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Sickle Cell Disease (SCD) is an autosomal-recessive–genetic-disorder that affects 100,000 in the 

U.S. and millions worldwide. Sickle cell anemia, the most common form of SCD results from a 

single nucleotide polymorphism in the β-globin gene that causes the hemoglobin to polymerize 

under deoxygenated conditions. Hemoglobin polymerization leads to sickling of erythrocytes, 

exposure of adhesion molecules on the erythrocyte membrane, and hemolysis. Hemolysis releases 

erythrocyte derived danger-associated molecular pattern molecules (DAMPs) that activate 

leukocytes, platelets and endothelium and enable interactions with sickle erythrocytes and promote 

vaso-occlusion (VOC). VOC is the predominant pathophysiology responsible for acute systemic 

vaso-occlusive crisis, the leading cause of emergency medical care among SCD patients. VOC is 

also believed to contribute to progression of other morbidities such as pulmonary hypertension, 

stroke, and acute chest syndrome, however, the cellular, molecular and biophysical mechanisms 

that enable VOC in SCD patients remain incompletely understood.  

To determine the mechanisms that promote VOC in SCD patients, we developed 

quantitative microfluidic fluorescence microscopy (qMFM), a novel fluorescence imaging 

approach that utilizes PDMS-based microfluidic devices to visualize single-cell interactions in 

SCD human blood. Using qMFM, neutrophils were observed to roll, arrest and capture freely 

flowing platelets leading to formation of large platelet-neutrophil aggregates that occluded 

microfluidic flow channels. Quantitative analysis revealed that platelet-neutrophil interactions in 

SCD patient blood were not only more numerous but also significantly longer in duration than 
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those in control blood. These platelet-neutrophil interactions were enabled by platelet P-selectin 

and GPIbα binding to neutrophil PSGL-1 and Mac-1, respectively and were abolished following 

blockade of these interactions. qMFM revealed for the first time that platelets in SCD blood form 

P-selectin expressing “hair-like” membrane tethers that promote platelet-neutrophil interactions 

by shielding the bonds from the hydrodynamic shear forces of blood. Hair-like tethers act like a 

‘lasso’ that allows circulating platelets to interact more efficiently with neutrophils within the 

vasculature. Inhibition of platelet TLR4 or NLRP3 inflammasome dependent signaling abolished 

“hair-like” platelet tethers and attenuated platelet-neutrophil aggregation in SCD human blood. 

This study highlights the potential of therapeutic inhibition of platelet P-selectin or NLRP3 

inflammasome pathway in preventing VOC in SCD patients.   
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1.0  INTRODUCTION 

1.1 SICKLE CELL DISEASE 

1.1.1 Background 

Sickle Cell Disease (SCD) is an autosomal recessive genetic disorder that affects 100,000 in the 

U.S. and millions worldwide (5-8).  As shown in Figure 1, the global distribution of SCD is 

primarily centered in Sub-Saharan Africa (regions marked in red and dark red). SCD was first 

described in 1910 by James B. Herrick who noticed “thin elongated sickle shaped cells” in a blood 

smear of a patient of African Descent(3, 9). It was not until 40 years later that Linus Pauling 

attributed the disease to the hemoglobin within erythrocytes (red blood cells, RBC) (3, 9). SCD 

results from a single point mutation (βS allele) in the sixth codon of the beta globin gene, where 

polar hydrophilic glutamic acid is substituted for non-polar hydrophobic valine(6, 9). The aberrant 

hemoglobin is commonly referred to as sickle hemoglobin (HbS)(9). Hemoglobin S is one of the 

most common hemoglobin mutation worldwide(4, 10). 
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There are several forms of Sickle Cell Disease with varying levels of severity including 

Sickle Cell Anemia and HbS beta Thalassemia. Sickle Cell Anemia (HbSS) is the most severe and 

common form of SCD and occurs when a child is homozygous for the βS allele. Sickle cell β0 

thalassemia (S/β0) occurs when a child is heterozygous for βS and β0 allele. Sickle Cell trait (HbAS) 

occurs when a child is heterozygous for the βS allele. Most trait patients are known to be 

asymptomatic(4). A recent study estimated that in 2010 around 300,000 babies were born with 

Sickle Cell Anemia (HbSS), while over 5 million babies were born with Sickle Trait (HbAS)(4). 

Although Sickle Cell Disease is widespread, there is no cure for the disease and the median lifespan 

of SCD patients is 48 years in women and 42 years in men (6). In 2013, over 175,000 deaths were 

associated with SCD and SCD related morbidities(11). 

Figure 1: Global distribution of Sickle Cell Disease. Map displays the prevalence of the sickle hemoglobin (HbS) 
allele globally. Areas of red depict the highest prevalence while areas in grey have the lowest prevalence. Figure 
adapted with permission from Lancet from reference (4). 



 3 

1.1.2 Vaso-occlusive Pathophysiology in SCD 

1.1.2.1 Polymerization 

Under normal circumstances the RBCs ability to deform is key to the flow of blood throughout the 

body and allows RBCs to easily pass through narrow vessels and capillaries to transport oxygen 

and other molecules throughout the body. In SCD patients, the RBCs deformability is greatly 

impaired under all conditions but especially under deoxygenated conditions. When the RBC 

reaches deoxygenated conditions, the sickle hemoglobin (HbS) polymerize forming long rigid 

fibers within the RBC leading to rigidity, distortion and damage to the membrane and cytoskeleton 

of the RBC. Although polymerization is reversible under oxygenated conditions, it causes 

irreversible damage to the RBC membrane due to repeated sickling and unsickling cycles. This 

reversible process leads to irreversibly sickled cells (9), exposure of adhesion molecules on the 

RBC membrane (3, 9, 12) and hemolysis (3, 9). It has been shown that hemoglobin concentration 

can also greatly affect the level and speed of sickling within the RBC (6, 12). When hemoglobin 

levels increase there is increased polymerization within the RBC. 

1.1.2.2 Hemolysis 

As a result of chronic hemolysis due to the sickling and unsickling processes within the RBC, SCD 

patients are highly susceptible to anemia. Under normal conditions, the RBC lifespan is around 

120 days but in SCD patients the average lifespan is less than 20 days. As a result, there is a 

significant increase in reticulocyte production, immature RBCs. Furthermore, hemolysis leads to 

the release of erythroid damage-associated molecular patterns (DAMPs) including cell free 

hemoglobin, heme, and ADP, among others into the plasma (2, 3, 12, 13). Hemoglobin release 

leads to a decrease in nitric oxide (NO) and an increase in reactive oxygen species (ROS) formation 
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promoting endothelial dysfunction, platelet activation and pulmonary hypertension(Figure 2) (2). 

During this process (Figure 2), hemoglobin can be oxidized leading to the release of free heme 

into the plasma(2, 3). Although both hemoglobin and heme can be scavenged by haptoglobin and 

hemopexin, respectively, these processes are overwhelmed in SCD due to the extensive hemolysis. 

As a result, free heme activates sterile inflammation via TLR4 activation(3). The proinflammatory 

environment that exists as a result of hemolysis gets further enhanced during vaso-occlusive 

crisis.(3, 12, 14). Furthermore a chronic inflammatory state can lead to increased leukocyte 

activation and numbers (7) and a procoagulant state via increased tissue factor expression(3, 15) 

which has also been shown to contribute and promote vaso-occlusive crisis and acute chest 

syndrome. 

 

Vaso-occlusion (VOC), blockages in vessels by cellular aggregates, accounts for most of 

the morbidity and mortality faced by SCD patients(6, 9).  It is the leading cause of emergency 

medical care in patients and leads to a global burden of almost $1 billion(16). VOC causes painful 

Figure 2: RBC hemolysis leads to the release of cell free hemoglobin and heme. Hemolysis of RBC leads to the 
release of cell free hemoglobin into the plasma. Hemoglobin gets oxidized promoting the release of Heme. Heme 
can then activate sterile inflammation via reactive oxygen species (ROS) formation, NET formation and TLR4 
activation promoting vaso-occlusion and acute chest syndrome in SCD patients. Image adapted with permission from 
American Society of Hematology and Blood from Reference (2).  



 5 

crisis, bone marrow infarction, organ damage, pulmonary hypertension, ischemia reperfusion 

injury and stroke in SCD patients(3, 6, 7, 9, 12, 15, 17). Vaso-occlusion primarily manifests in 

patients with low levels of fetal hemoglobin (HbF), increased leukocyte count, increased sickle 

hemoglobin levels, and decreased hematocrit (6, 12). Although VOC affects millions of SCD 

patients the cellular, molecular and biophysical mechanisms that drive VOC remain unclear(17).  

1.1.2.3 Current Paradigm 

There have been several proposed models of the mechanisms of VOC throughout the years. The 

current paradigm suggests a role for not only sickle RBCs (sRBC), but also leukocytes, 

endothelium and platelets. As shown in Figure 3, which was adapted with permission from Blood, 

Frenette et al proposed that endothelial cells get activated as a result of triggers including 

inflammation, stress and hemolysis (3). Leukocytes are recruited to the site of insult through 

rolling followed by activation and arrest on the activated endothelium.  sRBCs are then captured 

by the arrested neutrophils leading to blockage of the vessel by cellular aggregates (3).  This study 

was one of the first to suggest a role for leukocytes in the onset of vaso-occlusion.  It is important 

to note that this study was conducted in the cremaster microcirculation of BERK sickle mice and 

whether this paradigm translates to humans has yet to be elucidated. 
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1.1.3 Platelet-neutrophil Aggregation in SCD patients 

High platelet and leukocyte counts are risk factors for VOC(18). Neutrophils are the most abundant 

leukocytes representing about 50-70% of all circulating leukocytes in human blood(19-21), while 

platelets in SCD patients are chronically activated with increased levels of P-selectin(3). Recent 

intravital studies have shown that platelet interactions with arrested neutrophils during acute 

inflammation results in the formation of neutrophil-platelet aggregates in both the systemic (22, 

23) and pulmonary microcirculation of WT mice (22, 24). This phenomenon was further studied 

in TNF-α treated cremaster venules of transgenic SCD and WT mice, and was shown to be enabled 

by neutrophil Mac-1 binding to GPIbα on platelets (23) and P-selectin binding to platelet P-selectin 

glycoprotein ligand–1 (PSGL-1) on adherent neutrophils (22), respectively. Interestingly, 

Figure 3: Current paradigm for VOC in Sickle Cell Disease. The current paradigm suggests that VOC occurs as a 
result of the following events: 1) Endothelial cell activation, 2) recruitment and activation of neutrophils leading to 
arrest, 3) interactions of arrested neutrophils with RBC and sRBC, 4) blockage of the vessel by cellular aggregates 
leading to VOC. Image adapted with permission from American Society of Hematology and Blood from Reference 
(3).  
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circulating neutrophil-platelet aggregates are significantly elevated in the blood of SCD patients 

who were not in crisis (25, 26).  

During acute inflammation, neutrophils are the first to be recruited to the site of injury to 

help in the clearance of pathogens(27-29). As shown in Figure 4, neutrophils are recruited via a 

cascade that involves neutrophil rolling, arrest, and crawling along the endothelium prior to platelet 

and RBC capture(20). Endothelial cell activation is the first step of neutrophil recruitment. During 

activation, pre-stored P-selectin in Weibel Palade bodies get upregulated initiating neutrophil 

capture(17, 30, 31). As blood flows through the vessels, freely flowing platelets and RBCs 

primarily flow along the center line of the flow pushing neutrophils toward the blood vessel wall 

in what is known as the cell free layer, further potentiating neutrophil capture. Endothelial P-

selectin is the primary initiator of neutrophil rolling in the post-capillary venules and prominently 

binds to neutrophil P-selectin glycoprotein ligand-1 (PSGL-1) leading to neutrophil rolling under 

wall shear stresses of 1-10 dynes/cm2 (0.1 -10 Pa)(28). Studies have shown that post-capillary 

venules are the primary site of blood cell-endothelium interactions during inflammation (12, 32). 

Rapid association and dissociation of P-selectin and PSGL-1 bonds allow for smooth rolling(31). 

Previous studies have shown that neutrophils form tethers at the rear of the cell that help mediate 

neutrophil rolling by shielding the bonds of P-selectin and PSGL-1 from the hydrodynamic shear 

forces of blood(33). Eventually neutrophil tethers reach a crossover point where they can no longer 

retract into the cell and form into slings that are thrown to the front of the rolling neutrophil to 

further stabilize rolling along the endothelium(28, 33). These slings not only have patches of 

PSGL-1 but also express lymphocyte function antigen-1 (LFA-1) throughout the membrane 

(Figure 4A), a key contributor to neutrophil arrest and crawling(19, 28, 33).  
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To transition from rolling to arrest, neutrophils must first be activated. Rolling increases a 

neutrophils exposure to the endothelial chemokine, interleukin-8 (IL-8 or CXCL8), which binds 

to neutrophil CXCR2 and CXCR1, leading to neutrophil activation and arrest(31). Neutrophil 

activation promotes conformational changes in the β2 integrins LFA-1 (CD11a:CD18) and Mac-

1 (CD11b:CD18), increasing their ability to bind to their ligand, intercellular adhesion molecule-

1 (ICAM-1) on endothelial cells. Neutrophil interactions between LFA-1 and Mac-1 to endothelial 

ICAM-1 allow for slow rolling and arrest, and is essential to maintain adhesion to the endothelium. 

Following arrest (Figure 4B), neutrophils have been shown to capture freely flowing platelets via 

interactions of neutrophil Mac-1 and PSGL-1 with platelet GPIbα and P-selectin, respectively(22, 

Figure 4: Schematic of neutrophil-endothelium-platelet interactions. (A) Neutrophils are recruited to a site of injury 
or infection via a cascade that involves neutrophil rolling, activation, arrest and crawling along the activated 
endothelium followed by capture of freely flowing RBCs and platelets. Neutrophil rolling is initiated by neutrophil 
PSGL-1 binding to endothelial P-selectin. Neutrophils then bind to the endothelial chemokine IL-8 via 
CXCR2/CXCR1 leading to neutrophil activation and arrest, which is mediated by the β2 integrins, Mac-1 and LFA-
1, binding to ICAM-1 on the endothelium. Extended membrane extrusions are slings that promote neutrophil rolling 
on inflamed endothelium. (B) Neutrophil-platelet-RBC interactions. Neutrophils capture freely flowing platelets and 
RBC following arrest on the endothelium. Platelets express P-selectin and GPIbα which can bind to neutrophil PSGL-
1 and Mac-1, respectively. RBC have the ability to bind to neutrophils by Mac-1. Arrow depicts direction of flow. 

Direction of Flow 
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23). Additionally, RBC can bind to neutrophil Mac-1 via an interaction that has yet to be fully 

determined(3). 

1.1.4 Emerging role of platelet TLR4 and NLRP3 inflammasome in Inflammation  

Recent studies in infectious diseases like dengue fever, have shown an emerging role for platelet 

activation by toll-like receptor 4 (TLR4), leading to nucleotide-binding domain, leucine-rich-

containing family, pyrin domain-containing-3 (NLRP3) inflammasome complex formation and 

inflammation. These studies have identified that TLR4 and NLRP3-inflammasome dependent 

caspase-1 activation can promote the generation of IL-1β carrying extracellular vesicles (EVs) by 

platelets (34).  

In Figure 5, NLRP3 inflammasome assembles in the cytosol after activation of TLR4 by 

damage-associated molecular patterns (DAMPs) and/or pathogen-associated molecular patterns 

(PAMPs) and serves as a scaffold to recruit apoptosis-associated speck-like protein containing a 

C-terminal caspase recruitment domain (ASC) and  inactive pro-caspase-1(35). Once recruited, 

pro-caspase-1 is cleaved into active caspase-1 which then cleaves the pro-inflammatory cytokine 

pro-IL1β into its active form(35-37).  IL1β can initiate the inflammatory cascade that leads to 

innate immune cell recruitment(21) and can propagate inflammation from one cell to another.  
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Platelets are important in blood clotting initiation and are major inflammatory cells with 

key roles within the innate and adaptive immune response(29, 38). Unlike most blood cells, 

platelets do not have a nucleus, but they do have mitochondria.  Due the lack of nuclei, platelets 

are unable to transcribe new mRNA but are able to translate a select group of preformed mRNA 

to new proteins(39, 40). This translation allows them to express, store and synthesize 

proinflammatory cytokines like IL1β, which promotes the body’s inflammatory response(38). 

Following activation platelets have the ability to spice IL-1β pre-mRNA into mature IL-1β mRNA 

and then synthesize it(38). A recent study showed that lipopolysaccharide (LPS; PAMP) treated 

platelets released IL1β microparticles or what is now universally referred to as extracellular 

vesicles(40). Interestingly, platelet derived EVs are among the most abundant species of EVs in 

Figure 5: NLRP3 inflammasome activation in platelets. Platelet TLR4 gets activated by PAMPs and DAMPs that 
are released into the blood following hemolysis or infection, respectively. TLR4 activation promotes the formation 
of NLRP3-ASC-Caspase-1 inflammasome complex, which cleaves and activates Caspase-1. Active caspase-1 
cleaves pro-IL1β into mature IL1β, which leads to the release of IL1β containing EVs. 
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SCD human blood and their numbers correlate with disease severity (15, 41) but the role of platelet 

EVs in SCD pathophysiology remains unknown. 

1.1.5 Current Treatments 

Until 2017, Hydroxyurea was the only FDA approved drug to treat VOC in SCD patients (9, 12, 

29). Hydroxyurea treatments decrease the occurrence of VOC by increasing fetal hemoglobin 

(HbF) production which is resistant to sickling (3, 8, 9, 12, 29). It has also been shown to reduce 

sRBC adhesion. Unfortunately, not all patients are able to take hydroxyurea and many still get 

undesirable side effects leaving a major need for new therapeutic drugs to alleviate or prevent 

VOC(42).  

 Other treatments for SCD include chronic exchange transfusion, L-glutamine and 

hematopoietic stem cell transplantation. Chronic exchange transfusion is used primarily to treat 

patients who are anemic or have had a stroke, although over 90% of patients have received a 

transfusion at one point during their lifetime(43). Chronic exchange transfusions are effective at 

replacing rigid sRBC with normal RBC but there are many serious complications associated with 

the treatment including infection, hemolysis, iron overload and delayed hemolytic transfusion 

reaction(43). L-glutamine was recently approved by the FDA for treatment of SCD(44), but the 

long term effectiveness in SCD has yet to be determined. Initial studies showed a significant 

decrease in RBC adhesion following treatment with l-glutamine which led to a decrease in 

occurrence of VOC(44). Hematopoietic stem cell transplantation is the only curative treatment for 

SCD but finding an appropriate matching donor can be very difficult. Additionally, there are 

serious long-term complications which include infertility and graft versus host disease where the 

donor cells start to attack the recipient’s cells and organs. 
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1.1.6 Clinical Trials 

Currently there are several drugs in clinical trial that are aiming to reduce or alleviate the effects 

of VOC in Sickle Cell Disease patients by targeting different cells and molecules. Two studies 

have shown promising results by inhibiting selectins (P-selectin and E-selectin).  Rivipansel (GMI-

1070) is a pan selectin inhibitor specifically targeting E-selectin which decreases leukocyte 

adhesion and rolling during VOC(3, 17, 29). During the phase 2 trial, Rivipansel  treated SCD 

patients experienced a decrease in VOC time and hospital stays(45-47) leading to the progression 

of a Phase 3 clinical trial (3, 29, 46, 47) to further test the effectiveness in SCD patients.  SelG1 is 

a humanized anti-P-selectin antibody that targets P-selectin and inhibits its interactions with 

PSGL1(29, 42, 47). SelG1 (crizanlizumab) was shown to decrease the rate of VOC in SCD patients 

in a recent phase 2 clinical trial (42).  

Other studies have focused on leukocyte adhesion. Intravenous immunoglobulin (IVIG) 

has been shown to inhibit leukocyte activation and adhesion to endothelium as well as circulating 

RBC by inhibiting Mac-1 dependent interactions (3, 47, 48). IVIG is now in a Phase 2 trial to test 

its effectiveness at reversing acute VOC(29). 

Tinzaparin is a low molecular weight heparin that inhibits P-selectin mediated adhesion 

and was shown to reduce the duration of VOC(3, 29). Prasugrel, a novel P2Y12 ADP receptor 

antagonist, inhibits ADP mediated platelet activation and aggregation(3). The drug showed 

promising results during Phase 1 and Phase 2 clinical trials with decreased platelet activation in 

SCD patients(29, 47). Unfortunately  phase 3 clinical trials were terminated due to a lack in 

efficacy in reducing acute vaso-occlusive complications (49) but have opened the door to new 

drugs targeting platelet activation.    
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1.2 SUMMARY 

Sickle Cell Disease is an autosomal recessive genetic disorder that affects 100,000 in the U.S. and 

millions worldwide. SCD results from a single point mutation in the β globin gene that causes the 

hemoglobin to polymerize under deoxygenated conditions. As a result of the polymerization the 

RBC sickles which exposes adhesion molecules on the RBC membrane and can lead to hemolysis. 

Hemolysis has been associated with a proinflammatory and procogulation state, both of which lead 

to vaso-occlusion. VOC is the primary cause of emergency medical care in SCD patients and leads 

to ischemia reperfusion injury, acute chest syndrome, stroke and pulmonary hypertension among 

others. Previous studies have shown in the cremaster of BERK sickle mice that neutrophils roll 

and arrest along the activated endothelium where they capture sickle RBC thus promoting vaso-

occlusion. Neutrophils are the first responders to injury or infection and have the ability to interact 

with activated endothelium and platelets via a variety of mechanisms. Platelets in SCD patients 

are chronically activated and have been shown to release IL1β carrying EVs. Although VOC is the 

primary pathophysiology faced by SCD patients, the exact mechanisms of VOC in humans 

remains elusive. Furthermore, there are only two FDA approved drugs for SCD, HU and L-

glutamine and there remains a need for a novel therapeutic approach to alleviate and reduce VOC 

more effectively.  

1.3 HYPOTHESIS & AIMS OF STUDY 

Sickle Cell Disease is a debilitating disease that affects millions worldwide. VOC is the major 

cause of the morbidity faced by SCD patients, yet the mechanisms remain unclear. The purpose of 
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this study is to determine the cellular, molecular and biophysical mechanisms that promote vaso-

occlusion in Sickle Cell Disease patients.  

1.3.1 Primary Hypothesis: Vaso-occlusion in SCD patients is enabled by platelet nucleation 

on arrested neutrophils, and requires Mac-1-GPIbα and PSGL1-P-selectin mediated biophysical 

interactions between platelet hair-like tethers and arrested neutrophils.  

This hypothesis was tested using the following aims: 

1.3.2 Aim 1: To develop a novel imaging approach that enables the study of vaso-occlusive 

events in SCD patient blood under vascular mimetic flow conditions.  

Due to the limitations associated with imaging at single cell resolution in SCD patients, there is a 

great need for an in vitro approach that allows the study of whole human blood at a single cell 

resolution. Development of a new imaging setup utilizing fluorescence microscopy is crucial to 

allow the quantitative assessment of vaso-occlusion, unravel the mechanism of vaso-occlusion and 

test the efficacy of anti-adhesion drugs in preventing vaso-occlusive events in SCD patient blood. 

1.3.3 Aim 2: To determine whether vaso-occlusive events in non-crisis (steady state) SCD 

patient blood involve P-selectin-PSGL-1 and Mac-1-GPIbα mediated platelet nucleation on 

arrested neutrophils. 

The novel imaging approach developed in Aim 1 allows the study of the cellular and molecular 

mechanisms of vaso-occlusion. This technique will provide a way to determine whether platelet 
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nucleation on arrested neutrophils is significantly higher in non-crisis SCD blood than control 

human blood. Furthermore, it will allow us to explore the molecular mechanisms of vaso-occlusion 

by enabling us the ability to determine whether blocking P-selectin-PSGL-1 and Mac-1-GPIbα 

interactions in non-crisis SCD blood can reduce platelet nucleation on adhered neutrophils.  

