariogram in Figure  5.2 

(represented by Equation ( 4.9)) to calculate its temporal semivariance. Knowing both spatial and 

temporal semivariances for that training sample, we can use Equation ( 4.12) to calculate its 

spatial-temporal weight. 

We use the leave-one-out or one-fold cross validation to evaluate the performance of 

weighted regression versus non-weighted regression. Each time, one of the training samples is 

excluded from the dataset and considered as the irresponsive sample. The spatial and temporal 

semivariance of each training sample is determined using Figure  5.1 and Figure  5.2 based on its 

spatial and temporal distances from the irresponsive sample. The spatial and temporal 

semivariances of training samples are converted to their spatial-temporal weight using Equation 

( 4.12). Finally, the weighted Bayesian regressor, weighted LS, and weighted decision tree are 

applied to predict the response of the irresponsive sample. Following this, another training 

sample is chosen as the irresponsive sample and the whole process is repeated. All input features 

are normalized to have a zero mean and unit variance. Table  5.2 shows the accuracy and 

experimental time performance of different weighted regressors. Root mean square error 

(RMSE) and coefficient of determination (R2) are reported for each regressor. The time 

performance includes the time spent to calculate the spatial-temporal weights in addition to the 

training and test time. 

For comparison purposes, we also used only the top 30%, 10%, and 1% of training 

samples with largest spatial-temporal weights for training. The resulted accuracy and time 

performance are reported in Table  5.2. This table also reports the accuracy and time performance 

of non-weighted regressors trained with non-spatial features (zonal winds, meridional winds, and 
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relative humidity), non-weighted regressors trained with all features including location and time, 

non-weighted regressors trained with location and time as the only features, and finally 

estimating the response as the weighted average (i.e., spatial-temporal weights) of training 

samples’ responses. 

 
 
 

Table  5.2. The accuracy and time performance of different regression techniques for predicting the air temperature. 

Technique RM

SE 

R2 Time 

(min) 

Settings 

Weighted average of training samples’ responses 1.65 0.03 82 • Spatial-temporal weights of 

training samples are used as 

weights 
Weighted average of the top 30% of training samples’ responses 1.53 0.16 89 

Weighted average of the top 10% of training samples’ responses 1.31 0.39 89 

Weighted average of the top 1% of training samples’ responses 1.12 0.55 89 

LS with location and time as the only features 1.62 0.07 20  

LS without location and time as additional features 1.37 0.33 19 

LS with location and time as additional features 1.35 0.35 36 

Weighted LS 1.35 0.35 134 

Weighted LS using only the top 30% of training samples 1.26 0.43 123 

Weighted LS using only the top 10% of training samples 1.13 0.54 110 

Weighted LS using only the top 1% of training samples 0.96 0.67 105 

Bayesian regressor with location and time as the only features 1.40 0.30 4150 • Non-parametric Parzen 

windows with Gaussian 

kernel (Equation ( 3.4)) where 

σ=3 

Bayesian regressor without location and time as additional features 1.31 0.39 4180 

Bayesian regressor with location and time as additional features 1.07 0.59 4522 

Weighted Bayesian regressor 1.27 0.42 4956 

Weighted Bayesian regressor using only the top 30% of training samples 1.16 0.52 1149 

Weighted Bayesian regressor using only the top 10% of training samples 1.04 0.62 579 

Weighted Bayesian regressor using only the top 1% of training samples 0.92 0.70 154 

Weighted decision tree using only the top 10% of training samples 1.11 0.56 41395 • A node is considered a leaf if 

ΔImax is less than 0.2 Weighted decision tree using only the top 1% of training samples 1.04 0.62 649 
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One apparent irregularity in the above table is that for the regressor that simply estimates 

the irresponsive sample’s response as the weighted average of training samples’ responses, the 

performance time does not reduce when training samples with small weights are excluded. It is 

because if all training samples participate in taking the weighted average, there is no need to sort 

the weights of training samples but if one decides to exclude the training samples with very small 

weights, the weight vector needs to be sorted. The sorting function which is invoked only if a 

subset of training samples needs to be applied, has a greater time complexity than the function 

that takes the weighted average of training samples’ responses. 

Non-parametric regressors, in our case the Bayesian regressor with Parzen windows, 

need to be trained separately for each irresponsive sample, regardless of the regressor being non-

weighted or weighted. For parametric regressors, the weighted version needs to be trained 

separately for each irresponsive sample but the non-weighted version needs to be trained once 

for all irresponsive samples. In other words, the weighted regressors need to be trained as many 

times as the number of irresponsive samples because the spatial-temporal weights for training 

samples depend upon the location and time of the irresponsive sample. However, the leave-one-

out approach for evaluation eliminates this effect, because each time there is only one test sample 

and consequently both weighted and non-weighted regressors are trained equal number of times. 

