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Spectroscopy, the response of matter to electromagnetic radiation of different wavelengths,

is a powerful experimental tool for interrogating a molecule’s structure and dynamics as it

interacts with its environment. However, relating a spectroscopic signature to a molecular

picture relies on sophisticated computational approaches in order to identify structures,

intermolecular interactions, and their correlation with spectroscopic response. This thesis

focuses on the question of how to correlate a molecule’s structure and interactions with its

environment via the ab initio calculation of spectroscopic parameters.

To build a molecular picture of CO2 dynamics in ionic liquids (ILs), I performed quantum

chemical calculations on small gas-phase CO2-IL clusters, qualitatively reproducing the

experimental ordering for CO2’s asymmetric vibrational stretch (ν3) peak position as a

function of the anion. To uncover the physical origin of the shift, the language of decomposition

analysis based on absolutely localized molecular orbitals (ALMO-EDA) was translated from

energies to vibrational frequencies. Geometric distortion of CO2, as a result of charge transfer

(CT) from the anion into the CO2, is the driving force for differentiating the CO2 ν3 shift in

different IL anions.

After validating these simple models, I further decomposed the CT contribution into

equilibrium structure and potential energy surface curvature mechanisms, finding that CT is

a significant contributor in both the geometry optimization and frequency calculation steps.

Comparing ALMO-EDA and symmetry-adapted perturbation theory (SAPT) showed that

while dispersion dominates the binding energy, DFT-based ALMO-EDA showed excellent
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correlation with wavefunction-based SAPT, which enabled the construction of a spectroscopic

map based on chemically-intuitive descriptors at lower cost.

This work presents the first application of ALMO-EDA to construct complex spectro-

scopic maps, however ALMO-EDA is not generally applicable to arbitrary spectroscopies.

I reformulated the canonical linear response equations for use with ALMOs to provide a

direct connection between EDA terms and their corresponding contribution to spectra. Test

calculations indicate that allowing CT is equally important in both the underlying ground-

state wavefunction and the response calculations and should not be confused with basis set

superposition error.
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1.0 INTRODUCTION AND THEORETICAL BACKGROUND

A great strength of quantum chemistry is that it enables construction of molecular models

using the building blocks of chemical intuition, such as interactions between functional

groups, that can in theory be correlated with any information present in the wavefunction.

Furthermore, the ability to calculate spectroscopic parameters from wavefunctions makes it

possible to connect the features of a molecular model with molecular properties. This is of

paramount importance to experimental spectroscopy, where there is not always an obvious

“signature” that connects features in complex molecular systems to a distinct spectroscopic

response. As a result, it is often not possible to draw conclusions from experimental results

without the aid of quantum chemical calculations.

Finding correlation between molecular models and spectra is of great value, but there is

also difficulty from the computational side in terms of identifying the correct molecular models

and why they are correct in explaining experimental spectra. To form true structure-spectra

relationships, the most desirable connection is through the building blocks of chemistry,

functional groups, and identifying the impact of their interactions. A common approach

in both the wet lab and computationally is to remove or modify functional groups in some

systematic way, resulting in a qualitative connection between structural components and

changes in spectra. The drawbacks of such chemical transformations are the inability to

quantify the physics behind these chemically-intuitive changes, and potential side effects of

perturbing a molecular model’s electronic and geometric structure due to cooperativity. One

path to quantifying intermolecular interactions without such drastic chemical modifications is

by fragmenting the system into groups of interest and decomposing their interaction energy

into physically-motivated terms through a procedure called energy decomposition analysis

(EDA). If EDA can be applied to spectra prediction, then the underlying causes of spectral
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changes due to specific chemical motifs can be quantified. More importantly, spectra-property

relationships can be formed, where changes in spectral response can be tied directly back to

types of physical interactions, such as electrostatics, charge transfer, and dispersion.

The unifying theme of this work is that it is possible to identify the contribution of

specific intermolecular interactions to spectroscopic response. The contributions of specific

intermolecular interactions are in the language of energy decomposition analysis using

absolutely localized molecular orbitals, abbreviated as ALMO-EDA. Details of the ALMO-

EDA procedures are given in section 5.2.

The majority of this work presents applications of response theory to calculating spectro-

scopic properties, specifically vibrational frequencies in chapters 2, 3, 4 and dipole polariz-

abilities in chapter 5, where each property is decomposed in terms of contributions to the

final response from distorting the molecular geometry, allowing the non-interacting molecular

densities to interact and then relax, and finally allowing charge to flow unrestricted between

molecules. Chapter 6 presents a new model for implementing quantum chemical methods,

with the first dipole hyperpolarizability as an example (sections 6.9.1 and 6.9.2), and how the

decomposition of molecular properties may be implemented and disseminated in the future.

The remainder of this introduction will cover the basic language of molecular response

theory and its connection to macroscopic spectroscopic observables, with examples of which

observables are related to which microscopic terms (section 1.2). It will also cover more

general cases of how those microscopic terms appear in different forms of derivation, all of

which are related and give identical final answers. Specifically, a connection will be made

between phenomenological Hamiltonians (section 1.3.1), series expansions (section 1.3.2),

energy derivatives (sections 1.3.3, 1.3.4, and 1.3.5), perturbation theory (section 1.3.6), and

quasienergy derivatives (section 1.4), of which the latter two are appropriate for incorporation

of time dependence, leading to dynamic properties.

For more background literature on the theoretical development and applications of

response theory to molecular properties, see reviews by Gauss,1 Neese,2 Norman,3 Helgaker4

and books by Szabo & Ostlund,5 McWeeny,6 Yamaguchi,7 and Barron.8
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1.1 TERMS AND FUNDAMENTAL DEFINITIONS

Throughout the introduction and the remainder of this work, a number of terms appear and

may seem to be used interchangeably. In quantum chemistry literature, the phrase molecular

property is used to denote any quantity that can be calculated from the wavefunction. By this

definition, not all molecular properties are observables, as they do not necessarily correspond

to experimentally-measurable quantities. Such molecular properties may not also be uniquely

defined. One of the most prominent examples of non-observable molecular properties is the

calculation of atomic partial charges, with Mulliken5,9 and Löwdin10 population analyses being

the two most commonly-known partitioning schemes for dividing the electron density into

atomic contributions. However, this work associates molecular properties with observables,

which may also be synonymous with physical properties. The term chemical property is

avoided as it is more closely associated with reactivity than observable quantities.

The term response also requires disambiguation. Experimentally, molecular response

refers to changes in a molecule’s electronic and geometric state due to incident electromagnetic

radiation (spectroscopy) or physical manipulation (such as structural deformation leading to

piezoelectric response).11–13 Computationally, within the Born-Oppenheimer approximation,

molecular response encompasses how the electronic state is altered due to both external and

internal perturbations. Examples of external perturbations are electric or magnetic fields

whose strengths may or may not fluctuate with time, and examples of internal perturbations

are nuclear displacements, nuclear magnetic moments, and the total electronic spin. Although

external perturbations have a clear correspondence to spectroscopy, internal perturbations

are more a description of a molecule’s intrinsic structure.

However, in the context of this work, molecular response is sometimes used interchangeably

with response property, which is intuitively a property associated with external applied fields,

but here refers to any molecular property arising from the solution of the response equations

or response functions.

The response equations relevant for this work are the coupled perturbed Hartree–Fock

(CPHF), coupled perturbed Kohn–Sham (CPKS), or coupled perturbed self-consistent field

(CPSCF) equations. These terms may be used interchangeably, as the equations are struc-
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turally identical, with the only difference being the machinery of how the exchange-like

terms are formed. These sets of equations are similar to those from time-dependent HF and

KS (TDHF and TDKS/TDDFT) theory. In the TD equations, a non-Hermitian eigenvalue

problem is solved for (G− ω∆)U = 0, where G is the orbital Hessian, the eigenvectors U

describe the transitions between the states of the system in the given molecular orbital (MO)

basis, and the eigenvalues ω are the system’s excitation energies (poles)a. In the CP equations,

a set of linear equations are solved for GU = −V, where V represents the perturbation, and

U describes the modification to the unperturbed state’s orbitals caused by the perturbation.

A basic implementation of the CPHF equations is given in section 6.9.1 using the electric

dipole operator as the perturbation. Although the remainder of this work will be concerned

with the properties arising from solution of the CP equations and not the TD equations,

their combination gives rise to other important molecular properties, namely the residues of

the response function (eigenvectors from the TD equation contracted with the operator of

interest), describe the perturbation-mediated transitions between states (their moments).

The solution of the CPSCF equations to calculate the parameters that describe the

wavefunction’s response to the perturbation V̂ determines the linear response of the system.

Linear response is named as such not due to the linear form of the equations, but because the

perturbation is linear in strength. This strength may be constant, static, or time-independent,

or it may be oscillating, dynamic, frequency-, or time-dependent. This work is primarily

concerned with static response properties, however an introduction to dynamic response is

presented. The most common formulation of these equations is single-particle in nature, with

both particle-hole and hole-particle terms, giving the random phase approximation (RPA).14,15

If not the external perturbation but the response equations themselves are expanded using

order analysis, the Hartree–Fock equations give the zeroth-order polarization propagator,

RPA corresponds to the first-order polarization propagator, and the full two-particle terms

are part of the second-order polarization propagator (SOPPA).16

a∆ is an identity matrix, except the lower diagonal is negated, see (Neese 107).
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1.2 CONNECTION BETWEEN MACROSCOPIC AND MICROSCOPIC

PROPERTIES

There is often a direct connection between the macroscopic observables measurable by

spectroscopic techniques and the molecular response calculated at the microscopic scale.

Tables 1 and 2 give examples of the most common molecular properties of interest and their

relationships to energy derivatives and response functions, respectively. Although the effort

required for implementing general energy derivatives may be considerable, the entries in both

tables are the true starting points for molecular property calculations based on quantum

chemical wavefunctions.

1.3 STATIC (TIME-INDEPENDENT) RESPONSE PROPERTIES

The two primary ways to perform the derivation are

1. from a phenomenological Hamiltonian, similarly to using the correspondence principle

when quantizing a classical expression (section 1.3.1), or

2. from series expansion of the energy with respect to one or more perturbations (sec-

tion 1.3.2).

It is also possible to obtain expressions for static properties by the reduction of any expressions

for dynamic properties to the static limit (zero frequency: ω = 0). The purpose of this section

is to avoid some complexity in the derivation of time-dependent response by understanding

the simpler case of static response first.

1.3.1 Phenomenological approach

For a one-dimensional spring connecting a ball to a fixed object, Hooke’s law is

F = −kx, (1.1)
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Table 1: Connection between specific energy derivatives and their respective molecular

properties. F is an applied electric field, B is an applied magnetic field, X is a nuclear

coordinate, m is a nuclear magnetic moment, J is a total rotational moment, I is a nuclear

spin, and S is the intrinsic electronic spin. Adapted from Ref. [1] and [17].

Energy derivative Molecular property
dE
dFi

dipole moment; in a similar manner also multipole moments,
electric field gradients, etc.

dE
dBα

magnetic dipole moment and higher-order magnetic multipoles
dE
dXi

forces on nuclei; stationary points on potential energy surfaces,
equilibrium and transition state structures

dE
dmKj

spin density; hyperfine interaction constants

d2E
dFαdFβ

(electric) polarizability
d2E

dXidXj
harmonic force constants; harmonic vibrational frequencies

d2E
dXidFα

dipole derivatives; infrared intensities within the harmonic
approximation

d2E
dBαdBβ

magnetizability
d2E

dmKj dBα
nuclear magnetic shielding tensor; relative NMR shifts

d2E
dIKidILj

indirect spin-spin coupling constant

d2E
dBαdJβ

rotational g-tensor; rotational spectra in magnetic field
d2E

dIKidBα
nuclear spin-rotation tensor; fine structure in rotational spectra

d2E
dSidBα

electronic g-tensor
d3E

dXidFαdFβ
polarizability derivative; Raman intensities

d3E
dFαd2Fβ

(first) electric hyperpolarizability
d3E

dXidXjdXk
cubic force constants; vibrational corrections to distances and
rotational constants

d4E
dFαdFβdFγdFδ

(second) electric hyperpolarizability
d4E

dBαdBβdBγdBδ
(second) hypermagnetizability

d4E
dXidXjdXkdXl

quartic force constants; anharmonic corrections to vibrational
frequencies

d4E
dFαdFβdFγdXi

hyper-Raman effects
d4E

dFαdFβdXidXj
Raman intensities for overtone and combination bands

d4E
dFαdFβdBγdBδ

Cotton–Mutton effect
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Table 2: Connection between specific (non)linear response functions and their respective

molecular properties. Adapted from Ref. [3].

Molecular Property Definition Type of response function

polarizability 〈〈µ̂; µ̂〉〉ω linear

magnetizability 〈〈m̂; m̂〉〉0 linear

optical rotation 〈〈µ̂; m̂〉〉ω linear

electronic circular dichroism 〈〈µ̂; m̂〉〉ωf single residue of linear

IR intensities 〈〈µ̂; ∂Ĥ0/∂R〉〉ω linear

NMR spin-spin coupling constants 〈〈ĥSD; ĥSD〉〉0, linear

〈〈ĥFC; ĥFC〉〉0, linear

〈〈ĥPSO; ĥPSO〉〉0 linear

NMR chemical shifts 〈〈l̂O; ĥPSO〉〉0 linear

EPR g-tensor 〈〈l̂O; ĥSOC〉〉0 linear

static first hyperpolarizability 〈〈µ̂; µ̂, µ̂〉〉0,0 quadratic

second-harmonic generation 〈〈µ̂; µ̂, µ̂〉〉ω,ω quadratic

electro-optical Pockels effect 〈〈µ̂; µ̂, µ̂〉〉ω,0 quadratic

optical rectification 〈〈µ̂; µ̂, µ̂〉〉ω,−ω quadratic

Faraday rotation 〈〈µ̂; µ̂, m̂〉〉ω,0 quadratic

magnetic circular dichroism 〈〈µ̂; µ̂, m̂〉〉ωf ,0 single residue of quadratic

Raman intensities 〈〈µ̂; µ̂, ∂Ĥ0/∂R〉〉ω,0 quadratic

static second hyperpolarizability 〈〈µ̂; µ̂, µ̂, µ̂〉〉0,0,0 cubic

third-harmonic generation 〈〈µ̂; µ̂, µ̂, µ̂〉〉ω,ω,ω cubic
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where x is the displacement of the spring from equilibrium in meters, k is the spring constant

in units of N m−1, and F is the restoring force in units of newtons acting on the displaced

spring by the object it is attached to. If the sign is reversed, then the equation can be viewed

as describing the force of spring acting on the attached object; it is a direction change and a

matter of convention.

Hooke’s law can be generalized to multiple dimensions. For example, in three-dimensional

space it can be written as 
F1

F2

F3

 = −


k11 k12 k13

k21 k22 k23

k31 k32 k33



x1

x2

x3

 , (1.2)

which can represent either a single object or three one-dimensional springs. It can also

be made 3N -dimensional when describing the forces on N atoms (each with 3 Cartesian

components) given their relative positions x and the “stiffness” of their connectivity k. In

the most general N -dimensional form, it can be written as

Fi = −
N∑
j

kijxj, (1.3)

or in Einstein summation notation where repeated indices are implicitly summed (contracted)

over as

Fi = −kijxj, (1.4)

where both i, j range from 1 to N , leading to vectors F and x of shape [N ] and a matrix k

of shape [N,N ]. From (1.2), (1.3), and (1.4), if off-diagonal elements of k are allowed to be

nonzero, there can be coupling between springs. For example, if i = 1, in the case of coupling,

F1 = −(k11x1 + k12x2 + k13x3), (1.5)

which reduces to

F1 = −k11x1 (1.6)

in the absence of coupling, or the same result obtained in (1.1).
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The force is also related to the energy. In one dimension,

F = −∇E (1.7)

= −∂E
∂x

, (1.8)

where ∇ ≡ ∂/∂x. In N dimensions, like (1.4), (1.7) is (using vector calculus)

Fi = −∂E
∂xi

. (1.9)

Equating the Fi in (1.4) and (1.9) gives

−kijxj = −∂E
∂xi

, (1.10)

where the negative signs can be dropped. To solve for the stiffness coefficients, take the

partial derivative of both sides with respect to xj, using the product rule on the left hand

side: (
∂

∂xj

)
(kijxj) =

(
∂

∂xj

)(
∂E

∂xi

)
(1.11)

���
���

���:0[(
∂

∂xj

)
(kij)

]
xj + kij

��
��

�
��*

1[(
∂

∂xj

)
xj

]
=

∂2E

∂xj∂xi
(1.12)

kij =
∂2E

∂xj∂xi
. (1.13)

This tells that the internal stiffness is related to the second derivative of the energy with

respect to nuclear coordinate displacements. The internal stiffness matrix is the molecular

Hessian, where each “spring constant” is called a force constant, which describes how a change

or perturbation to one atomic coordinate affects a change in another atomic coordinate.

Another important property is that in general, due to Young’s theorem, the order of

differentiation is not important, and the perturbations may be interchanged:

∂2E

∂xj∂xi
=

∂2E

∂xi∂xj
, (1.14)

leading to a symmetric matrix k. In practice, this has implications for computational cost

which will be discussed in section 1.3.5.
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A similar derivation holds for the dipole polarizability, α, which is the ratio of the induced

dipole moment µ of a system to the electric field F that produces this dipole moment. Both

µ and F are 3-dimensional vector quantities,

~µ = ~~α · ~F , (1.15)

which can be expanded identically to (1.2) as
µ1

µ2

µ3

 =


α11 α12 α13

α21 α22 α23

α31 α32 α33



F1

F2

F3

 , (1.16)

or in Einstein summation notation as

µi = αijFj. (1.17)

This is the most general case, where anisotropy may be present in the polarizability tensor,

leading to nonzero off-diagonal elements.

Another definition of the molecular dipole moment induced by an external (applied)

electric field is

µi = − ∂E
∂Fi

, (1.18)

which originates from the energy of a neutral dipole in an electric field,

E = −µiFi. (1.19)

Following (1.10), equating (1.17) and (1.18) gives

αijFj = − ∂E
∂Fi

(1.20)

The remaining steps follow identically to (1.11), (1.12), and (1.13):(
∂

∂Fj

)
(αijFj) =

(
∂

∂Fj

)(
− ∂E
∂Fi

)
(1.21)

�
�
�
��>

0(
∂αij
∂Fj

)
Fj + αij

�
�
�
��>

1(
∂Fj
∂Fj

)
= − ∂2E

∂Fj∂Fi
(1.22)

αij = − ∂2E

∂Fj∂Fi
(1.23)
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1.3.2 Series expansion

More generally, the derivative terms in section 1.3.1 originate from series expansions of the

energy in the presence of a perturbation; for (1.1), it is internal geometric displacements,

and in (1.15) it is an external electric field. The energy in the presence of an arbitrary

perturbation P is written as

E(P ) =
∞∑
n=0

1

n!

∂nE

∂P n

∣∣∣∣
P=a

· (P − a)n

=
∞∑
n=0

1

n!
E(n)(a) · (P − a)n

= E(0)(a) + E(1)(a) · (P − a) +
1

2
E(2)(a) · (P − a)2 +

1

6
E(3)(a) · (P − a)3 + . . . ,

(1.24)

where a is the point at which the derivative is taken. Choosing a
!

= 0 (expanding around the

perturbation at zero strength) turns the Taylor series into a Maclaurin seriesb:

E(P ) =
∞∑
n=0

1

n!

∂nE

∂P n

∣∣∣∣
P=0

· P n

=
∞∑
n=0

1

n!
E(n) · P n

= E(0) + E(1) · P +
1

2
E(2) · P 2 +

1

6
E(3) · P 3 + . . .

(1.25)

The perturbation P may have multiple components. For example, there are 3 possible

Cartesian components to an external electric field F = (Fx, Fy, Fz) and 3N atomic coordinates.

Generalizing the dimensionality of P to k and inserting into (1.25) gives

E(P) =
∞∑
n=0

1

n!

∂nE

∂Pn

∣∣∣∣
P=0

·Pn (1.26)

Considering specific examples, using (1.26), replacing P with an external electric field F,

and switching to Einstein notation gives

E(F) = E0 − µi · Fi −
1

2
αij · FiFj −

1

6
βijk · FiFjFk −

1

24
γijkl · FiFjFkFl − . . . , (1.27)

bThe notation x
!
= y means that x must be equal to y by definition.
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where µi is a component of the dipole (moment), expressed in operator form as

µ̂ = (µ̂x, µ̂y, µ̂z) = −e(x̂, ŷ, ẑ), (1.28)

α is a component of the polarizability, β is a component of the first hyperpolarizability, γ is

a component of the second hyperpolarizability, etc., each describing an additional correction

to how a system interacts with the external electric field.

It is also possible to consider multiple perturbations simultaneously. Adding another

perturbation Q to (1.26) gives

E(P,Q) = E(0,0) +
(
E(1,0) ·P + E(0,1)Q

)
+

1

2

(
E(2,0) ·P2 + E(0,2) ·Q2 + E(1,1) ·P ·Q

)
+ . . . ,

(1.29)

where E(n,m) refers to the energy correction that is simultaneously nth-order in the perturba-

tion P and mth-order in the perturbation Q. The expected terms from both independent

series expansions occur, but there is also a cross-term E(1,1). All mixed derivatives in Table 1

that are at least 2nd-order total correspond to such cross-terms. For example, consider adding

an external magnetic field to (1.27):

E(F,B) = E0 − µi · Fi −mi ·Bi −
1

2
(αij · FiFj + ξij ·BiBj +Gij · FiBj)− . . . , (1.30)

where the magnetic field has introduced mi as a component of the magnetic (dipole) moment,

ξij as a component of the magnetizability, and the mixed electric dipole–magnetic dipole

polarizability Gij, which is directly related to the optical rotationc, given as 〈〈µ̂; m̂〉〉ω in

Table 2. The residues of the same response function give the rotatory strengths needed for

electronic circular dichroism (ECD), shown as 〈〈µ̂; m̂〉〉ωf in Table 2. Section 1.4 will show

how frequency dependence can be properly introduced to this term and in general.

cSee Eq. (2) in Ref. [18], specifically the G term.
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1.3.3 Derivative evaluation

Up to this point, it has not been necessary to specify which energy expression is being

differentiated: it is the energy expression for the chosen method (HF, ωB97M-V, MP2,

CCSD(T), . . . ). These derivatives may be evaluated in one of two ways:

1. numerically, by using a finite difference expression (usually based on central differences)

for the desired derivative order, evaluating the energy (or some other property) at multiple

perturbation strengths (step sizes) and directions, or

2. analytically, by differentiating the energy expression “on paper” and evaluating it directly.

It is also possible to combine numerical and analytic approaches to obtain higher-order

derivatives. For example, in the calculation of Raman intensities, defined as ∂3E
∂XA∂Fi∂Fj

, there

are six unique ways to perform the derivative, shown in Table 3. More explicitly, the first row

Table 3: Possible permutations of analytic (a) and numerical (n) differentiation for each

perturbation term in calculating Raman intensities. The two cancelled entries are not unique

due to permutational symmetry.

XA Fi Fj

a a a
a a n

�a �n �a
n a a
a n n
n a n

�n �n �a
n n n

corresponds to a fully analytic third derivative, the next three rows correspond to first-order

finite difference of analytic second derivatives, the next three rows correspond to second-order

finite difference of analytic first derivatives, and the last row corresponds to the third-order

finite difference of energies. Due to symmetry in the electric field perturbation indices, two of

the eight permutations are identical to others already present; for example, a/a/n and a/n/a

are functionally identical.
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In practice, the fully analytic third derivative is often not implemented, but second

derivatives are, leading to two unique possibilities:

∂3E

∂XA∂Fi∂Fj
=

∂

∂XA︸ ︷︷ ︸
numeric

(
∂2E

∂Fi∂Fj

)
︸ ︷︷ ︸

analytic

=
∂αij
∂XA

, (1.31)

=
∂

∂Fi︸︷︷︸
numeric

(
∂2E

∂XA∂Fj

)
︸ ︷︷ ︸

analytic

=
∂

∂Fi

(
∂µj
∂XA

)
. (1.32)

In (1.31) there are 2× (3N atomic coordinates) = 6N atom-displaced polarizability calcula-

tions. This is closer to the textbook definition of Raman intensities, which are the change in

molecular polarizability along each normal mode coordinate.19 In (1.32), the dipole gradient

(needed for IR intensities) is calculated analytically for 2 × (3 field directions) = 6 finite

electric field calculations.

1.3.4 Finite difference for numerical derivatives

To perform numerical differentiation for molecular properties, first consider the definition of

a (first) derivative,

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
, (1.33)

where f(x) is the function of an independent variable x being differentiated with respect to

that variable. If h is set to a small finite number (h > 0),

f ′(x) ≈ f ′(x|h) =
f(x+ h)− f(x)

h
, (1.34)

the exact (analytic) derivative is approximated using a step size h. (1.34) is the forward

(finite) difference, as the step is taken by incrementing the independent variable. More

common is central difference,

f ′(x|h) =
f(x+ 1

2
h)− f(x− 1

2
h)

h
. (1.35)

Replace f with the molecular energy, and let h be the strength of an applied electric field

along the z-direction. (1.35) becomes

µz(hz) =
E(1

2
hz)− E(1

2
hz)

hz
, (1.36)
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the z-component of the electric dipole moment. x disappears because the derivative is taken

at zero field. (1.36) may be useful for methods that do not commonly have analytic derivatives

of any order, such as CCSDT. Of more interest is replacing the energies with analytic dipole

moments to give an element of the polarizability tensor:

αxz(hx) =
µz(

1
2
hx)− µz(1

2
hx)

hx
. (1.37)

(1.37) is an example of a mixed analytic/numerical derivative as discussed in section 1.3.3. A

fully-numeric polarizability calculation would require applying 2nd-order central difference,

f ′′(x|h) =
f(x+ h)− 2f(x)− f(x− h)

h2
, (1.38)

to give

αzz(hz) =
E(hz)− 2E0 − E(hz)

h2
z

. (1.39)

As discussed in section 5.3.3 and Ref. [1], there are considerable disadvantages to perform-

ing numerical differentiation of the wavefunction. These include the presence of finite-difference

error due to step size sensitivity, the inability to handle frequency-dependent perturbations,

the inability to handle response to applied magnetic fields without complex energies, and the

poor calculation time scaling (especially for geometric derivatives). A particularly insidious

example of error related to the step size is given in Figure 1. Many tests of numerical

derivative errors consider relative or absolute accuracy in comparison to the exact analytic

result. Figure 1 does not compare the error between the numerical and analytic results, but

between matrix elements of the numerical result. In this case, the fundamental structure of

the electric field response is violated: asymmetry implies that the polarizability is dependent

on the order of which the probing electric fields are applied, and (1.14) does not hold, giving

an unphysical result.
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L-alanine, HF/STO-3G, 1st order central di↵erence from µ
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zx� xz

zy � yz

default

Figure 1: Effect of numerical noise on the off-diagonal matrix elements of the polarizability

tensor. Nonzero differences indicate asymmetry, and the polarizability tensor is supposed

to be symmetric. The red bar indicates the default step size for the applied electric field in

Q-Chem 5.1, set at 1.889 73× 10−5 a.u..
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1.3.5 Analytic derivative theory

As mentioned in section 1.3.3, the first requirement for evaluating analytic energy derivatives

is to form the necessary mathematical expression. In the most general case, there are both

derivatives of the atomic orbital (AO) basis integrals themselves and of the density matrix,

which leads to derivatives of the MO coefficients. To illustrate some of the mechanics of

differentiation, consider the derivative of the MO-basis matrix representation of the electron-

nuclear attraction operator V̂eN with respect to a nuclear coordinate XA, which is a term

needed for the molecular gradient:

∂Vij
∂XA

=
∂

∂XA

(
AO∑
µν

CµiCνjVµν

)
(Yamaguchi eq. 3.80)

=
AO∑
µν

(
∂Cµi
∂XA

CνjVµν + Cµi
∂Cνj
∂XA

Vµν + CµiCνj
∂Vµν
∂XA

)
, (Yamaguchi eq. 3.81)

where the third (last) term is the true AO integral derivative, and the first two terms, the

MO coefficient derivatives, come from differentiating the density matrix, which is defined as

PRHF
µν =

d.o.∑
i

CµiCνi (1.40)

in the AO basis.

The AO integral derivative can be further expanded. Using µ, ν rather than χµ, χν so

they refer to both AO basis functions and their matrix indices,

∂Vµν
∂XA

=
∂

∂XA

〈
µ
∣∣∣V̂ ∣∣∣ ν〉 (Yamaguchi eq. 3.24)

=

〈
∂µ

∂XA

∣∣∣V̂ ∣∣∣ ν〉+

〈
µ

∣∣∣∣∣ ∂V̂∂XA

∣∣∣∣∣ ν
〉

+

〈
µ
∣∣∣V̂ ∣∣∣ ∂ν

∂XA

〉
, (Yamaguchi eq. 3.25)

where the first and third terms are derivatives of basis functions and the second term is a

derivative of the operator itself. Although AO integral derivatives are a necessary component

of most derivative expressions, they do not play a direct role in response equations, and do

not need to be discussed further.
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It is convenient to rewrite the MO coefficient derivatives,

∂Cµi
∂XA

=
MO∑
m

UXA
mi Cµm, (Yamaguchi eq. 3.7)

where the index m runs over all occupied and unoccupied/virtual MOs. Although XA is being

used for the perturbation, all parts of this derivation hold for any general perturbation. The

key insight is that the effect of a perturbation on the MO coefficients can be written as the

contraction of the unmodified MO coeffcients with a unitary matrix describing single-particle

excitations from occupied to virtual MOs, as well as deexcitations from virtual to occupied

MOs. In matrix form, this is

C(XA) = C(0)
(
U(XA)

)T
, (1.41)

where the dimension of U is [Norb, Norb].

Now consider the derivatives of the MO coefficients/density matrix in the context of

the Hartree–Fock equations. Starting from the restricted Hartree–Fock electronic energy

expression,d

ERHF
elec = 2

d.o.∑
i

hii +
d.o.∑
ij

{2(ii|jj)− (ij|ij)} , (Yamaguchi eq. 4.1)

the first derivative with respect to a nuclear displacement XA ise

∂ERHF
elec

∂XA

= 2
d.o.∑
i

hXAii +
d.o.∑
ij

{
2(ii|jj)XA − (ij|ij)XA

}
− 2

d.o.∑
i

SXAii εi, (Yamaguchi eq. 4.21)

where terms with the superscript XA indicate the a derivative of only the AO term.

Notice that the MO coefficient derivatives do not appear in the final HF gradient expression.

They disappear due to Wigner’s 2n+ 1 rule. From page 25 of Ref. [7]:

When the wavefunction is determined up to the nth order, the expectation value (electronic
energy) of the the system is resolved, according to the results of perturbation theory, up to
the (2n+ 1)st order. This principle is called Wigner’s 2n+ 1 theorem.21,22

dµ, ν, λ, σ, . . . are AO indices, i, j, k, l, . . . are occupied MO indices, and p, q, r, s, . . . are general MO indices.(
ĥ = Ĥcore

)
≡ T̂e+ V̂Ne is the one-electron core Hamiltonian operator, which itself is the sum of the electronic

kinetic energy and electron-nuclear attraction energy operators, here in matrix representation, similarly to
(Yamaguchi eq. 3.80). (pq|rs) is an MO-basis two-electron (repulsion) integral in Mulliken notation (see
Table 2.2 of Ref. [5]).

eAdditionally, see section C.3 of Szabo & Ostlund5 and Ref. [20].
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More explicitly, we have the zeroth-order wavefunction, so we must be able to calculate the

first-order correction to the energy. Worded differently, any first derivative of the energy

can be calculated without differentiating MO coefficients, which is only required for second

derivatives, such as the molecular Hessian or the dipole polarizability.

Differentiating (Yamaguchi eq. 4.1) with respect to XA and collecting terms with U gives

∂ERHF
elec

∂XA

= 2
d.o.∑
i

hXAii +
d.o.∑
ij

{
2(ii|jj)XA − (ij|ij)XA

}
+ 4

all∑
m

d.o.∑
i

UXA
mi Fim,

(Yamaguchi eq. 4.16)

where the Fock matrix is defined as

Fpq = hpq +
d.o.∑
k

{2(pq|kk)− (pk|qk)}

= hpq + 2Jpq −Kpq,

(Yamaguchi eq. 4.6)

and the Coulomb and exchange matrices J and K have also been introduced. Using the RHF

variational conditions, the Fock matrix from a converged calculation is diagonal in the MO

basis, corresponding to the MO energies

Fpq = δpqεpq, (Yamaguchi eq. 4.7)

so (Yamaguchi eq. 4.16) simplifies to

∂ERHF
elec

∂XA

= 2
d.o.∑
i

hXAii +
d.o.∑
ij

{
2(ii|jj)XA − (ij|ij)XA

}
+ 4

all∑
m

d.o.∑
i

UXA
mi εim,

(Yamaguchi eq. 4.17 modified)

which can be further simplified as

∂ERHF
elec

∂XA

= 2
d.o.∑
i

hXAii +
d.o.∑
ij

{
2(ii|jj)XA − (ij|ij)XA

}
+ 4

d.o.∑
i

UXA
ii εii. (Yamaguchi eq. 4.17)

Now one of the most important tricks in quantum chemistry is used. Given the orthonor-

mality of the MOs,

Spq = δpq, (Yamaguchi eq. 3.44)
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we must have (see footnote b)

∂Spq
∂XA

!
= 0. (Yamaguchi eq. 3.45)

Expanding the left-hand side of (Yamaguchi eq. 3.45) similarly to (Yamaguchi eq. 3.81) gives

∂Spq
∂XA

=
AO∑
µν

CµpCµq
∂Sµν
∂XA

+
all∑
m

(
UXA
mp Smq + UXA

mq Spm
)

(Yamaguchi eqs. 3.40 + 3.43)

= SXApq +
all∑
m

(
UXA
mp Smq + UXA

mq Spm
)
. (Yamaguchi eq. 3.43)

The sum over all MOs can be eliminated by reusing the orthonormality condition, so in the

first term m
!

= q and for the second term m
!

= p, and the overlap matrix in the MO basis is

unity for those terms, giving

∂Spq
∂XA

= SXApq + UXA
qp + UXA

pq
!

= 0. (Yamaguchi eq. 3.46)

Recognizing that we only need diagonal terms, this can be rewritten as

UXA
pp = −1

2
SXApp , (Yamaguchi eq. 4.20)

which is then plugged back into the first derivative expression to give

∂ERHF
elec

∂XA

= 2
d.o.∑
i

hXAii +
d.o.∑
ij

{
2(ii|jj)XA − (ij|ij)XA

}
+ 4

d.o.∑
i

(
−1

2
SXAii

)
εii

= 2
d.o.∑
i

hXAii +
d.o.∑
ij

{
2(ii|jj)XA − (ij|ij)XA

}
− 2

d.o.∑
i

SXAii εii.

(Yamaguchi eq. 4.21 [rederived])

Since is it almost always advantageous to avoid MO transformations and work in the AO

basis, the last term can be rewritten

d.o.∑
i

SXAii εii =
d.o.∑
i

AO∑
µν

CµiCµi
∂Sµν
∂XA

εii

=
d.o.∑
i

AO∑
µν

CµiCµiεiiS
XA
µν

=
AO∑
µν

WµνS
XA
µν

(Yamaguchi eq. 4.24)
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to use the energy-weighted density matrix W, also sometimes called Q:f

∂ERHF
elec

∂XA

= 2
AO∑
µν

Pµνh
XA
µν +

AO∑
µνλσ

PµνPλσ
{

2(µν|λσ)XA − (µλ|νσ)XA
}
− 2

AO∑
µν

QµνS
XA
µν + V XA

NN

(Szabo & Ostlund eq. C.12)

Again, the elimination of the U matrix is one of the most important results in quantum

chemistry, as it means the coupled-perturbed SCF equations described previously do not

need to be solved for first derivatives of SCF wavefunctions. This is why density or MO

coefficient derivatives are not present in the gradient expression.

Differentiation of (Yamaguchi eq. 4.21) once more with respect to another nuclear dis-

placement YB is

∂2ERHF
tot

∂XA∂YB
= 2

d.o.∑
i

hXAYBii +
d.o.∑
ij

{
2(ii|jj)XAYB − (ij|ij)XAYB

}
− 2

d.o.∑
i

SXAYBii εi − 2
d.o.∑
i

all∑
p

{
UXA
ip UYB

ip + UYB
ip U

XA
ip − SXAip SYBip − SYBip SXAip

}
εi

+ 4
all∑
p

d.o.∑
i

(
UYB
pi F

XA
pi + UXA

pi F
YB
pi

)
+ 4

all∑
p

d.o.∑
i

UXA
pi U

YB
pi εp

+ 4
all∑
p

d.o.∑
i

all∑
q

d.o.∑
j

UXA
pi U

YB
qj {4(pi|qj)− (pq|ij)− (pj|iq)}

− 3 (XA −XB) (YA − YB)
ZAZB
R5
AB

,

(Yamaguchi eqs. 4.54, 4.55, 3.127)

where the nucleus-nucleus repulsion energy derivative is included for completeness. This is

the final expression for the molecular Hessiang derived in (1.13). From here and Table 37,

we can see that evaluating the U matrices (forming derivatives of the MO coefficients) is

unavoidable.

However, the case of the molecular Hessian is a general one, because the AOs are

perturbation-dependent: for a fixed electron position, the amplitude of a basis function will

change if it moved, and they are typically atom-centered. In the case that the basis set

fThe convention in Szabo & Ostlund is to absorb the RHF factor of 2 into the density matrix, which is
not done here.

gNot mass-weighted.
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is not perturbation dependent, as is most often in the case in electric field perturbationsh,

(Yamaguchi eqs. 4.54, 4.55, 3.127) reduces to

∂2ERHF
tot

∂Fα∂Fβ
= −4

virt∑
a

d.o.∑
i

U
Fβ
ai h

Fα
ai , (Yamaguchi eq. 17.54)

where
∂2ERHF

tot

∂Fα∂Fβ
is the αβ-component of the static polarizability tensor (1.23), and the one-

electron term hFαai is the α-component of the dipole operator in the occupied-virtual MO

basis (the property gradient, see the P/Q matrix elements in section 5.3.1 and line 371).

This specific term originates from the Fock matrix derivatives on line three, as the complete

Hamiltonian now includes the perturbation (see (1.43)), which is the only term that survives

the differentiation. In general, when the AO basis is perturbation independent, the energy

derivative with respect to two arbitrary perturbations λ and θ can be written as2

∂2E

∂λ∂θ
=
∑
µν

(
Pµν

∂2hµν
∂λ∂θ

+
∂Pµν
∂θ

∂hµν
∂λ

)
, (Neese eq. 77)

where the first term is evaluated as an expectation value and the second term requires solution

of the response equations. The derivative of the density matrix is related to the U matrices

viai

∂P

∂θ
= C(0)

(
C(θ)

)T
+ C(θ)

(
C(0)

)T
(1.42)

and (1.41).

The form of (Yamaguchi eq. 17.54) and (Neese eq. 77) as shown above should make it

clear that for a second derivative of an HF wavefunction, only one set of U matrices is needed.

This leads to a potential computational savings. Considering the IR intensities d2E
dXAdFα

,

calculating d
dXA

(µα) would require 3N U matrices (one for each nuclear displacement), but

using (1.14) to calculate d
dFα

(
dE
dXA

)
would only require 3 U matrices (one for each external

field component).

hSee Ref. [23] for a discussion of using electric field-dependent functions.
i(Neese eq. 77) is for real perturbations; in the case of imaginary perturbations, the sum changes to a

difference.
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1.3.6 Perturbation theory

In Rayleigh–Schrödinger perturbation theoryj, the exact Hamiltonian Ĥ of a system under

an applied perturbation V̂ can be written as

Ĥ = Ĥ(0) + λV̂ , (1.43)

where Ĥ(0) is the Hamiltonian in the absence of the perturbation and λ ∈ [0, 1] controls

the strength of the perturbation. Note that it is not yet necessary to specify the exact

form of V̂ . The main assumption in perturbation theory, worded in two ways, is that the

unperturbed Hamiltonian is an acceptable approximation to the exact Hamiltonian, and the

perturbation is small. This assumption allows for a power (Maclaurin) series expansion of

the wavefunction |Ψi〉 and its energy Ei for a given state i, where increasing orders account

for better approximations to the exact (perturbed) energy:k

|Ψi〉 = |ψ(0)
i 〉+ λ |ψ(1)

i 〉+ λ2 |ψ(2)
i 〉+ . . . (1.44)

Ei = E
(0)
i + λE

(1)
i + λ2E

(2)
i + . . . (1.45)

Combining (1.43), (1.44), and (1.45) into the Schrödinger equation,

Ĥ |Ψi〉 = Ei |Ψi〉 , (1.46)

gives(
Ĥ(0) + λV̂

) [
|ψ(0)
i 〉+ λ |ψ(1)

i 〉+ λ2 |ψ(2)
i 〉+ . . .

]
=
[
E

(0)
i + λE

(1)
i + λ2E

(2)
i + . . .

] [
|ψ(0)
i 〉+ λ |ψ(1)

i 〉+ λ2 |ψ(2)
i 〉+ . . .

]
,

(1.47)

where the {λ} are now also useful for collecting terms of like orders. The zeroth-order terms

give the Schrödinger equation for the unperturbed energy,

Ĥ(0) |ψ(0)
i 〉 = E

(0)
i |ψ(0)

i 〉 , (1.48)

jSee Szabo & Ostlund5 page 322; identical notation is followed throughout, except the summation index
n is generally replaced with k.

kWhile one hopes the series is convergent, it is often not the case, so the series is often truncated at the
second-order correction to the energy, which may still be useful. See Ref. [24] for a series convergence study.
It is unclear if the same issue exists when V̂ corresponds to an operator other than V̂ee, such as for external
fields.
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but equating all terms that are first order in λ on both sides gives

Ĥ(0) |ψ(1)
i 〉+ V̂ |ψ(0)

i 〉 = E
(0)
i |ψ(1)

i 〉+ E
(1)
i |ψ(0)

i 〉 , (1.49)

where λ has been dropped for readability since it is present in front of each term. (1.49) can

be simplified through integration using the bra 〈ψ(0)
i |, which does not change the order from

λ1:

〈ψ(0)
i |
(
Ĥ(0) |ψ(1)

i 〉+ V̂ |ψ(0)
i 〉
)

= 〈ψ(0)
i |
(
E

(0)
i |ψ(1)

i 〉+ E
(1)
i |ψ(0)

i 〉
)

〈ψ(0)
i |Ĥ(0)|ψ(1)

i 〉+ 〈ψ(0)
i |V̂ |ψ(0)

i 〉 = 〈ψ(0)
i |E(0)

i |ψ(1)
i 〉+ 〈ψ(0)

i |E(1)
i |ψ(0)

i 〉

= E
(0)
i 〈ψ(0)

i |ψ(1)
i 〉+ E

(1)
i 〈ψ(0)

i |ψ(0)
i 〉 .

(1.50)

It is now important to know what orthonormality conditions exist between the set of

all corrected states
{
|ψ(n)
i 〉
}

. For the unperturbed state, which is usually the Hartree–Fock

ground state,

〈ψ(0)
i |ψ(0)

i 〉 = 1, (1.51)

and the choice of intermediate normalization is made,

〈ψ(0)
i |Ψi〉 !

= 1, (1.52)

which upon expanding the ket using (1.44) leads to

〈ψ(0)
i |ψ(n)

i 〉 = 0 (1.53)

for any correction state where n > 0. Returning to (1.50), this first allows for simplification

of the right-hand side,

〈ψ(0)
i |Ĥ(0)|ψ(1)

i 〉+ 〈ψ(0)
i |V̂ |ψ(0)

i 〉 = E
(0)
i ��

���
�:0

〈ψ(0)
i |ψ(1)

i 〉+ E
(1)
i ��

���
�:1

〈ψ(0)
i |ψ(0)

i 〉

= E
(1)
i ,

(1.54)
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and the first term on the left-hand side can be simplified using the hermiticity of the

Hamiltonian followed by (1.53),

〈ψ(0)
i |Ĥ(0)|ψ(1)

i 〉 = 〈ψ(1)
i |Ĥ(0)|ψ(0)

i 〉
∗

= 〈ψ(1)
i |E(0)

i |ψ(0)
i 〉
∗

= E
(0)
i 〈ψ(1)

i |ψ(0)
i 〉
∗

= E
(0)
i ��

���
�:0

〈ψ(0)
i |ψ(1)

i 〉

= 0.

(1.55)

The final form of (1.50) is now

〈ψ(0)
i |V̂ |ψ(0)

i 〉 = E
(1)
i , (1.56)

revealing that the first-order correction to the energy is the expectation value of the pertur-

bation operator over the zeroth-order wavefunction. For context, when using perturbation

theory to approximate the correlation energy of system on top of the mean-field wavefunction,

V̂ ≡ V̂ee = 1
|~r1−~r2| = 1

r12
, the electron-electron repulsion operator. However, the perturbation

operator may be any one- or two-electron operator, and (1.56) is exact as long as |ψ(0)
i 〉

is a variationally-optimized statel. The key insight is that to calculate the first-order cor-

rection to the energy, only the zeroth-order wavefunction is required. This means that if

V̂ is replaced with an operator related to a molecular property, it can be calculated as an

expectation value without needing the perturbed wavefunction. This is the same result as in

(Yamaguchi eq. 4.21), and resembles the result of the Hellmann–Feynman theorem when the

AO basis is not dependent on the perturbation.

The generalization of (1.56) is that for n > 0, the nth order correction to the energy is

given by

E
(n)
i = 〈ψ(0)

i |V̂ |ψ(n−1)
i 〉 , (1.57)

lHartree–Fock and most density functional approximations that do not contain a perturbative correction
(such as double hybrids) satisfy this criterion. Additionally, it is important for ALMO-EDA, where the
polarized but CT-disallowed intermediate state |ψpol〉 is variational, but the frozen density state |ψfrz〉 is
not. All the work found in chapter 5 starts from |ψpol〉, so the use of a Lagrangian to account for orbital
relaxation (leading to additional terms) is unnecessary.
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so to find the second-order correction to the energy, the first-order correction to the wave-

function is required. The general rule is that given the nth order correction to the wavefunction,

the 2n + 1th order correction to the energy can be calculated. This is known as Wigner’s

2n+ 1 rule (see section 6.9.2.4). From (1.57), the first form of the second-order correction is

E
(2)
i = 〈ψ(0)

i |V̂ |ψ(1)
i 〉 , (1.58)

where the problem now becomes the calculation of the perturbed wavefunction |ψ(1)
i 〉. The

strategy is to expand it as a linear combination of eigenfunctions of Ĥ(0) that are orthogonal

to the unperturbed state (in line with (1.53)),

〈k|ψ(0)
i 〉

!
= 0, (1.59)

and form a complete orthonormal set
{
|ψ(0)
k 〉
}
≡ {|k〉},

|ψ(1)
i 〉 =

∑
k

c
(1)
k |k〉 , (1.60)

leading to

〈k|ψ(1)
i 〉 = c

(1)
k . (1.61)

Using (1.53) and the fact that the set {|k〉} is complete, the resolution of the identity can be

inserted:

|ψ(1)
i 〉 =

∑
k

|k〉 〈k|ψ(1)
i 〉 (1.62)

To calculate the first-order correction to the wavefunction, first rearrange (1.49) to collect

all terms with the same ket,

(E
(0)
i − Ĥ(0)) |ψ(1)

i 〉 = (V̂ − E(1)
i ) |ψ(0)

i 〉 , (1.63)

and multiply (1.63) on the left with 〈k| to give

E
(0)
i 〈k|ψ(1)

i 〉 − 〈k|Ĥ(0)|ψ(1)
i 〉 = 〈k|V̂ |ψ(0)

i 〉 − E(1)
i ��

���:0
〈k|ψ(0)

i 〉, (1.64)
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where the last term cancels due to 〈a|b〉 = δab, {a, b} ∈ k, and |k〉 6= |ψ(0)
i 〉 from (1.59). To

deal with the second term, use (1.60), canceling terms again due to orthonormality, and

finally inserting (1.61):

〈k|Ĥ(0)|ψ(1)
i 〉 = 〈k| Ĥ(0)|

(∑
a

c(1)
a |a〉

)
= 〈k| Ĥ(0)|

(
c(1)
a |a〉+ c

(1)
b |b〉+ · · ·+ c

(1)
k |k〉+ . . .

