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Catalytic reaction mechanisms can be extremely complex, and it is difficult to determine

all the factors that control reaction rates. Fortunately, complex chemical phenomena can

frequently be described by thermodynamic properties (such as molecular pK as and reaction

overpotentials) that correlate with catalytic reaction rates. While these properties can be

difficult or time intensive to measure experimentally, they can be easily computed using

Kohn-Sham density functional theory (KS-DFT).

We have developed a thermodynamic descriptor-based model that uses molecular pK as

and redox potentials calculated with KS-DFT to predict the electrochemical conditions at

which aromatic N-heterocycle (ANH) molecules could facilitate multi-proton and multi-

electron reduction reactions. By automating this procedure using the ADF modeling suite,

we can rapidly screen through potential catalysts with minimal user input. To establish a

baseline procedure for studying the chemical reduction of CO2 via hydride transfers from

ANH molecules, we characterized the chemical reduction of CO2 by hydride transfers from

sodium borohydride. We located hydride transfer pathways with nudged elastic band cal-

culations and obtained free energy barriers from potentials of mean force derived from con-

strained molecular dynamics simulations along the reaction pathways. These simulations

provided reaction energetics at realistic operating conditions and highlighted the potential

pitfalls of only studying reaction pathways at 0 K.
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Cathodic reduction reactions can limit galvanic corrosion rates in atmospheric environ-

ments. To help guide the design of titanium alloys that resist galvanic corrosion, we used

density functional theory to predict dopants that inhibit cathodic reduction reaction kinetics

on oxide surfaces. We calculated overpotentials for the oxygen reduction reaction (ORR)

occurring on metal dopants in an amorphous TiO2 surface. These overpotential trends suc-

cessfully predicted six dopants that have been experimentally verified to inhibit ORR activity

by up to 77% (Sn, Cr, Co, Al, Mn, and V). Next, we used this approach to study the native

oxides of Ti-6Al-4V, a Ti alloy with improved corrosion resistance. We used Behler-Parrinello

neural networks to create defective and amorphous surface models for TiAl2O5 (the oxide

that forms on Ti-6Al-4V surfaces in addition to TiO2) and predicted how ORR activity was

altered by different complex oxide surface morphologies.

Keywords: Computational Chemistry, Density Functional Theory, Oxygen Reduction Re-

action, Oxide, Carbon Dioxide Reduction, Aromatic N-Heterocycles, Neural Networks.
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2.79 Å. B) a negatively charged pyridine and CO2 complex. CO2 becomes

bent, and the N-C bond length decreases to 1.46 Å. . . . . . . . . . . . . . 7
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1.0 INTRODUCTION

This chapter is divided into two distinct sections. Section 1.1 summarizes the recent advances

towards using aromatic N-heterocycles to promote electrocatalytic CO2 reduction. This

section provides the background and motivation for chapters 2, 3, and 4. Section 1.2 provides

details about galvanic corrosion processes, modeling the oxygen reduction reaction with

computational techniques, and building oxide surface models that are relevant to Chapters

5 and 6.

1.1 ELECTROCATALYTIC CARBON DIOXIDE REDUCTION

The content of this section was previously published as part of M. C. Groenenboom, K.

Saravanan, and J. A. Keith, ”Homogeneous M(bpy)(CO)3X and aromatic N-heterocycle

catalysts for CO2 reduction” in Electrochemical Reduction of Carbon Dioxide Overcoming

the Limitations of Photosynthesis, D. Fermin, F. Marken (Eds.), Royal Society of Chemistry,

ISBN: 9781782620426.

1.1.1 Chemically Reducing Carbon Dioxide

Sustainable, efficient and economical CO2 utilization as a chemical feedstock addresses two

potentially catastrophic problems facing humanity.[1, 2, 3] First, it would stem the accumu-

lation of anthropogenic CO2, which is correlated with severe weather patterns[4] and global

climate change[5] that bring severe economic consequences. Second, it would alleviate the

global dependence on petroleum for transportation fuels and petrochemical feedstocks while
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allowing greater flexibility with how finite petroleum reserves are used. Industrially-scalable

routes to convert CO2 to liquid fuels (e.g. methanol) are greatly desired but not yet avail-

able. The U.S. Energy Information Administration projects that more 32% of the energy

used by OECD nations will come from liquid fuels until 2040.[6] There is a massive barrier

for completely abandoning petroleum based liquid fuels for other energy sources, so chemical

processes that regenerate fuels and petrochemicals from post-combustion CO2 are greatly

desired.

Regenerating petroleum via carbon-neutral[7] CO2 recycling processes requires that an-

thropogenic CO2 be captured[8] and then converted.[3, 9] Synthesizing chemicals and fuels

from coal, natural gas, or renewable forms of carbon inevitably requires H2 which is most eco-

nomically generated by steam reforming fossil fuels like coal or natural gas. Unfortunately,

these processes release CO2. Producing H2 from water electrolysis itself does not release

CO2, but this requires electricity that is typically generated from burning coal or natural

gas. Entirely solar-driven processes[10] may hopefully soon bring sustainable and economical

carbon-neutral solar fuels, but doing so requires improved fundamental understanding for

how to activate and convert CO2.

Converting CO2 into useful products requires substantial amounts of energy. Possible

schemes to do so range from utilizing bacterial microorganisms,[11] molten salts,[12, 13]

formate and CO dehydrogenase enzymes[14, 15] enzyme surrogate models,[16, 17] molecular

homogeneous catalysts,[18, 19, 20, 21, 22, 23, 15] industrial thermal processes,[24] solar-

powered metal oxide reactors,[25] and electrochemical methods in traditional[26] or solid

oxide[27] devices as well as continuous flow electrolyzers.[28] Though these processes are

diverse, at an atomic level, CO2 conversion fundamentally requires energetically efficient

hydrogentations under different chemical environments. An atomic-level understanding of

how different H-transfer steps occur would likely provide fundamental insight into how such

processes can be better engineered.

Many consider electrochemical CO2 reduction a promising avenue to investigate. Un-

fortunately, the electricity consumed by these processes is often generated by burning fossil

fuels. To design more sustainable and environmentally friendly processes, we can utilize

photovoltaic devices to generate carbon-neutral electricity from sunlight that can in turn
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be used to drive CO2 reduction.[29] A common concept in electrochemistry is the standard

redox potential, E, defined as the free energy change in an electrochemical reaction, ∆G,

divided by the number of electrons transferred, n, and Faraday’s constant, F :

E = −∆G/nF (1.1)

Figure 1.1.1 lists several relevant standard redox potentials involved in CO2 reduction

and exemplifies why such processes are challenging. First, Eq. 1.2a shows that adding one

electron to CO2 requires more than 1.9 eV (43.8 kcal/mol, since the redox potential corre-

sponds to the lower limit of the actual reaction barrier). Second, while less-negative redox

potentials are associated with simultaneously transferring multiple electrons and protons,

such reactions carry an unfavorable entropy penalty, necessitating higher overpotentials.

(Note that electrochemical reaction barriers govern activation overpotentials defined within

the Butler-Volmer equation.) However, activation overpotentials nowadays are also often

referred to as the extra thermodynamic energy, relative to the thermodynamic equilibrium

potential, required to make all sequential reaction intermediates downhill in energy. Though

less-rigorous, this approximation is often heuristically valid.[30, 31, 32] Lastly, since elec-

trochemical reduction involves proton and electron transfers, CO2 reduction must compete

with the hydrogen evolution reaction (HER, Eq. 1.2i). To maximize their efficiency, CO2

electro-reduction catalysts must have the lowest possible overpotential while also inhibiting

pathways that result in H2 generation.

Another consideration is the energy required to convert CO2 relative to the energy that is

stored within the final reduced products. Often times the sunlight driven processes are ener-

getically efficient, but they also have small thermodynamic driving forces to form products,

and thus reaction rates are slow. High overpotential processes on the other hand have much

higher driving forces for product formation but require much more energy. In each case,

there is knowledge that can be gained by studying catalytic reaction pathways, particularly

by using first principles quantum chemistry. With these tools, reaction energies and barrier

heights for elementary reactions can be predicted with reasonable degrees of accuracy. By

linking together elementary pathways, we can better understand full reaction mechanisms,

and obtain insights into how to make slow reaction steps occur faster and with less energy.
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CO2 + e− −→ CO•−
2 −1.90 V (1.2a)

CO2 + 2H+ + 2e− −→ HCOOH −0.43 V (1.2b)

CO2 + 2H+ + 2e− −→ CO +H2O −0.52 V (1.2c)

CO2 + 4H+ + 4e− −→ HCHO +H2O −0.48 V (1.2d)

CO2 + 6H+ + 6e− −→ CH3OH +H2O −0.38 V (1.2e)

CO2 + 8H+ + 8e− −→ CH4 + 2H2O −0.25 V (1.2f)

2CO2 + 12H+ + 12e− −→ CH3CH2OH + 3H2O −0.33 V (1.2g)

2CO2 + 12H+ + 12e− −→ C2H4 + 4H2O −0.34 V (1.2h)

2H+ + 2e− −→ H2 −0.41 V (1.2i)

Figure 1.1: Standard redox potentials referenced to the standard hydrogen electrode (SHE)

in aqueous electrolyte solutions (pH = 7) at 25oC; taken from references [26] and [32].

1.1.2 Aromatic N-Heterocycle Promoted Carbon Dioxide Reduction Processes

Many CO2 conversion processes only operate with high overpotentials. Again, this is usually

attributed to the high reduction potential to form CO•−
2 from CO2 (Eq. 1.2a) or the energy

required to regenerate reaction sites on the catalyst by removing reaction intermediates (i.e.,

CO or CHO).[33] Brønsted acids are often included in these systems to provide protons

for proton-coupled electron transfers (PCET). PCET mechanisms are less endoergic,[34, 35,

36] and thus can be expected to operate at lower reaction overpotentials. Unfortunately,

these protons also increase hydrogen evolution reaction activity and thus lower the overall

selectivity and efficiency for CO2 reduction. An ideal process would have a low overpotential

and a high selectivity for CO2 reduction.

The past decade has seen numerous experimental reports of CO2 reduction occurring at

low overpotentials with high faradiac efficiencies using aromatic N-heterocycles (ANHs) in

aqueous solutions. Bocarsly and co-workers first reported this chemistry using electrolytes
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containing pyridinium with hydrogenated Pd electrodes.[37] Later, the chemistry was re-

visited using pyridinium[38, 39], and imidazolium[37] to promote CO2 reduction on several

types of metal electrodes. While some reports have claimed not to see products,[40, 41]

others have,[42, 43] raising the question of what the mechanism for these processes might

be. There has been a significant amount of research towards using pyridine and other ANH

containing molecules to improve electrochemical CO2 reduction with metal electrodes.

It has been argued that this chemistry must have a surface dependence because ANH-

promoted CO2 reduction was reported to occur on Pt but not glassy carbon electrodes.[44]

However, MacDonnell and co-workers[45] used a homogeneous photochemical cells contain-

ing[Ru(phen = phenanthroline)3]
2+ chromophores to reduce CO2 to methanol in the pres-

ence of pyridinium. Furthermore, Dyer has reported 13C-labeled experiments resulting in

methanol using mercaptopteridine ANH molecules,[46] though interpretations of these re-

sults have recently been questioned by Tard and Saveant.[40]

Portenkichner et. al. observed CO2 reduction to methanol in the presence of pyridine

and pyridazine on platinum electrodes.[42] They also note that no methanol was formed

when only acetic acid was present, suggesting that pyridine plays an integral role in the re-

action and serves as more than a proton source. Similar studies by Rybchenko,[43] Yang,[47]

Chernyshova,[48] and Lee[49] have also reported CO2 reduction to formate or methanol in the

presence of pyridine, pyridine embedded into platinum electrodes, pyridine based polymers

wrapped around copper electrodes, and pyridoxine (vitamin B-6, also an ANH molecule)

at various faradaic efficiencies and overpotentials. However a number attempts to obtain

similar results with analogous studies have found that these ANH molecules appear to only

increase the rate of the hydrogen evolution.[50, 44, 41, 40] Currently, there is no consensus

on how ANH molecules serve in these reactions, but on the basis of work by Portenkirch-

ner et al., it appears the ANH molecules are playing a role beyond that of simply being a

Brønsted acid. Understanding why ANH molecules might cause lower overpotentials and

higher faradic efficiencies would provide helpful design principles for improved renewable

energy catalysts.
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1.1.3 Studies of Homogeneous ANH Reaction Mechanisms

Several computational groups have attempted to elucidate the role of ANH molecules in

CO2 electroreduction reactions with quantum chemistry calculations. This section discusses

homogeneous reaction mechanism studies that do not explicitly account for reactions taking

place at electrode surfaces. The impact of the electrode surface will be discussed later.

The first computational study related to ANH chemistry utilized DFT to calculate re-

action energetics and HOMO orbitals of several proposed intermediate states.[38] Later,

Tossell calculated additional thermodynamic energetics including pKas and standard redox

potentials which showed that the one electron reduction potential of pyridine and protonated

pyridine were both significantly more negative (-2.90 and -1.44 V vs SCE, respectively) than

the reported experimental conditions (-0.58 V vs SCE).[51] Tossell also calculated a series

of ANH-CO2 complexes, an example of two such complexes is shown in Figure 1.2. Binding

CO2 in this complex is energetically uphill for pyridine (complex a in Figure 1.2), but it is

energetically more favorable with other ANH molecules (such as imidazole and 1,5,7-triaza-

bicyclo[4.4.0]dec-5-ene (TBD)). The complexes also form spontaneously if either pyridine

or CO2 has been reduced by one electron (complex b in Figure 1.2). By calculating one

electron reduction potentials for these ANH-CO2 complexes (-1.44 to -1.76 V vs. SHE) he

showed that they were easier to reduce than CO2 alone (-2.16 V vs SCE). While imidazole

and TBD more readily formed complexes with CO2, the redox potentials of those complexes

were significantly more negative (and less favorable) than that of the pyridine-CO2 com-

plexes. These calculations supported the claim that ANH molecules could potentially serve

as CO2 reduction catalysts.

Other mechanisms, such as those proposed by the Carter group and the Musgrave group

considered pyridinium as a CO2 reducing agent. The conclusions of these studies from the two

groups differed in the extent to which the ANH molecule reduces CO2. In 2012, calculations

by Keith and Carter[52] reiterated that the one electron reduction potential of pyridinium

(-1.37 V vs SCE) to form the pyridinyl radical (PyH•) as well as the ANH-CO2 complexes

calculated by Tossell were significantly more negative than the experimental reduction poten-

tial (-0.58 V vs SCE) reported by Bocarsly.[38] This extremely negative reduction potential
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Figure 1.2: Example ANH-CO2 complexes studied by Tossell. A) a neutral pyridine and

CO2 complex. CO2 remains linear, and the complex has N-C length bond of 2.79 Å. B) a

negatively charged pyridine and CO2 complex. CO2 becomes bent, and the N-C bond length

decreases to 1.46 Å.

means that it is very unlikely that PyH• would participate in CO2 reduction unless at very

high applied potentials or in the presence of photolysis conditions.[52, 53] However, other

ANH molecules, such as doubly protonated 4,4’-bipyridine, have less negative one electron

reduction potentials (-0.37 V vs SCE) and could be more active reduction catalysts.

Keith and Carter later predicted that the reduction event observed at -0.58 V vs SCE on

Pt electrodes may actually correspond to the two electron reduction of pyridine to dihydropy-

ridine, see Figure 1.3.[54] By calculating the energy of various protonated and reduced states

of pyridine they created a molecular Pourbaix diagram, as shown in Figure 1.4. Pourbaix di-

agrams are electrochemical phase diagrams that show the most stable state for a molecule (or

material) at different applied potentials and pH values. These can be used to predict which

form of reduced pyridine would be most stable near the reaction conditions. The Pourbaix

diagram revealed that Py, PyH+, and 1,4-dihydropyridine all have similar chemical potentials

near the experimental conditions for CO2 reduction. 1,4-dihydropyridine closely resembles

the active moiety in NADH, one of nature’s most active redox catalysts. This suggests that

these Py species might reduce CO2 through some type of coupled proton-electron transfer,

or a biomimetic proton-hydride transfer reaction. These Pourbaix diagram triple-points may

also serve as descriptors of the electrochemical conditions where ANH molecules are most

active as proton/hydride transfer agents. Marjolin and Keith later continued in this direc-

tion to show that several different ANH molecules also have two-electron reduced species
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with standard redox potentials close to those for CO2 reduction.[55] While this methodology

produces useful thermodynamic descriptors, accurate reaction barriers would still be needed

to fully understand this proposed mechanism.

Figure 1.3: The reduction of pyridine into para-dihydropyridine, a pyridine derivative that

Keith and Carter suggested as responsible for CO2 reduction.

Musgrave and coworkers presented data supporting a one-electron pyridine assisted CO2

reduction mechanism in 2013.[56] Calculations on a Pt surface proposed that PyH• can be

formed, and that this radical can react with CO2 to form PyCOOH• through an inner-sphere

electron transfer as was originally proposed by Bocarsly.[38] While the reaction to form

PyCOOH• is energetically uphill, they report that the reaction barrier is substantially lower

when the electron transfer is accompanied by a proton transfer across a water chain from the

aqueous solvent. Because PyH• has a very high pK a (approximately 29 as reported by Keith

and Carter[57]), the proton transfer must likely be coupled with the electron transfer if it is

to occur. Similar proton relay mechanisms were reported by Siegbahn.[58] This proton relay

can be significantly more energetically favorable than the direct reaction of PyH• and CO2

to produce PyH+ and CO•−
2 . While the formation of PyCOOH• is energetically favorable,

their mechanism does not account for the high energetic cost to form PyH•.

In 2014 Musgrave and coworkers[59] presented another pyridine assisted CO2 reduction

mechanism that utilizes 1,2-dihydropyridine to reduce CO2. The argument was that although

1,2-dihydropyridine was less stable than then 1,4-dihydropyridine species proposed by Keith

and Carter, the sequential proton and electron transfer steps to make it were more ener-

getically accessible. Again, their reaction mechanism assumes the facile formation of PyH•,

which has a very negative calculated redox potential as previously mentioned and very short

lifetime in solutions.[52] They stress that there are several routes to generate PyH•, such as
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Figure 1.4: Relative electrochemical energies referenced to the energy of pyridine at an SCE

potential of (a) 0 V and (b) -0.58 V vs. the SCE for pyridine species in solution at different

pH. (c) Pourbaix diagram depicting the most thermodynamically stable species at a given

pH and electrode potential. Calculation data here used high level (U)CCSD(T)-F12/aug-cc-

pVTZ-F12 calculations. Reproduced from ref. [54] with permission from The Royal Society

of Chemistry

photochemical production (which we address below). The proton and electron addition to

PyH• to form dihydropyridine species are much more favorable and occur at easily achiev-

able pH (4.1) and electrode potentials (0.11 V vs. SCE) respectively. Once formed, they

report barrier heights for elementary steps to reduce CO2 into methanol through a series of

coupled proton-hydride transfers with reaction barriers between 6 and 20 kcal · mol−1 and

quite exoergic reaction free energies between -15.5 and -36.7 kcal · mol−1.

Other experimental studies have presumed that pyridine assisted CO2 reduction occurs

through the PyH• species. MacDonnell and coworkers reported photochemical catalytic CO2

reduction to formate and methanol using a ruthenium(II) trisphenanthroline chromophore
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and pyridine.[45] They achieved 76 and 0.15 turnovers per Ru for formate and methanol,

respectively. It was presumed that once the PyH• would be formed, it could proceed to

reduce CO2 by mechanisms similar to those originally postulated by Bocarsly and coworkers.

