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Type 1 Diabetes (T1D) is a polygenic autoimmune disease characterized by immune cell 

infiltration into the islets of Langerhans, destruction of insulin-producing β cells, and 

uncontrolled hyperglycemia.  Islet-antigen reactive CD4+ and CD8+ T cells, and regulatory 

T cells (Tregs) are the major players in T1D pathogenesis.  Both cell-intrinsic and cell-

extrinsic inhibitory mechanisms are required to maintain self-tolerance to islet-antigens.   

Lymphocyte Activation Gene 3 (LAG3, CD223), a co-inhibitory receptor highly 

expressed on T cells, is one of these essential mechanisms that intrinsically regulate T 

cell tolerance in autoimmune diabetes.  I evaluate the role of LAG3 on T cells versus non-

T cells, CD8+ T cells, and Tregs by generating mice in which LAG3 is specifically absent 

on these subsets in a murine model of T1D.  In Chapter 3, I show that the predominant 

expression of LAG3 on insulitic CD4+ and CD8+ T cells is required to limit the 

pathogenesis of autoimmune diabetes in non-obese diabetic (NOD) mice.  The loss of 

LAG3 on CD8+ T cells alone is sufficient to promote early onset of autoimmune diabetes 

by promoting islet-specific glucose-6-phophatase catalytic subunit-related protein 

(IGRP)-reactive CD8+ T cells to differentiate into effector T cells.  In Chapter 4, I show 

that LAG3 is preferentially and constitutively expressed on a subset of insulitic Tregs, and 

loss of LAG3 on Tregs leads to delayed onset and reduced incidence of autoimmune 

diabetes.  LAG3 may intrinsically limit Treg proliferation and functionality by repressing 

pathways that promote the maintenance of Tregs in the pancreas of NOD mice. 
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Qianxia Zhang, PhD 

University of Pittsburgh, 2018
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In addition to dissecting the role of LAG3 in regulating T cell tolerance, I also show 

that removal of programmed death protein 1 (PD1) or overexpression of Neuropilin 1 

(Nrp1) on Tregs protect NOD mice from autoimmune diabetes in Appendix A and 

Appendix B, respectively.  In summary, my findings have advanced our understanding 

of cell-intrinsic mechanisms that regulate T cell tolerance in autoimmune diabetes.  
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1.0  Chapter 1: Introduction 

Type 1 Diabetes (T1D) is a polygenic autoimmune disease that is influenced by various 

genetic and environmental risk factors.  Both innate and adaptive components have been 

implicated in the initiation and progression of T1D, with islet-antigen reactive T cells and 

regulatory T cells (Tregs) being the predominant players.  The non-obese diabetic (NOD) 

mouse model has been a very useful tool to elucidate the pathology of autoimmune 

diabetes, in particular testing the “two-checkpoint hypothesis”.  Both cell-intrinsic and cell-

extrinsic inhibitory mechanisms are required to maintain self-tolerance to islet-antigens.  

Lymphocyte Activation Gene 3 (LAG3, CD223), a co-inhibitory receptor highly expressed 

on T cells, is one of these essential mechanisms that regulate T cell tolerance in 

autoimmune diabetes.   

1.1 Type 1 diabetes 

T1D is a chronic autoimmune disease associated with immune cell infiltration into the 

islets of Langerhans, production of islet-targeting autoantibodies, destruction of insulin-

producing β cells, and subsequent insulin inadequacy and uncontrolled hyperglycemia 

1,8.  Although a very small proportion of T1D patients also suffer from insulinopenia 
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(diabetes mellitus with an inadequate secretion of insulin), there is a lack of evidence for 

β cell autoimmunity and Human Leukocyte Antigen (HLA) association in these patients, 

and therefore this form of T1D is referred to as idiopathic diabetes (also as type 1b 

diabetes);  the vast majority (70-90%) of T1D patients lose pancreatic β cells as a 

consequence of cellular-mediated autoimmune destruction of β cells, and this form of T1D 

is referred to as type 1a diabetes (formerly juvenile-onset diabetes or insulin-dependent 

diabetes) 9.  This thesis will mainly focus on autoimmune-related T1D. 

1.1.1 Epidemiology 

Staging of T1D  

The pathogenesis of T1D can be divided into three continuous stages (Fig. 1) 1-3.  

Stage 1 is characterized by the loss of β cells, the presence of autoantibodies, but normal 

blood glucose level; whereas stage 2 is characterized by the presence of both 

autoantibodies and hyperglycemia.  Stage 1 and 2 are considered as presymptomatic 

T1D.  While the autoimmune processes that lead to diabetes can begin years before 

clinical onset, symptoms only present at stage 3. 
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Incidence and prevalence of T1D  

T1D is the most common form of diabetes in children, with the peak incidence of 

disease onset occurring between 5 and 14 years of age 10,11.  More than a million children 

and adolescents (< 20 years of age) worldwide are currently living with this condition, and 

it is estimated that 130,000 children and adolescents are diagnosed annually 

(International Diabetes Federation).  The risk of progression to stage 3 T1D is strongly 

Figure 1. Three stages and two checkpoints of T1D. 

 

T1D can be divided into three stages based on the presence or absence of autoantibodies, β cell loss, 

hyperglycemia, and diabetes symptoms 1-3.  These stages are affected by various genetic and 

environmental risk factors 4,5, and are tightly controlled by two checkpoints with both intrinsic and 

extrinsic inhibitory mechanisms 7.   

http://www.diabetesatlas.org/across-the-globe.html
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associated with the number of islet autoantibodies detected and the age of 

seroconversion.  In the DAISY (Colorado Diabetes Autoimmunity Study in the Young), 

DIPP (Finnish Type 1 Diabetes Prediction and Prevention), and German BABYDIAB and 

BABYDIET studies, the average rate of progression to stage 3 T1D at 10 years of follow-

up from seroconversion was 70% in children with multiple islet autoantibodies and 15% 

in children with a single autoantibody, while only 0.4% of children who had no islet 

autoantibodies developed T1D by 15 years of age 12.  In these same studies, children 

who had islet autoantibody seroconversion before 3 years of age were faster in 

progression to symptomatic T1D than those who had seroconversion at 3 years of age or 

older 12.  Although the incidence is similar between boys and girls, the peak of incidence 

for girls precedes that for boys, and the progression to symptomatic T1D is slightly faster 

in girls 12,13. 

The incidence and prevalence of T1D vary remarkably among countries 

(International Diabetes Federation).  The highest incidence rate is observed among 

Scandinavian countries (such as Finland, Sweden, Norway, and Denmark), and slightly 

lower in other European countries, North America, and Australia.  Interestingly, T1D is a 

relatively rare disease in Asian countries.  Such variations among different regions are 

possibly associated with the genetic susceptibility, environmental triggers, and lifestyle 

factors as well as the availability of diagnostic resources 2.  

http://www.diabetesatlas.org/across-the-globe.html
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1.1.2 Etiology 

T1D is a polygenic disease that is influenced by both genetic risk factors and 

environmental risk factors 4,5.  Even though the primary risk factor for β cell autoimmunity 

is genetic, an environmental trigger is often needed.  On the other hand, environmental 

factors appear to have their effects mainly on the genetically predisposed individuals. 

Genetic risk factors 

Fifty-seven T1D-susceptibility regions have been genetically mapped thus far, 

some of which are also linked with the susceptibility to other autoimmune diseases (data 

were from T1DBase).  The MHC (Chr6p21.32) has an odds ratio (OR) of approximately 

5.6, which is the strongest association with T1D susceptibility.  HLA-DR3-DQ2 and HLA-

DR4-DQ8 are the two major risk haplotypes 4.  Besides MHC, more than fifteen prominent 

associations, including PTPN22 (Chr1p13.2, OR 1.89), CTLA4 (Chr2q33.2, OR 1.2), IL2 

(Chr4q27, OR 1.2), NRP1 (Chr10p11.22, OR 1.1), IL2RA (Chr10p15.1, OR 1.6), IKZF4 

(Chr12q13.2, OR 1.3), are involved in T cell biology (T1DBase).  IL2, IL2RA, NRP1 and 

IKZF4 are likely to affect Treg functions 14-22.  The INS locus (Chr11p15.5) has an OR of 

2.38, which may affect insulin expression in thymus and negative selection 23-26.  

Environmental risk factors 

 Many environmental factors have been reported as potential triggers for T1D, 

including infection, microbiota, diet (such as breastfeeding, cow milk, solid foods, vitamin 

D, polyunsaturated fatty acids, wheat), toxins and chemical compounds, birthweight and 

infant growth, and β cell stress 5.  Some of these factors have been shown to directly 

affect the immune system, such as microbiota and vitamin D.  Toxins, chemical 

http://t1dbase.org/
http://t1dbase.org/region/table/T1D/
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compounds and β cell stress are thought to promote the generation of neoautoantigens.  

Even though studies using animal models have helped implicate the modes of action of 

those environmental factors, the causal effects of what has been observed in human T1D 

are yet to be established, and thus further investigation is warranted. 

1.1.3 Pathology 

B cells and autoantibodies 

 Even though most of the genetic risk factors for T1D are associated with T cells, B 

cells have also been implicated in breaking down tolerance to islet-antigens.  Antibody-

mediated depletion of B cells has been shown to prevent autoimmune diabetes in animal 

models 27.  Additionally, a clinical trial with rituximab (anti-CD20) has shown efficacy in 

preserving C-peptide levels for at least 1 year post treatment  28.  However, the ability of 

B cells to secret antibodies may not be required for the pathology of autoimmune diabetes 

29.  A recent mouse study indicates that B-1a cells may activate plasmacytoid dendritic 

cells (pDCs) to initiate autoimmune diabetes, and depletion of B-1a cells reduced 

diabetes incidence 30.    

Several targets of T1D-associated autoantibodies have been identified, including 

insulin, proinsulin, glutamic acid decarboxylase (GAD65), islet-specific glucose-6-

phosphatase catalytic subunit-related protein (IGRP), tyrosine phosphatase-related islet 

antigen 2 (IA-2), phogrin (IA-2β), and zinc transporter 8 (ZNT8) 12,31.  There is little 

evidence that these autoantibodies are pathogenic.  However, the presence of those 

autoantibodies may be used as biomarkers to identify progressing autoimmune 
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responses, as the risk of progression to stage three T1D is strongly associated with the 

number of islet autoantibodies detected and the age of seroconversion 12.  

Innate immune cells  

 In addition to T cells and B cells, components of innate immunity have also been 

implicated in promoting β cell death using the NOD mouse model (which I will introduce 

in detail in Chapter 1.2 “The non-obese diabetic mouse model”).  Depletion of 

macrophages prevented autoimmune diabetes onset by converting cytotoxic T cells into 

regulatory-like cells 32,33.  The crosstalk between neutrophils, B-1a cells and pDCs has 

been shown to initiate autoimmune diabetes, and depletion of these populations reduced 

the incidence rate of autoimmune diabetes in the NOD mouse model 30.  Classical 

dendritic cells (cDCs) from NOD mice are equally capable of presenting autoantigens, 

regardless of diabetic and inflammatory status 34.  However, only intra-islet DCs can 

activate primary insulin B9-23-reactive T cell lines, as the epitopes presented by DCs from 

other tissues are not recognized by insulin-reactive T cells 34. 

  While both innate and adaptive immune systems play intricate roles in T1D 

pathogenesis, T cells are considered one of the major players.  My thesis is mainly 

focused on elucidating cell-intrinsic mechanisms that regulate T cell tolerance in 

autoimmune diabetes, and I will elaborate on this topic in the following chapters.   
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1.2 The non-obese diabetic mouse model 

Several animal models, including the NOD mouse, the BioBreeding/Worcester rat, and 

autoimmune diabetes induced with streptozotocin or lymphocytic choriomeningitis virus, 

have been utilized to study T1D 35-39.  The NOD mouse model, first reported in 1980, has 

become the T1D model of choice because of the similarity between it and human T1D 39.  

The NOD mouse model has been a valuable tool for our understanding of T1D disease 

mechanisms.   

1.2.1 Advantages and limitations of the NOD mouse model 

Advantages 

The NOD mouse model shares many common features with T1D in humans 

(Table 1) 40.  First, NOD mice spontaneously develop chronic autoimmune diabetes, 

characterized by hyperglycemia and leukocytic infiltration, including DCs, macrophages, 

B cells, natural killer cells (NK cells), and CD4+ and CD8+ T cells, into the pancreatic 

islets.  In female mice, insulitis starts at three to four weeks of age and subsequent 

diabetes onset occurs between twelve and twenty-five weeks of age, which resembles 

the early onset of T1D in humans during childhood.  Male NOD mice exhibit slightly 

delayed onset and reduced incidence because of elevated testosterone in a commensal 

symbiosis dependent manner, which is not an evident feature of human T1D 41,42.  

Second, > 40 insulin-dependent diabetes-susceptibility (Idd) regions and genes have 

been mapped in NOD mice, some of which are also implicated in human T1D (T1DBase) 

http://t1dbase.org/
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43-45.  Third, the same autoantigens have also been identified in both T1D patients and 

NOD mice (Table 1) 40,46. 

 

   

Limitations 

 There are some differences between the NOD mouse model and human T1D, in 

particular the frequency and timing of insulitic immune subsets 47.  The most prominent 

difference in human T1D is that the insulitis is primarily mediated by CD8+ T cells and 

macrophages, whereas CD4+ T cells and B cells are more frequent in NOD mice 48.   

Table 1. Comparison between human T1D and the NOD mouse model of autoimmune diabetes. 
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1.2.2 The two-checkpoint hypothesis of autoimmune diabetes 

Early evaluation of the NOD mouse model and various T cell receptor (TCR) transgenic 

mice led to the initial “two-checkpoint hypothesis” for autoimmune diabetes development 

(Fig. 1) 7, which has formed the fundamental basis for numerous studies. 

Checkpoint 0: generation of the islet-antigen reactive repertoire 

An autoreactive repertoire must exist before the self-tolerance breaks down.  I will 

introduce how the islet-antigen reactive T cell repertoire is selected in the thymus in 

Chapter 1.3.2 “Generation of the islet-antigen-reactive T cell repertoire”.  

Checkpoint 1: the end of self-ignorance 

 The first checkpoint in autoimmune diabetes development is when clonal 

ignorance transitions to islet infiltration.  However, it is less clear how the transition starts.  

The original hypothesis proposed that the presence of appropriate antigen presenting 

cells (APCs) and/or homing of autoreactive T cells to the islet might influence checkpoint 

1 7.  Although recent studies have provided some clues, further investigation on 

checkpoint 1 is merited, as such findings may benefit efforts to prevent disease initiation 

in genetically predisposed individuals. 

Checkpoint 2: from controlled violence to chaos 

 Controlled insulitis before the onset of diabetes symptoms has been observed in 

both NOD mice and T1D patients 2,3,7.  The original hypothesis proposed that adaptive 

immune responses against islet autoantigens may be regulated through both cell-intrinsic 

and cell-extrinsic mechanisms in checkpoint 2 7.  Cell-intrinsic mechanisms can be 
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affected by: (1) acquisition of new effector capabilities [i.e., perturbed type 1 helper T cells 

(Th1)/Th2 balance, production of inflammatory cytokines, and expression of Fas ligand], 

and (2) loss of sensitivity to negative signaling [i.e., regulation through cytotoxic T 

lymphocyte associated protein 4 (CTLA4), interleukin-2 (IL-2) receptors, and NK-like 

receptors].  Cell-extrinsic mechanisms can be affected by: (1) abrogation of negative 

controls [i.e., loss of regulatory cell populations, and defects in inhibitory cytokines such 

as transforming growth factor β (TGFβ) and IL-10], (2) perturbation of anti-idiotypic 

networks, and (3) recruitment of accessory cell types into the lesion.   

In addition to these mechanisms proposed 20 years ago 7, numerous studies have 

expanded our knowledge on checkpoint 2.  I will introduce cell-intrinsic mechanisms (in 

particular co-stimulatory and co-inhibitory pathways) and cell-extrinsic mechanisms (in 

particular Treg mediated self-tolerance) in Chapter 1.3.3 “Co-stimulatory and co-

inhibitory receptors in autoimmune diabetes” and Chapter 1.3.4 “An essential role for 

Tregs in self-tolerance”, respectively.  

1.3 T cell tolerance in the context of autoimmune diabetes 

Immunological self-tolerance is the unresponsiveness of the immune system to self-

antigens.  A breakdown in immune homeostasis and self-tolerance leads to autoimmunity, 

resulting in deleterious inflammation in, and destruction of, self-tissues mediated by 

autoreactive T cells and autoantibodies 49,50.  In order to prevent autoimmunity, an 

intricate series of cellular and molecular checks helps to ensure that the immune system 

produces a measured and appropriate response to foreign threats while avoiding host 
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tissue pathology and destruction.  However, emerging observations suggest that these 

control mechanisms are defective in autoimmune diabetes, providing underlying 

mechanistic insight while also pointing to potential avenues for therapeutic intervention. 

1.3.1 Recessive and dominant tolerance 

The mammalian immune system utilizes two main mechanisms, “recessive” and 

“dominant” tolerance, to achieve self-tolerance and homeostasis 51.  Here, I will discuss 

these two types of mechanisms in the regulation of T cell tolerance. 

Recessive tolerance mechanisms 

 Recessive tolerance consists of a series of cell-intrinsic mechanisms to determine 

the fate of autoreactive T cells.  Firstly, immature T cells that strongly respond to self-

antigens may undergo programed cell death during thymic development, a process called 

“negative selection” 52,53.  Secondly, while this mechanism is less understood, T cells that 

escape negative selection may re-express RAG recombinase and replace their 

autoreactive receptors in the periphery, a process called “TCR revision” 54.  Thirdly, 

mature T cells that escape both negative selection and TCR revision can be rendered 

functionally inactive when they are activated in the absence of a “proper” amount of co-

stimulation, a state called “anergy” 55.  Lastly, clonal activation, expansion and/or survival 

thresholds of autoreactive T cells may be raised because of the upregulation of sustained 

co-inhibition, a state called “exhaustion” 56.   

Dominant tolerance mechanisms 
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 Dominant tolerance relies on a collection of immune regulatory cell populations, 

such as Tregs, myeloid-derived suppressor cells (MDSCs), and subsets of NKT cells, γδT 

cells, RORγt+ innate lymphoid cells (ILCs), and CD8αα+ intestinal epithelial cells (IELs), 

to keep aberrant T cell activation and expansion in check via cell-extrinsic mechanisms 

6,51,57-61.  Disruption of the balance between immune regulatory populations and pro-

inflammatory populations leads to either unresponsiveness to foreign antigens or 

catastrophic self-responsiveness.  

1.3.2 Generation of the islet-antigen reactive T cell repertoire 

Autoantigens 

As summarized in Table 1, many islet-associated autoantigens have been 

identified, most of which overlap in both T1D patients and NOD mice.  These autoantigens 

can be divided into three groups based on their tissue expression: first, β cell specific 

autoantigens, such as insulin, insulin derivatives, IGRP, ZnT8, and insulin promoter factor 

1 (PDX1); second, neuroendocrine autoantigens, such as carboxypeptidase H, IA-2, IA-

2β, GAD65, islet amyloid polypeptide (IAPP), and Chromogranin A; third, ubiquitously 

expressed autoantigens, such as heat shock protein 60 (HSP60).  Although these 

autoantigens have been implicated to various degrees in the pathogenesis of 

autoimmune diabetes, a single primary autoantigen driving the development of T1D has 

not been identified.   

Proinsulin or insulin may be very important in the initiation of autoimmune diabetes.  

Autoanbodies against proinsulin or insulin tend to appear before those against other 
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autoantigens in T1D patients during their early childhood 62.  Removal of proinsulin or 

insulin but not IGRP completely prevents insulitis and diabetes in NOD mice, suggesting 

the primacy of insulin in the development of autoimmune diabetes in the NOD mouse 

model 23,63.  However, it is not clear this is also the case in human T1D. 

After the disease is initiated and islet damage is perpetuated, intramolecular and 

intermolecular epitope spreading may occur and promote the progression of autoimmune 

diabetes 64.  Besides those well characterized autoantigens, newly discovered 

autoantigens (including ZnT8, PDX1, Chromogranin A, IAPP, and hybrid insulin peptides) 

have also been implicated in the NOD mouse model and/or human T1D 46,65.  

Understanding the kinetics of autoantibodies and autoreactive T cells will help to elucidate 

how and when the two checkpoints are broken down.   

Selection of islet-antigen reactive T cell repertoire 

 T cell negative selection, a recessive tolerance mechanism, is crucial in preventing 

autoimmune diabetes.  As aforementioned, insulin epitopes appear to be very important 

in the initiation of autoimmune diabetes.  Defects in the elimination of insulin-reactive T 

cells from the repertoire are strongly associated with T1D susceptibility.  In humans, a 

polymorphism in the INS promoter is associated with lower thymic INS expression 

compared to the diabetes resistant alleles, raising a potential mechanism by which the 

Insulin Dependent Diabetes Mellitus 2 (IDDM2) locus predisposes to T1D 24.  In mice, 

Ins1 is predominantly expressed by β cells, whereas Ins2 is expressed in thymus and β 

cells.  While Ins1–/–.NOD mice exhibit reduced diabetes incidence,  Ins2–/–.NOD mice 

develop remarkably accelerated autoimmune diabetes, likely due to defectivve negative 

selection 23,25,26.   
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 Some insulin-reactive T cells can escape negative selection as certain epitopes 

may not be presented in the thymus.  For instance, differential registers of insulin peptides 

on the major histocompatibility complex (MHC) in the thymus versus periphery have been 

implicated as an escape mechanism for insulin-reactive T cells 66-68.  Furthermore, hybrid 

insulin peptides have been identified as autoantigens in both NOD mice and T1D patients, 

but these neo-antigens are generated in β cell secretory granules and are not presented 

in the thymus 46.   

Interestingly, although the gene Aire (autoimmune regulator) is essential in thymic 

selection, Aire–/–.NOD mice are normoglycemic and die because of severe systemic 

autoimmune pathology, rather than insulitis and autoimmune diabetes 69, perhaps due to 

a differential effects on selection between the autoreactive effector T cell (Teff) and Treg 

repertoires. 

1.3.3 Co-stimulatory and co-inhibitory receptors in autoimmune diabetes 

Note: This part of the Introduction was taken from a part of my previously published review 

“Zhang Q, Vignali DAA. Immunity. (2016)” 70. 