)
= 〈k|

(
E(0)
a c(1)

a |a〉+ E
(0)
b c

(1)
b |b〉+ · · ·+ E

(0)
k c

(1)
k |k〉+ . . .

)
= E(0)

a c(1)
a ��

��*0
〈k|a〉+ E

(0)
b c

(1)
b ��

�*0
〈k|b〉+ · · ·+ E

(0)
k c

(1)
k �

��
�*1

〈k|k〉+ . . .

= E
(0)
k c

(1)
k

= E
(0)
k 〈k|ψ

(1)
i 〉 .

(1.65)

Plugging (1.65) back into (1.64) gives(
E

(0)
i − E(0)

k

)
〈k|ψ(1)

i 〉 = 〈k|V̂ |ψ(0)
i 〉 (1.66)

〈k|ψ(1)
i 〉 =

〈k|V̂ |ψ(0)
i 〉

E
(0)
i − E(0)

k

, (1.67)

which upon inserting into (1.62), gives the final form of the first-order correction to the

perturbed wavefunction:

|ψ(1)
i 〉 =

∑
k 6=i

|k〉 〈k|V̂ |ψ
(0)
i 〉

E
(0)
i − E(0)

k

. (1.68)

Inserting (1.68) into (1.58) then gives the second-order correction to the perturbed energy:

E
(2)
i = 〈ψ(0)

i | V̂
{∑

k 6=i

|k〉 〈k|V̂ |ψ
(0)
i 〉

E
(0)
i − E(0)

k

}

=
∑
k 6=i

〈ψ(0)
i |V̂ |k〉 〈k|V̂ |ψ(0)

i 〉
E

(0)
i − E(0)

k

.

(1.69)

In the case where V̂ is operator with multiple components, such as the dipole operator in

(1.28), the energy becomes a rank-2 tensor, the polarizability matrix:

αab = −
∑
k 6=i

〈ψ(0)
i |µ̂a|k〉 〈k|µ̂b|ψ(0)

i 〉
E

(0)
i − E(0)

k

. (1.70)
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(1.70) is called a sum-over-states expansion due to the explicit summation over the set

of excited states |ψ(0)
k 〉. Although the derivation assumes that all states are exact and

the summation is infinite, the actual states are formed from the basis of excited Slater

determinants using the converged SCF wavefunction as the reference state |ψ(0)
i 〉.

1.4 DYNAMIC (FREQUENCY-DEPENDENT) RESPONSE PROPERTIES

Up to this point, only static perturbations have been considered, where the strength of an

applied field does not oscillate or vary with time. This is perfectly satisfactory for many

properties, such as those that are intrinsic to the system or do not depend on field strength.

For example, it does not make sense to have a field strength directly associated with a

change in nuclear positions; this is not the same thing as having nuclear positions change in

the presence of an applied field. Similarly, from Table 1, rotational and nuclear magnetic

moments do not have a strength associated with them. This holds generally for “internal”

perturbations. However, many non-linear optical processes in particular take advantage of

oscillating fields, so frequency- or time-dependent molecular response properties must be

calculable.

In order to deal with frequency-dependent response, a slightly different path must be

taken, in part because the total energy of the system is no longer stationary with time, so

energy derivatives as encountered in Section 1.3.5 are not physically well-defined. There

are numerous possible derivation frameworks which cannot be done justice here. Equivalent

results arise from time-dependent perturbation theory, quasienergy derivatives,1,3,25,26 and

the polarization propagator,6 to name a few. Ideally, there is a time-dependent extension of

Section 1.3.2 that at some step allows for identification of coefficients in a series expansion

with response functions. Similarly, in the static limit (ω → 0), results from analytic derivative

theory should be recovered, making time-dependent response theory a more general framework

for response properties. The following derivation is borrowed heavily from Ref. [26], with

expansion using Ref. [1].
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1.4.1 Quasienergy derivatives

The starting point is the now the time-dependent Schrödinger equation (TDSE),

Ĥ(t) |Ψ(t)〉 = i
∂

∂t
|Ψ(t)〉 , (1.71)

which, unlike (1.46) does not have the energy on the right-hand side. It is useful to factor

out the time-dependent phase of the wavefunction,

|Ψ(t)〉 = e−iF(t) |Ψ̃(t)〉 , (Toulouse eq. 48)

where Ψ(t) is the original unfactored wavefunction, F(t) is a phase factor, and Ψ̃(t) is the

phase-isolated wavefunction.m Rearrange the TDSE (1.71),[
Ĥ(t)− i ∂

∂t

]
|Ψ(t)〉 = 0, (Toulouse eq. 47)

and use the phase-isolated wavefunctionn[
Ĥ(t)− i ∂

∂t

]
|Ψ̃(t)〉 = Ḟ(t) |Ψ̃(t)〉 , (Toulouse eq. 49)

where Ḟ(t) now resembles the energy from the time-independent Schrödinger equation (TISE).

This “energy” is still not stationary with time, however it will reappear later as part of a

stationary theory.

Before going further, the Hamiltonian must be specified. The partitioning introduced in

(1.43) is modified:

Ĥ(t) = Ĥ(0) + V̂ (t), (1.72)

so that time-dependence is introduced only to the perturbation and not the standard molecular

Hamiltonian.o The prototypical perturbation usually represents an external electric field that

is slowly turned on in order for the system to gradually respond and may oscillate with time

mThis notation is consistent with Ref. [1]. In Ref. [26], Ψ̄(t) is the total wavefunction and Ψ(t) is the
phase-isolated wavefunction. In Ref. [25], |0̄〉 is the total wavefunction, |0̃〉 is the phase-isolated wavefunction,
and |0〉 is the stationary wavefunction, recovered from |0̃(t→ 0)〉.

nȦ(t) = dA(t)/dt
oSometimes V̂ (t) is notated as Ĥ ′(t) or Ĥ(1)(t); all are equivalent as long as the perturbation and time

partitioning in the full Hamiltonian are the same.
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at a characteristic frequency.p Representing the perturbation in terms of Fourier components,

V̂ (t) = x1B̂e
−iωt + x2Âe

+iωt, (Toulouse eq. 46 [modified])

shows that the perturbation, and therefore the Hamiltonian, is periodic in time (Ĥ(t+ T ) =

Ĥ(t)) with a period of T = 2π/ω. Other perturbation shapes, such as step functions, can

be represented using a more general form of (Toulouse eq. 46 [modified]) with more Fourier

components:

V̂ (t) =
N∑

k=−N

e−iωkt
∑
X

εX(ωk)X̂, (Gauss eq. 106)

where k is the Fourier component index, ωk are the frequencies, and εX(ωk) and X̂ are the

corresponding perturbation strengths and operators. This gives the required integration

bounds for (Toulouse eq. 49), leading to

Q =
1

T

∫ T

0

dt Ḟ(t)

=
1

T

∫ T

0

dt
〈Ψ̃(t)|

[
Ĥ(t)− i ∂

∂t

]
|Ψ̃(t)〉

〈Ψ̃(t)|Ψ̃(t)〉
,

(Toulouse eq. 50)

where Q is the time-averaged quasienergy. The second part of (Toulouse eq. 50) is the

variational condition for Ψ̃(t), making Q stationary with respect to fluctuations in Ψ̃(t). In

the time-independent case, the quasienergy reduces to the (time-independent) energy, and

the phase-isolated wavefunction reduces to the (time-independent) wavefunction.

The time-averaged quasienergy can now be expanded with respect to the perturbation

parameters,

Q(x1, x2) = Q(0) +Q(10)x1 +Q(01)x2 +
1

2
Q(20)x2

1 +Q(11)x1x2 +
1

2
Q(02)x2

2 + . . . ,

(Toulouse eq. 51)

analogous to the series expansion in Section 1.3.2. However, the expansion coefficients

∂nQ/∂xn are still not in a position to be directly calculable for an approximate theory

due to the presence of the integral in (Toulouse eq. 50), unlike in the static case, so the

time-dependent theory must be further derived for exact states.

pIn the case that the response of the system is slower than the speed of which the perturbation is turned
on, a different (undesirable) solution may be found if the perturbation is strong enough.
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Using the time-dependent form of (1.56),

Q(10) =
1

T

∫ T

0

dt 〈Ψ̃0|B̂e−iωt|Ψ̃0〉

= 〈Ψ̃0|B̂|Ψ̃0〉 δ[ω].

(Toulouse eq. 53)

The rule used in (Toulouse eq. 53) is

1

T

∫ T

0

dt e−iωt = δ[ω] =

δω,0 |T | <∞

δ(ω) T →∞
, (1.73)

where we define δ[ω] as the Kronecker delta for finite T and the Dirac delta for T → ∞.

More explicitly, δ[ω = 0] = (1/T )
∫ T

0
dt e0 = 1. δ[ω 6= 0] would lead a non-zero value for

exponential inside (1.73), which when expanded as sines and cosines, gives rise to terms

that are not physically admissible as Fourier components. The conclusion is that only static

first-order properties are non-zero, where the physical intuition is that absorption or emission

of a photon with ω 6= 0 would violate energy conservation. Using (1.58) and (1.52),

Q(20) =
1

T

∫ T

0

dt 2 〈Ψ̃0|B̂e−iωt|Ψ̃(10)(t)〉 , (Toulouse eq. 54)

where the first-order wavefunction correction is (similar to (1.60))

|Ψ̃(10)(t)〉 =
∑
n6=0

c(10)
n (t)e−iωn0t |Ψ̃n〉 , (Toulouse eq. 55)

where ωn0 = En − E0 are the unperturbed system excitation energies. The first-order

wavefunction expansion coefficients are found similarly to (1.61),

c(10)
n (t) = −i

∫ t

−∞
dt′ 〈Ψ̃n|B̂e−iωt

′
eγt

′ |Ψ̃0〉 eiωn0t
′
, (Toulouse eq. 56)

where a factor of eγt with γ → 0+ adiabatically switches on the perturbation from t′ →
−∞ and imposes the initial condition c

(10)
n (t → −∞) = 0. Performing the integration in

(Toulouse eq. 56) gives

c(10)
n (t) =

〈Ψ̃n|B̂e−iωt|Ψ̃0〉 eiωn0t
ω − ωn0 + iγ

, (Toulouse eq. 57)
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where the factor eγt is dropped from the numerator, but now supplies a damping factor for when

the field oscillation comes close to a resonance (excitation energy). Now (Toulouse eq. 54),

(Toulouse eq. 55), and (Toulouse eq. 57) are combined to give

Q(20) =
1

T

∫ T

0

dt 2
∑
n6=0

〈Ψ̃0|B̂e−iωt|Ψ̃n〉 〈Ψ̃n|B̂e−iωt|Ψ̃0〉
ω − ωn0 + iγ

= 2
∑
n6=0

〈Ψ̃0|B̂|Ψ̃n〉 〈Ψ̃n|B̂|Ψ̃0〉
ω − ωn0 + iγ

δ[2ω],

(Toulouse eq. 58)

which is only finite for ω = 0 similarly to (Toulouse eq. 53). Performing the same steps for

the mixed term,

Q(11) =
1

T

∫ T

0

dt
[
〈Ψ̃0|Âe+iωt|Ψ̃(10)(t)〉+ 〈Ψ̃0|B̂e−iωt|Ψ̃(01)(t)〉

]
=

1

T

∫ T

0

dt

[
〈Ψ̃0|Âe+iωt|Ψ̃n〉 〈Ψ̃n|B̂e−iωt|Ψ̃0〉

ω − ωn0 + iγ
+
〈Ψ̃0|B̂e−iωt|Ψ̃n〉 〈Ψ̃n|Âe+iωt|Ψ̃0〉

−ω − ωn0 + iγ

]

=
∑
n 6=0

〈Ψ̃0|Â|Ψ̃n〉 〈Ψ̃n|B̂|Ψ̃0〉
ω − ωn0 + iγ

−
∑
n6=0

〈Ψ̃0|B̂|Ψ̃n〉 〈Ψ̃n|Â|Ψ̃0〉
ω + ωn0 − iγ

,

(Toulouse eq. 59)

which is in general nonzero for all ω. Physically, it corresponds to the absorption of a virtual

photon due to B̂ that probes the excited states of the system, followed by emission of a photon

due to Â, which is allowed due to net energy conservation. Q(11) is the linear response function

of operators Â and B̂ in the spectral representation and it is often denoted asQ(11) = 〈〈Â; B̂〉〉ω
(see Table 2). Physically, it can be viewed as the change in the expectation value of the

operator Â due to the perturbation B̂e−iωt. Due to the pole structure introduced by the

denominator (with de-excitation energies arising from the second term), (Toulouse eq. 59)

contains information about all the excitation energies of the system. Higher-order derivatives

of the quasienergy lead to time-dependent non-linear response functions: third derivatives

correspond to quadratic response, and fourth derivatives correspond to cubic response, and

so on.
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2.0 CARBON CAPTURE FROM CARBON DIOXIDE’S POINT-OF-VIEW

The text in this chapter has been adapted from Brinzer, T.; Berquist, E. J.; Ren, Z.; Dutta,

S.; Johnson, C. A.; Krisher, C. S.; Lambrecht, D. S.; Garrett-Roe, S. Ultrafast Vibrational

Spectroscopy (2D-IR) of CO2 in Ionic Liquids: Carbon Capture from Carbon Dioxide’s

Point of View. J. Chem. Phys. 2015, 142, 212425, DOI: 10.1063/1.4917467, and its

erratum Brinzer, T.; Berquist, E. J.; Dutta, S.; Johnson, C. A.; Krisher, C. S.; Lambrecht,

D. S.; Garrett-Roe, S.; Ren, Z. Erratum: ”Ultrafast vibrational spectroscopy (2D-IR) of

CO2 in ionic liquids: Carbon capture from carbon dioxide’s point of view” [J. Chem. Phys.

142, 212425 (2015)]. J. Chem. Phys. 2017, 147, 049901, DOI: 10.1063/1.4995447.

The author’s contribution to the work included performing all ab initio calculations and

writing the corresponding sections 2.4.2, 2.4.3, and 2.3.5. These calculations consisted of

constructing molecular models, performing geometry optimizations followed by harmonic

frequency calculations using DFT, and designing the application of ALMO-EDA to vibrational

frequency analysis.

2.1 SUMMARY

The CO2 ν3 asymmetric stretching mode is established as a vibrational chromophore for

ultrafast two-dimensional infrared (2D-IR) spectroscopic studies of local structure and

dynamics in ionic liquids, which are of interest for carbon capture applications. CO2 is

dissolved in a series of 1-butyl-3-methylimidazolium-based ionic liquids ([Im4,1][X]), where

[X]– is the anion from the series hexafluorophosphate (PF6
– ), tetrafluoroborate (BF4

– ), bis-

(trifluoromethylsulfonyl)imide (Tf2N– ), triflate (TfO– ), trifluoroacetate (TFA– ), dicyanamide
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(DCA– ), and thiocyanate (SCN– ). In the ionic liquids studied, the ν3 center frequency is

sensitive to the local solvation environment and reports on the timescales for local structural

relaxation. Density functional theory calculations predict charge transfer from the anion to

the CO2 and from CO2 to the cation. The charge transfer drives geometrical distortion of CO2,

which in turn changes the ν3 frequency. The observed structural relaxation timescales vary

by up to an order of magnitude between ionic liquids. Shoulders in the 2D-IR spectra arise

from anharmonic coupling of the ν2 and ν3 normal modes of CO2. Thermal fluctuations in

the ν2 population stochastically modulate the ν3 frequency and generate dynamic cross-peaks.

These timescales are attributed to the breakup of ion cages that create a well-defined local

environment for CO2. The results suggest that the picosecond dynamics of CO2 are gated by

local diffusion of anions and cations.

2.2 INTRODUCTION

There is a pressing need to develop next-generation materials to capture CO2 from fossil-

fuel burning power plants. Commercial carbon capture technologies are inefficient and

greatly increase the cost of energy.29 Novel materials, including metal-organic frameworks,30,31

polymers,32,33 and ionic liquids,34–36 have been proposed as transformational technologies. In

each case, however, a lack of tools to interrogate at a molecular scale how CO2 interacts with

the sorbents, what local structures it forms, and for how long those structures persist has

limited the ability to optimize these materials for this important task.

Our strategy to investigate the local environment of CO2 is to use a vibration of the CO2

itself. We hypothesized that the antisymmetric stretching vibration of CO2, the ν3 mode,

could be a sensitive probe of the carbon capture process and that ultrafast two-dimensional

vibrational spectroscopy (2D-IR) could give new insight into the local structure and dynamics

around the CO2. The central goal of this report is to establish the ν3 mode of CO2 as a

viable platform for ultrafast multidimensional spectroscopy of carbon capture in ionic liquids.

Ionic liquids, sometimes called room temperature molten salts, excite particular interest for

carbon capture due to their chemical tunability. Ionic liquids are organic salts that are molten
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at or below 100 ◦C. Each formula unit consists of an anion-cation pair without a surrounding

solvent. The physical and chemical properties of ionic liquids can be manipulated by changing

the specific anion and cation pair, which provides tremendous flexibility. The chemical space

spanned by possible ionic liquids is estimated at 1018 anion-cation combinations, including

binary and ternary mixtures,37 only a tiny fraction of which has been explored. Even without

optimization, many ionic liquids have CO2 solubility and selectivity comparable to molecular

solvents,38,39 and chemical modification can improve these properties further.40,41 Ionic liquids

exhibit negligible vapor pressure and are generally thermally and hydrolytically stable at the

operating temperature (∼ 50 ◦C) of post-combustion carbon capture.

The promise of chemical tunability of ionic liquid properties has spurred efforts to

design improved ionic liquids, both synthetically34,40–45 and in silico.46,47 Additionally, other

strategies, such as creating mixtures of multiple ionic liquids,48,49 or mixtures of ionic liquids

with molecular solvents50,51 show promise. Despite the progress that has been made, there

remains a lack of fundamental understanding of the local solute-solvent interactions between

CO2 and the ionic liquid sorbents.

Molecular modelling provides valuable insights but faces challenges due to the time-

and length-scale mismatches between the simulations and bulk thermodynamic experiments.

For example, electronic structure theory can predict CO2 binding motifs and energies,52–55

molecular dynamics simulations of CO2 in ionic liquids can provide atomistic detail of

local structure and dynamics in the condensed phase,56–61 and Monte Carlo simulations can

calculate important thermodynamic properties.57,62–66 However, it remains a challenge to

directly compare these results to macroscopic experimental observables such as viscosity or

CO2 solubility.

Ultrafast spectroscopy naturally provides observables that are compatible with the time-

and length-scales of molecular modelling. Ultrafast two-dimensional infrared spectroscopy

(2D-IR), a coherent third-order spectroscopy, can investigate femtosecond to picosecond

molecular dynamics in the condensed phase at equilibrium.67–70

A 2D-IR experiment, in essence, measures the distribution of vibrational frequencies in

an ensemble of molecules at two points in time, separated by a controllable delay. When the

delay is short, the local environment does not have time to reorganize, causing correlation of
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initial and final frequencies, and stretching the 2D-IR peak along the frequency diagonal. As

the delay time is increased, the system loses memory of its initial configuration and the peaks

become rounder. Thus, 2D-IR spectra encode the two-point frequency fluctuation correlation

function through the change in their shape with the population time, t2, of the experiment

c2(t2) = 〈δω(t2)δω(0)〉 (2.1)

where δω(t) is the offset of the instantaneous vibrational frequency ω(t) from the average 〈ω〉

δω(t) = ω(t)− 〈ω〉 (2.2)

This time-correlation function is the essential information content of any specific peak in

2D-IR spectroscopy, which can be compared with the available time-correlation functions

from molecular simulations.

Cross-peaks in 2D-IR also contain valuable information. Vibrational coupling of modes,

population transfer, and chemical exchange can all generate cross-peaks in a 2D-IR spectrum.

These mechanisms can be distinguished by their spectral kinetics. Vibrational coupling, or

mixing of the local modes, causes cross-peaks that are seen even at the earliest population

times, because they result from direct vibrational transitions, for example the coupling of the

symmetric and antisymmetric stretching modes of water.71 Coherence transfer between bright

modes can additionally create beat frequencies in both their diagonal and cross-peaks.71

Population transfer arises from the exchange of excited state population during t2, for example,

that of the Amide I modes of small peptides.72 Chemical exchange results from the change in

frequency of a single molecule as it moves between different local environments, for example,

the exchange of free and complexed phenol-benzene.70 Both population transfer and chemical

exchange give rise to dynamic cross-peaks, whose relative intensity shows an early minimum,

increasing with population time.

Linear spectroscopies can provide insight into structure and dynamics in ionic liquids. For

example, Raman spectroscopy has been used to study CO2 in [Im4,1][TFA],73 or the effects of

ionic liquid water content on CO2 solubility.50 Similarly, NMR spectroscopy has been used to

probe the solvation of CO2 in imidazolium ionic liquids at high pressures.74,75
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A number of studies have also examined structure and dynamics in ionic liquids on an

ultrafast timescale using various chromophores, including IR pump-probe measurements of

small anions in ionic liquids,76 2D-IR studies of water71 and thiocyanate77 in imidazolium

ionic liquids, electronic spectroscopy of solvated laser dyes,78,79 and optical Kerr effect

spectroscopies.80–83 Each of these spectroscopies is sensitive to the spectral density of low

frequency vibrations (i.e., the Fourier transform of c2(t)), but they differ in the coupling of

their respective chromophores to the low frequency modes.

The difficulty for most ultrast spectroscopies lies in connecting the average solvent dynam-

ics to the dynamics specifically around the CO2. Time-dependent Stokes shift and fluorescence

upconversion experiments79 can measure dynamics over a broad range of timescales; however,

it is an open question how relevant the dynamics of a comparatively large laser dye are to

those of a small molecule such as CO2. Optical Kerr effect spectroscopies80,84 are sensitive to

the many body Raman polarizability tensor, which is difficult to connect to specific motions

around a solute in most cases. In our approach, our spectroscopic probe is guaranteed to

access the solvation environment of CO2 (because it is CO2) and is guaranteed to be local to

the CO2 (because it is an isolated vibration of the CO2). On the other hand, the observed

solvation dynamics will arise from only those local motions which most strongly couple into

the ν3 mode; there is no guarantee that the accessible solvent motions are important. This

report explores what information this otherwise optimal probe provides.

For our present purposes, a good spectroscopic probe should have the following properties:

a high transition dipole moment (ε ∼ 800 to 1000 M−1 cm−1); a fundamental frequency in

a spectral region that is free of fundamentals or strong combination bands (for most ionic

liquids from 1600 to 2600 cm−1); sensitivity to the local environment; a lifetime, T1, that is

long enough to measure dynamics on a tens of picoseconds timescale; and, finally, a lineshape

at least partially inhomogeneously broadened, so that motional narrowing (homogeneous

broadening) does not average away the embedded information.

Given these requirements, the ν3 band of CO2 is a natural choice. Nonlinear spectroscopy

on the ν3 band (ε ∼ 1000 M−1 cm−1) has been demonstrated in water,85,86 where the T1 time

is ∼ 10 ps. In addition, the mode absorbs in a free spectroscopic window of most ionic liquids

(∼ 2350 cm−1).
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Figure 2: (A) FTIR spectrum of H2O with (blue line) and without (black line) CO2 dissolved

in it. CO2 ν3 lies in the overtones and combinations bands from H2O librational modes. (B)

Inset of ν3 with water background subtracted shows the Lorentzian character of the peak.

(C) Purely absorptive 2D-IR spectrum of ν3 in H2O with t2 = 0.2 ps shows that, in water,

the line is nearly completely in the limit of homogeneous dynamics.

The remaining question is how sensitively CO2 reports on structural relaxation of its local

environment in ionic liquids. CO2 in water is an important point of reference because, in

water, CO2 is insensitive to its environment. The CO2 ν3 frequency shift from the gas phase

to the condensed phase is very small, which indicates low sensitivity to the condensed phase

local environment. In addition, the CO2 ν3 line is narrow and Lorentzian (Figure 2). Even

at early population times, the 2D spectra show almost no diagonal character (Figure 2C),

indicating that peak shape is determined by dephasing time, T2, and that a deeper analysis

of the frequency fluctuations (Equation 2.1) is not possible. This finding is consistent with

previous three pulse photon echo peak shift (3PEPS) experiments.85 In ionic liquids, the

timescales of solvent motion are expected to be slower than in water, and the coupling to the

environment may well be larger. Both of these effects would increase the ability to observe

dynamics around CO2.

The other vibrational modes of CO2, the symmetric stretch, ν1, and the doubly degenerate

bend, ν2 and ν̄2, present distinct challenges for vibrational spectroscopy. The ν2 modes are
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sensitive to the chemical environment of the CO2,
87,88 but are located in the crowded

fingerprint region. The Raman active ν1 is readily measured, but the lineshape is dominated

by the Fermi resonance with the overtone of the ν2;73 furthermore, it is a dark mode for IR.

Here, we demonstrate that the CO2 ν3 mode reports on its local solvent environment

by showing the sensitivity of the ν3 frequency and dynamics to variation in solvent anion

in a series of imidazolium ionic liquids; furthermore, we show that ν3 reports a broad range

of solvation timescales in these ionic liquids. We employ electronic structure calculations

to investigate the mapping of vibrational frequencies onto structures of CO2-anion-cation

clusters. We show that, despite apparent complexity, the CO2 linear and 2D-IR lineshapes can

be interpreted using simple and accurate physical models. Finally, we establish correlations

between the measured dynamics of CO2 and the macroscopic properties of its ionic liquid

solvent.

The paper is organized as follows. Initially, we present the analysis and interpretation of

the linear CO2 spectrum (Section 2.4.1), including a discussion of its temperature dependence.

Next, we describe the our results from electronic structure calculations on CO2-anion-cation

clusters and its relationship to our experimental data (Section 2.4.2), followed by a simple

model of CO2 that is able to reproduce the observed trends (Section 2.4.3). We then present

an overview of the 2D-IR spectra (Section 2.4.4), including a kinetic analysis of the observed

shoulders and cross-peaks (Section 2.4.5), assignments of the spectral features (Section 2.4.6),

and modelling of the main ν3 peak (Section 2.4.7) and shoulders and cross-peaks (Section 2.4.8).

Finally, we present a discussion of the physical interpretation of our results (Section 2.5),

conclusions (Section 2.6) and methods (Section 2.3).

2.3 METHODS

2.3.1 Materials

Ionic liquids were obtained from Ionic Liquids Technologies, Inc (IoLiTec), and used without

further purification (except for [Im4,1][BF4], which was purified prior to experiments using
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the procedure described by Giernoth and Bankmann.89) Ionic liquid samples were stored in

ambient conditions; however, prior to experiments, samples dried under vacuum at 50 mTorr.

2.3.2 FTIR

FTIR spectra were measured using a N2(g)-purged Nicolet 6700 FTIR instrument (Ther-

moFisher Scientific). Ionic liquid samples were loaded with CO2 (99.8% purity, Matheson

TRIGAS) in an airtight custom glass vial, with a septum that allows access to the CO2-loaded

ionic liquid. An aliquot of the liquid sample was sandwiched between two 2 mm-thick CaF2

optical windows (Crystran Ltd, UK) separated by a 25 µm Teflon spacer, which were held in

a brass sample cell. The cell was assembled in a glove bag to limit adsorption of atmospheric

water. Spectra were obtained for both the neat ionic liquid and for the ionic liquid loaded

with CO2.

For temperature-dependent measurements, the sample was temperature-controlled by

using a cooling/heating recirculating chiller (Fisher Isotemp) to control the temperature of

the sample cell holder. The sample temperature was monitored by measuring the temperature

at the optical window using a thermocouple (National Instruments USB-TC01 J-type).

2.3.3 2D-IR

2.3.3.1 Generation of femtosecond mid-IR pulses The experiments utilize a com-

mercial Ti:Sapphire chirped pulse amplifier laser system (λ = 805 nm, 5 kHz repetition rate,

120 fs pulse duration) (Coherent Vitesse / Coherent Legend Elite).

A home-built optical parametric amplifier (OPA) generates the mid-IR pulses (λ =

12 to 2 µm), corresponding to around 830 to 5000 cm−1. The OPA design leads to noise

suppression in the resulting mid-IR pulses.90 The spectral bandwidth after the OPA is about

200 cm−1. For these experiments, we tune the OPA wavelength to 4.3 µm. Mid-IR pulse

energy entering the 2D spectrometer is approximately 2.2 µJ per pulse.

2.3.3.2 2D Spectrometer The 2D-IR spectrometer uses a pump-probe geometry,91

in which the first two mid-IR pulses travel collinearly to the sample. A Mach-Zehnder
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interferometer controls the coherence time t1 between these pulses. A delay stage after the

interferometer controls the population time t2 between the second and third pulses. The

signal, which contains both rephasing and non-rephasing components, is emitted in the

direction of the probe pulse (~k3), which also serves as a local oscillator to heterodyne the

signal.

A 150 line/mm grating in a single monochromator disperses the signal in ω3 onto a liquid

N2-cooled 2× 32 channel mercury cadmium telluride (MCT) detector. The signal in ω1 is

indirectly acquired by scanning along t1 using the Mach-Zehnder interferometer, and then

applying a numerical Fourier transform to the resulting t1-dependent signal at each data

point in ω3 (which also removes the transient absorption signal). The delay changes as the

interferometer scans along t1 are acquired by comparing the interference pattern generated

by a He:Ne beam which travels a parallel path through the interferometer.

A series of spectra in t2 are then acquired by varying the population time between the

second and third laser pulses, and then obtaining a spectrum in ω1 and ω3 at each population

time.

2.3.4 Global Fitting and Bootstrapping

Global fitting of spectra utilizes a third-order response function formalism in the semi-

impulsive limit, including the Condon approximation and also the approximation of the

cumulant expansion truncated after second order. A constrained nonlinear optimization

algorithm (fmincon MATLAB) is used to minimize the magnitude of the sum of squared

error between each data point in the set of spectra and a corresponding data point in a

calculated spectrum. A bootstrapping algorithm92 establishes the error of the global fitting

result. The global fitting algorithm was run using synthetic data sets composed of a random

selection of the original data points taken with replacement. The distribution of the fitting

parameters after 100 iterations provided the error estimate.
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2.3.5 Computational Details

All calculations were performed with a development version of the Q-Chem program package,93

employing the B3LYP density functional,94,95 the 6-31G(d,p) basis set,96,97 and a (100,302)

grid for the numerical quadrature. All SCF calculations were tightly converged to below

10−9 a.u. for the DIIS error.98 Gas-phase geometry optimizations of free CO2 and the CO2–

ionic liquid clusters were converged to changes of 1× 10−8 a.u. in the energy, 1× 10−6 a.u.

in the nuclear displacement, and 1× 10−6 a.u. in the gradient. Optimized structures were

confirmed as minima via harmonic frequency calculations using analytic Hessians. Frequencies

were scaled by a factor of 0.9627 (Table 6 Merrick et al.).99

For the calculations including the electrostatic and polarization effects of the ionic

liquid with charge transfer disabled (“+∆ωFRZ + ∆ωPOL” in Figure 5), absolutely localized

molecular orbitals (ALMOs)100 were employed, with the ionic liquid constituents as one

combined fragment and the CO2 as another fragment. Solution of the ALMO equations is

requested by setting frgm_method = gia. Charge transfer between fragments is disabled

by setting frgm_lpcorr = 0. For the calculation of complementary occupied-virtual pairs

(COVPs), an energy decomposition analysis (ALMO-EDA) calculation is performed where

charge transfer is allowed (frgm_lpcorr = rs_exact_scf).

2.4 RESULTS AND DISCUSSION

2.4.1 Linear IR Spectroscopy Results

The linear spectra of CO2 establish that the frequency of the ν3 mode is sensitive to the anion,

and set the stage for discussing the spectroscopic features present in the 2D-IR spectra.

The ν3 vibration absorbs strongly around 2340 cm−1 in a spectral region with no strong

solvent absorbances (Figure 3A). The lineshape of the ν3 band (Figure 3B) appears mostly

Lorentzian, with a low frequency shoulder.

Changing the anion causes both the full-width at half-maximum (FWHM) and cen-

ter frequency of ν3 to change (Figure 3C). We varied the anion, rather than the cation,
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Figure 3: a) Absorption spectrum of CO2 in [Im4,1][TFA] shows the intense antisymmetric

stretch absorption at 2340 cm−1; b) the background subtracted spectrum is Lorentzian with

a shoulder at 2328 cm−1, the ν3 band of the 13C isotopomer is located at 2280 cm−1; c) The

average vibrational frequency of the ν3 absorption of CO2 shifts for different anions and the

same [Im4,1
+] cation (background subtracted).
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because the anion dominates CO2 solubility in ionic liquids.39,53,101 Anions studied were

hexafluorophosphate (PF6
– ), tetrafluoroborate (BF4

– ), bis-(trifluoromethylsulfonyl)imide

(Tf2N– ), triflate (TfO– ), trifluoroacetate (TFA– ), dicyanamide (DCA– ), and thiocyanate

(SCN– ). The cation in all experiments was 1-butyl-3-methylimidazolium ([Im4,1]).

The ν3 center frequency progressively redshifts from a maximum of 2342.5 cm−1 ([PF6]– )

to a minimum of 2336 cm−1 ([SCN]– ). The shoulder moves with the main absorption band

and stays ∼ 12 cm−1 lower in frequency. Qualitatively, smaller, harder anions like [SCN]–

and [DCA]– create a larger redshift than bulkier, softer anions like [Tf2N]– and [TfO]– ,

which is most likely a function of increased anionic charge density. The increased charge

density could red-shift the CO2 center frequency though an increased local electric field (Stark

effect), through charge transfer, or through inductive effects. Quantum chemistry calculations

(Section 2.4.2) help to disentangle the driving forces behind this qualitative trend.

The shoulder on the low frequency side of the main ν3 transition could arise from several

possible mechanisms, a “hot-band”, a multiple-quantum transition, or different chemical

environments. The temperature dependence of this feature is important in discriminating

among these possibilities.

Temperature-dependent FTIR demonstrates that the shoulder on the low frequency side

of the main ν3 transition is a hot band of the ν3 mode (Figure 4A). Increasing temperature

causes a decrease in intensity of the main peak and an increase in intensity of the shoulder,

while conserving oscillator strength. The relative magnitude of the shoulder (∼ 10% of the

main band at room temperature) is similar to the expected relative excited state bending

mode (ν2) population predicted by a Boltzmann distribution.

We fit the spectra in Figure 4A to two Voigt profiles (one for the main peak, and one for

the first shoulder seen on the 2D-IR).

A van’t Hoff analysis of the logarithm of the relative peak heights against 1/T gives an

activation energy of 810± 30 cm−1. This value is near the energy of the ν2 bending vibration

(667 cm−1). Residual gas lines and nonlinearity of the detector contribute to the systematic

error of this measurement. Nevertheless, the temperature dependence strongly suggests that

the first shoulder is due to one quantum of the bending mode which is excited thermally and

is anharmonically coupled to the ν3 mode.

44



1000 / T (K-1)
3.1 3.3 3.5

-2.8

-2.6

-2.4

-2.2

-2

ΔE = 810 ± 30 cm-1

2320 2340 2360
0

0.5

1
 279 K 

286 K
294 K
303 K
312 K
322 K

A
b

so
rb

a
n

c
e

 (
O

.D
.)

ω / 2πc (cm-1)

ln
 (

sh
o

u
ld

e
r/

m
a

in
)

(A)

(B)

×5

Figure 4: (A) Temperature dependence of the ν3 spectrum in [Im4,1][TfO] shows transition

of intensity from the main peak to the shoulder with increasing temperature, indicating

a temperature-dependent two-state transition. (B) Relative intensity of shoulder to the

main band (based on fitting to Voigt profiles) follows a van’t Hoff temperature dependence,

indicating an energy barrier of around 800 cm−1, which closely follows the prediction from

the temperature dependence of bending mode population.
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The temperature dependence and hot-band assignment are important components of our

interpretation of the shape of the 2D-IR spectra (Section 2.4.5) and their time-dependence

(Section 2.4.8).

2.4.2 Vibrational Frequency Calculations

Electronic structure calculations provide a rationale for the observed trend in vibrational

frequencies.

Harmonic frequency calculations reproduce the general trend that ν3 progressively redshifts

with decreasing anion size (Table 4). We simplify the solvated CO2 structure to a gas-phase

cluster consisting of one CO2 with one cation-anion pair, with 1,3-dimethylimidazolium

(Im1,1) as the cation. When scaled with the appropriate factor,99 the simulations calculate

vibrational frequencies within a few wavenumbers of the experimental value. The ordering of

anions mostly agrees with experiment as well, the only outliers being [TFA]– and [SCN]– ,

which are located only 2.3 cm−1 apart.

The level of agreement between experiment and theory is good, given that the condensed

phase environment is neglected. That such a simple representation reproduces the general

trends so well suggests that the interactions of CO2 are dominated by local effects in its

immediate surroundings. Future work will address the condensed phase effects by sampling

representative structures from molecular dynamics simulations and repeating the analysis in

the context of larger solvation shells.

Encouraged by the fact that the electronic structure calculations reproduce the experi-

mental trends in ν3 frequencies, we decompose the calculated vibrational frequencies into

different components using absolutely localized molecular orbitals (ALMO), in analogy to

ALMO energy decomposition analysis (ALMO-EDA).100,102,103

Unlike standard quantum chemical calculations, where individual molecular orbitals may

delocalize over more than a single fragment, each ALMO is composed of atomic orbitals from

a single fragment. This constraint allows us to control charge transfer between fragments

and to quantify the interaction between fragments in physically intuitive terms.

The total vibrational frequencies ωtot and vibrational shifts ∆ωint from gas phase (“free”)
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CO2 for each mode ν may be written as:

ωtot = ωfree + ∆ωint, (2.3)

where

∆ωint = ∆ωGEOM + ∆ωFRZ + ∆ωPOL + ∆ωCT. (2.4)

∆ωGEOM (geometric distortion) corresponds to the change in frequency caused by distortion

of fragments from their free geometries to their cluster geometries, ∆ωFRZ (the frozen orbital

interaction) results from the combined electrostatic interaction and Pauli repulsion between

the filled, unrelaxed orbitals of each fragment, ∆ωPOL (polarization) is due to the relaxation

of a fragment’s orbitals in the field of the other fragments, and ∆ωCT (charge transfer) is

from occupied-virtual orbital donation between orbitals of different fragments.104

The cluster environment can affect the vibrational frequency of CO2 in two different ways.

The first depends on the anharmonic potential surface of a free CO2 molecule. In a harmonic

system, the spring constant, k, uniquely determines the vibrational frequency for all nuclear

positions (i.e., the curvature of a quadratic potential is constant). CO2’s potential energy

surface, however, is inherently anharmonic. Any change in geometry will thus cause a change

in the ν3 vibrational frequency. In other words, the cluster can change the ν3 frequency just

by shifting the location of minimum of the CO2 potential (∆ωGEOM). The second results

from changes in the local curvature of CO2’s potential energy surface due to interactions

with the surrounding cluster (∆ωFRZ + ∆ωPOL + ∆ωCT).

We focus on the following grouping of terms: (1) distortion of isolated CO2 to its cluster

geometry (∆ωGEOM), (2) the combined frozen orbital and polarization contributions through

use of ALMOs (∆ωFRZ + ∆ωPOL), and (3) charge transfer between the fragments in the

cluster (∆ωCT).

The final frequency, ωtot, correlates most strongly with ∆ωGEOM (R2 = 0.96), indi-

cating that geometrical distortion of CO2 dominates the frequency shift. Depending on

the particular geometry that CO2 adopts in the cluster, ∆ωGEOM can vary by ±6 cm−1
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(Figure 5).a Electrostatics and charge transfer both change the local curvature of the po-

tential energy surface; however, their effects are mostly uniform across the ionic liquids

studied. When we turn off charge transfer between fragments, ν3 blue-shifts on average by

〈∆ωFRZ + ∆ωPOL〉 = +2.8± 0.6 cm−1. Modelling the cluster geometry as a field of point

charges increases this blue shift to +4.4± 0.6 cm−1 (Supplementary Information), which may

indicate that a point-charge representation of the cluster over-polarizes the QM region.105,106

Allowing charge transfer red-shifts the frequencies by 〈∆ωCT〉 = −3.5± 0.8 cm−1. Thus, both

electrostatics and charge transfer change the local curvature of the ν3 potential energy surface.

The effects, however, are uniform and nearly cancel. The net result is that the inherent

anharmonicity of the CO2 potential energy surface ultimately dominates the ν3 frequency.

The geometrical distortion of the CO2 is driven by charge transfer. Using ALMOs and

forbidding charge transfer during relaxation of the cluster removes the variance in ∆ωGEOM

(Figure 5B). Once again, both electrostatic and charge transfer interactions act uniformly on

the frequency, leading to a negligible variance in ωtot. Without the geometrical distortion

due to charge transfer, the vibrational frequencies for all clusters remain within ±2 cm−1 and

no longer follow the experimental trend.

The essential point is that charge transfer and electrostatics only affect the vibrational

frequency indirectly, through their coupling into the equilibrium CO2 nuclear geometry. The

direct effects of electrostatics and charge transfer on the potential energy surface (and thus

the effective spring constant) of ν3 are uniform across ionic liquids studied and counteract

each other.

This DFT-based analysis may over-emphasize charge transfer to some extent. It is

well known that DFT over-delocalizes electrons due to self-interaction error, which might

exaggerate the amount of charge transfer. In the context of gas-phase anion clusters, both

DFT107 and post-Hartree–Fock methods108 have also identified charge transfer as a driver

of geometrical distortion of CO2, so we expect that our qualitative picture will be robust

with respect to the theoretical method. Future work will explore the quantitative differences

between the different methods. Furthermore, although our cluster results agree well with

aSince ω normally refers to an angular frequency, this quantity might more rigorously be be called
∆ωGEOM/2πc; however, for convenience of notation, we chose to use spectroscopic units uniformly in this
section. That is, all frequencies are given in wavenumbers, rather than rad s−1.
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experiment, we expect that the extended solvation environment neglected here may introduce

screening effects not captured at the cluster level.109 A more sophisticated study of solvation

effects could determine whether our finding, that charge transfer dominates the geometric

effects which differentiate CO2 vibrational frequency shifts, is transferable to bulk ionic

liquids.

These calculations demonstrate that the ν3 frequency shift reflects a complex interplay

between geometry, electrostatics, and charge transfer. The geometrical distortion is the

most important factor in determining the final variation in vibrational frequency with anion

identity; however, the equilibrium geometry of the CO2 itself ultimately depends on inductive

effects, such as charge transfer.

2.4.3 Frequency, Geometry, and Charge Transfer Discussion

To gain chemical insight into the charge transfer process, one can analyze the donor and

acceptor orbitals of CO2 and the ionic liquid. This analysis sheds light on the nature of the

geometrical distortion, which, in turn, leads to a simple model for the vibrational frequencies

in terms of a few geometrical parameters.

We employ a complementary occupied-virtual orbital pair (COVP) analysis103 to gain

insight into the electronic structure effects underlying the charge transfer between CO2

and the solvent. COVPs provide a way to visualize charge transfer effects, where “each

COVP corresponds to an occupied orbital on one molecule donating charge to one specific

(complementary) virtual orbital on the other molecule.”110 These orbital pairs are constructed

from a singular value decomposition of the occupied-virtual mixing matrix X that describes

charge transfer between the (polarized) fragments upon removing the ALMO fragment

localization constraint. While X contains, in general, excitations between all possible

occupied-virtual pairs, the COVP representation of X is diagonal and thus provides the most

compact possible basis for describing charge transfer. The associated singular values allow

one to assess the contribution of a particular COVP to charge transfer, and typically one finds

that only one or a few orbital pairs dominate the effect (as shown below in this study). The

COVP analysis thus allows to conveniently identify and visualize the electron donor/acceptor
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Table 4: Experimental and calculated ν3 vibrational frequencies (cm−1) for CO2 in various

imidazolium (experimental [Im4,1], calculations [Im1,1]) ionic liquids. Calculations are carried

out using a gas phase anion-cation-CO2 cluster at 0 K. The level of agreement between

calculations and experimental results indicates that interactions of CO2 are dominated by

local effects in its immediate surroundings.

Anion Expt. Freq. Calc. Freq. Calc. Freq. (scaled)

[PF6]– 2342.5 2437.7 2346.8

[Tf2N]– 2341.7 2435.8 2344.9

[BF4]– 2341.7 2434.7 2343.9

[TfO]– 2340.9 2431.9 2341.2

[TFA]– 2339.9 2429.3 2338.7

[DCA]– 2338.4 2430.5 2339.8

[SCN]– 2336.5 2430.0 2339.4
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Figure 5: Decomposition of the geometric, electrostatic, and charge transfer contributions

to CO2 ν3 vibrational frequency shifts. (A) The cluster geometry (including CO2) was

optimized while allowing charge transfer. (B) The cluster geometry was optimized using

ALMOs to forbid charge transfer between fragments. The final frequency (ωtot = ωfree +

∆ωGEOM + ∆ωFRZ + ∆ωPOL + ∆ωCT) correlates most strongly with the change in frequency

from geometric distortion (∆ωGEOM).
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Table 5: Charge transfer from the anion to CO2 and from CO2 to the cation both contribute

to the geometrical distortion of the CO2. The most important geometrical degrees of freedom

are the bend angle, θ and the sum of the two carbonyl bond lengths, L.

cluster CT to CO2 (me−) CT from CO2 (me−) θ (◦) L (Å)

[Im1,1]+ 0.079 2.251 0.07 2.3374

[PF6]– 3.336 1.012 3.79 2.3379

[Tf2N]– 2.493 1.603 2.64 2.3380

[BF4]– 4.558 1.264 4.51 2.3385

[TfO]– 3.009 2.339 4.01 2.3389

[TFA]– 5.131 1.618 5.22 2.3394

[DCA]– 3.376 2.259 4.99 2.3394

[SCN]– 3.317 1.323 4.35 2.3395

orbitals pair(s) that significantly contribute to charge transfer.

Charge transfer to the CO2 originates from occupied orbitals on the anions. The charge is

accepted by virtual orbitals on the CO2. The virtual orbitals are a linear combination of the

LUMO and LUMO+1 orbitals, which have σ∗ and π∗ character, respectively. Charge transfer

from the anion has a strong linear correlation to the bend angle (R2 = 0.84). Mechanistically,

bending the CO2 allows σ∗ and π∗ to mix, lowers the energy of the acceptor orbital, and

also maximizes the spatial overlap with the donor orbital. The amount of charge transferred

(3 to 5 me−) is small, but the resulting bend angle (3 to 5◦) can be substantial (Table 5).

CO2 also donates charge back to the ionic liquid cluster, primarily to the cation. The

amount of charge donated by the CO2 to the cation (−1 to −2 me−) is typically less than the

charge donated from the anion, but nevertheless has specific consequences for the resulting

geometry. The donor orbital from the CO2 is a mixture of σ-bonding and π-nonbonding

character. The charge donation from the CO2 is linearly correlated to the carbonyl bond

length differences (R2 = 0.85). For the [Im1,1][TfO] cluster, which has the highest charge
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transfer from CO2 to the cation (2.32 me−), the σ character of the donating orbital causes

the carbonyl nearest the cation to lengthen from the gas-phase 1.169 Å to 1.175 Å while the

distal carbonyl contracts to 1.163 Å.

The effects of charge transfer to and from the CO2 can be incorporated into a simple

model of the vibrational frequencies. The model is constructed in a vibrational local-mode

basis. The effective one exciton vibrational Hamiltonian is

H(1) =

h̄ω1 β

β h̄ω2

 (2.5)

where ωi is the local mode frequency of carbonyl i and β is the coupling between the

two local modes. The diagonalized hamiltonian gives symmetric and antisymmetric linear

combinations of the local modes as the vibrational eigenstates with energies h̄ωs and h̄ωa.

The splitting between symmetric and antisymmetric vibrations is twice the coupling constant,

h̄(ωs − ωa) = 2β, and the average frequencies in local and normal modes are also equal

h̄(ωa + ωs)/2 = h̄(ω1 + ω2)/2 = α.

The bend in the CO2 determines the change in the coupling constant between the local

modes, β (R2 = 0.94). The motion of the central carbon atom is the primary motion that

couples the two carbonyls. When they are collinear, the motion of one carbonyl directly

influences the other. Bending the CO2 means the carbonyls are no longer collinear, which

means that the projection of one local vibration on the other decreases. This decrease, in

turn, decreases the effective coupling constant.

