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The spinal hindlimb central pattern generators (CPGs) are capable of coordinating the

hindlimbs in order to generate rhythmic activity in the absence of afferent feedback or

rhythmic inputs. The flexibility and adaptability of CPGs allow them to initiate, modify

and maintain phase relationships between excitatory and inhibitory neuron groups. Many

half-center CPG models of intricate symmetric units have been studied. However, a com-

plete understanding of oscillatory mechanisms that operate locomotion activity is yet to be

achieved. This study explores a simplified computational model of excitatory and inhibitory

CPG units within different regimes of escape and release mechanisms. Our study shows

that one model of a CPG network can operate in many different regimes and produce perti-

nent locomotor-like activity and phase relationships. Numerical simulations and phase-plane

analysis were used to compare responses in oscillation frequency and phase duration to the

range of values of excitatory or inhibitory external drive or the strength of synaptic inhibi-

tion to one or two half-centers of the cells that initiate the dynamics. Our analysis shows

that oscillatory frequency and phase duration changes are highly dependent on the different

intrinsic characteristics of the driving cells and the mechanisms of escape and release that

prescribe transitions between active and silent phases of each cell within the network. In

particular, intrinsic escape regimes displayed large ranges in phase duration control while in-

trinsic release models displayed the greatest degree of independence in the asymmetric case.

Also, in the symmetric case, excitatory cells exhibited a larger range of period activity with

respect to the changes to the applied external drive throughout. These results are explained
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using geometric phase plane analysis of the dynamics from explored regimes.
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1.0 INTRODUCTION

Central pattern generators (CPGs) are intrinsic spinal networks found in all invertebrates.

They help to control the patterns and timing of locomotor activities in mammals through

a wide range of complex rhythmic coordinated muscle activities such as walking, flying,

swimming, breathing, and etc.

When locomotion activities begin, CPG networks activate and become responsive to

inputs from locomotor commands that come from the brain-stem and mid-brain. Once ac-

tivated, CPGs are the neurons responsible for providing rhythmic activity responses. CPGs

are able to generate alternating rhythmic activity of flexor and extensor interneurons that

serve as the basic foundation of circuit interaction that enables locomotion activity in mam-

mals [11, 12, 17]. While maintaining the rhythmicity of their activity, CPGs are also able to

adjust their activity output as a response to inputs from higher centers and sensory feedback

[36].

CPGs are sensitive to sensory feedback. Consequently, modeling CPG locomotion activi-

ties provides further insight to understanding complex neuronal networks since they produce

measurable outputs that have a direct relationship with the behavior and activity of the neu-

ral network. These observations might provide further intuition into more complex behaviors

of cortical network activity.[13].

The organization of locomotion in vertebrates relies on the two main functions that are

carried out by CPG networks which are rhyghm generation and pattern generation. Together,

they affect the period of activity and the rhythmic activation of motor neurons that allow

for left-right coordination. It was observed in the neurobiology of rodents that neurons

of its spinal CPGs may be divided into four different classes: rhythmogenic interneurons

(RGNs), ipsilateral coordinating interneurons (ICNs) motoneurons (MNs),and commisural
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interneurons (CINs)[26].

Through different experiments, we have learned that when carefully relating the firing

pattern and postsynaptic effects, it is possible to understand the role of groups of rhyth-

mogenic interneurons in the CPG [14]. The RGNs are believed to be a heterogenoeus

group of interneurons which assist with rhythmic oscillatory drive that serves as a basis

to the locomotor pattern. ICNs act through inhibition and enforce the alternation between

extensor-associated and flexor-associated neuron groups on a single side of the midline. It

was observed that motorneurons directly innervate the flexor or extensor muscles on one

side of the rodent and excite muscular contraction while limiting their own firing by exciting

Renshaw cells which inhibit the motorneurons[14, 26].

The muscle activity of the left and right side of the body are controlled by commissural

interneurons CINs. These help the contralateral side of the cord and activate the interneurons

and motorneurons to react since they coordinate activity on the two sides of the body [28].

Such connections will allow for different locomotor activities that produce a range of gaits

such as walking, hopping, skipping or galloping [23].

It was found that certain CINs are composed of a mixture of glutamatergic and glycinergic

pathways which allow for direct communication between flexor and extensor interneurons.

CINs that fire in the extensor phase inhibit contralateral extensor and excite contralateral

flexors. Some of these experimental studies have found that limbed animals have gaits that

are defined by left-right leg coordination and speed during which the coordination of the left

right motion activities are controlled in the spinal chord through CINs [15]. Therefore, it

was suggested that CINs are responsible for fine tuning the motion and coordinating motor

neuron activity by providing a direct input to the interneurons on the contralateral side with

inhibitory and excitatory inputs. Also, when CINs were significantly reduced, they allowed

for a synchronous respons of left right coordination during fictive locomotion [20].

Therefore, CINs are important factors in CPG locomotion due to their role in the left-

right locomotion activity in correlation to results observed in turtle activity (Stein 1995)[31]

and cat hind-limb movement (Ivashko 2002)[10]. However, other studies have suggested

that CINs are not the only source involved in rhythmic activity because the rhythm can

be induced in rodents and cats (Nishimaru 2006)[19]. Other models have also studied the
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rodent and cat spinal cord through classical modeling of spinal motor function. They have

demonstrated that the cat spinal cord was able to generate a locomotor rhythm of alternating

contractions in ankle flexors and extensors in the absence of input from higher centers and

afferent feedback [2] However, overall it has been shown that when only one side of the cord

is active, the period of locomotor activity is not only significantly longer, but the amplitude

is relatively unchanged (Kjareluff and Kiehn 1997)[15].

Shevstova et al. [29] suggested two different computational models of spinal locomotor

circuits consisting of left and right rhythm generators which interacted bilaterally through

neuronal pathways mediated by different excitatory and inhibitory CIN populations. The

study provided some insight into the architecture and organization of spinal networks as well

as the connectivity of the inhibitory and excitatory CIN pathways that maintain alternating

and synchronous rhythmic activity. The models suggested a representation of symmetric

bilateral networks of neural population of left and right rhythm generating networks with

flexor and extensor centers and inhibitory-excitatory interneuron interactions between them.

It has also been well studied that excitatory and inhibitory cells are present in the

mammalian spinal cord. Inhibitory cells facilitate mutual inhibition and promote alternating

activity. Excitatory cells provide an excitatory input to contralateral neurons by helping

synchronize activity or promoting mutual inhibition of left-right alternation by acting via

inhibitory interneurons situated on both sides of the spinal cord [5, 23].

While it is clear that mammalian CPG neural activity is complex, different research

has proven that we can still have a basic understanding of its network interactions and the

different components that produce rhythmic activity responses. The flexibility and adapt-

ability of CPGs help adjust the oscillatory patterns, as well as their frequency and phase

durations, which are necessary to model the organismal demands and locomotion that rely

on the different excitatory and inhibitory inputs.

Brown [3] proposed that CPGs could be represented through a half-center model which

matched the ideas of how these spinal interneurons worked in mammalian locomotion activ-

ities. A half-center oscillator is a common circuit building block of CPG networks. These

networks are composed of interneurons that could control flexor and extensor motorneurons

that produce rhythmic motor patterns through reciprocal inhibitory connections and are
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capable of sustaining alternating activity. These type of neural interactions controlled by

inhibitory neurons in the spinal cord were widely observed in the motor coordination that

were produced in newborn mice in vitro. It was observed that through synaptic transmis-

sions from interneurons, synchronization of flexor and extensor motorbursts were produced

[36].

The premise of the modeling suggested that each limb is controlled by a separate group

of CPGs and each group is composed of, excitatory interneurons and mutually inhibitory

interconnections between the half centers. Thus, each group alternates between active and

silent states with only one active half-center at a time. The jump from active to silent phase

occurs when there exists a reduced level of excitability of one of the half-centers. Once the

excitability level of the active half-center falls below a threshold, it becomes silent and allows

for the opposing center to activate in return [12, 3]. Half center oscillators have been found

to affect the timing in which motor patterns are controlled by pairs of reciprocally inhibitory

neural pairs or networks in motions such as the leech heartbeat or the tadpole swimming

[6, 34]. In particular, a study of cats with chronic thoracic spinal lesions displayed different

speeds for left and right hindlimbs while stepping on a split treadmill. While on normal or

treadmill locomotion, the shortening of the step cycle through the shortening of the extensor

phase was still able to maintain the flexor phase at a relative constant rate. The study found

that gait of locomotion is critically controlled by the rhythmic patterns of the CPG when

directing each limb through rhythmic patterns to either extensor or flexor phases even in the

absence of afferent feedback [35].

It has been observed in rodents that through in vivo and in vitro experiments of normal

locomotion that while one side of the flexor muscle of an animal is active, it is out of phase

with the flexor muscle of the other side. Yet, there is a similar cross-cord alternation of

the extensor muscle activity. Also, while the flexor muscles of one side of the animal are

active, they are anti-phase with the extensor muscles with which they are coupled [5, 4].

Sherwood et al. [26] describe this as simultaneous ipsilateral flexor-extensor antisynchrony

and contralateral flexor-extensor synchrony.

Early theoretical research on half-center oscillators found that the inhibitory connections

of two neurons or neuron networks can produce rhythmic alternating responses (oscillatory
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or bursting) regardless of whether the individual network was capable of bursting on its own

[2]. This behavior was found to exist on neurons that, through some time-dependent process,

could overcome inhibition it received from an active neuron.

Wang and Rinzel were one the first to study and provide a detailed explanation of these

different network connection mechanisms [33]. They found how these could help create oscil-

latory responses when coupling networks of two-cell connection through reciprocal inhibition.

When they modeled the connections with the activation of leak conductance and a synap-

tic current, they were able to get the desired response due to the innate behavior of post

inhibitory excitation and presynaptic voltage of each current.

Skinner et al. [30] extended the study of Wang and Rinzel [33], proposing that a thorough

understanding of CPGs must also provide insight into the understanding of their response

to different inputs. Through modeling mechanisms using Morris-Lecar type cells, they pro-

posed four different mechanisms that lead to oscillatory response of active and silent phases

in networks of two reciprocally inhibitory cells. Two of the mechanisms dealt with the in-

trinsic properties of the neurons and the other two studied the synaptic properties of the

neurons, each one producing responses of ”release” and ”escape” [30]. Therefore, rhythmic

motor behaviors produced by CPGs can produce an output that critically depends on the

interactions of both synaptic and intrinsic conductance of the neurons within their networks.

Coupled neurons that are able to generate an oscillatory response based on escape and

release mechanisms transition between active and silent phases in anti-phase during rhythmic

activity. Escape mechanism occurs when the silent cell is able to overcome the inhibition it

is receiving from its coupled cell and therefore enters the active phase. The release mecha-

nism on the other hand occurs when the active cell transitions from the active phase to a

silent phase releasing its coupled inhibited cell. However, it has been shown that to better

understand this interaction of oscillatory responses to input, it is important to thoroughly

study the phase plane curves that measure the phase shift of a cell in response to any input

as a function of time [24, 36]. Networks coupled through half-center oscillations are strongly

modulated by different inputs that affect the synaptic strengths and intrinsic properties of

the neurons .

5



To further understand half-center CPG models, it was necessary to understand how the

symmetric networks linked through reciprocal inhibition and worked in conjunction with the

variation of the cellular intrinsic properties. While a locomotor rhythmic output may be

considered as an oscillatroy behavior emergent from network interactions, it is possible that

intrinsic properties of bursting interneurons also play a role in rhythmic behavior.

Neuron populations in adult mice displayed different types of connections of neural net-

working, predominantly in the spinal cord through embryonic neurons. Ryback [23] proposed

a reduced model of bilateral spinal circuits based on a previous model of Zhong et al. [37]

simulating neural connectivity of genetically induced reorganization of spinal cord and its

functionality in controlling responses in locomotor gaits of mice. The model suggests a bi-

lateral symmetric network interaction between two intrinsically rhythmic neural populations

of left and right coordination and rhythm-generating flexor centers. Such rhythmicity was

activated by a persistent sodium current (INap) in each neuron along with an excitatory

synaptic interaction.