The immune system is guided by a series of checks and balances, a major 

component of which is a large array of co-stimulatory and co-inhibitory pathways that 

modulate the host response.  While co-stimulation is essential to boost and shape the 

initial response following signaling through the antigen receptor, inhibitory pathways are 

also critical to modulate the immune response.  Excessive co-stimulation and/or 



 16 

insufficient co-inhibition can lead to a breakdown of self-tolerance, leading to 

autoimmunity.   

The most prominent feature of co-stimulatory or co-inhibitory pathway utilization in 

autoimmune diabetes is the differential temporal utilization observed.  CD28:B7 and 

CD40:CD40L co-stimulation, and CTLA4-mediated inhibition appear to be more important 

during disease onset and establishment of insulitis.  In contrast, other co-stimulatory and 

co-inhibitory receptors are utilized more broadly or at later stages of disease progression 

after insulitis occurs.  In addition, co-stimulation is also essential for the maintenance of 

Treg homeostasis in NOD mice, potentially complicating the therapeutic potential of some 

modalities. 

Two signals in T cell activation 

The Two-Signal model proposes that activation of naïve T cells requires both TCR 

stimulation by MHC:peptide complexes [Signal 1] and co-stimulation via co-stimulatory 

receptors and their corresponding ligands on APCs [Signal 2] 71,72.  For instance, one of 

the most prominent co-stimulatory pathways is the CD28:B7 axis, which amplifies TCR 

signaling and IL-2 production to promote T cell proliferation and survival.  In order to 

provide a mechanism to turn off or turn down T cell activation, co-inhibitory receptors are 

induced by TCR stimulation and co-stimulation and subsequently transduce feedback 

signals that dampen the ascending co-stimulatory and TCR signals.  Therefore, the net 

outcome of TCR stimulation is modified by both co-stimulatory and co-inhibitory 

receptors.  Both sets of receptors are expressed by all T cell subsets, thereby helping to 

shape the overall immune response.  For instance, co-stimulatory and co-inhibitory 

recpetors are also expressed by, and have a critical impact on, Tregs, an 
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immunosuppressive population that plays a pivotal role in self-tolerance 6,51.  Excessive 

co-stimulation and/or inadequate co-inhibition results in aberrant T cell activation, which 

can result in a breakdown of self-tolerance by activating and expanding autoreactive T 

cells.  Similarly, B cells also require two signals for their activation, maturation and 

function 73.  Therefore, the immune response is fundamentally shaped and modulated by 

co-stimulatory and co-inhibitory receptors and their corresponding ligands.  Disruption of 

the balance between co-stimulation and co-inhibition unleashes self-reactivity, leading to 

autoimmune disease. 

Co-stimulatory pathways in autoimmune diabetes 

Several co-stimulatory receptors are known to be critical for the development of 

autoimmune diabetes in NOD mice.  Even though the CD28:B7 axis provides essential 

co-stimulation for autoreactive T cell priming, it is also critical for Treg development and 

homeostasis in autoimmune diabetes.  Both Cd28–/– and B7.1-B7.2 (CD80-CD86) double-

deficient NOD mice had a profoundly reduced number of CD4+CD25+ Tregs, and thus 

exhibited accelerated autoimmune diabetes 74.  The protective effect of CD28:B7 co-

stimulation seems to be mainly provided by B7.1, since B7.2-deficient NOD mice were 

free of autoimmune diabetes 74-76.  However, the protective effect of anti-B7.2 treatment 

was abolished if it was administered in older NOD mice 75.  Thus, B7.1 and B7.2 may 

have different functions depending on the timing and context of their involvement 77,78.  

Other co-stimulatory pathways independent of the CD28:B7 axis have been 

implicated in T1D pathogenesis.  Inducible T cell costimulatory (ICOS, CD278):ICOSL 

co-stimulation is also used by both autoreactive T cells and Tregs in autoimmune 

diabetes.  Blockade with anti-ICOS resulted in delayed autoimmune diabetes in NOD 
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mice, and Icos–/– NOD mice were free of autoimmune diabetes, with reduced IFNγ 

production 79,80.  Conversely, other studies using the BDC2.5 TCR transgenic NOD model 

demonstrated that ICOS is preferentially expressed on Tregs and mediates enhanced 

suppressive capacity of Tregs 81-83, with ICOS blockade in BDC2.5 NOD mice resulting 

in rapid diabetes onset 79,81.  

Unlike the CD28:B7.1 and ICOS:ICOSL co-stimulatory pathways, CD40:CD40L 

co-stimulation appears to have less impact on Tregs and is required for the initiation of 

insulitis and autoreactive T cell priming in autoimmune diabetes.  Blockade with anti-

CD40L in neonates or deficiency of CD40L (CD154) prevented autoimmune diabetes in 

NOD mice, but the protective effect of anti-CD40L treatment was abolished in older mice 

76,84-86. 

In contrast to the CD40:CD40L axis, tumor necrosis factor receptor superfamily 

member 4 (OX40, Tnfrsf4, CD134):OX40L co-stimulation appears to be more important 

at later stages of autoimmune diabetes.  OX40 is expressed on primed (CD44hi) T cells 

and OX40L (Tnfsf4, CD252) is upregulated on DCs after insulitis initiation but prior to islet 

destruction (11-13 weeks of age).  Thus, interruption of OX40:OX40L interactions had no 

effect on diabetes onset in young NOD mice but exhibited the most significant delay in 

diabetes onset in NOD mice at 12 weeks of age 87.  Interestingly, Tnfsf4–/– NOD mice 

exhibited normal (or even accelerated) insulitis but did not develop autoimmune diabetes 

88, supporting the idea that different co-stimulatory axes participate at different stages to 

promote autoimmune diabetes.  

Another TNFRSF member, 4-1BB (Tnfrsf9), has also been studied in autoimmune 

diabetes.  Tnfrsf9 has been mapped to Idd9.3, which modulates susceptibility to 
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autoimmune diabetes in NOD mice.  Interestingly, while treatment with 4-1BB agonist 

autoantibody prevented autoimmune diabetes in NOD mice by inducing Tregs, 

overexpression of a 4-1BB agonist induced severe autoimmune diabetes 89-91.  4-1BB is 

constitutively expressed on Tregs, but transiently upregulated on effector T cells after 

activation.  Therefore, there might be functionally and/or temporally distinct usage of 4-

1BB on Tregs versus autoreactive T cells in autoimmune diabetes.   

Collectively, these studies highlight the importance of multiple co-stimulatory 

receptors in modulating autoimmune diabetes via their differential impact on diabetogenic 

T cell function and Treg homeostasis. 

Co-inhibitory pathways in autoimmune diabetes 

In addition to Treg-mediated suppression, co-inhibitory receptors also provide cell-

intrinsic regulation of autoreactive T cells in NOD mice.  For instance, CTLA4 is critical 

for controlling autoimmune diabetes.  Identified polymorphisms within the CTLA4 locus 

appear to associate with susceptibility to T1D and map to Idd5.1 in NOD mice 92,93.  NOD 

mice are genetically deficient in expression of a CTLA4 splice variant that cannot bind to 

its B7 ligand (ligand-independent CTLA4; li-CTLA4) 94,95.  Curiously, restoration of li-

CTLA4 expression in NOD mice limits insulitis and autoimmune diabetes in full-length 

CTLA4-dependent manner 96,97.  Genetic deletion or blockade of CTLA4 showed dramatic 

acceleration of diabetes onset in NOD mice 98,99, whereas APC-directed CTLA4 

engagement delayed autoimmune diabetes onset by inhibition of B cell maturation 100.  

CTLA4 engagement dampens diabetogenic T cell activity but in a very restricted time 

window that coincides with islet Ag re-encounter 98,99.  Interestingly, CTLA4 upregulation 

is prevented by low CD86 expression and impaired T cell priming in NOD mice 101, 
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suggesting that optimal T cell priming is also required to induce cell-intrinsic negative 

signals.   

Programmed death protein 1 (PD1, CD279):PD-L1 or :PD-L2 interactions mediate 

co-inhibitory effects that appear to be distinct from CTLA4.  Polymorphisms at the PDCD1 

locus are associated with susceptibility to T1D 102.  Pdcd1–/–.NOD mice developed 

autoimmune diabetes by 11 weeks of age with 100% penetrance in both females and 

males 103.  In contrast to CTLA4 blockade, treatment with anti-PD1 or anti-PD-L1, but not 

anti-PD-L2, precipitated insulitis and autoimmune diabetes onset in NOD mice regardless 

of when the mice were treated [1-10 weeks of age] 104, suggesting PD1:PD-L1 

interactions may impact all stages of autoimmune diabetes onset and progression.  PD1 

appears to prevent stable interactions between T cells and DCs in pancreatic lymph 

nodes 105.  Interestingly, PD-L1 may also be expressed on pancreatic islets 104,106, 

providing a regulatory signal before autoreactive T cells enter the islets.  Interaction 

between PD-L1 and another of its known ligands, B7.1, induces negative signals in 

diabetogenic T cells at the late phase of autoimmune diabetes 78.  Curiously, while PD-

L1 overexpression on β-cells protected NOD mice from autoimmune diabetes 107, its 

overexpression on β-cells in B6 mice provoked autoreactive T cells 108.  The basis for 

these contradictory observations remains to be defined.  Besides its regulation on 

peripheral autoreactive T cells, it is noteworthy that PD1 may also impacts thymic 

selection of diabetogenic T cells 109.   

Co-inhibitory receptors T cell immunoglobulin and mucin-domain containing 3 

(TIM3) and B7-H4 may function to dampen β-cell destruction at a later stage.  Treatment 

with either anti-TIM3 or TIM3Ig, which blocks interactions between endogenous TIM3 and 
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its ligands, augmented autoimmune diabetes but did not impact insulitis 110.  Likewise, 

early treatment with B7-H4Ig, which provides a co-inhibitory signal via an unknown ligand 

on T cells, did not block insulitis but delayed aggressive β-cell destruction at the later 

stage 111.  Thus, the analyses of co-inhibitory receptors in NOD mice suggest that these 

pathways are broadly utilized but at different stages during the pathogenesis of 

autoimmune diabetes. 

Like PD1, LAG3 is also required to restrain the expansion of diabetogenic T cells 

in the islets 112,113.  I will introduce the basic biology of LAG3 in Chapter 1.4 “LAG3 in T 

cell tolerance”. 

1.3.4 An essential role for Tregs in self-tolerance 

Identification of Tregs 

  The concept of Tregs originated in experiments with which neonatal thymectomy 

led to multi-organ damage, while transfer of normal CD4+ T cells or CD4+CD8– 

thymocytes ameliorated the development of autoimmunity in sub-lethally irradiated mice 

114,115.  These results indicated that central tolerance may sometimes neglect autoreactive 

T cells, and also that thymic development may positively select CD4+ T cells that can 

suppress autoimmunity.  These immuno-suppressive CD4+ T cells are now known to be 

generated during thymic selection and are called “thymus-derived Tregs” (tTregs) 116.  

Later experiments that identified Treg markers, such as receptors CD25 (IL-2 receptor 

alpha), Neuropilin 1 (Nrp1), and transcription factor Foxp3, have not only provided the 
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opportunity to distinguish Tregs from other T cell subsets but also shed light on Treg 

development and function 19,117-125.   

Some Tregs differentiate from naïve T cells in the periphery (“peripherally derived 

Tregs”, pTregs), most frequently at mucosal barriers 116.  Foxp3 expression is induced in 

pTregs by TGFβ, retinoic acid, or other microbial metabolites 126-128.  Some pTregs do not 

express Foxp3, but regulate immune responses through suppressive cytokines such as 

IL10 and IL35 (“Tr1” and “iTr35”, respectively) 129,130.    

Mechanisms of Treg suppression 

 The various suppressive mechanisms utilized by Tregs can be grouped into four 

types based on their modes of action (Fig. 2) 6.  First, Tregs can function through the 

secretion of suppressive cytokines, such as IL-10, TGFβ, and IL-35 129,131-134.  Second, 

Tregs can kill Teffs through granzyme-dependent and/or perforin-dependent cytolysis, or 

through death receptor-induced cell death 135-138.  Third, Tregs can disrupt Teff 

metabolism by depriving IL2 through high affinity CD25, transferring cAMP into Teffs 

through gap junctions, or generating adenosine through ectoenzymes CD39 and CD73 

139-141.  Last, Tregs can indirectly regulate Teffs by targeting DCs 142,143.  For instance, 

Tregs constitutively express CTLA4, which has a higher affinity for binding to B7.1/B7.2 

than CD28, and therefore competes with Teffs engaging DCs 144.  Tregs have been shown 

to condition DCs to express the inhibitory molecule indoleamine 2,3-dioxygenase (IDO) 

144,145.  The co-inhibitory receptor LAG3 has also been implicated in mediating Treg 

suppression through interactions with DCs 146. 
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Foxp3: the master coordinator in tTregs 

Foxp3 is a transcription factor that is expressed in tTregs during thymic 

development and also induced in pTregs in the periphery.  Foxp3 was originally identified 

in a mouse strain exhibiting an X-linked recessive “scurfy” phenotype 124.  Scurfy mice 

exhibit extensive multi-organ infiltration and over-activation of lymphocytes, and die by 20 

days old.  Subsequent functional analyses verified that Foxp3 is essential in Treg 

development and function.  Mice that are deficient in Foxp3 expression or are depleted 

 

Figure 2. Mechanisms of Treg suppression. 

 

The various suppressive mechanisms utilized by Tregs can be grouped into four types based on their 

modes of action: inhibitory cytokines, cytolysis, metabolic disruption, and targeting dendritic cells 6. 
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of Foxp3-expressing cells develop a phenotype similar to that of Scurfy mice, and 

overexpression of Foxp3 is sufficient to confer the suppressive capacity in CD4+ naïve T 

cells 122,123,125,147. 

Some humans develop immunodysregulation polyendocrinopathy enteropathy X-

linked (IPEX) syndrome as a consequence of mutations in the FOXP3 gene 148-150.  

Affected individuals usually exhibit neonatal onset of autoimmune diabetes, enteropathy, 

thrombocytopenia, anemia and other endocrinopathy, and die within the first two years.  

However, FOXP3 may not be a bona fide marker for human Tregs.  Activated human 

conventional T cells (Tconvs) transiently upregulate FOXP3, but do not possess 

regulatory functions 151.  Additionally, virally transduced or TGFβ induced FOXP3 

expression in human T cells is not sufficient to confer them with an immuno-suppressive 

phenotype 148,152. 

Foxp3 governs Treg phenotypes through cooperation with many other key 

transcription factors, including GATA3, GATA1, Eos, IRF4, Runx1, Helios, Lef1, Satb1, 

Aiolos, EZH2, and Rel 153-155.  Foxp3 acts as a transcriptional activator or repressor 

depending on the context and binding partner, and thus switches or reinforces the 

transcriptional and epigenic landscapes in developing or established Tregs 156,157.  Of 

note, the Ikaros family member Eos (encoded by gene Ikaros family zinc finger 4, Ikzf4) 

coordinates with Foxp3 to silence Tconv genes in Tregs, and loss of Eos expression leads 

to rapid conversion of CD4+Foxp3+ Tregs into helper-like cells 21,22,157.  An N-terminal 

mutation of Foxp3 leads to Treg insufficiency in autoimmune diabetes due to reduced 

interactions with Tip60, HDAC7 and Eos, whereas the same mutation increases its 

interaction with interferon factor 4 (IRF4) and thus results in alleviated arthritis 15,16.  In 
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humans, IKZF4 (Chr12q13.2, OR 1.3) has also been genetically mapped to the T1D-

susceptibility region (T1DBase).   

Treg stability and homeostasis 

Many cell-intrinsic and cell-extrinsic factors can affect Treg homeostasis and 

function.  The composition, size and maintenance of Foxp3+ Tregs are intrinsically 

controlled by Foxp3 conserved non-coding DNA sequences (CNS) elements 158-160.  IL-2 

signaling is critically required for the development and maintenance of Tregs 14,17,120,121.  

Although Nrp1 does not seem to be essential under homeostatic conditions, it may be 

required to maximize the competitive fitness of Tregs under inflammatory conditions in 

vivo 18-20.  Treg homeostasis is also extrinsically modulated by microbial metabolites (i.e., 

short chain fatty acids) 161,162.  A diet containing the short chain fatty acids acetate and 

butyrate boosted the number and function of Tregs in NOD mice and provided protection 

against autoimmune diabetes 163. 

Tregs in autoimmune diabetes 

 Tregs are perhaps the most crucial controller of autoimmune diabetes.  Most IPEX 

patients exhibit neonatal onset of T1D 148-150.  Scurfy mice that are deficient of Tregs and 

on a NOD background develop fulminant diabetes and die as early as three weeks of age 

164.  Similarly, ablation of Tregs using the Foxp3DTR.NOD mouse model (these NOD mice 

express human diphtheria toxin receptor in Foxp3+ cells, so diphtheria toxin 

administration results in ablation of all Foxp3+ Tregs) rapidly unleashed autoimmune 

lesions within the pancreatic islets 165.  Conversely, transfer of Tregs can protect mice 

from autoimmune diabetes 74,81,166-168.  Furthermore, in a recent phase 1 trial, ex vivo-

http://t1dbase.org/
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expanded polyclonal Treg therapy showed safety and was well tolerated in recent-onset 

T1D patients 169.   

 Crucial as they are, Tregs appear to be very “fragile” in an autoimmune diabetes-

prone environment.  For instance, a substantial percentage of Tregs in NOD mice lose 

Foxp3 expression, and transfer of these ex-Foxp3+ T cells led to rapid onset of diabetes 

170.  Additionally, a mutation at Foxp3 N-terminus resulted in dramatically accelerated 

autoimmune diabetes in NOD mice, whereas B6 mice with the same mutation did not 

exhibit any confounding disease phenotypes 15,16.  Defects in co-stimulatory signaling 

(i.e., CD28:CD80/CD86) or IL-2 signaling also disrupted the balance between Tregs and 

autoreactive T cells, leading to accelerated autoimmune diabetes in NOD mice 14,17,74,171.  

Collectively, these studies highlight the importance of Treg-mediated tolerance in 

controlling β cell autoimmunity. 

1.4 LAG3 in T cell tolerance 

The gene encoding LAG3 is located on human Chromosome 12 (mouse Chromosome 6) 

and the protein is a surface receptor expressed on activated T and NK cells 172.  Studies 

have suggested that LAG3 may possess unique features different from other co-inhibitory 

receptors, in terms of its structure, signaling, expressional regulation and physiological 

functions.   
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1.4.1 LAG3 structure, ligands, and signaling 

Structure 

LAG3 and CD4 genes are adjacent to each other on mouse Chromosome 6 

(human Chromosome 12) and share high structural homology within the four-extracellular 

immunoglobulin (Ig)-like domains (D1 to D4) 173.  However, LAG3 and CD4 share less 

than 20% amino acid sequence homology, which results in a ~100-fold increase in LAG3 

binding affinity to MHC-II compared with CD4 172-175.  Furthermore, LAG3 and CD4 vary 

greatly in the transmembrane and cytoplasmic domains, which may result in very distinct 

cellular functions and signaling pathways between these two receptors 176,177. 

The cytoplasmic tail of LAG3 contains three conserved regions and is unique 

among all known immune receptors 176,178.  The first region is a potential serine 

phosphorylation site, which may act as a protein kinase C (PKC) substrate.  The second 

is a KIEELE motif with a single “lysine” residue that is conserved across all species 

sequenced, but this region is not homologous with any other known proteins.  The third 

is a glutamic acid-proline (EP) repetitive sequence, which is found in a wide variety of 

functionally distinct proteins.  Interestingly, the intracellular tail of LAG3 does not contain 

any ITIMs (immunoreceptor tyrosine-based inhibition motifs) or ITSMs (immunoreceptor 

tyrosine-based switch motifs), which are often used by other co-inhibitory receptors to 

limit TCR signaling 179.  In comparison to CD4, LAG3 lacks the binding site for tyrosine 

kinase p56Lck 173.  There is also a connecting peptide between the D4 and transmembrane 

domains that can be cleaved by metalloproteinases 177.   

Ligands 
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LAG3 binds to MHC-II through the D1 domain with an additional 30-amino acid-

loop that is not present in CD4 173.  Alternative ligands of LAG3 other than MHC-II have 

been identified.  Liver and lymph node sinusoidal endothelial cell C-type lectin (LSECtin), 

a member of the DC-SIGN family and expressed on human melanoma tissues, has been 

shown to be a ligand for LAG3 180.  It was suggested that LSECtin may promote tumor 

growth by inhibiting IFNγ production of LAG3+ effector T cells 180.  It was also shown that 

the LAG3:galectin-3 interaction suppressed IFNγ secretion by CD8+ T cells 181.  A more 

recent study showed that LAG3 facilitated the pathogenesis of a murine Parkinson’s 

disease model through the binding to α-synuclein preformed fibrils in the central nervous 

system 182.   

Signaling 

The signaling pathway downstream of LAG3 is still unknown.  It has been shown 

that the unique conserved KIEELE motif, in particular the “lysine” residue (mouse K468), 

is essential for the inhibitory function of LAG3 in CD4+ Tconvs 183.  However, it is not clear 

what are the downstream binding proteins for this motif, and whether this motif mediates 

similar or distinct signaling in Tregs.  The EP motif does not seem to be required for the 

inhibitory activity of LAG3, but it may possess some modulatory effects on the LAG3 

signaling transduction 183,184.   

LAG3 may also mediate signaling into its ligand-expressing cells.  It was suggested 

that LAG3-expressing Tregs may inhibit DC maturation via binding to MHC-II 146.  This 

process is mainly mediated through the extracellular domain of LAG3, as tailless LAG3 

was sufficient to suppress DC function 146. 
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1.4.2 Regulation of LAG3 expression 

LAG3 expression 

LAG3 is highly expressed on CD4+ and CD8+ Tconvs 24-48 hours post-stimulation 

in vitro, with expression declining by day eight 185.  Chronic antigen stimulation also leads 

to sustained co-expression of LAG3 with other co-inhibitory receptors on T cells in vivo 

56.   Similarly, LAG3 is expressed on activated human T and NK cells 172. 

 LAG3 expression in Tregs is different from that in Tconvs.  tTregs constitutively 

express low levels of Lag3 message and readily upregulate expression of LAG3 on the 

cell surface following TCR stimulation 186.  Moreover, co-expression of LAG3 and CD49b 

defines Foxp3– IL-10-producing Tr1 cells in both humans and mice 187.  While it has been 

suggested that LAG3 may contribute to suppressive activities of Tregs 146,186-188, one 

needs to be cautious when partitioning the cell-intrinsic and cell-extrinsic impact of LAG3 

on Tregs, as the signaling mediated by LAG3 can be bidirectional.  

