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There is often interest in evaluating bidirectional relationships amongst processes over time. 

Random Intercept Cross-lagged Panel Model (RI-CLPM) and Latent Growth Curve Model with 

Structured Residuals (LGCM-SR) are two models developed to disentangle within- from 

between-person effects. These models have shown to out-perform Cross-Lagged Panel Model 

(CLPM) that confounds between- and within-person effects.  

This study uses both empirical and simulated data to compare the performances of these 

models in assessing the bidirectional relationship between two developmental processes. Data 

from the Longitudinal Study of American Youth were used to explore bidirectional relationships 

between student math self-concept and task value from grades 7 to 12. The CLPM indicated 

Self-Concept dominated Task-Value, while the RI-CLPM and LGCM-SR indicated Task-Value 

dominated Self-Concept, suggesting that the CLPM’s confounding of between- and within-

person effects leads to substantively different conclusions than RI-CLPM and LGCM-SR.  

A Monte Carlo study was conducted to compare RI-CLPM and LGCM-SR. The RI-

CLPM fits time-specific means to capture the functional form of the trajectory, but does not 

capture variation around the trajectory as a LGCM-SR would.  Data were simulated from both 

models under different causal dominance conditions. For LGCM-SR models, data were 
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generated with different slope variance, covariance, and trajectory shape. Fitting LGCM-SR 

models to RI-CLPM data results with negative variances of growth factors, suggesting over-

parameterization. Fitting RI-CLPM to LGCM-SR data results with underestimation of cross-

lagged path coefficients, and the bias is larger in non-dominance conditions and increases with 

larger slope variances, suggesting the necessity to consider the slope heterogeneity if present. For 

the nonlinear LGCM-SR data,  as RI-CLPM was estimable while linear LGCM-SR always had 

negative slope variances, capturing the functional form might be more important than capturing 

variability in slope. Relative fit indices performed well in selecting the correct model between 

RI-CLPM and LGCM-SR. BIC proved superior at correctly choosing the linear LGCM-SR over 

the unspecified LGCM-SR.  
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1.0  INTRODUCTION 

Research within the developmental and educational science requires that we can model 

longitudinal data in such a way that appropriately capture dynamics over time that are consistent 

with our theories of change. Such theories of change may entail: (1) what is the functional form 

of growth, for example, is vocabulary acquisition between 1 to 17 years of age monotonic or do 

certain spans of time show greater and lesser rates of acquisition; (2) are there differences in 

development amongst individuals, for example, how does the trajectory of vocabulary 

acquisition differ between children from higher versus lesser linguistically expressive 

environments; and, (3) what is the relationship between processes, for example, how does 

increasing literacy relate to increases in vocabulary acquisition.. 

In general, we tend to assume that there is both growth within an individual as well as 

differences in growth between individuals. For example, a child coming from a home where the 

teaching of math skills was underrepresented will likely enter school with lower math skills than 

a child coming from a home where mathematic skills were taught prior to school entry, but that 

child with lower math skills may exhibit an initial rate of growth in math development as a sort 

of “catching up” process. Even though overall the child from the home with low math 

representation may exhibit lower math skills than the child from the home with greater math 

representation, they may exhibit greater growth in math. If our data modeling strategy fails to 
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account for these distinct effects our estimates will fail to give us valuable information about the 

effects of schooling on early math growth.  

In addition to the consideration of separating out between and within-person processes 

there is also a central consideration of how developmental processes influence one another. 

Developmental processes do not occur in a vacuum and so it is of interest to delve into the 

relationships amongst developmental processes. Namely, we may want to know how growth in 

one domain affects growth in another, do changes in one process cause changes in another, or is 

there a reciprocated effect. The latter consideration will be central to the subsequent discussion 

in this paper. Such reciprocation may be exhibited, for example, when considering parenting and 

child behavior. We may expect parenting behaviors to lead to certain behavioral outcomes in 

children; however, we would also want to take into consideration the influence that a child’s 

behavior is having on parental responses.  

These issues are each addressed with particular canonical approaches: for disentangling 

between and within-person effects the standard approach has been to use multilevel modeling 

wherein repeated measures are conceptualized as being nested within individuals. Multilevel 

models in standard usage can come in either the form of a fixed effect or random effect model. 

The fixed effect approach will estimate far more parameters because it gives everyone their own 

intercept term through a set of dummy coded variables, this can also be done with slope terms as 

well by forming interaction terms between time and the dummy codes. The other, more 

commonly observed in developmental and educational science, is the random effect model. The 

random effect model estimates an average intercept or slope   and variance components allowing 

for variation around this average. The variance components account for individual’s deviations 

from the average fixed effect. As one may note the random effect approach requires less 
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parameters than the fixed effect term and so is often favorable in conditions where one doesn’t 

necessarily have the degrees of freedom to spare. Both approaches can be integrated into a latent 

variable modeling approach and we see more closely how this is accomplished within structural 

equation modeling in the literature review. Within the developmental and educational sciences 

such multilevel models for longitudinal data come in the form of what is known as a latent 

growth curve model (LGCM), which fits the slope representing the fixed slope in the form of a 

mean value and captures individual deviations through the variance in the latent variable. This 

approach allows for several functional forms to be captures via path loadings and in some cases 

fitting additional latent variables. The evaluation of bivariate relations across time is typically 

addressed by using a cross-lag panel model (CLPM), such models autoregress the repeated 

measures of a construct then predict the measures on the other construct across lags. When using 

such models, we are generally looking for a causal process, specifically we wonder if one 

process is dominating another or if we have a fully reciprocated model. Examples of these 

considerations of bivariate processes can be seen in phenomena such as when parental behaviors 

influence child behavior and vice versa. Recent attempts have sought to merge these two 

methods in the hopes of gathering information on processes theorized to have both bivariate 

relations and to contain a between and within person component.. 

1.1 STATEMENT OF THE PROBLEM 

The cross-lagged panel model (CLPM), also known as the Autoregressive Cross-Lagged 

(ARCL) Model, has become a standard approach for modeling the relationship between two or 

more developmental processes which are believed to have a mutual influence on one another. 
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These models take repeated measures from multiple constructs, generally bivariate, and then fit 

autoregressive paths across the lags within the construct measures and cross-lag paths between 

constructs. The spirit of such a modeling approach is that by accounting for the influence of a 

construct on itself over time, we can better gauge the influence of a construct on another 

construct over time (Campbell, 1963; Kenny, 1973). One of the primary interests in adopting 

such models is to test for causal mechanisms. Specifically, we wonder if one process causally 

dominates another or if the two processes are reciprocal to one another, i.e. no one process is 

dominating the other but both are mutually influential on one another. For example, we may 

wonder the nature of how parental behavior is influencing child behavior or vice versa. Another 

area where interest in such models have abounded is in the examination of mediation 

mechanisms (Selig & Preacher, 2009; Maxwell & Cole, 2007) since such mechanisms are 

definitively causal in nature, unveiling over time, and involving multiple constructs. Therefore, 

the value of cross-lag panel models is apparent for this purpose.  

The interpretation of the paths pertains to changes in rank-ordering of individuals over 

time. Since such an interpretation is limited to the between person level, the cross-lagged panel 

model has been criticized for not providing information that is most relevant for developmental 

researchers where the questions are often concerned with changes that happen at a within 

individual or within dyad level. This issue of disaggregating the between and within person 

models has been well discussed within the multilevel and structural equation literature (e.g., 

Curran & Bauer, 2011; Wang & Maxwell, 2015; McArdle & Epstein, 1987; Preacher, 2008). It 

has become increasingly common that we fit these multilevel models in the form of a latent 

growth curve model (LGCM) because of the flexibility in specifying such models. The basic 

approach is to fit the model with an intercept and slope which have a fixed and random 
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component. The fixed components are represented by mean values and individual deviations are 

captured through the variance of the latent variables (termed intercept and slope factors in 

LGCM). In this way, we are allowing everyone to have their own specific trajectory. This 

approach also allows for a growth trajectory to take various forms via path loadings or fitting 

additional latent variables. 

To focus our cross-lag models on the level of inference which is often of most interest in 

developmental research, namely the within person/dyad level, recent innovations have sought to 

bring the merits of the growth curve approach to the cross-lagged panel model. These models 

share the common feature of fitting latent variables to panel data. Hamaker, Kuiper, and 

Grasman (2015) proposed a cross-lag panel model that utilizes a random intercept to separate out 

stable between person differences and fits time specific means to allow for overall group changes 

across time (RI-CLPM). The cross-lag portion is modeled on the residuals such that our 

examination of the bivariate processes influences on one another concerns the time specific 

individual deviations across given time points. Though this model does capture some sense of 

the overall change in constructs across people over time, they do not account for individual 

variation in growth trajectories. Curran, Howard, Bainter, Lane, & McGinley (2013) similarly 

proposed utilizing the residuals in such a way, except in their models they also fit a random slope 

term that allows for individual variation in growth over time. They refer to this model as the 

latent growth curve with structured residuals (LGCM-SR). The two models take the same basic 

approach to disaggregating effects in cross-lagged panel models, differing only in how they 

account for change over time. The RI-CLPM with time specific means doesn’t account for 

variation amongst individuals over time. However, it does not require a specification of the 

overall functional form of growth as the LGCM would, since the time specific means are freely 
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estimated without regard to the means at other time points. If the means were constant across 

time, then the intercept would represent this as its mean with time specific means would 

constrained at zero. This would essentially represent an LGCM-SR where the slope parameters 

were all zeroed out. The issue of non-linearity in the mean trajectories of a construct over time 

can theoretically be accommodated in each of these models. However, the latent growth curve 

with structured residuals will require additional specifications to the slope parameters, meaning 

the researcher will need to have some insight into the functional form of a developmental 

process.  

The above growth curve approaches were developed as random effects models. There are 

some related, fixed effect versions of autoregressive cross-lag models currently being developed 

(Williams, Allison, & Moral-Benito, 2015; Allison, 2005; 2015; Allison, Williams, & Moral-

Benito, 2017). The motivation underlying such models is that the inclusion of lagged dependent 

variables is problematic for the assumption of independence between error terms and predictors, 

what is known in the econometric literature as the “incidental parameter problem”. Additionally, 

there is a concern with how initial conditions should be handled. Random effects models do not 

adequately address these problems. The above-mentioned methodologists have been in the 

process of developing fixed-effects models which can incorporate lagged dependent variables.  

Due to the complexity of specifying and estimating such models, these haven’t yet been fully 

adopted into the familiar reciprocated model represented in the standard CLPM formulation. 

Though the authors (Allison et al., 2017) indicate that such a specification can be implemented in 

structural equation modeling software, no such model is demonstrated1. The current versions of 

                                                 

1 The models demonstrated in Allison et al. (2017) specify that the intercept fit to the dependent variable series 
correlates with the time varying predictors from which the cross-lags originate. In the case where we have a 
reciprocal model, then those time varying predictors will now be lagged and have an intercept, thus will be 
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these models involve analyzing one dependent variable series at a time, i.e. one requires separate 

models to check the cross-lags from X to Y versus the cross-lags from Y to X. For this reason, 

our evaluation of fixed effect cross-lag models will be limited as they are not directly 

comparable to the RI-CLPM and LGCM-SR specifications.    

Few studies exist evaluating the performance of the above mentioned multilevel cross-

lagged panel models. Hamaker et al. (2015) did an empirical and simulation study comparing the 

CLPM to the RI-CLPM they developed. Because their study was only focused on controlling for 

trait-like stability in constructs over time, no consideration was given to either change in the 

construct over time nor variation in such change. Berry and Willoughby (2016) demonstrated via 

simulation and empirical examples how the cross-lagged panel model may be misrepresenting 

the relationship between parental discipline and children’s aggressive behaviors, and suggest 

using the LGCM-SR as an alternative. In their study, the growth trajectory was only set to 

capture mean, linear change ignoring variance in slopes amongst individuals. Curran et al. (2014) 

in formulating the LGCM-SR give empirical examples of how to use the model. However, they 

did not conduct a genuine simulation study comparing performance under various conditions. In 

this study, we hope to fill in these gaps. 

1.2 PURPOSE OF THE STUDY AND RESEARCH QUESTIONS 

In this study our primary focus will be on the random intercept cross-lag panel model and the 

latent growth curve model with structured residuals as these are currently established in such a 
                                                                                                                                                             

endogenous. This specification seems problematic to the basic aim of this model, viz. to prevent dependence 
between the predicting values and the error terms, since simultaneous error terms and predictors aren’t cleanly 
separated. 
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way as to allow us to disentangle between and within-person effects when evaluating 

reciprocated relationships to determine causal dominance. Because these models are accounting 

for between person differences and the cross-lagged portion is concerning the within-person 

processes, it is of interest to explore how variations in the between person components affect the 

conclusions we derive about the within-person processes, especially in relation to change over 

time. For example, since the RI-CLPM model does not account for between person variation in 

change, it is of interest to see what the consequences of this omission will be.     

The purpose underlying this study is to explore, in a comparative manner, models that 

have been proposed to evaluate reciprocated relations between developmental processes while 

disentangling between and within-person effects. Further, we want to determine when one model 

becomes preferable to another. Being relatively recent in their development these models have 

not been widely applied or studied.  In the following we will present the models as fitted to real 

data to show how our conclusions about the relationship between developmental processes can 

vary due to model selection. For a more formal evaluation we will conduct a simulation study to 

gain insight about how specifications of the between-person differences in change and the 

functional form of a trajectory can influence the conclusions we derive about the cross-lag 

relations. The hope is that in the process of exploring these models researchers can gain a better 

sense of how to use these models, and under what circumstances one model becomes preferable 

to another. 

These issues will be more closely explored in the following sections where we first 

review at some depth the relevant literature, and then give an empirical demonstration of the 

models followed by a simulation study to compare and evaluate the models in terms of how the 
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slopes’ functional form, variance and covariance influence a model’s fit and the conclusions we 

derive about the cross-lag relations. Our general research questions will pertain to  

(1) how these models will bring us to different conclusions depending on what types of 

models we fit to empirical data; 

(2) how are different criteria of model fit influenced across the conditions and models 

being fit to data;  

(3) how accurate are our conclusions about causal dominance under conditions of varying 

     magnitudes of variability and covariability in the slopes;  

(4) how will the functional form of a growth trajectory influence the relative performance  

     of RI-CLPM versus a Linear LGCM-SR.  

Namely, we postulate that as variability and covariability in the slopes increases the RI-

CLPM will lead to more misrepresentative cross-lag parameters and hence negatively impact the 

conclusions about causal dominance we derive from it. In terms of functional form, non-linear 

trajectories will degrade the linear LGCM-SR potentially giving the RI-CLPM an advantage in 

properly representing change over time. However, this improvement will likely be offset by the 

amount of slope variability. 

1.3 SIGNIFICANCE OF THE STUDY 

As mentioned above these models are relatively recent in their development and hence have not 

been widely utilized in research. One part of this research then is to hopefully familiarize 

developmental researchers of both the availability of such models as well as the capabilities of 

these models for given research purposes. A further consideration is that there hasn’t been much 
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methodological evaluation of these models in relation to one another. In fact, Hamaker et al. 

(2015) make no mention of the Curran et al. (2014) model which is, as noted, related to the 

model they propose. Curran et al. (2014) did not provide a simulation study to show the relative 

methodological merits of their proposed model.  

The importance of this study is in its value to applied research in the developmental 

sciences where the theory of change of interest may require models that disentangle between 

person differences from within person processes where developmental process have a reciprocal 

relationship across time. Often, developmental researchers are mainly interested in how 

developmental processes at the intra-individual level are influencing one another, making the 

historic lack of models for teasing this out a major limitation. In this study, we will introduce 

some potential models that can help in this task. Furthermore, we will be evaluating the 

conditions where the different models will perform best.  

Additionally, the value of such models to mediation analysis should be noted. Cross-lag 

panel models are one of the most common and trusted methods for testing posited mediation 

processes. However, CLPM is limited in that it only accounts for changes in rank ordering 

without separating the within and between person levels. These novel modeling approaches will 

especially benefit researchers concerned with mediation processes. 

  Overall, this study serves as an overview and evaluation of models which allow 

researchers to gather specific information about how developmental processes unfold over time 

and influence one another at the individual level. Given the power of these models in capturing 

information that is more aligned with our theories of development, their value is immediately 

clear. However, before we apply these models with confidence we should have some sense of 

how they perform under varying circumstances. This is the issue explored in this paper, and the 
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findings we gather will serve to inform developmental researchers in the application of these 

models. 
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2.0  LITERATURE REVIEW 

In the following we will consider in turn different modeling strategies for addressing inferences 

concerning ARCL relations and the disentanglement of between and within person effects in 

longitudinal data as we work our way towards modeling strategies that subsume these 

considerations together. 

2.1 CROSS-LAGGED PANEL MODEL 

The most well utilized modeling approach for exploring bidirectional effects amongst processes 

is the Cross-Lagged Panel Model (CLPM). The strength of the CLPM is that it allows for a close 

examination of reciprocated effects while controlling for the stability in each construct. Thus, 

when researchers have questions about bidirectional relations between constructs over time the 

CLPM becomes a desirable solution. The spirit of the CLPM is founded in questions of causal 

processes. Hence, we often find this model crop up in mediational research using repeated 

measures (Cole & Maxwell, 2003). Since mediation is proposed as exploring causal mechanisms 

the CLPM is perfectly suited because of its ability to disentangle directionality in effects. Some 

mediation processes that have been explored is the extent to which perception of criticism 

mediates the influence of maternal criticism on adolescent anxiety and depression (Nelemans et 

al., 2014); also, how early development in self-regulatory behaviors mediate the link between 
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development of language ability and the development of inattentive-hyperactive problem 

behaviors (Peterson et al., 2015). A more general use of CLPM in developmental research is 

exploring the extent to which factors involved in a developmental context are influencing one 

another in a causal manner. Specifically, we want to explore the extent to which one process 

dominates another in such a way that its influence does more in effecting change in the other 

variable, instead of the reverse. Moreover, we may also have what is known as a reciprocated 

relation, wherein changes in one process lead to changes in the other and vice versa, but neither 

is regarded as having a dominant effect. These are bivariate models, and it is what we will most 

closely consider in this paper. Research in this mode has found perceived loneliness causally 

dominating depressive symptoms in 50-68  year old individuals (Cacioppo et al., 2010); 

MacKinnon (2012) found that increasing academic achievement led to increasing perceptions of 

social support amongst kids transitioning into college; there is also a wealth of research 

exploring the reciprocated effects of parent and child behaviors (e.g., Shaffer et al., 2013; Burke 

et al., 2008; Pardini et al., 2008).  

CLPM allows this close examination of directionality amongst processes by closely 

controlling for the covariances amongst repeated measures of two variables (in the bivariate 

case). To discuss the CLPM let’s propose two hypothetical variables, X & Y. In the following 

we will assume there is no third variable intervening with the with the relationship between X & 

Y. There are now 4 possible causal conditions that can exist between X & Y, neither X causes Y 

nor does Y cause X, X causes Y but Y does not cause X, Y causes X but X does not cause Y, or, 

both X causes Y and Y causes X.  The beauty of having repeated measures is that we can 

evaluate such causal conditions. With cross-sectional data, all that can really be concluded is that 

X and Y are related, and we must postulate the causal precedence we believe to be in action 
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either through a theoretic justification or by indicating the temporal precedence of what a 

measure reflects. For example, if we acquired math scores at grade 7 and we had information 

about the type of elementary score attended by a child we have some justification in assuming 

that elementary school features causally precede the middle school math scores. With the cross-

lagged panel model we can test for these causal relations.  

The three main components that characterize the CLPM are the autoregressive portion, 

the cross-lagged portion, and simultaneous correlations. Rogosa (1980) indicated when 

comparing cross-lag pathways we must account for stability in processes over time (in the form 

of autoregression) to derive the correct causal conclusions, because if two processes are 

characterized by varying degrees of stability we can acquire spurious correlations which will 

confound the comparison of cross-lag pathways. The essential motivation for autoregression 

comes from the fact that there is dependence amongst repeated measures of a variable. Often, we 

find that prior measures are the best predictor of measurement at subsequent time points, thus we 

model this in the CLPM as an indicator of how stable a process is over time. In the most basic 

sense we establish a single autoregressive path in the lag from t to t-1. In a sense this would be 

considered a first order autoregressive model; however, in some cases people are motivated to 

add additional orders such that there is a path for the t to t-1 as well as for the t to t-2 lag. We can 

consider this a second order autoregressive model. Additional paths can be added for various 

lags. The purpose for entering these autoregressive paths is to first control out variation in a 

measure that can be explained by prior measures so that we can get a more accurate estimate of 

the influence between X and Y.  To adequately model the influences between X and Y, we begin 

by taking the exogenous X and Y variables from t=1 and account for their initial, simultaneous 

relationship between one another by allowing them to covary with one another. The residuals 
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resulting from autoregression at subsequent time points can then be correlated to further account 

for any variation that can be attributed to the simultaneous relationship between X and Y. In this 

way, we can focus more closely on the parameters of primary interest for evaluating the causal 

condition that represents the relationship between X and Y, namely our cross-lagged pathways. 

Having accounted for the dependence of a process on itself over time as well as the simultaneous 

relations between two process we can now allow one variable from prior time points to explain 

out any remaining variation in the other variable. Then we can conclude that one variable is 

predicting another variable at subsequent time points above and beyond what is explained 

through autoregression and contemporaneous bivariate correlation. In this way, we can see 

conceptually how the CLPM serves as a powerful model for evaluating causal relations amongst 

processes by closely controlling sources of errors in repeated measures of multiple variables. 

Once we have these cross-lagged estimates we can evaluate them to determine the causal 

conditions characterizing bivariate processes of development. This comparison is done on 

standardized coefficients in order to ensure that the scale of each variable is not driving the 

interpretation (Bentler & Spackart, 1981). 

We can represent CLPM for 3 time points diagrammatically as in the left hand portion of 

Figure 2. This is the representation which we will be sticking with throughout this paper, with 

two processes an autoregressive path, an X->Y cross lag path, and an Y->X for each t to t-1 lag, 

along with a correlation between variables at each time t. The CLPM formulation we will be 

working with is put forward in Hamaker et al. (2015). The CLPM gauges changes in rank 

ordering over time, thus time specific means are fit at each time point and we enter individual 

deviations from those means into the Autoregressive Cross-Lag structure for the model. We 

decompose the individual score at each time point as such: 
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Where the respective μ correspond to the time specific means for the given variables and 

the ε indicate the ith individual’s time tth specific deviations from the mean. We use this approach 

to allow us to structure the residuals into the autoregressive cross-lag structure of the model for 

reasons that will become apparent as we move along. We write this portion of the model as such 

(for single lag auto-regression and cross-lag): 

   

 

where the first term on the right hand side of the equations (1c-d) represents the 

autoregression of the individual’s time specific deviation at time t on the individual time specific 

deviation at the immediately prior time point, the second term expresses the cross-regression of a 

given individual’s time specific deviation for one variable on their time specific deviation on the 

other variable, and the final term now takes the place of residual error variance for a variable at 

time t for individual i . Substituting through gives us the composite model decomposing each of 

our X and Y values at a given time as: 

 

 

with residual covariance matrix: 
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where t-s indicates, the earliest given time point in the series (t=1).  

The autoregressive parameters, denoted with  &  measure the stability in a 

construct over time thus useful for allowing to have a sense of how much growth there is in a 

process over time for individuals, as the magnitude of this parameter estimate increases the more 

stable an individual’s status on that given variable is over time. Hypothetically, a value of one 

would represent a perfect prediction of a variable from its prior values implying that relative to 

others an individual status on some construct stays the same from one time to the next. This 

specification focuses on the structured residuals which are reflecting the time specific deviations 

for an individual, suggesting that what we are evaluating in the cross lagged panel model is 

changes in rank ordering of individuals in relation to other. If we were to fit the cross-lagged 

panel model to the observed variables the results would essentially be the same.  

By fitting the time specific means and evaluating the individual deviations from this we 

are simply rescaling the variable such that we can consider individual scores as being centered 

about the occasion specific mean. Hence, the focus is on the inter-individual differences, i.e., 

rank ordering from one occasion to the next. Stability in this sense is interpreted as how 

consistent the relative standing amongst individuals is across time. However, it doesn’t capture 

how much an individual stays constant or changes on the variable over time. In other words, it 

doesn’t capture the within-person growth process. This shortcoming of the cross-lagged panel 

model is one of the most commonly cited shortcomings of its application. This motivates 
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attempts to establish a technique for disentangling the within person level from the between 

person level. An immediately logical place to consider such modeling techniques is in the realm 

of multilevel modeling.  

2.2 MULTILEVEL MODELING WITH LAGGED DEPENDENT VARIABLES 

Multilevel modeling is explicitly designed to separate levels of analysis from one another. The 

basic approach is to person mean center a variable at the repeated measures level and enter the 

individual’s mean at the individual level. Readily one can see that we are limited by the fact that 

the estimation of a multilevel model for repeated measures requires the repeated measures to be 

nested within individuals such that the repeated measures are structured as univariate and 

correlated within the individuals. After doing this, the estimation of a time series based in 

predicting from lag to lag is prevented.  An outcome being nested in an individual is the variance 

which we are explaining with the predictors and is assumed to be uncorrelated with the values on 

the predictors. Namely this is the assumption that the predictor variables are uncorrelated with 

the residuals. Under the framework where a lagged dependent variable is a separate variable 

from the outcome variable this is of no great concern. However, when the lagged dependent 

variable is included with the outcome we have a violation of this assumption (Allison, 2015). We 

already know that the lagged dependent variable relates directly to the error as it was used in the 

estimation of the random components.  

