

WEIGHTED MACHINE LEARNING FOR SPATIAL-TEMPORAL DATA

by

Mahdi Hashemi

B. S. in Surveying Engineering, University of Tabriz, Tabriz, 2009

M. S. in GIS Engineering, K. N. Toosi University of Technology, Tehran, 2011

Submitted to the Graduate Faculty of the School of

Computing and Information in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

 ii

UNIVERSITY OF PITTSBURGH

SCHOOL OF COMPUTING AND INFORMATION

This dissertation was presented

by

Mahdi Hashemi

It was defended on

September 25, 2017

and approved by

Hassan A. Karimi, Professor, School of Computing and Information

Prashant Krishnamurthy, Professor, School of Computing and Information

Ching-Chung Li, Professor, School of Electrical and Computer Engineering

Paul Munro, Associate Professor, School of Computing and Information

Dissertation Advisor: Hassan A. Karimi, Professor, School of Computing and Information

 iii

Copyright © by Mahdi Hashemi

2017

 iv

Sometimes not all training samples are equal in supervised machine learning due to their

different accuracy, reliability, source, relevance, or other reasons. Non-weighted machine

learning techniques are designed for equally important training samples: (a) the cost of

misclassification is equal for training samples in parametric classification techniques, (b)

residuals are equally important in parametric regression models, and (c) when voting in non-

parametric classification and regression models, training samples either have equal weights or

their weights are determined internally by kernels in the feature space, thus no external weights.

In this thesis, we develop the weighted versions of Bayesian predictor, perceptron, multilayer

perceptron, SVM, and decision tree and show how their results would be different from their

non-weighted versions.

Applying machine learning techniques to spatial-temporal data poses the question that

how the recorded location and time for training samples should contribute to the training and

testing process. The prior knowledge of how spatial-temporal phenomena are autocorrelated

cannot be properly captured by machine learning techniques which either ignore location and

time altogether, or consider them as input features. Not to mention that the latter approach leads

to increased sparseness of data in the feature space and more free parameters in the predictor;

WEIGHTED MACHINE LEARNING FOR SPATIAL-TEMPORAL DATA

Mahdi Hashemi, PhD

University of Pittsburgh, 2017

 v

thus demanding for larger training datasets. We use the prior knowledge about the spatial-

temporal autocorrelation to determine how relevant each training sample would be, given its

spatial and temporal distances to the irresponsive (unlabeled) sample. Weighted machine

learning techniques use this prior knowledge by taking the relevance of training samples with

regard to the irresponsive sample into account as training samples’ weights. The proposed

approach overcomes the aforementioned issues by enriching the training process with the prior

knowledge about spatial-temporal autocorrelation. Because the spatial-temporal weight of

training samples depends on the irresponsive sample’s location and time, the machine needs to

be trained separately for each irresponsive sample. However, we show that in practice using only

a small subset of training samples with largest spatial-temporal weights not only mitigates the

training time but also results in the best accuracy in most cases.

 vi

TABLE OF CONTENTS

PREFACE ... XIV

1.0 INTRODUCTION .. 1

1.1 DEFINITIONS AND SYMBOLOGY .. 1

1.2 PROBLEM STATEMENT ... 3

1.3 PROPOSED APPROACH .. 5

1.4 RESEARCH QUESTIONS AND CONTRIBUTIONS 11

1.5 ORGANIZATION OF THE DISSERTATION .. 12

2.0 BACKGROUND .. 13

3.0 WEIGHTED MACHINE LEARNING .. 19

3.1 BAYESIAN PREDICTOR .. 22

3.1.1 Classification .. 22

3.1.2 Regression... 24

3.1.3 Experiment ... 24

3.2 LINEAR PREDICTORS ... 25

3.2.1 Least squares (LS) ... 25

3.2.1.1 Experiment .. 28

3.2.2 Perceptron .. 28

 vii

3.2.2.1 Experiment .. 30

3.2.3 SVM .. 31

3.2.3.1 Two linearly separable classes ... 31

3.2.3.2 Two linearly nonseparable classes ... 38

3.2.3.3 Experiment .. 48

3.3 NONLINEAR PREDICTORS .. 49

3.3.1 Decision trees.. 50

3.3.1.1 Experiment .. 53

3.3.2 Multilayer perceptron (MLP)... 54

3.3.2.1 Experiment .. 59

3.3.3 Nonlinear SVM .. 60

3.4 EXPERIMENT WITH BREAST CANCER DATA 64

3.5 CONCLUSIONS .. 66

4.0 SPATIAL-TEMPORAL WEIGHT FOR TRAINING SAMPLES 68

4.1 SPATIAL SEMIVARIOGRAM ... 69

4.2 TEMPORAL SEMIVARIOGRAM ... 72

4.3 SPATIAL-TEMPORAL WEIGHTS ... 75

4.4 DATA CONSTRAINTS .. 75

4.4.1 Fixed location or time .. 75

4.4.2 Categorical responses .. 76

4.4.3 Stationarity of data .. 77

4.4.3.1 Temporal stationarity ... 77

4.4.3.2 Spatial stationarity .. 78

 viii

4.4.3.3 Combined spatial-temporal stationarity ... 79

4.5 CONCLUSIONS AND FUTURE DIRECTIONS ... 80

5.0 EVALUATION ... 85

5.1 REGRESSION OF AIR TEMPERATURE .. 85

5.2 CLASSIFICATION OF LAND COVER... 92

5.3 CLASSIFICATION OF SIMULATED DATA ... 100

5.4 CONCLUSIONS AND FUTURE DIRECTIONS ... 105

6.0 CONCLUSIONS AND FUTURE DIRECTIONS ... 106

6.1 CONCLUSIONS .. 108

6.2 FUTURE DIRECTIONS ... 110

BIBLIOGRAPHY ... 111

 ix

 LIST OF TABLES

Table 2.1. Machine learning methods applied to spatial-temporal data in the literature ignoring

location and time. .. 17

Table 3.1. Training samples and their weights. .. 21

Table 3.2. Training samples and their weights for SVM. ... 48

Table 3.3. Accuracy of different classification techniques for breast cancer prediction. 65

Table 4.1. Common semivariogram models. .. 71

Table 5.1. Non-diagonal elements show the correlation coefficient between different variables

and diagonal elements show the variances. .. 86

Table 5.2. The accuracy and time performance of different regression techniques for predicting

the air temperature. ... 89

Table 5.3. Different land covers and their relative frequency. ... 93

Table 5.4. The accuracy and time performance of different classification techniques for

predicting the land cover. .. 95

Table 5.5. The same version of different classifiers ranked based on their accuracy for land cover

data. ... 100

Table 5.6. The accuracy of different classification techniques for the simulated data. 102

 x

Table 5.7. The same version of different classifiers ranked based on their accuracy for simulated

data. ... 104

 xi

LIST OF FIGURES

Figure 1.1. A 2D dataset with four patterns. ... 6

Figure 1.2. Considering space and time as features increases the sparseness of training samples in

the feature space and the number of free parameters in the predictor. ... 6

Figure 1.3. Spatial-temporal data in the space-time domain. ... 8

Figure 1.4. Training samples shaded based on their spatial-temporal weight with regard to the

irresponsive sample (red cross) in the space-time domain. .. 8

Figure 1.5. Predicting the output of a new sample (red cross) in the feature space where training

samples are shaded based on their spatial-temporal weight. .. 8

Figure 1.6. Mixture of experts. ... 10

Figure 3.1. A non-weighted linear classifier (left) vs. a weighted linear classifier (right). 19

Figure 3.2. A non-weighted nonlinear classifier (left) vs. a weighted nonlinear classifier (right).

... 20

Figure 3.3. Training samples from two classes, circles and squares, shaded based on their

weights. ... 21

Figure 3.4. Two classes shown with circles and squares where the darkness of samples shows

their weight with respect to the irresponsive sample, shown with a cross. 23

 xii

Figure 3.5. Division of the feature space between the two classes, circles and squares, without

(left) and with (right) considering the training samples’ weights (darkness of samples) in

Bayesian classifier. ... 25

Figure 3.6. Division of the feature space between the two classes, circles and squares, without

(solid line) and with (dashed line) considering the training samples’ weights (darkness of

samples) in LS classifier. .. 28

Figure 3.7. Division of the feature space between the two classes, circles and squares, without

(solid line) and with (dashed line) considering the training samples’ weights (darkness of

samples) in perceptron classifier (logistic activation function and adaptive training rate with 1000

iterations). ... 30

Figure 3.8. SVM classifier for two linearly separable classes; black points show support vectors.

... 32

Figure 3.9. SVM classifier for two linearly nonseparable classes; black points show support

vectors. .. 39

Figure 3.10. Division of the feature space between the two classes, circles and squares, without

(solid line) and with (dashed line) considering the training samples’ weights (darkness of

samples) in SVM classifier (C=1)... 48

Figure 3.11. Ordinary binary decision trees; Q stands for question and R stands for response. .. 50

Figure 3.12. Division of the feature space between the two classes, circles and squares, without

(solid line) and with (dashed line) considering the training samples’ weights (darkness of

samples) in decision tree classifier (minimum impurity decrease for splitting a node is considered

0.1). ... 53

 xiii

Figure 3.13. Division of the feature space between the two classes, circles and squares, without

(solid line) and with (dashed line) considering the training samples’ weights (darkness of

samples) in MLP classifier (logistic activation function and adaptive training rate with 2000

iterations). ... 60

Figure 4.1. Semivariance versus spatial distance. ... 70

Figure 4.2. Nugget (c0), partial sill (c1), and range (r) in a semivariance versus spatial distance

plot. ... 70

Figure 4.3. A spherical semivariogram model fitted to the semivariances in Figure 4.1. 71

Figure 4.4. Semivariance versus temporal distance. ... 73

Figure 4.5. Stabilizing the temporal variance and mean before developing the temporal

semivariogram. .. 78

Figure 4.6. Stabilizing the spatial variance and mean before developing the spatial

semivariogram. .. 79

Figure 4.7. Stabilizing the variance and mean before developing the spatial and temporal

semivariograms. .. 80

Figure 4.8. Calculating spatial-temporal weight for training samples based on their

autocorrelation with the irresponsive sample. .. 82

Figure 5.1. Spatial semivariogram for temperature. ... 87

Figure 5.2. Temporal semivariogram for temperature with a period of one year. 87

Figure 5.3. Distribution of land cover samples across space, in UTM zone 56S. 93

Figure 5.4. Spatial semivariogram for land covers. .. 94

Figure 6.1. Weighted machine learning for spatial-temporal data. ... 107

 xiv

PREFACE

I have been bestowed with the great privilege to learn from numerous gracious teachers during

the 12 years of school, followed by 12 years in academia. I take this opportunity to express my

sincere gratitude and respect to all my teachers for their unsparing effort in pulling me up the

ladder of science step by step. Their role in shaping my career, life, and understanding of the

world goes beyond words.

I would like to thank my PhD adviser of four years, Dr. Karimi, whose guidance shed

light on the path to my achievements, whose support was there when I needed, and whose

mentoring and advices will accompany me throughout my career.

I thank Dr. Munro for his contribution in both my PhD dissertation and comprehensive

examination. I thank Dr. Li for taking the time to be on my PhD committee and the interesting

course I passed with him. I thank Dr. Krishnamurthy for sparing the time to help me with my

dissertation. I thank them all for offering their valuable comments to improve my dissertation.

I could not be where I am, without the sacrifices my mother made on my behalf. I

dedicate this work to my mother and sister, Fariba and Parvin, for their unconditional support,

trust, and love.

 1

1.0 INTRODUCTION

1.1 DEFINITIONS AND SYMBOLOGY

In this thesis, for the purpose of clarification and unification:

• We refer to the machine learning technique’s inputs as features or feature vector. They are

also called predictors, independent, or explanatory variables in some literature.

• If the output of a machine learning technique is continuous, it is a regressor, otherwise, if

the output is categorical, it is a classifier. Predictor refers to both of them.

• The terms estimate and label are used to refer to the output of regressors and classifiers,

respectively, and the term response is used to refer to the output of either.

• If the response is known for an observation, it is called a responsive

sample/point/observation and if the response is not known (only the feature vector is

observed), it is called an irresponsive sample/point/observation.

• Training samples (responsive or irresponsive) are the samples used to train the predictor

and test samples are the ones used to test its accuracy. Note that, although this thesis is only

focused on supervised learning, we avoid using the terms training and test samples to

distinguish between samples with and without responses because unsupervised (e.g.,

autoencoders) and hybrid (e.g., pre-trained MLPs) learners are trained by irresponsive

samples [1].

 2

• We represent the number of features or the length of the feature vector with l and the

number of training samples with N.

• Matrices are shown with uppercase and vectors with lowercase letters.

• The feature vector of the i-th training sample is represented by xi which is a l×1 vector and

its response, either numerical or categorical, is shown with yi.

• The features or inputs matrix is represented by X, where each row is one feature vector.

Therefore, X is a N×l matrix where N is the number of training samples and l is the number

of features.

• The bold xi indicates a feature vector with an additional element of 1 at its end; therefore, xi

has l+1 elements.

• The bold X indicates the features matrix with an additional column of length N with all its

elements being 1; therefore, X has N rows and l+1 columns. Adding this column to the

features matrix simplifies the calculation of intercept for some machine learning

techniques.

• The vector containing all training sample responses is indicated by y which is a vector of

length N.

• The weight vector for the linear predictors is shown with w and the threshold (intercept)

with w0. The bold w shows the weight vector including the threshold (intercept) as its last

element.

• The weight for the training sample i is denoted by gi. Without the subscript, g represents all

weights in one N×1 vector and G indicates the N×N diagonal matrix including g as its

diagonal.

• The identity matrix is represented with I.

 3

1.2 PROBLEM STATEMENT

“Data from locations near one another in space are more likely to be similar than data from

locations remote from one another” [2; 3; 4; 5]. This observational fact is called spatial

autocorrelation [6; 7; 8; 9; 10; 11; 12; 13; 3; 4] and makes spatial data different from other types

of data. More formally, spatial autocorrelation is the result of first- and second-order effects in

spatial processes [2; 14; 3], where the former refers to environmental effects and the latter refers

to interactions between samples. The same definition is true in time [4; 15; 16], referred to as

temporal autocorrelation. Temporal data also might have an additional cyclic autocorrelation [17;

18; 19; 20; 21] termed cyclic temporal autocorrelation. Because of spatial and temporal

autocorrelations, spatial-temporal data are not truly random. In other words, phenomena do not

vary randomly through space and time.

Spatial autocorrelation and temporal autocorrelation are the backbone of spatial and

temporal data analytics. For example, if the temperature at location A is 30°C, the temperature at

location B, 1 m away from A, is also 30°C, the temperature at location C, 100 m away from A

would be very close to 30°C, and the temperature at location D, 2 km away from A, is more

uncertain and can be different (less or more) than 30°C. More examples can be found in the

related literature [6; 7; 8; 9; 10; 11; 12; 13; 3; 4]. This temperature example can also be used to

explain the temporal autocorrelation; more we temporally distance from the time that the

temperature was measured at location A, more different the temperature can be from 30°C, and

less certain we are about the temperature at location A. Temperature also has a strong cyclic

temporal autocorrelation; temperature rises from winter to spring and keeps rising until summer,

then starts falling from summer to autumn and keeps falling until winter and this cycle repeats

itself. More examples can be found in the literature [17; 18; 19; 20; 21]. This cyclic behavior

 4

makes temporal autocorrelation more complicated to model than spatial autocorrelation. Other

examples of spatial-temporal data are elevation, air or water pollution, soil type, weather,

population, landuse, and landslide.

Franklin [22], in her review paper, introduced the spatial dependence/autocorrelation as a

source of information which has yet to be exploited in vegetation prediction models. O'Sullivan

and Unwin [2] raised the concern with applying machine learning techniques to spatial data by

briefly mentioning, in their book on geographic information analysis, that special characteristics

of spatial data are ignored in regression and classification models applied by geographers.

Shekhar et al. [23; 11; 13; 4] showed that spatial autocorrelation limits the usefulness of

conventional classification and regression techniques for extracting spatial patterns. Santibanez

et al. [6; 7] also raised this issue by stating that “machine learning algorithms are in general, not

designed to deal with spatially autocorrelated data.” The assumption of independent and

identically distributed random variables is not valid for spatial data because spatial

autocorrelation causes the prediction residuals to exhibit clustering over geographic space [6; 7;

8; 9; 10; 11; 13; 4; 24; 25]. With respect to this issue, some researchers [8; 9; 10] suggested a

spatial version of the linear least squares model which computes the weight vector as

(XTCX)-1XTCy by defining C as some indicator of spatial neighborhood among responsive

samples, X as the feature matrix, and y as the response vector. Other extensions of the linear least

squares model, attempting to incorporate the spatial neighborhood, have also been proposed in

the literature [26; 27; 28; 29] and have been able to improve the prediction accuracy. However,

this issue is not the main focus of their work as they apply spatial neighborhood rather than

spatial autocorrelation, do not consider the time, and do not go farther than linear least squares.

On the other hand, spatial interpolation methods such as kriging or k-nearest neighbors (kNN) in

 5

Euclidean space rather than feature space [2; 23; 13; 3; 4] ignore non-spatial features which

makes them unreliable when spatial autocorrelation is weak or useless when the irresponsive

sample is spatially far from responsive samples.

On the other hand, some researchers [17; 18; 19; 20] showed the reversibility (cyclic

behavior) of landuse changes in time. Mertens and Lambin [17] showed that landuse predictions

are more reliable in long term when more historic training samples are available. However,

developing machine learning techniques that capture the cyclic behavior of temporal phenomena

and adjust their predictions based on the irresponsive sample’s time is not addressed in the

literature.

1.3 PROPOSED APPROACH

Figure 1.1 shows a schematic spatial-temporal training dataset with four patterns and two

features. Machine learning techniques learn to distinguish among patterns based on features.

These patterns are recognized by measuring the similarity among features of training samples.

Spatial-temporal data [30; 31] record the location and time of each observation (denoted by Lati,

Loni, Timei in Figure 1.1) along with other features. Current machine learning techniques treat

spatial-temporal problems no differently than other types of problems. Current machine learning

techniques do not take into account spatial and/or temporal autocorrelations, neither in training

nor in testing the predictor. That results in poor performance of machine learning techniques in

the presence of spatial-temporal data [6; 7; 8; 9; 10; 11; 13; 4; 32; 15]. On the other hand, taking

location and time as features in the training process is not the best way to incorporate the result

of autocorrelation [23; 11; 13; 4] as it leaves autocorrelated prediction residuals behind [24; 25;

 6

33], not to mention it will increase the sparseness of training samples in the feature space, as

schematically shown in Figure 1.2. It also increases the number of free parameters in the

predictor and consequently the demand for larger training datasets, referred to as curse of

dimensionality [34; 35; 36].

l1

l2 (Lati, Loni, Timei)

Figure 1.1. A 2D dataset with four
patterns.

l1

l2

Lat Lon Time

Figure 1.2. Considering space and time as features increases the
sparseness of training samples in the feature space and the number of free

parameters in the predictor.

We develop weighted machine learning techniques which are different from non-

weighted ones in that they consider the weights of training samples and bias the predictor in

favor of more important training samples, rather than being fair with regard to all training

samples. Weighted versions of Bayesian classifier [37; 38], linear predictors (least squares [39],

perceptron [40], and SVM [41; 42; 43]), and nonlinear predictors (decision tree [44], multilayer

perceptron [45; 46; 47], and nonlinear SVM [48]) will be developed.

The spatial-temporal autocorrelation model shows how the autocorrelation (similarity

between observations as a function of the space or time lag between them) among observations

changes over space and time. The autocorrelation model considers general behaviors of spatial-

 7

temporal phenomena: (a) as spatial or temporal distance between observations increases, their

systematic similarity decreases, and (b) observations show periodic similarities over time.

Instances of these behaviors are abundant in real life. For example, (a) temperature is more

similar between two locations/times that are close to each other but we do not expect it to be

similar between two locations/times that are too far from each other, and (b) temperature has a

well-known yearly cycle. As another example, if it is raining in a city, (a) it is expected that it is

also raining in nearby cities but we are uncertain about far cities and we are less certain about

raining next week than next hour, and (b) raining shows periodic behaviors with different cycles

with the yearly cycle being the most conspicuous. These behaviors can be extended to other

spatial-temporal phenomena such as, elevation, air or water pollution, soil type, population,

landuse, and landslide.

Figure 1.3 shows training samples in the space-time domain. Spatial and temporal

autocorrelations are schematically shown in this figure, where samples close to each other in the

space-time domain have similar responses and the responses also repeat themselves periodically

over time. Due to the nature of spatial-temporal data, where spatial and temporal autocorrelations

are directly related to spatial and temporal distances, not all training samples are equally

important in predicting the output of a new sample. We develop a model that captures the

characteristics of spatial-temporal autocorrelations and uses it to assign a spatial-temporal weight

to each training sample based on its spatial-temporal distance to the irresponsive sample. Figure

 1.4 schematically shows the spatial-temporal weights assigned to training samples with respect

to the irresponsive sample in the space-time domain. In fact, training samples which are spatially

and temporally uncorrelated with the irresponsive sample are less constructive to the training

process. Training the predictor in the feature space must be biased in favor of training samples

 8

with larger spatial-temporal weights, as shown in Figure 1.5. The weighted machine learning

techniques take advantage of the spatial-temporal weight for training samples to bias the

predictor in favor of more important training samples and exclude the location and time from

input features to the machine.

Lat

Time

Lon

Figure 1.3. Spatial-
temporal data in the space-time

domain.

Lat

Time

Lon

Figure 1.4. Training samples
shaded based on their spatial-temporal
weight with regard to the irresponsive
sample (red cross) in the space-time

domain.

l1

l2

Figure 1.5. Predicting the
output of a new sample (red cross) in

the feature space where training
samples are shaded based on their

spatial-temporal weight.

The proposed approach prevents occurrence of the problems associated with considering

location and time as features, potentially improves the prediction accuracy by biasing the

predictor in favor of more important training samples, and expedites the training process by

leaving out training samples with very low spatial-temporal weights. We need to train the

predictor separately and independently for each irresponsive sample because the spatial-temporal

weight for training samples depend on the location and time of the irresponsive sample.

 9

It is also worth mentioning that our approach is different than active training/learning

with support vectors [38; 49; 50]. Active learning trains the predictor using only a subset of

training samples which are considered the most uncertain ones. The most uncertain training

samples are those lying closest to the classifier’s boundary decision. In our approach, we assign a

spatial-temporal weight to each training sample, prune training samples with very low spatial-

temporal weights, and bias the predictor in favor of more important training samples. The

importance of training samples, in our approach, is determined based on the strength of their

spatial-temporal autocorrelation with the irresponsive sample.

Our approach is also different than mixture of experts [51]. Mixture of experts is an

ensemble method for combining different learners, where the feature space is divided between

different learners/experts. The position of an irresponsive sample in the feature space determines

which learner should be used for predicting a response. The mixture of experts has two main

parts: individual learner/expert networks and the gating network. The gating network decides

which learner should be used to predict the irresponsive sample’s output and passes the

irresponsive sample to the appropriate learner. Then the selected learner would predict the

irresponsible sample’s output. Training consists of optimizing the parameters of individual

learners and the parameters of the gating network. Figure 1.6 shows a mixture of k experts,

where θ1 to θk are the gating network’s parameters, x is an input feature vector, and y is its

output. The gating network decides which learner is appropriate for this input sample and assigns

a higher probability (θ) to that learner’s output. Mixture of experts is a local machine learning

technique, where an irresponsive sample’s output is predicted trough a learner that has been

trained using training samples close to that irresponsive sample in the feature space. In other

words, training samples that are close to the irresponsive sample in the feature space will

 10

contribute more in predicting the irresponsive sample’s output than distant training samples. It is

different than the proposed approach in this thesis because the contribution of training samples in

predicting an irresponsive sample’s output, in our work, is proportional to their spatial-temporal

autocorrelation with the irresponsive sample in the space-time domain rather than the feature

space. Besides, while in mixture of experts the contribution of training samples (the selection of

the appropriate learner) is a function of Euclidean distance in the feature space, in our work the

contribution of training samples is a function of autocorrelation in space-time domain.

Expert 1

Gating
network

Expert 2

Expert k

...

yx

θ1

θ2

θk

Figure 1.6. Mixture of experts.

At the end, the accuracy and time performance of the proposed approach will be

compared against the following approaches:

a) ignoring location and time and using non-weighted machine learning techniques,

b) considering location and time as additional features in non-weighted machine

learning techniques,

 11

c) considering location and time as the only features in non-weighted machine learning

techniques, and

d) estimating the irresponsive sample’s response based on the weighted votes (i.e.,

spatial-temporal weights) of training samples’ responses.

1.4 RESEARCH QUESTIONS AND CONTRIBUTIONS

In this thesis the following research questions are addressed:

• How do we bias different machine learning techniques in favor of training samples

with larger weights?

• How do we determine the weight of a training sample for spatial-temporal data?

• Will the proposed weighted machine learning significantly improve the generalization

accuracy in comparison with simply ignoring the location and time or considering

them as features?

The contributions of this research are:

• Developing weighted machine learning techniques.

• Formulation of spatial-temporal autocorrelations of geographic phenomena and

incorporating them as external knowledge in the training process.

 12

1.5 ORGANIZATION OF THE DISSERTATION

This chapter showed the problem addressed in this thesis, highlighted its importance in both

spatial-temporal statistics and machine learning, stated the research questions and contributions,

and briefly introduced the proposed approach. Chapter 2 reviews select literature on machine

learning techniques applied to spatial-temporal data. Chapter 3 discusses the developed weighted

versions of select machine learning algorithms. Chapter 4 explains how the training samples’

weights are calculated using spatial and temporal semivariograms. Chapter 5 includes

experiments with real spatial-temporal datasets to compare the accuracy and time performance of

the proposed approach with traditional ones. Chapter 6 concludes this work by providing insight

into the proposed approach and future directions.

 13

2.0 BACKGROUND

Li et al. [52] showed that combining machine learning techniques such as RF, RT, or SVM with

spatial interpolation methods such as kriging or inverse distance squared (IDS) improves the

accuracy in predicting seabed mud content in the southwest Australian margin. For these

combined methods, first the machine learning technique is applied to the features, then the

spatial interpolation method is applied to the residuals of the machine learning technique, and

finally the interpolated residual values are added to the predicted values to produce the final

predictions. The input features include bathymetry, distance-to-coast, seabed-slope, latitude,

longitude, as well as their second and third powers, multiplication of latitude and longitude,

multiplication of latitude to the second power of longitude, and multiplication of longitude to the

second power of latitude. Their results showed that RF-OK (random forest combined with

ordinary kriging), RF-IDS (random forest combined with inverse distance squared), random

forest (RF), and RT-OK (regression tree combined with ordinary kriging) are the most accurate

ones, respectively. Combination of SVM (with a linear or Gaussian kernel) with ordinary kriging

(OK) or inverse distance squared (IDS) considerably improved its prediction accuracy, although

it is still less accurate than OK or IDS. RF [53] was more accurate than regression tree (RT) and

RT was more accurate than SVM.