The sum of the CO2 bond lengths L, is correlated to the α (R2 = 0.998). The dependence

of α on the geometry of the molecule is not as straightforward than that of β. In the strong

coupling limit, β � |h̄ω2 − h̄ω1|, the symmetric and antisymmetric stretching frequencies

only depend on the average frequencies, (h̄ω1 + h̄ω2)/2. As such, the geometrical asymmetry

induced by charge transfer from the CO2, which weakens one bond and strengthens the other,

is largely averaged out. Only a weak correlation between the charge donated from the CO2

and the α remains. The sum of the bond lengths, L, however, reports exactly this difference

in total bonding strength. Though the changes in L are minute (∼ 0.001 Å), the effect on

the vibrational frequencies is not.
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Because of the strong linear correlation with these two geometrical variables, we propose

that the simplest model of the scaled vibrational frequencies is α(L) and β(θ), where

α(L) = 9523.8 cm−1 −
(

3415.3 cm−1 Å
−1
)
L (2.6)

and

β(θ) = −515.7 cm−1 +
(
1.12 cm−1deg−1

)
θ, (2.7)

where α and β are in units of cm−1, L is in Å, and θ is in degrees. The one exciton Hamiltonian

H(1) =

α(L) β(θ)

β(θ) α(L)

 , (2.8)

reproduces the scaled harmonic frequencies with an RMS error of 1.2 cm−1 and the experi-

mental frequencies with an RMS error of 4 cm−1.b

Following a detailed investigation of the charge transfer, the participating orbitals, and

the effects of charge transfer on the CO2 geometry, we have put forward a simple model that

successfully reproduces the calculated vibrational frequencies and, to a reasonable extent, the

experimental frequencies, with no free parameters.

2.4.4 2D-IR Spectroscopy Overview

While linear spectroscopy shows the sensitivity of CO2 to its local environment, it cannot

address the ultrafast dynamics of the chromophore. 2D-IR, however, directly reports on the

dynamic structural relaxation around CO2. 2D-IR of CO2 in [Im4,1][TFA] introduces many

of the features that are general across all of the ionic liquids studied.

The 2D spectra of the ν3 mode of CO2 in [Im4,1][TFA] (Figure 6A and B) show the main

ν3 band, two diagonal shoulders, and cross-peaks between them. The observed peaks cannot

be explained without also keeping track of the states of the CO2 symmetric stretch and

bending modes in the vibrational state. The total vibrational wavefunction is specified by

|ν1ν
l
2ν3〉, where ν1 is the number of quanta in the symmetric stretch, ν2 is the number of

bSee section 2.7 for 2D-IR spectra of CO2 in each ionic liquid, as well as a comparison of center line slope
and global fitting results for correlation times, and more detailed computational results. Additionally, there
is information on fitting of the one exciton Hamiltonian model for unscaled frequencies, and vibrational
frequency calculations of CO2 in a field of point-charges that approximates the cluster geometry.
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quanta in the bending mode, l is the vibrational angular momentum quantum number of the

bending mode, and ν3 is the number of quanta in the antisymmetric stretch.

The main band consists of a pair of intense peaks corresponding to the |0000〉 → |0001〉 and

|0001〉 → |0002〉 (1a and 1b) transitions, separated by the anharmonicity of ν3 (∼ 24 cm−1).

Due to ground state bleach, 1a appears as a negative (blue) feature, while 1b, from excited

state absorption, is a positive (red) feature. The ν3 shoulder appears as a pair of small

peaks (2a and b), shifted along the diagonal by −12 cm−1 in ω1 and ω3. A second apparent

shoulder, not seen in FTIR, presents as a pair of smaller peaks (1e and 1f), shifted along the

diagonal from the main band by −24 cm−1 in ω1 and ω3. At early population times, there

is an apparent cross-peak between the main peak and second shoulder (1c). Cross-peaks

grow in between the first shoulder and main peak (2-1a and b, 1-2b) over t2. The expected

cross-peak 1-2a cannot be seen due to cancellation with the overwhelming opposite signal

from the 1b.

The combination of CO2’s high molar absorptivity (∼ 1000 M−1 cm−1) and the ε2 depen-

dence of the third-order signal causes the 2D signal from CO2 to dominate the spectrum

in intensity. Contributions from solvent overtones in the background are smaller than the

level of noise in the spectrum. Thus, the 2D signal reflects the vibrational modes of CO2,

rather than solvent background, and the solvent can only affect the 2D spectrum through

intermolecular couplings with CO2 vibrational modes.

The unambiguous spectral diffusion of 1a and 1b over the 50 ps population time demon-

strates that the line is not entirely in the motional narrowing (homogeneous) limit. That is,

ν3 will allow us to resolve the dynamics of structural relaxation around CO2.

The observations of a complex pattern of peaks and of spectral diffusion on a tens of

picoseconds timescale for CO2 in [Im4,1][TFA] are general features of the spectra in all of the

tested ionic liquids and are described in detail in the next two sections.

2.4.5 2D-IR Shoulders and Cross-Peaks

Careful analysis of the relative kinetics of the diagonal peaks and cross-peaks (Figure 7)

provides insight into how the coupling of CO2 vibrational modes and their stochastic dynamics
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Figure 6: (A) 2D-IR spectrum of CO2 in [Im4,1][TFA] at t2 = 0.2 and 50 ps. The peak labels

correspond to transitions in (C) and (D). (B) The same spectrum as (A) with contours

limited to 10% of the maximum in the z-direction. Structure of the diagonal shoulders and

cross-peaks can be seen much more readily. (C) and (D) Vibrational energy level diagrams

for observed third-order (C) and fifth-order (D) bands of CO2 in [Im4,1][TFA]. Quantum

numbers correspond to |ν1ν
l
2ν3〉. Transition frequencies are labeled in wavenumbers (cm−1),

and a label corresponding to the peaks in A and B. The color of the label indicates whether

the expected peak is negative (blue) or positive (red).
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Figure 7: Kinetic analysis of [Im4,1][TFA]. (A) Absolute intensity of the main peak (1b) with

increasing t2. Decreased intensity results from both orientational and population relaxation.

(B)-(E) show intensities relative to A. Discrete data points represent experimental data, while

lines show data from stochastic simulations (Section 2.4.8). (B) and (C), which result from

the first diagonal shoulder (2b) and its cross-peaks with the main band (1-2b / 2-1b) show

good agreement between experimental and simulated kinetics. (D) and (E), which result from

the second diagonal shoulder (3b) and the apparent cross-peak (1c) show distinct kinetics,

which cannot result from the same stochastic bending mode fluctuations, and point to a

direct transition.
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create the observed spectrum.

Orientational and vibrational relaxation of CO2 cause a decrease in spectral intensity

over t2. The main peak (1b) shows an initial rapid decrease in intensity from orientation

relaxation, followed by a slower decay over ∼ 100 ps, from vibrational relaxation processes.

Polarization-controlled studies can remove the contribution from orientational relaxation,

and provide an explicit assessment of vibrational relaxation rate.69,111

The shoulders and cross-peaks are significantly weaker than the main peak, and also relax

over t2; however, analysis of their kinetics relative to the main band reveals the underlying

stochastic dynamics of CO2 vibrational modes.

The first diagonal shoulder (2b) decays more quickly than the main band, decreasing

to a minimum intensity at ∼ 25 ps followed by a (relative) steady state (Figure 7). Cross-

peaks between the first shoulder and the main band (2-1b and 1-2b) start at a minimum

intensity, and then increase, before reaching a relative steady state by 25 ps. This behavior

points to dynamic exchange between |0001〉 and |0111〉, which give rise to the diagonal peaks

(Section 2.4.8).

The second diagonal shoulder (3b) decreases in intensity relative to the main band, but

more slowly than the first shoulder. The apparent cross-peak 1c decreases in relative intensity

over t2 with slower kinetics than the second shoulder. This behavior contrasts with that of

the cross-peaks 1-2b and 2-1b, and indicates that 1c arises from a direct vibrational transition,

rather than dynamic exchange.

2.4.6 Peak Assignment

The Dunham expansion for anharmonically coupled vibrational modes provides a theoretical

framework for building an analysis of coupled vibrational modes:

E =
∑
i

h̄ωi

(
ni +

1

2

)
+
∑
ij

xij

(
ni +

1

2

)(
nj +

1

2

)
(2.9)

where ωi is the frequency of the mode, ni is the number of quanta in the mode, and xij are

anharmonic coupling constants. It directly follows that the energy of a particular mode is
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given by:

νnk→nk+1 = νk + 2nkxkk +
∑
i 6=k

xijni, (2.10)

which implies that transition energy will decrease by xij for every quantum of energy in an

anharmonically coupled mode.112 Gas phase vibrational calculations predict x23 ≈ −12 cm−1

per quantum in ν2.113,114

The first shoulder can then be explained by anharmonic coupling of excited state bending

modes with the asymmetric stretching mode. This coupling causes a frequency shift of

−12 cm−1, and creates a shoulder on the linear and the 2D spectra (peaks 2a/2b on 2D-

IR). Stochastic fluctuations in thermally populated bending modes cause dynamic 2D-IR

cross-peaks.

This mechanism for dynamic cross-peaks is not unique to CO2 in ionic liquids; however,

it is a nearly ideal system in which to observe and analyze it. The narrow total linewidth

(∼ 6 cm−1), combined with a large anharmonic coupling constant (x23 = −12 cm−1), leads to

clear segregation of the resulting frequencies into distinct peaks. The difference in energy

between the ground and first excited state ν2 modes is only around 3kBT , which is low enough

to be thermally accessible, but high enough to be quantized. Finally, the rate of stochastic

fluctuations in bending mode states is slow enough to preserve distinct diagonal bands at

short population times, but fast enough to allow dynamic cross-peaks over the timescale of

the experiment (∼ 100 ps).

Alternative hypotheses can be ruled out. There are two possibilities that need to be

addressed. First, the shoulder is often assigned to a multiquantum transition. Second, the

shoulder and cross-peaks could be due to chemical exchange.

The first ν3 shoulder in our spectra is also present in the FTIR of CO2 dissolved in

organic liquids and many polymers, and is often attributed to a multiquantum transition

ν3 + ν2 − ν2,
87,115–118 where the difference in energy is attributed to splitting of normally

degenerate CO2 ν2 and ν̄2 bending modes. (This combination should perhaps be written as

ν3 + ν2 − ν̄2 or ν3 + ν̄2 − ν2, but is typically presented without distinguishing between the

two bending modes.) This hypothesis fails on several accounts. First, such a multiquantum

transition is harmonically forbidden, so the transition dipole moment should be significantly
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lower than for the one quantum ν3 transition. The intensity of the shoulder, however,

directly follows a Boltzmann distribution for the ν2 bending modes, which implies that the

magnitude of the transition dipole moment is roughly equal for both the fundamental and

this multiquantum transition.

Second, with this mechanism, a shoulder on the high frequency side of the fundamental

should accompany the observed shoulder on the low frequency side. That is, there is no clear

reason why the transition ν3 + ν2 − ν̄2, would be strongly allowed, but ν3 + ν̄2 − ν2 would

not. Third, this hypothesis assumes that the splitting of the bending modes is an identical

12 cm−1, but this is not the case.88

Finally, in the 2D spectrum, this combination band would give rise to cross-peaks between

the first shoulder and the main band (since each a CO2 molecule could undergo either

transition with excitation), which would be present at the earliest population times, and

would only relatively decay (rather than relatively increase) with t2. This behavior contradicts

the observed spectral kinetics.

The temperature dependence of the shoulder (Figure 4) also excludes different chemical

environments (such as multiple equilibrium geometries of a CO2-anion interaction) undergoing

chemical exchange. In this hypothesis, the most intense feature would be due to free CO2

and the shoulder to CO2 with a stronger chemical interaction. The growth of the cross-peaks

would correspond to the exchange of these populations. However, the free CO2 band should

be entropically favored and increase with increasing temperature while the shoulder should

be enthalpically favored and decrease with increasing temperature. The opposite is observed,

so this hypothesis can be ruled out. Additionally, the equal relative energy spacing of the

diagonal shoulders from the main band for CO2 in every ionic liquid studied strongly suggests

that the additional peaks arise from the CO2 itself, rather than from distinct chemical

environments.

In contrast, the explanation of anharmonic coupling between ν2 and ν3 fits the temperature

dependence, the transition dipole scaling, and accounts for the cross-peak kinetics. In our

picture, each step requires only a one quantum transition for each peak, explains the presence

of a shoulder on only one side of the fundamental, and correctly reproduces the cross-peak

kinetics (over t2) between the first shoulder and main band due to thermal excitation and
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de-excitation of the bend.

The apparent cross-peak 1c, as well as the second apparent shoulder (1e and 1f) are

fifth-order signals, as can be shown by pump power-dependence, frequencies, and sign show

that it is a fifth-order signal, as are several other features. Assignments of the ν3 2D-IR

spectrum of carbon dioxide in 1-butyl-3-methylimidazolium trifluoroacetate [Im4,1][TFA], are

given in Figure 6 and Table 6).

The magnitude of third-order signal is linear in pump light intensity, since there are

two pump electric field interactions, while that of fifth-order signal (with four electric field

interactions) is quadratic. We assessed the magnitude of each peak when the pump power

was changed by a factor of two (Table 6). There is a clear distinction between the pump

power dependence of the third order signals (1a, 1b, 2a, 2b, and their population exchange

cross-peaks) and the fifth order signal (1c, 1e, 1f, and 31a). The reported intensity ratio is

the ratio of volumes of a single peak when the pump power doubles. Thus, for the main ‘red’

peak (1b: ν3 excited state absorption with ground state ν2), peak volume goes up by a factor

of 2.2± 0.1 when pump power doubles. Peak 1c’s volume, however, increases by a factor of

3.3± 0.2.

The fifth-order perturbative pathways have previously been described by Garrett-Roe

and Hamm for 3D-IR (five IR pulse) spectroscopy.86 The assignment of a “name” for each

fifth-order pathway (Table 4 & Figure 8) follows the scheme used by Garrett-Roe and Hamm,

where pathways are described by listing the vibrational quantum numbers of the three

coherent states that contribute to them. Non-rephasing diagrams are shown for all pathways.

Since a 2D-IR experiment only has two coherence times (which give two frequency axes),

we can only resolve two of the three coherences in the fifth-order pathway. When up-pumping

occurs during the first two (“pump”) pulses, either t1 or t3 will be unresolved. Thus, each

pathway can give two spectral peaks on a 2D-IR spectrum, if the coherent frequencies in

t1 and t3 differ. For fifth-order pathways in Table 4, the coherence noted in parenthesis

does not contribute to the observed peak, since oscillation of the first coherence will not be

observed when there are multiple electric field interactions during a single 100 fs pulse. That

is, the pathway 10|21|32 contributes to peaks 1c and 1f. Peak 1f results from up-pumping

during the first pump pulse, (10) |21|32, and thus only the |2〉 〈1| and |3〉 〈2| coherences are
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Figure 8: Double-sided Feynman diagrams, pathway labels, and peaks for third- and fifth-order

peaks in the CO2 2D-IR spectrum (non-rephasing pathways shown). Labels for pathways

correspond to those used by Garrett-Roe and Hamm in their description of purely absorptive

3D-IR spectra.86 In a three optical pulse experiment (like 2D-IR), only two of the three

coherences of a fifth-order signal can be resolved. Thus, depending on whether up-pumping

occurs during the first or second pump pulse, either t1 or t3 will be unresolved in the fifth-

order pathways. This effect can lead to multiple peaks on the 2D-IR spectrum from a single

fifth-order pathway.
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observed. Peak 1c results from up-pumping during the second pulse, 10| (21) |32, and thus

only the |1〉 〈0| and |3〉 〈2| coherences are observed. The center frequency and sign of the peak

amplitude for each observed fifth order peak matches that predicted by the corresponding

fifth-order pathway (Table 4).

The peaks 1c, 1e, 1f, and 3-1a are fifth-order signals, not cascading third-order signals.

Two of the peaks, 1c and 1f, cannot be generated by a cascade, because they involve walking

up the vibrational ladder to a |3〉 〈2| coherence. Given the presence of these unambiguously

direct fifth-order signals, we would expect to to find spectra contributions from other fifth-

order pathways. Peaks 1e and 3-1a are located where we would predict additional fifth-order

signal. The correspondence of the sign of the signal to those predicted by a direct fifth-order

pathway is also important, because the relative signs of cascading third-order signals and

fifth-order signals are opposite (due to the difference of i2 in the pre-factor in the infrared).

Furthermore, the relative magnitudes follow the predictions based on the various pathways

through population states and harmonic transition dipole moment scaling.86 Finally, the

relative peak intensities, including those of direct third-order signals, do not substantially

vary with the concentration of the chromophore. Cascaded signals scale proportionally to c2,

and thus would not scale with the other peaks on the spectrum.

2.4.7 Modelling of the Main Band

The 2D peak of a specific vibrational mode encodes the frequency-fluctuation correlation

function (Equation 2.1) in its lineshape. Lineshape analysis can extract the timescale of

structure relaxation around that mode, by quantifying spectral diffusion, or change in diagonal

character (or ellipticity), of a peak over t2.

The intense ν3 peak clearly exhibits spectral diffusion in each ionic liquid studied (Figure 9).

Qualitatively, at early population times, the main ν3 peaks have diagonal character. As

a function of the population time, t2, the peaks become rounder. The rate of ν3 spectral

diffusion varies in the ionic liquids tested, indicating a broad range of timescales for structural

relaxation in the different solvents. The rate is slowest in [Im4,1][PF6] (Figure 9A) and fastest

in [Im4,1][DCA] (Figure 9C). The vibrational relaxation time is slow enough to allow us to
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Table 6: Peak parameters related to the assignment of peaks in the 2D-IR spectrum of CO2 in

[Im4,1][TFA] to third-order or fifth-order signal. Pathways are labeled with the non-rephasing

coherences they exhibit. Parenthetical coherences are not observed due to the timing of

up-pumping (thus, 10—(21)—32 indicates a pathway with observed 2D-IR frequencies of

ω1, ω3 = ω01, ω23).

Peak Label Center (ω1, ω3) Peak Vol. Ratio1 Sign Order Pathway2

1a (2341.5, 2341.5) 2.20± 0.01 – 3 10|10 (g.s.b./s.e.)

1b (2341.5, 2317.5) 2.20± 0.02 + 3 10|21 (e.s.a.)

2a (2329.5, 2329.5) 1.90± 0.03 – 3 ‘hot’ g.s.b./s.e.

2b (2329.5, 2305.5) 2.5± 0.1 + 3 ‘hot’ e.s.a.

21a (2329.5, 2341.5) 1.7± 0.2 – 3 pop. exch.

21b (2329.5, 2317.5) 2.40± 0.04 + 3 pop. exch.

1e (2317.5, 2317.5) 3.8± 0.2 – 5 (10) |21|21

1f (2317.5, 2293.5) 3.5± 0.1 + 5 (10) |21|32

1c (2341.5, 2293.5) 3.3± 0.2 + 5 10| (21) |32

31a (2317.5, 2341.5) 3.4± 0.4 + 5 (10) |21|10

1 Factor by which the volume of the indicated peak increased when pump power

was doubled.

2 g.s.b./s.e.: Ground state bleach / stimulated emission. e.s.a.: Excited state

absorption. ‘Hot’ peaks refer to peaks resulting from thermal excitation of the ν2

bending mode. Numerals for Feynman pathways of fifth-order peaks from Garrett-

Roe and Hamm.86 Subscripted ‘a’ and ‘b’ indicate whether up-pumping occurred

on the first or second pulse.
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measure over 100 ps of dynamics.

We used a global fitting algorithm to quantify the rate of spectral diffusion for ν3 in each

ionic liquid (Figure 9). The main peak in the 2D spectrum is sufficiently separated from the

shoulders that it can be treated independently. Simulated spectra were calculated using a

third-order response function formalism in the semi-impulsive limit. The frequency-fluctuation

correlation function

c2(t) =
δ(t)

T2

+ ∆2 exp

(
− t

τc

)
, (2.11)

corresponds to a physical system in which CO2 senses two distinct timescales of motion.

Fast motions, in the homogeneous limit, are modeled by first term, which describes a loss

of correlation that is too fast to be quantified. In the time domain lineshape function, this

leading term describes exponential decay in the ensemble response from dephasing, (with

time constant T2); the resulting lineshape in frequency space is a Lorentzian with FWHM of

(πT2)−1.

The second term corresponds to processes in the spectral diffusion regime, which create a

Kubo lineshape. In the slow modulation limit (where τc∆� 1), correlations do not change

over the timescale of the molecular response. The resulting lineshape function describes a

time-domain Gaussian with a variance of ∆−2; the corresponding lineshape in frequency

space is a Gaussian with FWHM of 2.355∆.

The analytical lineshape function:

g(t) =
t

T2

+ ∆2τ 2
c

[
exp

(
− t

τc

)
+

t

τc
− 1

]
, (2.12)

can be used to calculate 2D spectra. Normalization of spectra before fitting removes any

contribution from vibrational or orientational relaxation, which we do not model. A con-

strained nonlinear optimization algorithm globally fits the calculated spectra to experimental

spectra by minimizing the sum of squares difference between the data and calculation. The

algorithm optimizes T2, τc, and ∆, in addition to the central frequency, anharmonicity, the

|0001〉 → |0002〉 transition dipole moment, and the phase. The resulting spectral diffusion

time, τc, shows good agreement with that obtained by center line slope (CLS) analysis

(section 2.7.1).
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Figure 9: Experimental 2D-IR spectra of CO2 in [Im4,1] (A) [PF6], (B) [Tf2N], and (C) [DCA]

show the range of timescales for spectral diffusion in ν3. Spectral diffusion results from

local structural relaxation around CO2. Spectral modelling quantifies the timescale of this

structural relaxation, and indicates that the timescale varies by up to an order of magnitude

between ionic liquid solvents, and that CO2 dynamics are likely gated by anion dynamics in

these ionic liquids. Spectra for CO2 in other ionic liquids tested can be found in figure 15.
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Experimental and optimized calculated spectra agree in terms of overall lineshape and

rate of spectral diffusion (Figure 10). The resulting lineshape parameters can then be used

as input for spectral modelling that treats the shoulders and cross-peaks of the spectrum

(Section 2.4.8).

The lineshape parameters (Table 7) for ν3, combined with insights from computational

modeling of CO2-anion-cation clusters, help to refine a physical picture of the solvation

environment of CO2 in ionic liquids. The timescale of frequency fluctuation correlations

(τc) for CO2 varies by up to an order of magnitude between the solvents, from 13± 3 ps in

[Im4,1][DCA] to 104± 10 ps in [Im4,1][PF6]. The inhomogeneous width (∆) which is largest

in PF6
– and smallest in DCA– reflects the diversity of local environments reported by CO2

in an ionic liquid. The dephasing time (T2), which varies from 2.6 to 3.4 ps, is longer than

typical dephasing times in molecular solvents.

A quantitative analysis based on lineshape theory has allowed us to determine the

dynamical timescales, dephasing times, and inhomogeneous linewidths for ν3 in the six ionic

liquids studied.

2.4.8 Modelling of Shoulders and Cross-Peaks

Having quantified the change in shape of the main 2D ν3 band, we now turn to modelling of

the dynamics encoded in the diagonal shoulders and cross-peaks.

Fluctuations in the CO2 ν2 population can be described by a thermal equilibrium between

n bending modes:

|0000〉
kf
⇀↽
kr
|0110〉 · · ·

k′′f
⇀↽
k′′r
|0nl0〉 (2.13)

The rate of transition between the ground and first excited state, kf , combined with the

Boltzmann distribution of states, determines the remaining rates. kf is ultimately determined

by the probability of stochastically gaining a quantum of energy in a CO2 bending mode,

most likely through collisions in the local environment. The first backwards rate, kr, is

directly analogous to the off-equilibrium vibrational energy relaxation rate.

A model that combines probabilistic fluctuations in bending mode population based on
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Figure 10: Example of global fitting of spectra. (A) Experimental 2D-IR spectra of CO2 in

[Im4,1][TFA]. (B) Calculated 2D-IR for ν3 based on a third-order response function, which is

fitted to A by optimizing the correlation time τc, frequency range ∆, and dephasing time T2,

in addition to several other parameters (see text). (C) Residual between the experimental

and calculated spectra.
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Table 7: Best fit correlation function parameters, by ionic liquid. τc indicates the timescale

of structural relaxation around CO2, the inhomogeneous linewidth ∆ reflects the range of

frequencies experienced by CO2 in different local environments of each ionic liquid, and the

homogeneous dephasing time T2 arises from fast motions, such as librations, of CO2.

Anion ∆ (cm−1) τc (ps) T2 (ps)

[PF6]– 2.0± 0.1 104± 10 3.3± 0.1

[Tf2N]– 1.6± 0.1 26± 5 2.8± 0.1

[TfO]– 1.7± 0.1 25± 5 2.7± 0.1

[TFA]– 1.8± 0.1 40± 5 2.6± 0.1

[DCA]– 1.6± 0.1 13± 3 3.2± 0.2

[SCN]– 1.8± 0.1 16± 3 3.4± 0.1

Equation 2.13 with standard response function treatment is able to capture the essential

physics required for such stochastic hot bands and their cross-peaks. The frequency of the ν3

mode has two sources of variation: (1) the classical bath of intermolecular modes usually

encountered in solvation dynamics and (2) the quantum bath of intramolecular vibrations to

which the ν3 band is coupled. The frequency of the ν3 mode, ω(t) fluctuates as

ω(t) = 〈ω〉+ δωinter(t) + δωintra(t). (2.14)

This stochastic frequency can be used as an input to standard nonlinear response function

formalism. For example, the first order response function

R(1)(t) ∝ exp (−i 〈ω〉 t)×
〈

exp

(
−i
∫ t

0

dt′δωinter(t
′) + δωintra(t′)

)〉
, (2.15)

can be separated into the two parts, assuming the intra- and inter-molecular modes are

uncorrelated,

R(1)(t) ∝ exp (−i 〈ω〉 t)×
〈

exp

(
−i
∫ t

0

dt′δωinter(t
′)

)〉
×
〈

exp

(
−i
∫ t

0

dt′′δωintra(t′′)

)〉
.

(2.16)
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The intermolecular component can be treated with the cumulant expansion truncated at

second order

R(1)(t) ∝ exp (−i 〈ω〉 t− g(t))×
〈

exp

(
−i
∫ t

0

dt′′δωintra(t′′)

)〉
. (2.17)

where g(t) is the lineshape function. The extension to third-order response functions is

straightforward.

We performed a stochastic simulation in which an ensemble of trajectories was generated

by allowing probabilistic instantaneous transitions between the ground and excited states

of the ν2, with upward and downward rates consistent with the equilibrium populations.

These transitions were allowed to happen at any point in the simulation, including during

the coherence times.

The simulated lineshape is sensitive to the rate of thermal fluctuations in ν2. By tuning

the rate constant kf of stochastic fluctuation from the ground state into the first excited

state and enforcing detailed balance to preserve equilibrium, we can control (1) whether

or not diagonal shoulders will appear, and (2) the kinetics of cross-peak formation. In the

limit of fast fluctuations, there are no clearly observed shoulders or cross-peaks, as all three

peaks coalesce into a single band. In the limit of slow fluctuations, there are clearly defined

shoulders, which persist throughout the experimental timescale, and cross-peaks do not grow

into the spectrum. In an intermediate regime, we are able to reproduce both the lineshape

and kinetics (Figures 11 and 7) seen in the relative intensities of the first shoulder and the

cross-peaks between it and the main peak as functions of population time.

The microscopic rate constant (kup) for CO2 bending mode fluctuations in [Im4,1][TfO],

from the Monte Carlo simulations is estimated to be kup = 2.5± 0.1 ns−1. The corresponding

down rate, which is analogous to the vibrational relaxation rate in off-equilibrium pump-probe

experiments, is estimated to be kdown = 30± 12 ns−1. The kinetic Monte Carlo simulations

include the non-equilibrium pumping that was explained by Fayer et al..119 Their pump-probe

measurements showed an increase in the ground state bleach band due to differences in

transition dipole moment between the ground state |000〉 and the ‘hot’ band |0110〉 transition

dipole moments. The 2D measurement resolves the excitation frequency, so those dynamics

are visible as a separate cross-peaks, where the pump-probe measurement observes the sum
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Figure 11: Calculated spectrum of CO2 in [Im4,1][TFA] at t2 = 0.2 and 50 ps. Spectra are

based on a stochastic simulation that allows the bending mode of a particular oscillator to

fluctuate over the course of the experiment (while preserving a Boltzmann distribution). The

lineshape as a function of t2 closely approximates the lineshape of the main peak (1a and 2a),

first diagonal shoulder (1b and 2b), and cross-peaks (1b,a; 2a,b and 2b,a) in the experimental

spectra (Figure 6).

of the two peaks (the projection of the spectrum onto the ω3-axis). The main ground state

bleach decays with bending mode exchange and the cross-peak grows. If the dipoles of the

two states are the same these two terms cancel in the pump-probe measurement; however,

the differences in dipole lead to effective rises in the pump-probe ground state bleach signal.

2.5 MOLECULAR INTERPRETATION

The resulting molecular picture is that the slower dynamics of the ionic liquid solvent gate

CO2’s dynamics in solution. The slow timescale (τc) arises from structural relaxation of the

solvent around CO2, and corresponds to the breakup of local ion shells. Until this liberating

event, CO2 is caged in a relatively well-ordered local environment. Librational and other

fast motions only sample a narrow range of instantaneous frequencies, but the variation in

instantaneous frequency between different local environments gives rise to the inhomogeneous
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linewidth.

We assign the inhomogeneous width, ∆, to the interactions of the CO2 with its local ion

cage. Because charge transfer drives the distortion of the CO2 geometry, and the geometry

determines the ν3 frequency, ∆ reports the range of local structural motifs that the CO2 can

sample. This range varies from 2 cm−1 in [PF6] to 1.6 cm−1 in [DCA] (a 20% decrease). ∆ is

also not strongly correlated to the average frequency shift or other structural parameters,

and so we attribute it to the range of structures in the condensed phase.

The inhomogeneous linewidth of CO2 is the narrowest of the IR probes in recent 2D-IR

experiments. Thiocyanate, SCN– , has a total inhomogeneous linewidth ∆total ∼ 8 cm−1;77

heavy water, HOD, ∆total ∼ 5 cm−1;71 and CO2 ∆total ∼ 2 cm−1. This trend reflects the

strength of the coupling of the vibrational chromophore to its environment. The SCN– anion

is directly integrated into the ion network and hydrogen-bonded to the imidazolium cation

through the 2-position. HOD interacts more weakly with the ionic liquid. It associates

primarily with the anion, but it is sensitive to the electric field projected on the OH (or OD)

bond axis. Because HOD is dipolar, it still experiences relatively large frequency fluctuations.

CO2 is even more weakly still coupled to its environment. CO2, which has a quadrupole

moment and no dipole moment, is even less influenced by the local electric fields and is

sensitive to the more chemical nature of the CO2-anion-cation interaction.

Similarly, we assign the spectral diffusion time, τc, to a local ion cage’s lifetime around

CO2. The observed timescale reflects the time for the ion cage around CO2 to break up

and permit CO2 to move to a novel local environment. This interpretation is consistent

with previous computational work which indicate that the ionic liquid solvent reorients

spontaneously to accommodate CO2 in well-defined locations in the ionic liquid,56 and with

NMR studies showing a well-defined angular distribution of CO2 around the cation.74

The bulk viscosity, η, serves as a proxy for this rate of diffusion which we can compare

across the anions. Of course, small, neutral molecules like CO2 experience less friction

from the solvent than the viscosity implies.120,121 Nevertheless, the linear correlation of bulk

viscosity and τc (R2 = 0.82) supports our assignment (Figure 12). This correlation further

suggests that the motion of the smaller, more mobile CO2 through the ionic liquid is gated

by the motion of the solvent ions.
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ionic liquid solvent. Data points marked with an ‘O’ are from CO2 in this work, while those
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[Im4,1][PF6],71 with ionic liquid viscosity scaled to account for water content.122 Literature

values for viscosity were used for all ionic liquids.123–125
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CO2 has a Lewis acid-base interaction with the anion of the ionic liquid. Isolated water has

possible hydrogen bonds with both the anion and the cation. SCN– has a strong electrostatic

attraction to the cation. Thus, all three chromophores have different specific interactions with

their ionic liquid solvent. Nevertheless, the correlation times seen in 2D-IR studies of [SCN]–

in [Im4,1][Tf2N]77 and D2O/HOD in [Im4,1][PF6]71 follow the same viscosity trend, when you

account for the expected ∼ 25% decrease in the viscosity of [Im4,1][PF6] with χH2O ≈ 0.04.122

This fact suggests that each of these chromophores is reporting on the local diffusive motion

of the surrounding solvent, despite the fact that SCN– , water, and CO2 have different specific

interactions with the ions in their solvation shells.

Furthermore, recent MD simulations suggest a direct relationship between ion cage lifetime

and bulk transport properties such as self-diffusivity and conductivity.126 While diffusivity

of CO2 and self-diffusivity of an ionic liquid are not identical parameters, the dynamics

reported by CO2 and [SCN]– 77 in [Im4,1][Tf2N] are nearly identical, and both have been

related to ion cage lifetime. Thus, it is reasonable to speculate that CO2 mass transport in

these ionic liquids may also depend on ion cage lifetime. In this case, the correlation times

reported could provide an avenue to directly address the molecular mechanism of CO2 mass

transport in ionic liquids, and might even give insight into other transport properties such as

self-diffusivity and conductivity.

The homogeneous dephasing time, T2, depends on both the timescale of fast motions for

CO2, τH , and on the frequency range experienced during those motions, ∆H (T2 = (∆2
HτH)

−1
).

Experimentally, it is impossible to disentangle these two contributions, but the dephasing time

(∼ 3 ps) is significantly longer than that seen for either HOD (∼ 1 ps) or SCN– (∼ 1.4 ps)

in ionic liquids. Thus, either CO2 samples a relatively narrow frequency range during

its homogeneous motions, or the those motions are particularly fast. Based on the small

inhomogeneous linewidth, ∆, and the fact that CO2 is a small molecule whose moment of

inertia (and consequently, the timescale for fast motions such as librations) is unchanged

between ionic liquids and molecular solvents, it seems reasonable that the long dephasing

time results from a narrow frequency range in a well-defined local environment, rather than a

decrease in solvent interactions that slow the molecule.

Furthermore, the computational results show that, in gas phase clusters, CO2 bends and
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adopts a distorted equilibrium geometry. In condensed phase dynamics, transitioning from a

linear to a bent geometry could be one method of populating an excited state bending mode,

and could have a direct impact on kf , the rate of bending mode transitions. In principle, the

spectral diffusion rate should influence the rate of transition between equilibrium geometries,

and thus drive excitation and de-excitation of bending modes. Since we are able to model kf

based on equilibrium measurements, a systematic study of ionic liquids with different spectral

diffusion rates could experimentally elucidate to how the motions of the solvent around a

small molecule influence stochastic fluctuations in bending mode population.

These molecular mechanisms can be both tested and clarified by the comparison of

these results to simulation. Frequency mapping techniques, combined with classical molec-

ular dynamics simulations can be used to calculate the IR absorption spectrum and the

spectral diffusion of modes of interest for small molecules such as water,127–129 nitriles and

thiocyanate,130,131 and azides132,133 in molecular solvents. More recently these methods have

been expanded to explore isolated water in imidazolium ionic liquid solvents,134 with good

agreement with experiment.71 Similar approaches for CO2 could verify the molecular mech-

anism of CO2 solvation in ionic liquids. It is likely, given the calculated dependence of ν3

on CO2 geometry, that any molecular dynamics simulation would need to account for the

geometrical distortion of the CO2 due to charge transfer, either directly via on-the-fly QM

calculations, or with a classical proxy that indirectly accounts for these effects.

These initial studies utilized imidazolium-based ionic liquids because they are commercially

available, are “archetypal,” and are relatively well-characterized; thus, they provide a good

initial platform on which to develop spectroscopic methods. Many ionic liquids of interest,

however, involve either novel classes of anions and cations or chemical modification of

existing ionic liquids. The changes in solvent structure and dynamics that result from

such modifications are generally not well-understood. This type of spectroscopy can provide

valuable molecular insights into how and why chemical modification of ionic liquids determines

bulk properties of interest, especially CO2 uptake and local ion mobility (which is related

to viscosity and conductivity). Chemisorbing ionic liquids are also of interest, especially for

carbon capture applications, and many (1) have an initial physisorption step, and (2) have

an equilibrium between physisorbed and chemisorbed (reacted) CO2. These types of studies
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could help to elucidate the molecular mechanisms of the equilibrium between CO2 in its free

and bound forms.

2.6 CONCLUSIONS

We have demonstrated that the CO2 ν3 mode can act as a probe of local structure and

dynamics in imidazolium ionic liquids. This method has potential application to the analysis

of structure and dynamics in ionic liquids being developed for CO2 capture.

The ν3 frequency is sensitive to the timescale of local structural relaxation in ionic liquids.

The timescale of this relaxation, τc is determined by spectral modelling using a third-order

response function formalism, with a Bloch-Kubo lineshape. For the imidazolium ionic liquids

studied, τc varies by as much as an order of magnitude between solvents, and correlates with

the viscosity of the ionic liquids. The molecular mechanism posited for this timescale is the

breakup of local ion cages around the CO2.

Computational studies aid understanding the origin of the ν3 center frequency shifts in

different imidazolium ionic liquids and suggest that geometrical distortion of the CO2, driven

by charge transfer from the anion into virtual orbitals of CO2 and from occupied orbitals of

CO2 into virtual orbitals of the cation. A simple one exciton Hamiltonian is able to reproduce

the scaled harmonic frequencies with an RMS error of 1.2 cm−1 by accounting for dependence

of average frequency, α, on total bond length, L, and the coupling constant, β, on magnitude

of the angular distortion of CO2, θ.

Anharmonic coupling of ν2 and ν3 allows thermal fluctuations of ν2 population to stochasti-

cally shift the CO2 ν3 by units of −12 cm−1 (the coupling constant), and cause the appearance

of a shoulder and dynamic cross-peaks on the 2D spectrum. Modelling of the stochastic

bending mode population over the timescale of the experiment gives an estimate of the rate of

excitation and de-excitation of bending mode population in the condensed phase at thermal

equilibrium, estimated to be kf = 2.5± 1.0 ns−1 and kr = 30± 12 ns−1. Additional spectral

features (the “second shoulder” and apparent “cross-peak” 1c) arise from fifth-order signal.

The molecular picture that arises from this work is one in which imidazolium ionic liquids
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solvate CO2 in well-defined local environments. The interactions of CO2 with its solvent are

dominated by local interactions with its nearest neighbor anion and cation. The picosecond

dynamics of CO2 are gated by the slower local diffusive motions of the anion and cation,

whose translations and rotations are hindered due to electrostatic friction from surrounding

ions, and potentially due to dispersive interactions between nanosegregated alkyl chains.

The methods and analysis developed in this work describe CO2 in imidazolium ionic

liquids. We expect that they will be transferable, however, to broad classes of materials, such

as polymers or metal-organic frameworks, as well as to other ionic liquids.

2.7 SUPPORTING INFORMATION

2.7.1 Comparison of Global Fitting with Center Line Slope

For the center line slope method, we fit the signal size as a function of final frequency (ω3)

with two Gaussians with opposite signs for each initial frequency (ω1) data point. The

resolved positions of the Gaussians of the 0 to 1 transition peak are considered the center

points. The center line slope is determined by fitting the center points linearly as a function

of ω1. Estimated errors are propagated accordingly.

The resulting center line slope is fitted to a biexponential decay as a function of t2

c2 =
2∑
i=1

ai exp (−t2/τi) (2.18)

with the resulting parameters for CO2 ν3 in [Im4,1][TFA]: a = 0.09±0.04, τ1 = 2.1±2.1ps, b =

0.35± 0.04, τ2 = 35± 5ps.

2.7.2 2D IR Spectra

2.7.3 Computational Results

In tables 8 and 9, ‘ν1’ is the frequency of the symmetric stretching mode of CO2, and ‘ν3’

is the frequency of the antisymmetric stretching mode of CO2. α is the average of the two
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Figure 13: CLS overlaid on the 2D spectrum of CO2 in [Im4,1][TFA]

normal mode frequencies, α = (ωs + ωa)/2. β is the coupling constant, or the difference of

the two local mode frequencies, β = (ωs − ωa)/2.

‘CT: CO2 to IL‘ is the amount of charge transferred from the CO2 into the ionic liquid

components, ‘CT: IL to CO2‘ is the amount of charge transferred from the ionic liquid

components into the CO2, and ‘CT: net‘ is the net charge transferred into the CO2.

‘geom: angle’ is the CO2 O–C–O angle, and ‘geom: θ’ is the deviation of the angle from

180◦. ‘geom: l1’ and ‘geom: l2’ are the bond lengths of the two C–O bonds, ‘geom: l2 − l1’

is the difference between the two bonds lengths, and ‘geom: L‘ is the sum of the two bond

lengths. ‘geom: O12’ is the through-space oxygen-oxygen distance in CO2.
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Table 8: CO2–IL geometries optimized allowing charge transfer. “Free CO2” is CO2 not in the presence of the IL, “cation” is

CO2 only in the presence of the IL cation (no anion), and all other columns specify the IL anion identity. The cation is [Im1,1]+

or [C1C1im]+.

Free CO2 Cation [BF4]– [DCA]– [PF6]– [SCN]– [TFA]– [Tf2N]– [TfO]–

ν1 (cm−1) 1371.93 1372.12 1372.96 1370.71 1373.95 1370.35 1371.68 1372.88 1371.14
ν3 (cm−1) 2436.1 2443.07 2434.71 2430.85 2437.48 2430.27 2429.81 2437.74 2433.89
β (cm−1) -532.085 -535.475 -530.875 -530.07 -531.765 -529.96 -529.065 -532.43 -531.375
α (cm−1) 1904.015 1907.595 1903.835 1900.7 1905.715 1900.31 1900.745 1905.31 1902.515

CT: CO2 to IL (me−) 0 2.251 1.264 2.259 1.012 1.323 1.618 1.603 2.339
CT: IL to CO2 (me−) 0 0.079 4.558 3.376 3.336 3.317 5.131 2.493 3.009

CT: net (me−) 0 -2.172 3.294 1.117 2.324 1.994 3.513 0.89 0.67

geom: angle (◦) 179.96 179.93 175.49 175.01 176.21 175.65 174.78 177.36 175.99
geom: θ (◦) 0.042 0.07 4.51 4.99 3.79 4.35 5.22 2.64 4.01

geom: l2 − l1 (Å) 1.9× 10−7 0.015 0.0087 0.011 0.0071 0.0089 0.0076 0.0076 0.011
geom: l1 (Å) 1.169 1.176 1.174 1.175 1.173 1.165 1.173 1.165 1.175
geom: l2 (Å) 1.169 1.161 1.165 1.164 1.165 1.174 1.166 1.173 1.164

geom: O12 (Å) 2.338 2.337 2.337 2.337 2.337 2.338 2.337 2.337 2.337
geom: L (Å) 2.338 2.337 2.338 2.339 2.338 2.339 2.339 2.338 2.339
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Table 9: CO2–IL geometries optimized without allowing charge transfer. “Free CO2” is CO2 not in the presence of the IL,

“cation” is CO2 only in the presence of the IL cation (no anion), and all other columns specify the IL anion identity. The cation

is [Im1,1]+ or [C1C1im]+.

Free CO2 Cation [BF4]– [DCA]– [PF6]– [SCN]– [TFA]– [Tf2N]– [TfO]–

ν1 (cm−1) 1371.93 1371.47 1373.31 1373.44 1373.33 1373.14 1373.65 1373.06 1373.45
ν3 (cm−1) 2436.1 2439.86 2438.56 2439.1 2438.47 2438.78 2438.39 2438.767 2439.37
β (cm−1) -532.085 -534.195 -532.625 -532.83 -532.57 -532.82 -532.37 -532.85 -532.96
α (cm−1) 1904.015 1905.665 1905.935 1906.27 1905.9 1905.96 1906.027 1905.91 1906.41

CT: CO2 to IL (me−) 0 1.743 1.038 1.836 1.154 1.302 1.023 1.246 1.941
CT: IL to CO2 (me−) 0 0.039 3.053 2.266 2.221 1.64 2.916 1.274 2.048

CT: net (me−) 0 -1.704 2.015 0.43 1.067 0.338 1.893 0.028 0.107

geom: angle (◦) 179.96 179.97 177.30 177.29 177.58 177.78 178.30 177.19 177.39
geom: θ (◦) 0.04 0.03 2.70 2.70 2.42 2.22 1.70 2.81 2.61

geom: l2 − l1 (Å) 1.9× 10−7 0.012 0.008 0.008 0.007 0.008 0.007 0.007 0.009
geom: l1 (Å) 1.169 1.175 1.173 1.173 1.172 1.165 1.166 1.172 1.173
geom: l2 (Å) 1.169 1.163 1.165 1.165 1.166 1.173 1.172 1.166 1.165

geom: O12 (Å) 2.338 2.338 2.337 2.337 2.337 2.337 2.338 2.337 2.337
geom: L (Å) 2.338 2.338 2.338 2.338 2.338 2.338 2.338 2.338 2.338
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3.0 MODELING CARBON DIOXIDE VIBRATIONAL FREQUENCIES IN

IONIC LIQUIDS: I. AB INITIO CALCULATIONS

The text in this chapter has been adapted from Berquist, E. J.; Daly, C. A.; Brinzer, T.;

Bullard, K. K.; Campbell, Z. M.; Corcelli, S. A.; Garrett-Roe, S.; Lambrecht, D. S. Modeling

Carbon Dioxide Vibrational Frequencies in Ionic Liquids: I. Ab Initio Calculations. J. Phys.

Chem. B 2017, 121, 208–220, DOI: 10.1021/acs.jpcb.6b09489, and is copyright the

American Chemical Society. The author’s contribution to the work included performing all

quantum chemical calculations and analyses (excepting those for DVR), designing the charge

transfer mechanism and counterpoise correction analyses, writing those respective parts of

the manuscript, and editing/revising the remainder.

3.1 SUMMARY

This work elucidates the molecular binding mechanism of CO2 in [C4C1im][PF6] ionic liq-

uid (IL) and its interplay with the CO2 asymmetric stretch frequency ν3, and establishes

computational protocols for the reliable construction of spectroscopic maps for simulating

ultrafast 2D-IR data of CO2 solvated in ILs. While charge transfer drives the static frequency

shift between different ionic liquids [27], we find here that electrostatic and Pauli repulsion

effects dominate the dynamical frequency shift between different geometries sampled from

the finite-temperature dynamics within a single ionic liquid. This finding is also surprising

because dispersion interactions dominate the CO2–IL interaction energies, but are comparably

constant across different geometries. An important practical consequence of this finding

is that density functional theory is expected to be sufficiently accurate for constructing
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potential energy surfaces for CO2 in [C4C1im][PF6], as needed for accurate anharmonic

calculations to construct a reliable spectroscopic map. Similarly, we established appropriate

computational and chemical models for treating the extended solvent environment. We found

that a QM/MM treatment including at least 2 cation-ion pairs at the QM level and at least

32 pairs at the MM level is necessary to converge vibrational frequencies to within 1 cm−1.

Using these insights, this work identifies a computational protocol as well as a chemical model

necessary to construct accurate spectroscopic maps from first principles.

3.2 INTRODUCTION

Capturing anthropogenic CO2 before its release into the atmosphere is a pressing need,

and most methods will require the development of novel materials, such as metal-organic

frameworks, polymers, or ionic liquids (ILs).31–33,36,41,136 Understanding how to control

the interactions between CO2 and its condensed-phase environment is a key to achieving

efficient carbon capture and sequestration41,137–139 and to developing routes toward potentially

transforming CO2 into value-added chemicals including fuels.140–142 To rationally develop

such technologies, a molecular level understanding of the CO2-sorbent interactions, structures

and dynamics is necessary.

In a previous paper,27 some of us established that CO2’s asymmetric vibrational stretch

mode (ν3) can be used to effectively probe the structure and dynamics of CO2 dissolved

in ILs. Using a combination of ultrafast two-dimensional infrared (2D-IR) spectroscopy

and computational modeling, we determined structural candidates for the immediate CO2

solvent environments whose vibrational solvation shifts were consistent between experiment

and theory. Experimentally, the timescales of structural reorganization relative to the

CO2 molecule were correlated to the bulk viscosity. This experimental correlation between

molecular property (solvation timescales) and bulk property (viscosity) suggests that CO2

motions are gated by the same motions that lead to bulk diffusion. Molecular models are

needed, however, to establish physical explanations for the correlation.

CO2 solvation in ionic liquids gives rise to several interesting and challenging effects that
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are worth exploring thoroughly, taking both computational methodology and the chemical

picture into account. Our previous work suggested that charge transfer (CT) between CO2

and the IL dominates the differentiation of the calculated vibrational signatures between

different ionic liquids. Understanding the strength and nature of intermolecular interactions

between CO2 and its IL solvent fundamentally shapes our model of the CO2–IL interaction.