1.3.4 Aim 3: To test whether trace amounts of LPS is potent enough to selectively 

enhance platelet-neutrophil aggregation in SCD patient blood 

As a result of hemolysis in SCD patients, DAMPs such as heme and hemoglobin are released into 

the blood leading to the activation of platelets, neutrophil and endothelial cells. 

Lipopolysaccharide from gram negative bacteria is a PAMP that has been shown to simulate an 

infection in the blood by activating the innate immune response. To test the hypersensitivity SCD 

patient blood to LPS, we need to determine a dose of LPS that can enhance platelet-neutrophil 

interactions in SCD but not control human blood. Once the dose is determined, we can test whether 

blocking platelet P-selectin or GPIbα and neutrophil PSGL-1 or Mac-1 can attenuate LPS induced 

platelet-neutrophil aggregation in SCD blood. Lastly, we want to test the specificity of LPS 

induced interactions by determining whether LPS induced platelet-neutrophil aggregation in SCD 

patient blood is TLR4 dependent. 

1.3.5 Aim 4: To test whether platelet derived hair-like tethers enhance platelet-neutrophil 

interactions in non-crisis SCD human blood. 

Preliminary studies revealed the presence of hair-like tethers on platelets in SCD patient blood. To 

establish a role for platelet tethers in SCD, we want to first determine whether tether formation by 
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platelets is higher in non-crisis SCD patient blood than control human blood. We then want to 

determine, whether tether formation by platelets enhances a platelets ability to interact with 

arrested neutrophils. Furthermore, the molecular mechanism that promotes tether formation by 

platelets remains elusive. To complete the study, we want to determine whether formation of 

platelet derived tethers is dependent on platelet NLRP3 inflammasome activation. 
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2.0  QUANTITATIVE MICROFLUIDIC FLUORESCENCE MICROSCOPY (QMFM) – A 

NOVEL IMAGING TECHNIQUE  

Note: A majority of this chapter was previously published as: Jimenez MA, Tutuncuoglu E, Barge 

S, Novelli EM, Sundd P. Quantitative microfluidic fluorescence microscopy to study vaso-

occlusion in sickle cell disease. Haematologica. 2015;100(10): e390-e393. 

doi:10.3324/haematol.2015.126631. Methods specific to lab protocols are described in Appendix 

A.  

2.1 INTRODUCTION 

Sickle Cell Anemia (SS), the most common form of SCD, leads to sickling of red blood cells 

(RBCs)(3). It is believed that sickle RBCs get trapped in blood vessels along with leukocytes and 

platelets to cause vaso-occlusion(3). Vaso-occlusive crisis is the primary reason for emergency 

medical care sought by Sickle Cell Disease (SCD) patients(5). Neutrophils are the most abundant 

leukocytes in human blood and their adhesion to the endothelium starts with rolling mediated by 

P-selectin on the endothelium binding to PSGL-1 on neutrophils(19). Interleukin-8 (IL-8) on the 

endothelium binds to CXCR2 on rolling neutrophils to activate β2-integrins Mac-1 and LFA-1 on 

neutrophils, which then bind to ICAM-1 on endothelium to enable arrest(19). Several studies have 

used polydimethylsiloxane (PDMS; Silicone) based microfluidic assays to extract invaluable 

insight into the mechanism of vaso-occlusion. However, these approaches were limited by the use 

of isolated SS-RBCs(50) or the inability to visualize cellular interactions at single cell 
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resolution(51) and distinguish different cell types that constitute the vaso-occlusive plug(52).  In 

vivo imaging in transgenic SCD mice has identified molecular events that may promote vaso-

occlusion(3, 23, 53), but the relevance of these mechanisms is not completely understood in 

humans. In this study we aim to develop a novel imaging approach to study vaso-occlusive events 

in whole human blood at a single cell resolution. 

2.2  MATERIALS AND METHODS 

2.2.1 Reagents 

Recombinant human P-Selectin-Fc chimera (P-selectin) and recombinant human ICAM-1-Fc 

chimera (ICAM-1) were purchased from R&D Systems (Minneapolis, MN). Recombinant human 

CXCL8/interleukin-8 (IL-8) was purchased from Peprotech Inc. (Rocky Hill, NJ). Alexa Fluor-

647 conjugated mouse anti-human CD16 mAb (clone 3G8, mouse IgG1), FITC conjugated mouse 

anti-human CD49b mAb (clone AK-7, mouse IgG1), FITC conjugated mouse anti-human CD66b 

(clone G10F5, mouse IgG1), function blocking purified NA/LE mouse anti-human CD11b mAb 

(clone ICFR44, mouse IgG1), mouse anti-human CD162 (clone KPL-1, mouse IgG1), PE-

conjugated anti-human PECAM-1 (clone WM59, mouse IgG1) and isotype control mouse IgG1 

were purchased from BD Biosciences (San Jose, CA). Function blocking anti human CD62P mAb 

(clone G1/G14, mouse IgG1), anti-human CD62E mAb (clone HAE-1f, mouse IgG1) were 

purchased from Ancell Corp. (Bayport, MN). Function blocking anti-human CD11a mAb (clone 

TS1/22, mouse IgG1) was purchased from Thermo Scientific™ (Rockford, IL). Human 
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fibronectin was purchased from Fisher Scientific, (Pittsburgh, PA). Recombinant human tumor 

necrosis factor-α (TNF-α) was purchased from Peprotech, Inc.  

2.2.2 Blood collection 

Blood samples were collected from 8 race-matched control and 10 SS patients in accordance with 

the guidelines set by the Institutional Review Board at the University of Pittsburgh. Informed 

written consent was obtained from all the participants in accordance with the Declaration of 

Helsinki. Non-smokers who were not on chronic blood transfusion or hydroxyurea therapy or were 

non-compliant to hydroxyurea were included in the study. Blood was drawn via venipuncture 

using a 21G needle into a 10-ml syringe filled with 20 U/ml of heparin or 25 U/ml hirudin. 

Fluorescent antibodies against human CD16 (3 μL) and CD49b (2.5 μL) were added to 500 µl of 

blood in a 1 ml Eppendorf tube to stain neutrophils and platelets in situ, respectively. CD49b is 

the α2 chain of the collagen receptor α2β1 on platelets and has been used to identify platelets in 

blood(54). CD16 has been used to identify human neutrophils which are defined as double positive 

for CD66b+ and CD16+(55). Based on this, Alexa Fluor 647 conjugated anti-human CD16 and 

FITC-conjugated anti-human CD49b antibodies to stain neutrophils and platelets, respectively, 

were added to the blood (3:500 CD16; 1:250 CD49b) in the inlet reservoir. Also, complete blood 

cell counts were conducted using Hemavet® HV950. All experiments were completed within 2 

hours of blood draw and the blood sample was gently mixed on a blood rocker during the entire 

experiment.    
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2.2.3 Flow Cytometry 

Heparinized blood was lysed with 1X RBC lysis buffer and cells were suspended in PBS without 

Ca2+ and Mg2+ + 1% BSA + 0.1% sodium azide, pH 7.4. The cell suspension was incubated with 

FITC-CD66b (1:100) and AlexaFluor647-CD16 (1:100) monoclonal antibodies or isotype 

matched control antibodies and analyzed on BD-Fortessa flow cytometer. Post-acquisition 

analysis was done using FlowJo software.   

2.2.4 Quantitative Dynamic Footprinting (qDF)  

qDF is an adaptation of total internal reflection fluorescence (TIRF) microscopy that allows 

visualization of the footprints of rolling and arresting neutrophils on a glass substrate coated with 

endothelial adhesion molecules(33, 56). A laser is incident through a high numerical aperture, high 

magnification, oil immersion objective at the glass-cell interface at an angle (70˚) greater than the 

critical angle, θc (64.33˚) = sin-1 (n2/n1), where n1 = 1.52 and n2 = 1.37 (n1 > n2) are the refractive 

index of glass and cell cytoplasm, respectively. The laser is completely reflected back into the 

objective but an evanescent wave (light blue box in Figure 7D) is established on the cell side of 

the coverslip. The intensity of the evanescent wave decreases with z-distance and becomes 

negligible within 200 nm above the coverslip (light blue box in Figure 7D). As a result, 

fluorescence is excited only in the cell membrane and cytosolic region that lies within 200 nm 

above the coverslip, while the remainder of the cell remains invisible.  
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2.2.5 Endothelial Cell Culture and Activation 

A 12 mm2 region on rectangular cover slips (Number 1.5, Fisher Scientific) was coated with 10 

μg/ml of human fibronectin for 30 minutes at room temperature and 20,000 HMVECs-L or 

HCAECs in 50 μl culture medium (400,000 cells/ml) were allowed to adhere to the coated region. 

Cells were allowed to reach confluence at 37°C and 5% CO2 in a CO2 incubator for 5 days.  Once 

confluent, cells were activated by overnight incubation with 100 ng/ml recombinant human TNF-

α and used in microfluidic flow assays. 

2.2.6 Preparation of adhesion molecule presenting substrates:  

Coverslips were coated with a concentration of 2 µg/ml P-selectin, 10 µg/ml ICAM-1, and 10 

µg/ml IL8 and stored in Casein until use in experiments. See Appendix A1.1 Preparation of 

adhesion molecule presenting substrates for further details on preparation of P-selectin, ICAM-1, 

and IL8 coated substrates. 

2.2.7 Microfluidic flow device assembly 

A PDMS based silicone chip with micro-channels engraved on its surface was gently placed on a 

glass coverslip coated with either a cocktail of P-selectin, ICAM-1, and IL-8 or cultured with TNF-

α treated HMVECs-L or HCAECs and sealed together using vacuum (negative 30 kPa pressure; 

Figure 6B). Prior to blood perfusion, the endothelialized microfluidic devices were filled with a 

KREBS-HEPES buffer, pH 7.4 (NaCl, KCl, MgSO4, NaHCO3, KH2PO4, Hepes, Glucose and 

CaCl2) to keep the endothelial monolayer viable. Microfluidic chips attached to adhesion 
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molecules was perfused with 1x PBS. The assembled device has an inlet, an outlet, a vacuum port 

connected to in-house vacuum supply and four identical micro-channels (30 µm high and 500 µm 

wide) with nearly identical flow rates and wall shear stresses (Figure 6). The wall shear stress was 

calibrated as a function of the differential pressure between the inlet and outlet reservoir. The 

differential pressure was set by placing the inlet reservoir next to the device while lowering the 

outlet reservoir to achieve the physiological wall shear stress (57) of 6 to 10 dyne cm-2. See A1.3 

Calibration of Wall Shear Stress in Microfluidic Device for the procedure to calibrate new device 

shear stress. Approximately 500 μL of anticoagulated blood was transferred to a 1.5 mL Eppendorf 

tube which served as an inlet reservoir while a 10-ml syringe filled with PBS served as the outlet 

reservoir. The inlet and outlet reservoirs were connected to the inlet and outlet ports of the device 

using PE10 (ID 0.28 mm, OD 0.61 mm) and TYGON (ID 0.8 mm, OD 2.4 mm) tubing, 

respectively.  

 

Figure 6: Schematic of Microfluidic Setup. (A) Nikon Eclipse-Ti inverted microscope with a TIRF photoactivation 
unit was used for the qMFM imaging setup. (B) Schematic depicting the area marked with the white dotted box in 
A. PDMS chip (blue rectangle) is connected to a glass coverslip (grey line) via vacuum. Blood with fluorescent 
antibodies is added to a 1.5mL Eppendorf and connected to the inlet of the PDMS chip (blue rectangle) and 
coverslip (grey thick line). Outlet reservoir is attached to the outlet port on the opposite end of the chip. Whole 
setup is placed on top of the stage with blood flowing from left to right. Wall shear stress is controlled by the 
height of the outlet reservoir with the stage level as 0. TIRF objective with oil is raised to the coverslip and imaging 
can occur. 

B A 
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2.2.8 qMFM data analysis guidelines 

The following strategy was followed to record observations in adhesion molecule coated micro-

channels.  

Step-1: Neutrophils were allowed to roll, arrest and crawl for 2 min and observations were 

recorded in a field of view using qDF.    

Step-2: After 2 min, the incident angle of the laser was reduced and the platelet-neutrophil 

interactions were observed in the same FOV for an additional 4 min.   

Time series sequences of images were processed and analyzed using NIS-Elements 

Analysis Advanced Research software (Nikon). Image background was subtracted using the 

average intensity of a small region of the image background and platelets were identified using the 

spot detection algorithm available in NIS-Elements. The interacting platelets are marked with 

white circles shown. The spot-detection algorithm identifies only those platelets which slowdown 

to interact with arrested neutrophils and continues to track them until they detach and leave the 

FOV. Platelets are identified by defining a threshold based on the intensity and size of the bright 

spots. The final read-out is the number of interactions in a given observation period and the life-

time of each interaction. Platelet-Neutrophil interactions were defined as following:  

• A freely flowing platelet attaches to an arrested neutrophil → an interaction event.  

• A freely flowing platelet aggregate attaches to an arrested neutrophil → an interaction 

event.  

• A rolling neutrophil enters the FOV with a platelet attached to it → an interaction event.  

• A platelet or an aggregate of platelets detaches from one neutrophil and attaches to 

another neutrophil → an interaction event. 
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2.2.9 Scanning Electron Microscopy 

Blood was perfused through PDMS based microfluidic channels presenting P-selectin, ICAM-1, 

and IL-8. Neutrophils were allowed to roll, arrest and interact with freely flowing platelets prior 

to fixation under flow. Coverslips were processed as described in A1.9 Scanning Electron 

Microscopy. 

2.2.10 Adhesion studies 

Adhesion specificity was confirmed by either incubating the adhesion molecule or endothelial cells 

coated coverslips with function blocking antibodies against P-selectin (1:500) and E-selectin 

(1:500) for 10 min at 37˚C/5% CO2 prior to their use in microfluidic assay. In some experiments, 

function blocking antibodies against Mac-1, LFA-1 and PSGL-1 were added to the blood (1:100) 

in the inlet reservoir followed by 10 min of incubation with mixing at room temperature prior to 

use in the microfluidic assay. Finally, the microfluidic device was placed on the heated stage set 

at 24˚ or 37˚C (Okolab, Ottaviano, Italy) of an inverted microscope and the blood was perfused 

through the micro-channels at a wall shear stress of 6 to 10 dyn cm-2.  Observations were made in 

the perfusion chambers (30 µm high and 500 µm wide). 

2.2.11 Statistical Analysis 

Mean number of platelet-neutrophil interactions under different conditions were compared using 

a student’s t-test. Fourfold table analyses with Bonferroni χ2-statistics were used to compare 

percentages between different groups. A p-value of less than 0.05 was used to determine 
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significance. Lifetimes of interactions under different conditions were compared as cumulative 

probability distributions using non-parametric Kruskal-Wallis H-test.    

2.2.12 Microscope Set up  

For the setup of the microscope and the equipment used for imaging See Appendix  A1.8 

Microscope Set up. 

2.3 RESULTS 

2.3.1 Working principle of qMFM.  

A silicone chip with micro-channels engraved on its surface was gently placed on a glass coverslip 

(Figure 7A) coated with either a cocktail of P-selectin, ICAM-1, and IL-8 (Figure 7B) or cultured 

with TNF-α treated human coronary artery endothelial cells (HCAECs) or human lung micro-

vascular endothelial cells (HMVECs-L) (Figure 7C) and vacuum-sealed. The assembled device 

had an inlet, an outlet and four identical perfusion chambers (30 µm high and 500 µm wide). Alexa 

Fluor 647 conjugated anti-human CD16 and FITC-conjugated anti-human CD49b antibodies were 

added to blood in the inlet reservoir to stain neutrophils and platelets, respectively. Finally, the 

microfluidic device was placed on the stage of the inverted microscope and the blood was perfused 

through the perfusion chambers at a wall shear stress of 6 dyne/cm2 (See A1.3 Calibration of Wall 

Shear Stress in Microfluidic Device). Rolling, arrest and crawling of fluorescent neutrophils in 

human blood was visualized in the perfusion chambers using quantitative dynamic footprinting 
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(qDF)(33). In qDF, a laser is incident at the glass-cell interface at an angle greater than the critical 

angle. The laser is reflected back into the objective and an evanescent wave (Figure 7D - light blue 

box) is established on the cell side of the coverslip. The intensity of the evanescent wave becomes 

negligible greater than 200 nm above the coverslip. As a result, fluorescence is excited only in the 

cell membrane and cytosolic region that lies within 200 nm above the cover slip, while the 

remainder of the cell remains invisible. In order to observe platelets interacting with adhered 

neutrophils, the angle of the laser was reduced during imaging to increase the illumination zone 

from 200 nm to greater than 5 mm (Figure 7E - light blue box).   

 

2.3.2 qMFM reproduces neutrophil rolling and arrest in SS patient blood.   

Neutrophil rolling has been shown to be facilitated by ‘slings’, which are long membrane cell-

autonomous structures extended at the front of rolling neutrophils (58). Although slings have been 

shown to exist on mouse neutrophils, the evidence to support their presence on human neutrophils 

A B 

C 

D 

E 

Figure 7:The working principle of qMFM. (A) Schematic of custom PDMS vacuum sealed microfluidic device. 
Δh is the difference in height between the inlet and the outlet reservoir. Cross-section of a micro-channel coated 
with (B) cocktail of P selectin, ICAM-1 and IL-8 and (C) cultured endothelial cells (D) Step 1 of qMFM - 200 nm 
evanescent wave (light blue box) which allows visualization of only the footprint of the neutrophil. (E) Step 2 of 
qMFM- illumination zone (light blue box) greater than 5 μm allowing visualization of the platelets nucleating on 
top of neutrophils. Neutrophil (violet) and platelet (green). Figure published in Jimenez, M et al. Haematologica 
2015. 
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does not exist. When SS or control blood was perfused through P-selectin coated microfluidic 

channels, the majority of neutrophils were rolling (Figure 8A-B) and formed slings (Figure 8C) in 

SS and control blood. As SS and control blood was perfused through micro-channels coated with 

a cocktail of P-selectin, ICAM-1 and IL-8, neutrophils rolled and then quickly arrested (Figure 

8D, E). Arrested neutrophils spread over time and crawl, which is similar to observations made in 

mice vasculature in vivo (22). Slings were also observed to exist on arrested neutrophils in SS 

(Figure 8E) as well as control subject blood (Figure 8F). Flow cytometry data also revealed in that 

94% of CD16+ cells in human blood are neutrophils (Figure 8G), supporting its choice as a 

neutrophil marker.  

 

G 

Sling/Tether 

D. E. F. 

Figure 8: qMFM reproduces rolling, arrest and sling formation by neutrophils in SS blood (A) Neutrophils rolling 
on P-selectin coated substrate in SS patient blood. (B) Magnified view of the region marked with dotted box in A 
revealing the presence of slings in the rear of rolling neutrophils in SS blood and (C) in the front of a rolling 
neutrophil in control blood. (D) Neutrophils arrest on P-selectin, ICAM-1, and IL-8 coated substrate in SS patient 
blood. (E) Slings can be observed to connect adjacent arrested neutrophils in SS patient blood. (F) Sling exists on 
an arrested neutrophil in control human blood. Sling denoted by dotted line arrow. Wall shear stress 6 dyn cm-2. 
Scale bars 20 μm. Neutrophils (violet). (G) Flow cytometry of human neutrophils stained for CD66b and CD16. 
Figure published as Jimenez, M et al. Haematologica 2015. 
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2.3.3 SS patients have enhanced neutrophil rolling and arrest.  

This study found that the number of neutrophils that rolled in P-selectin coated micro-channels 

was fourfold higher in SS than control blood (Figure 9A, B). Similarly, the number of neutrophils 

that arrested on P selectin, ICAM-1 and IL-8 coated micro-channels was two to three-fold higher 

in SS than control blood (Figure 9C, D). This P-selectin dependent rolling was completely 

abolished by a function blocking antibody against P-selectin and PSGL-1, confirming the 

specificity of the molecular interactions (Figure 9E). Neutrophil arrest in control blood was 

completely abolished by a function blocking antibody against Mac-1, and partially by a function 

blocking antibody against LFA-1 (Figure 9E), suggesting that Mac-1 is the predominant β2-

integrin mediating human neutrophil arrest. 
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Figure 9: More neutrophils roll and arrest in SS than in control blood. qMFM step 1 imaging reveals (A) the 
accumulation of rolling neutrophils in control (top row) and SS blood (bottom row) over 60 s on a P-selectin coated 
substrate. (B) Number of rolling neutrophils during a 60s period on P-selectin coated substrate. qMFM also reveals 
the accumulation of (C) arrested neutrophils in control (top row) and SS blood (bottom row) over 180 s on a P-
selectin, ICAM-1, and IL-8 coated substrate. (D) Number of arrested neutrophils during a 180s period. *P<0.05 
compared to control blood. N=3 SS N=3 control subjects. Error bars are SD. E) Verification of adhesion specificity. 
Percent rolling and arrested neutrophils. Numbers on bars represent total number of neutrophils.  Fourfold table 
analysis with Bonferroni χ2-statistics was used to compare percentages between different groups. # p<0.05 for 
rolling when compared to untreated PIC. + p<0.05 for arrest when compared to untreated PIC. n=2 Wall shear stress 
6 dyn/cm2.  Horizontal arrows denote direction of blood flow. Wall shear stress 6 dyn cm−2. Scale bars 50 μm. 
Neutrophils (violet). Excitation laser 640 nm. Figure published in Jimenez, M et al. Haematologica 2015. 

E 
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2.3.4 qMFM allows the visualization of neutrophil footprints and platelet-neutrophil 

interactions.  

The capture of activated platelets by adherent neutrophils is believed to play a role in the onset of 

vaso-occlusion in the venules of SCD mice (23, 53). Using the two-step imaging strategy shown 

in Figure 7B-C, neutrophils were observed to arrest and then crawl on P-selectin, ICAM-1 and IL-

8 coated microfluidic channels (Figure 10A) which enabled nucleation of platelets on top of 

crawling neutrophils (Figure 10B). The crawling of neutrophils followed by nucleation of platelets, 

is similar to observations reported in mice in vivo (22, 23, 53). We observed that platelet nucleation 

on arrested neutrophils in SS blood led to the formation of aggregates which partially occluded the 

microfluidic channels. As shown previously in SCD mice in vivo(53), RBCs were found to be 

trapped in these aggregates. qMFM allowed visualization of platelet-neutrophil interaction at 

single cell resolution (Figure 10C). The time-series of qMFM images were analyzed using the 

Nikon Elements spot detection algorithm to quantify the total number and lifetime of platelet-

neutrophil interactions (Figure 10D). This methodology was used to evaluate the effect of different 

anticoagulants on the platelet-neutrophil interactions in control subject blood. We observed that 

the number (Figure 10E) and the lifetime (Figure 10F) of platelet-neutrophil interactions were 

comparable in heparin and hirudin anticoagulated control blood. Thus platelet-neutrophil 

interactions were independent of the choice of anticoagulant. The in vitro microfluidic approach 

also allows fixation of interacting cells under flow followed by scanning electron microscopy (See 

A1.9 Scanning Electron Microscopy for details on preparation and imaging). Figure 10G shows 

a scanning electron micrograph of a platelet interacting with an arrested neutrophil in control 

subject blood. 
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2.3.5 Neutrophils form slings which mediate rolling on endothelialized microchannels.  