Kanevski et al. [24] applied a similar approach in combining machine learning techniques

with geostatistical models with the difference that the spatial coordinates of observations were

 14

the only input features to machine learning techniques. They showed that nonlinear regression

models including multilayer perceptron (MLP) and support vector regression (SVR) [54] with

Gaussian kernel trained with spatial coordinates as input features could capture the nonlinear

global spatial trend in the response variable. However, they leave the local spatial autocorrelation

behind which manifests itself as spatially autocorrelated prediction residuals. Sequential

Gaussian simulation was then applied to model these local prediction residuals. They reported a

better generalization accuracy for the combined approach than either of machine learning or

geostatistical models alone in predicting the radioactive soil contamination. In another effort to

apply local regression models rather than global ones in predicting the radioactive soil

contamination, Kanevski et al. [55] used spatial coordinates as the only input features to train a

kNN and a general regression neural network (GRNN). GRNN is a non-parametric regression

model based on Parzen windows [56]. They considered two versions of GRNN, one isotropic

where the kernel bandwidth is the same in all directions and another anisotropic where the kernel

has different bandwidths in different directions. To consider different bandwidths for different

directions in a kernel, a matrix can be used as the bandwidth instead of a constant value. They

considered two directions in their anisotropic GRNN model and found the optimal directions and

bandwidths for those directions using leave-one-out cross-validation. KNN, isotropic and

anisotropic GRNN resulted in an RMSE of 22.1, 12.4, and 11.9, respectively. This result

indicates that (a) assigning different weights to neighbors based on Parzen windows, as in

GRNN, improves the accuracy compared with equal weights for neighbors, as in kNN, and (b)

considering different bandwidths in different directions for the kernel, as in anisotropic GRNN,

improves the accuracy compared with a single bandwidth, as in isotropic GRNN.

 15

Gilardi and Bengio [25; 33] compared the generalization accuracy of four regression

techniques in estimating the rainfall based on spatial coordinates of observations. Their results,

in line with Kanevski et al. [24] results, confirmed that global regression models, including MLP

and SVR [54] with Gaussian kernel, trained with spatial coordinates as input features capture the

nonlinear global spatial trend in the response variable but leave the local spatial autocorrelation

behind. On the other hand, local regression techniques, including mixture of experts (ME) [57]

and local SVR (which is the standard SVR trained only by responsive samples near the

irresponsive sample in the feature space), achieved slightly better generalization accuracies

because they were able to partly capture the local spatial autocorrelation. They reported an

RMSE of 63.4, 59, 57.1, and 53.2 for SVR, MLP, local SVR, and ME, respectively.

Santibanez et al. [6] compared the accuracy of different machine learning techniques in

regressing median rent price per zip code of a two bedroom two bathroom apartment in the

Miami-Fort Lauderdale-West Palm Beach metropolitan area in Florida, USA, based on 23

demographic features. Location and time were not among the features. The best accuracy was

achieved by MLP combined with PCA, followed by SVM with Gaussian kernel, RF, cubist,

partial least squares, MLP, gradient boosting machine, SVM with linear kernel, and general least

squares. Santibanez et al. [7] compared the accuracy of the same machine learning techniques

with the same input features but with simulated data of varying degrees of spatial

autocorrelation. SVM with Gaussian kernel resulted in the highest accuracy for weaker spatial

autocorrelations, MLP with PCA achieved the same accuracy as SVM with Gaussian kernel as

spatial autocorrelation was increased, and finally cubist performed best when the spatial

autocorrelation was very strong.

 16

Cracknell and Reading [58] applied five machine learning techniques, Naïve Bayes (NB),

kNN, RF, SVM (using the one-against-one scheme), and MLP, in classifying lithology based on

airborne geophysics (containing a digital elevation model, total magnetic intensity, and four

gamma-ray spectrometry channels comprising Potassium, Thorium, Uranium, and total count

channels) and Landsat ETM+ images. RF achieved the highest accuracy followed by SVM,

kNN, MLP, and NB where kNN ran fastest and SVM slowest. They considered different

scenarios for spatial distribution of training samples with/without considering location as an

input feature. They observed that regardless of including/excluding location as an input feature,

substantial higher accuracies are achieved by all machine learning techniques as training samples

become more spatially dispersed across the geographic region. This is not surprising as spatial

autocorrelation among responses of training samples limits proper training when training

samples are not well scattered in the geographic region. Another observation was that higher

generalization accuracies are achieved when location is considered as the only feature compared

to the other two scenarios that either exclude location or consider it as an additional feature.

Although, it is plausible that considering location as an additional feature would improve the

generalization accuracy, the better accuracy achieved with using location as the only feature than

using it in combination with other features is surprising. This can be true if the spatial

distribution of training samples is dense and well engineered and even in that case the trained

machine will not perform as well if an irresponsive sample is beyond the autocorrelation range of

all training samples.

Table 2.1 provides a list of select scientific articles that do not consider location and time,

as features, when applying machine learning techniques for predicting spatial-temporal

responses.

 17

Table 2.1. Machine learning methods applied to spatial-temporal data in the literature ignoring location and time.

 Response Features Machine learning method Accuracy

[17]

Classification
with two
classes:
Propensity of
forests in
southern
Cameroon for
deforestation

• Distance to the nearest road weighted by the
average transportation cost

• Distance to the nearest market town weighted by
the average transportation cost and the price of the
agricultural products at the market town

• Soil aptitude for agriculture
• Shortest distance to the nearest forest/nonforest

edge
• Spatial fragmentation of the forest cover in the

immediate surroundings of each location

Logistic regression
(different models are
developed for different
time scales)

Precision =
89%

[59]
Classification
with 9 classes:
Landuse

• Bands 2, 4, 5, and 7 of Landsat TM data
• Geology
• Hydrology (flow accumulation)
• Surface morphology (slope, aspect)

MLP
overall
accuracy =
72.61%

[60]
Classification
with 6 classes:
Landuse

• All four bands of SPOT 6 image (blue, green, red,
and near-infrared)

• A cluster number assigned to each pixel based on
Fuzzy k-means clustering algorithm from all four
bands of the image

• NDVI calculated for each pixel from the red and
near-infrared bands

SVM with Gaussian
kernel (using the one-
against-all scheme). A 3
× 3 pixel majority filter
was applied to all
classifications to
eliminate the salt and
pepper noise.

Overall
accuracy =
98%

[61]

Classification
with 13
classes:
Landuse

Global 8 km resolution AVHRR Pathfinder Land data
for 1984 with 24 metrics including, the maximum
annual, minimum annual, mean annual, and, amplitude
(maximum minus minimum) for
• the normalized difference vegetation index

(NDVI),
• Channel 1 (visible reflectance, 0.58–0.69 μm),
• Channel 2 (near-infrared reflectance, 0.725–1.1

μm),
• Channel 3 (thermal infrared, 3.55–3.93 μm),
• Channel 4 (thermal, 10.3–11.3 μm), and
• Channel 5 (thermal, 11.5–12.5 μm)

Decision tree
Overall
accuracy =
85%

Decision tree with
bagging

Overall
accuracy =
87%

Decision tree with
boosting

Overall
accuracy =
89.5%

Classification
with 6 classes:
Landuse

Landsat Thematic Mapper scene around Pucallpa, Peru
acquired 16 October 1996 including
• five bands at 30 m resolution (.45–.53 μm, .52–.60

μm, .63–.69 μm, .76–.90 μm, and 1.55–1.75 μm)

Decision tree
Overall
accuracy =
84.5%

Decision tree with
bagging

Overall
accuracy =
87%

Decision tree with
boosting

Overall
accuracy =
89.5%

[62]
Classification
with 5 classes:
Grassland type

• SAR data (a total of 12 ENVISAT ASAR images
operated at C-band, 15 ERS-2 images operated at
C-band, and 12 ALOS PALSAR images operated
at L-band),

• Ancillary data (soils, sub-soils, elevation, and
slope)

SVM with Gaussian
kernel (using the one-
against-one scheme)

Overall
accuracy =
92.5- 97.9%

RF
Overall
accuracy =
92.4-98%

Extremely randomized
trees

Overall
accuracy =
94.1- 98.7%

 18

[63]

Classification
with 2 classes:
Miscanthus
presence/abse
nce at the
level of the
farmer’s block

• Agronomical variables (topsoil water capacity, soil
texture, and distance to rivers)

• Morphological variables (size, shape, and
maximum values of elevation and slope for each
farmer’s block)

• Contextual variables (the farmer’s block distance
to the overall farmland, to the transformation plant,
and to the road, proximity to the built-up areas, and
length of the parcel boundaries shared with the
neighboring woods)

Boosted regression tree

AUC (for
training
data) =
0.793

[21]

Classification
with 2 classes:
Presence or
absence of
harmful algal
blooms in the
Gulf of
Mexico

• The level-2 SeaWiFS sensor data (bands at 443,
490, 510, and 555 nm, and Chlorophyll-a) for the
period 1999–2004 with a spatial resolution of 1.1
Km.

• The level-2 MODIS-A sensor data (bands at 412,
443, 488, 531, and 551 nm and Chlorophyll-a) for
the period 2002–2004 with a spatial resolution of 1
Km.

• Ancillary data (meteorological and ozone data)
• The feature vector (spectral data) at each sample is

the average of features in a cubical window of size
3° of latitudes, 3° of longitudes, and 3 days
centered at that sample.

• Kernel PCA was used to transform features and
only the first 300 components for SeaWiFS
features and 72 components for MODIS-A features
are used.

SVM with HTRBF
kernel (the classifier’s
parameters are optimized
trough cross validation
with Genetic Algorithm
applied to narrow down
the search space)

Kappa
coefficient =
0.75

[64]

Classification
with 2 classes:
Landslide
prone/non-
prone areas

• Convergence index (characterizes soil and debris
erosion and deposition within the landscape)

• Compound terrain index (the logarithm of the ratio
between upslope contributing area and slope
gradient)

• Distance from channel base level (the limiting level
below which a stream cannot erode its channel)

• Distance from faults
• Distance from thrust
• Downslope distance gradient (how far a given

amount of water must travel in the landscape to
lose a certain amount of potential energy)

• Elevation
• Insolation (the amount of radiation reflected by the

terrain)
• Internal relief (maximum elevation change per unit

area)
• Morphological protection index (the positive

openness which expresses the degree of dominance
or enclosure of a location within the landscape)

• Slope
• Stream power index (expresses the erosive

potential of overland flow)
• The presence of clay and marl-rich sedimentary

formations
• Attitude of rock strata
• Landuse

ν-SVM with radial basis
function Gaussian kernel
(the classifier’s
parameters are optimized
trough cross validation)

AUC = 0.83

Logistic regression AUC = 0.79

Linear discriminant
analysis AUC = 0.79

Naïve Bayes AUC = 0.76

[65]

Regression:
Intra-and-inter
species forest
aboveground
biomass level

• All five bands of 5m RapidEye images (blue,
green, red, near infrared, and red-edge)

• NDVI and 13 other vegetation indices calculated
for each pixel from different bands of RapidEye
images

Stochastic gradient
boosting regression tree R2 = 0.61

RF R2 = 0.37

 19

3.0 WEIGHTED MACHINE LEARNING

In this chapter, machine learning algorithms are modified to take the training samples’ weights

into account. The weighted machine learning techniques developed in this chapter, not only

provide users with the opportunity to give different weights to training samples, but also can be

embedded into other algorithms such as AdaBoost [66; 67], where there is a hierarchy of

classifiers, each requiring to be trained using a different weighting over training samples. Figure

 3.1 shows, schematically, how non-weighted linear predictors become biased when the training

samples’ weights are taken into account. Figure 3.2 shows the same for nonlinear predictors.

There are two classes, one indicated with circles and the other with squares. Darkness of training

samples shows their weights and the classifier is represented with a dashed line. The weighted

classifier decides in favor of more important samples by keeping more distance from them.

l1

l2

l1

l2

If training samples’ weights
are taken into account

Figure 3.1. A non-weighted linear classifier (left) vs. a weighted linear classifier (right).

 20

l1

l2

l1

l2

If training samples’ weights
are taken into account

Figure 3.2. A non-weighted nonlinear classifier (left) vs. a weighted nonlinear classifier (right).

To bias the predictor in favor of more important training samples, we embed the training

samples’ weights into the cost function. This way we regulate the misclassification cost based on

the weights during training. In other words, misclassifying more important training samples

would be more costly and the predictor will attempt to avoid it. This approach is possible only

for machine learning algorithms which are based on minimizing a cost function. For Bayesian

predictors, we embed the training samples’ weights into the probability distribution functions.

This way we increase the likelihood of a class when the irresponsive sample (the sample with an

unknown output) is close to training samples with large weights in that class. In short, training

the weighted predictor is more concerned about correct prediction of training samples with larger

weights than those with smaller weights. As a result, the trained model predicts in favor of

training samples with larger weights. This makes the weighted predictor different than its non-

weighted counterpart.

In this chapter, we use the training dataset in Table 3.1 to show the difference between

the weighted machine learning techniques developed here and their non-weighted counterparts.

We consider two classes ω1 and ω2, each with 10 samples, and two features l1 and l2 to simplify

the visualization. Training samples and their weights in this table are chosen carefully to

emphasize the difference between weighted and non-weighted predictors. The training dataset is

 21

shown in Figure 3.3. Circles represent class ω1 and squares represent class ω2. Darkness of

training samples shows their weight.

Table 3.1. Training samples and their weights.

l1 l2 Class Spatial-temporal weight
1 2 ω1 1
1 3 ω1 1
2 1 ω1 1
2 2 ω1 1
2 3 ω1 1
2 4 ω1 1
3 2 ω1 1
3 3 ω1 1
4 1 ω1 2
4 4 ω1 4
3 1 ω2 1
3 4 ω2 1
4 2 ω2 1
4 3 ω2 1
5 1 ω2 1
5 2 ω2 1
5 3 ω2 1
5 4 ω2 1
6 2 ω2 1
6 3 ω2 1

1

2

3

4

1 2 3 4
l1

l2

5 6

ω1 ω2

Figure 3.3. Training samples from two classes, circles and squares, shaded based on their weights.

 22

3.1 BAYESIAN PREDICTOR

3.1.1 Classification

The Bayes classifier calculates the probability of different classes given the observed feature

vector as p(ωj|x)=p(ωj)p(x|ωj)/p(x) and then assigns x to the class with the highest probability

[37; 38]; where p(ωj|x) is the posterior probability, p(ωj) is the prior probability, and p(x|ωj) is

the likelihood. The denominator, p(x), is usually ignored in calculations as it is the same for all

classes. A simple way to embed weights (gi) for training samples into the Bayes classifier is to

define the prior probability (p(ωj)) as the sum of weights of training samples belonging to class

ωj divided by the sum of all weights (Equation (3.1)).

𝑝�𝜔𝑗� = � 𝑔𝑖
∀𝑖|𝑥𝑖∈𝜔𝑗

�𝑔𝑖
∀𝑖

� (3.1)

Regardless of parametric or non-parametric definition of the likelihood (p(x|ωj)), an

important drawback with this simple approach is that it does not consider where the irresponsive

sample (x) is situated with respect to more important training samples in each class. For example,

the irresponsive sample in Figure 3.4, shown with a cross, is closer to more important samples

(darker ones in the figure) in ω2 and one expects it to be classified in ω2. However, based on the

aforementioned approach, it will be classified in ω1 because ω1 has a larger prior (p(ω1)>p(ω2))

and the likelihoods for two classes are equal (p(x|ω1)=p(x|ω2)). Likelihoods, p(x|ω1) and p(x|ω2),

are calculated without considering the weights. To solve this problem, weights need to be

considered in likelihoods.

 23

ω2ω1

Figure 3.4. Two classes shown with circles and squares where the darkness of samples shows their weight with
respect to the irresponsive sample, shown with a cross.

To take into account the position of x with respect to more important training samples in

each class, we define the likelihood (p(x|ωj)) based on non-parametric Parzen windows [56],

shown in Equation (3.2), instead of calculating the priors from Equation (3.1).

𝑝�𝑥|𝜔𝑗� =
1
𝑁𝑗

� 𝑔𝑖𝐾(𝑥 − 𝑥𝑖 ,𝛴𝑗)
∀𝑖|𝑥𝑖∈𝜔𝑗

 (3.2)

In this equation, Nj is the size of the class ωj, xi represents the feature vector of the i-th

training sample, x represents the irresponsive sample’s feature vector, gi is the i-th training

sample’ weight, K is the kernel function, and Σj is the covariance matrix for class ωj. The step

kernel in Equation (3.3) or the Gaussian kernel in Equation (3.4) can be used in Equation (3.2),

where l is the dimension of feature space and the subscript k in xk and 𝑥𝑖𝑘 refers to the k-th

feature in the corresponding feature vector. More kernels are available in Hardle [68] and Fan

and Gijbels [69]. Instead of choosing the kernel bandwidth to be a constant value, which is the

common practice, we choose the covariance matrix for class ωj (shown by Σj) divided by a

constant value (shown by σ) as the kernel bandwidth for class j. The constant value (σ) can be

tuned using cross-validation.

𝐾�𝑥 − 𝑥𝑖 ,𝛴𝑗� = �
1

�𝛴𝑗 𝜎⁄ �1/2 �𝑥𝑘 − 𝑥𝑖𝑘� <
1
2
�𝛴𝑗 𝜎⁄ �

1
2𝑙

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� (3.3)

 24

𝐾�𝑥 − 𝑥𝑖 ,𝛴𝑗� =
1

(2𝜋)𝑙/2�𝛴𝑗 𝜎⁄ �1/2 𝑒𝑥𝑝 (−
1
2

(𝑥 − 𝑥𝑖)𝑇�𝛴𝑗 𝜎⁄ �−1(𝑥 − 𝑥𝑖)) (3.4)

Applying Equation (3.2) to calculate the likelihoods in Figure 3.4 results in

p(x|ω1)<p(x|ω2) and consequently p(ω1|x)<p(ω2|x) which classifies the irresponsive sample in ω2.

3.1.2 Regression

In case of regression, Equation (3.5) can be used to estimate the response at the irresponsive

sample x. This equation estimates the response at x as the weighted average of other training

samples’ responses, where each training sample’s weight is the multiplication of its original

weight (gi) by the output of the kernel for that training sample (K(x-xi,Σ)). In other words, a

training sample’s weight in this equation (giK(x-xi,Σ)) is the combination of its importance as

well as its distance to the irresponsive sample in the feature space. The latter is what the kernel is

concerned about.

𝑦(𝑥) =
∑ 𝑦𝑖𝑔𝑖𝐾(𝑥 − 𝑥𝑖 ,𝛴)𝑁
𝑖=1
∑ 𝑔𝑖𝐾(𝑥 − 𝑥𝑖 ,𝛴)𝑁
𝑖=1

 (3.5)

Since there are no classes in regression, the covariance matrix (Σ) in Equation (3.5) is

defined as the covariance matrix over all training samples.

3.1.3 Experiment

Here we use the dataset in Table 3.1 to show the effect of embedding training samples’ weights

in likelihoods (Equation (3.2)) on the irresponsive sample’s classification. Priors are considered

equal since the frequencies of the two classes are the same. The Gaussian kernel in Equation

(3.4) with a bandwidth of Σj/3 is used as Parzen window, where Σj shows the covariance matrix

 25

of class ωj. Figure 3.5 shows the division of the feature space between the two classes with and

without considering the training samples’ weights in calculating the likelihoods. It is shown that

when the weighted Bayesian classifier is applied, the classification of the irresponsive sample

(shown with a cross) is switched from class ω2 to class ω1 because of its proximity to some

important samples in class ω1.

1

2

3

4

1 2 3 4
l1

l2

5 6

ω1 ω2

1

2

3

4

1 2 3 4
l1

l2

5 6

ω1 ω2

Figure 3.5. Division of the feature space between the two classes, circles and squares, without (left) and with (right)
considering the training samples’ weights (darkness of samples) in Bayesian classifier.

3.2 LINEAR PREDICTORS

3.2.1 Least squares (LS)

The output of the LS predictor is xTw where w is the extended weight vector to include the

threshold or intercept (w0) and x is the extended feature vector to include a 1. The desired output

is denoted with yi. The weight vector will be computed so as to minimize the sum of square

errors between the desired and true outputs [39], that is:

 26

𝐽(𝑤) = �(𝑦𝑖 − 𝒙𝑖𝑇𝒘)2
𝑁

𝑖=1

 (3.6)

where N is the number of training samples. Minimizing the cost function in Equation

(3.6) with respect to w results in:

𝜕𝐽(𝒘)
𝜕𝒘

= 0 →�𝒙𝑖(𝑦𝑖 − 𝒙𝑖𝑇𝒘)
𝑁

𝑖=1

= 0 → ��𝒙𝑖𝒙𝑖𝑇
𝑁

𝑖=1

�𝑤 = �𝒙𝑖𝑦𝑖

𝑁

𝑖=1

 (3.7)

Let us define:

𝑿 =

⎣
⎢
⎢
⎡𝒙1

𝑇

𝒙2𝑇
⋮
𝒙𝑁𝑇 ⎦
⎥
⎥
⎤

= �

𝑥11 𝑥12 … 𝑥1𝑙 1
𝑥21 𝑥22 … 𝑥2𝑙 1
⋮ ⋮ ⋱ ⋮ ⋮
𝑥𝑁1 𝑥𝑁2 … 𝑥𝑁𝑙 1

� 𝑎𝑛𝑑 𝑦 = �

𝑦1
𝑦2
⋮
𝑦𝑁

� (3.8)

where X is an N×(l+1) matrix whose rows are the feature vectors with an additional 1, l

is the number of features, and y is a vector consisting of the corresponding desired responses.

Then:

�𝒙𝑖𝒙𝑖𝑇
𝑁

𝑖=1

= 𝑿𝑇𝑿 𝑎𝑛𝑑 �𝒙𝑖𝑦𝑖

𝑁

𝑖=1

= 𝑿𝑇𝑦 (3.9)

By substituting Equation (3.9) in Equation (3.7) we have:

(𝑿𝑇𝑿)𝒘 = 𝑿𝑇𝑦 → 𝒘 = (𝑿𝑇𝑿)−1𝑿𝑇𝑦 (3.10)

Matrix X+=(XTX)-1XT is known as the pseudoinverse of X and is equal to X-1 if X is

square. To develop the weighted version of LS predictor, we adjust the cost of error based on the

weight of training samples (gi),

𝐽(𝑤) = �𝑔𝑖(𝑦𝑖 − 𝒙𝑖𝑇𝒘)2
𝑁

𝑖=1

 (3.11)

Minimizing the cost function in Equation (3.11) with respect to w results in:

 27

𝜕𝐽(𝒘)
𝜕𝒘

= 0 →�𝑔𝑖𝒙𝑖(𝑦𝑖 − 𝒙𝑖𝑇𝒘)
𝑁

𝑖=1

= 0 → ��𝑔𝑖𝒙𝑖𝒙𝑖𝑇
𝑁

𝑖=1

�𝑤 = �𝑔𝑖𝒙𝑖𝑦𝑖

𝑁

𝑖=1

 (3.12)

Let us define:

𝐺 = �

𝑔1 0 0 0
0 𝑔2 0 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑔𝑁

� (3.13)

Then:

�𝑔𝑖𝒙𝑖𝒙𝑖𝑇
𝑛

𝑖=1

= 𝑿𝑇𝐺𝑿 𝑎𝑛𝑑 �𝑔𝑖𝒙𝑖𝑦𝑖

𝑛

𝑖=1

= 𝑿𝑇𝐺𝑦 (3.14)

Substituting Equation (3.14) in Equation (3.12) results in:

(𝑿𝑇𝐺𝑿)𝒘 = 𝑿𝑇𝐺𝑦 → 𝒘 = (𝑿𝑇𝐺𝑿)−1𝑿𝑇𝐺𝑦 (3.15)

Equation (3.15) is known as weighted least squares [70]. Let us investigate what happens

if the weight of all training samples is equal to a constant c. In this case, G=c×IN×N where IN×N is

the N×N identity matrix. Substituting this in Equation (3.15) results in:

𝒘 = (𝑿𝑇𝑐𝐼𝑿)−1𝑿𝑇𝑐𝐼𝑦 = (𝑐𝑿𝑇𝑿)−1𝑐𝑿𝑇𝑦 =
1
𝑐

(𝑿𝑇𝑿)−1𝑐𝑿𝑇𝑦 = (𝑿𝑇𝑿)−1𝑿𝑇𝑦 (3.16)

In other words, the weighted LS is no different than the non-weighted LS if all weights

are equal. This is the case with all weighted predictors developed in this work.

 28

3.2.1.1 Experiment Here we use the dataset in Table 3.1 to show the effect of embedding the

training samples’ weights in LS (Equation (3.15)). Figure 3.6 shows the division of the feature

space between the two classes with and without considering the training samples’ weights in

computing the linear classifier. In the weighted LS classifier, training samples with large weights

from ω1 push the border toward class ω2.

1

2

3

4

1 2 3 4
l1

l2

5 6

ω1 ω2

Figure 3.6. Division of the feature space between the two classes, circles and squares, without (solid line) and with
(dashed line) considering the training samples’ weights (darkness of samples) in LS classifier.

3.2.2 Perceptron

The perceptron cost function is defined as [40]:

𝐽(𝒘) = �𝑦𝑖𝒘𝑇𝒙𝑖

𝑁

𝑖=1

 , 𝑦𝑖 = �

+1 𝑖𝑓 𝑤𝒙𝑖 > 0 𝑏𝑢𝑡 𝒙𝑖 ∈ 𝜔2
−1 𝑖𝑓 𝑤𝒙𝑖 < 0 𝑏𝑢𝑡 𝒙𝑖 ∈ 𝜔1
 0 𝑖𝑓 𝑤𝒙𝑖 > 0 𝑎𝑛𝑑 𝒙𝑖 ∈ 𝜔1
 0 𝑖𝑓 𝑤𝒙𝑖 < 0 𝑎𝑛𝑑 𝒙𝑖 ∈ 𝜔2

� (3.17)

where N is the number of training samples, xi is the i-th feature vector including an

additional 1 as its last element, and w is the weight vector (the perpendicular vector to the

hyperplane classifier toward class ω1) including the threshold (w0) as its last element. The cost

function is minimized if the classifier produces a positive response for samples of class ω1 and a

 29

negative response for samples of class ω2. We can iteratively find the weight vector that

minimizes the perceptron cost function using the gradient descent scheme [40; 71]:

𝒘𝑡+1 = 𝒘𝑡 + ∆𝒘𝑡 = 𝒘𝑡 − 𝛼
𝜕𝐽(𝒘)
𝜕𝒘

|𝒘=𝒘𝑡 = 𝒘𝑡 − 𝛼�𝑦𝑖𝒙𝑖

𝑁

𝑖=1

 (3.18)

where wt is the weight vector estimate at the t-th iteration and α is the training rate which

is a small positive number. Equation (3.18) is called batch mode training [72] where all training

samples participate in calculating the gradient at each iteration. We can also apply the pattern or

online mode [72] where the gradient at each iteration is calculated based on only one training

sample; or the stochastic mode [73] where the gradient at each iteration is calculated based on a

small random subset of training samples.

We embed the training samples’ weights (gi) in the perceptron cost function (Equation

(3.19)) to punish the classifier more for misclassifying training samples with larger weights and

less for training samples with smaller weights. In other words, the training samples’ weights

enter the cost function to adjust the perceptron cost based on the importance of training samples.

The perceptron classifier is no longer equally fair to all training samples.

𝐽(𝒘) = �𝑔𝑖𝑦𝑖𝒘𝑇𝒙𝑖

𝑁

𝑖=1

 (3.19)

With the new cost function, the iterative steps for updating the weight vector through the

gradient descent scheme will change to:

𝒘𝑡+1 = 𝒘𝑡 + ∆𝒘𝑡 = 𝒘𝑡 − 𝛼
𝜕𝐽(𝒘)
𝜕𝒘

|𝒘=𝒘𝑡 = 𝒘𝑡 − 𝛼�𝑔𝑖𝑦𝑖𝒙𝑖

𝑁

𝑖=1

 (3.20)

If we define 𝛼𝑖∗=αgi we obtain:

 30

𝒘𝑡+1 = 𝒘𝑡 −�𝛼𝑖∗𝑦𝑖𝒙𝑖

𝑁

𝑖=1

 (3.21)

Therefore, the weighted perceptron classifier can be obtained by including the weights in

the cost and defining the training rate as 𝛼𝑖∗=αgi which means a different training rate for each

training sample based on its weight. Adjusting the training rate based on the training samples’

weights and including the weights in the cost function bias the trained perceptron in favor of

training samples with larger weights.