Investigating CO2–IL interactions will thus deepen our understanding of the mechanism of

CO2 solubility in ionic liquids, and even of (de)activation of CO2 for catalytic reductions.

Interestingly, the asymmetric stretch frequency of CO2 encodes the strength of intermolecular

interactions as they are manifested in the molecular geometry of CO2 interacting with the

surrounding IL. In other words, one can determine the correct vibrational frequency shift for

CO2 from the distortion of the CO2 geometry, but correctly determining the CO2 geometry

requires an understanding of intermolecular interactions between CO2 and the IL solvent.

These effects must be considered in the development of more reliable force fields that describe

CO2–IL solvation, and of empirical structure-spectra maps used for comparing MD results

with results from ultrafast spectroscopies.

This publication is first in a series aiming to unravel the physics underlying CO2–IL

interactions as probed via vibrational spectroscopy and to develop a spectroscopic map

to facilitate simulation of these spectra. The central point of the present publication is to

establish a more refined picture of intermolecular interactions and their correlations with

vibrational shifts by improving both the computational approach and the chemical model as

described below. Some of the results from this publication inform the method choices for the

subsequent paper in the series, where we develop and validate a spectroscopic map enabling

one to reliably predict both the position and the width of the CO2 asymmetric vibrational

peak within classical MD simulations.143

In this manuscript, we address the critical challenges needed to generalize our previous

work. The key issues are: treating the condensed phase environment, testing the dependence

on the electronic structure theory method and basis set, and addressing anharmonic effects.

First, we extend our previous results by analyzing both the convergence and stability

of the calculations with respect to the computational approach. Our absolutely localized

molecular orbital (ALMO) calculations100,102,103 evaluated the impact of CT and other
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chemically intuitive components in the calculation of spectral signatures by using the modest

B3LYP/6-31G(d,p) level of theory. Like most decomposition approaches, the ALMO results

are expected to show some dependence on the underlying density functional approximation;

in particular, it is known that the predicted amount of charge transfer depends on the amount

of self-interaction error (SIE) present and the resulting (spurious) delocalization.104 As a

result, non-SIE corrected functionals are expected to overestimate the amount of CT, whereas

the SIE-free Hartree–Fock approach can be used to estimate a lower bound for CT effects.

Likewise, one can expect the CT contribution to depend on the basis set diffuseness, since

the ALMO definition of CT is closely linked to the penetration of basis functions between

different fragments. Thus, one goal of the present study is to quantify the method and basis

set dependence of the calculated vibrational shifts and their effect on CT.

Although our previous density functional theory (DFT) calculations provided excellent

agreement of predicted vibrational solvation shifts compared to experiment, these employed

a minimalistic gas-phase cluster model consisting of only one CO2 molecule together with

a single cation/anion pair. Here we investigate the convergence of results with the size of

the surrounding solvent shell both using a hybrid quantum mechanics molecular mechanics

(QM/MM) approach with up to 195 atoms (6 molecular ion pairs) in the QM region and up

to 8192 solvent atoms (256 molecular ion pairs) using classical point charges. In addition,

we aim to assess the impact of solvent disorder by investigating different solvent geometries

based on 85 statistically uncorrelated (R2 = 0.0004 for DVR-based vibrational frequency

of snapshot N to vibrational frequency of snapshot N + 1) snapshots sampled from a

classical MD simulation (see paper II143 for details). We use 1-butyl-3-methylimidazolium

hexafluorophosphate ([C4C1im][PF6]) as a model IL in our calculations.

We will further analyze the impact of anharmonic effects, which we neglected in our

previous (harmonic) calculations and which are necessary for a fair comparison to experiment.

Here, anharmonic vibrational frequencies are obtained using the discrete variable represen-

tation (DVR) approach. The DVR method numerically solves the vibrational Schrödinger

equation using a calculation of the CO2 stretch potential energy surface, resulting in vibra-

tional frequencies that include anharmonicity to all orders. An additional advantage of DVR

is that it can be applied rigorously to systems at non-equilibrium geometries, which allows us
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to include the disorder introduced by temperature for comparison with experiments carried

out at temperatures above absolute zero.

The energy decomposition approaches we use add new and valuable physical insight into

the origin of the vibrational frequency shifts. Many groups have used QM/MM approaches to

estimate the condensed phase effects of a solvent on the transition energies of a chromophore,

which provide a rich interpretation of the experiments.131,132,134,144,145 Nevertheless, the

interpretation for why the environment shifts the transition frequencies is difficult because

many effects simultaneously determine the transition frequencies. The ALMO and symmetry-

adapted perturbation theory (SAPT) energy decomposition approaches can separate the

interactions of the vibrational chromophore with its environments into meaningful components

allowing us to develop an empirical spectroscopic map and also understand its physical origins.

The paper is organized as follows. In section 3.3, we give a detailed account of the

computational approaches used, including DFT calculations and DVR vibrational frequency

calculations. In section 3.4, we analyze the dependence of the calculated CO2 vibrational

frequencies on the computational approach and the chemical model. For the computational

approach, we quantify both the impacts of the electronic structure method (density functional

and basis set) as well as the inclusion of anharmonic effects via the DVR approach. We

analyze the dependence on the chemical model by comparing our previous gas-phase cluster

calculations with results obtained for extended solvent boxes both at the classical point

charge and the hybrid quantum mechanics/molecular mechanics (QM/MM) level, where

structures are sampled from extensive molecular dynamics (MD) simulations (details of the

MD simulations will be discussed in a follow-up paper143). This way, we aim to include the

most important effects of solvent electrostatics, exchange-repulsion, and solvent disorder. In

section 3.5 we present concluding remarks and an outlook for future research.
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3.3 COMPUTATIONAL METHODS

3.3.1 Methods and Basis Sets

Similar to our previous work,27 we choose gas-phase clusters consisting of one [C4C1im][PF6]

ion pair with CO2 to quantify the effects of quantum chemical method and basis set on

the quantum mechanically calculated harmonic frequencies. For methods, we employ the

BLYP146,147 generalized gradient approximation (GGA) and B3LYP94,95 hybrid GGA density

functionals, along with Hartree–Fock (HF) theory. This choice of methods allows us to

test the dependence of the results on the percentage of exact (HF) exchange, as these

methods have 0%, 20%, and 100% HF exchange, respectively. For basis sets, we choose

6-31G(d,p)96,97 and 6-311++G(d,p)148–150 to represent the commonly-used Pople-style basis

sets (abbreviated as “small Pople” [SP] and “large Pople” [LP] in the following), along with

Dunning’s correlation-consistent basis sets from double- to quadruple-ζ quality (cc-pVXZ,

where X = D,T,Q, abbreviated as VXZ).151,152 Initial geometries were constructed using

Avogadro153,154 before optimization to local minima with or without charge transfer allowed

between molecules (vide infra), followed by harmonic frequency calculations.

To examine solvent effects, we investigate the converge of QM-calculated harmonic

frequencies as a function of the solvent box size, where we vary both the number of ionic

liquid pairs treated explicitly (“QM pairs”) and treated as point charges (“MM pairs”). A

given combination is abbreviated as (n QM/m MM), where n and m are the number of QM

and MM pairs, respectively. An ionic liquid pair, or briefly “ion pair”, is defined as one cation

([C4C1im]+) plus one anion ([PF6]– ). Ion pairs are included in the QM region based on the

closest atom distance between individual cations and anions and the CO2. The geometries for

these calculations are taken from MD snapshots (see paper II143 for details). Point charges

for MM pairs are also extracted from the MD simulations.

To identify the effects of intermolecular interactions such as charge transfer (CT), we

employ two types of calculations: 1. standard self-consistent field (SCF) calculations, and

2. “molecular interaction” calculations (SCF-MI) within the absolutely localized orbital

(ALMO) framework.100,102,103 ALMOs are constructed to utilize only atomic orbitals localized
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to individual fragments. This approach is in contrast to canonical molecular orbitals, which

may be significantly delocalized over different fragments. One can therefore employ the

ALMO results to define intermolecular charge transfer contributions and in the following

we will denote ALMO/SCF-MI results with “CT off” and conventional SCF results with

“CT on”. We note that this definition of charge transfer is by no means unique, and it has

been pointed out recently that constrained density functional theory (cDFT) predicts more

reliable numbers for CT.155 However, if applied consistently, we expect ALMO to provide

qualitatively consistent trends across different systems, and in the present case it is beneficial

to employ ALMO to allow comparison with our previous results. The decomposition results

depend on the choice of interacting fragments. For ALMO-based calculations on the above

gas-phase clusters, each individual molecule is chosen to be a separate fragment, whereas for

all other calculations we chose two fragments — CO2 as the first and all IL molecules as the

second. These choices were made on the one hand to allow comparability with our previous

results, and on the other hand to allow comparison with SAPT.

For further decomposition of interaction energies between fragments, in particular to

identify the dispersion contribution (Edisp), we use symmetry-adapted perturbation theory156

(SAPT0157,158) as implemented in Psi4.159 We employ the 6-31G(d,p) basis set to allow

comparison to our DFT results within the same basis set, as well as jun-cc-pVTZ160 for a

more accurate comparison. Both primary basis sets use the jun-cc-pVTZ density fitting basis

set during the SCF and SAPT iterations. CO2 is treated as the first fragment, and two ionic

liquid pairs are treated together as the second fragment, with no point charges included.

All other calculations employ a development version of the Q-Chem quantum chemistry

program package.93 Our DFT calculations use a numerical integration grid of (99,302) quality

or higher throughout. Numerical tests suggest that vibrational frequencies are converged to

within 0.2 cm−1 with this grid. All ALMO calculations use the Gianinetti projector161 to

ensure suppression of charge transfer. Harmonic frequencies with CT turned off calculate

the Hessian by numerical differentiation of analytical gradients to avoid solving the coupled

perturbed self-consistent field equations within the ALMO formalism. Calculations in the VQZ

basis set also employ numerical Hessians due to restrictions in the high-angular momentum

derivative code. The reported harmonic frequencies are unscaled.
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In order to reduce the number of the costliest calculations (harmonic frequencies and

SAPT0 energies), we use a sampling and weighting scheme as follows. From the 1000

statistically independent MD snapshots, a distribution of B3LYP/6-31G(d,p) harmonic

frequencies is calculated on the 0 QM/0 MM substructures. The snapshots are placed into

five bins centered around the mean harmonic ν3 frequencies, each with a width corresponding

to the standard deviation of the population of harmonic ν3 frequencies. The weight for each

bin is calculated by dividing the count for each bin by the total number of values in the

histogram so the weights sum to 1. Five snapshots are chosen randomly from each of the five

bins, giving the 25 snapshots used for calculating the dependence of harmonic frequencies

on MD box size. From this subset, the first three snapshots are chosen for the interaction

energy breakdown using ALMO-EDA and SAPT. The reported harmonic frequencies are

unweighted unless explicitly stated.

3.3.2 Anharmonic Vibrational Frequency Calculations

We calculated anharmonic vibrational frequencies for the asymmetric stretch of CO2 in each

of 1000 statistically independent snapshots sampled from the dilute CO2/[C4C1im][PF6] MD

simulations using an approach developed previously for CD2 and PO2 groups.162,163 In this

procedure, one numerically solves for the eigenvalues of the two-dimensional Schrödinger

equation with the Hamiltonian,

H =
p2

1

2µ
+
p2

2

2µ
+
p1p2 cos (θ)

mC

+ V (r1, r2) , (3.1)

using the DVR method.164,165 In Eq. (3.1), r1 and r2 are the CO bond lengths, p1and p2 are

their conjugate momenta, µ is the reduced mass of the CO bond, θ is the OCO bond angle,

and mC is the mass of the carbon atom.

Our DVR analysis does not mix the stretching and bending vibrations. The anharmonic

coupling between the stretches and bend is included classically; the quantum mechanically

calculated stretch frequencies depend parametrically on the classical θ coordinate. This is

a reasonable approach to model infrared absorption experiments because the asymmetric

stretch is far from the overtones of the bending mode. Our approach would not be appropriate
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to simulate Raman spectra of CO2, where there is a Fermi resonance between the symmetric

stretch and bend overtone. The separation of the stretch and bend could, in principle, be

generalized by extending the dimensionality of the DVR potential energy surface to include

the bend coordinates. Because the bend is doubly degenerate, the potential would become

four-dimensional, however, and the computational cost to generate the potential would be

infeasible.

The two-dimensional potential energy surface, V (r1, r2), was obtained from density

functional theory calculations performed as r1 and r2 were incremented from 0.955 to 1.45 Å

in 0.045 Å steps, which corresponds to a 12× 12 grid (Figure 16). All production calculations

were performed at the B3LYP/LP level of theory. The DVR calculation provides the

vibrational energy levels, {εn}. The ground state has energy ε0, the first excited state (the

symmetric stretch) has energy ε1, and the second excited state (the asymmetric stretch) has

energy ε2. The transition frequency for the asymmetric stretch frequency is then

ν̃AS =
ε2 − ε0

hc
. (3.2)

For CO2 isolated in the gas phase, the calculated anharmonic asymmetric stretch vibra-

tional frequency was calculated to be 2383.7 cm−1, but is 2349.1 cm−1 experimentally, giving

a ratio of 0.9855 for calculated to experimental frequencies, which was used as a scaling factor

to correct the vibrational frequencies for these calculations where noted below.

The DVR calculation also returns vibrational wave functions calculated on the same grid

of points as the potential energy surface. This information was used to find the expectation

value of the bond lengths with respect to the ground-state vibrational wave function,

〈r1,2〉 =
N∑
i=1

N∑
j=1

rij1,2 |ψij|2 (3.3)

where rij1 or rij2 is the bond length at grid point (i, j), N = 12 is the number of grid points

along each coordinate, and ψij is the value of the ground-state wave function at grid point

(i, j). Due to the anharmonicity of the potential energy surface, the expectation value of

the bond lengths is longer than the bond length obtained from geometry optimizations.

For instance, the optimized gas-phase bond length is 1.1608 Å, and the gas-phase DVR
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expectation value is 1.1647 Å. In the IL environment the vibrationally averaged CO2 bond

lengths vary from snapshot to snapshot. On average, the vibrationally averaged CO2 bond

length is 1.1648 Å in the IL. The average bond length from the classical MD simulation

snapshots is 1.1610 Å, which is almost identical to the harmonic equilibrium bond length in

the force field (1.1600 Å).

3.4 SENSITIVITY OF THE CALCULATED VIBRATIONAL SIGNATURES

TO THE UNDERLYING COMPUTATIONAL AND CHEMICAL

MODEL

In a previous publication27 we identified the predominant role of CT for the asymmetric

stretch frequency of CO2 in different ionic liquids. Here we aim to analyze whether our

previous findings also hold when more sophisticated computational and chemical models are

used. To this end, we investigate the impact of method, basis set, anharmonicity, electrostatics

of the surrounding condensed phase, and solvent disorder on absolute and relative trends in

the CO2 asymmetric stretch frequency.

3.4.1 Method and Basis Set Dependence

The simplest system for examining the quantum chemical method and basis set dependence of

geometries is CO2 in the gas phase. We first examine the sensitivity of the optimized geometry

(Tab. 10). Increasing the fraction of HF exchange present in a given density functional leads

to a decrease in bond lengths. This bond shortening can be attributed to the lack of dynamic

correlation in HF, which leads to a tendency to underestimate bond lengths. An increase in

basis set size also results in decreased bond lengths, with SP bond lengths slightly longer

than those calculated using VDZ, and LP bond lengths similar to those calculated using

VTZ.

Bond lengths for CO2 combined with a single ion pair are shown in the lower half of

Table 10. Adding the ion pair leads to coordination of the CO2 to both the cation and anion,
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Figure 16: Contour plot of a discrete variable representation (DVR) of the Born–Oppenheimer

potential energy surface of gas phase CO2. Density functional theory single point energy

calculations with the B3LYP functional and the LP basis set were performed on carbon

dioxide, incrementing each CO bond’s length in steps of 0.045 Å, from 0.955 to 1.45 Å. Below

a relative energy of 2500 cm−1, contour lines are spaced by 100 cm−1, above they are spaced

by 2500 cm−1. Mesh intersections indicate individual single point energy calculations. In

order to calculate vibrational frequencies, this potential energy surface is incorporated into

a discretized version of the Hamiltonian for the stretching modes of CO2 (Eq. 3.1), which

is then numerically diagonalized. The asymmetric stretch frequency is obtained from the

differences between the energy levels (Eq. 3.2).
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Table 10: Dependence of rO1 and rO1 + rO2 bond lengths on functional (BLYP, B3LYP, and

HF) and basis set (SP, LP, VDZ, VTZ, and VQZ) for a gas-phase cluster consisting of CO2

with a cation/anion pair. All values are in Å.

rO1 rO1 + rO2

CO2 (free) BLYP B3LYP HF BLYP B3LYP HF

SP 1.1828 1.1692 1.1433 2.3656 2.3383 2.2865

LP 1.1744 1.1608 1.1357 2.3487 2.3216 2.2715

VDZ 1.1815 1.1674 1.1406 2.3630 2.3348 2.2811

VTZ 1.1736 1.1604 1.1362 2.3472 2.3208 2.2724

VQZ 1.1720 1.1588 1.1345 2.3441 2.3176 2.2690

rO1 rO1 + rO2

CO2/[BMIM][PF6] BLYP B3LYP HF BLYP B3LYP HF

SP 1.1854 1.1723 1.1473 2.3649 2.3380 2.2871

LP 1.1775 1.1646 1.1402 2.3485 2.3217 2.2725

VDZ 1.1845 1.1710 1.1450 2.3622 2.3345 2.2819

VTZ 1.1766 1.1639 1.1402 2.3464 2.3204 2.2727

VQZ 1.1749 1.1622 1.1385 2.3434 2.3173 2.2694
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Table 11: Dependence of ν3 harmonic frequencies on functional (BLYP, B3LYP, and HF) and

basis set (SP, LP, VDZ, VTZ, and VQZ) for an optimized gas-phase cluster consisting of

CO2 and one cation/anion pair. All frequencies reported in cm−1. Reported frequencies are

unscaled.

Method

Basis BLYP B3LYP HF

SP 2348.88 2437.23 2582.87

LP 2329.31 2419.80 2571.33

VDZ 2332.11 2422.71 2577.29

VTZ 2330.23 2417.28 2562.28

VQZ 2322.26 2409.34 2553.85

leading to asymmetry in the CO2 bond lengths. The effect is small, ranging from 0.006 Å at

the BLYP/SP level to 0.008 Å at the HF/VDZ level. Trends in individual CO2 bond lengths

with varying method and basis set agree for both ion pair-coordinated CO2 and free CO2,

even with the asymmetry. Based on these results, we estimate that the CO bond lengths

presented here are converged to within 0.01 Å regarding basis set effects.

Next we investigate the impact of method and basis set on the harmonic vibrational

frequencies for the ν3 mode in a CO2–IL complex (Tab. 11). As expected, the absolute

values of harmonic frequencies depend significantly on the method, overall the frequency can

vary by more than 200 cm−1 depending on the choice of HF exchange percentage. We find

a linear and positive correlation (R2 = 0.96) with the fraction of HF exchange present in

the method for all basis sets (SI). This correlation is consistent with the tendency of HF

theory to overbind. Increasing the basis set size, on the other hand, results in decreasing the

harmonic CO2 ν3 frequency. The convergence of frequencies with basis size is rather slow,

and even from VTZ to VQZ we still observe a change of 8 to 9 cm−1. Overall, the sensitivity

of the absolute vibrational frequencies to the method and basis set choice is large compared

95



to the accuracy required to quantitatively describe the frequency shifts for CO2 solvated in

different ionic liquids, which is on the order of 10 cm−1.

It is therefore imperative to investigate how sensitive the prediction of relative trends is

with respect to the computational approach. To this end, we consider snapshots from MD

simulations (see Ref. [143] for details), which allows us to test how well different computational

approaches can predict trends in dependence of the local coordination environment around the

CO2 and the bulk solvent structure. Fig. 21 shows the CO2 ν3 harmonic frequencies calculated

for 1000 statistically uncorrelated MD snapshots (0 QM/256 MM) using various SCF-type

approaches, as compared to Møller–Plesset perturbation theory to second order (MP2) as

the least expensive wave function-based method that incorporates dispersion effects.166 The

predicted harmonic frequencies in Fig. 21 are parallel to each other for most of the frequency

range, independent of method and basis set choice. These results for relative trends in

vibrational frequencies are highly encouraging. Aside from a multiplicative scaling factor,

any of the common quantum chemical methods investigated here can qualitatively reproduce

the distribution of harmonic frequencies.

Identifying the role of different intermolecular interactions in determining the vibrational

signature of solvated CO2 is an important aspect of our previous and ongoing work.27,104,167

In our previous publication,27 we found that the CT contribution is decisive for discriminating

between the vibrational signatures of CO2 solvated in different ionic liquids. We therefore end

this section by investigating the method and basis set dependence of the CT contributions

to relative shifts in the CO2 asymmetric stretch frequency due to solvation. As discussed in

our previous publication,27 CT can enter the frequency shift at two stages: (i) during the

geometry optimization (i.e., influencing the geometries sampled by the solvated CO2), and

(ii) during the frequency calculation (i.e., by modifying the curvature of the potential energy

surface at the point where the frequency is calculated).

To quantify the sensitivity of both mechanisms to the computational approach, we

investigated the CT contributions to the calculated frequencies for both mechanisms (Table 12).

To assess the “geometry mechanism” (i), we calculated the frequency shift between geometries

optimized using standard “CT on” and ALMO/SCF-MI “CT off” calculations, respectively.

During the frequency calculation, we used the default “CT on” potential energy surface.

96



Table 12: Dependence of CT contributions to the ν3 frequency based on functional (BLYP,

B3LYP, and HF) and basis set (SP, LP, VDZ, VTZ, and VQZ). Calculations are on an

optimized gas-phase cluster of CO2 with a single cation/anion pair. All frequencies reported

in cm−1. We distinguish two mechanisms by which CT can enter the frequency: (i) a

“geometry mechanism” where CT determines the optimized geometry of the cluster, calculated

as the difference between standard harmonic frequency results at the optimized standard (“CT

on”) and ALMO (“CT off”) geometries. (ii) a “curvature mechanism” where CT enters by

modifying the force constant at the optimized geometry, calculated as the difference between

the “CT on” and “CT off” frequencies at the optimized standard (“CT on”) geometry.

(i) “Geometry Mechanism” (ii) “Curvature Mechanism”

method method

Basis BLYP B3LYP HF BLYP B3LYP HF

SP -3.16 -3.50 -3.33 -2.72 -2.86 -2.80

LP -2.80 -3.38 -3.72 -1.31 -1.25 -1.55

VDZ -2.46 -3.11 -2.93 -2.92 -2.97 -2.53

VTZ -1.90 -2.35 -1.19 -1.43 -1.33 -0.94

VQZ -2.44 N/A N/A -1.18 N/A N/A
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Our results show that the frequency shift varies by up to 0.9 cm−1 depending on the

method and by up to 1.53 cm−1 depending on the basis set (Tab. 12, top). For the “curvature

mechanism” (ii), we calculated the shift between standard “CT on” and “CT off” frequency

calculations at the same, conventionally (“CT on”) optimized geometries (Tab. 12, bottom).

Here we find variations with the method of up to 0.49 cm−1 and up to 1.86 cm−1 with the basis

set. Compared to the magnitude of the total CT frequency shifts, the basis set dependence is

not negligible.

This finding is not surprising, because the definition of CT used within the ALMO

approach is intimately linked to the locality of the basis set. However, we note that all

methods and basis sets tested here provide qualitatively similar predictions, namely a negative

frequency shift between −1.19 to −3.50 cm−1 for the “geometry mechanism” and between

−0.94 and −2.97 cm−1 for the “curvature mechanism”. For future work, it will be useful to

consider alternative definitions of CT that are less dependent on basis set locality (see e.g.

Ref. [155]).

The relative magnitudes of the “geometry” versus “curvature” mechanism results warrant

some discussion, given that we found previously that the geometry contribution dominates

the differentiation between different ionic liquids. According to the present results, the impact

of CT via the geometry is typically bigger than the curvature effect by ∼15 to 35 % (with

exception of the LP results, where the geometry effect is smaller than the curvature effect),

but on the other hand this means the curvature effect still makes up a signification portion

of the CT frequency shift. This finding may be surprising at first, but it is important to note

that our previous discussion was not about the absolute magnitude of the shifts, but about

the differentiation between different ionic liquids. In fact, the current results of −3.50 and

−2.86 cm−1 are in good agreement with those from our previous publication, −3.29 cm−1 and

−2.29 cm−1, respectively. While the absolute values of the CT shifts are largely caused by

the impact of CT on the force constants during the frequency calculation, the modification of

the geometry determines the differentiation between different ILs.
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3.4.2 Anharmonicity

We employed a grid-based anharmonic (DVR) method to assess the effects of anharmonicity

on the CO2 ν3 frequency. That is, we numerically solved for the vibrational wave function

on the discretized potential energy surface spanned by two degrees of freedom for the CO2

molecule (along the OCO axis), constraining the degrees of freedom involved in CO2 bending

modes, as discussed earlier. Solving for the fully anharmonic vibrational wave function

is important for connecting to experiment for the following reasons. First, an accurate

comparison to experiment is only possible via anharmonic calculations because experiment

probes vibrational transitions that take place on the full (anharmonic) potential energy

surface. Second, harmonic frequencies change their physical interpretation as vibrational

energy levels when calculated away from the minimum where they pick up contributions

from non-zero forces and from higher-order derivatives. For these reasons, DVR calculations

are essential for being able to calculate vibrational frequencies for different geometries (MD

snapshots) that are consistent with experimental conditions sampling dynamical structures

away from the equilibrium geometries. Consequently, the DVR approach is instrumental for

the construction of a spectroscopic map as presented in Ref. [143], as it requires sampling

various (non-equilibrium) geometries from MD simulations. In this section, we investigate the

impact of anharmonicity on the frequency and geometry (i.e., position expectation values) of

gas-phase CO2.

Our goal is to separate the impact of anharmonicity from the numerical errors arising

from using a discretized and reduced-dimensional (2D) potential energy surface. To this

end, we performed standard harmonic calculations (using analytical derivatives on the fully-

dimensional surface), harmonic calculations on the discretized reduced-dimensional grid, and

DVR calculations on the same grid (Tab. 13). All potential energy surfaces were calculated

at the B3LYP/LP level. The standard (analytical) harmonic calculation yielded a vibrational

frequency of 2420 cm−1 and an equilibrium bond length of 1.161 Å.

For the harmonic grid-based calculations, we fit an accurate analytical potential to the

grid-based potential and calculated analytical second (harmonic) derivatives. The analytical

potential used an expansion in a local mode basis and included quadratic, cubic, and quartic
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Table 13: Comparison of analytical harmonic (AH), grid-based harmonic (GH), and grid-based

anharmonic (DVR) absolute ν3 frequencies for CO2 in the gas phase (B3LYP/LP potential

energy surface). Reported frequencies are unscaled.

ν3 (cm−1) rOC (Å)

analytical harmonic (AH) 2420 1.161

grid-based harmonic (GH) 2414 1.159

grid-based anharmonic (DVR) 2384 1.165

diagonal terms, but not quartic terms in the off-diagonal (see the Supporting Information).

This approach resulted in an excellent agreement with the discrete surface (R2 = 0.9997) and

yielded a harmonic frequency of 2414 cm−1 and an equilibrium CO bond length of 1.159 Å.

This data suggests that the errors due to discretization and reduction of dimensionality are

on the order of 6 cm−1 and 0.002 Å, respectively. These results support that the grid-based

approach largely captures the correct physics. In comparison, the effects of anharmonicity are

much larger than the discretization errors: DVR predicts a vibrational frequency of 2384 cm−1

(a 36 cm−1 red shift) and an equilibrium bond length of 1.165 Å (a 0.004 Å bond lengthening).

The red shift due to anharmonicity is significantly larger than the solvation shifts observed

in our previous publication.27

As another point supporting the necessity for DVR calculations, we observe that the

standard deviation of the calculated harmonic vibrational frequency distribution of ∼100 cm−1

(Tab. 17) is about an order of magnitude larger than the experimental distribution of

∼6 to 10 cm−1. This large error arises from the fact that harmonic calculations pick up

contaminations in the frequency that grow with the displacement from the minima. As we

will show in the follow-up paper,143 the anharmonic DVR calculations result in frequency

distributions that are consistent with experiment. In summary, we conclude that the inclusion

of anharmonic effects is imperative for constructing a spectroscopic map that allows meaningful

comparison to experiment.
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Table 14: Summary of DVR data averaged from 85 MD snapshots (SP = small Pople =

6-31G(d,p), LP = large Pople = 6-311++G(d,p)) at the QM/MM level, treating CO2 plus 2

ion pairs quantum mechanically. Reported frequencies are unscaled.

PES ν3 (cm−1) rO1 (Å) rO2 (Å) rO1 + rO2 (Å)

B3LYP/SP, CT off 2399.4 1.1724 1.1729 2.3454

B3LYP/SP, CT on 2389.5 1.1728 1.1734 2.3462

B3LYP/LP, CT on 2373.9 1.1645 1.1650 2.3295

Since our previous results emphasized that CT is a decisive factor for the CO2 solvation

shift between different ionic liquids, it is important to investigate the significance of CT

in the context of anharmonic calculations. The fact that DVR calculations are agnostic

toward the level of theory used to generate the discretized potential energy surface allows

us to perform DVR calculations on standard (“CT on”) and ALMO/SCF-MI (“CT off”)

surfaces (Tab. 14). Excluding CT, we obtain a frequency of 2399.4 cm−1 and bond lengths

of 1.172 Å and 1.173 Å, respectively. The slight bond length asymmetry arises from the fact

that we averaged over 85 snapshots taken from classical MD simulations, resulting in slightly

non-symmetric solvation environments (see Ref. [143] for details). Upon turning CT on,

the vibrational frequency decreases to 2389.5 cm−1, whereas bond lengths remain almost

unchanged at 1.173 and 1.173 Å, respectively. This 9.9 cm−1 red-shift is comparable in size

to experimentally observed solvation shifts for CO2 in ionic liquids,27,168 which means that

the anharmonic results are consistent with our earlier conclusion that CT is important to

understand the vibrational signature of solvated CO2. We plan to quantify the relative effects

of CT when studying ILs other than [C4C1im][PF6] in future work.

3.4.3 Molecular Mechanism of CO2–IL Interactions

We also studied the interplay between intermolecular interaction energies and the CO2 ν3

frequency in order to (1) further elucidate the molecular mechanism governing CO2 solvation
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in ILs and to (2) inform the selection of computational approaches used to construct the

CO2–IL spectroscopic map.143

3.4.3.1 Role of Charge Transfer and Basis Set Superposition Error We previ-

ously concluded27 that the CT term, as defined in the ALMO approach, plays an important

role in determining the relative frequency shifts of ν3 in different ILs, primarily by modifying

the CO2–IL cluster optimized geometry rather than by modifying the frequency calculated

at a given geometry. To quantitatively analyze this conclusion, we compared predicted

frequencies calculated with and without the ALMO approach (i.e., with CT on and off,

respectively), at geometries again calculated with ALMO turned off and on, respectively

(Fig. 17). At the SCF geometry (i.e., geometry optimized with CT on, Fig. 17a), the predicted

frequencies for both ALMO (CT off) and standard DFT (CT on) are linearly correlated

(R2 = 0.978). At the ALMO geometry (i.e., geometry optimized with CT off, Fig. 17b),

however, neither standard DFT nor ALMO (CT off) frequency calculations correlate with

the standard frequency/geometry result (R2 = 0.116 and 0.011 respectively).

These findings quantitatively support our earlier conclusions that (a) CT during the

frequency calculation is not significant for differentiating ν3 experiencing different IL solvation

environments and that (b) CT is crucial for determining the correct geometry, because

removing CT during the geometry optimization eliminates this frequency differentiation.

However, ALMO simultaneously corrects for CT as well as the basis set superposition error

(BSSE). We therefore performed counterpoise (CP) corrected geometry optimizations and

frequency calculations to isolate artificial BSSE from physical CT effects (Fig. 18).169,170 The

frequencies calculated at CP-corrected geometries and CP-uncorrected geometries correlate

well (R2 = 0.888, Fig. 18a). This finding suggests that the impact of BSSE on the geometry

is small, at least as far as it is probed by the vibrational frequency. Consequently, we infer

that indeed CT causes the geometry change leading to differentiation of ν3 between different

IL solvation environments (and not a BSSE artifact).

The CP-corrected frequency calculations show a somewhat smaller correlation with the

CP-uncorrected frequencies (R2 = 0.629, Fig. 18b). We believe that, for the given combination

of systems and computational methodologies, the CP-uncorrected frequencies are actually
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Figure 17: Comparison of B3LYP/SP frequencies calculated (a, top) within the ALMO (CT

off) approach versus standard SCF (CT on) at the standard SCF-optimized geometry and (b,

bottom) at the ALMO-optimized geometry versus standard SCF-optimized geometry with

Hessian within the ALMO approach (red squares) versus Hessian using standard DFT (blue

triangles). The frequencies are unscaled.
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Figure 18: Comparison of B3LYP/SP frequencies (a, top) calculated at counterpoise (CP)

corrected geometries versus uncorrected geometries and (b, bottom) calculated using CP-

corrected Hessians at CP-corrected geometries versus uncorrected Hessians at uncorrected

geometries. The frequencies are unscaled.
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more accurate than the CP-corrected frequencies for a number of reasons: (1) The trends in

CP-corrected frequencies contradict our ALMO-frequency results, where ALMO predicts a

negligible impact of CT+BSSE in the frequency calculation step, whereas the CP-corrected

frequency calculations suggest a significant impact of BSSE on the relative frequencies. DFT

integration grid superposition errors can be excluded here because we did not find significant

dependence on the grid size. (2) We suspect that the CP-correction overestimates the impact

of BSSE for the given systems and computational approaches, because a detailed analysis of

intermolecular interaction energies shows that, with the CP correction applied, one obtains

unphysical, repulsive CT energies (see the SI): ALMO-CT should always be non-repulsive,

because a system would not undergo CT if it were energetically unfavorable. However, after

applying a CP correction to the ALMO delocalization energy, one obtains repulsive CT

energies for several MD snapshots. We conclude that the CP correction overestimates the

amount of BSSE for the given system. Similar conclusions have been drawn before, for

example arguing171 that the CP overcorrects for BSSE, or that BSSE is actually beneficial

because it reduces basis set incompleteness.172

These fundamental problems in the CP-corrected frequencies manifest themselves in

two findings (Table 21): (1) overestimation of the solvatochromic shifts for ν3 in different

ILs, and (2) incorrect ordering of the CP-corrected frequencies compared with experiment.

The CP-corrected frequencies overestimate the range of solvatochromic shifts for ν3 by a

factor of 5.9× when compared with experiment (38.1 cm−1 versus 6.5 cm−1), whereas the

CP-uncorrected shifts give agree much more closely (8.4 cm−1). Furthermore, the ordering of

the CP-corrected frequencies is incorrect. For example, the lowest experimental ν3 frequency

is found in [C4C1im][SCN] (2336 cm−1), while the CP-corrected frequencies predict the lowest

result in [C4C1im][DCA]. The CP-uncorrected frequencies correctly predict [SCN]– as causing

the largest shift. Furthermore, anions that cause identical experimental frequencies ([Tf2N]–

and [BF4]– : 2341.7 cm−1) differ by 9.6 cm−1 in the CP-corrected prediction (and only by

1.1 cm−1 in the uncorrected calculation).

105



3.4.4 Energetics of CO2–IL Interactions and Dependence on Decomposition

Approach

To understand how the choice of decomposition method affects the predicted solute–solvent

interactions, we decomposed the CO2–IL interaction energies of 15 representative MD snap-

shots using both ALMO and symmetry adapted perturbation theory (SAPT) calculations

(Tab. 15). Because of computational cost, the SAPT calculations were performed within

the uncorrelated monomer approximation (SAPT0). While individual terms in the ALMO

and SAPT0 energies do not have direct correspondence, we combined contributions into

roughly comparable terms describing (a) frozen-fragment interactions (electrostatics plus

Pauli repulsion, Efrz), (b) polarization plus Pauli repulsion (Epol), (c) charge transfer plus

Pauli repulsion (ECT), (d) dispersion plus Pauli repulsion (Edisp), and (e) the total interaction

energy (Eint).

Our results show that Efrz between CO2 and the IL is, on average, repulsive. ALMO pre-

dicts repulsion between +0.08 and 0.50 kcal mol−1, whereas SAPT0 predicts somewhat larger

repulsion between 0.59 and 1.47 kcal mol−1. The attractive interaction of −2.45 kcal mol−1 at

the SAPT0/SP MCBS level is likely due to an underestimation of inter-monomer overlap

effects, which would result in a smaller contribution from Pauli repulsion that is recovered at

the SAPT0/SP DCBS level. The finding of an overall repulsive Efrz is not surprising given

that CO2 is a neutral, non-polar molecule, which should have little electrostatic attraction to

the surrounding ions when polarization or charge delocalization are excluded.

The polarization energies contribute, as expected, to the binding. ALMO predicts

polarization energies between −1.24 and −1.30 kcal mol−1, whereas SAPT0 predicts somewhat

more attractive energies between −1.91 and −2.47 kcal mol−1.

The largest qualitative differences between predictions from ALMO and SAPT0 are

found for charge transfer and dispersion energies. The ALMO-HF CT (−0.10 kcal mol−1) is

comparable in magnitude to the SAPT0 CT (−0.28 kcal mol−1), whereas the ALMO-DFT

CT is significantly larger (−1.18 kcal mol−1). Overestimation of CT effects is expected for

DFT-based ALMO because of self-interaction error, leading to spurious delocalization of

electrons. The dispersion component does not exist in the SCF-based ALMO approach used
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Table 15: Comparison of ALMO- versus SAPT0-decomposed interaction energies averaged

over 15 representative molecular dynamics snapshots. ALMO calculations were performed

within the SP basis to allow comparison to results from Ref. [27]. For SAPT0, we report both

monomer-centered basis set (MCBS) and dimer-centered basis set (DCBS) results. Energies

are reported in kcal mol−1.

SAPT0/SP SAPT0/jun-cc-pVTZ

component ALMO-DFT/SP ALMO-HF/SP MCBS DCBS MCBS DCBS

E
(10)
el — — -5.295 -7.018 -6.097 -6.154

E
(10)
exch — — 2.845 7.611 7.106 7.622

Efrz 0.500 0.082 -2.450 0.593 1.009 1.468

E
(20)
ind — — -1.218 -3.636 -2.593 -3.916

E
(20)
ind-exch — — 0.009 2.147 0.921 2.041

δHF — — -0.839 -0.421 -0.801 -0.507

Epol -1.241 -1.303 -2.049 -1.910 -2.473 -2.382

ECT -1.177 -0.102 -0.280 -0.203

E
(20)
disp — — -4.193 -5.197 -7.323 -8.084

E
(20)
disp-exch — — 0.058 0.483 0.393 0.671

Edisp — — -4.135 -4.714 -6.930 -7.413

Eint -1.918 -1.323 -8.634 -6.031 -8.394 -8.326
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here and can therefore not be compared.

We note, importantly, that SAPT0 predicts the dispersion contribution of −4.14 to

−7.41 kcal mol−1 to be the major binding contribution for the CO2–IL interactions. In

contrast, ALMO-DFT predicts polarization and CT to be the dominant and equally important

contributions to the overall binding, and ALMO-HF predicts polarization to be the largest

contribution. Overall, the ALMO total binding energies range from −1.32 to −1.92 kcal mol−1,

whereas SAPT0 binding energies within the MCBS and DCBS are −6.03 and −8.63 kcal mol−1,

respectively. Given the magnitude of the dispersion interaction, it is not surprising that

SAPT0 predicts a much more attractive total binding energy.

The three approaches used here disagree on the dominating mechanism of binding:

ALMO-HF favors polarization, ALMO-DFT polarization in combination with CT, and

SAPT0 predicts dispersion as the most important binding component. Interestingly, though,

individual energy contributions that exist both in ALMO and SAPT0 agree qualitatively. We

expect that the SAPT0/jun-cc-pVTZ DCBS numbers are the most accurate of the results

reported here because these results are free of SIE (unlike ALMO-DFT) and explicitly account

for inter-monomer correlation (dispersion) effects.

The conclusion changes when comparing relative trends in binding energies between

different MD snapshots. Comparing the correlation coefficients for linear regression analysis

between individual energy components and the total energies (Tab. 16a), all of the methods

predict that the frozen monomer electrostatics plus Pauli repulsion component (Efrz) is the

single most important contribution to trends in the total energy (R2 = 0.870−−0.944). This

finding implies that, although ALMO and SAPT0 disagree on the identity of the largest

absolute energy component, they agree that the Efrz is most important to capture differential

effects between different MD snapshots. This finding is somewhat surprising, given that Efrz

is a rather small energy contribution on an absolute scale, whereas dispersion makes up the

largest contribution to the total binding energy. However, this trend shows that dispersion

varies less than the frozen-fragment interaction across different points on the potential energy

surface.

These findings have at least two important implications. Since ALMO-DFT, ALMO-

HF and SAPT0 qualitatively agreed on the Efrz component, all of these methods should
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Table 16: Correlation coefficients (R2) between different solute-solvent interaction energy

components as calculated at the ALMO-DFT (B3LYP), ALMO-HF, and SAPT0 level within

the SP basis. (a) Comparison between individual components and the total interaction energy

(Etot) calculated for each methodology. (b) Correlation coefficients between contributions

to the CO2–IL interaction energy calculated via ALMO as compared to the corresponding

SAPT0 energy terms. Reported SAPT0 results are within the dimer-centered basis set

(DCBS), except for the charge transfer component, which is calculated as the difference

between monomer- and dimer-centered basis set results for the induction energy.

(a) Component ALMO-DFT ALMO-HF SAPT0

Efrz 0.887 0.944 0.8701

Epol 0.170 0.087 0.073

ECT 0.225 0.270 0.093

Edisp — — 0.150

1 Eel: 0.602, Eexch: 0.073

(b) Component (ALMO — SAPT0) ALMO-DFT ALMO-HF

Efrz — Eel + Eexch 0.989 0.993

Epol — Eind + Eind-exch + δHF 0.887 0.927

ECT — ECT 0.720 0.383

Etot — Etot 0.913 0.927
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correctly describe relative trends in the energetics across different MD snapshots. That is,

despite self-interaction error and the lack of dispersion interactions, DFT is expected to

correctly capture energetic trends across different snapshots along the potential energy surface.

Furthermore, any spectroscopic map (i.e. a map between CO2 geometry and vibrational

frequency) must contain an electrostatic term to capture these leading-order relative effects.

ALMO and SAPT approaches predict the CT and dispersion terms to be the second most

important for relative frequency trends, respectively (R2 = 0.225−−0.270 for ALMO-CT

and R2 = 0.150 for SAPT-dispersion), which are expected to show a different geometry

dependence. Consequently, adding a Lennard-Jones type potential to the spectroscopic map

may allow implicit collection of these non-electrostatic terms.

The good correlation between ALMO and SAPT0 electrostatic plus Pauli repulsion

terms is also demonstrated by a term-by-term comparison (Tab. 16b): ALMO-DFT has a

correlation coefficient of 0.989 with SAPT0, and ALMO-HF has one of 0.993. Polarization

energies also correlate well (R2 = 0.887 and 0.927, respectively). The lowest agreement is

found for the charge transfer term (R2 = 0.720 and 0.383, respectively). This low degree

of correlation is somewhat surprising, since the formal definitions of charge transfer are

very similar between ALMO and SAPT0 — both involve the difference between energetics

calculated for a monomer-centered and a dimer-centered basis set. Furthermore, the absolute

magnitude of the ALMO-HF CT term agrees better with SAPT0, but it shows less correlation

across different MD snapshots. The ALMO-DFT CT term, on the other hand, is much larger

than in SAPT0, but seems to correlate better with trends across MD snapshots, although one

would expect the ALMO-DFT results to be less reliable due to self-interaction error. This

large difference between ALMO-DFT and SAPT0 CT energies remains even with the use of

range-separated density functionals, but we note that adding a dispersion correction leads to

a good agreement between DFT-D and SAPT0 (Table 19).

Interestingly, the ALMO total binding energies correlate well with SAPT0 binding energies

(R2 = 0.913 and 0.927, respectively), even though ALMO binding energies are generally much

smaller than SAPT0 energies. This good correlation can be understood by considering that

the major discrepancy between ALMO and SAPT0 binding energies comes from the dispersion

term, which, despite its large magnitude, is relatively constant across MD snapshots and
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therefore does not correlate strongly with the total binding energy.

In summary, despite shortcomings in capturing the nuanced physics of intermolecular

CO2–IL binding, DFT- and even HF-based approaches are expected to produce qualitatively

correct trends, if the goal is to compare binding energies across different MD snapshots.

Consequently, we expect that DFT will capture qualitative trends in the potential energy

landscape, and can be safely used to generate DVR potential energy surfaces for DVR used

to construct and validate a spectroscopic map for CO2 in ionic liquids.

3.4.5 Electrostatic Interactions with the Extended Solvent Phase

Our previous publication27 used a rather crude gas-phase cluster model for the solvated CO2.

Here we investigate the effect of adding a more extended solvation environment by varying

the MM region (Fig. 19). Calculations were performed at the B3LYP/SP level of theory,

with the ionic liquid molecules represented as point charges. Each data point is an average

from 25 snapshots, which were selected using the sampling scheme previously described.

As expected, the largest frequency shifts occur when the first few solvent ion pairs are

added to the solvated CO2. The frequency is converged to within 1 cm−1 at a solvent layer

size of ∼32 ion pairs, which corresponds to a solvent droplet of radius ∼14 Å. This relatively

fast convergence (from the perspective that the solvent molecules are charged) is attributed

to electrostatic screening due to the solvent.

We observe qualitatively the same trends and convergence patterns independent of whether

a pure point charge embedding is used or whether one or two ion pairs are included at the QM

level. This finding indicates that solvation boxes including ∼32 or more ion pairs are sufficient

to converge electrostatic effects on the vibrational frequency independent of how many solvent

molecules are treated at the QM level. However, we notice that there is a significant shift

in frequencies depending on the size of the QM region. The fact that increasing the solvent

box (treated as classical point charges) does not cause the differently sized QM regions to

reconcile indicates that the underlying effects are quantum mechanical (as opposed to purely

electrostatic) in nature. It is therefore indicated to further investigate the dependence of the

frequency on the size of the QM region.
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Figure 19: Dependence of harmonic ν3 frequencies (unscaled) on the solvent box size

(B3LYP/SP potential energy surface).
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3.4.6 Quantum Mechanical Interactions with the Solvation Shell

To test for convergence of the asymmetric frequency with respect to the size of the QM

region, we selected a subset of 10 snapshots from the MD trajectories and carried out

QM/MM harmonic frequency calculations with increasing numbers of anion–cation pairs

treated quantum mechanically (Fig. 20). These snapshots were carefully selected to sample

the entire range of local vibrational frequencies encountered in the MD trajectories and

were averaged by weighting with the appropriate probabilities for each frequency bin. We

therefore expect the following results to be representative of large parts of the entire potential

energy surface sampled. We tested several functions to fit the mean frequency ν (i.e., the

weighted average over all sampled frequencies) versus the QM region size, and found that an

exponential decay function yields the best overall fit,

ν (n) = a exp (−kn) + c

where n is the size of the QM region (measured in number of ion pairs) and a, k, and c are

constants. The quality of the resulting fit was excellent (R2 = 0.99), which allowed us to

extrapolate the average frequency to infinite QM region size with high confidence. This

extrapolated frequency then allows us to assess the accuracy (convergence) of QM/MM

calculations with differently sized QM regions.