 LAG3 is constitutively expressed on pDCs and CD8αα+ IELs, and induced on NK 

cells, although its biological significance on these cell types is to be determined 185,189.  

LAG3 was also detected in cerebellum and was shown to facilitate the pathogenesis of 

Parkinson’s disease, suggesting a role for LAG3 outside the immune system 182,185. 

sLAG3, LAG3 shedding and intracellular storage 

 LAG3 expression is regulated through different mechanisms, which may help to 

ensure optimal immunoregulation.  One mode of regulation is cleavage at the connecting 

peptide region between the D4 and transmembrane domains by metalloproteinases 
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ADAM10 and ADMA17, releasing soluble LAG3 (sLAG3) 177,190.  While ADAM10 

constitutively cleaves LAG3 on resting T cells, cleavage by both ADAM10 and ADAM17 

is enhanced upon T cell activation 177.   

Soluble LAG3 has been suggested as a prognostic biomarker in breast cancer 

patients who express estrogen or progesterone receptors, active tuberculosis patients 

and T1D patients 191-193.  Our group did not observe any biological function of natural 

murine sLAG3, as T cell homeostasis was not affected in mice that express ~1000-fold 

higher levels of sLAG3 than normal serum concentrations 177.  A separate group 

suggested that a human LAG3-Ig fusion protein induces DC maturation and migration 194-

197.  However, clinical grade hLAG3-Ig (IMP321), designed as an APC activator, has 

exhibited minimal activity as a monotherapy 176.   

 Another way to regulate cell surface expression of LAG3 on previously activated 

resting T cells is through its intracellular storage in lysosomal compartments 198,199.  While 

LAG3 can be degraded in lysosomes, it can also rapidly translocate to the cell surface 

upon TCR re-stimulation.  Understanding how LAG3 expression is regulated may provide 

additional avenues to target LAG3 in the clinic, other than antibody-mediated blockade.   

1.4.3 Role of LAG3 in disease 

Infection 

 Exhausted T cells are marked by the upregulation of co-inhibitory receptors and 

defects in proliferation, cytokine production and cytotoxicity 56.  LAG3 is co-expressed 

with PD1 on exhausted CD8+ T cells in the Clone 13 LCMV chronic infection model, and 
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its expression is correlated with virus load 200,201.  Although LAG3 single blockade had 

little effect, it synergistically improved the anti-viral response with PD-L1 blockade 200,201.  

A similar synergistic effect was also observed in exhausted CD4+ T cells during malaria 

infection 202.   

Cancer 

 Similar to exhausted T cells in chronic infections, tumor-infiltrating T cells also co-

express PD1 and LAG3 and display impaired proliferation and IFNγ/TNFα production 

203,204.  The synergistic interplay between LAG3 and PD1 was observed in multiple murine 

cancer models, as demonstrated using anti-LAG3 and anti-PD1 or Lag3–/–Pdcd1–/– 

mutant mice 203.  For instance, LAG3/PD1 dual-blockade resulted in MC38 tumor 

clearance in 80% of mice, compared to 40% remission in PD1 mono-blockade, but almost 

no effect in LAG3 mono-blockade 203.  Furthermore, LAG3 and PD1 dual blockade during 

T cell priming efficiently augmented proliferation and cytokine production by NY-ESO-1-

specific CD8+ T cells from ovarian cancer patients 204.  All these data provide a rationale 

for clinical trials of combinatorial checkpoint blockade regimens including LAG3 targeting 

205. 

 LAG3 is expressed on both Tregs and Tconvs as aforementioned, and it is unclear 

which T cell subset is predominantly impacted by LAG3 blockade in the current studies.  

LAG3+Foxp3+ Tregs have been seen in peripheral blood mononuclear cells (PBMC), 

lymph nodes (LNs), and tumor tissues of melanoma and colorectal cancer patients 206.  

LAG3+CD49b+ Tr1 cells were shown to be associated with poor prognosis of colorectal 

cancer 207.  These data indicate an immuno-suppressive role for LAG3 in Tregs.  

Interestingly, a study has suggested that combining LAG3 blockade with specific anti-
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tumor vaccination resulted in enhanced tumor-specific CD8+ T cell activation, and this 

effect was independent of LAG3 expression on CD4+ T cells, therefore supporting a direct 

role for LAG3 in regulating CD8+ T cells 208.  Taken together, these previous findings 

dissecting the role of LAG3 and its modes of action in different T cell subsets may be the 

key to efficiently targeting LAG3 in the clinic.   

Autoimmunity 

 Unlike Ctla4–/– mice, Lag3–/–.B6 mice do not develop spontaneous autoimmune 

disease, indicating that LAG3 may not be required under a homeostatic state 113,209-211.  

However, Lag3 deficiency on the NOD background results in accelerated autoimmune 

diabetes with 100% penetrance even before WT littermates start to develop 

hyperglycemia 112,113.  LAG3 blockade at 7 weeks of age also accelerated disease onset 

in NOD mice 112.  Similarly, genetic ablation or blockade of LAG3 on the B6.SJL 

background resulted in increased susceptibility to mercury-induced autoimmunity 212.  The 

synergistic cooperation between LAG3 and PD1 has also been observed in maintaining 

immune homeostasis and preventing autoimmunity.  Lag3–/–Pdcd1–/– B6 mice succumb 

to lethal systemic autoimmunity, which is not evident in either Pdcd1–/– or Lag3–/– B6 mice 

113,203. 

Together, these data suggest that LAG3 is essential in maintaining self-tolerance 

when other tolerance mechanisms are compromised, and that LAG3 may mediate distinct 

functions in different immune subsets.  However, many questions remain unclear: (1) On 

which immune population(s) does LAG3 play a dominant role in regulating self-tolerance?  

(2) What is the relative contribution of LAG3 expressed on autoreactive T cells vs. Tregs?  

(3) What is the cell-intrinsic vs. cell-extrinsic impact of LAG3 on T cell subsets?  (4) What 
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are the transcriptional and functional differences between LAG3+ vs. LAG3–, and Lag3-

deficient T cells?  Therefore, Lag3 conditional knockout mice that could also report Lag3 

promoter activity in combination with immune subset-specific CRE mice were developed 

to address these questions.   
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2.0  Chapter 2: Materials and methods 

Note: Most of the following methods were published in my previous publication “Zhang Q 

et. al. Sci. Imm. (2017)” 

2.1 Mice and study design 

NOD/ShiLtJ (stock# 001976), Thy1.1.NOD (stock# 004483), BDC2.5.NOD (stock# 

004460), and Foxp3GFP.NOD (stock# 025097) mice were purchased from Jackson 

Laboratories.  Foxp3CRE-GFP.NOD mice were obtained from J.A. Bluestone 213.   

Cd4CRE.NOD mice were obtained from A. Chervonsky.  Lag3–/– C57BL/6 mice were 

obtained from Y.H. Chen with permission from C. Benoist and D. Mathis 112,214, and 

E8iCRE-GFP C57BL/6 mice were obtained from I. Taniuchi, and both mice were bred onto 

an NOD background with 100% NOD as determined by single nucleotide polymorphism 

microsatellite analysis. 

All animal experiments were performed in American Association for the 

Accreditation of Laboratory Animal Care-accredited, specific-pathogen-free facilities in 

Animal Resource Center [St Jude Children’s Research Hospital (SJCRH)] and Division 

of Laboratory Animal Resources [University of Pittsburgh School of Medicine (UPSOM)].  

Animal protocols were approved by the Institutional Animal Care and Use Committees 

(IACUC) of SJCRH and UPSOM.  Mice of different groups were co-housed and randomly 

assigned to any analyses.  Ten to twenty mice per group were used in diabetes incidence 
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studies and followed up to 30wk-of-age.  Three to five age-matched female mice per 

group were used in each analytical experiment, and two to four independent experiments 

were repeated.  Three female mice at indicated age were pooled per group and used in 

RNAseq analyses, and two to three independent experiments were repeated.  The 

genotypes were not blinded, except for the insulitis scoring.  All data points were 

presented. 

2.2 Generation of Lag3L/L-YFP mice 

A 5.7 kb XbaI-SalI fragment (5’ arm of homology) corresponding to exon 6 and the intronic 

region between exon 5 and 6 and a 4.1 kb ClaI-EcoRI fragment (3’ arm of homology) 

containing the polyA site (pA) were generated by PCR from C57BL/6J genomic DNA and 

cloned into pSP73.  A fragment corresponding to exon 7 (containing the CP cleavage site 

and flanked by loxP sites) and exon 8 was inserted between the two homologous arms.  

An IRES-YFP fragment was inserted between Lag3 stop codon and the pA.  Just after 

the pA, a frt-flanked neomycin positive selection cassette (Frt-Neo) was inserted.  To 

increase the frequency of homologous recombination and reduce non-specific 

integration, a diphtheria toxin cassette (DT-A) was cloned upstream of the 5’ homologous 

arm.  The resulting plasmid was linearized with SspI and electroporated into E14 ES cells.  

Following selection with G418, resistant clones were screened by Southern blot analysis, 

sequenced, injected into blastocycts and the resulting chimeras bred to C57BL/6J for 

germline transmission.  The mice were backcrossed 12 generations onto the NOD 

background and tested by microsatellite analysis.  All 20 Idd loci were covered by 144 
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single nucleotide polymorphisms (SNPs) in the microsatellite test 43, and all the tested 

SNPs were NOD.  The Lag3L/L-YFP mouse was generated by Dr. Andrea Szymczak-

Workman. 

Primers 5’-GCA GGT CTC AGC AGC TCC GC-3’ and 5’-GTC AGA AGT GAG 

GGC TCT TTG GAG C-3’ were used for detecting WT Lag3 3’UTR, and primers 5’-GAC 

TTC AAG GAG GAC GGC AAC ATC C-3’ and 5’-GTC AGA AGT GAG GGC TCT TTG 

GAG C-3’ were used for detecting IRES-YFP inserted into the 3’UTR.  Primers 5’-CGC 

CTA GAC AAC CCG CAC-3’ and 5’-GGT ACT CGC CCG CAT CG-3’ were used for 

detecting Lag3 Exon3, and primers 5’-AGG CCA TCT CGT TCT CGT TC-3’ and 5’-CCA 

CCA GTG AAA GCC AAA GG-3’ were used for detecting Lag3 Exon7. 

2.3 Measurement of diabetes and insulitis 

Diabetes and insulitis were assessed as previously described 112,215.  Briefly, diabetes 

incidence was monitored weekly by testing for the presence of glucose in the urine by 

Diastix (Bayer).  Mice positive by Diastix were then bled and tested with a Breeze2 

glucometer (Bayer).  Mice were considered diabetic if the blood glucose level was ≥ 400 

mg/dl.   

Pancreata were embedded in paraffin block and cut at 4µm-thick sections at 

150µm step sections and stained with H&E.  Pancreata collected at SJCRH were 

processed at the Veterinary Pathology Core of SJCRH, and pancreata collected at 

UPSOM were repeated in the same way at HISTO-SCIENTIFIC Research Laboratories 

(HSRL Inc.) for the histology shown in Chapter 4.  An average of 60-80 islets per mouse 
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were scored in a blinded manner.  Two methods of insulitis measurement were used as 

previously 215. 

2.4 Islet isolation and lymphocyte preparation 

Islets were isolated as described previously 216.  Briefly, the pancreata were perfused with 

3mL of collagenase type 4 (Worthington) through the pancreas duct and incubated in 3mL 

of collagenase (600 U/mL in HBSS with 10% FBS) at 37°C water bath for 30min.  The 

pancreata were then distributed and washed twice with HBSS (Corning) with 10% FBS.  

The islets were picked under a dissecting microscope, distributed with 1mL of cell 

dissociation buffer (life technology) and incubated at 37°C for 15min with vortexing every 

5min.  Following a final wash, the cells were resuspended, counted and used. 

2.5 Antibodies and flow cytometry 

Single cell suspensions were stained with antibodies against CD4 (clone# GK1.5, 

Biolegend), CD8β (clone# YTS156.7.7, Biolegend; clone# H35-17.2, eBioscience), TCRβ 

(clone# H57-597, Biolegend), Vβ4 (clone# KT4, BD Biosciences), Thy1.1 (clone# OX-7, 

Biolegend), Thy1.2 (clone# 30-H12, Biolegend), CD45RB (clone# C363-16A, Biolegend), 

CD44 (clone# IM7, Biolegend), CD62L (clone# MEL-14, Biolegend), CD25 (clone# PC61, 

Biolegend), LAG3 (clone# 4-10-C9, made in house), Foxp3 (clone# FJK-16s, 

eBioscience; clone# 150D, Biolegend), Eos (clone# ESB7C2, eBioscience), Helios 
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(clone# 22F6, Biolegend), Ki67 (clone# B56, BD Biosciences), BrdU (clone# Bu20a, 

Biolegend), Bcl2 (clone# BCL/10C4, Biolegend), TNFα (clone# MP6-XT22, Biolegend), 

IFNγ (clone# XMG1.2, Biolegend), IL2 (clone# JES6-5H4, Biolegend), IL4 (clone# 11B11, 

eBioscience), IL17A (clone# TC11-18H10.1, Biolegend), GATA3 (clone# TWAJ, 

eBioscience), RORγt (clone# B2D, eBioscience), PD1 (clone# RMP1-30, Biolegend), 

TIM3 (clone# RMT3-23, Biolegend), TIGIT (clone# GIGD7, eBioscience), KLRG1 (clone# 

2F1, eBioscience), ICOS (clone# C398.4A, Biolegend), phospho-Stat5 (Clone# C71E5, 

Cell Signaling),  CD127 (clone# A7R34, Biolegend), Eomes (clone# Dan11mag, 

eBioscience), CD28 (clone 37.51, Biolegend).  

Surface staining was performed on ice for 15min.   

For cytokine expression analysis, cells were activated with 0.1µg/mL PMA (Sigma) 

and 0.5µg/mL Ionomycin (Sigma) in RPMI containing 10% FBS and Monensin 

(eBioscience) for 5hr.  For intracellular staining of cytokines and transcription factors, cells 

were stained with surface markers, fixed in Fix/Perm buffer (eBioscience) for 0.5-2hr, 

washed in permeabilization buffer (eBioscience) twice and stained intracellular factors in 

permeabilization buffer for 30min on ice.   

For phosphoprotein staining, cells were fixed with 1.6% PFA (Alfa Aesar) at 37°C 

for 15min, permeablized with ice-cold Methanol for 1hr, and stained on ice for 1hr.   

For BrdU incorporation analysis, mice were injected with 2mg BrdU (Sigma) in PBS 

intraperitoneally 8hr ahead of sacrifice.  After transcription factor staining, cells were 

incubated in Cytofix/Cytoperm buffer (BD Biosciences) at room temperature for 10min, 

washed with PermWash buffer (BD Biosciences), treated with 650U/mL DNase I (Sigma) 
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at 37°C for 30min, and stained with anti-BrdU antibody in PermWash buffer for 30min at 

room temperature. 

Chromogranin A29-42 (BDC2.5 mimotope, AHHPIWARMDA/Ag7) tetramer, insulin 

B9-23 (InsB p8E mimotope, HLVERLYLVCGEEG/ Ag7; InsB p8G mimotope, 

HLVERLYLVCGGEG/ Ag7) tetramers, insulin B15-23 (InsB G9L mimotope, LYLVCGERL/ 

H-2Kd; InsB G9V mimotope, LYLVCGERV/ H-2Kd) tetramers, and IGRP206-214 (NRP-v7 

mimotope, KYNKANVFL/H-2Kd) tetramer were obtained from NIH Tetramer Core Facility, 

and cells were stained in RPMI containing 10% FBS at room temperature for 40min.   

Cells were sorted on Aria II (BD Biosciences) or analyzed on Fortessa (BD 

Biosciences), and data analysis was performed on FlowJo Version 9 or 10 (Tree Star). 

2.6 Micro-suppression assay 

Splenic TCRβ+CD4+CD45RB+GFP− cells were sorted from Foxp3CRE-GFP.NOD mice as 

responder cells and labeled with CellTrace Violet (life technology).  T cell-depleted whole 

splenocytes were treated with 2µg/ml mytomycin C (Sigma) at 37°C for 30min, washed 

three times with PBS, and then used as antigen presenting cells (APCs).  Responder 

cells (4x103), APCs (8x103), and different concentrations of Treg cells were activated with 

2µg/ml anti-CD3 (Biolegend) in a 96-well round bottom plate with 100ul RPMI for 3 days.  

Suppression was calculated as previously described 217.  Briefly, cells were acquired by 

BD Fortessa, and the division index (DI) of responder cells was analyzed using FlowJo 

based on the division of CellTrace Violet.  Suppression was then calculated with the 

formula %Suppression = (1-DITreg/DICtrl) x 100% (DITreg stands for the division index of 
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responder cells with Treg cells, and DICtrl stands for the division index of responder cells 

activated without Treg cells). 

2.7 Treg expansion and adoptive transfer 

Splenic TCRβ+CD4+GFP+CD45RBlow cells (Treg cells) were sorted and activated with 

0.1µg/mL PMA (Sigma) and 0.5µg/mL Ionomycin (Sigma) with 500U/mL hIL2 

(Prometheus) for 2 days, and then expanded for another 3 days with hIL2.  WT and Lag3-

deficient Treg cells were mixed at equal ratio and 2x106 total Treg cells were co-

transferred into 6-8 wk-of-age WT NODs.  Treg recipients were sacrificed and analyzed 

4 days post-transfer. 

2.8 Ikzf4 overexpression and knockdown in Tregs 

Human IKZF4 ORF was amplified from IKZF4-pMIG construct (obtained from C. Benoist 

157) using primers (forward: 5’-CGC GGC TCT AGA TCT GCC AGC ATG CAT ACA CCA 

CCC GCA CTC C, reverse: 5’-CCT TCC ATC CCT CGA GCT AGC CCA CCT TAT GCT 

CCC CC), cut with BglII and XhoI restriction enzymes, and ligated into the pMI-Ametrine 

retroviral vector.  Murine Ikzf4 targeting shRNA (3’-TCC AGA AAG AGG ATG CGG CAG 

T, 5’-CCT GCC GCA TCC TCT TTC TGG A, loop-TAG TGA AGC CAC AGA TGT A) and 

non-targeting control (3’-TAA CCT ATA AGA ACC ATT ACC A, 5’- CGG TAA TGG TTC 

TTA TAG GTT A, loop-TAG TGA AGC CAC AGA TGT A) retroviral constructs (transOMIC 
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technologies) were cut with BglII and MluI restriction enzymes, and inserted with the 

IRES-Ametrine cassette as a fluorescence reporter.   

Sorted splenic Treg cells were activated with αCD3/αCD28 dynabeads (Invitrogen) 

and 500U/mL IL2 for 48hr.  Plat-E cells (obtained from H. Chi) were transiently transfected 

by retroviral vector along with pCL-Eco helper plasmid (obtained from H. Chi).  Viral 

supernatant was harvested 36hr after transfection of Plat-E cells, and then used for spin 

transduction of activated Treg cells with 6µg/mL polybrene (Sigma) at 2000rpm for 1hr.  

Transduced Treg cells were sorted 48hr post transduction, rested for 72hr, and then re-

stimulated with 0.1µg/mL PMA and 0.5µg/mL Ionomycin with 500U/mL hIL2 for another 

48hr.  10µg/mL BrdU was pulsed into Treg culture media 2hr prior to the staining. 

2.9 vi-SNE clustering 

Flow cytometric data were initially analyzed and processed using FlowJo Version 9 (Tree 

Star).  Samples were downsampled to 20,000 total cells per sample.  Processed .fsc files 

were then imported into MATLAB platform (MathWorks), and vi-SNE plots were 

generated using cyt (Dana Pe’er Laboratory) 218.   

2.10 Statistical analyses 

Experiments were pooled for statistical analyses using Prism Version 7 (GraphPad).  The 

log-rank test was applied to Kaplan-Meier survival function estimates to determine the 

https://www.c2b2.columbia.edu/danapeerlab/html/cyt.html
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statistical significance of differences in diabetes incidence between experimental groups.  

The Fisher’s LSD test was applied to one-way ANOVA to determine the statistical 

significance in the Ikzf4 overexpression or knockdown experiments.  The Spearman r was 

calculated to determine the correlation between any give two parameters.  The 

nonparametric Mann-Whitney test was used in all other instances.  

 The statistical analyses were guided and overseen by Dr. Daniel Normolle at 

Department of Biostatistics, University of Pittsburgh.   

2.11 Low cell number T cell repertoire sequencing 

Tregs were sorted from either the ndLN or islet of individual mice.  Treg gDNAs were 

isolated using the QIAamp DNA Micro kit (QIAGEN).  TCR sequencing libraries were 

prepared using the mmTCRB immunoSEQ kit (Adaptive biotechnologies), pooled, 

diluted, and natured to a final concentration of 1pM with 20% PhiX spike-in control 

(Illumina).  Cluster generation and 156x15bp paired-end single-indexed sequencing was 

performed on Illumina NextSeq 500 system.  Data were analyzed on the immunoSEQ 

Analyzer platform (Adaptive biotechnologies). 

 Clonality is calculated as (1-normalized entropy), where normalized entropy is 

entropy/log2(productive unique β chain).  Clonality ranges from 0 to 1.  A low clonality 

indicates a relative diverse sample, while a high clonality number indicates that the 

sample is dominated by a few high-frequent clones. 
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Repertoire overlap between samples was calculated as Morisita Index 𝐶𝐶𝐷𝐷 =

 2∑ 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖𝑆𝑆
𝑖𝑖=1

�𝐷𝐷𝑥𝑥+𝐷𝐷𝑦𝑦�𝑋𝑋𝑋𝑋
 219. xi is the number of times that clone i is represented in the total productive 

TCRs X sequenced from sample x, and yi is the number of times that clone i is 

represented in the total productive TCRs Y sequenced from sample y.  Dx and Dy are the 

Simpson’s index values for the x and y samples, respectively. S is the number of unique 

clones.  CD = 1 if the two samples do not have any shared clones, and CD = 1 if the same 

clones occur in the same frequencies in both samples. 