3.2.2.1 Experiment Here we use the dataset in Table 3.1 to show the effect of including training

samples’ weights in perceptron classifier. Figure 3.7 shows the division of the feature space

between the two classes with and without considering the training samples’ weights in

computing the linear classifier. The high cost of misclassifying important samples from class ω1

in weighted perceptron classifier pushes the border toward class ω2.

1

2

3

4

1 2 3 4
l1

l2

5 6

ω1 ω2

Figure 3.7. Division of the feature space between the two classes, circles and squares, without (solid line) and with
(dashed line) considering the training samples’ weights (darkness of samples) in perceptron classifier (logistic

activation function and adaptive training rate with 1000 iterations).

 31

3.2.3 SVM

3.2.3.1 Two linearly separable classes Assume ω1 and ω2 are two linearly separable classes

shown in Figure 3.8. SVM [41; 42; 43] maximizes the margin around the hyperplane separating

the two classes by maximizing the distance to the closest point from either class. We know that

the distance between a sample xi and a hyperplane f(x)=wTx+w0=0 is obtained from |f(xi)|/||w||.

Assume x1 is the nearest sample in class ω1 to the hyperplane f(x) and x2 is the nearest sample in

class ω2 to the hyperplane f(x). Then x1 and x2 are called support vectors. To maximize the

margin, the hyperplane f(x) must intersect the line connecting x1 and x2 at its midpoint, as shown

in Figure 3.8. Therefore, we can scale w and w0 so that f(x1)=1 and f(x2)=-1. This leads to having

a margin of:

|𝑓(𝑥1)|
�|𝑤|�

+
|𝑓(𝑥2)|
�|𝑤|�

=
1

�|𝑤|�
+

1
�|𝑤|�

=
2

�|𝑤|�
 (3.22)

Since x1 and x2 are the closest samples to the hyperplane f(x), the distance of other

samples from the hyperplane is greater than 1/||w||, as shown in Figure 3.8. Therefore, we have:

� 𝑓
(𝑥𝑖) ≥ 1 ∀𝑥𝑖 ∈ 𝜔1

𝑓(𝑥𝑖) ≤ −1 ∀𝑥𝑖 ∈ 𝜔2
� (3.23)

 32

Clas
sifi

er:
w
T x+w0 =

 0

l1

l2

ω1

ω2

Maxim
um marg

in = 1/||w
||

Maxim
um marg

in = 1/||w
||

Figure 3.8. SVM classifier for two linearly separable classes; black points show support vectors.

We define:

𝑦𝑖 = �+1 ∀𝑥𝑖 ∈ 𝜔1
−1 ∀𝑥𝑖 ∈ 𝜔2

� (3.24)

Substituting Equation (3.24) in Equation (3.23) results in:

𝑦𝑖𝑓(𝑥𝑖) ≥ 1, ∀𝑥𝑖 (3.25)

We need to maximize the margin (2/||w||) in Equation (3.22) which is equivalent to

minimizing the norm ||w||. The mathematical formulation for finding w and w0 of the hyperplane

follows:

�𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽(𝑤,𝑤0) =
1
2
‖𝑤‖2 =

1
2
𝑤𝑇𝑤

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑤0) ≥ 1 , 𝑖 = 1,2, … ,𝑁
�

(3.26)

(3.27)

where N is the number of training samples. The above cost function is convex and the

constraints are linear and define a convex set of feasible solutions. The corresponding

Lagrangian function ℒ(w,w0, λ) for the above convex programming problem is defined as follows

[74; 75; 76; 77]:

 33

ℒ(𝑤,𝑤0, 𝜆) =
1
2
𝑤𝑇𝑤 −�𝜆𝑖[𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑤0) − 1]

𝑁

𝑖=1

 (3.28)

where λi, i=1,2,…,N are the Lagrangian multipliers associated with the constraint in

Equation (3.27). We need to find w, w0, and λ by solving the Lagrangian duality:

𝑚𝑎𝑥𝜆≥0 𝑚𝑖𝑛𝑤,𝑤0 ℒ(𝑤,𝑤0, 𝜆) [74; 75; 76; 77]. The Karush–Kuhn–Tucker conditions that

𝑚𝑖𝑛𝑤,𝑤0 ℒ(𝑤,𝑤0, 𝜆) has to satisfy are [74; 75; 76; 77]:

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝜕ℒ(𝑤,𝑤0, 𝜆)

𝜕𝑤
= 0 → 𝑤 = �𝜆𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

𝜕ℒ(𝑤,𝑤0, 𝜆)
𝜕𝑤0

= 0 →�𝜆𝑖𝑦𝑖

𝑁

𝑖=1

= 0

𝜆𝑖 ≥ 0 , 𝑖 = 1,2, … ,𝑁
𝜆𝑖[𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑤0) − 1] = 0 , 𝑖 = 1,2, … ,𝑁 (𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦 𝑠𝑙𝑎𝑐𝑘𝑛𝑒𝑠𝑠 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠)

�

(3.29)

(3.30)

(3.31)

(3.32)

Equations (3.29) and (3.30) depend only on training samples whose λi≠0, referred to as

support vectors. On the other hand, the conditions in Equation (3.32) state that either λi or

yi(wTx+w0)-1 must be zero. Therefore support vectors are training samples where |wTx+w0|=1

(yi(wTx+w0)-1=0 and λi≠0) which means they are on the boundary of the margin. Therefore,

Equations (3.29) and (3.30) depend only on support vectors and consequently the hyperplane

classifier is designed only based on support vectors and is independent of other training samples

because their λi is zero. While, none of the training samples falls inside the margin (by

construction), this is not necessarily the case for irresponsive samples. The intuition is that

maximizing the margin on the training samples will lead to good separation on the irresponsive

samples.

By expanding Equation (3.28), we have:

ℒ(𝑤,𝑤0, 𝜆) =
1
2
𝑤𝑇𝑤 − 𝑤𝑇�𝜆𝑖𝑦𝑖𝑥𝑖 − 𝑤0�𝜆𝑖𝑦𝑖

𝑁

𝑖=1

+ �𝜆𝑖

𝑁

𝑖=1

𝑁

𝑖=1

 34

By replacing ∑ 𝜆𝑖𝑦𝑖𝑁
𝑖=1 = 0 from Equation (3.30) in the above equation, we get:

ℒ(𝑤,𝑤0, 𝜆) =
1
2
𝑤𝑇𝑤 − 𝑤𝑇�𝜆𝑖𝑦𝑖𝑥𝑖 + �𝜆𝑖

𝑁

𝑖=1

𝑁

𝑖=1

By substituting w from Equation (3.29) , we have:

ℒ(𝑤,𝑤0, 𝜆) =
1
2 �
�𝜆𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

�

𝑇

��𝜆𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

� − ��𝜆𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

�

𝑇

��𝜆𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

� + �𝜆𝑖

𝑁

𝑖=1

ℒ(𝑤,𝑤0, 𝜆) = −
1
2 �
�𝜆𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

�

𝑇

��𝜆𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

� + �𝜆𝑖

𝑁

𝑖=1

ℒ(𝑤,𝑤0, 𝜆) = �𝜆𝑖

𝑁

𝑖=1

−
1
2
��𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝑥𝑖𝑇𝑥𝑗

𝑁

𝑗=1

𝑁

𝑖=1

Now we maximize the above Lagrangian function with respect to λ:

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑚𝑎𝑥
𝜆

��𝜆𝑖

𝑁

𝑖=1

−
1
2
��𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝑥𝑖𝑇𝑥𝑗

𝑁

𝑗=1

𝑁

𝑖=1

�

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 �𝜆𝑖𝑦𝑖

𝑁

𝑖=1

= 0

𝜆𝑖 ≥ 0 , 𝑖 = 1,2, … ,𝑁

�

(3.33)

(3.34)

(3.35)

Once the optimal Lagrange multipliers (λi) have been computed by maximizing Equation

(3.33), w is obtained by replacing them in Equation (3.29) and w0 is computed as an average

value obtained using complementary slackness conditions in Equation (3.32) for support vectors

(λi≠0).

The weighted version of SVM needs to be more sensitive to training samples with larger

weights. In other words, the distance from training samples to the classifier hyperplane needs to

be compromised based on their weights. From a geometric point of view, we develop the

weighted SVM by moving training samples toward the classifier hyperplane by a factor

 35

proportional to their weight (gi), which will change the selection of support vectors and

eventually the design of the classifier. We measure the distance of a training sample (xi) from the

classifier hyperplane (f(x)) through Equation (3.36), where the actual distance is reduced by a

factor of 1/(1+gi). If a training sample’s weight is zero, its distance to the classifier hyperplane,

in Equation (3.36), remains intact, and if its weight is very large, its distance will become close

to zero.

|𝑓(𝑥𝑖)|
�|𝑤|� × (1 + 𝑔𝑖)

=
|𝑤𝑇𝑥𝑖 + 𝑤0|

�|𝑤|� × (1 + 𝑔𝑖)
 (3.36)

Assume x1 is the nearest sample in class ω1 to the classifier hyperplane based on the

distance calculated from Equation (3.36) and x2 is the nearest sample in class ω2 to the classifier

hyperplane. We can scale w and w0 so that f(x1)/(1+g1)=1 and f(x2) /(1+g2)=-1. This leads to

having a margin of:

|𝑓(𝑥1)|
�|𝑤|� × (1 + 𝑔1)

+
|𝑓(𝑥2)|

�|𝑤|� × (1 + 𝑔2)
=

1
�|𝑤|�

+
1

�|𝑤|�
=

2
�|𝑤|�

 (3.37)

Since x1 and x2 are the closest samples to the hyperplane, the distance of other samples

from the hyperplane (based on Equation (3.36)) is larger than 1. Therefore, we have:

� 𝑓
(𝑥𝑖)/(1 + 𝑔𝑖) ≥ 1 ∀𝑥𝑖 ∈ 𝜔1

𝑓(𝑥𝑖)/(1 + 𝑔𝑖) ≤ −1 ∀𝑥𝑖 ∈ 𝜔2
� (3.38)

We define:

𝑦𝑖 = �+1 ∀𝑥𝑖 ∈ 𝜔1
−1 ∀𝑥𝑖 ∈ 𝜔2

� (3.39)

Substituting Equation (3.39) in (3.38) results in:

𝑦𝑖𝑓(𝑥𝑖)/(1 + 𝑔𝑖) ≥ 1, ∀𝑥𝑖 (3.40)

 36

We need to maximize the margin (2/||w||) in Equation (3.37) which is equivalent to

minimizing the norm ||w||. The mathematical formulation for finding w and w0 of the hyperplane

follows:

⎩
⎨

⎧𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽(𝑤,𝑤0) =
1
2
‖𝑤‖2 =

1
2
𝑤𝑇𝑤

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖 �
𝑤𝑇𝑥𝑖 + 𝑤0

1 + 𝑔𝑖
� ≥ 1 , 𝑖 = 1,2, … ,𝑁

�

(3.41)

(3.42)

where N is the number of training samples. The corresponding Lagrangian function

ℒ(w,w0, λ) for the above convex programming problem is defined as follows:

ℒ(𝑤,𝑤0, 𝜆) =
1
2
𝑤𝑇𝑤 −�𝜆𝑖 �𝑦𝑖 �

𝑤𝑇𝑥𝑖 + 𝑤0
1 + 𝑔𝑖

� − 1�
𝑁

𝑖=1

 (3.43)

where λi, i=1,2,…,N are the Lagrangian multipliers associated with the constraint in

Equation (3.42). We need to find w, w0, and λ by solving the Lagrangian duality:

𝑚𝑎𝑥𝜆≥0 𝑚𝑖𝑛𝑤,𝑤0 ℒ(𝑤,𝑤0, 𝜆) [74; 75; 76; 77]. The Karush–Kuhn–Tucker conditions that

𝑚𝑖𝑛𝑤,𝑤0 ℒ(𝑤,𝑤0, 𝜆) has to satisfy are [74; 75; 76; 77]:

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝜕ℒ(𝑤,𝑤0, 𝜆)

𝜕𝑤
= 0 → 𝑤 = �

𝜆𝑖𝑦𝑖𝑥𝑖
1 + 𝑔𝑖

𝑁

𝑖=1

𝜕ℒ(𝑤,𝑤0, 𝜆)
𝜕𝑤0

= 0 →�
𝜆𝑖𝑦𝑖

1 + 𝑔𝑖

𝑁

𝑖=1

= 0

𝜆𝑖 ≥ 0 , 𝑖 = 1,2, … ,𝑁

𝜆𝑖 �𝑦𝑖 �
𝑤𝑇𝑥𝑖 + 𝑤0

1 + 𝑔𝑖
� − 1� = 0 , 𝑖 = 1,2, … ,𝑁 (𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦 𝑠𝑙𝑎𝑐𝑘𝑛𝑒𝑠𝑠 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠)

�

(3.44)

(3.45)

(3.46)
(3.47)

The conditions in Equation (3.47) state that either λi or yi[(wTx+w0)/(1+gi)]-1 must be

zero. Therefore support vectors are training samples where |wTx+w0|/(1+gi)=1

(yi[(wTx+w0)/(1+gi)]-1=0 and λi≠0). It is now clear how our modified distance function in

Equation (3.36) affects the choice of support vectors. Before, support vectors were those

 37

geometrically closest to the hyperplane but now a trade-off between the weight (gi) and the

geometrical distance to the hyperplane determines whether a training sample is a support vector

or not.

By expanding Equation (3.43), we have:

ℒ(𝑤,𝑤0, 𝜆) =
1
2
𝑤𝑇𝑤 − 𝑤𝑇�

𝜆𝑖𝑦𝑖𝑥𝑖
1 + 𝑔𝑖

− 𝑤0�
𝜆𝑖𝑦𝑖

1 + 𝑔𝑖

𝑁

𝑖=1

+ �𝜆𝑖

𝑁

𝑖=1

𝑁

𝑖=1

By replacing ∑ 𝜆𝑖𝑦𝑖
1+𝑔𝑖

𝑁
𝑖=1 = 0, from Equation (3.45) in the above equation, we get:

ℒ(𝑤,𝑤0, 𝜆) =
1
2
𝑤𝑇𝑤 − 𝑤𝑇�

𝜆𝑖𝑦𝑖𝑥𝑖
1 + 𝑔𝑖

+ �𝜆𝑖

𝑁

𝑖=1

𝑁

𝑖=1

By substituting w from Equation (3.44) , we have:

ℒ(𝑤,𝑤0, 𝜆) =
1
2 �
�

𝜆𝑖𝑦𝑖𝑥𝑖
1 + 𝑔𝑖

𝑁

𝑖=1

�

𝑇

��
𝜆𝑖𝑦𝑖𝑥𝑖
1 + 𝑔𝑖

𝑁

𝑖=1

� − ��
𝜆𝑖𝑦𝑖𝑥𝑖
1 + 𝑔𝑖

𝑁

𝑖=1

�

𝑇

��
𝜆𝑖𝑦𝑖𝑥𝑖
1 + 𝑔𝑖

�
𝑁

𝑖=1

+ �𝜆𝑖

𝑁

𝑖=1

ℒ(𝑤,𝑤0, 𝜆) = −
1
2 �
�

𝜆𝑖𝑦𝑖𝑥𝑖
1 + 𝑔𝑖

𝑁

𝑖=1

�

𝑇

��
𝜆𝑖𝑦𝑖𝑥𝑖
1 + 𝑔𝑖

𝑁

𝑖=1

� + �𝜆𝑖

𝑁

𝑖=1

ℒ(𝑤,𝑤0, 𝜆) = �𝜆𝑖

𝑁

𝑖=1

−
1
2
��

𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝑥𝑖𝑇𝑥𝑗
(1 + 𝑔𝑖)�1 + 𝑔𝑗�

𝑁

𝑗=1

𝑁

𝑖=1

Now we maximize the above Lagrangian function with respect to λ:

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑚𝑎𝑥
𝜆

��𝜆𝑖

𝑁

𝑖=1

−
1
2
��

𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝑥𝑖𝑇𝑥𝑗
(1 + 𝑔𝑖)�1 + 𝑔𝑗�

𝑁

𝑗=1

𝑁

𝑖=1

�

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 �
𝜆𝑖𝑦𝑖

1 + 𝑔𝑖

𝑁

𝑖=1

= 0

𝜆𝑖 ≥ 0 , 𝑖 = 1,2, … ,𝑁

�

(3.48)

(3.49)

(3.50)

Once the optimal Lagrange multipliers (λi) have been computed by maximizing Equation

(3.48), w is obtained by replacing them in Equation (3.44) and w0 is computed as an average

 38

value obtained using complementary slackness conditions in Equation (3.47) for support vectors

(λi≠0). Labeling a new sample is no different here; if f(x)=wTx+w0>0, x is classified in ω1, and

otherwise in ω2.

An interesting observation is that the term (1+gi) appears everywhere in the computations

as a denominator of yi. It means the weighted SVM can be obtained by replacing yi with yi/(1+gi)

in non-weighted SVM computations.

3.2.3.2 Two linearly nonseparable classes If the two classes are not linearly separable which is

usually the case in real-world problems, e.g., Figure 3.9, then it is not possible to find an empty

band separating them. Each training sample will have one of the following constraints, as shown

in Figure 3.9:

• it falls outside the band and is correctly classified, i.e., yi(wTxi+w0)>1,

• it falls inside the band and is correctly classified, i.e., 0≤yi(wTxi+w0)≤1, or

• it is misclassified, i.e., yi(wTxi+w0)<0.

 39

Maxim
um marg

in = 1/||w
||

Maxim
um marg

in = 1/||w
||

Clas
sifi

er:
w
T x+w0 =

 0

l1

l2

ω1

ω2

ξ>1

ξ<1

ξ>1

ξ=0

ξ=0

ξ=0
ξ=0

ξ<1

Figure 3.9. SVM classifier for two linearly nonseparable classes; black points show support vectors.

We can summarize the three above constraints in one by introducing the slack variable

(ξi) [41]:

𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑤0) ≥ 1 − 𝜉𝑖 ,�
𝜉𝑖 = 0 𝑖𝑓 𝑥𝑖 𝑖𝑠 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑏𝑎𝑛𝑑 𝑎𝑛𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑
0 < 𝜉𝑖 ≤ 1 𝑖𝑓 𝑥𝑖 𝑖𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑏𝑎𝑛𝑑 𝑎𝑛𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑
𝜉𝑖 > 1 𝑖𝑓 𝑥𝑖 𝑖𝑠 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

� (3.51)

The optimization task is now to maximize the margin (minimize the norm) while

minimizing the slack variables [41]. The mathematical formulation for finding w and w0 of the

hyperplane follows:

⎩
⎪
⎨

⎪
⎧𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽(𝑤,𝑤0, 𝜉) =

1
2
‖𝑤‖2 + 𝐶�𝜉𝑖

𝑁

𝑖=1

=
1
2
𝑤𝑇𝑤 + 𝐶�𝜉𝑖

𝑁

𝑖=1
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑤0) ≥ 1 − 𝜉𝑖 , 𝑖 = 1,2, … ,𝑁
𝜉𝑖 ≥ 0 , 𝑖 = 1,2, … ,𝑁

�
(3.52)

(3.53)
(3.54)

 40

The smoothing parameter C is a positive user-defined constant that controls the trade-off

between the two competing terms in the cost function. The two terms are against each other

because minimizing the norm (i.e., maximizing the margin) increases the slack variables by

increasing the number of training samples inside the band. On the other hand, decreasing the

number of samples inside the band is equivalent to decreasing the margin. Therefore, by

choosing a very large C→∞, the width of the margin disappears, 2/||w||→0, because we allow the

norm to grow much faster than slack variables (ξi). The corresponding Lagrangian function

ℒ(w,w0,ξ, λ,μ) for the above convex programming problem is defined as follows [74; 75; 76; 77]:

ℒ(𝑤,𝑤0, 𝜉, 𝜆, 𝜇) =
1
2
𝑤𝑇𝑤 + 𝐶�𝜉𝑖

𝑁

𝑖=1

−�𝜇𝑖𝜉𝑖

𝑁

𝑖=1

−�𝜆𝑖[𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑤0) − 1 + 𝜉𝑖]
𝑁

𝑖=1

 (3.55)

where λi, i=1,2,…,N are the Lagrangian multipliers associated with the constraint in

Equation (3.53) and μi, i=1,2,…,N are the Lagrangian multipliers associated with the constraint

in Equation (3.54). We need to find w, w0, and λ by solving the Lagrangian duality:

𝑚𝑎𝑥𝜆≥0 𝑚𝑖𝑛𝑤,𝑤0,𝜉 ℒ(𝑤,𝑤0, 𝜉, 𝜆, 𝜇) [74; 75; 76; 77]. The Karush-Kuhn-Tucker conditions that

𝑚𝑖𝑛𝑤,𝑤0,𝜉 ℒ(𝑤,𝑤0, 𝜉, 𝜆, 𝜇) has to satisfy are [74; 75; 76; 77]:

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧𝜕ℒ(𝑤,𝑤0, 𝜉, 𝜆, 𝜇)

𝜕𝑤
= 0 → 𝑤 = �𝜆𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

𝜕ℒ(𝑤,𝑤0, 𝜉, 𝜆, 𝜇)
𝜕𝑤0

= 0 →�𝜆𝑖𝑦𝑖

𝑁

𝑖=1

= 0

𝜕ℒ(𝑤,𝑤0, 𝜉, 𝜆, 𝜇)
𝜕𝜉𝑖

= 0 → 𝐶 − 𝜇𝑖 − 𝜆𝑖 = 0 , 𝑖 = 1,2, … ,𝑁

𝜇𝑖𝜉𝑖 = 0 , 𝑖 = 1,2, … ,𝑁
𝜇𝑖 ≥ 0 , 𝜆𝑖 ≥ 0 , 𝑖 = 1,2, … ,𝑁
𝜆𝑖[𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑤0) − 1 + 𝜉𝑖] = 0 , 𝑖 = 1,2, … ,𝑁
 (𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦 𝑠𝑙𝑎𝑐𝑘𝑛𝑒𝑠𝑠 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠)

�

(3.56)

(3.57)

(3.58)

(3.59)
(3.60)
(3.61)

 41

Equations (3.56) and (3.57) depend only on training samples whose λi≠0, referred to as

support vectors. On the other hand, the conditions in Equation (3.61) state that either λi or

yi(wTx+w0)-1+ξi must be zero. Therefore support vectors are training samples where

yi(wTx+w0)=1-ξi (yi(wTx+w0)-1+ξi=0 and λi≠0). Therefore, correctly classified training samples

outside the margin are not support vectors because we have yi(wTx+w0)>1 and yi(wTx+w0)-1+ξi

cannot be zero considering ξi≥0. It means that support vectors are those on the edge of the

margin (ξi=0), correctly classified inside the margin (0<ξi<1), or misclassified (ξi≥1), as shown in

Figure 3.9. From Equations (3.58) and (3.59), we can see that λi=C for support vectors falling

inside the margin (ξi>0) and 0<λi<C for support vectors falling on the edge of the margin (ξi=0).

Therefore, Equations (3.56) and (3.57) depend only on support vectors and consequently the

hyperplane classifier is designed only based on support vectors and is independent of other

training samples because their λi is zero.

By expanding Equation (3.55), we have:

ℒ(𝑤,𝑤0, 𝜉, 𝜆, 𝜇) =
1
2𝑤

𝑇𝑤 + �𝐶𝜉𝑖

𝑁

𝑖=1

−�𝜇𝑖𝜉𝑖

𝑁

𝑖=1

− 𝑤𝑇�𝜆𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

− 𝑤0�𝜆𝑖𝑦𝑖

𝑁

𝑖=1

+ �𝜆𝑖

𝑁

𝑖=1

−�𝜆𝑖𝜉𝑖

𝑁

𝑖=1

ℒ(𝑤,𝑤0, 𝜉, 𝜆, 𝜇) =
1
2
𝑤𝑇𝑤 + �(𝐶 − 𝜇𝑖 − 𝜆𝑖)𝜉𝑖

𝑁

𝑖=1

− 𝑤𝑇�𝜆𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

− 𝑤0�𝜆𝑖𝑦𝑖

𝑁

𝑖=1

+ �𝜆𝑖

𝑁

𝑖=1

By replacing ∑ 𝜆𝑖𝑦𝑖𝑁
𝑖=1 = 0 from Equation (3.57) and C-μi-λi=0 from Equation (3.58), we

get:

ℒ(𝑤,𝑤0, 𝜆) =
1
2
𝑤𝑇𝑤 − 𝑤𝑇�𝜆𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

+ �𝜆𝑖

𝑁

𝑖=1

By substituting w from Equation (3.56), we end up with:

ℒ(𝑤,𝑤0, 𝜆) =
1
2 �
�𝜆𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

�

𝑇

��𝜆𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

� − ��𝜆𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

�

𝑇

��𝜆𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

� + �𝜆𝑖

𝑁

𝑖=1

 42

ℒ(𝑤,𝑤0, 𝜆) = −
1
2 �
�𝜆𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

�

𝑇

��𝜆𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

� + �𝜆𝑖

𝑁

𝑖=1

ℒ(𝑤,𝑤0, 𝜆) = �𝜆𝑖

𝑁

𝑖=1

−
1
2
��𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝑥𝑖𝑇𝑥𝑗

𝑁

𝑗=1

𝑁

𝑖=1

Now we maximize the above Lagrangian function with respect to λ:

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑚𝑎𝑥
𝜆

��𝜆𝑖

𝑁

𝑖=1

−
1
2
��𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝑥𝑖𝑇𝑥𝑗

𝑁

𝑗=1

𝑁

𝑖=1

�

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 �𝜆𝑖𝑦𝑖

𝑁

𝑖=1

= 0

0 ≤ 𝜆𝑖 ≤ 𝐶 (𝑑𝑢𝑒 𝑡𝑜 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.20) , 𝑖 = 1,2, … ,𝑁

�

(3.62)

(3.63)

(3.64)

Once the optimal Lagrange multipliers (λi) have been computed, by maximizing (3.62), w

is obtained by replacing them in Equation (3.56) and w0 is computed as an average value

obtained using complementary slackness conditions in Equation (3.61) for support vectors (λi≠0).

However, ξi is also unknown in Equation (3.61). We know from Equations (3.58) and (3.59) that

ξi is zero for training samples whose λi<C. Therefore, if we only use the training samples whose

0<λi<C (support vectors falling on the edge of the margin) to find w0 via Equation (3.61), we can

consider ξi=0.

In the linearly nonseparable case the Lagrangian multipliers (λi) are bounded above by C,

which is the only difference between the linearly separable and nonseparable cases. The slack

variables, ξi, and their associated Lagrangian multipliers, μi, are not involved in finding the

classifier hyperplane but their effect is indirectly felt through C [38].

The weighted version of SVM needs to be more sensitive to training samples with larger

weights (gi). In other words, the distance from training samples to the classifier hyperplane needs

to be compromised based on their weights. However, the modified distance function in case of

 43

two nonseparable classes is different than separable classes. When the two classes are separable,

we always move training samples toward the classifier hyperplane by a factor proportional to

their weight because training samples are always on the correct side of the classifier hyperplane.