Recent models of spinal circuits and CPG locomotor activity attempt to simulate the

interactions of pools of tens or hundreds of spiking neurons. These spiking neurons are

modeled via Hodgkin-Huxley style and are described by five to ten differential equations per

neuron.[18, 21, 23, 27, 37]. Due to these complex connections, these large networks become

too difficult to analyze mathematically. Other studies found that some simplifications would

be useful.

When analyzing different CPG models such as mammalian respiratory CPG [21, 22]

it was found that by using the average voltage for one spiking neuron that representing a

population of spiking neurons can notably simplify the analysis. This simplification can also

provide insight into the transitions between silent and active states within the dynamics of

the neural population. Another simplified model that explored CPG interactions through

half-center coordinations has been presented by Daun et al. [8]. They studied the asymmetry

of the response in flexor-extensor phase durations that was achieved through the changes in

drives of the half-center simulations of two interacting neurons. They proposed using different

models to describe different mechanisms. Slowly inactivating persistent sodium current

to model escape, adaptation based on a calcium-dependent potassium current, and post-
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inhibitory rebound excitation calcium current to model release were used. It was observed

that the slowly persistent sodium current showed the greatest range of oscillatory periods and

also the greatest degree of freedom in phase duration while controlling asymmetric inputs to

the network.

However, while simplification of the model can be very useful, it is important to consider

possible limitations of different methods based on the original structuring of half-centers. One

of these may be that some simplified models consider only one pattern of alternation between

on set of flexor-extensor or left-right activity. This forces all interacting CPG neurons to

be separated into only one of these two groups. Other limitations to keep in mind are that

in some models only one half-center body can produce alternating activity with only one

burst per cycle to either coordination of flexor-extensor or left-right pairs. Therefore, it

becomes difficult to find two bursts per cycle that have been observed by some motoneurons

during some locomotion activity.[7]. Some suggestions have been made to investigate more

complex network interactions that may provide further insight into different architectures

of half-center connections while maintaining some of the necessary simplifications that will

help us mathematically analyze results.

Molkov et al.[18] proposed using simplifications of neural connectivity, as those proposed

by Rubin et al. [21], while trying to maintain a biophysical accuracy of locomotion activity.

They established that using similar simplifications as those described above can help reduce

a large scale model for computer simulations of spinal circuits of CIN mediated interactions.

However, they considered four pacemaker neurons representing left and right, flexor and

extensor rhythm-generating centers interacting via commissural pathways. Their model

was able to generate busting activity through a range of different parameters of neuronal

excitation and burst frequencies showing a change of burst amplitude as frequency increased.

This suggests an explanation for different experimental studies.

Thus, keeping in mind the benefits of adding a more biologically relevant architecture

to a network, we will consider the governing equations similar to the persistent sodium

model proposed by Daun et al. [8]. This particular model was chosen due to the fact that

the persistent sodium based network exhibited the greatest range of oscillation periods and

the greatest degree of independence in phase duration control by asymmetric inputs within
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its regime. Therefore, following similar numerical simulations and phase-plane analysis as

Daunt et al.[8] we want to investigate if similar results are achieved when modifying the

architecture of Daun et al. [8] proposed two cell model network to a Molkov-like network [18].

However, while we propose a reduced four neuronal population network, we will be omitting

CIN interactions in order to check how any additional excitatory-inhibitory interactions may

affect the responsiveness of the oscillatory activity to variations to the external applied drive.

Our model is based on rhythm-generating neural circuits which will help us study the

interaction between four neuron cells coupled in pairs of inhibitory and excitatory activities

produced by two pairs of symmetrically constructed neural populations. These cross-cord

connections contain a contra-lateral excitatory-excitatory and inhibitory-inhibitory network

connection through inhibitory interneurons as well as excitatory-inhibitory ipsilateral exci-

tations. We will consider the intrinsic properties of the acting interneurons. Also, we look

into the effects of applied currents coupled through a wider range of synaptic inputs as well

as neuromodulation will contribute to the rhythmicity of the network are considered.

Our main focus will be studying the oscillatory responses through different mechanisms

of escape and release from one general model. This is achieved through different parameter

adjustment that define the various phase planes of nullcline configurations for each regime.

Using a range of external drive input to the half-centers, we were able to show that the

frequency is strongly dependent of the different models proposed throughout this study.

The thesis is organized as follows. Chapter 2 will introduce the general model for our

4 cell network and the dynamics of the system along with the equations that represent

it. This chapter also describes the approaches used to study the changes of oscillatory

period and phase durations due to symmetric and asymmetric perturbations of the applied

external drive. Chapters 3 and 4 describe the different mechanisms of intrinsic escape and

release respectively. Chapter 5 explores different escape and release mechanism under the

adaptation of the synaptic input. Finally, chapter 6 provides the conclusion of each method

through a discussion and comparison of all oscillatory and phase responses throughout all

the prescribed regimes.
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2.0 METHODS

2.1 CPG MODEL

As previously mentioned in chapter 1, foregoing theoretical research has shown that half-

center oscillations can be achieved through different intrinsic and synaptic network mecha-

nisms. [9, 16, 30, 33]. In particular, Skinner et al. proposed a model of two half-centered

coupled cells that produced half-center oscillations through mutual reciprocal inhibition even

when the uncoupled cells were not oscillatory themselves. The output of oscillatory responses

occurred when the activity of each half-center was experiencing some form of adaptation

through the coupling of the two cells. Through this coupling, they described four different

mechanisms. Two considered the intrinsic mechanisms of escape and release. The other two

cases consider the contribution of the synaptic threshold voltage giving place to mechanisms

of synaptic release and synaptic escape.

The structure of the network proposed for this study is modeled by half-center oscillators

of spinal CPG networks in which connections of activations and inhibition of tonically or

oscillatory spiking neurons will result in bursts with alternating rhythm produced by an

escape or release mechanism. These mechanisms emerge due to the dynamics of persistent

sodium current (INap) for each half center oscillator and the different inputs of excitation and

inhibition between them. The model proposed by Daun et al. [8] considered two neurons

with mutually inhibitory synaptic connections. The analysis they proposed was based on

perturbations to the excitatory external drive to one or both neurons and how these produced

changes in burst amplitude and frequency in the oscillatory responses of the network.

Our study will build upon the model and analysis proposed by Daun et al. [8]. However,

we will now be considering a four cell model that is designed to help bridge the gap between an
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abstract two cell models into a more biophysically realistic model of oscillatory neurons that

are synaptically coupled. With these newly constructed connections, we want to determine

if the more our new model configuration will change the dynamics of the network and impact

the range of oscillatory responses through any changes in burst amplitude and frequency.

Our model represents the connections of spinal circuits through a bilateral symmetric

network of neural populations. The model considers excitatory and inhibitory connections

between two pairs of left-right or flexor-extensor centers of rhythm generating networks.

Thus, in our architecture, we simplify the neuronal organization of the networks in the spinal

cord to two functional classes: inhibitory and excitatory. Our network will be composed of

two intrinsically excitatory neural populations which will be referred to as cell 1 and cell 3,

and two intrinsically inhibitory neural populations which will be referred to as cell 2 and cell

4.

The construction of our model considers a four cell lateral cross-cord connection that

includes an ipsilateral excitatory-inhibitory excitation as well as a contra-lateral inhibitory-

excitatory inhibition Figure 1. It is similar to cross-cord connections studied for flexor-

extensor models [5, 26]. However, this four cell network can be paired as flexor (cells 1 and

3) and extensor (cells 2 and 4) or left (cells 1 and 2) and right (cells 3 and 4) neurons that

mutually inhibit each other through inhibitory interneurons and synaptic connections that

form a regime of half-center oscillations.

The oscillatory solutions consist of two phases for which one excitatory and inhibitory

cell become coupled in active and silent phase trajectory. We will consider that two neurons

will be in the active phase simultaneously (e.g. cells 1 and 2 or cells 3 and 4) while the

other set of neurons is simultaneously in the silent phase (e.g. cells 3 and 4 or cells 1 and 2).

Due to the fast dynamics of the system, all cells will experience a rapid transitions between

silent and active phases almost at the same time. Thus, through computer simulations of

the network, we will study the changes of oscillatory patterns that depend on the fine tuning

of current drives and strengths of synaptic connections between the cells.

10



Figure 1: Organization of locomotor CPG’s. Schematic of interactions between the

locomotor half-centers. The rhythm generator pairs consist of intrinsically excitatory cells

(1 and 3) and intrinsically inhibitory cells (2 and 4).

2.2 COMPUTATIONAL MODEL EQUATIONS

All cells are structured under a conductance-based Hodgkin-Huxley style and consider the

persistent sodium current (INaP ) with slow inactivation as a source of oscillations. This

model is able to produce bursting and oscillatory activity through a wide range of parameter

changes that define neural excitation and burst frequency while exhibiting changes of burst

amplitude and frequency. Based on Rubin et al models[21, 22], each cell is represented by a

system of ordinary differential equations.

For cells j ∈ {1, 4} and k = ((j + 2) mod4 + 1), consider:

Cmv
′
j = −INap(vj, hj)− IL(vj)− Isyn(vj, sk)− Iapp(vj), (2.1)
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where Cm is the capacitance of the membrane with units µF/cm2. Here, vj(t) is voltage

or potential of each cell membrane individually, whose derivative is v′(j) = dv/dt for t

representing time. Here, sk modulates the strength of the coupling of the synaptic current

between cells j and k. The monotone sigmoidal functions h∞(v) decrease with respect to v

while m∞(v) and s∞(v) increase with respect to v. In this case, h∞(v) is the steady state

of the inactivation gating variable and m∞(v) is the voltage-dependent steady state of the

persistent sodium current activation. Also, s∞(v) is the level of activation of the synapses

and takes values between [0, 1]. These functions are defined as

h′j = (h∞(vj)− hj)/τh(vj), (2.2)

s′j = α · s∞(vj)(1− sj)− βsj, (2.3)

m∞(v) = 1/(1 + exp((v − θm)/σm)), (2.4)

s∞(v) = 1/(1 + exp((v − θs)/σs)), σs > 0, (2.5)

with a limiting case of s∞(v) = H(v), the Heaviside step function, as σs ↓ 0. Maintaining

σs ↓ 0 implies that the trajectories f(v, h) = 0 stay close to the nullcline until they reach a

local maximum or minimum, in which case, they are able to quickly transition to another

branch through an instantaneous jump. Moreover, τh(v) is the time constant with respect

to v and we define it as

τh(v) = ε cosh((v − θh)/σh/2). (2.6)

In equations (2.4), (2.5) and (2.6), θx and σx for x ∈ {s,m,h} represent the gating

variable’s half activation voltage and slope, respectively. The membrane currents described

in equation (2.1) have the form

INaP (v, h) = gnapm∞(v)h(v − ena),

IL(v) = gl(v − el),
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Isyn(vj, sk) = gsynsk(vj − esyn),

Iapp = gapp(vj − eapp).

Equation(2.1) describes the change of voltage through the membrane of each cell in

terms of its inscribed persistent sodium (INaP ), leak (IL), synaptic (Isyn) and applied (Iapp)

currents. In this case (Iapp) maintains gapp > 0. Altogether these currents can produce a

change in the membrane potential of each cell.

Here gnap, gl, gsyn and gapp are the maximal conductances ans enap, el, esyn and eapp are

reversal potentials belong to the sodium, leak, synaptic and applied currents, respectively.

Note that s corresponds to the synaptic input received by each cell that is driven by the

voltage of its paired cell through the (Isyn) current. The (Iapp) current is also treated as

synaptic but is independent of other cells in the network.

Note that gsynsk > 0 and thus when the regimes where the dynamics of the system are

driven by the inhibitory input, we have that vj > esyn and therefore v′j < 0 for most of

the relevant values. However, if the system is driven by the excitatory input, we have that

vj < esyn for almost all of the relevant values vj and therefore v′j > 0 for most values in the

excitatory cases.

Denote the interval for Is := [0, α/(α + β)] which is positively invariant for s such that

smax :=
α

α + β
.

For all the methods used throughout, there are particular sets of parameters that re-

maining constant. See Table 1.