2.12 Low cell number RNA sequencing 

2.12.1 RNA-seq in Chapter 4.1 

Tregs (5x103) were sorted from three pooled mice of each group and cDNAs were 

prepared using the SMATer® UltraTM Low Input RNA Kit for Sequencing - v3 following 

the user manual (Clontech Laboratories).  Sequencing libraries were prepared using 

Nextera XT DNA Library Preparation kit (Illumina), normalized at 2nM using Tris-HCl 

(10mM, pH 8.5) with 0.1% Tween20, diluted and denatured to a final concentration of 

1.8pM using the Illumina Denaturing and Diluting libraries for the NextSeq 500 protocol 

Revision D (Illumina).  Cluster generation and 75x75bp paired-end dual-indexed 

sequencing was performed on Illumina NextSeq 500 system. 
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2.12.2 RNA-seq in Chapter 3.2 and 4.2 

Cell-of-interest (500 cells in total) were double-sorted from three pooled mice of each 

group directly into lysis buffer, and cDNAs were prepared based on the Smart-seq2 

technique with a few steps modified 220.  Sequencing libraries were prepared using 

Nextera XT DNA Library Preparation kit (Illumina), normalized at 2nM using Tris-HCl 

(10mM, pH 8.5) with 0.1% Tween20, diluted and denatured to a final concentration of 

1.8pM using the Illumina Denaturing and Diluting libraries for the NextSeq 500 protocol 

Revision D (Illumina).  Cluster generation and 75bp single-end dual-indexed sequencing 

was performed on Illumina NextSeq 500 system. 

 I have put some effort on setting up the protocol to sequence a small number of 

cells ( ≤ 500 cells) in the lab.  For a detailed step-by-step protocol, please see the 

Appendix C.   

2.13 Bioinformatics 

2.13.1 Analyses in Chapter 4.1 

The raw reads of RNA sequencing were aligned to the mm10 genome using TopHat and 

counts were computed relative to the RefSeq transcript annotation file provided in the 

cufflinks suite 221,222.  Genes whose mean count value (computed in log2 space) was 

below 32 (5 in log2 space) were removed from further processing leaving 10371 total 
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genes.  The counts were analyzed for differential expression using DESeq2 with a GC 

content and length dependent offset computed by cqn R package 223,224. 

We performed geneset analysis using the Wilcoxon rank-sum test on the 

differential expression statistic (Wald statistic for the Negative Binomial coefficient) 

computed from with the DESeq2 package. Significance was assessed with a parametric 

p-value calculation followed by multiple hypothesis correction as well as sample 

permutation tests.  Since there are three replicates of islet Treg samples of each 

genotype, there are ten possible ways to divide those into two equal groups, and one of 

these corresponds to the correct grouping leaving 9 remaining permutations.  Pathways 

that were significant at FDR of 0.2 but were not significant in any of the possible 

permutation tests were reported.  Principle component analysis was performed using the 

“prcomp” R function on the log2 transformed normalized counts produced by the DESeq2 

“counts” function with “normalized=T”. 

We retrieved processed data from the GEO accession GSE17166. As this dataset 

had no replicates we used fold change between the Eos siRNA and control siRNA as a 

reference. Genes that had expression levels less than log2 (intensity) of 5 as well as genes 

that were affected more than 2-fold by the control siRNA were excluded from the analysis.  

The significance of the association between the two transcriptional signatures was 

assessed using a Chi-squared test on the contingency table summarizing the number of 

up- or down-regulated genes in si-Ikzf4 Treg cells and intra-islet Treg cells. 

The bioinformatics analysis was performed by Dr. Maria Chikina at Department 

of Computational and Systems Biology, University of Pittsburgh School of Medicine. 

 



 46 

2.13.2 Analyses in Chapters 3.2 and 4.2 

The initial quality of raw sequence reads was checked using FastQC.   After 

adaptor sequences were removed, and reads of low quality were trimmed using 

Trimmomatic, the quality of trimmed reads was checked again using FastQC.  Filtered 

fastq files were aligned to the mm10 genome using STAR, and counts were computed 

and normalized using the PROT suite.  Downstream analysis was carried out using limma 

and voom packages.  (PORT: Pipeline of RNA-seq Transformations) 

The bioinformatics analysis was performed by Dr. Sasikanth Manne at 

Department of Microbiology and Institute for Immunology, Perelman School of Medicine, 

University of Pennsylvania. 

https://github.com/itmat/normalization/wiki
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3.0  Chapter 3: Role of LAG3 in regulating diabetogenic T cells   

Preface:  

Co-inhibition is critical to modulate T cell activation and immune responses.  

Insufficient co-inhibition can lead to a breakdown of self-tolerance, leading to 

autoimmunity 70.  The co-inhibitory receptor LAG3 may not be required under a 

homeostatic state, but is critical to maintain self-tolerance when other tolerance 

mechanisms are compromised 113,203,209.  Lag3 deficiency on the NOD background results 

in accelerated autoimmune diabetes with 100% penetrance, indicating an essential role 

for LAG3 in regulating autoimmune diabetes 112,113.  As LAG3 is expressed on activated 

CD4+ and CD8+ T cells, Tregs, pDCs and NK cells 172,185,186,189, it remains to be 

determined which immune subset(s) that LAG3 is expressed on predominantly mediate 

the immune suppression on autoimmune diabetes.   

In this Chapter, two main questions will be addressed: (1) Which immune subset(s) 

that LAG3 is expressed on play a dominant role in regulating autoimmune diabetes?  (2) 

What is the impact of LAG3 on diabetogenic CD8+ T cells? 

To dissect the role of LAG3 on different immune subsets, Lag3L/L-YFP conditional 

knockout-reporter mice 225 are crossed with several T cell subset-specific CRE mice 

(Lag3L/L-YFPCd4CRE.NOD 226, Lag3L/L-YFPE8iCRE-GFP.NOD 227, and Lag3L/L-YFPFoxp3CRE-

GFP.NOD 213 in comparison to Lag3–/–.NOD mice 112).  The Lag3L/L-YFP mouse was 

generated by generated by Dr. Andrea Szymczak-Workman (University of Pittsburgh), a 

former research scientist in our lab.   
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This project is a part of the PO1 project “Synergies among inhibitory receptors in 

tolerance, cancer and antiviral immunity” in collaboration with Dr. Arlene Sharpe’s 

laboratory (Harvard Medical School) and Dr. John Wherry’s laboratory (University of 

Pennsylvania).  The bioinformatics analysis (Fig. 11) was done by Dr. Sasikanth Manne 

(University of Pennsylvania).   

Some figures in this chapter are taken from the publication “Zhang Q et. al. Sci. 

Imm. (2017)” 225 under the journal’s copyright permission.  These figures include Fig. 3, 

Fig. 5, and Fig. 6 corresponding to Fig. 1 (and fig. S1), fig. S2, and Fig. 2B of the 

manuscript “Zhang Q et. al. Sci. Imm. (2017)”, respectively 225. All other figures in this 

chapter are unpublished data.   
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3.1 A predominant role for LAG3 on T cells in autoimmune diabetes 

3.1.1 LAG3 is highly upregulated on T cells at inflammatory sites 

To evaluate the relative contribution of LAG3 on T cells versus non-T cells, we first 

assessed LAG3 expression pattern on different immune subsets at various ages of NOD 

mice.  While non-T cells consisted only 6-12% of intra-islet LAG3+ cells, a substantial 

fraction of insulitic CD8+ T cells and Tregs upregulated surface expression of LAG3 

compared to peripheral T cells (Fig. 3). 

 



Figure 3. LAG3 is upregulated on intra-islet T cells. 

(A) Representative histograms of LAG3 expression on the cell surface of CD8+, CD4+Foxp3–, and

CD4+Foxp3+ T cells in female WT NODs at 8 weeks of age.  (B) Expression of LAG3 on CD8+, 

CD4+Foxp3–, and CD4+Foxp3+ T cells of WT NODs at different ages (female, n = 5-6; male, n = 5-9). 

Statistical significance was determined by comparison of Islet and ndLN at each time point.  (C) 

Proportion of CD8+, CD4+Foxp3–, and CD4+Foxp3+ T cells in intra-islet LAG3+ T cells.  Data were 

presented as mean ± SEM.  Nonparametric Mann-Whitney test was used in (B).  ns, not significant; *p 

< 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.  This figure is taken from Fig. 1 and fig. S1 of the 

manuscript “Zhang Q, et al. Sci. Immuno. (2017)”.   

50 



 51 

Unlike PD1, which is readily detected on peripheral T cells, in particular Tregs, in 

diseased mice, LAG3 expression appeared to be limited to pancreata of NOD mice or 

tumors of tumor-bearing B6 mice (Fig. 4).  This suggests that the impact of LAG3 may be 

more restricted to tissue-specific tolerance. 

 

Figure 4. LAG3 expression is limited to inflamed tissues. 

 

Representative flow plots of PD1 and LAG3 expression on the cell surface of CD8+, CD4+Foxp3–, and 

CD4+Foxp3+ T cells from ndLN, and tumor of B16 tumor-bearing B6 mice (A) or islets of NOD mice (B).  

Female B6 mice were intradermally injected with 1.25 x105 B16.F10 melanoma cells, and tumors were 

harvested on day 12 post injection.  The female NOD mice were analyzed at 8 weeks of age.    
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3.1.2 The predominant function of LAG3 in autoimmune diabetes is limited to CD4+ 

and CD8+ T cells 

To assess the importance of LAG3 expression on different immune subsets in controlling 

autoimmune diabetes, we generated Lag3L/L-YFP conditional knockout-reporter mice 

(backcrossed to NOD/ShiLtJ for 12 generations – see Materials and methods) that lack 

cell surface expression of LAG3177,190, and thus cannot mediate signaling but continue to 

release sLAG3, specifically on CRE+ cells when crossed with cell-type specific CRE NOD 

mice (Fig. 5).  Although there is no evidence that sLAG3 affects T cell function 177,190, we 

took this approach to avoid this complication.  This mutant mouse also incorporated an 

IRES-YFP cassette inserted into the 3’ UTR as a reporter of Lag3 promoter activity (Fig. 

5). 
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Figure 5. Generation and validation of Lag3 conditional knockout-reporter mouse. 

 

(A) Schematic of WT and Lag3L/L-YFP loci.  (B) PCR products of the IRES-YFP cassette in genomic DNAs 

from mice shown.  (C) PCR products of Lag3 Exon3 and Exon7 in genomic DNAs from sorted cells 

shown.  (D) Surface LAG3 expression assessed by flow cytometry.  Act Sp, activated splenocytes.  

Splenocytes were activated with plate-bound αCD3 and αCD28 for 28 hours.  This figure is taken from 

fig. S2 of the manuscript “Zhang Q, et al. Sci. Immuno. (2017)”. 
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As LAG3 is mainly expressed on αβT cells among all the islet-infiltrating immune 

cells, we initially crossed Lag3L/L-YFP.NOD with Cd4Cre.NOD to assess the phenotype 

following global loss of surface LAG3 on all CD4+ and CD8+ T cells (Fig. 5).  Loss of LAG3 

surface expression on all CD4+ and CD8+ T cells (Lag3L/L-YFPCd4Cre.NOD) resulted in 

dramatically accelerated onset of autoimmune diabetes with 100% penetrance by 12 

weeks of age, which phenocopied our observations with Lag3–/–.NOD mice and 

suggested that the dominant function of LAG3 was indeed limited to αβT cell populations 

(Fig. 6) 112. 

 

 

Figure 6. Loss of LAG3 on T cells results in accelerated autoimmune diabetes. 

 

Diabetes onset and incidence monitored in Lag3L/L-YFPCd4CRE.NOD females and co-caged littermate 

controls.  The log-rank test was applied to Kaplan-Meier survival function estimates to determine the 

statistical significance.  ns, not significant; ****p < 0.0001.  This figure is taken from Fig. 2B of the 

manuscript “Zhang Q, et al. Sci. Immuno. (2017)”. 
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3.2 Impact of LAG3 on selecting diabetogenic CD8+ T cells 

3.2.1 The absence of LAG3 on CD8+ T cells results in accelerated autoimmune 

diabetes 

Even though CD4+Foxp3– T cells comprised ~60% of islet-infiltrating T cells, CD8+ and 

CD4+Foxp3+ T cells expressed a much higher level of LAG3 than CD4+Foxp3– T cells 

(Fig. 3 and 4), possibly due to differential regulation of LAG3 cleavage among T cell 

subsets.  LAG3 was highly upregulated on intra-islet CD8+ T cells, with a broad range of 

expression intensity (Fig. 3, 4 and 7), suggesting that heterogeneity of LAG3 expression 

exists within insulitic CD8+ T cells.  LAG3 was also co-expressed with other co-stimulatory 

and co-inhibitory receptors, consistent with an “exhausted” state in the pre-diabetic islets 

(Fig. 7).  I reasoned that the expression of LAG3 on CD8+ T cells might drive T cell 

exhaustion as seen in some of those teplizumab (anti-CD3) treated T1D patients and 

other diseases 56,228, and thus limit the pathogenesis of autoimmune diabetes.   

To evaluate the impact of LAG3 on CD8+ T cells, I crossed Lag3L/L-YFP.NOD with 

E8iCRE-GFP.NOD 227 mice carrying a CD8+ T cell-specific CRE that is driven by CD8α 

enhancer (Fig. 8).  Loss of LAG3 surface expression on CD8+ T cells (Lag3L/L-

YFPE8iCRE/CRE-GFP.NOD) resulted in accelerated autoimmune diabetes (Fig. 9), suggesting 

that LAG3 is required to limit the diabetogenicity of CD8+ T cells. 
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Figure 7. LAG3 is upregulated on insulitic CD8+ T cells. 

 

(A) vi-SNE clustering of ndLN, PLN, and Islet CD8+ T cells of WT females NODs based on the 

expression of markers shown (8 weeks of age, n = 11).  Expression of markers indicated were 

assessed using flow cytometry.  Processed flow cytometric data were used for vi-SNE clustering, 

which allows mapping of high-dimensional cytometry data onto two dimensions.  Each dot 

indicates a single CD8+ T cell.  The heat map (left) indicates expression levels of markers shown.   

(B) Representative plots of receptor expression on CD8+ T cells.  
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Consistent with accelerated diabetes, there was increased percentage of CD8+ T 

cells but decreased percentage of Tregs in the islets of Lag3L/L-YFPE8iCRE/CRE-GFP.NOD 

mice (Fig. 10A and B).  As LAG3-mediated signaling can be bidirectional, I reasoned that 

the increased CD8+ to Treg ratio in the absence of LAG3 on CD8+ T cells could result 

from the loss of extrinsic impact on Tregs, or the removal of an intrinsic effect on CD8+ T 

cells.  There was a trend, albeit not reaching significance, toward a higher number of 

intra-islet Tregs in the absence of LAG3 on CD8+ T cells (Fig. 10C).  There was no 

significant difference in the expression of CD73, CD39, CD25 (effector molecules for Treg 

function) 6 or Bcl2 (an anti-apoptotic factor) 229 in Tregs, either (data not shown).  This 

indicates that the percentage of insulitic Tregs was relatively reduced because of an 

increased number of CD8+ T cells in the absence of LAG3 on CD8+ T cells.   

 

Figure 8. Deletion of Lag3 Exon7 by E8i-CRE is specific to CD8+ T cells. 

 

qPCR quantification of Lag3 Exon7 (targeted region) relative to Exon3 (non-targeted 

region) in genomic DNAs of sorted naïve splenic CD4+ and CD8+ T cells (n = 5 individual 

mice).   
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Next, I assessed differences in WT vs. Lag3-deficient CD8+ T cells.  IGRP is one 

of the predominant β cell-specific autoantigens, and the NRP-v7 MHC-I tetramer contains 

an IGRP206-214 mimotope that can be recognized by IGRP206-214-reactive CD8+ T cells 230.  

The number of CD8+ T cells and IGRP206-214-reactive (NRP-v7+) CD8+ T cells were both 

substantially increased in the islets of Lag3L/L-YFPE8iCRE/CRE-GFP.NOD mice (Fig. 10C), 

indicating that the accelerated autoimmune diabetes observed in Lag3L/L-YFPE8iCRE/CRE-

GFP.NOD mice was perhaps a consequence of uncontrolled autoimmune responses 

mediated by CD8+ T cells.  An increased number of CD4+Foxp3– T cells was also 

observed in the pancreas of Lag3L/L-YFPE8iCRE/CRE-GFP.NOD mice perhaps because of 

 

Figure 9. Loss of LAG3 on CD8+ T cells results in accelerated autoimmune diabetes.  

 

Diabetes onset and incidence monitored in Lag3L/L-YFPE8iCRE/CRE-GFP.NOD and co-caged littermate 

controls.  The log-rank test was applied to Kaplan-Meier survival function estimates to determine the 

statistical significance.  ns, not significant; **p < 0.01, ****p < 0.0001. 
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enhanced inflammation in the islet (Fig. 10C), which may also contribute to the 

accelerated autoimmune diabetes of these mutant mice.    

 

Figure 10. LAG3 limits insulitic CD8+ T cell number. 

 

Representative flow plots (A), percent (B), and absolute number (C) of islet-infiltrating CD8+, 

CD4+Foxp3–, CD4+Foxp3+ T cells and NRP-v7+CD8+ T cells in Lag3L/L-YFPE8iCRE/CRE-GFP.NOD mice 

compared with cohoused controls (females, 8 weeks of age, n = 8 to 10, three independent 

experiments).  Error bars indicate SEM.  Horizontal black bars indicate means.  Nonparametric Mann-

Whitney test was used.  ns, not significant; *p < 0.05, **p < 0.01, ***p < 0.001. 
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3.2.2   LAG3 intrinsically limits IGRP-reactive CD8+ T cells to differentiate into 

pathogenic effector T cells 

Next, I assessed the impact of LAG3 on CD8+ T cell transcriptome and functionality.  

Since the Lag3L/L-YFP mouse incorporated the IRES-YFP cassette as a reporter for Lag3 

promoter activity (Fig. 5), I was able to partition insulitic CD8+ T cells into Lag3– vs. Lag3+ 

and “Lag3-wannbe” subsets based on YFP expression.  Lag3-YFP+CD8+ T cells from 

Lag3L/L-YFPE8iCRE/CRE-GFP.NOD mice had a transcriptionally active Lag3 promoter as 

indicated by the YFP expression but did not express LAG3 due to the genetic deficiency, 

so we refer these cells as “Lag3-wannabe” CD8+ T cells. 

I sorted Lag3-YFP+ and Lag3-YFP– CD8+ T cells from the islets of Lag3L/L-

YFPE8iCRE/CRE-GFP.NOD and Lag3L/L-YFP.NOD mice, as well as bulk CD8+ T cells from ndLN 

and PLN as LAG3 expression was not evident in the periphery (Fig. 3 and 7), and 

subjected these samples to RNA sequencing analyses.  CD8+ T cell transcriptional 

profiles were substantially affected by the islet microenvironment, as insulitic CD8+ T cells 

(square and circle) exhibited distinct transcriptomes compared to ndLN and PLN CD8+ T 

cells (triangle and diamond, respectively).  Furthermore, Lag3+ and Lag3-wannabe CD8+ 

T cells (circle) were also very different from the Lag3– cells (square) as indicated in the 

principle component analysis (PCA) plot (Fig. 11).  However, the differences between WT 

(grey) and Lag3-deficient (red) CD8+ T cells were not evident (Fig 11).  Some variability 

was also observed among the WT and mutant intra-islet Lag3– subsets (Fig 11), probably 

because this subset consisted of cells that had never expressed Lag3-YFP and cells that 
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had once expressed Lag3-YFP but downregulated its expression at the moment when 

the transcriptome was captured. 

  

Consistent with the transcriptional analysis, there were no significant differences 

in cytotoxic cytokine production 231 (IFNγ, TNFα, Granzyme B, Fig. 12), proliferation 232 

(Ki67, Fig. 13A), effector vs. memory phenotypes 233 (Klrg1 vs. CD127, Fig. 13C) or 

expression of key CD8+ T cell transcription factors 233 (T-bet and Eomes, Fig. 13B) in the 

absence of LAG3 on CD8+ T cells.  Both flow cytometric analyses and RNA sequencing 

analyses indicate that LAG3 may have very limited impact on CD8+ T cells at the bulk 

population level. 

 

Figure 11. The effect of Lag3 deletion on CD8+ T cell transriptome is not evident. 

 

Principle component analysis of CD8+ T cell RNAseq profiles shown (females, 8 weeks of age, two 

independent experiments).  Principal components PCA1 and PCA2, which explain 35.51% of the total 

variance observed, discriminate insulitic from peripheral CD8+ T cells and discriminate Lag3-YFP+ 

(either wildtype or Lag3-deficient) from Lag3-YFP– CD8+ T cells. 
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The lack of evident differences between WT and Lag3-deficient CD8+ T cells 

suggested by RNA sequencing PCA and flow cytometric analyses was very surprising, 

as the accelerated autoimmune diabetes was quite dramatic in the absence of LAG3 on 

CD8+ T cells (Fig. 9).  Interestingly, slightly enhanced apoptosis (as indicated by Bcl2–

aCasp3+ staining) 229 was observed in insulitic Lag3-deficient CD8+ T cells compared to 

WT CD8+ T cells (Fig. 14), indicating that the absence of LAG3 expression may promote 

CD8+ T cell death.  I reasoned that the absence of LAG3 expression may lead to certain 

pathogenic CD8+ T cell clones outcompeting others and contributing to the accelerated 

autoimmune diabetes observed in Lag3L/L-YFPE8iCRE/CRE-GFP.NOD mice. 

 

 

 

Figure 12. The absence of LAG3 does not affect cytokine production by CD8+ T cells. 

 

Percent of IFNγ+, TNFα+ and GranzymeB+ cells in CD8+T cells from Lag3L/L-YFPE8iCRE/CRE-GFP.NOD mice 

compared with cohoused controls (females, 8 weeks of age, n = 6, two independent experiments). 

Intracellular expression of IFNγ, TNFα and GranzymeB in CD8+ T cells was assessed in the organs 

indicated after 5 hour ex vivo stimulation with PMA and ionomycin.  Horizontal black bars indicate 

means.  Nonparametric Mann-Whitney test was used.  ns, not significant.  
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Next, I questioned whether the impact of LAG3 was limited to a small subset of 

pathogenic CD8+ T cells, which might be correlated with the heterogeneous LAG3 

expression in insulitic CD8+ T cells (Fig. 3, 4, and 7).  IGRP206-214-reactive CD8+ T cells 

have been identified as a prevalent population of pathogenic CD8+ T cells in autoimmune 

diabetes, and it has been shown that autoimmune diabetes development is associated 

with the frequency of IGRP206-214-reactive CD8+ T cells 230,234.  The absolute number and 

percentage of IGRP206-214-reactive (NRP-v7+) CD8+ T cells were significantly increased in 

the absence of LAG3 on CD8+ T cells (Fig. 10C, 15A and 15B).  The increased 

 

Figure 13. Phenotypic analysis of Lag3-deficient CD8+ T cells. 