PyH• can also be generated through photolysis and then react with CO2 to form a PyH-

COO•− complex as demonstrated by Colussi and coworkers.[53] Although the mechanism of

generating PyH• is different in photolysis experiments, there is indication that high energy

PyH• may result in PyH-COO•− complexes.

1.1.4 Studies of Surface Catalyzed ANH Reaction Mechanisms

We now turn to discuss studies of pyridine/ANH assisted CO2 reduction processes that

explicitly studied the role of electrode surfaces. Batista and coworkers were the first to

report reaction pathways consisting of a proton coupled hydride transfer (PCHT) for ANH

chemistry.[60] Their mechanisms involved the formation of a metal hydride on the platinum

surface that then transferred to CO2 while a nearby pyridinium ion donates a proton to result

in CO2 reduction into formic acid (HCOOH). The surface hydrogen could then regenerate

by the one electron reduction of pyridinium ion near the electrode surface to regenerate a

pyridine and a surface bound hydrogen atom. This process has a free energy barrier of 13

kcal · mol−1, and is predicted to occur at E0 = -0.72 V vs SCE, in good agreement with

the originall experimental redox potential reported for this process. In addition to providing

protons during CO2 reduction, pyridinium ions help establish a high proton concentration

near the electrode surface necessary for the PCHT reaction. They later predicted that

imidazole would exhibit similar electrochemical properties and facilitate CO2 reduction with

the same mechanism.[61] While their predicted redox potentials are in good agreement with

the experimental measurements[62] for both pyridine and imidazole, CO2 reduction products

were not observed in the presence of acetic acid[42] (a weak acid with a pK a similar to

pyridine) as one might predict if pyridine only served as a proton shuttle as suggested by

this mechanism.

Belanger and coworkers reported surface dependence of pyridinum reduction in the con-

text of CO2 reduction by using cyclic voltammetry on different metal surfaces.[63] However,
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Lucio and Shaw reported that gold electrodes behave differently than the earlier work with

platinum electrodes.[41] They observed an irreversible reduction wave that they attribute

to the one electron reduction of pyridinium to the PyH• at -1.0 V vs Ag/AgCl. They also

noted an increase in reduction current when CO2 and pyridine were present in solution, but

no CO2 reduction products. This is consistent with work by Savéant which showed that

this current enhancement was likely due to carbonic acid catalyzing the hydrogen evolution

reaction.[44]

Keith and Carter have also reported calculations for ANH assisted CO2 reduction on mod-

els for GaP photoelectrodes.[64, 65] Their calculations predicted that proton and pyridiniun

ion reduction will be energetically unfavorable except at very negative electrode potentials,

but the two electron/two proton reduction of pyridine to dihydropyridine on the GaP surface

should be thermodynamically feasible (E0 = -0.63 to -0.71 V vs SCE). Studies by Bocarsly

using GaP photoelectrodes reported very high faradaic efficiencies for CO2 reduction. Keith

and Carter suggested that the standard reduction potential of 1,4-dihydropyridine is not

that different as that obtained in aqueous solution and thus remains similar to that needed

to electrochemically convert CO2 into a variety of products. This contrasts with previous

arguments that the illuminated p-GaP electrode can produce pyridnyl radicals.[56]

To address this point, Lessio and Carter reported that the transfer of photoexcited elec-

trons to pyridinium from the GaP electrode as well as pyridinium adsorption to the GaP

surface were not energetically favorable.[66] The conduction band minimum of the GaP elec-

trode lies too low in energy to transfer electrons to PyH+. Investigating alternative mech-

anisms showed that reducing pyridinium to pyridine and an adsorbed hydrogen atom was

more likely to occur than direct pyridinium reduction. This further supports a mechanism

involving more than one electron reductions. Koel and coworkers used STM to experimen-

tally probe the spatial positions of the LUMO of pyridine adsorbed to a GaP surface. This

technique can determine atomic sites most susceptible to nucleophilic attack. Figure 1.5 com-

pares the experimental STM to simulated data from DFT, and a simpler DFT side view. The

STM data clearly identifies the sites that would be susceptible to nucleophilic attack from

a surface hydrogen to form an adsorbed dihydropyridine. While not conclusive proof of this

mechanism, it lends further support to a mechanism involving dihydropyridine like species
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that has been recently investigated with computational theory[67] and experiment.[68] As

with the homogeneous studies, insight from high quality studies of barrier heights will likely

be needed.

Figure 1.5: Combined experimental and DFT results showing that by spatially resolving

the LUMO, the STM images predict the sites susceptible to nucleophilic attack[69] on ad-

sorbed pyridine by adsorbed hydrides and protons from solution to produce 1,2- and 1,4-

dihydropyridine, as described in ref [65]. Reprinted with permission from [70]. Copyright

(2015) American Chemical Society.

1.2 MODELING THE ATOMISTIC REACTIONS THAT DRIVE

CORROSION

All metals corrode and degrade if left unprotected. The resulting damage can lower a mate-

rial’s strength, hurt its appearance, and increase its susceptibility to future harm. Developing

new technologies to inhibit corrosion rates can help increase the lifespan of materials and de-

crease the amount of required maintenance. Anti-corrosion coating improvements are often
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produced by trial-and-error rather than by utilizing a thorough understanding of the atomic

scale corrosion reaction mechanisms involved. While this has produced very effective anti-

corrosion technologies, first principles based quantum mechanics (QM) can help intelligently

guide anti-corrosion technology design by providing additional insight into the atomic-scale

reaction mechanisms that drive corrosion. Fortunately, these aspects can be explored faster

and more accurately than ever before due to improvements in computational power.

1.2.1 Corrosion Chemistry

Corrosion damage can occur through many different mechanisms. The most common form

of corrosion, general attack corrosion, degrades an entire exposed metal surface.[71] Despite

being the most common type of corrosion, general attack corrosion is considered a predictable

form of corrosion because it degrades the material uniformly. Other categories of corrosion

such as localized corrosion, flow-assisted corrosion, and intergranular corrosion produce less-

predictable damage and are more challenging to manage.[72] Galvanic corrosion is powerful

enough that it can cause materials that are normally corrosion resistant to degrade.[73]

Galvanic corrosion occurs when contact between two different metals produces a galvanic

couple that greatly accelerates the corrosion rate of the less noble metal. This effect produces

a driving force large enough to corrode aircraft grade aluminum alloys that are normally

corrosion resistant in isolation.[74, 75, 76, 77] These types of metal contacts frequently occur

near metal fasteners where strength and/or weight requirements can necessitate the use of

different metal alloys.

From an atomistic perspective, corrosion damage is caused by metal oxidation at an

anodic reaction site (eq. 1.3) producing electrons that drive reduction reactions at a nearby

cathodic reaction site (eq. 1.4 or 1.5).[78] Water molecules can then solvate and remove the

metal ions to produce the pitting damage often associated with corrosion.
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Anodic reaction

Metal Oxidation: M →Mn+ + ne− (1.3)

Cathodic Reactions

Oxygen Reduction (acidic conditions): 1/2O2 + 2H+ + 2e− → H2O (1.4)

Oxygen Reduction (basis conditions): 1/2O2 + 2H+ + 2e− → 2OH− (1.5)

During most corrosion processes these reactions occur on cathodic or anodic regions

within one metal surface. Galvanic corrosion is unique because the anodic and cathodic

reactions occur on entirely different surfaces as shown in Figure 1.6. The this contact causes

a potential difference between the two metals and leads to the preferential oxidation of the

less noble metal while the more noble metal facilitates the cathodic reduction reactions. If

the cathodic reaction rates decrease, electrons produced from metal oxidation build up and

decrease the driving force for metal oxidation. The ORR is the main cathodic reaction occur-

ring at galvanic corrosion conditions in atmospheric environments,[79, 80, 81] and inhibiting

the ORR provides an opportunity to decrease galvanic corrosion rates.

Figure 1.6: Illustration of galvanic corrosion in an atmospheric environment. The junction

of the two plates of metal 1 with a noble metal fastener establishes the galvanic junction of

dissimilar metals that can cause corrosion once a droplet of water forms on the surface. The

high surface area-to-volume ratio of the droplet allows a high dissolved oxygen concentration

even once the reduction reaction begins consuming oxygen.
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1.2.2 Anti-Corrosion Technology

Many different anti-corrosion technologies are currently used. Barrier coatings that limit

surface exposure, such as paint, can be easy to apply, but their effectiveness often depends

on their durability, exposure, and method of application.[82, 83, 84] Alternatively, zinc gal-

vanization can coat the material in a layer of zinc that sacrificially corrodes to preserve the

underlying metal.[85] While zinc galvanization effectively suppresses corrosion, its requires

high temperatures and exposure to molten zinc (Approximately 460°C). These conditions

can be detrimental to the underlying material.

Corrosion can also be prevented by forcing the metal surface to be the cathode of an

electrical cell via cathodic protection systems.[86, 87] Cathodic protection systems will use

a sacrificial anode (similar to zinc galvanization) to protect the substrate and may supply

electrical current to further suppress corrosion.[88, 87] While effective, cathodic protection

systems are often difficult to implement because of the inability to provide an external power

supply or sacrificial anode due to weight requirements.

Most metals have native oxide coatings that will spontaneously form on the metal sur-

face. Native oxide are lighter than other types of coatings, do not require extreme application

conditions, and naturally regenerate if damaged. Most native oxides are fairly stable, but fur-

ther improving their protective ability can decrease the need for traditional barrier coatings.

While oxides have previously been used to provide cathodic protection via photo-generated

electrons,[89, 90] incorporating dopants into metal oxides to limit ORR activity to decrease

the chemical driving force for metal oxidation has not yet been extensively tested.
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1.2.3 Electrochemical Reaction Overpotentials

Reaction overpotentials are a simple criterion that can be used to evaluate an electrocatalyst’s

activity. The reaction overpotential is the difference between a reaction’s thermodynamic

redox potential and the potential where the reaction is first experimentally observed. Op-

timal electrocatalysts have small reaction overpotentials, while poor electrocatalysts have

large reaction overpotentials. The reaction overpotential and reduction current are related

with the Butler-Volmer equation (eq. 1.6).

i = i0

(
exp(

αazF

RT
η)− exp(−αczF

RT
η)

)
(1.6)

i is the total current density, i0 is the current density if the presence of no overpoten-

tial (η), αa and αc are anodic and cathodic charge transfer coefficients, z is the number of

electrons involved, F is Faraday’s constant, T is the absolute temperature, and R is the uni-

versal gas constant. Small overpotential changes can produce large changes in the reduction

current density because of the exponential dependence on the reaction overpotential.

The computational hydrogen electrode model, first presented by Nørskov et. al.,[30]

is one of the most common computational techniques used to predict the overpotentials

of electrocatalysts. This model has been used to successfully study the oxygen evolution

reaction, oxygen reduction reaction, and hydrogen evolution reaction on a variety of metal,

metal alloy, and metal oxide surfaces.[91, 92, 93, 94] These studies are frequently found in the

fuel cell literature, where optimal ORR catalysts are required to increase the overall energy

efficiency of fuel cells. The model is based on the reversible hydrogen electrode (RHE) in

which reaction 1.7 is in equilibrium at an applied potential of 0 VRHE (for all pH values, all

temperatures, and PH2 = 1 atm).

H+ + e− ⇀↽
1

2
H2 (1.7)

The chemical potential of 1
2
H2 (1

2
µH2) is related to the chemical potential of H+ (µH+)

and an electron (µe−) with equation 1.8. A linear term accounts for the free energy change of

an electron at applied potentials other than 0 VRHE (∆G = −eU). Where e is the elementary

positive charge, and U is the applied potential. This produces reaction energies that scale
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with the applied potential. Applying this model to the associative ORR mechanism shown

in Figure 1.7a produces the relative energies shown in Figure 1.7b for the reaction on an

amorphous TiO2 surface.

µ(H+) + µ(e− =
1

2
µ(H2)− eU (1.8)

The reaction overpotential (η) is defined as the difference between the thermodynamic

equilibrium potential (1.23 VRHE) and the potential where all the reaction steps are first

downhill in energy (∼0.73 VRHE). While others have studied electrochemical reaction mech-

anisms by characterizing potential dependent barrier heights[95] or performing constrained

molecular dynamics simulations,[96, 97] calculating reaction overpotentials with the com-

putational hydrogen electrode model often provides similar accuracy while requiring less

computational resources.

1.2.4 Modeling Reactions on Amorphous Oxide Surfaces

Modeling electrochemical reactions on crystalline metals or metal oxides is relatively straight-

forward. The most stable surface is either well known from previous studies or easily deter-

mined, and crystalline surfaces contain only a few unique reaction intermediate adsorption

sites. If metal oxides are exposed to the environment, they are more likely to have an amor-

phous surface structure than a crystalline surface structure.[98] Modeling reactions on an

amorphous surface is more complicated because one must create a valid amorphous surface

structure with expensive annealing simulations and then test a larger number of unique

reaction intermediate adsorption sites. Even after obtaining a low energy amorphous sur-

face structure, the catalytic effects of high energy defects such as oxygen vacancies must be

considered.[99]

Studying the reactions that occur on natively formed oxides of metal alloys is even more

challenging because the oxide structure and composition are not so easily determined with

computational tools.[100] This is further complicated by the fact that metal alloys (such as

Ti-6Al-4V) can be composed of different phases that each contain different concentrations

of the metals in the alloy. Each phase can have relative enrichment or depletion of any
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Figure 1.7: a) The associative ORR mechanism. * denotes a surface site. b) ORR reaction

energies calculated on an amorphous TiO2 surface plotted at an applied potential of 0, 0.73,

and 1.23 VRHE. The blue arrows show the scaling relationship between reaction energies

and the number of electrons involved.

alloy component in their respective native oxides as shown in Figure 1.8.[101] It is extremely

challenging to predict the growth mechanism and representative surface structures of the

oxides that natively form on complex metal alloys. Sankaranarayanan and Ramanathan pre-

viously used molecular dynamics simulations to model the growth of an oxide film on a Ni-Al

metal surface using the embedded atom model (EAM).[102] Unfortunately, no EAM poten-

tials exist for Ti-Al-V-O systems, and the simulations required to study these oxide growth

mechanisms with ab initio methods are not an efficient use of computational resources. Com-

putational studies often utilize insight from experimental surface characterization to build
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smaller surface models that contain the different types of reaction sites that would be present

on a natively grown oxide surface. These surface models avoid modeling the growth of the

oxide and can provide valuable insight into reaction trends.

Figure 1.8: Two possible types of oxide growth that can occur on a binary component, two-

phase alloy. A) The α and β phases oxidize independently to form oxides enriched in the

components of each phase. B) The α and β phases oxidize cooperatively to form an oxide

with uniform composition.
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1.3 DISSERTATION OVERVIEW

The ANH studies discussed in Section 1.1 present a tantalizing process where energetically

efficient CO2 reduction to form methanol occurs, but there still is a lack of clarity how

reaction mechanisms proceed. DFT calculations have indicated that one-electron standard

redox potentials to form pyridinyl radicals are very negative, and other pathways are being

pursued. In all cases, there is an important need to account for reaction barriers accurately as

well as obtain spectroscopic characterization of intermediates. Chapters 2 through 4 describe

our work calculating and comparing the redox properties of small ANH molecules, as well

as our work benchmarking the study of CO2 reduction via hydride transfer reactions. These

studies shed light on the thermodynamic properties of effective CO2 reduction catalysts.

Section 1.2 showed that modeling atomistic corrosion processes is difficult and computa-

tionally expensive. Fortunately, we can use ORR overpotentials as a descriptor for galvanic

corrosion rates because the ORR is a major limiting factor for atmospheric galvanic corro-

sion processes. Chapters 5 through 6 describe our work predicting how the oxides that form

on Ti and a Ti-6Al-4V (a Ti alloy) catalyze the ORR. By creating representative surface

models for the oxides of each metals and calculating ORR overpotentials, these studies help

determine the factors that most contribute to ORR activity. These insights can be used to

guide the design of metal alloys that better resist corrosion damage in galvanically coupled

systems. Despite the differences between these two topics, thermodynamic descriptors are

valuable tools that can be used to help improve catalyst design.
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2.0 STRUCTURAL AND SUBSTITUENT GROUP EFFECTS ON

MULTIELECTRON STANDARD REDUCTION POTENTIALS OF

AROMATIC N-HETEROCYCLES

The content of this chapter is taken from M. C. Groenenboom, K. Saravanan, Y. Zhu, J.

M. Carr, A. Marjolin, G. G. Faura, E. C. Yu, R. N. Dominey, and J. A. Keith, ”Structural

and substituent group effects on multielectron standard reduction potentials of aromatic

N-heterocycles” J. Phys. Chem. A. 120 (2016) 6888-6894.

2.1 INTRODUCTION

Increasing worldwide demand for energy continues to drain our finite supply of fossil fuels.[10]

Generating renewable fuels from CO2 through photo and electrocatalytic processes is desired

for sustainability, but achieving high efficiency and product selectivity with these methods

remains challenging.[103, 19, 104, 105, 106, 107, 39] An intriguing route for CO2 reduction

involves aromatic N-heterocycle (ANH) molecules to promote CO2 reduction in aqueous

electrochemical cells. While these molecules are the subject of many experimental and/or

computational studies,[108, 109, 110, 41, 111, 59, 61, 60, 46] there is little consensus about

how this chemistry operates.

For instance, contrary to previous reports, Savant and co-workers have reported seeing

no evidence of CO2 reduction either with PyH+ on Pt[44] or with a mercaptopterin on glassy

carbon electrodes.[40] On the other hand, Portenkirchner and co-workers[42] have reported

observing methanol with PyH+ on Pt electrodes (albeit observed with lower faradaic efficien-

cies than prior studies). Interestingly, in that study methanol formation was not observed

21



when the same experiment was run with acetic acid, a molecule with a similar pK a as PyH+,

indicating that ANH molecules are a key component to this chemistry. Several computa-

tional mechanistic studies have carried out to elucidate this chemistry. Notably, Musgrave

and coworkers have used similar computational models as we do to calculate proton and elec-

tron transfer pathways that result in the conversion of PyH+ into dihydropyridines as well

as quantifying reaction barriers for subsequent hydride transfers to CO2.[59] Though use-

ful for quantifying reaction energetics, their mechanism assumes the formation of pyridinyl

radicals. Such species have been observed to form in the presence of high energy photons

and reduce CO2,[53] but there is mounting evidence against pyridinyl radicals forming un-

der electrochemical conditions.[108, 52, 66, 70], Other processes might be possible such as

the proposal by Batista and co-workers, where a proton-coupled hydride transfer between

surface hydrides and PyH+ on Pt surfaces was proposed.[61, 60, 62] An open question for

this mechanism is why results from Portenkirchner and co-workers[42] suggest that ANH

molecules play a role beyond that of just being a Brønsted acid.