Geometric phase plane analysis is utilized and allows for a deeper understanding into

the properties of solutions. The phase plane for the system of v and h nullclines will help us

analyze the behavior of different model regimes under different combinations of parameter

inputs. Similar assumptions are considered as in Daun et al.[8] and adapted to our models

as follows:

Let j ∈ {1, ..., 4} and fixed sk ∈ Is, the v-nullcline where {(vj, hj) : Fi(vj, hj, sk) = 0},

we get a cubic shaped curve with left, middle and right branches seen in the (vj, hj) phase

plane.
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Parameters Values Parameters Values

β 1 Cm 0.21

enaE 50.0 enaI 50.0

elE - 65.0 elI - 65.0

esynE
10.0 esynI

- 80.0

eappE 0.0 eappI 0.0

Table 1: These parameters are set constants through all the different mechanisms studied.

Each subscript has an E or I description that stands for excitatory or inhibitory correspond-

ing to the intrinsic nature of the cell they correspond to.

We can now drop the subscript for sk for simplicity and consider the branches of Fi = 0

were for a fixed s ∈ Is there exists left, middle and right branches of their nullclines. All

three defined functions are set up as VLi
(h, s) < VMi

(h, s) < VRi
(h, s) where i ∈ I, E, which

correspond to inhibitory and excitatory cells, respectively.

Let j ∈ {1, ..., 4}, the h-nullcline {(vj, hj) : gj(vj, hj) = 0} is a monotone curve in the

(vj, hj) plane that intersects Fj = 0 at a unique point PFP (0) = (vFP (0), hFP (0)).

All solutions are attracted toward the left and right branches of the v-nullcline since h is

a slow activating function. Depending on different parameter regimes, there can be different

attracting points where the two nullclines intersect and yield a rest state for the cell. The

meeting points PFP (0) between both v and h nullclines will give us information about the

intrinsic behavior of the uncoupled cell. Thus, we consider a cell whose PFP (0) is on the

hyperpolarized left-most branch of the v-nullcline to be intrinsically excitable. A cell whose

PFP (0) is on the middle branch is said to be intrinsically oscillatory. Finally, a cell whose

PFP (0) lies on the depolarized right-most branch v-nullcline is said to be tonic as shown in

2a below.

Note that we consider the intersecting points PFP (0) on the blue uninhibited (excited

for inhibitory cells) v-nullcline to determine the intrinsic behavior of the cell. Also, note
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that there exist stable critical points if the nullclines intersect at the left or right knees of

the v-nullcline. Bursting solutions alternate between silent phases of low voltage and active

phases of spikes through rapid oscillations of different amplitude depending on the different

mechanisms. We will consider phases I and III to be transition phases from silent to active

and vice-versa, while phases II and IV will be either the active or silent phases of where the

solution of each cell depending on the regime in which they exist. 2b

(a) Nullcline configurations illustrated in the per-
sistent sodium model. Three different h-nullclines
(dashed green) corresponding to θh = −5 (excitable
case), θh = −30 (oscillatory case), and θh = −55
(tonic case). Also shown are the inhibitory (red)
and uninhibited (blue) v-nullclines

(b) We used as a model the trajectories of the exci-
tatory cells in the e-escape regime. We color coded
the trajectory of cell 1 in green and cell 3 in blue as
they transition through the different phases of the
solution. The inhibitory (unexcited for inhibitory
cells) nullcline is colored in red while to uninhibitory
(excited for inhibitory cells) nullcline is colored in
blue. The thick arrows of the solution point towards
the direction the cells follow. Note vi ≈ vL,R(h, s)
are the left and right branches of the v-nullcline and
PL,RK(0) are the left and right points of equilibrium

The positions and slopes of the nullclines will define the behavior of the trajectories in

the phase plane and will define the different mechanisms (escape, release, adapt) that will

be analyzed. While the v-nullcline of an uncoupled cell is cubic-shaped, we will see that

for large enough drives its figure will be a monotonically increasing slope, and may alter its

location including the position of the knees and its overall shape when coupled. On the other

hand, the h-nullcline is independent of the input of any other cell. However, we may change

some parameters to alter its slope in order to achieve the mechanism that is needed. All

nullcline figures of escape, release and adapt surfaces were generated based on locations of

knees of appropriate v and h nullclines. They were obtained by using the software platform

XPPAUT [1].
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2.3 ANALYSIS OF CONTROL OF HALF-CENTER OSCILLATIONS AND

PHASE DURATION

We take into consideration the period of oscillatory responses through which the CPG model

can maintain its regime as we increase or decrease the applied drive through a range of values.

The applied drive, denoted as gappi for i ∈ I, E, that will change will be based on whether

the cells that are driving the mechanism are intrinsically excitatory or inhibitory throughout

the different model regimes. In models where the dynamics of the system are initiated by

intrinsically excitatory cells, gappE drive will be changed for cells 1 and 3 while maintaining

gappI drive of cells 2 and 4 constant. On the other hand if the dynamics of the system is

initiated by intrinsically inhibitory cells, then we will vary the gappI drive of cells 2 and 4

while maintaining gappE drive of cells 1 and 3 constant. For the analysis, we sill consider two

different cases:

The symmetric case occurs when gappi for i ∈ I, E is the same for both driving cells

of inhibitory or excitatory nature. The applied gappi for i ∈ I, E drive that varies will depend

on the nature of the model analyzed.

First, we vary both drives through a range of values of gappI and gappE seeking the range

of periodic solutions that will continue to yield both oscillatory responses while staying

within the regime of the model analyzed. Through this range we are able to find a midpoint

for the cells that are instigating the phase transitions and those which will remain constant.

However, we must consider that the midpoint of the cells that will remain constant may vary

at the max and min points of the range of the drive of the cells that are varied. Therefore,

we take an average of the different midpoints that may exist and use this value as our overall

midpoint value.

This midpoint for both excitatory and inhibitory cells which will be denoted as g ¯appE and

g ¯appI and will be referred to as the baseline drive. Next, we benchmark a voltage threshold

of -40 mV that is used to determine the range of onset and offset times when a cell is active.

The period of active duration is denoted as T (gapp) and is normalized with the period of

active duration T̄ that is obtained with g ¯appi for i ∈ I, E. This, will allow us to study

the activity patterns of each model. Note that for example if we are in a model where the
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excitatory cells drive the dynamics we maintain g ¯appI constant, where drive cell 2 = drive

cell 4 and vary the gappE drive, where drive cell 1 = drive cell 3. Moreover, the change of

gappE in relation to the range of the total divided by g ¯appE gives us the relative T period of

the system so that ∆T/∆gappE is the relative change of T compared to the relative range of

gappE .

The asymmetric case will be analyzed using the values of baseline drive found in the

previous case for all cells. Thus, we begin by setting all ¯gappi for i ∈ I, E and considering once

again the nature of the cells that initiate the dynamics of the model, we will vary the drive

of only one of either excitatory or inhibitory initiating cells while maintaining the others

constant. Next, we benchmark a voltage threshold of -40 mV that is used to determine the

range of onset and offset times when both driving cells are active. The period of active

duration is denoted as T (gapp) for both driving cells and is normalized with the period of

active duration T̄ for both driving cells that is obtained when ¯gappI for i ∈ I, E. This will

allow us to study the active patterns and interactions between the periodic responses of the

driving cells that initiate the dynamics of the system. Note that if we are in a model where

the inhibitory cells drive the dynamics, we maintain g ¯appE constant where drive cell 1 = drive

cell 3. Next, we can arbitrarily choose cell 2 to have a varying gappI drive, where drive cell

2 6= drive cell 4 and the drive of cell 4 is set at ¯gappI .
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3.0 ESCAPE MODEL

As mentioned in Chapter 2, oscillatory responses can occur in systems governed by a fast

and slow variable. Our fast variable is given by the voltage v and our slow variable is

governed by h. When coupling cells through half-center oscillators, we found that when two

ipsilateral cells (e.g. 1 and 2) are silent then the other pair of ipsilateral cells (e.g 3 and 4)

are active, where cell 3 actively excites cell 4 which in turn actively inhibits cell 1. Moreover,

we can have an oscillatory response to the network interactions as illustrated in Figure 2 and

Figure 8 based on the model shown in Figure 1. This gives way to the different dynamics

of the system and their position within the different phases of the nullclines. Two different

mechanisms of state transitions have been studied [30, 33] known as release and escape.

The escape mechanism occurs when an inhibited cell can escape from a hyperpolarized

state because the left knee of its v-nullcline has no stable steady state even when the other

cell is active. The silent cell can transition to an active phase since it is able to access

or overtake the left knee of its v-nullcline. This mechanism can occur due to the intrinsic

properties of the cell or as a result of decaying inhibition to the silent cell, depending on

parameter selection. Therefore, the silent cell is able to move to an active state regardless

of inhibition it may receive and thus escapes from inhibition. However, in a 4 cell model

we also consider the case where the silent cell that is governed by the inhibited nullcline is

able to transition to the uninhibited nullcline and become active. Thus, we can deduce that

it is able to escape its trajectory through its inhibited nullcline. In return, when it crosses

the synaptic threshold, it begins to inhibit or actively excite its coupled cell depending on

whether it is an inhibitory or excitatory cell. This causes the formerly active cell to change

from active to silent. Note that if inhibition decays before its coupled cell can escape, this is

no longer considered intrinsic escape but rather escape through adaptation see Chapter 5.
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3.1 EXCITATORY ESCAPE MODEL

3.1.1 Half-center oscillation mechanisms

The construction of periodic singular solutions for both pairs of identically coupled cells, as

shown in the Figure 1, are modified to fit the regimes where the excitatory cells are the ones

that instigate the dynamics within the escape model. Each pair of inhibitory and excitatory

cells are under the influence of different parametric values, as seen in Table 2, with the

governed dynamics described in Chapter 2. However, this model is adjusted to allow the

excitatory cells 1 and 3 to drive the transition between the silent and active phases while

instigating the same transitions for cells 2 and 4. Figure 3 shows the nullcline configuration

of the baseline drive with the solution of its basic periodic orbit for each of the four cells

tuned to an excitatory escape regime. In the absence of coupling, each of the cells is tonically

active.

3.1.1.1 Parameters The parameter values sustaining the excitatory escape model are

given by α = 3 and the following table Table 2.

In Figure 2 we can see that cells 1 and 2, and cells 3 and 4, are both active and silent

almost precisely at the same time. Thus, all 4 cells are interacting and maintaining the

excitatory driven escape regime while maintaining continuous oscillatory solutions.

Oscillatory responses of the dynamics of the network when tuned to the previously men-

tioned parameters are illustrated in the figure above. Clearly, cell 1 and cell 2 transition

from active to silent phases simultaneously and cells 3 and 4 make the phase transitions

together as well. However, it is important to perform a phase plane analysis of the nullclines

corresponding to the trajectory of the solution for all four cells.

The phase plane of the nullclines is clearly illustrated in Figure 3 for all four cells. In

particular, we note the trajectory of the solution for all four cells with their corresponding

uninhibited/excited v-nullcline in blue and inhibited/unexcited nullcline in red. The dotted

vertical line shows our baseline drive for the synaptic drive θsynE
= θsynI

= −43. Also, we

consider the existence of a singular periodic orbit where the limit as φs ↓ 0 in Equation 2.5
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Excitatory cells Values Inhibitory cells Values

gnapE 15.0 gnapI 4.0

glE 2.5 glI 3.5

gsynE
0.5 gsynI

2

gapp1,3 0.275 gapp2,4 0.1

θmE
- 30.0 θmI

-33.0

σmE
-6.0 σmI

-6.0

θhE
- 30.0 θhI

-34.0

σhE
6.0 σhI

6.0

θsynE
- 43.0 θsynI

-43.0

σsynE
-0.1 σsynI

-0.1

Table 2: Parameters are considered to maintain a regime of intrinsic excitatory escape model.

which helps maintaining solutions close the these f(v, h) nullclines as was further explained

in Chapter 2.

The projection of the solution of cells 1 and 3 lie on the inhibited nullcline in red. With

this in mind, we will begin our phase cycle such that cell 1 and cell 2 are in the active state

of the trajectory as pointed by the arrows labeled start cell 1 and start cell 2 in Figure 3.