To illustrate, consider the random intercept model. We have some time varying 

dependent variable, , for t time points clustered in each individual i, that we model to have a 
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fixed value for the intercept β0 that we give a random distribution to by allowing everyone to 

have their own unique deviation, u0i, from this grand mean intercept such that we have an 

intercept distribution, u0i ~ N(0, . This random intercept term conceptually captures the 

influence of individual time-invariant unobservables on the given values of y across time not 

captured by the other explanatory variables in the model. Including some time varying predictor 

xit and the lagged dependent variables yi(t-1), the model can be represented as,  

,   

As is usual we assume that the error terms u and ε will be independent of the other explanatory 

variables since the error terms are representing what is left unexplained (i.e. unobservables) by 

the observables (i.e. the explanatory variables). Herein lies the heart of the problem when fitting 

the lagged dependent variables in the random effect model, the lagged dependent variables  

cannot be assumed independent of the random component.  

 Due to this Allison (2015) suggests fitting a fixed effect model (Allison, 2005; Bollen & 

Brand, 2010). The basic idea underlying these fixed effects models is that instead of creating a 

random component parameter we instead create a set of dummy variables such that each 

individual, aside from some individual who will serve as a reference, will have a variable d=1 on 

any observation collected from that individual and d=0 otherwise, the reference individual will 

have d=0 across all observation for all individuals including their own, such that every other 

individuals’ fixed effect is interpreted in reference to this reference individual. Without this 

reference individual, the model would be overparameterized. The fundamental conceptual 

distinction between the random and fixed-effects models is that in fixed effect models we are 

given every individual their own intercept, whereas with random effects we are simply 
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distributing individual intercepts around some average intercept. Note here: we can also fit 

slopes as such, namely we can give a distribution to slope terms (random effects) or give 

everyone their own slope value (fixed effects). We can write this basic distinction for the 

intercept only models as such: 

                          (3a) 

      (3b) 

As can be seen above the fixed effect model denotes that each individual i are represented by a 

unique intercept, βi0, and only the residual variance has a distribution, whereas in the random 

effect model we have a fixed intercept and individual deviations, β0 + ui, while both the time-

level residual (ε) and the intercept residual (u) are randomly distributed. Within this fixed effect 

framework, the intercept parameters, while accounting for clustering, are not assumed to be 

uncorrelated with the other explanatory variables. Entering lagged dependent variables into this 

model no longer poses a threat. Fitting this model within a OLS type framework still requires 

that we establish our outcome as univariate, while lagged DV is entered as another variable in 

the data. Both the fixed and random effects models can be considered as cases of multilevel 

models, in so far as we are nesting observations within individuals. The intercept that accounts 

for clustering can be viewed as a latent variable, in so far that in both models the function of the 

intercept term is to account for time invariant unobserved factors affecting the individual’s 

outcome observations across time (Bollen & Brand, 2010; Allison, 2005). Upon fitting these 

intercept factors as latent variables, the only major distinction is that within the random effect 

framework the intercept term is uncorrelated with the predictor variables while the fixed effect 

model correlates the intercept term with the predictor variables. Figure 1 gives a general 
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representation for distinguishing the models within a structural equation format. The dynamic 

linear panel model, i.e. fixed-effects models with lagged dependent variables (Bollen & Brand, 

2010; Williams, Allison, & Moral-Benito, 2015; Allison, Williams, & Moral-Benito, 2017; 

Allison, 2005) is a currently developing model which may in the future offer a fixed-intercept 

option for the cross-lagged model that can evaluate reciprocated cross-lag pathways in a 

bivariate model while controlling out time-invariant person level fixed effects. However, in its 

current state this has yet to be fully established. It is tricky to relate the two processes in a clean 

way, both in terms of conceptualizing the model as well as computational execution of such a 

model. However, this does not entirely prevent us from gathering some information concerning 

causal dominance. We will simply be required to fit two separate fixed-intercept models and 

compare cross-lag coefficients from the separate models, e.g. one for testing the effects of X on 

Y with Y having lagged DVs and another for testing the effects of Y on X with X having lagged 

DVs: 

 (3d) 

 (3e) 

The equations above represent the fixed-intercept model, which will be estimated 

separately, so we consider each formula as representing a separate series. We have ρxx & ρyy 

representing the autoregressive coefficients for the lagged dependent variables, ρyx & ρxy, 

represent the cross-lag coefficients, with the α terms representing the fixed-intercept for 

individuals, and ε terms for time specific errors for the ith individual and time t. All of the 

predicting elements are correlated as they are considered exogenous, and within each series the 

error, ε, at each time point must correlate with future values of the time-varying covariate, i.e. 
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, where t+s represents measurement occasions 

of a variable up to s lags into the future. This assumption is key to gaining an estimate for 

reciprocal effects since it allows for the influence of one variable at prior times on later 

realizations of the other variable be accounted for. We will see a demonstration of this model at a 

later point in this paper 

 

Figure 1. General Panel Models for Fixed and Random Effects containing Lagged DVs 

2.3 RANDOM INTERCEPT CROSS-LAGGED PANEL MODEL 

Random Intercept Cross-lagged Panel Model is a more recently developed model to address the 

reciprocated effects while disaggregating the within-person effect from the between-person 

effect (i.e., stability). Hamaker, Kuiper, and Grasman (2015) proposed a multilevel model for 

assessing cross-lag parameters wherein a random intercept is fit to a CLPM (RI-CLPM). 

However, they state that this random intercept (which is fit in the form of a latent variable) is 
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rather a representation of a person’s trait like stability in a construct over time. They begin in 

stating their motivation for doing so is that we are often not controlling for the right kind of 

stability when fitting standard CLPM. As mentioned before the CLPM controls for temporal 

stability in a process over time, which is to say that everyone is varying around the same means 

across time. Thus, there is no accounting for stable trait-like differences between individuals.  

By the inclusion of the random intercept we now control for this trait-like stability to 

disentangle the between and within person levels of analysis. The controlling for trait-like 

stability can be understood as an omitted variable problem, wherein we are accounting for 

unobserved time-invariant characteristics influencing the estimation of the cross-lag pathways. 

The partialing out of the between-person variance via inclusion of the random intercept results in 

the interpretation of the cross-lagged parameters as referring to the within-person processes. 

Often this is the main interest of research in developmental sciences, where the level of inference 

is on the nature of individual development. Thus, there is clear motivation for pulling out the 

inter-individual differences that endure as stable over time.  

This modified model can be understood as now controlling for both temporal stability 

(i.e. how stable an individual stays on a construct from one time to the next) as well as trait 

stability (i.e. the varying degrees to which different individuals stay more or less stable on a trait 

across time). Figure 2 gives a portrayal of the RI-CLPM in comparison with CLPM. 
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Figure 2. CLPM and RI-CLPM extracted from Hamaker et al. (2015) 

 

The RI-CLPM is simply an extension of the CLPM which decomposes the score as such: 

 

 

As was the case in the CLPM model μ represents the time specific means and ε are 

individual deviations from the time specific means, the additional term, α, are the intercepts 

which capture the trait like deviations from these means. From this formulation, we can 

appreciate that we have now included a person-mean centering of the variables in the model, 

which is akin to the standard multilevel approach for disentangling between and within person 

effects wherein we center individual scores around the individual’s mean score across time 

points. In fact, we would expect a high similarity in results from a standard CLPM performed on 

person-mean centered variables as would be obtained from the RI-CLPM. This will be examined 

in a later section. The following cross-lag and autoregressive formulations will look highly 
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similar to in 1c-d, so we will distinguish these by including an asterisk (*) since the estimates & 

interpretation will be different. The estimates will now have the trait stability being accounted 

for, thus giving the interpretation that the deviation terms now represent individual deviation 

from the time specific group mean as well as the deviation from their own mean across time, 

. In this way, we see that we have now centered around both the time-

specific and person-specific means, and so all corresponding coefficients will be interpreted in 

this light.  

 

 

Substituting through we show the completed model as: 

 

 

with residual covariance matrix: 

 

  The autoregressive parameters no longer represent stability in rank ordering over time 

but rather a kind of “carry-over” effect within an individual from one to the next. Namely, the 
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parameters are interpreted in relation to an individual relative standing based on their own 

expected score (i.e., ), for example, a positive autoregressive coefficient implies that 

when an individual scores above their expected score at one time point they will also score above 

their expected score at the subsequent time point. Similarly, the cross-lags represent the degree to 

which an individual’s deviation on one variable predicts the deviations on the other variable. We 

are now evaluating the cross-lag parameters as difference scores controlling for trait stability, so 

the dynamics between the processes is being assessed at the within-person level. 

The relationship between the standardized cross-lag pathways from the CLPM and RI-

CLPM is a function of the within person cross-lag coefficient, autoregressive coefficient, the 

covariance of the within person deviations at t-1, the variance of the within-person deviation at t-

1, the variance of the between person trait-like stability for the construct, and the covariance 

between the random intercepts for the different constructs. Thus, the degree, direction, and way 

in which the cross-lag paths will differ between the CLPM and RI-CLPM will depend on these 

factors (Hamaker et al., 2015). Furthermore, as Schuurman et al. (2016) indicate the way in 

which we standardize the coefficients will also bear upon the conclusions that we derive about 

cross-lag associations, potentially changing the causal conclusions we derive and the size of the 

effect we observed.  

The type of standardization that we use depends on what component of variance we 

utilize, i.e. total variance, within-person variance, or between-person variance. These 

considerations have been explored in terms of the more general topic of effect sizes in multilevel 

models (Hedges, 2007), where the question of which variance component you are using in 

standardization is a matter of what sort of effect size interpretation you want, or in other words, 

to which level of analysis are you wanting to evaluate. The within-person standardization will be 
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calculated for everyone as how much variance they exhibit on a variable across time. We can 

then take the unstandardized coefficient and multiply it by the ratio of the respective variable 

variance, where the standard deviation for the predictor variable is in the numerator and the 

standard deviation for outcome is in the denominator. This ratio is gauging how variance in the 

predictor is explained by the variance in outcome, hence the standardized path will be largest for 

the predictor variable that varies the most in an individual. These paths are now person specific, 

so to get a more general fixed effect that gauges paths across the within-person levels, we will 

get a pooled average of all the person specific coefficients. This type of standardization is 

interpreted as the amount of standard deviations that an outcome will change for each increase in 

standard deviation in the predictor specific to the individual level, thus the fixed effect says we 

expect the changes in a prior measure on a predictor to predict a corresponding amount of change 

in the outcome at the subsequent time point for any given individual.  

The between person standardization simply uses the variance in the person-specific 

means across time. The logic for deriving the standardized coefficient is the same as with the 

within-person standardization except in this case we are using the respective between-person 

variance of means in the ratio resulting in a coefficient which now represents the amount of 

change in standard deviation in individual’s means in the outcome we predict from a standard 

deviation change in the person-specific mean on the predictor. For the fixed effect, we take the 

expected fixed effect as calculated for the within-person level (note: the cross-lags are at the 

within-level) and cast them in terms of the ratio as used for the between person coefficient 

estimates, thus we are now saying we expect an individual’s prediction of the outcome to 

correspond to a change in individual mean standard deviations for a standard deviation unit 
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change in the individual predictor means. Thus, the evaluation is in terms of person specific 

means, which process is causally dominant.  

The grand standardization combines both the within and between-person level variances. 

This now cast the analysis in terms of grand standard deviations, and can almost be seen as a 

population level analysis as it is polling across both variance in person-specific means as well as 

the time-specific variance within individuals. The calculation of the coefficients and fixed effects 

is that same as was done for between person standardization, but we also include the pooled 

within person variance in the ratio. In most cases, it would seem that the within-person 

standardization is preferred since when examining developmental processes, these are occurring 

at the within-person level and thus the intra-individual changes seem most relevant. However, 

different research may warrant different levels of interest, but it should be noted that when using 

between person and grand standardization you will still be basing conclusions off the within 

person cross-lag parameter. Given all this one thing that can be concluded is that each kind of 

standardization will be yielding different numeric values. Schuurman et al. (2016) state that it 

appears that MPlus uses within person standardization, though they are not clear on how this is 

being achieved. In our studies the paths can be interpreted as within person standardized as we 

will be estimating all our models in MPlus and using the standardized coefficients for 

interpreting causal dominance. 

The inclusion of the random intercept will require that we have at least 3 waves of data to 

identify the model, whereas the CLPM will only require two waves. As is usual with structural 

equation models we can increase our degrees of freedom by fixing parameters. This is of value 

providing that the fixing is reasonable in its assumptions; for example, if we have equal intervals 

it may be reasonable to assume that the influence of a variable on itself and on the other variable 
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will be consistent across lags, thus allowing us to fix the autoregression in X and Y (yielding 2 

more degrees of freedom) and the cross-lags between X-->Y and Y-->X across lags (yielding an 

additional 2 degrees of freedom), for a total of 4 additional degrees of freedom (df=5) for models 

containing 3 waves. A more tenuous constraint would be to assume that the means are also 

consistent, but there are many cases where this would not be the case when considering 

developmental processes.  

When we anticipate structural changes within a process over time we may further relax 

loadings on the intercept. However, in doing so we change the essence of the model; we no 

longer control trait stability through a random intercept but rather we are simply assessing a trait 

in the more common sense, which may be able to vary over time. Alternatively, as we will see 

later we could add a growth curve, which would allow for us to both control for time-invariant 

trait stability as well as trait change. These respective types of models are in the family of what 

can be referred to as latent state-trait models (e.g., Luhmann et al., 2011; Steyer et al., 2015) and 

latent growth curves with structured residuals (Curran et al., 2014). 

2.4 RELATED SEM APPROACHES 

Different structural equation models do similar things as the RI-CLPM, namely the aim is to 

control for between person, trait like stability. In the following we will briefly consider these 

related models and discuss their relationship to the RI-CLPM, which may give researchers some 

indication as to which model fits their research and data best. The first model to mention is the 

Latent Growth Curve with Structured Residuals (LGCM-SR; Curran et al., 2014; Curran & 

Bollen, 2001), which we will consider in more depth later. For now, it is worth mentioning that 



 30 

this model is essentially the same as the RI-CLPM but adds a latent slope term. Thus, the 

LGCM-SR reduces to the RI-CLPM when the loading on the slope terms are equal to zero. The 

LGCM-SR becomes preferred in cases where we anticipate that we are working with a process 

that demonstrate a considerable growth trajectory that varies amongst individuals, i.e. with 

differential rates of growth the LGCM-SR will be preferable. But it is noted that there are 

problems with recursivity because the change in the construct is now being estimated both in the 

within and between person models.  

The RI-CLPM does not constrain the means to be equal over time. If this constraint were 

imposed, then the RI-CLPM would be nested in the LGCM-SR. Another model is the trait-state 

error (STARTS, for stable trait, autoregressive trait, and state) model. Kenny & Zautra (2001) 

decomposes variance into a time-invariant stable trait, an autroregressive trait which changes via 

an autoregressive process, and occasion specific state error (containing measurement error). 

Though this model is generally applied to univariate processes, it can easily be extended to 

multivariate processes. In the STARTS model, measurement error is accounted for whereas in 

the RI-CLPM it is not, thus STARTS is a generalized case of RI-CLPM wherein measurement 

error is accounted for. Though it does seem desirable to account for measurement error at given 

occasions, this can cause estimation problems if one does not have an adequate number of 

waves.  

The Latent Change Score model (McArdle & Hamagami, 2001) is very similar to the 

LGCM-SR model with addition of latent variables for change scores, that are based on the 

difference scores accounting for measurement error. These change scores are modeled as a 

function of constant change by loading them on the slope term. They also contain proportional 

change, established by predicting the subsequent measurement occasion from the prior 
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measurement occasion via the latent change score. In other words, the latent change scores result 

from creating an indirect path between measurement occasions through the latent change 

variable. The cross-lagged paths go from the measurement error corrected observed score at a 

prior time point predicting the change scores between that prior and subsequent measurement 

occasion. This model as can be seen is rather complex and the relationship between the CLPM 

and the latent change score has been explored in depth (Usami, Hayes, & McArdle, 2016; 2015). 

A final model is the Latent State Trait model (LST; Steyer et al., 2015), in which an 

observed score is decomposed into measurement error, and a true score (containing a trait and 

state portion). The LST models requires multiple indicators at multiple occasions to estimate its 

respective components, but has been modified to handle single indicators (Luhman et al., 2011). 

This adaptation requires that we sacrifice the modeling of measurement error and the trait factor 

be modeled as a first order factor with loading being freely estimated. If we place the LST model 

into a bivariate model with cross-lags (as Luhmann et al., 2011 did) then the RI-CLPM is a 

special case of the LST, where the factor loadings are fixed to 1 across time. 

As can be seen from above the RI-CLPM is one model in a battery of structural equation 

modeling approaches for controlling trait stability in addition to other models which will also 

account for trait change. If you recall from before there was some discussion of problems with 

estimating random effects models with lagged dependent variables. In the following I briefly 

demonstrate what a fixed effect analog of the RI-CLPM might look like. 
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2.5 LATENT GROWTH CURVE MODELS 

In the prior models discussed we are primarily only dealing with trait like (time-invariant) 

stability, thus the control is on the intercept and change is mainly only being accounted for 

within the lags. This does not really account for growth in the more general sense, but rather 

establishes prediction across repeated measures, thus is more concerned with question of 

causality. These models are quite useful in this regard as fundamental assumptions of causal 

relations is that there be a temporal ordering such that the cause will always precede the effect 

and further that alternative causes can be ruled out. Though we can never fully rule out 

alternative hypothesized causal relations, accounting for autoregressive and cross-lag paths in a 

bivariate process bolsters the causal claims made about the causal relation between two 

processes. The claim is further bolstered when trait like stability is controlled out as well. 

However, these models aren’t particularly informative in terms of gauging the actual trajectory 

of a developmental process. Developmental theories are generally interested in what growth 

actually looks like, and furthermore, variation in developmental trajectories amongst individuals 

is of central interest especially when exploring what factors may be influencing such differential 

growth between individuals. Additionally, within an individual we may see changes in growth 

over time that may be meaningfully attributable to the presence or absence of some factors in 

their lives.  

To evaluate such variations between and within persons we must be able to represent 

some trajectory of development as well as capture variation between and within persons. These 

within person variations are time specific, in that such deviations are evaluated in reference to an 

average underlying growth trajectory. The desire to capture individual developmental trajectories 

motivates the interest in establishing suitable techniques for modeling and analyzing 
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development in such a way that is consistent with our underlying theories and interest. This 

motivation has brought about a family of techniques known as growth curve analysis. A basic 

approach for this is to project change in a variable over time using regression models. We can 

then move into a multilevel framework to allow for variation in growth rates between persons, in 

the case of the random effect multilevel model we fit an average rate of change, and then allow 

for deviations in individual development with the inclusion of random rate of change. We can 

similarly capture such individual differences by allowing everyone to have their own fixed slope. 

Such approaches can be adapted to capture a whole range of trajectory shapes.  

2.5.1 Univariate Linear Growth Curve Models 

Latent variable modeling of growth (Bollen & Curran, 2006) proves to be a good and flexible 

approach to not just fitting curves but also integrating them with other modeling components 

available within structural equation modeling. For example, let’s say we have multiple indicators 

for a construct. Within a latent variable approach to modeling growth it is possible to fit higher 

order growth curves from measurement models to capture the growth trajectory of such 

constructs. This capacity for building models in such modular fashion is one of the most 

desirable features of structural equation modeling. In the following we shall further discuss the 

latent growth curve approach and demonstrate how we can build upon growth curves to integrate 

cross-lagged panel models, in such a way that we can get a cleaner separating out of between 

person differences in developmental trajectories and within person processes of change, 

especially about the causal influence of two developmental processes on one another.  

To begin we discuss the univariate growth curve null model. This model involves fitting 

a latent growth curve to a single indicator and including no exogenous predicting variables. This 
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model is the fundamental building block for all latent growth curve models. The basic idea 

underlying the building of latent growth curves is to apply latent variables to repeated measures 

and set their loadings to capture the trajectory of change in a variable over time. To illustrate, 

let’s say we have some variable y that varies across t time points for each individual i (yit). As 

mentioned before we link these repeated measures to a trajectory via setting the loadings on 

latent variables in such a way as to reflect the change in the variable over time. For example, 

let’s say we want to capture a linear growth trajectory, then for 6 equally spaced time points, we 

could capture this linear growth by establishing our loadings as λ=0, 1, 2, 3, 4, 5 for time points 

t=1,2,3,4,5,6 respectively and we capture the intercept by creating a latent variable to which we 

fix the loadings at all time points to be 1. The intercept is interpreted at the path loading on the 

slope factor that is equal to 0, so in the example above the intercept is interpreted at time point 1 

(i.e., the initial occasion). The values placed on the slope path loadings will determine the 

intervals of times to which our slope is fit. In the above we are assuming that each point is 

equally spaced and that our intervals correspond to exactly the unit of time corresponding to our 

repeat measures.  

If we wanted our slope rate to correspond to some factor of our unit of interval, then we 

could multiply the slope loadings by the inverse of the factor which we wish to scale our 

intervals too. For example, let’s say we collected measures every other month, but we wish to 

interpret our slope in terms of months then we would set our slope loadings to λ=0,2,4,6,8,10,12. 

So far, we have considered our intervals as equally spaced, but this is not necessary. We can 

represent a slope directly in terms of the exact spacing of units if we wish. For example, often in 

education research we will have fall and spring measures, where perhaps the fall to spring 

measures are taken at equal interval in terms of months, but the spring to fall interval is not, so 
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we might choose a set of loadings such as λ=0, 8, 12, 20, 24, 32. A range of loading series can be 

chosen from and the choice will be guided by the interpretation you wish to give to the intercept 

and slope. 

 We can define the intercept term as α and the slope term as β, we have the basic growth 

curve representation for the repeated measure as: 

   (5a)  

where  represents an individual’s intercept, and  represents the growth trajectory 

of an individual with  being the loadings at each t time point capturing the shape of the 

trajectory, and  capturing the individuals standing on the slope parameter. ε serves its usual 

role in representing the residual error for individual i at time t. The connection between the latent 

growth model and the random-effects growth model is apparent when considering the model for 

the terms for the individual’s latent intercept and slope: 

                      (5b) 

   (5c)  

The disturbance terms, δ, represent individual’s deviances from the mean, μ, values for 

the intercept and slope.  The compositional model has the representation: 

     (5d) 

The inclusion of the deviation terms makes it clear that we are looking at a random effect 

model, with a single covariate, namely the time variable. It is in these random components, i.e. 
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the disturbance terms, that we can capture between-person variability in intercept and growth. 

Expressing the fixed effects as the means for the intercept and slope, , and 

having the covariance matrix for the random effects as .  

By fitting this covariance, we are saying that we believe that initial standing is related to 

growth, which is a typical expectation for a developmental process. The variance terms on the 

diagonal are the key values for capturing the between-person differences in growth, e.g. some 

people start out higher or lower at baseline and some show more or less change over time than 

others. The size of these terms will reflect how much people are differing, with higher values 

implying more between person difference. When it comes to residual errors we will also have 

some kind of structuring to consider. The generic specification will have independence amongst 

errors and in multilevel modeling is referred to as and residual covariance matrix which is 

represented as  which implies that we only have diagonal elements 

giving a residual variance for each time point and no correlation amongst these repeated 

measures. It may seem strange to assume that errors of repeated measures are uncorrelated, but, 

in the case of a growth curve it is not entirely infeasible to assume that the slope term is 

absorbing this dependence.  

Within structural equation modeling there are different ways in which you can structure 

your residuals, with the unstructured residuals at the extremity where residuals at all time points 

are being freely correlated with one another and the most constrained model where the residual 

error for each time point is fixed as equal to the residual error at every other time point. The 
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specification of equal variance across time points is a way of imposing homoscedasticity on a 

model which has favorable properties. If this assumption does not hold in the data, then model fit 

will be degraded and derived estimates become questionable. One of the key determinants in the 

tractability of different residual structure specifications is how far apart repeated measurement 

occasions are from one another. The further apart the less we anticipate such constricted 

assumptions to hold. Other factors will also influence this; for example, if an intervention 

occurred between repeated measures this may cause a change in residual errors. The benefit of 

more constrained residual structures is that it affords us degrees of freedom by requiring less 

parameters to be estimated. However, note again if the assumptions of given structures aren’t 

tenable in the data then the quality of fitted model declines. This is the general structure of a 

latent growth curve, and we can call it the unconditional univariate growth curve with linear 

growth, unstructured covariance in the random effects, and an independent residual covariance 

structure. Most SEM software uses maximum likelihood estimation based on the multivariate 

normal distribution so it is implicit that the random effects and residuals are normally distributed. 

Figure 3 gives a visual representation of this model. 