 

Flow cytometric analysis of markers shown in CD8+ T cells in Lag3L/L-YFPE8iCRE/CRE-GFP.NOD mice 

compared with cohoused controls (females, 8 weeks of age, n = 7 to 8, three independent experiments). 

Error bars indicate SEM.  Horizontal black bars indicate means.  Nonparametric Mann-Whitney test was 

used.  ns, not significant. 
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percentage of IGRP206-214-reactive CD8+ T cells in the absence of LAG3 expression was 

also positively correlated with enhanced Klrg1 expression 231,233, a marker of antigen-

experienced effector cells (Fig. 15C and 15D).  Interestingly, we did not see similar 

differences in insulin B15-23-reactive CD8+ T cells 235 (Fig. 15), or at the whole population 

level (Fig. 13C), highlighting a potential role for LAG3 in the selection of certain 

pathogenic islet-antigen-reactive CD8+ T cell clones.  Taken together, these data suggest 

that LAG3 may selectively limit the ability of IGRP206-214-reactive CD8+ T cells to 

differentiate into pathogenic effectors. 

 

Figure 14. CD8+ T cell apoptosis is enhanced in the absence of LAG3. 

 

Flow cytometric analysis of markers shown in CD8+ T cells in Lag3L/L-YFPE8iCRE/CRE-GFP.NOD mice 

compared with cohoused controls (females, 8 weeks of age, n = 7 to 8, three independent experiments).  

aCasp3: active Caspase-3.  Horizontal black bars indicate means.  Nonparametric Mann-Whitney test 

was used.  ns, not significant; *p < 0.05, **p < 0.01. 
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Figure 15. LAG3 limits IGRP-reactive CD8+ T cells differentiate into effector cells. 

 

Representative flow plots (A) and percent (B) of tetramer+ cells in Lag3L/L-YFPE8iCRE/CRE-GFP.NOD mice 

compared with cohoused controls (females, 8 weeks of age, n = 9, three independent experiments).  (C) 

Percent of Klrg1+CD127– cells in tetramer+ cells as shown in (B), but only with the ones that have > 100 

tetramer+ cells.  (D) Correlation between the percent of tetramer+ cells and Klrg1 expression on tetramer+ 

cells.  InsB: a cocktail of insulin B15-23 mimotope H-2Kd tetramers; NRP-v7: IGRP206-214 mimotope H-2Kd 

tetramer.  Horizontal black bars indicate means.  Nonparametric Mann-Whitney test was used in (B) and 

(C).  Spearman r was calculated in (D).  ns, not significant; *p < 0.05, **p < 0.01. 
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3.3 Summary and discussion 

Previous work revealed that LAG3 is required to maintain self-tolerance in NOD mice 

112,113.  Using Lag3L/L-YFP conditional knockout-reporter mice 225 in combination with T cell 

subset-specific CREs (Lag3L/L-YFPCd4CRE.NOD 226 and Lag3L/L-YFPE8iCRE-GFP.NOD 227) and 

in comparison to the Lag3-global knockout mouse 112, I was able to determine the relative 

contribution of LAG3 expressed on CD4+ and CD8+ T cells vs. non-T cells.  LAG3 is highly 

upregulated on insulitic T cells, and its predominant expression on CD4+ and CD8+ T cells 

is necessary to limit the pathogenesis of autoimmune diabetes in NOD mice.   

The loss of LAG3 on CD8+ T cells alone is sufficient to promote early onset of 

autoimmune diabetes.  LAG3 may function by selectively limiting IGRP-reactive CD8+ T 

cells to differentiate into effector T cells.  Even though LAG3 is expressed at a lower level 

on insulitic CD4+Foxp3– T cells than CD8+ T cells, it may also limit the pathogenicity of 

CD4+Foxp3– T cells.  Currently, there are no CD4+ Teff-specific CRE mice, which limits 

our understanding of LAG3 function in regulating autoreactive CD4+ T cells.  However, a 

previous study has shown that transferring splenocytes that were reconstituted with Lag3-

deficient CD4+ Teffs was sufficient to promote accelerated autoimmune diabetes 112, 

indicating that LAG3 is also required to limit autoreactivity of CD4+ T cells. 

Notably, LAG3 expression is limited to the islet of NOD mice or the tumor of tumor-

bearing mice (Fig. 3 and 4), indicating that it may have a more important role in tissue-

specific tolerance than in systemic tolerance.  This is in line with early findings that Lag3–

/– mice on the B6 background do not develop spontaneous autoimmune disease, in 

contrast to Ctla4–/–.B6 mice 209-211.  This may provide a good rationale to target LAG3 in 
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the clinic particularly when systematic effect needs to be avoided.  However, it remains 

to be determined whether LAG3 is also expressed in other tissues.  A recent finding 

suggests that LAG3 is also expressed in cerebellum and facilitates the pathogenesis of 

Parkinson’s disease, indicating a role for LAG3 outside  182,185.  Additionally, LAG3 is also 

expressed on CD8αα+ IELs (Fig. 16), although its function on these cells remains to be 

determined. 

 It is interesting and surprising that RNAseq analysis and flow cytometric analysis 

revealed a relatively minimal difference between WT and Lag3-deficient CD8+ T cells at 

the whole population level, whereas the impact of LAG3 is predominantly seen on 

IGRP206-214-reactive clones but not on insulin B15-23-reactive clones (Fig. 15).  There are 

two possible explanations.  First, the expression of LAG3 on the cell surface may 

intrinsically affect the magnitude of TCR signaling, therefore limiting the avidity maturation 

of IGRP206-214-reactive CD8+ T cells.  It was reported that CD8+ T cell clones reactive to 

IGRP206-214 but not those reactive to insulin undergo functional avidity maturation during 

the progression of autoimmune diabetes, and that naïve high-avidity IGRP206-214-specific 

T cells are more diabetogenic than their low-avidity counterparts 236,237.  One could test 

this possibility using the following approaches: (1) Compare the frequency of high-avidity 

vs. low-avidity IGRP206-214-specific T cells between Lag3L/L-YFPE8iCRE/CRE-GFP.NOD and WT 

control mice using NRP (low-avidity), NRP-a7 (intermediate-avidity), and NRP-v7 (high-

avidity) tetramers 230.  (2) Compare the tetramer association and dissociation kinetics of 

insulitic WT vs. Lag3-deficient CD8+ T cells at different ages.  (3) Compare the diabetes 

onset and incidence of NRP-v7, or irrelevant peptide-treated Lag3L/L-YFPE8iCRE/CRE-

GFP.NOD and WT control mice.  Avidity maturation of IGRP206-214-reactive T cells in NOD 
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mice can be abrogated by repeated treatment with soluble NRP-v7 peptide 236.  If the 

absence of LAG3 promotes avidity maturation of IGRP206-214-reactive T cells, one would 

expect to see delayed diabetes onset in Lag3L/L-YFPE8iCRE/CRE-GFP.NOD mice treated with 

NRP-v7 compared to those treated with irrelevant peptide.   

Another possibility is that these intra-islet IGRP206-214-reactive CD8+ T cells are 

expanded from intestinal cross-activated CD8+ T cells.  Two separate studies have 

suggested that these IGRP206-214-reactive T cells can be cross-activated in the intestine 

238,239.  CD8αα+ IELs are immuno-suppressive 61, and express high level of LAG3 

compared to other IEL subsets (Fig. 16).  The E8i-CRE appears to also delete Lag3 in 

these CD8αα+ IELs (Fig. 16).  However, to test this possibility, one needs to determine 

that (1) whether CD8αα+ IELs lose suppressive capacity when they are deficient of LAG3 

expression, (2) whether there is a cross-activation and expansion of IGRP206-214-reactive 

T cells in the intestine of Lag3L/L-YFPE8iCRE/CRE-GFP.NOD, and (3) whether this clonal 

expansion is a cell-intrinsic effect of LAG3 on IGRP206-214-reactive T cells or cell-extrinsic 

effect through LAG3+CD8αα+ IELs.  Reconstitute of either WT or Lag3L/L-YFPE8iCRE/CRE-

GFP.NOD hosts with equally mixed congenic marker-mismatched bone marrows from WT 

and Lag3L/L-YFPE8iCRE/CRE-GFP.NOD donors will help to elucidate the cell-intrinsic vs. cell-

extrinsic effects. 

My findings may be relevant to clinical medicine.  It has been shown that CD8+ T 

cells are the most abundant population during insulitis in T1D patients, and the frequency 

of IGRP265-273-reactive CD8+ T cells increases after clinical diagnosis and insulin 

treatment 48,240-242.  Studies in NOD mice suggest that the pathogenesis of autoimmune 

diabetes is initiated by reactivity to insulin epitopes, and that functional epitope spreading 
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to IGRP206-214 or other epitopes promotes the development of ongoing autoimmune 

diabetes 63,235.  The differential impact of LAG3 on IGRP206-214-reactive and insulin B15-23-

reactive CD8+ T cells indicates that LAG3 may participate in pathogenic epitope 

spreading of autoimmune diabetes.  Understanding how LAG3 selectively limits 

differentiation of IGRP206-214-reactive CD8+ T cells into pathogenic effector cells may help 

to elucidate the mode-of-action of LAG3 in regulating autoimmune diabetes and self-

tolerance.  Future studies should focus on comparing phenotype and functionality of 

IGRP206-214-reactive and insulin B15-23-reactive WT and Lag3-deficient CD8+ T cells. 

  

 

 

 

Figure 16. Intestinal CD8αα+ IELs express high level of LAG3. 

 

Representative histograms of surface LAG3 expression on small intestinal IELs in Lag3L/L-YFPE8iCRE/CRE-

GFP.NOD mice compared with cohoused controls.  Numbers shown in the plots indicate the frequency of 

LAG3+ cells among CD8αα+ IELs. 
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4.0  Chapter 4: Role of LAG3 in Treg-mediated self-tolerance   

Preface:  

Co-inhibitory receptors are pivotal in controlling T cell homeostasis because of 

their cell-intrinsic regulation of Tconv proliferation, viability, and function 70.  However, the 

role of co-inhibitory receptors on Tregs remains more obscure because they could be 

required for suppressive activity and/or limit Treg function 6.  LAG3 is required for 

maintaining self-tolerance in NOD mice, and deletion of Lag3 in either all CD4+ and CD8+ 

T cells or just CD8+ T cells leads to accelerated autoimmune diabetes (Chapter 3) 112,113.  

LAG3 is also highly expressed on Tregs, a critical suppressive subpopulation of T cells 

that prevents autoimmunity but limits antitumor immunity 6,51.  Previous studies have 

suggested that LAG3 is used as a mechanism for Treg suppression 146,186,187.  However, 

it is also possible that LAG3 may intrinsically limit Treg function in a manner 

commensurate to its role on other T cell subsets.   

In this Chapter, two main questions will be addressed: (1) What is the cell-extrinsic 

vs. cell-intrinsic impact of LAG3 on Tregs?  (2) What are the differences between LAG3+ 

and LAG3– Treg transcriptomes or clonotypes? 

To assess the cell-extrinsic and cell-intrinsic impact of LAG3 on Tregs in regulating 

autoimmune diabetes, Lag3L/L-YFP conditional knockout-reporter mice 225 were crossed 

with Treg-specific CRE mice (Lag3L/L-YFPFoxp3CRE-GFP.NOD 213).  Additionally, the Lag3-

YFP and Foxp3-GFP reporters (Lag3L/L-YFPFoxp3GFP.NOD 243 and Lag3L/L-YFPFoxp3CRE-

GFP.NOD 213) allowed me to compare transcription and clonotype differences of LAG3+ 
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and LAG3– Treg subsets, and assess what changes are the cause vs. consequence of 

Lag3 expression in Tregs.   

The bioinformatics analysis in Chapter 4.1 (Fig. 25 and 26) was done by Dr. Maria 

Chikina (University of Pittsburgh), and analysis in Chapter 4.2 (Fig. 32) was done by Dr. 

Sasikanth Manne (University of Pennsylvania).   

Figures in Chapter 4.1 (Fig. 17 to 30) are taken from the publication “Zhang Q et. 

al. Sci. Imm. (2017)” 225 under the journal’s copyright permission.  All figures in Chapter 

4.2 are unpublished data.   
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4.1 Extrinsic and intrinsic impacts of LAG3 on Tregs 

4.1.1 The absence of LAG3 on Tregs results in reduced autoimmune diabetes 

Note: this sub-chapter is taken from the publication “Zhang Q et. al. Sci. Imm. (2017)” 225. 

As LAG3 has been shown to be required for optimal Treg function 6,146,186,187, we reasoned 

that the accelerated autoimmune diabetes observed in the Lag3–/–.NOD and Lag3L/L-

YFPCd4CRE.NOD mice might be partially due to the loss of LAG3 expression on Tregs.  I 

then assessed the impact of the loss of LAG3 surface expression on Tregs by analyzing 

Lag3L/L-YFPFoxp3CRE-GFP.NOD mice (Fig. 5).  Unexpectedly, female Lag3L/L-YFPFoxp3CRE-

GFP.NOD mice had significantly delayed onset of autoimmune diabetes, decreased 

diabetes incidence (48% vs. 84%) by 30 weeks of age, while male Lag3L/L-YFPFoxp3CRE-

GFP.NOD mice were completely protected from autoimmune diabetes (Fig. 17A).  

Although we only assessed a small number of co-housed female Lag3+/L-YFPFoxp3CRE-

GFP.NOD littermates, their diabetes incidence was 60%, suggesting that LAG3 exhibits 

haploinsufficiency.  While the absence of LAG3 on Tregs did not impact the degree of 

insulitis at 6 weeks of age, it did lead to a significant reduction at 10 weeks of age in 

female and male Lag3L/L-YFPFoxp3CRE-GFP.NOD mice (Fig. 17B), suggesting that the 

expression of LAG3 on Tregs had little impact on the initiation of islet infiltration but was 

critical to limit Treg-mediated self-tolerance and the onset of autoimmune diabetes. Taken 

together, these data suggest that LAG3 may limit Treg-mediated suppression of 

autoimmunity. 
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Figure 17. Loss of LAG3 on Tregs results in reduced autoimmune diabetes and insulitis. 

 

(A) Diabetes onset and incidence monitored in Lag3L/L-YFPFoxp3CRE-GFP.NOD females (top) and males 

(bottom) together with cohoused littermate controls.  (B) Histological assessment of insulitis performed 

in female and male Lag3L/L-YFPFoxp3CRE-GFP.NOD together with cohoused controls at 6 and 10 weeks 

of age (n = 4 to 7).  Horizontal black bars indicate the mean.  Error bars indicate SEM.  The log-rank 

was applied to Kaplan-Meier survival function estimates to determine the statistical significance in (A), 

and nonparametric Mann-Whitney test was used in (B).  ns, not significant; *p < 0.05, **p < 0.01, ***p 

< 0.001. 
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Consistent with the reduced insulitis and diabetes observed, there were reduced 

numbers of CD4+Foxp3– and CD8+ T cells in the islets of Lag3L/L-YFPFoxp3CRE-GFP.NOD 

mice (Fig. 18).  Although the number of Tregs in the islets of Lag3L/L-YFPFoxp3CRE-

GFP.NOD mice was decreased as a result of the reduced insulitis and inflammation, there 

 

Figure 18. Reduced lymphocyte infiltration into islets in the absence of LAG3 on Tregs. 

 

The frequency (top) and absolute number (middle) of CD8+, CD4+Foxp3–, and CD4+Foxp3+ in TCRβ+ 

cells, and the ratio (bottom) of CD8+ and CD4+Foxp3– T cells to CD4+Foxp3+ T cells in Lag3L/L-

YFPFoxp3CRE-GFP.NOD mice compared with cohoused littermates (females, 10 weeks of age, n = 12 to 

17, five independent experiments).  Horizontal black bars indicate means.  Nonparametric Mann-

Whitney test was used.  ns, not significant; *p < 0.05. 
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was a trend, albeit not reaching significance, toward a lower ratio of Tconv cells to Tregs 

(Fig. 18).  The proportion of Chromogranin A-reactive (BDC2.5mi+) CD4+ T cells and 

IGRP-reactive (NRP-v7+) CD8+ T cells was not altered in the islets of Lag3L/L-YFPFoxp3CRE-

GFP.NOD mice compared with controls, suggesting that Lag3-deficient Tregs may not 

selectively suppress specific sub-populations of diabetogenic T cells but rather globally 

impact all islet-infiltrating cells (Fig. 19).  This observation may have been anticipated 

 

Figure 19. The frequency of islet-Ag specific T cells are not affected by the loss of LAG3 on 

Tregs. 

 

Frequency of (top) chromogranin A mimotope (BDC2.5) tetramer+ in CD4+ T cells and (bottom) IGRP 

mimotope (NRP-v7) tetramer+ in CD8+ T cells in the islets of Lag3L/L-YFPFoxp3CRE-GFP.NODs compared 

with cohoused littermates (females, 10 weeks of age, n = 14, five independent experiments).  

Representative plots were shown on the left.  Horizontal black bars indicate means.  Nonparametric 

Mann-Whitney test was used.  ns, not significant. 

 

 



 76 

given that we have previously shown that only islet-antigen reactive T cells can enter the 

islets 216.  The reduced number of Tconvs in the islets of Lag3L/L-YFPFoxp3CRE-GFP.NOD 

mice was due to decreased CD8+ T cell proliferation (assessed by Ki67 expression and 

BrdU incorporation) and reduced expression of anti-apoptotic factor Bcl2 229 in 

CD4+Foxp3– T cells in islets (Fig. 20 and 21).  Both CD4+Foxp3– and CD8+ T cells in the 

islets of Lag3L/L-YFPFoxp3CRE-GFP.NOD mice had significantly reduced expression of 

TNFα but not IFNγ (Fig. 22).  A significant reduction in IL-2 production was also observed 

in CD4+Foxp3– T cells in the islets of Lag3L/L-YFPFoxp3Cre-GFP.NOD mice (Fig. 22).  There 

was a trend, albeit not reaching significance, toward an increased percentage of Th2 and 

Th17 cells (Fig. 22).  Although the activation, terminal differentiation [as marked by 

KLRG1 expression 244], and proliferation of Lag3-deficient and WT Tregs were 

comparable, Lag3-deficient Tregs expressed higher levels of the anti-apoptotic factor 

Bcl2 in the islets (Fig. 20, 21, and 23).  ICOS, which has been shown to be critical for 

Treg homeostasis and functional stability in NOD mice 82, was also up-regulated on intra-

islet Tregs in the absence of LAG3 (Fig. 23).  The expression of multiple co-inhibitory 

receptors (PD1, TIGIT, and TIM3) was slightly enhanced on Lag3-deficient Tregs (Fig. 

23), implying a cell intrinsic process in Tregs to compensate for the loss of LAG3.  

However, the suppressive capacity of intra-islet and peripheral WT and Lag3-deficient 

Tregs in an in vitro micro-suppression assay was comparable on a per-cell level (Fig. 24).  

Overall, these data suggest that Lag3-deficient Tregs have enhanced suppression toward 

autoreactive T cell proliferation, effector cytokine production, and probably viability (as 

suggested by Bcl2 expression) in vivo, perhaps at the population level as a result of their 

enhanced proliferative and survival capacity. 
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Figure 20. Intrisic and extrinsic impact of Treg-expressed LAG3 on T cell proliferation. 

 

Proliferation of T cells assessed by Ki67 expression and BrdU incorporation (females, 10 weeks of age, 

n = 8, three independent experiments).  Each mouse was injected with 2mg BrdU in PBS 

intraperitoneally 8 hours ahead of sacrifice.  Representative staining plots of intra-islet T cells were 

shown in (A).  Horizontal black bars indicate means.  Nonparametric Mann-Whitney test was used.  ns, 

not significant; *p < 0.05. 
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Figure 21. Intrinsic and extrinsic impact of Treg-expressed LAG3 on Bcl2 expression in T cells. 

 

Expression of anti-apoptotic factor Bcl2 in T cells (females, 10 weeks of age, n = 9 to 10, three 

independent experiments).  Representative histograms were shown in (A).  Horizontal black bars 

indicate means.  Nonparametric Mann-Whitney test was used.  ns, not significant; *p < 0.05. 

 



Figure 22. Effector cytokine production in the absence of LAG3 on Tregs. 

Flow cytometric analysis of cytokines in Tconvs shown (n = 7 to 9, three independent experiments, 10 

weeks of age; all female mice).  Cells were ex vivo stimulated with PMA and ionomycin for 5 hours 

before staining.  Horizontal black bars indicate means.  Nonparametric Mann-Whitney test was used. 

ns, not significant; *p < 0.05, **p < 0.01.  
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Figure 23. Phenotypic analysis on Lag3-deficient Tregs. 

Flow cytometric analysis of markers in Tregs (top: n = 7 to 10, three independent experiments, 8 weeks 

of age; bottom: n = 9 to 11, four independent experiments, 10 weeks of age; all female mice).  Horizontal 

black bars indicate means.  Nonparametric Mann-Whitney test was used.  ns, not significant; *p < 0.05. 
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4.1.2 LAG3 intrinsically limits Treg proliferation 

Note: this sub-chapter is taken from the publication “Zhang Q et. al. Sci. Imm. (2017)” 225. 

To assess the impact of Lag3 deletion on the Treg transcriptome, we performed RNA 

sequencing of WT and Lag3-deficient Tregs from the islets and ndLN.  A substantial 

number of genes and pathways were modulated by the loss of LAG3 expression on Tregs 

in the islets (Fig. 25A).  Interestingly, a group of genes were down-regulated in intra-islet 

WT but not Lag3-deficient Tregs, compared to peripheral Tregs (Fig. 25B), suggesting 

 

Figure 24. Functional analysis on Lag3-deficient Tregs. 

 

Suppressive capability of Tregs assessed by micro-suppression assay in vitro (n = 3).  Division index of 

responder cells was measured based on division of the proliferation dye CellTrace Violet.  Treg 

suppression was calculated using the formula %Suppression = (1-DITreg/DICtrl).  DITreg stands for the 

division index of responder cells with Treg cells, and DICtrl stands for the division index of responder cells 

activated without Treg cells.  Data were presented as mean ± SEM.  Nonparametric Mann-Whitney test 

was used.  ns, not significant. 
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that these genes might be required for optimal Treg function or survival, and that LAG3 

may limit their expression in intra-islet Tregs. 

 

 

Figure 25. LAG3 alters the Treg 

transcriptome. 