This will be our starting point and will follow the dynamics seen in Figure 1. Cell 1, which

is positioned close to the right knee of its uninhibited blue nullcline in Figure 3, actively

exciting cell 2, which is also on the blue excited nullcline. In return, cell 2 is inhibiting cell

3, which is on the red inhibited nullcline shown by the arrow. Consequently, since cell 3 has

no fixed point at vLE
((h1, 0), h1), it crosses the synaptic threshold denoted by the vertical

dotted line. Cell 3 is able to escape inhibition from cell 2 and begins exciting cell 4.

Cell 4 now crosses its synaptic threshold and begins to inhibit cell 1. Now, cell 1 needs

to move to its inhibited nullcline but since it is below the knee of the red inhibited nullcline,
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Figure 2: Time courses for periodic oscillations of four cells (cell 1 (black), cell 2 (red), cell

3 (green), cell 4 (blue)) tuned to an excitatory escape regime.

it must jump to its hyperpolarized left branch. Once it crosses the synaptic threshold

it stops exciting cell 2, which is now also moving along phase I. Once cell 2 crosses its

synaptic threshold, it stops inhibiting cell 3 altogether. When this happens cell 3, that is

now currently in phase II, makes a ”jump” in its trajectory from its red inhibited nullcline

to the blue uninhibited nullcline. Cell 2 now reaches its unexcited nullcline as well. At this

point, cell 1 and cell 3 have switched initial positions as have cells 2 and 4. Therefore, cell 1

and 2 are now silent and cells 3 and 4 are active. This completes half of the cycle where cells

have gone through phases I and II. Repeating the same process with the new cell positions,

will finish the entire cycle and bring all cells back to their original positions.

The trajectories of cells 1 and 3 must transition from the silent phase to the active

phase from the left knee of the inhibited nullcline and eventually descend through the silent

phase toward a fixed point which will remain above hFP (0). Hence, any h-values that are

below hFP (0) will not be accessible to their trajectories. Also, note that cell 1 and cell

3 will jump down to the silent phase only if their trajectory is bellow the right knee of
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the red inhibited nullcline. This will happen only if hE < hRK(Smax). Therefore, if we let

IR = [hfP (0), hRK(smax)], any hE ∈ IR will ensure that the inhibited cell will depolarize

above its synaptic threshold and transition to its active phase. See Figure 4.

Due to the membrane potential vj of cell 1 at the starting points, is more positive than

the inhibition of the synaptic threshold as it excites cell 2, and release becomes impossible

(Similarly for cells 3 and 4 in phase III). The trajectory of cells 2 and 4 are constrained to the

left branch of the unexcited nullcline until their excitatory paired cells reach their synaptic

threshold and rapidly excite them, providing them with enough voltage to transition to their

excited nullcline and become active themselves along with their ipsilateral cell companion.

Figure 3: Basic nullcline configurations and periodic orbits for a four cell network with half-

center oscillation mechanism in an excitatory escape regime. The solid lines are v-nullclines.

The red cubic curves represents the inhibited v-nullclines while the blue curves represent the

uninhibited v-nullcline for cells 1 and 3. For cells 2 and 4 the red cubic curves represents its

unexcited v-nullclines while the blue curves represent their excited v-nullcline. The dashed

green lines are slow variable nullclines, thick black lines are trajectories corresponding to

half-center oscillation, and ”vertical” dotted lines show synaptic threshold.
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Figure 4: Zoomed in image of cell 1 shows the range of possible solutions for IR =

[hfP (0), hRK(smax)] that will ensure cells 1 and 3 are able to jump to the silent phase in

segment I.

3.1.2 Control of oscillation period and phase duration

Figure 2 shows us how periodic orbits behave for all four cells when all the cells are tuned

to their baseline drive. Daun et al. [8] referred to this as a balanced case. Thus, we can

now further study how changing the applied drives gapp can have an effect on the oscillatory

responses through changes in the amplitude and ranges of the period of solutions for which

oscillatory solutions continue to exist within the regime of the model.

3.1.2.1 Symmetric case The analysis of the symmetric case begins with setting the

applied drive to cell 2 and cell 4 equal to each other to gappI = 0.1 and the values of the

applied drive of cell 1 and cell 3 are set equal to each other as well to gappE = 0.275 as seen

in Table 2. Note that these are the same values used for the phase plane analysis of the

nullclines seen in Figure 3. For the excitatory escape regime, note that the dynamics of the

system is driven by the excitatory cells 1 and 3. Therefore, these will be the paired cells for
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which we will vary their gappE drive value, while maintaining gappI , the drive for paired cells

2 and 4, constant.

Figure 5: The periods of the basic periodic orbits shown in Figure 2 vary with changes in

drive to both cells 1 and 3

As we vary gappE , we ensure that each periodic half-center solution persists, although

the period will change. As we continue to change the drive by small uniform quantities, the

periodic oscillations continue to change up to a maximum value of gappE(max) = 0.35 and a

minimum value of gappE(min) = 0.2 for which the regime maintains the existence of periodic

oscillations Figure 6. Thus we have a midpoint which we will denote as gappE(0) = 0.275,

the same was done for the drives of cells 2 and 4 only to obtain its baseline drive which

afterwards maintains itself constant for all further calculations. Note that at gappE(min) we

now are now approaching a fixed point at the left knee of the inhibited purple nullcline, thus

the mechanism of the regime changes and the parameters prescribed for this method Table 2

no longer are able to support an oscillatory response.

The change of the period T of the oscillatory solution is the result of the different periodic

ranges observed which vary under the influence of the different gappE values prescribed to

the network. We will compare the changes in T in relation to the range of the the period

at baseline drive ¯gapp, which we will denote as T0. Therefore, the ratio of T/T0 will allow us

to normalize the solutions and compare the range of periods through the different periods
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obtained by the variation of the gappE drive as illustrated in Figure 5.

Figure 6: Nullcline variation changes of gappE of excitatory cells: The red nullclines

represents the inhibited and uninhibited v-nullcline at its baseline gappE drive. The purple

nullclines shows the shift of the v inhibited and uninhibited nullclines at gappE(max).The light

blue nullclines shows the shift of the v inhibited and uninhibited nullclines at gappE(min)

3.1.2.2 Asymmetric case Next, we considered the response of affecting the drive of

only one cell for the excitatory escape half-center oscillation mechanism. We arbitrarily

chose to give cell 1 the additional drive which will correspond to gapp1 6= gapp3 , other than

at its baseline drive which gapp3 is set to throughout. As in the symmetric case, we will

consider all possible |gapp1| values for which we continue to have oscillatory solutions while

maintaining the excitatory escape regime.
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Figure 7: Changes in silent phase duration with changes in gapp1 , the drive to cell 1. In each

plot, gapp3 , was held fixed at ¯gapp, the baseline drive for the corresponding model (dotted

vertical line), and gapp1 was varied above and below that level. Ts1 and Ts3 denote the

resulting silent phase durations of cells 1 and 3, respectively, and Ts0 (dotted horizontal line)

denotes the silent phase duration with gapp1 = gapp3 = ¯gapp. Half-center oscillations based on

persistent sodium current tuned to E-Escape

Figure 7 illustrates the changes in active phase duration that was numerically observed

for a range of values of gapp1 . As we uniformly vary the values of the gapp1 similar to the

symmetric case, we are able to find the relative range of gapp1 over which oscillatory behavior

exists. We find that they are the same as we saw in Figure 5. It is clear that as we vary the

values of gapp1 , the period changes of cell 1 are almost non existent. On the other hand, the

period changes of cell 3 decrease drastically as gapp1 increases.
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3.2 INHIBITORY ESCAPE MODEL

3.2.1 Half-center oscillation mechanisms

The parameters are now modified to fit the inhibitory regimes of where the inhibitory cells

are driving the dynamics of the system within the escape model. Once again, each pair

of inhibitory and excitatory cells are under the influence of different parametric values as

described in Table 3. Moreover, this model is adjusted to allow the inhibitory cells 2 and 4

to drive the transition between the silent and active phases. Figure 9 presents the nullcline

configuration of the baseline drive with the solution of its basic periodic orbit for each one

of the four cells tuned now to an inhibitory escape regime. The oscillatory activity of the

system is seen in Figure 8. In the absence of coupling cells 1 and 3 are tonically active while

cells 2 and 4 are intrinsically excitable.

3.2.1.1 Parameters For the inhibitory escape model we list all parameter values neces-

sary to maintain the desired regime with α = 1:

Once again we can see that cells 1 and 2, and cells 3 and 4, are both active and silent

almost precisely at the same time. Thus, all 4 cells are interacting and maintaining the

inhibitory driven escape regime while maintaining continuous oscillatory solutions.

The nullclines seen in Figure 9 are structured similar to those seen in the excitatory

escape model. The v-nullcline in blue is uninhibited while the red v-nullcline is inhibited for

cells 1 and 3 while the v-nullcline in blue is excited while the red v-nullcline is unexcited

for cells 2 and 4. The vertical dotted line, which shows the synaptic drive has now changed

from this θsynE
= θsynI

= −43, previous case, to θsynE
= θsyenI

= −30; this changes the

position of the synaptic threshold. Also, note that with θhI
= −36 ; the position of the

h-nullcline is adjusted for the inhibitory cells. Also, the drive gNaP effects for both inhibitory

and excitatory cells has changed. In particular, gNaPE
tripled in value which created changes

in the v-nullcline. Note that while many of the parameters were tuned, we were still able to

produce an escape regime driven by inhibitory cells.

The projection of the trajectory of cells 1 and 3 now lies close to the red inhibited nullcline
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Excitatory cells Values Inhibitory cells Values

gnapE 5.0 gnapI 5.0

glE 1.6 glI 1.6

gsynE
2 gsynI

3.4

gapp1,3 0.45 gapp2,4 0.185

θmE
- 34.0 θmI

-33.0

σmE
-6.0 σmI

-6.0

θhE
- 30.0 θhI

-36.0

σhE
8.0 σhI

6.0

θsynE
- 30.0 θsynI

-30.0

σsynE
-0.2 σsynI

-0.1

Table 3: We consider the set parameters necessary to maintain a regime of intrinsic escape.

in the silent phases and close to the blue noninhibited nullcline in the active phases. However,

the trajectory of the solution is no longer passing through the right knee of the unihibited

blue nullcline. Never-the-less, cells 2 and 4 have a projected trajectory that is close to the

red unexcited nullcline in phase II and close to the blue excited nullcline during their active

phases. Also, the trajectory of cells 2 and 4 now reach the left knee of the unexcited red

nullcline.

Moreover, cell 3 and cell 4 are now in the active state of the trajectory as pointed by the

arrows in Figure 9. Based on the dynamics of our network we know that cell 3, which is now

in the uninhibited blue nullcline, excites cell 4 which is also in the blue excited nullcline. Cell

4 inhibits cell 1 which is now now in the red inhibited nullcline close to its knee as shown by

the arrow. We will begin our phase cycle such that cell 3 and cell 4 are in the active state

of the trajectory in phase I as pointed by the arrows labeled start cell 3 and start cell 4 in

Figure 9 and this will be our starting point.
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Figure 8: Time courses for periodic oscillations of cell 1 (black),cell 2 (red), cell 3 (green),

cell 4 (blue) tuned to an inhibitory escape regime

Now, we see that cell 3 is exciting cell 4 which, in return, is inhibiting cell 1. As cell 2

has reached its top left knee of its unexcited nullcline and, since there is no fixed point at

vLI
((h1, 0)h1), it is able to escape from its silent state and it starts moving along its trajectory

in phase I. Although cell 2 is not escaping any inhibition, its escape arises when the silent

cell reaches a point in phase space, namely the left knee of its red unexcited v-nullcline, and

at this point it is able to jump to the active phase. Once it crosses its synaptic threshold

it begins inhibiting cell 3 which now begins transitioning through its phase I. When cell 3

crosses its synaptic threshold, it stops exciting cell 4. As this happens, cell 4 crosses its

synaptic threshold and starts to lose the inhibition it has on cell 1. Cell 1 therefore begins

to move through its transition phase I eventually reaching its synaptic threshold. Once this

happens, cell 1 begins exciting cell 2 which at this point is in phase II. Since cell 2 now

receives excitation from cell 1 we see that it ”jumps” from the unexcited nullcline to its

excited blue nullcline.