 38 

Alpha

y1

ε1

y2

ε2

y3

ε3

y4

ε4

y5

ε5

y6

ε6

Beta

1 01 11 2
1 3

1 41 5

 

Figure 3. An unconditional latent growth curve model 

2.5.2 Non-linear Growth Curves 

Above what we have described is a linear trajectory. Through the manipulation of path loadings 

on the slope and inclusion of additional latent variables we can capture a whole range of 

functional (non-linear) forms for trajectories. The most general type of trajectory would be the 

unspecified growth curve, where we allow a trajectory to take a form that fits most closely to the 

data by leaving slope loadings to be freely estimated (Duncan et al., 1999). For identification 

purposes, we must fix two loadings. One path loading should be set to 0 to identify the intercept, 

the other path loading is relatively arbitrary, and sets a relative unit for the slope. The most 

common choices for this are, λ=0, λ2, λ3, λ4, λ5, 1, or, λ= 0, 1, λ3, λ4, λ5, λ6. Though this particular 

model is praiseworthy for its flexibility, the resulting trajectory of development may be hard to 

interpret. We sacrifice degrees of freedom in fitting this curve and so one needs to be mindful of 

how many degrees of freedom they have to spare in fitting this curve. This approach also runs 
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the risk of becoming overfit, which is to say in approaching saturation we may have no variance 

left to explain. The concern with this is that we are following too closely to the noise in our data 

rendering such models fairly useless when it comes to fitting new data. Fundamentally, for our 

concerns, the problem with this is that we are establishing a theorized developmental process that 

is being too heavily influenced by a single sample. If one’s concern is only to fit a curve to a 

single sample, then the unspecified growth is not problematic, but this is rarely the case in actual 

research.  

A highly-related approach is to fit the slopes based on the mean differences, i.e. to fit the 

slope as running through the mean at every time point. Like the unspecified growth curve model 

this is just a matter of allowing slope loadings to be estimated. Either we can base this entirely by 

setting the slope shape by forcing the curve to fit through every time specific mean or estimate 

loading in terms of mean difference. The first approach will give slope loadings like such,  

 . Another approach using the mean is to fit the loadings for time 

1 and time 2 as λ=0,1, then allow the remaining slope loadings to be estimated according to the 

mean difference between time 1 and time 2. This approach is highly similar to fitting the 

unspecified growth curve model where we chose to fix the time 1 and 2 loadings as λ=0, 1. We 

call this a modified mean spline model and it’s resulting slope loading are as such  

.  

Another type of spline growth model is the piecewise spline. This involves fitting 

multiple latent linear slope variables that reflect different phases of development. For example, 

within the span of a study we may expect a high rate of growth earlier in the study, but during 

the later portion we expect this to be much more modest, so we might fit one trajectory for the 
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earlier portion and another in the later portion. As non-linear modeling goes, piecewise splines 

have a nice interpretation in the context of development, in that we have broken a developmental 

process up into two different phases and have allowed growth rates to change within each 

specific phase. This is a commonly observed type of growth in developmental sciences. In this 

case, we now have multiple sets of slope loadings; for example, let’s say we have two unique 

phases across our 6 time points, then we might have loading sets λ1=0,1,2,2,2,2 for spline 1 

corresponding to phase 1 and λ2=0,0,0,1,2,3 for spline 2 corresponding to phase 2 of 

developmental. 

The piecewise spline is similar to polynomial trajectories in that we model multiple latent 

slope variables to capture growth, but, they are very different in that piecewise splines capture 

phase specific growth trajectories using linear trajectories, whereas the polynomial curves utilize 

the latent variables to fit curvilinear trajectories in accordance with some nth
 order polynomial up 

to the T-1 (where T=total time points) order. The most pronounced difference is that the 

polynomial curves don’t necessarily fluctuate in direct accordance with phases of development, 

but rather lays out a more generalized trajectory of development. We generally do not want to go 

to high with polynomial orders, as each additional order of polynomial requires an added slope 

term as well as adding a layer of complexity in the interpretation of such a functional form. 

Quadratic and cubic curves remain relatively tractable and feasible for modeling developmental 

processes, i.e. polynomials of order 2 and 3. The general logic is that we have a latent variable 

for each order of polynomial, so for polynomial curve of order 2 (quadratic) we have a latent 

variable for linear growth with linear loadings, e.g. λ=0,1,2,3,4,5, and a latent variable for the 2nd 

order polynomial (quadratic) with loading λ2 = 0, 1, 4, 9, 16, 25. By extension if we had a cubic 

curve then we would add the cubic slope variable with loadings λ3=0, 1, 8, 27, 64, 125. The 
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components of latent growth modeling discussed thus far have centered on the univariate case, 

but we can expand our models to incorporate multiple growth processes together, each being 

permitted its own characteristics of growth curves. 

2.5.3 Multivariate Growth Curve Models 

The most basic of multivariate growth curve models is the bivariate parallel process model 

(McArdle, 1989) which essentially brings two growth curves together to capture concurrent and 

related processes of development. One could also postulate serial processes of development 

wherein one developmental process precedes the other in time. The model for this would most 

sensibly involve predicting one growth curve from the other. In this paper, we would develop 

from the parallel process model since this is most central to one of the overriding themes of this 

paper, namely, how do we determine causal dominance between two processes which we have 

measured across the same time span. For the bivariate parallel process growth, we will have two 

growth curve models: 

     (6a) 

     (6b) 

All of the terms are defined as before for each respective process y and x. We relate these 

processes together through the unstructured covariance matrix: 
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Along the diagonal, we have the variances for each of the respective latent factors for 

slopes and intercepts while the off-diagonal captures the covariances amongst the slopes and 

intercepts. In this way, we are allowing individual’s intercepts and slopes to be related, which is 

a good assumption to model given that we hypothesize some relation between these 

developmental processes. We now add some structuring to our residual covariance matrix to 

allow measures on the two constructs to correlate with one another within time points. Thus, we 

no longer have an independent residual covariance matrix but rather we represent it as such, now 

including two time variant variables: 

 

Along the diagonal, we find the residual error variances from time t-s to time t for each of 

our x and y variables, while within the off diagonal we see the residual errors are only correlating 

at specific shared time points. This is to say that the unexplained, remaining variance during 

measurement occasion between constructs has some relationship. In general, we will not 

correlate errors across time given that if measurements are separated in time this might imply 

some directedness in the relationship. In later models, we will begin exploring models that do 

more directly relate repeat measure to one another. Figure 4 gives a figurative representation of 

this model.   
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Figure 4. A parallel process bivariate growth curve model for 5 waves 

2.5.4 Autoregressive Latent Trajectory 

Since the univariate and bivariate growth curves as presented thus far are focused only on 

individual differences we aren’t really gathering any information about how the time specific 

components of developmental processes. If we wanted to begin establishing relations between 

the constructs that would capture within person effects on development, we would need to start 

establishing relations amongst the time specific measures for individuals. It is at this point that 

we begin seeing the cross-lags and autoregression become integrated with growth curves. The 

autoregressive latent trajectory model (Curran & Bollen, 2001; Bollen & Curran, 2004) 

essentially fits a growth curve on a cross lagged panel model. Additionally, similarly as is done 

with fixed effects models, we allow the initial measurement of our variables to correlate with the 

person -specific intercepts and slopes. The resulting covariance matrix is given as: 
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The residual covariance matrix is as before with residuals correlated within time across 

constructs, except now we no longer have residual correlation at time 1 (i.e., t-s) because this is 

now exogenous and is presented in the covariance matrix with the latent intercepts and slopes. 

The score decompositions can be given as: 

  (7a) 

  

 (7b) 

Figure 5 gives a representation of this model. Though this model gives us some information 

about more time specific effects in the cross-lagged and autoregressive parameters, it does not 

clearly separate out the between and within-person aspects of the developmental processes. One 

may note when looking at the figure that it appears that the effect of one construct on the other is 

being mediated through the relationships amongst the individual indicators. This sort of 

mediation dynamic is still being maintained at the level of individual differences such that the 

within and between person levels are still conflated with one another and the effects being 

captured within the cross-lag model is that earlier measures on one construct are causally linked 

to later measures on the other construct. 
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Figure 5. An Autroregressive Latent Trajectory Model with Cross-Lagged effects 

2.5.5 Latent Growth Curve Model with Structured Residuals 

When we maintain in theory that our developmental processes have a unique between and within 

person component we will need a model that makes a clearer separation of effects occurring at 

the between and within person level. The autoregressive latent trajectory model is limited in this 

regard. Conceptually speaking, it is easy to see that the best indicator of the within person 

component can be found in the residuals, which conceptually represent that which remains 

unexplained in an observed variable once we account for individual differences, i.e. the residual 

represents time t specific deviations for an individual i on a given process (x or y). Thus, we turn 

to the idea of structuring residuals to cleanly pull out the within person level of effect present in a 

development process (Curran et al., 2014). By structuring the residuals, we are now able to 

thoroughly disaggregate the between and within person effects, where the between person level 

is being captured in the latent growth curve portion and the within person level is being captured 

in the structured residuals. Particularly by structuring the residuals into a cross-lagged panel 
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model we will have the elements required to assess temporal stability in a construct and the 

causal dominance relationship between two constructs at the within-person level.  

This logic hearkens us back to the RI-CLPM as presented in a prior section, the 

difference being that now we are also accounting for between person variability in development. 

Because we are fitting the model to the residuals we will not be influencing the fixed effects (i.e. 

the mean structure) in the growth curves as we did with the autoregressive latent trajectory 

model which placed the cross lagged structure on the observed variables. Because our modeling 

technique involves fitting growth curves then structuring the residuals the model can be simply 

referred to as the Latent Growth Curve with Structured Residuals (LGCM-SR). When 

considering that the addition of the structured residuals is simply an extension on the LGCM. 

The LGCM-SR is a generalized model in which both the multivariate and univariate growth 

curves are nested. This is a nice feature of this modeling approach as it allows us to employ 

likelihood ratio tests to evaluate how much improvement we get by separating out between from 

within person levels of analysis through the fitting of the extra parameters.  

Recall that, for example,  where ( ) represents the 

beween person aspect of the observed variable yit then through a simple reworking we see that by 

removing the between person component from the measure we are left with  

which highlights that the residual is capturing the within 

person component as the individual’s time specific deviation from the growth curve (between 

person) component. From here we can impose meaningful structure to the residuals that will 

prove informative as concerns the within-person process. As we have explored before one thing 

to structure out is the temporal stability in repeated measures, which is accomplished by 
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choosing to autoregress the residuals on one another across time instead of putting them into 

some residual covariance matrix where they will either be treated as independent or structured in 

some meaningful ways.  

Regardless of the residual matrix structure the fact remains that we don’t propose a 

directedness in effect, but such an assumption is not entirely accurate regarding developmental 

processes where we anticipate that prior measures serve as strong predictors of later predictors. 

Hence it makes sense to impose a directed relation wherein prior values on a construct predict 

subsequent measures. Note that we are not gauging pure stability in a construct through the auto-

regressed residuals, as some of this stability will be accounted for in the latent intercept factor, 

similar to the intercept factor in the RI-CLPM referred to as being a trait like stability. 

Additionally, we are also absorbing some of the carry-over effect from one prior measure to the 

next into the slope parameter. Thus, the best way of considering the autoregressed residuals in 

this model are as the carry over effects from one occasion to the next net the between person 

differences in individual’s growth trajectories. We now can represent the residuals as    

     (8a) 

     (8b) 

where the v term is now taking the former role of the residual, so we will refer to this term as the 

residual error. These definitions of the residual will remind us of the RI-CLPM where we did this 

same thing. With this as a foundation we can been entering our cross-lag pathways to have a way 

to simultaneously estimate both the between person differences in development processes over 

time (parallel process growth) along with the within person inter-lag relations between processes. 

Figure 6 gives a depiction of this model.  
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Once we enter the cross-lag pathways and integrate the components together. We 

represent the LGCM-SR as: 

  (8c) 

  (8d) 

with between person covariance matrix as before with the standard bivariate LGCM: 

 

with the residual error covariance matrix being expressed similarly to the residual matrix before 

with correlation between constructs being restricted as time specific: 

Figure 6. Latent Growth Curve Model with (ARCL) Structured Residuals 
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All of the descriptions for the elements of these simply involve a recasting of model 

components into the framework where we structure residuals into a cross-lag panel model 

instead of the observed variables. As is clear at this point, in doing this, we account for the 

within-person level via the structured residuals and the between-person level remains in the 

growth curves. 

At this point it is important that we relate the RI-CLPM to the LGCM-SR. As given 

before the RI-CLPM is formulated as:  

 

 

with residual covariance matrix: 

 

 

We note that in the covariance matrix, where we have included the intercepts as well as 

the residual errors, there is no real difference between the two models aside from the fact that 
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with the addition of the slope terms we have additional covariances between slopes and between 

intercepts and slopes. We allow the between person components to freely covary. Beyond the 

obvious difference created by the addition of a random slope components, we also find that the 

intercept component in the RI-CLPM only contains one term. This term is the variance of the 

intercept and is analogous to the random intercept variance from the LGCM-SR. Unless means 

are treated as constant across time, we do not have a mean intercept in the RI-CLPM as we do in 

the LGCM-SR; instead we have time specific means μt. It is by fitting these time specific means 

that the RI-CLPM accounts for drift in the measurements across occasions, while this role is 

serviced by the slope mean in the LGCM-SR, especially in the case where we fit our curves as 

mean spline or unspecified. Since we are centering our individual values around the time specific 

means in the RI-CLPM, we also have a case where the intercept mean value is zeroed out as 

every time point’s value for the mean is zero relative to the individual deviations representing 

our within person component.  

In saying the mean relative to individual scores is zero across the within person 

component, we are saying the between person mean across time is set at zero, so the models are 

largely doing the same things by changing the place where the means are estimated. To reiterate 

the RI-CLPM is incorporating the means into the within person, time specific component 

whereas the LGCM-SR is incorporating the means into the between person component. The RI-

CLPM is therefore not nested under the LGCM-SR properly speaking, but the two models are 

essentially accomplishing the same thing, though it is fair to say that the LGCM-SR is pulling 

more variance into the between person component through the addition of the slope parameters. 

This applies not only to the univariate components but also to the cross-construct component 

where the covariance of the slope parameters across constructs can be expected to absorb more 
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of the cross-lagged components given that the cross-lags are capturing across time relations 

between the constructs just as the slope parameters are. 
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3.0  METHODS 

Chapter 3 begins with a demonstration of the aforementioned models to illustrate how the 

different models can lead to different and sometimes divergent results. Following this empirical 

example, we will present a simulation study designed to evaluate the relative performance of the 

models under various conditions pertaining to characteristics of change over time and the nature 

of the reciprocated relationship. The efficacy of the approach to the simulation study will be 

demonstrated in the data generation and validation section. 

3.1 EMPIRICAL EXAMPLE WITH LONGITUDINAL STUDY OF AMERICAN 

YOUTH 

To demonstrate and compare amongst various cross-lagged panel models that do and do not 

disaggregate between and within-person effects we fit these models to the bivariate processes of 

task value and self-concept as pertains to mathematics for 7th through 12th graders. The primary 

interest is in evaluating model fit and the causal dominance amongst the processes that each 

model implies. The constructs of math task value and math self-concept are central to 

motivational research in mathematics achievement (Wigfield & Eccles, 2000). From expectancy-

value theory the idea of subjective task value in math pertains to one’s beliefs about the benefits 

and utility of learning mathematics and self-concept pertains to one’s beliefs about how good 
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they are in mathematics. In terms of causal precedence, the question is whether belief in one’s 

ability in math leads to a greater sense of value in mastery over mathematics, or vice versa, or if 

there is any kind of causal precedence at all. 

3.1.1 Data 

The data utilized in this study are derived from the 2007 to 2011 cohort of the Longitudinal 

Study of American Youth (LSAY) which is a national sample of 3,116 seventh graders who were 

enrolled in public school. For the following analysis, only complete cases were used, resulting 

with a sample with N=1,060. This study evaluated student’s attitudes towards mathematic 

achievement each year from 7th to 12th grade. The task value variable can range from 0 to 25, 

while self-concept could range from 0 to 15. Subjective task value was based on student’s 

responses on Likert-type scales (1=Strongly Disagree to 5= Strongly Agree) to survey items such 

as (e.g., “I enjoy math.”, “Math is useful in everyday life.”, etc.) (Eccles et al., 1997). Similarly, 

student’s self-concept in their mathematic ability was based on student’s responses on Likert-

types scales (1=Strongly Disagree to 5=Strongly Agree) to survey items such as (e.g., “I am 

good at Math.”, “I usually understand Math.”, etc.) (Bleeker & Jacobs, 2004). On both scales, 

higher scores reflect greater task value and self-concept respectively. The math ability self-

concept had good reliability with α=0.80, and the task value scale had relatively good reliability 

with α=0.75. 
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3.1.2 Analytic Plan 

All models were fit in MPlus 7.4 (Muthen & Muthen, 1998-2015). In all, seven different models 

examined the bivariate relations amongst task value and self-concept. Models were constrained 

to have autoregressive parameters within a construct equal across lags as well as holding each 

task value->self-concept and self-concept->task value cross-lag parameters equal across lags. 

Additionally, exogenous components could freely covary, (e.g. residuals at the first-time point, 

intercepts and slopes). For the reciprocated models, endogenous time specific residuals across 

constructs had fixed covariance at all time points. At first, we fit a cross-lag panel model which 

does not disentangle within and between person effects but rather only considers rank ordering of 

individuals over time. Second, we fit a CLPM with time specific means estimated, which is the 

same as doing a cross-lag panel model on time-specific mean centered variables (i.e., essentially 

a group mean centering where occasion is the grouping variable). The second model is assessing 

the relationship amongst the individual’s time specific deviations at given lags. Hence Models 1 

and 2 are operating similarly to one another, namely, evaluating relative standing of individuals 

at given time points.  In Model 3, we fit a CLPM directly to repeated measures that are centered 

around their individual specific means across time, i.e., person-mean centered variables. In this 

model, we aren’t really disentangling between and within person effects. Instead, we are just 

examining the variables over time in relation to an individual’s mean score across time. Hence, 

we are only evaluating relative standing of an individual in relation to their overall standing.  

Extending from the CLPM with estimated means, a random intercept is fit so that trait 

like stability can be separated from within person changes across time. In Model 4, RI-CLPM, 

the between and within person effects are being disentangled. In Models 5 & 6, we evaluate the 

latent growth curve model with structured residuals (LGCM-SR), which not only disentangles 



 55 

trait-like stability between individuals but also examines inter-individual differences in change 

over time by fitting a random slope in addition to the random intercept. Residuals are then 

structured in such a way as to allow the autoregressive and cross lag effects of within person 

change amongst task value and self-concept to be estimated. This same strategy is used in both 

RI-CLPM and LGCM-SR. In fitting the LGCM-SR we first consider each latent growth process 

separately. To gather a sense of the most adequate shape of the trajectory we first fit the linear 

trajectory (Model 5) and then the unspecified trajectory (Model 6), which allows the curve to 

take any form. The two trajectories are then brought together into two different LGCM-SR 

models: one with a linear trajectory and the other with an unspecified growth curve.  

Model 7 is a fixed intercept model (FI-CLPM) which disentangles between and within 

person processes as well as looking at autoregressive, cross-lag (ARCL) series. However, this 

model will not be truly bivariate in the sense that the other models are, but rather looks at each 

ARCL separately. For example, first we fit the model to evaluate the prediction of task value 

from self-concept (i.e., task value is the lagged dependent variable, while self-concept is the 

time-varying, cross-lag predictor) and then fit the model predicting self-concept from task value. 

Some of the unique features of this model involve correlating the first measure of the lagged 

dependent variable series with the latent intercept, correlating the intercept with the values of the 

time-varying, cross-lag predictor, and allowing the time-varying predictor measures to correlate 

with one another as well as the first measure in the lagged dependent variable series. The lagged 

dependent variable at all time points after the first is independent of the predictor terms, 

including the cross-lag and intercept. Placing the intercept as correlated with the predicting 

variables establishes it as a fixed effect independent of the lagged dependent variable.   
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 Upon fitting these models, we evaluate them in terms of model fit to gauge which model 

appears to be doing the best at fitting the data. We also examined the cross-lag parameters to see 

(1) which process is indicated as being causally dominant and (2) what is the size of these effects 

in relation to one another. Of key interest in the between person components is the size of the 

variance which implies the extent to which individuals are different from one another in trait-like 

stability or inter-individual differences in change. Finally, where relevant, we examined the 

covariance in the between person components. 

3.2 METHODS FOR SIMULATION STUDY 

In the following simulation studies, we will be comparing the RI-CLPM with the LGCM-SR to 

evaluate performance of the models under various conditions. Due to the nature of its current 

specification, the FI-CLPM approach is not included in these simulation studies because it does 

not align well enough to the RI-CLPM and LGCM-SR to make comparisons particularly clear. 

Additionally, the CLPM specifications are also not included as prior studies (Hamaker et al., 

2015; Berry & Willoughby, 2016) have made these comparisons.  

Though results are not reported in the applied example above, the models were also fit to 

ECLS-K data for math and reading scores from Kindergarten to 8th grade. Because time points 

were not equally spaced and the trajectory was extremely non-linear, this was not used as the 

illustrative example. However, the estimates derived from it were found to be more favorable for 

basing the parameter values on. Much of this pertains with the fact that more variance is 

observed in the ECLS-K data. When using LSAY data for parameters it was found that altering 

variance and covariance often led to negative variance estimates or correlation amongst the latent 
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variables greater than one. Moreover, the LSAY variables exhibit relatively small change over 

time, while the ECLS-K variables exhibit quite a bit more change over time. This latter attribute, 

in combination with the distinctly non-linear trajectory of the ECLS-K variables, allows for a 

better evaluation of models in relation to questions concerning the functional form of growth. 

3.2.1 Study Design 

Across conditions, results from three models will be compared: the RI-CLPM, the LGCM-SR 

with a linear trajectory, and the LGCM-SR with an unspecified trajectory. Data will be generated 

from each respective model and subsequently analyzed by each of the models, including the 

model that corresponds to the generating model. Though we anticipate that the generating model 

will be fit best by its corresponding analytic model, the reason for fitting this model is to give a 

sense of the performance of the other models relative to the accurately specified model.  

The central interests of this study pertain to how model fit and parameter bias are affected 

by the shape and variability of change over time, the conclusions we make about causal 

dominance, and the relationship between processes over time. Consequently, the independent 

factors will pertain to the functional form of the slope, the slope variances and covariance, and 

whether a dominant process is present or not.  

To have variability in growth over time that reflects typical data dealt with in 

developmental and educational research, the slope variance conditions are based on slope 

variance estimates on trajectories in Math and English over the course of elementary school. The 

baseline slope variance estimates are derived from the ECLS-K, and we will be used to represent 

a middle level for variance. To reflect a lower variance condition, we can reduce the baseline 

variances by half of the baseline. To reflect a higher variance, we can double the baseline 
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variance. These values will allow us to gauge changes as we move from lower to higher variance 

over a satisfactorily wide range. The slope covariance will be established based on Cohen’s 

criteria for small, medium, and large effect sizes in terms of correlation values. This is used by 

convention but will still allow a considerable range of covariance magnitudes to evaluate 

performance of models across conditions. The trajectories are guided by the generating models: 

the linear LGCM-SR is a basic linear trajectory as would typically be fit to data, while the 

unspecified LGCM-SR slope trajectory and the time specific means for the RI-CLPM are also 

based on K-8th grade Math and English scores from the ECLS-K data. The final condition to be 

altered pertains to the causal dominance in the cross-lags. For this we have two basic conditions 

one where we have no dominance and one where dominance is present. 

 This results in 2 specifications of the RI-CLPM, dominance vs. no dominance, being 

analyzed by the three models. For the LGCM-SR we will have 2 sets of slope loadings X 3 slope 

variance conditions X 3 slope covariance conditions X 2 dominance conditions for a total of 36 

specifications to be analyzed by the 3 models. This gives us (2 X 3) + (2 X 3 X 3 X 2 X 3)=114 

sets of simulation conditions, and each condition has 1,000 replications. The different datasets 

generated from this design will be evaluated in terms of (1) the extent to which admissible and 

convergent solutions are derived; (2) model fit criteria; and, (3) estimation of the cross-lag 

parameters. Analyses of Variance will be used to understand the influence of the various factors 

on the various outcomes. 

3.2.2 Fixed Factors 

We will utilize six time points, which is both the number of time points presented in Curran et al. 

(2014) demonstration of the LGCM-SR and is also the number of time points given in the ECLS-
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K data set. The sample will be set at N=5,000, to reflect a large enough sample to acquire 

trustworthy estimation given the number of parameters contained in these models. This is about a 

quarter of the size of the ECLS-K without considering missing values, but because of attrition we 

generally anticipate a loss in subjects, and over such a long span of time we may expect this to be 

severe.  

Other fixed values are derived from analyses on the ECLS-K, with the specific numeric 

values identified in the Data Generation and Validation sections. As mentioned above, given 

that both models fit an intercept, the variance will not be of great interest in this study, and thus 

intercept variances and covariance will be fixed. Correlation effect size guidelines based on 

Cohen’s criteria will be used to determine covariance values. More details on this procedure are 

given in the Data Generation and Validation sections. The covariance in intercepts will be fixed 

according to a correlation value of 0.3, reflecting a moderately strong correlation between 

intercepts.  Similarly, we will fix the covariance of slope to intercept within a construct based on 

a correlation value of 0.3 to reflect a moderate relationship. Since we would expect the 

covariance of slope to intercept across constructs to be of smaller magnitude we will use a 

correlation value of 0.1 to set the covariance.  

Residual variances are based on values derived from fitting a model allowing the time 1 

variances to be freely estimated with the remaining t=2 through 6 variances constrained to be 

equal within a construct. As was done for the intercept covariance, the time specific residual 

covariances are fixed based on a correlation value of 0.3 reflecting a moderate relationship. To 

establish analogous stability within constructs across time that indicate upward prediction from 

one time point to the next, we use an autoregressive path loading of 1.2. The choice of having a 
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20% increase in value across lags relates to having 5 lags and hence a 100% added value over the 

5 lags. 