Since ANH molecules are widely used in electrochemical environments (particularly as

components of ionic liquids), we set out to compute physical properties of these molecules

to obtain a better understanding of how different ANH molecules would participate in CO2

reduction processes besides just PyH+. As in our previous work, we use Pourbaix diagrams

to illustrate multi-proton and multi-electron standard redox potentials (SRPs) as well as the

conditions at which electrochemical conditions redox couples would be aligned for energeti-

cally efficient proton and hydride transfers according to the Sabatier principle. We note that

our study does not provide details about the kinetic barriers of these processes, but it is

informative to understand the thermodynamics for various electrochemical transformations

to assess which warrant consideration for further mechanistic studies. The present work is a

significantly larger study of ANH molecules than what has been reported previously.[54, 55]

Here, we report how different SRPs vary across a wide range of ANH molecules and discuss

how conjugated system size, number of heteroatoms within each molecule, and substituent

groups affect their physical properties.
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2.2 EXPERIMENTAL METHODS

2.2.1 pK a Measurements

Acid dissociation constants, pK as, were measured by a modification of standard NMR mon-

itored titration methods.[112, 113, 114] Typical titrations were performed on 0.025M ANH

(aq) solutions prepared with 0.6M HCl (aq) as solvent as well as with 0.6M NaOH (aq) as

solvent; all solutions were prepared with RO water rather than a D2O/H2O mixture. The

analytical concentrations of the ANH molecule were kept constant during each titration by

making incremental additions of one solution to the other, and visa versa, yielding a min-

imum of at least two titrations per sample. Measurements of pH were made in the NMR

tube using a Sigma-Aldrich glass micro pH combination electrode immediately before and

immediately after collecting an 1H NMR spectrum. Water suppression 1D 1H NMR spec-

tra were collected on a Bruker AVANCE 500 MHz spectrometer using the standard Bruker

zgcppr pulse sequence under variable temperature control, thermostatted at 300K and with

a 5 minute thermal equilibration delay at the front-end of the pulse sequence. A Wilmad

coaxial insert filled with D2O provided the lock signal. Multiple 1H NMR signals were mon-

itored for each ANH molecule during the titrations, with each signal that was monitored

giving nearly indistinguishable computed pK a values (± 0.05 pK a units) in both the acid

addition and base addition titrations. The NMR and pH data were analyzed to compute

pK as using the method reported by Gift.[113]

2.2.2 COMPUTATIONAL METHODS

Electrochemical calculations reported here use a mixed implicit/explicit solvation calculation

scheme described previously.[54] Briefly, gas phase molecular structures were optimized using

Kohn-Sham density functional theory (DFT) using GAMESS-US.[115, 116] We performed a

vibrational frequency analysis to determine that all geometries were minimum energy station-

ary points. Geometries and vibrational frequencies were computed for single-ring molecules

(pyridine, imidazole, diazine, etc.) at the B3LYP/aug-cc-pVDZ level. Geometries and vibra-

tional frequencies for multi-ring molecules (quinoline, naphthyridine, etc.) were obtained at
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the B3LYP/6-31+G* level. Single-point electronic energies for all optimized geometries were

calculated using B3LYP/aug-cc-pVDZ. In test cases, errors of less than 0.1 kcal/mol were

calculated using B3LYP/6-31+G* optimized geometries opposed to B3LYP/aug-cc-pVDZ

optimized geometries (see Appendix A).

Free energy contributions were calculated using the ideal gas, rigid rotor, and harmonic

oscillator approximations.[117] Vibrational frequencies were scaled with the appropriate scal-

ing factors from the NIST database to account for anharmonicity.[118] Standard state solva-

tion energies were calculated with GAMESS-US using the Continuum Polarizable Conductor

Model (CPCM) protocol with simplified united atomic radii for Hartree-Fock (SUAHF) in

a mixed implicit-explicit solvation scheme using default water parameters and one explicit

water molecule.[57, 119, 120] We note that B3LYP and CCSD(T)-F12/aug-cc-pVDZ yielded

comparable pK as and redox potentials as found in a previous study,[57] and so only results

from the B3LYP are reported here.

For Pourbaix diagrams, we considered all molecules resulting from up to three proton

and two electron transfers. This is straightforward for small molecules, but larger molecules

(adenine, purine, pteridine, mecaptopteridine, etc.) have multiple protonation sites that

made choosing the most stable configuration difficult. To expedite this search, we employed

a screening procedure using semiempirical methods. First, we optimized geometries for all

possible combinations of proton and electron transfers to the molecule using the semiempiri-

cal PM7 method in MOPAC.[121] We then calculated B3LYP/6-31+G* single point energies

for these geometries in water (using the CPCM protocol) using GAMESS-US. The most sta-

ble chemical species for each combination of proton and electron transfers at this level were

then fully optimized at the B3LYP/6-31+G* level for final analysis as described above. An

implementation of this screening procedure is available in the ADF modeling suite and is

discussed in Appendix B.
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2.3 RESULTS

We previously showed that calculated Pourbaix diagrams can illustrate electrochemical con-

ditions that appear to correlate to experimental conditions utilized for molecular promoted

CO2 reduction with substituted pyridines, imidazoliums, and phenanthroline.[55] We now

report an expanded set of Pourbaix diagrams considering for more than 27 ANH molecules

(Figure 2.1) that have multiple conjugated rings, and/or multiple nitrogen atoms. These

molecules better span the chemical space of ionic liquids, inorganic complex ligands, and

biomolecules that might be utilized for molecular or even extended structure electrocata-

lysts.

We first report a benchmarking of our calculated pK as for available molecules shown in

Figure 2.1. While error bars for pK a are not large, consistent pK a data across a range of

molecules is often hard to obtain. For a more precise benchmarking, we determined pK as

for a subset of ANH molecules that were readily soluble in water using NMR and compared

them to experiment (Table 2.1). We also report pK as obtained using the ChemAxon on-

line empirical pK a calculator,[122] pK as calculated using direct calculations,[123] and pK as

obtained using a linear regression of the direct calculations (using a similar approaches to

Muckerman[124] and Keith[125]). The mean unsigned error (MUE), max error (MAX),

and standard deviation (SD) are calculated with respect to our measured pK as when avail-

able and otherwise references against previous experimental measurements. As expected,

the empirical pK a calculator provides quite accurate pK as, MUE = 0.46. However, to our

knowledge there are no empirical SRP calculators and so QM methods are used for consis-

tency of pK as and SRPs. pK as calculated from first principles QM can bring larger mean

unsigned errors, 0.86, but errors are reduced using error cancellation schemes such as an

empirical linear regression reduces MUEs to 0.37.

Figure 2.2 shows a list of CO2 redox reactions (1.1-1.3 and 1.5), the hydrogen evolution

reaction (1.4), and molecular redox reactions that are specific to ANH molecules (1.6-1.10).

Calculated data for these reactions is reported in Figure 2.3. We also include the elec-

trochemical reduction of CO2 to CO−
2 (1.1), formic acid (1.2), carbon monoxide (1.3), and

methane (1.5) as reference points for comparison to the other ANH molecule redox reactions.
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Figure 2.1: Aromatic N-heterocycles (ANH) molecules considered in this work.
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Table 2.1: Experimental and calculated pK as for ANH molecules in this work.

Molecule Exp. Predicted Predicted Predicted
(previous) (Empirical (QM. Calc.) Regression

(this work) calculator)
imidazole 7.05/7.10 7.00 6.40 6.23
pyridine 5.21/5.42 5.10 5.70 5.76
1,2-diazine 2.24 2.20 0.55 2.23
1,3-diazine 1.10 1.30 -0.46 1.54
1,4-diazine 0.37 0.60 -1.26 0.99
2,2-bipyridines 4.33 3.00 2.53 3.59
4,4-bipyridines 4.80 5.00 4.05 4.63
1,4-naphthyridine 0.56 1.60 -1.30 0.97
1,6-naphthyridine 3.78 1.70 3.25 4.08
1,8-naphthyridine 3.39 0.60 3.13 4.00
quinoline 4.85/5.05 4.50 4.63 5.02
2-quinoline 5.42 5.30 5.20 5.41
benzimidazole 5.60 5.80 4.87 5.19
4-acetylquinoline 2.50 2.50 3.28 4.10
phenanthroline 4.86 4.50 5.47 5.60
purine 2.30 2.40 0.85 2.44
adenine 4.15 4.30 5.50 5.62
2-picoline 5.96/6.25 5.80 5.85 5.86
3-picoline 5.63/5.97 5.60 5.44 5.58
4-picoline 5.98 5.80 6.30 6.17
2,6-lutidine 6.60/6.96 6.50 7.29 6.84
3,5-lutidine 6.15/6.28 6.10 6.00 5.96
4-aminopyridine 9.11/9.22 8.90 10.20 8.83
DMAP 9.60/9.81 8.80 10.81 9.25
nicotinamide 3.35/3.41 3.60 2.36 3.47
MUE - 0.46 0.86 0.37
MAX - 2.79 1.86 1.60
SD - 0.78 0.96 0.36
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Figure 2.2: Redox reactions reported in Figure 2.3.

The ANH SRPs in Figure 2.3 reveal several clear trends. First, one electron reductions

require the most negative potentials, and nearly all of our studied molecules require more

negative potentials than the one electron reduction of CO2. Thus, if they could be formed,

most ANH radical anions would all would have the thermodynamic capability to reduce CO2

via 1-e− transfers. Second, molecular SRPs are significantly less negative when encountered

as proton coupled electron transfers (PCET). Protonating the nitrogen atom in the ANH

molecules lowers the LUMO energy and increases the molecule’s susceptibility to nucleophilic

attack. Despite this, the potentials required to form pyridinyl radical analogues are still quite

negative. However, the lowering of the LUMO energy results in energetically accessible two

electron/two proton processes as well (Reaction 1.10 in Figure 2.2 and Figure 2.3) that have

SRPs similar to the reduction of CO2 to methane, CO, or formic acid.

In addition to involvement of protons in the redox process, the three factors that most in-

fluence 1-e− and 1-e−/1-H+ redox potentials: 1) π-system size, 2) number of nitrogen atoms

in the ring, and 3) presence of substituent groups (e.g. chlorine, or methyl group).[55] How-

ever, these factors are dramatically muted when considering the standard redox potentials

involving multiple protons and electrons. These factors are discussed in more detail below

for PCET processes.
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Figure 2.3: Redox potentials for 20 ANH molecules calculated at 0 pH. Lines correspond to

redox processes shown in Figure 2.2. DMAP corresponds to N,N dimethyl-aminopyridine.
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Figure 2.4: Electron density differenec plots for transferring 1-e− to pyridine (left) and

quinoline (right). Yellow areas correspond to higher electron density density in the radicals

after 1-e− addition while gray areas correspond to lower electron density. Isovalue = 0.004

for both cases.

Molecules with larger conjugated -systems expectedly have less negative (and more ener-

getically favorable) SRPs. The electron transfers become more favorable because the energy

gap between the π and π* orbitals decreases as the conjugated π-system size increases. An-

other way of rationalizing this is that electrons can transfer more easily into molecules with

larger π/π*-systems because they delocalize across more atoms (i.e. similar to the quantum

mechanical particle in a box problem). Electron density difference plots qualitatively illus-

trate this effect by showing how electrons delocalize over molecules with different degrees of

π-system conjugation. Figure 2.4 depicts a 1-e− transfer to pyridine, and quinoline. The

transferred electron distributes across each molecule’s π*-system. Quinoline has a larger

π*-system and a smaller HOMO-LUMO gap, so electrons transfers to quinoline (-2.4 eV)

more favorably than to pyridine (-2.93 eV).

Replacing carbon atoms with nitrogen atoms in an otherwise identical molecule can alter

the reactivity of the molecule. For example, the redox potentials of 1,4/1,6/1,8-naphthyridine

shown in Figure 2.3 are all less negative than those of quinoline, despite the only difference

being the incorporation of an additional nitrogen atom. We hypothesize that nitrogen’s

higher electronegativity relative to carbon inductively withdraws electron density from the

remaining carbon atoms and this further stabilizes the reduced species. Density difference
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plots do not illustrate this effect, but this is qualitatively supported by Löwdin population

differences between quinoline and 1,8-naphthyridine. The additional nitrogen atom in 1,8-

naphthyridine has increased negative charge compared to the corresponding carbon atom in

quinoline (-0.07 charge units). Additionally, all of the carbon atoms in 1,8-naphthyridine are

more positively charged than those in quinoline by up to 0-0.12 charge units.

Substituent groups help further tune ANH redox energetics. Adding π-electron donating

groups to quinoline yielded more negative redox potentials (R-NH2, R-OH), while adding

π-electron withdrawing groups (R-acetyl) yielded less negative redox potentials. Substituent

groups that act inductively behaved similarly with electron withdrawing groups (R-Cl, R-

NH+
3 , R-CN) yielding less negative redox potentials and electron donating groups (R-Me)

making redox events less energetically favorable. For example, the 1 e− reduction potential

for quinoline is more negative than that of 4-CN-quinoline (-2.4 vs. -1.6 V) but less negative

than that of 4-OH-quinoline (-2.4 vs. -2.51 V). The electron withdrawing groups remove

electron density from the molecule, which facilitates electron transfers. Electron donating

groups do the opposite. This effect increases with the donating or withdrawing strength of

the substituent group.

There are several apparent inconsistencies in these trends we will now attempt to explain.

In Figure 2.3, reactions 1.7 and 1.8 switch order for several ANHs. This switch is due to our

calculated SRP being referenced at pH = 0. If a molecule’s pK a is less than the reference

pH, the unprotonated molecule will be more stable than the protonated molecule at that

reference pH and vice-versa. Therefore, if the molecule’s calculated pK a is less than 0 (the

reference pH of Figure 2.3) then the free energy change for reaction 1.8 (ANH + H+ + e−)

will be more uphill (i.e. giving a more negative redox potential) than reaction 1.7 ((ANH)H+

+ e−). This same reasoning applies to reactions 1.9 and 1.10.

Molecular Pourbaix diagrams are essentially electrochemical phase diagrams; they dis-

play the molecule with the most favorable chemical potential at any pH and applied potential.

Although molecular Pourbaix diagrams contain no information about kinetics of proton and

electron transfer processes, they provide a visual summary of the reaction thermodynamics

for processes involving proton, electron, and/or hydride transfers. Boundaries and triple

points indicate conditions where two, or three molecules have equal chemical potentials.
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Thus, at these conditions the molecules would be expected to rapidly exchange some combi-

nation of protons and electrons in accordance to the Sabatier principle. Based on the relative

ease of protonating most heterocycles, we (as well as Musgrave and Batista) posit that CO2

reduction occurs via some form of coupled hydride-proton transfer. However, we propose

that a molecular structure capable of efficiently catalyzing CO2 reduction must have: 1) a

boundary/triple point corresponding to a two electron and two proton process, and 2) that

boundary/triple point must be near to (i.e. ideally slightly more negative than) the CO2

thermodynamic reduction potentials.

Above we showed that variations in molecular structures can modulate molecular re-

dox properties, and in turn these changes will alter the boundary and triple point locations

on Pourbaix diagrams (Figure 2.5). For instance, quinoline has a single triple point and

three separate boundaries separating quinoline, protonated quinoline, and dihydroquinoline.

The Pourbaix diagram for 1,8-naphthyridine has the analogous species (1,8-naphthyridine,

protonated 1,8-naphthyridine, and dihydro-1,8-naphthyridine) as well as a new domain (pro-

tonated dihydro-1,8-naphthyridine) and a second triple point. The exact position of these

boundaries are controlled by molecular pK as (vertical lines) and other redox properties (hor-

izontal/diagonal lines). The 2-electron and 2/3 proton transfer processes for quinoline and

naphthyridine fall near to ideal CO2 reduction potentials (Figure 2.5). Thus, our approach

predicts that quinoline and 1,8-naphthyridine would be comparably effective as PyH+ moi-

eties in CO2 reduction. Pourbaix diagrams for the remaining ANH molecules are available

in Appendix A. Comparing molecular Pourbaix diagrams computed with DFT against CO2

Pourbaix diagram obtained from experimental data can introduce systematic errors into the

comparison. These errors could be easily quantified by comparing molecular redox potentials

computed with DFT against their experimentally measured values.[126]

Figure 2.6 shows a compilation of molecular triple points computed for each studied

molecule. Triple point conditions vary across the classes of ANH molecules, but nearly

all the triple points fall near experimental CO2 reduction conditions. Although the exact

reaction mechanisms for all molecules are not clear, we propose that molecular triple points

will be useful descriptors for a molecule’s ability to participate in energetically efficient

electrochemical processes.
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Figure 2.5: a) quinoline and b) 1,8-naphthyridine Pourbaix diagrams. The gray lines rep-

resent equilibrium between H2CO3, HCO−
3 , and their potential reduction products (formic

acid/formate). The red dashed line represents the hydrogen evolution reaction.
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Figure 2.6: Compiled Pourbaix diagram triple point conditions for all considered molecules.

The red dashed line corresponds to the hydrogen evolution reaction. Gray lines correspond

to the CO2 equilibrium products and standard redox potentials in an aqueous environment.
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2.4 CONCLUSIONS

We have investigated the degree that redox reaction energetics and Pourbaix diagram isobars

vary across a wide variety of ANH molecules. We used first principles quantum chemistry

to quantify the degree that nitrogen atoms, aromatic rings, and/or electron withdrawing

groups within molecular structures cause substantially less negative redox potentials. Al-

though molecular redox potentials and pK as are sensitive to molecular structure, Pourbaix

diagrams for nearly all of the reported ANH molecules have at least one triple point near the

equilibrium potentials for CO2 reduction at the same pH. This signifies that ANH molecular

moieties in general may be used to shuttle protons, electrons, and possibly hydrides at ap-

propriate electrochemical conditions. Although experimental validation of ANH-promoted

CO2 reduction mechanisms is still needed, calculated triple points are a theoretically sound

descriptor for screening a molecule’s (or material’s) capability for catalyzing electrochemi-

cal reductions. Similar analyses can be performed straightforwardly with quantum chemical

accuracy to assist in the identification of molecular co-catalysts for electrochemical reactions.
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3.0 EXPLICITLY UNRAVELING THE ROLES OF COUNTER IONS,

SOLVENT MOLECULES, AND ELECTRON CORRELATION IN

SOLUTION PHASE REACTION PATHWAYS

The content of this chapter is taken from M. C. Groenenboom, and J. A. Keith, ”Explic-

itly Unraveling the Roles of Counter Ions, Solvent Molecules, and Electron Correlation in

Solution Phase Reaction Pathways” J. Phys. Chem. B 120 (2017), 10797-10807.

3.1 INTRODUCTION

Increasing world populations intensify the worldwide demand for energy,[10] but humanity’s

use of fossil fuels correlates with extreme weather patterns and climate change.[127, 128] To

address this, scientists and engineers pursue the development of alternatives to fossil fuels

such as renewable and sustainable energy technologies that would utilize solar energy to

produce H2 from H2O[129, 130] or hydrocarbons from CO2.[15, 131] Many of these technolo-

gies require economical catalysts that facilitate energetically efficiently proton and electron

transfers. Detailed experimental studies of these processes can be challenging and expen-

sive, but first principles quantum chemistry (QC) plays an ever-growing role helping interpret

experimental observations and guiding improvements in catalyst designs.

Computational QC is particularly useful for studying reaction mechanisms. Complex

reaction mechanisms comprised of many reaction pathways can be modeled using computa-

tional procedures such as metadynamics[132, 133, 134, 135, 136, 137, 138, 139] and transition

path sampling.[140] These approaches use computationally expensive Born-Oppenheimer

molecular dynamics (BOMD) simulations to directly sample the free energy surface and ex-
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plicitly capture interactions between solute and solvent molecules while modeling condensed

phase chemical processes. While these methods can provide accurate free energies of reac-

tion, they necessitate the use of relatively less computationally inexpensive QC methods.