(A) Heat map of differentially expressed 

genes in Lag3-deficient versus WT ndLN 

and intra-islet Tregs. Fold change in 

gene expression was relative to WT 

Tregs from ndLN and shown as the mean 

of independent triplicates (females, 8 

weeks of age).  The dendrogram was 

calculated based on standard Euclidean 

distance mean linkage clustering and 

rotated to sort the values in intra-islet 

Tregs of Lag3L/L-YFPFoxp3CRE-GFP.NOD 

mice.  (B) Heat map of genes that were 

down-regulated in intra-islet WT Tregs 

but still maintained in Lag3-deficient 

Tregs.  The dendrogram was rotated to 

sort the values (low to high) in intra-islet 

Tregs of Foxp3CRE-GFP.NOD mice. si-

Ikzf4, Ikzf4 siRNA. RL, Renilla Luciferase 

(control siRNA). (C) Scatterplot of the 

Eos targeted genes in Lag3-deficient 

versus WT Treg expressional profiles. 
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One of the enhanced genes in insulitic Lag3-deficient Tregs was Ikzf4 (Eos), a 

corepressor of Foxp3 that prevents the expression of Tconv genes in Tregs (Fig. 25) 

21,22,157,245.  Strikingly, the expression profile of intra-islet WT Tregs resembled the 

previously published transcriptional signature in Ikzf4-knockdown Tregs, whereas the 

expression profile of intra-islet Lag3-deficient Tregs resembled the transcriptional 

signature in mock control Tregs (Fig. 25) 21.  These data suggest that LAG3 might limit 

Eos expression, and thus the function and maintenance of intra-islet Tregs.  IL-2 is known 

to be essential for Treg cell maintenance, and defective IL-2 signaling in Tregs triggers 

autoimmune islet destruction 17,120,246.  Genes modulated by IL-2–STAT5 signaling were 

substantively enhanced in the absence of LAG3 on Tregs (Fig. 26).  Overall, the 

transcriptome analyses suggest that LAG3 negatively regulates intra-islet Tregs by down-

regulating key genes and pathways that are essential for Treg maintenance and function. 
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Figure 26. IL-2–Stat5 pathway is modulated by LAG3 expression in Tregs. 

 

(A) Differentially expressed IL-2–Stat5 targeted genes shown in x-y dot plots.  Labels denoted genes 

from mSigDB HALLMARK_IL2_STAT5_SIGNALING that were significantly upregulated (red) or 

downregulated (blue) in Lag3-deficient Tregs compared with WT Tregs.  (B) Barcode plots depicting the 

enrichment of genes in the mSigDB WIERENGA_STAT5_TARGETS_UP and 

HALLMARK_IL2_STAT5_SIGNALING pathways.  Statistics denoted the Wald statistic used to test the 

significance of coefficients in a negative binomial generalized linear model. 

 



 85 

To directly assess whether Lag3-deficient Tregs had a proliferative advantage over 

WT Tregs, and to determine whether the pathways identified by transcriptome analysis 

were intrinsically regulated by LAG3 in Tregs, we co-transferred an equal number of 

activated congenic marker-mismatched WT (Thy1.1+) and Lag3-deficient (Thy1.2+) Tregs 

into NOD (Thy1.1+Thy1.2+) hosts (Fig. 27A).  Both WT and Lag3-deficient donor Tregs 

were sorted from mice that expressed the islet antigen-specific BDC2.5 TCR, which 

facilitated islet entry 216,247.  Foxp3 expression was unaltered in both Treg populations 

following adoptive transfer (Fig. 28), suggesting that LAG3 may not impact Treg stability.  

Strikingly, Lag3-deficient Treg cells out-competed WT Treg cells in the islets (60% vs. 

40%, respectively) and in the PLN (54% vs. 46%, respectively) but not in the ndLN (Fig. 

27B and 27C). 
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Figure 27. Lag3-deficient Tregs out-compete WT Tregs. 

 

(A) Schematic of Treg cotransfer experiment.  (B) Representative plots of Thy1.1+ (WT, blue) and 

Thy1.2+ (Lag3-deficient, red) Tregs (gated CD4+Vβ4+) in NOD recipients (grey).  (C) Proportion of WT 

and Lag3-deficient Tregs in the islets and lymph nodes assessed with the percentage of Thy1.1+ and 

Thy1.2+ in CD4+Vβ4+ cells after transfer (n = 17, three independent experiments; all female mice).  Data 

were presented as mean ± SEM.  Nonparametric Mann-Whitney test was used in (C).  ns, not significant; 

****p < 0.0001.   
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Previous studies have shown that reduced CD25 and Bcl2 levels cause a decline 

in intra-islet Treg viability, while administration of low-dose IL2 promotes Bcl2 expression 

and Treg survival 17,248,249. A higher percentage of intra-islet Lag3-deficient versus WT 

Tregs expressed Ki67 and Bcl2 (Fig. 29).  Although differences were also observed in 

the periphery in these co-transfer experiments, this is probably due to the activation of 

Tregs in vitro prior to adoptive transfer.  Consistent with the transcriptomic analysis, Lag3-

 

Figure 28. Foxp3 expression is not affected by LAG3 expression in Tregs. 

 

(A) Representative histogram of Foxp3-GFP expression in Tregs before and after transfer.  (B) Foxp3 

expression in co-transferred Tregs (female hosts, n = 17, three independent experiments).  Horizontal 

black bars indicate means.  Nonparametric Mann-Whitney test was used in (B).  ns, not significant. 

 



 88 

deficient Tregs exhibited higher CD25 expression and STAT5 phosphorylation, compared 

with WT Tregs (Fig. 29).  Furthermore, Eos (Ikzf4) expression was reduced in WT but not 

Lag3-deficient intra-islet Tregs compared with periphery Tregs, whereas another Ikaros 

family member, Helios (encoded by gene Ikzf2), was unaffected by LAG3 expression (Fig. 

29). 

To determine whether LAG3 modulated Eos expression and whether this might 

impact Treg proliferation, I first assessed Eos levels in WT and Lag3-deficient Tregs 

following stimulation in vitro.  As anticipated from our transcriptomic analysis, Lag3-

deficient Tregs exhibited enhanced Eos expression after stimulation, compared to WT 

Tregs (Fig. 30).  Likewise, activated Lag3-deficient Tregs exhibited increased proliferation, 

as measured by BrdU incorporation, over WT Tregs.  Importantly, knockdown of Ikzf4 in 

Lag3-deficient Tregs reduced Eos expression and Treg proliferative capacity, whereas 

overexpression of human IKZF4 in WT Tregs enhanced Treg proliferation (Fig. 30).  

Taken together, these data support a model in which LAG3 intrinsically limits Treg 

proliferation and viability by modulating pathways that are critical for Treg function and 

proliferation, particularly the IL-2/STAT5 and Eos pathways.  
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Figure 29. LAG3 intrinsically limits Treg proliferation. 

 

(A) Representative histograms of markers shown in co-transferred intra-islet Tregs.  (B) Flow cytometric 

analysis of markers shown.  Horizontal black bars indicate the mean (n= 12 to 17, two to three 

independent experiments; all female mice).  Nonparametric Mann-Whitney test was used in (B).  ns, not 

significant; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 

 



Figure 30. LAG3 limits Treg proliferation through Eos pathway. 

Representative flow plots of Eos expression (A) and BrdU incorporation (B), and statistics (C) in Tregs 

shown.  WT, Foxp3CRE-GFP.NOD; KO, Lag3L/L-YFPFoxp3CRE-GFP.NOD; NTC, non-targeting control; EV, 

empty vector pMIA.  BrdU was pulsed into Treg culture media 2 hours prior to the staining.  Fisher’s 

LSD test was applied to one-way ANOVA to determine the statistical significance. ns, not significant; *p 

< 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 
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4.2 Transcription and clonotype differences between Lag3+ and Lag3– Treg 

subsets  

4.2.1 Lag3 is preferentially expressed in a subset of Tregs but is not necessarily 

a Treg differentiation factor 

Not all intra-islet Tregs express LAG3 (Fig. 3 and 4), suggesting that heterogeneity exists 

among these Tregs.  One wonders whether: (1) the signaling through LAG3 receptor 

drives intra-islet LAG3+ Tregs to differentiate into a unique subset; or (2) LAG3 is 

preferentially expressed on a distinct subset of Tregs in the islet microenvironment, and 

if so, what cell-intrinsic and cell-extrinsic factors upregulate or maintain LAG3 expression 

in Tregs.  To address these questions, I sorted LAG3– (GFP+YFP– from Lag3L/L-

YFPFoxp3GFP.NOD and Lag3L/L-YFPFoxp3CRE-GFP.NOD), LAG3+ (GFP+YFP+ from Lag3L/L-

YFPFoxp3GFP.NOD), and LAG3-wannabe (GFP+YFP+ from Lag3L/L-YFPFoxp3CRE-GFP.NOD) 

Tregs from ndLN and islets at various ages for further bioinformatics analysis (Fig. 31).  I 

included Treg subsets from Lag3L/L-YFPFoxp3CRE-GFP.NOD mice so that I could ask 

whether the differences between LAG3+ vs. LAG3– Tregs were the cause or consequence 

of Lag3 expression in Tregs.  I utilized the transcriptional profiling of these Treg subsets 

to identify the potential “upstream” regulators and “downstream” targets of LAG3. 
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As expected, Tregs from different stages and tissues exhibited distinct 

transcriptional profiles (PC dimension 1 and 2) (Fig. 32).  Although there was a noticeable 

variability between the duplicates at 6 weeks of age, technical issues were not detected.  

This may be because the islet microenvironment is being dramatically re-shaped during 

the initiation stage of insulitis and autoimmune diabetes, and thus the Treg transcriptome 

is drastically variable between mice to mice at young ages.  More biological repeats are 

needed to clarify the variability.  Nevertheless, the YFP+ and YFP– Tregs separated into 

very distinct subsets, whereas the transcriptional differences between LAG3+ and LAG3-

 

Figure 31. LAG3–, LAG3+, and LAG3-wannabe Tregs. 

 

Representative flow plots of Treg subsets from ndLN and islet of Lag3L/L-YFPFoxp3GFP.NOD and Lag3L/L-

YFPFoxp3CRE-GFP.NOD mice (female, 10 weeks of age).  Treg subsets were identified based on Lag3-

YFP and Foxp3-GFP expression.   
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wannabe Tregs were relatively small (PC dimensions 2 and 3) (Fig. 32).  This indicates 

that Lag3 is preferentially expressed in a distinct subset of Tregs but may not be a major 

driving factor for Treg differentiation. 

 

   

 

Figure 32. LAG3+ and LAG3– Tregs are distinct subsets. 

 

Principle component analysis of RNAseq profiles shown (females; 6, 10, and 14 weeks of age as 

indicated, two repeats per time point). 
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4.2.2 Lag3 is selectively and stably expressed on a proportion of intra-islet Treg 

clones 

Since Lag3 seemed to be preferentially expressed on a subset of intra-islet Tregs, I asked 

whether the Lag3+ and Lag3– Tregs were derived from the same or distinct Treg clones.  

To address this question, I performed sequencing of TCRβ chain CDR3 region of islet-

infiltrating and ndLN YFP+ vs. YFP– Treg subsets.  Consistent with the transcriptional 

profiling, intra-islet YFP+ Tregs were more clonally expanded in comparison to YFP– 

Tregs, but the lack of Lag3 did not affect Treg clonality (Fig. 33A to 33C), suggesting that 

Lag3 is selectively expressed on some Treg clones and may not have a selective effect 

on Treg clonal expansion.    

Next, I asked whether Lag3 expression was stable in insulitic Tregs.  If LAG3 

expression in Tregs were transient or dynamically changing, one would expect to see a 

large percent of the same clones in both YFP+ and YFP– Tregs.  However, intra-islet YFP+ 

and YFP– Tregs only shared ~5% of their TCR repertoires (Fig. 33D), indicating that Lag3 

expression in these insulitic Treg clones is stable.  Together, these data suggest that 

LAG3 is preferentially and constitutively expressed on a subset of intra-islet Tregs. 



 95 
 

Figure 33. LAG3+ and LAG3– Tregs do not share the same TCR β chain usage. 

(A) Productive clonality (0 to 1) of different Treg subsets shown.  A low clonality indicates a relative 

diverse sample, while a high clonality number indicates that the sample is dominated by a few high-

frequency clones.  (B) Total percentage of top 10 frequent clones in each sample.  (C) Percentage of 

most frequent (>1.0%) TCR sequences in each sample.  Each column indicates a TCR sequence.  (D) 

Repertoire overlap between subsets compared within the same individual mouse.  Shown as the mean 

Morisita overlap index of three individual mice (female, 10 weeks of age).  Morisita index is equal to 0 if 

the samples do not have any shared TCR clones, and it is equal to 1 if the same TCR clones occur in 

the same frequencies in both samples.  See Chapter 2.11 for detailed analysis methods.  
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4.3 Summary and discussion 

My study supports a model in which LAG3 is preferentially and constitutively expressed 

on a subset of Tregs, and intrinsically limits Treg proliferation and functionality by 

repressing pathways that promote the maintenance of Tregs at inflammatory sites.  Lag3-

deficient Tregs do not appear to have increased suppressive capacity on a per-cell basis.  

However, they do have an enhanced proliferative and survival advantage that potentiates 

their suppressive capacity at the population level, endowing them with a critical advantage 

over time.  As disease progresses, subtle changes in Lag3-deficient Tregs allow these 

cells to accumulate over time, leading to a substantial impact on the development of 

chronic autoimmune diabetes.  It is remarkable that this small, Treg-restricted genetic 

alteration renders male NOD mice resistant to diabetes and substantially limits 

autoimmune diabetes in female mice, whereas LAG3 deletion in all T cell subsets 

markedly accelerates the disease.  Thus, in an autoimmune environment where chronic 

inflammation dominates, LAG3 may be constitutively expressed on Tregs, thereby limiting 

their capacity to block the function of diabetogenic T cells and prevent autoimmune 

diabetes.   This raises the possibility that constitutive co-inhibitory receptor expression on 

Tregs may underlie their insufficiency in autoimmune disease.  It is also possible that 

increased or constitutive LAG3 expression on Tregs may also limit their suppressive 
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capacity in inflammatory or infectious diseases where increased tissue damage or 

pathology is observed. 

The impact of co-inhibitory receptors on Treg function and maintenance has been 

controversial.  It was reported that the absence of PD1 on Tregs led to generation of ex-

Foxp3 T cells 250.  However, Foxp3 stability was maintained in the absence of LAG3 on 

Tregs, suggesting distinct pathways are regulated by LAG3 in Tregs.  Although my 

observations here do not preclude a role for LAG3 in promoting Treg suppression 

6,146,186,187, my data do point to a dominant role for LAG3 in limiting Treg maintenance and 

proliferation.  This may, in part, be mediated by the Foxp3 corepressor Eos, which is 

required for Treg maintenance 21,22.  Indeed, there seemed to be a direct correlation 

between Eos expression and Treg proliferation, as both were higher following stimulation 

of Lag3-deficient Tregs, and the overexpression or knockdown of Eos resulted in analog 

alterations in Treg proliferation.  Furthermore, enhanced IL-2/STAT5 signaling has been 

clearly shown to promote Treg maintenance and survival 17,120,246,248,249.  LAG3 appears 

to limit this pathway, thereby having a global impact on Treg function.  Future studies may 

shed light on two further questions: (1) Do other IRs promote or limit Treg function, 

proliferation and/or survival?  (2) Do these IRs affect these Treg parameters using 

comparable or distinct mechanisms?  In Appendix A, I show that specific deletion of PD1 

in Tregs exhibited similar effect as deletion of LAG3 in Tregs on autoimmune diabetes in 

the NOD mouse model.   

The constitutive expression of LAG3 on some Tregs may be a consequence of 

chronic TCR stimulation in the islet microenvironment.  My observations suggest that 

LAG3 is preferentially and stably expressed on certain insulitic Treg clones, although 
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lineage tracing mice (Rosa26-reporter x Lag3CRE-ERT2) will give a more definitive answer.  

There are two questions to follow up.  (1) What are the cell-extrinsic factors that 

upregulate and maintain LAG3 expression?  Even though a small proportion of Lag3-

YFP+ Tregs were also observed in the periphery, the percent of intra-islet LAG3+ Tregs 

was two-fold higher than that in the periphery. In addition, levels of LAG3 (MFI of LAG3 

staining or Lag3-YFP) on insulitc LAG3+ Tregs was at least 3 to 4-fold higher than on 

peripheral Tregs (Fig. 3, 4 and 31).  This indicates that factors within the islet-

microenvironment may upregulate and sustain the constitutive LAG3 expression on 

Tregs.  Interestingly, preliminary analysis using the MHC-II tetramer cocktail containing 

insulin B9-23 mimotopes (p8G/E) showed that some of these intra-islet Lag3-YFP+ Tregs 

were reactive to insulin, and this observation was also applicable to Lag3-

YFP+CD4+Foxp3– T cells (Fig. 34).  However, none of these insulin-reactive Tregs or 

Teffs were Lag3-YFP–.  Given that all the islet-infiltrating T cells are islet-antigen specific 

216, one wonders whether these intra-islet Lag3-YFP+ T cells express LAG3 as a 

consequence of chronic stimulation by those predominant islet-antigens, which may be 

affected by TCR affinity as well as the availability and amount of islet-antigens.  In site 

immunostaining of intra-islet Tregs may help to determine the localization of intra-islet 

Lag3-YFP+ vs. Lag3-YFP– Tregs in connection with APCs and islet-antigens.  (2) What 

are the transcriptional programs that intrinsically regulate Lag3 expression in Tregs?  The 

RNA-seq results suggest that Lag3-YFP+ and Lag3-YFP– Tregs might be distinct subsets.  

However, some of these differences may be a consequence of LAG3 expression on the 

cell surface and the subsequent signaling through LAG3.  By comparing Lag3-YFP+ with 

Lag3-wannabe Tregs, it may be possible to identify the genes that are affected by LAG3 
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signaling, and determine the transcriptional programs that regulate Lag3 expression.  

Identifying cell-extrinsic and cell-intrinsic factors that regulate Lag3 expression may 

provide new approaches to modulate LAG3 in the clinic.   

 

  

 

 

Figure 34. Proportion of LAG3+ Tregs that are reactive to insulin. 

Staining of insulin B9-23 tetramers on Lag3-YFP+ Tregs and Teffs (females, 10 weeks of age).  
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5.0  Chapter 5: Hypotheses for future studies   

Here, I propose several hypotheses on two topics that are relevant to my PhD study: (1) 

relative contribution and transcriptional regulation of different co-inhibitory receptors, and 

(2) a proposal for the revised “two-checkpoint hypothesis”.    

5.1 Relative contribution and transcriptional regulation of different co-

inhibitory receptors 

It has been more than 20 years since the co-inhibitory receptor CTLA4 was shown to 

negatively regulate T cell activation 210,211.  Several other critical co-inhibitory receptor 

pathways have also been discovered and characterized since then.  These receptors 

include PD1, which is now being actively targeted in the clinic, and LAG3, TIGIT and TIM3 

251-253.  The success of CTLA4 or PD1 blockade has revolutionized current cancer 

immunotherapies 251,254.  A better understanding of their modes of action will ultimately 

help improve the efficacy of targeting these receptors in the clinic.  Here, I will speculate 

some future directions. 
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5.1.1 The overall impact of co-inhibitory receptors may depend on which 

immune population(s) play the dominant role 

Note: this part of the discussion was taken from the publication “Zhang Q et. al. Sci. Imm. 

(2017)” with slight modifications 225. 

My observations (Chapter 3 and Chapter 4) highlight the differential impact of 

LAG3 modulation on different T cell subsets in vivo, where LAG3 modulation alleviates or 

exacerbates disease, depending on whether Treg or Tconv cells are targeted.  The impact 

of losing LAG3 on Tregs leads to enhanced immune suppression and therefore may offset 

the effect of blocking the LAG3 pathway in Tconvs.  Indeed, one wonders if this might 

underlie the lack of efficacy observed on tumor growth with LAG3 blockade alone 203.  

These findings may also apply to other co-inhibitory receptors 252,253, whose intrinsic effect 

on Tregs might have been previously overlooked.  In Appendix A, I show that deletion of 

PD1 on Tregs also results in protection from autoimmune diabetes, while anti-PD1 

treatment leads to accelerated autoimmune diabetes in NOD mice 112.   

My findings may have clinical relevance in that patients who fail to respond to 

checkpoint blockade immunotherapy may do so because it has a greater impact on 

promoting Treg function than mitigating Tconv exhaustion.  Thus the efficacy of 

immunotherapy in a particular patient may be modulated by the Tconv:Treg cell ratio 

and/or co-inhibitory receptor expression on different T cell subsets.  Given that anti-LAG3 

has entered phase I clinical trials for multiple tumor types with the goal to enhance the 

efficacy of PD1 blockade, we should consider the differential impact this might have on 

Treg function and survival versus Tconv exhaustion, as well as the strategies that 
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specifically target checkpoints on Tconvs or Tregs to boost anti-tumor immunity or 

mitigate autoimmunity, respectively. 

5.1.2 Co-inhibitory receptors may function distinctively but cooperatively to 

regulate T cell tolerance 

It is evident that PD1 and LAG3 act synergistically in several different disease models 

(introduced in Chapter 1), as the impact is maximized when both pathways are targeted, 

compared to conditions in which either one is targeted 113,200,201,203,204.  However, it is less 

clear how these two pathways cooperate with each other to exert downstream effects.  It 

is possible that these two different co-inhibitory receptors function via different modes and 

mediate distinct signaling pathways to regulate T cell activities, which may lead to 

differential requirement of these two receptors in T cell tolerance.  There are a couple of 

clues to this speculation.   

First, PD1 and LAG3 expression patterns are distinct.  While LAG3 surface 

expression on T cells is more limited to specific tissues in diseased mice, such as 

pancreas in NOD mice and tumors in tumor-bearing mice, PD1 is readily observed on T 

cells in peripheral lymphoid compartments (Fig. 4).  Additionally, LAG3+ T cells are 

usually also PD1+, which may partially explain why targeting PD1 often results in a greater 

effect than targeting LAG3 113,200,201,203.  Several questions remain to be answered: (1) 

What is the stimulation requirement to induce PD1 vs. LAG3 expression on T cells?  

Perhaps PD1 expression is induced by tonic stimulation and further enhanced by chronic 

TCR stimulation, whereas LAG3 expression is induced by strong or chronic TCR 

stimulation.  (2) Is the expression of PD1 or LAG3 stable or dynamically changing?  
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Lineage tracing mice, such as Rosa26-reporter x Lag3CRE-ERT2 or Pdcd1CRE-ERT2, will 

probably provide an answer to this question.  (3) Are there any T cell subsets that uniquely 

express LAG3 but not PD1, and what are their function?  LAG3 is highly expressed on 

CD8αα+ IELs (Fig. 16), but it is not clear whether LAG3 is expressed as a consequence 

of chronic stimulation in the intestine, or whether LAG3 mediates any immunosuppressive 

activities of these cells.  Understanding how expression of PD1 and LAG3 is regulated 

will help improve the precision of targeting these receptors.   