On the other hand, in case of two nonseparable classes, a training sample might lie on the wrong

side of the classifier hyperplane. Therefore, if a training sample lies on the correct side of the

classifier hyperplane, we should move it toward the hyperplane and otherwise away from it by a

factor proportional to its weight. This way we increase the sensitivity of the classifier to training

samples with large weights and raise their chances to be selected as support vectors. We

introduce the modified distance function for weighted SVM, in case of two nonseparable classes,

as:

⎩
⎪
⎨

⎪
⎧|𝑓(𝑥𝑖)|
‖𝑤‖

× �
1

1 + 𝑔𝑖
� =

|𝑓(𝑥𝑖)|
‖𝑤‖

− �1 −
1

1 + 𝑔𝑖
�

|𝑓(𝑥𝑖)|
‖𝑤‖

 𝑖𝑓 𝑥𝑖 𝑖𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

|𝑓(𝑥𝑖)|
‖𝑤‖

× �1 +
𝑔𝑖

1 + 𝑔𝑖
� =

|𝑓(𝑥𝑖)|
‖𝑤‖

+ �1 −
1

1 + 𝑔𝑖
�

|𝑓(𝑥𝑖)|
‖𝑤‖

 𝑖𝑓 𝑥𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

� (3.65)

We define:

𝑦𝑖 = �+1 ∀𝑥 ∈ 𝜔1
−1 ∀𝑥 ∈ 𝜔2

� → 𝑦𝑖
𝑓(𝑥𝑖)

|𝑓(𝑥𝑖)|
= �+1 𝑖𝑓 𝑥𝑖 𝑖𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

−1 𝑖𝑓 𝑥𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑
� (3.66)

Using Equation (3.66), we can combine the two distance functions in (3.65) in one:

|𝑓(𝑥𝑖)|
‖𝑤‖

− �𝑦𝑖
𝑓(𝑥𝑖)

|𝑓(𝑥𝑖)|� �
1 −

1
1 + 𝑔𝑖

�
|𝑓(𝑥𝑖)|
‖𝑤‖

=
|𝑓(𝑥𝑖)| − 𝑦𝑖 �1 − 1

1 + 𝑔𝑖
� 𝑓(𝑥𝑖)

‖𝑤‖
 ,∀𝑥𝑖

(3.67)

By scaling w and w0, and introducing the slack variable (ξi) we can define the following

constraint for training samples:

|𝑓(𝑥𝑖)| − 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
� 𝑓(𝑥𝑖) ≥ 1 − 𝜉𝑖 ,�

𝜉𝑖 = 0 𝑖𝑓 𝑥𝑖 𝑖𝑠 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑏𝑎𝑛𝑑 𝑎𝑛𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑
0 < 𝜉𝑖 ≤ 1 𝑖𝑓 𝑥𝑖 𝑖𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑏𝑎𝑛𝑑 𝑎𝑛𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑
𝜉𝑖 > 1 𝑖𝑓 𝑥𝑖 𝑖𝑠 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

� (3.68)

 44

The optimization task is now to maximize the margin (minimize the norm) while

minimizing the slack variables (ξi). The mathematical formulation for finding w and w0 of the

hyperplane follows:

⎩
⎪
⎨

⎪
⎧𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽(𝑤,𝑤0, 𝜉) =

1
2
‖𝑤‖2 + 𝐶�𝜉𝑖

𝑁

𝑖=1

=
1
2
𝑤𝑇𝑤 + 𝐶�𝜉𝑖

𝑁

𝑖=1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 |𝑤𝑇𝑥𝑖 + 𝑤0| − 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
� (𝑤𝑇𝑥𝑖 + 𝑤0) ≥ 1 − 𝜉𝑖 , 𝑖 = 1,2, … ,𝑁

𝜉𝑖 ≥ 0 , 𝑖 = 1,2, … ,𝑁

�

(3.69)

(3.70)

(3.71)

The corresponding Lagrangian function ℒ(w,w0,ξ,λ,μ) for the above convex programming

problem is defined as follows:

ℒ(𝑤,𝑤0, 𝜉, 𝜆, 𝜇) =
1
2
𝑤𝑇𝑤 + 𝐶�𝜉𝑖

𝑁

𝑖=1

−�𝜇𝑖𝜉𝑖

𝑁

𝑖=1

−�𝜆𝑖 �|𝑤𝑇𝑥𝑖 + 𝑤0| − 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
� (𝑤𝑇𝑥𝑖 + 𝑤0) − 1 + 𝜉𝑖�

𝑁

𝑖=1

 (3.72)

where λi, i=1,2,…,N are the Lagrangian multipliers associated with the constraint in

(3.70) and μi, i=1,2,…,N are the Lagrangian multipliers associated with the constraint in (3.71).

We need to find w, w0, and λ by solving the Lagrangian duality:

𝑚𝑎𝑥𝜆≥0 𝑚𝑖𝑛𝑤,𝑤0,𝜉 ℒ(𝑤,𝑤0, 𝜉, 𝜆, 𝜇) [74; 75; 76; 77]. The Karush–Kuhn–Tucker conditions that

𝑚𝑖𝑛𝑤,𝑤0,𝜉 ℒ(𝑤,𝑤0, 𝜉, 𝜆, 𝜇) has to satisfy are [74; 75; 76; 77]:

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧𝜕ℒ(𝑤,𝑤0, 𝜉, 𝜆, 𝜇)

𝜕𝑤
= 0 → 𝑤 = �𝜆𝑖𝑥𝑖 �

|𝑤𝑇𝑥𝑖 + 𝑤0|
𝑤𝑇𝑥𝑖 + 𝑤0

− 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
��

𝑁

𝑖=1

𝜕ℒ(𝑤,𝑤0, 𝜉, 𝜆, 𝜇)
𝜕𝑤0

= 0 →�𝜆𝑖

𝑁

𝑖=1

�
|𝑤𝑇𝑥𝑖 + 𝑤0|
𝑤𝑇𝑥𝑖 + 𝑤0

− 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
�� = 0

𝜕ℒ(𝑤,𝑤0, 𝜉, 𝜆, 𝜇)
𝜕𝜉𝑖

= 0 → 𝐶 − 𝜇𝑖 − 𝜆𝑖 = 0 , 𝑖 = 1,2, … ,𝑁

𝜇𝑖𝜉𝑖 = 0 , 𝑖 = 1,2, … ,𝑁
𝜇𝑖 ≥ 0 , 𝜆𝑖 ≥ 0 , 𝑖 = 1,2, … ,𝑁

𝜆𝑖 �|𝑤𝑇𝑥𝑖 + 𝑤0| − 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
� (𝑤𝑇𝑥𝑖 + 𝑤0) − 1 + 𝜉𝑖� = 0 , 𝑖 = 1,2, … ,𝑁

 (𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦 𝑠𝑙𝑎𝑐𝑘𝑛𝑒𝑠𝑠 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠)

�

(3.73)

(3.74)

(3.75)

(3.76)
(3.77)
(3.78)

By expanding Equation (3.72), we have:

 45

ℒ(𝑤,𝑤0, 𝜉, 𝜆, 𝜇) =
1
2
𝑤𝑇𝑤 + �𝐶𝜉𝑖

𝑁

𝑖=1

−�𝜇𝑖𝜉𝑖

𝑁

𝑖=1

−�𝜆𝑖 �|𝑤𝑇𝑥𝑖 + 𝑤0| − 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
� (𝑤𝑇𝑥𝑖 + 𝑤0)�

𝑁

𝑖=1

+ �𝜆𝑖

𝑁

𝑖=1

−�𝜆𝑖𝜉𝑖

𝑁

𝑖=1

ℒ(𝑤,𝑤0, 𝜉, 𝜆, 𝜇) =
1
2
𝑤𝑇𝑤 + �(𝐶 − 𝜇𝑖 − 𝜆𝑖)𝜉𝑖

𝑁

𝑖=1

−�(𝑤𝑇𝑥𝑖 + 𝑤0)𝜆𝑖 �
|𝑤𝑇𝑥𝑖 + 𝑤0|
𝑤𝑇𝑥𝑖 + 𝑤0

− 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
��

𝑁

𝑖=1

+ �𝜆𝑖

𝑁

𝑖=1

By replacing C-μi-λi=0 from Equation (3.75), we get:

ℒ(𝑤,𝑤0, 𝜆) =
1
2
𝑤𝑇𝑤 −�(𝑤𝑇𝑥𝑖 + 𝑤0)𝜆𝑖 �

|𝑤𝑇𝑥𝑖 + 𝑤0|
𝑤𝑇𝑥𝑖 + 𝑤0

− 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
��

𝑁

𝑖=1

+ �𝜆𝑖

𝑁

𝑖=1

ℒ(𝑤,𝑤0, 𝜆) =
1
2𝑤

𝑇𝑤 − 𝑤𝑇�𝜆𝑖𝑥𝑖 �
|𝑤𝑇𝑥𝑖 + 𝑤0|
𝑤𝑇𝑥𝑖 + 𝑤0

− 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
��

𝑁

𝑖=1

+ 𝑤0�𝜆𝑖 �
|𝑤𝑇𝑥𝑖 + 𝑤0|
𝑤𝑇𝑥𝑖 + 𝑤0

− 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
��

𝑁

𝑖=1

+ �𝜆𝑖

𝑁

𝑖=1

By replacing ∑ 𝜆𝑖𝑁
𝑖=1 �|𝑤𝑇𝑥𝑖+𝑤0|

𝑤𝑇𝑥𝑖+𝑤0
− 𝑦𝑖 �1 − 1

1+𝑔𝑖
�� = 0 from Equation (3.74), we have:

ℒ(𝑤,𝑤0, 𝜆) =
1
2
𝑤𝑇𝑤 − 𝑤𝑇�𝜆𝑖𝑥𝑖 �

|𝑤𝑇𝑥𝑖 + 𝑤0|
𝑤𝑇𝑥𝑖 + 𝑤0

− 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
��

𝑁

𝑖=1

+ �𝜆𝑖

𝑁

𝑖=1

ℒ(𝑤,𝑤0, 𝜆) = �𝜆𝑖

𝑁

𝑖=1

+ 𝑤𝑇 �
1
2
𝑤 −�𝜆𝑖𝑥𝑖 �

|𝑤𝑇𝑥𝑖 + 𝑤0|
𝑤𝑇𝑥𝑖 + 𝑤0

− 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
��

𝑁

𝑖=1

�

By substituting w from Equation (3.73), we end up with:

ℒ(𝑤,𝑤0, 𝜆) = �𝜆𝑖

𝑁

𝑖=1

+ ��𝜆𝑖𝑥𝑖 �
|𝑤𝑇𝑥𝑖 + 𝑤0|
𝑤𝑇𝑥𝑖 + 𝑤0

− 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
��

𝑁

𝑖=1

�

𝑇

�
1
2
��𝜆𝑖𝑥𝑖 �

|𝑤𝑇𝑥𝑖 + 𝑤0|
𝑤𝑇𝑥𝑖 + 𝑤0

− 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
��

𝑁

𝑖=1

�

− ��𝜆𝑖𝑥𝑖 �
|𝑤𝑇𝑥𝑖 + 𝑤0|
𝑤𝑇𝑥𝑖 + 𝑤0

− 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
��

𝑁

𝑖=1

��

ℒ(𝑤,𝑤0, 𝜆) = �𝜆𝑖

𝑁

𝑖=1

−
1
2
��𝜆𝑖𝑥𝑖 �

|𝑤𝑇𝑥𝑖 + 𝑤0|
𝑤𝑇𝑥𝑖 + 𝑤0

− 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
��

𝑁

𝑖=1

�

𝑇

��𝜆𝑖𝑥𝑖 �
|𝑤𝑇𝑥𝑖 + 𝑤0|
𝑤𝑇𝑥𝑖 + 𝑤0

− 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
��

𝑁

𝑖=1

�

Now we maximize the above Lagrangian function with respect to λ:

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑚𝑎𝑥
𝜆

��𝜆𝑖

𝑁

𝑖=1

−
1
2
��𝜆𝑖𝑥𝑖 �

|𝑤𝑇𝑥𝑖 + 𝑤0|
𝑤𝑇𝑥𝑖 + 𝑤0

− 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
��

𝑁

𝑖=1

�

𝑇

��𝜆𝑖𝑥𝑖 �
|𝑤𝑇𝑥𝑖 + 𝑤0|
𝑤𝑇𝑥𝑖 + 𝑤0

− 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
��

𝑁

𝑖=1

��

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 �𝜆𝑖

𝑁

𝑖=1

�
|𝑤𝑡𝑥𝑖 + 𝑤0|
𝑤𝑡𝑥𝑖 + 𝑤0

− 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
�� = 0

0 ≤ 𝜆𝑖 ≤ 𝐶 (𝑑𝑢𝑒 𝑡𝑜 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.34) , 𝑖 = 1,2, … ,𝑁

�

(3.79)

(3.80)

(3.81)

 46

Once the optimal Lagrangian multipliers (λi) have been computed by maximizing

Equation (3.79), w is obtained by replacing them in Equation (3.73) and w0 is computed as an

average value obtained using complementary slackness conditions in Equation (3.78) for support

vectors whose 0<λi<C and considering ξi=0. Labeling a new sample is no different here; if

f(x)=wTx+w0>0, x is classified in ω1, and otherwise in ω2.

Maximizing the above Lagrangian function with respect to λ is not as easy as Equation

(3.62) because this time w and w0 are involved in the process of finding the Lagrangian

multipliers (λi) in Equation (3.79) while they are unknown. The appearance of w and w0 in

Equation (3.79) originates from the dichotomy in the distance function in Equation (3.65).

Therefore, an iterative optimization technique must be adopted:

• w and w0 are initialized for a non-weighted SVM,

• Loop: repeat until convergence

• λi are calculated using Equation (3.79)

• w and w0 are calculated using Equations (3.73) and (3.78)

The time complexity of the above algorithm is k times more than the time complexity of

finding the non-weighted SVM classifier hyperplane (O(N3) with a naïve implementation of a

quadratic programming solver [38]), where k is the number of iterations in the loop. Since w and

w0 are initialized using a non-weighted SVM, the convergence is expected to happen in a few

iterations.

From a geometric point of view, the loop in the above algorithm is updating the classifier

hyperplane by redefining the distance of training samples to the hyperplane in each iteration.

This is equivalent to relocating the training samples after each iteration with respect to the

hyperplane classifier based on their weights and updating the classifier hyperplane based on the

relocated training samples. Therefore, the following algorithm offers an alternative but

 47

geometrically equivalent approach to the above algorithm with the same time complexity. The

following algorithm can take advantage of existing software and libraries for non-weighted SVM

to develop the weighted SVM.

• w and w0 are initialized for a non-weighted SVM,

• Loop: repeat until convergence

𝑋�𝑡 = 𝑋 − �1 −
1

1 + 𝑔�
.�
�𝑋𝑤𝑡−1 + 𝑤0𝑡−1�

‖𝑤𝑡−1‖
� .𝑦

𝑤𝑡−1𝑇

‖𝑤𝑡−1‖
 (3.82)

• find wt and w0t for the non-weighted SVM classifier hyperplane based on 𝑋�𝑡

where the subscript t stands for the iterator inside the loop. At the first step in the loop, X

is the input feature matrix (each row representing one training sample), y is a column vector

containing the responses, w is a column vector representing the norm of the classifier hyperplane,

w0 is the intercept of the classifier hyperplane, and g is a column vector containing the training

samples’ weights. The dot shows array (or element-wise) operations versus matrix operations

shown with a cross. In Equation (3.82), �1 − 1
1+𝑔

� . �|𝑋𝑤+𝑤0|
‖𝑤‖

� is the magnitude we have to move

the training samples, and �−𝑦 𝑤𝑇

‖𝑤‖
� is the movement direction. The movement magnitude is

proportional to the training sample’s weight. The movement is in the direction of the classifier’s

vector (w) for training samples in class ω2 (y=-1) and in the opposite direction of w for training

samples in class ω1 (y=1). In other words, we have to update the position of a training sample by

moving it �1 − 1
1+𝑔𝑖

� �|𝑥𝑖𝑤+𝑤0|
‖𝑤‖

� toward the classifier hyperplane if it is correctly classified or the

same amount away from the hyperplane if it is wrongly classified. Therefore, training samples

with large weights which were not normally selected as support vectors, now have a higher

chance of being selected as support vectors if the aforementioned shift has dropped them inside

the margin.

 48

3.2.3.3 Experiment Due to SVM’s stability to changes in a small part of the training data, the

dataset in Table 3.1 cannot differentiate between the non-weighted and weighted SVM. In other

words, the two classifiers are the same for that dataset. Instead, we use the dataset in Table 3.2 to

show the effect of embedding training samples’ weights in SVM. Figure 3.10 shows the division

of the feature space between the two classes with and without considering the training samples’

weights in computing the linear classifier. In weighted SVM, the important samples in class ω1

will move toward class ω2, through Equation (3.82), and repel the border toward class ω2.

Table 3.2. Training samples and their weights for SVM.

l1 l2 Class Spatial-temporal weight
1 1 ω1 4
1 2 ω1 2

1.4 1.5 ω1 2
2 1 ω2 1
2 2 ω2 1

1

2

1 2
l1

l2

ω1 ω2

Figure 3.10. Division of the feature space between the two classes, circles and squares, without (solid line) and with
(dashed line) considering the training samples’ weights (darkness of samples) in SVM classifier (C=1).

 49

3.3 NONLINEAR PREDICTORS

If two classes are linearly separable in case of classification, or if responses have a linear

relationship with features in case of regression, the linear models optimally find the regression or

classification hyperplane. Otherwise, they find the hyperplane minimizing the prediction error

based on some cost function. Nonlinear predictors, on the other hand, bend and curve themselves

to get closer to the training samples in case of regression or to put more training samples on the

correct side of the hypersurface in case of classification. However, some training samples might

still remain far from the regressor or on the wrong side of the classifier depending on how

flexible the nonlinear predictor is allowed to be.

One question which needs to be answered before designing a predictor is whether the

relationship between responses and features is linear in case of regression, or whether the classes

are linearly separable or not in case of classification. In other words, whether a linear or

nonlinear predictor must be used. If training data show an approximately linear relationship

between responses and features in case of regression, or if training samples are almost linearly

separable in case of classification, assuming there is no more knowledge about the nature of the

problem in hand, choosing a linear predictor is more sensible. One approach to find out whether

a linear predictor is sufficient or not is to train a LS predictor and see how accurately it predicts

the training samples’ responses. Noise in training data might cause slight nonlinearity among

responses. Therefore, if the LS predictor makes few mistakes in predicting the response of

training samples, linear predictors are a cautious and conservative choice. However, if it turns

out that the linear regression is far from being accurate or the classes are far from being linearly

separable, nonlinear predictors are unavoidable. Yet, one needs to be careful with choosing a

nonlinear predictor over a linear one to avoid capturing the particularities of small training

 50

datasets in the predictor. In this section, we develop the weighted version of some nonlinear

predictors.

3.3.1 Decision trees

Ordinary binary decision trees (OBDTs) split the feature space into hyperrectangles with sides

parallel to the axes [44]. Nodes in an OBDT, shown in Figure 3.11, are binary questions whose

answers are either yes or no and the answer to these questions determines the path to a leaf which

is equivalent to a response (nominal label in classification or numerical estimate in regression).

Questions at nodes are of the form “is xk≤α ?” where xk is the k-th feature and α is a threshold. To

predict the response of an irresponsive sample, one needs to answer the question at each node

and traverse to the left or right node based on the answer until a leaf (response) is reached.

Q1

Q3

YesNo
Q5

R5R4

YesNo
YesNo

Q2

R2R1

YesNo

R3

Figure 3.11. Ordinary binary decision trees; Q stands for question and R stands for response.

 51

The training process involves designing the questions, structuring the tree, and

associating each leaf with a response. Each node splits the training dataset into two disjoint

groups, each corresponding to one of the answers: yes or no. Many questions can be asked at one

node based on what feature (xk) to choose and what threshold (α) to use. Different thresholds that

can be considered for a specific feature at a node are determined based on the training samples at

that node. For example, if there are N samples at a node, there could be N-1 different thresholds,

each taken halfway between consecutive distinct values of xk in the training samples at that node.

Therefore, if there are l features and N training samples at a node, (N-1)×l different questions can

be asked. The best question to ask at a node is the one which maximizes the impurity decrease

(ΔI). The impurity decrease is calculated through Equation (3.83) [44]:

∆𝐼 = 𝐼 −
𝑁𝑌
𝑁
𝐼𝑌 −

𝑁𝑁
𝑁
𝐼𝑁 (3.83)

where I is the impurity of the ancestor node, N is the number of training samples in the

ancestor node, NY is the number of training samples in the descendant node corresponding with

the answer “yes” to the question, NN is the number of training samples in the descendant node

corresponding with the answer “no” to the question, and IY and IN are the impurities of the

descendent nodes. Entropy of training samples at a node, in Equation (3.84), is a common

definition of node impurity in classification tasks (Iclassification) [44], where N is the number of

training samples at this node, M is the number of classes, and N(ωi) is the number of training

samples from class ωi at this node. Therefore, in classification, impurity at a node is proportional

to the heterogeneity of classes among training samples at that node. The largest impurity (log2M)

happens when training samples are equally distributed among classes and the least impurity (0)

happens when all training samples belong to the same class.

 52

The impurity of a node in regression tasks (Iregression) is commonly calculated as the

variance, in Equation (3.85), where yi is the response of the i-th training sample at this node and

𝑦� is the average of responses at this node.

𝐼𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = −�
𝑁(𝜔𝑖)
𝑁

𝑙𝑜𝑔2
𝑁(𝜔𝑖)
𝑁

𝑀

𝑖=1

 (3.84)

𝐼𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =
∑ (𝑦𝑖 − 𝑦�)2𝑁
𝑖=1

𝑁
 (3.85)

A node is considered a leaf if the maximum impurity decrease (ΔImax) for that node is less

than a user-defined threshold, although other alternative conditions have been used in the

literature [44; 78]. The majority rule in case of classification or the average rule in case of

regression are commonly used to determine the response at that leaf [44].

In the weighted version of OBDT, the impurity decrease (ΔI) and impurity (I) are

calculated through the following equations:

∆𝐼 = 𝐼 −
∑𝑔𝑌
∑𝑔

𝐼𝑌 −
∑𝑔𝑁
∑𝑔

𝐼𝑁 (3.86)

𝐼𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = −�
𝑔(𝜔𝑖)
∑𝑔

𝑀

𝑖=1

log2
𝑔(𝜔𝑖)
∑𝑔

 (3.87)

𝐼𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =
∑ 𝑔𝑖(𝑦𝑖 − 𝑦�)2𝑁
𝑖=1
∑ 𝑔𝑖𝑁
𝑖=1

 (3.88)

where ΣgY and ΣgN are the sum of the weight of training samples corresponding to the

answers “yes” and “no”, respectively, Σg is the sum of the weight of all training samples at the

ancestor node, g(ωi) is the sum of the weight of training samples belonging to class ωi, and gi is

the i-th training sample’s weight.

A node is considered a leaf if the maximum impurity decrease (ΔImax) for that node is less

than a user-defined threshold. In case of classification, the class with the largest total weight

 53

(𝑎𝑟𝑔𝑚𝑎𝑥𝜔𝑗 ∑ 𝑔𝑖𝑖∈𝜔𝑗) is associated with that leaf. In case of regression, the weighted average of

the responses (∑ 𝑔𝑖𝑦𝑖𝑖∈𝑙𝑒𝑎𝑓 ∑ 𝑔𝑖𝑖∈𝑙𝑒𝑎𝑓⁄) is associated with that leaf.

In the weighted decision tree, samples with larger weights play a more important role in

deciding what question to ask at a node (by playing a more significant role in calculating

impurity and impurity decrease), when to stop splitting the nodes, and what response to associate

with a leaf.

3.3.1.1 Experiment Here we use the dataset in Table 3.1 to show the effect of embedding

training samples’ weights in decision tree. Figure 3.12 shows the division of the feature space

between the two classes with and without considering the training samples’ weights in

developing the decision tree. The important samples from class ω1 change the way the weighted

decision tree divides the feature space between the two classes in comparison with non-weighted

decision tree.

1

2

3

4

1 2 3 4
l1

l2

5 6

ω1 ω2

Figure 3.12. Division of the feature space between the two classes, circles and squares, without (solid line) and with
(dashed line) considering the training samples’ weights (darkness of samples) in decision tree classifier (minimum

impurity decrease for splitting a node is considered 0.1).

 54

3.3.2 Multilayer perceptron (MLP)

In the backpropagation algorithm [45; 46; 47], the architecture of the network is fixed and its

synaptic weights are computed so as to minimize a cost function defined as:

𝐽(𝒘) = �𝜀(𝑖)
𝑁

𝑖=1

 (3.89)

where N is the number of training samples and ε(i) is a function of the network’s output

(𝑦�(𝑖)) and the desired output (y(i)) for the i-th training sample. A common choice for ε(i) is the

sum of squared errors in the output nodes [79; 80; 46; 47]:

𝜀(𝑖) =
1
2
��𝑦�𝑗𝐿(𝑖) − 𝑦𝑗𝐿(𝑖)�

2
𝑘𝐿

𝑗=1

 , 𝑖 = 1,2, … ,𝑁 (3.90)

where L refers to the output layer, kL represents the number of nodes in the output layer,

𝑦�𝑗𝐿(𝑖) represents the output of the j-th node in the output layer, and 𝑦𝑗𝐿(𝑖) represents its

corresponding desired value. We also have the following equation for calculating the output of

the j-th node at the r-th layer for the i-th training sample (𝑦�𝑗𝑟(𝑖)):

𝑦�𝑗𝑟(𝑖) = 𝑓𝑗𝑟�𝑣𝑗𝑟(𝑖)� (3.91)

𝑣𝑗𝑟(𝑖) = �𝑤𝑗𝑘𝑟 𝑦�𝑘𝑟−1(𝑖)
𝑘𝑟−1

𝑘=1

 (3.92)

where 𝑓𝑗𝑟 is the activation function at the j-th node of the r-th layer, kr-1 is the number of

nodes at the (r-1)-th layer, 𝑦�𝑘𝑟−1(𝑖) is the output of the k-th node in the (r-1)-th layer, and 𝑤𝑗𝑘𝑟 is

the synaptic weight from the k-th node at the (r-1)-th layer to the j-th node at the r-th layer.

We can iteratively find the synaptic weight vectors that minimize the perceptron cost

function using the gradient descent scheme [45; 46; 47]. In each iteration, the weight vector

 55

(including the threshold) of the j-th node in the r-th layer (𝒘𝑗𝑟) is modified through Equation

(3.93):

𝒘𝑗𝑟(𝑛𝑒𝑤) = 𝒘𝑗𝑟(𝑜𝑙𝑑) + ∆𝒘𝑗𝑟 (3.93)

The modification term in Equation (3.93) (∆𝒘𝑗𝑟) is computed through Equation (3.94)

according to the gradient descent scheme:

∆𝒘𝑗𝑟 = −𝛼
𝜕𝐽(𝒘)
𝜕𝒘𝑗𝑟

 (3.94)

By substituting the cost function from Equation (3.89) in Equation (3.94) and applying

the chain rule in differentiation, we obtain:

∆𝒘𝑗𝑟 = −𝛼
𝜕∑ 𝜀(𝑖)𝑁

𝑖=1

𝜕𝒘𝑗𝑟
= −𝛼�

𝜕𝜀(𝑖)
𝜕𝒘𝑗𝑟

𝑁

𝑖=1

= −𝛼�
𝜕𝜀(𝑖)
𝜕𝑣𝑗𝑟(𝑖)

𝜕𝑣𝑗𝑟(𝑖)
𝜕𝒘𝑗𝑟

𝑁

𝑖=1

 (3.95)

By defining 𝛿𝑗𝑟(𝑖) = 𝜕𝜀(𝑖)
𝜕𝑣𝑗

𝑟(𝑖)
 in the above equation, we obtain:

∆𝒘𝑗𝑟 = −𝛼�𝛿𝑗𝑟(𝑖)
𝜕𝑣𝑗𝑟(𝑖)
𝜕𝒘𝑗𝑟

𝑁

𝑖=1

 (3.96)

We can calculate
𝜕𝑣𝑗

𝑟(𝑖)

𝜕𝒘𝑗
𝑟 using Equation (3.92) as follows:

𝜕𝑣𝑗𝑟(𝑖)
𝜕𝒘𝑗𝑟

=

⎣
⎢
⎢
⎢
⎢
⎡ 𝜕𝑣𝑗

𝑟(𝑖)
𝜕𝑤𝑗1𝑟

⋮
𝜕𝑣𝑗𝑟(𝑖)
𝜕𝑤𝑗𝑘𝑟−1

𝑟 ⎦
⎥
⎥
⎥
⎥
⎤

= 𝑦�𝑟−1(𝑖) (3.97)

where kr-1 is the number of nodes in the (r-1)-th layer and 𝑦�𝑟−1(𝑖) is the output vector of

the (r-1)-th layer for the i-th training sample. By substituting Equation (3.97) in Equation (3.96)

we obtain:

 56

∆𝒘𝑗𝑟 = −𝛼�𝛿𝑗𝑟(𝑖)𝑦�𝑟−1(𝑖)
𝑁

𝑖=1

 (3.98)

The above equation obtains the correction term for batch mode [72]. In online or pattern

mode, instead of summing up the corrections over all training samples and updating the weights

at once, the weights are updated once for each individual training sample before moving on to

the next [72]. In stochastic mode, the gradient at each iteration is calculated based on a random

subset of training samples [73].