Now, cell 2 is actively inhibiting cell 3 which now has to move to its inhibited nullcline.
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Figure 9: Basic nullcline configurations and periodic orbits for the four cell network with half-

center oscillation mechanism for the inhibitory escape regime.The solid lines are v-nullclines.

The red cubic curves represents the inhibited v-nullclines while the blue curves represent the

uninhibited v-nullcline for cells 1 and 3. For cells 2 and 4 the red cubic curves represents its

unexcited v-nullclines while the blue curves represent their excited v-nullcline. The dashed

green lines are slow variable nullclines, thick black lines are trajectories corresponding to

half-center oscillation, and ”vertical” dotted lines show synaptic threshold

However, since it is below the knee of the red inhibited nullcline, it must jump to its hyper-

polarized left branch. As it crosses its synaptic threshold, it halts excitation of cell 4 which

must now also jump to its hyperpolarized left branch of the unexcited nullcline. Once it

crosses its synaptic threshold it stops inhibiting cell 1 altogether. At this point, cell 1 is now

in its uninhibited nullcline and active. Half an oscillatory cycle is performed and cell 1 is

where cell 3 originally was, and similarly for cells 2 and 4. Repeating the same process with

the new cell positions will finish the entire cycle and bring all cells back to their original

positions.

30



Similar to the excitatory escape regime, we see that the trajectories of the inhibitory

cells will transition from silent phase to the active phase from the left knee of the unexcited

nullcline. Moreover, eventually they will descend through its silent phase toward a fixed

point. The fixed point must remain above hFP (0). Hence, any h-values that are below hFP (0)

will not be accessible to their trajectories. Also, note that all cells will jump down to the

silent phase only if its trajectory is bellow the right knee of the red unexcited nullcline. This

occurs only if h1 < hRK(Smax). Therefore, identical conditions for IR = [hfP (0), hRK(smax)]

are necessary for this regime and, therefore, any hi ∈ IR will ensures that the inhibited cell

will depolarize above its synaptic threshold, terminating the activity of its pattern. Thus,

the inhibited cell can escape from hyperpolarization; see Figure 4.

3.2.2 Control of oscillation period and phase duration

For the inhibitory escape regime we see that now the transitions of active and silent phases

are driven by the inhibitory cells 2 and 4. The pair of inhibitory cells are under the drive of

gappI . Due to the fact that these are the cells that initiate the dynamics, it is important to

find how they influence the model within the mechanism of escape. We want to understand

how changes in gappI will affect the frequency and range of the period while maintaining

solutions of oscillatory responses within its regime (inhibitory escape).

3.2.2.1 Symmetric case Similar to the excitatory escape regime, we set the applied

drive to cell 2 and cell 4 equal to each other at gappI = 0.185. The values of the applied

drive to cell 1 and 3 are set to gappI = 0.3. For, this regime those values will be considered

the baseline drive. As we vary the values of gappI through small uniform values, we will

maintain the drives gappE of cell 1 and 3 constant. Periodic half-center solutions will persist

for 0.07 ≤ gappI ≤ 0.3, although the range of the period is changed. Thus, we have a midpoint

gappI = 0.185.

The drive is changed by small uniform quantities, and the periodic oscillations continue

to change along with their nullclines. In Figure 11, notice that at gappI(min) we now are

approaching a fixed point at the left knee of the unexcited purple nullcline. As we slightly
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decrease gappI from gappI(min), we find that even when there is a release happening, the

suppressed cell cannot jump to its active phase since the h value of the left knee of the

excited nullcline is too close to the h value of the fixed point of its unexcited nullcline.

Therefore, the trajectory cannot get large enough h in order to transition to its active state

once it becomes released. At values greater than gappI(max), the active E cell gains a stable

critical point in the active phase and thus can no longer release the suppressed cell. Thus,

the mechanism of the regime changes and the parameters prescribed for this method Table 3

no longer are able to support an oscillatory response.

The period was normalized as described previously in excitatory escape regime. Thus,

we are now able to compare the range of periods through the different periodic solutions

obtained by variations of the gappI drive. Figure 10. However, contrary to the excitatory

escape regime, we find that the range of periods are somewhat smaller.

Figure 10: The periods of the basic periodic orbits shown in Figure 8 vary with the drive to

both cells 2 and 4.

3.2.2.2 Asymmetric case Again, we see that the response of affecting the drive must be

considered for only one the inhibitory cells. Due to the fact that the mechanism is now driven
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Figure 11: Nullcline variation changes of gappI of inhibitory cells: The red nullclines

represents the unexcited and excited v- nullclines set at its baseline gappI drive. The purple

nullclines shows the shift of the v unexcited and excited nullclines at gappI(max).The light blue

nullclines shows the shift of the v unexcited and excited nullclines at gappI(min)

by the inhibitory cells, we arbitrarily choose to give cell 2 the additional drive which will

correspond to gapp2 6= gapp4 , other than at its baseline drive which gapp4 is set to throughout.

Also, for each half-center oscillation mechanism we consider that there is an existence of

periodic oscillations while maintaining the inhibitory escape regime. It is clear that as the

drive of cell 2 changes, the periods of cell 2 and cell 4 vary asymmetrically since the amplitude

of the solutions in the trajectory of cell 2 maintains a normalized value. Simultaneously, cell

4 drastically decreases as the drive of cell 2 increases as seen in Figure 12.
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Figure 12: Changes in silent phase duration with changes in gapp2 , the drive to cell 2.

In each plot, gapp4 , was held fixed at ¯gapp, the baseline drive for the corresponding model

(dotted vertical line), and gapp2 was varied above and below that level. Ts2 and Ts4 denote

the resulting silent phase durations of cells 2 and 4, respectively, and Ts0 (dotted horizontal

line) denotes the silent phase duration with gapp2 = gapp4 = ¯gapp. Half-center oscillations

based on persistent sodium current tuned to I-Escape
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4.0 RELEASE MODEL

A Release mechanism is characterized to occur when a cell is active and its opposing cell

is silent in a coupled network. The active cell is able to become silent when it starts losing

excitation. Once it reaches the knee of its non-inhibitory/excited nullcline the active cell

begins transitioning to a silent state and, as this cell crosses a particular threshold through

its phase transition, its coupled silent cell can become active. This occurs not due to the

silent cell escaping from inhibition of the active cell, but instead simply by being released

from it. Note that if inhibition decays before its coupled cell can be released, this is no longer

considered intrinsic release but rather release through adaptation; see Chapter 5.

4.1 EXCITATORY RELEASE MODEL

4.1.1 Half-center oscillation mechanisms

Again, the construction of periodic singular solutions are governed by the architecture seen

in Figure 1. However, the model is now tuned to an excitatory release regime. Each pair

of excitatory-inhibitory cells continue to be under the influence of synaptic inhibition. Due

to the regime of this model, the dynamics are initiated by the excitatory cells. Moreover,

for the release case, we know that oscillations must be primarily controlled by the cell in

the active phase releasing the inhibited cell from its silent state. We can achieve this model

under the following constraints.
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4.1.1.1 Parameters For the excitatory release model, we list all parameter values nec-

essary to maintain the regime. We set α = 3 and:

Excitatory cells Values Inhibitory cells Values

gnapE 5.0 gnapI 4.0

glE 3.6 glI 2.8

gsynE
1.5 gsynI

1.2

gapp1,3 0.36 gapp2,4 0.53

θmE
- 34.0 θmI

-31.0

σmE
-8.0 σmI

-6.5

θhE
- 35.0 θhI

-45.0

σhE
8.0 σhI

6.0

θsynE
- 43.0 θsynI

-43.0

σsynE
-0.1 σsynI

-0.1

Table 4: Parameters considered to maintain a regime of excitatory release model.

Based on the parameters set, we see that the maximal conductances of the sodium current

in the excitatory cells was reduced by a third while the reversal potential of the synaptic

current increased three times its value. However, the reversal potential for the applied current

for both excitation and inhibitory cells increased to maintain the release regime.

As previously stated, we can see that cells 1 and 2 are both active or silent at almost

precisely the same time, with cells 3 and 4 sharing this common trait as illustrated in

Figure 13. While the excitatory release regime has oscillatory solutions, we see that the

period of active and silent states are similar in frequency to the solutions seen in the excitatory

and inhibitory escape regimes.

The phase plane of the nullclines is clearly illustrated in Figure 14 for all four cells.

The vertical dotted line, which shows the synaptic threshold, has now changed to θsynE
=

θsynI
= −43. Contrary to the excitatory escape model, we see that the gNaP drive for the

excitatory cell is reduced by a third while the synaptic drive gsynE
of the excitatory cells
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Figure 13: Time courses for periodic oscillations of four cells (cell 1 (black), cell 2 (red), cell

3 (green), cell 4 (blue)) tuned to an excitatory release.

tripled. Many other parameters have been slightly adjusted, however, we are still able to

produce an excitatory regime now adjusted to a release mechanism.

The projection of the trajectory in cells 1 and 3 lie close to the blue uninhibited v-

nullcline. The initial position of cell 1 and cell 2 are in the active phase in the blue unin-

hibited/excited v-nullcline, as pointed by the arrows labeled start cell 1 and start cell 2.We

will start here following the dynamics seen in Figure 1.

Given the dynamics of this model, we see that cell 1 is in the active phase and exciting

cell 2 which in return is inhibiting cell 3. Cell 3 is currently in the red inhibited nullcline

and in the silent phase as cell 4 is also silent and on its unexcited nullcline. However, cell

3 has a stable hyperpolarized equilibrium for the inhibition level it is receiving from cell 2.

Therefore, cell 3 is currently contained in the silent state and since cell 1 does not have a

stable active phase equilibrium, it moves along phase I. When this happens, cell 1 crosses

its synaptic threshold denoted by the vertical dotted line. Thus cell 1 stops exciting cell 2

and cell 2 begins moving along its phase 1 until it reaches its synaptic threshold.
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Once it crosses its synaptic threshold, cell 2 stops inhibiting cell 3 which is now released

from inhibition and able to transition in its phase I and cross its synaptic threshold. Once

cell 3 crosses its synaptic threshold, it begins exciting cell 4. When cell 4 becomes excited,

it begins inhibiting cell 1. Cell 1 is not able to follow its trajectory due to the fast dynamics

of the system. Consequently, the added inhibition, causes a jump to the hyperpolarized red

v nullcline. In return, cell 1 stops exciting cell 2 which now transitions to its unexcited

nullcline. Now, cell 1 and cell 3 have switched places from their original positions as have

cells 2 and 4. This concludes half of an oscillatory cycle. Repeating the same process with

new cell positions will bring them back to their original positions and completes the cycle.

Figure 14: Basic nullcline configurations and periodic orbits for four cell connections with

half-center oscillation mechanism for an excitatory release regime. The solid lines are v-

nullclines. The red cubic curves represents the inhibited v-nullclines while the blue curves

represent the uninhibited v-nullcline for cells 1 and 3. For cells 2 and 4 the red cubic

curves represents its unexcited v-nullclines while the blue curves represent their excited v-

nullcline. The dashed green line are slow variable nullclines, thick black line are trajectories

corresponding to half-center oscillation, and dotted line shows synaptic threshold
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Note that the trajectories of the cells 1 and 3 must jump to the silent phase as a result

of the inhibition they received from their coupled cells that force a fast transition toward

the silent phase. For cells 2 and 4 we see that their non-inhibited nullcline has a steep slope,

and, while it allows for the existence of the oscillatory regime, we do not have a fixed point

on the right knee. Let IL, an interval analogous to IR seen in the escape mechanisms, as IL ≡

[hLK(0), hFP (smax)] the interval between which a starting point given by (vL(h2, smax), h2)

will maintain the regime provided that h2 ∈ IL, as illustrated in Figure 15. Same is true for

cell 4.

Figure 15: A zoomed image of cell 1 shows us the range of possible solutions for IL =

[hfP (0), hLK(smax)] that will ensure cells 1 and 3 are able to jump to the active phase in

segment IV.