As a result, levels of QC theory more computationally expensive than Kohn-Sham density

functional theory (KS-DFT) with generalized gradient approximation (GGA) exchange cor-

relation functionals are not usually feasible. Instead, KS-DFT with exchange correlation

functionals such as PBE[141, 142] and PW91[143] or other semiempirical methods are used,

even though these levels of theory may have well-established deficiencies when modeling

molecular energetics.[118, 117]

QM/MM schemes have also been widely used to study reaction free energy surfaces.[144,

145, 146, 147, 148, 149] These calculations treat a small region of the system with accurate QC

calculations and the remainder of the atoms and molecules with different classes of forcefields.

QM/MM allows greatly reduced computational cost for reaction pathway sampling (e.g. via

metadynamics or umbrella sampling), and it allows the study of significantly larger systems

that what is possible with full QC models. QM/MM schemes are often employed to study

enzymatic reactions,[150, 151, 152] or small molecules reacting in a condensed phase[153] by

treating the substrate, enzyme active site and/or neighboring solvent molecules with QM

embedded within enzymes/solvent molecules modeled with forcefields. However, in practice

the results are dramatically impacted by technical aspects of how the QM and MM regions

are coupled as well as the type and parameterization of the forcefield employed.[154] Newer

adaptive QM/MM (adQM/MM) schemes can account for diffusion of molecules between

the QM and MM regions,[155] but in general, BOMD simulations using full QC methods

are more accurate and straightforward as long as the systems modeled are computationally

viable.

If higher levels of QC theory are needed, reductionist models can be used. Reaction

pathways ranging from aldol additions[156, 157, 158] to Ziegler-Natta catalysis[159] have

been studied by modeling fewer numbers of reacting atoms in tandem with continuum sol-

vation models. While such methods are much less computationally expensive than BOMD

approaches, they can also be highly sensitive to factors such as the level of QC theory and/or

the quality of approximations used to calculate the free energies in solution.[160] Addition-
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ally, these reductionist models necessitate that the user has significant chemical intuition

about the modeled system. For instance, Siegbahn demonstrated the importance of explicit

water chains in modeling solution phase chemistry in the mid-1990s,[58] but there are few

if any procedures that can a priori determine the number and location of explicit solvent

molecules needed to obtain accurate and physically significant barriers without using fully

explicit solvation modeling. Similarly, it is known that counter ions, which are often assumed

to be innocent bystanders in solution phase reactions, can significantly change reaction path-

way energetics.[125]

Our motivation for this study is to develop a novel computational procedure that can

more accurately and reliably model solution phase reaction pathways. To this end, we

hypothesize that a tractable way to include higher levels of QC theory into reaction dynam-

ics simulations along a reaction pathway is via the expression: ∆Ghighlevel ≈ ∆Glowlevel −

∆Elowlevel + ∆Ehighlevel, where a more accurate high level free energy for a reaction can be

obtained by substituting E values along a minimum energy pathway obtained from a low

level of theory with data from a higher level of theory. This is essentially the same in spirit

as the IRCMax method of Petersson and Montgomery,[161] but now used in a procedure

that is applicable for condensed phase reaction mechanisms.

To obtain nuclear coordinates suitable for high level QC theory calculations, we employ

a combination of high temperature BOMD simulations and nudged elastic band (NEB)

calculations to locate reaction pathways in solvent in the presence of counter ions as done

previously.[162] The 0 K energetics (∆E values) from the NEB calculations are not relatable

to free energy pathways at ambient conditions, but we assume here that the hydride transfer

processes involve a relatively small number of atoms directly participating in the reaction

(compared to a protein or an enzyme with many degrees of freedom that can effect reaction

free energies[163]). Thus, at first glance it would seem reasonable that 0 K pathways may

not be significantly different from the pathways operational at room temperature.
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Another benefit to obtaining these pathways in this manner is that potentials of mean

force can be straightforwardly obtained using umbrella sampling procedures once a single

reaction pathway is defined.[164, 165, 166] Here, we benchmark the effect of different lev-

els of QC theory on aqueous hydride transfer reactions with different treatments of local

solvation effects along reaction pathways. Free energy contributions obtained via different

computational methods will be benchmarked in future work.

In our procedure, we first used high temperature BOMD simulations to discover reaction

process with minimal a priori knowledge of the reaction. Next, we quenched reactant and

product states from the BOMD trajectories to obtain minimum energy configurations that

were then used as end points for generalized solid state (gSS-)NEB calculations that deter-

mined reaction pathways. Finally, we generated molecular clusters using subsets of atoms

from the optimized NEB images and calculated solution phase energetics using continuum

solvation and several different levels of theory, some of which are not currently permissible

within periodic boundary conditions.

While sampling obtained from this approach provides less mechanistic information than

metadynamics or transition path sampling, because the costly dynamical sampling is even-

tually carried out along only a single pathway, this approach would be much less compu-

tationally expensive than dynamics simulations that explore entire reaction mechanisms.

Furthermore, having well-defined 0 K structures opens the possibility of approximating re-

action free energies using cluster-continuum modeling[167, 168, 169] on structures obtained

from the NEB pathway. The validity of these possibilities requires understanding which

chemical models (i.e. continuum vs. explicit solvation methods) and levels of theory ade-

quately describe ∆E values for solution phase reaction pathways. We previously reported

that NaBH4 and NaBH3OH are strong enough hydride donors than they can reduce CO2 in

aqueous solutions.[170] We pursued fundamental reaction pathways for these processes as a

test case both for relevance in computational modeling and for research in CO2 reduction in

solution.
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3.2 COMPUTATIONAL METHODS

Unless explicitly stated, all non-periodic calculations were performed using ORCA[171] and

the RI-J, RI-JK, and RIJCOSX approximations for non-hybrid KS-DFT (PBE[141, 142]),

hybrid KS-DFT (PBE0[172]/B3LYP[173]) and MP2[174, 175] calculations, respectively.[176,

177, 178, 179, 180] We also used Riplinger and Neese’s linear-scaling domain based local pair

natural orbital CCSD method (DLPNO-CCSD[181]) with RIJCOSX approximations as im-

plemented in ORCA. Transition state geometries for non-periodic systems were optimized at

the B3LYP/def2-SVP level using COSMO continuum solvation (using default parameters for

water)[182] and the D3 dispersion-correction model with Becke-Johnson damping.[183] Opti-

mized transition states for molecular clusters had only one imaginary frequency correspond-

ing to the normal mode for the reaction pathway. We located reactant and product states

for non-periodic systems by nudging coordinates in the forward and backward directions of

the corresponding imaginary frequency and allowing geometries to fully relax to minimum

energy structures having no imaginary frequencies. Reactant, transition state, and product

single-point energies were then recalculated using the B3LYP/def2-TZVP model chemistry

with COSMO continuum solvation and D3 dispersion with Becke-Johnson damping as well

as with other levels of theory reported in the Appendix C.

Periodic BOMD simulations and NEB calculations were carried out using the Vienna ab

initio simulation package (VASP).[184, 185, 186, 187] These calculations used the Perdew-

Burke-Ernzerhof (PBE) GGA exchange correlation functional and described core electrons

with the projector augmented wave (PAW) method.[188, 189] Planewave cutoff energies were

set at 520 eV after finding this gave well-converged structures and total energies. Periodic

calculations used a 14 Å cubic simulation cell that contained 70 H2O molecules, one CO2,

and one NaBH4 (or NaBH3OH) molecule. The density of water in the simulation cell was

consistent with real aqueous systems. Multiple BOMD simulations were run for 10 ps at

2000 K to witness reaction events. While the high temperature accelerated reaction kinetics

and increased the chance of viewing a reaction over a relatively short simulated timespan,

the observed reactions from this approach will be biased towards entropically favored path-

ways. This approach is not intended as a substitute for extensive sampling over regions of a
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potential energy surface, but it is used rather to extract refined reaction pathways for pro-

cesses observed in BOMD simulations. The reactant and product species from the BOMD

simulations were then fully relaxed and used to generate reaction pathways with gSS-NEB

calculations.[190]

All gSS-NEB calculations were performed at 0 K using Henkelman’s climbing image

approach to locate transition states.[191, 192] We optimized each gSS-NEB with the Quick-

Min optimizer[193] until the forces on all atoms were less than 0.015 eV/Å. Relative energies

changed by less than 0.01 eV between gSS-NEB calculations completed with forces/atom

equal to 0.02 and 0.015 eV/Å leading us to believe that this tolerance is sufficient. Occasion-

ally, gSS-NEB calculations found images that resembled the reactant or product state but

were lower in energy due to solvent molecule rearrangements. In these cases, we fully relaxed

the lowest energy image and then used that structure as the new reactant (or product) for

new gSS-NEB calculations. All gSS-NEBs were also optimized with the PW91 exchange

correlation functional (the method used in ref. [162]) and the difference between the PBE

and PW91 barrier heights was found to be negligible (< 0.05 eV).

After defining gSS-NEB reaction pathways that accounted for explicit intermolecular

interactions, we selected subsets of atoms from those images for single point energy calcula-

tions from ORCA using different levels of theory including PBE/PBE0/B3LYP/def2-TZVP,

RI-MP2/def2-TZVP, and DLPNO-CCSD/def2-TZVP, each with COSMO continuum solva-

tion free energy contributions. We used four different types of molecular clusters: 1) nuclear

coordinates involving reacting atoms without any additional explicit solvent molecules or

the counter ion, 2) the same system but with the counter ion, and 3) and 4) those systems

but now including the entire first solvation shell. The first shell of explicit water molecules

for the full systems contained all water molecules within 4.5 Å of the reacting atoms in any

gSS-NEB image (see Figure 3.1). All data points along each reaction pathway involved a

single point energy calculation using clusters containing a consistent number of atoms and

basis functions to maximize error cancellation. When modeling the explicitly solvated clus-

ter without the counter ion, we omitted water molecules that were only coordinated to the

counter ion (represented by the gray region in Figure 3.1).
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Figure 3.1: Continuum solvated clusters created from gSS-NEB optimized coordinates con-

taining a) only the reacting atoms, and b) the reacting atoms and the first solvation shell.

Calculations without the counter ion use clusters that omit atoms in the shaded regions.
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Electron density difference plots were calculated on molecular clusters using GAMESS[116,

115] (PBE/6-31+G* with CPCM[119, 120] continuum solvation). Calculations involved sub-

tracting the electron density of the reacting molecules (subsystem 3.2) and the explicit water

solvation shell (subsystem 2, if present) from the electron density of the full system. Figures

were produced using VMD.[194]

3.3 RESULTS AND DISCUSSION

Catalytic hydride transfers have been studied for over 50 years.[195, 196] Although more

commonly considered in enzyme catalyzed processes,[163, 197] there are many other cata-

lysts that function as hydride donors in different chemical environments.[198, 199] Hydride

transfers in aqueous solution in particular are considered challenging because they typically

lead to H2 evolution, an unwanted side reaction in CO2 reduction. Since computational

chemistry can be used for refined studies of reaction mechanisms, our goal was to provide

fundamental insight into how hydride transfers occur in different chemical environments.

Specifically, our aim was to establish a computational procedure that could determine

hydride (and if relevant, proton-coupled hydride) transfer pathways that explicitly considered

different intermolecular interactions arising from the local solvation environment. Hydride

transfers under enzymatic conditions[200] as well as proton transfers in aqueous phase are also

considered electronically adiabatic due to strong hydrogen bonding from water molecules.[36]

In this work, we assumed that proton and hydride transfers in aqueous solution will likewise

be electronically and vibronically adiabatic, and therefore the use of single determinant QC

methods with BOMD is appropriate. As explained above, our focus is to understand the

relative importance different electronic energy barriers of aqueous phase processes under

the influence of continuum solvation. As was discussed for free energies, other factors such

as zero point energies, thermal energy contributions, and other quantum nuclear effects

(e.g. proton tunneling) can be incorporated along these pathways using harmonic oscillator

approximations or path integral MD models.[201] The significance of these other effects in

these aqueous phase barriers will be addressed in future work.
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3.3.1 Model 1: Cluster models of reacting atoms with explicit water molecules

and continuum solvation

We now discuss transition states for the reaction shown in Figure 3.2 using different models.

The first model we considered is simple and involves the cluster of atoms in Figure 3.2

with different numbers of explicit water molecules all embedded in a continuum solvation

model. We used this model as a starting point for understanding the significance of explicit

solvation in this reaction. By inspection, this reaction might be assumed to take place as a

single barrier SN2 reaction featuring a concerted hydride transfer and water addition. One

might also assume for added simplicity that the Na+ counter ion becomes fully solvated in

aqueous environments and is merely an innocent bystander in this reaction.

Figure 3.2: Reduction of CO2 to formate by BH−
4 .

BH3OH2 was previously found to spontaneously deprotonate in a simulation box of

water,[162] so we added explicit H2O molecules nearest to the adding H2O molecule to

stabilize this deprotonation should it occur. Figure 3.3 shows the optimized transition states

for this reaction modeled with zero, one, or three additional water molecules. None of the

key transition state bond lengths (C-H, B-H, and B-O) change significantly when adding

explicit water molecules (see Figure 3.3) despite the different number of participating water

molecules.

In all cases the forward barrier height was found to be almost the same (∼0.69 eV)

regardless of the number of water molecules that were added in these calculations. This is

consistent with the similar transition state structures in each case (Figure 3.4). However,

adding water molecules caused the reaction energies to become significantly downhill in

energy (shifting energetics by more than 0.8 eV). This decrease was due to the product

being stabilized by hydrogen bonding between the explicit H2O molecules and BH3OH2.
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Figure 3.3: Model 1 transition state structures for BH−
4 + CO2 being converted to formate

and BH3OH2 with a) zero, b) one, and c) three explicit H2O molecules to stabilize the

product (BH3OH2).
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Figure 3.4: Relative reactant, intermediate, and product energies from ORCA optimized

structures using Model 1.

Although the explicit H2O molecules had minimal impact on transition state energetics

in this case, the addition of one water molecule made a significant difference in the overall

reaction energetics. The influence of adding a third H2O molecule was found to be much

less than that found when adding the second H2O molecule. In all cases, this model yielded

a process with a single barrier corresponding to an SN2 reaction with a concerted hydride

transfer and water addition as might have been assumed by inspection of Figure 3.2. Addi-

tional data showing the energetics of the structures in Figure 3.1 at different levels of QC

theory are available in Appendix C.

3.3.2 Model 2: Explicit solvent models with pathways determined from gSS-

NEB calculations within periodic boundary conditions

Experienced users of continuum solvation models are well aware that they can be highly

unreliable when describing solvation of strongly interacting solutes. For this reason, explicit

solvent molecules are sometimes added to the calculation, but knowing when and where
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explicit solvent molecules participate becomes increasingly challenging with more complex

reaction environments. For instance, Model 1 could have also incorporated the counter

ion and/or additional explicit solvent molecules to stabilize the formate product. Explicit

solvation models in principle will capture all intermolecular interactions between solutes and

the solvent, but the accuracy of such models will naturally depend on the quality of the level

of theory employed. Pure GGA exchange correlation functionals such as PBE and PW91

are widely used for modeling condensed phase systems under periodic boundary conditions,

but it is not often clear if the GGAs used can capture the same level of electronic correlation

as higher levels of QC theory that are more easily obtained using non-periodic calculations.

For deeper understanding we now compare reaction pathways from Model 1 with those

determined by an explicit solvent model employing the PBE exchange correlation functional

under periodic boundary conditions.

High temperature BOMD simulations were carried out to model the reduction of CO2

with BH−
4 (Scheme 3.2) but now involving the counter ion to ensure charge neutrality in

the simulation box. Reactant and product states were then used for pathway determinations

using gSS-NEB (see computational methods for details). Snapshots along the BOMD trajec-

tory indicated an overall reaction pathway similar to the direct SN2 hydride transfer-water

addition from our cluster model calculations. However, the gSS-NEB calculations revealed

this pathway has two barriers with a metastable intermediate state that was not found using

Model 1. Figure 3.5 shows the gSS-NEB determined reaction pathway energy profile. The

reaction begins with BH−
4 and CO2 associating to form a metastable intermediate (barrier

= 0.43 eV, relative intermediate energy = 0.21 eV) with a bridging hydride. The second

step involves the hydride transferring completely to the CO2, resulting in a BH3 species that

spontaneously forms a donor-acceptor bond to an adjacent H2O molecule (barrier = 0.14 eV,

relative reaction energy = -1.00 eV). The metastable intermediate’s structure is compared

to the reactant and product structures in Figure 3.6.

The formation of this complex was unexpected, but not entirely unprecedented since

borohydride forms interesting coordination complexes involving three-center two-electron

bonds.[202] Explicit solvation models can account for adjacent solvent molecules (and counter

ions) relaxing and rearranging over the course of the reaction pathway to stabilize intermedi-
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Figure 3.5: The relative energies of the gSS-NEB for BH−
4 reacting with CO2 to produce

formate. This reaction is qualitatively different from that identified using Model 1.

ate and product species. Recreating all of these interactions that stabilize this intermediate

without a priori knowledge of the first solvation shell would be very difficult using Model 1.

The BOMD simulations naturally capture these interactions, but this intermediate was not

identified until we used the gSS-NEB analysis for the reaction pathway.

Closer inspection of bond lengths relevant to the reaction showed that the Na+ counter

ion in the simulation cell moves significantly closer to the reacting atoms over the course of the

reaction (from 3.99 Å to 2.31 Å, see Table 3.1 and Figure 3.6). This suggests the simulation

itself detected that the counter ion plays a non-innocent role in this reaction by stabilizing

the negative charge on CO2 as it is converted to formate. Bond length comparisons also

show that the transition states and metastable intermediate differ by only relatively small

changes in the B-H and C-H bond lengths (Table 3.1).

Full hessian calculations performed with VASP on the two transition states both resulted

in one sizable imaginary frequency (on the order of 250i cm−1) corresponding to the reaction

coordinate as well as four much smaller frequencies (on the order of 25i cm−1) corresponding

to solvent molecule librations. Full hessian calculations on the metastable intermediate
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Figure 3.6: The gSS-NEB determines a) reactant, b) metastable intermediate, and c) product

geometries for Figure 3.2. The dashed lines denote key interatomic distances (see Table 3.1).

49



Table 3.1: Bond lengths for the relevant bonds in the gSS-NEB determined reaction pathway.

Bond Distance (Å)

RC−H RB−H RB−O RO−Na

R 2.80 1.24 3.38 3.99

TS1 1.74 1.26 3.26 2.47

I 1.24 1.43 3.34 2.31

TS2 1.15 1.90 2.63 2.32

P 1.11 4.19 1.11 2.31

found just four similarly small imaginary frequencies corresponding to solvent librations.

The frequencies corresponding to librations might be attributed to numerical errors in the

hessian calculation, but this analysis gives us confidence that the gSS-NEB method located

two realistic transition states and one metastable intermediate that is not an artifact of a

bifurcated reaction pathway.

We then optimized the geometry of the metastable intermediate as a cluster considering

the role of the entire first solvation shell, the Na+ counter ion, and continuum solvation (see

Figure 3.1) using PBE/def2-TZVP calculations with ORCA. When the continuum solvation

model was enabled during the geometry relaxation, the complex relaxed into a stable struc-

ture in every case except when neither the counter ion nor the explicit solvation shell were

included. Without continuum solvation, the intermediate complex always dissociated into

reactants (BH−
4 + CO2) or products (BH3OH2 + HCOO−). This indicates that energetic

contributions from the explicit solvation shell, the counter ion, and effects from the contin-

uum solvation model all contribute significantly to stabilizing the metastable intermediate

complex.