The weighted and non-weighted Bayesian regressors have almost identical performance 

times with only 10% difference. The weighted LS takes 3.7 times longer than non-weighted LS 

which is due to the presence of training samples’ weights in Equation ( 3.15). 

Among the same versions of four different regressors (weighted average, LS, Bayes, and 

decision tree) in Table  5.2, the weighted average is the fastest approach, followed by LS, 

Bayesian regressor, and decision tree. Cross-validation of the weighted decision tree, trained 
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with only 10% of training samples, took 29 days. Cross-validation of a decision tree, trained with 

30% of training samples (or more), takes months and the results are not reported in Table  5.2. 

Despite its simplicity and lower accuracy in comparison with other more complicated 

techniques, the regressor which estimates the irresponsive sample’s output as the weighted 

average of training samples’ responses achieves a very acceptable accuracy in a very short time. 

Considering that this technique only needs location and time (to calculate the spatial-temporal 

weights), its high accuracy underscores the efficiency of spatial-temporal weights in depicting 

the spatial and temporal autocorrelation between training samples and the irresponsive sample. 

Rows with a bold font in the above table show the settings leading to the best accuracy 

for each of the four regression techniques (weighted average, LS, Bayes, and decision tree). In 

all cases, the regressor trained using location and time as the only features results in the worst 

accuracy. This highlights the importance of non-spatial/temporal features in proper training. On 

the other hand, in all cases, the regressor that ignores the location and time altogether results in a 

lower accuracy than regressors which somehow take account of location and time, either as input 

features or as weights for training samples. This highlights the importance of location and time in 

proper training. The difference between (a) the accuracy of the non-weighted regressor trained 

using all features including location and time and (b) the accuracy of its weighted counterpart, is 

very small in all cases. However, when only a subset of training samples with largest spatial-

temporal weights are applied to train the weighted regressor, the accuracy is considerably 

improved, revealing the best accuracy and performance time. This also uncovers the fact that 

training samples with very small spatial-temporal weights are not much constructive in training 

the regressor. This is in line with our expectations that weighted regression captures the spatial-
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temporal autocorrelation best and excluding training samples with very small spatial-temporal 

weights not only reduces the performance time but also improves the accuracy. 

Among the same versions of four different regressors (weighted average, LS, Bayes, and 

decision tree) in Table  5.2, the Bayesian regressor achieves the highest accuracy, followed by 

LS, decision tree, and weighted average. However, weighted decision tree seems to precede 

weighted LS, in terms of accuracy, when more training samples are included. 

5.2 CLASSIFICATION OF LAND COVER 

This is a classification problem with 8 input features and 8 classes. In this application we use 

bands 2, 3, 5, and 7 of Landsat TM images, two categorical features including geology—with six 

categories: (a) Quaternary alluvium, (b) Termeil essexite Permian, (c) Snapper point Permian, 

(d) Pebbly beach Permian, (e) Sedimentary Permian, and (f) Ordovician—and aspect—with five 

categories: east, north, west, south, and no aspect indicating zero slope—and two quantitative 

hydrological features including flow accumulation and flow length to predict the land covers 

shown in Table  5.3. Geology and aspect are coded in dummy variables [35]. All features are in 

30×30 m grid format and the land covers represent the dominant vegetation cover by field 

observation for 1121 sites in Kioloa, New South Wales, Australia. These sites are not contiguous 

regions but are instead isolated samples as shown in Figure  5.3. The TM images are from Nov 8, 

1994 and other layers are from 1992 [97; 98; 99; 100; 101; 59] and the entire dataset is publically 

available in [102]. 

This dataset is available only for one point in time. Therefore, the spatial weight is used 

instead of spatial-temporal weight during training. Figure  5.4 shows the spatial semivariances for 
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land covers and the spatial semivariogram fitted to them. This figure is produced using the 

proposed approach in Chapter 4. 

 
 
 

Table  5.3. Different land covers and their relative frequency. 

Class 
dry 

sclerophyl 
E. 

botryoides 
lower 

slope wet 
wet E. 

maculata 
dry E. 

maculata 
rainforest 
ecotone 

rainforest 
cleared 

land 

Relative freq. 0.2569 0.0401 0.0401 0.2239 0.1588 0.0839 0.0705 0.1258 
 
 
 

 

Figure  5.3. Distribution of land cover samples across space, in UTM zone 56S. 
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Figure  5.4. Spatial semivariogram for land covers. 
 