 Second, signaling pathways downstream of PD1 and LAG3 may be different.  The 

intracellular domains of PD1 and LAG3 are distinct.  PD1 cytoplasmic tail possesses two 

phosphorylation sites with one located in an ITIM and the other located in an ITSM, which 

recruit the phosphatases Src homology region 2 domain-containing phosphatase-1 (SHP-

1) and SHP-2 that limit TCR signaling 179, whereas LAG3 cytoplasmic tail lacks ITIM or 

ITSM domains and possesses unique conserved motifs among all known immune 

receptors 176.  However, there is little understanding of LAG3 signaling pathway.  Thus, 

future studies deciphering the function of conserved domains within LAG3 intracellular 

tail may advance our understanding of LAG3 signaling.  Furthermore, PD1 and LAG3 

pathways may regulate the expression of different genes.  For instance, genes that are 

normally affected in Pdcd1-deficent CD8+ T cells were not evidently impacted in Lag3-

defcient CD8+ T cells (Fig. 12 and 13).   This implies that PD1 and LAG3 may not share 

the same downstream targets and that LAG3 may mediate distinct function from PD1 in 

T cell tolerance.  This may also provide some clues to why in an autoimmune-prone 

background, PD1 and LAG3 play non-redundant roles and loss of either pathway leads 

to catastrophic autoimmune responses; while in anti-tumor or anti-infection immunity, dual 
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blockade is usually required to maximally reinvigorate T cell responses.  However, it 

should be noted that those observations were taken from different disease models.  

Studies comparing the relative contribution of PD1 and LAG3 in the same disease 

settings may help tailor appropriate combinations of checkpoint blockade-mediated 

immunotherapies, as the differential expression and function of PD1 and LAG3 may affect 

the timing and dosing of antibody administration.    

5.1.3 The expression of co-inhibitory receptors may be coordinated by a core of 

transcription factors  

Most recent studies focus on pathways downstream of co-inhibitory receptors, but little is 

known about how their expression is regulated at genetic or transcriptional level.  PD1 

and LAG3, as well as other co-inhibitory receptors, appear to be co-expressed on T cells, 

albeit to differing degrees 56,113,200-202,204.  This co-expression pattern was also observed 

in the autoimmune diabetes model (Fig. 4 and 7).  One may speculate that it would be 

more economical if the expression of co-inhibitory receptors were coordinated by a 

“master” transcription factor together with other transcriptional and epigenic “modifiers” 

(these “modifiers” can either promote or repress receptor expression).   

Current technology may help to test this hypothesis.  First, to identify transcription 

factor candidates: single cell RNA-seq profiling may provide a list of potential transcription 

factors that exist in cells co-expressing multiple different co-inhibitory receptors, but the 

“master” transcription factor should also exist in cells that may only express one or two 

receptors.  Second, to screen cis-regulatory elements in co-inhibitory receptor genes: 

using bioinformatics, one could identify conserved cis-regulatory DNA sequences that 
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may be shared between different co-inhibitory receptors and that may be bound by 

transcription factors identified above.  Third, to verify that these cis-regulatory elements 

indeed regulate co-inhibitory receptor expression: using DNase I hypersensitivity assays, 

one could verify cis-regulatory elements that are critical in regulating all or most of the co-

inhibitory receptors, and cis-regulatory elements that may be important for a specific 

receptor.  Fourth, to verify that these transcriptional factors indeed take part in co-

inhibitory receptor expression: using Crispr/cas9 technology, one could either 

overexpress or knockdown/knockout transcription factors in WT and mutant T cells 

lacking the cis-regulatory element that may be bound by the tested transcription factor. 

Even if co-inhibitory receptors are not co-regulated by a “master” transcription 

factor, it is still worthwhile to identify genetic factors that regulate the expression of co-

inhibitory receptors, as such regulatory factors may point to new clinical targets to 

manipulate co-inhibitory pathways.   

5.2 A proposal for the revised “two-checkpoint hypothesis” 

We have gained significant insight on how autoimmune diabetes is checked at each stage 

of its pathogenesis since the original “two-checkpoint hypothesis” was proposed 20 years 

ago 7.  I have summarized most findings based on the original hypothesis in Chapter 1.  

However, other possible mechanisms have also been raised, which are discussed here.   
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5.2.1 Checkpoint 0: generation of autoreactive and regulatory T cell repertoires 

In Chapter 1, I introduced factors that may affect the generation of islet-antigen reactive 

T cell repertoire.  However, many questions remain to be addressed in regard to Treg 

repertoire in autoimmune diabetes:  

First, how do different Treg repertoire parameters affect their functionality?  There 

are a couple of important parameters: TCR repertoire diversity and antigen specificity.  

The diversity of Treg repertoire has been shown to be required for optimal immune 

homeostasis, and Foxp3 CNS3 enables a higher diversity of Treg repertoire on the B6 

background 160,255.  It has been shown that a low diversity Treg repertoire is selected in 

NOD mice 256, although it remains to be determined how this low diversity repertoire would 

translate into suppression of islet-antigen reactive T cells.  Antigen specificity is likely to 

be important, as it may affect Treg activation and infiltration into the islet.  T cell infiltration 

into the pancreas is a cell-autonomous process driven by islet-antigen specificity 216.  

Islet-antigen seems to be required for Treg-mediated suppression of autoimmune 

diabetes, as transferring TCR transgenic Tregs into the hosts lacking their cognate 

antigens resulted in reduced protection from autoimmune diabetes, compared to WT 

hosts 257.  It would be of interest to see whether diabetes onset and incidence is 

associated with the frequency of islet-antigen-reactive Tregs.  Tetramers, other than 

insulin B9-23 tetramers shown in Fig. 34, that can detect islet-antigen specific Tregs may 

provide some clues.    

Second, what factors impact Treg selection in autoimmune diabetes?  What is less 

clear is the threshold between negative selection of islet-antigen reactive T cells and 
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positive selection of Tregs in NOD mice.  TCR affinity is crucial for lymphocyte fate 

determination, as thymocytes that recognize self-ligands at intermediate affinity will be 

positively selected, but these cells also possess the potential to undergo programmed 

cell death (negative selection) or develop into Tregs (agonist selection) 258.  In a retrogenic 

TCR mouse study, frequency of pancreatic Tregs seemed to be positively associated with 

TCR affinity 259.  Another recent study suggests that both high-affinity and low-affinity 

Tregs contribute to protection from autoimmune diabetes but via distinct 

immunosuppressive mechanisms 260.  Treg selection vs. negative selection can also be 

intrinsically impacted by the survival threshold.  BIM is a pro-apoptotic factor that is 

required for negative selection 261.  BIM deficiency in NOD mice did not result in impaired 

Teff function but resulted in an increased number of insulin-reactive Tregs and protection 

from autoimmune diabetes 262.  It is possible that the survival threshold for agonistically 

selected Tregs is higher in NOD mice than other strains, and deficiency in BIM lowered 

the survival threshold.  In contrast, another study suggested that NOD mice exhibited an 

enhanced agonistic selection of Tregs compared to other mouse strains, and this trait did 

not map to Idd regions that control clonal deletion 263.  However, in this study, BDC2.5 

peptide was used to select the BDC2.5 transgenic TCR, and therefore it remains to be 

determined how TCR affinity and survival threshold affect negative selection vs. Treg 

selection in WT NOD mice.  Additionally, insulin expression in the thymus could also affect 

Treg selection.  Aire is essential in thymic selection by driving the expression of tissue 

specific self-antigens in the thymus 264.  While Ins2–/–.NOD mice develop remarkably 

accelerated autoimmune diabetes perhaps due to defects in negative selection 23,25,26; 

Aire–/–.NOD mice do not develop autoimmune diabetes, and Aire–/–.NOD mice die 
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because of severe systemic autoimmune symptoms 69.  It is possible that selection of 

islet-antigen-reactive Treg may also be impaired in Ins2–/–.NOD mice, whereas Aire 

positively selects Tregs that are protective of other tissues at the expense of islet-antigen-

reactive Tregs.   

Further studies are warranted to decipher these questions.  Recent 

immunopathological assessment has revealed that Tregs are not frequently seen in 

pancreas of T1D patients 48, although it remains to be determined whether Treg selection 

is impaired in T1D patients, thus leading to the failure in regulating T1D pathogenesis.   

5.2.2 Checkpoint 1: end of ignorance 

Despite many years of study of T1D, it remains unclear what triggers the initiation of 

insulitis.  In NOD mice, insulitis starts at 3 to 4 weeks of age.  Interestingly, in BDC2.5 

transgenic NOD mice that express TCRs reactive to islet-antigen Chromogranin A, 

insulitis also starts around 3 weeks of age.  This indicates that islet-antigens are likely 

“ignored” by pre-existing autoreactive T cells before this time point.  There are several 

possible mechanisms of checkpoint 1.   

First, functional APCs are not present.  A recent study suggests that innate 

immune infiltration into the NOD pancreas is a tightly regulated process 30.  The death of 

β cells induces the recruitment and activation of neutrophils, B-1a cells, and pDCs into 

the islet in a sequential order (neutrophils peak at 2-3 weeks, total B cells increase 

steadily starting from 3 weeks, and pDCs peak at 4-5 weeks), and depletion of any of 

these subsets delayed diabetes onset 30.  Classical DCs appeared in islets later (4-6 
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weeks), slightly proceeding T cells (5-6 weeks).  Interestingly, another study also 

suggests that B1 cells promote T cell infiltration into the pancreas 265.  However, it remains 

unclear how APCs (cDCs and/or B cells?) are activated.  Intra-vital imaging may provide 

some insight on the real-time interactions of innate immune cells that infiltrate pancreas 

in the future.  Additionally, upregulation of co-stimulatory ligands, such as CD40 and ICOS 

ligand, on APCs can be critical in the initiation of insulitis.  For instance, the CD40:CD40L 

axis is required for the initiation of insulitis and autoreactive T cell priming in autoimmune 

diabetes 76,84-86.  Icos–/–.NOD mice are free of autoimmune diabetes 79,80.  A very recent 

study showed that Icosl–/–.NOD mice were free of insulitis, which exhibited a stronger 

protection than Icos–/–.NOD mice 266.  It is curious to see how and when CD40 and ICOS 

ligand expression are induced on APCs. 

Second, autoreactive T cells may not be capable of homing to islets yet.  This 

mechanism was proposed in the original hypothesis 7.  There are two possibilities.  First, 

the pancreatic environment has not expressed homing ligands for autoreactive T cell to 

home.  Second, autoreactive T cells have not expressed homing receptors yet.  However, 

both seem unlikely, as peripheral T cells in neonatal NOD mice already express α4β7, 

and addressins such as MadCAM-1 are PECAM-1 are present in neonatal NOD pancreas 

as early as two days of age 267,268.  

Third, the “autoantigenic” epitopes are not exposed or present.  The primacy of 

insulin in the initiation of autoimmune diabetes has been shown in the NOD mouse model 

23,63.  Thus, it is curious to note at what time point insulin becomes antigenic.  It was shown 

that only intra-islet DCs could activate several primary insulin B9-23-reactive T cell lines, 

while splenic DCs activated these T cell lines when pulsed with β cell secretory granules 
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34.  This indicates that circulating insulin is not the source of autoantigens, but rather the 

insulin peptides generated in β cell secretory granules are autoantigenic.  More recently, 

a new class of islet-autoantigens, consisting of hybrid insulin peptides covalently cross-

linked with other peptides from β cell secretory granules, was identified in both NOD mice 

and T1D patients 46. Together, these data suggest that β cell secretory granules play a 

critical role in the generation of autoantigenic insulin peptides to be recognized by 

autoreactive T cells.  However, it is not clear what epitope(s) play primary vs. secondary 

roles in the initiation of insulitis.  Additionally, NOD mice treated with Z-VAD, a pan-

caspase inhibitor, exhibited significantly delayed diabetes onset and reduced incidence, 

indicating a role for β cell death or stress in the generation or exposure of islet-antigens 

and subsequent initiation of insulitis 30,269.  Many environmental risk factors have been 

implicated in β cell stress and death, yet further studies are warranted to establish a 

causal effect 5,269.   

Understanding of checkpoint 1 mechanisms will provide insight on regiments that 

may help prevent early onset of T1D in genetically predisposed individuals. 

5.2.3 Checkpoint 2: uncontrolled chaos 

We have gained relatively more knowledge on checkpoint 2 mechanisms compared to 

checkpoint 1.  I discussed most recent findings in regard to cell-intrinsic and cell-extrinsic 

mechanisms in Chapter 1, and here I summarize some of those critical observations and 

discuss several possible future directions. 
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Hierarchical usage of co-stimulatory and co-inhibitory pathways in autoimmune 

diabetes: 

Note: This part of the discussion was taken from the review “Zhang Q, Vignali DAA. 

Immunity. (2016)” with slight modifications 70. 

First, both “first-line” and “second-line” pathways affect autoimmune diabetes.  The 

CD28 co-stimulation is a “first-line” pathway essential for autoreactive T cell priming, 

whereas PD1 has a dominant “first-line” inhibitory impact on autoimmune diabetes.  

However, the relative contributions of their ligands B7.1, B7.2 and PD-L1, PD-L2, 

respectively, seem to be affected by the timing of ligand expression and interaction, cell 

types that preferentially express one ligand versus the other.  This is probably further 

complicated by differential interactions between B7 molecules with CTLA4.  Studies with 

antibodies that specifically block CD28:B7.1, CD28:B7.2, CTLA4:B7.1, CTLA4:B7.2, 

PD1:PD-L1, PD1:PD-L2 and PD-L1:B7.1 interactions would help to clarify the relative 

contribution of these receptors and ligands.  There may also be “second-line” pathways 

that do not impact autoimmune diabetes all the time.  For instance, while many IgSF co-

inhibitory receptors are upregulated on autoreactive T cells and reinforce co-inhibitory 

signals after T cell priming, their contribution may not impact autoimmune diabetes 

equally. 

Second, the use of different co-stimulatory and co-inhibitory pathways has 

temporal implications.  For instance, unlike the CD28:B7 or CD40:CD40L axes, the other 

TNFRSF co-stimulatory pathways tend to participate at later stages, probably because 

these receptors are upregulated on activated T cells and/or their corresponding ligands 

may be restricted to inflamed tissues.  It would appear that CTLA4 functions in a more 
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restricted time window during the priming phase, while TIM3 and B7-H4 play a role in the 

later stage.  This contrasts with PD1 and LAG3 that appear to be involved over a broader 

time period.  Studies using conditional knockout mice in combination with inducible CRE 

mice will help further dissect the temporal utilization of co-stimulatory and co-inhibitory 

receptors. 

Third, co-stimulation or co-inhibition is essential to regulate both autoreactive T cell 

and Treg homeostasis and function.  For instance, while it is clear that CD28 provides a 

dominant co-stimulatory contribution in promoting autoimmunity, it can also impact Treg 

cell development and thereby limit autoimmunity.  Additionally, while LAG3 and PD1 are 

required to limit the pathogenesis of autoimmune diabetes, they also intrinsically limit Treg 

functions (Chapter 3, Chapter 4, and Appendix A).  Studies with cell type-restricted 

deletion of co-inhibitory molecules may help to clarify their roles and define populations 

that could be targeted therapeutically. 

Are Tregs destined to fail or are they victimized by the islet microenvironment? 

  As introduced in Chapter 1, Tregs are perhaps the most crucial controller of 

autoimmune diabetes 74,81,148-150,164-168.  However, they also appear to be very “fragile” in 

the autoimmune diabetes-prone background 15,16,74,170,171.  For instance, pancreatic Tregs 

tend to lose IL-2 receptor (CD25) and Foxp3 expression, therefore losing their 

suppressive capacity 14,17.  Interestingly, insulitic Tregs exhibit very distinct transcriptional 

profiles compared to peripheral Tregs (Fig. 32).  It is equally possible that insulitic Tregs 

are shaped by the islet microenvironment as a consequence of entering the islet, or that 

insulitic Tregs are intrinsically different from peripheral Tregs so that they are enabled to 

enter the islet. 
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It remains unclear whether Tregs are intrinsically prone to lose their functionality 

or the islet microenvironment is too hostile to maintain Treg identities.  For instance, Nrp1 

is required to maximize the competitive fitness of Tregs during inflammation in vivo 18-20.  

NRP1 (Chr10p11.22, OR 1.1) has been genetically mapped to the T1D-susceptibility 

regions.  Peripheral Tregs from NOD mice express lower level of Nrp1 than those from 

B6 mice, and Nrp1 expression is further lost on insulitic Tregs (Appendix B).  Possibly, 

the low expression of Nrp1 on Tregs in NOD mice is a consequence of both intrinsic 

defects of Tregs and inhospitality of the islet microenvironment.  Additionally, in the 

BDC2.5 transgenic NOD mouse model, even though all T cells express TCRs reactive to 

Chromogranin A, these mice exhibit much lower diabetes incidence (10-20%) than WT 

NOD mice (70-90%) by 30 weeks of age 165,270.  Further analysis suggests that insulitic 

Tregs from BDC2.5 NOD mice are capable of repressing autoimmunity 165, raising the 

question of whether the islet microenvironment alone could drive Treg insufficiency.  

However, these transgenic Tregs also express TCRs reactive to Chromogranin A, and 

thus are more capable of infiltrating into the islet than WT Tregs.  It is likely that intrinsic 

defects of Tregs render them more susceptible to microenvironment insults.   

Genetic factors may contribute to the intrinsic defects of Tregs in NOD mice or T1D 

patients.  For instance, both IL2 (Chr4q27, OR 1.2) and IL2RA (Chr10p15.1, OR 1.6) are 

genetically mapped to the T1D-suscepptility regions.  Additionally, the ability of Tregs to 

infiltrate into the pancreas is also intrinsically determined by their TCR usage, as 

discussed in Chapter 5.2.1 “checkpoint 0”.  Perhaps, the frequency of islet-antigen-

reactive Tregs is lower in NOD mice that exhibit earlier onset of autoimmune diabetes.  
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There might be other yet-unknown genetic factors that intrinsically contribute to Treg 

insufficiency. 

It is less clear what factors in the islet microenvironment confer Tregs insufficiency.  

One speculation is that pro-inflammatory cytokines, such as IFNγ and TNFα, which have 

been shown to promote Treg instability in other pro-inflammatory disease models 18,271.  

Another study suggests that insulin could also promote Treg instability in Type 2 diabetes 

patients 272.  Thus, further studies are warranted, as these potential extrinsic factors may 

affect the efficacy of Treg transfer immunotherapy for treating T1D.   
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APPENDIX A 

Role of PD1 in Treg-mediated self-tolerance 

This is a collaborative project with Dr. Arlene Sharpe’s laboratory, and therefore I will only 

show and discuss data that I generated in this appendix.   

The impact of co-inhibitory receptors on Treg function and maintenance has been 

controversial.  For instance, some early studies suggest that Tregs may mediate 

suppression of Teffs through LAG3, whereas my own observations (Chapter 4.1) show 

that LAG3 intrinsically limits Treg proliferation and function in the NOD mouse model 

146,187,188,209,225.  I questioned whether this cell-intrinsic effect would also apply to other co-

inhibitory receptors.  

As introduced in Chapter 1, PD1 is also required to maintain self-tolerance in NOD 

mice, and loss of PD1 signaling resulted in more exacerbated autoimmune diabetes, 

compared to loss of LAG3 signaling  103,112,113.  PD1 was readily expressed on peripheral 

Tregs in NOD mice, and its expression was further enhanced on intra-islet Tregs (Fig. 4).  

I therefore asked whether PD1 had a similar or distinct effect as LAG3 on Tregs in 

regulating autoimmune diabetes. 

Pdcd1L/L.B6 mice were generated and kindly provided by Dr. Sharpe’s lab, and I 

bred them onto the NOD background at University of Pittsburgh.  Microsatellite tests of 

20 Idd loci covering 144 SNPs revealed that Pdcd1L/L.NOD mice were 98.5% NOD at the 
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F9 generation, and there were four heterozygous SNPs located on Chr1 within the Pdcd1 

gene region, inherited upon gene targeting.  I crossed Pdcd1L/L.NOD mice with Foxp3CRE-

GFP.NOD mice to specifically delete Pdcd1 in Tregs. 

Interestingly, the loss of PD1 on Tregs abrogated autoimmune diabetes in female 

mice, indicating that PD1 may also limit Treg function in the NOD mouse model (Fig. 35).  

This impact was even greater than removal of LAG3 on Tregs, probably because PD1 

was expressed at a higher level than LAG3 on Tregs (Fig. 4 and 17).  However, it remains 

to be tested whether PD1 and LAG3 limit Treg activities via similar or different modes.   

Other studies involving PD1 on Tregs also add some complexity.  A recent study 

showed that high PD1 expression marked dysfunctional tumor-infiltrating Tregs in 

malignant gliomas patients 273.  Another study reported that Pdcd1-deficient Tregs were 

more suppressive but were incapable of maintaining Foxp3 expression in a mouse colitis 

model 250.  It is probable that PD1 is required for Treg development and stability, but 

sustained high PD1 expression limits the suppressive capacity of Tregs.  Future studies 

using PD1 conditional knockout as well as inducible T cell subset-specific CRE mice may 

help elucidate these questions.   

Further investigation on parsing the role of PD1 on Tregs vs. CD8+ T cells is also 

warranted, as PD1 blockade-mediated cancer immunotherapy has shown some 

promising, but not complete, efficacy in the clinic, and the efficacy varies between tumor 

types 251.  As shown in a murine B16 transplantable tumor model, PD1 expression on 

Tregs was much greater than on CD8+ T cells (Fig. 4).  One possibility is that the ratio of 

tumor-infiltrating Tregs to CD8+ T cells varies between different tumor patients, and the 

efficacy of anti-PD1 treatment may depend on which T cell subset is targeted. 
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Figure 35. Loss of PD1 on Tregs protects NOD mice from autoimmune diabetes. 

 

Diabetes onset and incidence monitored in Pdcd1L/LFoxp3CRE-GFP.NOD females together with cohoused 

littermate controls. The log-rank was applied to Kaplan-Meier survival function estimates to determine 

the statistical significance.   ****p < 0.0001. 
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APPENDIX B 

Role of Nrp1 in maintaining Treg function 

This is a collaborative project with two former postdocs Drs. Anabelle Visperas and 

Andres Herrada in the lab.  I will introduce their observations with their permission, but 

only show data that I generated in this appendix. 