3.2.3 Independent Factors 

As mentioned above we will have 2 specifications of the RI-CLPM, one reflecting no dominance 

and one reflecting causal dominance. As it is not found to be of great interest which process is 

dominating which since no substantive interpretation is being applied to the variables, in the 

dominance condition, we will have Y dominate X by a factor of 4. The dominant cross-lag 

loading will have a value of 0.8 and the dominated cross-lag loading will be 0.2. The value of 0.8 

is chosen to reflect a situation where a unit change in the prior value of X corresponds to nearly 

an entire unit increase in the subsequent value of Y. In the non-dominance condition, we will 

reflect a situation where both constructs have an equally strong prediction of one another at 

subsequent lags, hence both the X to Y and Y to X cross-lag parameters will have a value of 0.8.    

The specifications for the LGCM-SR will have 2 sets of slope loadings, one indicating 

linear growth (λ=0, 1, 2, 3, 4, 5) as is conventionally done, and the other reflecting non-linear 

growth. The loadings for the non-linear trajectories were acquired by fitting an unspecified 

growth curve to the ECLS-K data, we set the time 1 loading at 0 and the time 2 loading at 1, 

which must be done for identification purposes, and then to map onto the linear the time 6 

loading was bounded at 5 and the preceding loadings were adjusted accordingly. For the X 

variable, this results in (λ= 0, 1, 1.175, 2.35, 4.7, 5) and for the Y variable (λ=0, 1, 1.09, 2.875, 

4.37, 5). 

In terms of the slope variance, as discussed above, we have 3 conditions ranging from 

low to high. The low condition is based on reducing the baseline variance by half, the medium 
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condition is the baseline variance, and the high variance condition doubles the baseline variance. 

This is done to give a sufficient range for evaluating the behavior of the models as we move from 

lower to higher variance. In numbers, we have for the X variable, low slope variance=4, medium 

slope variance=8, and high slope variance=16; and for the Y variable, low slope variance=5, 

medium slope variance=10, and high slope variance=20. The slope covariance will have 3 

conditions as well, reflecting a range for lower to higher slope covariance. These values are 

calculated by applying a correlation matrix to the vector of variances derived from the ECLS-K 

(see details in the Data Generation and Validation sections).  

 In establishing the size of the covariance, we use Cohen’s criteria for correlation effect 

sizes, thus we have a low correlation = 0.1, a medium correlation=0.3, and a high 

correlation=0.5. The cross-lag conditions for the LGCM-SR generating model will be the same 

as with the RI-CLPM generating model. 

3.2.4 Dependent Variables 

The different models given above will be compared in terms of various model fit statistics. Three 

general classes of model fit indices will be considered: information criteria, absolute fit criteria, 

and relative fit criteria. Namely, we want to know how often the model fit indices select the 

correct model. 

Two of the most commonly used information criteria are Akaike Information Criteria 

(AIC; Akaike, 1973) and Bayesian Information Criteria (BIC; Schwarz, 1978). Information 

criteria favor overall goodness of fit in a model in terms of the likelihood function while 

penalizing for model complexity due to the number of parameters estimated. In this way, 

information criteria aid a researcher in determining more parsimonious models. The information 
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criteria given above are closely related, but vary in terms of the penalty they give for the number 

of parameters fit. The AIC can simply be phrased as multiply the parameters by then subtracting 

negative twice the log likelihood, AIC=2k-2ln(L), thus increases in the likelihood function (L) 

are offset by increases in parameters(k). If adding more parameters doesn’t substantially improve 

the likelihood function, then only small reductions or increases in information criteria will ensue. 

From this we can see that with information criteria we want smaller values for a model relative 

to another. BIC functions under the same logic but applies a more stringent penalization than the 

AIC. Recall that with AIC we simply doubled the parameters estimated to penalize the likelihood 

function, thus only the number of parameters was accounted for in the penalty. BIC incorporates 

the sample size into this penalty, because sample size (n) is an important factor in setting the 

likelihood function. The formula now becomes BIC=ln(n)*k-2ln(L).  

 Common indices suggested for use with Latent Growth Models (Curran, Obeidat, and 

Losardo, 2010) are the comparative fit index (CFI; Bentler, 1990), the root mean square of 

approximation (RMSEA; Steiger & Lind, 1980), and the standardized root mean square residual 

(SRMR). These model fit indices can be classified into two main varieties, absolute fit of a 

model and relative fit of a model. RMSEA and SRMR are examples of absolute fit while CFI 

and Tucker-Lewis Index (TLI) are based on the fit of a model relative to the null model.  

The SRMR pertains directly to the covariance matrices representing the model. 

Specifically, if we took the difference between the proposed models covariance matrix and that 

observed in the data we would have a matrix of residuals, SRMR represents this difference in 

standardized values, i.e. SRMR is based on the difference between the observed and predicted 

correlation matrices. Because of this, we know that an SRMR value of 0 is a perfect fit. The 

RMSEA also penalizes the likelihood χ2 in relation to parameters and sample size. The formula 
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is RMSEA=√(χ2 – df)/ √(df(N-1)), such stats assume that a fit of zero is the best fit and so are 

evaluating “badness” of fit in terms of how far the value is from 0. Naturally, the smaller these 

values are the better the fit is assumed. Cut values are generally controversial but MacCallum, 

Browne, and Sugawars (1996) propose that the values of .01, .05, and .08 be used to indicate 

excellent, good, and mediocre fit respectively.  

CFI compares between the model set forth and the null model and determines fit based on 

this. The strategy here is to penalize the likelihood χ2 for each additional parameter estimated by 

this formula Null(χ2 -df) – Proposed(χ2-df)/ Null(χ2 -df). Interpretively the closer this value is to 

one the better we assume model fit to be, note here also that we set the value to 1 if it goes over 1 

and 0 if it goes under 0. The TLI is very similar to the CFI, except it has a more conservative 

penalty based on the ratio of the likelihood χ2 reduction to the added parameters: (Null(χ2/df)-

Proposed(χ2/df)) / (Null(χ2/df) – 1). 

Another criterion for comparing amongst the models evaluated in this study is to consider 

biases in estimation. Since the main purpose in employing these models is determining causal 

dominance amongst multivariate processes, the main parameter biases of interest pertain to the 

cross lagged parameters. When considering bias in cross-lag estimates the key issues concern the 

bias in the point estimate for the cross-lag path, and the bias in the standard errors of estimating 

the cross-lag path.  

The average relative bias in cross-lag path estimation across replications is a general 

indicator for the overall severity in bias. This criterion is defined as: 

, where the numerator represents the difference between 

the estimated and true parameter divided by the true parameter value and in the denominator, is 
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the number of replications. This criterion gives us two important pieces of information: (1) the 

magnitude of estimation bias, and (2) the direction of this bias, i.e. over vs. under estimation. 

When considering the bias in the standard errors of the cross-lag path estimate we can take the 

Monte Carlo standard deviation (  of the cross-lag coefficient estimate as our true sampling 

variance for the estimate. With this we can calculate relative bias in the standard error as 

. The bias in the standard errors is important when considering the adequacy 

with which our estimates are reliable.   

Another aspect of point estimate bias we are interested in pertains to how well the 

estimation represents the true nature of the causal dominance relationship. For this we can 

evaluate an index representing the causal dominance relationship. To measure the averaged 

factor of causal dominance across replications we can use the ratio  when the value in the 

numerator is greater than one then we conclude that Y dominates and when less than one we 

conclude that X dominates and when equal to one we determine no dominance. In this study, we 

have 2 causal conditions, (1) X dominates Y by a factor of 4, and (2) no dominance, i.e. ratio 

equals 1. This index is important in considering the extent to which we will derive correct 

conclusions about the relationship between two processes. 
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3.3 DATA GENERATION AND ANALYSIS 

Data Generation: Three data generation models were used a Random Intercept Cross Lagged 

Panel Model (RI-CLPM; Hamaker et al., 2015), Latent Growth Curve Models with Structured 

Residuals (LGCM-SR; Curran et al., 2014), one with a linear trajectory and another with an 

“unspecified” trajectory. The general steps for generating data sets follows as such: First, specify 

an error correlation matrix using PROC IML in SAS 9.4. Determining the magnitude of 

correlations in accordance with Cohen’s (1988) effect size criteria with r=0.1 corresponding to a 

small relationship implying 1% shared variance, r=0.3 corresponding to a moderate relationship 

implying 9% shared variance, and r=0.5 corresponding to a large relationship implying 25% 

shared variance. Second, the respective models are fit in MPlus 7 (Muthen & Muthen,1998-

2015) to math and reading IRT scores from Kindergarten to 8th grade contained in the ECLS-K 

(Early Childhood Longitudinal Study) sample to acquire mean and variance values (and in the 

case of the ‘unspecified’ trajectory, slope loadings) reflective of real-world educational data. 

Third, the variance values are fed into PROC IML SAS 9.4 to calculate a covariance matrix from 

the error correlation matrix specified in step 1. This covariance matrix in conjunction with the 

mean values is then used to generate a sample of N=1,000 observations derived from a 

multivariate normal distribution. The variables generated from this prior step represent data 

reflecting distributions of both time specific residual errors and between-person intercept or 

slope variances. These data are then modeled using a set of linear equations (containing 

autoregressive, cross-lag, and slope loadings) in accordance with the respective population 

model to which they correspond to produce the observed variables to be used for analysis.  

RI-CLPM: The error covariance matrix for the RI-CLPM is 14 X 14 having the form: 
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With mean structure: 

 

The multivariate normal data generated from this error covariance matrix & mean structure 

contains the basic building blocks for building this model. The resulting variables consist of 

intercept terms, , and time specific terms,  which are each comprised of a 

mean component and variance component determined by the specifications given in PROC IML 

SAS 9.4. From here we generate sample means ( ) and error variances ( ) for 

each of the 1 through 6 time points to comprise the within-person component. With the between-

person component being comprised of intercept means (  &  and variances ( ), i.e., 
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In the RI-CLPM specifications we will be using for this study we’ll have intercept means 

set to 0, with non-zero time varying means to capture change across time. With the sample data 

generated from the above procedure we model the within-person component by structuring 

residuals: 

 

 

 

 

The final step in generating the observed variables to be used in analysis simply involves 

integrating the between- and within-person components: 

     

 

These resulting variables are then exported as text files and compiled in a folder for analysis by 

MPlus 7.4. 

LGCM-SR: The LGCM-SR data is generated in essentially the same manner as shown 

above for the RI-CLPM the only major difference is that we now include components associated 

with the random slope. Namely, we now have latent variables for the random slopes, each with 

their own means and variances, path coefficients to represent the loading of the observed 

variables on the slope, and the associated covariances amongst the slopes and intercepts. Under 

the LGCM-SR we now begin with a 16X16 error covariance matrix: 
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With the mean structure 

As was done before we generate sample data from a multivariate normal distribution based on 

this error covariance matrix & mean structure. The resulting variables consist of intercept terms, 

, slope terms,  and time specific terms,  . All else is given as before, 

with means and variances, in this case we add to the between-person component slope means 

(  &  and variances ( ), thus we now define our variables as, 
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In the case of the LGCM-SR we zero out the time specific means and allow the non-zero 

slope mean and variances to capture change over time. The intercept terms now have a non-zero 

mean to capture the mean at time point 1. As before we take the sample data generated from the 

error covariance and mean structure to model the within-person components by structuring 

residuals: 

 

 

 

 

Like the procedure used with the RI-CLPM we integrate the between- and within-person 

components to produce our observed variables, except in this case we have the addition of the 

slope terms and their respective loadings: 

        

 

The distinguishing feature between whether we produce the “unspecified” or linear trajectory is 

simply a matter of the lambda values we choose in equations 14a & 14b.  As before the resulting 

dataset is exported as text files for analysis by MPlus 7.4. 
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3.3.1 Data Validation 

The validation of the data generating process was conducted by fitting models to given generated 

sample data. Then the adequacy was evaluated by examining model fit to see that it indicates 

perfect to near perfect fit, and bias in parameter estimates was evaluated as well. Our primary 

index for bias of interest will be relative bias, , and for model fit we will 

be primarily examining RMSEA, CFI, and χ2 test for model fit.      

RI-CLPM example: Utilizing the data generation procedure mentioned above and incorporating 

specific parameter values, we generated a specific data set as such: 

Step 1: Set correlation values in PROC IML to reflect modest relationships between time specific 

errors and intercept variances, e.g.,  and . 

Step 2: Create a population covariance matrix utilizing variances from ECLS-K. Our vector of 

variances is given as: 

 

With input values 

 

We compute a covariance matrix using   and the correlation matrix, R, from step 

1 as such:  . The resulting covariance matrix is given as: 
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Step 3: Utilizing the covariance matrix produced in step 2 and the mean vector derived from 

ECLS-K, 

we go on to generate a sample data set of 1,000 observations by telling SAS to use a random 

multivariate normal distribution based on covariance matrix S and mean vector μ. The resulting 

dataset contains variables labeled Ix, Iy, Vx1-Vx6, and Vy1-Vy6 which respectively correspond 

to  as given in the data generation description given above.  

Step 4: Then setting the autoregressive parameters as  and the cross-lag 

parameters as   to reflect a situation where both constructs have the same level 

of stability with a reciprocal relation between the constructs. These values are applied to 

equation 10a-d then carried over into equations 11a-b to produce the observed variables, X1- 

X6 and Y1-Y6. By using this procedure, it is necessary that we remove the mean values 

from the prior time points to prevent an exponential increase in the mean value of the scales 

across subsequent time points, this is what is represented in the subtractions below. The 

following set of equations represent our data generating code: 
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Then using the residual terms (within person component) we create the observed 

variables by incorporating the between-person component: 
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Step 5: The data set produced via steps 1 through 4 is then exported as a text (.dat) file into a 

folder for subsequent analysis by MPlus 7.4. Within MPlus we specify a model that corresponds 

to the data generating model. In this case the between person components involve setting our 

random intercepts, zeroing out their means and freely estimating variances and covariances. We 

tell MPlus to estimate the time specific means in the observed variables. We set the observed 

variable variances to zero and fit time specific latent variables to capture the residual errors. 

Within each process, we constrain these residual variances to be equal across time but not across 

construct. The covariance between the x and y residuals at time 1 are freely estimated, but 

constrained as equal across subsequent time points. Autoregressive parameters within each 

construct are constrained to be equal across time lags. The cross-lag parameters from x to y are 

constrained equal across lags, and the cross-lag parameters from y to x are also constrained equal 

across lags, while, the x to y and y to x cross lag parameters are not constrained as equal.  

Step 6: The resulting estimates from MPlus show, for the most part, decent recovery of the 

parameters from the population generating model. However, there are some cases where 

parameter recovery appears to be performing not so well. The relative bias within the intercept 

covariance and the residuals at time point one are high, about 17% overestimation in the 

intercept covariance and about 14% underestimation in the residual covariance at time point 1. 

To check the extent to which this poor recovery was driven by sample size, the generating 

sample was increased from 5,000 to 20,000, this resulted in the bias being reduced to 6% 
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underestimation of the intercept covariance and 3% overestimation for the time 1 residual 

covariance. Since our interest is not centrally focused on recovering these parameters, in the 

subsequent data generation, we will not use a generating sample of 20,000 to conserve 

computational requirements.  The table below (table 4) shows model fit and relative bias in the 

respective parameter estimates: 

Table 1. Results for Validating Data Generation from the RI-CLPM 

PARAMS TRUE ESTIMATE BIAS         Relative Bias 
   𝐶𝐶𝐶𝐶𝐶𝐶(𝛼𝛼𝑋𝑋𝑋𝑋 ,𝛼𝛼𝑌𝑌𝑌𝑌) 36.897 43.21 6.313 0.171098 
𝑉𝑉𝑉𝑉𝑉𝑉(𝛼𝛼𝑋𝑋𝑖𝑖) 141.5 148.863 7.363 0.052035 

              𝑉𝑉𝑉𝑉𝑉𝑉(𝛼𝛼𝑌𝑌𝑌𝑌 ) 106.9 107.137 0.237 0.002217 
𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑋𝑋𝑋𝑋1) 103.94 100.026 -3.914 0.037656 

𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑋𝑋𝑋𝑋𝑋𝑋 ), 𝑡𝑡 = 2, … ,6 213.5 204.189 -9.311 0.043611 
𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑌𝑌𝑌𝑌1) 81.99 76.028 -5.962 0.072716 

𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑌𝑌𝑌𝑌𝑌𝑌 ), 𝑡𝑡 = 2, … ,6 134.03 130.547 -3.483 0.025987 
𝐶𝐶𝐶𝐶𝐶𝐶 (𝜀𝜀𝑋𝑋𝑋𝑋1, 𝜀𝜀𝑌𝑌𝑌𝑌1) 27.694 23.76 -3.934 0.142052 
𝐶𝐶𝐶𝐶𝐶𝐶 (𝜀𝜀𝑋𝑋𝑋𝑋𝑋𝑋 , 𝜀𝜀𝑌𝑌𝑌𝑌𝑌𝑌 ) 50.748 48.202 -2.546 0.050169 

𝜌𝜌𝑥𝑥𝑥𝑥  1.2 1.194 -0.006 0.005 
𝜌𝜌𝑦𝑦𝑦𝑦  1.2 1.196 -0.004 0.003333 
𝜌𝜌𝑥𝑥𝑥𝑥  0.8 0.81 0.01 0.0125 
𝜌𝜌𝑦𝑦𝑦𝑦  0.8 0.805 0.005 0.00625 
𝜇𝜇𝛼𝛼𝑥𝑥  0 0 0 0 
𝜇𝜇𝛼𝛼𝑦𝑦  0 0 0 0 
𝜇𝜇𝑥𝑥1  34.32 33.955 -0.365 0.010635 
𝜇𝜇𝑥𝑥2  45.68 46.092 0.412 0.009019 
𝜇𝜇𝑥𝑥3  76.83 77.941 1.111 0.01446 
𝜇𝜇𝑥𝑥4  126.14 128.28 2.14 0.016965 
𝜇𝜇𝑥𝑥5  149.56 153.039 3.479 0.023262 
𝜇𝜇𝑥𝑥6  169.72 176.734 7.014 0.041327 
𝜇𝜇𝑦𝑦1  25.66 25.623 -0.037 0.001442 
𝜇𝜇𝑦𝑦2  35.99 35.383 -0.607 0.016866 
𝜇𝜇𝑦𝑦3  60.94 61.158 0.218 0.003577 
𝜇𝜇𝑦𝑦4  98.23 99.416 1.186 0.012074 
𝜇𝜇𝑦𝑦5  123.02 126.461 3.441 0.027971 
𝜇𝜇𝑦𝑦6  140.86 147.322 6.462 0.045875 
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RMSEA 5% 95% CFI SRMR 
0.007 0 0.021 1.00 0.032 

χ 2
 (65) = 68.48, p=0.36 

 

The model fit, as expected, is good by all criteria. However, the RMSEA should be at zero and it is not. 

 

LGCM-SR example: We proceed as before while incorporating the appropriate information for 

the LGCM-SR where we have now added means, variances and covariances associated with the 

slope terms. In the case of the linear trajectory, the slope loadings are not estimated as they will 

be with the unspecified growth trajectory. In contrast to the RI-CLPM, the time specific means 

are no longer estimated. Instead the intercept means are estimated in place of time 1 and the 

slope means are left to capture the change in the means over time. 

Step 1: Set correlation values in PROC IML to reflect modest relationships between time specific 

errors, intercept variances, slope variances, and intercept-slope covariance within construct e.g., 

,   and, 

, while the cross construct intercept-slope covariance are set as being 

small in magnitude, . 

Step 2: Create a population covariance matrix utilizing variances from ECLS-K. Our vector of 

variances is given as:  

 

With input values 
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As before, we compute a covariance matrix using   and the correlation matrix, R, 

from step 1 as such:  . The resulting covariance matrix is given as: 

Step 3: Utilizing the covariance matrix produced in step 2 and a mean vector based on values 

derived from fitting an LGCM-SR to the ECLS-K data, 

 

we generate a sample data set of 5,000 observations by telling SAS to use a random multivariate 

normal distribution based on covariance matrix S and mean vector μ. The resulting dataset 

contains variables labeled Ix, Sx, Iy, Sy, Vx1-Vx6, and Vy1-Vy6 which respectively correspond 

to   as given in the data generation description given 

above.  

Step 4: Exactly as was done with the RI-CLPM we set the autoregressive parameters as 

 and the cross-lag parameters as  . These values are applied 

to equations 13a-d then carried over into equations 14a-b to produce the observed variables, X1-

X6 and Y1-Y6. The distinguishing feature between whether we are fitting the linear versus 
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unspecified trajectory will be expressed in the slope loadings. This is represented by the 

following set of equations: 

 

The Linear Trajectory 

 

 

 

 

 

 

 

 

 

 

 

 
Then using the residual terms (within person component) we create the observed variables by 

incorporating the between-person component: 
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Step 5: As was done before we export the data as a text (.dat) file to analyze it in MPlus 7.4 by 

fitting the Linear LGCM-SR model to it. The between person components involve setting 

random intercepts, and random slopes with loading 0,1,2,3,4, &5 to reflect a linear growth 

trajectory in both constructs and based on the fitted model in MPlus we use the loadings 

λ=0,1,1.175,2.35,4.7,5 for the X construct and λ= 0, 1, 1.09,2.1875,4.37, 5 for the Y construct to 

make the non-linear trajectory.  As can be seen the intercept is set at time 1 for both the linear 

and unspecified growth models.  

The means, variances, and covariances amongst the intercept and slope terms are freely 

estimated. The time specific means and variances are zeroed out in the observed variables. The 

time specific residual errors are carried by fitting latent variables to each observed variable. 

Within each process, we constrain these residual variances to be equal across time but not across 

construct. The covariance between the x and y residuals are constrained to be equal across 

subsequent time as well.  

Autoregressive parameters within each construct are constrained to be equal across time 

lags. The cross-lag parameters from x to y are constrained equal across lags, and the cross-lag 
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parameters from y to x are also constrained equal across lags, while, the x to y and y to x cross 

lag parameters are not constrained as equal.  

Step 6: As observed in the RI-CLPM recovery of random effects is rather poor. Relative bias in 

the variances and covariances in the intercept and slope terms is high in many cases. For 

example, the intercept-slope covariance for construct X is overestimated by about 44%, the 

intercept covariance between X and Y is nearly 20% overestimated, with the X slope- Y 

intercept covariance being underestimated by about 37%, the slope covariance between X and Y 

is not too bad at about 5% overestimation, the X intercept to Y slope covariance is overestimated 

at about 43%, and the intercept-slope covariance within the Y construct is not bad being less than 

1%. The variances are tending to show underestimation for the most part ranging from about 9% 

to 17% underestimation. The Y intercept is overestimated by about 12%. In the within person 

component we have some underestimation as well, but it is low being around 2% 

underestimation for both the residual variances and covariances. As was done before, the 

reduction in bias due to increasing sample size from 5,000 to 20,000 can be evaluated to 

evidence that the poor random effect recovery is driven by sample size and not model 

misspecification. With the larger sample size the covariance biases are reduced: The X intercept-

X slope covariance bias is now at 3.3%, X intercept-Y intercept covariance bias is now at -9.6%, 

X slope-Y intercept covariance bias is now at -15.2%, X slope-Y slope covariance bias is now at 

-8.5%, X intercept-Y slope covariance bias is now at 2.99%, and the Y intercept-Y slope 

covariance bias is reduced to -.71%. The variance biases were also reduced, but follow the same 

general pattern, with the Y intercept relative bias being overestimated only by 3.82%, and the 

remaining variance being underestimated from .5-3.6%.  
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The autoregressive, cross-lag, and mean estimates do not appear to be too concerning in 

terms of bias. All the model fit criteria are as we would want. The table below (table 5) shows 

model fit and relative bias in the respective parameter estimates for the linear trajectory. 