 
 
The above spatial semivariogram can be used to determine the spatial weight of training 

samples. Knowing the spatial distance of a training sample to the irresponsive sample, we can 

use the spatial semivariogram in Figure  5.4 (represented by Equation ( 4.4)) to calculate its spatial 

semivariance. The spatial weight is the inverse of spatial semivariance. 

We use the leave-one-out or one-fold cross validation to evaluate the performance of 

weighted Bayesian classifier, weighted LS, weighted perceptron, Weighted SVM, weighted 

decision tree, and weighted MLP. All input features are normalized to have a zero mean and unit 

variance. Table  5.4 shows the overall accuracy and experimental time performance of different 

weighted classifiers. The time performance includes the time spent to calculate the spatial 

weights in addition to the training and test time. 

For comparison purposes, we also used only the top 30%, 10%, and 1% of training 

samples with largest spatial weights for training. The resulted accuracy and time performance are 

reported in Table  5.4. This table also reports the accuracy and time performance of non-weighted 
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classifiers trained with non-spatial features, non-weighted classifiers trained with all features 

including location, non-weighted classifiers trained with location as the only feature, and finally 

picking the class with the largest collective spatial weight among training samples. 

 
 
 

Table  5.4. The accuracy and time performance of different classification techniques for predicting the land cover. 

Technique Overal

l Acc. 
Time 

(sec) 
Settings 

Choosing the class with largest collective weight among training 

samples 

34.61 1 • Spatial-temporal weights of training samples 

are used as weights 

Choosing the class with largest collective weight among the top 30% 

of training samples 

31.85 1 

Choosing the class with largest collective weight among the top 10% 

of training samples 

57.09 1 

Choosing the class with largest collective weight among the top 

1% of training samples 

72.61 1 

LS with location as the only feature 36.04 4 • Using the one-against-one scheme since there 

are more than two classes LS without location as additional feature 14.99 12 

LS with location as additional feature 16.68 12 

Weighted LS 52.72 33 

Weighted LS using only the top 30% of training samples 42.64 13 

Weighted LS using only the top 10% of training samples 31.13 8 

Weighted LS using only the top 1% of training samples 22.03 2 

Bayesian with location as the only feature 65.30 45 • Non-parametric Parzen windows with Gaussian 

kernel (Equation ( 3.4)) where σ=85 

• Priors are based on class frequencies 
Bayesian without location as additional feature 14.09 293 

Bayesian with location as additional feature 11.41 304 

Weighted Bayesian  14.09 293 

Weighted Bayesian using only the top 30% of training samples 16.77 86 

Weighted Bayesian using only the top 10% of training samples 24.44 28 

Weighted Bayesian using only the top 1% of training samples 25.78 4 

Decision tree with location as the only feature 74.22 2955 • A node is considered a leaf if the maximum 

impurity decrease (ΔImax) for that node is less 

than 0.1. 
Decision tree without location as additional feature 37.29 4399 

Decision tree with location as additional feature 67.35 15435 

Weighted decision tree 51.47 7317 
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Weighted decision tree using only the top 30% of training samples 49.33 2620 

Weighted decision tree using only the top 10% of training samples 32.83 666 

Weighted decision tree using only the top 1% of training samples 22.75 20 

SVM with location as the only feature 19.98 2907 • Smoothing parameter (C)=5 

• Using the one-against-one scheme since there 

are more than two classes 
SVM without location as additional feature 28.99 14925 

SVM with location as additional feature 30.95 18174 

Weighted SVM using only the top 30% of training samples 39.52 1184961 

Weighted SVM using only the top 10% of training samples 29.97 297564 

Weighted SVM using only the top 1% of training samples 23.64 911 

Perceptron with location as the only feature 37.56 1777 • Logistic activation function 

• Cost function: Sum of squared errors 

• Maximum number of iterations: 1000 for 

perceptron and 3000 for MLP 

• Not updating the weights after those iterations 

resulting in an increase in the total cost 

• Multiply all learning rates by 1.1 or 0.8 after 

each step based on whether the total cost 

decreases or increases 

• Adaptive learning rate: multiply the learning 

rate for a parameter by 1.2 if the partial 

derivative of the loss, with respect to that 

parameter, remains the same sign in successive 

steps and multiply it by 0.7 otherwise [87] 
• Number of hidden nodes for MLP: 3 

Perceptron without location as additional feature 45.85 16392 

Perceptron with location as additional feature 47.90 17291 

Weighted perceptron 43.35 24786 

Weighted perceptron using only the top 30% of training samples 54.95 12472 

Weighted perceptron using only the top 10% of training samples 36.66 3397 

Weighted perceptron using only the top 1% of training samples 22.57 365 

MLP with location as the only feature 45.41 35219 

MLP without location as additional feature 44.87 37224 

MLP with location as additional feature 48.26 41811 

Weighted MLP 57.72 127349 

Weighted MLP using only the top 30% of training samples 51.03 34972 

Weighted MLP using only the top 10% of training samples 35.95 13613 

Weighted MLP using only the top 1% of training samples 23.46 1483 

 
 