We determine the converged frequency to be c = 2388.8± 1.5 cm−1 (Fig. 20). This data

indicates that the 6 QM calculations are nearly numerically converged (ν (6) − ν (∞) =

0.3 cm−1). To test the qualitative accuracy of the calculations using smaller QM regions,

we examined the correlation between frequencies calculated with n = 0− 5 QM pairs and

6 QM pairs for each snapshot (for details, see Supporting Information). We find that the

n = 0 − 1 results do not correlate well with the n = 6 benchmark (R2 = 0.41 and 0.66,

respectively). The n = 2 calculations yield an acceptable correlation coefficient of R2 = 0.82

at a ∼9-fold reduced computational cost compared to n = 6 (∼0.8 versus ∼7 CPU hours

for a single point calculation). The n = 3 − 4 calculations show even better correlations

with R2 = 0.87−−0.96, respectively, but the computational cost increase to ∼3 CPU hours

does not appear justified. In summary, the n = 2 calculations reproduce trends in the CO2
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Figure 20: Dependence of DVR ν3 mean frequency (ν) on the number of solvent ion pairs

treated quantum mechanically (nQM). Mean frequencies were calculated from N = 10

representative MD snapshots using a B3LYP/SP potential energy surface. Error bars represent

the standard deviation of the mean (SDx = σx/
√
N). The data were fitted to an exponential

decay (νQM = A exp (−knQM)+νconverged), with weights of 1/SD2
x (R2 = 0.99). The resulting

estimate for the fully converged frequency at this level of theory is 2388.8± 1.5 cm−1.
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asymmetric stretch frequency reasonably well and offer a good balance between accuracy and

cost for our DVR calculations.

3.4.7 Predicted Solvation Shift

A central objective of this publication is to establish a computational approach that will

allow us to develop a reliable spectroscopic map for the prediction and interpretation of

2D-IR spectroscopic signatures for CO2 solvated in ionic liquids. While the spectroscopic

map and its validation are the subject of the second publication in this series, we can use

the predicted solvation shift (i.e., the frequency shift between gas-phase CO2 and dissolved

in [C4C1im][PF6]) as a first indicator for the quality of the computational and chemical

model. We note that absolute frequencies are very hard to reproduce with all but the

most sophisticated quantum chemical approaches, which are prohibitively expensive for the

present application. We therefore scale the calculated frequencies by a factor of 0.9855 so

the DVR/B3LYP/LP gas-phase result of 2384 cm−1 (Tab. 13) agrees with the experiment

(2349 cm−1). At the proposed DVR/B3LYP/LP level (within a QM/MM approach with

n = 2 ion pairs in the QM region and sampling from 85 MD snapshots for the solvated CO2),

the scaled frequency of the solvated CO2 is 2339 cm−1 (Tab. 14). The predicted solvation

frequency shift is then −10 cm−1, which is in good agreement with the experimental solvation

shift of −6.8 cm−1. We note that these results were calculated from only 85 MD snapshots and

are therefore probably not statistically converged. We will present an in-depth validation of

convergence with respect to number of MD steps in the subsequent paper. The already rather

nice agreement makes us optimistic that an accurate spectroscopic map can be developed

using the computational approach proposed here.

3.5 CONCLUSIONS

This work provides fundamental insights into the molecular origins of the vibrational frequency

shifts of CO2 in ionic liquids. First, we validated the computational methodology used
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for predicting vibrational frequencies — as defined by basis set, wave function or density

functional method, size of the QM region, and the role of anharmonicity. Second, we analyzed

the physical origins of CO2–IL binding and its interplay with the vibrational frequency

shifts using ALMO and SAPT energy decomposition schemes. Our calculations provide

insights that are perhaps quite surprising, but definitely nuanced. In a previous publication

we concluded that, unlike for other vibrational chromophores, electrostatics alone poorly

predict the vibrational frequency shifts for CO2 in different ILs. From ALMO-EDA we

concluded that this frequency shift between different ionic liquids is actually not driven

by the electrostatics, but by charge transfer from the anion. This work confirms that our

previous results are qualitatively independent from the choices of basis set, ab initio method,

and treatment of anharmonicity, confirming the validity of our previous results within the

ALMO framework. For different points on the potential energy surface of a single ionic liquid

(here: [C4C1im][PF6]), however, the energetics are dominated by electrostatics plus Pauli

repulsion. This frequency shift mechanism is surprising, firstly because it is fundamentally

different from the mechanism that drives the CO2 frequency shift between different ILs, and

secondly because electrostatics plus Pauli repulsion is a relatively small energetic contribution

compared to, e.g., dispersion interactions, which one would therefore expect to dominate

the frequency shifts. An important practical consequence of this finding is that density

functional theory is expected to be sufficiently accurate for constructing potential energy

surfaces for CO2 in [C4C1im][PF6], as needed for the DVR calculations to construct a reliable

spectroscopic map.

Similarly, we established appropriate computational and chemical models for treating the

extended solvent environment. Our calculations show that a QM/MM treatment with CO2

plus 2 cation–anion pairs treated quantum mechanically yields vibrational frequencies that

are sufficiently close to the converged QM results. Furthermore, adding around 32 ion pairs

to the MM solvent box leads to vibrational frequencies converged to within 1 cm−1.

In summary, this work elucidated the molecular binding mechanism of CO2 in the

[C4C1im][PF6] ionic liquid and its interplay with the CO2 asymmetric stretch frequency ν3,

and established computational protocols for the reliable construction of spectroscopic maps

for simulating ultrafast 2D-IR data of CO2 solvated in ILs. For future publications, it will be
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interesting to employ similar energy decomposition schemes to analyze the energetics and

spectral signatures of other chromophores such as SCN– , N3
– , amides, and phosphates.
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3.7 SUPPORTING INFORMATION

Statistics on calculated harmonic frequencies across different MD snapshots, bin sizes and

weights for 15-25 representative structures sampled from MD snapshots, method and basis

set dependence, QM/MM box size convergence, quartic fit of the DVR potential energy

surface, and effects of BSSE and CP on harmonic frequencies of CO2 asymmetric stretch

across different ionic liquids.
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Table 17: Statistics for dependence of CO2 asymmetric stretch frequencies on quantum chemical method and basis set dependence

on 1000 MD snapshots, 0 QM/256 MM. All frequencies in cm−1.

method basis set min max range mean median
standard deviation

(population)
standard deviation

(sample)

BLYP 6-31G(d,p) 2179.26 2915.23 735.97 2551.84 2552.16 112.92 112.86

TPSS 6-31G(d,p) 2247.16 2967.72 720.56 2611.68 2612.06 110.39 110.33

B3LYP 6-31G(d,p) 2141.31 2892.22 750.91 2522.55 2522.96 115.09 115.03

ωB97X-D 6-31G(d,p) 2138.86 2894.15 755.29 2523.38 2523.93 114.14 114.08

HF 6-31G(d,p) 1990.89 2814.31 823.42 2415.50 2416.41 125.46 125.40

RI-MP2 6-31G(d,p) 2264.73 2964.82 700.09 2615.07 2615.27 107.68 107.62

BLYP cc-pVTZ 2083.99 2802.55 718.56 2448.66 2449.17 110.15 110.10

TPSS cc-pVTZ 2164.75 2871.70 706.95 2523.22 2523.74 108.27 108.22

B3LYP cc-pVTZ 2047.30 2781.22 733.92 2420.89 2421.51 112.37 112.31

ωB97X-D cc-pVTZ 2048.35 2787.24 738.89 2425.06 2425.52 111.67 111.61

HF cc-pVTZ 1908.93 2714.98 806.05 2325.54 2326.49 122.60 122.54

RI-MP2 cc-pVTZ 2165.68 2842.63 676.95 2504.51 2504.63 104.39 104.34
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Table 18: Weights and bin counts for each quantum chemical method and basis set, 0 QM/256 MM. Weights from B3LYP/6-31(d,p)

are used for selecting the structures for box size dependence and SAPT calculations.

method basis set bin edges histogram weights sum (histogram)

BLYP 6-31G(d,p)
[2269.54 2382.46 2495.38
2608.30 2721.23 2834.13]

[59 245 398 224 64]
[0.05959596 0.24747475 0.40202020
0.22626263 0.06464646]

990

TPSS 6-31G(d,p)
[2335.71 2446.10 2556.49
2666.88 2777.27 2887n.66]

[59 244 400 223 64]
[0.05959596 0.24646465 0.40404040
0.22525253 0.06464646]

990

B3LYP 6-31G(d,p)
[2234.82 2349.91 2465.00
2580.09 2695.18 2810.27]

[59 245 398 224 64]
[0.05959596 0.24747475 0.40202020
0.22626263 0.06464646]

990

ωB97X-D 6-31G(d,p)
[2238.04 2352.18 2466.31
2580.45 2694.59 2808.72]

[57 241 401 225 63]
[0.05775076 0.24417427 0.40628166
0.22796353 0.06382979]

987

HF 6-31G(d,p)
[2101.85 2227.31 2352.77
2478.23 2603.69 2729.15]

[61 240 399 228 63]
[0.06155399 0.24217962 0.40262361
0.23007064 0.06357215]

991

RI-MP2 6-31G(d,p)
[2345.88 2453.56 2561.23
2668.91 2776.58 2884.26]

[59 246 398 223 64]
[0.05959596 0.24848485 0.40202020
0.22525253 0.06464646]

990

BLYP cc-pVTZ
[2173.29 2283.44 2393.59
2503.74 2613.89 2724.04]

[59 245 398 224 64]
[0.05959596 0.24747475 0.40202020
0.22626263 0.06464646]

990

TPSS cc-pVTZ
[2252.54 2360.81 2469.09
2577.36 2685.64 2793.91]

[59 245 396 226 64]
[0.05959596 0.24747475 0.40000000
0.22828283 0.06464646]

990

B3LYP cc-pVTZ
[2139.97 2252.34 2364.70
2477.07 2589.44 2701.80]

[59 244 399 224 64]
[0.05959596 0.24646465 0.40303030
0.22626263 0.06464646]

990

ωB97X-D cc-pVTZ
[2145.89 2257.56 2369.22
2480.89 2592.56 2704.22]

[57 243 399 225 63]
[0.05775076 0.24620061 0.40425532
0.22796353 0.06382979]

987

HF cc-pVTZ
[2019.04 2141.64 2264.24
2386.84 2509.44 2632.04]

[61 240 401 226 63]
[0.06155399 0.24217962 0.40464178
0.22805247 0.06357215]

991

RI-MP2 cc-pVTZ
[2243.53 2347.92 2452.32
2556.71 2661.11 2765.50]

[59 247 394 226 64]
[0.05959596 0.24949495 0.39797980
0.22828283 0.06464646]

990
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3.7.1 Method and Basis Set Dependence of Harmonic Frequencies

It is imperative to investigate how sensitive the prediction of relative trends is with respect to

the computational approach. To this end, we consider snapshots from MD simulations (see

Ref. [143] for details), which allow us to test how well different computational approaches can

predict trends in dependence of the local coordination environment around the CO2 and the

bulk solvent structure. Fig. 21 shows the CO2 ν3 harmonic frequencies calculated for 1000

statistically uncorrelated MD snapshots (0 QM/256 MM) using various SCF-type approaches,

as compared to Møller-Plesset perturbation theory to second order (MP2) as the least

expensive wave function-based method that incorporates dispersion effects.166 The predicted

harmonic frequencies in Fig. 21 are parallel to each other for most of the frequency range,

independent of method and basis set choice. In fact, there is almost complete overlap between

the B3LYP/SP and ωB97X-D/SP distributions, and to a lesser degree for B3LYP/VTZ and

ωB97X-D/VTZ. There is minor crossing of curves in two instances, 1. TPSS/VTZ with

ωB97X-D/SP, and 2. HF/SP with both B3LYP/VTZ and ωB97X-D/VTZ, but nevertheless

the conservation of qualitative trends seems excellent. The ordering of calculated frequencies

is, from smallest to largest, HF, B3LYP, ωB97X-D, BLYP, TPSS, and MP2, using the SP

basis set. Within the VTZ basis, the ordering of MP2 and TPSS is interchanged. As expected,

the MP2 results are most sensitive to the basis set size, as wave-function based correlation

methods require larger basis sets for convergence compared to self-consistent field approaches

(HF and DFT). The VTZ basis set predicts frequency distributions that are red-shifted

compared to the SP basis set, in agreement with the trends observed from Table 11.

These results for relative trends in vibrational frequencies are highly encouraging. Aside

from a multiplicative scaling factor, any of the common quantum chemical methods in-

vestigated here can qualitatively reproduce the distribution of harmonic frequencies. The

similarity in performance between B3LYP and ωB97X-D is somewhat surprising, as the

former is a global hybrid with a fixed fraction of HF exchange over all interelectronic distances,

and ωB97X-D is a range-separated functional with a variable fraction of HF exchange. An

explanation of this observation will be provided together with the SAPT results.

To confirm that the good agreement in relative trends is not an artifact of the reordering,
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Figure 21: Harmonic ν3 frequencies (unscaled) for different methods and basis sets, ordered

from lowest to highest frequency according to MP2/VTZ (0 QM/256 MM). The TPSS meta-

GGA175 and the ωB97X-D176 hybrid GGA density functionals are included as representatives

of more recent functionals. ωB97X-D is both a range-separated functional, with a minimum

22% HF exchange at re = 0, increasing smoothly to 100% as re → ∞, and it includes an

empirical dispersion correction. To aid in recognizing trends, we have ordered the structures

by increasing MP2/VTZ frequency. MP2 calculations use the resolution of the identity (RI)

approximation177–179 and the cc-pVQZ-RI fitting basis set.180
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CO2 ν3 harmonic frequencies for the first 50 of 1000 MD snapshots are shown in Fig. 22 (0

QM/256 MM, VTZ basis set). Although there are large absolute jumps between snapshots

due to the 50 ps time step between them, the ordering between quantum chemical methods

does not change, and the gaps between each method are constant.

3.7.2 Potential Energy Surface Fitting

We fitted the discrete variable representation (DVR) of the Born-Oppenheimer potential

energy surface of gas phase CO2 to a vibrational potential expanded in the local modes basis

using a nonlinear least squares method. The potential energy expansion was truncated at

fourth order, and off-diagonal fourth order terms (e.g. c3[(x− x0)2(y − y0)2]) were omitted,

using the following form:

V (x, y) =a1(x− x0)2 + a2(y − y0)2 + a3(x− x0)(y − y0)

+ b1(x− x0)3 + b2(y − y0)3 + b3[(x− x0)2(y − y0) + (x− x0)(y − y0)2]

+ c1(x− x0)4 + c2(y − y0)4

The resulting fit to the data was excellent (R2 = 0.9997). The parameters are given in

Table 24.

The force constants and internal coordinates were calculated (the F matrix) and multiplied

by the appropriate mass weighting (G matrix). The product was diagonalized to obtain

eigenvalues and eigenvectors, which give the normal modes and frequencies of the symmetric

stretch (ν1 = 1377 cm−1) and antisymmetric stretch (ν3 = 2414 cm−1).

3.7.3 ν3 Frequency Convergence with Increasing QM Size

To test the qualitative accuracy of the calculations using smaller QM regions, we examined

the correlation between frequencies calculated with n = 0− 5 QM pairs and 6 QM pairs for

each snapshot. The data were fitted using a linear regression analysis.
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Figure 22: Harmonic ν3 frequencies (unscaled) for the first 50 (out of 1000) snapshots

calculated with different methods and the cc-pVTZ basis set (0 QM/256 MM).
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Table 19: Effect of empirical and self-consistent dispersion corrections on ALMO-decomposed

interaction energies with comparison to SAPT0. Values are weighted averages over the same

15 snapshots as in Table 15. Energies are reported in kcal mol−1.

method Efrz Epol ECT Edisp Etot

HF/6-31G(d,p) 0.082 -1.303 -0.102 — -1.323

B3LYP/6-31G(d,p) 0.500 -1.241 -1.177 — -1.918

B3LYP-D2/6-31G(d,p) 0.500 -1.241 -1.177 -6.269 -8.187

B3LYP-D3/6-31G(d,p) 0.500 -1.241 -1.177 -6.464 -8.382

ωB97X-D/6-31G(d,p) -3.343 -1.245 -1.168 — -5.757

ωB97X-D/cc-pVTZ -3.114 -1.617 -1.209 — -5.941

ωB97M-V/6-31G(d,p) -5.494 -1.256 -0.523 — -7.274

ωB97M-V/cc-pVTZ -5.149 -1.649 -0.889 — -7.687

SAPT0/6-31G(d,p)/MCBS -2.450 -2.049
-0.280

-4.135 -8.634

SAPT0/6-31G(d,p)/DCBS 0.593 -1.910 -4.714 -6.031

SAPT0/jun-cc-pVTZ/MCBS 1.009 -2.473
-0.203

-6.930 -8.394

SAPT0/jun-cc-pVTZ/DCBS 1.469 -2.382 -7.413 -8.326
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Table 20: Effect of allowing or disallowing charge transfer using the ALMO approximation

when applied during geometry optimization and/or the harmonic frequency calculation. on

the CO2 ν3 harmonic frequency. Clusters are with 1 CO2, 1 MMIM cation, and 1 anion. All

frequencies are in cm−1 and unscaled. All calculations were performed using B3LYP/SP with

a (100,302) grid.

Anion full
ALMO geom

SCF Hessian

ALMO geom

ALMO Hessian

SCF geom

ALMO Hessian

[BF4]– 2434.70 2438.56 2441.62 2437.69

[DCA]– 2430.90 2439.10 2442.59 2434.75

[PF6]– 2437.50 2438.47 2441.03 2440.03

[SCN]– 2430.30 2438.78 2441.37 2433.14

[TFA]– 2429.80 2438.39 2441.06 2432.93

[Tf2N]– 2437.70 2438.76 2440.85 2439.46

[TfO]– 2433.90 2439.37 2442.54 2436.75
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Table 21: Effect of counterpoise correction on CO2 ν3 harmonic frequency when applied

during geometry optimization and/or the harmonic frequency calculation. Clusters are with

1 CO2, 1 MMIM cation, and 1 anion. All frequencies are in cm−1 and unscaled. The first

column is from our previous paper. CP-corrected calculations were performed using Cuby as

a driver for Turbomole 6.6 at the B3LYP/SP level with numerical integration grid 7.

CP-correction for geometry? / CP-correction for frequencies?

anion no/no yes/no no/yes yes/yes

TFA 2429.31 2428.05 2457.238 2440.879

SCN (S-coordinated) 2430.24 2427.91 2445.642 2438.003

DCA 2430.47 2426.60 2436.113 2431.383

SCN (N-coordinated) 2431.64 2427.95 2432.691 2437.876

TfO 2431.91 2428.95 2441.921 2443.665

BF4 2434.69 2431.48 2454.767 2450.890

Tf2N 2435.80 2431.49 2451.851 2441.309

PF6 2437.74 2432.58 2479.806 2469.473
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Table 22: Counterpoise correction analysis for [C1C1im][BF4]. All calculations use B3LYP/SP.

The CP geometry is from Cuby driving Turbomole. The no CP geometry is from Q-Chem.

(100,302) is the grid used in all calculations for the 1st paper.27

Geometry? Hessian? Program XC grid Frequency (cm−1)

CP CP Cuby (Turbomole) 7 2450.89

CP CP Cuby (Turbomole) m5 2450.871

CP no CP Cuby (Turbomole) 7 2435.634

CP no CP Turbomole 7 2434.72 1

CP no CP Q-Chem (75,302) 2431.55

CP no CP Q-Chem (100,302) 2431.48 2

CP no CP Q-Chem (99,590) 2431.77 3

no CP no CP Q-Chem (100,302) 2434.69

no CP CP Cuby (Turbomole) 7 2454.767

1 Difference Hessian no CP/CP: 2450.89− 2434.72 = 16.17

2 (100, 302)− (75, 302) = −0.07

3 (99, 590)− (75, 302) = 0.22
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Table 23: Counterpoise correction analysis for [C1C1im][PF6]. All calculations use B3LYP/SP.

The CP geometry is from Cuby driving Turbomole. The no CP geometry is from Q-Chem.

(100,302) is the grid used in all calculations for the 1st paper.27

Geometry? Hessian? Program XC grid Frequency (cm−1)

CP CP Cuby (Turbomole) 7 2469.473

CP no CP Cuby (Turbomole) 7 2436.846

CP no CP Turbomole 7 2435.93 1

CP no CP Q-Chem (75,302) 2432.81

CP no CP Q-Chem (100,302) 2432.58 2

CP no CP Q-Chem (99,590) 2432.99 3

no CP no CP Q-Chem (100,302) 2437.74

no CP CP Cuby (Turbomole) 7 2479.806

1 Difference Hessian no CP/CP: 2469.473− 2435.93 = 33.543

2 (100, 302)− (75, 302) = −0.23

3 (99, 590)− (75, 302) = 0.18
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Table 24: Best fit parameters for DVR representation of the gas phase CO2 potential energy

surface.

coefficient name value (with 95% confidence bound)

a1 1.8834± 0.0178Eh Å
−2

a2 1.8834± 0.0178Eh Å
−2

a3 0.3305± 0.0087Eh Å
−2

b1 −5.0013± 0.1124Eh Å
−3

b2 −5.0005± 0.1123Eh Å
−3

b3 −0.2205± 0.0330Eh Å
−3

c1 6.3508± 0.4031Eh Å
−4

c2 6.3485± 0.4031Eh Å
−4

x0 1.1594± 0.0009 Å

y0 1.1594± 0.0009 Å
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Table 25: Fitting results for correlation of QM/MM harmonic frequencies of 10 MD snapshots,

with increasing numbers of anion-cation pairs (nQM) treated quantum mechanically.

nQM(1) nQM(2) fitting results

0 6

Estimate Standard Error

Intercept -20.915 1024.4

Slope 1.0056 0.42745

Root Mean Squared Error: 5.52

R-squared: 0.409, Adjusted R-Squared: 0.335

1 6

Estimate Standard Error

Intercept 60.512 593.34

Slope 0.97282 0.24788

Root Mean Squared Error: 4.2

R-squared: 0.658, Adjusted R-Squared: 0.615

2 6

Estimate Standard Error

Intercept 98.181 384

Slope 0.95775 0.16053

Root Mean Squared Error: 3.08

R-squared: 0.816, Adjusted R-Squared: 0.794

3 6

Estimate Standard Error

Intercept 173.5 306.89

Slope 0.92667 0.12835

Root Mean Squared Error: 2.62

R-squared: 0.867, Adjusted R-Squared: 0.85

4 6

Estimate Standard Error

Intercept 2.1463 172.16

Slope 0.99837 0.072008

Root Mean Squared Error: 1.44

R-squared: 0.96, Adjusted R-Squared: 0.955

5 6

Estimate Standard Error

Intercept -26.98 85.681

Slope 1.0111 0.035855

Root Mean Squared Error: 0.717

R-squared: 0.99, Adjusted R-Squared: 0.989
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Figure 23: Correlation plots for QM/MM harmonic frequencies of 10 MD snapshots, with

increasing numbers of anion-cation pairs treated quantum mechanically.
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4.0 MODELING CARBON DIOXIDE VIBRATIONAL FREQUENCIES IN

IONIC LIQUIDS: II. SPECTROSCOPIC MAP

The text in this chapter has been adapted from Daly, C. A.; Berquist, E. J.; Brinzer, T.;

Garrett-Roe, S.; Lambrecht, D. S.; Corcelli, S. A. Modeling Carbon Dioxide Vibrational Fre-

quencies in Ionic Liquids: II. Spectroscopic Map. J. Phys. Chem. B 2016, 120, 12633–12642,

DOI: 10.1021/acs.jpcb.6b09509, and is copyright the American Chemical Society. The

author’s contribution to the work included performing the symmetry-adapted perturbation

theory (SAPT) calculations and decomposing each empirical spectroscopic map term in terms

of quantum mechanical phenomena.

4.1 SUMMARY

The primary challenge for connecting molecular dynamics (MD) simulations to linear and

two-dimensional infrared (2D-IR) measurements is the calculation of the vibrational frequency

for the chromophore of interest. Computing the vibrational frequency at each time step of

the simulation with a quantum mechanical method like density functional theory (DFT) is

generally prohibitively expensive. One approach to circumnavigate this problem is the use

of spectroscopic maps. Spectroscopic maps are empirical relationships that correlate the

frequency of interest to properties of the surrounding solvent that are readily accessible in

the MD simulation. Here, we develop a spectroscopic map for the asymmetric stretch of

CO2 in the 1-butyl-3-methylimidazolium hexafluorophosphate ([C4C1im][PF6]) ionic liquid

(IL). DFT is used to compute the vibrational frequency of 500 statistically independent

CO2-[C4C1im][PF6] clusters extracted from an MD simulation. When the map was tested on
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a 500 different CO2-[C4C1im][PF6] clusters, the correlation coefficient between the benchmark

frequencies and the predicted frequencies was R = 0.94 and the root mean squared error

was 2.7 cm−1. The calculated distribution of frequencies also agrees well with experiment.

The spectroscopic map required information about the CO2 angle, the electrostatics of the

surrounding solvent, and the Lennard-Jones interaction between the CO2 and the IL. The

contribution of each term in the map was investigated with symmetry-adapted perturbation

theory (SAPT) calculations.

4.2 INTRODUCTION

Ionic liquids (ILs) have attracted tremendous attention because of their properties as environ-

mentally friendly alternatives to volatile organic solvents, and their applications involving the

production, storage, and efficient utilization of energy.35,36,181–183 ILs exhibit unique physical

properties relative to conventional liquids in terms of vapor pressure, viscosity, electrical and

thermal conductivity, solubility of polar and nonpolar molecules, and melting point.36,184–187

Moreover, these properties can be tuned to specific applications by chemically modifying

the molecules that comprise the liquid. For example, by functionalizing the molecules of

an IL to react with CO2, improved design for preferentially separating CO2 from gas mix-

tures was achieved.39–41,187,188 Thus, ILs offer a promising new direction for the removal of

environmentally harmful CO2 from postcombustion flue gas.

It is essential that the fundamental structure and dynamics of ILs be understood to aid

in the design of new ILs for unique applications. Unlike conventional solvents, ILs exhibit

heterogeneous structure and dynamics that have profound implications for their physical

properties. Two-dimensional infrared (2D-IR) spectroscopy offers several unique advantages

for interrogating the structure and dynamics of liquids because of its exquisite time and

spatial resolution.67,69,77,189 The spatial resolution results from the size of suitably chosen

vibrational chromophores. The vibrational frequencies of these reporters depend sensitively

on their local environment.77,127,144,162,168,190 As that local environment evolves, so too will the

vibrational frequency of the probe — a process called spectral diffusion. 2D-IR spectroscopy
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measures these frequency fluctuation dynamics, which relate back to the intrinsic dynamics

of the surroundings of the vibrational chromophore.

Recently, Brinzer et al. have demonstrated that the asymmetric stretch of CO2 (ν3 is an

excellent vibrational reporter of its local environment in ILs.27 In particular, these experiments

have established (1) that the asymmetric stretch of CO2 exhibits a significant solvatochromic

shift with respect to the choice of anion in a series of imidazolium-based ILs, (2) that the

CO2 vibrational population lifetime is sufficiently long to measure 2D-IR spectra on a 100 ps

timescale, and (3) that the longest spectral diffusion timescale correlates empirically with

the viscosity of the IL.27 Fayer and coworkers have also studied CO2 in ILs with 2D-IR

spectroscopy, including detailed measurements and modeling of the rotational dynamics

of CO2 and how this motion results in reorientational-induced spectral diffusion (RISD).

Through analysis of polarization-selective 2D-IR measurements, the RISD contribution to

the overall spectral diffusion process was quantified.119,191 The RISD analysis assumed that

shifts in the CO2 vibrational frequency were governed by a second-order Stark effect.

Among the great successes of multidimensional vibrational spectroscopy is revealing the

dynamics of hydrogen-bond network rearrangements in liquid water.128,192–204 However, these

profound insights from experiment were only possible in conjunction with a robust theoretical

effort.176,190,194–196,205–223 Much of that theoretical effort focused on the development and

application of empirical relationships connecting the instantaneous vibrational frequency of

interest to structural properties — usually the electrostatics — of the surrounding condensed-

phase environment.127,133,206 Such relationships have come to be known as “spectroscopic

maps.” With a spectroscopic map in hand, quantities such as the linear IR absorption

spectrum, 2D-IR spectra, and the frequency fluctuation correlation function that quantifies

spectral diffusion, can be readily calculated in a conventional molecular dynamics (MD)

simulation.133,134,211 With the emergence of 2D-IR measurements on CO2 in ILs, there is

ample motivation to develop a spectroscopic map for the asymmetric stretch of CO2 in an IL.

In paper I,135 we developed and validated a robust quantum mechanics/molecular me-

chanics (QM/MM) protocol for calculating anharmonic CO2 vibrational frequencies in the

1-butyl-3-methylimidazolium hexafluorophosphate ([C4C1im][PF6]) IL. Here, we have used the

protocol to calculate the asymmetric stretch vibrational frequency of CO2 in 1000 statistically
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independent snapshots extracted from an MD simulation. For each frequency calculation,

the CO2 molecule and two pairs of IL molecules are treated quantum mechanically with

density functional theory (DFT). The rest of the solvent is included in the calculation as point

charges that polarize the quantum mechanical region. The two-dimensional potential energy

surface for the CO2 stretches is constructed on a 12× 12 grid and the resulting vibrational

Schrödinger equation is solved using a discrete variable representation (DVR) method. Once

the vibrational frequencies were calculated, 500 of these snapshots were used to parameterize

the spectroscopic map and the other 500 snapshots were used to quantify the accuracy of the

spectroscopic map.

Previous spectroscopic maps have primarily been based on electrostatics,168,207,224–228 but

our initial quantum chemistry investigations27,135 indicate that the antisymmetric stretch

of CO2 is sensitive to other physical effects, including charge transfer, dispersion, exchange

repulsion, and electrostatics. Accordingly, we found that a suitably accurate spectroscopic

map could not be constructed using only electrostatic properties of the IL environment.

Instead, we had to include both electrostatic and Lennard-Jones (LJ) terms in the map.

B lasiak and Cho previously found that including dispersion interactions resulted in an

improved spectroscopic map for the amide I vibration of N -methylacetamide.229 In addition,

since the CO2 molecule was modeled as flexible in solution, the map also has a dependence

on the CO2 bend angle whose contribution was investigated in detail.

Spectroscopic maps are inherently empirical and can, in principle, utilize any variable

that is sufficiently correlated with the vibrational frequencies, even if that variable is not the

cause of the vibrational frequency shifts. Therefore, the dual goals of this work are to develop

and validate a spectroscopic map, and to understand how the causal variables manifest

themselves in the map. To achieve the first goal, the average frequency and distribution of

vibrational frequencies were compared to inhomogeneous vibrational spectra extracted from

2D-IR measurements. To achieve the second goal a selection of snapshots were analyzed with

symmetry adapted perturbation theory (SAPT)156–158 calculations.

In addition to the intermolecular interactions, CO2 has an important intramolecular

degree of freedom, the bending mode. Our previous work27 has implicated the bending mode

in the experimentally observed solvatochromic shifts. At room temperature, the bending
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mode has an energy of approximately 3kBT , placing it in an intermediate regime where it

is not clear if a flexible (classical) or a rigid (quantum) model should be more appropriate.

To better understand the role of CO2 flexibility in the spectroscopic map, we calculated

histograms of vibrational frequencies for a rigid (bond angle = 180◦) and a flexible model

of CO2 in the [C4C1im][PF6] IL. We also examined a third possibility where the CO2 is

modeled as flexible in the MD simulation, but the bend angle is relaxed prior to applying the

spectroscopic map.

The paper is organized as follows. In Section 4.3 the details of the MD simulations

and the anharmonic vibrational frequency calculations are described. In Section 4.4, the

spectroscopic map is constructed. In Section 4.5, the spectroscopic map is validated by

comparison to experiment. In Section 4.6, the contributions of the electrostatic, exchange

repulsion, and dispersive interactions in the spectroscopic map are analyzed with ALMO and

SAPT calculations. Finally, in Section 4.7 we provide some concluding remarks.

4.3 COMPUTATIONAL METHODS

Molecular dynamics (MD) simulations were performed using the large-scale atomic/molec-

ular massively parallel simulator (LAMMPS)230 with a time step of 2 fs. 256 ion pairs of

[C4C1im][PF6] and one molecule of CO2 were simulated at 300 K in a cubic box with periodic

boundary conditions. Previous studies have confirmed that 256 ion pairs is a sufficiently

large simulation box to mitigate finite-size effects.231 The original atomic coordinates and

box size (45 Å) were generated from a previous study of [C4C1im][PF6] containing a single

water solute, which had been subjected to a rigorous equilibration protocol.134 The water was

replaced with a CO2 solute, and was subjected to the following equilibration procedure: (1)

1 ns in the NVT ensemble at 300 K, (2) heating to 600 K over 1 ns, (3) cooling to 300 K over

1 ns, (4) 1 ns in the NVT ensemble at 300 K, and (5) 1 ns in the NVE ensemble. Production

run trajectories were collected in the NVE ensemble. Energy conservation was excellent, with

fits to the energy and temperature over 10 ns revealing slopes of 3.3× 10−5 kcal mol−1 ps−1

and 9.8× 10−6 K ps−1, respectively. All molecules were modeled as fully flexible except for
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bonds containing hydrogen, which were held fixed at their equilibrium lengths using the

SHAKE algorithm.232,233 Also, in certain cases (see below), the CO2 bond lengths and angle

were held fixed at their equilibrium values using the LAMMPS rigid integrator.230 The force

fields for [C4C1im][PF6] were the same as in our previous simulation studies involving this

IL.134 Briefly, the bends, bonds, dihedrals, and Lennard-Jones parameters for [C4C1im]+ are

from the generalized Amber force field (GAFF),234,235 and partial charges were obtained

from DFT calculations.236 The [PF6]– force field parameters were from the work of Liu et

al.237 Charges on the ions were scaled by 0.84 to empirically account for charge transfer and

polarization effects in the IL.238,239 CO2 was modeled using the TraPPE force field, with addi-

tional terms developed by Perez-Blanco and Maginn for flexible bond lengths and angle.240,241

Lennard-Jones interactions were truncated at 15 Å and the long-ranged electrostatics were

computed using particle-mesh Ewald summation with a 15 Å real space cutoff.242

In order to create a spectroscopic map, 1000 statistically independent snapshots separated

by 50 ps were collected from a pair of 50 ns simulations, one with a fully flexible CO2 and a

second with a fully rigid CO2. For each snapshot, the Born-Oppenheimer potential energy

surface (PES) for CO2 stretching modes was obtained from single point energy calculations

performed as the CO bond lengths were stretched from 0.955 to 1.45 Å in 0.045 Å steps.

During these calculations, the nearest two pairs of ions by center of mass were included

quantum mechanically, and the remaining ions within 20 Å were included as their point

charges from the MD force field. The resulting PES was included in a discretized construction

of the Hamiltonian for CO stretches, which was then diagonalized, producing the asymmetric

stretch frequency. More details about this method can be found in paper 1 of this series.

Least squares multiple linear regression was used to empirically fit the electric field due to

the anions and cations along the CO bonds and the Lennard-Jones potential energy on the

CO2 carbon and oxygens to the asymmetric stretch of CO2 for 500 of the flexible snapshots,

and the accuracy of the resulting fit was tested using the remaining 500 snapshots. 500 of

the rigid snapshots were used as a secondary test set. This is described in more detail in

section 4.5. In certain cases, the CO2 angle from the flexible simulation was relaxed holding

all other degrees-of-freedom and the CO2 center of mass fixed prior to vibrational frequency

calculations for further analysis. This is discussed further in Section 4.6.2.
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4.4 SPECTROSCOPIC MAP FOR CO2 VIBRATIONS

Empirical spectroscopic maps relate the instantaneous vibrational frequency of an IR reporter

to properties of its surroundings that can be readily accessed in MD simulations.134,211,243

Once a spectroscopic map has been parameterized, it can be used to calculate IR absorption

spectra, 2D-IR spectra, and frequency fluctuation time correlation functions from a MD

simulation. For the asymmetric stretch of CO2 in [C4C1im][PF6], we were unable to obtain

a suitably accurate spectroscopic map from electrostatics alone. Instead, we needed to

include information about the CO2 bend angle, as well as the Lennard-Jones (LJ) interactions

between CO2 and the surrounding IL. The spectroscopic map has the following form

ωa = ωg + ∆ωθ + ∆ωsolvent (4.1)

where ωa is the predicted CO2 asymmetric stretch vibrational frequency, ωg is the experimental

gas phase frequency (2349.1 cm−1), ∆ωθ is the dependence of the frequency on the OCO bend

angle, and ∆ωsolvent captures the change in the vibrational frequency due to interactions with

the IL solvent. Figure 24 shows the dependence of the CO2 asymmetric stretch vibrational

frequency on the OCO angle, θ, calculated for CO2 isolated in the gas-phase. The calculated

data are fit exquisitely well (R2 = 0.999) by the single-parameter function

∆ωθ = a(1 + cos θ) (4.2)

where a = −1160.9 cm−1.

Figure 24 also shows the vibrational frequency of 500 statistically independent CO2

in [C4C1im][PF6] snapshots. The vibrational frequencies were calculated using the DVR

approach described in paper 1 in this series. In these calculations, the CO2 and the closest two

pairs of [C4C1im][PF6] molecules — determined using the distance between the center-of-mass

of the IL molecule and the CO2 carbon atom — were treated quantum mechanically at the

B3LYP/6-311++G(d,p) level of theory. Any IL molecule whose center-of-mass was within

20 Å was modeled using its molecular mechanics partial atomic charges, which then polarize

the quantum mechanical region. IL molecules were added to the molecular mechanics region

in pairs to maintain charge neutrality. The overall trend in the vibrational frequencies
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roughly follows the angle dependence in the gas phase, but there is significant scatter due to

interactions with the IL.

A map for the solvent effects on the asymmetric CO2 vibrational frequency was constructed

assuming the following form,

∆ωsolvent = b1E
Cation
O + b2E

Anion
O + c1UO + c2UC (4.3)

where E and U represent contributions from the electric field and Lennard-Jones (LJ)

interactions with the solvent, respectively. The subscript, C or O, indicates whether the

interaction is computed at the location of the CO2 central carbon or at the oxygen atoms.

For EO and UO, the value used in Eq. (4.3) is the average for the two CO2 oxygen sites. The

LJ interaction is computed using the expression,

U =
∑
j

εj

[(
σj
rj

)12

−
(
σj
rj

)6
]

(4.4)

where the sum is over all atoms in the surrounding liquid, εj and σj are the LJ parameters for

the atom, and rj is the distance to the atom. The electric fields are calculated with respect

to the oxygen atoms of CO2 and are projected along the relevant CO bond,

E = r̂CO ·
∑
j

qj r̂j
r2
j

(4.5)

where the sum is over all relevant atoms in in the surrounding liquid (i.e. those associated

with the cations for ECation
O and those associated with the anions for EAnion

O ), qj is the partial

atomic charge, rj is the distance to the charge, r̂j is a unit-vector directed toward the site of

the charge, and r̂CO is a unit vector from the carbon atom of CO2 to the relevant oxygen

atom. Long range electrostatics are corrected using the damped shifted force method.244

The four parameters, b1, b2, c1, and c2, in Eq. (4.3) were determined empirically by

applying multiple linear regression using the 500 calculated frequencies in the training set

(Table 26). The quality of the fit was evaluated using the 500 different frequencies contained

in the test set (Figure 25). The root-mean-square (RMS) deviation between the test set

frequencies and those predicted by Eq. (4.3) was 2.7 cm−1, and the value of correlation

coefficient for the fit was R = 0.94. By both metrics, the quality of the spectroscopic map for
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Figure 24: Transition dipole moment integral, µ01, of the asymmetric stretch of CO2 in 1000

CO2-[C4C1im][PF6] clusters versus the asymmetric stretch vibrational frequency, ωa, where

µg01 is the transition dipole moment integral of the asymmetric stretch of CO2 in the gas-phase

(blue circles). A linear fit of the data (black line) has a slope close to zero indicating that the

Condon approximation is reasonable for the asymmetric stretch of CO2 in the [C4C1im][PF6]

IL.
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Table 26: Parameters of the spectroscopic map for the CO2 asymmetric stretch frequency in

[C4C1im][PF6]. This map predicts the CO2 with a regression coefficient R = 0.94 and a root

mean squared error of 2.7 cm−1. The average shift, 〈∆ω〉, and standard deviation, σ(∆ω),

are reported for each term in the map.

〈∆ω〉 (cm−1) σ(∆ω) (cm−1)

ωg 2349.1 cm−1 0.0 0.0

a −1160.9 cm−1 -6.6 7.0

b1 64.4 cm−1 a.u.−1 -0.1 0.4

b2 93.2 cm−1 a.u.−1 -1.8 0.7

c1 4.70 cm−1 kcal−1 mol -9.5 2.0

c2 −3.55 cm−1 kcal−1 mol 7.3 2.1

predicting the CO2 asymmetric stretch vibrational frequencies in the [C4C1im][PF6] IL is as

good or better than previously published maps for other vibrational reporters in conventional

solvents. Additionally, when 500 rigid CO2 snapshots are used as the test set, the same level

of accuracy is obtained.

The Condon approximation, that the magnitude of the transition dipole moment is

independent of the vibrational frequency of a mode, fails for some solutes that interact

in a strong local way with their environment. The most important example is the OH

stretch of liquid water. The hydrogen bonds in water polarize the OH bond, increasing the

oscillator strength on the red side of the vibrational band, which has a significant effect on

the IR absorption line shape.225,226,245 Similar to the hydrogen bonding of water, the strong

local interactions of CO2 with the ionic liquid anion could, in principle, cause the Condon

approximation to fail. However, we find that the Condon approximation for the main band

is adequate (Figure 24). We calculated the transition dipole moment integral, µ01, of the

asymmetric stretch of CO2 in 1000 CO2-[C4C1im][PF6] clusters. The details of the transition

dipole moment integral calculations are provided in the Supporting Information (SI). A plot
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Figure 25: Relationship between CO2 asymmetric stretch frequencies in the [C4C1im][PF6]

IL calculated using the DVR method and those calculated using the spectroscopic map for

the 500 test set clusters (black circles). The red line represents a perfect correlation and the

95% prediction interval is indicated with green lines. The spectroscopic map has a regression

coefficient of R = 0.94 and a root means squared error of 2.7 cm−1.

142



of µ01 scaled by µg01, the transition dipole moment integral of the asymmetric stretch of CO2

in the gas-phase, versus the asymmetric stretch vibrational frequency, ωa, has a slope close to

zero. This confirms that it is reasonable to regard the transition dipole as a constant factor

that scales the intensity of linear and non-linear spectra but does not modify their shapes.

As a result, we do not treat the environmental dependence of the transition dipole moment

in our spectroscopic map; we need only treat the vibrational frequencies.

4.5 PHYSICAL INTERPRETATION OF THE SPECTROSCOPIC MAP

The average contribution to the CO2 asymmetric stretch vibrational frequency from each of

the map components is listed in Table 27. This data demonstrates that the Lennard-Jones

potential energy is an important predictor of the vibrational frequency of CO2 solvated in

[C4C1im][PF6], while the electrostatic potential plays a secondary role. This contrasts many

prior spectroscopic maps where solvatochromic frequency shifts were based purely on the

electrostatics of the environment.211,224,246 This finding is perhaps surprising at first, because

one might expect electrostatics to dominate the interactions of a solute with charged solvent

molecules; however, one has to consider that (1) CO2 is not dipolar or charged, and as such

will not interact with uniform electric fields very strongly, and (2) the ionic liquid, particularly

the [C4C1im]+ butyl tails, have large domains where the dominant interactions are dispersive.

These points make it conceivable that van der Waals effects dominate the CO2-IL interaction.

To further unravel the origin of the impact of CO2-IL interactions on the vibrational

signature of CO2, we use the fact that the LJ contributions to the spectroscopic map can be

further decomposed. In particular, we separate the LJ term into its repulsive (∼ r−12) and

attractive (∼ r−6) contributions (Table 27). We find that the attractive and repulsive LJ

terms contribute −7.0 cm−1 and +4.9 cm−1, respectively, to the overall LJ vibrational shift

of −2.1 cm−1. The large contribution from the repulsive LJ term is yet another surprise. To

aid in identifying the physical origins of the large repulsive LJ contribution, we performed

symmetry adapted perturbation theory (SAPT)158 calculations that decompose the total

interaction energy into physically meaningful components. This analysis should be contrasted
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Table 27: Decomposition of the average LJ contribution to the spectroscopic map for the CO2

asymmetric stretch frequency in [C4C1im][PF6] into attractive and repulsive components.

LJ Component Site 〈∆ω〉 (cm−1)

Attractive O -21.7

C 14.8

Sum -6.9

Repulsive O 12.3

C -7.4

Sum 4.9

Total O -9.4

C 7.3

Sum -2.1

with the empirical spectroscopic map, where a good fit implies correlation but not necessarily

causation. Our SAPT calculations yield energy contributions, but it should nevertheless be

possible to estimate the relative importance of different interactions for vibrational frequencies.

The SAPT decomposition supports the previous discussion in that electrostatic interactions

(electrostatics, induction) plus the exchange (exchange repulsion, exchange-induction) roughly

cancel (total −1.3 kcal mol−1), whereas dispersive interactions dominate the interaction (total

−4.7 kcal mol−1 from dispersion plus exchange-dispersion). However, the SAPT data also

reveals that exchange-dispersion (the repulsive dispersion part) is over an order of magnitude

smaller than the attractive dispersion contribution (10.1% of the total dispersion interaction).

This result has to be contrasted with the ˜40% contribution that the repulsive LJ potential

makes to the vibrations. Since the repulsive LJ contribution is the dominant repulsive

interaction incorporated in our model, the SAPT results suggest that the repulsive part of the

LJ potential fits an agglomerate of exchange (Pauli) repulsion stemming from charge overlap

(74.7% of the repulsive interactions), exchange induction (20.7%) plus exchange dispersion
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(4.6%).

It is likely that LJ components will be an important component of a spectroscopic map

for any neutral and nonpolar solute, or any solvent where dispersive interactions, quantum

effects (Pauli exchange, for instance), or higher order electrostatic interactions are particularly

important. In our case, it seems logical that a higher potential at the carbon would increase

the optimal length of the CO bonds, thus decreasing the local mode and normal mode

frequencies. Meanwhile, at the oxygen, a larger potential would generally shorten the bond,

increasing the frequency. A similar finding was observed by Brinzer et al.27 However, these

components only allow the CO2 vibration to respond to local effects — the electric field

components allow it to respond to longer-range interactions. As in prior works for different

solvents and solutes, the coefficients for the two electric field components are different from

each other, in this case by a substantial margin. It has been previously established that CO2

interacts with the anions more strongly than with the cations in an ionic liquid.39,42,101,247–249

This is reflected in the magnitude of the coefficients related to the two components, and in

their average frequency contribution (Tables 26 and 27). In particular, CO2 is a Lewis acid

and should generally interact with negatively charged moieties differently from positively

charged ones.

4.6 VALIDATION

4.6.1 Experimental Frequency Distribution

In order to compare our calculated distributions of CO2 vibrational frequencies with ex-

periment, we must account for the effects that broaden or narrow the IR absorption line

shape beyond the underlying distribution of frequencies. The finite population lifetime of the

asymmetric stretch vibration, reorientation of the CO2 molecule, and a variety of other effects

can broaden the absorption spectrum. On the other hand, fast dynamics can narrow the

absorption spectrum (i.e. motional narrowing). A faithful comparison to experiment requires

a deconvolution of these contributions to estimate the range of instantaneous frequencies
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experienced by CO2.

2D-IR spectra contain sufficient information to recover the distribution of frequencies,

which would be difficult to extract from the linear IR absorption spectrum alone.27 Within

the Kubo multi-exponential ansatz, the width of the frequency distribution is determined by

the frequency fluctuation correlation function

〈δω(t)δω(0)〉 =
N∑
i

∆2
i exp

(
− t

τi

)
(4.6)

where ∆2
i are the variances of frequency modulations, and τi are the timescales for the

respective frequency fluctuations. The width of the frequency distribution is the sum of

squares of the different broadening processes

〈
δω2
〉

=
N∑
i

∆2
i (4.7)

The contribution of homogeneous processes whose frequency fluctuations are too fast to be

resolved (specifically when ∆iτi � 1) can be approximated as δ(t)∆2
HτH , which results in a

frequency correlation function:

〈δω(t)δω(0)〉 = δ(t)∆2
HτH +

N−1∑
i

∆2
i exp

(
− t

τi

)
=
δ(t)

T ∗2
+

N−1∑
i

∆2
i exp

(
− t

τi

)
(4.8)

where T ∗2 ≡ (∆2
HτH)

−1
is the pure dephasing time and δ(t) is the Dirac delta function. The

pure dephasing time depends on the variance of the fast frequency fluctuations, ∆2
H , and

the correlation time for fast motions, τH , and the two parameters cannot be independently

determined. Analyzing the change in shape of the 2D-IR spectra as a function of the

waiting time can directly determine the magnitude of frequency modulations related to the

sum of exponential decays,
∑N−1

i ∆2
i , in Eq. (4.8). For CO2 in [C4C1im][PF6] this sum is

approximately 2 cm−1.27

Determining the magnitude of frequency modulations that give rise to the first term in

Eq. (4.8) is more complicated. The pure dephasing time (T ∗2 ) is only one contributor to the

experimentally determined dephasing time (T2), which also depends on the population (T1),

and reorientational (Tor) motions of the molecule,

1

T2

=
1

T ∗2
+

1

2T1

+
1

3Tor
(4.9)
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The experimental dephasing time, T2, of the asymmetric stretch of CO2 in the [C4C1im][PF6]

IL is 3.3 ps.27 Since the experiment was performed in an all-parallel polarization, we cannot

unambiguously determine the population and orientation relaxation times. We can estimate

them, however, based on the rate of signal decay and the orientational correlation functions

determined in a similar ionic liquid.119,191 Estimates of T1 = 20 ps and Tor = 10 ps, suggest

that vast majority contribution to T2 for CO2 in [C4C1im][PF6] comes from pure dephasing.