Table 2. Results for Validating Data Generation from the Linear LGCM-SR 

PARAMS TRUE ESTIMATE BIAS         Relative Bias 
   𝐶𝐶𝐶𝐶𝐶𝐶(𝛼𝛼𝑋𝑋𝑋𝑋 ,𝛽𝛽𝑋𝑋𝑋𝑋) 6.84 9.851 3.011 0.440205 
   𝐶𝐶𝐶𝐶𝐶𝐶(𝛼𝛼𝑋𝑋𝑋𝑋 ,𝛼𝛼𝑌𝑌𝑌𝑌) 17.27 20.406 3.136 0.181587 
   𝐶𝐶𝐶𝐶𝐶𝐶(𝛽𝛽𝑋𝑋𝑋𝑋 ,𝛼𝛼𝑌𝑌𝑌𝑌) 2.02 1.282 -0.738 0.36535 
   𝐶𝐶𝐶𝐶𝐶𝐶(𝛽𝛽𝑋𝑋𝑋𝑋 ,𝛽𝛽𝑌𝑌𝑌𝑌) 2.68 2.802 0.122 0.045522 
   𝐶𝐶𝐶𝐶𝐶𝐶(𝛼𝛼𝑋𝑋𝑋𝑋 ,𝛽𝛽𝑌𝑌𝑌𝑌) 2.55 3.648 1.098 0.430588 
   𝐶𝐶𝐶𝐶𝐶𝐶(𝛽𝛽𝑌𝑌𝑌𝑌 ,𝛼𝛼𝑌𝑌𝑌𝑌) 6.77 6.794 0.024 0.003545 
𝑉𝑉𝑉𝑉𝑉𝑉(𝛼𝛼𝑋𝑋𝑋𝑋) 65 54.186 -10.814 0.16637 
𝑉𝑉𝑉𝑉𝑉𝑉(𝛽𝛽𝑋𝑋𝑋𝑋 ) 8 6.846 -1.154 0.14425 

              𝑉𝑉𝑉𝑉𝑉𝑉(𝛼𝛼𝑌𝑌𝑌𝑌 ) 51 57.044 6.044 0.11851 
𝑉𝑉𝑉𝑉𝑉𝑉(𝛽𝛽𝑌𝑌𝑌𝑌) 10 9.148 -0.852 0.0852 
𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑋𝑋𝑋𝑋𝑋𝑋 ) 127 124.22 -2.78 0.02189 
𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑌𝑌𝑌𝑌𝑌𝑌 ) 204 198.21 -5.79 0.02838 

𝐶𝐶𝐶𝐶𝐶𝐶 (𝜀𝜀𝑋𝑋𝑋𝑋1, 𝜀𝜀𝑌𝑌𝑌𝑌1) 48.29 47.161 -1.129 0.02338 
𝐶𝐶𝐶𝐶𝐶𝐶 (𝜀𝜀𝑋𝑋𝑋𝑋𝑋𝑋 , 𝜀𝜀𝑌𝑌𝑌𝑌𝑌𝑌 ) 48.29 47.161 -1.129 0.02338 

𝜌𝜌𝑥𝑥𝑥𝑥  1.2 1.205 0.005 0.004167 
𝜌𝜌𝑦𝑦𝑦𝑦  1.2 1.224 0.024 0.02 
𝜌𝜌𝑥𝑥𝑥𝑥  0.8 0.8 0 0 
𝜌𝜌𝑦𝑦𝑦𝑦  0.8 0.781 -0.019 0.02375 
𝜇𝜇𝛼𝛼𝑥𝑥  37 36.867 -0.133 0.00359 
𝜇𝜇𝛽𝛽𝑥𝑥  22 22.163 0.163 0.007409 
𝜇𝜇𝛼𝛼𝑦𝑦  48 47.832 -0.168 0.0035 
𝜇𝜇𝛽𝛽𝑦𝑦  26 25.758 -0.242 0.00931 

 
 

RMSEA 5% 95% CFI SRMR 
0.00 0 0.006 1.00 0.026 

χ 2
 (68) = 51.684, p=0.929 

 
 

For the unspecified growth curve, we have similar concerns as we saw with the linear 

curve. In this case, it seems we have a little less of a problem of bias in estimation amongst the 

latent intercept and slope variances and covariance, yet it is still problematic. In distinction to the 
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linear model we now found more underestimation. The X slope-Y intercept covariance is 

underestimated by about 46%, with the X intercept-Y slope covariance being overestimated by 

about 42%, the Y slope and intercept covariance is underestimated by about 15%, the X-Y 

intercept covariance is overestimated by nearly 7%, and there is only about 2% underestimation 

in the slope to slope covariance. The intercept variance seems to have the higher bias with X 

intercept being underestimated by about 11% and the Y intercept being overestimated by about 

19%, the slope variances are a bit lower with the X slope variance being overestimated by 

around 5%, and the Y slope variance is overestimated by about 6%. The residual errors are being 

more modestly misestimated, with the Y residuals underestimated by 4% and the X residuals by 

around 5%, the time one error covariance is overestimated by about 5% and at around 2% at 

subsequent time points. When the sample size is increased from 5,000 to 20,000 the covariance 

biases are reduced: X intercept-X slope reduces to 2.8%, the intercept covariance bias goes to 

8%, X slope-Y intercept covariance bias reduces to 11%, X slope-Y slope covariance bias 

reduces to 6.23%, X intercept-Y slope covariance bias reduces to 12.9%, Y intercept-Y slope 

covariance bias reduces to 2.08%, and the residual covariances across time are essentially zero. 

In terms of variance, no bias exceeds 3%. 

For the unspecified growth curve, we now see a bit more misestimation in the 

autoregressive and cross-lag parameters. The autoregressive weight for X are still below 1 %, the 

other cross-lag and autoregressive parameters now show a relative bias at around 2%. Apart from 

the Y slope mean which is underestimated at about 1.4% the other mean parameters all have 

relative bias less than 1%. The loadings were recovered well with all misestimation being less 

than 1%. Figure 7 shows the trajectories estimated overlay nearly perfectly with the true value 
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trajectories. For the model fit indices, everything was good. The data validation results for 

LGCM-SR are given in table 3. 

Table 3. Results for Validating Data Generation from the Unspecified LGCM-SR 

PARAMS TRUE ESTIMATE BIAS         Relative Bias 
   𝐶𝐶𝐶𝐶𝐶𝐶(𝛼𝛼𝑋𝑋𝑋𝑋 ,𝛽𝛽𝑋𝑋𝑋𝑋) 6.84 8.01 1.17 0.171053 
   𝐶𝐶𝐶𝐶𝐶𝐶(𝛼𝛼𝑋𝑋𝑋𝑋 ,𝛼𝛼𝑌𝑌𝑌𝑌) 17.27 18.461 1.191 0.068964 
   𝐶𝐶𝐶𝐶𝐶𝐶(𝛽𝛽𝑋𝑋𝑋𝑋 ,𝛼𝛼𝑌𝑌𝑌𝑌) 2.02 1.083 -0.937 0.463861 
   𝐶𝐶𝐶𝐶𝐶𝐶(𝛽𝛽𝑋𝑋𝑋𝑋 ,𝛽𝛽𝑌𝑌𝑌𝑌) 2.68 2.637 -0.043 0.016045 
   𝐶𝐶𝐶𝐶𝐶𝐶(𝛼𝛼𝑋𝑋𝑋𝑋 ,𝛽𝛽𝑌𝑌𝑌𝑌) 2.55 3.615 1.065 0.417647 
   𝐶𝐶𝐶𝐶𝐶𝐶(𝛽𝛽𝑌𝑌𝑌𝑌 ,𝛼𝛼𝑌𝑌𝑌𝑌) 6.77 5.722 -1.048 0.154801 
𝑉𝑉𝑉𝑉𝑉𝑉(𝛼𝛼𝑋𝑋𝑋𝑋) 65 57.889 -7.111 0.1094 
𝑉𝑉𝑉𝑉𝑉𝑉(𝛽𝛽𝑋𝑋𝑋𝑋 ) 8 8.402 0.402 0.05025 

              𝑉𝑉𝑉𝑉𝑉𝑉(𝛼𝛼𝑌𝑌𝑌𝑌 ) 51 60.829 9.829 0.192725 
𝑉𝑉𝑉𝑉𝑉𝑉(𝛽𝛽𝑌𝑌𝑌𝑌) 10 9.354 -0.646 0.0646 
𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑋𝑋𝑋𝑋𝑋𝑋 ) 127 122.376 -4.624 0.036409 
𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑌𝑌𝑌𝑌𝑌𝑌 ) 204 194.335 -9.665 0.047377 

𝐶𝐶𝐶𝐶𝐶𝐶 (𝜀𝜀𝑋𝑋𝑋𝑋1, 𝜀𝜀𝑌𝑌𝑌𝑌1) 48.29 50.48 2.19 0.045351 
𝐶𝐶𝐶𝐶𝐶𝐶 (𝜀𝜀𝑋𝑋𝑋𝑋𝑋𝑋 , 𝜀𝜀𝑌𝑌𝑌𝑌𝑌𝑌 ) 48.29 47.221 -1.069 0.022137 

𝜌𝜌𝑥𝑥𝑥𝑥  1.2 1.193 -0.007 0.005833 
𝜌𝜌𝑦𝑦𝑦𝑦  1.2 1.226 0.026 0.021667 
𝜌𝜌𝑥𝑥𝑥𝑥  0.8 0.816 0.016 0.02 
𝜌𝜌𝑦𝑦𝑦𝑦  0.8 0.783 -0.017 0.02125 
𝜇𝜇𝛼𝛼𝑥𝑥  37 36.846 -0.154 0.004162 
𝜇𝜇𝛽𝛽𝑥𝑥  22 22.191 0.191 0.008682 
𝜇𝜇𝛼𝛼𝑦𝑦  48 47.829 -0.171 0.003562 
𝜇𝜇𝛽𝛽𝑦𝑦  26 25.636 -0.364 0.014 
𝜆𝜆𝑋𝑋3 4 4.03 -0.03 0.0075 
𝜆𝜆𝑋𝑋4 8 8.06 -0.06 0.0075 
𝜆𝜆𝑋𝑋5 16 16.11 -0.11 0.006875 
𝜆𝜆𝑋𝑋6 17 17.09 -0.09 0.005294 
𝜆𝜆𝑌𝑌3 3 2.99 0.01 0.003333 
𝜆𝜆𝑌𝑌4 7 6.98 0.02 0.002857 
𝜆𝜆𝑌𝑌5 14 13.96 0.04 0.002857 
𝜆𝜆𝑌𝑌6 16 15.93 0.07 0.004375 

 
 

RMSEA 5% 95% CFI SRMR 
0.00 0 0.005 1.00 0.033 

χ 2
 (60) = 47.379, p=0.935 
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Figure 7. True and Estimated Trajectories from data validation 
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4.0  RESULTS 

In the following we begin by presenting the results from the empirical study. Recall, in this study 

we were evaluating how different models could lead to different conclusions. The illustrative 

example used data from the Longitudinal Survey of American Youth for the 2007 to 2011 cohort 

(LSAY:2007-2011). The LSAY follows students from 7th to 12th grade to collect information 

about their development on various academic and non-academic characteristics. For our applied 

example, we focus on the relationship between Math Task Value (e.g., how valuable a student 

may think mathematical knowledge is) and Math Self-Concept (e.g., how capable with 

mathematics a student believes their self to be). Broadly speaking we are comparing amongst 

models that do not separate between and within-person effects (CLPM), models which account 

for stable between-person differences (RI-CLPM, FI-CLPM), and models which additionally 

account for inter-individual differences in change (LGCM-SR); the latter (LGCM-SR) models 

are further broken down into whether they allow for non-linear, unspecified growth (LGCM-SR-

UGT) or only linear growth (LGCM-SR-LIN). The results of interest pertain to how well the 

different models fit and what conclusions we derive concerning whether Task Value dominates 

Self-Concept or vice versa depending on the model we fit. 

Following the LSAY example, the results from the simulation study will be presented. As 

illustrated in detail within the methods section we have three models under consideration: the 

LGCM-SR-LIN, the LGCM-SR-UGT, and the RI-CLPM. The evaluation of these models 
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involves generating data from a true model that is based on each of our three models, then 

subsequently fitting each of our three models to the data generated from the true models. This 

allows us to compare models relative to how well a model matching the true model performs. 

These results are organized by outcome, and within each outcome we consider what results 

under varying conditions of slope variance-covariance, slope loadings, and causal dominance 

conditions when fitting the different models to data which is either aligned with the true 

generating model or not.  

The first outcome considered from the simulation study is the sheer number of times that 

admissible and convergent solutions were estimated. Consideration of when a model will 

produce valid estimates is a key consideration of the utility of a modeling approach. In this case, 

we consider the percentage of times that the solution produced by a model yield invalid results 

due to non-convergence, negative variance estimates, or correlations beyond an absolute value of 

one. Following the review of admissible and convergent solutions we consider model fit criteria. 

The central consideration regarding model fit criteria is the amount of time that an index 

correctly chooses the true model over the other models. Given that our conclusions about the 

relations amongst processes are based on the cross-lag parameters we consider these in three 

different ways. One, does a model capture the correct inference about the presence or absence 

and magnitude of a dominant process; two, to what extent does a model produce a biased 

estimate of a cross-lag path coefficient; and three, to what extent does a model produce bias in 

the standard errors for cross-lag path coefficients. When considering these components of our 

cross-lag paths, we will have a central interest in the relative performance of the different models 

in relation to the true model, as well as how this performance differs across the different slope 

variance-covariance conditions and whether a dominant process is present or not. 
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4.1 RESULTS FROM EMPIRICAL EXAMPLE WITH LSAY 

Models were fit using robust maximum likelihood estimation methods. We assessed model fit by 

looking at information criteria (AIC, BIC), absolute fit indices (RMSEA, SRMR), and 

incremental/relative fit indices (CFI, TLI). Table 4 gives a complete listing of the model fit 

indices amongst the models. Because of scale differences we use standardized coefficient 

estimates to assess ARCL parameters.  ARCL estimates are each averaged across times since 

these were fixed as constant across time. A complete listing of ARCL estimates are given in 

Table 5.  

Table 4. Model Fit Amongst the Various Models 

  AIC BIC RMSEA SRMR  CFI TLI 
: CLPM  60043.43 60192.41 0.083 0.129 0.876 0.866 
: CLPM(means) 60043.43 60192.41 0.083 0.129 0.883 0.871 
: CLPM (Xit-Xi.) 1311469.00 131650.10 0.312 0.149 0.076 -0.002 
: RI-: CLPM(means) 59613.62 59777.5 0.036 0.085 0.979 0.976 
CM-SR 
: Linear 59558.98 59717.89 0.024 0.047 0.991 0.989 
: UGT 59557.42 59756.06 0.023 0.035 0.992 0.990 
: FI-CLPM 

V:Self-Concept) 126450.271 126728.220 0.088 0.063 0.809 0.753 
V:Task Value) 127518.02 127795.97 0.087 0.057 0.801 0.743 
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Table 5. Autoregressive and Cross-Lag Estimates from the Various Models 

 

 
M1: 
CLPM 

M2: CLPM 
(Xit-X.t) 

 
M3:CLPM 
(Xit-Xi.) 

M4: 
RI-CLPM 

M5: 
LGCM- SR- 
Linear 

M6:  LGCM-SR-
UGT 

M7: 
FI-CLPM 

TV8<-TV7 0.404 0.404 -0.150 0.247 0.167 0.158 0.167 
TV9<-TV8 0.444 0.444 -0.150 0.266 0.184 0.171 0.168 
TV10<-TV9 0.437 0.437 -0.150 0.252 0.175 0.163 0.162 
TV11<-TV10 0.46 0.46 -0.150 0.277 0.197 0.185 0.163 
TV12<-TV11 0.44 0.44 -0.150 0.248 0.174 0.158 0.165 

        

SC8<-SC7 0.426 0.426 -0.010 0.138 0.087 0.076 0.211 
SC9<-SC8 0.445 0.445 -0.010 0.14 0.088 0.077 0.223 
SC10<-SC9 0.422 0.422 -0.010 0.126 0.08 0.07 0.225 
SC11<-SC10 0.437 0.437 -0.010 0.131 0.084 0.073 0.224 
SC12<-SC11 0.445 0.445 -0.010 0.137 0.089 0.076 0.218 

        

TV8<-SC7 0.118* 0.118* 0.014 0.057 0.05 0.045 -0.056 
SC8<TV7 0.103 0.103 -0.019* 0.09* 0.072* 0.067* -0.058 
TV9<SC8 0.124* 0.124* 0.014 0.057 0.05 0.045 -0.054 
SC9<-TV8 0.113 0.113 -0.019* 0.097* 0.08* 0.072* -0.060 
TV10<-SC9 0.122* 0.122* 0.014 0.054 0.048 0.043 -0.054 
SC10<-TV9 0.107 0.107 -0.019* 0.088* 0.072* 0.067* -0.057 
TV11<-SC10 0.133* 0.133* 0.014 0.062 0.056 0.05 -0.059 
SC11<-TV10 0.107 0.107 -0.019* 0.088* 0.072* 0.066* -0.057 
TV12<-SC11 0.134* 0.134* 0.014 0.062 0.056 0.049 -0.062 
SC12<-TV11 0.103 0.103 -0.019* 0.083* 0.068* 0.061* -0.058 
         

*indicates causally dominant path   TV=task value, SC=self-concept  

4.1.1 Results for CLPM Without Disentangled Effects 

The CLPM on the observed variables (Model 1) did not yield particularly good model fit with 

RMSEA=0.083 (90% CI=0.076, 0.090), SRMR=0.129, CFI=0.876, and TLI=0.866. The 

autoregressive parameters for each self-concept and task value are relatively similar in 

magnitude averaging at 0.437 for task value and 0.435 for self-concept. The cross-lag estimates 

selected self-concept as causally dominating task value, showing on average that self-concept 

dominates task value by a factor of about 1.185. This is to say that self-concept->task value paths 

are nearly 20% stronger than the task value->self-concept paths. A test of path equality indicates 
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that these paths are significantly different, Wald χ2 (1) =19.119, p<0.001. All of the cross-lag 

parameters are significantly positive in sign, suggesting that individual’ beliefs about their ability 

with mathematics leads to greater appraisal of the value of mathematics for them to a greater 

extent than increases in task value predict increases in self-concept. Time specific correlations 

between task value and self-concept have a correlation of about 0.5 at time 1 and around 0.4 at 

subsequent time points. Taken with the autoregressive estimates this implies that relationships 

between constructs at given time points is nearly as large as within construct relationships 

between time points.  

Unsurprisingly, the CLPM with means (Model 2) had nearly equivalent fit to the CLPM 

on the observed variables, though by incremental fit indices we find it is a little more favored, 

with RMSEA=0.083 (90% CI=0.076, 0.090), SRMR=0.129, CFI=0.883, TLI=0.871. 

Furthermore, the autoregressive and cross-lag parameters are the same as found in the CLPM on 

observed variables, thus leading us to the exact same conclusion.   

The CLPM fit directly to the person-mean centered variables (Model 3) was evaluated in 

terms of unstandardized coefficients. Since we are using centered variables, standardized results 

may be confusing. The fit was extremely poor, suggesting that perhaps this is not an acceptable 

approach, RMSEA=0.312 (90% CI=0.308, 0.316), SRMR=0.149, CFI=0.076, TLI=-0.002. Since 

we have fixed autoregressive and cross-lag parameters the values do not vary over time. Both 

task value and self-concept had negative autoregressions at -0.150 and -0.01 respectively. With 

this model, we now have task value dominating self-concept by a factor of about -1.357. A test 

of path equality indicated the difference in cross-lag estimates to be significant, Wald χ2(1) 

=5.126, p=0.0236. The cross-lag suggest that when individuals are above their average on task 

value it will be followed by them below their average on self-concept. Likely, this effect is due 
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to regression to the mean. The time specific correlations between constructs were as follows 

0.467 at grade 7, 0.378 at grade 8, 0.412 at grade 9, 0.392 at grade 10, 0.428 at grade 11, and 

0.439 at grade 12. Yet, due to such poor fit, these results are taken with caution. 

4.1.2 Results from the RI-CLPM 

The RI-CLPM (Model 4) improves in model fit over the CLPM, RMSEA=0.036 (90% CI=0.03, 

0.04), SRMR=0.085, CFI=0.979, TLI=0.976. As one would anticipate, given that the random 

intercept is now absorbing some of the stability in processes, the autoregressive parameters 

reduce to about an average of 0.258 for task value and 0.134 for self-concept. This change from 

the prior models implies that variation accounted for by between person trait stability is likely 

greater for self-concept than task value. This can be further evaluated by examining the random 

intercept variances. Both task value and self-concept show significant interindividual variance in 

trait like stability. For task value, we have σ2= 3.827, SE=0.324 yielding a test statistic of 

3.827/0.324=11.822 which is significant at p<0.001. For self-concept, we have σ2 = 2.414, 

SE=0.154 yielding at test statistic of 15.694 which is also significant at p<0.001. In terms of the 

cross-lagged parameters a new story emerges once between and within person processes are 

disentangled. The RI-CLPM indicates that task value is causally dominating self-concept by a 

factor of about 1.527, implying that the prediction of intra-individual changes in self-concept 

from intra-individual changes in task value is around 53% stronger than the prediction of task 

value from self-concept. A test of path equality indicates this difference to be significant, Wald 

χ2(1) =6.818, p=0.009. All of the cross-lag estimates are significant and positive hence implying 

that increases in task value within a person predict increases in self-concept to a greater extent 

than the reverse. Note that, despite the poor fit, the person-centered CLPM yielded the same 
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conclusion about causal dominance, except it determined it in a negative direction. The 

correlation between time specific residuals of the two processes is consistent with findings in the 

prior models having time 1 correlate around .426 and subsequent time points ranging from .35 to 

.41. Hence after accounting for trait like stability between persons, the time specific correlations 

between processes are greater than the within person-within process relation between time 

points. The covariance between random intercepts is significantly positive as well (2.054; 

correlation of 0.676), inferring that individuals who are generally higher on task value are higher 

on self-concept as well. This would appear to be consistent with findings from the cross-lags 

which indicate that increases in one process lead to increases in the other. 

4.1.3 Results from the LGCM-SR 

Since we are now including trajectories we begin this evaluation differently. First, we want to 

establish the shape of the trajectories for each process separately and then relate them together 

into LGCM-SR model. Figure 8 shows the resulting trajectories for task value when fit as linear 

vs. unspecified. Model fit indices do not, in general, show a clear preference for the linear vs. 

unspecified trajectory for task value (see Table 6). However, by looking at the unspecified 

trajectory it does appear that task value takes on a curvilinear growth trajectory. Figure 9 shows 

the resulting trajectories for self-concept. Self-concept also appears to take on a curvilinear 

growth trajectory, model fit is a bit more consistent in choosing the unspecified curve, except 

that BIC prefers linear curve, while both RMSEA and TLI show no preference (see Table 6). 
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Table 6. Model fit indices for Growth Curve Specifications 

Growth Trajectories AIC BIC RMSEA SRMR CFI TLI 
Self-Concept        
Linear  28727.28 28782.13 0.051 0.064 0.969 0.971 
Unspecified 28716.71 28791.5 0.051 0.048 0.977 0.971 
Task Value        
Linear  33483.17 33538.02 0.066 0.077 0.938 0.942 
Unspecified 33464.08 33538.87 0.069 0.076 0.949 0.937 

 
 

 

Figure 8. Growth Curves for Task Value 

 

Figure 9. Growth Curves for Self-Concept 
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We first fit the bivariate model using the linear trajectory for both task value and self-

concept (Model 5). The fit for this model was better than was observed with the RI-CLPM, 

RMSEA=0.024 (90% CI= 0.014, 0.032), SRMR=0.047, CFI=0.991, TLI= 0.989. The 

autoregressive parameters for task value makes a further drop to 0.179 and for self-concept to 

0.086. As can be seen the added variance being accounted for in the between person’s 

component further decreases the autoregressive parameters. For task value the intercept variance 

was 3.965, SE=0.709, yielding a test statistic of 5.593 which is significant at p<0.001 and the 

slope at 0.192, SE=0.054, yielding a test statistic of 3.52. Self-concept once again shows 

significant between person stability with 2.100, SE=0.272 (Wald’s z=7.727, p<0.001), in terms 

of the slope we get the estimated variance 0.055, SE=0.021(Wald’s z= 2.654, p=0.008). The 

cross-lag parameters indicate that task value is dominant. The cross-lag path coefficients show a 

bit of a decrease, with the factor by which task value dominates self-concept being reduced to 

1.404. A test of path equality implies that there is no longer a significant difference between the 

cross-lag path coefficients, Wald χ2(1) =0.687, p=0.4071. The covariance between task value and 

self-concept slopes is significant,0.484, SE=0.169 yielding test statistic=2.859 with p=0.004. 

This corresponds to a correlation value of 0.735, which indicates that growth in these two 

constructs is positively and closely related. The covariance between intercepts is also significant 

with (0.539, SE=0.072, test statistic=7.493, p<0.001).  At time 1 the correlation in residual errors 

is 0.440, at later times they range from 0.34 to 0.43. 

The resulting Latent Growth Curve Model with Unspecified Growth Trajectories (Model 

6) showed near perfect fit with RMSEA=0.023 (90% CI=0.013, 0.033), SRMR=0.035, 

CFI=0.992, TLI=0.99, proving to be preferred over all the other models (see Table 4). The 

resulting trajectories are depicted in Figure 10, as one can see the trajectories take on a non-
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linear form. with a curvature that is not extreme, which gives some insight into why the 

unspecified trajectory presented only moderate improvement in the model fit over the linear 

trajectory. In terms of the autoregressive and cross-lag estimates we derive similar findings as 

with the Linear LGCM-SR. The coefficients undergo an even additional drop due to additional 

variance now being absorbed in the between person components by the unspecified growth 

curve, namely the inter-individual differences in change are being more deeply accounted for by 

allowing the curve to take on its own shape that best matches the data. The autoregressive 

estimates for task value averaged at 0.167 and those for self-concept at 0.074. Though all of the 

autoregressive estimates remain significant we do find an even greater drop in their value, and 

again self-concept is estimated even lower than task value autoregressive paths. For task value, 

intercept variance is estimated as σ2 = 3.987, SE= 0.737 given a test statistic of 3.987/0.737= 

5.410, p<0.001, and for self-concept σ2 = 2.117, SE=0.264, 2.117/0.264= 8.019, p<0.001. For 

slope variances, we find that task value σ2= 4.233, SE=1.488, giving a test statistic of 

4.233/1.488=2.845, p=0.004, and self-concept has σ2 = 1.274, SE=0.477, giving a test statistic of 

1.274/0.477=2.671, p=0.008. Slope parameters are tricky to grasp within the unspecified 

framework, but what we can see is that there is comparably significant variation in 

interindividual differences in change for both task value and self-concept over time. This 

evidences that additional variance is being absorbed into the between person model from the 

within person model, which again is cohesive with our finding that there was reduction in 

autoregressive and cross-lag estimates.  
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Figure 10. Unspecified Growth Curves for Self-Concept and Task Value 

The LGCM-SR-UGT leads to the same conclusion about casual dominance as was given 

by the Linear LGCM & RI-CLPM, namely that task value dominates self-concept. Except in this 

case we now find that only the prediction of changes in self-concept from changes in task value 

is significantly positive, the self-concept->task value paths fall to non-significance. Task value is 

assessed as dominating self-concept by a factor of 1.442, approximately 44% stronger prediction 

of self-concept from task value than task value from self-concept. However, the test of path 

equality indicates that there is not a significant difference between the cross-lag path coefficients, 

Wald χ2(1) =0.448, p=0.5032. 