 
One apparent irregularity in the above table is that for the classifier that simply assigns 

the class with the largest collective spatial weight among the training samples to the irresponsive 

sample, the performance time does not reduce when training samples with small weights are 

excluded. It is because if all training samples participate in finding the class with the largest 

collective weight, there is no need to sort the weights of training samples but if one decides to 

exclude the training samples with very small weights, the weight vector needs to be sorted. The 
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sorting function which is invoked only if a subset of training samples needs to be applied, has a 

greater time complexity than the function that sums up the training samples’ weights. 

Non-parametric classifiers, in our case the Bayesian classifier with Parzen windows, need 

to be trained separately for each irresponsive sample, regardless of the classifier being non-

weighted or weighted. For parametric classifiers, the weighted version needs to be trained 

separately for each irresponsive sample but the non-weighted version needs to be trained once 

for all irresponsive samples. In other words, the weighted classifiers need to be trained as many 

times as the number of irresponsive samples because the spatial weights for training samples 

depend upon the irresponsive sample’s location. However, the leave-one-out approach for 

evaluation eliminates this effect, because each time there is only one test sample and 

consequently both weighted and non-weighted classifiers are trained equal number of times. 

The weighted and non-weighted Bayesian classifiers have almost identical performance 

times with only 4% difference. The weighted SVM takes 65 times longer to be trained than non-

weighted SVM in Table  5.4. The reason is that finding the weighted SVM classifier includes a 

loop where in each iteration the original training samples are shifted with respect to the non-

weighted SVM classifier proportional to their weight (Equation ( 3.82)) and the non-weighted 

SVM classifier is recalculated for the shifted training samples. The weighted MLP takes 3 times 

longer than non-weighted MLP. Upon detailed analysis of the results it became clear that the 

longer training time for weighted MLP is due to the presence of training samples’ weights in 

computing the correction term (Equation ( 3.111)). Similarly, the 1.4 times longer performance 

time of weighted Perceptron in comparison with non-weighted Perceptron is attributed to the 

presence of training samples’ weights in computing the correction term (Equation ( 3.20). The 2.8 

times longer performance time of the weighted LS than non-weighted LS is attributed to the 
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presence of training samples’ weights in Equation ( 3.15). The weighted decision tree halves the 

performance time in comparison with non-weighted decision tree which is because the former is 

developed in a feature space with one less dimension (i.e., location) than the latter and 

dimensionality plays a crucial role in both training and height of decision trees. 

Among the same versions of seven different classifiers in Table  5.4, the collective weight 

is the fastest approach, followed by LS, Bayesian classifier, decision tree, perceptron, SVM, and 

MLP in most cases. Weighted SVM is the slowest approach. Cross-validation of the weighted 

SVM, trained with only 30% of training samples, took 14 days. Cross-validation of a weighted 

SVM, trained with all training samples, takes months and the results are not reported in Table 

 5.4. 

Despite its simplicity and short time performance, the classifier which assigns the 

irresponsive sample to the class with the largest collective weight among the top 1% of training 

samples achieves an accuracy which is surpassed only slightly (1.61%) by decision tree with 

location as the only feature. Considering that this technique only needs location (to calculate the 

spatial weights), its high accuracy underscores the efficiency of spatial weights in depicting the 

spatial autocorrelation between training samples and the irresponsive sample. It is worth noting 

that this classifier owes its high accuracy, in part, to the almost uniform and dense distribution of 

samples across space, shown in Figure  5.3, which manifests itself in a large value for partial sill 

(c1 =0.82) in the spatial semivariogram (Figure  5.4). The absence of such density and uniformity 

in distribution of samples across space will result in a small value for partial sill (c1) in the spatial 

semivariogram (Figure  4.2), meaning no or weak autocorrelation. This, in turn, would make the 

geographical proximity of much less help in classifying irresponsive samples and could 
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significantly degrade the accuracy of this classifier. In such circumstances, non-spatial features 

can help improve the classification accuracy. 