In order to establish that qMFM serves to visualize cellular interactions on cultured endothelium, 

blood from SS and control subjects was perfused through microfluidic micro-channels cultured 

with TNF-α activated HMVECsL or HCAECs and cellular interactions were recorded using step 

2 of the imaging technique (Figure 7C). In some experiments (Figure 11A-C), cultured HMVECs-

L were stained with a PE-conjugated antibody against endothelial PECAM-1 (green) to visualize 

the endothelial cell borders. Neutrophils in control blood were observed to roll and arrest on 

activated HMVECs-L (Figure 11A-C). Neutrophils in SS and control blood were also observed to 

Figure 10: qMFM provides the choice to visualize neutrophil footprints or platelet-neutrophil interactions. (A) 
Imaging step 1 allows visualization of footprints of arrested neutrophils while (B) step 2 enables visualization of 
platelet-neutrophil interactions on P-selectin, ICAM-1 and IL-8 coated substrates in control human blood. (C) The 
region marked by a dashed box in B is magnified to reveal platelet-neutrophil interaction at single cell resolution. 
(D) White circles mark the platelets. (E) Comparison of total platelet-neutrophil interactions in hirudin vs. heparin 
anticoagulated control subject blood. Error bars are SE. (F) Cumulative probability distribution of the lifetime of 
platelet-neutrophil interactions in hirudin (n = 41 cells) vs. heparin (n = 44 cells) anticoagulated control human 
blood; n = 2 healthy control subjects with 4 FOV; (G) Scanning electron micrograph of platelet attached to an 
arrested neutrophil in control subject blood. Wall shear stress = 6 dyn cm−2. Scale bars 20 μm. Horizontal arrows 
denote blood flow direction. Figure published in Jimenez, M et al. Haematologica 2015. 
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roll (Figure 11D), arrest (Figure 11E) and then capture freely flowing platelets on activated 

HCAECs (Figure 11F). The majority of neutrophils rolling on activated HCAECs were observed 

to form slings (Figure 11D). As shown in the Figure 11G, following arrest, neutrophils were also 

observed to crawl on activated HCAECs. In specificity studies neutrophil rolling and arrest on 

activated HCAECs in SS blood was not affected by blocking E-selectin, but was completely 

abolished by simultaneous blocking of P-selectin on HCAECs and Mac-1 on neutrophils (Figure 

11H). Thus, neutrophil rolling on activated HCAECs is primarily mediated by P-selectin. See A1.4

 Microfluidic Adhesion studies for further details on the methods. 
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2.4 DISCUSSION 

There are several advantages to using qMFM to study vaso-occlusion. Collection of large volumes 

of blood from SS patients can be challenging as these patients suffer from chronic anemia(5). The 

volumetric flow rate through the microfluidic device used in qMFM (Figure 7A) is 12 µl/min at a 

wall shear stress of 6 dyn/cm2. Thus, qMFM allows for 4-minute-long experimental observations 

Figure 11: Neutrophils form slings to mediate rolling on endothelialized microchannels. qMFM reveals (A) 
rolling and (B) arresting neutrophils on TNFα treated HMVECs-L (green). (C) Overlay of A and B. (D) Sling 
(marked with dashed arrow) formation by rolling neutrophil on HCAECs in control human blood. (E) Neutrophil 
arrest on TNF-α activated HCAECs in SS patient blood. (F) Platelets (green) interacting with neutrophils (violet) 
that are arrested on TNF- α activated HCAECs in SS patient blood. (G) Neutrophils crawling on TNF-α activated 
HCAECs in control human blood at 0 s start to migrate away by 90 s. Numbers identify individual neutrophils. 
(H) Percent of arrested neutrophils on HCAECs following treatment with function blocking antibodies. Numbers 
on top of bars denote total number of neutrophils. N=3 experiments. Fourfold table analysis with Bonferroni χ2-
statistics was used to compare percentages between different groups. Neutrophil (violet), platelet (green). Wall 
shear stress = 6 dyn cm-2. Scale bars 20 μm. Figure published in Jimenez, M et al. Haematologica 2015. 
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using as little as 50-100 µl of anticoagulated blood. Also, the microfluidic chips are reusable, easy 

to fabricate and cost less than 10 cents per chip(33). On top of that, a two-step fluorescence 

microscopy approach (Figure 7B-C) provides a choice of studying either footprints of crawling 

neutrophils or platelet-neutrophil aggregation with a swift transition between the steps. This 

strategy of visualizing neutrophil footprints without platelets and RBCs in the background can be 

useful in determining the effect of anti-adhesion drugs on neutrophil rolling and arrest vs. 

neutrophil-platelet aggregation. In addition to scanning electron microscopy (SEM), the 

interacting cells fixed under flow can be stained with fluorescent antibodies against adhesion 

molecules or cytoskeletal proteins and be visualized using super-resolution fluorescence 

microscopic techniques like Structured-Illumination-Microscopy (SIM) or Stimulated Emission 

Depletion (STED) microscopy which are capable of visualizing cellular features at an 

unprecedented lateral resolution of 100 nm and 20 nm, respectively.  

Although qMFM is a useful tool, there are a few limitations associated with this approach. 

The blood has a tendency to coagulate when coming in contact with silicone or glass. To avoid 

artifacts, microscopic observations in a single microfluidic chip should be limited to not more than 

six minutes. However, the low cost of microfluidic chips and their ability to be recycled 

circumvents this limitation. Anticoagulated blood tends to coagulate and separate into plasma and 

cell pellet when allowed to sit without any mixing. Pilot studies revealed that in order to eliminate 

artifacts, the anticoagulated blood needs to be mixed continuously and used in qMFM within 2 

hours following blood collection thus allowing less time for data collection. qMFM requires in situ 

staining of blood cells by addition of fluorescent antibodies against lineage markers to blood. In 

order to visualize different blood cell types distinctly, it requires selection of fluorochromes with 

distinct excitation and emission spectra for each blood cell type so that cell types can be identified 
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based on the emission spectra. However, with the advent of commercially available multi-

wavelength laser and LED sources as well as high sensitivity sCMOS cameras, video-rate 

sequential acquisition of at least four fluorochromes is easily achievable. 

2.5 CONCLUSION 

This study introduces quantitative microfluidic fluorescence microscopy (qMFM) which enables 

the visualization of cellular interactions in human blood flowing through silicone based 

microfluidic channels. qMFM reproduces the leukocyte-endothelium adhesion cascade, starting 

from rolling, transition to arrest followed by crawling and platelet capture by crawling leukocytes 

in human blood. Remarkably, qMFM reveals that leukocyte rolling and arrest is several fold higher 

in SS than in control human blood. qMFM also provides the first evidence to support the presence 

of slings in rolling and arresting human neutrophils. qMFM allows visualization of platelet-

neutrophil interactions at single cell resolution and enables a numerical read-out of the vaso-

occlusive events in the form of frequency and lifetime of interactions. This quantitative assessment 

renders qMFM a unique platform to study the molecular mechanisms of vaso-occlusion and test 

the efficacy of anti-adhesion drugs in preventing vaso-occlusion. In conclusion, qMFM serves as 

an in vitro imaging platform that can be used to elucidate the cellular, molecular and biophysical 

mechanisms of single cell adhesive events that potentiate vaso-occlusion in SS blood, in addition 

to evaluating the efficacy of a drug or treatment for individual patients. 
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3.0  VASO-OCCLUSION IN SICKLE CELL DISEASE IS MEDIATED BY 

NEUTROPHIL-PLATELET MICROEMBOLI 

Note: A majority of this chapter was previously published as: Bennewitz MF†, Jimenez MA†, 

Vats R, Tutuncuoglu E, Jonassaint J, Kato GJ, Gladwin MT, Sundd P. Lung vaso-occlusion in 

sickle cell disease mediated by arteriolar neutrophil-platelet microemboli. Journal of Clinical 

Investigation-Insight. 2017 Jan 12;2(1):e89761. PubMed PMID: 28097236; PubMed Central 

PMCID: PMC5214368. †co-first author. 

3.1 INTRODUCTION 

Acute vaso-occlusive pain crisis is the predominant pathophysiology requiring emergency medical 

care by SCD patients (5). Repeated episodes of vaso-occlusive crisis contribute to morbidity and 

end organ damage in SCD patients, and there is a strong need for improved preventive strategies 

(3, 5). Acute vaso-occlusive crisis can involve the lung, bone marrow, and systemic blood vessels 

(5, 6). Systemic vaso-occlusive events have been characterized in transgenic mouse models of 

SCD and in the human retinal vasculature, and appear to be mediated by vaso-occlusive events in 

the postcapillary venules. While the lung is one of the most affected organs in SCD(59), the 

cellular, molecular, and biophysical mechanisms that contribute to pulmonary vaso-occlusion have 

not been characterized (5).  

Intravital microscopic studies of the cremaster microcirculation of transgenic SCD mice 

have shown that systemic vaso-occlusion occurs primarily in the postcapillary venules, involving 
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Mac-1 (CD11b/CD18) dependent capture of sickle erythrocytes by adherent neutrophils (53). 

Recent studies of the TNF-α–treated cremaster venules in WT mice revealed that platelets can 

interact through P-selectin binding to PSGL-1 on adherent neutrophils (22). Additionally, 

neutrophil-platelet aggregates were observed in TNF-α–treated cremaster venules of SCD mice, 

requiring neutrophil Mac-1 binding to glycoprotein Ibα (GPIbα) on platelets (23). Interestingly, 

elevated platelet and leukocyte counts are identified risk factors for acute vaso-occlusive pain crisis 

(18), and circulating neutrophil-platelet aggregates are significantly elevated in the blood of 

steady-state SCD patients (25, 26). Despite this recent appreciation of a role for neutrophil-platelet 

aggregates in systemic vaso-occlusion, the role of these cellular aggregates in pulmonary vaso-

occlusion associated with SCD is not known. This study provides proof of principle that 

specifically targeting platelet P-selectin and neutrophil Mac-1 decreases neutrophil-platelet 

aggregate formation in SCD patient blood in vitro. 

3.2 MATERIALS AND METHODS 

3.2.1 Reagents  

Recombinant human P-selectin (CD62P)-Fc chimera and recombinant human ICAM-1 (CD54)-

Fc chimera were obtained from R&D Systems (Minneapolis, MN). Recombinant human 

CXCL8/interleukin-8 (IL-8) was obtained from Peprotech Inc. (Rocky Hill, NJ). Alexa Fluor 647 

(AF647) conjugated mouse anti-human CD16 mAb (clone 3G8; IgG1κ), fluorescein 

isothiocyanate (FITC) conjugated mouse anti-human CD49b mAb (clone AK-7; IgG1κ), function 

blocking NA/LE mouse anti-human CD11b (Mac-1) mAb (clone ICFR44; IgG1κ), purified 
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NA/LE mouse IgG1κ isotype control (clone 107.3), Brilliant Violet 421 (BV421) mouse anti-

human CD62P (P-selectin; clone AK-4), FITC mouse IgG1 κ (clone MOPC-21), phycoerythrin 

(PE) mouse IgG1 κ (clone MOPC-21), and purified mouse anti-human CD162 (PSGL-1; clone 

KPL-1) were purchased from BD Biosciences (San Jose, CA). Function blocking mouse anti-

human CD62P (P-selectin) mAb (clone G1/G14; IgG1κ) was purchased from Ancell Corp. 

(Bayport, MN). Toll like receptor-4 (TLR4) inhibitor TAK242 (CLI-095) was purchased from 

InvivoGen (San Diego, CA) and solubilized in Intralipid (20% emulsion) purchased from Sigma-

Aldrich (St. Louis, MO). Gram negative bacterial lipopolysaccharide (LPS) from Escherichia coli 

0111:B4 (E. coli) purchased from Sigma-Aldrich. Prostaglandin I2 (PGI2) was purchased from 

EMD Millipore (Billerica, MA). Cy3 conjugated AffiniPure donkey anti-mouse IgG (H+L) 

polyclonal (715-165-151) was purchased from Jackson Immuno Research Laboratories, Inc (West 

Grove, PA). Mouse anti-human CD42b mAb (GPIbα; clone VM16d) was purchased from Abcam 

(San Francisco, CA). 

3.2.2 Blood Collection 

Fresh blood samples were drawn from 24 non-crisis SCD (23 SS and 1 S/β0 thalassemia) and 8 

healthy race-matched control (7AA and 1 AS) subjects at the Adult Sickle Cell Clinic of the 

University of Pittsburgh Medical Center (see Table 1 for clinical characterization of human 

subjects). Only nonsmokers who were not on chronic blood transfusion and hydroxyurea were 

included in this study. Blood was drawn via venipuncture using a 21G vacutainer push-button 

needle (BD Biosciences) into a 10-ml syringe containing 20U/mL heparin (Henry Schein). The 

blood-filled syringe was placed on a blood mixer to avoid clotting and used within 2 hours 

following blood draw. Blood (150 μl) was added to a Microvette 100 potassium EDTA tube 
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(Sarstedt) and analyzed with the Hemavet HV950 (Drew Scientific) for the assessment of 

hematocrit, hemoglobin, and blood cell counts in healthy control subjects. 

3.2.3 qMFM imaging strategy 

qMFM imaging strategy has been described in Chapter 2(60). AF647-conjugated CD16 and FITC-

conjugated CD49b monoclonal antibodies were added to 500 μl blood (3:500 CD16 monoclonal 

antibody; 1:250 CD49b monoclonal antibody) in a 1-ml Eppendorf tube for in situ staining of 

neutrophils and platelets, respectively. Blood was perfused through a polydimethylsiloxane 

(PDMS/silicone)–based microfluidic device consisting of 4 identical micro-channels (30 μm high 

and 500 μm wide) at a physiological wall shear stress of 6 dyn/cm2(27). A wall shear stress of 6 

dyn/cm2 is within the physiological range of the shear stress observed in arterioles and venules in 

vivo(27). The sides and roof of each micro-channel were made of silicone, while the bottom was 

made of glass and coated with a cocktail of recombinant human P-selectin–Fc (2 μg/ml), ICAM-

1–Fc(10 μg/ml), and IL-8 (10 μg/ml). The preparation of the adhesive substrate and assembly of 

the microfluidic device (33, 60) have been described in the Appendix. Platelet-neutrophil 

interactions in blood-perfused microfluidic channels were visualized using qMFM, a 2-stage 

imaging strategy that was introduced in Chapter 2 (60). See Appendix A for further details on 

experimental setup, including coverslip preparation, imaging strategy and analysis. 

3.2.4 Experimental design of qMFM studies.  

Control and SCD human blood were perfused through microfluidic micro-channels, and footprints 

of arresting and crawling neutrophils were visualized using qMFM step 1 for 2 minutes. After 2 
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minutes, platelets nucleating on top of arrested neutrophils were visualized for another 2 minutes 

using qMFM step 2. The transition from qMFM step 1 to step 2 is shown in Figure 7.  

3.2.5 Scanning Electron Microscopy  

Blood was perfused through PDMS based microfluidic channels presenting P-selectin, ICAM-1, 

and IL-8. Neutrophils were allowed to roll, arrest and interact with freely flowing platelets prior 

to fixation under flow. Coverslips were stored in PBS until processing as described in section A1.9

 Scanning Electron Microscopy. Scanning electron micrographs were pseudocolored using 

Adobe Photoshop as described in A1.10 SEM Pseudocoloring. 

3.2.6 Structured Illumination Microscopy 

Blood was perfused through PDMS based microfluidic channels presenting P-selectin, ICAM-1, 

and IL-8. Neutrophils were allowed to roll, arrest and interact with freely flowing platelets prior 

to fixation under flow. Coverslips were processed as described in the Appendix, see A1.11 

Structured illumination microscopy. Brilliant Violet 421 conjugated anti-human CD62P 

monoclonal antibody or isotype control mouse IgG1κ was added to the blood and cells as a primary 

antibody. Coverslips were incubated for 45 minutes with Alexa Flour 647-phalloidin to stain for 

F-actin and a Cy3 conjugated donkey anti-mouse IgG (secondary) to enhance the signal of the 

anti-CD62P monoclonal antibody.  
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3.2.7 P-selectin/Mac-1 Ab blocking, GPIbα/PSGL-1 Ab blocking,  

Healthy control subject and SCD patient blood was perfused in the microfluidic micro-channels 

for 2 min, which allowed neutrophils to roll, arrest firmly and then interact with circulating 

platelets. Once the neutrophils were firmly arrested, platelet-neutrophil interactions were recorded 

using qMFM for the next 2 min. After 2 min of qMFM observations, the flow was stopped 

momentarily and Anti-P-selectin, anti-GPIbα, anti-PSGL-1, and/or anti-Mac-1 antibodies (1:100 

dilution) or isotype control IgG1 antibody (1:100 dilution) were added to the blood in the reservoir 

and allowed to flow for 2 minutes. The flow was resumed and the effect on platelet-neutrophil 

interactions was assessed over the next 2 min. See  A1.6 Function Blocking Studies on 

Platelet-Neutrophil Interactions for more detailed description of experiments.  

3.2.8 LPS treatment 

Specific concentrations of LPS were added to AA and SCD patient blood following the addition 

of fluorescent antibodies, FITC conjugated to CD49b and AlexaFlour 647 conjugated to CD16 to 

stain for platelets and neutrophils, respectively. Blood was incubated with LPS for 10 minutes 

prior to perfusion through P-selectin, ICAM-1, and IL-8 coated microchannels. Interactions were 

quantified for total platelet-neutrophil interactions, platelet interactions per neutrophil and lifetime 

of platelet neutrophil interactions as described in Chapter 2. For more information on treatments 

refer to A1.7 LPS Treatments. 
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3.2.9 TLR4 inhibition qMFM studies. 

Experiments testing the role of TLR-4 inhibition were done by adding TAK-242+intralipid (50 

μg/mL) into the blood following the addition of fluorescent antibodies FITC conjugated to CD49b 

and AlexaFlour 647 conjugated to CD16 to stain for platelets and neutrophils, respectively and 

incubating for 5 min. After 5 min, LPS was added to the blood followed by incubation for 10 min 

at room temperature (22˚C) and perfusion through the micro-channels. To test the effects of the 

vehicle (intralipid) on platelet-neutrophil interactions, the vehicle was added at the same 

concentration and procedure as Tak242 studies. 

3.2.10  Statistics 

The mean number of platelet-neutrophil interactions, mean number of arresting neutrophils, and 

mean number of platelet-neutrophil interactions per neutrophil were compared between groups 

using the 2-tailed unpaired Student’s t-test along with the Bonferroni correction when appropriate 

for multiple comparisons. Distributions of the lifetime of platelet-neutrophil interactions under 

different conditions were compared using the nonparametric Kruskal-Wallis H test. In the dot 

plots, error bars are presented as mean ± SEM. A P value of less than 0.05 was used to determine 

the statistical significance. 
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3.3 RESULTS 

3.3.1 Neutrophil-platelet aggregation is higher in human SCD blood under flow.  

Healthy control and SCD human blood was collected in heparin (20U/ml) and perfused at a 

physiological shear stress of 6 dyn/cm2 (27) through microfluidic micro-channels presenting a 

combination of P-selectin, ICAM-1, and IL-8. Whole blood was analyzed for blood cell counts 

and can be seen in Table 1. qMFM was used to visualize neutrophil-platelet aggregation at the 

level of single cell-cell interactions (60). The magnitude of neutrophil-platelet aggregate formation 

was assessed based on the ability of free-flowing platelets to interact with arrested neutrophils, 

which was quantified using 3 parameters: total number of platelet-neutrophil interactions, number 

of platelets that interact per arrested neutrophil, and the lifetimes of individual interactions of 

platelets with arrested neutrophils over a 2-minute observation in a FOV of size of ~14,520 μm2.  
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When control or SCD human blood was perfused through micro-channels presenting P-selectin, 

ICAM-1, and IL-8, neutrophils were observed to roll, arrest, crawl, and interact with freely flowing 

platelets (Figure 12A&B). A snapshot of the same FOV at two different time points 2 minutes 

apart is shown for control and SCD human blood in Figure 12A&B, respectively. Comparison of 

Figure 12A with Figure 12B at the time point of 2 minutes reveals that platelet interactions with 

arrested neutrophils led to the formation of large neutrophil-platelet aggregates, which appeared 

to be more pronounced in SCD than control human blood. Neutrophil-platelet aggregates in SCD 

blood were fixed under flow and visualized using scanning electron microscopy (SEM). A pseudo-

 Control SCD 

Male/Female 4/2 5/19 

Hemoglobin (g/dL) 12.46 (11.2;14.4;12.1) 9.06 (6.6;11.2;9.3) 

Hematocrit (%) 41.34 (25.2;50.6;41) 26.39 (18.3;32.6;26.9) 

White Blood Cells (k/dL) 

- % Neutrophils 
 

- Neutrophil Count (k/µL) 

4.62 (2.5;8.68;4.43) 

NM 

NM 

9.88 (3;15.72;11.05) 

55.2 (1.7;77.2; 57.6) 

6.89 (1.7;28;6.3) 

 

Platelets (k/µL) 222.06 (134;462;180.5) 328.69 (141;610;333.5) 

%HbF NM 13.95 (2.8;31.6;9.2) 

%HbS NM 58.32 (5.9; 80.9; 64.6) 

Genotypes  

- SS 
- S/β0 
- AS 
- AA 

     

     0/6 
     0/6 
     1/6 
     5/6 

 

      23/24 
       1/24 
       0/24 
       0/24 

 

Table 1: Clinical Characterization of human Subjects. Data show mean (minimum; maximum; 
median) except for sex and genotypes. SCD, sickle cell disease; SS, sickle cell anemia; S/β0, sickle/β0 
thalassemia; AS, sickle cell trait; AA, healthy control; % HbF, % fetal hemoglobin; %HbS, % sickle 
hemoglobin; NM, not measured. Table published in Bennewitz MF. Jimenez, MA. et al. JCI Insight 
2017. 
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colored scanning electron micrograph of SCD patient blood reveal the cellular components of large 

neutrophil-platelet aggregates (Figure 12C). The aggregates comprise of platelets (green) 

nucleated on arrested neutrophils (purple) while erythrocytes (pseudo-colored red) can be seen 

sequestered within these large neutrophil-platelet aggregates leading us to believe the onset of 

VOC in SCD patients follows the sequential steps of neutrophil rolling and arrest, capture of freely 

flowing platelets and the trapping of RBC within the aggregates.  
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Quantitative analysis of several time-series of qMFM images revealed that the total number of 

platelet-neutrophil interactions occurring per minute in a FOV were 2-fold higher in SCD than 

control human blood (Figure 13A). Similar to what we have reported previously (60), we found 

that the number of neutrophils arresting per minute in the same FOV was also 2-fold higher in 

Figure 12: qMFM reveals neutrophil-platelet aggregation is higher in Sickle Cell Disease (SCD) human blood. 
qMFM images of the same FOV at 2 different time points (0 and 120 seconds) showing freely flowing platelets 
interacting with arrested neutrophils in (A) control and (B) SCD blood. (C) Pseudocolored micrograph of SCD patient 
blood that was fixed under flow and imaged using Scanning Electron Microscopy. platelets (green), neutrophils 
(purple), and Erythrocytes (red). Scale bars: 20 μm. Figure published in Bennewitz MF. Jimenez, MA. et al. JCI 
Insight 2017 
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SCD than control human blood (Figure 13B). To test whether the significantly higher number of 

platelet-neutrophil interactions was a direct consequence of a higher number of arresting 

neutrophils, we estimated the number of platelet-neutrophil interactions per arrested neutrophil. 

As shown in Figure 13C, 1.5-fold more platelets were observed to interact per neutrophil over a 

2-minute observation period in SCD compared with control human blood, thus excluding a major 

role of higher neutrophil numbers in driving increased platelet-neutrophil interactions. 