The decrease in the magnitude of cross-lag estimates between the RI-CLPM and LGCM-

SR is notable. In prior models the cross-lag estimates were fairly consistent, whereas in the 

LGCM-SR estimates are reduced by about half (see Table 5) to see all of the cross-lag and 

autoregressive estimates from the various models. This sharp reduction may be related to the 

covariance of the task value and self-concept slopes pulling out some of the cross-lag effects 

over time. Examination of this covariance does show that there is a significant covariance 

between the slopes of the processes, σ(TVslope,SCslope)=1.292, SE=0.618, yielding test statistic 

1.292/0.618= 2.091, p=0.037. Correlations between time specific residual are nearly the same as 
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they were in RI-CLPM and Linear LGCM-SR, with some minimal reduction (7th grade: 0.428, 

8th grade: 0.331, 9th grade: 0.368, 10th grade: 0.357, 11th grade: 0.408, 12th grade: 0.411). From 

these results, the addition of slope parameters has the greatest influence on the cross-lagged 

parameters as well creating some reduction in autoregressive and time specific residual 

correlations.   

4.1.4 Results from the FI-CLPM 

The FI-CLPM (Model 7) results show that when we treat self-concept as the lagged dv and task-

value as the predicting variable our model fit is not very good, RMSEA=0.088 (90% CI=0.08, 

0.094), SRMR=0.063, CFI=0.809, TLI=0.753. For self-concept, the FI-CLPM model presents a 

slightly higher standardized autoregressive parameter than the RI-CLPM, averaged as 0.165 

across time. The intercept variance and standard error given by FI-CLPM for self-concept is a bit 

smaller than the estimate given by the RI-CLPM, σ2 = 2.037, SE=0.125, yielding at test statistic 

of 16.355, p<0.001. All the correlations between the intercept and the time varying predictors are 

significant and increase across time, ranging from 0.333 at time 1 to 0.650 at time 6, the 

correlation between the lagged dv intercept and time 1 value is significant with a value of 0.485, 

and the time 1 correlation between task value and self-concept is significant with a value of 

0.467. 

When we treat task-value as the lagged dv predicted by self-concept, our model fit is 

similar to the converse model, RMSEA=0.087 (90% CI=0.081, 0.092), SRMR=0.057, 

CFI=0.801, TLI=0.743. For task-value the FI-CLPM model presents a slightly lower 

standardized autoregressive parameter than the RI-CLPM, averaged as 0.220 across time. The 

intercept variance and standard error given by FI-CLPM for task-value are again a bit smaller 
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than the estimate given by the RI-CLPM, σ2 = 3.765, SE=0.265, yielding at test statistic of 

14.188, p<0.001. All of the correlations between the intercept and the time varying predictors are 

significant and increase across time, ranging from 0.388 at time 1 to 0.667 at time 6, the 

correlation between the lagged dv intercept and time 1 value is significant with a value of 0.399, 

and the time 1 correlation between task value and self-concept is significant with a value of 

0.467, which is consistent with the model fit with self-concept as the lagged dv. 

The cross-lag parameters derived from the FI-CLPM fit to each outcome present to be 

essentially equal, -0.058 when self-concept is the dependent variable and -0.057 when task-value 

is the dependent variable; the ratio is 1.02 indicating that task-value only dominates self-concept 

by about 2%. As can be seen here, the FI-CLPM, which is most comparable to the RI-CLPM 

amongst the models, shows some consistencies and some differences. Though estimates of the 

AR paths and variances are similar, we do find that variance estimates and their respective 

standard errors are smaller with the FI-CLPM. The change in AR parameters is not consistent, as 

in one case the FI-CLPM gives smaller path estimates and larger path estimates in the other case. 

The cross-lags reveal an entirely different story then all of the other models, implying that there 

is no clearly dominating process.  

4.1.5 Summary of Results for LSAY Example 

In general, what is found by model fit indices is that models which disentangle between and 

within person effects are preferred over ones that do not (see Table 4). The FI-CLPM is an 

exception to this. While the person mean centered CLPM is the worst overall, the FI-CLPM is 

second worst in terms of information criteria and relative fit indices. In terms of RMSEA the FI-

CLPM is similar to the standard CLPM, though a bit poorer. However, SRMR indicates that FI-
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CLPM is better than RI-CLPM but not as good as LGCM-SR. The LGCM-SR-UGT is 

considered the best fit of all the models, having what could be argued as excellent fit as 

compared to the other model. In Table 5 differences in the autoregressive and cross-lag estimates 

from each of the models are presented. Some of the key findings from this were that whether we 

disentangle between and within person effects or not could lead to different conclusions about 

which process is causally dominant. In this case, the conflated models lead to the conclusion that 

self-concept causally dominates task value whereas in the disentangled models we conclude that 

task value causally dominates self-concept, except in the case of the FI-CLPM where we 

conclude there is no real dominating process. It also seems that the addition of the random or 

fixed intercepts to account for trait like stability in processes amongst individuals is absorbing 

some of the autoregressive effects (aka stability parameters) from the within person models. 

Further, when slopes are fitted to the process cross-lag effects underwent a notable decrease in 

magnitude, implying that the slopes as well as their covariance were absorbing some of the 

within person cross-lagged effects. What is notable about the findings from the fixed-effect 

models is that they are not developed enough to give us good information about causal 

dominance since they do not test the reciprocal cross-lags at the same time. 

4.2 CONVERGENCE RATES AND INADMISSIBLE SOLUTIONS 

Issues in the correct fitting of a model came in three main forms: (1) negative variance estimates 

in the exogenous latent variables; (2) correlations amongst the exogenous latent variables that 

exceeded 1; and, (3) non-convergence. In the following the resulting datasets after removal of 

non-convergent and inadmissible solutions will be reported for each data set created from the 
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Monte Carlo simulations (see Table 7 for a summary of sample loss due to non-convergence and 

inadmissible solution).  

When fitting the linear LGCM-SR model to the linear LGCM-SR data there was a total 

of 24 non-convergent solutions in the 54,000 replications. The more common issue was with 

estimating negative variances for the exogenous latent variables; there was a total of 4,458 

inadmissible solutions due to this. In addition, there were a remaining 160 solutions that 

contained correlations amongst the exogenous latent variables that exceeded 1. The resulting 

sample, after removing these non-convergent and inadmissible solutions was N=49,358 (i.e., 

~91.4% of the solutions were convergent and admissible, and thus were used in the analysis).  

A likely reason underlying such non-convergence and these related inadmissible 

solutions is that the models being fit to the data are either overfitting the data (i.e., too much 

variance being explained due to fitting too many parameters) or down-fitting variance from the 

between person components to the within person components (i.e., misallocation of variance 

from one model component to another). Overfitting is suspected when fitting more complex 

models to data generated from simpler models: fitting LGCM-SR-UGT to RI-CLPM and 

LGCM-SR-Linear, and fitting LGCM-SR-Linear to RI-CLPM. While down-fitting is suspected 

when fitting simpler models to data generated from more complex models: fitting RI-CLPM to 

LGCM-SR-Linear and LGCM-SR-UGT, and fitting LGCM-SR-Linear to LGCM-SR-UGT. 

As concerns the down-fitting piece, we see that when fitting simpler models to the more 

complex data between-person variance components are consistently underestimated while 

within-person residual errors are overestimated; further, this respective under- and over-

estimation is highly correlated. To illustrate, when fitting the RI-CLPM to the Linear LGCM-SR, 

we have the X intercept underestimated by -63.68% and the Y intercept underestimated by -
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152.60%, with the X residual (t=1) being overestimated by +37.96% and the Y residual (t=1) 

being overestimated by +43.78%. The correlations between the intercepts and residuals (t=1) all 

exceed r=-0.99, suggest an essentially perfect negative relationship wherein as overestimation of 

the residual variance estimates increase so too does the underestimation of the intercept variance 

estimates. Similarly, when fitting the RI-CLPM to the LGCM-SR-UGT we have residual errors 

being overestimated between +21% and +22% and intercept variance being underestimated 

between -39.71% for the X intercept variance and -75.84% for the Y intercept variance. The 

correlations amongst these misestimations are again high, with all the intercept variance biases 

and the residual variance (t=1) biases exceeding r=-0.97, suggesting again a near perfect 

correspondence wherein as the overestimation of the residual variance goes up so too does the 

underestimation in the intercept variance. When fitting the Linear to the Unspecified LGCM-SR 

the underestimation of the intercepts and the overestimation of the residual errors is severe (note: 

in this condition we had no admissible solutions). The X intercept variance was underestimated 

by -1572.45% and the Y intercept variance was underestimated by -980.53%, while the Y 

residuals were overestimated by +442.72% and the X residuals were overestimated by 

+566.13%. However, the correlations were less extreme, but still notable, ranging between r = -

0.269 for X residual overestimation to Y intercept variance underestimation, and, r = -0.785 for 

Y residual overestimation to X intercept variance underestimation. Again indicating that as 

underestimation in the between-person variance components increases so too does the 

overestimation in the within-person variance components. Regarding overfitting more complex 

models to data generated from simpler models, we find that anytime we fit LGCM-SR Linear 

and UGT to the RI-CLPM slope variance estimates are also negative, clearly indicating an 

overfitting due to the fact that RI-CLPM contains no inter-individual variance in change over 
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time and the LGCM-SR models are trying to estimate it anyhow. When fitting the LGCM-SR-

UGT to the LGCM-SR-Linear, we see that in nearly half the cases (45.58%) our relative fit 

indices are exceeding 1 which signals overly perfect modeling of the Linear LGCM-SR data by 

the LGCM-SR-UGT. In sum, it is plausible that complex models are overfitting data from 

simpler models, and simpler models are misallocating error between the within- and between-

person level (down-fitting), which may be underlying our admissible and convergent solution 

issues. 

Considering non-convergent and inadmissible solutions when fitting the Unspecified 

LGCM-SR model to the Linear LGCM-SR data, one case was lost due to non-convergence, 

3,079 were dropped due to negative variance estimates, and an additional 3,929 were dropped for 

having correlations amongst the exogenous latent variables greater than 1 or less than -1. This 

results in a set of 46,991 cases, for a convergence rate of 87%. Fitting the RI-CLPM to the 

Linear LGCM-SR data was considerably more problematic. With a total of 1,622 non-

convergent solutions, a total of 11,822 solutions were inadmissible due to negative variance 

estimates, and a total of 5,138 solutions were inadmissible due to correlations amongst the latent 

variables being outside the 1 to -1 range. This means that only about 65% (N=35,418) of the 

results yielded from fitting the RI-CLPM to the Linear LGCM-SR were used in analysis. Again, 

the main issue was due to the non-dominant condition. However, in this case it does appear that 

increasing variance and covariance in the slopes was also negatively impacting the results in 

terms of convergent and admissible solutions. 

When generating from the Unspecified LGCM-SR, fitting the generating model was less 

problematic in terms of non-convergent and inadmissible solutions. Only 1 replication didn’t 

converge, there were no negative variance estimates, and only 2 correlations in the latent 
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variables were out of range. Thus, the resulting sample was 53,997, which is negligible 

(convergence rate of 99.9%). When fitting the Linear LGCM-SR to the Unspecified LGCM-SR 

data convergence and inadmissible solutions were extremely problematic. There were 647 non-

convergent solutions. The biggest issue was with inadmissible solutions; 53,224 replications 

produced negative variance estimates. This results in only 129 observations, however, amongst 

these remaining cases the correlation between the first-time point was less than negative 1, thus 

in no case did the Linear LGCM-SR produce an admissible or convergent solution. In this way, 

we can argue that in terms of our standards, the Linear LGCM-SR should not be used in the 

presence of a non-linear trajectory.  

In terms of producing valid solutions, the RI-CLPM proves to be a better option than a 

linear model when fitting to a non-linear trajectory. The RI-CLPM only produced 9 non-

convergent solutions, about 20% of the solutions (N=10,893) were inadmissible due to negative 

variance estimates, and around 9% were inadmissible due to correlations outside of the 1 to -1 

range (N=4,778), for a remaining analytic sample of 38,320 (~71%).  

For the RI-CLPM generating model we only have 2,000 cases and when we fit the RI-

CLPM to this data all replicated results were convergent and admissible. When fitting the Linear 

LGCM-SR to the RI-CLPM there were no convergence issues, but 100% of the models produced 

negative variance estimates in the latent variables, namely the X slope is always estimated with a 

negative variance. This is likely because the analysis model contains more variance components 

than are produced by the generating model. A similar thing happens when fitting the Unspecified 

LGCM-SR, wherein 296 of the models do not converge, and in all cases, a negative variance for 

the latent variables was produced, namely the X slope always has a negative variance. 
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Additionally, unbounded correlations were present, along with other negative variance estimates, 

such that we never had an admissible solution. 

Table 7.  Summary of Convergent and Admissible Solutions 

  Remaining Datasets after loss due to: 
Generating 
Model 

Fitted Model Non-
Convergence 

Negative 
Variance 

Correlations > 1 Convergent and 
Admissible Solutions 

LGCM-SR-LIN LGCM-SR-LIN 53,976 49,518 49,358 91.4% 
Total=54,000 LGCM-SR-UGT 53,999 50,920 46,991 87% 
 RI-CLPM 52,378 40,556 35,418 65.6% 
LGCM-SR-UGT LGCM-SR-UGT 53,999 53,999 53,997 99.99% 
Total=54,000 LGCM-SR-LIN 53,353 129 0 0% 
 RI-CLPM 53,991 43,098 38,320 70.96% 
RI-CLPM RI-CLPM 2,000 2,000 2,000 100% 
Total=2,000 LGCM-SR-LIN 2,000 0 0 0% 
 LGCM-SR-UGT 2,000 1,704 0 0% 

4.3 MODEL FIT 

When comparing models in terms of fit we look at this in accordance with three classes of model 

fit indices: information criteria, relative fit, and absolute fit. Information criteria must be 

considered relative between models as the numbers themselves are not readily interpretable in 

terms of a null hypothesis or absolute goodness of fit. If all the models being compared fit poorly 

we will have no sense of this from the information criteria alone, so rather we use it to compare 

between models. The general rule of thumb is that a more minimal information criteria indicates 

fit preference for the model yielding the smaller value. Details on the information criteria being 

assessed in this paper can be found in the methods section on dependent variables used in the 

simulation study.  

The relative fit indices between models are also considered comparatively between 

models, and are evaluated in relation to a null model. Unlike information criteria we do have 
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criteria values to evaluate model fit, with a value of 1.00 indicating a perfectly fit model. The 

absolute model fit indices are also compared between models, with a value of 0.00 indicating a 

perfectly fit model, these indices are called absolute because they make a comparison directly to 

a saturated (i.e., fully explained) model.  

When considering our fit indices, our main interest concerns how often the index favors 

the correct model as this aligns with the way in which model fit indices are used in practice. In 

the case that a model index doesn’t indicate a preference, we opt for parsimony. For example, if 

the same index value were derived for the RI-CLPM and the Linear LGCM-SR, then we say that 

the index favors the RI-CLPM because it is a less complex model. Because of issues with non-

convergence and inadmissible solutions barring us from comparing between models in given 

replications, we treat such cases as missing values. In the following we present the percentages 

for the number of replications in which the various indices select the correct model. Table 8 

summarizes correct selection rates across the model fit indices.  

4.3.1 Information Criteria Results 

When fitting to the Linear LGCM-SR data, overall, the AIC did well at selecting the correct 

model over the Unspecified LGCM-SR, for a total of 96% correct selection, and slightly less 

well at selecting the correct model over the RI-CLPM, for a total of 91% correct selection. The 

slope variances were an important factor in making the correct selection over the RI-CLPM, 

namely as slope variances increased the AIC became more likely to correctly choose the Linear 

LGCM-SR over the RI-CLPM. This result would be expected when considering that the RI-

CLPM does not account for slope variance as the LGCM-SR models do. Specifically, the 

percentage of time that AIC correctly chooses over the RI-CLPM goes from 84% to 100% when 
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moving from an X slope variance of 4 to 16, and 88% to 95% from Y slope variance of 5 to 20. 

The slope covariance also appeared to play some role in selecting the correct model, moving 

from 94% correct selection over the RI-CLPM when the correlation was small to 90% when the 

correlation was large. However, the most important factor pertained to the dominance condition, 

with the AIC only selecting the correct model 71% of the time when dominance was present as 

opposed to 99% of the time when no dominance condition was present. When fitting RI-CLPM 

to the Unspecified LGCM-SR data, we find that AIC selects the correct model 100% of the time. 

The BIC performed similarly; however, due to its more strenuous penalty for model 

complexity, we find that the BIC selects the correct Linear LGCM-SR over the Unspecified 

LGCM-SR 100% of the time. Overall, the BIC selects the correct, Linear LGCM-SR, model over 

the RI-CLPM 92% of the time. Again, slope variances impact the correct selection over the RI-

CLPM, going from 84% correct selection at low X slope variance to 100% correct selection at 

the highest X slope variance and 89% correct selection at low Y slope variance to 95% correct 

selection at high Y slope variance. At the low slope covariance, the BIC correctly chooses over 

the RI-CLPM 94% of the time and 90% of the time when the slope covariance is high. The 

dominance condition, as with AIC, appears to be the most influential factor on correct selection 

over the RI-CLPM using BIC with 72% correct selection when a dominant process was present 

to 99% when there was no dominant process. When fitting to the Unspecified LGCM-SR data, 

BIC correctly selected over RI-CLPM 100% of the time. 

4.3.2 Relative Fit Indices 

The Comparative Fit Index (CFI) performed well at correctly choosing the Linear LGCM-SR 

over the RI-CLPM 100% of the time, but not as well at correctly choosing over the Unspecified 
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LGCM-SR (a rate of 74% correct selection). There was no clear factor driving the correct 

selection as the rate was consistent across conditions. In fact, what was most salient when 

considering correct selection rates between the Linear and Unspecified LGCM-SR was that the 

CFI value was always at or extremely near one implying perfect fit for both models. Thus, the 

primary reason that the CFI is selecting the correct, Linear LGCM-SR model over the 

Unspecified LGCM-SR was likely due to it being a less complex model. From this CFI is not 

particularly useful when considering potentially saturated models. When fitting the RI-CLPM to 

the Unspecified LGCM-SR data, CFI correctly selected the Unspecified LGCM-SR over RI-

CLPM 100% of the time.  

Similarly, Tucker-Lewis Index (TLI) correctly selected Linear LGCM-SR over RI-CLPM 

100% of the time, but only correctly selected over the Unspecified LGCM-SR 55% of the time. 

As was the case with CFI no clear pattern of variation in correct selection rates across conditions 

was apparent with both Unspecified and Linear LGCM-SR producing TLI values at or near one 

and Linear being selected because it was less complex. The Unspecified LGCM-SR was 

correctly selected over the RI-CLPM 100% of the time by TLI. On average, the differences in 

relative fit index values between the Linear and Unspecified LGCM-SR when fitting to the 

Linear LGCM-SR data was less than one-ten-thousandth. 

4.3.3 Absolute Fit Indices 

When fitting to the Linear LGCM-SR data, we find that RMSEA chose the correct model over 

the RI-CLPM 100% of the time and over the Unspecified LGCM-SR 79% of the time. No 

apparent pattern of model selection differences across conditions emerged. Similar to the case 

with the relative fit indices we have index values indicating perfect fit for both LGCM-SR 
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models, thus correct selection was likely made because of the Linear model being more 

parsimonious. As was the case with the relative fit indices, the average difference between 

RMSEA for Linear vs. Unspecified LGCM-SR when fitting to the Linear LGCM-SR was less 

than one-ten-thousandth of a point. The RMSEA correctly chose the Unspecified LGCM-SR 

over the RI-CLPM 100% of the time.  

SRMR did well at correctly choosing the Linear LGCM-SR over the RI-CLPM 99% of 

the time but poorly at correctly choosing over the Unspecified LGCM-SR, with a correct 

selection rate of 33%. There appeared to be a minor effect of dominance condition on the correct 

selection of Linear LGCM-SR over the Unspecified LGCM-SR, with 37% correct selection 

when no dominant process was present and 31% in the presence of a dominant process. The 

likely reason behind this finding may be that the SRMR does not account for any penalty due to 

model complexity and is purely founded on which model explains the most variance. Because 

the unspecified model freely fits a trajectory, it can account for more sample variance than the 

linear model, thus consistently producing a lower SRMR value overall. The SRMR correctly 

selected the Unspecified LGCM-SR over the RI-CLPM 99% of the time. The dominance 

condition and X slope variance may have some minor influence on the correct selection of the 

Unspecified LGCM-SR over the RI-CLPM, with 98% correct selection when there was a 

dominant process and nearly 100% when there wasn’t a dominant process, and we move from 

98% to 100% going from low to high X slope variance.  
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Table 8. Correct Selection Rates amongst the model fit indices 

 Fitting to Linear LGCM-SR Fitting to Unspecified LGCM-SR 

Model Fit Index LGCM-SR-UGT RI-CLPM Recall LGCM-

SR-LIN never 

produces an 

admissible 

solution when fit 

to LGCM-SR-

UGT 

RI-CLPM 

AIC 96% 91% 100% 

BIC 100% 92% 100% 

CFI 74% 100% 100% 

TLI 55% 100% 100% 

RMSEA 79% 100% 100% 

SRMR 33% 99% 99% 

 
 

4.4 CROSS-LAG PARAMETERS 

In the following we consider the effect of the models and conditions on the cross-lag 

components. This is important as these are the components from which our inferences and 

conclusions about phenomena under study with such models will be based. We consider these in 

three different ways: (1) in terms of the dominance factor; (2) in terms of cross-lag parameter 

estimate bias; and, (3) bias in the standard errors for the cross-lag parameter estimates. The 

factor of dominance is of a more substantive interest as it reflects the conclusions we make about 

causally dominant processes. The methods section gives more detail on how this measure is 

formulated. The relative bias in the cross-lag parameter estimates is of interest because it gives 

us insight into the conditions under which parameter estimation is more or less trustworthy. The 

corresponding standard error relative bias is important as it gives insight into the confidence with 
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which we make these estimates and the extent to which the statistical testing correctly captures 

an effect. When considering these findings we encounter higher order interactions, in the 

presence of such interaction lower order and main effects should be interpreted with caution. In 

the presentation of these findings with higher order interactions, lower order interactions and 

main effects are presented as accessories for understanding higher order interaction. 

Because of the large sample being used in these analyses we will be less concerned with 

statistical significance as gauged by p-values which are sample size dependent, and will rather 

focus on effect sizes. Specifically, we will use partial eta-squared, , which is 

a measure of the proportion of variance explained by the models and conditions under evaluation 

after controlling for one another. As a criteria value, we will use a partial η2 value of 0.10 to 

signal what we can consider to be notable influences, as this would correspond to 10% of partial 

variance explained.  

4.4.1 Factor of Dominance 

The factor of dominance can be evaluated under the understanding that when Y is dominating X 

the factor should be 4, whereas when there is no dominant process the factor should equal one. 

When fitting to the Linear LGCM-SR data, naturally the most important factor for factor of 

dominance was the dominance condition itself, . There was also a significant 

interaction between the model and the X slope variance, ,  this effect is reflected in 

table 9. 
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Table 9.  Factor of dominance when fitting the LGCM-SR data by dominance condition, X slope variance, 

and model 

Dominance Condition Model X slope variance N Mean SD 

Y dominates X Linear LGCM-SR 4 8938 4.003 0.106 
  

8 8936 4.002 0.106 
  

16 8921 4.001 0.109 
 

Unspecified LGCM-SR 4 8942 4.003 0.106 
  

8 8937 4.002 0.106 
  

16 8922 4.001 0.109 
 

RI-CLPM 4 6596 3.932 0.235 
  

8 1952 3.520 0.209 

No Dominance Linear LGCM-SR 4 7516 1.000 0.014 
  

8 7554 1.000 0.015 
  

16 7493 1.000 0.015 
 

Unspecified LGCM-SR 4 8997 1.000 0.014 
  

8 6846 0.999 0.015 
  

           16 4347 1.000 0.015 
 

RI-CLPM 4 9000 1.134 0.145 
  

8 8997 1.038 0.132 
  

16 8873 0.875 0.113 
 

 

Overall, there was high consistency in accurately capturing the proper factor of 

dominance when fitting the LGCM-SR models to the Linear LGCM-SR data. When fitting RI-

CLPM to a Linear LGCM-SR with a dominant process, increases in the X slope variance led to 

greater underestimation of the dominance relation and when the X slope variance reached its 

highest level we failed to estimate the models at all. When no dominant process was present it 

was not entirely clear what the pattern was, when moving from an X slope variance of 4 to an X 
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slope variance of 8, the capturing of this dominance factor appeared to improve from being 

overestimated to being more just estimated. However, when going from X slope variance of 8 to 

X slope variance of 16 we saw a worsening in the adequacy of capturing the dominance relation, 

such that underestimation of this factor occurred. 