Highly non-linear classifiers (decision tree, collective weight, and Bayes) with location as 

the only input feature achieve the highest accuracies, as shown in Table  5.4. This implies two 

facts in classifying land covers: (a) the distribution of classes in space are very non-linear and (b) 

location plays the most important role in identifying the land cover. The first fact explains why 

the classification accuracy drops for linear and slightly non-linear classifiers even when location 

is their only input feature. The second fact explains the low accuracy of any classifier which 

ignores the location altogether. None of these facts explain why the weighted version of these 

highly non-linear classifiers (decision tree and Bayesian) cannot outperform their non-weighted 

version which uses location as the only input feature. This can be explained by the low 

distinctive power (noisy behavior) of non-spatial features in identifying the classes, which is 

proven by the very low accuracy of all non-weighted classifiers with only non-spatial input 

features (second row in each group in Table  5.4). The lower sensitivity of perceptron to noisy 

training samples in comparison with LS comes as a major advantage in such circumstances, 

creating a considerable difference between their classification accuracies when there are non-

spatial features among inputs. The low distinctive power of non-spatial features in identifying the 

land covers is also accountable for the decreasing accuracy of weighted classifiers as the training 

samples are shrunk to those with largest spatial weights. 

Rows with a bold font in the above table show the settings leading to the best accuracy 

for each of the seven classification techniques (collective weight, LS, Bayes, decision tree, SVM, 

perceptron, and MLP). The accuracy of weighted classifiers is always higher than the accuracy 

of their non-weighted counterpart trained using all features including location, with two 
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exceptions: decision tree and perceptron. In case of perceptron, using only the top 30% of 

training samples with largest weights puts the weighted perceptron above the non-weighted 

perceptron, in terms of accuracy. 

Table  5.5 ranks the same version of the seven different classifiers (collective weight, LS, 

Bayes, decision tree, SVM, perceptron, and MLP) based on their accuracy in Table  5.4. 

 
 
 

Table  5.5. The same version of different classifiers ranked based on their accuracy for land cover data. 

 Classifier with 
location as the 
only feature 

Classifier 
without 

location as 
additional 

feature 

Classifier 
with 

location as 
additional 

feature 

Weighted 
classifier 

Weighted 
classifier 

using only 
the top 30% 
of training 
samples 

Weighted 
classifier 

using only 
the top 10% 
of training 
samples 

Weighted 
classifier 

using only 
the top 1% 
of training 
samples 

Ac
cu

ra
cy

 

Decision tree Perceptron Decision 
tree 

MLP Perceptron Collective 
weight 

Collective 
weight 

Bayes MLP MLP LS MLP Perceptron Bayes 

MLP Decision 
tree 

Perceptron Decision 
tree 

Decision tree MLP SVM 

Perceptron SVM SVM Perceptron LS Decision tree MLP 

LS LS LS Collective 
weight 

SVM LS Decision 
tree 

SVM Bayes Bayes Bayes Collective 
weight 

SVM Perceptron 

    Bayes Bayes LS 

 

5.3 CLASSIFICATION OF SIMULATED DATA 

We generated 500 random samples from each of the two classes A and B. Samples are 

pulled from two five dimensional normal probability distribution functions with the following 

mean vectors (μA and μB) and symmetric positive-definite covariance matrixes (ΣA and ΣB): 



 101 

𝜇𝐴 =

⎣
⎢
⎢
⎢
⎡
100
100
100
100
100⎦

⎥
⎥
⎥
⎤
   𝛴𝐴 =

⎣
⎢
⎢
⎢
⎡
10 0 1 1 2
0 10 3 4 1
1 3 10 2 3
1 4 2 10 4
2 1 3 4 10⎦

⎥
⎥
⎥
⎤
             𝜇𝐵 =

⎣
⎢
⎢
⎢
⎡
101
101
101
101
101⎦

⎥
⎥
⎥
⎤
   𝛴𝐵 =

⎣
⎢
⎢
⎢
⎡
10 1 2 1 4
1 11 4 1 3
2 4 10 2 2
1 1 2 11 4
4 3 2 4 10⎦

⎥
⎥
⎥
⎤
 

Location is defined for samples to satisfy a spherical semivariogram with the following 

characteristics: c1=0.3, c0=0, and r=25. Time is defined for samples to satisfy a single-frequency 

periodogram with the following characteristics: amplitude=0.05, period=20, and c0=0. A white 

noise was also added to location and time of training samples, resulting in spatial and temporal 

semivariograms with the following characteristics: c1=0.25, c0=0.04, r=22.5 for the spatial 

semivariogram and β1=-0.0142, β2=-0.0394, amplitude=0.0419, period=22.5, and c0=0.04 for the 

temporal semivariogram. 