Nrp1 is a type I transmembrane receptor for vascular endothelial growth factor 

(VEGF) and semaphorins (Sema3a, Sema4a), and considered a bona fide marker for 

murine tTregs 19,20,118,119.  Although Nrp1 does not seem to be essential for Treg function 

or stability at a homeostatic state, it is required to maximize the competitive fitness of 

Tregs during inflammation in vivo 18-20.  In humans, NRP1 (Chr10p11.22) has been 

mapped to one of the T1D-susceptibility regions (T1DBase).   

Interestingly, specific removal of Nrp1 on Tregs did not further exacerbate 

autoimmune diabetes onset or incidence in NOD mice (data not shown), possibly 

because Nrp1 was significantly downregulated on Tregs in NOD mice to begin with 

(percent of Nrp1+ Tregs in the periphery: B6 mice – > 80%, NOD mice – 50% - 60%, data 

not shown).  Additionally, cell surface Nrp1 seemed to be cleaved by ADAM17 on intra-

islet Tregs (data not shown).  Based on these preliminary observations, I questioned 

whether restoration of Nrp1 expression on Tregs would reinvigorate their capacity to 

regulate autoimmune diabetes. 

http://t1dbase.org/
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To address this question, Dr. Andrea Szymczak-Workman generated Rosa26LSL-

Ametrine-Nrp1 mice, in which the expression of Nrp1 and Ametrine is driven by the Rosa26 

promoter in CRE+ cells (Fig. 36A).  I bred Rosa26LSL-Ametrine-Nrp1.B6 mice onto the NOD 

background at University of Pittsburgh.  Microsatellite tests of 20 Idd loci covering 144 

SNPs revealed that Rosa26+/LSL-Ametrine-Nrp1.NOD mice were 98.5% NOD at the F7 

generation, and there were one heterozygous SNP located on Chr6 from the targeting 

construct.   

Overexpression of Nrp1 in Rosa26+/LSL-Ametrine-Nrp1Foxp3CRE-GFP.NOD mice restored 

its expression on peripheral Tregs to the same extent as that in WT B6 mice (Fig. 36B).  

Even though exogenous Nrp1 expression in Tregs did not rescue the cell surface 

expression of Nrp1 on insulitic Tregs (Fig. 36B), it led to significantly delayed autoimmune 

diabetes onset in Rosa26+/LSL-Ametrine-Nrp1Foxp3CRE-GFP.NOD mice, compared to littermate 

controls (Fig. 36C).  These data suggest that optimal Nrp1 signaling may be required to 

maintain Treg functionality in an autoimmune-prone environment.   

Further investigation regarding the following questions may help improve our 

understanding on the role of Nrp1 in maintaining Treg function in autoimmune diabetes: 

(1) What factors promote Nrp1 shedding in the islet microenvironment?  The islet 

microenvironment is enriched with pro-inflammatory cytokines, such as IFNγ and TNFα, 

which may contribute to the loss of Nrp1 on Tregs.   This can be tested by assessing 

ADAM17 expression and Nrp1 shedding in cytokine-treated WT vs. corresponding 

receptor knockout Tregs.  (2) What are the downstream pathways affected by the loss of 

Nrp1 signaling in Tregs that may contribute to Treg insufficiency in autoimmune diabetes?  

Our recent findings suggest that Nrp1-difficient Tregs are susceptible to IFNγ-induced 
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fragility in antitumor immunity 18.  One could assess IFNγ receptor expression on WT, 

Nrp1-deficient, and Nrp1-overexpressing Tregs, and diabetes incidence in Foxp3CRE-GFP, 

IfngrL/LFoxp3CRE-GFP, Nrp1L/LFoxp3CRE-GFP, IfngrL/LNrp1L/LFoxp3CRE-GFP.NOD mice.  (3) 

Does modulation of Nrp1 pathway in Tregs have a therapeutic effect on autoimmune 

diabetes?  This can be tested by treating NOD mice with Nrp1 ligands, Sema4a-Ig, for 

instance 19.  Additionally, one could also use the inducible Foxp3-CRE 274 to temporarily 

overexpress Nrp1 on Tregs (Rosa26+/LSL-Ametrine-Nrp1Foxp3YFP-CRE-ERT2.NOD mice).  

Understanding these questions will help us identify approaches to reinvigorate Tregs in 

T1D patients. 
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 Figure 36. Restoration of Nrp1 expression in Tregs results in delayed autoimmune diabetes 

(A) Schematic of the Rosa26LSL-Ametrine-Nrp1 construct.  (B) Validation of cell surface Nrp1 expression and 

Ametrine expression in CD4+Foxp3–, and CD4+Foxp3+ T cells in Rosa26+/LSL-Ametrine-Nrp1Foxp3CRE-

GFP.NOD and cohoused Foxp3CRE-GFP.NOD mice (females, 10 weeks of age).  (C)  Diabetes onset and 

incidence monitored in female Rosa26+/LSL-Ametrine-Nrp1Foxp3CRE-GFP.NOD and cohoused littermate 

controls. The log-rank was applied to Kaplan-Meier survival function estimates to determine the 

statistical significance.  *p < 0.05, **p < 0.01. 
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APPENDIX C 

Low cell number RNA sequencing 

This RNA sequencing protocol is based on the Smart-seq2 technique 220.   

Three major advantages of this protocol: (1) As full-length cDNAs are reverse 

transcribed using the template switching oligo, there is no 3’-bias of sequencing reads, 

and splicing variants can be distinguished if enough sequencing depth is provided; (2) 

This protocol is optimized for low cell number (50 – 500 cells) RNA sequencing, but can 

also be used for purified RNA or single cell RNA sequencing; (3) The cost is relatively 

lower than any available kits. 

C.1 Working Station Setup 

Two working areas are needed for the following steps.  PCR hoods are considered 
cleaner than clean stations described below.  The clean station can be a bench-top in the 
general lab that is clean enough but far away from your PCR hoods.   ***NO 
reagents/tubes/plates are allowed to go back and forth between your PCR hood and clean 
station to avoid any contamination.  NO PCR amplification products are allowed in the 
PCR hood.*** 
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C.2 Reagent Setup 

***If reagents are ordered in a large volume, make aliquots, avoid using stocks directly, 
and no used tips are allowed to go back into reagent tubes.***  If you have a large volume 
to pipet, it is always better to pipet multiple times with p200 than p1000 to have more 
accuracy.   

1| RT Primer (QZ53): dissolve primers in EB buffer to a final concentration of 100µM, 
aliquot to 10µl/tube, and store at –20° up to 6 months.  Add 90µl water to make final 
concentration of 10µM when use.  – Enough for 100rxn. 
RT Primer (QZ53): (PAGE purified, Invitrogen) 
AAGCAGTGGTATCAACGCAGAGTACTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN (V: 
A/C/G, N: A/T/C/G) 

2| TSO (QZ49): dissolve primers in EB buffer to a final concentration of 100µM, aliquot to 
10µl/tube, and store at –80° up to 6 months.  – Enough for 100rxn. ***Avoid repeated 
freeze-thaw cycles.*** 
TSO (QZ49): (RNase-free HPLC purified, Exiqon) 
AAGCAGTGGTATCAACGCAGAGTACrGrG+G 

3| Amp Primer 1 (QZ50): dissolve primers in EB buffer to a final concentration of 100µM, 
aliquot to 10µl/tube, and store at –20° up to 6 months.  Add 90µl water to make final 
concentration of 10µM when use.  – Enough for 400rxn. 
Amp Primer 1 (QZ50): (PAGE purified, Invitrogen) AAGCAGTGGTATCAACGCAGAGT 
4| i7 Barcoding Primers (QZ54-77): dissolve primers in EB buffer to a final concentration 
of 100µM, aliquot to 10µl/tube, and store at –20° up to 6 months.  Add 190µl water to 
make final concentration of 5µM when use.  – Enough for 40rxn. 
i7 Barcoding Primers: (PAGE purified, Invitrogen) 
CAAGCAGAAGACGGCATACGAGATXXXXXXXXGTCTCGTGGGCTCGG (X: 
barcodes) 
Please note that ***N705 cannot be used alone on NextSeq***. 

QZ54 (N701): TCGCCTTA  (entry on sample sheet TAAGGCGA) 
QZ55 (N702): CTAGTACG  (entry on sample sheet CGTACTAG) 
QZ56 (N703): TTCTGCCT  (entry on sample sheet AGGCAGAA) 
QZ57 (N704): GCTCAGGA (entry on sample sheet TCCTGAGC) 
QZ58 (N705): AGGAGTCC (entry on sample sheet GGACTCCT) 
QZ59 (N706): CATGCCTA  (entry on sample sheet TAGGCATG) 
QZ60 (N707): GTAGAGAG (entry on sample sheet CTCTCTAC) 
QZ61 (N710): CAGCCTCG (entry on sample sheet CGAGGCTG) 
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QZ62 (N711): TGCCTCTT  (entry on sample sheet AAGAGGCA) 
QZ63 (N712): TCCTCTAC  (entry on sample sheet GTAGAGGA) 
QZ64 (N714): TCATGAGC  (entry on sample sheet GCTCATGA) 
QZ65 (N715): CCTGAGAT  (entry on sample sheet ATCTCAGG) 
QZ66 (N716): TAGCGAGT  (entry on sample sheet ACTCGCTA) 
QZ67 (N718): GTAGCTCC  (entry on sample sheet GGAGCTAC) 
QZ68 (N719): TACTACGC  (entry on sample sheet GCGTAGTA) 
QZ69 (N720): AGGCTCCG (entry on sample sheet CGGAGCCT) 
QZ70 (N721): GCAGCGTA (entry on sample sheet TACGCTGC) 
QZ71 (N722): CTGCGCAT  (entry on sample sheet ATGCGCAG) 
QZ72 (N723): GAGCGCTA (entry on sample sheet TAGCGCTC) 
QZ73 (N724): CGCTCAGT  (entry on sample sheet ACTGAGCG) 
QZ74 (N726): GTCTTAGG  (entry on sample sheet CCTAAGAC) 
QZ75 (N727): ACTGATCG  (entry on sample sheet CGATCAGT) 
QZ76 (N728): TAGCTGCA  (entry on sample sheet TGCAGCTA) 
QZ77 (N729): GACGTCGA (entry on sample sheet TCGACGTC) 

5| i5 Barcoding Primers (QZ78-93): dissolve primers in EB buffer to a final concentration 
of 100µM, aliquot to 10µl/tube, and store at –20° up to 6 months.  Add 190µl water to 
make final concentration of 5µM when use.  – Enough for 40rxn. 
i5 Barcoding Primers: (PAGE purified, Invitrogen) 
AATGATACGGCGACCACCGAGATCTACACXXXXXXXXTCGTCGGCAGCGTC (X: 
barcodes) 

QZ78 (S502): CTCTCTAT  (entry on sample sheet ATAGAGAG) 
QZ79 (S503): TATCCTCT  (entry on sample sheet AGAGGATA) 
QZ80 (S505): GTAAGGAG (entry on sample sheet CTCCTTAC) 
QZ81 (S506): ACTGCATA  (entry on sample sheet TATGCAGT) 
QZ82 (S507): AAGGAGTA  (entry on sample sheet TACTCCTT) 
QZ83 (S508): CTAAGCCT  (entry on sample sheet AGGCTTAG) 
QZ84 (S510): CGTCTAAT  (entry on sample sheet ATTAGACG) 
QZ85 (S511): TCTCTCCG  (entry on sample sheet CGGAGAGA) 
QZ86 (S513): TCGACTAG  (entry on sample sheet CTAGTCGA) 
QZ87 (S515): TTCTAGCT  (entry on sample sheet AGCTAGAA) 
QZ88 (S516): CCTAGAGT  (entry on sample sheet ACTCTAGG) 
QZ89 (S517): GCGTAAGA (entry on sample sheet TCTTACGC) 
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QZ90 (S518): CTATTAAG  (entry on sample sheet CTTAATAG) 
QZ91 (S520): AAGGCTAT  (entry on sample sheet ATAGCCTT) 
QZ92 (S521): GAGCCTTA  (entry on sample sheet TAAGGCTC) 
QZ93 (S522): TTATGCGA  (entry on sample sheet TCGCATAA) 

6| Lysis buffer: dilute Triton X-100 to 2% (vol) in water, and then dilute to 0.2% (vol) right 
before use. 
7| Reagent ordering:  

Triton X-100 (molecular grade)  Sigma T8787-50ML 
Betaine solution (molecular grade) Sigma B0300-5VL (3,750 rxn) 
MgCl2 solution (molecular grade)  Sigma M1028-100ML  
RNase Inhibitor    Clontech 2313B (2,500 rxn) 
dNTP mix     Thermo R0193 (5,000 rxn) 
SuperScript II RT    Thermo 18064071 (400 rxn) 
UltraPure Water    Thermo 10977-015 
Hifi HotStart ReadyMix   KAPA KK2602 (500 rxn) 
Buffer EB     Qiagen 19086 
Agencourt AMPure XP   Beckman Coulter A63881 
Hardshell PCR plate   Bio-rad HSP9601 
Micro-seal A     Bio-rad MSA5001 
Micro-seal B      Bio-rad MSB1001 
Nextera XT DNA Library Prep kit  Illumina FC-131-1096 (96 rxn) 
Tris-HCl w/ Tween-20   TEKnova T7724 
Library Quantification Kit   KAPA KK4854 (1000 rxn) 
Library Quantification Standards  KAPA KK4903 (120 rxn) 
NextSeq 500/550 High Output v2 (75x) Illumina FC-404-2005 

C.3 Cell Sorting and Lysis 

— PCR hood 
1| Prepare fresh lysis buffer by adding 1µl of RNase inhibitor (40U/µl) to 19ul of 0.2% 
Triton X-100 solution, and aliquot 2µl/well into 96-well PCR plate for cell sorting.  Seal 
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with microseal B before and after sorting to avoid evaporation and contamination.  – 
Enough for 10rxn. 

2| Cell populations-of-interest will be sorted into eppendorf tubes containing 300µl of 
sorting buffer first.  Double-sort 500 cells directly into each well of 96-well plate 
containing the lysis buffer, gently vortex and spin down the plate at 2,000g for 2min.  
Additional 500 cells will be sorted into eppendorf tubes for purity check.  Any purity 
<99.5% should be taken notes. 

3| Neg Ctrl: add nothing; Pos Ctrl: add 0.3µl of 1ng/µl total RNA. 

4| Pre-mix 10µM RT Primers (QZ53) and 10mM dNTPs at 1:1 ratio (vol), and add 2µl of 
the mixture to each PCR well.  – Total volume: 4µl. 
5| Seal with microseal B, and spin down the mixture at 2,000g for 2min.  ***ALWAYS spin 
first before you put the plate into a PCR cycler to make sure all reagents are down to the 
bottom.*** 
6| Incubate at 72° for 3min, and immediately put the plate on ice.  Ideally, the next step 
should be processed ASAP.  PROGRAM: bprna1 

C.4 Reverse Transcription 

— PCR hood 
1| Prepare RT mix as below while performing denaturation. ***ALWAYS spin down all the 
regents down to the bottom of tubes as the concentration may be changed due to the 
evaporation onto the lid.  Due to the low volume for pipetting, pre-mix more rxns of water 
and MgCl2 first, and then pipet out the total volume you need for the rxns you have 
planned and mix with other reagents.*** 

Total volume (µl): 6µl    volume final 
Water       0.56  – 
MgCl2 (1M)      0.09  9mM 
SuperScript II first-strand buffer (5x)  2  1x 
DTT (100mM)     0.5  5mM 
Betaine (5M)      2  1M 

RNase inhibitors (40U/µl)    0.25  10U 

TSO (100µM, QZ49)    0.1  1µM 

SuperScript II reverse transcriptase (200U/µl) 0.5  100U 
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2| Spin down the incubated sample lysates at 2,000g for 2min before opening the seal.  
***ALWAYS spin first before you open the seal to avoid any cross-contaminations 
between samples.*** 

3| Add 6µl of RT mix to 4µl of sample lysates to make up 10µl in total. 
4| Seal with microseal A, and spin down the mixture at 2,000g for 2min. 
5| Perform first-strand PCR reactions as below: ***The 10 cycles 50°/42° helps to open 
up some secondary structure and carry out further reverse transcription.***  PROGRAM: 
bprna2 

1x 42° 90min 
10x 50° 2min 
 42° 2min 
1x 70° 15min 
1x 4° hold 

C.5 cDNA Amplification 

— PCR hood 
1| Prepare PCR amplification mix as below. 

Total volume (µl): 15µl   volume final 
KAPA HiFi HotStart ReadyMix (2x) 12.5  1x 
Water      2.25  –   

Amp Primer 1 (10µM, QZ50)  0.25  0.1µM 
2| Spin down first-strand product at 2,000g for 2min at room temperature before opening 
the seal.  ***ALWAYS spin at room temperature if the last step has a long or high 
temperature incubation to avoid condensation of the seal pressure at low temperature.*** 

3| Add 15µl of PCR amplification mix to 10µl of first-strand product to make 25µl in total.   
4| Seal with microseal A, and spin down the mixture at 2,000g for 2min. 
5| Perform amplification PCR as below:  PROGRAM: bprna3 

1x 98° 3min 
15x 98° 20s 
 67° 30s 
 72° 6min 
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1x 72° 5min 
1x 4° hold 

C.6 PCR Purification 

— Clean Station ***NO PCR amplification products are allowed in PCR hood.  All 
the following steps will be carried out in the clean station.*** 
1| Equilibrate Ampure XP beads at RT for at least 30min minimize the binding of pollens 
to beads. 
2| Spin down amplified products at 2,000g for 2min at room temperature before opening 
the seal. 

3| Add 15µl of Ampure XP beads (0.6:1 ratio) to amplification product, and pipet up and 
down ten times. 
4| Incubate the mixture at room temperature for 5min. 
5| Place the plate on magnetic stand for 5min, and carefully remove the clear supernatant.  

6| Wash with 200µl of 80% (vol) ethanol solution twice, and pipet out the left ethanol.  
(ALWAYS make fresh 80% ethanol.) 
7| Let the beads dry at room temperature for 5min or until some cracks are seen. 

8| Add 17.5µl of EB buffer, and mix ten times to resuspend the beads. 
9| Incubate the plate off the magnet for 5min. 
10| Place the plate on the magnet for 2min. 

11| Collect 15µl of supernatant to a new PCR plate without disturbing the beads.  Store 
cDNA at –80° or –20°.   
12| Check the fragment size >500bp with a peak at 1.5-2kb by TapeStation 5000, and 
quantify by Qubit. 

C.7 cDNA Tagmentation 

1| Thaw ATM (Amplicon Tagment Mix), TD (Tagment DNA Buffer), and cDNA on ice, and 
keep NT (Neutralize Tagment Buffer) at room temperature. 

2| Dilute cDNA to 0.2ng/µl in water, and add 5µl to each well of 96-well plate (1ng total 
input). 
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3| Add 10µl TD to each well. 

4| Add 5µl ATM to each well, and pipette up and down five times to mix. 
5| Seal with microseal B, and spin down the mixture at 2,000g for 2min. 
6| Incubate at 55° for 5min, hold at 10°, and immediately proceed to neutralization step.  
– Total volume: 20µl.  PROGRAM: bplib1 
7| Spin down at 2,000g for 2min at room temperature before opening the seal. 

8| Add 5µl NT to the bottom of each well, and pipette up and down five times to mix. 

9| Incubate at room temperature for 5min.  – Total volume: 25µl. 

C.8 Library Amplification 

1| Thaw NPM (Nextera PCR Master Mix), and i7/i5 Index primers on ice. 

2| Add 15µl NPM to each well. 

3| Add 5µl i5 primers to each well. 

4| Add 5µl i7 primers to each well. 

5| Pipette up and down five times to mix.  – Total volume: 50µl. 
6| Seal with microseal A, and spin down the mixture at 2,000g for 2min. 
7| Perform amplification PCR as below:  PROGRAM: bplib2 

1x 72° 3min 
1x 95° 30s 
12x 95° 10s 
 55° 30s 
 72° 30s 
1x 72° 5min 
1x 10° hold. 

C.9 PCR Purification 

1| Equilibrate Ampure XP beads at RT for at least 30min. 
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2| Spin down amplified product at 2,000g for 2min at room temperature before opening 
the seal. 

3| Add 40µl of Ampure XP beads (0.8:1 ratio) to amplification product, and pipet up and 
down ten times. 
4| Incubate the mixture at RT for 5min. 
5| Place the plate on magnetic stand for 5min, and carefully remove the clear supernatant. 

6| Wash with 200µl of 80% (vol) ethanol solution twice, and pipet out the left ethanol. 
7| Let the beads dry at RT for 5min. 

8| Add 30µl of EB buffer, and mix ten times to resuspend the beads. 
9| Incubate the plate off the magnet for 5min. 
10| Place the plate on the magnet for 2min. 
11| Collect supernatant to a new PCR plate without disturbing the beads.  Store libraries 
at –80° or –20°. 

C.10 Sample Pooling and Sequencing 

1| Use KAPA library quantification kit to quantify library concentrations. 

A small aliquot of libraries are diluted 10,000 times (2µl of library products into 198µl H2O 
sequentially twice) before setting up the qPCR rxns. 

qPCR system: 10µl in total (recommend setting up duplicates) 

6µl KAPA buffer + 4µl of diluted libraries/standards/H2O 
qPCR program: PROGRAM: Vignali Lab quant template 

1x 95° 5min 
35x 95° 30s 
 60° 45s 
1x 65° melting 

Standards Conc.: Std1 (20pM), Std2 (2pM), Std3 (0.2pM), Std4 (0.02pM), Std5 
(0.002pM), Std6 (0.0002pM).  Std DNAs are 452bp, and have Tm around 86°-87°.  
Calculation for library Conc.: y x 10,000pM = y x 10nM.  (y is the mean conc. on the qPCR 
analyzer) 
Run the qPCR products on a 1.5% gel, and the size should be 300bp-800bp with a peak 
at 450bp.  Library Tm is around 81°-82°. 
2| Dilute libraries to 2nM in 10mM Tris-HCl w/ 0.1% Tween-20 (pH 8.5). 
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3| Pool 10µl of each diluted library together. 
4| Submit the pooled libraries to Genomic Cores for sequencing on Illumina NextSeq 
platform.  ***Refer to Page 1-3 to input the i5/i7 sequences (S5xx/N7xx entry on sample 
sheet) on the sample submission form.*** 
5| Around 10 libraries will be sequenced on the NextSeq 500/550 High Output v2 kit (75 
cycles), so one will get about 40M reads per library. 
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