As expected the largest effect on the factor of dominance pertained to the dominance 

condition itself, , but this finding was trivial. Of more interest are the effects of the 

model being fit to the LGCM-SR-UGT data, , particularly as moderated by the 

dominance condition, . The RI-CLPM only slightly underestimated the factor of 

dominance, implying that it performs well when fit to the LGCM-SR-UGT data. Table 10 shows 

this effect, when fit to itself the factor of dominance is precisely captured, while there was some 

systematic underestimation on behalf of the RI-CLPM model being fit to the LGCM-SR-UGT 

data. 

Table 10. Factor of Dominance between models across dominance conditions when fit to the LGCM-SR-UGT 
data 

Model Dominance Condition N M SD 

LGCM-SR-UGT X Dominates Y 26998 4.000 0.090 

  No Dominance 26999 1.000 0.014 

RI-CLPM X Dominates Y 11331 3.640 0.287 

  No Dominance 26989 0.991 0.159 
 

Further, we found that the X slope variance influenced how well the factor of dominance 

was captured by the RI-CLPM model being fit to the LGCM-SR-UGT data:  for the 

three-way interaction model by dominance condition by X slope variance, and  for 
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the two-way model by X slope variance interaction. In Table 11 we can see that within the 

dominant process condition increasing the X slope variance led to greater underestimation of the 

dominance factor, and perhaps more notably within the highest variance condition we only have 

9 valid observations, meaning that this increasing variance is leading to more inadmissible or 

non-convergent solutions. The pattern in the non-dominance condition was less clear, where it 

began by slightly overestimating and then within the highest X slope variance condition became 

notably underestimated. 

Table 11. Factor of dominance across X slope variance and dominance condition when fitting RI-CLPM to 
the LGCM-SR-UGT 

Model  Dominance Condition X Slope Variance N Mean SD 

RI-CLPM X Dominate Y 4 7395 3.797 0.195 

    8 3927 3.347 0.176 

    16 9 2.762 0.146 

  No Dominance 4 9000 1.112 0.129 

    8 9000 1.012 0.118 

    16 8989 0.849 0.101 
 

 

Additionally, we find an effect of the Y slope variance on capturing the factor of 

dominance, . In table 12, though we do not have a significant three-way interaction, 

we depict the dominance conditions and Y slope variance levels for interpretability. It appears 

that when there was a dominant process there was an improvement in estimation as the Y slope 

variance increased, though admissible or convergent solutions appeared to degrade. The non-

dominant condition indicated that underestimation became less severe moving from low to 

medium Y slope variance, but, became overestimated when going from medium to high 

variance. Figure 11 illustrates the influence of X and Y slope variance across dominance 

conditions when fitting RI-CLPM to LGCM-SR-UGT.  
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Table 12. Factor of dominance across Y slope variance and dominance condition when fitting RI-CLPM to 
the LGCM-SR-UGT 

Model  Dominance Condition Y Slope Variance N Mean SD 

RI-CLPM X Dominates Y 5 4488 3.485 0.222 

    10 4104 3.626 0.231 

    20 2739 3.916 0.251 

  No Dominance 5 9000 0.872 0.098 

    10 9000 0.955 0.105 

    20 8989 1.146 0.127 
 

 

 

Figure 11. Factor of Dominance across dominance condition and slope variance 

 

In sum, the major finding with the factor of dominance is that when fitting the RI-CLPM 

to the Unspecified LGCM-SR data we have notable underestimation of the factor of dominance 

especially in the presence of a dominant process. Interestingly, the underestimation becomes 
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more severe as the X slope variance increases (i.e., dominant process variability), but becomes 

less severe as the Y slope variance increases (i.e., dominated process variability). 

4.4.2 Relative Bias in the Cross-Lag Parameter Estimates 

When fitting to the Linear LGCM-SR data we found an interaction effect on relative bias in the 

cross-lag parameter estimates regarding a predictor’s slope variance and the model being fit to 

the data. Table 13 gives some description of this effect. For the relative bias in the Y to X 

pathways we found a main effect for Y slope variance, , model, , and 

an interaction between the model and Y variance, .  A closer examination of this 

effect reveals that relative bias in the cross-lag parameter estimates from Y to X were not really 

present for either of the LGCM-SR models. However, when fitting the RI-CLPM to the Linear 

LGCM-SR as the Y slope variance increased so too did the relative bias of the cross-lag 

parameter estimate. A similar thing was observed for the cross-lag path from X to Y, with a main 

effect for X slope variance,  model, , and the interaction of X slope 

with model, . In all cases, the misestimation was biased downwards, thus we can 

say the RI-CLPM consistently underestimates the cross-lag path when fitting to the Linear 

LGCM-SR and the underestimation worsened as the slope variance for the predicting variable 

increased. Figure 12 depicts this effect as given in the table below. 
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Relative Bias in Yt-1  → Xt     

Model Y Slope Variance N Mean SD 

Linear LGCM-SR 5 16298 0.000 0.019 

  10 16534 -0.000 0.019 

  20 16526 0.000 0.020 

Unspecified LGCM-SR 5 17709 0.000 0.019 

  10 15150 -0.000 0.020 

  20 14132 0.000 0.021 

RI-CLPM  5 12569 -0.075 0.013 

  10 12148 -0.143 0.030 

  20 10701 -0.278 0.055 

Relative Bias in Xt-1  → Yt     
 

X Slope Variance N Mean SD 

Linear LGCM-SR 4 16454 0.000 0.014 

  8 16490 -0.000 0.015 

  16 16414 -0.000 0.015 

Unspecified LGCM-SR 4 17939 0.000 0.014 

  8 15783 -0.000 0.015 

  16 13269 -0.000 0.016 

RI-CLPM 4 15596 -0.108 0.016 

  8 10949 -0.171 0.024 

  16 8873 -0.275 0.022 
 

Table 13. Relative Bias in the Cross-Lag Parameter estimates in relation to Predictor’s Slope Variance and 
Model being fit to the Linear LGCM-SR data 
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Figure 12. Relative Bias in the Cross-Lag Parameter Estimations for the RI-CLPM when fitting to Linear 
LGCM-SR data 

 

When fitting to the LGCM-SR-UGT data we again observed that the predicting slope 

variance influenced the relative bias in our cross-lagged parameters. The main effect of the 

predicting slope variances,  and  for the Yt-1  Xt and Xt-1  Yt 

pathways respectively, consistently show an increase in the severity of underestimation as 

predicting slope variance increased. Corresponding to the increased variance in the predicting 

slope we also had more issues with inadmissible or non-convergent solutions. More importantly, 

as reflected in the model main effect,  and , along with the model by 

variance interactions,  and , for the Yt-1  Xt and Xt-1  Yt pathways 

respectively, we saw that this effect was driven primarily by the RI-CLPM. Namely, no bias was 

observed when fitting the LGCM-SR-UGT to itself, only when fitting the RI-CLPM. Figure 13 

shows the effect of predicting slope variance on relative bias when fitting the RI-CLPM to the 

LGCM-SR-UGT data. 
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Figure 13. Relative bias in cross-lag pathways across predicting slope variances when fitting the RI-CLPM to 
LGCM-SR-UGT data 

 

Moreover, when considering the relative bias in estimating the dominated Yt-1  Xt 

pathway, predicting slope variance was moderated by dominance condition, . This 

interaction effect was only present when fitting the RI-CLPM to the LGCM-SR-UGT data, 

. When a dominant process was present, the fitting of the RI-CLPM to the LGCM-

SR-UGT data led to more severe loss of admissible and convergent solutions especially as the Y 

slope variance increased. Figure 14 depicts the increasing underestimation as a function of Y 

slope variance and dominance condition when fitting the RI-CLPM to the LGCM-SR-UGT data. 

As can be seen in the figure below, the severity in underestimation moving across the levels of Y 

slope variance occurred in both dominance condition but was more severe when no dominant 

process was present. 
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Figure 14. Relative Bias in Y X pathway by dominance condition and Y slope variance when fitting the RI-
CLPM to LGCM-SR-UGT data 

 

In terms of relative bias in the cross-lag path coefficients, the main story is that when 

fitting the RI-CLPM to LGCM-SR data we have an underestimation in the cross-lag coefficients, 

and becomes more severe when the predicting slope variance increases. Further, when fitting 

specifically to the Unspecified LGCM-SR, the underestimation by RI-CLPM with increases in 

predicting slope variance is especially pronounced when no dominant process is present. 

4.4.3 Relative Bias in the Standard Errors for the Cross-Lag Parameter Estimates 

When fitting to the Linear LGCM-SR data, relative bias in the standard errors for both the X to 

Y and Y to X cross lag estimates had a significant five-way interaction amongst the slope 

variances and covariance, dominance conditions, and the models,  and  

respectively. To tease apart this higher order interaction let’s begin by exploring the main effects 

and lower order interactions within each of the respective standard errors’ relative biases and 
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then work our way up to the highest order interaction. For the Y to X cross-lag, we first note the 

significant effect of model, , wherein the LGCM-SR models were only producing 

negligible bias (< .005%), while the RI-CLPM was underestimating the Monte Carlo standard 

deviation by about 10%. This effect likely corresponds to some of the issues we were having 

with convergence and admissible solutions resulting from a minimization in the errors resulting 

in negative variance estimates and correlations greater than one. This issue was markedly severe 

when fitting the RI-CLPM to the Linear LGCM-SR data. It seems that as the error components 

became overfit the associated standard errors in the cross-lags became underestimated as well. 

Moreover, as the predicting variable increased in its slope variance the underestimation 

became even more severe,  moving from an underestimation of about 7% for the 

lowest slope variance to about 15% in the highest variance condition. The LGCM-SR models do 

not seem to suffer from increases in the predicting slope. The X slope variance by model 

interaction was moderated by the Y slope variance, , but the pattern was not clear. 

At a low X slope variance, the bias became less severe as the Y slope variance increased (from 

about 8% underestimation in the lowest Y slope variance to about 5% underestimation in the 

highest Y slope variance). There was no consistent pattern at the other levels of the X slope 

variance. The LGCM-SR models did not appear to be greatly influenced by the interaction of X 

and Y slope variances.  

The interaction amongst slope variance and models was further moderated by the 

correlation, . The exact pattern of this interaction was not entirely consistent. As 

displayed in Figure 15 below, we can see a few general things; for example, when X slope 
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variance was high and the correlation was low underestimation seemed to become less severe as 

the Y slope variance increased; to a slighter degree this seemed to occur with low X slope 

variance. There also appeared to be slight reduction in underestimation as Y slope variance 

increased for the low and mid-level X slope variance when the correlation was high. 

 

Figure 15. Relative Bias in X to Y cross lag standard errors across Y slope variance and X-Y slope 
correlations at levels of X slope variance when fitting the RI-CLPM to the Linear LGCM-SR data 

 

Having explored up to this four-way interaction with the Linear LGCM-SR data we see 

that most of the action appeared to be happening when fitting the RI-CLPM. As mentioned 

before, this four-way interaction was further moderated by the dominance condition, 

. The precedence for the dominance condition began with a three-way interaction 

with X and Y slope variance, . A closer look at this reveals that higher slope 

variance conditions within the no dominance condition produced greater underestimation by the 

standard errors for the XY cross-lag path. Notably, when X slope variance was high in the no 

dominance condition the Monte Carlo standard deviation was underestimated by around 6%-7% 

across the levels of Y slope variance. When the Y slope variance was high and the X slope 
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variance was at a medium level we found that the XY standard errors were underestimating by 

5.5%.  

This interaction was further moderated by the correlation size, . Problems 

with underestimation by the XY path standard errors again were only appearing within the no 

dominance condition. Figure 16 depicts this effect within the no dominance condition but no 

clear pattern emerges. A few notable changes are that in the low correlation condition we see the 

underestimation increase in severity moving from low to mid Y slope variance within the high X 

slope variance condition, and then recover moving from mid to high Y slope variance. In the 

medium correlation and medium X slope variance condition we found an increase in the 

underestimation when moving from mid to high Y slope variance.  

 

Figure 16. Relative Bias in X to Y cross lag standard errors across Y slope variance and X-Y slope 
correlations at levels of X slope variance when fitting to the Linear LGCM-SR data in the No Dominance 

condition 
 

Aside from a couple aberrant cases, it appeared that most of the story with the five-way 

interaction is occurring when fitting the RI-CLPM to the Linear LGCM-SR. The aberrant cases 
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occurred when fitting the Unspecified LGCM-SR to the Linear LGCM-SR data with no 

dominance and mid-level X slope variance. When the Y slope variance was 20 and the 

correlation was at the middle level of 0.3 we had an overestimation of about 11%. Also, when 

the Y slope variance was at 10 and the correlation was at the high level of 0.5 we had an 

overestimation of about 5.5%. These may be regarded as flukes, though there may be a more 

meaningful pattern. Thus, we focus on fitting the RI-CLPM to the Linear LGCM-SR (Table 14 

demonstrates these effects).  

Most notably we see that in the dominance condition when the X slope variance was at its 

highest we didn’t have observations due to solutions containing negative variance or correlation 

greater than one in the latent variables. In general, within the dominance condition there was a 

tendency for misestimation by the XY standard errors to become more severe as variances in 

the slopes increased, but there is no apparent pattern across correlation values. Generally, the 

tendency was for the bias to be downward, but there was one aberrant case where they 

overestimated by about 15%. This occurred when the X slope variance was 8, Y slope variance 

was 20, and the correlation between them was at 0.3.  

When moving into the no dominance condition there was far less of an issue with losing 

observations due to inadmissible solutions as the slope variances increased, thus a direct 

comparison between the dominance conditions in this context cannot be fully made, because we 

now have relative bias of the XY standard errors in the upper X slope variances. Again, within 

the no dominance condition, when fitting the RI-CLPM to the Linear LGCM-SR data we had 

increasing underestimation by the cross-lag path standard errors with increasing slope variances; 

no clear pattern emerged as we moved across the levels of the correlation between the slopes. 
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Table 14. Four Way Interaction amongst the slope variances, covariance, and dominance condition for the 
XY path standard error bias when fitting RI-CLPM to the Linear LGCM-SR 

Dominance Condition Correlation of X & Y Slope Y Slope Variance X Slope Variance N Mean SD 

X dominates Y 0.1 5 4 825 -0.099 0.009 

   8 31 0.040 0.012 

  10 4 473 -0.055 0.009 

   8 7 -0.196 0.011 

  20 4 12 -0.188 0.009 

 0.3 5 4 977 -0.075 0.009 

   8 183 -0.059 0.010 

  10 4 924 -0.077 0.009 

   8 124 -0.127 0.009 

  20 4 410 -0.090 0.009 

   8 11 0.149 0.008 

 0.5 5 4 998 -0.094 0.009 

   8 555 -0.118 0.009 

  10 4 998 -0.076 0.009 

   8 622 -0.088 0.009 

  20 4 979 -0.078 0.009 

   8 419 -0.116 0.010 

No dominance 0.1 5 4 1000 -0.098 0.010 

   8 1000 -0.111 0.010 

   16 1000 -0.173 0.009 

  10 4 1000 -0.063 0.011 

   8 1000 -0.105 0.010 

   16 1000 -0.185 0.008 

  20 4 1000 -0.046 0.009 

   8 997 -0.105 0.009 

   16 873 -0.105 0.008 

 0.3 5 4 1000 -0.094 0.010 

   8 1000 -0.134 0.010 

   16 1000 -0.147 0.009 

  10 4 1000 -0.070 0.011 

   8 1000 -0.099 0.010 

   16 1000 -0.158 0.009 

  20 4 1000 -0.048 0.010 
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   8 1000 -0.123 0.009 

   16 1000 -0.141 0.008 

 0.5 5 4 1000 -0.062 0.011 

   8 1000 -0.129 0.011 

   16 1000 -0.141 0.009 

  10 4 1000 -0.074 0.012 

   8 1000 -0.107 0.011 

   16 1000 -0.147 0.009 

  20 4 1000 -0.028 0.010 

   8 1000 -0.086 0.009 

   16 1000 -0.143 0.008 

 

The relative bias in the standard errors for the YX pathways displayed similar issues as 

the XY paths. Though in this case there was also a much more significant main effect for the 

dominance condition, the reason for this is likely because the YX path was the path which 

changed values between dominance conditions, i.e. it was the dominated path.  

For the YX path standard error bias it appeared that the major influences were coming 

from the different models and the dominance conditions. The main effect for the dominance 

condition, , showed that when there is no dominance we underestimated the YX 

Monte Carlo standard deviation by about 7%, whereas in the presence of dominance the bias 

became negligible. The main effect for the models, , indicated that when fitting the 

RI-CLPM to the Linear LGCM-SR data the YX standard errors were underestimating by about 

14% whereas the LGCM-SR models were not exhibiting misestimation issues. Furthermore, the 

interaction of the dominance conditions with the models, , indicated that the RI-

CLPM was most severely underestimated in the no dominance condition at about 18%. Table 15 

shows these biases, as can be seen, there only appeared to be a major issue with standard error 
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relative bias for YX pathway when trying to fit the RI-CLPM to the Linear LGCM-SR data in 

the no dominance condition. 

Table 15. Relative Bias in the Y X path Standard Errors across the Models and Dominance Conditions 

Model Dominance Condition N Mean SD 

Linear LGCM-SR X dominates Y 26795 0.007 0.032 
 

No Dominance 22563 0.002 0.023 

Unspecified LGCM-SR X dominates Y 26801 0.007 0.032 
 

No Dominance 20190 -0.003 0.027 

RI-CLPM X dominates Y 8548 0.031 0.060 
 

No Dominance 26870 -0.187 0.058 
 

 

Moreover, the variances and covariance in the slopes moderated the dominance by model 

interaction (  for the X slope variance and correlation,  for the Y slope 

and correlation, and  for the X & Y slope variance and correlation). In general, 

these interactions break out like such: for the RI-CLPM being fit to the Linear LGCM-SR data in 

the no dominance condition we have increased underestimation as the correlation between the 

slopes increases, furthermore as the slope variances increase so too does the underestimation. 

Note the effect on underestimation due to increasing slope variance also occurred within the 

condition with a dominant process, especially with increases in the Y slope. Furthermore, we 

also found some underestimation in the upper Y slope variance range for the Unspecified 

LGCM-SR. Table 16 shows these biases for the Unspecified LGCM-SR and RI-CLPM being fit 

to the Linear LGCM-SR data. 
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Table 16. Relative Bias in the Y X path Standard Errors when fitting the Unspecified LGCM-SR and RI-
CLPM to the Linear LGCM-SR data across Slope Variances and Covariance, and Dominance Conditions 

 

Model Dominance 
Condition 

Slope 
Correlation 

X Slope 
Variance 

Y Slope 
Variance 

N Mean SD 

Unspecified LGCM-SR X dominates Y 0.1 4 5 994 0.011 0.020 

    10 1000 0.014 0.020 

    20 1000 -0.007 0.019 

   8 5 992 -0.018 0.020 

    10 1000 0.032 0.021 

    20 1000 0.019 0.021 

   16 5 989 -0.006 0.021 

    10 1000 -0.015 0.020 

    20 999 0.022 0.021 

  0.3 4 5 990 0.028 0.020 

    10 1000 0.044 0.021 

    20 1000 -0.029 0.019 

   8 5 987 0.054 0.021 

    10 1000 0.062 0.021 

    20 1000 0.012 0.021 

   16 5 976 0.008 0.021 

    10 1000 -0.016 0.022 

    20 1000 -0.034 0.021 

  0.5 4 5 958 0.030 0.020 

    10 1000 -0.014 0.020 

    20 1000 -0.012 0.019 

   8 5 958 0.016 0.021 

    10 1000 0.020 0.021 

    20 1000 -0.023 0.019 

   16 5 960 0.017 0.021 

    10 998 0.003 0.021 

    20 1000 -0.014 0.021 

 No Dominance 0.1 4 5 1000 -0.018 0.010 

    10 999 0.016 0.010 

    20 999 -0.007 0.010 

   8 5 1000 -0.029 0.010 

    10 758 -0.002 0.010 
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    20 431 0.034 0.010 

   16 5 998 -0.001 0.010 

    10 459 -0.017 0.010 

    20 163 -0.130 0.008 

  0.3 4 5 1000 0.015 0.010 

    10 999 -0.005 0.010 

    20 1000 -0.003 0.010 

   8 5 989 -0.029 0.010 

    10 644 -0.028 0.009 

    20 561 0.038 0.010 

   16 5 981 0.006 0.010 

    10 352 -0.029 0.009 

    20 94 0.101 0.011 

  0.5 4 5 1000 -0.002 0.010 

    10 1000 -0.026 0.009 

    20 1000 0.006 0.010 

   8 5 983 -0.007 0.010 

    10 661 0.052 0.010 

    20 819 0.007 0.010 

   16 5 954 0.010 0.010 

    10 280 -0.067 0.009 

    20 66 0.096 0.011 

3 X dominates Y 0.1 4 5 825 0.044 0.010 

    10 473 0.202 0.012 

    20 12 -0.143 0.007 

   8 5 31 -0.006 0.010 

    10 7 0.004 0.006 

  0.3 4 5 977 -0.018 0.009 

    10 924 -0.001 0.009 

    20 410 0.060 0.009 

   8 5 183 0.139 0.010 

    10 124 0.021 0.009 

    20 11 -0.045 0.006 

  0.5 4 5 998 0.002 0.009 

    10 998 -0.010 0.009 



 127 

    20 979 -0.011 0.009 

   8 5 555 0.117 0.011 

    10 622 0.071 0.010 

    20 419 0.033 0.009 

 No Dominance 0.1 4 5 1000 -0.102 0.008 

    10 1000 -0.191 0.009 

    20 1000 -0.243 0.008 

   8 5 1000 -0.116 0.009 

    10 1000 -0.173 0.009 

    20 997 -0.239 0.008 

   16 5 1000 -0.085 0.009 

    10 1000 -0.156 0.009 

    20 873 -0.189 0.008 

  0.3 4 5 1000 -0.122 0.009 

    10 1000 -0.231 0.009 

    20 1000 -0.240 0.009 

   8 5 1000 -0.113 0.009 

    10 1000 -0.214 0.009 

    20 1000 -0.251 0.008 

   16 5 1000 -0.128 0.009 

    10 1000 -0.183 0.008 

    20 1000 -0.229 0.008 

  0.5 4 5 1000 -0.114 0.009 

    10 1000 -0.231 0.010 

    20 1000 -0.250 0.009 

   8 5 1000 -0.162 0.009 

    10 1000 -0.251 0.009 

    20 1000 -0.251 0.008 

   16 5 1000 -0.111 0.009 

    10 1000 -0.222 0.009 

    20 1000 -0.263 0.008 

 

In sum, for the Linear LGCM-SR data, the highlight for the XY path occurred when 

fitting the RI-CLPM, the standard errors became increasingly severe in their underestimation as 
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the X slope variance increased; and with the YX path, the most severe underestimation 

occurred when fitting the RI-CLPM to the Linear LGCM-SR with no dominant process. 

When fitting to the LGCM-SR-UGT data we again found many higher order interactions, 

particularly pertaining to which model was being fit to data. Overall, the LGCM-SR-UGT 

produced negligible relative bias in the standard errors when fit to itself, Mean= -0.001 

SD=0.027 for the Y to X path and Mean=-0.003 SD=0.027 for the X to Y path. Thus, the most 

salient effects occurred in the context of fitting the RI-CLPM to the LGCM-SR-UGT data. 

The relative bias for the standard errors of the Y to X pathway exhibited notable 

underestimation when fitting the RI-CLPM in the non-dominance condition, . There 

was a moderation of this effect across the levels of the slope correlation. Specifically, when 

dominance was present the increasing slope correlations led to a lessening in the overestimation 

by the standard errors, while the lack of a dominant process exhibited an increase in 

underestimation as we moved up through slope correlations, . Figure 17 presents 

the interaction of dominance and slope correlation when fitting the RI-CLPM to the LGCM-SR-

UGT data. 
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Figure 17. Relative Bias in the Standard Errors for the Y to X cross-lag pathways across the dominance 
conditions and levels of slope correlation when fitting the RI-CLPM to LGCM-SR-UGT data 

 

In addition, the slope variances had a notable interaction with the dominance condition 

when fitting the RI-CLPM to the LGCM-SR-UGT data. As the predicting slope increased in 

variance in the presence of a dominant process the standard errors exhibited a slight decline in 

overestimation but also yielded fewer and fewer valid solutions. When there was no dominant 

process, standard error underestimation more severe as the Y slope variance increased, 

. This effect was further moderated by increases in the X slope variance, 

. This moderation did not have a clear pattern as can be seen in Table 17. In table 

17 there is a mixture of underestimation and overestimation. On the whole when X dominates Y 

we have overestimation, in the highest variance condition we have underestimation, however, the 

sample size is 4 which doesn’t make these results very compelling; in the case where there is no 

dominance we have underestimation. One consideration worth noting is the difference in the 

Monte Carlo standard deviation magnitude between the dominance conditions, specifically, in 
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the dominance condition it is much smaller (0.008) than in the non-dominance condition (0.070). 