4.1.2 Control of oscillation period and phase duration

4.1.2.1 Symmetric case For the excitatory release regime, we see that the dynamics

of the excitatory release mechanism rely on the drive gappE given to cells 1 and 3. Due to the

fact that these are the cells that initiate the motion, we once again want to find how they

influence the model. Moreover, we are interested in how the changes in parameters might
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yield different possible solutions for the periodicity and amplitude of the solutions through

different values of gappE. We consider the changes of gappE so long as the solution maintains

oscillatory responses and stay within the excitatory release regime.

We will begin again by setting the baseline drive gappE = 0.36 and gappI = 0.53 for all four

cells. Recall, these are the midpoint values for which the regime is able to maintain both

oscillatory solutions and maintain it excitatory release model. Given that the excitatory cells

instigate silent-active phase transitions of the regime, we will vary in drive gappE by small

uniform quantities. The gappE values for which the periodic oscillations exist as we continue

to change the applied drive are within a maximum of gappE(max) = 0.65 and a minimum

of gappE(min) = 0.07. These bounds give us a midpoint of ¯gappE = 0.36 as illustrated in

Figure 16.

Figure 16: The periods of the basic periodic orbits shown in Figure 13 vary with changes in

drive to both cells 1 and 3

Note that at gappE(min) we now are now approaching a fixed point at the left knee of the

uninhibited purple nullcline. Also, we loose a fixed point on the left branch of the inhibited

nullcline in the max values as shown by the light blue nullclines and instead get a fixed point

on the middle branch of the inhibited nullcline. Thus, the mechanism of the regime changes
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and the parameters prescribed for this method Table 4 no longer are able to support an

oscillatory response beyond the range of gappE prescribed.

The period was normalized in the same manner as all previous cases and bearing this in

mind we are able to compare the range of periods through the different periodic solutions

obtained by the variations of the gappE drive. However, Figure 16 illustrates, we see that the

period of the oscillations increase as the drive gappE is increased. This is contrary to what

was found in the excitatory regimes.

Figure 17: Nullcline variation changes of gappE of excitatory cells: The red nullclines

represents the inhibited and uninhibited v nullclines set at its baseline gappE drive. The purple

nullclines shows the shift of the v inhibited and uninhibited nullclines at gappE(max).The light

blue nullclines shows the shift of the v inhibited and uninhibited nullclines at gappE(min)

4.1.2.2 Asymmetric case Again, we want to consider responses of the oscillatory so-

lutions affected by gappE . However, we know that we must arbitrarily choose only one of

the excitatory cells to change drive while the applied drive of the other cells are maintained

constant. We choose to change the values of drive gappE for cell 1 which will gapp1 6= gapp3 .

41



This will be true always except at other the baseline drive for which gapp3 is set to this

constant value throughout. For each half-center oscillation mechanisms, we consider that

there is an existence of periodic oscillations while maintaining the excitatory release regime.

It is clear that as the drive of cell 1 changes, it is now the period of cell 3 that maintains

itself relatively the same throughout. However, we find that as drive gapp1 increases, there

is a direct change in the periods of cell 1 which now also increase as their drive increases as

seen in Figure 18.

Figure 18: Changes in silent phase duration with changes in gapp1 , the drive to cell 1.

In each plot, gapp3 , was held fixed at ¯gapp, the baseline drive for the corresponding model

(dotted vertical line), and gapp1 was varied above and below that level. Ts1 and Ts3 denote

the resulting silent phase durations of cells 1 and 3, respectively, and Ts0 (dotted horizontal

line) denotes the silent phase duration with gapp1 = gapp3 = ¯gapp. Half-center oscillations

based on persistent sodium current tuned to E-Release
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4.2 INHIBITORY RELEASE MODEL

4.2.1 Half-center oscillation mechanisms

Similar to previous cases, the construction of periodic singular solutions are governed by

the architecture seen in Figure 1. However, we must now consider a new set of parameters

that will tune the model to an inhibitory release regime. Each pair of excitatory-inhibitory

cells are the influence of synaptic inhibition. Moreover, the phase transitions of this model

are initiated by the inhibitory cells. In particular for the release case, we know that the

oscillations must be primarily controlled by the cell in the active phase releasing the inhibited

cell from its silent state. We can achieve this model under the following constraints.

4.2.1.1 Parameters For the inhibitory escape model, we list all parameter values nec-

essary to maintain the regime with α = 1 and:

Excitatory cells Values Inhibitory cells Values

gnapE 8.0 gnapI 5.0

glE 2.6 glI 2

gsynE
2 gsynI

0.75

gapp1,3 0.32 gapp2,4 -0.05

θmE
- 34.0 θmI

-34.0

σmE
-6.0 σmI

-6.0

θhE
- 30.0 θhI

-48.0

σhE
8.0 σhI

12.0

θsynE
- 30.0 θsynI

-35.0

σsynE
-0.2 σsynI

-0.1

Table 5: We consider the set parameters necessary to maintain a regime of intrinsic release

model.
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Figure 19: Time courses for periodic oscillations of four cells (cell 1 (black),cell 2 (red), cell

3 (green), cell 4 (blue)) tuned to an inhibitory release.

As previously stated, we can see that cells 1 and 2 are both active or silent at almost

precisely the same time; cells 3 and 4 share this common trait as illustrated in Figure 19.

While the inhibitory release regime has oscillatory solutions, we see that the period of active

and silent states are very similar to those seen in the excitatory release regime.

Notice that the projection of the trajectory of cells 2 and 4 are now the ones close to

the blue excited v-nullcline. The initial position of cell 3 is shown by the arrow in the blue

uninhibited nullcline, as the position of cell 4 is on its excited nullcline. Due to the particular

dynamics of our network, we see that cell 3 excites cell 4 which in return is inhibiting cell

1. Cell 1 on the other hand is currently positioned in the red inhibited nullcline as cell 2

is on its unexcited nullcline. Moreover, cell 1 has a stable hyperpolarized equilibrium fixed

point, however, due to the inhibition level it receives from cell 4, it is contained in the silent

state. Since cell 4 has reached the right knee of the excited nullcline, it starts transitioning

through phase I. As cell 4 crosses its synaptic threshold it starts loosing the inhibition it has

on cell 1 thus allowing it to begin its trajectory in phase I.
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As cell 1 crosses its synaptic threshold, it begins exciting cell 2. Now, cell 2 is released

and able to transition on phase I towards its excited nullcline. When it crosses its synaptic

threshold, cell 2 begins inhibiting cell 3 which is now able to transition towards its inhibited

nullcline. When it crosses its synaptic threshold it stops exciting cell 4 and that is why

there is a jump in the trajectory of cell 4 through phase I from the excited to the unexcited

nullcline. Now, cell 4 reaches its hyperpolarized nullcline and cells 1 and 2 become active as

cells 3 and 4 are now silent. As all four cells continue their transitions through their phase

II, cell 1 and cell 3 have switched places from their original positions as have cells 2 and

4. The entire cycle follows in the usual manner. In this regime find that the trajectories

Figure 20: Basic nullcline configurations and periodic orbits for four cell connections with

half-center oscillation mechanism tuned to an inhibitory release regime. The solid lines

are v-nullclines. The red cubic curves represents the inhibited v-nullclines while the blue

curves represent the uninhibited v-nullcline for cells 1 and 3. For cells 2 and 4 the red cubic

curves represents its unexcited v-nullclines while the blue curves represent their excited v-

nullcline. The dashed green line are slow variable nullclines, thick black line are trajectories

corresponding to half-center oscillation, and dotted line shows synaptic threshold.

45



of cells 2 and 4 must jump to silent phase from the right knee of the excited active phase

nullcline. They will descend through the excited nullcline toward a fixed point.However,

cells 1 and 3 must be above the knee of its left uninhibited nullcline when it gets release in

order to transition to its active phase. Thus, to reach the silent phase we must satisfy that

if hE < hRK(Smin). Therefore, identical conditions for IR = [hRK(smin), hFP (0) are necessary

for this regime. Thus, for any hE ∈ IR will ensures that the inhibited cell will depolarize

above its synaptic threshold; see Figure 4.

Figure 21: Zoomed in image of cell 1 shows the range of possible solutions for IR =

[hRK(smin), hFP (0)] that will ensure cells 1 and 3 are able to jump to the silent phase in

segment I.

4.2.2 Control of oscillation period and phase duration

4.2.2.1 Symmetric case Given that the inhibitory release model relies on the drive of

the inhibitory cells to initiate the dynamics of the system, we will study how changing the

gappI of cells 2 and 4 influences the periodic solutions of the model. We are interested in

changes in amplitude and periodicity of responses while maintaining an oscillatory activity

and staying within the regime of the method. Similar to previous cases, we consider the pair
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of inhibitory cells under the drive gappI equal for 2 and 4 while fixed the drive and gappE for

cells 1 and 3 constant.

The drive gappI is changed by small uniform quantities. The periodic oscillations continue

to exist up to a lowest possible drive of gappI(min) = −0.21 and the largest possible values of

gappI(max) = 0.11. The midpoint is therefore ¯gappI = −0.05 which yields a negative baseline

drive. Since this is an applied drive, we can consider this to be |gappI |, the negativity of the

values does not necessarily mean that the behavior of the drive changes within the dynamics

of the system. Once we fix ¯gappI we can find the period T̄ that results from this drive. Note

that at although the fixed points vary but stay in similar relation with the branches of the

baseline drive, the parameters prescribed for this method Figure 23 no longer are able to

support an oscillatory response after gappI(max) or before gappI(min).

Figure 22: The periods of the basic periodic orbits shown in Figure 19 vary with changes to

the drive of both cells 2 and 4

Moreover, the change of gappI in relation to the range of the total divided by ¯gapp yields
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the relative T of the system so that ∆T/∆gappI is the relative change of T compared to the

relative range of gappI . Once again to, the excitatory release model, we see in Figure 22 that

as gappI increases, the period of the oscillatory responses increase as well.

Figure 23: Nullcline variation changes of gappI of inhibitory cells: The red nullclines

represents the excited/unexcited v-nullclines set at their baseline gappI drive. The purple

nullclines shows the shift of the v excited/unexcited nullclines at gappI(max).The light blue

nullclines shows the shift of the v excited/unexcited nullclines at gappI(min)

4.2.2.2 Asymmetric case Now that we have found the response of the solution by

affecting the drive gappI for both cells 2 and 4 paired together, we must now considered

the effect of varying only one of the inhibitory cells. We arbitrarily choose to give cell 2

the additional drive which will correspond to gapp2 6= gapp4 , other than at its baseline drive

which gapp4 is set to throughout. Again, for each half-center oscillation mechanisms, we

consider that are periodic oscillations and find sufficient conditions for which we continue to

see the existence of the oscillatory solution while maintaining the inhibitory release regime.
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In Figure 24, we find that the relative range of possible solutions is very small, as we saw

in the excitatory release regime, and follows a similar trend. The drive of gapp2 is increased,

the period of the response of cell 2 increases as well while cell 4 maintains itself with similar

oscillatory responses throughout all value changes of gapp2 .

Figure 24: Changes in silent phase duration with changes in gapp2 , the drive to cell 2. In each

plot, gapp4 , was held fixed at gapp0 , the baseline drive for the corresponding model (dotted

vertical line), and gapp2 was varied above and below that level. Ts2 and Ts4 denote the

resulting silent phase durations of cells 2 and 4, respectively, and Ts0 (dotted horizontal line)

denotes the silent phase duration with gapp2 = gapp4 = ¯gapp. Half-center oscillations based on

persistent sodium current tuned to I-Release
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5.0 ADAPT ESCAPE AND RELEASE MODELS

Different studies have explored various models and their transitions in which an active cell

or unit becomes silent and a silent cell or unit becomes active through mechanisms of escape

and release. However, it has been noted that in some cases, the transitions between silent

and active phases could happen due to partial release or adaptation of a cell [30, 33, 8]. It

was noted that when one neuron was intrinsically bursting it was able to jump for a silent

to an active phase or vice-versa on its own, in the absence of inhibition. Yet, in a coupled

network there may be the possibility that when one of the cells is active and the other one is

silent, if the silent cell is below a given synaptic threshold it is not able to inhibit the active

cell and therefore cannot become active.