Now we have to compute 𝛿𝑗𝑟(𝑖) based on the definition of the cost function given in

Equation (3.90). First we calculate this term for the output layer (r=L):

𝛿𝑗𝐿(𝑖) =
𝜕𝜀(𝑖)
𝜕𝑣𝑗𝐿(𝑖)

 (3.99)

By substituting Equations (3.90) and (3.91) in the above equation we get:

𝛿𝑗𝐿(𝑖) =
𝜕

𝜕𝑣𝑗𝐿(𝑖)
�
1
2
� �𝑓𝑚𝐿�𝑣𝑚𝐿 (𝑖)� − 𝑦𝑚𝐿 (𝑖)�

2
𝑘𝐿

𝑚=1

� (3.100)

By keeping only the terms that are dependent on 𝑣𝑗𝐿(𝑖) we get:

𝛿𝑗𝐿(𝑖) =
𝜕

𝜕𝑣𝑗𝐿(𝑖)
�
1
2 �
𝑓𝑗𝐿 �𝑣𝑗𝐿(𝑖)� − 𝑦𝑗𝐿(𝑖)�

2
� = �𝑦�𝑗𝐿(𝑖) − 𝑦𝑗𝐿(𝑖)�

𝜕𝑓𝑗𝐿 �𝑣𝑗𝐿(𝑖)�

𝜕𝑣𝑗𝐿(𝑖)
 (3.101)

where 𝑦�𝑗𝐿(𝑖) is the output of the j-th node in the output layer for the i-th training sample,

𝑦𝑗𝐿(𝑖) is its corresponding desired value, and 𝑓𝑗𝐿 is the activation function of the j-th node in the

output layer which takes 𝑣𝑗𝐿(𝑖) as input.

Now we compute 𝛿𝑗𝑟(𝑖) for hidden layers (r<L):

𝛿𝑗𝑟(𝑖) =
𝜕𝜀(𝑖)
𝜕𝑣𝑗𝑟(𝑖)

= �
𝜕𝜀(𝑖)

𝜕𝑣𝑘𝑟+1(𝑖)
𝜕𝑣𝑘𝑟+1(𝑖)
𝜕𝑣𝑗𝑟(𝑖)

𝑘𝑟+1

𝑘=1

= � 𝛿𝑘𝑟+1(𝑖)
𝜕𝑣𝑘𝑟+1(𝑖)
𝜕𝑣𝑗𝑟(𝑖)

𝑘𝑟+1

𝑘=1

 (3.102)

 57

We use Equation (3.92) to calculate 𝜕𝑣𝑘
𝑟+1(𝑖)

𝜕𝑣𝑗
𝑟(𝑖)

:

𝜕𝑣𝑘𝑟+1(𝑖)
𝜕𝑣𝑗𝑟(𝑖)

=
𝜕

𝜕𝑣𝑗𝑟(𝑖)
�� 𝑤𝑘𝑚𝑟+1𝑦�𝑚𝑟 (𝑖)
𝑘𝑟

𝑚=0

� (3.103)

Replacing 𝑦�𝑚𝑟 (𝑖) with 𝑓𝑚𝑟�𝑣𝑚𝑟 (𝑖)� based on Equation (3.91), we get:

𝜕𝑣𝑘𝑟+1(𝑖)
𝜕𝑣𝑗𝑟(𝑖)

=
𝜕

𝜕𝑣𝑗𝑟(𝑖)
�� 𝑤𝑘𝑚𝑟+1𝑓𝑚𝑟�𝑣𝑚𝑟 (𝑖)�
𝑘𝑟

𝑚=1

� (3.104)

By keeping only the terms that are dependent on 𝑣𝑗𝑟(𝑖) we get:

𝜕𝑣𝑘𝑟+1(𝑖)
𝜕𝑣𝑗𝑟(𝑖)

=
𝜕

𝜕𝑣𝑗𝑟(𝑖)
�𝒘𝑘𝑗

𝑟+1𝑓𝑗𝑟 �𝑣𝑗𝑟(𝑖)�� = 𝒘𝑘𝑗
𝑟+1

𝜕𝑓𝑗𝑟 �𝑣𝑗𝑟(𝑖)�
𝜕𝑣𝑗𝑟(𝑖)

 (3.105)

Replacing the above equation in Equation (3.102), we obtain:

𝛿𝑗𝑟(𝑖) = � 𝛿𝑘𝑟+1(𝑖)𝒘𝑘𝑗
𝑟+1

𝜕𝑓𝑗𝑟 �𝑣𝑗𝑟(𝑖)�
𝜕𝑣𝑗𝑟(𝑖)

𝑘𝑟+1

𝑘=1

 (3.106)

where kr+1 is the number of nodes in the (r+1)-th layer, 𝒘𝑘𝑗
𝑟+1 is the synaptic weight from

the j-th node in the r-th layer to the k-th node in the (r+1)-th layer, and 𝑓𝑗𝑟 is the activation

function of the j-th node in the r-th layer which takes 𝑣𝑗𝑟(𝑖) as input.

Now, we develop the weighted version of MLP. We include each training sample’s

weight (g(i)) in the cost function to adjust the MLP cost based on the importance of training

samples. The MLP classifier will no longer be equally fair to all training samples. We modify the

MLP cost function as in Equation (3.107) to punish the classifier more for misclassifying

training samples with larger weights and less for training samples with smaller weights.

𝐽(𝒘) = �𝑔𝑖𝜀(𝑖)
𝑁

𝑖=1

 (3.107)

 58

We can compute the modification term (∆𝒘𝑗𝑟) through gradient descent scheme as

follows:

∆𝒘𝑗𝑟 = −𝛼
𝜕𝐽(𝒘)
𝜕𝒘𝑗𝑟

= −𝛼
𝜕∑ 𝑔𝑖𝜀(𝑖)𝑁

𝑖=1

𝜕𝒘𝑗𝑟
= −𝛼�𝑔𝑖

𝜕𝜀(𝑖)
𝜕𝒘𝑗𝑟

𝑁

𝑖=1

 (3.108)

By applying the chain rule in differentiation:

∆𝒘𝑗𝑟 = −𝛼�𝑔𝑖
𝜕𝜀(𝑖)
𝜕𝑣𝑗𝑟(𝑖)

𝜕𝑣𝑗𝑟(𝑖)
𝜕𝒘𝑗𝑟

𝑁

𝑖=1

 (3.109)

By replacing 𝜕𝜀(𝑖)
𝜕𝑣𝑗

𝑟(𝑖)
 with 𝛿𝑗𝑟(𝑖), we obtain:

∆𝒘𝑗𝑟 = −𝛼�𝑔𝑖𝛿𝑗𝑟(𝑖)
𝜕𝑣𝑗𝑟(𝑖)
𝜕𝒘𝑗𝑟

𝑁

𝑖=1

 (3.110)

By applying Equation (3.97), we obtain:

∆𝒘𝑗𝑟 = −𝛼�𝑔𝑖𝛿𝑗𝑟(𝑖)𝑦�𝑟−1(𝑖)
𝑁

𝑖=1

 (3.111)

Therefore, the only difference between the above equation for computing the correction

term and Equation (3.98) is the presence of the training samples’ weights (gi) in the summand. If

we define α*(i)=αgi, we obtain:

∆𝒘𝑗𝑟 = −�𝛼∗(𝑖)𝛿𝑗𝑟(𝑖)𝑦�𝑟−1(𝑖)
𝑁

𝑖=1

 (3.112)

The above equation shows that the weighted version of the backpropagation algorithm for

MLP is obtained by defining the training rate as α*(i)=αgi, which means a different training rate

for each training sample based on its weight; remembering that the cost must also be calculated

through Equation (3.107) which includes different weights for training samples. Adjusting the

 59

training rate based on the weight of training samples and including the weights in the cost

function bias the trained MLP in favor of training samples with larger weights.

3.3.2.1 Experiment Here we use the dataset in Table 3.1 to show the effect of embedding

training samples’ weights in the cost function (Equation (3.107)) and backpropagation algorithm

(Equation (3.111)). The MLP is designed with one hidden layer including 2 nodes. Including

more hidden nodes will result in all training samples being correctly classified in both non-

weighted and weighted MLP, a zero classification cost for both non-weighted (Equation (3.89))

and weighted (Equation (3.107)) MLP, and consequently similar classifiers. With 2 hidden nodes

some training samples cannot be correctly classified, so we can see the difference between non-

weighted and weighted MLP classifiers. Figure 3.13 shows the division of the feature space

between the two classes with and without considering the training samples’ weights in the cost

function and the backpropagation algorithm. Despite both weighted and non-weighted MLP

misclassify the same four training samples, the weighted MLP classifier provides a better fit (a

lower error) for the two more important samples from class ω1.

 60

1

2

3

4

1 2 3 4
l1

l2

5 6

ω1 ω2

Figure 3.13. Division of the feature space between the two classes, circles and squares, without (solid line) and with
(dashed line) considering the training samples’ weights (darkness of samples) in MLP classifier (logistic activation

function and adaptive training rate with 2000 iterations).

3.3.3 Nonlinear SVM

In nonlinear SVM [48], training samples are nonlinearly mapped from their original l-

dimensional space (where they cannot be linearly separated) into a k-dimensional space (k>>l)

where they are more likely to be linearly separable [81; 38]. However, there is no guarantee that

training samples will be linearly separable in the new k-dimensional space. Therefore, linear

SVM with slack variables is used to find the hyperplane separating the two classes in the k-

dimensional space. Although the classifier is a hyperplane in the k-dimensional space, it is a

hypersurface in the l-dimensional space due to the nonlinear mapping, hence the name nonlinear

SVM. The next step is to find the dimensionality of the new space (k) and the mapping function.

We use the following equations, obtained in Section 3.2.3.2, to find the SVM classifier

hyperplane f(�́�)=wT�́�+w0 in the k-dimensional space, where �́�𝑖 is the i-th feature vector (xi)

mapped into the k-dimensional space.

 61

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑚𝑎𝑥
𝜆

��𝜆𝑖

𝑁

𝑖=1

−
1
2
��𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗�́�𝑖𝑇�́�𝑗

𝑁

𝑗=1

𝑁

𝑖=1

�

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 �𝜆𝑖𝑦𝑖

𝑁

𝑖=1

= 0

0 ≤ 𝜆𝑖 ≤ 𝐶 (𝑑𝑢𝑒 𝑡𝑜 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.20) , 𝑖 = 1,2, … ,𝑁

�

(3.113)

(3.114)

(3.115)

⎩
⎪
⎨

⎪
⎧𝑤 = �𝜆𝑖𝑦𝑖�́�𝑖

𝑁

𝑖=1

𝜆𝑖[𝑦𝑖(𝑤𝑇�́�𝑖 + 𝑤0) − 1 + 𝜉𝑖] = 0 , 𝑖 = 1,2, … ,𝑁
 (𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦 𝑠𝑙𝑎𝑐𝑘𝑛𝑒𝑠𝑠 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠)

�
(3.116)

(3.117)

By substituting w from Equation (3.116) in Equation (3.117) as well as in the hyperplane

f(�́�)=wT�́�+w0 we end up with:

⎩
⎪
⎪
⎨

⎪
⎪
⎧
𝑓(�́�) = ��𝜆𝑖𝑦𝑖�́�𝑖

𝑁

𝑖=1

�

𝑇

�́� + 𝑤0 = �𝜆𝑖𝑦𝑖(�́�𝑖𝑇�́�)
𝑁

𝑖=1

+ 𝑤0

𝜆𝑖 �𝑦𝑖 ��𝜆𝑗𝑦𝑗��́�𝑗𝑇�́�𝑖�
𝑁

𝑗=1

+ 𝑤0� − 1 + 𝜉𝑖� = 0 ,

 𝑖 = 1,2, … ,𝑁(𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦 𝑠𝑙𝑎𝑐𝑘𝑛𝑒𝑠𝑠 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠)

�

(3.118)

(3.119)

An elegant property of the SVM helps implicitly map the training samples into the k-

dimensional space without knowing the mapping function and k. Notice that training samples

enter into Equations (3.113), (3.118), and (3.119) in pairs, in the form of inner products (�́�𝑖𝑇�́�𝑗) in

the k-dimensional space. Therefore, for finding w and w0 of the hyperplane in the k-dimensional

space and even for classifying a new sample using Equation (3.118), only the inner product of

pairs of feature vectors in the k-dimensional space is required. Knowing the mapping function

and the dimensionality of the new space (k) is not necessary. We can use the kernel trick to find

the inner product of two feature vectors in the k-dimensional space without actually mapping

them from the l-dimensional space into the k-dimensional space. According to Mercer’s theorem,

for any kernel (K), there exists a space in which K(xi,xj)=�́�𝑖𝑇�́�𝑗 [82; 83; 84]. Equations (3.120),

 62

(3.121), and (3.122) are examples of kernel functions [83] called polynomial, radial basis

function, and hyperbolic tangent, respectively, where σ is the kernel’s bandwidth.

𝐾�𝑥𝑖 , 𝑥𝑗� = �𝑥𝑖𝑇𝑥𝑗 + 1�𝑞 , 𝑞 > 0 (3.120)

𝐾�𝑥𝑖 , 𝑥𝑗� = exp �−
�𝑥𝑖 − 𝑥𝑗�

2

𝜎2 � (3.121)

𝐾�𝑥𝑖 , 𝑥𝑗� = 𝑡𝑎𝑛ℎ�𝛽𝑥𝑖𝑇𝑥𝑗 + 𝛾� , for appropriate values of β and γ, e.g., β=2 and γ=1 (3.122)

Therefore, to convert the linear SVM to nonlinear SVM we just need to replace the inner

product of the mapped feature vectors (�́�𝑖𝑇�́�𝑗) by a kernel function of the original feature vectors

K(𝑥𝑖 , 𝑥𝑗):

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑚𝑎𝑥
𝜆

��𝜆𝑖

𝑁

𝑖=1

−
1
2
��𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝐾�𝑥𝑖 , 𝑥𝑗�

𝑁

𝑗=1

𝑁

𝑖=1

�

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 �𝜆𝑖𝑦𝑖

𝑁

𝑖=1

= 0

0 ≤ 𝜆𝑖 ≤ 𝐶 (𝑑𝑢𝑒 𝑡𝑜 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.20) , 𝑖 = 1,2, … ,𝑁

�

(3.123)

(3.124)

(3.125)

⎩
⎪⎪
⎨

⎪⎪
⎧𝑓(𝑥) = �𝜆𝑖𝑦𝑖𝐾(𝑥𝑖 , 𝑥)

𝑁

𝑖=1

+ 𝑤0

𝜆𝑖 �𝑦𝑖 ��𝜆𝑗𝑦𝑗𝐾(𝑥𝑖 , 𝑥)
𝑁

𝑗=1

+ 𝑤0� − 1 + 𝜉𝑖� = 0 , 𝑖 = 1,2, … ,𝑁

 (𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦 𝑠𝑙𝑎𝑐𝑘𝑛𝑒𝑠𝑠 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠)

�

(3.126)

(3.127)

Although f(x) is linear in the k-dimensional space, it is nonlinear in the l-dimensional

space due to the nonlinearity of the kernel function.

Here we explain why we cannot develop the weighted version of nonlinear SVM. We use

the following equations, obtained in Section 3.2.3.2, to find the weighted SVM classifier

hyperplane f(�́�)=wT�́�+w0 in the k-dimensional space, where �́�𝑖 is the i-th feature vector (xi)

mapped into the k-dimensional space.

 63

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑚𝑎𝑥
𝜆

��𝜆𝑖

𝑁

𝑖=1

−
1
2
��𝜆𝑖�́�𝑖 �

|𝑤𝑇�́�𝑖 + 𝑤0|
𝑤𝑇�́�𝑖 + 𝑤0

− 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
��

𝑁

𝑖=1

�

𝑇

��𝜆𝑖�́�𝑖 �
|𝑤𝑇�́�𝑖 + 𝑤0|
𝑤𝑇�́�𝑖 + 𝑤0

− 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
��

𝑁

𝑖=1

��

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 �𝜆𝑖

𝑁

𝑖=1

�
|𝑤𝑡�́�𝑖 + 𝑤0|
𝑤𝑡�́�𝑖 + 𝑤0

− 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
�� = 0

0 ≤ 𝜆𝑖 ≤ 𝐶 (𝑑𝑢𝑒 𝑡𝑜 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.34) , 𝑖 = 1,2, … ,𝑁

�

(3.128)

(3.129)

(3.130)

⎩
⎪
⎨

⎪
⎧𝑤 = �𝜆𝑖�́�𝑖 �

|𝑤𝑇�́�𝑖 + 𝑤0|
𝑤𝑇�́�𝑖 + 𝑤0

− 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
��

𝑁

𝑖=1

𝜆𝑖 �|𝑤𝑇�́�𝑖 + 𝑤0| − 𝑦𝑖 �1 −
1

1 + 𝑔𝑖
� (𝑤𝑇�́�𝑖 + 𝑤0) − 1 + 𝜉𝑖� = 0 , 𝑖 = 1,2, … ,𝑁

 (𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦 𝑠𝑙𝑎𝑐𝑘𝑛𝑒𝑠𝑠 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠)

�

(3.131)

(3.132)

Training samples do not enter into Equations (3.128), (3.131), and (3.132) in the form of

their inner products (�́�𝑖𝑇�́�𝑗) in the k-dimensional space, thus the kernel trick cannot be used here.

A plausible approach for developing the weighted nonlinear SVM is to develop the

weighted linear SVM in the k-dimensional space using the iterative algorithm at the end of

Section 3.2.3.2:

• w and w0 are initialized for a non-weighted SVM in the k-dimensional space,

• Loop: repeat until convergence

�́��𝑡 = �́� − �1 −
1

1 + 𝑔�
.�
��́�𝑤𝑡−1 + 𝑤0𝑡−1�

‖𝑤𝑡−1‖
� . 𝑦

𝑤𝑡−1𝑇

‖𝑤𝑡−1‖
 (3.133)

• find wt and w0t for the non-weighted SVM classifier hyperplane based on �́��𝑡

The above algorithm attempts to develop the non-weighted linear SVM classifier, f(�́�), in

the k-dimensional space, iteratively relocate the mapped feature vectors (�́��𝑖) with respect to this

hyperplane based on their weights (Equation (3.133)), and find the new hyperplane f(�́��𝑖) until

convergence. However, the Mercer’s theorem provides neither the dimensionality of the new

space (k) nor the mapping function [85]. Therefore, it is not possible to map the feature vectors

into the k-dimensional space and we do not know �́� in Equation (3.133).

 64

To bypass the lack of knowledge about �́� in the k-dimensional space, one might consider

updating the position of feature vectors in the original l-dimensional space with respect to the

nonlinear classifier hypersurface based on their weights iteratively until convergence. However,

the hypersurface in the l-dimensional space is not known. It is worth noting that even if the

hypersurface was known, moving the training samples perpendicularly toward/away from a

hypersurface is a challenging mathematical problem.

3.4 EXPERIMENT WITH BREAST CANCER DATA

The University of Wisconsin hospital breast cancer dataset was obtained from UCI

machine learning repository [86]. This dataset has 683 samples, after samples with missing data

are removed. This is a classification problem with 9 input features and 2 classes. The features

include: clump thickness, uniformity of cell size, uniformity of cell shape, marginal adhesion,

single epithelial cell size, bare nuclei, bland chromatin, normal nucleoli, mitoses. All input

features are numerical values between 1 and 10. The two classes, that need to be predicted, are

benign (444 samples) and malignant (239 samples). For weighted machine learning, we need a

weight associated with each training sample, reflecting its reliability or accuracy. Due to the lack

of such weights in this dataset (and to our knowledge in other machine learning datasets), we

apply the following procedure to produce artificial weights for training samples. A function runs

through each training sample, switches its output class from what it is to the other one with a

random probability of 0<k<1, and assigns a weight of 1-k to that training sample. This way, a

training sample’s weight shows how reliable that training sample is and there are no changes

imposed on test samples. Weighted machine learning techniques take advantage of these weights

 65

to take the training samples’ reliability into account but non-weighted machine learning

techniques ignore these weights. Leave-one-out or one-fold cross validation is used to estimate

the accuracy of weighted and non-weighted machine learning techniques, reported in Table 3.3,

where hyperparameters are optimized using cross-validation.

Table 3.3. Accuracy of different classification techniques for breast cancer prediction.

Technique Overall accuracy (%) Settings
Non-weighted

version
Weighted
version

Bayesian 46.71 76.72
• Non-parametric Parzen windows with Gaussian kernel

(Equation 10) where σ=1
• Priors are based on class frequencies

LS 45.39 92.39
SVM 51.24 64.86 • Smoothing parameter (C)=18

Decision tree 48.17 89.90 • A node is considered a leaf if the maximum impurity
decrease (ΔImax) for that node is less than 0.04

Perceptron 51.10 93.12

• Logistic activation function
• Cost function: Sum of squared errors
• Maximum number of iterations: 1000
• Not updating the weights after those iterations resulting in

an increase in the total cost
• Multiply all learning rates by 1.1 or 0.8 after each step

based on whether the total cost decreases or increases
• Adaptive learning rate: multiply the learning rate for a

parameter by 1.2 if the partial derivative of the loss, with
respect to that parameter, remains the same sign in
successive steps and multiply it by 0.7 otherwise [87]

MLP 55.64 89.02
In addition to the settings for the perceptron:
• Maximum number of iterations: 2000
• Number of hidden nodes for MLP: 2

The higher accuracy of weighted machine learning techniques (see Table 3) comes as no

surprise since they take advantage of weights while non-weighted machine learning techniques

do not. Nevertheless, it proves the proposed weighted machine learning techniques’ efficiency in

 66

appropriately taking the training samples’ weights into account, whenever such weights are

available, in order to improve the prediction accuracy. Clearly, as mentioned earlier, the

weighted SVM classifier shows the least difference with its non-weighted counterpart,

underlying its relative reluctance to react to weights in comparison with other weighted

predictors. The weighted least squares and weighted perceptron achieve the highest accuracy,

shedding light on the linear separability of the two classes in this specific application. On the

other hand, the weighted Bayesian classifier makes more dramatic changes in the border,

resulting in a lower accuracy than other weighted non-linear classifiers (decision tree and MLP),

for the same reason, i.e., the linear separability of the two classes in this specific application.

3.5 CONCLUSIONS

The weighted machine learning techniques developed in this chapter provide developers with the

opportunity to give different weights to training samples. These weights are used to adjust the

classifier/regressor in favor of more importance samples, and thereby giving a higher

significance to more important samples. It is worth noting that the weighted linear and nonlinear

classifiers change the division of the feature space only around the border (the most uncertain

area) and areas far from the border are less likely to change their label. The weighted SVM

classifier showed the least difference with its non-weighted counterpart when the training

samples’ weights are not much variant. The reason for this is that SVM classifier is designed

only based on support vectors not all training samples. If the weights of training samples are not

much different, their relocation based on their weights might not be large enough to change the

selection of support vectors. In other words, the weighted SVM classifier would be different than

 67

its non-weighted version only if relocating training samples based on weights would result in a

rearrangement of training samples significant enough to change the selection of support vectors.

In other words, the weighted SVM has the highest stability with respect to weight changes in a

small subset of training samples. The weighted MLP also takes the training samples’ weights

into account through smallest adjustments in its nonlinear border. However, the MLP’s behavior

is highly dependent on the network’s size. In other words, a larger number of hidden nodes will

result in a more significant difference between the weighted and non-weighted MLP. On the

other hand, the weighted decision tree and weighted Bayesian classifiers showed the most

dramatic changes in how the feature space is divided between the two classes in comparison with

their non-weighted counterparts. The reason is that these two models are highly local, especially

the non-parametric Bayesian classifier. Therefore, even small changes in the training samples’

weights would result in a different classification of the feature space. The weighted LS and

perceptron showed slight and similar changes in how they divide the feature space between the

two classes in comparison with their non-weighted counterparts. The similar behavior is because

both models minimize the sum of square errors, although in different ways. The difference

between weighted and non-weighted versions being slight in these two cases originates from

their linear nature and consequently their rather restricted flexibility in modifying their shape.

How the weighted machine learning techniques developed in this work will contribute in

improving the prediction accuracy in different real-world applications is yet to be seen.

 68

4.0 SPATIAL-TEMPORAL WEIGHT FOR TRAINING SAMPLES

In this chapter, we identify and quantify those characteristics of spatial-temporal data that make

them different than other types of data and also affect the training process. It is the

autocorrelation among spatial-temporal data which makes them special. If this spatial-temporal

autocorrelation is quantitatively captured, it can be used as an external knowledge to enrich the

training process. This external knowledge is entered in the training process as spatial-temporal

weights assigned to training samples. Higher the spatial-temporal weight, more effective the

training sample is and more biased the training process must be in its favor. Since machine

learning techniques which take the training samples’ weights into account were developed in the

previous chapter, here we focus on developing a quantitative approach to assign a spatial-

temporal weight to each training sample.

Semivariogram is used as the basis in calculating both spatial and temporal semivariances

and the spatial-temporal weight is proportional to the inverse of the overall semivariance at

specific spatial and temporal distances. To develop the spatial and temporal semivariograms and

calculate the spatial-temporal weights, we only need the location, time, and response of training

samples. Feature vectors are not needed to calculate the spatial-temporal weights.

 69

4.1 SPATIAL SEMIVARIOGRAM

Autocorrelation or self-correlation assesses the similarity of characteristics at geographic

locations relative to their spatial distance [2; 3]. In other words, a metric that relates the changes

in responses to spatial distance is used. This metric will help us determine the level of similarity

between the responses at two geographic locations, knowing their spatial distance.

A measure of spatial autocorrelation among training samples is semivariance (γ).

Semivariance for the lag d is calculated through Equation (4.1) [2; 3; 4; 23; 11; 13; 25] where Δ

is the lag interval, nd is the number of observation pairs with a distance (dij) between d-Δ/2 and

d+Δ/2, and yi and yj are the responses of the observations i and j, respectively. If the lags (d) are,

for example, 10 m, 20 m, and 30 m, etc., then the lag interval (Δ) is 10 m. Only pairs of

observations with a distance between d-Δ/2 and d+Δ/2 participate in the Σ. The hat (�) over the

semivariance in this equation is to emphasize that the calculated value is the mean over all pairs

with a distance of d∓Δ/2.

𝛾�(𝑑) =
1

2𝑛𝑑
� �𝑦𝑖 − 𝑦𝑗�

2
𝑑+∆/2

𝑑𝑖𝑗=𝑑−∆/2

 (4.1)

The geographical fact that near things are more related than distant things means that the

response of the observations which are geographically closer to each other is more likely to be

similar than distant observations. For example, the landuse, weather, or population of people or

animals in one region tends to be more similar to those of its surrounding regions than very far

regions. This fact manifests itself as an increase in semivariance (𝛾�; see Equation (4.1)) with

spatial lag (d) [2; 3; 4; 23; 11; 13; 24; 25] shown schematically in Figure 4.1.

 70

Spatial lag (d)

Se
m

iv
ar

ia
nc

e
(γ

)

Figure 4.1. Semivariance versus spatial distance.

Spatial lag (d)

Se
m

iv
ar

ia
nc

e
(γ

)

r

c1

c0

Figure 4.2. Nugget (c0), partial sill (c1), and range (r) in a
semivariance versus spatial distance plot.