Interestingly, when we measured the lifetime of individual platelet-neutrophil interactions and 

plotted it as a cumulative probability distribution (Figure 13D), the lifetimes were significantly 

longer in SCD (median lifetime ~14 seconds) than control (median lifetime ~2 seconds), 

suggesting that neutrophil-platelet aggregate formation under flow is more efficient in SCD than 

control human blood. These in vitro qMFM studies suggest that neutrophil-platelet interactions 

were significantly more frequent and of longer duration in non-crisis SCD than control human 

blood flowing through micro-channels under vascular mimetic shear flow conditions. 
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A 

Figure 13: SCD patients have enhanced platelet-neutrophil interactions.  Interactions were measured as (A) Total 
platelet-neutrophil interactions per minute (B) Total number of arrested neutrophils per minute (C) Platelet 
interactions per arrested neutrophil over a 2-minute observation period and (D) Lifetime of platelet-neutrophil 
interactions shown as a cumulative probability distribution in control and SS patient blood. A-B n= 6 experiments 
with 3 control and 3 SCD patients. C-D n= 8 experiments with 4 control and 4 SCD patients. Data in represent mean 
± SEM; means were compared using Student’s t test. Distributions in D were compared using the nonparametric 
Kruskal-Wallis H test. Each data point in A and B represents a single FOV. Each data point in C represents a single 
neutrophil. #P < 0.05 when comparing control to SCD. Wall shear stress 6 dyn/cm2. FOV: ~14,520 μm2 Figure 
published in Bennewitz MF. Jimenez, MA. et al. JCI Insight 2017. 

 

B 

C D 
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3.3.2 Neutrophil-platelet aggregation in SCD human blood is platelet P-selectin and 

neutrophil Mac-1 dependent.  

Platelet-neutrophil interactions are known to be primarily mediated by PSGL-1 and Mac-1 

(CD11b-CD18) on neutrophils binding to P-selectin and GPIbα on platelets, respectively(23, 61). 

PSGL-1 is constitutively expressed on neutrophils, and Mac-1 has been shown to be activated in 

arrested neutrophils (53). Although, GPIbα is constitutively expressed on platelets (61), P-selectin 

is stored preformed in α-granules and translocated to the membrane for presentation only following 

activation by platelet agonists both in vivo and in vitro (23). To test whether P-selectin is present 

on human SCD platelets, neutrophil-platelet aggregates were fixed under flow, stained for P-

selectin and F-actin, and subjected to super-resolution fluorescence 3D structured illumination 

microscopy (SIM). The SIM micrograph shown in Figure 14A reveals that platelets nucleated on 

top of arrested neutrophils in SCD human blood are positive for P-selectin (blue staining). It also 

revealed the presence of F-actin (purple) along the outer rim (lamellipodia) of the neutrophil and 

throughout the platelet membrane. To determine whether P-selectin expression on the surface of 

platelets in SCD blood facilitates their interaction with arrested neutrophils, qMFM studies were 

conducted in the presence of a function blocking anti–P-selectin antibody using an experimental 

approach that selectively blocks platelet P-selectin without compromising P-selectin dependent 

neutrophil rolling. Platelet P-selectin inhibition led to a significant drop in the ability of freely 

flowing platelets to nucleate on arrested neutrophils in SCD human blood (Figure 14B). As a next 

step, we tested the role of Mac-1–GPIbα interactions by conducting qMFM studies in the presence 

of an anti-Mac-1 function-blocking antibody using an approach that allowed blocking neutrophil 

Mac-1 without interfering with neutrophil arrest. As shown in Figure 14C, Mac-1 inhibition also 

led to a significant reduction in platelet-neutrophil interactions in both control and SCD blood. 
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Remarkably, a combination of P-selectin and Mac-1 function blocking antibodies led to a 

substantial drop in platelet-neutrophil interactions in both control and SCD human blood. As 

shown in Figure 14D, platelet-neutrophil interactions following treatment with anti–P-

selectin/Mac-1 antibodies were identical in SCD and control human blood. This effect was not the 

result of an antibody-induced neutrophil detachment from the substrate, as there was no difference 

in the number of arrested neutrophils before and after anti–P-selectin/Mac-1 antibodies in either 

control or SCD human blood (Figure 14E). To establish that the anti–P-selectin/Mac-1 antibody 

induced reduction in total platelet-neutrophil interactions was a direct effect of the inability of 

individual platelets to bind to arrested neutrophils, we assessed the effect of anti–P-selectin/Mac-

1 antibodies on the lifetime of individual platelet-neutrophil interactions (Figure 14F). As 

anticipated, the anti–P-selectin/Mac-1 antibody treatment reduced the lifetime of platelet-

neutrophil interactions in SCD blood to the level observed in control blood, evidenced by the 

overlap in the lifetime distribution curves of control, control post–anti–P-selectin/Mac-1 

antibodies, and SCD post–anti–P-selectin/Mac-1 antibodies (Figure 14F). 
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3.3.3 Low dose of LPS selectively augments neutrophil-platelet aggregation in SCD 

human blood.  

Identical to the findings in SCD mice in vivo, qMFM revealed that pretreatment of SCD human 

blood with LPS at a concentration of 0.25 μg/ml selectively augmented platelet-neutrophil 

aggregation in SCD but not control human blood, suggesting that the SCD blood had a higher 

Figure 14: Neutrophil-platelet aggregation in sickle cell disease (SCD) human blood is platelet P-selectin and 
neutrophil Mac-1 dependent. (A) Structured illumination micrograph of platelets nucleated on an arrested 
neutrophil in SCD blood. F-actin (purple) P-selectin (blue). Platelets are marked with white arrows. (B) Effect of 
platelet P-selectin inhibition on total platelet interactions with arrested neutrophils. (C) Effect of Mac-1 inhibition 
on total platelet interactions with arrested neutrophils. Effect of simultaneous inhibition of platelet P-selectin and 
neutrophil Mac-1 on (D) total platelet interactions with arrested neutrophils, (E) total number of arrested 
neutrophils and (F) Effect on the lifetime of platelet-neutrophil interactions. B–D n=10 experiments with 4 control 
and 5 SCD patients; E and F n= 6 experiments with 3 control and 3 SCD patients. Data represent mean ± SEM. 
Means in B–E were compared using Student’s t test with Bonferroni correction. Interaction times in F were 
compared using the nonparametric Kruskal-Wallis H test. #p < 0.05 when comparing control with SCD; * p < 
0.05 when comparing pre- and post-Ab treatment. Wall shear stress: 6 dyn/cm2. FOV: ~14,520 μm2 Figure 
published in Bennewitz MF. Jimenez, MA. et al. JCI Insight 2017. 

PreTreatment Post P-selectinAb PreTreatment Post Mac-1 Ab 

PreTreatment Post Cocktail PreTreatment Post Cocktail 
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sensitivity to LPS. As shown in Figure 15A, pretreatment with an LPS concentration of 0.25 μg/ml 

was potent enough to cause a significant increase in platelet-neutrophil interactions in SCD human 

blood. In contrast, LPS at a concentration of 0.25 μg/ml did not result in any increase in platelet-

neutrophil interactions in control human blood, but rather a 4-fold higher concentration (1 μg/ml) 

of LPS was needed to induce a small but significant increase in the total number of platelet-

neutrophil interactions in control human blood (Figure 15B). A comparison of platelet-neutrophil 

interactions in control and SCD blood before and after treatment with 0.25 μg/ml LPS suggests 

that a concentration of LPS that is ineffective in control blood effectively promulgates neutrophil-

platelet aggregation in SCD blood. Pretreatment of SCD human blood with LPS at concentrations 

greater than 0.25 μg/ml resulted in blood aggregation, thus rendering the blood unfit for qMFM 

studies. To establish that the increase in neutrophil-platelet interactions in SCD blood following a 

low dose of LPS was a result of TLR-4 activation, we conducted a separate set of qMFM studies 

in the presence of a TLR-4 inhibitor. Figure 15C demonstrates that treatment with a TLR-4 

antagonist, TAK-242 (50 μg/ml) led to a significant reduction in the number of platelet-neutrophil 

interactions in LPS-treated SCD blood. Following treatment with TAK-242, the platelet-neutrophil 

interactions in LPS-treated SCD blood were reduced to a level below that observed in control 

blood at baseline. The interactions were also slightly reduced following treatment with the vehicle, 

intralipid, used in the reconstitution of TAK-242 (Figure 15C). Overall, this reduction was small 

compared to the TAK-242 treatment, suggesting that the reduction in interactions observed 

following TAK-242 treatment was specific to TLR-4 inhibition (Figure 15C). TAK-242 had no 

significant effect on the number of arresting neutrophils (Figure 15D), suggesting that the TAK-

242–induced reduction in platelet-neutrophil interactions was not a result of neutrophil 
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detachment, but rather a consequence of the inability of platelets to adhere to neutrophils under 

vascular mimetic flow.  

 

3.3.4 LPS-induced neutrophil-platelet aggregation is P-selectin and Mac-1 dependent.  

Next, we tested whether simultaneous inhibition of platelet P-selectin and neutrophil Mac-1 

ameliorates LPS-triggered platelet-neutrophil interactions in SCD human blood. Control and SCD 

human blood was preincubated with LPS at the respective potent concentrations of 1 and 0.25 

Figure 15: LPS promotes neutrophil-platelet aggregation in sickle cell disease (SCD) human blood. Total 
platelet interactions with arrested neutrophils in (A) SCD whole blood ± 0.25 μg/ml of LPS. n=6 (B) control 
human blood ± pretreatment with 0.25 and 1 μg/ml LPS. n= 6 with 5 control subjects. Effect of TAK-242 and/or 
intralipid (vehicle) pretreatment on (C) the total number of platelet-neutrophil interactions and (D) total number 
of arrested neutrophils over a 2-minute observation period in 0.25 or 1 μg/ml LPS– treated SCD and control 
human blood, respectively. N=6 experiments with 3 control and 3 SCD subjects. Data represent mean ± SEM. 
# p< 0.05 when comparing with baseline; +p< 0.05 when comparing with TAK-242. Means were compared 
using Student’s t test with Bonferroni correction. Wall shear stress: 6 dyn/cm2. FOV: ~14,520 μm2. Figure 
published in Bennewitz MF. Jimenez, MA. et al. JCI Insight 2017 

C D 
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μg/ml, and the efficacy of simultaneous inhibition of platelet P-selectin and neutrophil Mac-1 was 

determined using the experimental approach described in Chapter 2. Anti–P-selectin/Mac-1 

antibodies significantly attenuated neutrophil-platelet aggregate nucleation in SCD blood, 

evidenced by the substantial reduction in total platelet-neutrophil interactions (Figure 16A) and 

platelet interactions per neutrophil (Figure 16B). As shown in Figure 16A&B, the platelet-

neutrophil interactions after treatment with anti–P-selectin/Mac-1 antibodies were significantly 

lower and nearly identical in both 1 μg/ml LPS–treated control and 0.25 μg/ml LPS–treated SCD 

human blood. The reduction in platelet-neutrophil interactions seemed to be a direct effect of the 

inability of platelets to stay attached to arrested neutrophils under flow. Treatment with a control 

isotype IgG1 antibody did not inhibit LPS-induced neutrophil-platelet interactions (Figure 16C 

and D), suggesting that the reduction in interactions achieved after antibody treatment was specific 

to the inhibition of P-selectin–PSGL-1 and Mac-1–GPIbα binding between freely flowing platelets 

and arrested neutrophils. 
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3.3.5 PSGL-1 and GPIbα blockade inhibits neutrophil-platelet interactions in LPS 

treated SCD human blood  

Furthermore, anti-PSGL1 (CD162) and anti-GPIbα (CD42b) function-blocking antibodies 

significantly reduced both the total platelet-neutrophil interactions (Figure 17A & B) and the 

Figure 16: LPS-induced neutrophil-platelet aggregation is P-selectin and Mac-1 dependent. Effect of 
simultaneous inhibition of platelet P-selectin and neutrophil Mac-1 on (A) total platelet interactions with arrested 
neutrophils and (B) number of platelet interaction events per arrested neutrophil in control and SCD human blood 
± pretreatment with LPS (1 and 0.25 μg/ml, respectively). N= 8 (4 control and 4 SCD subjects). * p< 0.05 when 
compared with baseline; # p< 0.05 when comparing control with SCD; + p< 0.05 when comparing LPS with Ab 
treatment. No effect of isotype IgG1 control Ab treatment on the total number of platelet-neutrophil interactions 
in (C) 1 μg/ml LPS–treated control and (D) 0.25 μg/ml LPS–treated SCD human blood. N= 5 (2 control and 3 
SCD subjects). Data represent mean ± SEM. Means were compared using Student’s t test with Bonferroni 
correction for multiple comparisons. Each data point represents a single FOV with multiple FOVs in per 
experiments. Wall shear stress: 6 dyn/cm2. FOV: ~14,520 μm2. Figure published in Bennewitz MF. Jimenez, MA. 
et al. JCI Insight 2017. 
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number of platelet interactions per neutrophil (Figure 17C & D) in LPS-treated SCD human blood 

under flow. 

 

3.4 DISCUSSION 

Epidemiological evidence suggests that systemic vaso-occlusive pain crisis in SCD is often a 

precursor to acute chest syndrome, a type of acute lung injury (5). The current treatment for acute 

chest syndrome is primarily supportive, and the molecular mechanism remains largely unknown. 

Figure 17:  PSGL-1 and GPIbα blockade inhibits platelet-neutrophil interactions in LPS treated SCD human blood. 
Steady state SCD whole human blood was treated with 0.25 μg/ml of LPS and perfused through microfluidic 
channels with or without addition of blocking antibodies against PSGL-1 (A, C) and GPIbα (B, D). Total platelet-
neutrophil interactions and platelet interactions per neutrophil were observed over multiple FOVs. N=2 Data 
represents mean ± SEM. Each data point represents a single FOV and observations were made over multiple FOVs 
per experiment. Wall shear stress 6 dynes cm-2. FOV (field of view) ~ 14,520 μm2. # p<0.05 when compared to LPS 
treatment. Figure published in Bennewitz MF. Jimenez, MA. et al. JCI Insight 2017. 
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In a recent autopsy study (62), pulmonary histopathology of acute chest syndrome patients 

revealed occlusion of the pulmonary vasculature with aggregates of platelets or erythrocytes, 

suggesting that the molecular events surrounding pulmonary vaso-occlusion contribute to lung 

injury. The study proposes that without specific therapy, typically exchange transfusion and 

antibiotics, these pulmonary vaso-occlusions can progress to the acute chest syndrome in SCD. 

Recent intravital studies have shown that nucleation of platelets on adhered neutrophils 

during acute inflammation results in the formation of neutrophil-platelet aggregates in both the 

systemic (22, 23) and pulmonary microcirculation of WT mice (22, 24). Using a whole blood 

microfluidic in vitro approach (qMFM), it was demonstrated that neutrophil-platelet interactions 

under vascular mimetic flow conditions are significantly higher in steady-state SCD than control 

human blood. Similar to what was observed in SCD mice(1), neutrophil-platelet interactions were 

further augmented in SCD but not control human blood following pretreatment with a small 

concentration of LPS (0.25 μg/ml). Remarkably, the augmented neutrophil-platelet interactions in 

SCD human blood were completely attenuated by blocking the interaction of platelet P-selectin 

and GPIbα with neutrophil PSGL-1 and Mac-1, respectively. In fact, the simultaneous inhibition 

of platelet P-selectin and neutrophil Mac-1 was potent enough to reduce the magnitude of platelet-

neutrophil interactions in SCD human blood to that observed in control human blood. These 

findings are consistent with several flow cytometry–based studies that have confirmed the 

presence of circulating preformed neutrophil-platelet aggregates in the blood of steady-state SCD 

patients (25, 26, 63). This data suggests that the inflammatory milieu in SCD promotes the 

formation of large neutrophil-platelet aggregates in response to an otherwise innocuous 

inflammatory stimulus. These aggregates serve to enable pulmonary vaso-occlusion by occluding 

the arteriolar bottlenecks in the lung(1). The disintegration or inhibition of neutrophil-platelet 
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aggregates by targeting P-selectin on platelets and Mac-1 on neutrophils leads to resolution of 

pulmonary vaso-occlusions. 

Recent studies have identified a role for TLR4 activation in SCD (2, 64, 65). The mutation 

in the β-globin gene affects only hemoglobin in erythrocytes (5). Although, intraerythrocytic 

polymerization of hemoglobin S results in hemolysis and altered rheology, releasing red cell and 

tissue derived DAMPs and inciting ischemia-reperfusion events, both of which have been 

proposed to “prime” innate immune signaling pathways (2). A number of erythrocyte-derived 

DAMPs have been characterized, including hemoglobin, heme, ADP, and uric acid (2). Several 

recent studies using humanized SCD mice and blood samples from SCD patients have established 

that cell-free hemoglobin and heme released into the circulation during hemolysis serve to activate 

neutrophils, platelets, and the endothelium by scavenging NO and activating the TLR4 pathway, 

respectively (2, 64-67). In a recent study (68), the translocation of bacterial TLR4 ligands from the 

gut into the blood circulation was shown to promote neutrophil activation in SCD mice, suggesting 

that the activation of neutrophils by chronic hemolysis primes these cells to activate further when 

exposed to traces of TLR4 agonists. How hemolysis promotes hypersensitivity of neutrophils and 

platelets to TLR4 agonists is currently unknown and will be elucidated in future studies. While 

SCD patients as well as normal healthy humans can develop acute lung injury and pneumonia with 

severe injury or infection with highly pathogenic bacteria, SCD patients are exquisitely susceptible 

to acute lung injury when exposed to less severe triggers (59, 69-71). 
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3.5 CONCLUSION 

Although SCD affects millions of people worldwide (72), hydroxyurea (HU) is the only FDA 

approved drug for the prophylactic treatment of SCD by preventing hemoglobin S polymerization 

with the induction of fetal hemoglobin expression (3). Despite the high efficacy of HU, disease 

activity and mortality remain high in patients taking HU, with the life expectancy of SCD patients 

in the United States still estimated to be 20 years less than that of individuals without the disease 

(3, 73). It is imperative to identify new treatments to prevent and better manage systemic vaso-

occlusive pain crisis, to increase the quality of life for SCD patients(47). Based on this study’s 

findings and the recent work of other investigators, targeting adhesion molecules on platelets 

and/or neutrophils to prevent or disintegrate neutrophil-platelet aggregates can be a promising 

therapy for SCD patients, particularly for the prevention of acute chest syndrome in high-risk 

patients presenting with systemic vaso-occlusive pain crisis. Interestingly, a pan-selectin inhibitor, 

rivipansel (GMI-1070), has been shown in phase II studies to reduce the time to resolution of 

systemic vaso-occlusive pain crisis and opioid administration in SCD patients (46). In a separate 

phase I study, intravenous immunoglobulin (IVIG) was shown to inhibit Mac-1 activation on 

neutrophils in SCD patient blood (48). An oral P-selectin inhibitor was also shown to improve 

microvascular blood flow in SCD patients (74), while SelG1, a humanized anti–P-selectin 

monoclonal antibody, is currently in phase II studies to prevent systemic vaso-occlusive pain crisis 

in SCD patients (75). 

The study findings support testing such blockers in clinical trials and also highlights several 

key aspects that need to be addressed in designing future therapies to prevent systemic vaso-

occlusive pain crisis. First, targeting P-selectin and Mac-1 to prevent neutrophil-platelet 
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aggregation can be effective in preventing pulmonary vaso-occlusion, suggesting that current 

agents in clinical trials may be appropriately targeting this pathogenesis. Second, a combination 

of P-selectin and Mac-1 blockers may be more effective than individual blockers in preventing 

systemic vaso-occlusive crisis in SCD patients. This also warrants the need for designing small 

molecule drugs that can simultaneously block both the P-selectin–PSGL-1 and GPIbα–Mac-1 

interactions. Third, P-selectin and Mac-1 blockers could be most effective when given 

prophylactically rather than after vaso-occlusive crisis, or early after admission for vaso-occlusive 

crisis, perhaps in more severely affected patients with risk factors such as dropping hemoglobin 

and platelet levels (59, 70). Finally, global inhibition of P-selectin and/or Mac-1 could affect host 

defense, due to the inability of neutrophils to recruit to sites of inflammation. SCD patients 

experience leukocytosis even under a steady-state condition (18, 25, 76), and therefore, 

interference with neutrophil recruitment can cause an elevation in circulating neutrophils. With 

these potential risks in mind, the targeted delivery of P-selectin or Mac-1 blockers as payloads in 

liposomes or nanocarriers designed to recruit specifically to the site of vaso-occlusion may 

represent an alternative approach for targeting vaso-occlusive crisis and pulmonary vaso-

occlusion. 
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4.0  GLYCOPROTEIN IBα INHIBITOR (CCP-224) PREVENTS NEUTROPHIL-

PLATELET AGGREGATION IN SICKLE CELL DISEASE 

Note: Results discussed in this chapter have been published as Jimenez MA, Novelli EM, Shaw 

GD, Sundd P. Glycoprotein Ibα inhibitor (CCP-224) prevents neutrophil-platelet aggregation in 

Sickle Cell Disease. Blood Advances. 2017 1(20), 1712-1716. 

https://doi.org/10.1182/bloodadvances.2017006742.  

4.1 INTRODUCTION 

Vaso-occlusion contributes to the onset of acute painful vaso-occlusive crisis (VOC), which is the 

primary reason for emergency medical care among SCD patients (5, 29). High platelet and 

leukocyte counts are risk factors for VOC(18) and neutrophil-platelet aggregates are significantly 

elevated at steady state in the blood circulation of SCD patients (25, 26). Neutrophil-platelet 

aggregation has also been shown to occur in TNF-α treated cremaster venules of transgenic SCD 

mice, which was enabled by neutrophil Mac-1 binding to GPIbα on platelets (23). Recently (1), 

intravital microscopy in transgenic SCD mice showed that large neutrophil-platelet aggregates 

occlude pulmonary arterioles to promote lung vaso-occlusion in SCD. In the same study (1), 

quantitative microfluidic fluorescence microscopy (qMFM), an in vitro microfluidic based 

approach (60) discussed in Chapter 2, revealed that the neutrophil-platelet aggregation under 

vascular mimetic flow was significantly higher in steady state SCD than race matched control 

human blood, and partially enabled by Mac-1 on neutrophils binding to GPIbα on platelets. 

https://doi.org/10.1182/bloodadvances.2017006742
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Platelet-neutrophil interactions in SCD human blood were significantly inhibited by function 

blocking antibodies (Abs) against Mac-1 or GPIbα (1). Taken together, these studies (1, 23, 25) 

suggest that Mac-1-GPIbα interactions also contribute to neutrophil-platelet aggregation in SCD 

and GPIbα antagonists can be therapeutically beneficial in preventing VOC. The Mac-1 binding 

site is situated within the leucine-rich COOH-terminal flanking region of GPIbα (residues 201-

268) (77). This region includes a regulatory R-loop (residues 227 to 241), which is also the major 

binding site for the A1 domain of human von willebrand factor (VWF-A1) (78, 79). OS-1, a cyclic 

peptide (ACTERMALHNLCGG) has been shown to potently inhibit (KD 0.74 nM) human 

platelet-VWF aggregation by stabilizing the R-loop of GPIbα in an alternative configuration that 

does not support key interactions with the human VWF-A1(78-80).  However, OS-1is a selective 

inhibitor of human but not mouse GPIbα and therefore, it cannot be evaluated by intravital studies 

in transgenic SCD mice. This study uses qMFM to show that CCP-224, a PEGylated form of the 

OS-1 peptide, potently inhibits neutrophil-platelet aggregation in SCD human blood flowing 

through microfluidic channels in vitro.    

4.2 MATERIALS AND METHODS 

4.2.1 Reagents 

Recombinant human P-selectin-Fc chimera (P-selectin) and recombinant human ICAM-1-Fc 

chimera (ICAM-1) were purchased from R&D Systems (Minneapolis, MN). Recombinant human 

CXCL8/interleukin-8 (IL-8) was purchased from Peprotech Inc. (Rocky Hill, NJ). Alexa Fluor-

647 conjugated mouse anti-human CD16 mAb (clone 3G8, mouse IgG1) and FITC conjugated 
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mouse anti-human CD49b mAb (clone AK-7, mouse IgG1) were purchased from BD Biosciences 

(San Jose, CA).  