Never-the-less, it was observed that there is a way to adapt the responses by moving

the synaptic threshold out of the interval range between the ”upjump” and ”downjump”

voltages of the coupled system as, described by Skinner et al. [30]. The ”upjump voltage” is

the voltage value when the cell transitions from silent to active. The ”downjump voltage” is

the voltage value when the cell transitions for active to silent, as seen in the phase planes of

the h and v nullclines. Thus, the synaptic threshold can be shifted to an interval of voltages

through the uninhibited and inhibited v-nullclines which will mark the difference between

adapt escape and adapt release regimes.
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5.1 ADAPT INHIBITORY ESCAPE MODEL

5.1.1 Half-center oscillation mechanisms

The basic architecture is illustrated in Figure 1. However, we must ocne again adjust to

our new regime and fine tune the parameters to allow the inhibitory cells 2 and 4 to drive

the transition between the silent and active phases while instigating the same transitions for

cells 1 and 3. Therefore, we must now consider the added element of the synaptic drive and

it interaction with the phase transitions of the trajectories of cell solutions.

5.1.1.1 Parameters Again, for the adapt escape inhibitory method, we list all param-

eter values necessary to maintain the regime. Letting α = 1 and:

Excitatory cells Values Inhibitory cells Values

gnapE 7.0 gnapI 5.0

glE 2.0 glI 4.0

gsynE
1 gsynI

3

gapp1,3 0.495 gapp2,4 - 0.33

θmE
- 31.0 θmI

-34.0

σmE
-5.0 σmI

-6.0

θhE
- 47.0 θhI

-34.0

σhE
8.0 σhI

8.0

θsynE
- 30.0 θsynI

-10.0

σsynE
-4.0 σsynI

-4.0

Table 6: We consider the parameter set necessary to maintain a regime of inhibitory adapt

escape model

In Figure 26, the trajectories of the solutions seen are almost identical to those seen in

both escape regimes in Chapter 3. However, the main changing feature that allows for this
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Figure 25: Time courses for periodic oscillations of four cells (cell 1 (black),cell 2 (red), cell

3 (green), cell 4 (blue)) set to an inhibitory adapt escape regime.

oscillatory response is the synaptic threshold (as indicated by the dotted lines in Figure 26)

that is particularly shifted for the ”inhibitory cells”, while the synaptic threshold of the

excitatory cells is still within the trajectory in phase I. Evidently, we now have different

threshold for θsynE
= −30 and θsynI

= −10.

Given the adjustment of the dynamics of this model, we see that cell 3 lies in the excited

blue v-nullcline at the beginning of the active phase I, as cell 4 is also active in its excited

nullcline. Cells 1 and 2 are in their silent state.

As cell 4 has passed its synaptic threshold in phase IV, it no longer is actively inhibiting

cell1. Therefore, cell 1 is able to transition through its phase I towards its uninhibited

nullcline. When cell 1 crosses its synaptic threshold, the voltage is large enough to excite

cell 2 and reach its active phase. Therefore, cell 2 now starts its transition through phase I

and is able to escape its silent state. As it crosses its synaptic threshold it begins inhibiting

cell 3, which is no longer able to excite cell 4 as it crosses its synaptic threshold, reaches
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its inhibited nullcline. Cell 4 at this point is also silent and on its unexcited nullcline. At

this point, we have completed half a cycle where cell 1 and cell 3 have switched initial

positions, as have cells 2 and 4. The full cycle is completed in the usual way. Note, that

same requirements of the trajectory are true for cells 1 and 3 as those seen in the intrinsic

escape case described in Figure 4.

Figure 26: Basic nullcline configurations and periodic orbits for four cell connections with

half-center oscillation mechanism tuned to an inhibitory adapt escape regime. The solid

lines are v-nullclines. The red cubic curves represents the inhibited v-nullclines while the

blue curves represent the uninhibited v-nullcline for cells 1 and 3. For cells 2 and 4 the red

cubic curves represents its unexcited v-nullclines while the blue curves represent their excited

v-nullcline. The dashed green line are slow variable nullclines, thick black line are trajectories

corresponding to half-center oscillation, and dotted line shows synaptic threshold.

5.1.2 Control of oscillation period and phase duration.

5.1.2.1 Symmetric case Since our model regime is tuned to the adapt inhibitory escape

model, it relies on the drive of the inhibitory cells to initiate the dynamics of the system.
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Therefore, we now consider how changes in the drive gappI of cells 2 and 4 may influence the

periodic solutions of the model, considering any effect that the synaptic current may have

on the results. Changes begin again by considering cells 2 and 4 to be under the influence

of the same drive gappI , while also maintaining cells 1 and 3 under the same constant drive

gappE , as seen in Table 6.

Figure 27: The periods of the basic periodic orbits shown in Figure 25 vary with changes in

drive to both cells 2 and 4

The drive gappI for cells 2 and 4 is varied through small uniform quantities over a range

of possible values for which oscillatory solutions exists, while staying within its regime. The

lowest possible drive prescribed is gappI(min) = −1.23 and the maximum value is gappI(max) =

0.55. This gives us a midpoint at ¯gappI = −0.33. Note that the nullclines of the varied drive

gappI and change the position of the fixed points. However, these fixed points stay in similar

relation within the left branches of the unexcited nullcline as when baseline drive ¯gappI is

prescribed. At values greater than gappI(max) it is possible that the mechanism is now able

to escape on its own without the input of the synaptic threshold. At values smaller than

gappI(min) it is possible that the synaptic threshold is no longer strong enough to allow for an

escape mechanism. If gappI is varied outside of the range of possible values, the parameters
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for this method Figure 28 no longer are able to support an oscillatory response.

The change of gappI in relation to the range of the total divided by ¯gapp gives us the

relative range of the period T which is normalized with the period T̄ obtained from using

the baseline drive ¯gappI . Now, we find that ∆T/∆gappI is the relative change of T compared

to the relative range of gappI . Moreover, we find that the range of oscillatory solutions for

this regime is significantly larger than any other model. While the amplitude of the solutions

of the active phase is not very large, we find a longer maintenance of solution existence in

this regime compared with any other method.

Figure 28: Nullcline variation changes of gappI of inhibitory cells: The red null-

clines represents the excited/unexcited v-nullclines set at its baseline gappI drive. The purple

nullclines shows the shift of the v excited/unexcited nullclines at gappI(max).The light blue

nullclines shows the shift of the v excited/unexcited nullclines at gappI(min)

5.1.2.2 Asymmetric case It is of interest to find the response of changes in drive for

only one of the inhibitory cells. Cell 2 is chosen to receive the additional drive which will
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correspond to gapp2 6= gapp4 , other than at its baseline drive which gapp4 is set to throughout.

Similar to the results seen in the inhibitory escape case, the period of cell 2 maintains itself

nearly constant throughout uniform increases to gapp2 . However, we see the period of cell 4

increases slightly as gapp2 increases throughout, as illustrated in Figure 29.

Figure 29: Changes in silent phase duration with changes in gapp2 , the drive to cell 2. In each

plot, gapp4 , was held fixed at gapp0 , the baseline drive for the corresponding model (dotted

vertical line), and gapp2 was varied above and below that level. Ts2 and Ts4 denote the

resulting silent phase durations of cells 2 and 4, respectively, and Ts0 (dotted horizontal line)

denotes the silent phase duration with gapp2 = gapp4 = ¯gapp. Half-center oscillations based on

persistent sodium current tuned to inhibitory adapt escape.
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5.2 ADAPT EXCITATORY RELEASE MODEL

5.2.1 Half-center oscillation mechanisms

We now know that there is a way to adapt the responses by changing the values of the

synaptic threshold. In the release mechanism, the synaptic threshold is shifted through the

inhibited nullclines for the excitatory cells [30, 33, 8]. Thus, it is now high enough that it is

ecountedred by these vells while they are still in their active phase as illustrated in Figure 31.

This regime is adjusted to allow the excitatory cells 1 and 3 to drive the transition between

the silent and active phases while instigating the same transitions for cells 2 and 4. Yet, once

more, we must consider the critical role that the synaptic current may have on the behavior

of the neural network.

5.2.1.1 Parameters For the adapt release excitatory regime we list all parameter values
necessary to maintain the dynamics, starting with α = 1 and:

Excitatory cells Values Inhibitory cells Values

gnapE 8.0 gnapI 5.0

glE 2.0 glI 4.0

gsynE
1 gsynI

3

gapp1,3 0.815 gapp2,4 -0.19

θmE
- 31.0 θmI

-34.0

σmE
-5.0 σmI

-6.0

θhE
- 47.0 θhI

-34.0

σhE
8.0 σhI

8.0

θsynE
- 10.0 θsynI

-30.0

σsynE
-4.0 σsynI

-4.0

Table 7: We consider the set parameters necessary to maintain a regime of intrinsic escape

model with different set values for inhibitory and excitatory cells.
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In Figure 31, the trajectories of the solutions seen are almost identical to those seen in

both release regimes in Chapter 4. However, the main changing feature that allows for this

oscillatory response is the synaptic threshold (as indicated by the dotted lines in Figure 31)

that is particularly shifted for the ”inhibitory cells”, while the synaptic threshold of the

excitatory cells is still within the trajectory in phase I.

Figure 30: Time courses for periodic oscillations of (cell 1 (black), cell 2 (red), cell 3 (green),

cell 4 (blue)) set to an excitatory adapt release regime

We see that the trajectory of cells 1 and 3 follows close to the uninhibited blue v-nullcline

in phase I for cell 1 and phase III for cell 3. Moreover, the trajectory of the excitatory cells

manage to reach the right knee of the uninhibited nullcline. The position of the synaptic

threshold, denoted by the dotted line, for the excitatory cells are prescribed as θsynE
= −10;

see Table 7, such that it does not intersect with the transition phase between silent and

active states in cells 1 and 3. On the other hand, the synaptic threshold for cells 2 and 4

is θsynI
= −30; see Table 7. However, the synaptic input of inhibitory cells have voltage

transition values between silent and active phases in both sides of the synaptic threshold.
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Figure 31: Basic nullcline configurations and periodic orbits for four cell connections with

half-center oscillation mechanism tuned to an excitatory adapt release regime. The solid

lines are v-nullclines. The red cubic curves represents the inhibited v-nullclines while the

blue curves represent the uninhibited v-nullcline for cells 1 and 3. For cells 2 and 4 the red

cubic curves represents its unexcited v-nullclines while the blue curves represent their excited

v-nullcline. The dashed green line are slow variable nullclines, thick black line are trajectories

corresponding to half-center oscillation, and dotted line shows synaptic threshold.

In Figure 31, cell 1 and cell 2 are initially both in the active phase I. Cell 1 is positioned

in the blue uninhibited v-nullcline while cell 2 is slightly below the right knee of its unexcited

v-nullcline although it is currently governed by the unexcited nullcline. Cell 1 is currently

exciting cell 2. And this allows cell 2 to inhibit cell 3, which is at the top end of silent

phase IV in the inhibited red nullcline as is cell 4. Thus, Cell 3 is silent and unable to excite

cell 4. However, once cell 1 crosses its synaptic threshold, it stops exciting cell 2. As cell

2 crosses its synaptic threshold, cell 3 is released from inhibition and is able to transition

to the uninhibited nullcline. As this happens, cell 3 begins to excite cell 4 which in return

crosses its synaptic threshold and begins to inhibit cell 1. Cell 1 must now transition to the
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inhibited nullcline. Due to the fast dynamics, it has a small jump in its trajectory as we

see the transitions from the blue unihibited nullcline to the red inhibited one in its phase I.

As cell 1 becomes inhibited, cell 2 is no longer excited and thus, also reaches its unexcited

nullcline. At this point cells 1 and 3 have switched positions, as have cells 2 and four. This

marks half of the oscillation.

5.2.2 Control of oscillation period and phase duration

5.2.2.1 Symmetric case Since this model is tuned to the adapt excitatory release

regime, we know that the model relies heavily on the drive of the excitatory cells to ini-

tiate the dynamics of the system. Therefore, we will consider how changing the drive gappE

of cells 1 and 3 may influence the periodic solutions of this model now that we have the

additional shift in input of the synaptic current.