The increase in semivariance with spatial distance is not perpetual and the semivariance

levels off and remains constant after some spatial lag [2; 3; 4; 23; 11; 13; 24; 25]. Sill (c0+c1) is

the semivariance upper bound (see Figure 4.2). Partial sill (c1) is the sill minus the nugget and is

defined in Equation (4.2) where σ2 is the variance of responses [2; 25]:

𝑐1 = lim
𝑑𝑠→∞

𝛾�(𝑑𝑠) ≈ 𝜎2 (4.2)

The range (r) is the lag at which the semivariance reaches the sill and flattens out (see

Figure 4.2). Beyond the range, there is no particular spatial autocorrelation structure among

observations [2; 3; 25]. The nugget effect (c0) presents a discontinuity in the semivariance at the

origin (see Figure 4.2). The semivariance is always 0 at d=0. The nugget is the jump in the

semivariance as soon as d>0 [88]. In other words, nugget is the semivariance at an

infinitesimally small lag. The nugget is attributed to microscale variations (spatial variations at

distances smaller than the shortest sampling interval) and measurement errors [89]. It is

estimated as:

𝑐0 ≈ 𝛾�(0) (4.3)

Many empirical spatial semivariograms approximate to a spherical model [2; 3; 32; 24]

shown in Equation (4.4) and visualized in Figure 4.3. The spherical model is the most frequently

used model and is the default in many GIS software [90; 2; 3; 32; 24].

 71

Spatial lag (d)

Spherical model

r

c1

c0Se
m

iv
ar

ia
nc

e
(γ

)

Figure 4.3. A spherical semivariogram model fitted to the semivariances in Figure 4.1.

𝛾��(𝑑𝑠) = �𝑐0 + 𝑐1 �
3𝑑𝑠
2𝑟

− 0.5 �
𝑑𝑠
𝑟 �

3

� 𝑑𝑠 ≤ 𝑟

𝑐0 + 𝑐1 𝑑𝑠 > 𝑟

�

(4.4)

The second hat (�) over the semivariance in Equation (4.4) is to emphasize that the

calculated value is from the fitted semivariogram model and the subscript s in ds is to emphasize

that the distance is in the space domain (not the time domain).

Two other common semivariogram models [90] are also listed in Table 4.1, where both

of them depend only on nugget (c0), partial sill (c1), and range (r).

Table 4.1. Common semivariogram models.

𝛾��(𝑑𝑠) = 𝑐0 + 𝑐1 �1 − exp �
3𝑑𝑠
𝑟 ��

Exponential

model

𝛾��(𝑑𝑠) = 𝑐0 + 𝑐1 �1 − exp�
3𝑑𝑠2

𝑟2
��

Gaussian

model

 72

The spatial semivariogram model in Equation (4.4), after c0, c1, and r are replaced with

their values obtained from training samples, is used to show how strong is the correlation

between each training sample and the irresponsive sample based on their spatial distance (ds).

4.2 TEMPORAL SEMIVARIOGRAM

The semivariogram is also used to model the autocorrelation among the responses of

observations over time rather than space. Equation (4.1) can be used to estimate the temporal

semivariance, where d refers to the temporal distance between pairs of training samples rather

than their spatial distance. The shape of temporal semivariogram might not necessarily be the

same as spatial semivariogram. The autocorrelation among the responses of observations is more

complicated over time than space because not only temporally closer observations are more

likely to have similar responses than temporally farther observations [4; 15; 16], but also

responses might exhibit a periodic behavior [17; 18; 19; 20; 21] over time as shown in Figure

 4.4. For example, the temperature or weather today is more correlated with the temperature or

weather yesterday than a month ago and it is more correlated with the temperature or weather a

year ago than four months ago. In other words, the temporal semivariogram, shown in Figure

 4.4, might never level off but rather show a periodic behavior. Another important point is that the

responses might have more than one periodic behavior with different frequencies and amplitudes

as exemplified in Figure 4.4. For example, there might be weekly, monthly, and yearly cycles

with different amplitudes. Therefore, the temporal semivariogram, if stationary, is approximately

the result of the random superposition of periodic components oscillating at different

frequencies. It is important to mention that the nugget (c0) in Figure 4.2 and Figure 4.4 are the

 73

same because they are both referring to the semivariance at zero spatial and temporal lags

(ds=dt=0).

Temporal lag (dt)

Periodogram

Se
m

iv
ar

ia
nc

e
(γ

)

c0

Figure 4.4. Semivariance versus temporal distance.

The sinusoid model Acos(2πω𝑑𝑡+ϕ) captures the periodic behavior of the data at

frequency ω where A is the amplitude and ϕ is the phase shift, determining the start point of the

cosine function [91]. Applying the trigonometric identity (cos(𝑎 ± 𝑏) = cos 𝑎 cos 𝑏 ∓

sin𝑎 sin 𝑏)) and defining β1=Acosϕ and β2=-Asinϕ, we obtain the sinusoid in Equation (4.5)

which is easier to regress on a dataset because it has two coefficients (β1 and β2) and one

unknown parameter (ω) inside the cosine instead of one coefficient (A) and two unknown

parameters inside the cosine (ω and ϕ) [91].

𝛾��(𝑑𝑡) = 𝛽1 cos(2𝜋𝜔𝑑𝑡) + 𝛽2 sin(2𝜋𝜔𝑑𝑡) (4.5)

The two coefficients (β1 and β2) can be estimated through a linear regression via

Equations (4.6) and (4.7) [91].

�̂�1 =
∑ 𝛾�(𝑑𝑡) cos(2𝜋𝜔𝑑𝑡)𝑛
𝑑𝑡=1

∑ cos2(2𝜋𝜔𝑑𝑡)𝑛
𝑑𝑡=1

=
2
𝑛
� 𝛾�(𝑑𝑡) cos(2𝜋𝜔𝑑𝑡)
𝑛

𝑑𝑡=1

 (4.6)

 74

�̂�2 =
∑ 𝛾�(𝑑𝑡) sin(2𝜋𝜔𝑑𝑡)𝑛
𝑑𝑡=1

∑ sin2(2𝜋𝜔𝑑𝑡)𝑛
𝑑𝑡=1

=
2
𝑛
� 𝛾�(𝑑𝑡) sin(2𝜋𝜔𝑑𝑡)
𝑛

𝑑𝑡=1

 (4.7)

However, Equation (4.5) captures the periodic behavior at only one frequency (ω), while

the data might oscillate at different frequencies (ωi) with different amplitudes (A=√(β1
2 + β2

2)).

Equation (4.8) shows different frequencies which need to be considered, where n is the number

of training samples and i is the number of cycles through the life time of the data [91].

𝜔𝑖 =
𝑖
𝑛

 , 𝑖 = 1, 2, … , �
𝑛
2
− 1� (4.8)

To consider all frequencies, Equation (4.9) is used to fit a periodic regression on the

semivariances based on temporal lag (dt).

𝛾��(𝑑𝑡) = � 𝛽𝑖1 cos(2𝜋𝜔𝑖𝑑𝑡) + 𝛽𝑖2 sin(2𝜋𝜔𝑖𝑑𝑡)

�𝑛2−1�

𝑖=1

, 𝜔𝑖 =
𝑖
𝑛

 (4.9)

The coefficients (βi1 and βi2) in Equation (4.9) are calculated through Equations (4.10)

and (4.11) for different frequencies (ωi). We add frequencies associated with the largest

amplitudes to the periodic regression in Equation (4.9) one by one as long as it produces a closer

fit to data points.

�̂�𝑖1 =
2
𝑛
� 𝛾�(𝑑𝑡) cos(2𝜋𝜔𝑖𝑑𝑡)
𝑛

𝑑𝑡=1

, 𝜔𝑖 =
𝑖
𝑛

 , 𝑖 = 1, 2, … , �
𝑛
2
− 1� (4.10)

�̂�𝑖2 =
2
𝑛
� 𝛾�(𝑑𝑡) sin(2𝜋𝜔𝑖𝑑𝑡)
𝑛

𝑑𝑡=1

, 𝜔𝑖 =
𝑖
𝑛

 , 𝑖 = 1, 2, … , �
𝑛
2
− 1� (4.11)

Equation (4.9) models the semivariance of responses based on the time interval between

observations and it can be used to determine how significant is the role of each training sample

when we want to predict the response of a new sample.

 75

4.3 SPATIAL-TEMPORAL WEIGHTS

Equation (4.12) calculates the spatial-temporal weight of the i-th training sample (gi), where

ds(ip) is the spatial distance between the i-th training sample and the irresponsive sample p, dt(ip)

is the temporal distance between the i-th training sample and the irresponsive sample p,

𝛾��(𝑑𝑠(𝑖𝑝)) is the spatial semivariance at ds(ip) calculated from Equation (4.4), 𝛾��(𝑑𝑡(𝑖𝑝)) is the

temporal semivariance at dt(ip) calculated from Equation (4.9), and 𝛾��(𝑖𝑝) is the overall

semivariance between the i-th training sample and the irresponsive sample p.

𝑔𝑖 =
1

𝛾��(𝑖𝑝)
 𝑤ℎ𝑒𝑟𝑒, 𝛾��(𝑖𝑝) =

𝛾��(𝑑𝑠(𝑖𝑝)) + 𝛾��(𝑑𝑡(𝑖𝑝))
2

 (4.12)

4.4 DATA CONSTRAINTS

4.4.1 Fixed location or time

When calculating the spatial semivariance, the time must be the same for each pair of yi and yj in

Equation (4.1). The same time does not mean the exact same instant and depends on the dataset.

For example, if one set of observations are observed in one day (e.g., a series of satellite images

taken on Jan 1st, 2001) and another set are observed in another day (e.g., another set of satellite

images for the same area taken on Feb 1st, 2002), then the same time means observed on the

same day. On the other hand, when calculating the temporal semivariance, the location must be

the same for each pair of yi and yj in Equation (4.1). Again, the same location does not

necessarily mean the same exact coordinates (x,y) but depends on the nature of the dataset. For

 76

example, if each observation belongs to a separate tree or neighborhood (e.g., the height of the

tree or the population of the neighborhood), then the same location means the same tree or the

same neighborhood. For a satellite image, the same location means, e.g., the same pixel in the

image.

4.4.2 Categorical responses

As mentioned before, yi in Equation (4.1) is the response of the observation i. If the responses are

already numerical (interval- or ratio-scaled), they are used for y. Categorical (or non-numerical)

responses are either ordinal or nominal [92]. If the responses are ordinal such as the agricultural

potential of different lands or purity of different water bodies (e.g., good, average, and bad), they

can be replaced by numbers (e.g., 1, 2, and 3) somehow that the interval between numbers

approximates the implicit interval between responses (although ordinal data do not suggest any

quantitative interval between levels). Although converting ordinal variables to interval variables

in this way is not precise, it is legitimate here as weighted machine learning techniques,

developed in this thesis, are not much sensitive to small changes in training samples’ weights. If

the responses are nominal, where the responses cannot be ordered (e.g., different landuses or

building uses: shop, residential, etc.), assigning a number to each response incorrectly implies

that some classes are closer to each other than others. In this case, we consider yi-yj=0 if samples

i and j have the same response and 1 (or any desired constant value) otherwise [93; 94]. An

alternative approach is to code responses via dummy variables [35]. In this approach responses

are represented using vectors so as the distance between classes remains constant. The number of

elements in the vector is equal to the number of classes. For each class, one element of the vector

is one and the rest are zero (e.g., (1,0,0), (0,1,0), (0,0,1)). Hamming distance, L1 or L2 norms can

 77

then be used to calculate the distance between response vectors. This approach has been common

to code nominal features.

4.4.3 Stationarity of data

4.4.3.1 Temporal stationarity Fitting the periodogram to the temporal semivariances is only

meaningful if the data are temporally stationary [91]. A stochastic process is strictly stationary if

the joint statistical distribution of 𝒙𝒕𝟏 , … ,𝒙𝒕𝒍 is the same as the joint statistical distribution of

𝒙𝒕𝟏+𝝉, … ,𝒙𝒕𝒍+𝝉 for all l and τ [95], where t represents the time. This means that statistical

properties of all degrees (expectations, variances, third order, and higher) of the process, any

where are the same. Since, strict stationary is too unrealistic for real-world processes, weak or

second-order stationarity is defined as a process whose mean and variance do not vary with time

and the autocovariance between xt and xt+τ (shown as cov(xt , xt+τ)) only depends on the lag τ

[95]. We attempt to transform the data closer to a weakly stationary one by first stabilizing the

variance and then stabilizing the mean. To stabilize the temporal variance, y is replaced by log(y)

for training samples. If there are negative values among responses, we can add a constant value

to make them all positive and then take the log. This constant value will be removed in the next

step. To stabilize the temporal mean, after stabilizing the temporal variance, a line, called the

trend line, is fitted to all log(yi) based on time. Then, the value on the trend line is subtracted

from log(yi). Temporal semivariances are calculated based on these residuals. Figure 4.5

summarizes these steps.

 78

time

y

(y+constant)>0

time

log(y+constant)

time

(a) Original responses (y) over time.
(b) Adding a constant value to
make all responses positive if

necessary.

(c) Taking the log to stabilize the
variance.

Residual of log(y+constant)

time

 Temporal lag (dt)

γ

Temporal lag (dt)

γ

(d) Subtracting the trend line. (e) Calculating the semivariances

based on residuals. (f) Fitting the periodic semivariogram.

Figure 4.5. Stabilizing the temporal variance and mean before developing the temporal semivariogram.

4.4.3.2 Spatial stationarity Fitting the spherical semivariogram to the spatial semivariances is

only meaningful if the data are spatially stationary [24; 25]. If the spatial mean is not stable or, in

other words, if there is a trend among the responses of training samples over space, the spatial

semivariances will show an exponential behavior over lags and never flatten out. On the other

hand, if the spatial variance is not stable or, in other words, if the range of changes in responses

varies dramatically over space, the spatial semivariances will be dramatically scattered around

the spherical model. Again, because real-world processes are far from being strictly stationary,

we resort to weak stationarity. Thus, before calculating the spatial semivariances and fitting the

 79

spherical semivariogram model, the spatial variance and mean must be stabilized. The steps are

very similar to temporal stabilization and are illustrated in Figure 4.6. It is noteworthy that

because space has two dimensions, in comparison to time with one dimension, here we have a

trend plane instead of a trend line.

y

(y+constant)>0

log(y+constant)

(a) Original responses (y) over

location.
(b) Adding a constant value to make
all responses positive if necessary.

(c) Taking the log to stabilize the
variance.

Residual of log(y+constant)

Spatial lag (ds)

γ

Spatial lag (ds)

γ

(d) Subtracting the trend plane. (e) Calculating the semivariances
based on residuals.

(f) Fitting the spherical
semivariogram.

Figure 4.6. Stabilizing the spatial variance and mean before developing the spatial semivariogram.

4.4.3.3 Combined spatial-temporal stationarity If our dataset is only spatial or temporal, we

use either of the previous sections to stabilize the dataset. However, if our dataset is spatial and

 80

temporal, we do not need to transform the dataset twice, once over location and once over time.

Instead, the two processes are combined as shown in Figure 4.7. First, we add a constant value to

make all responses positive. Then we take the log to stabilize the variance. To stabilize the mean,

a 3D hyperplane is regressed over all responses based on both location and time and subtracted

from all responses. These residuals are both spatially and temporally stabilized and we can

proceed with developing semivariograms.

y

Location and time

(y+constant)>0

Location and time

log(y+constant)

Location and time

Residual of log(y+constant)

Location and time

(a) Original responses (y)
over location and time.

(b) Adding a constant
value to make all

responses positive if
necessary.

(c) Taking the log to
stabilize the variance.

(d) Subtracting the trend
plane.

Figure 4.7. Stabilizing the variance and mean before developing the spatial and temporal semivariograms.

4.5 CONCLUSIONS AND FUTURE DIRECTIONS

Figure 4.8 shows the entire procedure of calculating the spatial-temporal weight for training

samples. Spatial-temporal weights are visualized using color saturation. Darker samples have

larger spatial-temporal weights. The red cross is the irresponsive sample and plays the central

role in determining the spatial-temporal weight for training samples. Training samples are

weighted based on their spatial and temporal autocorrelation with the irresponsive sample. In the

 81

spatial-temporal domain, the irresponsive sample is at the origin of the coordinate system and

spheres delineate the training samples with larger spatial-temporal weights.

 82

Spatial lag (ds)

γ

Temporal lag (dt)

Spherical model

rh3

Periodic regression

r

r

r

r

r

h3

h3

h2

h2

h1

h2h1

c1

c0

Time

Training samples and their spatial-temporal weights in the
space-time domain centered at the irresponsive sample

Training samples and their spatial-temporal
weights in the l-dimensional feature space

y (y+constant)>0 log(y+constant) Residual of log(y+constant)

Tr
an

sf
or

m
in

g
th

e r
es

po
ns

es

cl
os

er
 to

 w
ea

k
sta

tio
na

rit
y

Original data
Add a constant value to

responses to make them positive
Take the log to

stabilize the variance
Detrend by subtracting
the trend hyperplane

Ca
lc

ul
at

in
g

th
e s

pa
tia

l-t
em

po
ra

l
w

ei
gh

ts
of

 tr
ai

ni
ng

 sa
m

pl
es

Sc
he

m
at

ic
 v

isu
al

iz
at

io
n

of
 sp

at
ia

l-t
em

po
ra

l w
ei

gh
ts

of
 tr

ai
ni

ng
 sa

m
pl

es
 ar

ou
nd

 th
e i

rre
sp

on
siv

e s
am

pl
e

γ

Spatial-temporal weight

Latitude

Longitude

Figure 4.8. Calculating spatial-temporal weight for training samples based on their autocorrelation with the
irresponsive sample.

 83

It is worth noting that spatial-temporal weights assigned to training samples are dynamic

with respect to the location and time of the irresponsive sample. In other words, spatial-temporal

weights are relative and need to be recalculated every time a new observation is to be predicted.

As a consequence, the weighted machine learning techniques need to be trained separately for

each irresponsive sample, as the spatial-temporal weight of training samples depends on the

location and time of the irresponsive sample.

The logic behind deciding in favor of spatial-temporally more important samples is that

the output of the irresponsive sample is more likely to be similar to the output of training

samples with larger spatial-temporal weights. This is justified because we calculate the spatial-

temporal weights based on similarity among the responses of training samples across space and

time. Therefore, we expect the spatial-temporally weighted predictor to achieve a better out-of-

sample (test) accuracy than its non-weighted counterpart, despite it is not difficult to see that the

non-weighted predictor achieves a better in-sample (training) accuracy since it is equally fair to

all training samples. The scope of the proposed approach for calculating spatial-temporal weights

is limited to spatial-temporal phenomena whose spatial semivariances approximately follow the

spherical model and whose temporal semivariances approximately follow the periodic

semivariogram proposed here. Additionally, the calculated spatial-temporal weights would be

optimal when the data are stationary in the space-time domain.

Our approach of calculating spatial weights for training samples assumes that the

underlying phenomenon is isotropic by considering only the distance between pairs of

observations and ignoring the direction of the vector connecting them. A future research venue is

to increase the accuracy of spatial weights by taking into account the anisotropy or directional

effects in the spatial variation of responses. This can be done by developing two (or more) spatial

 84

semivariograms, each modeling the spatial similarity in either north-south or east-west direction.

To calculate the semivariance in a specific direction, only pairs of samples aligned in that

direction (at least approximately) are used. Therefore, the direction of the vector connecting the

irresponsive sample to each training sample determines which spatial semivariogram must be

used to calculate that training sample’s spatial weight. This way training samples aligned in a

specific direction with respect to the irresponsive sample might gain a higher spatial weight.

We developed spatial and temporal semivariograms separately because the former is best

modeled with a spherical model and the latter with a periodogram. Another future research venue

is to find a way to develop a single spatial-temporal semivariogram.

 85

5.0 EVALUATION

In Chapter 3, we developed weighted machine learning techniques which can use the training

samples’ weights to bias the predictor in favor of more important samples. In Chapter 4, we

calculated a spatial-temporal weight for each training sample which determines its importance in

classifying/regressing the irresponsive observation. In this chapter, the weighted machine

learning techniques are applied to real spatial-temporal data. The spatial-temporal weight of

training samples are estimated using the methodology proposed in Chapter 4 and then different

weighted machine learning techniques developed in Chapter 3 are compared with their non-

weighted versions and other baseline methodologies in terms of accuracy and time performance.

The MATLAB software on a 64-bit platform with 8 GB RAM, a Core i7 CPU and a 2.00GHz

processor was used for the validation of the proposed techniques. Two applications are presented

in this chapter, regression of air temperature based on meteorological features and classification

of land cover based on morphological and remote sensing features. A classification problem with

simulated data is also presented at the end.

5.1 REGRESSION OF AIR TEMPERATURE

Oceanographic and surface meteorological readings, taken from a series of buoys positioned

throughout the equatorial Pacific, from 1980 to 1998, are available to public in [96]. Each

 86

reading includes location, date, zonal winds, meridional winds, humidity, and temperature. The

dataset has 178,000 records. Removing records with missing features leaves the dataset with

94,000 records. In this experiment, we will predict the air temperature based on zonal winds,

meridional winds, and humidity. Table 5.1 shows the variances and correlation coefficients

between different variables in this dataset.

Table 5.1. Non-diagonal elements show the correlation coefficient between different variables and diagonal
elements show the variances.

 Zonal winds Meridional winds Humidity Temperature
Zonal winds 11.72 0.08 0.06 0.23
Meridional winds 0.08 9.13 0.08 -0.34
Humidity 0.06 0.08 27.83 -0.39
Temperature 0.23 -0.34 -0.39 2.80

According to the above table, air temperature is fairly correlated with all other variables

while other variables are not much correlated with each other. The spatial and temporal

semivariances for the response variable (air temperature), and the spatial and temporal

semivariograms fitted to them are shown in Figure 5.1 and Figure 5.2. These figures are

produced using the proposed approach in Chapter 4. As required in Section 4.4.1, we consider

two observations to be at the same time as long as their time difference is less than one day and

we consider two observations to be at the same location as long as their distance is less than 10

m.

 87

Figure 5.1. Spatial semivariogram for temperature.

0

0.0002

0.0004

0.0006

0.0008

0.001

0 500 1000 1500 2000 2500

Se
m

iv
ar

ia
nc

e

Days

Air temperature

Figure 5.2. Temporal semivariogram for temperature with a period of one year.

Spatial and temporal semivariograms in the above figures can be used to determine the

spatial-temporal weight of training samples. Knowing the spatial distance of a training sample to

the irresponsive sample, we can use the spatial semivariogram in Figure 5.1 (represented by

0

0.002

0.004

0.006

0.008

0.01

0.012

0 40 80 120

Se
m

iv
ar

ia
nc

e

Geographical degrees

Air temperature
C1 = 0.000790
C0 = 0.000065
range = 7.25

 88

Equation (4.4)) to calculate its spatial semivariance. Knowing the temporal distance of a training

sample to the irresponsive sample, we can use the temporal semivariogram in Figure 5.2

(represented by Equation (4.9)) to calculate its temporal semivariance. Knowing both spatial and

temporal semivariances for that training sample, we can use Equation (4.12) to calculate its

spatial-temporal weight.

We use the leave-one-out or one-fold cross validation to evaluate the performance of

weighted regression versus non-weighted regression. Each time, one of the training samples is

excluded from the dataset and considered as the irresponsive sample. The spatial and temporal

semivariance of each training sample is determined using Figure 5.1 and Figure 5.2 based on its

spatial and temporal distances from the irresponsive sample. The spatial and temporal

semivariances of training samples are converted to their spatial-temporal weight using Equation

(4.12). Finally, the weighted Bayesian regressor, weighted LS, and weighted decision tree are

applied to predict the response of the irresponsive sample. Following this, another training

sample is chosen as the irresponsive sample and the whole process is repeated. All input features

are normalized to have a zero mean and unit variance. Table 5.2 shows the accuracy and

experimental time performance of different weighted regressors. Root mean square error

(RMSE) and coefficient of determination (R2) are reported for each regressor. The time

performance includes the time spent to calculate the spatial-temporal weights in addition to the

training and test time.

For comparison purposes, we also used only the top 30%, 10%, and 1% of training

samples with largest spatial-temporal weights for training. The resulted accuracy and time

performance are reported in Table 5.2. This table also reports the accuracy and time performance

of non-weighted regressors trained with non-spatial features (zonal winds, meridional winds, and

 89

relative humidity), non-weighted regressors trained with all features including location and time,

non-weighted regressors trained with location and time as the only features, and finally

estimating the response as the weighted average (i.e., spatial-temporal weights) of training

samples’ responses.

Table 5.2. The accuracy and time performance of different regression techniques for predicting the air temperature.

Technique RM

SE

R2 Time

(min)

Settings

Weighted average of training samples’ responses 1.65 0.03 82 • Spatial-temporal weights of

training samples are used as

weights
Weighted average of the top 30% of training samples’ responses 1.53 0.16 89

Weighted average of the top 10% of training samples’ responses 1.31 0.39 89

Weighted average of the top 1% of training samples’ responses 1.12 0.55 89

LS with location and time as the only features 1.62 0.07 20

LS without location and time as additional features 1.37 0.33 19

LS with location and time as additional features 1.35 0.35 36

Weighted LS 1.35 0.35 134

Weighted LS using only the top 30% of training samples 1.26 0.43 123

Weighted LS using only the top 10% of training samples 1.13 0.54 110

Weighted LS using only the top 1% of training samples 0.96 0.67 105

Bayesian regressor with location and time as the only features 1.40 0.30 4150 • Non-parametric Parzen

windows with Gaussian

kernel (Equation (3.4)) where

σ=3

Bayesian regressor without location and time as additional features 1.31 0.39 4180

Bayesian regressor with location and time as additional features 1.07 0.59 4522

Weighted Bayesian regressor 1.27 0.42 4956

Weighted Bayesian regressor using only the top 30% of training samples 1.16 0.52 1149

Weighted Bayesian regressor using only the top 10% of training samples 1.04 0.62 579

Weighted Bayesian regressor using only the top 1% of training samples 0.92 0.70 154

Weighted decision tree using only the top 10% of training samples 1.11 0.56 41395 • A node is considered a leaf if

ΔImax is less than 0.2 Weighted decision tree using only the top 1% of training samples 1.04 0.62 649

 90

One apparent irregularity in the above table is that for the regressor that simply estimates

the irresponsive sample’s response as the weighted average of training samples’ responses, the

performance time does not reduce when training samples with small weights are excluded. It is

because if all training samples participate in taking the weighted average, there is no need to sort

the weights of training samples but if one decides to exclude the training samples with very small

weights, the weight vector needs to be sorted. The sorting function which is invoked only if a

subset of training samples needs to be applied, has a greater time complexity than the function

that takes the weighted average of training samples’ responses.

Non-parametric regressors, in our case the Bayesian regressor with Parzen windows,

need to be trained separately for each irresponsive sample, regardless of the regressor being non-

weighted or weighted. For parametric regressors, the weighted version needs to be trained

separately for each irresponsive sample but the non-weighted version needs to be trained once

for all irresponsive samples. In other words, the weighted regressors need to be trained as many

times as the number of irresponsive samples because the spatial-temporal weights for training

samples depend upon the location and time of the irresponsive sample. However, the leave-one-

out approach for evaluation eliminates this effect, because each time there is only one test sample

and consequently both weighted and non-weighted regressors are trained equal number of times.

The weighted and non-weighted Bayesian regressors have almost identical performance

times with only 10% difference. The weighted LS takes 3.7 times longer than non-weighted LS

which is due to the presence of training samples’ weights in Equation (3.15).

Among the same versions of four different regressors (weighted average, LS, Bayes, and

decision tree) in Table 5.2, the weighted average is the fastest approach, followed by LS,

Bayesian regressor, and decision tree. Cross-validation of the weighted decision tree, trained

 91

with only 10% of training samples, took 29 days. Cross-validation of a decision tree, trained with

30% of training samples (or more), takes months and the results are not reported in Table 5.2.