Population relaxation and orientational relaxation have a minor effect on the total dephasing

time. We estimate a pure dephasing time of T ∗2 = 4 ps.

Finally, the variance of the frequency fluctuations, ∆2
H , can be limited to a range by

physical constraints on the values of τH . The lower limit on τH is governed by the inertial

motions of CO2 and its ionic liquid solvent shells. The timescale of the inertial response in

liquid water is in the sub-60 fs range, while that of acetonitrile is 70 fs.194,250,251 Using 70 fs

as a lower limit for τH places an upper limit on ∆H of 9.7 cm−1. Fits to analytical response

functions suggests that ∆H τH ≈ 0.2 is a reasonable estimate of the dynamics that can be

resolved using global fitting of the experimental data, which gives an upper limit on τH of

200 fs, with a corresponding lower limit on ∆H of 6 cm−1. Our estimate for the homogeneous

width is thus, 6 < ∆H < 10 cm−1. Combining the broadening due to fast and slow motions,

the experimentally estimated total frequency width for CO2 in [C4C1im][PF6] is between

6.3 to 10.2 cm−1 (Figure 26).

4.6.2 Calculated Frequency Distributions

Figure 27a shows the distribution of CO2 asymmetric stretch vibrational frequencies computed

using the spectroscopic map for 1000 statistically independent snapshots collected from an

MD simulation of flexible CO2 in [C4C1im][PF6]. These are the same snapshots that were used

to parametrize and validate the spectroscopic map in Section 4.4. The distribution is peaked

at approximately 2344 cm−1 and its standard deviation is 7.4 cm−1. Both of these values are

in reasonable agreement with experiment (2342.5 cm−1 and 6.3 to 10.2 cm−1). Qualitatively,

the distribution exhibits a significant asymmetry with a mean frequency of 2339.9 cm−1 that

is about 4 cm−1 to the red of the peak frequency. The experimental IR absorption line shape,
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Figure 26: Homogeneous instantaneous linewidth as a function of correlation time for fast

motions, with T ∗2 = 4 ps, with upper and lower bounds estimated for ∆̃H . The upper bound,

based on an estimated fastest allowed inertial response timescale, and the lower bound,

based on a threshold value of ∆HτH , are indicated by dashed horizontal lines. The resulting

instantaneous frequency range for homogeneous motions is between 6 to 10 cm−1.
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Figure 27: Histograms of the CO2 asymmetric stretch vibrational frequency, ωa, for 1000

CO2-[C4C1im][PF6] clusters. (a) Clusters extracted from an MD simulation of flexible CO2

in the [C4C1im][PF6] IL. (b) Clusters extracted from an MD simulation of flexible CO2 in

the [C4C1im][PF6] IL, but where the CO2 geometry is relaxed. (c) Clusters extracted from

an MD simulation of rigid CO2 in the [C4C1im][PF6] IL.
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however, does not show signs of such asymmetry in the underlying distribution of frequencies.

The source of the asymmetry in the distribution of frequencies in Figure 27a is the

contribution to the spectroscopic map from the CO2 bend angle, Eq. (4.2). This is illustrated

in Figure 27c, where we have calculated the distribution of CO2 asymmetric stretch vibrational

frequencies for 1000 statistically independent snapshots collected from an MD simulation

of rigid CO2 in [C4C1im][PF6]. Since the CO2 molecule has an angle of 180◦ in each of

the snapshots, the contribution to the calculated vibrational frequency from the CO2 bend

angle is zero. The resulting distribution is correctly symmetric with a mean frequency of

2346.5 cm−1 and a standard deviation of 2.3 cm−1. The calculated distribution is centered

4 cm−1 to the blue of the experimental distribution, and it is narrower than the lower estimate

of the experimental distribution by 4 cm−1.

The results in Figure 27a and 27c represent two extremes — one where the CO2 bend

is treated classically (Figure 27a) and another where the CO2 bend is effectively neglected

(Figure 27c). When the CO2 bend is classical, it is assumed that the CO2 asymmetric stretch

vibrational frequency depends on the instantaneous value of the bend angle, Figure 28 and

Eq. (4.2). However, the asymmetric distribution suggests that this approach is incorrect.

In fact, a simple thought experiment reinforces the problems associated with regarding the

CO2 bend as a classical variable. Consider a non-rotating CO2 molecule isolated in the gas

phase. If all of the vibrations of the CO2 molecule are quantum mechanical, the distribution

of each of the four vibrations is a delta function. However, if the bend is classical with a

kinetic energy commensurate with room temperature, the distribution of asymmetric stretch

vibrational frequencies will incorrectly have a finite width. One solution to this conundrum is

to adopt a fully quantum mechanical treatment of the CO2 vibrations. This would require the

construction of a four-dimensional potential energy surface for each of the 1000 benchmark

CO2-[C4C1im][PF6] clusters, which is computationally intractable.

An alternate strategy is to treat the influence of the CO2 bend on the asymmetric

stretch vibrational frequency using first-order perturbation theory. Instead of utilizing the

instantaneous CO2 angle in Eq. (4.2), θ, we would instead use the average angle, 〈θ〉 =

〈ϕ0 | θ |ϕ0〉, where ϕ0(θ) is the ground vibrational wavefunction for the CO2 bend. Returning

to the CO2 in the gas-phase thought experiment, the average angle is constant and equal to

150



Figure 28: Relationship between the CO2 asymmetric stretch vibrational frequency and the

OCO angle, θOCO, for CO2 in the gas-phase (green circles) and in the [C4C1im][PF6] IL (black

circles). The gas-phase data are perfectly correlated with 1 + cos θOCO). The vibrational

frequencies for CO2 in the [C4C1im][PF6] solvent also show this relationship, but additional

solvation effects on the frequency are also present.
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180◦. Thus, there would correctly be no contribution to CO2 asymmetric stretch vibrational

frequency. In contrast, the instantaneous average bend angle will fluctuate away from 180◦

in an IL because of asymmetric solvation by the solvent. Of course, we do not have access to

vibrational wavefunction for the CO2 bend for the benchmark CO2-[C4C1im][PF6] clusters,

nor when we wanted to utilize the spectroscopic map to analyze an MD simulation. An

additional approximation is necessary. If we were to regard the CO2 bend as harmonic,

then the average angle is given by the instantaneous distortion of the CO2 geometry by

the environment. For the benchmark clusters, the geometry distortion can be determined

by optimizing the geometry of the CO2 molecule using the classical MD force field and a

conjugate gradient minimization while holding fixed both the center-of-mass of the CO2, as

well as the configuration of the IL solvent. The map is then used to calculate the vibrational

frequency for the relaxed snapshot.

Figure 27b shows the distribution of CO2 asymmetric stretch vibrational frequencies

computed using the spectroscopic map for 1000 statistically independent snapshots collected

from an MD simulation of flexible CO2 in [C4C1im][PF6] where the CO2 bend angle has been

relaxed. On average, the relaxed bend angle is 178.4◦, and the distribution of frequencies

is nearly symmetric with a mean frequency of 2343.8 cm−1 and a standard deviation of

2.4 cm−1. The mean frequency is in excellent agreement with experiment and differs by only

1.3 cm−1. Note that this agreement implies that the spectroscopic map is able to accurately

capture the solvatochromic shift of the CO2 asymmetric stretch vibrational frequency from

the gas-phase to the [C4C1im][PF6] IL. The width of the distribution is too narrow compared

to the estimated width of the experimental distribution of 6.3 to 10.2 cm−1. There are several

possible sources for the discrepancy in the width of the distribution, including inaccuracies

associated with the approximate perturbative approach for the effect of the bend on the

asymmetric stretch frequency. However, the overall agreement with experiment is encouraging.

It is instructive to compare the distributions in Figures 27b (relaxed CO2) and 27c (rigid

CO2). Both distributions are symmetric and they have nearly the same widths: 2.4 cm−1

and 2.3 cm−1, respectively. Thus, within the approximate perturbative approach, the bend

has very little influence on the width of the distribution. The averages of the distributions

differ more significantly: 2343.8 cm−1 and 2346.5 cm−1, respectively. The bend shifts the
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distribution to the red and into better agreement with experiment. Overall, the role of the

bend is relatively minor resulting in a redshift of the distribution by 2.7 cm−1. These results

suggest several options for how the bend is treated when the map is applied in conjunction

with MD simulations to understand the spectroscopy and spectral diffusion dynamics of CO2

in the [C4C1im][PF6] IL in Paper III252 in this series. The simplest strategy is to hold the

CO2 rigid and to shift the calculated frequencies by 2.7 cm−1. In essence, this would just

account for the average effect of the CO2 angle on the asymmetric stretch frequencies. A more

computationally intensive strategy is a simulation with CO2 flexible but where the geometry

of the CO2 is optimized using the classical force field. The efficacy of these approaches will

be evaluated in Paper III.252

4.7 CONCLUSIONS

In this paper we have developed and validated a spectroscopic map that is the foundation

for a molecular interpretation of ultrafast vibrational spectroscopy of CO2 in ionic liquids.

In addition, we have established important insights into the solvatochromic shift of the

CO2 asymmetric stretch vibrational frequency in ILs. We analyzed the physical origin of

the vibrational frequency shifts using SAPT energy decomposition schemes. Unlike other

vibrational chromophores, such as the OH stretch of HOD in liquid water,196 electrostatics

alone poorly predicts the vibrational frequency. This is consistent with recent studies of

the amide I vibration in peptides229 and nitrile vibrations,253 where exchange repulsion and

dispersion interactions are important for properly describing solvatochromic shifts. While the

most important contributor to the electrostatic part of the spectroscopic map is the field from

the anion, both attractive dispersion interactions and repulsive charge overlap forces (Pauli

repulsion) play additional important roles. Finally, while the CO2 bend angle influences the

asymmetric stretch frequency, we have shown that the geometry of the CO2 molecule is only

slightly perturbed by the IL, so regarding the CO2 as rigid is generally sufficient to capture

the structural relaxation of the IL relative to the CO2.
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4.9 SUPPORTING INFORMATION

Details regarding the transition dipole moment integral calculations in Figure 24.

4.9.1 Transition Dipole Moment Calculations

The intensity of a vibrational transition, ν̃if , is related to the dipole moment matrix element

between the two states, 〈~µif〉

I (ν̃if ) =
8π3NA

3hc (4πε0)
ν̃if |~µif |2 (Ni −Nf ) (4.10)

where NA is Avogadro’s number, Nk is the number of particles in the kth state and |~µif |2 is

the squared norm of the transition dipole moment (TDM) integral between the two states.254

Because all values in equation 4.10 are constant (at a specific temperature) vibrational

intensities for particular transitions are proportional to the squared norm of the TDM vector.

Thus, the central property to calculate in order to evaluate the strength of the Condon

approximation is 〈~µif〉.
We can calculate the matrix elements of the dipole moment operator in a similar fashion

as the bond length matrix elements were calculated in paper 1. Before, we used the value of
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the bond length at each grid point as a representation of the bond length operator. Similarly,

we use the x, y, and z components of the dipole moment at each grid point (reported by a

quantum chemistry program — in this case, Q-Chem93 — as the appropriate integral over

the entire charge density) as a representation of the dipole moment operator,

~µ =
3∑

k=1

µkk̂ (4.11)

where k̂ is the kth Cartesian basis vector. The dipole moment matrix elements are, for a two

dimensional grid,

〈~µif〉 =
3∑

k=1

N∑
l=1

N∑
j=1

ψijlµ
k
jlk̂ψ

f
jl (4.12)

where the ψnjl are the vibrational wavefunctions for state n on grid point (j, l) returned by the

DVR method. We have evaluated the accuracy of this method for CO2 in two ways. First,

we calculate the norm of the TDM integral for the symmetric and asymmetric stretches of

CO2 in the gas phase and compare these to experiment.255 The results are shown in Table 28,

and the accuracy is excellent.

Next, we evaluated the accuracy of this method for CO2 in solution. A previously used

method for evaluating the Condon approximation for vibrational reporters in solution is to

(1) optimize the vibrational subsystem of interest with DFT while freezing all other degrees

of freedom, (2) calculate the harmonic vibrational frequency and intensity for the vibrational

subsystem using the same DFT method, then (3) repeat this for many statistically independent

snapshots of the reporter in solution.226 This process was completed for 25 snapshots of

CO2 in IL solution for the asymmetric stretch. DVR asymmetric stretch frequencies and

TDMs were also calculated for the 25 optimized (post step 1) snapshots. In order to facilitate

comparison, the square roots of the intensities were taken. The resulting values and the

TDMs were divided by their respective gas phase values. These values are plotted against

each other in figure 29. The agreement between the two methods is excellent (R = 0.994).

This new method has the advantage of being essentially computationally free to perform

anytime a DVR calculation has already been done. Due to the possibility of parallelization,

DVR calculations can be much more computationally inexpensive than regular vibrational

frequency calculations.
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Table 28: Transition dipole moments for gas phase stretching modes of CO2.

Mode DVR (D) Experiment (D)255

ωs 1.1× 10−13 0.0

ωa 3.4× 10−1 3.3× 10−1
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Table S1. Transition dipole moments for gas phase stretching modes of CO2.  

Mode DVR (D) Experiment (D)3 

FG 1.1	×	10M9) 0.0 

FN 3.4	×	10M9 3.3	×	10M9 

 

 

 

 
Figure S1. Normalized transition dipole moment for the asymmetric stretch of CO2 as 
calculated by a quantum chemistry program and as calculated by the DVR method (blue 
dots). The black line is the best fit line, O = 0.97R + 0.07. The correlation coefficient is 
0.994. 
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Figure 29: Normalized transition dipole moment for the asymmetric stretch of CO2 as

calculated by a quantum chemistry program and as calculated by the DVR method (blue

dots). The black line is the best fit line, y = 0.97x+ 0.07. The correlation coefficient is 0.994.
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5.0 A FIRST PRINCIPLES APPROACH FOR PARTITIONING LINEAR

RESPONSE PROPERTIES INTO ADDITIVE AND COOPERATIVE

CONTRIBUTIONS

The text in this chapter has been adapted from Berquist, E. J.; Lambrecht, D. S. A First Prin-

ciples Approach for Partitioning Linear Response Properties into Additive and Cooperative

Contributions. 2018, DOI: 10.26434/chemrxiv.5773968.v1. The author’s contribution

to the work included deriving the equations, implementing the algorithm, performing all

calculations, and writing the manuscript.

5.1 SUMMARY

We present the analytic implementation of linear response equations on top of absolutely

localized molecular orbitals (ALMOs) as part of libresponse, a library for solving the non-

orthogonal molecular response equations for arbitrary operators. In the spirit of the original

SCF(MI) and TDDFT(MI) formulations, our method is called linear response for molecular

interactions, or LR(MI). Charge transfer was discovered to play an equally significant role in

both the ground-state and response iterations.

5.2 INTRODUCTION

Experimental spectroscopy is a powerful tool for understanding the structure and function of

molecular systems, especially when combined with theory and computation.2,4,257 Absolutely
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localized molecular orbitals (ALMOs)100 and their associated energy decomposition analysis

(ALMO-EDA)102 provide a intuitive picture of how interactions at the microscopic scale

translate to physical insight at the macroscopic scale. ALMO-EDA is capable of separating

the total interaction energy of two or more user-defined arbitrary fragments into the following

components:

∆Eint = ∆Egd + ∆Efrz + ∆Epol + ∆ECT, (5.1)

where

• ∆Egd is the energy raising due to the distortion from each fragment’s isolated geometry

into the cluster geometry;

• ∆Efrz is the “frozen density” interaction, which accounts for classical electrostatics and

Pauli repulsion between the fragments, and is usually positive;

• ∆Epol is the polarization energy, which is the self-consistent response of each fragment’s

electron density in the field of the other fragments, and is always negative;

• ∆ECT is the charge transfer interaction/energy, and is always negative.

This separation is achieved via a constrained self-consistent field calculation, called

SCF for molecular interactions (SCF(MI)), producing ALMOs that incorporate fragment

polarization but not charge transfer. There are multiple approximations to ∆ECT, which

can be further broken apart into a perturbative correction and higher-order effects stemming

from a self-consistent treatment, where all orbital constraints are lifted and supersystem SCF

iterations are performed (equation 5 in ref. [103]):

∆ECT = ∆ERS
CT + ∆EHO

CT . (5.2)

Each of these terms can be broken apart further into a sum of a true electron delocalization

term and a BSSE term:

∆ERS
CT = ∆ERS

del + ∆ERS
BSSE,

∆EHO
CT = ∆EHO

del + ∆EHO
BSSE.

(5.3)

Such an energy decomposition is made possible due to the bottom-up construction of

ALMOs, where each ALMO is formed from atomic orbitals (AOs) only on a specific fragment,
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leading to MOs that are spatially localized onto fragments. In a previous work,27 we showed

that a similar decomposition is possible for peaks in vibrational spectra according to

ωtot = ωfree + ∆ωint,

∆ωint = ∆ωgd + ∆ωfrz + ∆ωpol + ∆ωCT,
(5.4)

where each term has an analogous meaning to the original ALMO-EDA, except changes in

the vibrational frequencies {ω} rather than the interaction energy are used. We seek a more

general decomposition of response properties, starting with those based on linear response

(LR), where each ω in eq. (5.4) is replaced with 〈〈P̂ ; Q̂〉〉ωQ , representing the influence of a

perturbation Q̂ with frequency ωQ on P̂ .

This is not the first work to seek a fragment- or subsystem-based decomposition of

molecular response properties. The LoProp method258,259 starts from canonical orbitals and

performs a series of localizations followed by orthogonalizations, leading to atom- and atom

pair-centered contributions. While a top-down approach with only post-SCF localization

avoids difficulties with a localized SCF implementation, the use of localized charges and dipole

moments requires a finite difference approach beyond first derivatives. Several bottom-up

approaches, where localized orbitals or subsystems are formed during the SCF iterations,

also exist. More closely related to a many-body expansion (MBE) is the fragment molecular

orbital (FMO)260 calculation of frequency-dependent polarizabilities. The use of MBE-derived

expressions requires a response calculation for each term in the fragment expansion, where

ALMO-based LR solves the equations for all fragments simultaneously. Response equations

have also been formulated within subsystem density functional theory (sDFT).261,262 sDFT

requires the use of an additional kinetic energy functional, while ALMO-based LR can

be used with all common exchange-correlation functionals. A comprehensive adaptation

of response equations up to dynamic first and second hyperpolarizabilities263 has been

performed with nonorthogonal localized molecular orbitals (NOLMOs).264 NOLMOs are not

connected to an EDA, preventing a property decomposition into EDA-like terms that are the

foundation of ALMO-based LR. An attractive fragment-based method designed specifically

for the decomposition of molecular interaction energies is symmetry-adapted perturbation

theory (SAPT),265 which is systematically improvable due to its foundations in perturbation
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theory. However, because the fragment orbitals are not variationally optimized together

(unlike ∆EALMO-EDA
pol ), the formulation of derivatives even at the uncorrelated monomer

approximation (SAPT0) is nontrivial.

The most related methods are those also built on top of ALMOs, specifically ALMO-

CIS,266 ALMO-CIS+CT,267 TDDFT(MI),268 and LEA-TDDFT.269 Compared to ALMO-CIS,

our method is more consistent with the index restrictions in TDDFT(MI), and similarly

to LEA-TDDFT, we can select individual fragments for allowing charge transfer. For this

reason, our method is termed linear response for molecular interactions, or LR(MI).

To this end, we have developed libresponse, a molecular response library for non-

orthogonal orbitals and arbitrary operators, in the spirit of the Response module of Dal-

ton.270 It is capable of both singlet271 and triplet272 response for restricted and unrestricted

wavefunctions using Hartree–Fock (HF) or density functional theory (DFT). Properties

can be calculated using either the full time-dependent Hartree–Fock (TDHF) or random

phase approximation (RPA) equations, or with the configuration interaction with singles

(CIS) approximation.273 Our current implementation is limited to linear response and static

properties (ω = 0), with both non-linear response and dynamic properties under current

development.

5.3 THEORY

For the remainder of the paper, unless otherwise stated, the indices i, j, k, l, ... correspond to

unoccupied MOs, a, b, c, d, ... correspond to virtual/unoccupied MOs, µ, ν, λ, σ, ... correspond

to AOs, and I, J, ... correspond to fragments. There is no distinction between canonical MO

and ALMO indices. Comma-separated indices such as ia, jb correspond to a matrix with a

compound index ia and another compound index jb.
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5.3.1 Linear response formalism

The linear response of a molecule in its ground state |0〉 to perturbations corresponding to

operators P̂ and Q̂ can be written as the sum over all excited states {n},

〈〈P̂ ; Q̂〉〉ω = −
∑
n>0

[
〈0|P̂ |n〉 〈n|Q̂|0〉

ωn − ω
+
〈0|Q̂|n〉 〈n|P̂ |0〉

ωn + ω

]
, (5.5)

where ω is the frequency of the perturbation Q̂ and ωn = En−E0. Examples of second-order

response properties include the polarizability (P̂ = Q̂ = µ̂), magnetizability (P̂ = Q̂ = m̂),

vibrational frequencies (P̂ = Q̂ = x̂), etc. This paper focuses on molecular response within

the static limit (ω = 0),

〈〈P̂ ; Q̂〉〉0 = −Tr
{
P†G−1Q

}
= −Tr

{
P†X

}
, (5.6)

where (P)ia = 〈i|P̂ |a〉 and (Q)ia = 〈i|Q̂|a〉. X = G−1Q is the “response vector” corresponding

to orbital rotations induced by perturbation Q̂. The orbital Hessian matrix G is defined as

RRGσ = Aσ + Bσ

IIGσ = Aσ −Bσ
(5.7)

for real (R) and imaginary (I) perturbations, respectively.274 The spin case σ can either be

singlet (σ = s) or triplet (σ = t) depending on whether the perturbation operator conserves

or flips spin, respectively:

Asia,jb = ∆ia + 2(ia|jb)− (ij|ab)

Atia,jb = ∆ia − (ij|ab)
(5.8)

Bs
ia,jb = 2(ia|jb)− (ib|ja)

Bt
ia,jb = −(ib|ja)

(5.9)

where ∆ia = (εa − εi)δia,jb is an orbital energy difference. The CIS or Tamm-Dancoff

approximation (TDA) is recovered when B = 0. Rather than directly inverting the orbital
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Hessian, which would cost O (o3v3), one solves iteratively for X by expanding the inverse, for

example in the real singlet case

X
(n+1)
ia =

Qia − [4(ia|jb)− (ij|ab)− (ib|ja)]X
(n)
jb

∆ia

(5.10)

Repeated indices imply summation (Einstein sum convention). Here, the superscript in

parentheses denotes the iteration number. To avoid the expensive transformation of two-

electron repulsion integrals from atomic orbital into molecular orbital basis, one performs the

contraction over orbital pair jb in the atomic orbital basis,

(As + Bs)ia,jbXjb = Cµi
[
4(µν|λσ)DX

λσ − (µλ|νσ)DX
λσ − (µσ|λν)DX

λσ

]
Cνa (5.11)

with the perturbed density matrix DX
µν = CλjXjbCσb.

To work with non-orthogonal orbitals, we replace the ∆−1
ia denominator in eq. (5.10) with

a full matrix inversion of

Eia,jb = FabSij − FijSab, (5.12)

where F and S are the MO-basis Fock and overlap matrix, respectively

5.3.2 Adaptation of linear response equations for absolutely localized MOs

The first requirement for adapting the non-orthogonal linear response equations to the ALMO

formalism is the projection of the occupied subspace from the virtual subspace. This is

because the original fragment-local virtual ALMOs are not orthogonal to occupied ALMOs

on other fragments. We form “modified” or “projected” virtual orbitals,

|φa〉 = Na

(
1− D̂occ

)
|ψa〉 (5.13)

where D̂occ → (Docc)µν = CµiCνi. Otherwise, this contamination would manifest as spurious

low-lying excited states, leading to artificial poles in the polarizability. This requirement for

projection is unimportant for ground-state SCF(MI) calculations, where the virtual orbitals

do not have an effect on the final result (energy).

The second requirement is to maintain consistency with the fragment-local nature of

SCF(MI), where CT is not allowed. Each occupied-virtual MO contribution to the molecular
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response is restricted to be within the same fragment. This corresponds to forcing all ia (or jb)

pairs to be zero when i ∈ FI , a ∈ (FJ 6= FI). Algorithmically, we do this by always working

in the full CT-allowed basis, then zeroing out CT-disallowed matrix elements. For the energy

denominator, the zero rows and columns must be removed to avoid introducing artificial

singularities. The advantage of working in the full CT basis and zeroing matrix elements is

twofold: it prevents code duplication due to no need for separate non-orthogonal and ALMO-

based response routines, and it enables selection of individual fragments to quantify their CT

contribution to the final response property. This is in contrast to ALMO-CIS+CT,267 which

starts from the reduced CT-disallowed basis and adds a distance-dependent CT correction.

An outline of the algorithm is available in the SI.

Perhaps the most important fundamental distinction between our formulation of the

ALMO response equations and the ALMO-CIS formulation is in the two-electron contribution,

where we restrict MO indices but do not restrict AO indices. This means that for a given

JXµν = (µν|λσ)DX
λσ, summations run over AO indices on all fragments, and both (µν|λσ)

and DX
λσ for λ ∈ FI , σ ∈ (FJ 6= FI) may be non-zero. Additionally, AO indices cannot be

restricted due to the projection in eq. (5.13), where each MO can have contributions from all

AOs.

In principle, the ALMO formulation presented here can be extended to arbitrary-order

response, as long as each compound ia index is constrained to be within a fragment.

5.3.3 Decomposition of linear response properties into local contributions and

interaction mechanisms

As with other localized orbital schemes, there is a question of how to define charge transfer.

Our implementation allows for the introduction of CT in several stages. This allows for

further decomposition of the CT term into qualitative contributions from individual fragments.

This is done by starting from the polarized SCF(MI) wavefunction and allowing transitions

between the occupied space of a single fragment into the virtual space of all fragments. This

can be denoted as “frz + pol + CT(F → all)”, where F is an individual fragment. The

difference between this result and “frz + pol” can be viewed as how important CT is for
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that specific fragment F . From the symmetry-adapted perturbation theory275 perspective, it

can also be viewed as a BSSE correction; the larger the difference, the more deficient the

fragment-localized basis is. CT can also be allowed during the response calculation even if it

was not during the wavefunction calculation; this corresponds to performing non-orthogonal

response with no restrictions using the polarized SCF(MI) wavefunction, represented as

“frz + pol + CT(all → all) [blocked]”. The sum over all fragments should be qualitatively

equal to “frz + pol + CT(all → all) [blocked]”, though it will not be exactly equal due

to higher-order effects, similar to the ∆EHO
CT term in ALMO-EDA. Finally, “frz + pol +

CT(all → all) [blocked]” corresponds to an unrestricted response calculation on top of the

fully-relaxed SCF wavefunction, analogous to a supersystem calculation. The difference

between the blocked result and the supersystem result shows the effect of allowing CT in the

underlying wavefunction.

This multi-step decomposition of the CT term is similar to our previous work on the

effect of CT on the vibrational spectra of CO2 in ionic liquids.27,276 Being able to turn CT on

and off during the geometry optimization and numerical Hessian calculation allowed us to

see how CT contributes to the potential energy surface at multiple stages, but our analytic

formulation of the response equations has significant advantages. It enables the identification

of fragment-specific contributions to the total response, which is not possible in a numerical

response calculation, even with an underlying SCF(MI) wavefunction. This is in addition

to all the other advantages of solving analytic rather than numerical equations, namely

calculation time, uncoupled and perturbative approximations to fully iterative results, lack of

finite-difference error, frequency-dependent perturbations, and response to applied magnetic

fields without complex energies; see ref. [1] for a discussion.

Borrowing terminology from ref. [276], CT may enter the response calculation through

multiple mechanisms. We consider two: the “wavefunction mechanism”, where CT is (dis)-

allowed during the SCF iterations, corresponding to either an SCF(MI) or a canonical SCF

calculation, and the “response mechanism”, where CT is (dis)allowed during the response

calculation by restricting occupied-virtual MO contributions to be within fragments as

discussed in section 5.3.2. This results in four principal permutations of (dis)allowing CT

effects, abbreviated as “a/b”, where a represents the wavefunction mechanism, b represents

165



the response mechanism, and a, b ∈ {on, off}:

• “on/on” is a standard response calculation, and is the “frz + pol + CT(all → all) [super]”

result.

• “off/off” is the most consistent with SCF(MI) and TDDFT(MI), and is the “frz + pol”

result.

• “off/on” attempts to recover CT effects during the response calculation that are missing

from the underlying SCF(MI) wavefunction, and is the “frz + pol + CT(all → all)

[blocked]” result. This is not the same as the single perturbative Roothaan step (RS)

correction in SCF(MI), but is a fully-iterative response calculation on top of ALMOs.

• “on/off” corresponds to allowing CT during SCF iterations but not the response calcu-

lations. This decomposition is not considered, as neither the occupied nor the virtual

canonical orbitals can generally be assigned to specific fragments.

For the purposes of this work, we also do not consider the effect of disallowing CT

during geometry optimization through the “geometry mechanism”, though in principle it is

technically feasible and potentially non-negligible. See ref. [277] for an in-depth analysis of

the different potential energy surfaces that comprise ALMO-EDA. Neglecting the geometry

mechanism means our approach is consistent with a vertical decomposition rather than an

adiabatic one.

5.4 METHODS

HF was used for all calculations as a proof of concept to avoid spurious overdelocalization

and CT effects due to self-interaction error. As a result, it should provide a lower bound

on any possible CT effects during the SCF(MI) calculation. For basis sets, we chose the

Karlsruhe def2- family,278,279 in particular def2-SVP and def2-SVPD. It is well-known that the

original ALMO procedure has a strong basis-set dependence, with overestimation of ∆Epol

and underestimation of ∆ECT due to the overlapping tails of AOs on different fragments,

allowing electron density to “leak” across fragments during SCF(MI).280 As a result, there
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is no clear basis set limit to ∆Epol. This informs our basis set choices, which should give

qualitatively correct results within the original ALMO definition, with a check on minimal

augmentation optimized for use in electric field response calculations.

For a test property, we chose the static dipole polarizability, defined as

αab(0) = −〈〈µ̂a; µ̂b〉〉0 = − ∂2E

∂εa∂εb

∣∣∣∣
εa,εb=0

, (5.14)

where a, b ∈ {x, y, z} and the energy derivative method based on derivatives with respect to

applied electric fields ε is equivalent to the linear response calculation.

For a test system, the argon—lithium cation dimer, Ar····Li+, was chosen due to the

reasonable polarizability of the bare (closed-shell) argon atom, which should be quantitatively

influenced by the almost unscreened nuclear charge of the lithium cation. The optimized

distances are 2.4106 Å using def2-SVP and 2.4297 Å using def2-SVPD. For the distance

dependence results, points are spaced at 0.05 Å from 1.25 to 5.00 Å, then spaced at 0.25 Å

from 5.00 to 10.00 Å.

All calculations were performed using a development version of Q-Chem93 compiled with

libresponse, our generalized non-orthogonal molecular response library. Thresholds were set

to 10−14 for integral screening, 10−11 for the DIIS error norm in SCF convergence, and 10−8

for the DIIS error norm in the analytic response iterations. The Stoll projector equations were

used for minimizing the underlying SCF(MI) wavefunction.100,281 For numerical polarizability

calculations, 2nd-order finite difference from energies was used, unless otherwise stated,

as differences between 1st- and 2nd-order results were below 10−7 a0
3 in all cases. Both

1st- and 2nd-order finite difference polarizability calculations used a finite field step size of

1.889 73× 10−5 a0
3. All SCF(MI) analytic polarizability calculations use projected virtual

orbitals as defined by eq. (5.13).
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Table 29: Polarizability results for the argon—lithium cation dimer at the HF/def2-SVP

level. The geometry is optimized at the same level. All values have units of a0
3.

analytical numerical

def2-SVP α⊥ α‖ αiso α⊥ α‖ αiso

monomer A (Ar) 4.3702 4.3702 4.3702 4.3702 4.3702 4.3702

monomer B (Li+) 0.1593 0.1593 0.1593 0.1593 0.1593 0.1593

A + B 4.5295 4.5295 4.5295 4.5295 4.5295 4.5295

frz + pol 4.5042 4.5581 4.5222 4.5036 4.5696 4.5256

+ CT(A → all) 4.7040 5.5191 4.9757 — — —

+ CT(B → all) 0.1594 0.1586 0.1591 — — —

+ CT(all → all) [blocked] 4.8409 5.7540 5.1452 — — —

+ CT(all → all) [super] 5.2142 7.8649 6.0978 5.2142 7.8649 6.0978

Table 30: Polarizability results for the argon—lithium cation dimer at the HF/def2-SVPD

level. The geometry is optimized at the same level. All values have units of a0
3.

analytical numerical

def2-SVPD α⊥ α‖ αiso α⊥ α‖ αiso

monomer A (Ar) 10.3735 10.3735 10.3735 10.3735 10.3735 10.3735

monomer B (Li+) 0.1603 0.1603 0.1603 0.1603 0.1603 0.1603

A + B 10.5338 10.5338 10.5338 10.5338 10.5338 10.5338

frz + pol 10.0787 10.6399 10.2658 10.0875 10.6599 10.2783

+ CT(A → all) 10.0157 10.4900 10.1738 — — —

+ CT(B → all) 0.1606 0.1614 0.1609 — — —

+ CT(all → all) [blocked] 10.1395 10.8004 10.3598 — — —

+ CT(all → all) [super] 10.0724 11.0645 10.4031 10.0724 11.0645 10.4031
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5.5 RESULTS AND DISCUSSION

5.5.1 Equilibrium distance

Tables 29 and 30 show equilibrium distance results for the argon—lithium cation dimer at

the HF/def2-SVP and HF/def2-SVPD levels, respectively. Due to molecular symmetry, two

of the three polarizability tensor principal components are identical; these correspond to the

perpendicular polarizability α⊥, or how easy it is to shift the electron density perpendicular

to the interatomic axis. The parallel polarizability α‖ corresponds to the principal component

that lies along the axis of interaction between the two atoms and corresponds to the bond

polarizability. Monomer A and B refer to the isolated atoms; parallel and perpendicular

axes have no meaning here due to their spherical symmetry, as all principal components are

identical. An approximation to the frozen density interaction in response is the sum of the

response of the isolated fragments (atoms), shown as “A + B”. Note that this is not the

true frozen monomer response.277 “frz + pol” is where CT is disallowed between fragments

using the algorithm described above, consistent with the original SCF(MI) and conceptually

analogous to TDDFT(MI). The remaining entries are those described in section 5.3.3.

5.5.1.1 Validation of analytic ALMO results As a correctness check, our analytic

formulation is validated against finite-field calculations in the last three columns. An

advantage of the analytic formulation is the ability to further decompose the CT term; it is

not possible to perform the “CT(A → all)”, “CT(B → all)”, and “CT(all → all) [blocked]”

calculations with a finite-field approach. For both basis sets presented, there is no quantitative

difference between the analytic and numerical polarizabilities except for “frz + pol”. This

should not be interpreted as an error, since our definition of the response equations differs

from the no-CT formulation presented by ALMO-CIS, and there is a slight delocalization of

the virtual space due to the projection (see section 5.6). Still, the largest percent difference

is 0.25% and 0.19% in α‖ for def2-SVP and def2-SVPD, respectively, showing our definition

should be valid as long as the ALMO approximation holds.
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Table 31: Percentage changes in α‖ due to the two CT mechanisms. The reference (de-

nominator) polarizability used is shown in italics. All calculations used a bond length of

2.4297 Å.

basis set

percentage change due to mechanism def2-SVP def2-SVPD

response (off/on - off/off) 20.8 1.5

wavefunction (on/on - off/on) 26.8 2.4

5.5.1.2 CT mechanism analysis From tables 29 and 30, the importance of charge

transfer via both the wavefunction and response mechanisms can be calculated as the

difference between “frz + pol”, “CT(all → all) [blocked]”, and “CT(all → all) [super]”; these

are “off/off”, “off/on”, and “on/on”, respectively. The effect of each mechanism is shown in

table 31.

For def2-SVP, it is clear that each successive relaxation of CT restrictions has a non-

negligible effect on the final property, where αfrz + pol
‖ is 58.0% and 96.2% of the supermolecular

value for the two basis sets. This representation makes it clear that in addition to larger

polarizabilities (∼ 2×), there are other fundamental differences caused by the use of diffuse

functions in def2-SVPD.

Calculated this way, the wavefunction mechanism may include some higher-order effects, as

the pure wavefunction mechanism, calculated as “on/off” - “off/off”, cannot be isolated due to

the “on/off” term (see section 5.3.3). The size of these higher-order effects in the wavefunction

can be estimated by the percent contribution of higher-order effects in ALMO-EDA charge

transfer, shown in table 32.

Using the uncorrected results for consistency, the new estimates of percentage changes

due to the wavefunction mechanism become 20.3% and 2.0%, showing the presence of CT

in the underlying wavefunction and in the response calculation are equally important in

predicting molecular properties.
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Table 32: Percentage of ALMO-EDA charge transfer due to higher-order effects, calculated

as 100 ∗ ∆EHO
CT

∆ERS
CT+∆EHO

CT
. All calculations used a bond length of 2.4297 Å.

basis set

BSSE corrected? def2-SVP def2-SVPD

no 24.2 17.1

yes 25.0 19.4

5.5.1.3 Basis set dependence The results in table 31 show that charge transfer, or

electron delocalization across fragments, is relatively unimportant when using the diffuse

basis set. This may be indicative of either basis set incompleteness or overlap between the

tails of the diffuse basis functions (see section 5.4). The former argument is supported by the

BSSE term being 50% of the total CT term with def2-SVP but only 18% with def2-SVPD,

while the latter argument is supported by a doubling of ∆Epol from −3.3 to −6.6 kcal mol−1

when adding the diffuse functions (see the SI for all ALMO-EDA results).

To investigate these effects directly on the polarizability, rather than through an EDA,

table 33 shows the decoupled effect of the nuclear charge and basis functions provided by

the lithium cation on the argon. Since the lithium cation is not very polarizable (αLi+ is

≈ 4% of αAr at the HF/def2-SVP level), only effects on the argon atom are considered. Also

presented are the lowest singlet and triplet excitation energies calculated using RPA (TD-HF).

Percentages of each value compared to the full Ar····Li+ result within each basis set are shown

in the SI.

In order to test the importance of nuclear charge without the influence of basis functions,

the “PC(+)” and “PC(-)” entries represent replacing the lithium atom with positive and

negative point charges of unit magnitude, respectively. To test the importance of the basis set

without the influence of a nuclear charge, “Gh(Li)” represents replacing the full lithium atom

with only its basis functions, leaving a “ghost atom” with no (effective) nuclear charge. This

should separate the Ar····Li+ interaction into a purely electrostatic effect from the nucleus,
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a delocalization-like effect due to increased spatial flexibility for motion of electrons during

SCF and response iterations, and some non-additive effects.

As expected, compared to a bare argon atom, the presence of a ghost function both

increases the polarizability and decreases the first excitation energy. Intuitively, there are

now additional molecular orbitals within reasonable spatial distance that electron density

can spread on to as part of the ground-state calculation and can be excited to as part of

the excited-state calculation. The difference is much less pronounced for the diffuse basis,

where it is the presence of point charges that has the larger effect. This indicates that there

is overlap with the tails of only the additional diffuse basis functions at the distance of the

lithium center, and is caused by basis set incompleteness present even at the canonical SCF

level. The point charges are in comparatively empty space in the non-diffuse basis, and the

ghost function is unimportant for the diffuse basis. There, α
PC(+)
‖ � αAr····Li+

‖ due to electron

screening on the lithium atom, which leads to a reduced effective nuclear charge that is less

capable of polarizing the argon atom.

As further confirmation that any basis set effects are not due to a breakdown in the

original ALMO formulation, we performed ALMO-EDA calculations where the polarization

term does not suffer from CT contamination and has a well-defined basis set limit.282 With

this second-generation EDA, the CT energy increases by only 10−4 kcal mol−1 in both basis

sets. Since there is no mixing of one fragment’s ALMOs into the other due to overlapping

AO tails, these differences are true basis set effects as long as the fragment electron densities

are not penetrating each other.

5.5.2 Distance dependence

An extension of the validation in section 5.5.1.1 is to compare our analytic implementation

of “ALMO frz + pol” with finite field calculations using both energies and dipole moments

as a function of interatomic distance. Short-range results for both basis sets are presented

in figure 30. Only at shorter than equilibrium distances is there visible deviation between

the analytic and numerical “ALMO frz + pol” results, most likely due to the virtual space

delocalization. However, this is near the region where the electron clouds of the two atoms
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Table 33: Decomposition of polarizabilities into point charge and basis function contributions.

All calculations used canonical MOs and a distance of 2.4297 Å from argon to the other

center(s).

basis set structure α⊥ (a.u.) α‖ (a.u.) ᾱ (a.u.) tERPA
0→lowest (eV) sERPA

0→lowest (eV)

def2-SVP Ar····PC(−) 4.38 4.35 4.37 23.26 25.09

def2-SVP Ar 4.37 4.37 4.37 23.69 25.50

def2-SVP Ar····PC(+) 4.36 4.38 4.37 23.42 25.24

def2-SVP Ar····Gh(Li) 4.89 6.23 5.34 12.26 12.58

def2-SVP Ar····Li+ 5.21 7.88 6.10 11.90 12.18

def2-SVPD Ar····PC(−) 10.94 10.33 10.74 10.92 11.68

def2-SVPD Ar 10.37 10.37 10.37 12.61 13.22

def2-SVPD Ar····PC(+) 10.04 11.94 10.67 9.90 10.48

def2-SVPD Ar····Gh(Li) 10.39 10.42 10.40 12.05 12.41

def2-SVPD Ar····Li+ 10.07 11.06 10.40 11.98 12.34
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penetrate each other, and ∆Efrz is an order of magnitude larger than either ∆Epol or ∆ECT

due to Pauli repulsion, so this difference does not detract from the accuracy of the analytic

implementation.

Figure 31 shows how the different forms of CT restriction vary as a function of interatomic

distance. Similar to the counterpoise (CP) correction for interaction energies, the “BSSE-

corrected canonical” polarizability for two monomers A and B is defined as

αBSSE-corrected = αAB(AB)−
[(
αA(AB)− αA(A)

)
+
(
αB(AB)− αB(B)

)]
, (5.15)

where, for example, αA(AB) is the polarizability of monomer A in the combined (supermolec-

ular) basis of both monomers.

The difference from the BSSE correction is large in def2-SVP but negligible in def2-SVPD,

confirming our results from section 5.5.1.3. For both basis sets, the argon polarizability

is the major contributor, provided that the entire dimer basis virtual space is available.

The difference between the argon and blocked ALMO curves is due to the small but non-

zero polarizability of the lithium cation, plus a mutual or higher-order polarization effect

that appears at shorter than equilibrium distances for def2-SVP. Most notably, there is a

quantitative difference between the blocked ALMO and canonical results even with def2-

SVPD, showing that the wavefunction mechanism is large, and only allowing CT during the

response calculation cannot recover these effects.

5.6 CONCLUSIONS AND FUTURE WORK

We have presented an implementation of linear response molecular properties for ALMOs,

along with a decomposition of charge transfer effects, applied to a system with a substantial

CT interaction. We discovered that for the static polarizability, charge transfer plays an

equally important role in the response calculation as it does in the underlying wavefunction.

Additionally, our results confirm that the ALMO and LR(MI) approximations are valid as

long as the basis set is not deficient for the system, as is the case with def2-SVP.
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Figure 30: Distance dependence of analytic and numerical ALMO polarizabilities for both

basis sets.
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Figure 31: Distance dependence of CT restrictions on polarizabilities for both basis sets.
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A question not addressed in this work or other ALMO-based work on excitation ener-

gies266,268 is the effect of non-locality on the projected virtual space. To properly assign

fragment-localized contributions to molecular response, both the occupied and virtual ALMOs

must be spatially localized to individual fragments. Projecting the occupied space out of

the virtual space ensures occupied-virtual orthogonality between fragments, but removes the

fragment locality of the virtual space; that is, each virtual MO can no longer be uniquely

assigned to a specific fragment. However, we expect that the error introduced by a delocalized

virtual space is small compared to the error from using unprojected orbitals, which are less

representative of the true potential energy surface for the reasons discussed in section 5.3.2.

Future work will use LoProp-type approaches on top of projected ALMOs to investigate the

magnitude of these effects. In this way, LR(MI) can be a sensitive test for how modification

of the virtual space affects molecular properties.

Our development of a library for calculating molecular response properties of arbitrary op-

erators with non-orthogonal orbitals opens many doors for future development. libresponse

is available in Q-Chem 5.0.2 and at https://github.com/LambrechtLab/libresponse un-

der the 3-clause BSD license as an Armadillo-based283 C++ library. It can also be used as a

Psi4284 plugin.
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5.8 SUPPORTING INFORMATION

ALMO-EDA results and analysis, additional ghost basis and point charge analysis, additional

distance dependence results, sample input files, pseudocode for algorithm.

As a sanity check for all results, we expect certain physical behavior over the range of
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Table 34: ALMO-EDA results. Energy units are kcal mol−1. All calculations used

Hartree–Fock with a bond length of 2.4297 Å.

basis set

ALMO-EDA term def2-SVP def2-SVPD

∆Efrz 1.20 2.18

∆Epol -3.32 -6.61

∆ERS
del -4.07 -0.89

∆ERS
BSSE 1.38 0.16

∆ERS
CT -2.69 -0.74

∆ERS
int -4.81 -5.17

∆ESCF
del -5.38 -1.08

∆ESCF
BSSE 1.79 0.16

∆ESCF
CT -3.59 -0.91

∆ESCF
int -5.70 -5.35

∆ESCF
HO -0.90 -0.18

Table 35: Analysis of ALMO-EDA terms from table 34.

.

basis set

def2-SVP def2-SVPD

∆Epol + ∆ERS
CT (kcal/mol) -6.01 -7.34

∆Epol + ∆ESCF
CT (kcal/mol) -6.91 -7.52

100 * ∆ERS
BSSE / ∆ERS

CT (%) -51.4 -21.2

100 * ∆ESCF
BSSE / ∆ESCF

CT (%) -49.9 -17.7

100 * ∆ERS
CT / (∆Epol + ∆ERS

CT) (%) 44.8 10.0

100 * ∆ESCF
CT / (∆Epol + ∆ESCF

CT ) (%) 51.9 12.2

178



Table 36: Percentage of supermolecular result for point charge and ghost function polariz-

abilities. All calculations used Hartree–Fock with canonical MOs and a distance of 2.4297 Å

from argon to the other center(s).

basis set structure α⊥ α‖ ᾱ tERPA
0→lowest

sERPA
0→lowest

def2-SVP Ar····PC(−) 84.1 55.2 71.6 195.5 206.0

def2-SVP Ar 83.9 55.5 71.6 199.1 209.4

def2-SVP Ar····PC(+) 83.7 55.6 71.6 196.8 207.2

def2-SVP Ar····Gh(Li) 93.9 79.1 87.5 103.0 103.3

def2-SVPD Ar····PC(−) 108.6 93.4 103.3 91.2 94.7

def2-SVPD Ar 103.0 93.8 99.7 105.3 107.1

def2-SVPD Ar····PC(+) 99.7 108.0 102.6 82.6 84.9

def2-SVPD Ar····Gh(Li) 103.2 94.2 100.0 100.6 100.6

interatomic distances. In particular, as the interatomic distance approaches the limit of

infinite separation,

• The canonical SCF, numerical SCF(MI), and analytic SCF(MI) results all converge to

the same value, which is the sum of polarizabilities the two isolated atoms. CT appears

to be an important contributor until approximately 5 Å, where the decay behavior of the

canonical SCF changes.