Bader charge integration using the Yu and Trinkle procedure[203] showed that all of

the system’s charge was almost entirely contained on the reacting atoms (BH−
4 , CO2 and

Na+), and water molecules in the explicit solvation shell carry essentially no excess charge.

The Bader charges were used to qualitatively track the progress of charge transfer as shown
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in Figure 3.7. The decreasing negative charge on the hydride and BH3 fragments (and

related increasing negative charge on CO2) indicated the charge transfer is localized despite

stabilization from the surrounding solvent and counter ion.

Figure 3.7: Bader charge analysis on reacting fragments. The charge transfers from BH3

and the transferred hydride to CO2 over the course of the reaction. Na+ (not shown here)

has a consistent +0.85 charge over the course of the reaction.

3.3.3 Model 3: Fully microsolvated clusters obtained from gSS-NEB reaction

pathways embedded within continuum solvation models

It is widely known that the PBE exchange correlation functional over delocalizes elec-

tron density and lacks static correlation. Thus PBE transition state energetics may al-

ways be considered suspect. To test the validity of energetics from these structures as

well as probe the roles of the counter ion and explicit solvent molecules on reaction path-

way energetics, we performed single point energy calculations on molecular clusters se-

lected from subsets of atoms from the gSS-NEB images using various levels of QC the-

ory (PBE/PBE0/B3LYP/MP2/DLPNOCCSD) as described in the computational methods

section. A representative set of clusters are shown in Figure 3.1.
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We first modeled the nuclear coordinates of only the reacting atoms (BH−
4 and CO2)

along the gSS-NEB reaction pathway with continuum solvation. Without either the counter

ion or the explicit solvation shell, the reaction energy profile hardly resembles that of the

original NEB pathway (Figure 3.8a). The recalculated KS-DFT reaction barriers are ∼0.6

eV higher than the NEB predicted barrier, the intermediate species appears to be unstable,

and the overall reaction energy suggests a process that is ∼1.25 eV higher in energy than

that found in the NEB pathway. Including the counter ion in these calculations stabilizes

the intermediate, transition state, and product by as much as 0.4-0.5 eV (Figure 3.8b), but

the process still appears to have a single barrier and no metastable intermediate.

Including the first solvation shell with BH−
4 and CO2 (the cluster seen in Figure 3.1b)

yields an energy profile qualitatively similar to the original NEB profile using Model 2. As

seen in Figure 3.8c, the reaction profile has two barriers and is overall downhill in energy.

Quantitatively, the barriers and intermediate species are ∼0.2 eV less stable and the products

are ∼0.5 eV less stable compared to the reactants. Just as with the minimal atom clusters

in Figure 3.8a and Figure 3.8b, including the counter ion (and explicit water molecules in

its coordination sphere) further stabilizes the intermediate, transition states, and products

by 0.5-0.6 eV. In this case, including the counter ion and first solvation shell (Figure 3.8d)

yields an energy profile very similar to that of the original NEB profile. This stabilization

due to the counter ion is consistent across the different QC methods and is more than twice

the maximum observed differences between pathways calculated using different QC methods

(0.2 - 0.3 eV). Interestingly, within 0.30 eV, the energetics of the PBE profiles using Model 2

and Model 3 are the same. We note that an energy difference of 0.30 eV is approximately 4%

of the magnitude of the absolute solvation energy for the metastable intermediate obtained

from the COSMO model, -7.02 eV. This shows a reasonable degree of calibration possible

using continuum solvation model as a substitute for solvation beyond the first solvation shell.

Overall, we found that the level of QC theory in this particular hydride transfer reaction is

less important than the role of counter ions and a full solvation shell. Although the difference

between reaction pathway energetics calculated using different QC methods is significant

(0.2 - 0.3 eV), we find that GGA, hybrid DFT, and post-HF wavefunction methods all have

qualitatively similar reaction pathway energetics. Contrarily, the inclusion of explicit solvent
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Figure 3.8: Single point energy (SP) calculations on clusters from gSS-NEB optimized path-

ways for the reaction given in Figure 3.2. Energies were calculated with several different

exchange correlation functionals as well as RI-MP2 (labeled as MP2) and DLPNO-CCSD

(labeled as CCSD) in figures a) and c). See the main text for more details.
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molecules and the counter ion has a larger impact on the reaction pathway energetics (0.4

- 1.2 eV) and these factors can qualitatively alter the reaction pathway as shown in Figure

3.8. For instance, substituting out the first solvation shell and counter ion but keeping the

continuum solvation model yields a single barrier endothermic process by ∼0.4 eV (Figure

3.8a) while calculations on the full cluster predict a strongly exothermic process (by ∼0.9

eV) with two barriers bracketing a metastable intermediate (Figure 3.8d).

We note that our RI-MP2 and DLPNO-CCSD calculations yielded some spurious en-

ergetics at some points along the pathways that included the counter ion (Fig 3.8b and

3.8d). We attribute the problematic cases to difficulties completing post-HF treatments on

zwitterionic states involving the Na+ ion. However, since the counter ions are expected

to contribute only via coulombic interactions, we assume that post-HF methods would not

result in qualitative differences in energetics. We also note that the T1 diagnostic for all

DLPNO-CCSD calculations that converged was always less than 0.016, indicating a lack of

multiconfigurational wavefunction character and thus a lack of significant static correlation.

CASSCF[204] and NEVPT2[205, 206, 207] ORCA calculations on the reactant, transition

state, and intermediate geometries (with up to 12 electrons in 12 orbitals) also showed good

agreement with the energy profiles displayed in Figure 3.8. As such, single determinant

methods appear suitable for modeling these hydride transfer reactions in aqueous solution.

To further investigate the effect of explicit solvation, we compare the polarization on the

reacting atoms arising due to continuum solvation (Figure 3.9a) and the explicit solvent shell

(Figure 3.9b) using electron density difference plots. The polarization due to interactions

between the reacting atoms and the explicit solvent molecules is substantially different than

what is observed using just the continuum solvation model on the reacting atoms. From

this analysis, we found that as many as nine water molecules interact strongly with the

metastable intermediate species. We then created molecular clusters using the reacting

atoms, the counter ion, and these nine water molecules identified by inspecting the density

difference plot. The resulting single point energy calculations in Figure 3.9c retain some of

the character of the NEB energy profile but the intermediate and product species are higher

in energy, and there is only one observed barrier. The product species with significant

charge separation will likely be stabilized with additional H2O molecules other than just
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those shown in Figure 3.9c. Although this suggests that the overall reaction profile might

be reproducible with fewer water molecules than the entire first solvation shell, one would

normally not know how to correctly identify these molecules without already having the full

solvation shell determined. Finally, Figure 3.9d shows the influence of different continuum

solvation models (COSMO and SMD[208]) on the reaction energies. The average difference

between the two energy profiles is less than 0.1 eV, and solvation energies from the SMD

model are found to be in slightly better agreement with energetics of Model 2.

3.3.4 Other reactions: BH3OH− as a reducing agent

We now consider a different hydride transfer for comparison. In previous work we found that

BH3OH− can also reduce CO2 in aqueous solution,[170] and it is also a proposed byproduct

of Figure 3.2. Thus, we modeled the reaction shown in Figure 3.10 as a second test reaction

for our method.

We find this reaction is more straightforward than the reaction in Figure 3.2. Calculations

using Model 1 predict a single barrier involving a direct hydride transfer as shown in Figure

3.11. No explicit waters are included because we previously found that BH2OH is stable

in solution with an empty p orbital, and there is no spontaneous addition of water to form

BH2OH(OH2). The Figure 3.10 transition state (Figure 3.11a) has ∼0.2 Å shorter B-H

bond and an ∼0.8 Å shorter C-H bond length than the Figure 3.2 transition states (Figure

3.3). This reaction has a significantly smaller activation barrier than Figure 3.2 (0.22 eV vs.

∼0.7 eV), and is 0.35 eV more exothermic than the most favorable case model one results

for Figure 3.2. Energetics for Figure 3.10 using different levels of theory are available in

Appendix C.

BOMD simulations on Figure 3.10 showed a direct hydride transfer from BH3OH− to

CO2 yielding formate and BH2OH. Unlike our previous BOMD simulations for the reduction

of CO2 with BH−
4 , the hydride transfer in this reaction was not coupled to H2O adding to

BH2OH. BH2OH did not react with any H2O molecules over the remainder of the BOMD

simulation and appeared to be stable in solution. This is consistent with our Model 1 results

on the previous page and previous work which showed that BH2OH(OH2) was less stable
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Figure 3.9: Electron density different plots showing the effect of a) continuum solvation

on the isolated intermediate, b) the explicit waters in the first solvation shell interaction

with the intermediate, c) a comparison of the NEB energy profile in Fig. 3.5 compared to

different calculations using the reacting atoms, the counter ion, and the nine explicit waters

that appeared active from Fig. 3.9b, d) a comparison of the NEB energy profiles using

COSMO or SMD-embedded molecular clusters containing the counter ion and the explicit

solvation shell. Single point energies were performed at the PBE0/def2-TZVP level.
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Figure 3.10: CO2 reduction with BH3OH− to produce formate.

than BH2OH + H2O.[170] Further gSS-NEB studies on this pathway confirmed that the

process takes place as single barrier hydride transfer. The transition state and energy profile

for this pathway are shown in Figure 3.12a and Figure 3.12b, respectively. The reaction has a

single barrier (Ea = 0.15 eV) and is 0.12 eV downhill in energy. The barrier height found here

is similar to that from Model 1, but the overall reaction energy from Model 2 is significantly

less exothermic. We attribute this to stabilization of the reactants and transition state by

the presence of explicit water molecules when using Model 2.

As before, we created four sets of clusters from the gSS-NEB optimized coordinates for

each NEB image as described in the computational methods. Similar trends as seen before

also hold for these sets of calculations. Comparing the reaction profiles of the molecular

clusters with and without the counter ion (Figure 3.13) shows that the counter ion has a

noticeably smaller effect on reaction energies compared to the reaction in Figure 3.2. This

is likely due to the fact that in this reaction pathway, the counter ion remains within ∼2.5

of the CO2 molecule over the course of the reaction (see Appendix C), and thus solvent

relaxation effects are less than those arising in the reaction for Figure 3.2. Indeed, visual

inspection of the structures (reported in Appendix C) shows that hydrogen bonding between

explicit solvent molecules and the CO2/formate stabilizes the increasing negative charge on

CO2. This may explain why the counter ion in the reaction in Figure 3.10 has a smaller

energetic impact than in the reaction in Figure 3.2. Figure 3.13 also shows that the effect of

the counter ion lowers reaction energetics by 0.25 eV, but this effect is reduced when explicit

solvation destabilizes the product species compared to the reactant state when the counter

ion is present.
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Figure 3.11: A) The transition state structure for the hydride transfer from BH3OH− to

CO2 to produce formate. B) The reaction pathway energies for the reaction in Figure 3.10

calculated using ORCA (B3LYP/def2-TZVP embedded in COSMO solvation).

58



Figure 3.12: A) The transition state structure for the hydride transfer from BH3OH− to

CO2 to produce formate. B) The reaction pathway energies for the reaction in Figure 3.10

calculated using ORCA (B3LYP/def2-TZVP embedded in COSMO solvation).

The 0.33 eV difference between the PBE and DLPNO-CCSD barriers seen in Figures

3.13a and 3.13c also illustrates greater variance between model chemistries than what was

observed with the reaction shown in Figure 3.2. It may also signify that the formation of the

under-coordinated BH2OH− species requires higher levels of theory for accuracy. Overall,

based on comparisons of the data in Figure 3.13, it appears that the energy deviations

between different levels of theory (0.33 eV) for this reaction are on a similar scale as the

energy differences observed when modeling the full solvation shell with the counter ion (0.25

eV).
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Figure 3.13: Single point energy (SP) calculations on clusters from gSS-NEB optimized

pathways for the reaction given in Figure 3.10. Energies were calculated with several different

types of KS-DFT as well as RI-MP2 (labeled as MP2) and DLPNO-CCSD (labeled as CCSD)

for all of the clusters described in the computational methods on a) only the reacting atoms

without Na+, b) the reacting atoms with Na+, and c/d) the geometries from a) and b) with

the first solvation shell.

3.4 CONCLUSIONS

We have investigated the degree that different solvation models and levels of quantum chem-

istry theory influence reaction pathways in condensed phases using CO2 reduction by NaBH4

and NaBH3OH as test cases. We benchmarked reaction pathways to those obtained from
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NEB calculations that identify reaction pathways for processes discovered from high temper-

ature BOMD simulations. We then presented a mixed explicit-continuum solvation model

approach that qualitatively agrees with explicit solvation models using periodic boundary

conditions. A benefit to the mixed explicit-continuum approach is that it allows the use

of high level quantum chemistry theory when studying reaction pathways in solution in an

IRCMax-like approach. Procedures such as this may also lead to more computationally

efficient workflows for free energies of solvent phase reactions.

We have found that reaction energy profiles and even observed intermediates over the

course of a reaction can be qualitatively different depending on the computational models and

approximations used. In particular, reliably modeling aqueous phase reaction pathways likely

necessitates explicit treatments of solvent molecules and counter ions. In the hydride transfer

reactions we considered, using different models for solvation as well as including counter ions

results in very large energy differences ranging from 0.25 - 1.25 eV, and the magnitude of these

differences can cause qualitative changes in reaction energetics. Alternatively, using different

levels of theory on these reactions can result in more moderate energy differences ranging

from 0.2 - 0.3 eV, and these did not result in qualitative changes in reaction energetics.

Based on these results we conclude that the treatments of explicit solvation and counter

ions will play an equal if not much greater role than the level of theory used (whether

obtained from pure GGA, hybrid KS-DFT, or other post HF methods, including multi-

configurational correlated wavefunction methods) when modeling adiabatic hydride transfer

reactions. Future work will focus on using this approach to model reactions with more com-

plex electronic structures as well as developing determining workflows for calculating free

energy contributions necessary for rate constant determinations at ambient temperatures.
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4.0 QUANTUM CHEMICAL ANALYSES OF BH−
4 AND BH3OH−

HYDRIDE TRANSFERS TO CO2 IN AQUEOUS SOLUTION WITH

POTENTIALS OF MEAN FORCE

The content of this chapter is taken from M. C. Groenenboom, and J. A. Keith, ”Quantum

ChemicalAnalyses of BH−
4 and BH3OH− Hydride Transfers to CO2 in Aqueous Solution with

Potentials of Mean Force” chemphyschem 2017, DOI: 10.1002/cphc.201700608R1.

4.1 INTRODUCTION

Finding ways to utilize anthropogenic CO2 before it enters the environment is critically im-

portant as we seek to limit rising atmospheric CO2 concentrations. There are ongoing efforts

to develop efficient and sustainable processes that would convert CO2 into chemical feed-

stocks such as formate, methane, methanol, or larger alcohols and/or hydrocarbons.[131, 15,

209] Producing these products requires CO2 hydrogenation processes that may be classified

as chemical hydrogenations,[210] electrochemical reductions,[20] or hydride transfers.[211]

Studies on biological systems have identified efficient hydride transfer agents such as nicoti-

namide adenine dinucleotide (NAD) that are integral components in enzyme-catalyzed CO2

reduction reactions.[212]

Our group is one of several that have been investigating whether aromatic N-heterocycle

containing molecules (a molecular motif found in NAD and sometimes implicated as a cat-

alyst in CO2 reduction[39]) are catalyzing biomimetic hydride transfer reaction pathways

in specific electrochemical environments.[213, 214, 215, 68] Key questions remain about the

specific barrier heights for different reaction steps and how best to model these reaction path-
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ways using computational methods. Instead of considering electrochemical CO2 reduction

with aromatic N-heterocycles, the present study focuses on the detailed study of a simpler

and less controversial chemical reduction.

We previously investigated reaction barriers for CO2 reduction involving NaBH4, a pow-

erful chemical reducing agent that was shown to reduce CO2 in aqueous environments.[170]

This is a notable result since hydride transfer reactions usually necessitate aprotic condi-

tions to prevent competitive hydrogen evolution reactions, but the high hydricity of NaBH4

in part overcomes this hurdle. We later showed that reaction pathways for hydride transfers

are significantly more sensitive to how the surrounding solvation and co-solute interactions

are modeled than the level of computational theory that is used.[216] The next aspect to ad-

dress is the quantitative degree that free energy contributions such as solvent configurations

and entropy affect reaction energy profiles for hydride transfers to CO2 in aqueous solution.

Different computational quantum chemistry approaches can be used to characterize re-

action mechanisms. The simplest approach might use small molecular clusters embedded

within continuum solvation models,[159, 156, 160] but results from these approaches can be

very sensitive to solute-solvent interactions or configurations of solvating molecules.[216, 58]

More robust computational treatments such as metadynamics[139, 133, 137] or transition

path sampling[140] explicitly model solvent environments and can more physically identify

complete reaction mechanisms through extended molecular dynamics simulations, but these

approaches bring far higher computational costs. The use of semi-empirical or QM/MM

methods can decrease computational expense,[145, 148, 217] but these approaches may also

have lower accuracy and be less transferrable than ab initio (or Born-Oppenheimer) molec-

ular dynamics simulations.[154]

In the present study, we modeled solvent phase free energies along specific hydride trans-

fer pathways with umbrella sampling simulations using Kohn-Sham density functional theory.

Potentials of mean force (PMF) from these simulations were then calculated to yield free

energy changes over the course of a chemical reaction at room temperature while explicitly

modeling all intermolecular interactions (involving solvent molecules and co-solutes species)

along these pathways. This work complements other computational studies of free energies

along reaction pathways.[218, 219, 220, 221]
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The umbrella sampling simulations were run along CO2 reduction pathways involving

hydride transfers from NaBH4 and NaBH3OH obtained using generalized solid-state nudged

elastic band (G-SSNEB) methods.[216] This allows the direct comparison of reaction energy

profiles obtained at 0 K against free energy profiles modeled at 300 K. Our PMF data

provides what should be a definitive prediction of hydride transfer free energy barriers to

CO2 from two different and strong hydride donors in aqueous solution. This work also shows

that not accounting for configurational sampling and solvent entropy at room temperature

can result in somewhat similar barrier heights (observed within 0.2 eV of the 0 K pathways),

but energy profiles can be significantly different.

4.2 COMPUTATIONAL METHODS

We previously reported generalized solid state nudged elastic band (G-SSNEB) optimized

reaction pathways for the chemical reduction of CO2 with BH−
4 and BH3OH−.[216] These

systems consisted of a BH−
4 (or BH3OH−), CO2, Na+, and 71 H2O molecules (70 H2O

molecules for BH3OH−) in a nearly 13 Å cubic box. The box dimensions changed by < 5%

during the G-SSNEB optimization.

Our umbrella sampling procedure is similar to that used by Ivchenko et. al.[222] We per-

formed umbrella sampling simulations along our previously optimized 0 K reaction pathways

using CP2K.[223] All CP2K calculations used the PBE density functional,[141] and GTH

pseudopotentials[224, 225, 226] in conjunction with double-zeta basis sets (DZVP).[227] All

umbrella sampling simulations were periodic in the X, Y, and Z directions, and simulations

were performed for 10 ps with a 0.5 fs timestep. All hydrogen atoms were substituted with

deuterium to enable the use of a relatively large timestep. Barriers obtained from umbrella

sampling simulations using an 0.25 fs timestep were in good agreement with those obtained

using an 0.5 fs timestep (reported in Appendix D). The coordinates from our previous reac-

tion pathway studies had been fully relaxed prior to the G-SSNEB reaction pathway opti-

mizations, so we do not perform a separate equilibration run here. We used a 400 Ry cutoff

energy as this gave well converged system energies. All simulations used the NVT ensemble
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and were performed at 300 K using the velocity-rescaling thermostat.[228] We enforced har-

monic bond constraints on the B-H and C-H bonds for reaction 1 (Figure 4.1), the B-H and

B-O bonds for reaction 2 (Figure 4.1), and the B-H and C-H bonds for reaction 3 (Figure

4.1). The exact bond lengths and bond constraints for each umbrella sampling window as

well as the overlap between the umbrella sampling windows are reported in Appendix D.