4.2.2 Blood Collection and Handling 

Blood was drawn via venipuncture in a 10-mL heparinized syringe (20 U/mL Heparin, Henry 

Schein, Melville, NY) using a 21G needle (BD Biosciences). Fluorescent antibodies against human 

CD16 (3:500; AlexaFlour 647) and CD49b (1:250; FITC) were added to 500 µl of blood in a 1 ml 

Eppendorf tube for in situ staining of neutrophils and platelets, respectively. Blood was placed on 

a blood mixer when not in use to reduce coagulation and used within 2 hours of blood draw.  

4.2.3 Human Subjects 

Blood samples were drawn from 3 non-crisis SCD and 3 control healthy human subjects at the 

Adult Sickle Cell Clinic of the University of Pittsburgh Medical Center (UPMC) in syringes as per 

the protocol approved by the University of Pittsburgh Institutional Review Board. All participants 

gave written informed consent in accordance to the Declaration of Helsinki. Only non-smokers, 

who did not undergo exchange transfusion within the last 60 days, and diagnosed with sickle cell 

anemia (SS) were included in the study. Additionally, only those SCD patients who were not 

experiencing an ongoing VOC were included in the study and referred as steady state patients. The 

clinical characterization of blood from the human subjects included in the study is shown in Table 

2.  
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4.2.4 CCP-224 and Preparation  

CCP-224, a cyclic PEGylated peptide ACTERMALHNLCGGK-Polyethylene glycol (PEG24) 

polymer with a disulfide bond between Cys2-Cys12 was provided by Quell Pharma Inc., Half 

Moon Bay, CA. CCP-224 is based on the OS-1 cyclic peptide (ACTERMALHNLCGG), which 

was derived from a cysteine-constrained phage display library(79, 80). The CCP-224 peptide was 

synthesized, cysteines were oxidized to form a disulfide bond and PEG polymer was then 

conjugated via amine chemistry to the unique lysine. CCP-224 was reconstituted in sterile PBS at 

a concentration of 2 mg/mL and stored at -80ºC. CCP-224 was added to 0.5 mL of blood to achieve 

a final concentration of 10 µg/mL. 

Table 2: Clinical Characterization of human subjects. Data represent clinical values based on blood draws. AA, 
healthy control; F, female; M, male; N, no; NM, not measured; Y, Yes. Table published in Jimenez, MA. et al. Blood 
Advances 2017. 
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4.2.5 Somatostatin Preparation 

Somatostatin-14 (AGCKNFFWKTFTSC) a cyclic peptide with a disulfide bridge between Cys3-

Cys14, purchased from AnaSpec Inc. was used as the control peptide. Somatostatin was 

reconstituted in sterile 1X PBS at a concentration of 2 mg/mL, and was then alloquated and stored 

at -80ºC until use. Somatostatin was then added to the blood at a concentration of 10 µg/mL.  

4.2.6 Methods  

Fluorescent antibodies against CD16 and CD49b were added to blood for in situ staining of 

neutrophils and platelets, respectively. Neutrophils were stained with Alexa Fluor 647 anti-human 

CD16 Ab (purple), and platelets were stained with fluorescein isothiocyanate (FITC) anti-human 

CD49b Ab (green). Blood was perfused through a polydimethylsiloxane (PDMS/silicone) based 

microfluidic flow channels with a glass bottom presenting a combination of recombinant human 

P-selectin, ICAM-1 and IL-8 at a physiological wall shear stress of 6 dyn cm-2. Platelet-neutrophil 

interactions and aggregation were recorded for 2 min using Quantitative Microfluidic Fluorescence 

Microscopy (qMFM). The flow was stopped after 2 min of perfusion, VIGS-3 or control peptide 

(10 µg/mL) was added to the blood and the flow was resumed for another 2 min to assess the effect 

of VIGS-3 on neutrophil-platelet interactions. qMFM images were recorded by using a Nikon 

Eclipse Ti inverted microscope equipped with a Zyla-5.5 sCMOS scientific camera and CFI 

Apochromat TIRF 60× oil objective (numerical aperture: 1.49). All microscope functions and 

image analyses were conducted by using NIS-Elements software. Refer to Appendix for details on 

coverslip preparation, imaging and experimental design. 
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4.2.7 Statistics 

Total number of neutrophil-platelet interactions and the number of arrested neutrophils pre- vs 

post CCP-224 or control peptide treatment were compared using a paired t-test.  Platelet 

interactions per arrested neutrophil were compared using Students t-test. Lifetime of interactions 

were compared using the non-parametric Kruskal-Wallis H-test. A p<0.05 was used to determine 

significance. Data in Figure 19C and F represents mean ± SEM.  

4.3 RESULTS 

4.3.1 qMFM reveals the effects of CCP-224 treatment on platelet-neutrophil aggregation 

in SCD patient blood.  

Non-crisis SCD and control human subject blood with or without the addition of CCP-224 or the 

control peptide was allowed to flow through in vitro microfluidic channels presenting a 

combination of P-selectin, ICAM-1 and IL-8, and neutrophil-platelet interactions were assessed 

using qMFM(60). Identical to our previous study findings(1, 60), neutrophils were observed to 

roll, arrest and capture freely flowing platelets leading to the formation of neutrophil-platelet 

aggregates. As shown in Figure 18A and B, fewer platelets were observed to nucleate on top of 

arrested neutrophils in the blood of SCD patient 1 (Fig. 18A) and patient 2 (Fig. 18B) following 

treatment with CCP-224 compared to control peptide treatment.  Previously we have shown that 

the platelet-neutrophil aggregation in qMFM studies can be quantified based on three parameters 

total platelet-neutrophil interactions per field of view (FOV), total platelet-neutrophil interactions 
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per arrested neutrophil and the lifetime of platelet-neutrophil interactions(1, 60). These parameters 

were compared using a pre- and post-treatment paired-sample analyses over several independent 

experiments done with three control and three SCD subjects.  

 

4.3.2 CCP-224 inhibits platelet-neutrophil aggregation in SCD patient blood 

Paired analysis revealed that CCP-224 (Fig. 19A) but not the control peptide (Fig. 19B) led to a 

significant reduction in the total number of platelet-neutrophil interactions in SCD patient blood.  

Identical to SCD patient blood, CCP-224 also significantly reduced the total number of platelet-

neutrophil interactions in healthy control human blood (Fig. 19D). As shown in Figure 19E, control 

peptide had no effect on platelet-neutrophil interactions in control human subject blood. Treatment 

Figure 18: qMFM allows visualization of CCP-224 inhibition on platelet-neutrophil aggregation in SCD 
patient blood. Human blood was perfused through microfluidic channels presenting P-selectin, ICAM-1, and 
IL-8, and platelet-neutrophil interactions were assessed by using qMFM. qMFM images showing platelets 
(green circles) interacting with arrested neutrophils (purple) in the blood of SCD patient 1 (A) and patient 2 (B) 
following treatment with 10 µg/mL of CCP-224 (top row) and control peptide (bottom row). Borders of platelets 
are marked with green circles. The arrow indicates the direction of flow. Scale bars, 20 µm. Wall shear stress= 
6 dyn/cm2. Figure published in Jimenez, MA. et al. Blood Advances 2017. 
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with CCP-224 also led to a significant reduction in the number of platelet interactions per arrested 

neutrophil in both control (Fig. 19F) and SCD (Fig. 19C) human blood. Platelet-neutrophil 

aggregation mediated vaso-occlusion is dependent on the ability of platelets to attach to neutrophils 

under vascular mimetic flow. Assessment of individual interactions (Fig. 19I) revealed that CCP-

224 led to a significant reduction in median lifetime (5 s pre vs. 1.7 s post CCP-224) of platelet-

neutrophil interactions in SCD human blood. However, the number of arrested neutrophils was 

unaffected by CCP-224 in both control (Fig. 19G) and SCD (Fig. 19H) human blood, suggesting 

that the reduction in platelet-neutrophil interactions was not a consequence of neutrophil 

detachment from the substrate. The OS-1 peptide, which is the non-PEGylated version of CCP-

224 is known to stabilize GPIbα in low affinity configuration(78-80). Thus the presence or lack of 

inhibition with CCP-224 or control peptide, respectively was not primarily caused by the presence 

or absence of PEG polymer in CCP-224 or the control peptide, respectively.  Taken together, the 

data suggest that the GPIbα antagonist, CCP-224 is a potent inhibitor of neutrophil-platelet 

aggregation in SCD patient blood under vascular mimetic flow conditions.  
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Figure 19: CCP-224 inhibits platelet-neutrophil aggregation in SCD patient blood. Pre- and post-treatment paired 
analyses showing the effect of (A) CCP-224 and (B) control peptide treatment on total platelet-neutrophil 
interactions and (C) effect of CCP-224 on platelet interactions per arrested neutrophil over a 2-minute observation 
period in SCD human subject blood. Pre- and post-treatment paired analyses showing the effect of (D) CCP-224 
and (E) control peptide on control subject blood and (F) CCP-224 platelet interactions per arrested neutrophil over 
a 2-minute observation period in healthy control subjects. mean ± SE. (G-H) Paired analyses showing the effect 
of CCP-224 on the total number of arrested neutrophils in (G) healthy control and (H) SCD human blood. (I) 
Distribution of the lifetime of platelet-neutrophil interactions pre– and post–CCP-224 treatment in SCD human 
blood. A-B, D-E and G-H represent paired data from an individual experiment. Blood samples from 3 SCD and 3 
control human subjects were used. Closed circles, open circles, and open triangles represent independent 
experiments performed with subject 1, 2, and 3, respectively in SCD and control subject blood. #p< .05 post- vs 
pretreatment. Figure published in Jimenez, MA. et al. Blood Advances 2017. 
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4.4 DISCUSSION 

Recent studies have identified a role for P-selectin, E-selectin and Mac-1 in mediating vaso-

occlusion in transgenic SCD mice in vivo (1, 23, 26, 53). These findings have inspired clinical 

trials designed to test the efficacy of P-selectin (42), E-selectin (46) and Mac-1 (48) blockers in 

reducing the frequency of VOC in SCD patients. Previous studies (1) and the current findings 

suggest that the platelet GPIbα is also a potential target for anti-adhesion therapy in SCD.  

4.5 CONCLUSION 

In a recent clinical trial (42), a P-selectin antibody led to a significant reduction in VOC among 

SCD patients. Based on the results of the study, a combination therapy using both P-selectin and 

GPIbα inhibitors could possibly be more potent than the individual inhibitors. CCP-224 also 

inhibits GPIbα binding to human VWF-A1 (77, 79) and therefore, may increase risk of bleeding 

complications. However, SCD is associated with elevated plasma levels of hyper-adhesive VWF, 

which is believed to promote microvascular thrombosis (81). Thus, CCP-224 might also prevent 

hemostatic complications in SCD by down regulating platelet activation by circulating VWF 

multimers.  These in vitro findings support and suggest future clinical studies to test the safety and 

efficacy of CCP-224 in SCD patients. 
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5.0  PLATELET-TETHERS ENABLE PLATELET-NEUTROPHIL INTERACTIONS 

AND SHED IL1β CARRYING EXTRACELLULAR VESICLES TO PROMOTE LUNG 

VASO-OCCLUSION IN SICKLE CELL DISEASE 

Note: The findings described in this chapter are under review in a major peer reviewed journal as: 

Jimenez MA†, Bennewitz MF†, Brzoska T, Tutuncuoglu E, Jonassaint J, Gutierrez E, Watkins 

SC, Shiva S, Neal MD, Kato GJ, Gladwin MT, Sundd P. Platelet-tethers enable platelet-neutrophil 

interactions and shed IL1β carrying extracellular vesicles to promote lung vaso-occlusion in Sickle 

Cell Disease. 

5.1 INTRODUCTION 

Sickle Cell Disease (SCD) is a monogenetic disorder that affects over three million people 

worldwide(5, 82). Sickle Cell Anemia, the most common form of SCD is caused by a homozygous 

mutation (SS) in the β-globin gene(5, 83). The mutant hemoglobin (HbS) polymerizes upon 

deoxygenation to form bundles leading to erythrocyte rigidity, dehydration, vaso-occlusion and 

premature hemolysis(5). Vaso-occlusion and hemolysis are the two dominant pathophysiological 

events in SCD(2). Intravascular entrapment of erythrocytes and inflammatory cells promote vaso-

occlusion and development of acute systemic painful vaso-occlusive crisis, which is the primary 

reason for emergency medical care among SCD patients(5). Clinical evidence suggests that vaso-

occlusive crisis can also progress to acute chest syndrome, a type of acute lung injury and a leading 

cause of mortality(5, 59, 84). Recently(1), we found that vaso-occlusive crisis in transgenic, 
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humanized SCD mice led to occlusion of pulmonary arterioles by P-selectin dependent platelet-

neutrophil aggregates. Our finding was supported by recent histopathology study, which identified 

platelet aggregates occluding pulmonary arterioles in acute chest syndrome patients(62). 

Altogether, these findings suggest that vaso-occlusive crisis promotes pulmonary vaso-occlusion 

mediated by platelet-neutrophil aggregates in SCD, and the development of acute chest syndrome 

can be prevented provided targeted therapies to treat pulmonary vaso-occlusion are identified.  

Hemolysis promotes an inflammatory milieu in SCD by releasing erythrocyte derived 

DAMPs(2) that scavenge nitric oxide (NO) and “prime” toll like receptor 4 (TLR4)-dependent 

innate immune signaling pathways in leukocytes, platelets and the vascular endothelium(85). We 

recently(1) found that nanogram levels of the TLR4 ligand, bacterial lipopolysaccharide (LPS), 

selectively promoted P-selectin dependent platelet-neutrophil aggregation in SCD but not in 

control human blood in vitro, and platelet-neutrophil aggregate mediated occlusion of pulmonary 

arterioles in SCD but not in control mice in vivo. These findings are also consistent with the clinical 

presentation in SCD patients who are susceptible to acute lung injury following exposure to less 

severe triggers than healthy humans(86). A recent study(68) demonstrated translocation of low 

levels of bacterial TLR4 ligands from the gut into the blood circulation promoted neutrophil 

activation and vaso-occlusion in SCD mice. Taken together, these findings suggest that the primed 

innate immune inflammatory pathways in SCD set a lower threshold for platelet-neutrophil 

aggregation following exposure to low levels of PAMPs such as TLR4 ligands. However, the 

innate immune mechanism that promotes such “priming” and catalyzes P-selectin dependent 

platelet-neutrophil aggregation in SCD remains largely unknown. 

Here, we use in vitro quantitative microfluidic fluorescence microscopy (qMFM)(87) with 

SCD human blood to reveal that the inflammatory milieu in SCD promotes TLR4 dependent 
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activation of the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome 

pathway in platelets. We found that the platelet NLRP3-inflammasome activation promotes the 

formation of P-selectin expressing hair-like membrane tethers and the shedding of interleukin-1β 

(IL-1β) carrying extracellular vesicles (EVs) by platelets in SCD. Hair-like tethers act like a ‘lasso’ 

that allows circulating platelets to interact more efficiently with stationary neutrophils within the 

vasculature. Platelet EVs activate platelets, neutrophils and other vascular cells in an IL-1β 

dependent manner to form large platelet-neutrophil aggregates that occlude pulmonary arterioles 

leading to loss of blood flow in the lung. This study determines a role for platelet tethers in 

promoting vaso-occlusion in SCD patients, while establishing a role for inflammasome activation 

in platelet tether formation. 

5.2 METHODS 

5.2.1 Reagents 

Alexa Fluor 647 mouse anti-human CD16 mAb (Clone 3G8), Fluorescein Isothiocyanate (FITC) 

mouse anti-human CD49b mAb (clone AK-7), Brilliant Violet 421 mouse anti-human CD62P 

mAb (AK-4), FITC Mouse IgG1κ Isotype control Ab (MOPC21) and Brilliant Violet 421 mouse 

IgG1κ Isotype control Ab (X40) were purchased from BD Biosciences (San Jose, CA). Gram 

negative bacterial lipopolysaccharide (LPS) from Escherichia coli 0111:B4 (E. coli) and Bovine 

Serum Albumin were purchased from Sigma-Aldrich (St. Louis, MO). Tak242 (CLI-095, TLR4 

inhibitor) was purchased from InvivoGen (San Diego, CA) and solubilized in Intralipid (20% 

emulsion) which was purchased from Sigma Aldrich. Recombinant human IL-8 (CXCL8) was 
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purchased from PeproTech, Inc. (Rocky Hill, NJ). Prostaglandin I2 (PGI2) and cell permeable 

Caspase-1 Inhibitor-I (YVAD-CHO) were purchased from EMD Millipore (Billerica, MA). 

Recombinant human P-selectin (CD62P) Fc chimera, and recombinant human ICAM-1 (CD54) 

Fc chimera were purchased from R&D Systems (Minneapolis, MN). HRP conjugated anti-rabbit 

IgG1 Ab, HRP conjugated anti-mouse IgG1 Ab, anti-human caspase-1 Ab (rabbit IgG) and anti-

human β-actin Ab (rabbit IgG) were purchased from Cell Signaling Technology (Danvers, MA). 

Erythrocyte lysis buffer was purchased from eBioscience (Santa Clara, CA). Mitotempo was 

purchased from Enzo Life Sciences (Farmingdale, NY). DC Protein Assay Reagent A, B, and S 

were purchased from BioRad (Hercules,CA). Bolt LDS sample buffer (4X), Bolt MES SDS 

running buffer (20x), Bolt transfer buffer (20x), Bolt 4-12% Bis-Tris plus gel, nitrocellulose 

membrane filter paper sandwich, Novex sharp pre-stained protein standard, iBind Flex solution 

kit, iBind flex cards, and cy3-conjugated-phalloidin were purchased from Life Technologies 

(Carlsbad, CA). Hyblot CL autoradiography film was purchased from Denville Scientific, Inc 

(Holliston, MA). Goat serum, Goat anti-rabbit Cy3 IgG, Goat anti-rabbit Cy5 IgG, Goat anti-

mouse Cy3 IgG, and Goat anti-mouse Cy5 IgG were purchased from Jackson Immuno Research 

Laboratory Inc. (Westgrove, PA). FITC-conjugated anti-human PSGL1 mAb (clone PL2; mouse 

IgG1) was purchased from Santa Cruz Technology (Dallas, TX). Mouse anti-human 

NLRP3/NALP3 mAb (clone Cryo-2; mouse IgG2b) and rabbit anti-human ASC polyclonal Ab 

(clone AL177) were purchased from AdipoGen Life Science (San Diego, CA). Phosphate buffer 

saline (without Ca2+ and Mg2+) and Super Signal West Pico chemiluminescent substrate were 

purchased from ThermoFisher Scientific (Rockford IL). Human CD45 depletion kit was purchased 

from Stem Cell Technologies (Cambridge MA). Biotinylated mouse anti human CD42b mAb 

(Clone AK2, IgG1) was purchased from BIO-RAD (Hercules, CA).  
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5.2.2 Blood collection 

Healthy race matched control human subjects and non-crisis SCD (SS or S/βº) patient blood was 

collected via venipuncture in a heparin containing syringe or CPT glass BD Vacutainer tube 

containing sodium citrate (BD Biosciences, Franklin Lakes, NJ) in accordance with the guidelines 

set by the Institutional Review Board at the University of Pittsburgh. The procedure for blood draw 

has been described elsewhere in detail (1). Only non-smokers who were not on chronic transfusion 

therapy (no transfusion within the last 1 month) were included in the study. Informed written 

consent was obtained from all the participants in accordance with the Declaration of Helsinki. All 

blood samples were used within 2 hours of blood draw. 
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5.2.3 Quantitative microfluidic fluorescence microscopy (qMFM) 

qMFM experimental design, sample preparation and setup has been described in Chapter 

2-4 and Appendix A (1, 87, 88). Heparinized whole blood (500µL) from human subjects was 

transferred into a 1.5 mL Eppendorf (Fisher Scientific) and fluorescent antibodies (Abs) against 

 

 CONTROL SCD 

Female/Male 5/2 9/9 

Age 34 (32, 29, 45) 36.7 (32.5;25; 62) 

Hemoglobin (g/dL) 13.99 (13.9; 10.3; 16.7) 8.69 (9.2; 5.8; 12.8) 

Hematocrit (%) 42.79 (43; 35.7; 49.1) 25.78 (26.4; 17; 37.6) 

White Blood Cells (K/µL) 5.44 (5.72; 3.5; 7.28) 10.14 (7.8; 3.9; 27.6) 

% Neutrophils 46.5 (49.6; 26.3; 61.5) 51.63 (50.6; 29; 75.3) 

Neutrophil Count (K/µL) 2.51 (2.15; 1.47; 3.61) 5.49 (3.9; 1.7; 19.87) 

Platelets (K/µL) 160 (153; 110; 243) 329.68 (309; 122; 622) 

% HbS NM 60.98 (60.8; 8.6; 80) 

% HbF NM 17.69 (20; 2.5; 35) 

Genotypes 

- AA 

- AS 

- SS 

- S/β0 

 

6 

1 

0 

0 

 

0 

0 

15 

3 

Hydroxyurea (Y/N) NA 12/6 

Table 3: Clinical characterization of human subjects. Data shows mean (median; minimum; maximum) 
except for the gender, genotype and hydroxyurea status. AA, healthy control; AS sickle cell trait; SS, Sickle 
cell anemia, S/β0, sickle β0 thalassemia; %HbF, % fetal hemoglobin; %HbS, % sickle hemoglobin; NM, 
not measured. 
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CD16 (Alexa Flour 647; 3:500 dilution) and CD49 (FITC; 1:250 dilution) were added to the blood 

for in situ staining of neutrophils and platelets, respectively. Glass coverslips were coated with 

recombinant human P-selectin (2 µg/mL), ICAM-1 (10 µg/mL) and IL-8 (10 µg/mL) (The 

following methods are used in the Sundd lab to conduct experiments and analysis. A1.1 

Preparation of adhesion molecule presenting substrates for more detailed protocol), and assembled 

into a polydimethylsiloxane (PDMS) based microfluidic flow chamber with multiple flow 

channels (500 µm wide x 30 µm high) as described in A1.2 Microfluidic Flow Assay Setup (1, 

60). Following the incubation time, blood was perfused through the microfluidic flow channels 

presenting a combination of P-selectin, ICAM-1 and IL-8, at a physiological(27, 89) wall shear 

stress of 6 dynes cm-2. Neutrophil-platelet interactions were visualized in several field of views 

(FOV ~ 14,520 µm2) using qMFM and time series of images were analyzed offline using Nikon 

NIS-Elements software as described elsewhere (1, 87). As described recently (1, 87, 88), platelet-

neutrophil aggregation in microfluidic flow-channels was quantified and compared between 

treatments using the following three parameters: total platelet-neutrophil interactions per FOV 

over a 2-minute observation period, total platelet interactions per arrested neutrophil over a 2 

minute observation period, and lifetime of individual platelet-neutrophil interactions. See 

Appendix A1.5 qMFM Data analysis Guidelines, A1.8 Microscope Set up for further details 

on analysis and microscope setup. 

5.2.4 LPS Treatments and Inhibition Studies 

In experiments involving LPS treatment, LPS was added to the blood to achieve the desired 

concentration following the addition of fluorescent antibodies and incubated for 10 minutes at 

room temperature on a blood mixer. In inhibition studies, fluorescent antibodies were added to the 
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blood then the inhibitors or antagonists [TAK242 (50 μg/mL), Mitotempo (50 µM) and YVAD-

CHO (200µM)] were added 5 minutes prior to the addition of LPS. Blood was then incubated for 

another 10 minutes prior to perfusion through the PDMS microchannels. In baseline studies done 

without LPS pretreatment, antagonists or inhibitors were added to the blood following addition of 

fluorescent Abs, and the blood was incubated for 10 minutes on a blood mixer at room temperature. 