• The point charge, and “frz + pol + CT(Ar → all)” results all converge to the same value,

which is the polarizability of the isolated argon atom.

5.8.1 Input files

Listing 1: Sample Q-Chem input file for “ALMO frz + pol” polarizability. Geometry is from

HF/def2-SVPD.

1 $rem
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Figure 32: Short- and long-range interatomic separation dependence of the static polarizability

parallel to the coordination axis. All calculations are at the HF/def2-SVP level.
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Figure 33: Short- and long-range interatomic separation dependence of the static polarizability

parallel to the coordination axis. All calculations are at the HF/def2-SVPD level.
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Figure 34: Short- and long-range interatomic separation dependence of the static polarizability

perpendicular to the coordination axis. All calculations are at the HF/def2-SVP level.
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Figure 35: Short- and long-range interatomic separation dependence of the static polarizability

perpendicular to the coordination axis. All calculations are at the HF/def2-SVPD level.
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2 jobtype = polarizability

3 method = hf

4 basis = def2 -svpd

5 scf_convergence = 11

6 thresh = 14

7 scf_max_cycles = 1000

8 symmetry = false

9 sym_ignore = true

10 cc_symmetry = false

11 scf_print_frgm = false

12 frgm_method = stoll

13 frgm_lpcorr = 0

14 $end
15

16 $response
17 solver = diis

18 maxiter = 1000

19 conv = 8

20 _almo_do_virt_relocalization = false

21 _almo_project_virts = true

22 _frgm_response_idx = 0

23 _mask_rhsvec_mo = true

24 _mask_rspvec_guess_mo = true

25 _mask_product_mo = true

26 _mask_ediff_mo = true

27 _mask_rspvec_mo = true

28 _mask_form_results_mo = true

29 $end
30

31 $molecule
32 1 1

33 --

34 0 1

35 Ar 0.000000000000000 0.000000000000000 -0.857713330500000

36 --

37 1 1

38 Li 0.000000000000000 0.000000000000000 1.571999044800000

39 $end

Using the template from listing 1:

• To perform the “ALMO frz + pol + CT(all → all) [blocked]” calculations, set

_frgm_response_idx = 0 and all _mask_* options to false.

• To perform the “ALMO frz + pol + CT(Ar → all)” calculations, set

_frgm_response_idx = 1 and all _mask_* options to true.

Listing 2: Sample Q-Chem input file for first-generation ALMO-EDA. Geometry is from
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HF/def2-SVPD.

1 $rem
2 jobtype = eda

3 method = hf

4 basis = def2 -svpd

5 scf_convergence = 11

6 thresh = 14

7 scf_max_cycles = 1000

8 symmetry = false

9 sym_ignore = true

10 cc_symmetry = false

11 scf_print_frgm = false

12 frgm_method = stoll

13 frgm_lpcorr = rs_exact_scf

14 eda_bsse = true

15 $end
16

17 $molecule
18 1 1

19 --

20 0 1

21 Ar 0.000000000000000 0.000000000000000 -0.857713330500000

22 --

23 1 1

24 Li 0.000000000000000 0.000000000000000 1.571999044800000

25 $end

Listing 3: Sample Q-Chem input file for second-generation ALMO-EDA. Geometry is from

HF/def2-SVP.

1 $rem
2 method = hf

3 basis = def2 -svpd

4 scf_convergence = 11

5 thresh = 14

6 scf_max_cycles = 1000

7 symmetry = false

8 sym_ignore = true

9 cc_symmetry = false

10 scf_print_frgm = false

11 gen_scfman = true

12 frgm_method = stoll

13 frgm_lpcorr = rs_exact_scf

14 eda2 = 1

15 $end
16

17 $molecule
18 1 1

19 --

20 0 1

21 Ar 0.000000000000000 0.000000000000000 -0.848158037800000
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22 --

23 1 1

24 Li 0.000000000000000 0.000000000000000 1.562443752100000

25 $end

5.8.2 Algorithm description

Algorithm 1/2 is the general outline of the LR(MI) procedure, without convergence accel-

eration. The key difference between our implementation and a general CPHF solver is the

zeroing of vector and matrix elements. Again, any contraction between ia or ia, jb indices

may be restricted, but transformations from µν to ia are not.

Missing from this example is the formation of A,B, and the prefactor in the equation

for real/imaginary operators. A difference from the paper equations in the implementation

is that rather than take a single P̂ and single Q̂, a list of operators is passed. For example,

if operators = [µ̂, m̂], then 〈〈µ̂; µ̂〉〉 , 〈〈µ̂; m̂〉〉, and 〈〈m̂; m̂〉〉 will automatically be formed.

Another implementation detail is that each operator carries its own property gradient

vectors (the occ-virt MO basis integrals for the right-hand side) and perturbed response

vectors, and each operator carries information about whether it is real/imaginary and spin

conserving/altering.
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Algorithm 1 Static linear response approach within fragment-localized formalism.

1: procedure solve linear response(resp, operators, occupations, C,F,S, ϑ, maxiter,
allow ct?)

2: for s← 1, Nspin do
3: Transformation of F and S from AO to full MO basis
4: Eia,jb = FabSij − FijSab . Form non-orthogonal orbital energy matrix E
5: if not allow ct? then
6: Zero cross-fragment ia indices and shrink dimensions of E
7: end if
8: Form inverse for denominator E−1

9: end for
10: for i← 1, Noperators do
11: for c← 1, Ncomponents do
12: (Z)µν ← operators[i, c, µν] . Select operator component as perturbation for

right-hand side
13: Transform operator component from AO to occ-virt MO basis and append Zia

to rhsvecs
14: if not allow ct? then
15: Zero cross-fragment ia indices and shrink dimensions of Z
16: end if
17: X(0) ← 0 . Form initial guess for response vector (uncoupled result)
18: converged← false
19: for n← 1,maxiter do
20: DX

µν ← CµiX
(n−1)
ia Cνa . Form perturbed density

21: JXµν
[
DX
]
, KX

µν

[
DX
]
← fock build(DX) . Form Coulomb and exchange

contributions
22:

(
R(n)

)
µν
← 4JX −KX −

(
KX
)T

. Form half-transformed orbital

Hessian-vector product (here, G = As + Bs)

23: Do second transformation of Hessian-vector product (R)(n)
ia

24: if not allow ct? then
25: Zero cross-fragment ia indices and shrink dimensions of R,X
26: end if
27: X

(n)
ia ← (E−1)ia,jb

[
Zjb −R(n)

jb

]
. Update response vector

28: if not allow ct? then
29: Restore dimensions of X
30: end if
31: if ||X(n) −X(n−1)|| < ϑ then
32: converged← true
33: Append X(n) to rspvecs
34: break
35: end if
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Algorithm 2 Continuation of algorithm 1

36: end for
37: if not converged then
38: crash
39: end if
40: end for
41: end for
42: resp← 0 . Form all possible permutations of property gradient and response vectors
43: for a← 1, len(rhsvecs) do
44: for b← 1, len(rspvecs) do
45: P← rhsvecs[a],Q← rspvecs[b]
46: 〈〈P̂ ; Q̂〉〉0 ← −PiaQia

47: resp[a, b]← 〈〈P̂ ; Q̂〉〉0
48: end for
49: end for
50: end procedure
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6.0 Psi4NumPy: AN INTERACTIVE QUANTUM CHEMISTRY

PROGRAMMING ENVIRONMENT FOR REFERENCE

IMPLEMENTATIONS AND RAPID DEVELOPMENT

The text in this chapter has been adapted from Smith, D.; Burns, L. A.; Sirianni, D. A.;

Nascimento, D. R.; Kumar, A.; James, A. M.; Schriber, J. B.; Zhang, T.; Zhang, B.; Abbott,

A. S.; Berquist, E. J.; Lechner, M. H.; dos Anjos Cunha, L.; Heide, A. G.; Waldrop, J. M.;

King, R. A.; Simmonett, A. C.; Turney, J. M.; Schaefer, H. F.; Evangelista, F. A.; DePrince

III, A. E.; Crawford, T. D.; Patkowski, K.; Sherrill, C. D. Psi4NumPy: An Interactive

Quantum Chemistry Programming Environment for Reference Implementations and Rapid

Development. 2018, DOI: 10.26434/chemrxiv.5746059.v1. The author’s contributions to

this work were the reference implementation and Jupyter Notebook tutorial for the SCF first

hyperpolarizability, presented in sections 6.9.1 and 6.9.2.

6.1 SUMMARY

Psi4NumPy demonstrates the use of efficient computational kernels from the open-source

Psi4 program through the popular NumPy library for linear algebra in Python to facilitate the

rapid development of clear, understandable Python computer code for new quantum chemical

methods, while maintaining a relatively low execution time. Using these tools, reference

implementations have been created for a number of methods, including self-consistent field

(SCF), SCF response, many-body perturbation theory, coupled-cluster theory, configuration

interaction, and symmetry-adapted perturbation theory. Further, several reference codes have

been integrated into Jupyter notebooks, allowing background and explanatory information
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to be associated with the implementation. Psi4NumPy tools and associated reference

implementations can lower the barrier for future development of quantum chemistry methods.

These implementations also demonstrate the power of the hybrid C++/Python programming

approach employed by the Psi4 program.

6.2 INTRODUCTION

Whereas in the past a new quantum chemical (QC) method was commonly presented solely

through its equations, perhaps along with a few token values, the more recent expectation is

that equations will be accompanied by results from an effective computer program clearly

demonstrating the utility of the method. This expectation becomes increasingly burdensome as

new computer architectures emerge, since some theories will be naturally more computationally

efficient or more difficult to implement than others. The computation expense of most quantum

chemical methods creates substantial pressure for methods to be implemented with highly

optimized algorithms.

This situation presents a challenge for ongoing development in quantum chemistry, because

new theoretical methods are typically complex and their correct implementation is non-trivial.

Additionally, computationally efficient codes require a low-level programming language like

C++ or Fortran, followed by substantial code profiling, testing, and optimization. Often a

method’s first implementation is a rather messy computer program. The researcher may be

learning the details of the method as they progress, resulting in “experimental” parts of the

code that may never get removed, or data structures that may not be optimal for the final

version of the method. Additionally, development is often carried out by graduate students

not yet proficient in programming, resulting in unconventional coding styles. Subsequently,

a researcher seeking to extend or enhance a method previously developed in-house is often

faced with the daunting prospect of deciphering a quite complex existing code.

Still more challenging is implementing or extending an existing method sourced solely

from the literature. Often, a paper describing a new quantum chemical method that

properly focuses on scientific detail falls short on algorithmic or numerical detail sufficient
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for independent reimplementation. Indeed, the methods are so complex that the original

equations frequently include typos, which are generally tracked through institutional lore

rather than published errata. Additionally, modern approaches often employ combinations of

approximations with multiple numerical cutoffs, exacerbating the reproducibility problem.

This paradigm is illustrated within a recent comment,288 whereby several corrections to

equations originally published in 2011 for a two-level semi-empirical method289 were proposed

after being re-engineered to reproduce values computed using a binary program distributed

with the original publication. Even facilitated through private communication with the

method’s author, this cycle of rediscovery and reimplementation is both highly non-trivial

and unsustainable. Fortunately, an open-source program290 has been made available by the

commenting author that implements the method and proposed changes, so that further

extensions of the method can proceed with this program as a reference.

Such “reference implementations” (easy-to-read, unoptimized computer programs solely

targeting the correct result) can be a helpful initial step toward developing or understanding a

complex method, yet they are not widely available in quantum chemistry. To our knowledge,

reference implementations and benchmarking have only been performed in a large-scale way

for density functional theory (DFT) exchange-correlation kernels291 and periodic boundary

condition DFT with pseudopotentials.292 One factor limiting more widespread use of refer-

ence implementations for quantum chemistry is that methods are often so computationally

demanding that a basic, unoptimized implementation is too slow for computations on even

the smallest molecules. What is needed is an alliance of QC code that is easy to peruse and

manipulate with underlying non-QC routines that are fast enough for testing on non-trivial

molecules.

Here we present Psi4NumPy, a framework for the creation of clear, readable reference

implementations of quantum chemical methods and for the rapid development of new methods.

Psi4NumPy takes advantage of Psi4’s284 application programming interface (API) that

makes efficient computational kernels written in C++ available from Python, a language

that is easy to learn and has become very popular in scientific computing. As a high-level

language, Python allows complex tasks to be specified with relatively few lines of code.

Psi4NumPy capitalizes on the straightforward conversion of Psi4 tensors to NumPy293
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and Numerical Python’s (NumPy’s) own low-level back end to ensure that all data arrays

can use the optimized Basic Linear Algebra Subroutines (BLAS) library294 for common

linear algebra operations. The wide user base of NumPy ensures constant updates and bug

fixes. Psi4NumPy has been packaged for minimal setup, requiring only 3 minutes, with no

preinstalled compilers necessary on 64-bit Linux, Mac, and Windows. Here we introduce

the main elements of the Psi4NumPy framework and illustrate them with a substantial

collection of reference implementations for standard quantum chemical methods and numerical

techniques. The Psi4NumPy is built entirely on Free and Open Source Software (FOSS)295

as shown in Fig. 36 to ensure a barrierless entry to quantum chemistry programming.

Several of the reference implementations have been augmented by tutorial-style introduc-

tions to the relevant theory. The Psi4NumPy tutorial collection includes self-consistent field

(SCF), DFT,296 many-body perturbation theory (MBPT),297 symmetry-adapted perturba-

tion theory (SAPT),156,298 coupled-cluster (CC),299 and configuration interaction (CI)300,301

theories, with additional sections detailing the theory and implementation of linear response,

geometry optimizations, and Verlet integrators. It is our hope that Psi4NumPy and the

accompanying reference code will lower the barrier to implementing quantum chemical

methods.

Shortly before submission, we discovered the Quantum Chemistry Program Exchange

(QCPE),302,303 whose goals of (self-contained) software accessibility, algorithm explication, and

free software “publishing” the Psi4NumPy project shares. The general tools embraced by

Psi4NumPy (GitHub for communication, NumPy for linear algebra, Python for interfacing,

and Jupyter for illumination) further allow rapid prototyping and educational objectives. In

this manner Psi4NumPy can be thought as a modern successor to QCPE built to serve the

flexible needs of the community.

6.3 BASIC TOOLS

The basic premise of Psi4NumPy is to leverage Psi4 to generate quantum chemistry-specific

quantities and the NumPy library293 for all other tensor manipulations. The latest version
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Python 
INTERPRETER 

Python-2.0

BLAS·LAPACK 
FORTRAN LIBRARY 

BSD-3-Clause

core.Molecule geometry parsing, manip.

core.BasisSet gbs parsing, aux selection, manip.

core.MintsHelper 1 & 2e– ints, transformations

energy(‘HF’) reference for post-HF

core.Wavefunction orbital info & subsets

core.JK Coulomb & exchange mat. algorithms

core.Matrix.asarray data container & exchange

Get these contents with 

> git clone https://github.com/psi4/psi4numpy.git 
> conda install psi4 -c psi4

Reference 
Implementations Tutorials

Dependency

etc.

etc.

PSI4

PSI4NUMPY

PSI4NUMPY 
PYTHON LIBRARY 

BSD-3-Clause

PSI4 
C++/PYTHON LIBRARY 

LGPL-3.0

NumPy
PYTHON LIBRARY 

BSD-3-Clause

einsum generalized tensor contractions

linalg.eigh Hermitian matrix eigenv. decomp.

linalg.pinv generalized SVD matrix inv.

linalg.norm matrix & vector norm flavors

array data container & exchange

dot matrix multiplication

linalg.solve linear matrix equation solution

UHF

DIISDFT VV10

CEPA0

DF-MP2

CPHF

SAPT0

CIS

OO-MP2

integralsRHF SOROHF EP2

EFP/SCF

MP3

CISDFCI

CCSD(T)

RHF Hessian

SAPT0(ROHF)

hyperpol

MD

EOM-CCSD

Figure 36: Psi4NumPy draws linear algebra tools from NumPy and fundamental quantum

chemistry structures from Psi4 to bring together a practical and convenient environment for

code development, verification, and exploration. The most important data structures and

functions are shown for NumPy and Psi4 as well as representative tutorial and reference

implementations presently in Psi4NumPy.
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of Psi4 has added the capability to import Psi4 as a Python module as well as continuing

to be called in an executable fashion. In this way, both the Psi4 and NumPy libraries can

be loaded into a single Python script and used in cooperation.

A key capacity in this enterprise is seamless translation between NumPy and Psi4 data

classes. For example, converting from a NumPy array to a Psi4 matrix and back again can

be easily accomplished:

Listing 4: Basic example of Psi4←→NumPy interoperability

1 import numpy , psi4

2 np_array = numpy.zeros ((5, 5))

3 psi4_matrix = psi4.core.Matrix.from_array(np_array)

4 new_np_array = numpy.array(psi4_matrix)

At the core of this procedure is NumPy’s array interface304 protocol, a basic specification

for dense matrices consisting of

1. (a) the starting memory location for an in-memory array

2. (b) the overall “shape” of the array [(n, ) for a vector, (n,m) for a matrix, etc.]

3. (c) the type of data involved (double64, int32, etc.)

This specification is compact and widely used amongst the scientific Python community in a

variety of scenarios. Using the array interface, it becomes straightforward to allow NumPy

access to a Psi4 data class, allowing both Psi4 and NumPy to access and manipulate the

same data. For example, the below will overwrite the Psi4 Matrix class in place with a

random NumPy array:

Listing 5: Mutating a Psi4 Matrix directly from a NumPy routine

1 psi4_matrix.np[:] = numpy.random.rand(5, 5)

In this way the typical separation between general tensor frameworks and custom quantum

chemistry data structures is removed.

A description of the full set of capabilities of the array interface is available in the

Psi4 documentation: http://psicode.org/psi4manual/master/numpy.html.
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6.3.1 Wavefunction Objects

In Psi4 all built-in methodologies have the option to return a Wavefunction object that

holds basic information about the previous computation or, in some cases, holds functions for

readily computing advanced quantities. Obtaining the Wavefunction object in this manner is

straightforward:

Listing 6: Initializing a Psi4 computation from Python

1 mol = psi4.geometry ("""

2 O

3 H 1 0.96

4 H 1 0.96, 104.5

5 """)

6 hf_e , hf_wfn = psi4.energy ("HF/cc -pVDZ", molecule=mol , return_wfn=True)

Once a Wavefunction object is obtained, a variety of attributes can be queried using standard

Python syntax:

Listing 7: Obtaining Psi4 wavefunction data in Python

1 # Number of doubly occupied orbitals

2 docc = hf_wfn.ndocc()

3 # Alpha orbital coefficient matrix

4 Ca = hf_wfn.Ca()

5 # Occupied subset of the alpha orbitals

6 Ca_occ = hf_wfn.Ca_subset ("AO", "OCC")

In addition to generating useful information after a computation, a Wavefunction object can

also be passed as reference state to a further computation. For Psi4NumPy, this means

that reference implementations of post-Hartree–Fock methods (MPn, CCSD, etc.) need not

re-code their own Hartree–Fock program; this simultaneously reduces code duplication and

increases readability, both of which are cornerstones of the Psi4NumPy project.

6.3.2 Integrals

Psi4 offers a wide selection of efficient C++ tools accessible directly in Python. These tools

are largely object-based and capable of storing quantities in memory or on disk. One such

object is the libmints library,284 which is currently the primary interface for computing one-
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and two-electron integrals in Psi4. This library is accessible through the MintsHelper class

that directs the efficient computation and storage of molecular integrals Python-side:

Listing 8: Computing atomic orbital-basis integrals from Psi4 via Python

1 # Create instance of MintsHelper using primary basis set

2 mints = psi4.core.MintsHelper(primary_basis)

3 # Compute one -electron AO overlap matrix

4 S = mints.ao_overlap ()

5 # Compute core Hamiltonian matrix

6 T = mints.ao_kinetic ()

7 V = mints.ao_potential ()

8 H = T + V

9 # Compute two -electron integrals in AO basis in memory

10 I_ao = mints.ao_eri ()

Each of the above MintsHelper class methods returns a Psi4 matrix which can be converted

to a NumPy array using numpy.asarray(matrix) or modified in place with the matrix.np

accessor.

In addition to computing molecular integrals, the libmints library also performs optimized

electron repulsion integral (ERI) transformations. For example, the O(N5) transformation of

the two-electron integrals between the atomic orbital and molecular orbital basis, given by

(ia|jb) = [[Cµi [Cνa(µν|λσ)]]Cλj]Cσb, (6.1)

can be performed easily with:

Listing 9: Calling Psi4’s AO-to-MO transformation from Python

1 # Occupied and virtual subsets of SCF orbital coefficient matrices

2 Ca_occ = hf_wfn.Ca_subset ("AO", "OCC")

3 Ca_virt = hf_wfn.Ca_subset ("AO", "VIR")

4 # AO basis to MO basis in-memory ERI transform

5 I_mo = mints.mo_transform(Ca_occ , Ca_virt , I_ao , Ca_occ , Ca_virt)

In this manner, arbitrary ERI transformations may be performed, allowing both speed and

flexibility for constructing reference implementations.
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6.3.3 Coulomb and Exchange (JK) Matrix Objects

A key component in SCF-level theories is the contraction of the 4-index electron repulsion

integrals with the 2-index density matrix to form J and K matrices:

Jλσ[D] ≡ (λσ|µν)Dµν , (6.2)

Kλσ[D] ≡ (λµ|σν)Dµν (6.3)

Psi4 provides objects for computing generalized Coulomb (J) and Exchange (K) matrices,

with specialized algorithms for integral-direct, PK supermatrix,305 or density fitting (DF)

scenarios. For the DF-JK object, it is often advantageous to use a factorized form of the

density matrix,

Dµν ≡ C left
µp C

right
νp , (6.4)

where p is a general MO index. For example, in canonical Restricted Hartree Fock (RHF),

the density matrix takes the form of

DRHF
µν = CµiχiaCνa, (6.5)

where i runs only over occupied orbitals. The computation of the RHF JK matrices can be

translated directly to Python code with the following lines:

Listing 10: Building two-electron Fock matrix components using Psi4 via Python

1 # Create a JK object in the current primary basis set

2 jk = psi4.core.JK.build(primary_basis)

3 # Add the occupied parts of the SCF orbital matrix

4 jk.add_C_left(C_occupied)

5 jk.add_C_right(C_occupied)

6 # Perform the computation and obtain the J and K matrices

7 jk.compute ()

8 J = jk.J()

9 K = jk.K()

In this fashion, virtually any SCF-level theory can be formulated at the Psi4NumPy layer

by handling only 2-D arrays with NumPy (typically by threaded vendor BLAS) and leaving

the 3- and 4-D arrays to Psi4 libraries (using optimized C++ routines). Thus, SCF-level

theories can be implemented with the same efficiency as their pure C++ counterparts.
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To illustrate this point, the Psi4 SCF program is compared against a Psi4NumPy

implementation on an Intel i7-5930K processor with the adenine·thymine complex in the aug-

cc-pVTZ basis (1127 basis functions) using a density-fitted JK build on six cores. The Psi4

SCF program took 250 seconds while the Psi4NumPy implementation took 245 seconds. This

should not be surprising as each spent 94% total wall time computing the J and K quantities

(both implementations used 18 SCF iterations) and all other operations of nonnegligible cost

use the same BLAS implementations.

6.4 RAPID DEVELOPMENT

A key component of the Psi4NumPy framework is to provide an easy-to-use development

environment for rapid prototyping. Vital to this is NumPy’s einsum function that performs

arbitrary tensor contractions using Einstein summation syntax. For example, the atomic

orbital to molecular orbital 4-index transformation of Eq. (6.1) and code snippet 9 could be

accomplished by:

Listing 11: Performing an AO-to-MO transformation using NumPy’s einsum

1 I_mo = numpy.einsum ("pi ,qa ,pqrs ,rj ,sb ->iajb",

2 Ca_occ , Ca_virt , I_ao ,

3 Ca_occ , Ca_virt)

Recently, one of us (D.G.A.S.) modified NumPy’s einsum function so that it will automatically

factorize the incoming tensor expression to reduce the cost of the operation from naive O(N8)

to the conventional O(N5) version. This feature is available in NumPy 1.12 and onwards,

with additional optimizations and BLAS usage occurring in NumPy 1.14. In addition, a

drop-in replacement for the einsum function, which makes optimal use of vendor BLAS, can

be found through the Optimized Einsum project.306

Using the einsum function, it is straightforward to transcribe existing equations directly

into working code without a compilation stage. While the resulting program is not as efficient

for post-SCF level theories as a full implementation in a low-level language, the code is easy

to read and modify without the need for compilation, allowing considerable flexibility when
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prototyping. In addition, the resulting program will provide correct answers for the given

expressions, sparing the developer any worry whether low-level code is correct.

As an example of rapid prototyping, we use a temporary CCSD quantity in the Direct

Product Decomposition formalism.307 For virtual indices a, b, c, d and occupied indices i, j, k,

Equation 8 of Ref. [307] is written as:

Wjaci = 〈ja||ci〉+ tdi 〈ja||cd〉 − tak〈jk||ci〉 − (
1

2
tdaik + tdi t

a
k)〈jk||cd〉, (6.6)

which can be directly translated into a function:

Listing 12: Example of forming a coupled cluster intermediate using NumPy and einsum

1 def build_Wjaci(T1 , T2 , MO):

2 Wjaci = MO[o, v, v, o].copy()

3 Wjaci += numpy.einsum ("jid ,jacd ->jaci", T1, MO[o, v, v, v])

4 Wjaci -= numpy.einsum ("ka ,jkci ->jaci", T1, MO[o, o, v, o])

5 tmp = 0.5 * T2 + numpy.einsum ("jid ,ka ->ikda", T1 , T1)

6 Wjaci -= numpy.einsum ("ikda ,jkcd ->jaci , tmp , MO[o, o, v, v])

7 return Wjaci

Here, MO holds the 4-index antisymmetrized integrals, T1 and T2 the current amplitudes, and

the o, v quantities are Python-based slices so that MO[o, v, v, v] returns the occupied-

virtual-virtual-virtual blocks of the antisymmetrized integrals.

To our knowledge, the first implementations of Symmetry-Adapted Perturbation The-

ory with Complete Active Space SCF references [SAPT(CASSCF)], fourth-order Electron

Propagator Theory, and transcorrelated theories have all been achieved using these rapid

prototyping techniques.

6.5 ACCESS AND CONTRIBUTIONS

To ensure ease of community access to the Psi4NumPy project, all software dependencies

are made available as binary Conda packages308 either by us (e.g., Psi4), or by ContinuumIO

or Intel (e.g., NumPy, Matplotlib, Jupyter). Through this route, binary distributions are

installable in a single line to all common computing platforms, so users are not required to

compile, link against the correct libraries, or debug runtime issues. We hope that the ready
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accessibility of these tools facilitates their use in methods development and in the creation of

additional publicly available reference implementations.

To lower the barrier to contribution, guidance is included in the repository regarding

attribution, citations, and testing. Though the authors adhere to Python software develope-

ment best practices in their other projects, they resist advanced Python syntax, organization,

file linking, or other jargon-ized code in Psi4NumPy in favor of straightforward scripts and

Jupyter notebooks for ease of community involvement. Educators are encouraged to base

lessons and labs off this work and are also referred to the Psi4Education project.309

6.6 REFERENCE IMPLEMENTATIONS

To illustrate the Psi4NumPy tools, and to provide a resource to the quantum chemistry

methods development community, we have created a number of reference implementations

and made them publicly available on GitHub at https://github.com/psi4/psi4numpy. We

intend to add to this collection over time. Given the wide spectrum of quantum chemical

methods, we also encourage submissions from other developers.

The Psi4NumPy reference implementations, while not necessarily as efficient as optimized

versions in a low-level language, furnish at least the basic requirements for a programmer to

reproduce the methodology. These references provide a medium to explain minute details that

might be included in a corresponding paper and to record algorithmic tricks used to improve

numerical stability or computational efficiency. In addition, these clear implementations will

make explicit any important steps that might not be mentioned in a paper because they are

assumed to be background knowledge in a given subfield of quantum chemistry.

Programmers can use these reference implementations to obtain intermediate quantities

to validate a new implementation at every step, ensuring accuracy and assisting in the process

of debugging a new program. These reference implementations can also be used as starting

points for either building upon existing methodologies or exploring new methodologies in

combination with the rapid prototyping aspects of this project.

Current reference implementations include
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1. Self-Consistent Field

a. Restricted simple and DIIS98-accelerated Hartree–Fock

b. Restricted, Unrestricted, and Restricted Open-Shell Hartree–Fock

c. Restricted, Unrestricted, and Restricted Open-Shell Hartree–Fock time-independent

orbital Hessians

d. Restricted time-dependent Hartree–Fock and coupled-perturbed Hartree–Fock for

dipole polarizabilities

e. Restricted nuclear gradients and Hessians

2. Many-Body Perturbation Theory

a. Canonical and density-fitted MP2

b. Spin-integrated and spin-orbital MP3

c. Arbitrary-order MP

3. Coupled-Cluster

a. Simple and DIIS-accelerated CCSD

b. CCSD(T)

c. CCSD dipole polarizabilities

d. Time-dependent equation-of-motion CCSD

4. Configuration Interaction

a. Excited-state CIS

b. Canonical and Davidson–Liu CISD

c. Full configuration interaction

5. Symmetry-Adapted Perturbation Theory

a. Restricted and Restricted Open-Shell SAPT0

b. Atomic orbital implementation of SAPT0

6. Electron Propagator Theory

a. Spin-integrated and spin-orbital EP2

b. Spin-orbital EP3
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Figure 37: Extract from a Jupyter notebook demonstrating the construction of a SCF Fock

matrix where I is the 4-index electron repulsion integral array and Cocc is the occupied

orbital matrix.

6.6.1 Jupyter Notebook integration

As a service to the community, some of the reference implementations have been augmented by

additional, tutorial-style background information on various subfields of quantum chemistry.

We found it convenient to add this additional information using the Jupyter notebook

web application,310 a popular Integrated Development Environment (IDE) for interactive

computing in several programming languages that is starting to be adopted by chemists.311

An example for restricted Hartree–Fock can be found in Fig. 37.

These documents may be unique within quantum chemistry in that they focus not only

on theoretical considerations but also on the details of a method’s implementation, such

as why certain programming choices were made. For example, the comparison between

a general matrix inversion and solving a set of linear equations demonstrates instability

issues that often plague the former technique. Such illustrations should make the Jupyter

implementations useful both to new users in quantum chemistry and to experienced users

202



interested in exploring new subfields.

Current tutorial-style Jupyter reference implementations include

1. Introductions to the Psi4NumPy methodology

2. Introduction to Hartree–Fock, DIIS, and density fitting

3. Density Functional Theory: grids, LDA kernels, VV10 dispersion, and asymptotic correc-

tions

4. Møller–Plesset: canonical and density-fitted reference implementations of MP2

5. Molecular Properties: Integrals, CPHF, CIS

6. Symmetry-Adapted Perturbation Theory: Canonical and atomic orbital algorithms

7. Orbital-Optimized Methods: OMP2

8. Coupled-Cluster Approximations: CEPA0, CCD

9. Geometry Optimization Techniques: Internal Coordinates, Hessian guesses, and advanced

Newton-Raphson methods

Molecular-dynamics tutorials include

1. Periodic Lennard-Jones simulation with Verlet integrators

2. Periodic Ewald Electostatic summation

6.7 CONCLUSIONS

We believe that the benefits of the Psi4NumPy framework to the computational chem-

istry community are threefold. Beginning researchers can use the Psi4NumPy reference

implementations for education. Reference implementations convey not just the underlying

mathematical formulas of a given theory, but how to implement these formulas in a manner

that avoids common pitfalls such as ill-conditioned numerical equations. Psi4NumPy is

likely the most interactive educational resource available in this field: thanks to the Jupyter

Notebook format, the learners can explore the implementation step by step and easily try

out various modifications and additional approximations.
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More advanced researchers who need to reimplement and/or modify a given computational

chemistry approach can use the Psi4NumPy reference implementations for validation, taking

advantage of the code that, thanks to the extensive use of the NumPy einsum functionality,

provides a nearly one-to-one correspondence between the terms in a formula and the lines

of Python code. As a result, it is trivial to switch off, for debugging purposes, any subset

of terms as well as generate an arbitrary intermediate without even recompiling any code.

This feature should be contrasted with the situation when one tries to validate their code

against a C++/Fortran implementation from an established electronic-structure package.

Once the relevant fragment of code that does the actual computation is found (which is

not always trivial), various terms are typically combined in nontrivial ways to improve

computational performance. As a result, getting out a specific intermediate for checking

the implementation in progress often requires substantive changes to the reference code, not

to mention its recompilation. In addition, we include the programmed formulas together

with their implementation in the Jupyter Notebook to alleviate difficulties associated with

incompatible notation or even errors in the originally published expressions.

Finally, for researchers who want to develop new functionality, Psi4NumPy is a highly

valuable platform for initial implementation that is efficient enough for meaningful testing,

quick to generate, easy to debug, and has few opportunities for programming errors. All

underlying quantum-chemistry building blocks such as integrals, orbitals, density matrices,

and CI vectors are efficiently computed by Psi4 and readily imported in the NumPy format.

In particular, a Psi4NumPy implementation of any one-electron theory such as HF or DFT

is already close to optimal as the most expensive operations are all written in terms of

generalized Coulomb and exchange matrices which are supplied by Psi4. Some of us, together

with their collaborators, have already taken advantage of the Psi4NumPy capabilities to

rapidly generate pilot implementations of brand new electronic-structure approaches.
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6.9 SUPPORTING INFORMATION

Documents reproducing all currently available reference implementations and interactive

tutorials are available free of charge via the Internet at https://zenodo.org/record/

1134320. For all future materials, please see https://github.com/psi4/psi4numpy. The

code found in sections 6.9.1 and 6.9.2 was merged in commit hash 066f378.

6.9.1 Hyperpolarizability Reference Implementation

1 """

2 Helper classes and functions for molecular properties requiring

3 solution of CPHF equations.

4 """

5

6 __authors__ = "Daniel G. A. Smith"

7 __credits__ = ["Daniel G. A. Smith", "Eric J. Berquist"]

8

9 __copyright__ = "(c) 2014-2017, The Psi4NumPy Developers"

10 __license__ = "BSD-3-Clause"

11 __date__ = "2017-8-30"

12

13 import time

14 import numpy as np

15 np.set_printoptions(precision=5, linewidth=200, suppress=True)

16 import psi4

17

18 import os.path

19 import sys

205

https://zenodo.org/record/1134320
https://zenodo.org/record/1134320
https://github.com/psi4/psi4numpy
https://github.com/psi4/psi4numpy/tree/066f378f26240a4802371ef32849230853581329


20 dirname = os.path.dirname(os.path.abspath(__file__))

21 sys.path.append(os.path.join(dirname, '../../Self-Consistent-Field'))

22 from helper_HF import DIIS_helper

23

24

25 class helper_CPHF(object):

26

27 def __init__(self, mol, numpy_memory=2):

28

29 self.mol = mol

30 self.numpy_memory = numpy_memory

31

32 # Compute the reference wavefunction and CPHF using Psi

33 scf_e, self.scf_wfn = psi4.energy('SCF', return_wfn=True)

34

35 self.C = self.scf_wfn.Ca()

36 self.Co = self.scf_wfn.Ca_subset("AO", "OCC")

37 self.Cv = self.scf_wfn.Ca_subset("AO", "VIR")

38 self.epsilon = np.asarray(self.scf_wfn.epsilon_a())

39

40 self.nbf = self.scf_wfn.nmo()

41 self.nocc = self.scf_wfn.nalpha()

42 self.nvir = self.nbf - self.nocc

43

44 # Integral generation from Psi4's MintsHelper

45 self.mints = psi4.core.MintsHelper(self.scf_wfn.basisset())

46

47 # Get nbf and ndocc for closed shell molecules

48 print('\nNumber of occupied orbitals: %d' % self.nocc)

49 print('Number of basis functions: %d' % self.nbf)

50

51 # Grab perturbation tensors in MO basis

52 nCo = np.asarray(self.Co)

53 nCv = np.asarray(self.Cv)

54 self.tmp_dipoles = self.mints.so_dipole()

55 self.dipoles_xyz = []

56 for num in range(3):

57 Fso = np.asarray(self.tmp_dipoles[num])

58 Fia = (nCo.T).dot(Fso).dot(nCv)

59 Fia *= -2

60 self.dipoles_xyz.append(Fia)

61

62 self.x = None

63 self.rhsvecs = None

64

65 def run(self, method='direct', omega=None):

66 self.method = method

67 if self.method == 'direct':

68 if not omega:

69 self.solve_static_direct()

70 else:

71 self.solve_dynamic_direct(omega=omega)

72 elif self.method == 'iterative':

73 if not omega:
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74 self.solve_static_iterative()

75 else:

76 self.solve_dynamic_iterative(omega=omega)

77 else:

78 raise Exception("Method %s is not recognized" % self.method)

79 self.form_polarizability()

80

81 def solve_static_direct(self):

82 # Run a quick check to make sure everything will fit into memory

83 I_Size = (self.nbf ** 4) * 8.e-9

84 oNNN_Size = (self.nocc * self.nbf ** 3) * 8.e-9

85 ovov_Size = (self.nocc * self.nocc * self.nvir * self.nvir) * 8.e-9

86 print("\nTensor sizes:")

87 print("ERI tensor %4.2f GB." % I_Size)

88 print("oNNN MO tensor %4.2f GB." % oNNN_Size)

89 print("ovov Hessian tensor %4.2f GB." % ovov_Size)

90

91 # Estimate memory usage

92 memory_footprint = I_Size * 1.5

93 if I_Size > self.numpy_memory:

94 psi4.core.clean()

95 raise Exception("Estimated memory utilization (%4.2f GB) exceeds numpy_memory

\↪→

96 limit of %4.2f GB." % (memory_footprint, self.numpy_memory))

97

98 # Compute electronic Hessian

99 print('\nForming Hessian...')

100 t = time.time()

101 docc = np.diag(np.ones(self.nocc))

102 dvir = np.diag(np.ones(self.nvir))

103 eps_diag = self.epsilon[self.nocc:].reshape(-1, 1) - self.epsilon[:self.nocc]

104

105 # Form [o,N,N,N ] MO tensor, oN4 cost

106 MO = np.asarray(self.mints.mo_eri(self.Co, self.C, self.C, self.C))

107

108 H = np.einsum('ai,ij,ab->iajb', eps_diag, docc, dvir)

109 H += 4 * MO[:, self.nocc:, :self.nocc, self.nocc:]

110 H -= MO[:, self.nocc:, :self.nocc, self.nocc:].swapaxes(0, 2)

111

112

113 H -= MO[:, :self.nocc, self.nocc:, self.nocc:].swapaxes(1, 2)

114

115 print('...formed Hessian in %.3f seconds.' % (time.time() - t))

116

117 # Invert Hessian (o3v3)
118 print('\nInverting Hessian...')

119 t = time.time()

120 Hinv = np.linalg.inv(H.reshape(self.nocc * self.nvir, -1)).reshape(self.nocc,

self.nvir, self.nocc, self.nvir)↪→

121 print('...inverted Hessian in %.3f seconds.' % (time.time() - t))

122

123 # Form perturbation response vector for each dipole component

124 self.x = []

125 for numx in range(3):
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126 xcomp = np.einsum('iajb,ia->jb', Hinv, self.dipoles_xyz[numx])

127 self.x.append(xcomp.reshape(-1))

128

129 self.rhsvecs = []

130 for numx in range(3):

131 rhsvec = self.dipoles_xyz[numx].reshape(-1)

132 self.rhsvecs.append(rhsvec)

133

134 def solve_dynamic_direct(self, omega=0.0):

135 # Adapted completely from TDHF.py

136

137 eps_v = self.epsilon[self.nocc:]

138 eps_o = self.epsilon[:self.nocc]

139

140 t = time.time()

141 I = self.mints.ao_eri()

142 v_ijab = np.asarray(self.mints.mo_transform(I, self.Co, self.Co, self.Cv,

self.Cv))↪→

143 v_iajb = np.asarray(self.mints.mo_transform(I, self.Co, self.Cv, self.Co,

self.Cv))↪→

144 print('Integral transform took %.3f seconds\n' % (time.time() - t))

145

146 # Since we are time dependent we need to build the full Hessian:

147 # | A B | | D S | | x | | b |

148 # | B A | - w | S -D | | -x | = | -b |

149

150 # Build A and B blocks

151 t = time.time()

152 A11 = np.einsum('ab,ij->iajb', np.diag(eps_v), np.diag(np.ones(self.nocc)))

153 A11 -= np.einsum('ij,ab->iajb', np.diag(eps_o), np.diag(np.ones(self.nvir)))

154 A11 += 2 * v_iajb

155 A11 -= v_ijab.swapaxes(1, 2)

156 A11 *= 2

157

158 B11 = -2 * v_iajb

159 B11 += v_iajb.swapaxes(0, 2)

160 B11 *= 2

161

162 # Reshape and jam it together

163 nov = self.nocc * self.nvir

164 A11.shape = (nov, nov)

165 B11.shape = (nov, nov)

166

167 Hess1 = np.hstack((A11, B11))

168 Hess2 = np.hstack((B11, A11))

169 Hess = np.vstack((Hess1, Hess2))

170

171 S11 = np.zeros_like(A11)

172 D11 = np.zeros_like(B11)

173 S11[np.diag_indices_from(S11)] = 2

174

175 S1 = np.hstack((S11, D11))

176 S2 = np.hstack((D11, -S11))

177 S = np.vstack((S1, S2))
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178 S *= omega

179 print('Hessian formation took %.3f seconds\n' % (time.time() - t))

180

181 t = time.time()

182 Hinv = np.linalg.inv(Hess - S)

183 print('Hessian inversion took %.3f seconds\n' % (time.time() - t))

184

185 self.x = []

186 self.rhsvecs = []

187 for numx in range(3):

188 rhsvec = self.dipoles_xyz[numx].reshape(-1)

189 rhsvec = np.concatenate((rhsvec, -rhsvec))

190 xcomp = Hinv.dot(rhsvec)

191 self.rhsvecs.append(rhsvec)

192 self.x.append(xcomp)

193

194 def solve_static_iterative(self, maxiter=20, conv=1.e-9, use_diis=True):

195

196 # Init JK object

197 jk = psi4.core.JK.build(self.scf_wfn.basisset())

198 jk.initialize()

199

200 # Add blank matrices to the jk object and numpy hooks to C_right

201 npC_right = []

202 for xyz in range(3):

203 jk.C_left_add(self.Co)

204 mC = psi4.core.Matrix(self.nbf, self.nocc)

205 npC_right.append(np.asarray(mC))

206 jk.C_right_add(mC)

207

208 # Build initial guess, previous vectors, diis object, and C_left updates

209 self.x = []

210 x_old = []

211 diis = []

212 ia_denom = - self.epsilon[:self.nocc].reshape(-1, 1) + self.epsilon[self.nocc:]

213 for xyz in range(3):

214 self.x.append(self.dipoles_xyz[xyz] / ia_denom)

215 x_old.append(np.zeros(ia_denom.shape))

216 diis.append(DIIS_helper())

217

218 # Convert Co and Cv to numpy arrays

219 Co = np.asarray(self.Co)

220 Cv = np.asarray(self.Cv)

221

222 print('\nStarting CPHF iterations:')

223 t = time.time()

224 for CPHF_ITER in range(1, maxiter + 1):

225

226 # Update jk's C_right

227 for xyz in range(3):

228 npC_right[xyz][:] = Cv.dot(self.x[xyz].T)

229

230 # Compute JK objects

231 jk.compute()
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232

233 # Update amplitudes

234 for xyz in range(3):

235 # Build J and K objects

236 J = np.asarray(jk.J()[xyz])

237 K = np.asarray(jk.K()[xyz])

238

239 # Bulid new guess

240 X = self.dipoles_xyz[xyz].copy()

241 X -= (Co.T).dot(4 * J - K.T - K).dot(Cv)

242 X /= ia_denom

243

244 # DIIS for good measure

245 if use_diis:

246 diis[xyz].add(X, X - x_old[xyz])

247 X = diis[xyz].extrapolate()

248 self.x[xyz] = X.copy()

249

250 # Check for convergence

251 rms = []

252 for xyz in range(3):

253 rms.append(np.max((self.x[xyz] - x_old[xyz]) ** 2))

254 x_old[xyz] = self.x[xyz]

255

256 avg_RMS = sum(rms) / 3

257 max_RMS = max(rms)

258

259 if max_RMS < conv:

260 print('CPHF converged in %d iterations and %.2f seconds.' % (CPHF_ITER,

time.time() - t))↪→

261 self.rhsvecs = []

262 for numx in range(3):

263 rhsvec = self.dipoles_xyz[numx].reshape(-1)

264 self.rhsvecs.append(rhsvec)

265 self.x[numx] = self.x[numx].reshape(-1)

266 break

267

268 print('CPHF Iteration %3d: Average RMS = %3.8f Maximum RMS = %3.8f' %

269 (CPHF_ITER, avg_RMS, max_RMS))

270

271 def solve_dynamic_iterative(self, omega=0.0, maxiter=20, conv=1.e-9, use_diis=True):

272

273 # Init JK object

274 jk = psi4.core.JK.build(self.scf_wfn.basisset())

275 jk.initialize()

276

277 # Add blank matrices to the JK object and NumPy hooks to

278 # C_right; there are 6 sets of matrices to account for X and Y

279 # vectors separately.