The activation barrier and reaction energies for each reaction were determined by calcu-

lating a potential of mean force (PMF) using the 2D weighted histogram analysis method

(WHAM).[229] We excluded the first 3 ps of each simulation from the WHAM analysis as

we consider this to be the equilibration time for each set of reaction coordinates. We set the

WHAM convergence criteria to 1E-05 eV.

4.3 RESULTS AND DISCUSSION

In previous work[170] we found that some of the oxidized borohydrides that are expected to

be formed from NaBH4 hydrolysis[162] have a thermodynamic preference toward reducing

protons rather than CO2 in aqueous solutions. We then reported three different G-SSNEB

optimized reaction pathways at 0 K for the aqueous phase reduction of CO2 with NaBH4 and

NaBH3OH (Figure 4.1).[216] Those optimized pathways showed that BH−
4 reacted with CO2

to form a metastable intermediate complex (Reaction 1 in Figure 4.1). The complex then

decomposed after an H2O molecule added to BH3 to form a partially oxidized borohydride

(BH3OH−) and a formate anion (Reaction 2 in Figure 4.1). BH3OH− can also competi-

tively reduce CO2 to formate through a direct, single step hydride transfer (Reaction 3 in

Figure 4.1). Below we compare the reaction pathways and energetics obtained from PMFs

determined from the weighted histogram analysis method (WHAM) of umbrella sampling

simulations at T = 300 K against those obtained from G-SSNEB optimized reaction path-

ways at T = 0 K to quantify the significance of free energy contributions in these reaction

pathways. The difference in the energetics of these two models represents a combination of

solvent configurations and solvent entropy effects. Although free energies of our PMF sim-

ulations were smoothly converged, smoothly converged average potential energies for each
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Figure 4.1: Three pathways characterized with umbrella sampling. Reactions 1 and 2 are

parts of a sequential, two-step hydride transfer reaction. Reaction 3 is a different one-step

hydride transfer from a partially oxidized borohydride species (BH3OH−). These reaction

pathways all involve explicit solvation and a Na+ counter ion and were obtained with G-

SSNEB calculations in previous work.[216]

umbrella sampling window would require much longer simulations. Thus, we cannot quanti-

tatively allocate free energies due to configurational sampling versus other entropy at room

temperature.

Umbrella sampling simulations require defining a set of collective variables for each re-

action pathway. Reaction 1 is characterized by the boron-hydride and carbon-hydride dis-

tances. Figure 4.2 shows the minimum energy reaction pathway along the B-H and C-H

distances, and Figure 4.2B shows the reaction energies as the C-H distance decreases (i.e.

as the intermediate complex is formed). Figure 4.2A and Figure 4.2B respectively compare

the PMF reaction coordinates and the PMF energy profile against those determined from

G-SSNEB reaction pathway optimizations.

The transition state structures and minimum energy reaction pathways for Reaction

1 from PMF and G-SSNEB modeling are very similar (see Figure 4.2A). The similarities

between the PMF and G-SSNEB minimum energy reaction pathways show that sampling

different solvent configurations does not cause the 300 K reaction pathway to significantly

deviate from the 0 K G-SSNEB reaction pathway. It also shows that our free energy sim-

ulations are sampling configurations similar to the NEB reaction coordinate of the hydride

transfer transition state. (The pairs of B-H and C-H distances used for each umbrella sam-

pling window are discussed more in Appendix D supporting information.)
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Figure 4.2: Reaction pathway analyses of Reaction 1 (Figure 4.1) using C-H bond distance

as the reaction coordinate. A) Plot of B-H distance vs. C-H distance over the course of

Reaction 1. Transition states are marked with a triangle. B) Minimum free energy reaction

pathways determined from WHAM analysis (labelled PMF), G-SSNEB reaction pathway

optimizations at 0 K (labelled NEB[216]).
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However, Figure 4.2B shows that the energy profiles of these two methods differ more

significantly. The free energy profile from PMF modeling is lower relative to the G-SSNEB

pathway. The G-SSNEB pathway is as much as 0.25 eV higher in energy at some points

along the reaction pathway while the transition state is 0.08 eV higher than that found from

the PMF modeling. Although these are relatively small quantities, note that similarly small

differences in barrier heights would result in dramatic changes in reaction rates, and just a

0.08 eV barrier height decrease corresponds to a 22x increase in Arrhenius rate constants.

The overall G-SSNEB and PMF reactant and product state energies for Reaction 1 are

nevertheless in good agreement.

Reaction 2 is characterized by 1) an increasing B-H bond distance as the intermediate

complex breaks apart and 2) a decreasing B-O bond distance as the water molecule par-

ticipates in an SN2 attack on BH3 (see Figure 4.3A). The PMF and G-SSNEB reaction

coordinates deviate more in Figure 4.3A compared to Figure 4.2A. This shows Reaction 2 is

more sensitive to solvent configurations, which is not surprising since Reaction 2 explicitly

involves addition of H2O. While the minimum energy reaction profiles deviate slightly at

small B-H distances, the transition states and reactant and product states occur at similar

sets of B-O and B-H bond lengths. Two transition states are marked in the PMF pathway

in Figure 4.3 because two different states were observed having nearly identical energies and

B-H distances, but both had significantly different B-O distances.

Figure 4.3B projects out the reaction energy using the B-H distance as the reaction

coordinate. As was found with Reaction 1, the PMF pathway at 300 K has lower energies

than was predicted from the G-SSNEB at 0 K at most intermediate reaction coordinates.

The G-SSNEB barrier for Reaction 2 (relative to the product state in Reaction 1) is 0.14

eV. In contrast, the PMF barrier is 0.07 eV.
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Figure 4.3: Analysis of Reaction 2 in Figure 4.1. A) Minimum energy reaction pathways

determined from WHAM analysis (labelled PMF) or obtained from G-SSNEB reaction path-

way optimizations (labelled NEB). Transition states are marked with a triangle. B) Reaction

energies determined from WHAM analysis or obtained from G-SSNEB reaction pathway

optimizations.[216]
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The barrier for Reaction 2 is due to BH3 undergoing a nucleophilic attack from H2O.

The lower PMF barrier height can be attributed to weaker average interactions between all

neighboring water molecules at 300 K. A smaller Reaction 2 barrier relative to the reverse

Reaction 1 barrier (0.17 eV) increases the likelihood that the reaction will move towards

products (formate and BH3OH−) as opposed to regenerating BH−
4 and CO2. Reactions 1

and 2 would presumably proceed faster as a pseudo-single step reduction reaction (limited

by the barrier to Reaction 1) if the Reaction 2 barrier could be further decreased.

CO2 reduction by BH3OH− (Reaction 3 in Figure 4.1) is characterized by increasing

B-H bond distances and decreasing C-H bond distances. The B-H and C-H bond distances

involved in the reaction coordinate (Figure 4.4A) are similar in both the G-SSNEB and PMF

models, showing that sampling different solvation configurations does not significantly affect

this reaction coordinate. The PMF pathway involves longer C-H bond distances during the

second half of the reaction (C-H distances ranging from 1.5 - 1.1 ), but the product has

similar sets of C-H/B-H distances.

Figure 4.4B shows that the forward PMF reaction barrier (0.27 eV) is nearly twice

as large as the forward G-SSNEB reaction barrier (0.15 eV). More noticeable is that the

PMF reaction energy at 300 K (-0.74 eV) is significantly more downhill in energy than

the G-SSNEB pathway at 0 K (-0.12 eV). The reaction energy from the PMF pathway is

comparable to the combined reaction energies of reactions 1 and 2 (-0.70 eV). In terms of

kinetic modeling, using data from PMF simulations rather than NEB calculations for this

reaction would significantly decrease reaction rate constants (k 0.006 * kNEB) and increase

the equilibrium constant (KPMF ≈ 1013 * KNEB). Although transition states from NEB

and PMF modeling resemble each other, the configurational sampling of solvent molecules

clearly plays a very important role in determining reaction thermodynamics.

To elaborate further, we assume that differences between the PMF and G-SSNEB re-

action pathways in Figure 4.4A are not large enough to produce the energy differences in

Figure 4.4B. The difference between the PMF and NEB reaction energies are most likely due

to configurational sampling because the difference between the average potential energies of

the reactant and product umbrella sampling windows is similar to the PMF reaction free

energy (-0.78 vs. -0.74 eV), see Appendix D. However, the barrier height predicted from the
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Figure 4.4: Analysis of Reaction 3 in Figure 4.1. A) Minimum energy reaction pathways

determined from WHAM analysis (labelled PMF) or obtained from G-SSNEB reaction path-

way optimizations (labelled NEB). Transition states are marked with a triangle. B) Reaction

energies determined from WHAM analysis or obtained from G-SSNEB reaction pathway

optimizations.[216]
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umbrella sampling window average potential energy (0.78 eV) is significantly higher than ei-

ther the PMF (0.27 eV) or the NEB (0.15 eV) profiles. Therefore, the difference in reaction

energetics can mostly be assumed to be due to more favorable solvent configurations sampled

in PMF simulations, but the remaining differences in barrier heights reflect a combination

of free energy contributions. Although G-SSNEB calculations at 0 K were carried out using

geometrically relaxed structures from molecular dynamics equilibrations at 300 K,[216] the

product structure used in the NEB calculation here was probably a relatively high energy

local minimum. This in turn resulted in G-SSNEB energy profiles dramatically different

from the PMF simulations on the same pathway that appear to correct this problem by

providing enough kinetic energy to escape local energy minima and more fully sample the

potential energy surface. Thus, PMF studies on pathways discovered from G-SSNEB calcu-

lations appear to be a robust modeling approach to analyze individual reaction pathways at

realistic operating temperatures.

Interestingly, umbrella sampling barriers and reaction energies for Reaction 3 are qualita-

tively similar to results from modeling small molecular clusters embedded in continuum sol-

vation as discussed in our previous study (∆G‡cluster = 0.23 eV, ∆Gcluster = -0.99 eV).[216]

In contrast to Reaction 3, modeling Reactions 1 and 2 with small clusters embedded in con-

tinuum solvent resulted in a single step reaction process with a significantly larger barrier

height (∆G‡cluster = 0.71 eV) instead of the 2-step reaction pathway found from G-SSNEB

calculations. This reaffirms that continuum solvation models may sometimes appear to be

more reliable for calculating overall reaction energies, but reaction pathways obtained from

small cluster models run the risk of being qualitatively different from those obtained using

explicitly solvated modeling. Computationally studying hydride transfers in solvent phase

(and perhaps at a solid/liquid interface) appears to require explicit solvation treatments that

account for configurational entropy at finite temperatures.
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4.4 CONCLUSIONS

We have investigated the role of reaction free energies in prototypical hydride transfer reac-

tions to CO2 in aqueous solvent. We find that reaction pathways from G-SSNEB calculations

and subsequent PMF simulations are generally similar, and this shows that PMF simula-

tions can provide additional insight into how free energies at ambient temperatures affect

reaction energies along predefined reaction coordinates. A notable result is that the much

more computationally intensive PMF reaction energies sometimes are consistent with re-

action energies from G-SSNEB or cluster-continuum models, but sometimes they are very

different. This suggests more insight is needed to address when PMF simulations would be

needed and when less computationally intensive models would suffice. Overall, the PMF

studies here show what should be highly accurate energy profiles for CO2 reductions from

hydride donating agents at room temperature. By using a combination of G-SSNEB and

PMF methods one can develop computational workflows that analyze reaction pathways to

identify more effective and more efficient CO2 reduction catalysts.
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5.0 DOPED AMORPHOUS TI OXIDES TO DEOPTIMIZE OXYGEN

REDUCTION REACTION CATALYSIS

The content of this chapter is taken from M. C. Groenenboom, R. M. Anderson, D. J.

Horton, Y. Basdogan, D. F. Roeper, S. A. Policastro, and J. A. Keith, ”Doped Amorphous

Ti Oxides to Deoptimize Oxygen Reduction Reaction Catalysis” J. Phys. Chem. C 121

(2017) 16825-16830.

5.1 INTRODUCTION

Worldwide efforts to prevent and remediate corrosion damage cost approximately 3.4% of

the global GDP per year.[230] Even materials that are normally resistant to corrosion in

isolation can degrade due to galvanic couples that form between dissimilar metals. This effect

is powerful enough to corrode aircraft grade aluminum alloys despite being covered by their

stable, corrosion resistant metal oxides.[74, 75] Problems such as these have inspired many

efforts to create better functional coatings that physically block corrosive conditions,[82, 83]

sacrificially corrode to protect the substrate,[88] or kinetically slow corrosion rates.[231, 232]

Galvanic corrosion occurs near boundaries between dissimilar metals (see Figure 1.6).

Metal oxidation on the less noble metal surface (anodic site) provides electrons that drive

the oxygen reduction reaction (ORR) on the more noble metal surface (cathodic site). Be-

cause the driving force for metal oxidation decreases if these electrons are not consumed,

the ORR is a major factor that controls the overall galvanic corrosion rate in atmospheric

environments.[80, 79] Thus, inhibiting catalytic ORR activity at the cathodic site is an

opportunity to decrease the rate of galvanic corrosion.
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Amorphous Ti oxides are an ideal candidate material to reduce cathodic kinetics because

fasteners made from Ti alloys commonly form galvanic couples with other metals, such as Al

and its alloys. These amorphous Ti oxides can be doped with other metals to further alter ca-

thodic kinetics. Doped Ti oxides are reasonably stable and can be natively formed on doped

Ti metal surfaces without the need for traditional barrier coatings. Moreover, the dopants

can be alloyed in the Ti bulk material so the doped Ti oxide will spontaneously regener-

ate if damaged. Previous efforts to use TiO2 to inhibit galvanic corrosion have attempted

to provide cathodic protection via photo-generated electrons from TiO2 photoanodes.[90]

In contrast to those works, our study focuses on identifying dopants that decrease ORR

electrokinetics on amorphous Ti oxide surfaces.

Computational quantum chemistry studies frequently use thermodynamic descriptors

and Sabatier volcano curves to identify optimal catalysts that lie near the top of the activity

volcano (see for example the large body of fuel cell literature[30, 91, 92, 93, 94]). While this

level of modeling works well in predicting dopants that maximize the catalytic activity of

a material, these in silico models are not normally used to predict dopants that minimize

catalytic activity, i.e. dopants that lie near the bottom of the Sabatier volcano plots. We

report an integrated computational and experimental study that demonstrates that simple

Sabatier volcano descriptors can be used to qualitatively predict metal dopants that experi-

mentally decrease ORR currents by as much as 77% when impregnated in amorphous TiO2

at doping concentrations of 1%. This report focuses on using modeling and experiment to

understand ORR catalysis on doped Ti oxide surfaces. The overall effectiveness of these

coatings at reducing galvanic corrosion will be addressed in future work.

5.2 COMPUTATIONAL METHODS

Unless otherwise specified, all presented energies and structures were determined using

Kohn-Sham density functional theory (DFT) in the Vienna Ab initio Simulation P ackage

(VASP)[184, 185, 186] utilizing the Perdew-Burke-Ernzerhof (PBE)[141] GGA exchange cor-

relation functional and the projector augmented wave (PAW) method[189] with spin polar-
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ization. Planewave energy cutoffs of 450 eV and a 2x2x1 k-point grid gave well-converged en-

ergies. We approximate the zero point energy, entropic, and solvation free energy of water by

using the values predicted by Valds et. al. for the ORR intermediates adsorbed to TiO2.[233]

When noted, VASPsol was used to account for solvated reaction energetics,[234, 235] using

the relative permittivity of water (78.4) along with the previously mentioned parameters

(PBE, PAW potentials, spin polarization enabled, 450 eV energy cutoff, and 2x2x1 k-point

grid). Additional energy calculations using the HSE06 hybrid DFT functional[236] (PAW

method, spin polarization enabled, 450 eV energy cutoff, and a gamma-point calculation)

were performed on PBE optimized structures to determine the impact that higher levels of

theory have on intermediates adsorbed to doped amorphous Ti oxides. HSE06 calculations

were performed for dopant systems where we also obtained experimental data.

We created amorphous TiO2 surfaces by annealing crystalline TiO2 slabs using the

reax/c[237] implementation of ReaxFF[238] in LAMMPS.[239] All annealing simulations

used the forcefield parameterized by Kim and Kubicki.[240] Rutile TiO2 slabs were heated

from 0 K to 1100 K at a rate of 0.06 K/fs using a 1 fs timestep. After 300 ps at 1100 K,

we quenched the structures to 0 K at a rate of 0.05 K/fs. The resulting structures were

then fully relaxed using DFT in VASP as described previously (PBE, PAW potentials, spin

polarization enabled, 450 eV energy cutoff, and 2x2x1 k-point grid).

5.3 EXPERIMENTAL METHODS

Titanium-doped alloys were arc-melted using high purity metals (greater than 99.995 at%).

Ingots were subsequently suction cast into a cylindrical copper mold. The cylinder rods were

then machined to 1.1 cm and then ground to a final dimension of 1 cm. After casting, a

four-hour solution anneal in argon was performed at 827°C (Ag, Al, Cr, Sn, and Ti), 685°C

(Co), or 550°C (Mn), within the single-phase HCP region, followed by a water quench. The

crystal structure was determined using Bragg-Brentano X-ray diffraction (XRD), with a

Cu k-α source of wavelength 1.5405 Å. XRD and XPS results are summarized in Figures

E.1, E.2, and table E.1 in the Appendix E. Samples of 1 cm diameter were then mounted

76



in insulating epoxy and the surface areas were measured. Prior to electrochemical testing,

samples were abraded using successively finer grits to 1200 grit SiC paper and then polished

using 1 µm alumina and sonicated in water. Because titanium in its pure state is highly

reactive with oxygen, the native oxide was assumed to begin formation almost immediately

upon completion of the polishing step. No additional anodic polarization was used to drive

the oxide formation.

ORR activities on the oxides were then evaluated using traditional cathodic polarization

scans in 0.6 M NaCl adjusted to pH 12 with NaOH. These conditions should represent

those near the cathodic material in a galvanic couple under a water droplet in atmospheric

conditions.[81] After an 18-hour open circuit (OC) hold, the potential was scanned in the

negative direction from +0.02 V above EOC to -2.0 VSCE at 0.167 mV/s using a graphite

counter electrode. Each experiment was performed in triplicate. An 18-hour OC hold showed

less scatter than the 1-hour hold used in previous work,[241] and therefore we have higher

confidence in the values presented here.