Of all the above samples, 80% are chosen randomly to serve as training samples and the 

remaining 20% are used to evaluate the performance of weighted Bayesian classifier, weighted 

LS, weighted perceptron, weighted SVM, weighted decision tree, and weighted MLP. Table  5.6 

shows the overall accuracy of different weighted classifiers. 

For comparison purposes, we also used only the top 30%, 10%, and 1% of training 

samples with largest spatial-temporal weights for training. The resulted accuracies are reported 

in Table  5.6. This table also reports the accuracy of non-weighted classifiers trained with non-

spatial and non-temporal features, non-weighted classifiers trained with all features including 

location and time, non-weighted classifiers trained with location and time as the only features, 

and finally picking the class with the largest collective spatial-temporal weight among training 

samples. 
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Table  5.6. The accuracy of different classification techniques for the simulated data. 

Technique Overall 

Acc. 
Settings 

Choosing the class with largest collective weight among training 

samples 

63.5 • Spatial-temporal weights of training samples 

are used as weights 

Choosing the class with largest collective weight among the top 30% 

of training samples 

41 

Choosing the class with largest collective weight among the top 

10% of training samples 

96 

Choosing the class with largest collective weight among the top 1% of 

training samples 

51 

LS with location and time as the only features 57.0 • Using the one-against-one scheme since there 

are more than two classes LS without location and time as additional features 56 

LS with location and time as additional features 56.5 

Weighted LS 60 

Weighted LS using only the top 30% of training samples 51.5 

Weighted LS using only the top 10% of training samples 97 

Weighted LS using only the top 1% of training samples 48 

Bayesian with location and time as the only features 53.5 • Non-parametric Parzen windows with Gaussian 

kernel (Equation ( 3.4)) where σ=5 

• Priors are based on class frequencies 
Bayesian without location and time as additional features 46.5 

Bayesian with location and time as additional features 57 

Weighted Bayesian  48 

Weighted Bayesian using only the top 30% of training samples 60.5 

Weighted Bayesian using only the top 10% of training samples 70 

Weighted Bayesian using only the top 1% of training samples 51.0 

Decision tree with location and time as the only features 45 • A node is considered a leaf if the maximum 

impurity decrease (ΔImax) for that node is less 

than 2.0. 
Decision tree without location and time as additional features 45 

Decision tree with location and time as additional features 45 

Weighted decision tree 63.5 

Weighted decision tree using only the top 30% of training samples 41 

Weighted decision tree using only the top 10% of training samples 96 

Weighted decision tree using only the top 1% of training samples 51 

SVM with location and time as the only features 49.5 • Smoothing parameter (C)=10 

• Using the one-against-one scheme since there 

are more than two classes 
SVM without location and time as additional features 45 

SVM with location and time as additional features 45 

Weighted SVM 45 
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Weighted SVM using only the top 30% of training samples 50.5 

Weighted SVM using only the top 10% of training samples 62.5 

Weighted SVM using only the top 1% of training samples 50 

Perceptron with location and time as the only features 50 • Maximum number of iterations: 1000 for 

perceptron and 5000 for MLP 

• Not updating the weights after those iterations 

resulting in an increase in the total cost 

• Multiply all learning rates by 1.1 or 0.8 after 

each step based on whether the total cost 

decreases or increases 

• Adaptive learning rate: multiply the learning 

rate for a parameter by 1.2 if the partial 

derivative of the loss, with respect to that 

parameter, remains the same sign in successive 

steps and multiply it by 0.7 otherwise [87] 
• Cost function for MLP: Sum of squared errors 

• Logistic activation function for MLP 

• Number of hidden nodes for MLP: 5 

Perceptron without location and time as additional features 43.5 
Perceptron with location and time as additional features 50 

Weighted perceptron 48 

Weighted perceptron using only the top 30% of training samples 43.5 

Weighted perceptron using only the top 10% of training samples 92 

Weighted perceptron using only the top 1% of training samples 50.5 

MLP with location and time as the only features 50.5 

MLP without location and time as additional features 45 

MLP with location and time as additional features 44.5 

Weighted MLP 65 

Weighted MLP using only the top 30% of training samples 41 

Weighted MLP using only the top 10% of training samples 96.5 

Weighted MLP using only the top 1% of training samples 51 

 
 
 
Despite its simplicity, the classifier which assigns the irresponsive sample to the class 

with the largest collective weight among the top 10% of training samples achieves an accuracy 

which is surpassed only slightly (1%) by weighted least squares and weighted MLP using only 

the top 10% of training samples. Considering that this technique only needs location and time (to 

calculate the spatial-temporal weights), its high accuracy underscores the effectiveness of spatial-

temporal weights in depicting the spatial-temporal autocorrelation between training samples and 

the irresponsive sample. It is worth noting that this classifier owes its high accuracy, in part, to 

the almost uniform and dense distribution of samples across space and time. 