For more detailed procedures see Appendix A1.6 Function Blocking Studies on Platelet-

Neutrophil Interactions and A1.7 LPS Treatments. 

5.2.5 Isolation and western blot analysis of human platelets  

Blood samples from control and SCD human subjects were drawn in BD CPT Vacutainers 

containing sodium citrate and centrifuged at 1500g (22ºC) for 10 min. Platelet rich plasma (PRP) 

was separated, treated with 1 µg/mL Prostaglandin I2 (PGI2) to prevent coagulation and incubated 

with 0.25 µg/ml LPS for 30 min. Samples were then centrifuged at 1500g (22ºC) for 10 min. 

Platelet poor plasma (PPP) was removed and the platelet pellet was suspended in the recommended 

buffer for the CD45 depletion kit [1X PBS (-Mg2+, -Ca2+), 2% fetal bovine serum, 1 mM EDTA 

and 1 µg/mL PGI2]. Any contaminating leukocytes (CD45+ cells) were removed using human 

CD45 depletion kit. The purified platelet suspension was centrifuged at 1500g (22ºC) for 5 min 

and the platelet pellet was resuspended in erythrocyte lysis buffer + 1 µg/mL PGI2 to remove any 

contamination from RBC. After a 5 min incubation in lysis buffer, the suspension was centrifuged 

at 1500g (22ºC) for 5 min, the supernatant was discarded and platelets were resuspended in platelet 

buffer (20 mM Hepes, 128 mM NaCl, 12 mM bicarbonate, 0.4 mM Na2PO2, 5 mM Glucose, 1 

mM MgCl2, 2.8 mM KCl, pH 7.4). Platelet suspension was stored at -80ºC until use. Prior to 

western blot assay, platelet samples were thawed and sonicated to lyse platelets. Protein 
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concentrations in platelet lysates were measured using BioRad DC Protein Assay. Samples were 

prepared with 50 µg protein (per well) in Bolt SDS Sample Buffer (4X) and deionized water, to 

maintain equal sample volume, and heated at 70ºC for 10 minutes. Samples and the Novex Sharp 

Pre-Stained Protein Standard were loaded into a 12 well Bolt 4-12% Bis-Tris Plus gel and ran in 

Bolt MES SDS Running Buffer at 200V in an Invitrogen Mini Gel Tank. Proteins were transferred 

onto a nitrocellulose membrane for 1 hour (10 V) at room temperature. Primary (Rabbit IgG – 

Caspase-1, β Actin, ASC; Mouse IgG - NLRP3; 1:1000 dilution) and secondary (HRP anti-rabbit 

IgG, HRP anti-mouse; 1:400) antibody staining and washing were done using the Invitrogen iBind 

Flex (Thermo Fisher) for 2-3 hours at room temperature. Membranes were washed for 2 minutes 

in deionized water and protein bands were detected using Super Signal West Pico 

Chemiluminescent Substrate for 5 minutes. Films were developed using Konica SRX-101A and 

analyzed using ImageJ. 

5.2.6 Scanning electron microscopy of platelet-neutrophil aggregates 

Control or SCD human blood with or without treatment with LPS and/or inhibitors was perfused 

through microfluidic flow channels presenting a combination of P-selectin, ICAM-1 and IL-8 at a 

shear stress of 6 dyn cm-2. Neutrophils were allowed to arrest and interact with freely flowing 

platelets for 3 min. After 3 min, the fixative cocktail (4% paraformaldehyde and 2.5% 

glutaraldehyde) was added to the inlet reservoir and platelet-neutrophil aggregates were fixed 

under flow by perfusing the fixative through the microfluidic channels. Coverslips were then 

detached and stored in PBS until processing. Scanning electron microscopy of platelet-neutrophil 

aggregates was conducted using the strategy described in Appendix A1.9 Scanning Electron 

Microscopy(1, 87). A minimum of 10 micrographs per treatment group were analyzed using 



 80 

Adobe Photoshop to estimate the percent platelets with a round or hairy appearance and the 

cumulative probability distribution of the length of hairy structures was plotted.  

5.2.7 Structured illumination microscopy 

Control and SCD human blood with or without LPS treatment was perfused through microfluidic 

flow channels presenting a combination of P-selectin, ICAM-1 and IL-8 at a shear stress of 6 dyn 

cm-2. Platelet-neutrophil aggregates were fixed under flow, stained for P-selectin and F-actin using 

BV421 P-selectin Ab and Cy3 phalloidin, respectively, and visualized using super resolution 

Nikon 3D-Structured Illumination Microscopy (SIM) as in Appendix A1.11 Structured 

illumination microscopy (1). 

5.2.8 Confocal microscopy 

Analysis of P-selectin and PSGL-1 expression. Control and SCD human blood, with or without 

treatment with LPS, was perfused through microfluidic flow channels presenting a combination of 

P-selectin, ICAM-1 and IL-8 at a shear stress of 6 dyn cm-2. Neutrophil-platelet aggregates were 

fixed under flow, coverslips were detached and stored in PBS for staining and confocal imaging. 

The following primary Abs were used for visualizing P-selectin and PSGL-1: BV421 mouse anti-

human CD62P Ab (clone AK4) and FITC mouse anti-human PSGL-1 Ab (clone PL2). 

 

NLRP3 and ASC colocalization analysis. SCD and control human blood was collected in BD CPT 

Vacutainers containing sodium citrate and centrifuged at 1500g (22ºC) for 10 min. PRP was 

removed and treated with 0.25 µg/mL LPS for 30 minutes. Platelets in PRP were allowed to attach 
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to glass slides for 1 hour, washed with PBS and then fixed using a fixative cocktail (4% 

paraformaldehyde and 2.5% glutaraldehyde) for 10 min. Slides were washed to remove excess 

fixative and stored in PBS for staining and confocal imaging. The following primary Abs were 

used for NLRP3 and ASC colocalization: mouse anti-human NLRP3 mAb (clone Cryo-2) and 

rabbit anti-human ASC polyclonal Ab (clone AL177). The following secondary Abs were used: 

Cy3 conjugated goat anti-rabbit IgG for ASC and Cy5-conjugated goat anti-mouse IgG for 

NLRP3. 

Processing of coverslips for confocal microscopy.. Samples were imaged using Nikon A1R 

Spectral laser confocal microscope. For further details on coverslip processing see Appendix 

A1.12 Confocal Microscopy Coverslip .    

5.2.9 Strategy for Colocalization Analysis 

Two regions of interest (ROI) were selected on each cell included in the analysis to quantify the 

colocalization of NLRP3 (red) with ASC (green). As a reference, the cell from Figure 24B of a 

0.25 μg/ml LPS treated SCD patient platelet is used in this figure. Using Nikon Elements Analysis 

software, the colocalization function was run on each individual ROI and (B) the intensity of each 

channel (red and green) were plotted in a graph to calculate the value of Pearson’s coefficient. For 

the analysis shown in Figure 24C, Pearson’s coefficient was used to determine the amount of 

colocalization per cell. Three cells per condition were selected for the analysis with 2 ROI per cell. 

Data represents the mean of Pearson’s coefficient for all cells per condition. 
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5.2.10 Statistics 

The total platelet-neutrophil interactions, platelet interactions per neutrophil, and Pearson’s 

coefficient for colocalization were compared between groups using the unpaired Student’s t test 

with Bonferroni correction when needed. The percent of platelets with a round or hairy 

appearances were compared between groups using four-fold table analysis with Bonferroni χ2 

statistics. The lifetime of platelet-neutrophil interactions and the length of hairy tethers were 

compared using the Kruskal Wallis H-test. Error bars shown represent mean ± SE. A p value less 

than 0.05 was considered as significant.   

Figure 20: Strategy for NLRP3 and ASC colocalization analysis. (A) Two regions of interest (ROI) were selected 
on each cell included in the analysis to quantify the colocalization of NLRP3 (red) with ASC (green). Using Nikon 
Elements Analysis software, the colocalization function was run on each individual ROI and (B) the intensity of 
each channel (red and green) were plotted in a graph to calculate the value of Pearson’s coefficient.  

A. B. 
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5.3 RESULTS 

5.3.1 Platelets expressing hair-like membrane tethers promote platelet-neutrophil 

aggregation in SCD 

Race-matched control and SCD human blood were perfused at a physiological shear stress of 6 

dyn cm-2 (0.6 Pa) (27, 89) through in vitro microfluidic flow-channels presenting a combination 

of P-selectin, ICAM-1 and IL-8, and individual platelet-neutrophil interactions were visualized at 

high resolution using qMFM. Refer to Table 3 for the clinical characterization of human subjects 

blood. Similar to what we have reported previously(1), platelet-neutrophil interactions were 

significantly more numerous and longer in duration in SCD than control human blood. 

Surprisingly, qMFM revealed for the first time that the platelet-neutrophil interactions in SCD 

human blood were enabled by hair-like tethers present on the surface of platelets (Figure 21A). 

Figure 21A shows a freely flowing platelet (green) approaching an arrested neutrophil (purple) in 

SCD human blood at t = 1 s. As the platelet flows over the arrested neutrophil, it attaches to the 

neutrophil via a hair-like tether (green; t = 3 to 8 s). The green fluorescence in the hair-like tether 

indicates the expression of the cell surface marker of platelets (green) but not neutrophils (purple) 

suggesting that the tether is platelet (green) but not neutrophil (purple) derived. To further validate 

this finding, platelet-neutrophil aggregates in SCD and control human blood were fixed under flow 

in microfluidic flow-channels and visualized at high resolution using scanning electron 

microscopy. Scanning electron micrographs revealed that platelets in SCD human blood (Figure 

21B) were indeed ‘hairy’ in appearance, whereas platelets in control human blood were ‘round’ 

(Figure 21C). As shown in Figure 21B, the ‘hairy’ platelets in SCD human blood were attached to 

arrested neutrophils through tethers originating from their surface. Quantitative analysis of 
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scanning electron micrographs (Figure 21D) revealed that platelets were primarily round (~70%) 

in control but hairy (~80%) in SCD human blood. A small number (~30%) of control human 

platelets were also observed to have tethers, however, these tethers were significantly shorter than 

those in SCD human blood (Figure 21E). These findings are the first to identify that platelets in 

SCD human blood are ‘hairy’ due to the presence of hair-like membrane tethers on their surface, 

and these tethers enable SCD platelets to interact more efficiently with neutrophils to promote 

platelet-neutrophil aggregation in vitro.   
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Figure 21: Hairy platelets promote platelet-neutrophil aggregation in SCD. (A) SCD human blood was assessed 
using quantitative microfluidic fluorescence microscopy (qMFM). At t=0 s, the neutrophil (purple) arrests on the 
substrate. A freely flowing platelet (Green) attaches to the arrested neutrophil at t=1 s. The platelet is pushed away 
from the arrested neutrophil by the blood flow at t=3 s and a hair-like tether begins to elongate from platelet surface. 
At t=8 s the ‘hairy’ tether continues to elongate, enhancing the lifetime of platelet-neutrophil interaction. The 
schematic below each qMFM image depicts the side-view of the interaction. Scale bars 10μm. Scanning electron 
micrographs show platelets nucleated on top of arrested neutrophils in (B) SCD and (C) control human blood. Scale 
bars 5 μm. Inset- magnified view of region marked by dotted box. Scale bar 2.5 μm. (D) Platelet morphology in 
control and SCD human blood based on scanning electron micrographs. Percentages compared using Fourfold Table 
Analysis. (E) Cumulative distribution of platelet tether lengths in control and SCD human blood. The distribution 
compared using the nonparametric Kruskal-Wallis H test. (B-E) n= 4 experiments (2 control and 2 SCD human 
subjects). * p<0.05 when compared to control. Wall shear stress 6 dyn cm-2. The thick white arrow denotes the 
direction of blood flow. 
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5.3.2 Platelet derived hair-like tethers present P-selectin to neutrophil PSGL-1 in SCD 

Previously(1), it was shown that platelet-neutrophil aggregation in the lung arterioles of SCD mice 

in vivo and SCD human blood flowing through microfluidic flow-channels in vitro is partially 

mediated by platelet P-selectin binding to PSGL-1 on neutrophils. We hypothesized that hair-like 

platelet tethers may enable platelet-neutrophil interactions by presenting P-selectin to neutrophil 

PSGL-1. Therefore, platelet-neutrophil aggregates in SCD human blood were fixed under flow, 

stained for F-actin, PSGL-1 and P-selectin, and visualized using scanning confocal microscopy 

(Figure 22A-B) and super-resolution structured illumination microscopy (SIM; Figure 22C-D). As 

shown in Figure 22A and B, F-actin (red) was present in the lamellipodia of arrested neutrophils 

and in platelets (marked with arrows) that nucleated on top of arrested neutrophils. Identical to our 

previous findings in Chapter 3(1), P-selectin (blue) was uniformly expressed on the membrane of 

SCD platelets (Figure 22A and B). We found that platelets were nucleated on arrested neutrophils 

primarily in areas positive for PSGL-1 (Figure 22A-B), and this preferential localization is evident 

in the maximum intensity projection images (Figure 22A-B). Due to the poor resolution in the x-

y plane, confocal microscopy cannot resolve fine structures such as tethers. To image these 

structures, we used super-resolution SIM that can resolve structures as small as 100-150 nm. 

Remarkably, SIM revealed P-selectin (blue) present not only on the platelet surface but also on the 

hair-like tethers connecting platelets to arrested neutrophils in SCD human blood (Figure 22C and 

D). Regions marked with ellipses in the maximum intensity projection SIM images (Figure 22C 

and D) demonstrate that P-selectin (blue) is expressed on platelet hairy tethers, which serve as a 

bridge between platelets and arrested neutrophils. Staining with isotype control antibodies did not 

result in any fluorescence suggesting that the blue and green fluorescence in Figure 22 was specific 

to P-selectin and PSGL-1, respectively. Interestingly, plasma membrane derived tubular structures 
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known as ‘slings’ or ‘tethers’ have been shown to promote neutrophil rolling on inflamed 

endothelium(58, 90) and platelet aggregation during thrombosis(91) by shielding the adhesive 

bonds from the disruptive force of the blood flow(92). However, a similar role for tethers and 

slings in the vaso-occlusive pathophysiology of SCD is largely unknown. Taken together, our 

previous and current findings suggest that hair-like membrane tethers on platelets promote platelet-

neutrophil aggregation in SCD by presenting P-selectin to neutrophil PSGL-1. Based on the 

reported role of tethers as force dampeners(27, 58, 90-92), we propose that these platelet derived 

hair-like tethers contribute to the increased frequency(1) and lifetime(1) of P-selectin-PSGL-1 

mediated platelet-neutrophil interactions in SCD.   
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Figure 22: Hair-like tethers present P-selectin to neutrophil PSGL-1 in SCD patient blood. (A-B) Confocal 
microscopy revealed that platelets nucleated on top of an arrested neutrophil in SCD human blood. Arrested 
neutrophils and platelets were positive for F-actin (red) which can be seen throughout the lamellipodia of the 
neutrophils and throughout the surface of the platelets. Platelets were positive for P-selectin (blue) while 
neutrophils expressed PSGL-1 (green). The far-right panel shows the reconstructed 3D confocal image. (C-D) 
Structured illumination microscopy (SIM) images reveal ‘hairy’ platelets attached to an arrested neutrophil via 
sling-like tethers. The arrested neutrophil and platelets were positive for F-actin (red) which was present 
throughout the lamellipodia of the arrested neutrophil and throughout the platelet (marked with a thin white arrow). 
P-selectin (blue) was expressed on the platelet surface as well as on the hair-like tethers. Far right panel represents 
the maximum intensity projections of the 3D SIM image in x-y (top) and y-z plane (bottom). The inset on the right 
shows a magnified view of the region marked with a white box. The dotted white circle reveals P-selectin (blue) 
present on hair like tethers (red) that connect platelets to the neutrophil. Wall shear stress 6 dyn cm-2 Scale bars 
10μm. Thick white arrow denotes direction of blood flow. N= 4 SCD human subjects. 
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5.3.3 TLR4 activation promotes platelet hair-like tether formation in SCD 

Recently(1), we have shown that pretreatment with the TLR4 agonist LPS at a concentration of 1 

µg/ml significantly increased the frequency and lifetime of platelet-neutrophil interactions in 

control human blood flowing through microfluidic flow-channels in vitro and this increase was 

abolished by pretreatment with the TLR4 antagonist TAK242. In the current study, platelet-

neutrophil aggregates in control human blood treated with 1 µg/ml LPS ± TAK242 (50 µg/ml) 

were fixed under flow in microfluidic flow-channels in vitro and visualized at high resolution using 

scanning electron microscopy. Unlike the round platelets in untreated control blood (Figure 21C), 

platelets in LPS (1 µg/ml) treated control blood were hairy in appearance (Figure 23A) and 

resembled the platelets in untreated SCD human blood (Figure 21C) suggesting that a LPS (1 

µg/ml) dependent increase in platelet-neutrophil interactions was complimentary to an increase in 

platelet hairiness. Similar to SCD human blood, hair-like tethers originating from the platelet 

surface served as a bridge, connecting platelets to arrested neutrophils in LPS (1 µg/ml) treated 

control blood. Quantitative analysis of scanning electron micrographs revealed that the percent 

hairy platelets (Figure 23D) and length of hairy tethers (Figure 23E) in control human blood were 

significantly increased by LPS (1 µg/ml) treatment to the levels observed in untreated SCD human 

blood. TLR4 inhibition with TAK242 abolished the hairiness and rescued the round platelet 

morphology in LPS (1 µg/ml) treated control blood (Figure 23B). Both the percent ‘hairy’ platelets 

(Figure 23D) and the length of hair-like tethers (Figure 23E) were reduced to the levels in untreated 

control blood suggesting that TLR4 activation promotes hair-like tethers by platelets. 

Previously(1), we have shown that TLR4 inhibition also abrogated platelet-neutrophil interactions 

in SCD human blood flowing through microfluidic flow-channels in vitro. We hypothesized that 

this inhibition might also be associated to the loss of hair-like tethers on platelets. To verify, 
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platelet-neutrophil aggregates in TAK242 treated SCD human blood were fixed under flow in 

microfluidic channels and visualized using scanning electron microscopy. Remarkably, TLR4 

inhibition completely abolished the hairiness of platelets in SCD human blood. Post TLR4 

inhibition, SCD human platelets were round (Figure 23C) and the percent hairy platelets (Figure 

23F) as well as length of tethers (Figure 23G) were significantly reduced and seemed identical to 

untreated control blood. These findings suggest that platelet TLR4 activation by the inflammatory 

milieu in SCD promotes the formation of hair-like membrane tethers by platelets.   
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Figure 23: TLR4 activation promotes platelet hair-like tether formation in SCD. Platelet-neutrophil aggregates 
were fixed under flow and visualized using SEM. (A) Treatment with 1 μg/mL LPS led to the formation of hairy 
tethers on control platelets. TLR4 inhibition with Tak242 (50 μg/mL) led to the disappearance of hairy tethers and 
rescued the round morphology of platelets in (B) LPS treated control and (C) untreated SCD human blood. Scale 
bar 5 μm (A) and 2.5 μm (B-C). (D) Percent of round and hairy platelets, and (E) Cumulative probability distribution 
of tether lengths in control human blood treated with 1 μg/mL LPS treatment ± Tak242. Untreated control and SCD 
human blood is included for comparison. (F) Platelet morphology and (G) distribution of tether lengths in SCD 
human blood ± Tak242 treatment. Untreated control human blood is included for comparison. Percentages 
compared using Fourfold Table Analysis. Distributions in E & G were compared using the nonparametric Kruskal- 
Wallis H test. N=6 experiments done (4 control and 2 SCD human subjects) * p<0.05 compared to control. # p<0.05 
compared to SCD. Wall shear stress 6 dyn cm-2. 
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5.3.4 Platelet hair-like tether formation in SCD is NLRP3 inflammasome dependent 

The NLRP3-inflammasome(93), containing Nucleotide-binding domain, leucine-rich-containing 

family, pyrin domain-containing 3 (NLRP3), apoptosis-associated speck-like protein containing a 

caspase recruitment domain (ASC) and caspase-1, was recently discovered to be a functional 

complex in platelets, which can be activated in response to TLR4 activation by DAMPs or PAMPs 

leading to the downstream activation of caspase-1(34, 38). Nevertheless, a role for the platelet 

NLRP3 inflammasome in the vaso-occlusive pathophysiology of SCD remains unknown.  

Previously(1), we have shown that pretreatment with LPS at a concentration of 0.25 µg/ml was 

potent enough to significantly increase platelet-neutrophil aggregation in SCD human blood 

flowing through microfluidic flow-channels in vitro, but a four-fold higher concentration of LPS 

(1 µg/ml) was required to promote aggregation in control human blood. Therefore, platelets were 

isolated from SCD and control human platelet-rich-plasma (PRP) with or without LPS treatment 

(0.25 µg/ml). Western blots of platelet lysates confirmed the presence of NLRP3, ASC and 

Caspase-1 in both control and Sickle Cell Disease human platelets (Figure 24A). Confocal 

microscopy revealed that NLRP3 (red) and ASC (green) were randomly distributed as punctae 

with minimal overlap in both untreated and 0.25 µg/ml LPS treated control human platelets (top 

two rows in Figure 24B). In contrast, both ASC (green) and NLRP3 (red) appeared colocalized 

around the outer membrane of untreated SCD platelets (red and green overlapping rings in third 

row of Figure 24B), and completely overlapped in 0.25 µg/ml LPS treated SCD platelets (green 

and red images are identical in the bottom row of Figure 20B). Based on Pearson’s coefficient 

analysis (Figure 24C), colocalization of NLRP3 with ASC was minimal in untreated control 

platelets and did not increase with 0.25 µg/ml LPS treatment. However, NLRP3-ASC 

colocalization was significantly higher in SCD than control human platelets at baseline and further 
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increased following treatment with 0.25 µg/ml LPS (Figure 24C). These findings suggest that the 

inflammatory milieu in SCD promotes activation of NLRP3-ASC-Caspase-1 inflammasome in 

platelets and the activation is further enhanced following treatment with a TLR4 agonist (LPS) at 

a dose which does not induce activation in control human platelets.  