For the symmetric case, we will consider excitatory cells 1 and 3 to be under the influence

of the same applied drive gappE . We will vary the drive uniformly while maintaining a periodic

half-center solution and staying within the dynamics of the regime. The regime maintain

solutions at a minimum value for gappE(min) = 0.44 and max value set at gappE(max) = 1.09.

These values give us a midpoint ¯gappE = 0.815 as seen in Table 7 and we will consider it

our baseline drive. The nullclines for these applied drive values are illustrated in Figure 33.

We see that at gappE(min) will soon lose a fixed point on the left knee of the inhibited purple

nullcline. Also, at gappE(max) we see that we now have a fixed point on the middle branch

of the inhibited nullcline while the uninhibited nullcline starts to loose its cubic shape.

Thus, the mechanism of the regime changes and the parameters prescribed for this method

Table 7 no longer are able to support an oscillatory response out of the range described by

at gappE(max) and at gappE(min) .

The change of gappE in relation to the range of the total divided by ¯gapp yields the relative

range of the period T , which is normalized with the period T̄ obtained form using the baseline

¯gappE drive. We find that ∆T/∆gappE is the relative change of T compared to the relative

range of gappE , illustrated in Figure 32. Similar to the intrinsic release cases, we find that as

we increase the drive gappE , the period of oscillation responses increase and yields a range
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similar to that seen in the intrinsic release regime, as was illustrated in Figure 33.

Figure 32: The periods of the basic periodic orbits shown in Figure 30 change with changes

in drive to both cells 1 and 3

5.2.2.2 Asymmetric case We are now interested in the response to changes in drive

for only one of the excitatory cells. Cell 1 is chosen arbitrarily to receive the additional drive

which will correspond to gapp1 6= gapp3 , other than at its baseline drive which gapp3 is set to

throughout. Notice that the period of gapp3 maintains itself nearly constant throughout uni-

form increases of gapp1 . Moreover, the period of cell 1 increases as gapp1 increases throughout.

Figure 34
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Figure 33: Nullcline variation changes of gappE of excitatory cells: The red nullclines

represents the inhibited and uninhibited v-nullclines set at its baseline gappE drive. The

purple nullclines shows the shift of the v inhibited and uninhibited nullclines at gappE(max).The

light blue nullclines shows the shift of the v inhibited and uninhibited nullclines at gappE(min)
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Figure 34: Changes in silent phase duration with changes in gapp1 , the drive to cell 1. In

each plot, gapp3 , was held fixed at gapp0 , the baseline drive for the corresponding model

(dotted vertical line), and gapp1 was varied above and below that level. Ts1 and Ts3 denote

the resulting silent phase durations of cells 1 and 3, respectively, and Ts0 denotes the silent

phase duration with gapp1 = gapp3 = ¯gapp. Half-center oscillations based on persistent sodium

current tuned to excitatory adapt release.
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6.0 CONCLUSIONS

In the introduction, we saw that a wide range of models have been proposed and analyzed

the physical interactions of animals with a wide variety of motions and repetitive behaviors

(walking, breathing, scratching, and others) that are driven by interacting populations of

spiking neurons called CPGs. The complexity of such networks of spiking neurons create a

complex mathematical analysis[11, 12, 14, 18, 26].

More simplified models can produce significant responses representing the network in

which they are embedded [25]. These have allowed for further investigation and analysis

of different configurations of locomotion activity. It has been noted that a single neuron

may characterize a population of neurons in which the average voltage is representative of a

population set and their output activity. This simplification has allowed for a more general

description of the behavior of the populations through its silent and active states[22, 21].

We have constructed a model of a CPG network of coupled half-center oscillators. The

architecture of the connections considers a sodium conductance-based modeled for cells that

are synaptically coupled to study functional connection patters. However, we aim to create

a model that features a more biophysical representation of locomotion activity.

We have studied the capacity for our CPG network model to operate in many different

regimes and generate oscillatory responses. Our objective was to compose and investigate

the adaptability of CPG oscillatory responses to different modifications of drive and synaptic

input. We also focused on investigating how we can adapt network connections with different

parameter choices that manage values of the input drives and also the intrinsic properties

of the dynamical systems of the CPG models. The architecture of our model can stably

reproduce fundamental locomotion responses of phase transition rhythms through alternation

of excitatory-inhibitory burst synchronization throughout all the different regimes.
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In particular, we aim to understand how the duration of the period of oscillations can

be changed through different inputs of external drives to the half-centers of the cells that

are in charge of initiating the dynamics within their own regime. The cases of controlled

drive studied are of symmetric and asymmetric types, as described in Chapter 2. In the

symmetric case, we found that based on the regime and functions of each cell within it, either

the excitatory or inhibitory cells will be set to a constant input drive. Simultaneously, the

drive of the cells in charge of initiating the dynamics are paired and varied throughout. The

second case is of asymmetric nature. Once again, based on the regime and functions of each

cell within it, either the excitatory or inhibitory cells will be set to a constant drive as well

as one of the driving cells while varying one cells drive through a range of inputs.

Our mathematical analysis provides insight into the specific factors that contribute to the

phase plane dynamics of each model and into different responses gathered through tuning of

input drives. The difference in responses yields a better understanding of how the variation

of drive inputs contribute to the responses of the oscillatory solutions. We use a general-

ization of the mathematical analysis in all the regimes studied while using the same model

structure throughout. Thus, significant variations of parameters helped achieve the different

regimes of escape and release mechanisms described in Chapters 3-5. The generalizations

that have been considered, are useful in providing further insight into the effects that drive

modulation may have on the responses while comparing the results obtained through the

different regimes.

Each model’s regimes have illustrated the changes in active phase duration through a

range of values of gapp(I,E). First, we analyzed the oscillatory responses within the symmetric

case. In particular, we quantify the ranges of solutions found in all analyzed cases as seen

in Table 8. This table presents the relative range of gapp(I,E) that was varied, which is case

dependent, over the oscillatory solutions in which the regime was maintained. Therefore,

we are able to obtain ∆gapp which is defined as gapp(I,E) over its baseline drive gapp0 and is

observed in the asymmetric case.

In Table 9, we also find a quantitative result that summarizes the different changes

in active phase durations for inhibitory cells and excitatory cells pertinent to the regime in

which they are functioning. These responses were illustrated within all regimes of asymmetric
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case analysis. Additionally, TSj is defined as the relative range of active phase durations for

either the excitatory or inhibitory cells cells depending on which ones are driving the phase

transitions. These were then divided by the period at the baseline drive T̄ in order to

normalize our results. Lastly, we define the ratio between ranges of TSj and oscillation

periods as ∆TSj/T̄ , for either excitatory or inhibitory cells, representing a measure of phase

independence or the degree of changes in period. These are due to changes in gapp(I,E) that

modify the solution for the active phase duration.

Model Regime ˆgapp gapp range ∆gapp T range ∆T/∆gapp

Excitatory Escape 0.275 0.15 0.546 2.987 5.47

Excitatory Release 0.36 0.58 1.611 0.57 0.35

Excitatory Adapt Release 0.815 0.65 0.798 0.549 0.687

Inhibitory Escape 0.185 0.23 1.243 2.15 1.73

Inhibitory Release -0.05 0.32 6.4 0.424 0.066

Inhibitory Adapt Escape 0.495 1.78 3.6 0.185 0.05

Table 8: Changes in period oscillations and drive conductances in the symmetric case.

Table 8 and Table 9 provide results that oscillations produced in all models. The results

in Table 8 shows that excitatory cells provide overall a larger range of period activity with

respect to the changes to the gapp throughout all methods of escape and release. Therefore,

it is valid to say that systems should consider the excitatory cells as the more flexible and

independent within their network.

In Table 9 we clearly we see that the inhibitory release and inhibitory adapt escape

models show very high stability with half-center oscillations that exist over a wide range

of values of the gappI drives in both symmetric and asymmetric cases. However, they both

show a significant insensitivity of the period to gappI . Interestingly, both models are of

the inhibitory regimes where the inhibitory cells are the ones responsible for initiating the

dynamics of the system. Also, the excitatory intrinsic release and inhibitory intrinsic escape

models also show high stability with half-center oscillations over a wide range of values of
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Model Regime ˆgapp gapp1 range ∆gapp TS1 range TS3 range ∆TS1/∆T ∆TS3/∆T

E-Escape 0.275 0.15 0.545 0.027 3.03 0.009 1.009

E-Release 0.36 0.56 1.56 0.518 0.053 1.114 0.114

E-Adapt Release 0.815 0.52 0.64 0.543 —-0.0005— 1.001 0.001

Model Regime ˆgapp gapp2 range ∆gapp TS2 range TS4 range ∆TS2/∆T ∆TS4/∆T

I-Escape 0.185 0.248 1.34 0.01466 4.23 0.003 1.0035

I-Release -0.05 0.31 6.2 0.419 0.056 1.154 0.154

I-Adapt Escape 0.495 1.78 3.6 0.185 0.053 1.402 0.402

Table 9: Changes in the drive conductances and active phase durations.

gapp drives, yet significantly smaller than the previously mentioned cases. Moreover, we see

that the intrinsic excitatory and release regimes as well as the adapt escape regimes show the

greatest range of phase duration in the symmetric case and independence in phase duration

control as seen in the symmetric case.

While many of these results are similar to those presented in Daun [8] it is important

to note certain pertinent differences when comparing their results to our four cell model.

They found that the postinhibitory rebound model (release model) and one of the calcium

adaptation cases showed high stability over a large range of drive gapp where both of their

cells received the same drive and in cases of drive asymmetry. Also, they found that they had

the least ability of independence to change phase durations via asymmetric drive. However,

they also noticed that it is their persistent sodium current based model that showed the

greatest independence to change phase durations via asymmetric drive which is similar to

our findings, however as previously mentioned the excitatory adapt release regime showed

the greates independence to change phase durations overall.

Never-the-less, their results are similar to ours when analyzing the great sensitivity in the

periodic response through changes of gapp drive and exhibiting the largest range of periods.
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Model Regime ˆgapp gapp1 range TS1 range TS2 range ∆TS1/∆T ∆TS2/∆T

Persistent sodium 0.235 0.438 2.30 0.0167 0.993 0.007

Postinhibitory rebound 0.05 2.4 0.0582 0.181 0.243 1.47

Adaptation, case 1 0.815 0.270 0.544 -0.0187 1.04 0.036

Adaptation, case 2 0.63 1.43 0.722 -1.49 0.624 1.94

Table 10: Table 2 in Daun et al. [8] paper of changes in drive conductances and silent

phase durations in the asymmetric case. However, last column was added for purposes of

comparing to our models

Thus, we see that considering which active cell initiates the dynamics and the mechanism of

the regimes play key roles in the oscillatory responses and phase transitions of the network.

The limitations of the biological CPG network proposed is unknown. Further, understanding

of different forms of normal locomotion activity is necessary to understand the cross-cord

and lateral coupling symmetry of the system.

Similar networks have been widely studied in both in vitro and in vivo experiments

of midbrain simulations. They found that left and right coordination may overlap during

different gates and extensor flexor ipsilateral connections could potentially maintain different

periods through locomotion without varying the gate in which they are responding. Also,

they found that asymmetric activation of flexors and extensors may provide insight into the

locomotion of animals that are able to maintain normal gaits.[14, 32, 35],

Although oscillations in most CPGs is still a mystery, it is very useful to know that CPGs

can be very flexible and are able to adapt to oscillatory patterns that their networks generate.

As previous studies have discovered, we have witnessed that the flexibility of CPGs helps

with the ability the model has generated oscillations through a large range of frequencies

while under the influence of descending drives; see [8, 23]. Due to the fact that we aim to

provide some biological context to our CPG network, we find that a half-center model is very
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helpful studying how the dynamics of the mechanism can provide us with more flexibility.

Our main focus was on the reduced models proposed by Daun et al. [8] while adding

another level of complexity to the architecture of the network and considering the dynamics

represented through phase plane analysis. It is to be expected that more complex networks

that feature phase transitions through different mechanisms are yet to be further analyzed.

Future research should focus on understanding some of the results presented throughout this

study which may be present in different biologically relevant CPG networks.
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