There were a few tendencies in the relative bias by the Y to X standard errors that may be 

noteworthy. For example, we can see that when X slope variance was high we had serious issues 

in acquiring valid solutions in the presence of a dominant process, in fact no solutions existed in 

the high X-low Y slope variance cell when a dominant process was present, and only 5 and 4 

valid solutions existed at the corresponding medium and high Y slope variance conditions 

respectively. Given this issue, when X slope variance was high in the dominating condition, we 

observed the highest bias. The result was apt to be related to the fact that X being the dominating 

process becomes more poorly estimated as its variance became larger. The patterns within the no 

dominance condition were a bit clearer, we simply had a situation where underestimation was 

becoming more severe as the predicting slope variance increased but differed across the levels of 

the X slope variance, namely at medium X slope variance the severity of underestimation as we 

moved up the levels of Y slope variance was somewhat mitigated.   
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Table 17. Relative Bias in the Y to X pathway standard errors across dominance conditions and the slope 
variances for RI-CLPM fit to LGCM-SR-UGT data 

Model Dominance Condition X Slope Variance Y Slope Variance N Mean SD 

RI-CLPM X Dominates Y 4 5 2929 0.032 0.046 

      10 2690 0.010 0.044 

      20 1776 0.022 0.055 

    8 5 1559 0.065 0.052 

      10 1409 0.088 0.021 

      20 959 0.058 0.056 

    16 10 5 0.630 0.018 

      20 4 -0.400 0.007 

  No Dominance 4 5 3000 -0.092 0.030 

      10 3000 -0.139 0.030 

      20 3000 -0.191 0.008 

    8 5 3000 -0.071 0.026 

      10 3000 -0.122 0.021 

      20 3000 -0.183 0.029 

    16 5 3000 -0.092 0.009 

      10 3000 -0.115 0.023 

      20 2989 -0.192 0.020 
 

 

Given that we are dealing with the standard errors, we see that there are many effects 

pertaining to the variance-covariance components. Though the patterns are not always clear cut, 

we do find that the combined effect of increasing slope correlation and X slope variance has an 

additive effect of creating more and more severe underestimation by the standard errors, 

particularly when fitting the RI-CLPM to the LGCM-SR-UGT data, , (see Table 

18). 
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Table 18. Relative Bias in the Y to X Standard Errors across the Slope Correlation and X Slope Variance 
when fitting RI-CLPM to LGCM-SR-UGT data 

Model Slope Correlation X Slope Variance N Mean SD 

RI-CLPM 0.1 4 4700 -0.054 0.118 

    8 3230 -0.099 0.065 

    16 2989 -0.125 0.051 

  0.3 4 5698 -0.071 0.082 

    8 4097 -0.043 0.115 

    16 3000 -0.125 0.034 

  0.5 4 5997 -0.075 0.081 

    8 5600 -0.062 0.109 

    16 3009 -0.148 0.059 
 

 

When considering relative bias in the standard errors for the X to Y pathways, we have 

fewer effects to contend with and again the action is unfolding when fitting the RI-CLPM to the 

LGCM-SR-UGT data, . Namely we have interesting interactions between the slope 

variances, , as well as an interaction between the X slope variance and slope 

correlations, .  

Table 19 shows the interaction of the X and Y slope variances when fitting the RI-CLPM 

to the LGCM-SR-UGT. In general, what appears to be happening with this interaction is that as 

the X slope variance increases we get more severe underestimation, but, this is offset by 

increases in the Y slope variance. Figure 18 depicts the influence of slope variances on the bias 

in the X to Y standard errors when fitting the RI-CLPM to the LGCM-SR-UGT data. 
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Table 19. Relative Bias in the X to Y standard errors across the levels of Slope Variances when fitting the RI-
CLPM to the LGCM-SR-UGT data 

Model Y Slope Variance X Slope Variance N Mean SD 

RI-CLPM 5 4 5929 -0.051 0.026 

    8 4559 -0.097 0.021 

    16 3000 -0.157 0.010 

  10 4 5690 -0.043 0.024 

    8 4409 -0.099 0.018 

    16 3005 -0.122 0.016 

  20 4 4776 -0.033 0.024 

    8 3959 -0.074 0.030 

    16 2993 -0.113 0.0 
 

 

 

Figure 18. Relative Bias in X-->Y SE when fitting RI-CLPM to the LGCM-SR-UGT data 

Table 20 depicts the interaction of the X slope variance with the slope correlation across 

the dominance conditions. Unfortunately, there does not seem to be any clear pattern; we can 

only see that for the most part we have a consistent underestimation by the standard errors, and 

in some combined conditions the underestimation was more severe than it was in other condition 
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combinations. It seems that the most interesting story with relative bias in the X to Y cross-lag 

standard errors pertained to the interactions amongst variance-covariance components when 

fitting the RI-CLPM to the LGCM-SR-UGT data. 

Table 20. Relative Bias in the X to Y path standard errors across dominance conditions, X slope variances 
and slope correlations 

Dominance Condition Slope Correlation X Slope Variance N Mean SD 

X Dominates Y 0.1 4 4700 -0.022 0.027 

    8 3230 -0.022 0.036 

    16 3000 -0.016 0.024 

  0.3 4 5698 0.002 0.034 

    8 4097 -0.034 0.036 

    16 3000 0.002 0.025 

  0.5 4 5997 -0.024 0.020 

    8 5598 -0.064 0.049 

    16 3009 -0.009 0.032 

No Dominance 0.1 4 6000 -0.016 0.027 

    8 5999 -0.048 0.056 

    16 5989 -0.055 0.079 

  0.3 4 6000 -0.010 0.037 

    8 6000 -0.031 0.051 

    16 6000 -0.076 0.063 

  0.5 4 6000 -0.048 0.035 

    8 6000 -0.039 0.047 

    16 6000 -0.071 0.058 
 

In general, the major findings for standard error bias occurs when fitting RI-CLPM to 

LGCM-SR data. The Monte Carlo standard deviation for the XY paths become more severely 

underestimated as the X slope variance increases and  YX path standard errors are 

underestimating when no dominant process is present when fitting the RI-CLPM to the Linear 

LGCM-SR. Fitting the RI-CLPM to the Unspecified LGCM-SR data also yields underestimation 
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by the standard errors of the YX paths when no dominance condition is present, and when 

there is a dominance condition present these standard errors are overestimating. This 

overestimation is mitigated as the correlation between slopes strengthens. Thus, when 

considering the dominated pathway, there is some indication here that we have a higher risk for 

type 1 error when no dominance is present, and risk type 2 error when dominance is present. The 

type 2 risk is offset when two processes are more closely related in the dominated condition 

while the type 1 risk in the non-dominated condition becomes worse as the correlation between 

the slopes increases. The XY path standard errors demonstrate increased underestimation as 

the X slope variance increases; however, this underestimation is counteracted when the Y slope 

variance increases.  

4.5 A NOTE CONCERNING THE RI-CLPM GENERATED MODELS 

As we noted before, the LGCM-SR models could never derive admissible or convergent 

solutions when being fit to the RI-CLPM data. The likely reason for this is that we have an 

overfitting problem. The RI-CLPM had no issues in fitting to itself, as implied by always 

estimating a valid solution across replications and conditions. Only two outcomes presented any 

significant effect: Relative Bias in the X to Y standard errors and the information criteria. Figure 

19 shows that we get slightly worse misestimation by the standard errors for the X to Y path 

when a dominant process was presented, but it should also be noted that the variance in this bias 

encompasses the distribution of the bias when there is no dominant process, . 

Additionally, as addressed before, BIC had a better fit when a dominant process was present. 
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Figure 19. Relative Bias in the X to Y path standard error across dominance conditions when fitting the RI-
CLPM to itself 
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5.0  DISCUSSION 

In this study, we set out to explore the performance of models that disaggregate between- and 

within-person effects while controlling for autoregression and utilizing cross-lag components to 

assess causal dominance amongst developmental processes. More specifically, our interest was 

in how variation in the between and within person components affected the fit of the model and 

the conclusions we derive based on the cross-lag components.  

The models under consideration each account for different aspects of capturing the 

between person effects with the purpose of making correct inference about the within person 

effects in terms of how two developmental processes causally relate to one another. The Random 

Intercept Cross-Lag Panel Model (RI-CLPM) accounts for trait stability at the between person 

level, and captures the form of growth over time by fitting time specific means, but this model 

does not account for between-person variability in change over time. The Latent Growth Curve 

Models with Structured Residuals (LGCM-SR) account for between person change and 

variability in change by fitting a latent slope. With a linear specification, we restrict the type of 

change to be of a specific form, while we can use an unspecified trajectory to more accurately 

capture the functional form of growth amongst individuals. In this way, the RI-CLPM and 

Unspecified LGCM-SR share a commonality by capturing a non-linear form of growth, whereas 

the Linear and Unspecified LGCM-SR share a commonality by capturing variability in change 
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between individuals. In evaluating the relative performance amongst the models, we generated 

data sets from each of these models and analyzed those datasets with each of the datasets in turn. 

5.1 SUMMARY OF MAJOR FINDINGS 

From our applied example with the LSAY data, we saw that disentangling between and within-

person effects using RI-CLPM and LGCM-SR improved the model fit over CLPM; however, 

when considering the FI-CLPM this was only the case by SRMR criteria. This may be the case 

because FI-CLPM is fitting more covariances and SRMR is considering the absolute differences 

in model and observed covariances with no penalty for parameters. Moreover, fitting slopes led 

to even better fit, especially when fitting the unspecified trajectory.  

Hamaker et al. (2015) and Berry & Willoughby (2016) conducted studies demonstrating 

that the inclusion of between-person components as is done with the RI-CLPM and LGCM-SR, 

respectively, could lead us to different results based on the cross-lag parameter estimates derived 

from a standard cross-lag model (CLPM). More specifically, we could arrive at opposite 

conclusions about how processes relate to one another depending on whether we do or do not 

include components that explicitly account for between-person variance. The findings from our 

study reinforce the results from these prior studies. When we did not disentangle the effects, we 

concluded that self-concept was dominating task value, but when we did disentangle the effects 

we conclude that task value is dominating self-concept. In the simulation study, we don’t observe 

this switching because we were only considering models that do disentangle between and within 

person effects. Thus, we did not generate any further indication that additional accounting of 

between person variance bears upon the conclusions we derive about the cross-lag paths. 
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Additionally, when we fit the intercepts we see a reduction in our autoregressive parameters, and 

when we include a slope we see a reduction in the cross-lag parameters. This implies that the 

between person variance and covariance components have a considerable influence on the 

within-person autoregressive and cross-lag components, ultimately leading us to arrive at 

different conclusions about the nature of the processes under study.  

Perhaps one of the most salient results from the simulation study pertains to when 

convergent and admissible solutions could be derived. Curran (2003) drew the parallel between 

multilevel models and latent variable models that place a conceptual underpinning for the 

approach taken in the models discussed here, wherein latent variables are being used to fit 

random effects. The general spirit of both latent variables and random effects is to absorb 

variance; however, this variance is estimated out of the residuals. Because these components are 

estimates, when we have very low or non-existent error remaining in the residual variance due to 

a source of error we can end up with negative variance estimates. The phenomena of negative 

variance estimates are well known within multilevel modeling (Goldstein, 2005). Similarly, we 

may postulate that when a covariance component is fit it may be attempting to estimate a 

component relating error structures that are relatively low thus leading to a correlation value 

exceeding an absolute value of one. In our study, inadmissible solutions were due to negative 

variance estimates in the exogenous latent variables and correlations amongst latent variables 

exceeding an absolute value of 1. These issues reflect mis-fitting problems such as overfitting 

complex models to simpler data and misallocating between- and within-person variance when 

down-fitting simpler models to more complex data in a latent variable/multilevel context. The 

general problem is based on the issue of fitting more latent/random effect parameters than the 

actual number of observed components, which exacerbates the problem of pulling out more 
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variance than is present. These issues are especially pronounced when no dominant process is 

present, and very often the negative variance issues occur with the X slope variance. Perhaps this 

is because the X slope has less variance than the Y slope, thus more readily overfit. 

The specifics of acquiring admissible and convergent solutions varies across generating 

models. When fitting to the Linear LGCM-SR data we have information from each analytic 

model, with the Unspecified LGCM-SR yielding valid solutions 87% of the time and the RI-

CLPM only yielding valid solutions 65% of the time. When fitting the RI-CLPM, acquiring valid 

solutions worsens as the slope variance and covariance increase. The Unspecified LGCM-SR 

generating model does well at fitting to itself, but the Linear LGCM-SR never fits. However, the 

RI-CLPM fits the Unspecified LGCM-SR data 71% of the time. This gives some indication that 

capturing the functional form may be more important than capturing variability in the trajectory. 

In consideration of overfitting, there is the finding that neither of the LGCM-SR models can be 

validly fit to the RI-CLPM data. This is best explained by bearing in mind that the RI-CLPM has 

no variability in change, so when we try to explain such variability we are forcing a situation of 

overfitting. 

When considering Model Fit Indices, a general finding is that when fitting to LGCM-SR 

data, all model fit indices showed high consistency in preferring an LGCM-SR model to an RI-

CLPM model. Since we were only able to fit an Unspecified LGCM-SR to the Linear LGCM-SR 

data and not the other way around, we can only consider differences in correct selection between 

fitting Linear vs. Unspecified LGCM-SR to Linear LGCM-SR data. In this case, we find that 

BIC does best at making the correct selection, which is likely due to the more strenuous penalty 

for model complexity exhibited by BIC. While AIC also does well at correctly choosing the 

Linear over the Unspecified model, it is second best to BIC. On the other hand, the penalties 
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applied by both AIC and BIC also make it a tad less desirable for correctly selecting over the RI-

CLPM.  

The relative fit indices are perfect at correctly choosing the Linear over the RI-CLPM, 

but they perform fair at best in correctly choosing over the Unspecified LGCM-SR. The main 

reason for this is that often both Unspecified and Linear analytic models indicated at or near 

perfect fit, and we tend to only make the correct selection due to parsimony when both are 

exactly perfect. When choosing the Unspecified over the Linear, this is usually done when the 

index values are only off by extremely small decimal place values but still favoring the 

Unspecified model. A similar thing happens when using the RMSEA criteria, except in this case 

it is values within decimals of 0. TLI is also considerably poorer at correct model selection than 

CFI. This may be due to the fact the CFI will be higher than TLI because it doesn’t penalize for 

complexity as TLI does. Thus, more often we have perfect CFI values for both LGCM-SR 

models leading us to correctly choose Linear over Unspecified for parsimony. An important 

consideration to be noted when considering the model selection is that the non-linear trajectory 

did not exhibit extreme deviation from linearity thus fit indices, in general, may not do well at 

distinguishing the Linear from the Non-Linear LGCM-SR presented here.  

Relatedly, when perfect fit is not exhibited by both LGCM-SR models, more often we 

expect the greater variance explained by the Unspecified model to make it erroneously chosen 

over Linear. SRMR is the worst criteria for correctly choosing the Linear over the Unspecified 

model. This is likely because the SRMR is more concerned with how much variance is explained 

regardless of model complexity. As we know, the Unspecified model will tend to match the 

observed model covariance matrix by explaining out any extra sample based variance that occurs 

within the slope by allowing for the overfitting of variance in the trajectories. 
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The prior literature (Hamaker et al., 2015; Berry & Willoughby, 2016; Curran et al., 

2013) only considered the effect of not disaggregating within and between-person variance on 

the estimation of cross-lag components. In this study, we moved beyond disentangling between-

person effects from within-person effects in general and made a further exploration of the effects 

of accounting for between-person differences in change in addition to between-person stability. 

The characteristics of our simulation study were founded on the distinctions between the RI-

CLPM (Hamaker et al., 2015) and the LGCM-SR (Curran et al., 2013). Moreover, we made a 

further distinction of the trajectory we fit to the LGCM-SR. Curran et al. (2013) presented only 

on the linear model, while in our study we also accounted for the possibility of non-linear 

trajectory. The admission of this non-linear trajectory is an important consideration, because as 

mentioned before, the RI-CLPM (Hamaker et al., 2015) fit time specific means to capture the 

trajectory, yet this model does not capture variation around the non-linear trajectory as a LGCM-

SR with an unspecified growth curve would.  

 Our findings show some consistency with this prior research in so far as we 

demonstrated that within-person cross-lag components can become misrepresented when we fail 

to accurately capture the nature of between-person differences in stability and change over time. 

Despite the limitations of our results due to non-convergent and inadmissible solutions we have 

some indication that accounting for between-person differences in change is important given that 

RI-CLPM could always be fit to LGCM-SR data, while LGCM-SR models could never be fit to 

RI-CLPM data; unfortunately, we cannot address at any depth whether fitting the non-linear 

trajectory via RI-CLPM is better than fitting it with the Linear LGCM-SR, since only RI-CLPM 

was estimated when fit to the non-linear LGCM-SR.  
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In the following the results of the cross-lag parameter outcomes from our simulation are 

presented. The conclusions we derive from our cross-lag components are assessed in three 

different ways: a factor of dominance, relative bias in the path coefficients, and relative bias in 

the standard errors of the cross-lag path coefficients.  Similar to findings from the simulation 

study comparing RI-CLPM to CLPM (Hamaker et al., 2015) we see that RI-CLPM tends to 

underestimate path coefficients when fit to the LGCM-SR and the extent of this underestimation 

has a notable relation to the dominance condition and between-person variance components. In 

the case of this study, the manipulated between-person component is in the slope terms, whereas 

in their simulation it was the intercept. When fitting the RI-CLPM to the Unspecified LGCM-SR 

data we have notable underestimation of the factor of dominance especially in the presence of a 

dominant process. Interestingly, the underestimation becomes more severe as the X slope 

variance increases (i.e., dominant process variability), but becomes less severe as the Y slope 

variance increases (i.e., dominated process variability). 

In terms of relative bias in the cross-lag path coefficients, the main story is that when 

fitting the RI-CLPM to LGCM-SR data we have an underestimation in the cross-lag coefficients, 

and becomes more severe when the predicting slope variance increases. Further, when fitting 

specifically to the Unspecified LGCM-SR, the underestimation by RI-CLPM with increases in 

predicting slope variance is especially pronounced when no dominant process is present. The 

relative bias in the standard errors for the cross-lag pathways showed many interactions and 

effects and in many cases the patterns were hard to discern. As with our other outcomes most of 

the action occurs when fitting RI-CLPM to LGCM-SR data. The Monte Carlo standard deviation 

for the XY paths become more severely underestimated as the X slope variance increases and  

YX path standard errors are underestimating when no dominant process is present when fitting 
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the RI-CLPM to the Linear LGCM-SR. Fitting the RI-CLPM to the Unspecified LGCM-SR data 

also yields underestimation by the standard errors of the YX paths when no dominance 

condition is present, and when there is a dominance condition present these standard errors are 

overestimating. This overestimation is mitigated as the correlation between slopes strengthens. 

Thus, when considering the dominated pathway, there is some indication here that we have a 

higher risk for type 1 error when no dominance is present, and risk type 2 error when dominance 

is present. The type 2 risk is offset when two processes are more closely related in the dominated 

condition while the type 1 risk in the non-dominated condition becomes worse as the correlation 

between the slopes increases. As regards the type 1 risk, it is worth noting that both the standard 

errors and path coefficients are being underestimated, hence the type 1 risk may not be of too 

much concern. The XY path standard errors demonstrate increased underestimation as the X 

slope variance increases; however, this underestimation is counteracted when the Y slope 

variance increases.  

The most common issue in the cross-lag path estimates pertains to underestimation when 

fitting the RI-CLPM to LGCM-SR data. The underestimation issues are most pronounced in non-

dominance conditions and worsen as slope variances increase. A particularly salient point 

pertaining to the cross-lags is that we have a greater risk of type 1 error for our paths when no 

dominance is present which becomes worse as variance and covariance amongst slopes 

increases; we have a greater type 2 risk for a dominated path that is offset by increasing strength 

in the relation between two processes. Convergence rates revealed to us that when fitting to the 

Unspecified LGCM-SR data, that only RI-CLPM can be fit. Hence, in terms of the relative 

performance of Linear LGCM-SR to RI-CLPM when fitting to Unspecified LGCM-SR data, it 

would seem appropriate to say that capturing the functional form of the trajectory as is done by 
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fitting means in the RI-CLPM is more important than capturing the variability in the trajectory as 

is done with the Linear LGCM-SR. 

5.2 CONSIDERATIONS, LIMITATIONS, AND FUTURE RESEARCH 

One of the most salient issues presented by this study relates to the tendency towards non-

convergent and inadmissible solutions. As noted, the problems appear to be based on overfitting 

complex models to simpler data and misallocating between- and within-person error when down-

fitting simpler models to more complex data. Overfitting, in general, is an issue that needs to be 

considered when latent variables are used to model data, while down-fitting need to be 

considered when fitting multilevel models. Another consideration that may bear upon the 

inadmissible solutions pertains to the relative size of the different variance components in 

relation the total variance in the outcomes. In our models the residuals have considerably larger 

share of the total variance than the intercept and slope variances. Future research would benefit 

by considering the influence of relative sizes of variance components on the admissibility of 

solutions. An additional finding was that trying to fit a linear slope to a non-linear trajectory led 

to severe problems with estimation, such that 100% of the solutions were inadmissible. Thus, 

careful consideration to the form of growth and the variability in growth is very important.  

These mis-fitting problems negatively impacted other issues for understanding the results 

of this study. One key issue is that there is a potential confounding of model fit and cross-lag 

bias with the varying sample sizes across conditions and models that are due to invalid solutions. 

Further research will need to more explicitly explore the influence of sample size on the 

information we derive from fitting these models to data. Because of the prevalence of issues in 
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underestimation, it would be of interest to explore the extent to which this underestimation is 

associated with our model mis-fitting issues. For practical reasons, it is important to explore 

ways to prevent these mis-fitting problems, and to explore how to set up our estimation method 

in such a way that these misfit problems are mitigated. This prompts further research that can 

tease apart the exact factors leading to the mis-fitting of these models. With such an 

understanding, we could establish better generating conditions to improve the amount of valid 

solutions which would allow us to have a better comparison and examination of the models 

under consideration in this study. 

A recurring finding throughout this study was that the dominance condition was a very 

important factor influencing not only model fit, but also bias in our cross-lag components as well 

as the sheer amount of valid solutions that we could estimate. Further exploration of what it is 

about these dominance conditions that bears upon the results from our models would be helpful. 

Moreover, it would be of interest to examine how changing the factor of dominance influences 

the performance of these models. As a final consideration, it may be of interest to conduct future 

studies to explore more aspects of these models. For example, how might the sign of our 

correlations and coefficients influence the relative performance of these models. Future research 

that makes closer consideration of not just the between person change but also the between 

person stability would be an important development in our understanding of the models under 

consideration. It is plausible that in this study the autoregressive parameters being set to 1.2 may 

have been a bit large. Thus, it would be important to closely examine how changes in the 

autoregressive components bear upon the performance of these models. Another limitation 

pertains to the fact that we kept so many parameters constant across time, when in reality 

phenomena tends to be much more complicated than this. 
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This study serves as a beginning step in exploring the nature and performance of these 

recent developments in multilevel autoregressive cross-lag modeling. In time, more and more 

issues will require exploration. The findings presented here are intended to give some insight 

into how we can apply these models and understanding the results we derive from such 

modeling. Future advances in this type of modeling will be needed to expand the capacity and 

potential for exploring our research questions that are served well by such models. In time, it will 

be exciting to see and contribute to the developments in multilevel autoregressive cross-lag 

modeling from both a fixed and random effects perspective.  

5.3 MODEL FITTING RECOMMENDATIONS FOR APPLIED RESEARCHERS 

In the following we overview some consequences of this research for informing applied research. 

To start, of central concern, is to get a sense of which model the data is most closely aligned 

with. The recommendation for this is to fit different components of the models to data in 

sequence. By fitting the growth curves to each process independently we can gauge both the 

shape and variance in the trajectories, which is exactly the feature that the models evaluated 

differ on.  

The first thing to observe would be the shape of the trajectory for each process. To 

determine whether we have a linear or non-linear trajectory our findings suggested that using 

BIC in model selection is preferable, thus one would fit both the LGCM-UGT and LGCM-LIN 

to each process and compare the respective BIC values, opting for the model yielding the lower 

BIC value. As our findings suggest, if we have a non-linear trajectory then we should fit either a 

Random Intercept (RI) with estimated means or LGCM-UGT because we found that fitting a 
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LGCM-LIN never yielded admissible solutions. If we have a linear trajectory then any model 

can be fit, however, fitting the LGCM-UGT would not be parsimonious so we would be 

choosing between LGCM-LIN or RI with estimated means. Upon determining a trajectory shape 

for each process, the next step would be to determine whether slope variance will need to be 

accounted for. Recall, increasing slope variance, when not accounted for, is linked to increasing 

underestimation in the cross-lag components, thus it is important that such variance is modeled. 

Software for fitting Structural Equation Models yield output that allows for the testing of the 

hypothesis that slope variance is equal to zero. Further, given that we are considering multilevel 

models we can consider whether including the slope variance is appropriate via intra-class 

correlation, likelihood ratio test, or BIC. If we find that our slope variance was notable, then 

given a non-linear trajectory we would fit LGCM-UGT to the process and LGCM-LIN given a 

linear trajectory. If slope variance was non-significant, then given either linear or non-linear 

trajectory we would fit the RI with estimated means. Alternatively, we could conceivably fit the 

growth curves (LGCM) with slope variance constrained to zero, however, this was not explored 

in this study.  

Fitting the proper between-person model to each process is the key to estimating the 

CLPM model as we desire (namely, the effects of intra-individual changes in one process on 

intra-individual changes in the other). Thus once we have found the proper between-person 

model for each process individually, the next recommend step would be to bring the two 

between-person models together. This allows us to estimate the between-person variance-

covariance components. The importance of this step is to address issues we encountered wherein 

between-person error was potentially being misallocated to the within-person components. Once 

these components are fit we could fix those between-person variance components and then 
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structure our residuals for estimation of the within-person model (CLPM). The figure below 

(Figure 20) depicts a flow chart that graphically summarizes the recommended steps in selecting 

and fitting models.   

 

 

Figure 20. Flowchart for Selecting and Fitting Models 
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