Despite its simplicity and lower accuracy in comparison with other more complicated

techniques, the regressor which estimates the irresponsive sample’s output as the weighted

average of training samples’ responses achieves a very acceptable accuracy in a very short time.

Considering that this technique only needs location and time (to calculate the spatial-temporal

weights), its high accuracy underscores the efficiency of spatial-temporal weights in depicting

the spatial and temporal autocorrelation between training samples and the irresponsive sample.

Rows with a bold font in the above table show the settings leading to the best accuracy

for each of the four regression techniques (weighted average, LS, Bayes, and decision tree). In

all cases, the regressor trained using location and time as the only features results in the worst

accuracy. This highlights the importance of non-spatial/temporal features in proper training. On

the other hand, in all cases, the regressor that ignores the location and time altogether results in a

lower accuracy than regressors which somehow take account of location and time, either as input

features or as weights for training samples. This highlights the importance of location and time in

proper training. The difference between (a) the accuracy of the non-weighted regressor trained

using all features including location and time and (b) the accuracy of its weighted counterpart, is

very small in all cases. However, when only a subset of training samples with largest spatial-

temporal weights are applied to train the weighted regressor, the accuracy is considerably

improved, revealing the best accuracy and performance time. This also uncovers the fact that

training samples with very small spatial-temporal weights are not much constructive in training

the regressor. This is in line with our expectations that weighted regression captures the spatial-

 92

temporal autocorrelation best and excluding training samples with very small spatial-temporal

weights not only reduces the performance time but also improves the accuracy.

Among the same versions of four different regressors (weighted average, LS, Bayes, and

decision tree) in Table 5.2, the Bayesian regressor achieves the highest accuracy, followed by

LS, decision tree, and weighted average. However, weighted decision tree seems to precede

weighted LS, in terms of accuracy, when more training samples are included.

5.2 CLASSIFICATION OF LAND COVER

This is a classification problem with 8 input features and 8 classes. In this application we use

bands 2, 3, 5, and 7 of Landsat TM images, two categorical features including geology—with six

categories: (a) Quaternary alluvium, (b) Termeil essexite Permian, (c) Snapper point Permian,

(d) Pebbly beach Permian, (e) Sedimentary Permian, and (f) Ordovician—and aspect—with five

categories: east, north, west, south, and no aspect indicating zero slope—and two quantitative

hydrological features including flow accumulation and flow length to predict the land covers

shown in Table 5.3. Geology and aspect are coded in dummy variables [35]. All features are in

30×30 m grid format and the land covers represent the dominant vegetation cover by field

observation for 1121 sites in Kioloa, New South Wales, Australia. These sites are not contiguous

regions but are instead isolated samples as shown in Figure 5.3. The TM images are from Nov 8,

1994 and other layers are from 1992 [97; 98; 99; 100; 101; 59] and the entire dataset is publically

available in [102].

This dataset is available only for one point in time. Therefore, the spatial weight is used

instead of spatial-temporal weight during training. Figure 5.4 shows the spatial semivariances for

 93

land covers and the spatial semivariogram fitted to them. This figure is produced using the

proposed approach in Chapter 4.

Table 5.3. Different land covers and their relative frequency.

Class
dry

sclerophyl
E.

botryoides
lower

slope wet
wet E.

maculata
dry E.

maculata
rainforest
ecotone

rainforest
cleared

land

Relative freq. 0.2569 0.0401 0.0401 0.2239 0.1588 0.0839 0.0705 0.1258

Figure 5.3. Distribution of land cover samples across space, in UTM zone 56S.

6053000

6058000

6063000

6068000

250000 255000 260000

North

 94

Figure 5.4. Spatial semivariogram for land covers.

The above spatial semivariogram can be used to determine the spatial weight of training

samples. Knowing the spatial distance of a training sample to the irresponsive sample, we can

use the spatial semivariogram in Figure 5.4 (represented by Equation (4.4)) to calculate its spatial

semivariance. The spatial weight is the inverse of spatial semivariance.

We use the leave-one-out or one-fold cross validation to evaluate the performance of

weighted Bayesian classifier, weighted LS, weighted perceptron, Weighted SVM, weighted

decision tree, and weighted MLP. All input features are normalized to have a zero mean and unit

variance. Table 5.4 shows the overall accuracy and experimental time performance of different

weighted classifiers. The time performance includes the time spent to calculate the spatial

weights in addition to the training and test time.

For comparison purposes, we also used only the top 30%, 10%, and 1% of training

samples with largest spatial weights for training. The resulted accuracy and time performance are

reported in Table 5.4. This table also reports the accuracy and time performance of non-weighted

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16

Se
m

iv
ar

ia
nc

e

km

Land cover
C1 = 0.82
C0 = 0.1093
range = 3.25

 95

classifiers trained with non-spatial features, non-weighted classifiers trained with all features

including location, non-weighted classifiers trained with location as the only feature, and finally

picking the class with the largest collective spatial weight among training samples.

Table 5.4. The accuracy and time performance of different classification techniques for predicting the land cover.

Technique Overal

l Acc.
Time

(sec)
Settings

Choosing the class with largest collective weight among training

samples

34.61 1 • Spatial-temporal weights of training samples

are used as weights

Choosing the class with largest collective weight among the top 30%

of training samples

31.85 1

Choosing the class with largest collective weight among the top 10%

of training samples

57.09 1

Choosing the class with largest collective weight among the top

1% of training samples

72.61 1

LS with location as the only feature 36.04 4 • Using the one-against-one scheme since there

are more than two classes LS without location as additional feature 14.99 12

LS with location as additional feature 16.68 12

Weighted LS 52.72 33

Weighted LS using only the top 30% of training samples 42.64 13

Weighted LS using only the top 10% of training samples 31.13 8

Weighted LS using only the top 1% of training samples 22.03 2

Bayesian with location as the only feature 65.30 45 • Non-parametric Parzen windows with Gaussian

kernel (Equation (3.4)) where σ=85

• Priors are based on class frequencies
Bayesian without location as additional feature 14.09 293

Bayesian with location as additional feature 11.41 304

Weighted Bayesian 14.09 293

Weighted Bayesian using only the top 30% of training samples 16.77 86

Weighted Bayesian using only the top 10% of training samples 24.44 28

Weighted Bayesian using only the top 1% of training samples 25.78 4

Decision tree with location as the only feature 74.22 2955 • A node is considered a leaf if the maximum

impurity decrease (ΔImax) for that node is less

than 0.1.
Decision tree without location as additional feature 37.29 4399

Decision tree with location as additional feature 67.35 15435

Weighted decision tree 51.47 7317

 96

Weighted decision tree using only the top 30% of training samples 49.33 2620

Weighted decision tree using only the top 10% of training samples 32.83 666

Weighted decision tree using only the top 1% of training samples 22.75 20

SVM with location as the only feature 19.98 2907 • Smoothing parameter (C)=5

• Using the one-against-one scheme since there

are more than two classes
SVM without location as additional feature 28.99 14925

SVM with location as additional feature 30.95 18174

Weighted SVM using only the top 30% of training samples 39.52 1184961

Weighted SVM using only the top 10% of training samples 29.97 297564

Weighted SVM using only the top 1% of training samples 23.64 911

Perceptron with location as the only feature 37.56 1777 • Logistic activation function

• Cost function: Sum of squared errors

• Maximum number of iterations: 1000 for

perceptron and 3000 for MLP

• Not updating the weights after those iterations

resulting in an increase in the total cost

• Multiply all learning rates by 1.1 or 0.8 after

each step based on whether the total cost

decreases or increases

• Adaptive learning rate: multiply the learning

rate for a parameter by 1.2 if the partial

derivative of the loss, with respect to that

parameter, remains the same sign in successive

steps and multiply it by 0.7 otherwise [87]
• Number of hidden nodes for MLP: 3

Perceptron without location as additional feature 45.85 16392

Perceptron with location as additional feature 47.90 17291

Weighted perceptron 43.35 24786

Weighted perceptron using only the top 30% of training samples 54.95 12472

Weighted perceptron using only the top 10% of training samples 36.66 3397

Weighted perceptron using only the top 1% of training samples 22.57 365

MLP with location as the only feature 45.41 35219

MLP without location as additional feature 44.87 37224

MLP with location as additional feature 48.26 41811

Weighted MLP 57.72 127349

Weighted MLP using only the top 30% of training samples 51.03 34972

Weighted MLP using only the top 10% of training samples 35.95 13613

Weighted MLP using only the top 1% of training samples 23.46 1483

One apparent irregularity in the above table is that for the classifier that simply assigns

the class with the largest collective spatial weight among the training samples to the irresponsive

sample, the performance time does not reduce when training samples with small weights are

excluded. It is because if all training samples participate in finding the class with the largest

collective weight, there is no need to sort the weights of training samples but if one decides to

exclude the training samples with very small weights, the weight vector needs to be sorted. The

 97

sorting function which is invoked only if a subset of training samples needs to be applied, has a

greater time complexity than the function that sums up the training samples’ weights.

Non-parametric classifiers, in our case the Bayesian classifier with Parzen windows, need

to be trained separately for each irresponsive sample, regardless of the classifier being non-

weighted or weighted. For parametric classifiers, the weighted version needs to be trained

separately for each irresponsive sample but the non-weighted version needs to be trained once

for all irresponsive samples. In other words, the weighted classifiers need to be trained as many

times as the number of irresponsive samples because the spatial weights for training samples

depend upon the irresponsive sample’s location. However, the leave-one-out approach for

evaluation eliminates this effect, because each time there is only one test sample and

consequently both weighted and non-weighted classifiers are trained equal number of times.

The weighted and non-weighted Bayesian classifiers have almost identical performance

times with only 4% difference. The weighted SVM takes 65 times longer to be trained than non-

weighted SVM in Table 5.4. The reason is that finding the weighted SVM classifier includes a

loop where in each iteration the original training samples are shifted with respect to the non-

weighted SVM classifier proportional to their weight (Equation (3.82)) and the non-weighted

SVM classifier is recalculated for the shifted training samples. The weighted MLP takes 3 times

longer than non-weighted MLP. Upon detailed analysis of the results it became clear that the

longer training time for weighted MLP is due to the presence of training samples’ weights in

computing the correction term (Equation (3.111)). Similarly, the 1.4 times longer performance

time of weighted Perceptron in comparison with non-weighted Perceptron is attributed to the

presence of training samples’ weights in computing the correction term (Equation (3.20). The 2.8

times longer performance time of the weighted LS than non-weighted LS is attributed to the

 98

presence of training samples’ weights in Equation (3.15). The weighted decision tree halves the

performance time in comparison with non-weighted decision tree which is because the former is

developed in a feature space with one less dimension (i.e., location) than the latter and

dimensionality plays a crucial role in both training and height of decision trees.

Among the same versions of seven different classifiers in Table 5.4, the collective weight

is the fastest approach, followed by LS, Bayesian classifier, decision tree, perceptron, SVM, and

MLP in most cases. Weighted SVM is the slowest approach. Cross-validation of the weighted

SVM, trained with only 30% of training samples, took 14 days. Cross-validation of a weighted

SVM, trained with all training samples, takes months and the results are not reported in Table

 5.4.

Despite its simplicity and short time performance, the classifier which assigns the

irresponsive sample to the class with the largest collective weight among the top 1% of training

samples achieves an accuracy which is surpassed only slightly (1.61%) by decision tree with

location as the only feature. Considering that this technique only needs location (to calculate the

spatial weights), its high accuracy underscores the efficiency of spatial weights in depicting the

spatial autocorrelation between training samples and the irresponsive sample. It is worth noting

that this classifier owes its high accuracy, in part, to the almost uniform and dense distribution of

samples across space, shown in Figure 5.3, which manifests itself in a large value for partial sill

(c1 =0.82) in the spatial semivariogram (Figure 5.4). The absence of such density and uniformity

in distribution of samples across space will result in a small value for partial sill (c1) in the spatial

semivariogram (Figure 4.2), meaning no or weak autocorrelation. This, in turn, would make the

geographical proximity of much less help in classifying irresponsive samples and could

 99

significantly degrade the accuracy of this classifier. In such circumstances, non-spatial features

can help improve the classification accuracy.

Highly non-linear classifiers (decision tree, collective weight, and Bayes) with location as

the only input feature achieve the highest accuracies, as shown in Table 5.4. This implies two

facts in classifying land covers: (a) the distribution of classes in space are very non-linear and (b)

location plays the most important role in identifying the land cover. The first fact explains why

the classification accuracy drops for linear and slightly non-linear classifiers even when location

is their only input feature. The second fact explains the low accuracy of any classifier which

ignores the location altogether. None of these facts explain why the weighted version of these

highly non-linear classifiers (decision tree and Bayesian) cannot outperform their non-weighted

version which uses location as the only input feature. This can be explained by the low

distinctive power (noisy behavior) of non-spatial features in identifying the classes, which is

proven by the very low accuracy of all non-weighted classifiers with only non-spatial input

features (second row in each group in Table 5.4). The lower sensitivity of perceptron to noisy

training samples in comparison with LS comes as a major advantage in such circumstances,

creating a considerable difference between their classification accuracies when there are non-

spatial features among inputs. The low distinctive power of non-spatial features in identifying the

land covers is also accountable for the decreasing accuracy of weighted classifiers as the training

samples are shrunk to those with largest spatial weights.

Rows with a bold font in the above table show the settings leading to the best accuracy

for each of the seven classification techniques (collective weight, LS, Bayes, decision tree, SVM,

perceptron, and MLP). The accuracy of weighted classifiers is always higher than the accuracy

of their non-weighted counterpart trained using all features including location, with two

 100

exceptions: decision tree and perceptron. In case of perceptron, using only the top 30% of

training samples with largest weights puts the weighted perceptron above the non-weighted

perceptron, in terms of accuracy.

Table 5.5 ranks the same version of the seven different classifiers (collective weight, LS,

Bayes, decision tree, SVM, perceptron, and MLP) based on their accuracy in Table 5.4.

Table 5.5. The same version of different classifiers ranked based on their accuracy for land cover data.

 Classifier with
location as the
only feature

Classifier
without

location as
additional

feature

Classifier
with

location as
additional

feature

Weighted
classifier

Weighted
classifier

using only
the top 30%
of training
samples

Weighted
classifier

using only
the top 10%
of training
samples

Weighted
classifier

using only
the top 1%
of training
samples

Ac
cu

ra
cy

Decision tree Perceptron Decision
tree

MLP Perceptron Collective
weight

Collective
weight

Bayes MLP MLP LS MLP Perceptron Bayes

MLP Decision
tree

Perceptron Decision
tree

Decision tree MLP SVM

Perceptron SVM SVM Perceptron LS Decision tree MLP

LS LS LS Collective
weight

SVM LS Decision
tree

SVM Bayes Bayes Bayes Collective
weight

SVM Perceptron

 Bayes Bayes LS

5.3 CLASSIFICATION OF SIMULATED DATA

We generated 500 random samples from each of the two classes A and B. Samples are

pulled from two five dimensional normal probability distribution functions with the following

mean vectors (μA and μB) and symmetric positive-definite covariance matrixes (ΣA and ΣB):

 101

𝜇𝐴 =

⎣
⎢
⎢
⎢
⎡
100
100
100
100
100⎦

⎥
⎥
⎥
⎤
 𝛴𝐴 =

⎣
⎢
⎢
⎢
⎡
10 0 1 1 2
0 10 3 4 1
1 3 10 2 3
1 4 2 10 4
2 1 3 4 10⎦

⎥
⎥
⎥
⎤
 𝜇𝐵 =

⎣
⎢
⎢
⎢
⎡
101
101
101
101
101⎦

⎥
⎥
⎥
⎤
 𝛴𝐵 =

⎣
⎢
⎢
⎢
⎡
10 1 2 1 4
1 11 4 1 3
2 4 10 2 2
1 1 2 11 4
4 3 2 4 10⎦

⎥
⎥
⎥
⎤

Location is defined for samples to satisfy a spherical semivariogram with the following

characteristics: c1=0.3, c0=0, and r=25. Time is defined for samples to satisfy a single-frequency

periodogram with the following characteristics: amplitude=0.05, period=20, and c0=0. A white

noise was also added to location and time of training samples, resulting in spatial and temporal

semivariograms with the following characteristics: c1=0.25, c0=0.04, r=22.5 for the spatial

semivariogram and β1=-0.0142, β2=-0.0394, amplitude=0.0419, period=22.5, and c0=0.04 for the

temporal semivariogram.

Of all the above samples, 80% are chosen randomly to serve as training samples and the

remaining 20% are used to evaluate the performance of weighted Bayesian classifier, weighted

LS, weighted perceptron, weighted SVM, weighted decision tree, and weighted MLP. Table 5.6

shows the overall accuracy of different weighted classifiers.

For comparison purposes, we also used only the top 30%, 10%, and 1% of training

samples with largest spatial-temporal weights for training. The resulted accuracies are reported

in Table 5.6. This table also reports the accuracy of non-weighted classifiers trained with non-

spatial and non-temporal features, non-weighted classifiers trained with all features including

location and time, non-weighted classifiers trained with location and time as the only features,

and finally picking the class with the largest collective spatial-temporal weight among training

samples.

 102

Table 5.6. The accuracy of different classification techniques for the simulated data.

Technique Overall

Acc.
Settings

Choosing the class with largest collective weight among training

samples

63.5 • Spatial-temporal weights of training samples

are used as weights

Choosing the class with largest collective weight among the top 30%

of training samples

41

Choosing the class with largest collective weight among the top

10% of training samples

96

Choosing the class with largest collective weight among the top 1% of

training samples

51

LS with location and time as the only features 57.0 • Using the one-against-one scheme since there

are more than two classes LS without location and time as additional features 56

LS with location and time as additional features 56.5

Weighted LS 60

Weighted LS using only the top 30% of training samples 51.5

Weighted LS using only the top 10% of training samples 97

Weighted LS using only the top 1% of training samples 48

Bayesian with location and time as the only features 53.5 • Non-parametric Parzen windows with Gaussian

kernel (Equation (3.4)) where σ=5

• Priors are based on class frequencies
Bayesian without location and time as additional features 46.5

Bayesian with location and time as additional features 57

Weighted Bayesian 48

Weighted Bayesian using only the top 30% of training samples 60.5

Weighted Bayesian using only the top 10% of training samples 70

Weighted Bayesian using only the top 1% of training samples 51.0

Decision tree with location and time as the only features 45 • A node is considered a leaf if the maximum

impurity decrease (ΔImax) for that node is less

than 2.0.
Decision tree without location and time as additional features 45

Decision tree with location and time as additional features 45

Weighted decision tree 63.5

Weighted decision tree using only the top 30% of training samples 41

Weighted decision tree using only the top 10% of training samples 96

Weighted decision tree using only the top 1% of training samples 51

SVM with location and time as the only features 49.5 • Smoothing parameter (C)=10

• Using the one-against-one scheme since there

are more than two classes
SVM without location and time as additional features 45

SVM with location and time as additional features 45

Weighted SVM 45

 103

Weighted SVM using only the top 30% of training samples 50.5

Weighted SVM using only the top 10% of training samples 62.5

Weighted SVM using only the top 1% of training samples 50

Perceptron with location and time as the only features 50 • Maximum number of iterations: 1000 for

perceptron and 5000 for MLP

• Not updating the weights after those iterations

resulting in an increase in the total cost

• Multiply all learning rates by 1.1 or 0.8 after

each step based on whether the total cost

decreases or increases

• Adaptive learning rate: multiply the learning

rate for a parameter by 1.2 if the partial

derivative of the loss, with respect to that

parameter, remains the same sign in successive

steps and multiply it by 0.7 otherwise [87]
• Cost function for MLP: Sum of squared errors

• Logistic activation function for MLP

• Number of hidden nodes for MLP: 5

Perceptron without location and time as additional features 43.5
Perceptron with location and time as additional features 50

Weighted perceptron 48

Weighted perceptron using only the top 30% of training samples 43.5

Weighted perceptron using only the top 10% of training samples 92

Weighted perceptron using only the top 1% of training samples 50.5

MLP with location and time as the only features 50.5

MLP without location and time as additional features 45

MLP with location and time as additional features 44.5

Weighted MLP 65

Weighted MLP using only the top 30% of training samples 41

Weighted MLP using only the top 10% of training samples 96.5

Weighted MLP using only the top 1% of training samples 51

Despite its simplicity, the classifier which assigns the irresponsive sample to the class

with the largest collective weight among the top 10% of training samples achieves an accuracy

which is surpassed only slightly (1%) by weighted least squares and weighted MLP using only

the top 10% of training samples. Considering that this technique only needs location and time (to

calculate the spatial-temporal weights), its high accuracy underscores the effectiveness of spatial-

temporal weights in depicting the spatial-temporal autocorrelation between training samples and

the irresponsive sample. It is worth noting that this classifier owes its high accuracy, in part, to

the almost uniform and dense distribution of samples across space and time.

Rows with a bold font in Table 5.6 show the settings leading to the best accuracy for each

of the seven classification techniques (collective weight, LS, Bayes, decision tree, SVM,

perceptron, and MLP). Ignoring location and time altogether resulted in a lower accuracy in

 104

comparison with considering them as the only or additional features. However, this difference in

accuracy is small (0~10%). On the other hand, in all cases, the weighted classifier using only the

top 10% of training samples achieves the highest accuracy. The accuracy improvement is 13% to

51%. This shows the superiority of the weighted machine learning over other alternatives for

considering the location and time to improve the accuracy. This also underscores the important

role both spatial-temporal and other features play in improving the prediction accuracy.

Between the two approaches, i.e., the non-weighted classifier trained using all features

including location and time and its weighted counterpart, the latter achieves a slightly better

accuracy (except for Bayesian and Perceptron). However, when only 10% of training samples

with largest spatial-temporal weights are applied to train the weighted classifier, the accuracy is

dramatically improved. This also uncovers the fact that training samples with very small spatial-

temporal weights are not much constructive in training the classifier. This is in line with our

expectations that weighted classification captures the spatial-temporal autocorrelation best and

excluding training samples with very small spatial-temporal weights not only reduces the time

performance but also improves the accuracy.

Table 5.7 ranks the same version of the seven different classifiers (collective weight, LS,

Bayes, decision tree, SVM, perceptron, and MLP) based on their accuracy in Table 5.6.

Table 5.7. The same version of different classifiers ranked based on their accuracy for simulated data.

 Classifier with
location and

time as the only
features

Classifier
without
location
and time

as
additional
features

Classifier
with

location
and time

as
additional
features

Weighted
classifier

Weighted
classifier

using only
the top 30%
of training
samples

Weighted
classifier

using only
the top 10%
of training
samples

Weighted
classifier

using only
the top 1%
of training
samples

 105

Ac
cu

ra
cy

LS LS Bayes MLP Bayes LS MLP

Bayes Bayes LS Decision
tree

LS MLP Bayes

MLP MLP Perceptron Collective
weight

SVM Decision tree Decision
tree

Perceptron SVM SVM LS Perceptron Collective
weight

Collective
weight

SVM Decision
tree

Decision
tree

Bayes MLP Perceptron Perceptron

Decision tree Perceptron MLP Perceptron Decision tree Bayes SVM

 SVM Collective
weight

SVM LS

5.4 CONCLUSIONS AND FUTURE DIRECTIONS

The question posed in this dissertation, how the recorded location and time for training samples

should contribute to the training and testing process, can be answered more precisely now. We

compared three general approaches: (a) ignoring location and time, (b) considering location and

time as input features, and (c) using the spatial-temporal autocorrelation between each training

sample and the irresponsive sample as that training sample’s weight in weighted machine

learning techniques. The third approach resulted in a better prediction accuracy since it captures

the autocorrelation in spatial-temporal phenomena more properly. However, because the spatial-

temporal weight of training samples depends on the irresponsive sample’s location and time, the

machine needs to be trained separately for each irresponsive sample. We showed that using only

a subset of training samples with largest spatial-temporal weights is an effective way to mitigate

the training time without compromising the prediction accuracy. Applying different feature

selection/generation methods and investigating their effect on the prediction accuracy is a future

research direction.

 106

6.0 CONCLUSIONS AND FUTURE DIRECTIONS

Figure 6.1. Shows the overall scheme of the proposed weighted machine learning for spatial-

temporal data. It starts with calculating the spatial-temporal weight for training samples and ends

with using them to bias the predictor in favor of training samples with larger weights. Spatial-

temporal weights are visualized using color saturation. Darker samples have larger spatial-

temporal weights. The red cross is the irresponsive sample and plays the central role in

determining the spatial-temporal weight for training samples. Training samples are weighted

based on their spatial and temporal autocorrelation with the irresponsive sample. In the spatial-

temporal domain, the irresponsive sample is at the origin of the coordinate system and spheres

delineate the training samples with larger spatial-temporal weights. The predictor is trained to be

more concerned about the correct prediction of training samples with larger spatial-temporal

weights.

 107

Spatial lag (ds)

γ

Temporal lag (dt)

Spherical model

rh3

Periodic regression

r

r

r

r

r

h3

h3

h2

h2

h1

h2h1

c1

c0

Time

Training samples and their spatial-temporal weights in the
space-time domain centered at the irresponsive sample

Training samples and their spatial-temporal
weights in the l-dimensional feature space

y (y+constant)>0 log(y+constant) Residual of log(y+constant)

Tr
an

sf
or

m
in

g
th

e
re

sp
on

se
s

cl
os

er
 to

 w
ea

k
st

at
io

na
rit

y

Original data
Add a constant value to

responses to make them positive
Take the log to

stabilize the variance
Detrend by subtracting
the trend hyperplane

C
al

cu
la

tin
g

th
e

sp
at

ia
l-t

em
po

ra
l

w
ei

gh
ts

 o
f t

ra
in

in
g

sa
m

pl
es

Sc
he

m
at

ic
 v

is
ua

liz
at

io
n

of
 sp

at
ia

l- t
em

po
ra

l w
ei

gh
ts

of

 tr
ai

ni
ng

 sa
m

pl
es

 a
ro

un
d

th
e

irr
es

po
ns

iv
e

sa
m

pl
e

W
ei

gh
te

d
pr

ed
ic

to
r i

n
fa

vo
r o

f
m

or
e

im
po

rta
nt

 tr
ai

ni
ng

 sa
m

pl
es

Feature space

Weighted predictor decides
in favor of more important
(darker) training samples

Regular predictor

Training samples
in class B (circles)

Training samples in
class A (triangles)

γ

Spatial-temporal weight

Latitude

Longitude

Figure 6.1. Weighted machine learning for spatial-temporal data.

 108

6.1 CONCLUSIONS

The weighted machine learning techniques developed in Chapter 3, not only provide users with

the opportunity to give different weights to training samples, but also can be embedded into other

algorithms such as AdaBoost [66; 67], where there is a hierarchy of classifiers, each requiring to

be trained using a different weighting over training samples. These weights are used to adjust the

classifier/regressor in favor of more importance samples, and thereby giving a higher

significance to more important samples. It is worth noting that the weighted linear and nonlinear

classifiers change the division of the feature space only around the border (the most uncertain

area) and areas far from the border are less likely to change their label. The weighted SVM

classifier showed the least difference with its non-weighted counterpart when the training

samples’ weights are not much variant. The reason for this is that SVM classifier is designed

only based on support vectors not all training samples. If the weights of training samples are not

much different, their relocation based on their weights might not be large enough to change the

selection of support vectors. In other words, the weighted SVM classifier would be different than

its non-weighted version only if relocating training samples based on weights would result in a

rearrangement of training samples significant enough to change the selection of support vectors.

In other words, the weighted SVM has the highest stability with respect to weight changes in a

small subset of training samples. The weighted MLP also takes the training samples’ weights

into account through smallest adjustments in its nonlinear border. However, the MLP’s behavior

is highly dependent on the network’s size. In other words, a larger number of hidden nodes will

result in a more significant difference between the weighted and non-weighted MLP. On the

other hand, the weighted decision tree and weighted Bayesian classifiers showed the most

dramatic changes in how the feature space is divided between the two classes in comparison with

 109

their non-weighted counterparts. The reason is that these two models are highly local, especially

the non-parametric Bayesian classifier. Therefore, even small changes in the training samples’

weights would result in a different classification of the feature space. The weighted LS and

perceptron showed slight and similar changes in how they divide the feature space between the

two classes in comparison with their non-weighted counterparts. The similar behavior is because

both models minimize the sum of square errors, although in different ways. The difference

between weighted and non-weighted versions being slight in these two cases originates from

their linear nature and consequently their rather restricted flexibility in modifying their shape.