 

Interestingly, mitochondrial ROS (mtROS), a potent activator of the NLRP3 inflammasome (93, 

94) has been shown to be significantly elevated in platelets of SCD patients(67). Mitotempo a 

mtROS scavenger(67), and YVAD-CHO, a caspase-1 inhibitor, has been used widely to inhibit 

NLRP3-inflammasome activation(94, 95). Remarkably, scanning electron micrographs of platelet-

Figure 24: Platelet hair-like tether formation in SCD is NLRP3-inflammasome dependent. Platelets were isolated 
from untreated and LPS (0.25 μg/mL) treated platelet rich plasma (PRP) from SCD and control human. (A) 
Western blot micrograph showing the presence of NLRP3 (118 KDa), ASC (24 KDa) and Caspase-1 (50 KDa) in 
both control and SCD platelets. Beta-actin (37 KDa) was used as the house-keeping control. (B) Confocal 
microscopy images showing the localization of ASC (green) and NLRP3 (red) in control and SCD platelets ± LPS 
treatment (0.25 μg/ml). Scale bars 2 μm. (C) Analysis of NLRP3 (red) with ASC (green) colocalization in platelets 
quantified in terms of Pearson’s coefficient. Data represents mean ± SE and compared using Student’s t-test with 
Bonferroni correction. *p<0.05 when compared to control. # p<0.05 when compared to SCD. 
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neutrophil aggregates in SCD human blood fixed under vascular mimetic flow in vitro revealed 

that pretreatment with 50 µM Mitotempo (Figure 25A) and 200 µM YVAD-CHO (Figure 25B) 

led to the disappearance of hair-like tethers from SCD platelets. Following treatment with 

Mitotempo (Figure 25C) and YVAD-CHO (Figure 25D), SCD platelets were primarily round. The 

morphology, which was based on the percent round vs hairy platelets, was identical to the untreated 

control but significantly different from untreated SCD human platelets. As shown earlier, platelets 

in untreated control human blood were primarily round but became hairy following treatment with 

1 µg/ml LPS. We tested whether the platelet hairiness in 1 µg/ml LPS treated control blood was 

also inflammasome dependent. Indeed, pretreatment with 20 µM Mitotempo (Figure 25A) and 100 

µM YVAD-CHO (Figure 25B) rescued the round morphology of platelets in 1 µg/ml LPS treated 

control human blood. Post Mitotempo and YVAD-CHO treatment, the control platelets were 

primarily round (Figure 25C and D).  
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Although a small number of platelets in control patient blood were still hairy following treatments, 

the lengths of these tethers post Mitotempo (Figure 26A) and YVAD-CHO (Figure 26B) were 

significantly small. As shown in Figures 25C and 25D, hairy tethers were still present on a small 

number of SCD platelets (17% post Mitotempo and 9% post YVAD-CHO), but the lengths of 

these tethers in Mitotempo (Figure 26C) and YVAD-CHO (Figure 26D) treated platelets were 

significantly smaller than those in untreated SCD platelets and not different from the tether lengths 

in untreated control platelets. Taken together, these results suggest that TLR4-dependent activation 

Figure 25: Scavenging of mtROS and Caspase-1 rescues round platelet morphology. Scanning electron 
micrographs showing platelets nucleated on arrested neutrophils in control and SCD human blood fixed under 
flow. (A) Treatment with mtROS scavenger, Mitotempo, led to the disappearance of platelet tethers in SCD 
(50µM) and 1µg/ml LPS treated control subject blood (20µM). Similarly (B) Caspase-1 inhibitor YVAD-CHO 
led to the disappearance of hairy platelet tethers in SCD (200 µM) and LPS treated (1 μg/mL; 100 µM) control 
human blood. Scale bars – 2.5 μm. Scanning electron micrographs were analyzed to quantify the effect of (C) 
Mitotempo and (D) YVAD-CHO treatment on platelet morphology in SCD and 1 μg/mL LPS treated control 
human blood. Compared using Fourfold table analysis. Data for untreated control and SCD human blood included 
for comparison. * p<0.05 when compared to control. # p<0.05 when compared to SCD. N=14 with 8 control and 
6 SCD human subjects. Wall shear stress 6 dyn cm-2. 

A B 

C D 



 96 

of the platelet NLRP3-inflammasome promotes the generation of hair-like membrane tethers by 

platelets in SCD.  

 

5.3.5 Platelet inflammasome promotes platelet-neutrophil aggregation in SCD  

qMFM revealed that inhibiting the NLRP3-inflammasome by either scavenging mtROS or 

inhibiting caspase-1 abolished TLR4-dependent platelet-neutrophil aggregation in SCD human 

Figure 26: Scavenging mtROS and inhibiting caspase-1 reduces platelet hairiness. Control and SCD human blood 
± mtROS scavenger Mitotempo or ± caspase-1 inhibitor YVAD were fixed under flow and imaged using Scanning 
Electron Microscopy. Pretreatment with (A) Mitotempo (20μM) and (B) YVAD-CHO (100μM) significantly 
reduced the length of platelet tethers in 1 μg/ml LPS treated control blood to the level observed in untreated control 
blood. N= 8 control human subjects. Pretreatment with (C) Mitotempo (50μM) and (D) YVAD-CHO (200μM) 
significantly reduced the length of platelet tethers in SCD blood. Following YVAD-CHO treatment, the platelet 
tether length in SCD blood was reduced to the level observed in untreated control blood. N=8 experiments (2 
control and 6 SCD human subjects). Kruskal Wallis H- Test was used to measure significance. * p<0.05 when 
compared to SCD.  + p<0.05 when compared to control + LPS. Shear stress 6 dyn cm-2. 
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blood in vitro. SCD and control human blood with or without treatment with 50 µM Mitotempo to 

scavenge mtROS or 200 µM YVAD-CHO to inhibit caspase-1 was perfused through microfluidic 

flow-channels presenting a combination of P-selectin, ICAM-1, and IL-8. Identical to our previous 

report (1), neutrophils were observed to roll, arrest, crawl and interact with freely flowing platelets 

resulting in significantly more total platelet-neutrophil interactions as well as platelet interactions 

per arrested neutrophil in untreated SCD than control human blood. Mitotempo significantly 

reduced the total number of platelet-neutrophil interactions in both untreated control and SCD 

human blood (Figure 27A). Mitotempo also significantly reduced the number of platelet 

interactions per arrested neutrophil in SCD human blood (Figure 27B). Following Mitotempo 

treatment, platelet-neutrophil interactions (Figure 27A) as well as platelet interactions per arrested 

neutrophil (Figure 27B) were not different between SCD and control human blood. Remarkably, 

caspase-1 inhibitor YVAD-CHO significantly reduced the total platelet-neutrophil interactions 

(Figure 27C) and platelet interactions per neutrophil (Figure 27D) in SCD human blood, while 

having no effect on control human blood.  
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Next, SCD and control human blood was treated with 0.25 and 1 µg/ml LPS, respectively, and the 

effect of Mitotempo as well as YVAD-CHO on platelet-neutrophil aggregation was assessed in 

microfluidic flow-channels using qMFM. Similar to findings in Chapter 3 (1), 0.25 and 1 µg/ml 

LPS significantly increased platelet-neutrophil interactions in SCD and control blood, respectively 

(Figure 28A and 28C). Mitotempo treatment significantly reduced the total number of platelet-

neutrophil interactions and the number of platelet interactions per neutrophil in LPS treated control 

and SCD human blood to the level below that in untreated control and SCD blood (Figure 28A & 

Figure 27: Scavenging mtROS or inhibiting caspase-1 abolished platelet-neutrophil aggregation in SCD human 
blood. Control and SCD human blood, with or without treatment with a mitochondrial ROS scavenger (Mitotempo) 
or caspase-1 inhibitor (YVAD-CHO) was assessed using qMFM for a 2-min period. Effect of Mitotempo (50μM) 
treatment on (A) platelet-neutrophil interactions per FOV and (B) platelet interactions per arrested neutrophil in 
control and SCD human blood. Effect of YVAD-CHO (200 μM) treatment on (C) platelet neutrophil interactions and 
(D) platelet interactions per arrested neutrophil in control and SCD human blood. Field of view (FOV: ~14,520 μm2) 
Wall shear stress 6 dyn cm-2. 

Control 
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B). YVAD-CHO significantly reduced the total platelet-neutrophil interactions in LPS treated 

SCD human blood (Figure 28C) and platelet interactions per neutrophil in both LPS treated control 

and SCD human blood (Figure 28D).  

 

Figure 28: LPS induced platelet-neutrophil interactions in SCD patient blood are abolished by Scavenging mtROS 
and inhibiting caspase-1. Control and SCD human blood, pretreated with 1 μg/mL and 0.25 μg/mL LPS, 
respectively, with Mitotempo or caspase-1 inhibitor (YVAD-CHO) treatment was assessed using qMFM for a 2-
min period. Effect of Mitotempo (50 µM) on (A) platelet-neutrophil interactions per FOV and (B) platelet 
interactions per arrested neutrophil in control and SCD human blood pretreated with 1 μg/mL and 0.25 μg/ml LPS, 
respectively. Effect of YVAD-CHO (200 µM) on (C) platelet-neutrophil interactions per FOV and (D) platelet 
interactions per arrested neutrophil in control and SCD human blood pretreated with 1 μg/ml and 0.25 μg/mL of 
LPS, respectively. Means compared using Students t-test with Bonferroni correction. # p<0.05 when compared to 
LPS. * p<0.05 when compared to baseline. + p<0.05 when compared to control. (A-B) N= 6 (3 control and 3 SCD 
human subjects); (C-D) n=8 (4 control and 4 SCD human subjects). Field of view (FOV: ~14,520 μm2) Wall shear 
stress 6 dyn cm-2.  
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Treatment of control (Figure 29A-B) and SCD (Figure 29C-D) human blood with 1 and 0.25 µg/ml 

LPS, respectively, also led to a significant increase in the lifetime of platelet-neutrophil 

interactions. This increase was completely abolished following treatment with 50 µM Mitotempo 

(Figure 29A&C) and 200 µM YVAD-CHO (Figure 29B&D). 

 

 

Figure 29: Scavenging mtROS or inhibiting caspase-1 attenuates lifetime of platelet-neutrophil interactions 
in LPS treated blood. The lifetime of platelet-neutrophil interactions was measured in LPS treated control 
(1 µg/ml) and SCD human blood (0.25 µg/ml) following treatment with mtROS scavenger Mitotempo and 
YVAD-CHO. Treatment of control human blood with 1 μg/ml LPS significantly increased the lifetime of 
platelet-neutrophil interactions, which was completely abolished by treatment with (A) Mitotempo (50 μM) 
and (B) YVAD (200μM). Treatment of SCD human blood with 0.25 μg/ml LPS also significantly increased 
the lifetime of platelet-neutrophil interactions, which was significantly reduced by (A) Mitotempo (50 μM) 
and (B) YVAD (200μM) to the level observed in untreated SCD blood. Comparisons made using Kruskal 
Wallis H-test. N=(A) 4 control subjects; (B) 3 control subjects; (C) 3 SCD patients; (D) 4 SCD patients; * 
p<0.05 when compared to SCD baseline. # p<0.05 when compared to LPS treatment. Shear stress of 6 dyn 
cm-2 
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DMSO was used as a solvent to reconstitute both Mitotempo and YVAD-CHO. Treatment with 

the vehicle (DMSO) had no effect on the total platelet-neutrophil interactions in SCD human blood 

(Figure 30).    

 

5.4 DISCUSSION 

Acute chest syndrome is the leading cause of mortality in SCD (70). The current treatment for 

acute chest syndrome is primarily supportive and the mechanism remains poorly understood (70, 

96, 97). Clinical evidence suggests that acute chest syndrome is often a sequela of acute systemic 

vaso-occlusive crisis (5, 97). Recently, the development of thrombocytopenia was shown to be the 

reliable predictor of acute chest syndrome in SCD patients hospitalized with vaso-occlusive crisis 

(84, 97, 98). Also, autopsy (62) and computed tomography (99) studies have identified platelet 

Figure 30: DMSO does not affect platelet-neutrophil interactions in SCD human blood. To exclude the possibility 
that the Mitotempo and YVAD-CHO mediated inhibition of platelet-neutrophil interactions is a contribution of 
DMSO, SCD human blood with or without treatment with DMSO (vehicle) was perfused through microfluidic 
flow channels presenting a combination of P-selectin, ICAM-1, and IL-8 at a shear stress of 6 dyn cm-2. Platelet-
neutrophil interactions were assessed over a 2-minute time period 

SCD 

Baseline 
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aggregates occluding pulmonary arterioles in acute chest syndrome patients. In support of these 

clinical findings, we recently (1) found that vaso-occlusive crisis in SCD mice triggered by 

systemic challenge of a few nanograms of TLR4 agonist LPS led to occlusion of pulmonary 

arterioles by P-selectin dependent platelet-neutrophil aggregates. Altogether, these findings 

suggest that the inflammatory milieu in SCD promotes platelet-neutrophil aggregate-mediated 

lung vaso-occlusion, which can progress to acute chest syndrome in the absence of specific 

therapy, typically exchange transfusion and antibiotics (59, 97). The molecular mechanism that 

promotes platelet activation and platelet-neutrophil aggregation mediated lung vaso-occlusion in 

SCD has remained largely unknown. This study is the first to identify that platelet TLR4 and 

NLRP3-inflammasome activation promotes IL-1β-dependent platelet-neutrophil aggregation 

mediated vaso-occlusion in SCD. 

Here, in vitro microfluidic studies (qMFM) with human blood were conducted to reveal 

for the first time that platelets in SCD are not round but hairy in appearance due to the presence of 

membrane tethers on their surface. We show that these hair-like membrane tethers presented P-

selectin to PSGL-1 on neutrophils and enhanced the lifetime of platelet-neutrophil interactions. 

TLR4 inhibition abolished platelet hairiness in SCD suggesting that the inflammatory milieu in 

SCD promotes platelet TLR4 activation, which results in the generation of hair-like tethers by 

platelets. Although the platelet NLRP3-inflammasome can be activated in response to TLR4 

activation by DAMPs or PAMPs to trigger downstream activation of caspase-1(34, 38), a role for 

the platelet NLRP3-inflammasome in the vaso-occlusive pathophysiology of SCD remains 

unknown. Using confocal microscopy, we discovered that the NLRP3-ASC-Caspase-1 

inflammasome complex was active in untreated SCD but not control human platelets, and 

activation was amplified only in SCD platelets following treatment with a low concentration of 
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LPS (0.25 µg/ml) that promotes platelet-neutrophil aggregation only in SCD human blood. 

Inhibition of the NLRP3-inflammasome by scavenging mtROS or inhibiting caspase-1 completely 

abolished platelet hairiness as well as platelet-neutrophil aggregation in SCD human blood in vitro.  

Recent studies in diseases other than SCD have identified that TLR4 and NLRP3-

inflammasome dependent caspase-1 activation can promote generation of IL-1β carrying EVs by 

platelets (34). Interestingly, platelet derived EVs are among the most abundant species of EVs in 

SCD human blood and their numbers correlate with disease severity (15, 41) but the role of platelet 

EVs in SCD pathophysiology remains unknown. New unpublished data from our lab shows that 

NLRP3 inflammasome activation also promotes shedding of IL-1β containing EV’s by platelets 

in SCD human blood, and these platelet EVs may promote platelet-neutrophil aggregation 

mediated lung vaso-occlusion in SCD by activating the IL-1 receptor on neutrophils, platelets and 

other vascular cells.  

Taken together, our previous (1), current and unpublished findings (Figure 31) suggest that 

the inflammatory milieu (erythroid DAMPs) in SCD promotes TLR4-dependent activation of the 

NLRP3-inflammasome in platelets, which is enhanced by the presence of nanogram levels of a 

TLR4 ligand (PAMPs) such as LPS. Inflammasome activation promotes the generation of hair-

like membrane tethers and the generation of IL-1β carrying platelet-derived EVs. Hair-like 

membrane tethers enable platelets to interact more efficiently with neutrophils within the 

vasculature, leading to increased P-selectin-PSGL-1 dependent platelet-neutrophil aggregation. 

Platelet EVs also promote IL-1β dependent activation of neutrophils and platelets to form large 

aggregates, which promote vaso-occlusion in SCD. The interpretation of our results is associated 

with the following limitations, which require further investigation by future studies. First, the 

NLRP3 inflammasome is the only inflammasome complex reported to promote platelet mediated 
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immune responses (34); however, other inflammasome complexes (100) might also contribute to 

vaso-occlusion in SCD. Second, IL-1β carrying platelet EVs may activate the IL-1 receptor on 

platelets by an autocrine loop (34, 101) to further promote generation of platelet EVs. Third, 

activated platelets trapped within the platelet-neutrophil aggregates may undergo degranulation 

(102) to locally generate IL-1β carrying EVs. Fourth, IL-1β carrying platelet EVs may also

promote vaso-occlusion by activating the vascular endothelium (38). 
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Figure 31:. TLR4, NLRP3-inflammasome and IL-1β dependent innate immune pathway promotes lung vaso-
occlusion in SCD.  The inflammatory milieu in SCD (erythroid DAMPs) primes TLR4-depedent activation of 
NLRP3-ASC-Caspase-1 inflammasome in platelets, which is enhanced by the presence of TLR4 agonists 
(PAMPs) at concentrations that are innocuous under healthy conditions. NLRP3 inflammasome promotes (black 
solid arrow) generation of hair-like membrane tethers and shedding of IL-1β carrying extracellular vesicles (EVs) 
by platelets, which together promote (black solid arrows) P-selectin and IL-1β dependent platelet-neutrophil 
aggregation mediated pulmonary vaso-occlusion. Previously (1), we identified that platelet-neutrophil micro-
emboli dependent pulmonary vaso-occlusion can be prevented by a P-selectin blocker (gray block line). Here, 
we show that inhibiting TLR4, NLRP3 effector caspase-1or IL-1β innate immune pathway (red block lines) 
prevents lung vaso-occlusion in SCD. Although not shown in our current study, IL-1β carrying platelet EVs may 
activate the IL-1 receptor on platelets by an autocrine loop to further promote generation of platelet EVs (black 
dotted arrow). Also, activated platelets trapped within the platelet-neutrophil aggregates may undergo 
degranulation to locally generate IL-1β carrying EVs (gray dotted arrow).  
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5.5 CONCLUSION 

Although SCD results in more than 100,000 deaths every year worldwide (82), hydroxyurea was 

until 2017 the only FDA approved drug for treatment of SCD that prevents hemoglobin S 

polymerization by inducing fetal hemoglobin production (3, 5, 97). Despite high efficacy, the 

disease activity and mortality remain high in patients taking hydroxyurea (3, 97) and there is a 

growing need to identify new therapies to prevent painful vaso-occlusive crisis and the progression 

to acute chest syndrome (84, 97). Recently (1), our group discovered that therapeutic blockade of 

platelet P-selectin prevented lung vaso-occlusion in SCD mice by inhibiting platelet-neutrophil 

aggregation in the pulmonary arterioles. These findings were validated by the SUSTAIN clinical 

trial showing a significant reduction in the frequency of painful vaso-occlusive crisis in SCD 

patients administered P-selectin antibody crizanlizumab (SelG1) (103). Our current data reveals 

that P-selectin dependent platelet-neutrophil aggregation in SCD is downstream to TLR4/NLRP3-

ASC-Caspase-1 activation in platelets and IL-1β mediated activation of neutrophils, platelets and 

other vascular cells. These findings also imply that therapeutic inhibition of the TLR4, NLRP3, 

Caspase-1 and IL-1β innate immune pathway can be a promising therapeutic target for SCD 

patients, particularly to halt the progression of acute chest syndrome in high risk patients 

presenting with vaso-occlusive pain crisis. Interestingly, IL-1RA (ANAKINRA) and IL-1β 

blocking Ab (CANAKINUMAB) are already FDA approved as anti-inflammatory biological 

drugs for the treatment of rheumatoid arthritis (104) and NLRP3-inflammasome-mediated 

cryopyrin-associated-periodic-syndrome (105), respectively.  

Our current findings justify the need for clinical trials to test the safety and efficacy of 

repurposing these drugs in SCD and also highlight several key aspects that need to be considered 
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in designing future therapies. Systemic inhibition of the IL-1β dependent innate immune pathway 

is potentially associated with a risk of immune compromise or off-target effects, which can be 

detrimental to SCD patients who are susceptible to bacteremia and respiratory infections (71, 106). 

With these potential risks in mind, targeted delivery of a small dose of these drugs as a payload 

within biodegradable nanocarriers designed to recruit selectively to the site of platelet-neutrophil 

aggregation in vivo may represent a safer therapy in SCD (107).  

Based on epidemiological evidence, 10-20% of SCD patients hospitalized with systemic 

painful vaso-occlusive crisis develop acute chest syndrome over the course of hospitalization, 

suggesting that targeted therapies for vaso-occlusion at admission may prevent the development 

of acute chest syndrome (59). Previously (1), our group discovered that vaso-occlusive crisis in 

SCD triggers large platelet-neutrophil aggregates in pulmonary arterioles, leading to a loss of 

blood flow in the lung. Here, we show that the vaso-occlusion is platelet TLR4, NLRP3-

inflammasome and IL-1β dependent, and can be prevented and reversed by inhibitors of the 

inflammasome or IL-1β innate immune pathway.  
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6.0  FUTURE WORK 

The primary focus during this study was on the role of platelets and neutrophils during VOC in 

Sickle Cell Disease. It would be beneficial to visualize the effects other cells may have on VOC 

like RBC, monocytes, Natural Killer T Cells, and Natural Killer cells since they have been shown 

to play a role in VOC (108-110). Additionally, the study tested how LPS treatments affected 

platelet-neutrophil interactions in SCD patient blood. During hemolysis of RBCs, many 

proinflammatory stimuli are released into the blood. Future studies testing the role and effects of 

ADP, heme and/or hemoglobin treatments on interactions of platelets and neutrophils can also help 

in the understanding of the pathophysiology of vaso-occlusion and mimic a crisis environment. 

SCD patient blood can be incubated with these stimuli and the effects can be assessed by using 

qMFM in presence or absence of anti-adhesion or anti-inflammatory drugs.  

The NLRP3 inflammasome is the only inflammasome complex reported to date to promote 

platelet mediated immune responses (34) and the only complex analyzed in this study. Other 

inflammasome complexes (100) might also contribute to vaso-occlusion in SCD by affecting 

neutrophils and/or platelets. Additionally, the role of NLRP3 inflammasome activation on 

neutrophil activity in Sickle Cell Disease has not been studied but could provide a better 

understanding of neutrophil behavior during VOC and how neutrophil slings(33, 58) may 

contribute to platelet-neutrophil interactions.  

Due to the limitations on patient availability we were unable to include any SCD patients 

that were in suffering with active VOC prior to treatment. VOC has a major effect on patients and 

is the leading cause of emergency medical care(3). Using qMFM to study platelet-neutrophil 

interactions in crisis patients may provide unique insight into the mechanistic changes that exists 
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in SCD patients at baseline versus crisis. Furthermore, many patients are prescribed HU to reduce 

HbS sickling and the occurrence of VOC. A study looking at the possible differences between HU 

and non-HU patients would show the effects the drug may have on cell behavior and cell counts. 

Using qMFM one could visualize the cells in each patient to determine if there are any changes 

between the patients.  
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7.0  CONCLUSION 

Vaso-occlusion is the predominant pathophysiology in SCD and responsible for acute vaso-

occlusive crisis, which is the leading cause of emergency medical care by SCD patients (6, 9). 

Vaso-occlusion can lead to acute chest syndrome, pulmonary hypertension, stroke and ischemia 

reperfusion injury, however, the cellular, molecular, and biophysical mechanisms that drive vaso-

occlusion remain incompletely understood. Until 2017, there was only one FDA approved drug to 

treat SCD, hydroxyurea (3). Although effective at reducing RBC sickling by inducing fetal 

hemoglobin production (3, 7), which is resistant to sickling, many patients still face severe 

complications and mortality remains high. Recently, L-glutamine had also been approved by the 

FDA to reduce the frequency of VOC and length of hospital stays in SCD patients(44). The current 

study not only developed a novel imaging approach to study the mechanisms of vaso-occlusion 

but also identified potential targets for therapeutic intervention that can prevent or alleviate vaso-

occlusion in Sickle Cell Disease.  

Chapter 2 established quantitative microfluidic fluorescence microscopy (qMFM) as a 

novel fluorescence imaging approach that utilized a PDMS based microfluidic chip to study single 

cell interactions at high resolution in human blood. Using qMFM, we viewed interactions between 

platelets and neutrophils and quantified the interactions using three parameters: total platelet-

neutrophil interactions, platelet interactions per neutrophil and lifetime of platelet interactions with 

arrested neutrophils. The use of microfluidic chips that are attached via vacuum to a coverslip 

provides the versatility to study cellular interactions using a variety of platforms including confocal 

microscopy, scanning electron microscopy and super resolution structure illumination microscopy. 

Due to the small amount of blood (100-500 µl) that is required for qMFM studies, it is easy to test 
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the effects of different antagonists and inhibitors on cell-cell interactions in the same blood sample 

in real time.  