Rows with a bold font in Table  5.6 show the settings leading to the best accuracy for each 

of the seven classification techniques (collective weight, LS, Bayes, decision tree, SVM, 

perceptron, and MLP). Ignoring location and time altogether resulted in a lower accuracy in 
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comparison with considering them as the only or additional features. However, this difference in 

accuracy is small (0~10%). On the other hand, in all cases, the weighted classifier using only the 

top 10% of training samples achieves the highest accuracy. The accuracy improvement is 13% to 

51%. This shows the superiority of the weighted machine learning over other alternatives for 

considering the location and time to improve the accuracy. This also underscores the important 

role both spatial-temporal and other features play in improving the prediction accuracy. 

Between the two approaches, i.e., the non-weighted classifier trained using all features 

including location and time and its weighted counterpart, the latter achieves a slightly better 

accuracy (except for Bayesian and Perceptron). However, when only 10% of training samples 

with largest spatial-temporal weights are applied to train the weighted classifier, the accuracy is 

dramatically improved. This also uncovers the fact that training samples with very small spatial-

temporal weights are not much constructive in training the classifier. This is in line with our 

expectations that weighted classification captures the spatial-temporal autocorrelation best and 

excluding training samples with very small spatial-temporal weights not only reduces the time 

performance but also improves the accuracy. 

Table  5.7 ranks the same version of the seven different classifiers (collective weight, LS, 

Bayes, decision tree, SVM, perceptron, and MLP) based on their accuracy in Table  5.6. 

 
 
 

Table  5.7. The same version of different classifiers ranked based on their accuracy for simulated data. 

 Classifier with 
location and 

time as the only 
features 

Classifier 
without 
location 
and time 

as 
additional 
features 

Classifier 
with 

location 
and time 

as 
additional 
features 

Weighted 
classifier 

Weighted 
classifier 

using only 
the top 30% 
of training 
samples 

Weighted 
classifier 

using only 
the top 10% 
of training 
samples 

Weighted 
classifier 

using only 
the top 1% 
of training 
samples 
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LS LS Bayes MLP Bayes LS MLP 

Bayes Bayes LS Decision 
tree 

LS MLP Bayes 

MLP MLP Perceptron Collective 
weight 

SVM Decision tree Decision 
tree 

Perceptron SVM SVM LS Perceptron Collective 
weight 

Collective 
weight 

SVM Decision 
tree 

Decision 
tree 

Bayes MLP Perceptron Perceptron 

Decision tree Perceptron MLP Perceptron Decision tree Bayes SVM 

   SVM Collective 
weight 

SVM LS 

 

5.4 CONCLUSIONS AND FUTURE DIRECTIONS 

The question posed in this dissertation, how the recorded location and time for training samples 

should contribute to the training and testing process, can be answered more precisely now. We 

compared three general approaches: (a) ignoring location and time, (b) considering location and 

time as input features, and (c) using the spatial-temporal autocorrelation between each training 

sample and the irresponsive sample as that training sample’s weight in weighted machine 

learning techniques. The third approach resulted in a better prediction accuracy since it captures 

the autocorrelation in spatial-temporal phenomena more properly. However, because the spatial-

temporal weight of training samples depends on the irresponsive sample’s location and time, the 

machine needs to be trained separately for each irresponsive sample. We showed that using only 

a subset of training samples with largest spatial-temporal weights is an effective way to mitigate 

the training time without compromising the prediction accuracy. Applying different feature 

selection/generation methods and investigating their effect on the prediction accuracy is a future 

research direction. 
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6.0  CONCLUSIONS AND FUTURE DIRECTIONS 

Figure  6.1. Shows the overall scheme of the proposed weighted machine learning for spatial-

temporal data. It starts with calculating the spatial-temporal weight for training samples and ends 

with using them to bias the predictor in favor of training samples with larger weights. Spatial-

temporal weights are visualized using color saturation. Darker samples have larger spatial-

temporal weights. The red cross is the irresponsive sample and plays the central role in 

determining the spatial-temporal weight for training samples. Training samples are weighted 

based on their spatial and temporal autocorrelation with the irresponsive sample. In the spatial-

temporal domain, the irresponsive sample is at the origin of the coordinate system and spheres 

delineate the training samples with larger spatial-temporal weights. The predictor is trained to be 

more concerned about the correct prediction of training samples with larger spatial-temporal 

weights. 
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Figure  6.1. Weighted machine learning for spatial-temporal data. 
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6.1 CONCLUSIONS 