The logic behind deciding in favor of spatial-temporally more important samples is that

the output of the irresponsive sample is more likely to be similar to the output of training

samples with larger spatial-temporal weights. This is justified because, in Chapter 4, we calculate

the spatial-temporal weights based on similarity among the responses of training samples across

space and time. Therefore, we expect the spatial-temporally weighted predictor to achieve a

better out-of-sample (test) accuracy than its non-weighted counterpart, despite it is not difficult

to see that the non-weighted predictor achieves a better in-sample (training) accuracy (simply

because it is equally fair to all training samples).

We posed the following question in this dissertation: how the recorded location and time

for training samples should contribute to the training and testing process. We compared three

general approaches: (a) ignoring location and time, (b) considering location and time as input

features, and (c) using the spatial-temporal autocorrelation between each training sample and the

irresponsive sample as that training sample’s weight in weighted machine learning techniques.

The third approach resulted in a better prediction accuracy in two real-world applications since it

captures the autocorrelation in spatial-temporal phenomena more properly. However, because the

 110

spatial-temporal weight of training samples depends on the irresponsive sample’s location and

time, the machine needs to be trained separately for each irresponsive sample. We showed that

using only a subset of training samples with largest spatial-temporal weights is an effective way

to mitigate the training time without compromising the prediction accuracy.

6.2 FUTURE DIRECTIONS

Our approach of calculating spatial weights for training samples assumes that the underlying

phenomenon is isotropic by considering only the distance between pairs of observations and

ignoring the direction of the vector connecting them. A future research venue is to increase the

accuracy of spatial weights by taking into account the anisotropy or directional effects in the

spatial variation of responses. This can be done by developing two (or more) spatial

semivariograms, each modeling the spatial similarity in either north-south or east-west direction.

To calculate the semivariance in a specific direction, only pairs of samples aligned in that

direction (at least approximately) are used. Therefore, the direction of the vector connecting the

irresponsive sample to each training sample determines which spatial semivariogram must be

used to calculate that training sample’s spatial weight. This way training samples aligned in a

specific direction with respect to the irresponsive sample might gain a higher spatial weight.

We developed spatial and temporal semivariograms separately because the former is best

modeled with a spherical model and the latter with a periodogram. Another future research venue

is to find a way to develop a single spatial-temporal semivariogram. Applying different feature

selection/generation methods and investigating their effect on the prediction accuracy is also a

future research direction.

 111

BIBLIOGRAPHY

[1] Deng, L., & Yu, D. (2014). Deep learning: Methods and applications. Foundations
and Trends in Signal Processing , 7 (3-4), 197-387.

[2] O'Sullivan, D., & Unwin, D. (2010). Geographic information analysis. Hoboken,
New Jersey: Wiley.

[3] Cressie, N. (1993). Statistics for spatial data (Revised ed.). New York: Wiley.

[4] Shekhar, S., & Chawla, S. (2003). Introduction to spatial data mining. In Spatial
databases: a tour (pp. 182-226). Upper Saddle River, NJ: Prentice Hall.

[5] Isaaks, E. H., & Srivastava, R. M. (1989). An introduction to applied geostatistics.
Oxford: Oxford University Press.

[6] Santibanez, S., Kloft, M., & Lakes, T. (2015). Performance analysis of machine
learning algorithms for regression of spatial variables. A case study in the real estate industry. In
Proceedings of the GeoComputation Conference. Dallas, Texas.

[7] Santibanez, S., Lakes, T., & Kloft, M. (2015). Performance analysis of some machine
learning algorithms for regression under varying spatial autocorrelation. AGILE. Lisbon.

[8] Anselin, L. (1988). Spatial econometrics: Methods and models. Dordrecht, The
Netherlands: Kluwer.

[9] Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002). Geographically weighted
regression. Chichester, England: Wiley.

[10] Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2000). Quantitative geography:
Perspectives on spatial data analysis. London: Sage.

[11] Shekhar, S., Zhang, P., & Huang, Y. (2010). Spatial data mining. In Data mining
and knowledge discovery handbook (2nd ed., pp. 837-854). New York: Springer.

[12] Tobler, W. R. (1970). A computer movie simulating urban growth in the Detroit
region. Economic Geography , 46, 234-240.

 112

[13] Shekhar, S., Zhang, P., Huang, Y., & Vatsavai, R. R. (2003). Trends in spatial data
mining. In H. Kargupta, & A. Joshi (Eds.), Data mining: Next generation challenges and future
directions (pp. 357-380). AAAI/MIT Press.

[14] Gould, P. R. (1970). Is statistix inferens the geographical name for a wild goose?
Economic geography , 46, 439-448.

[15] Case, K. E., & Shiller, R. J. (1989). The efficiency of the market for single family
homes. American Economic Review , 79 (1), 125-137.

[16] Pace, R. K., Barry, R., Clapp, J. M., & Rodriquez, M. (1998). Spatio-Temporal
autoregressive models of neighborhood effects. Journal of Real Estate Finance and Economics ,
17 (1), 15-33.

[17] Mertens, B., & Lambin, E. F. (2000). Land‐cover‐change trajectories in southern
Cameroon. Annals of the Association of American Geographers , 90 (3), 467-494.

[18] Lucas, R. M., Honzak, M., Foody, G. M., Curran, P. J., & Corves, C. (1993).
Characterizing tropical secondary forests using multi-temporal Landsat sensor imagery.
International Journal of Remote Sensing , 14 (16), 3061-3067.

[19] Alves, D. S., & Skole, D. L. (1996). Characterizing land cover dynamics using
multi-temporal imagery. International Journal of Remote Sensing , 17 (4), 835-839.

[20] Tucker, C. J., Dregne, H. E., & Newcomb, W. W. (1991). Expansion and contraction
of the Sahara Desert from 1980 to 1990. Science , 253, 299-301.

[21] Gokaraju, B., Durbha, S. S., King, R. L., & Younan, N. H. (2011). A machine
learning based spatio-temporal data mining approach for detection of harmful algal blooms in the
Gulf of Mexico. IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing , 4 (3), 710-720.

[22] Franklin, J. (1995). Predictive vegetation mapping: geographic modelling of
biospatial patterns in relation to environmental gradients. Progress in Physical Geography , 19
(4), 474-499.

[23] Shekhar, S., Evans, M. R., Kang, J. M., & Mohan, P. (2011). Identifying patterns in
spatial information: A survey of methods. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery , 1 (3), 193-214.

[24] Kanevski, M., Parkin, R., Pozdnukhov, A., Timonin, V., Maignan, M., Demyanov,
V., et al. (2004). Environmental data mining and modeling based on machine learning algorithms
and geostatistics. Environmental Modelling & Software , 19 (9), 845-855.

[25] Gilardi, N., & Bengio, S. (2003). Comparison of four machine learning algorithms
for spatial data analysis. In G. Dubois, J. Malczewski, & M. D. Cort, Mapping radioactivity in
the environment: spatial interpolation comparison 97 (pp. 222-237). Luxembourg: Office for
Official Publications of the European Communities.

 113

[26] Can, A. (1990). The measurement of neighborhood dynamics in urban house prices.
Economic Geography , 66 (3), 254-272.

[27] Can, A. (1992). Specification and estimation of hedonic housing price models.
Regional Science and Urban Economics , 22 (3), 453-474.

[28] Dubin, R. A. (1992). Spatial autocorrelation and neighborhood quality. Regional
Science and Urban Economics , 22 (3), 433-452.

[29] Dubin, R. A. (1998). Predicting house prices using multiple listings data. Journal of
Real Estate Finance and Economics , 17 (1), 35-59.

[30] Kisilevich, S., Mansmann, F., Nanni, M., & Rinzivillo, S. (2010). Spatio-temporal
clustering. In Data mining and knowledge discovery handbook (2nd ed., pp. 855-874). New
York: Springer.

[31] Sahu, S. K., & Mardia, K. V. (2005). Recent trends in modeling spatio-temporal
data. In Proceedings of the special meeting on Statistics and Environment (pp. 69-83). Messina,
Italy: The Societa Italiana di Statistica; Universita Di Messina.

[32] Basu, S., & Thibodeau, T. G. (1998). Analysis of spatial autocorrelation in home
prices. Journal of Real Estate Finance and Economics , 16 (1), 61-85.

[33] Gilardi, N., & Bengio, S. (2000). Local machine learning models for spatial data
analysis. Journal of Geographic Information and Decision Analysis , 4 (1), 11-28.

[34] Bellman, R. E. (1961). Adaptive control processes. Princeton: Princeton University
Press.

[35] Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical
learning: data mining, inference and prediction (2nd ed.). New York: Springer.

[36] Evangelista, P. F., Embrechts, M. J., & Szymanski, B. K. (2006). Taming the curse
of dimensionality in kernels and novelty detection. In Applied soft computing technologies: the
challenge of complexity (pp. 425-438). Berlin: Springer.

[37] Devroye, L., Györfi, L., & Lugosi, G. (1996). A probabilistic theory of pattern
recognition. Springer.

[38] Theodoridis, S., & Koutroumbas, K. (2009). Pattern Recognition (4th ed.). Elsevier.

[39] Leon, S. J. (2010). Linear algebra with applications (8th ed.). Upper Saddle River,
NJ: Prentice Hall.

[40] Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological review , 65 (6), 386-408.

[41] Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning , 20
(3), 273-297.

 114

[42] Vapnik, V. N. (1995). The nature of statistical learning theory. New York: Springer.

[43] Vapnik, V. N. (1998). Statistical learning theory. New York: Wiley.

[44] Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and
regression trees. CRC press.

[45] Werbos, P. J. (1974). Beyond regression: New tools for prediction and analysis in
the behavioral sciences. Cambridge, MA: Ph.D. Thesis, Harvard University.

[46] Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford University
Press.

[47] Haykin, S. S. (1999). Neural networks: a comprehensive foundation (2nd ed.).
Prentice Hall.

[48] Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal
margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning
Theory (pp. 144-152). ACM.

[49] Lewis, D. D., & Gale, W. A. (1994). A sequential algorithm for training text
classifiers. In Proceedings of the 17th International ACM-SIGIR Conference on Research and
Development in Information Retrieval (pp. 3-12). Springer-Verlag.

[50] Schohn, G., & Cohn, D. (2000). Less is more: Active learning with support vector
machines. In Proceedings of the 17th International Conference on Machine Learning (pp. 839-
846). Morgan Kaufmann.

[51] Yuksel, S. E., Wilson, J. N., & Gader, P. D. (2012). Twenty years of mixture of
experts. IEEE transactions on neural networks and learning systems , 23 (8), 1177-1193.

[52] Li, J., Heap, A. D., Potter, A., & Daniell, J. J. (2011). Application of machine
learning methods to spatial interpolation of environmental variables. Environmental Modelling &
Software , 26 (12), 1647-1659.

[53] Breiman, L. (2001). Random forests. Machine Learning , 45 (1), 5-32.

[54] Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression.
Statistics and Computing , 14 (3), 199-222.

[55] Kanevski, M., Timonin, V., & Pozdnoukhov, A. (2011). Automatic Mapping and
Classification of Spatial Environmental Data. In Geocomputation, Sustainability and
Environmental Planning (pp. 205-223). Springer.

[56] Parzen, E. (1962). On estimation of a probability density function and mode. The
annals of mathematical statistics , 33 (3), 1065-1076.

[57] Jacobs, R. A., Jordan, M. I., Nowlan, S. J., & Hinton, G. E. (1991). Adaptive
mixtures of local experts. Neural Computation , 3 (1), 79-87.

 115

[58] Cracknell, M. J., & Reading, A. M. (2014). Geological mapping using remote
sensing data: Acomparison of five machine learning algorithms, their response to variations in
the spatial distribution of training data and the use of explicit spatial information. Computers &
Geosciences , 63, 22-33.

[59] Gahegan, M., German, G., & West, G. (1999). Improving neural network
performance on the classification of complex geographic datasets. Journal of Geographical
Systems , 1 (1), 3-22.

[60] He, T., Sun, Y.-J., Xu, J.-D., Wang, X.-J., & Hu, C.-R. (2014). Enhanced land
use/cover classification using support vector machines and fuzzy k-means clustering algorithms.
Journal of Applied Remote Sensing , 8 (1).

[61] DeFries, R. S., & Chan, J. C.-W. (2000). Multiple criteria for evaluating machine
learning algorithms for land cover classification from satellite data. Remote Sensing of
Environment , 74 (3), 503-515.

[62] Barrett, B., Nitze, I., Green, S., & Cawkwell, F. (2014). Assessment of multi-
temporal, multi-sensor radar and ancillary spatial data for grasslands monitoring in Ireland using
machine learning approaches. Remote Sensing of Environment , 152, 109-124.

[63] Rizzo, D., Martin, L., & Wohlfahrt, J. (2014). Miscanthus spatial location as seen by
farmers: A machine learning approach to model real criteria. Biomass and Bioenergy , 66, 348-
363.

[64] Ballabio, C., & Sterlacchini, S. (2012). Support vector machines for landslide
susceptibility mapping: the Staffora River Basin case study, Italy. Mathematical Geosciences ,
44 (1), 47-70.

[65] Dube, T., Mutanga, O., Elhadi, A., & Ismail, R. (2014). Intra-and-inter species
biomass prediction in a plantation forest: testing the utility of high spatial resolution spaceborne
multispectral rapideye sensor and advanced machine learning algorithms. Sensors , 14 (8),
15348-15370.

[66] Quinlan, J. R. (1996). Bagging, boosting, and C4.5. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence (pp. 725-730). Portland, Oregon: AAAI Press.

[67] Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: a
statistical view of boosting. The Annals of Statistics , 28 (2), 337-407.

[68] Hardle, W. (1990). Applied nonparametric regression. Cambridge, UK: Cambridge
University Press.

[69] Fan, J., & Gijbels, I. (1996). Local polynomial modelling and its applications:
monographs on statistics and applied probability. London: CRC Press.

[70] Wasserman, L. (2006). All of nonparametric statistics. Berlin: Springer.

 116

[71] Minsky, M. L., & Papert, S. (1988). Perceptrons, expanded edition. MA: MIT Press.

[72] Hertz, J., Krogh, A., & Palmer, R. G. (1991). Introduction to the theory of neural
computation. Addison-Wesley.

[73] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

[74] Bazaraa, M. S., Sherali, H. D., & Shetty, C. M. (2006). Nonlinear programming:
theory and algorithms (3rd ed.). New Jersey: Wiley.

[75] Bertsekas, D. P. (1999). Nonlinear programming (2nd ed.). Belmont, Massachusetts:
Athena Scientific.

[76] Fletcher, R. (1987). Practical methods of optimization (2nd ed.). Chichester, West
Sussex, England: Wiley.

[77] Nash, S. G., & Sofer, A. (1996). Linear and nonlinear programming. New York:
McGraw-Hill.

[78] Ripley, B. D. (1994). Neural networks and related methods for classification.
Journal of the Royal Statistical Society, Series B , 56 (3), 409-456.

[79] Witten, I., Frank, E., Hall, M., & Pal, C. (2016). Data Mining: Practical machine
learning tools and techniques (4th ed.). Morgan Kaufmann.

[80] Richard, M. D., & Lippmann, R. P. (1991). Neural network classifiers estimate
Bayesian a posteriori probabilities. Neural Computation , 3 (4), 461-483.

[81] Cover, T. M. (1965). Geometrical and statistical properties of systems of linear
inequalities with applications in pattern recognition. IEEE Transactions on Electronic
Computers , 14 (3), 326-334.

[82] Mercer, J. (1909). Functions of positive and negative type, and their connection with
the theory of integral equations. Philosophical Transactions of the Royal Society A , 209, 415-
446.

[83] Shawe-Taylor, J., & Cristianini, N. (2004). Kernel methods for pattern analysis.
Cambridge university press.

[84] Schölkopf, B., & Smola, A. J. (2002). Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT press.

[85] Courant, R., & Hilbert, D. (1953). Methods of Mathematical Physics (Vol. I). New
York: Interscience.

[86] Wolberg, W. H. (1992). Breast Cancer Wisconsin Data Set. Retrieved 2017, from
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29

 117

[87] Jacobs, R. A. (1988). Increased rates of convergence through learning rate
adaptation. Neural Networks , 1 (4), 295-307.

[88] SAS Institute Inc. (2010). SAS/STAT® 9.22 User’s Guide. Cary, NC: SAS Institute
Inc.

[89] Esri. (2012, 09 28). ArcGIS Help Library. Retrieved from ArcGIS Resource Center:
http://help.arcgis.com/En/Arcgisdesktop/10.0/Help/index.html#//0031000000mq000000

[90] Bohling, G. (2005). Introduction to geostatistics and variogram analysis. Kansas
geological survey , 2.

[91] Shumway, R. H., & Stoffer, D. S. (2010). Time series analysis and its applications:
with R examples (3rd ed.). New York: Springer.

[92] Stevens, S. S. (1946). On the theory of scales of measurements. Science , 103, 677-
680.

[93] Cliff, A. D., & Ord, J. K. (1973). Spatial autocorrelation. London: Pion.

[94] Unwin, D. J. (1981). Introductory spatial analysis. London: Methuen.

[95] Chatfield, C. (2016). The analysis of time series: An introduction (6th ed.). CRC
press.

[96] Oceanographic and surface meteorological readings taken from a series of buoys
positioned throughout the equatorial Pacific. Pacific Marine Environmental Laboratory ,
National Oceanic and Atmospheric Administration , US Department of Commerce.

[97] Fitzgerald, R. W., & Lees, B. G. (1995). Spatial context and scale relationships in
raster data for thematic mapping in natural systems. In T. C. Waugh, & R. Healey (Eds.),
Advances In GIS Research (pp. 462-475). Southhampton: Taylor and Francis.

[98] Fitzgerald, R. W., & Lees, B. G. (1996). Temporal context in floristic classification.
Computers & Geosciences , 22 (9), 981-994.

[99] Huang, Z., & Lees, B. G. (2004). Combining non-parametric models for multisource
predictive forest mapping. Photogrammetric Engineering & Remote Sensing , 70 (4), 415-425.

[100] Huang, Z., & Lees, B. G. (2005). Representing and reducing error in
natural‐resource classification using model combination. International Journal of Geographical
Information Science , 19 (5), 603-621.

[101] Lees, B. (2006). The spatial analysis of spectral data: Extracting the neglected data.
Applied GIS , 2 (2), 14.1-14.13.

[102] Lees, B. The Kioloa GLCTS Pathfinder Site. http://fennerschool-
associated.anu.edu.au/pathfinder/.

	TITLE PAGE
	COMMITTEE MEMBERSHIP
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	Table 2.1
	Table 3.1
	Table 3.2
	Table 3.3
	Table 4.1
	Table 5.1
	Table 5.2
	Table 5.3
	Table 5.4
	Table 5.5
	Table 5.6
	Table 5.7

	LIST OF FIGURES
	Figure 1.1
	Figure 1.2
	Figure 1.3
	Figure 1.4
	Figure 1.5
	Figure 1.6
	Figure 3.1
	Figure 3.2
	Figure 3.3
	Figure 3.4
	Figure 3.5
	Figure 3.6
	Figure 3.7
	Figure 3.8
	Figure 3.9
	Figure 3.10
	Figure 3.11
	Figure 3.12
	Figure 3.13
	Figure 4.1
	Figure 4.2
	Figure 4.3
	Figure 4.4
	Figure 4.5
	Figure 4.6
	Figure 4.7
	Figure 4.8
	Figure 5.1
	Figure 5.2
	Figure 5.3
	Figure 5.4
	Figure 6.1

	PREFACE
	1.0 INTRODUCTION
	1.1 DEFINITIONS AND SYMBOLOGY
	1.2 PROBLEM STATEMENT
	1.3 PROPOSED APPROACH
	1.4 RESEARCH QUESTIONS AND CONTRIBUTIONS
	1.5 ORGANIZATION OF THE DISSERTATION

	2.0 BACKGROUND
	3.0 WEIGHTED MACHINE LEARNING
	3.1 BAYESIAN PREDICTOR
	3.1.1 Classification
	3.1.2 Regression
	3.1.3 Experiment

	3.2 LINEAR PREDICTORS
	3.2.1 Least squares (LS)
	3.2.1.1 Experiment Here we use the dataset in Table 3.1 to show the effect of embedding the training samples’ weights in LS (Equation (3.15)). Figure 3.6 shows the division of the feature space between the two classes with and without considering the training samples’ weights in computing the linear classifier. In the weighted LS classifier, training samples with large weights from ω1 push the border toward class ω2.

	3.2.2 Perceptron
	3.2.2.1 Experiment Here we use the dataset in Table 3.1 to show the effect of including training samples’ weights in perceptron classifier. Figure 3.7 shows the division of the feature space between the two classes with and without considering the training samples’ weights in computing the linear classifier. The high cost of misclassifying important samples from class ω1 in weighted perceptron classifier pushes the border toward class ω2.

	3.2.3 SVM
	3.2.3.1 Two linearly separable classes Assume ω1 and ω2 are two linearly separable classes shown in Figure 3.8. SVM [41; 42; 43] maximizes the margin around the hyperplane separating the two classes by maximizing the distance to the closest point from either class. We know that the distance between a sample xi and a hyperplane f(x)=wTx+w0=0 is obtained from |f(xi)|/||w||. Assume x1 is the nearest sample in class ω1 to the hyperplane f(x) and x2 is the nearest sample in class ω2 to the hyperplane f(x). Then x1 and x2 are called support vectors. To maximize the margin, the hyperplane f(x) must intersect the line connecting x1 and x2 at its midpoint, as shown in Figure 3.8. Therefore, we can scale w and w0 so that f(x1)=1 and f(x2)=-1. This leads to having a margin of:
	3.2.3.2 Two linearly nonseparable classes If the two classes are not linearly separable which is usually the case in real-world problems, e.g., Figure 3.9, then it is not possible to find an empty band separating them. Each training sample will have one of the following constraints, as shown in Figure 3.9:
	3.2.3.3 Experiment Due to SVM’s stability to changes in a small part of the training data, the dataset in Table 3.1 cannot differentiate between the non-weighted and weighted SVM. In other words, the two classifiers are the same for that dataset. Instead, we use the dataset in Table 3.2 to show the effect of embedding training samples’ weights in SVM. Figure 3.10 shows the division of the feature space between the two classes with and without considering the training samples’ weights in computing the linear classifier. In weighted SVM, the important samples in class ω1 will move toward class ω2, through Equation (3.82), and repel the border toward class ω2.

	3.3 NONLINEAR PREDICTORS
	3.3.1 Decision trees
	3.3.1.1 Experiment Here we use the dataset in Table 3.1 to show the effect of embedding training samples’ weights in decision tree. Figure 3.12 shows the division of the feature space between the two classes with and without considering the training samples’ weights in developing the decision tree. The important samples from class ω1 change the way the weighted decision tree divides the feature space between the two classes in comparison with non-weighted decision tree.

	3.3.2 Multilayer perceptron (MLP)
	3.3.2.1 Experiment Here we use the dataset in Table 3.1 to show the effect of embedding training samples’ weights in the cost function (Equation (3.107)) and backpropagation algorithm (Equation (3.111)). The MLP is designed with one hidden layer including 2 nodes. Including more hidden nodes will result in all training samples being correctly classified in both non-weighted and weighted MLP, a zero classification cost for both non-weighted (Equation (3.89)) and weighted (Equation (3.107)) MLP, and consequently similar classifiers. With 2 hidden nodes some training samples cannot be correctly classified, so we can see the difference between non-weighted and weighted MLP classifiers. Figure 3.13 shows the division of the feature space between the two classes with and without considering the training samples’ weights in the cost function and the backpropagation algorithm. Despite both weighted and non-weighted MLP misclassify the same four training samples, the weighted MLP classifier provides a better fit (a lower error) for the two more important samples from class ω1.

	3.3.3 Nonlinear SVM

	3.4 EXPERIMENT WITH BREAST CANCER DATA
	3.5 CONCLUSIONS

	4.0 SPATIAL-TEMPORAL WEIGHT FOR TRAINING SAMPLES
	4.1 SPATIAL SEMIVARIOGRAM
	4.2 TEMPORAL SEMIVARIOGRAM
	4.3 SPATIAL-TEMPORAL WEIGHTS
	4.4 DATA CONSTRAINTS
	4.4.1 Fixed location or time
	4.4.2 Categorical responses
	4.4.3 Stationarity of data
	4.4.3.1 Temporal stationarity Fitting the periodogram to the temporal semivariances is only meaningful if the data are temporally stationary [91]. A stochastic process is strictly stationary if the joint statistical distribution of 𝒙𝒕𝟏,…,𝒙𝒕𝒍 is the same as the joint statistical distribution of 𝒙𝒕𝟏+𝝉,…,𝒙𝒕𝒍+𝝉 for all l and τ [95], where t represents the time. This means that statistical properties of all degrees (expectations, variances, third order, and higher) of the process, any where are the same. Since, strict stationary is too unrealistic for real-world processes, weak or second-order stationarity is defined as a process whose mean and variance do not vary with time and the autocovariance between xt and xt+τ (shown as cov(xt , xt+τ)) only depends on the lag τ [95]. We attempt to transform the data closer to a weakly stationary one by first stabilizing the variance and then stabilizing the mean. To stabilize the temporal variance, y is replaced by log(y) for training samples. If there are negative values among responses, we can add a constant value to make them all positive and then take the log. This constant value will be removed in the next step. To stabilize the temporal mean, after stabilizing the temporal variance, a line, called the trend line, is fitted to all log(yi) based on time. Then, the value on the trend line is subtracted from log(yi). Temporal semivariances are calculated based on these residuals. Figure 4.5 summarizes these steps.
	4.4.3.2 Spatial stationarity Fitting the spherical semivariogram to the spatial semivariances is only meaningful if the data are spatially stationary [24; 25]. If the spatial mean is not stable or, in other words, if there is a trend among the responses of training samples over space, the spatial semivariances will show an exponential behavior over lags and never flatten out. On the other hand, if the spatial variance is not stable or, in other words, if the range of changes in responses varies dramatically over space, the spatial semivariances will be dramatically scattered around the spherical model. Again, because real-world processes are far from being strictly stationary, we resort to weak stationarity. Thus, before calculating the spatial semivariances and fitting the spherical semivariogram model, the spatial variance and mean must be stabilized. The steps are very similar to temporal stabilization and are illustrated in Figure 4.6. It is noteworthy that because space has two dimensions, in comparison to time with one dimension, here we have a trend plane instead of a trend line.
	4.4.3.3 Combined spatial-temporal stationarity If our dataset is only spatial or temporal, we use either of the previous sections to stabilize the dataset. However, if our dataset is spatial and temporal, we do not need to transform the dataset twice, once over location and once over time. Instead, the two processes are combined as shown in Figure 4.7. First, we add a constant value to make all responses positive. Then we take the log to stabilize the variance. To stabilize the mean, a 3D hyperplane is regressed over all responses based on both location and time and subtracted from all responses. These residuals are both spatially and temporally stabilized and we can proceed with developing semivariograms.

	4.5 CONCLUSIONS AND FUTURE DIRECTIONS

	5.0 EVALUATION
	5.1 REGRESSION OF AIR TEMPERATURE
	5.2 CLASSIFICATION OF LAND COVER
	5.3 CLASSIFICATION OF SIMULATED DATA
	5.4 CONCLUSIONS AND FUTURE DIRECTIONS

	6.0 CONCLUSIONS AND FUTURE DIRECTIONS
	6.1 CONCLUSIONS
	6.2 FUTURE DIRECTIONS

	BIBLIOGRAPHY