280 npC_right = []

281 for xyz in range(6):

282 jk.C_left_add(self.Co)

283 mC = psi4.core.Matrix(self.nbf, self.nocc)

284 npC_right.append(np.asarray(mC))
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285 jk.C_right_add(mC)

286

287 # Build initial guess, previous vectors, diis object, and C_left updates

288 x_l, x_r = [], []

289 x_l_old, x_r_old = [], []

290 diis_l, diis_r = [], []

291 ia_denom_l = self.epsilon[self.nocc:] - self.epsilon[:self.nocc].reshape(-1, 1) -

omega↪→

292 ia_denom_r = self.epsilon[self.nocc:] - self.epsilon[:self.nocc].reshape(-1, 1) +

omega↪→

293 for xyz in range(3):

294 x_l.append(self.dipoles_xyz[xyz] / ia_denom_l)

295 x_r.append(self.dipoles_xyz[xyz] / ia_denom_r)

296 x_l_old.append(np.zeros(ia_denom_l.shape))

297 x_r_old.append(np.zeros(ia_denom_r.shape))

298 diis_l.append(DIIS_helper())

299 diis_r.append(DIIS_helper())

300

301 # Convert Co and Cv to numpy arrays

302 Co = np.asarray(self.Co)

303 Cv = np.asarray(self.Cv)

304

305 print('\nStarting CPHF iterations:')

306 t = time.time()

307 for CPHF_ITER in range(1, maxiter + 1):

308

309 # Update jk's C_right; ordering is Xx, Xy, Xz, Yx, Yy, Yz

310 for xyz in range(3):

311 npC_right[xyz][:] = Cv.dot(x_l[xyz].T)

312 npC_right[xyz + 3][:] = Cv.dot(x_r[xyz].T)

313

314 # Perform generalized J/K build

315 jk.compute()

316

317 # Update amplitudes

318 for xyz in range(3):

319 # Build J and K objects

320 J_l = np.asarray(jk.J()[xyz])

321 K_l = np.asarray(jk.K()[xyz])

322 J_r = np.asarray(jk.J()[xyz + 3])

323 K_r = np.asarray(jk.K()[xyz + 3])

324

325 # Bulid new guess

326 X_l = self.dipoles_xyz[xyz].copy()

327 X_r = self.dipoles_xyz[xyz].copy()

328 X_l -= (Co.T).dot(2 * J_l - K_l).dot(Cv)

329 X_r -= (Co.T).dot(2 * J_r - K_r).dot(Cv)

330 X_l /= ia_denom_l

331 X_r /= ia_denom_r

332

333 # DIIS for good measure

334 if use_diis:

335 diis_l[xyz].add(X_l, X_l - x_l_old[xyz])

336 X_l = diis_l[xyz].extrapolate()
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337 diis_r[xyz].add(X_r, X_r - x_r_old[xyz])

338 X_r = diis_r[xyz].extrapolate()

339 x_l[xyz] = X_l.copy()

340 x_r[xyz] = X_r.copy()

341

342 # Check for convergence

343 rms = []

344 for xyz in range(3):

345 rms_l = np.max((x_l[xyz] - x_l_old[xyz]) ** 2)

346 rms_r = np.max((x_r[xyz] - x_r_old[xyz]) ** 2)

347 rms.append(max(rms_l, rms_r))

348 x_l_old[xyz] = x_l[xyz]

349 x_r_old[xyz] = x_r[xyz]

350

351 avg_RMS = sum(rms) / 3

352 max_RMS = max(rms)

353

354 if max_RMS < conv:

355 print('CPHF converged in %d iterations and %.2f seconds.' % (CPHF_ITER,

time.time() - t))↪→

356 self.rhsvecs = []

357 for numx in range(3):

358 rhsvec = self.dipoles_xyz[numx].reshape(-1)

359 self.rhsvecs.append(np.concatenate((rhsvec, -rhsvec)))

360 self.x.append(np.concatenate((x_l[numx].reshape(-1),

361 x_r[numx].reshape(-1))))

362 break

363

364 print('CPHF Iteration %3d: Average RMS = %3.8f Maximum RMS = %3.8f' %

365 (CPHF_ITER, avg_RMS, max_RMS))

366

367 def form_polarizability(self):

368 self.polar = np.empty((3, 3))

369 for numx in range(3):

370 for numf in range(3):

371 self.polar[numx, numf] = self.x[numx].dot(self.rhsvecs[numf])

372

373 if __name__ == '__main__':

374 print('\n')

375 print('@test_CPHF running CPHF.py')

376

377 from CPHF import *

378

379 from helper_CPHF import helper_CPHF

380

381 helper = helper_CPHF(mol)

382

383 print('\n')

384 print('@test_CPHF running solve_static_direct')

385

386 helper.solve_static_direct()

387 helper.form_polarizability()

388 assert np.allclose(polar, helper.polar, rtol=0, atol=1.e-5)

389
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390 print('\n')

391 print('@test_CPHF running solve_static_iterative')

392

393 helper.solve_static_iterative()

394 helper.form_polarizability()

395 assert np.allclose(polar, helper.polar, rtol=0, atol=1.e-5)

396

397 f = 0.0

398

399 print('\n')

400 print('@test_CPHF running solve_dynamic_direct ({})'.format(f))

401

402 helper.solve_dynamic_direct(omega=f)

403 helper.form_polarizability()

404 assert np.allclose(polar, helper.polar, rtol=0, atol=1.e-5)

405

406 print('\n')

407 print('@test_CPHF running solve_dynamic_iterative ({})'.format(f))

408

409 helper.solve_dynamic_iterative(omega=f)

410 helper.form_polarizability()

411 assert np.allclose(polar, helper.polar, rtol=0, atol=1.e-5)

412

413 f = 0.0773178

414 ref = np.array([

415 [8.19440121, 0.00000000, 0.00000000],

416 [0.00000000, 12.75967150, 0.00000000],

417 [0.00000000, 0.00000000, 10.25213939]

418 ])

419

420 print('\n')

421 print('@test_CPHF running solve_dynamic_direct ({})'.format(f))

422

423 helper.solve_dynamic_direct(omega=f)

424 helper.form_polarizability()

425 assert np.allclose(ref, helper.polar, rtol=0, atol=1.e-5)

426

427 print('\n')

428 print('@test_CPHF running solve_dynamic_iterative ({})'.format(f))

429

430 helper.solve_dynamic_iterative(omega=f)

431 helper.form_polarizability()

432 assert np.allclose(ref, helper.polar, rtol=0, atol=1.e-5)

1 """

2 A reference implementation to compute the first dipole

3 hyperpolarizability £\beta£ from a restricted HF reference using the

4 £2n+1£ rule from perturbation theory.

5

6 References:

7 Equations taken from [Karna:1991:487], http://dx.doi.org/10.1002/jcc.540120409

8 """

9

10 __authors__ = "Eric J. Berquist"
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11 __credits__ = ["Eric J. Berquist"]

12

13 __copyright__ = "(c) 2014-2017, The Psi4NumPy Developers"

14 __license__ = "BSD-3-Clause"

15 __date__ = "2017-08-26"

16

17 from itertools import permutations, product

18

19 import numpy as np

20 np.set_printoptions(precision=5, linewidth=200, suppress=True)

21 import psi4

22 from helper_CPHF import helper_CPHF

23

24 # Memory for Psi4 in GB

25 psi4.set_memory('2 GB')

26 psi4.core.set_output_file("output.dat", False)

27

28 mol = psi4.geometry("""

29 O

30 H 1 1.1

31 H 1 1.1 2 104

32 symmetry c1

33 """)

34

35 # Set options for CPHF

36 psi4.set_options({"basis": "aug-cc-pvdz",

37 "scf_type": "direct",

38 "df_scf_guess": False,

39 "e_convergence": 1e-9,

40 "d_convergence": 1e-9})

41

42 # Compute the (first) hyperpolarizability corresponding to static

43 # fields, beta(0;0,0), eqns. (IV-2a) and (VII-4).

44

45 helper = helper_CPHF(mol)

46 # For the 2n+ 1 rule, the quadratic response starting quantities must

47 # come from linear response.

48 helper.run()

49

50 na = np.newaxis

51 moenergies = helper.epsilon

52 C = np.asarray(helper.C)

53 Co = helper.Co

54 Cv = helper.Cv

55 nbf, norb = C.shape

56 nocc = Co.shape[1]

57 nvir = norb - nocc

58 nov = nocc * nvir

59 x = np.asarray(helper.x)

60 ncomp = x.shape[0]

61 integrals_ao = np.asarray([np.asarray(dipole_ao_component)

62 for dipole_ao_component in helper.tmp_dipoles])

63

64 # form full MO-basis dipole integrals
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65 integrals_mo = np.empty(shape=(ncomp, norb, norb))

66 for i in range(ncomp):

67 integrals_mo[i] = (C.T).dot(integrals_ao[i]).dot(C)

68

69 # repack response vectors to [norb, norb]; 1/2 is due to X + Y

70 U = np.zeros_like(integrals_mo)

71 for i in range(ncomp):

72 U[i, :nocc, nocc:] = 0.5 * x[i].reshape(nocc, nvir)

73 U[i, nocc:, :nocc] = -0.5 * x[i].reshape(nocc, nvir).T

74

75 # form G matrices from perturbation and generalized Fock matrices; do

76 # one more Fock build for each response vector

77 jk = psi4.core.JK.build(helper.scf_wfn.basisset())

78 jk.initialize()

79 G = np.empty_like(U)

80 R = psi4.core.Matrix(nbf, nocc)

81 npR = np.asarray(R)

82 for i in range(ncomp):

83 V = integrals_mo[i]

84

85 # eqn. (III-1b) Note: this simplified handling of the response

86 # vector transformation for the Fock build is insufficient for

87 # frequency-dependent response.

88 jk.C_clear()

89 # Psi4's JK builders don't take a density, but a left set of

90 # coefficients with shape [nbf, nocc] and a right set of

91 # coefficents with shape [nbf, nocc]. Because the response vector

92 # describes occ -> vir transitions, we perform ([nocc, nvir] *

93 # [nbf, nvir]^T)^T.

94 L = Co

95 npR[:] = x[i].reshape(nocc, nvir).dot(np.asarray(Cv).T).T

96 jk.C_left_add(L)

97 jk.C_right_add(R)

98 jk.compute()

99 # 1/2 is due to X + Y

100 J = 0.5 * np.asarray(jk.J()[0])

101 K = 0.5 * np.asarray(jk.K()[0])

102

103 # eqn. (21b)

104 F = (C.T).dot(4 * J - K.T - K).dot(C)

105 G[i] = V + F

106

107 # form epsilon matrices, eqn. (34)

108 E = G.copy()

109 omega = 0

110 for i in range(ncomp):

111 eoU = (moenergies[..., na] + omega) * U[i]

112 Ue = U[i] * moenergies[na]

113 E[i] += (eoU - Ue)

114

115 # Assume some symmetry and calculate only part of the tensor.

116 # eqn. (VII-4)

117 hyperpolarizability = np.zeros(shape=(6, 3))

118 off1 = [0, 1, 2, 0, 0, 1]
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119 off2 = [0, 1, 2, 1, 2, 2]

120 for r in range(6):

121 b = off1[r]

122 c = off2[r]

123 for a in range(3):

124 tl1 = 2 * np.trace(U[a].dot(G[b]).dot(U[c])[:nocc, :nocc])

125 tl2 = 2 * np.trace(U[a].dot(G[c]).dot(U[b])[:nocc, :nocc])

126 tl3 = 2 * np.trace(U[c].dot(G[a]).dot(U[b])[:nocc, :nocc])

127 tr1 = np.trace(U[c].dot(U[b]).dot(E[a])[:nocc, :nocc])

128 tr2 = np.trace(U[b].dot(U[c]).dot(E[a])[:nocc, :nocc])

129 tr3 = np.trace(U[c].dot(U[a]).dot(E[b])[:nocc, :nocc])

130 tr4 = np.trace(U[a].dot(U[c]).dot(E[b])[:nocc, :nocc])

131 tr5 = np.trace(U[b].dot(U[a]).dot(E[c])[:nocc, :nocc])

132 tr6 = np.trace(U[a].dot(U[b]).dot(E[c])[:nocc, :nocc])

133 tl = tl1 + tl2 + tl3

134 tr = tr1 + tr2 + tr3 + tr4 + tr5 + tr6

135 hyperpolarizability[r, a] = -2 * (tl - tr)

136

137 ref_static = np.array([

138 [ 0.00000001, 0.00000000, 0.22843772],

139 [ 0.00000000, 0.00000000, -25.35476040],

140 [ 0.00000000, 0.00000000, -10.84023375],

141 [ 0.00000000, 0.00000000, 0.00000000],

142 [ 0.22843772, 0.00000000, 0.00000000],

143 [ 0.00000000, -25.35476040, 0.00000000]

144 ])

145 assert np.allclose(ref_static, hyperpolarizability, rtol=0.0, atol=1.0e-3)

146 print('\nFirst dipole hyperpolarizability (static):')

147 print(hyperpolarizability)

148

149 # Compute the (first) hyperpolarizability corresponding to

150 # second-harmonic generation, beta(-2w;w,w), eqns. (IV-2c) and

151 # (VII-1). Because two different frequencies are involved, the linear

152 # response equations must be solved twice.

153

154 print('Setting up for second-harmonic generation (SHG) calculation...')

155 # In SHG, the first frequency is doubled to obtain the second

156 # frequency. All variables containing '1' correspond to the first

157 # (set) frequency, and all variables containing '2' correspond to the

158 # second (doubled) frequency.

159 f1 = 0.0773178

160 f2 = 2 * f1

161

162 print('\nForming response vectors for {} a.u.'.format(f1))

163 helper1 = helper_CPHF(mol)

164 helper1.solve_dynamic_direct(omega=f1)

165 helper1.form_polarizability()

166 print(helper1.polar)

167 print('\nForming response vectors for {} a.u.'.format(f2))

168 helper2 = helper_CPHF(mol)

169 helper2.solve_dynamic_direct(omega=f2)

170 helper2.form_polarizability()

171 print(helper2.polar)

172
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173 rspvecs1 = helper1.x

174 rspvecs2 = helper2.x

175

176 # repack response vectors to [norb, norb]

177 U1 = np.zeros_like(integrals_mo)

178 U2 = np.zeros_like(integrals_mo)

179 for i in range(ncomp):

180 U1[i, :nocc, nocc:] = rspvecs1[i][nov:].reshape(nocc, nvir)

181 U1[i, nocc:, :nocc] = rspvecs1[i][:nov].reshape(nocc, nvir).T

182 U2[i, :nocc, nocc:] = rspvecs2[i][nov:].reshape(nocc, nvir)

183 U2[i, nocc:, :nocc] = rspvecs2[i][:nov].reshape(nocc, nvir).T

184

185 G1 = np.empty_like(U1)

186 G2 = np.empty_like(U2)

187 R1_l = psi4.core.Matrix(nbf, nocc)

188 R1_r = psi4.core.Matrix(nbf, nocc)

189 R2_l = psi4.core.Matrix(nbf, nocc)

190 R2_r = psi4.core.Matrix(nbf, nocc)

191 npR1_l = np.asarray(R1_l)

192 npR1_r = np.asarray(R1_r)

193 npR2_l = np.asarray(R2_l)

194 npR2_r = np.asarray(R2_r)

195 jk.C_clear()

196 jk.C_left_add(Co)

197 jk.C_right_add(R1_l)

198 jk.C_left_add(Co)

199 jk.C_right_add(R1_r)

200 jk.C_left_add(Co)

201 jk.C_right_add(R2_l)

202 jk.C_left_add(Co)

203 jk.C_right_add(R2_r)

204 nCo = np.asarray(Co)

205 # Do 4 Fock builds at a time: X/Y vectors for both frequencies; loop

206 # over operator components

207 for i in range(3):

208 V = integrals_mo[i]

209

210 x1 = U1[i, :nocc, :]

211 y1 = U1[i, :, :nocc]

212 x2 = U2[i, :nocc, :]

213 y2 = U2[i, :, :nocc]

214 npR1_l[:] = C.dot(x1.T)

215 npR1_r[:] = C.dot(y1)

216 npR2_l[:] = C.dot(x2.T)

217 npR2_r[:] = C.dot(y2)

218

219 jk.compute()

220

221 J1_l = -np.asarray(jk.J()[0])

222 K1_l = -np.asarray(jk.K()[0])

223 J1_r = np.asarray(jk.J()[1])

224 K1_r = np.asarray(jk.K()[1])

225 J2_l = -np.asarray(jk.J()[2])

226 K2_l = -np.asarray(jk.K()[2])
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227 J2_r = np.asarray(jk.J()[3])

228 K2_r = np.asarray(jk.K()[3])

229 J1 = J1_l + J1_r

230 J2 = J2_l + J2_r

231 K1 = K1_l + K1_r.T

232 K2 = K2_l + K2_r.T

233

234 F1 = (C.T).dot(2 * J1 - K1).dot(C)

235 F2 = (C.T).dot(2 * J2 - K2).dot(C)

236 G1[i, ...] = V + F1

237 G2[i, ...] = V + F2

238

239 # form epsilon matrices, eqn. (34), one for each frequency

240 E1 = G1.copy()

241 E2 = G2.copy()

242 for i in range(ncomp):

243 eoU1 = (moenergies[..., na] + f1) * U1[i]

244 Ue1 = U1[i] * moenergies[na]

245 E1[i] += (eoU1 - Ue1)

246 eoU2 = (moenergies[..., na] + f2) * U2[i]

247 Ue2 = U2[i] * moenergies[na]

248 E2[i] += (eoU2 - Ue2)

249

250 # Assume some symmetry and calculate only part of the tensor.

251

252 hyperpolarizability = np.zeros(shape=(6, 3))

253 for r in range(6):

254 b = off1[r]

255 c = off2[r]

256 for a in range(3):

257 tl1 = np.trace(U2[a].T.dot(G1[b]).dot(U1[c])[:nocc, :nocc])

258 tl2 = np.trace(U1[c].dot(G1[b]).dot(U2[a].T)[:nocc, :nocc])

259 tl3 = np.trace(U2[a].T.dot(G1[c]).dot(U1[b])[:nocc, :nocc])

260 tl4 = np.trace(U1[b].dot(G1[c]).dot(U2[a].T)[:nocc, :nocc])

261 tl5 = np.trace(U1[c].dot(-G2[a].T).dot(U1[b])[:nocc, :nocc])

262 tl6 = np.trace(U1[b].dot(-G2[a].T).dot(U1[c])[:nocc, :nocc])

263 tr1 = np.trace(U1[c].dot(U1[b]).dot(-E2[a].T)[:nocc, :nocc])

264 tr2 = np.trace(U1[b].dot(U1[c]).dot(-E2[a].T)[:nocc, :nocc])

265 tr3 = np.trace(U1[c].dot(U2[a].T).dot(E1[b])[:nocc, :nocc])

266 tr4 = np.trace(U2[a].T.dot(U1[c]).dot(E1[b])[:nocc, :nocc])

267 tr5 = np.trace(U1[b].dot(U2[a].T).dot(E1[c])[:nocc, :nocc])

268 tr6 = np.trace(U2[a].T.dot(U1[b]).dot(E1[c])[:nocc, :nocc])

269 tl = tl1 + tl2 + tl3 + tl4 + tl5 + tl6

270 tr = tr1 + tr2 + tr3 + tr4 + tr5 + tr6

271 hyperpolarizability[r, a] = 2 * (tl - tr)

272

273 # pylint: disable=C0326

274 ref = np.array([

275 [ 0.00000000, 0.00000000, 1.92505358],

276 [ 0.00000000, 0.00000000, -31.33652886],

277 [ 0.00000000, 0.00000000, -13.92830863],

278 [ 0.00000000, 0.00000000, 0.00000000],

279 [-1.80626084, 0.00000000, 0.00000000],

280 [ 0.00000000, -31.13504192, 0.00000000]
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281 ])

282 ref_avgs = np.array([0.00000000, 0.00000000, 45.69300223])

283 ref_avg = 45.69300223

284

285 thresh = 1.0e-2

286 # assert np.all(np.abs(ref - hyperpolarizability) < thresh)

287

288 print('hyperpolarizability: SHG, (-{}; {}, {}), symmetry-unique components'.format(f2,

f1, f1))↪→

289 print(hyperpolarizability)

290 print('ref')

291 print(ref)

292

293 # Transpose all frequency-doubled quantities (+2w) to get -2w.

294

295 for i in range(ncomp):

296 U2[i] = U2[i].T

297 G2[i] = -G2[i].T

298 E2[i] = -E2[i].T

299

300 # Assume some symmetry and calculate only part of the tensor. This

301 # time, work with the in-place manipulated quantities (this tests

302 # their correctness).

303

304 mU = (U2, U1)

305 mG = (G2, G1)

306 me = (E2, E1)

307

308 hyperpolarizability = np.zeros(shape=(6, 3))

309 off1 = [0, 1, 2, 0, 0, 1]

310 off2 = [0, 1, 2, 1, 2, 2]

311 for r in range(6):

312 b = off1[r]

313 c = off2[r]

314 for a in range(3):

315 tl1 = np.trace(mU[0][a].dot(mG[1][b]).dot(mU[1][c])[:nocc, :nocc])

316 tl2 = np.trace(mU[1][c].dot(mG[1][b]).dot(mU[0][a])[:nocc, :nocc])

317 tl3 = np.trace(mU[0][a].dot(mG[1][c]).dot(mU[1][b])[:nocc, :nocc])

318 tl4 = np.trace(mU[1][b].dot(mG[1][c]).dot(mU[0][a])[:nocc, :nocc])

319 tl5 = np.trace(mU[1][c].dot(mG[0][a]).dot(mU[1][b])[:nocc, :nocc])

320 tl6 = np.trace(mU[1][b].dot(mG[0][a]).dot(mU[1][c])[:nocc, :nocc])

321 tr1 = np.trace(mU[1][c].dot(mU[1][b]).dot(me[0][a])[:nocc, :nocc])

322 tr2 = np.trace(mU[1][b].dot(mU[1][c]).dot(me[0][a])[:nocc, :nocc])

323 tr3 = np.trace(mU[1][c].dot(mU[0][a]).dot(me[1][b])[:nocc, :nocc])

324 tr4 = np.trace(mU[0][a].dot(mU[1][c]).dot(me[1][b])[:nocc, :nocc])

325 tr5 = np.trace(mU[1][b].dot(mU[0][a]).dot(me[1][c])[:nocc, :nocc])

326 tr6 = np.trace(mU[0][a].dot(mU[1][b]).dot(me[1][c])[:nocc, :nocc])

327 tl = [tl1, tl2, tl3, tl4, tl5, tl6]

328 tr = [tr1, tr2, tr3, tr4, tr5, tr6]

329 hyperpolarizability[r, a] = 2 * (sum(tl) - sum(tr))

330

331 assert np.all(np.abs(ref - hyperpolarizability) < thresh)

332

333 # Assume no symmetry and calculate the full tensor.
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334

335 hyperpolarizability_full = np.zeros(shape=(3, 3, 3))

336

337 # components x, y, z

338 for ip, p in enumerate(list(product(range(3), range(3), range(3)))):

339 a, b, c = p

340 tl, tr = [], []

341 # 1st tuple -> index a, b, c (*not* x, y, z!)

342 # 2nd tuple -> index frequency (0 -> -2w, 1 -> +w)

343 for iq, q in enumerate(list(permutations(zip(p, (0, 1, 1)), 3))):

344 d, e, f = q

345 tlp = (mU[d[1]][d[0]]).dot(mG[e[1]][e[0]]).dot(mU[f[1]][f[0]])

346 tle = np.trace(tlp[:nocc, :nocc])

347 tl.append(tle)

348 trp = (mU[d[1]][d[0]]).dot(mU[e[1]][e[0]]).dot(me[f[1]][f[0]])

349 tre = np.trace(trp[:nocc, :nocc])

350 tr.append(tre)

351 hyperpolarizability_full[a, b, c] = 2 * (sum(tl) - sum(tr))

352 print('hyperpolarizability: SHG, (-{}; {}, {}), full tensor'.format(f2, f1, f1))

353 print(hyperpolarizability_full)

354

355 # Check that the elements of the reduced and full tensors are

356 # equivalent.

357

358 for r in range(6):

359 b = off1[r]

360 c = off2[r]

361 for a in range(3):

362 diff = hyperpolarizability[r, a] - hyperpolarizability_full[a, b, c]

363 assert abs(diff) < 1.0e-14

6.9.2 Hyperpolarizability Tutorial

1 """Tutorial: SCF first hyperpolarizability"""

2

3 __author__ = "Eric J. Berquist"

4 __credit__ = ["Eric J. Berquist"]

5

6 __copyright__ = "(c) 2014-2017, The Psi4NumPy Developers"

7 __license__ = "BSD-3-Clause"

8 __date__ = "2017-12-19"

6.9.2.1 Introduction In Tutorial 6a, the calculation of linear response properties from

analytic derivative theory is presented, the foundation of which are the coupled-perturbed

Hartree–Fock (CPHF) or coupled-perturbed self-consistent field (CPSCF) equations. Starting

from analytic derivative theory provides a convenient physical picture: how does the total

energy of a system change under the influence of one or more internal or external perturbations?
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Continuing the case of an external electric field, the total energy of a system can be represented

with a series expansion:

E(E) =
∞∑
n=0

1

n!
E(n)(a) · (E− a)n, (6.7)

where the electric field is E = ~E = (Ex, Ey, Ez) and a is the expansion point. In practice, we

always expand around a = 0, so it is a Maclaurin series:

E(E) =
∞∑
n=0

1

n!
E(n)(0) · En. (6.8)

Expanding the above to the first 4 explicit terms gives

E(E) ≈ E(0)(0) + E(1)(0) · E +
1

2
E(2)(0) · E2 +

1

6
E(3)(0) · E3, (6.9)

where we identify

E(0) → the unperturbed ground-state energy (6.10)

E(1)
a → −µa, the dipole moment (6.11)

E
(2)
ab → −αab, the polarizability (6.12)

E
(3)
abc → −βabc, the first hyperpolarizability (6.13)

The first hyperpolarizability is the leading-order term that describes the nonlinear response

of a system to an external electric field. Each term in the series expansion increases the rank

of the coefficient by one: the ground-state energy is a scalar, the dipole is a length 3 vector,

the polarizability is a 3-by-3 matrix, and the first hyperpolarizability is a 3-by-3-by-3 tensor.

Translated into the language of analytic derivative theory, is it represented as

βabc =
∂3E

∂Ea∂Eb∂Ec

∣∣∣∣
E=0

, (6.14)

though it is not yet clear how to take derivatives of the energy beyond what is presented in

tutorial 6a. Additionally, nothing has been stated about time dependence; everything to this

point has been the static case, where the strength of fields do not vary with time. We will

first incorporate time dependence, and equations for derivative theory will result.
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6.9.2.2 Notation Before going further, some notational conventions should be mentioned.

When used as field indices, a, b, c, · · · ∈ {x, y, z}, the three Cartesian directions.

For matrix indices, µ, ν, λ, σ, . . . label atomic orbitals (AOs)/basis functions, i, j, k, l, . . .

label occupied molecular orbitals (MOs), a, b, c, d, . . . label unoccupied/virtual MOs, and

p, q, r, s, . . . label all MOs. Einstein summation is used, so repeated indices are contracted

over.

6.9.2.3 Derivation Again, write the total Hamiltonian as the sum of unperturbed and

perturbed components

Ĥ(E, t) = Ĥ(0) + V̂ (E, t)

V̂ (E, t) = −µ · E(e±iωt + 1) (Karna 2)

where part of the external field now oscillates with some characteristic frequency ω. This can

be incorporated into the time-dependent Schrödinger equation, which for a stationary state

obeys [
Ĥ(0) + V̂ (E, t)− i ∂

∂t

]
ψ(t) = 0, (Karna 3)

FC − i ∂
∂t
SC = SCε, (Karna 5)

∂

∂t
C†SC = 0, (Karna 6)

where the full definition of the Fock matrix is

Fµν = hµν +Dλσ[2Jµνλσ −Kµνλσ] (Karna 9)

and the density matrix is defined as

Dµν = CµpnpqC
†
νq, (Karna 10)

where the diagonal occupation number matrix nii = 2 and naa = 0 for RHF.

In general, the MO coeffients are perturbation- and time-dependent, but the basis functions

themselves are not. This means that when the series expansion for the perturbation above is
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performed on other quantities, only F , C, ε, and D are affected. For example, the Lagrangian

multiplier matrix ε can be expanded as

ε(E) = ε0 + Eaε
a +

1

2!
EaEbε

ab +
1

3!
EaEbEcε

abc + · · · (Karna 17c)

where a, b, c, ... ∈ {x, y, z}, and

εa = e±iωtεa(±ω) + εa(0), (Karna 19a)

εab = e±2iωtεab(±ω,±ω) + e±iωt{εab(0,±ω) + εab(±ω, 0)}+ εab(±ω,∓ω) + εab(0, 0),

(Karna 19b)

εabc = e±3iωtεabc(±ω,±ω,±ω) + e±2iωt{εabc(0,±ω,±ω) + εabc(±ω, 0,±ω) + εabc(±ω,±ω, 0)}

+ e±iωt{εabc(±ω,±ω,∓ω) + εabc(±ω,∓ω,±ω) + εabc(∓ω,±ω,±ω)}

+ e±iωt{εabc(0, 0,±ω) + εabc(0,±ω, 0) + εabc(±ω, 0, 0)}

+ {εabc(0,±ω,∓ω) + εabc(±ω, 0,∓ω) + εabc(±ω,∓ω, 0)}+ εabc(0, 0, 0),

(Karna 19c)

showing that each order of the expansion consists of all possible phase combinations. For

the first hyperpolarizability, only quantities with at most two field indices are required.

Each permutationally unique subterm of the expansion corresponds to a different physical
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observable:

(0)→ static polarizability→ α(0; 0) = −Tr[HaDb(0)]

(Karna IV-1a)

(±ω)→ dynamic polarizability→ α(∓ω;±ω) = −Tr[HaDb(±ω)]

(Karna IV-1b)

(0, 0)→ static (first) hyperpolarizability→ β(0; 0, 0) = −Tr[HaDbc(0, 0)]

(Karna IV-2a)

(0,±ω)→ electrooptic Pockels effect (EOPE)→ β(∓ω; 0,±ω) = −Tr[HaDbc(0,±ω)]

(Karna IV-2b)

(±ω,±ω)→ second harmonic generation (SHG)→ β(∓2ω;±ω,±ω) = −Tr[HaDbc(±ω,±ω)]

(Karna IV-2c)

(±ω,∓ω)→ optical rectification→ β(0;±ω,∓ω) = −Tr[HaDbc(±ω,∓ω)]

(Karna IV-2d)

where each property is calculated as the trace over the AO-basis dipole matrices Ha with

the appropriate perturbed density. The task now comes down to calculating the necessary

perturbed density for the phenomenon of interest. The second-order densities required for

the four different first hyperpolarizabilities are

Dab(±ω,±ω) = Cab(±ω,±ω)nC0† + Ca(±ω)nCb†(∓ω)

+ Cb(±ω)nCa†(∓ω) + C0nCab†(∓ω,∓ω),
(Karna III-2a)

Dab(0,±ω) = Cab(0,±ω)nC0† + Ca(0)nCb†(∓ω)

+ Cb(±ω)nCa†(0) + C0nCab†(0,∓ω),
(Karna III-2b)

Dab(±ω,∓ω) = Cab(±ω,∓ω)nC0† + Ca(±ω)nCb†(±ω)

+ Cb(∓ω)nCa†(∓ω) + C0nCab†(∓ω,±ω),
(Karna III-2c)

Dab(0, 0) = Cab(0, 0)nC0† + Ca(0)nCb†(0)

+ Cb(0)nCa†(0) + C0nCab†(0, 0).
(Karna III-2d)
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Table 37: Orders of MO coefficient derivatives and rotation matrices needed for energy

derivatives following Wigner’s 2n+ 1 rule. Reproduced from Ref. [7].

CI: MO/CI space MCSCF: MO/CI space RHF: MO space

Energy, E Ci
µ, CI Ci

µ, CI Ci
µ

First Derivative, ∂E
∂a

Ua, CI Ci
µ, CI Ci

µ

Second Derivative, ∂2E
∂a∂b

Uab, ∂CI
∂a

Ua, ∂CI
∂a

Ua

Third Derivative, ∂3E
∂a∂b∂c

Uabc, ∂CI
∂a

Ua, ∂CI
∂a

Ua

Fourth Derivative, ∂4E
∂a∂b∂c∂d

Uabcd, ∂2CI
∂a∂b

Uab, ∂2CI
∂a∂b

Uab

Fifth Derivative, ∂5E
∂a∂b∂c∂d∂e

Uabcde, ∂2CI
∂a∂b

Uab, ∂2CI
∂a∂b

Uab

Already a few important insights about the equations are revealed: Each perturbation index

always carries its respective frequency, and the positive and negative frequencies are related

by the Hermitian adjoint (except for C(−ω) = −C0U †(+ω), Karna eq. 40). We also see the

appearance of terms like Cab, which will require Uab originating from the second-order CPHF.

Computationally, this is undesirable due to the increased number of iterative calculations

that must be performed, so we borrow a trick that most prominently appears in perturbation

theory.

6.9.2.4 Wigner’s 2n+ 1 rule From Schaefer,7 page 25:

When the wavefunction is determined up to the nth order, the expectation value (electronic
energy) of the the system is resolved, according to the results of perturbation theory, up to
the (2n+ 1)st order. This principle is called Wigner’s 2n+ 1 theorem.21,22

Since the first hyperpolarizability is calculated as a third derivative of the energy, perturbed

coefficients with only one field index should be required. From table 37, we can also see why

SCF gradients ( ∂E
∂RA

, where RA is the A-th Cartesian component of nucleus R) avoid the need

to solve for U matrices.
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6.9.2.5 Final Expressions To this point, most work has been in the AO basis, but it is

conceptually easier to work in the MO basis, in particular due to the use of the ε equations

εa(±ω) = Ga(±ω) + ε0Ua(±ω)− Ua(±ω)ε0 ± ωUa(±ω), (Karna 34)

where the G matrices are the MO-basis Fock matrices

Gab... = C0†F ab...C0, (6.15)

and the U matrices are the MO-basis perturbation parameters

Cab... = C0Uab..., (6.16)

which will be discussed in the implementation. The final expression for the static hyperpolar-

izability is

βabc(0; 0, 0) = Tr[n{Ua(0)Gb(0)U c(0) + U c(0)Gb(0)Ua(0) + U b(0)Gc(0)Ua(0)

+ Ua(0)Gc(0)U b(0) + U c(0)Ga(0)U b(0) + U b(0)Ga(0)U c(0)}]

− Tr[n{Ua(0)U c(0)εb(0) + U c(0)Ua(0)εb(0) + U b(0)Ua(0)εc(0)

+ Ua(0)U b(0)εc(0) + U c(0)U b(0)εa(0) + U b(0)U c(0)εa(0)}].

(Karna VII-4)

By noticing that each term corresponds to a unique permutation of the field indices, it can

be rewritten as

βabc = Tr
[
n
∑
P(d, e, f)UdGeU f

]
− Tr

[
n
∑
P(d, e, f)UdU eεf

]
, (6.17)

where the permutation indices are initially assigned as d = a, e = b, f = c. The frequency

notation has also been dropped, since each abc (and therefore each def) will always carry the

appropriate field index, making this the most general form of the first hyperpolarizability.

If the indices abc are also permuted, then all 27 components of the first hyperpolarizability

tensor will be computed.
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6.9.2.6 Computational Procedure The basic quantities we need are the matrices

C, µ, F, ε, and U . The MO coefficients C are already obtained from the ground-state cal-

culation, along with ε0 (the MO energies) and F 0 (the AO-basis Fock matrix). The dipole

matrices µ are needed for the linear response (polarizability) calculation, which results in

response vectors that compose the off-diagonal blocks of the Ua matrix. Ga is obtained from

F a, which comes from performing a single Fock build with the perturbed density Da. Finally,

εa can be constructed.

Although the expressions so far are general for any frequency and first-order non-linear

optical response, the tutorial implementation will cover the static case. For second-harmonic

generation, see the reference implementation.

1 import numpy as np

2 np.set_printoptions(3, linewidth=100, suppress=True) # when we inspect the

vectors/matrices,↪→

3 # use a prettier format for

printing↪→

4 import psi4

The energy and density convergence criteria are tightened from defaults, as response properties

are sensitive to the quality of the ground-state wavefunction.

1 mol = psi4.geometry('''

2 O

3 H 1 0.9435

4 H 1 0.9435 2 105.9443

5 symmetry c1

6 ''')

7 psi4.set_options({

8 "basis": "aug-cc-pVDZ",

9 "scf_type": "direct",

10 "df_scf_guess": False,

11 "e_convergence": 1e-9,

12 "d_convergence": 1e-9,

13 })

1 # This is to enable testing outside of the notebook environment.

2 import sys

3 try:

4 get_ipython()

5 sys.path.append('../../Response-Theory/Self-Consistent-Field')

6 except NameError:

7 import os.path

8 dirname = os.path.dirname(os.path.abspath(__file__))

9 sys.path.append(os.path.join(dirname, '../../Response-Theory/Self-Consistent-Field'))

10

11 from helper_CPHF import helper_CPHF
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The helper encapsulates the solution of the ground-state wavefunction followed by the

frequency–(in)dependent linear response equations,A B

B∗ A∗

− ωf
 Σ ∆

−∆∗ −Σ∗

X

Y

 =

 V

−V∗

 , (6.18)

either directly (via matrix inversion in the MO basis) or iteratively (via repeated matrix-vector

products using Fock builds). For a HF/DFT reference with canonical orbitals, the above

equations reduce toA B

B A

− ωf
1 0

0 −1

X

Y

 =

 V

−V

 . (Neese 107)

In the static limit (ωf = 0), the whole superoverlap matrix vanishes, and the CPHF equations

can be reduced to those used in tutorial 6a.

1 solver = helper_CPHF(mol)

2 solver.run()

1 Number of occupied orbitals: 5

2 Number of basis functions: 41

3

4 Tensor sizes:

5 ERI tensor 0.02 GB.

6 oNNN MO tensor 0.00 GB.

7 ovov Hessian tensor 0.00 GB.

8

9 Forming Hessian...

10 ...formed Hessian in 0.473 seconds.

11

12 Inverting Hessian...

13 ...inverted Hessian in 0.007 seconds.

Because the calculation of β requires Ua, we also obtain linear response properties from

a quadratic response calculation. This holds for any order of response, where lower-order

response functions are automatically obtained from higher-order response calculations.

1 print(np.around(solver.polar, 4))

1 [[ 7.2587 -0. 0. ]

2 [-0. 8.7969 0. ]

3 [ 0. 0. 7.854 ]]
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1 # epsilon^{0}

2 moenergies = solver.epsilon

3 C = np.asarray(solver.C)

4 Co = solver.Co

5 Cv = solver.Cv

6 nbf, norb = C.shape

7 nocc = Co.shape[1]

8 nvir = norb - nocc

9 nov = nocc * nvir

10 # the response vectors X_x, X_y, X_z; Y_x, Y_y, Y_z not needed separately for static

response↪→

11 x = np.asarray(solver.x)

12 ncomp = x.shape[0]

13 # reuse the AO-basis dipole integrals

14 integrals_ao = np.asarray([np.asarray(dipole_ao_component)

15 for dipole_ao_component in solver.tmp_dipoles])

16 print("dimension of response vectors from linear response: {}".format(x.shape))

17 # for dynamic response, this will be (2 * nov)

18 assert x.shape[1] == nov

1 dimension of response vectors from linear response: (3, 180)

The foundation of the CPHF equations is that the right-hand side V is a perturbation on

the wavefunction causing single excitations from the occupied orbitals to virtual orbitals, the

coefficents of which are in the response vectors X; the vectors Y describe single deexcitations.

Because the full (square) U matrices are required, all MO-based quantities must be of shape

[Norb, Norb] rather than [Nocc, Nvir].

1 # form full MO-basis dipole integrals

2 integrals_mo = np.empty(shape=(ncomp, norb, norb))

3 for i in range(ncomp):

4 integrals_mo[i, ...] = (C.T).dot(integrals_ao[i, ...]).dot(C)

Similarly, X and Y form the off-diagonal blocks of the U matrices. They are usually stored

as in DALTON, where each vector is of length 2Nov, with X on top of Y.

1 # repack response vectors to [norb, norb]; 1/2 is due to X + Y

2 U = np.zeros_like(integrals_mo)

3 for i in range(ncomp):

4 U[i, :nocc, nocc:] = 0.5 * x[i, ...].reshape(nocc, nvir)

5 U[i, nocc:, :nocc] = -0.5 * x[i, ...].reshape(nocc, nvir).T

A minor implementation detail: because this was not a frequency-dependent calculation, only

X + Y needs to be calculated; as they are identical, this leads to the prefactor of 1/2.

1 # form G matrices from perturbation and generalized Fock matrices; do

2 # one more Fock build for each response vector

3 jk = psi4.core.JK.build(solver.scf_wfn.basisset())

4 jk.initialize()
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5 G = np.empty_like(U)

6 R = psi4.core.Matrix(nbf, nocc)

7 npR = np.asarray(R)

8 for i in range(ncomp):

9 V = integrals_mo[i, ...]

10

11 # eqn. (III-1b)

12 # Note: this simplified handling of the response vector

13 # transformation for the Fock build is insufficient for

14 # frequency-dependent response. 1/2 is due to X + Y

15 jk.C_clear()

16 L = Co

17 npR[...] = x[i, ...].reshape(nocc, nvir).dot(np.asarray(Cv).T).T

18 jk.C_left_add(L)

19 jk.C_right_add(R)

20 jk.compute()

21 J = 0.5 * np.asarray(jk.J()[0])

22 K = 0.5 * np.asarray(jk.K()[0])

23

24 # eqn. (21b)

25 F = (C.T).dot(4 * J - K.T - K).dot(C)

26 G[i, ...] = V + F

27

28 # form epsilon matrices, eqn. (34)

29 E = G.copy()

30 omega = 0

31 for i in range(ncomp):

32 eoU = (moenergies[..., np.newaxis] + omega) * U[i, ...]

33 Ue = U[i, ...] * moenergies[np.newaxis, ...]

34 E[i, ...] += (eoU - Ue)

35

36 # Assume some symmetry and calculate only part of the tensor.

37 # eqn. (VII-4)

38 hyperpolarizability = np.zeros(shape=(6, 3))

39 off1 = [0, 1, 2, 0, 0, 1]

40 off2 = [0, 1, 2, 1, 2, 2]

41 for r in range(6):

42 b = off1[r]

43 c = off2[r]

44 for a in range(3):

45 tl1 = 2 * np.trace(U[a, ...].dot(G[b, ...]).dot(U[c, ...])[:nocc, :nocc])

46 tl2 = 2 * np.trace(U[a, ...].dot(G[c, ...]).dot(U[b, ...])[:nocc, :nocc])

47 tl3 = 2 * np.trace(U[c, ...].dot(G[a, ...]).dot(U[b, ...])[:nocc, :nocc])

48 tr1 = np.trace(U[c, ...].dot(U[b, ...]).dot(E[a, ...])[:nocc, :nocc])

49 tr2 = np.trace(U[b, ...].dot(U[c, ...]).dot(E[a, ...])[:nocc, :nocc])

50 tr3 = np.trace(U[c, ...].dot(U[a, ...]).dot(E[b, ...])[:nocc, :nocc])

51 tr4 = np.trace(U[a, ...].dot(U[c, ...]).dot(E[b, ...])[:nocc, :nocc])

52 tr5 = np.trace(U[b, ...].dot(U[a, ...]).dot(E[c, ...])[:nocc, :nocc])

53 tr6 = np.trace(U[a, ...].dot(U[b, ...]).dot(E[c, ...])[:nocc, :nocc])

54 tl = tl1 + tl2 + tl3

55 tr = tr1 + tr2 + tr3 + tr4 + tr5 + tr6

56 hyperpolarizability[r, a] = -2 * (tl - tr)

1 ref_static = np.array([
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2 [ 0.00000001, 0.00000000, -0.10826460],

3 [ 0.00000000, 0.00000000, -11.22412215],

4 [ 0.00000000, 0.00000000, -4.36450397],

5 [ 0.00000000, 0.00000000, -0.00000001],

6 [-0.10826460, -0.00000001, 0.00000000],

7 [-0.00000001, -11.22412215, 0.00000000]

8 ])

9 assert np.allclose(ref_static, hyperpolarizability, rtol=0.0, atol=1.0e-3)

10 print('\nFirst dipole hyperpolarizability (static):')

11 print(hyperpolarizability)

1 First dipole hyperpolarizability (static):

2 [[ -0. -0. -0.10826]

3 [ -0. -0. -11.22412]

4 [ -0. -0. -4.3645 ]

5 [ -0. -0. 0. ]

6 [ -0.10826 0. -0. ]

7 [ 0. -11.22412 -0. ]]
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[65] Kerlé, D.; Ludwig, R.; Paschek, D. The Influence of Water on the Solubility of Carbon

Dioxide in Imidazolium Based Ionic Liquids. Zeitschrift für Phys. Chemie 2013, 227,

167–176, DOI: 10.1524/zpch.2013.0344 (page 35).

241

http://dx.doi.org/10.1021/jp9055285
http://dx.doi.org/10.1021/ie101572m
http://dx.doi.org/10.1021/ct300152t
http://dx.doi.org/10.1002/cphc.201200970
http://dx.doi.org/10.1021/jp105021b
http://dx.doi.org/10.1021/jp105021b
http://dx.doi.org/10.1021/jp101897b
http://dx.doi.org/10.1021/jp502425a
http://dx.doi.org/10.1039/b110725a
http://dx.doi.org/10.1524/zpch.2013.0344


[66] Ghobadi, A. F.; Taghikhani, V.; Elliott, J. R. Investigation on the Solubility of SO2

and CO2 in Imidazolium-Based Ionic Liquids Using NPT Monte Carlo Simulation. J.

Phys. Chem. B 2011, 115, 13599–13607, DOI: 10.1021/jp2051239 (page 35).
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[106] Hu, L.; Söderhjelm, P.; Ryde, U. On the convergence of QM/MM energies. J. Chem.

Theory Comput. 2011, 7, 761–777, DOI: 10.1021/ct100530r (page 48).

[107] Breen, K. J.; DeBlase, A. F.; Guasco, T. L.; Voora, V. K.; Jordan, K. D.; Nagata, T.;

Johnson, M. A. Bottom-Up View of Water Network-Mediated CO2 Reduction Using

Cryogenic Cluster Ion Spectroscopy and Direct Dynamics Simulations. J. Phys. Chem.

A 2012, 116, 903–912, DOI: 10.1021/jp209493v (page 48).

[108] Muraoka, A.; Inokuchi, Y.; Hammer, N. I.; Shin, J.-W.; Johnson, M. A.; Nagata, T.

Structural Evolution of the [(CO2)n(H2O)]– Cluster Anions: Quantifying the Effect of

Hydration on the Excess Charge Accommodation Motif. J. Phys. Chem. A 2009, 113,

8942–8948, DOI: 10.1021/jp903578e (page 48).

[109] Lee, A. J.; Rick, S. W. The effects of charge transfer on the properties of liquid water.

J. Chem. Phys. 2011, 134, 184507, DOI: 10.1063/1.3589419 (page 49).

[110] Khaliullin, R. Z.; Bell, A. T.; Head-Gordon, M. Electron Donation in the Water-Water

Hydrogen Bond. Chem. - A Eur. J. 2009, 15, 851–855, DOI: 10.1002/chem.200802107

(page 49).

[111] Hochstrasser, R. M. Two-Dimensional IR-spectroscopy: Polarization Anisotropy Effects.

Chem. Phys. 2001, 266, 273–284, DOI: 10.1016/S0301-0104(01)00232-4 (page 58).

[112] Botan, V.; Hamm, P. Intramolecular vibrational energy relaxation in nitrous acid

(HONO). J. Chem. Phys. 2008, 129, 164506, DOI: 10.1063/1.2996355 (page 59).

247

http://dx.doi.org/10.1063/1.2912041
http://dx.doi.org/10.1039/C1FD00004G
http://dx.doi.org/10.1021/jp9536514
http://dx.doi.org/10.1021/ct100530r
http://dx.doi.org/10.1021/jp209493v
http://dx.doi.org/10.1021/jp903578e
http://dx.doi.org/10.1063/1.3589419
http://dx.doi.org/10.1002/chem.200802107
http://dx.doi.org/10.1016/S0301-0104(01)00232-4
http://dx.doi.org/10.1063/1.2996355


[113] Martin, J. M. L.; Taylor, P. R.; Lee, T. J. Accurate ab initio quartic force fields for the

N2O and CO2 molecules. Chem. Phys. Lett. 1993, 205, 535–542, DOI: 10.1016/0009-

2614(93)80009-E (page 59).

[114] Dressier, S.; Thiel, W. Anharmonic force fields from density functional theory. Chem.

Phys. Lett. 1997, 273, 71–78 (page 59).

[115] Culp, J. T.; Goodman, A. L.; Chirdon, D.; Sankar, S. G.; Matranga, C. Mechanism

for the Dynamic Adsorption of CO2 and CH4 in a Flexible Linear Chain Coordination

Polymer as Determined from In Situ Infrared Spectroscopy. J. Phys. Chem. C 2010,

114, 2184–2191, DOI: 10.1021/jp908202s (page 59).

[116] Cunliffe-Jones, D. B. Perturbation of Some Vibrational Bands in Solution. Spectrochim.

Acta Part A 1969, 25, 779 (page 59).

[117] Kazarian, S. G.; Vincent, M. F.; Bright, F. V.; Liotta, C. L.; Eckert, C. A. Specific

Intermolecular Interaction of Carbon Dioxide with Polymers. J. Am. Chem. Soc. 1996,

118, 1729–1736 (page 59).
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Jonsson, D.; Jørgensen, P.; Kauczor, J.; Kirpekar, S.; Kjærgaard, T.; Klopper, W.;

Knecht, S.; Kobayashi, R.; Koch, H.; Kongsted, J.; Krapp, A.; Kristensen, K.; Ligabue,

A.; Lutnæs, O. B.; Melo, J. I.; Mikkelsen, K. V.; Myhre, R. H.; Neiss, C.; Nielsen,

264

http://dx.doi.org/10.1021/acs.jctc.7b00321
http://dx.doi.org/10.1021/cr00031a008
http://dx.doi.org/10.1021/acs.jctc.5b00703
http://dx.doi.org/10.1063/1.4973611
http://dx.doi.org/10.1063/1.4926837
http://dx.doi.org/10.1021/acs.jctc.5b00828


C. B.; Norman, P.; Olsen, J.; Olsen, J. M. H.; Osted, A.; Packer, M. J.; Pawlowski, F.;

Pedersen, T. B.; Provasi, P. F.; Reine, S.; Rinkevicius, Z.; Ruden, T. A.; Ruud, K.;

Rybkin, V. V.; Sa lek, P.; Samson, C. C. M.; de Merás, A. S.; Saue, T.; Sauer, S. P. A.;

Schimmelpfennig, B.; Sneskov, K.; Steindal, A. H.; Sylvester-Hvid, K. O.; Taylor,

P. R.; Teale, A. M.; Tellgren, E. I.; Tew, D. P.; Thorvaldsen, A. J.; Thøgersen, L.;

Vahtras, O.; Watson, M. A.; Wilson, D. J. D.; Ziolkowski, M.; Ågren, H. The Dalton
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N. A. W.; Iuşan, D.; Jochym, D. B.; Jollet, F.; Jones, D.; Kresse, G.; Koepernik, K.;
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