5.4 RESULTS AND DISCUSSION

5.4.1 Amorphous TiO2 Model

We used an atomistic reactive forcefield (ReaxFF[240]) to create an amorphous oxide surface

model as has been done by others.[242] A crystalline TiO2 surface composed of 3x3 rutile

unit cells (3 tri-layers thick) was annealed using ReaxFF as described in the computational

methods section. As shown in Figure 5.1, radial distribution functions for the slab structures

agree well with experimental data for amorphous TiO2 nanoparticles after full optimization

using DFT. The ReaxFF annealed structure for our system itself did not agree with exper-

imental data.[243] Although our system has a distinct unit cell and therefore is not truly

amorphous, the agreement with experimental data displayed in Figure 5.1 shows that our

system is a reasonable model for a structurally relaxed facet on an amorphous TiO2 surface

where ORR could be expected to occur.
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Figure 5.1: The radial distribution functions for the Ti-Ti, Ti-O, and O-O pairs from the

ReaxFF annealed structure, the annealed structure after being optimized with density func-

tional theory in VASP, and experimental data.[243] The QM optimized structure agrees with

experimental data.
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5.4.2 Calculating ORR Overpotentials

Calculating reaction overpotentials with the computational hydrogen electrode model[30] is

normally the first step toward modeling electrocatalytic activity. This model can yield robust

insight into electrocatalytic reaction rate trends despite not explicitly calculating reaction

barriers or accounting for other factors such as defects. We used this approach to calculate

reaction overpotentials for the associative ORR mechanism commonly used to describe the

ORR on metal oxides as shown in Figure 5.2.[244, 245] Overpotentials for the two electron

ORR mechanism are considered in Appendix F. Because the hydrogen evolution reaction (1/2

H2 ⇀↽ H+ + e−) is in equilibrium at 0 V vs. the standard hydrogen electrode (VSHE), the

energies of protons and electrons in electrochemical reduction steps were modeled as half the

energy of an H2 molecule plus a linear energy correction to account for an applied potential.

Using these energy corrections, we calculated the theoretical reaction overpotential by finding

the applied potential at which all four reaction steps are downhill in energy. Mathematically,

this was determined by the most uphill reaction step at the equilibrium potential for the

ORR (1.23 VSHE). This approach assumes that the activation barrier for the rate limiting

step will be at least equal to the most uphill reaction step, and this assumption has been

used to successfully study electrochemical reactions (including the ORR) on metals and

metal oxides.[79, 80, 90, 30, 91]

Our amorphous TiO2 surface model contained four unique surface sites (each at a four-

coordinate surface Ti atom) on which ORR steps were considered to take place. Modeling

the ORR energies on the sites shown in Figure 5.2b yielded overpotentials that vary by nearly

0.8 V, but the most active site (Site 1) had predicted overpotentials calculated with our PBE

(without solvation) and HSE06 (with solvation) models that were in good agreement with

the experimental overpotential for TiO2 (ηORR
PBE−noSolv = 0.5 V, ηORR

HSE06−Solv = 0.43 V, and

ηORR
exp = 0.45 V).[246] The local coordination environments at active sites has been used to

describe catalytic activities.[247, 248] However, changes in local coordination environment

were quite subtle in these amorphous structures and not pursued as a descriptor for catalysis.

The agreement between previously measured ORR overpotentials and those calculated here

validated that our amorphous TiO2 model can be used to study ORR mechanisms.
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Figure 5.2: a) The associative ORR mechanism modeled in this work. * denotes an empty

surface site on the material. b) ORR reaction energies calculated with PBE for four different

surface sites in the undoped TiO2 surface (labeled 1-4) plotted at an applied potential of 0

and 1.23 VSHE. The intermediates correspond to the reactions in Figure 5.2a.
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5.4.3 Dopant Screening

We considered different metal dopants that could be introduced into the amorphous oxide

surface to increase ORR overpotentials. Each dopant atom was embedded into the surface

at its preferred oxidation state given by experimental Pourbaix diagrams[249] at our experi-

mental operating conditions, -0.8 V vs the saturated calomel electrode (VSCE) at pH 12 (See

Figure E.4 and Table E.2 for further discussion). We compared the stability of each dopant

at all four different active sites as shown in Figure 5.2b to identify the most stable substitu-

tion site (Figures E.7, E.8, E.9, E.10, and E.11 show the surface models). We assumed that

the most thermodynamically stable site would reflect the atomic configuration that would

be least likely to reconstruct and would therefore have the largest effect on electrochemical

ORR rates. Following work by Carter and co-workers,[92] we then predicted the maximum

impact of each dopant on the ORR activity by modeling the ORR intermediates adsorbed

directly to the dopant atom embedded in the amorphous surface at its most stable site.

The predicted maximum overpotential for each metal dopant is displayed in the Sabatier

volcano diagrams shown in Figure 5.3. Unlike studies on fuel cell catalysis where the ideal

catalyst is found at the top of the activity volcano, we sought to identify dopants at the

bottom of the volcano that optimally reduce ORR rates. Our rationale for this now follows.

When a reaction site near a dopant has a higher ORR overpotential than the undoped

surface, that reaction site is less likely to contribute to the overall activity. Furthermore, it

is highly unlikely that all reaction sites will be at a dopant because of their relatively low

concentrations in the oxide (0.5-6.2%). However, dopants with high reaction overpotentials

will still affect adsorbate binding energies multiple sites away,[250] and the dopant’s influence

on the overpotential will decrease the further the dopant is away from the reaction site.
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For example, the ORR overpotential at the most active site on undoped TiO2 (site 1 in

Figure 5.2) is 0.50 V. The same site with the Al3+ dopant one nearest neighbor site away

increases the overpotential at this site to 0.65 V. We note that the maximum calculated

overpotential due to Al3+ is 1.43 V. Thus, the effect of the dopant on ORR overpotentials

reflects the upper limit to what would be experimentally observed, but the overall trend

for how dopants affect ORR activity will still be reflected by the activity volcano based on

maximum dopant impact. This effect is discussed further in Appendix F (see Table F.1).

We use a relatively simple surface model to screen dopants by their maximum potential

to inhibit ORR activity. The model assumes that dopants at low concentrations will be

distributed throughout a Ti oxide. For the cases considered here, experimental XPS mea-

surements show that most dopants are present in the oxide at concentrations comparable to

the original alloys (only Cr is present at higher than 2.2%, see Table E.1) and so chances

of segregation would be considered low. This may not always be the case when modeling

complex oxides, especially those with higher dopant concentrations, and segregation may

occur.[251] In the best case, our model would overestimate the impact of the dopants in a

segregated oxide because segregation would result in more uninhibited Ti active sites, but

the trends predicted by our model would still hold. In the worst case, segregation would

change the overall structure of the material which may unpredictably affect overall trends.

We now discuss dopants that we verified experimentally using potentiodynamic polar-

ization in this work (Ag, Sn, Cr, Co, Al, Mn, and V) or have been previously studied (Nb)

shown in Figure 5.3a.[246] Our computational modeling predicted that Mn and Al would

bring the highest ORR overpotentials in the cases considered and thus would be the best

dopants for suppressing ORR activity. Co, Sn, and Cr in turn should be moderate ORR

inhibitors, and Nb and Ag should increase ORR activity relative to pure amorphous TiO2.

This is consistent with previous work by Arashi and coworkers who showed that doping

amorphous TiO2 with Nb slightly lowers the ORR overpotential.[246] Vanadium is more

challenging to characterize because it has two stable oxidations states near our experimental

conditions (V3+ and V5+). Thus, V dopants are likely present as a mixture of V3+ and

V5+. At more negative applied potentials, the ratio of V3+/V5+ should favor V3+ and the

ORR activity of the oxide should decrease. This suggests that dopants could have differ-
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Figure 5.3: Sabatier volcano plots of computationally predicted dopant overpotentials.

Dopants that were predicted and tested in this work are labeled in red, and dopants not

yet experimentally verified are labeled in black. a) overpotentials calculated with PBE

without solvation effects, b) overpotentials calculated with HSE06 and including solvation

energies. HSE06 calculations were only performed for dopants with available experimental

data. The effect of solvation is discussed further in Figure E.6.
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ent capacities to suppress ORR rates at different applied potentials in our experiments. The

Pourbaix diagrams for all other considered dopants have only one stable oxidation state near

our experimental conditions. We experimentally verified trends for these eight systems, but

we also computationally predicted that Ga, Zn, and Si could be even better ORR inhibitors

than Al and Mn.

Appendix E (Figure E.6) reports how Sabatier volcano diagrams are influenced using

PBE/HSE06 and/or VASPsol. Figure 5.3b shows that using a higher level of theory (HSE06)

while also accounting for solvation (VASPsol continuum solvation) does not appear to signif-

icantly alter the model predictions from PBE without solvation in most cases studied here.

While the overpotentials of most of the dopants shift from those shown in Figure 5.3a, only

Mn2+ (∆ηORR= 0.22 V), Cr3+ (∆ηORR= 0.57 V), Co2+ (∆ηORR= 0.4 V), and V3+ (∆ηORR=

0.52 V) change by more than 0.15 V. Even considering these overpotential changes the rel-

ative dopant ordering is generally preserved. The only exception to this are the predicted

overpotentials of Cr3+ and Co2+. In these cases, HSE06 with VASPsol predicts that Cr3+

will be relatively less effective at inhibiting corrosion, while Co2+ should be more effective

than originally predicted in Figure 5.3a.

5.4.4 Cathodic Polarization Scans

Figure 5.4 shows representative cathodic polarization scans for all alloys that were investi-

gated experimentally. Note that the polarization scans were started at 20 mV above the OC

potential of the alloy and scanned in the electronegative direction at a rate of 0.167 mV/s.

The current density values at -0.8 VSCE, (the galvanic corrosion potential between Ti and

Al alloys),[81] were measured in triplicate and then averaged. The percent change for each

alloy with respect to the undoped Ti are shown in Table 5.1.

At potentials more positive than -0.8 V vs SCE, the trend for ORR suppression is con-

sistent with what was observed at -0.8 V vs SCE - with the exception of the catalysis of

the ORR on the Ti-Al and Ti-Mn alloys. The tafel slope for the ORR on both of these

oxides changes around -0.65 V vs SCE which suggests that there was a change in oxidation

state of the dopant atoms as the potential decreased. For example, as seen in Figure 5.3a,

84



Figure 5.4: Cathodic polarizations scans of the undoped titanium and the 1 at% doped

titanium samples in air-saturated 0.6 M NaCl at pH 12 with a scan rate of 0.167 mV/s.

Each scan began after an 18-hour OC hold.

V3+ and V5+ differ significantly in predicted overpotential values. As the applied potential

decreases, the ratio of V3+/V5+ in the material should increase resulting in an oxide with a

higher average overpotential.

5.4.5 Comparison to Experiment

Our quantum chemistry predictions almost exactly mirror our experimental results. The

trend in dopant performance predicted by computational modeling were:

Ag > undoped > Sn > Co > Cr > Al ≥ Mn > V3+ (Figure 5.3a)

and

Ag > undoped > Sn ≈ Cr > Al ≈ Mn ≈ Co > V3+ (Figure 5.3b)

while experimental potentiodynamic polarization measurements found almost the same

ranking:

Ag > undoped > Sn ≥ Cr > Co > Al ≥ Mn > V

Overpotentials calculated with PBE appear to overestimate the overpotential of Cr rel-

ative to Co, but these fall quite close on our volcano plot within 0.2 V (Figure 5.3a). While

calculating the overpotentials with HSE06 and VASPsol appears to correct the relative order-
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Table 5.1: Percent Change and standard deviation in current at -0.8 VSCE of alloy samples

versus the undoped Ti.

Alloy Current Density (µA/cm2) Percent Change

Ti-Ag1 17.3 +95 ± 13

Ti 8.8 N/A

Ti-Sn1 6.9 -21 ± 11

Ti-Cr1 6.2 -30 ± 8

Ti-Co1 4.7 -47 ± 5

Ti-Al1 3.4 -61 ± 11

Ti-Mn1 3.1 -65 ± 4

Ti-V1 2.0 -77 ± 3

ing of Co and Cr, these predictions now appear to overstate the effectiveness of Co relative

to Al, Mn, and V3+. The trends observed for the remaining dopants (Ag, the undoped

system, Sn, Al, Mn, and V3+) are consistent between both computational models and the

experimental results. Ag was anticipated to enhance electrocatalysis overall, and while the

measured current increase for the Ti-Ag oxide at -0.8 VSCE agrees with our predictions,

Ag exhibits anomalous polarization behavior. This may be due to Ag catalyzing additional

reactions or Ag+ being reduced under operating conditions, but further analysis is outside

the scope of the current study. While we exclude it from our experimental trend, our model

was also in good agreement with prior studies of the ORR on Nb doped amorphous TiO2 as

previously stated.

The other measured current trends are consistent with the OC potential ordering until the

slope of the Ti-Al and Ti-Mn alloys change relative to the other materials at approximately

-0.65 VSCE causing the Ti-V and Ti-Al/Ti-Mn alloys to switch order. This may be due to

the onset of different ORR mechanisms on the Ti-Al and Ti-Mn alloys, or the Ti-V alloy

may become less active as the V3+:V5+ ratio increases. At potentials more negative than
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-0.9 VSCE, the dopants could be reduced to other oxidation states not accounted for in our

computational model. Still, this shows that simple Sabatier analyses are robust enough to

identify dopants for materials having low catalytic activities and can be used to aid the

design of protective surface treatments.

The ability of the dopant atoms to bind the ORR intermediates was hypothesized to

correlate with the total charge of each intermediate after it is bound to the surface. Bader

charge analysis shows that *OOH bound to Al3+, Ti2+, or V3+ has a charge of -0.70, -0.97,

or -1.05, respectively. Dopants with larger degrees of charge transfer bind the intermediates

more tightly, effectively poisoning the surface, and they are limited by reaction 4 in Figure

5.2a. On the other hand, dopants that transfer less charge form weaker bonds that are less

likely to form reaction intermediates and are limited by reaction 1 in Figure 5.2a.

For dopants at intermediate oxidation states (i.e. V3+, Mn2+, Cr3+, Co2+, and Ag+),

the ability to donate electron density appears to correlate with their approximate redox

potentials from Pourbaix diagrams in the literature (V2O3 ⇀↽ V3O5 at E0 = -0.5 VSHE,

Mn2+ ⇀↽ Mn2O3 at E0 = 0.3 VSHE, Cr2O3 ⇀↽ CrO42− at E0 = 0.2 VSHE, CoO ⇀↽ Co3O4

at E0 = 1.0 VSHE).[249] For dopants at their highest oxidation state, (i.e. Nb5+, Ti4+,

Sn4+, and Al3+) the ability to bind to ORR intermediates correlates with their calculated

atomic radii (Nb = 1.98 Å, Ti = 1.76 Å, Sn= 1.45 Å, and Al = 1.18 Å). Although this

trend might be coincidental, bonding orbitals in smaller dopants (such as Sn and Al) have

less orbital overlap which makes it more difficult to transfer electron density to the adsorbed

intermediates than larger dopants (such as Nb). This results in weaker bonds and higher

overpotentials.

5.5 CONCLUSIONS

We have created a model amorphous TiO2 surface that matches experimental data and

shown that it contains reaction sites that predict ORR overpotentials in good agreement

with experimentally measured values. Our computational models correctly predicted dopant

trends and successfully identified dopants that were experimentally validated to lower ORR
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rates as much as -77 ± 3%. Optimizing the dopant concentration in the oxide can likely result

in further ORR activity decreases. While we have demonstrated a straightforward method

to predict dopants that modify metal oxides so that they more effectively suppress cathodic

reduction kinetics, future work will address the ability of these doped Ti oxides to inhibit

galvanic corrosion in realistic environments. Additionally, this doping approach should be

able to increase the effectiveness of oxide protective coatings used on other materials/devices

that suffer from corrosion damage (such as solar cell photoanodes[252, 253]).
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6.0 INHIBITING THE OXYGEN REDUCTION REACTION ACTIVITY

ON THE OXIDES OF TI-6AL-4V

6.1 INTRODUCTION

Corrosion causes significant, non-uniform damage that can limit the operational lifetime of

a material or cause mechanical failure. The costs associated with preventing and repairing

corrosion damage affect a wide variety of industries and are estimated to consume nearly 3.4%

of the global GDP per year.[230] Efforts to decrease this cost have motivated the development

of corrosion resistant alloys,[254] cathodic protection systems,[255, 256] and coatings that

physically block corrosive conditions or chemically slow corrosion reactions.[257, 258, 259,

260] Unfortunately, contact between two dissimilar metals or metal alloys can produce a

galvanic couple that is powerful enough to corrode materials that normally resist corrosion,

such as aircraft grade aluminum alloys[74, 261] or stainless steels.[262, 263]

The high strength, low weight, and improved corrosion resistance of Ti-6Al-4V make it

an ideal material for applications ranging from aerospace components to biological implants.

When Ti-6Al-4V is used to fasten materials made from less noble metals, the contact between

the two metals forms a galvanic couple that causes the preferential corrosion of the less noble

metal (see Figure 6.1). The electrons produced by the oxidation of the less noble metal (metal

1) are consumed by cathodic reduction reactions on the more noble metal surface. Galvanic

corrosion rates are highly dependent on both the corroding system and the surrounding

environment, [264, 265] but the oxygen reduction reaction (ORR) is a major limiting factor

for galvanic corrosion rates in atmospheric conditions.[79, 80] Thus, designing metal alloys

and their native surface oxides to be less effective ORR catalysts is an opportunity to decrease

the galvanic corrosion driving force in atmospheric conditions.
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Figure 6.1: An illustration of galvanic corrosion in an atmospheric environment. The contact

between metal 1 and the noble metal fastener forms a galvanic junction that can corrode

metal 1 when a water droplet is present on the surface.

Computational quantum chemistry studies frequently utilize ORR overpotentials com-

puted using the computational hydrogen electrode approximation[30] to design optimal

electrocatalysts.[266, 267, 268, 269, 270] We previously showed that these descriptors can

also identify dopants that inhibit the ORR activity of amorphous TiO2 (even at low doping

concentrations).[271] Developing accurate oxide surface models using current computational

tools is challenging and computationally expensive.[102, 272] Fortunately, experimental stud-

ies have shown that the oxides of Ti-6Al-4V are primary composed of Ti oxides and a Ti-Al

oxide (believed to be TiAl2O5).[273, 274, 275] Using this information we can construct simple

oxide surface models that represent the active sites present in the oxides of Ti-6Al-4V.

We previously studied ORR catalysis on amorphous TiO2, and we now report a com-

putational study that uses density functional theory (DFT) to demonstrate how surface

morphology and metal dopants affect the ability of TiAl2O5 to catalyze the ORR. First, we

describe how neural networks trained to the density functional theory (DFT) energies and

forces of oxide structures can be used to create defective and amorphous surface models. We

then calculate the ORR overpotentials of six different TiAl2O5 surfaces with DFT. Finally,

we use DFT show how the ORR overpotentials of crystalline and amorphous TiAl2O5 sur-

faces are influenced by the presence of dopants. These calculations can provide key insights

into the atomic scale factors that govern ORR electrocatalysis.
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6.2 COMPUTATIONAL METHODS

All Kohn-Shamn density functional theory (KS-DFT) calculations were performed with the

Vienna Ab initio Simulation Package (VASP).[184, 185, 186] All geometry optimizations and

energy calculations were carried out using the Perdew-Burke-Ernzerhof (PBE)[141] GGA ex-

change correlation functional, the projector augmented wave (PAW) method,[189] a 700 eV

energy cutoff, and spin-polarization. Surface structures were periodic in the x and y direc-

tions and used a 2x2x1 k-point grid. Bulk structures used a 2x2x2 k-point grid. Solvation

energies were calculated using VASPsol (relative permitivity of water = 78.4) and the pre-

viously mentioned parameters.[234, 235] Additional hybrid DFT energy calculations were

carried out on PBE optimized structures using the HSE06 hybrid DFT functional,[236] the

PAW method, a 700 eV energy cutoff, a gamma-point, and spin-polarization.