The weighted machine learning techniques developed in Chapter 3, not only provide users with 

the opportunity to give different weights to training samples, but also can be embedded into other 

algorithms such as AdaBoost [66; 67], where there is a hierarchy of classifiers, each requiring to 

be trained using a different weighting over training samples. These weights are used to adjust the 

classifier/regressor in favor of more importance samples, and thereby giving a higher 

significance to more important samples. It is worth noting that the weighted linear and nonlinear 

classifiers change the division of the feature space only around the border (the most uncertain 

area) and areas far from the border are less likely to change their label. The weighted SVM 

classifier showed the least difference with its non-weighted counterpart when the training 

samples’ weights are not much variant. The reason for this is that SVM classifier is designed 

only based on support vectors not all training samples. If the weights of training samples are not 

much different, their relocation based on their weights might not be large enough to change the 

selection of support vectors. In other words, the weighted SVM classifier would be different than 

its non-weighted version only if relocating training samples based on weights would result in a 

rearrangement of training samples significant enough to change the selection of support vectors. 

In other words, the weighted SVM has the highest stability with respect to weight changes in a 

small subset of training samples. The weighted MLP also takes the training samples’ weights 

into account through smallest adjustments in its nonlinear border. However, the MLP’s behavior 

is highly dependent on the network’s size. In other words, a larger number of hidden nodes will 

result in a more significant difference between the weighted and non-weighted MLP. On the 

other hand, the weighted decision tree and weighted Bayesian classifiers showed the most 

dramatic changes in how the feature space is divided between the two classes in comparison with 
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their non-weighted counterparts. The reason is that these two models are highly local, especially 

the non-parametric Bayesian classifier. Therefore, even small changes in the training samples’ 

weights would result in a different classification of the feature space. The weighted LS and 

perceptron showed slight and similar changes in how they divide the feature space between the 

two classes in comparison with their non-weighted counterparts. The similar behavior is because 

both models minimize the sum of square errors, although in different ways. The difference 

between weighted and non-weighted versions being slight in these two cases originates from 

their linear nature and consequently their rather restricted flexibility in modifying their shape. 

The logic behind deciding in favor of spatial-temporally more important samples is that 

the output of the irresponsive sample is more likely to be similar to the output of training 

samples with larger spatial-temporal weights. This is justified because, in Chapter 4, we calculate 

the spatial-temporal weights based on similarity among the responses of training samples across 

space and time. Therefore, we expect the spatial-temporally weighted predictor to achieve a 

better out-of-sample (test) accuracy than its non-weighted counterpart, despite it is not difficult 

to see that the non-weighted predictor achieves a better in-sample (training) accuracy (simply 

because it is equally fair to all training samples). 

We posed the following question in this dissertation: how the recorded location and time 

for training samples should contribute to the training and testing process. We compared three 

general approaches: (a) ignoring location and time, (b) considering location and time as input 

features, and (c) using the spatial-temporal autocorrelation between each training sample and the 

irresponsive sample as that training sample’s weight in weighted machine learning techniques. 

The third approach resulted in a better prediction accuracy in two real-world applications since it 

captures the autocorrelation in spatial-temporal phenomena more properly. However, because the 
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spatial-temporal weight of training samples depends on the irresponsive sample’s location and 

time, the machine needs to be trained separately for each irresponsive sample. We showed that 

using only a subset of training samples with largest spatial-temporal weights is an effective way 

to mitigate the training time without compromising the prediction accuracy. 

6.2 FUTURE DIRECTIONS 

Our approach of calculating spatial weights for training samples assumes that the underlying 

phenomenon is isotropic by considering only the distance between pairs of observations and 

ignoring the direction of the vector connecting them. A future research venue is to increase the 

accuracy of spatial weights by taking into account the anisotropy or directional effects in the 

spatial variation of responses. This can be done by developing two (or more) spatial 

semivariograms, each modeling the spatial similarity in either north-south or east-west direction. 

To calculate the semivariance in a specific direction, only pairs of samples aligned in that 

direction (at least approximately) are used. Therefore, the direction of the vector connecting the 

irresponsive sample to each training sample determines which spatial semivariogram must be 

used to calculate that training sample’s spatial weight. This way training samples aligned in a 

specific direction with respect to the irresponsive sample might gain a higher spatial weight. 

We developed spatial and temporal semivariograms separately because the former is best 

modeled with a spherical model and the latter with a periodogram. Another future research venue 

is to find a way to develop a single spatial-temporal semivariogram. Applying different feature 

selection/generation methods and investigating their effect on the prediction accuracy is also a 

future research direction. 
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