Chapter 3 established a role for platelets and neutrophils in the onset of vaso-occlusion in 

SCD. Platelet-neutrophil interactions promoted platelet-neutrophil aggregates leading to vaso-

occlusion following the sequential steps of neutrophil rolling, activation, arrest, capture of freely 

flowing platelets leading to platelet-neutrophil aggregates that trap RBC. When analyzed using 

qMFM, platelets-neutrophil interactions were not only more numerous in SCD patient blood than 

control human blood but also significantly longer in duration (14s vs. 3s). These interactions were 

mediated by platelet P-selectin and GPIbα binding to neutrophil PSGL-1 and Mac-1, and were 

significantly reduced when blood was treated with P-selectin or PSGL-1 and Mac-1 or GPIbα 

function blocking antibodies. Additionally, a combination of Mac-1 and P-selectin blocking 

antibodies reduced platelet-neutrophil interactions in SCD blood to a level below that in control 

human blood at baseline conditions. Treatment with a low dose of LPS significantly enhanced 

platelet-neutrophil interactions in SCD but not control human blood. These results support the 

clinical trials in place that are targeting selectins to reduce vaso-occlusion in SCD patients but 

suggests that using a dual approach of targeting Mac-1 and P-selectin may be more effective.  

In Chapter 4, qMFM was used to test the effectiveness of CCP-224, a GPIbα inhibitor, on 

platelet-neutrophil interactions in SCD patient blood. Similar to what was shown in Chapter 3, 

inhibition of the interactions between platelet GPIbα and neutrophil Mac-1 significantly reduced 

the total platelet-neutrophil interactions and platelet interactions per neutrophil in SCD and control 

human blood. CCP-224 also effectively reduced the lifetime of platelet-neutrophil interactions in 

SCD patient blood. The effectiveness of CCP-224 suggests that future clinical studies to test the 

effectiveness and safety of CCP-224 in SCD patients is warranted.  
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In Chapter 3, it was shown that platelet-neutrophil interactions in SCD patients were not 

only more numerous but significantly longer than in control human subjects. Chapter 5 described 

the biophysical and molecular mechanisms that lead to the enhanced platelet-neutrophil 

interactions in SCD, while providing new targets for therapeutic interventions that could reduce 

vaso-occlusion in SCD patients. qMFM revealed for the first time that platelets in SCD blood form 

“hair-like” membrane tethers that promoted platelet-neutrophil interactions by shielding the bonds 

from the hydrodynamic shear forces of blood. Unlike platelets in SCD blood, control platelets 

lacked tether formation and were primarily round, unless activated by a large dose (1 µg/ml) of 

LPS. Structured illumination microscopy revealed that these “hair-like” membrane tethers actively 

expressed P-selectin throughout the tether, which allowed for interactions with neutrophil PSGL-

1. Platelet-derived tether formation was found to be mediated by TLR4 dependent activation of

the NLRP3-inflammasome complex. SCD platelets at baseline had a partially activated NLRP3 

inflammasome complex, which completely activated following treatment with a low dose of LPS 

(0.25 μg/ml) that had no effect on control platelets. Mitochondrial ROS production had been shown 

to activate the NLRP3 inflammasome complex, while Caspase-1 activation lead to the cleavage 

and release of the proinflammatory cytokine IL1β. Inhibition of TLR4 or NLRP3 inflammasome 

not only inhibited “hair-like” tether formation in platelets but also significantly reduced the 

platelet-neutrophil interactions in SCD human blood.  

Altogether this study suggests that platelet derived hair-like tethers in SCD patient blood 

are essential to promoting platelet-neutrophil aggregation that lead to vaso-occlusion. Studies 

aimed at therapeutically targeting either the physical interactions of platelet P-selectin and GPIbα 

with neutrophil PSGL-1 and Mac-1, respectively or the NLRP3 inflammasome pathway could be 

beneficial at alleviating or reducing the occurrence of VOC in SCD patients.  
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APPENDIX A 

SUNDD LAB PROTOCOLS 

The following methods are used in the Sundd lab to conduct experiments and analysis. 

A1.1 Preparation of adhesion molecule presenting substrates 

Rectangular coverslips (No. 1.5, Fisher Scientific) were coated with a cocktail of 2 μg/ml of P-

selectin, 10 μg/ml of ICAM-1 and 10 μg/ml of IL-8 followed by incubation at room temperature 

for 30 min. P-selectin coating concentration of 2 μg/ml has been shown previously to result in a 

molecular density of ~20 molecules/µm2, which is comparable to the P-selectin molecular 

density on cultured endothelial cells(33, 111). Following the incubation, the coverslips were 

washed once with phosphate buffered saline without Ca2+ and Mg2+ (PBS; MP Biomedicals, 

Solon, OH) and incubated in 2 ml of blocker casein (Thermo Scientific™, Rockford, IL) until 

used in assay to block all nonspecific binding sites.  During rolling studies only 2 μg/ml of P-

selectin were coated onto coverslips, while arrest studies involved P-selectin, ICAM-1, and 

IL-8. 
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A1.2 Microfluidic Flow Assay Setup 

A PDMS/silicone chip with micro-channels engraved on its surface was gently placed on a glass 

coverslip either coated with a cocktail of P-selectin, ICAM-1, and IL-8 or cultured with TNF-α 

treated HMVECs-L or HCAECs and sealed together using vacuum (negative 30 KPa pressure). 

Prior to blood perfusion, the endothelialized microfluidic devices were filled with a KREBS-

HEPES buffer, pH 7.4 (NaCl, KCl, MgSO4, NaHCO3, KH2PO4, Hepes, Glucose and CaCl2) to 

keep the endothelial monolayer viable. Microfluidic chips attached to adhesion molecules were 

perfused with 1x PBS. The assembled device has an inlet, an outlet, a vacuum port connected to 

in-house vacuum supply and four identical micro-channels or perfusion chambers (30 µm high and 

500 µm wide) with nearly identical flow rates and wall shear stresses. The wall shear stress was 

calibrated as a function of the differential pressure between the inlet and outlet reservoir. The 

differential pressure was set by placing the inlet reservoir next to the device while lowering the 

outlet reservoir to achieve the physiological wall shear stress (57) of 6 to 10 dyn cm-2. 

Approximately 500 μL of anticoagulated blood was transferred to a 1.5 mL Eppendorf tube which 

served as an inlet reservoir while a 10-ml syringe filled with PBS served as the outlet reservoir. 

The inlet and outlet reservoirs were connected to the inlet and outlet ports of the device using PE10 

(ID 0.28 mm, OD 0.61 mm) and TYGON (ID 0.8 mm, OD 2.4 mm) tubing, respectively.  

A1.3 Calibration of Wall Shear Stress in Microfluidic Device 

The differential pressure across the inlet and outlet of the microfluidic device was set by placing 

the inlet reservoir on the microscope stage next to the device while lowering the outlet reservoir 

relative to the inlet reservoir to achieve a difference in height ‘Δh’. A 1% suspension of yellow-
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green 1 μm Fluoresbrite® microsphere beads in PBS was allowed to flow through the microfluidic 

device and the center-line velocity of the beads in the micro-channels was estimated by measuring 

the maximum bead velocity (vmax) at H/2 (H = 30 μm is the height of the micro-channel) using 

fluorescence microscopy. Wall shear stress (τ in dyn cm-2) at a chosen differential pressure (Δh) 

was estimated as 
4 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂

𝐻𝐻
, where η is the viscosity of plasma (0.01 dynes cm-2). All the 

observations were made at a physiological wall shear stress of 6 dyn cm-2 which was achieved 

with a Δh of 10.6 inches. 

A1.4 Microfluidic Adhesion studies 

Adhesion specificity was confirmed by either incubating the adhesion molecule or endothelial cells 

coated cover slips with function blocking Abs against P-selectin (1:500) and E-selectin (1:500) for 

10 min at 37˚C/5% CO2 prior to their use in microfluidic assay. In some experiments, function 

blocking antibodies against Mac-1, LFA-1 and PSGL-1 were added to the blood (1:100) in the 

inlet reservoir followed by 10 min of incubation with mixing at room temperature prior to use in 

the microfluidic assay. Finally, the microfluidic device was placed on the heated stage set at 24˚ 

or 37˚C (Okolab, Ottaviano, Italy) of an inverted microscope and the blood was perfused through 

the micro-channels at a wall shear stress of 6 to 10 dyn cm-2.  Observations were made in the 

perfusion chambers (30 µm high and 500 µm wide). 

A1.5 qMFM Data analysis Guidelines 

The following strategy was followed to record observations in adhesion molecule coated micro-

channels.  
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Step-1: Neutrophils were allowed to roll, arrest and crawl for 2 min and observations were 

recorded in a field of view (FOV~14,520 μm2) using qDF.   

Step-2: After 2 min, the incident angle of the laser was reduced and the platelet-neutrophil 

interactions were observed in the same FOV for an additional 4 min.   

Time series sequences of images were processed and analyzed using NIS-Elements  

Analysis Advanced Research software (Nikon). Image background was subtracted using the 

average intensity of a small region of the image background and platelets were identified using the 

spot detection algorithm available in NIS-Elements. The interacting platelets are marked with 

white circles. The spot-detection algorithm identifies only those platelets which slowdown to 

interact with arrested neutrophils and continues to track them until they detach and leave the FOV. 

Platelets are identified by defining a threshold based on the intensity and size of the bright spots. 

The final read-out is the number of interactions in a given observation period and the life-time of 

each interaction. Platelet-Neutrophil interactions were defined as following:  

• A freely flowing platelet attaches to an arrested neutrophil → an interaction event.  

• A freely flowing platelet aggregate attaches to an arrested neutrophil → an interaction 

event.  

• A rolling neutrophil enters the FOV with a platelet attached to it → an interaction event.  

• A platelet or an aggregate of platelets detaches from one neutrophil and attaches to 

another neutrophil → an interaction event. 

A1.6 Function Blocking Studies on Platelet-Neutrophil Interactions 

Antibody blocking studies were performed using a strategy that allowed inhibition of platelet-

neutrophil interactions without causing detachment of arrested neutrophils. The blood was 



 117 

perfused in the microfluidic micro-channels for 2 min, which allowed neutrophils to roll, arrest 

firmly and then interact with circulating platelets. Once the neutrophils were firmly arrested, 

platelet-neutrophil interactions were recorded using qMFM for the next 2 min. After 2 min of 

qMFM observations, the flow was stopped momentarily and function blocking was added to the 

blood in the reservoir. The flow was resumed and the effect on platelet-neutrophil interactions was 

assessed over the next 2 min. 

 

A1.7 LPS Treatments 

LPS treatment was conducted by incubating blood for 10 min with LPS at room temperature (22˚C) 

following the addition of fluorescent anti-CD16 and anti-CD49b Abs to stain neutrophils and 

platelets, respectively. Following incubation, blood was perfused through the micro-channels. 

Platelet-neutrophil interactions were visualized using both steps of qMFM as described in Chapter 

2. Function blocking with anti-P-selectin monoclonal antibody, anti-GPIbα monoclonal antibody, 

anti-PSGL-1 monoclonal antibody (1:100 dilution), and/or anti-Mac-1 monoclonal antibodies or 

isotype control IgG1 antibody (1:100 dilution) post LPS incubation was performed as described 

above.  

A1.8 Microscope Set up 

Experiments were conducted using a Nikon Eclipse-Ti inverted microscope with a TIRF 

photoactivation unit (NIKON, Melville, NY). The microscope was equipped with a Zyla-5.5 

sCMOS scientific camera (5.5 Megapixel resolution; maximum frame rate 100 s-1; ANDOR) and 
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a motorized Nikon Intensilight CHGFIE fiber illuminator as an epifluorescence source. Lasers 

were housed in a MLC Monolithic Laser combiner launch (Agilent Technologies) and included 

405 nm, 488 nm, 560 nm, and 640 nm wavelength lasers. Observations were made using a CFI 

Apochromat TIRF 60x oil objective (NA 1.49) or CFI Plan Fluor ELWD 40x air objective (NA 

0.60). The laser, camera, filters and other microscope functions were controlled using NIS-

Elements software (Nikon) installed on a PC. NIS-Elements allowed sequential capture of green 

(FITC) and far red channel (Alexa Fluor 647) through a quad-filter by switching between the two 

lasers at a minimum interval of 10 ms which generated a dual color image every 20 ms. 

A1.9 Scanning Electron Microscopy 

Freshly collected whole blood was perfused over a rectangular coverslip coated with P-selectin, 

ICAM-1 and IL-8 in a custom PDMS vacuum chip at a wall shear stress of 6 dyn cm-2. Neutrophils 

were allowed to roll and arrest on the coverslip and interact with freely flowing platelets. Following 

a 3-minute perfusion, a cocktail of 16% paraformaldehyde and 2.5% glutaraldehyde was perfused 

through the micro-channels at the same shear stress (6 dyn cm-2) to fix platelet-neutrophil 

interactions under flow. Finally, the vacuum was disabled and the coverslips were separated from 

the PDMS chip. Fixed cover slips were stored in the 1x PBS until used in electron microscopy. 

Coverslips were cut into small blocks (8mm³) and washed 3 times in 1X PBS for 15 minutes each. 

Coverslips were then incubated in 1% OsO4 in 0.1 M PBS for 60 minutes, followed by 3 washes 

in 1X PBS for 15 minutes each. Cells were then dehydrated in graded series of alcohol (in PBS) 

for 15 minutes each: 30% ethanol, 50% ethanol, 70% ethanol, 90% ethanol, 100% ethanol x 3. 

Coverslips were then mounted onto studs, sputter coated with gold palladium and visualized using 
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a Field Emission Scanning Electron Microscope (JEOL JSM 6335F). When not in use coverslips 

are stored in desiccator.  

A1.10 SEM Pseudocoloring 

Scanning electron micrographs were pseudo-colored using Adobe Photoshop (Adobe Inc.). Images 

were duplicated and colored using the color table with corresponding colors to create multiple 

colorized images. Structures were then selected using the pencil tool and pasted on top of each 

other to create a multicolor SEM micrograph. Alignment of the structures was done using the move 

tool in Adobe Photoshop. 

A1.11 Structured illumination microscopy 

Freshly collected whole blood was perfused over a rectangular coverslip coated with P-selectin, 

ICAM-1 and IL-8 in a custom PDMS vacuum chip at a wall shear stress of 6 dyn cm-2. Neutrophils 

were allowed to roll and arrest on the coverslip and interact with freely flowing platelets. Following 

a 3-minute perfusion, a cocktail of 16% paraformaldehyde and 2.5% glutaraldehyde was perfused 

through the micro-channels at the same shear stress (6 dyn cm-2) to fix platelet-neutrophil 

interactions under flow. Finally, the vacuum was disabled and the coverslips were separated from 

the PDMS chip. Coverslips were washed with PBS (without Ca2+ and Mg2+) and permeabilized 

with 0.1% Triton X-100 in PBS for 15 minutes. Coverslips were again washed three times with 

PBS followed by three washes with PBS containing 0.5% BSA. Cells were then blocked with PBS 

containing 2% BSA for 45 minutes. Incubation with primary antibodies (1:1000 concentration) 

was conducted for 1 hour at room temperature followed by a wash 5x with PBS containing 0.5% 
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BSA. Coverslips were incubated with 1:1000 concentration of secondary antibodies and Cy3-

Phalloidin for 1 hour at room temperature.  Finally, coverslips were washed three times with 

PBS+0/5% BSA, and 4x with PBS, before being mounted to a glass slide with Gelvatol, and stored 

at 4ºC in the dark until imaging. Images were processed using NIS-Elements software.  

A1.12 Confocal Microscopy Coverslip Processing 

Coverslips were removed from PBS and permeabilized with 0.1% Triton-X 100 in PBS for 15 min 

and washed 5x in PBB (PBS containing 0.5% BSA). Cells were blocked in 20% goat serum for 45 

min followed by 5 washes in PBB. Incubation with primary antibodies (1:1000 concentration) was 

conducted for 1 hour at room temperature. Coverslips were washed 5x in PBB followed by 

incubation with (1:1000 concentration) of secondary antibodies and Cy3-Phalloidin for 1 hour at 

room temperature. Samples were washed 3x in PBB followed by 4x in PBS and then mounted to 

slides using Gelvatol and imaged using Nikon A1R Spectral laser confocal microscope.    
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APPENDIX B 

POLY-DI-METHYL-SILOXANE (PDMS) DEVICE PREPARATION 

The following methods are used in the Sundd lab to prepare PDMS based microfluidic chips, 

coverslips and stoppers. 

B1.1 Making microfluidic chips Mold using Silicon Wafer 

To create chips using the silicon wafer, clean wafer with isopropanol, dry and coat with 

TMCS. To coat, place wafer in round dish uncovered and then place the dish in the Tupperware 

container under the fume hood. Grab a pipette and add ~1 mL of TMCS (chlorotrimethylsilane, 

98%) into overturned lid in Tupperware container. Seal lid on Tupperware and allow to sit for 

5 minutes. Grab a glass bowl and cover outside of bowl with foil to make imprint of bowl size. 

Cut extra foil and replace the bowl with the silicon wafer. Press in edges to make a square (be 

sure to not cover channels).  

Mix PDMS in a small container with a ratio of 10:1 for elastomer to curing agent. 

Use either Sylgard 184 for experimental chips or P-4 when creating a permanent mold of the 

wafer. Put container on scale and pour in elastomer to desired weight. Zero scale and add curing 

agent at proper ratio. Place container on mixer for 10 minutes and then pour into 50 mL 

centrifuge tube. Centrifuge PDMS for 10 min at 300 g at 22C.   
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Pour PDMS onto wager in the aluminum foil and place in vacuum bowl to remove bubbles. 

Alternate between vacuum on and off until all bubbles are removed. After checking for any dust 

or contaminants in PDMS let sit overnight on level surface covered. 

B1.3 Making Microfluidic chips using permanent Mold 

Clean permanent mold with ethanol and dry with air hose to remove any dust. Mix Sylgard 184 in 

a small container with a ratio of 10:1 for elastomer to curing agent. Put container on scale and pour 

in elastomer to desired weight. Zero scale and add curing agent at proper ratio. Place container on 

mixer for 10 minutes and then pour into 50 mL centrifuge tube. Centrifuge PDMS for 10 min at 

300 g at 22C.  Pour PDMS into mold and place in vacuum bowl to remove bubbles. Alternate 

between vacuum on and off until all bubbles are removed. After checking for any dust or 

contaminants in PDMS let sit overnight on level surface covered. Gently remove wafer from 

PDMS using forceps and ethanol. 

B1.4 Cutting and punching holes in finished chips from mold 

Gently remove mold from either the silicon wafer or permanent mold. Take box cutting blade and 

carefully remove extra PDMS along outer edge of mold. Then carefully cut out each microfluidic 

chip without cutting into the vacuum channel. Chips should be rectangular based on shape of mold. 

Once cut clean each chip with ethanol and dry with air hose. Take duct tape and clean top and 

bottom of the chip to remove all dust. Store chips in clean dish until use.  
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Take chips and place on mirror under a microscope. Grab a yellow tip needle (20 gauge) 

and punch holes for the inlet and outlet (Figure 32 red circles). Line up the hole with the small 

circle at the ends of the chip. Next grab a green tip needle (14 gauge) with the metal bottom to 

punch vacuum ports. Punch a hole on each side of the channels in the vacuum area (Figure 28, 

blue circles). Clean chips with ethanol and tape to remove all dust. Chips are ready to be used but 

need to be hydrophilic for experiments. 

B1.5 Making Chips Hydrophilic 

PDMS chips are hydrophobic following curing process and must be made hydrophilic to use in 

microfluidic experiments. To being prepare solution of Hepes Buffer and mPEG-SIL. Add 20 µL 

of Hepes Buffer to 980 µL of deionized water in a 1.5 mL Eppendorf. Weigh out 0.01 g mPEG-

SIL and combine the two solutions, mixing thoroughly. Turn on Plasma Preen Reactor and grab a 

clean dish. Take 1 cleaned microfluidic chip, place on clean dish and plasma treat for 12s. Remove 

dish and add 50 µL of the solution onto the channels making sure the channels are completely 

covered. Set chip aside and repeat with remaining chips. Incubate chips for 1 hour with solution. 

Figure 32: Schematic for punching holes in microfluidic chips. (A) overhead schematic of the microfluidic chip 
design. Red dots represent the inlet and outlet areas. Blue dots represent the area for the vacuum ports. (B) Image 
of completed microfluidic chip attached to a coverslip (outlined in black). Red arrows denote the inlet and outlet 
ports. Blue holes and lines denote the vacuum ports.  

A B 
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Following incubation rinse chip with water and then deionized water before drying. Clean with 

duct tape and set chips aside.  

B1.6 Cleaning Microfluidic Chips 

Use 1000 mL beaker with stir bar and add 0.01 N HCl in deionized water (800 mL DI water + 800 

µL HCl). Place beaker on stirrer and heat to maximum heat with low level of spinning. Let run for 

20 minutes or until boiling. Make sure chips do not touch bottom of the beaker or they will melt. 

Let cool and rinse with water and deionized water. Clean with duct tape and store in clean dish 

until use.  

B1.7 Preparing PDMS coating wells 

Prepare Sylgard 184 PDMS as described above. Turn Spin coater on and allow time to warm up. 

Clean wafer with isopropanol and dry with air. Place Clean wafer on plate in spin coater. Pour half 

dollar size of mixed PDMS on wafer and place cover on spin coater. Run recipe 1 (5s ramp, 30s 

dwell – RPM 600). Remove coated part and place in plastic dish covered in oven for 30 minutes. 

Layer is now ready for use. Clean rectangular coverslips using methanol and dry with air (blue 

Figure 33: Schematic of Silicon wafer with PDMS layer. Each silicon wafer contains 15 rectangles. Using sharp 
razor individual rectangles are cut out and removed from wafer (black rectangle). Rectangular coverslips (blue) are 
cleaned with methanol and dried with air before being placed on the PDMS layer as shown in the far right.  
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rectangle). Cut out individual rectangles (black grey outlines) layers and place on mirror. Clean 

both sides of PDMS layer with tape and place on white paper. Gently place clean rectangular 

coverslip on top of PDMS layer. Turn coverslip over and remove any air bubbles using forceps. 

Once complete place coverslips in oven overnight to seal PDMS layer to wafer. Coverslips are 

ready for use.  

B1.8 Making Connectors and round stoppers for microfluidic setup 

Connectors and round stoppers utilize a soft PDMS (XP565) at a 10:1 ratio for elastomer to curing 

agent. Measure out the elastomer on scale until desired amount met. Add equal ratio of curing 

agent to the elastomer. Place container on mixer and mix for 1-2 minutes. Quickly pour into dish 

(large for connectors; small for round stoppers. Place in Plasma Preen reactor to use the vacuum 

to remove the bubbles. Plasma preen should only be used for vacuum. Alternate power of vacuum 

until all bubbles are removed. Soft PDMS will cure quickly so this must be done fast.  

Connectors: Once PDMS is cured it can be used for microfluidics. To make connectors cut out 

small squares with the razor. Punch a hole through the middle with the yellow tip (30 gauge) 

needle. Connector is ready for use.  

Stoppers: Round stoppers (Figure 34) are punched with a metal round puncher to 

fit on the top of a 1.5 mL Eppendorf. Next grab the yellow tip (30 gauge) needle 

and punch a hole through the stopper. Remove inner PDMS from the needle and 

carefully thread PE10 tubing through the needle tip. Bottom should be about 1.5 

inches while the top of the stopper tubing should be cut to ~5inches in length. 

Remove yellow tip needle and grab green tip (17 gauge) needle. Punch hole next 
Figure 34: 
Round stopper 
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to tubing and remove inner PDMS from the needle. Remove needle and carefully push through 

green tip needle tip with brown tubing through the hole.  
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