We generated a database that contained the atomic coordinates, energies, and forces of

1077 TiAl2O5 structures. The structures were a combination of crystalline equation of state

data, crystalline unit cell deformations along the A, B, and C unit cell vectors, crystalline

structures with individual Ti, Al, and O atoms moved in the x, y, and z directions, surface

and bulk vacancy diffusion pathways, and snapshots from high-temperature AIMD simula-

tions of crystalline surfaces and bulk structures. We later supplemented the database with

100 additional amorphous surface structures that were produced by annealing crystalline

TiAl2O5 surfaces. The computational annealing procedure is described below. All of these

calculations were carried out with VASP using PBE and the previously described param-

eters. The database is supplied as a json database file, and further information about the

training set is available in Section G.1 of Appendix G.

We selected a training set of 850 structures from the database and used the remaining

structures as a validation set. We trained neural networks to the structures in the training set

with the Atomistic Machine-learning Package (AMP)[276] created by Khorshidi and Peterson

and the atomic simulation environment (ASE).[277] We used Behler-Parrinello descriptors

with a cutoff radius of 4.5 Å to describe atomic structures. This provided adequate accuracy

while maintaining a low computational cost. Using a larger cutoff radius improved the

accuracy of the resulting neural network but dramatically increased its computational cost.
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We carried out annealing simulations with a neural network trained to the original training

set (NN1). Amorphous surface structures created by these annealing simulations were added

to the database and used to train a second neural network (NN2). NN2 was used to carry out

the annealing simulations reported here. Both neural networks had similar average errors,

mean unsigned errors, and standard deviations for the validation set and the training set.

This indicated that our neural networks were not overfit.

We annealed crystalline TiAl2O5 structures by performing molecular dynamics simula-

tions with NN1 and NN2 using AMP and ASE. We rapidly heated structures from ∼0 K

to 2400-2600 K using the Langevin thermostat and a large friction coefficient (0.50 atomic

units). The simulation maintained the desired temperature for 20-30 ps (Berendsen ther-

mostat with tau = 200 fs). We observed that this amount of time was sufficient to allow

the crystalline material to transition to an amorphous state. We then selected structures

from various times during the annealing simulation and quenched each structure to 10 K.

Each structure was quenched by a molecular dynamics simulation that used a Berendsen

thermostat (tau = 100 fs) to sequentially cool the structures to target temperatures of 2100,

1800, 1500, 1200, 800, 400, 200, and 10 K for 1.0 ps each. The quenched structures were then

fully relaxed with VASP using the PBE functional and previously described parameters. All

molecular dynamics simulations used a 1.0 fs timestep.

We previously developed a model that successfully predicted the ORR reactivity trends

of doped TiO2.[271] We now utilize our approach to test how dopants affect ORR ener-

getics on TiAl2O5 surfaces. Briefly, we embedded metal dopants in the oxide surfaces and

fully optimized their structures using PBE and the previously described parameters. The

oxidation state of each dopant was determined by analyzing their Bader charge and local

coordination environment as discussed in Section G.4 of Appendix G. After determining the

most stable dopant substitution site in the surface for each dopant, we used KS-DFT to

calculate *OOH, *O, and *OH binding energies to the dopant atom. We then calculated the

reaction overpotentials for the associative 4-e− ORR mechanism using the computational

hydrogen electrode model. The zero point energy and entropic energy contributions of ORR

intermediates adsorbed to the oxide were approximated using the values predicted by Valdéz

et. al for ORR intermediated adsorbed to TiO2.[233]
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6.3 RESULTS AND DISCUSSION

6.3.1 Training Neural Networks

We previously calculated the ORR energetics of an amorphous TiO2 surface model because

TiO2 surfaces become amorphous after prolonged exposure to an electrolyte.[98] Performing

an analogous study of TiAl2O5 required an amorphous TiAl2O5 surface model. Amorphous

structures are typically generated by annealing crystalline structures at high temperatures

using molecular dynamics simulations.[242] Performing these simulations with DFT is ex-

tremely computationally expensive and limits the number of potential surface models that

can be created. Molecular dynamics simulations could be performed with a forcefield, but

no forcefield parameters exist for TiAl2O5. To facilitate less computationally expensive

molecular dynamics simulations, we trained neural networks to TiAl2O5 data. While neural

networks are more computationally expensive than forcefields (such as ReaxFF), they are

significantly less computationally expensive than DFT. Neural networks can also be more

accurate than forcefield based approaches, and their accuracy can be continuously refined

with the addition of more training data.[278]

We trained a neural network (NN1) to the energies and forces of 850 crystalline struc-

tures from our dataset. We used NN1 to perform annealing simulations as described in

the computational methods section. NN1 had significant errors when compared against the

DFT energetics for both amorphous surface structures obtained from during the annealing

simulation trajectory (Figure 6.2a) and fully quenched amorphous surface structures (Figure

6.2b). These deviations result from the lack of amorphous structures in our original training

set.

Adding the amorphous surface structures generated with NN1 to the training set of

our second neural network (NN2) dramatically improved its ability to model amorphous

surface structures. The energies of the training set structures and the additional surface

structures obtained from a new annealing simulation carried out with NN2 agreed much

better with the DFT energies of the corresponding structures (see Figure 6.2a). Fortunately,

the addition of high energy amorphous surfaces to the training set also improved the ability
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Figure 6.2: Parity plots of neural network (NN) and DFT absolute energies for surface

structures that were a) annealed and b) annealed and quenched with neural network one

(NN1) and two (NN2). All DFT energies were calculated with PBE. c) The Ti/Al/O-

Ti/Al/O and Ti-Ti/Al radial distribution functions for an amorphous TiAl2O5 slab after

being quenched with NN2 and fully relaxed with DFT.
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of NN2 to describe the fully quenched amorphous surface structures despite the absence of

training data in this region of phase space (see Figure 6.2b). This type of training-validation

feedback loop could be used to continuously improve the accuracy of neural networks for

specific types of surface structures. These improvements do not degrade the ability of NN2

to model crystalline bulk and surface structures. Both NN1 and NN2 have similar error

distributions for the crystalline bulk and surface structures in the training and validation

sets (as seen Table G.2 in Appendix G).

By comparing two representative radial distribution functions (RDFs), Figure 6.2c shows

that an amorphous surface structure annealed with NN2 (labeled Neural Network) remained

relatively unchanged after being fully relaxed with DFT (labeled VASP). While there is some

broadening of the peaks at distances greater than 4 Å, the short range peaks in both RDFs

show that the neural network is adequately capturing short range structural interactions.

This agreement is a significant improvement from our previous comparison of amorphous

TiO2 structures obtained with ReaxFF and those fully relaxed with DFT.[271] Additional

RDF comparisons can be seen in Figure G.5 in in Appendix G.

6.3.2 Creating Surface Models

We performed five simultaneous annealing simulations with NN2 to ensure that we sampled

a diverse set of amorphous surface structures. Each simulation started from a TiAl2O5 (010)

surface (9.78 x 10.86 Å, 13.35 Å thick) and was annealed as described in the computational

methods section. Similar amorphous structures were observed when we annealed a (100)

crystalline surface. We selected to start the majority of our annealing simulations from a

(010) surface because it had the lowest surface formation energy when compared against a

number of low index TiAl2O5 surfaces (see Table 6.1). Randomly selected structures from

the annealing trajectories were quenched from 2400 K to 10 K. These structures were then

fully relaxed with DFT in VASP.

Components made from Ti-6Al-4V may experience extreme temperatures, but they are

more commonly used in environments with moderate temperatures (300 ± 100 K). It is

important to understand what types of surfaces facets could be present at realistic oper-
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Table 6.1: TiAl2O5 surface formation energies

Surface Surface Energy

Facet (J/m2)

(010) 1.078

(001) 1.202

(100) 1.899

(101) 1.134

(110) 1.301

ating temperatures. Figure 6.3a compares the energies of defective and amorphous surface

structures produced from the annealing simulations performed with NN2. We approximated

the temperature required to access different amorphous structures from the original (010)

crystalline surface by comparing the energy of each structure against the amount of kinetic

energy present in the system at various temperatures. The DFT energies suggest that all of

the amorphous surfaces are significantly too unstable to form near room temperature. Even

the lowest energy amorphous structure located by our procedure was unlikely to form below

450 K. Comparatively, the defective surfaces produced by the annealing simulations were

lower in energy, and fall near or below the 400 K reference line.

We selected six surface models to test how ORR activity was affected by surface stability:

a (010) crystalline surface, two (010) crystalline surfaces with swapped Al/Ti atoms, two

defective surfaces, and the lowest energy fully amorphous surface. These surfaces are listed in

order of increasing instability. The crystalline surface models were created by relaxing (010)

crystalline surfaces, and the defective and amorphous surfaces were located with annealing

simulations. Every surface model originated from a 3x2 supercell of a (010) surface that was

two layers thick, consisted of 144 atoms, 20 Å of vacuum space, and had 9.78 x 10.86 Å

surface. The surface structures are shown in Appendix G (see Figure G.7).
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Figure 6.3: a) A comparison of neural network (NN) and DFT absolute energies for defective

and amorphous surface structures annealed and quenched with neural network two. b) The

energy of defective surfaces compared against the energy of the crystalline surface in the

gas phase and solvated with VASPsol. The 200, 300, 400, and 600 K lines correspond to

the kinetic energy present at each temperature added to the energy of the relaxed (010)

crystalline surface (E = -1134.97 eV).

Figure 6.3b shows the energies of the selected surfaces compared against the energy of the

(010) crystalline surface. PBE energy calculations showed that the defective and amorphous

surfaces are significantly less stable than the crystalline surface. Hybrid DFT (HSE06)
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energies and VASPsol solvation effects both further destabilized the defective and amorphous

surfaces relative to the crystalline structures. The crystalline surfaces with swapped Ti and

Al atoms are nearly as stable as a perfect crystalline TiAl2O5 surface, suggesting that these

defects could easily form at room temperature. Surfaces resembling defect A are stable

enough to form at lower temperatures, but defect B and amorphous surface structures are

too high in energy to be accessible. Interactions with explicit water molecules or ions could

stabilize defect B and the amorphous surface, but it is more likely that crystalline surfaces

would segregate out of an amorphous phase at lower temperatures.

6.3.3 Calculating ORR Overpotentials

ORR overpotentials computed with the computational hydrogen electrode model often yield

robust insight into electrocatalytic reaction rates despite not explicitly determining any reac-

tion barriers.[30] We utilize this approach to calculate reaction overpotentials for the four-step

associative ORR mechanism shown in Figure 6.4a.[244, 245] The computational hydrogen

electrode model allows us to compute reaction energies for the reactions shown in Figure 6.4a

by assuming that E(H+ + e−) = 1/2E(H2) - eU. U is an applied potential referenced against

the reversible hydrogen electrode, and e is the elementary charge. Using this approximation,

we calculated reaction overpotentials by determining the applied reaction potential at which

all reaction steps are first downhill in energy.

Each surface had a number of unique reaction sites. We modeled the ORR intermediates

adsorbed to each reaction site and computed their ORR overpotentials. The minimum

overpotential (most reactive site) for each surface model is shown in Figure 6.4. The full

distribution of reaction overpotentials for every surface are shown in Appendix G (Figures

G.9 and G.10). Overpotentials computed with PBE in the gas phase suggest that most of the

materials have similar ORR overpotentials (see Figure 6.4b). Incorporating solvation effects

shows that the less stable surfaces have lower ORR overpotentials and are more reactive.

This trend is echoed by the overpotentials computed with HSE06 with and without solvation

effects (as seen in Figure 6.4c). This agrees with conventional catalysis knowledge that more

stable reaction sites are typically less reactive.
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Figure 6.4: a) The associative ORR mechanism modeled in this work. The minimum gas and

solvent phase ORR overpotentials for each surface calculated using b) PBE and c) HSE06.

While PBE can yield accurate reactivity trends, DFT+U or hybrid DFT functionals

(such as HSE06) should provide more reliable reactivity trends for metal oxides.[279, 280] In

the case of TiAl2O5, the HSE06 energy calculations predict that all of the surfaces are less
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capable of adsorbing ORR intermediates than was predicted by PBE energy calculations.

The weaker binding of ORR intermediates results in larger predicted overpotentials and

causes the surfaces to shift right along the volcano plot. The overpotentials of all tested

TiAl2O5 surfaces are significantly larger than that of amorphous TiO2 (ηORR = 0.45 V).

Ti oxides are present on the surface of Ti-6Al-4V at higher concentrations than TiAl2O5,

but the increased ORR overpotentials of the TiAl2O5 surfaces could correspond to slower

cathodic reduction reaction rates across the oxide surface. This effect could be partially

responsible for the increased resistance of this Ti alloy against corrosion.

6.3.4 Dopant Screening

We considered metal dopants that could be incorporated into the TiAl2O5 oxide to further

inhibit ORR activity. We constructed a list of dopants from those that we had previously

predicted and tested with TiO2 (Mn2+, Cr3+, Co2+, Nb5+, Ga3+, Sn4+, and Si4+). Despite

being tested in TiO2, V3+ and V5+ were excluded because vanadium was experimentally

shown to not segregate into the oxides of Ti-6Al-4V. We used our previously described

approach to determine the maximum impact of each metal dopant. Briefly, we modeled each

dopant embedded into the amorphous surface at their preferred oxidation states given by

experimental Pourbaix diagrams at experimentally relevant conditions (-0.8 VSCE and pH

12).[249] A more in-depth discussion of how the oxidation state of each dopant was controlled

within our computational model is included in section G.4 of Appendix G. We compared the

stability of each dopant at multiple sites in the amorphous surface. We then modeled ORR

intermediates adsorbed to each metal dopant in their most favorable substitution site and

calculated their ORR overpotentials. Because our amorphous surface was highly unstable

compared to the (010) crystalline surface, we performed an identical analysis on the doped

(010) crystalline surface.

The maximum overpotential for each dopant is shown in Figure 6.5. The overpotentials

of the amorphous and crystalline surfaces computed with PBE (Figure 6.5a and 6.5b) suggest

that the inclusion of Si4+, Sn4+, and Ga3+ should always decrease ORR activity. Dopants

like Nb5+ and Co2+ are consistently predicted to increase ORR activity. The impact of
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the remaining dopants (Mn2+ and Cr3+) is difficult to conclusively predict. These dopants

are predicted to inhibit ORR activity of amorphous slabs, but they are weaker inhibitors

on crystalline surfaces and may even increase ORR activity. Because there are models

that suggest these dopants could increase ORR activity of various TiAl2O5 surfaces, we

cannot recommend any dopants besides Si4+, Sn4+, and Ga3+ as as ORR inhibitors based

on overpotentials calculated with PBE.

As was the case with the undoped surfaces, the HSE06 calculations (Figure 6.5b and 6.5d)

show that the ORR intermediates are almost always bound more weakly than predicted by

PBE. This causes the dopants to shift to the right along the volcano plot. A consequence of

this shift is that the dopants on the left leg of the volcano plot, such as Mn2+, Cr3+, and Co2+,

are predicted to bind ORR intermediates more optimally and produce a significant activity

increase. With a few exceptions, the overpotential trends are fairly consistent between the

gas and solvent phases.

Overpotentials predicted from HSE06 energy calculations for the amorphous and crys-

talline surfaces (Figure 6.5b and 6.5d) helped clear up the discrepancies in the PBE over-

potential trends. Overpotentials computed with HSE06 show that Cr3+, Mn2+, Nb5+, and

Co2+ are predicted to activate ORR activity for the crystalline and amorphous surface mod-

els considered here. Only Ga3+, Sn4+, and Si4+ are predicted to decrease the ORR activity

of the amorphous TiAl2O5 surface model (Figure 6.5b). The crystalline surface is harder

to analyze because the most stable crystalline surface has a high ORR overpotential, but

switching a Ti and Al atom in the surface produces a higher activity surface site (see Figure

6.5d). These swapped Al/Ti atoms are nearly as stable as the perfect crystalline surface

(see Figure 6.3) and may appear in the surface at relatively high concentrations. Figure

6.5d shows that Si4+ and Sn4+ have similar or larger ORR overpotentials compared to the

crystalline surface and the crystalline surface with swapped Ti/Al atoms, but Ga3+ has a

lower ORR overpotential than both crystalline surface sites. Because Ga3+ would increase

the ORR activity of crystalline TiAl2O5 surfaces, we cannot recommend any dopants be-

sides Si4+ and Sn4+ as potential ORR inhibitors for the amorphous and crystalline TiAl2O5

surfaces as well as amorphous TiO2.[271]
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Figure 6.5: The gas and solvent phase ORR overpotentials for dopants embedded in an

amorphous surface calculated with a) PBE and b) HSE06 as well as a crystalline surface

calculated with c) PBE and d) HSE06. ”A” = the most active amorphous surface site,

”Swap” = the most active crystalline surface site when a surface Ti and Al are swapped,

and ”Cryst” = the most active crystalline surface site.

While we did not test the effect of dopants on the other defective or amorphous surface

models, the trends in Figure 6.5 suggest that similar effects would be observed on the de-

fective surfaces with intermediate activities. Higher energy amorphous surfaces would likely
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have even smaller ORR overpotentials. This would cause dopants like Si4+ and Sn4+ to

be more effective ORR inhibitors for these types of surface sites. This is consistent with

conventional catalysis wisdom that suggests that high energy surface facets are often the

most catalytically relevant sites. The ability to access less stable surface facets offers a

potential explanation for why the activity of oxide based catalysts could change at higher

temperatures. The additional energy that is present at higher temperatures can increase

the diversity of reaction sites on the surfaces and may change how dopants impact catalytic

reaction rates.

6.4 CONCLUSIONS

We have shown that we can train neural networks to the energies and forces of multi-

component oxide structures (TiAl2O5). These potentials are accurate for structures similar to

those in their training sets, but often have large errors when attempting to model structures

that are not represented in the training data. The accuracy of such neural networks can be

dramatically improved by the addition of training data for poorly represented structures.

Structures that are annealed and quenched with neural networks closely match their

final DFT optimized geometries. This offers a potential gateway to creating amorphous and

defective surface models that is significantly less computationally expensive than DFT, but

offers better accuracy than most forcefield based approaches. The relative ORR activity

of our TiAl2O5 surface models appeared to increase as the surfaces became less stable, but

we were still able to predict dopants that consistently inhibited ORR activity (Sn4+ and

Si4+) and dopants that consistently promoted ORR activity (Co2+, Mn2+, Cr3+, Nb5+) for

multiple TiAl2O5 surfaces.
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7.0 SUMMARY AND FUTURE WORK

7.1 AROMATIC N-HETEROCYCLE CO-CATALYZED CARBON DIOXIDE

REDUCTION

Chapter 2 showed that we could calculate the redox properties of small organic ANH

molecules, and that those properties could be tuned by changing the structural charac-

teristics of the molecules. While the one electron redox properties were significantly uphill

in energy, processes involving more simultaneous proton and electron transfers could occur

near CO2 reduction conditions. By using a molecular screening procedure that we created to

automatically calculate redox properties and molecular Pourbaix diagrams, we can rapidly

screen through ANH molecules to identify viable electrocatalysts.

Chapters 3 and 4 highlighted tools that can be used to characterize redox reaction path-

ways in homogeneous solutions. Chapter 3 showed that we can locate hydride transfer

reaction pathways with gSS-NEB optimizations and determine how those pathways are af-

fected by interactions with nearby solvent molecules. Chapter 4 obtained free energy barriers

for those reaction pathways from potentials of mean force derived from umbrella sampling

simulations. These simulations showed that reaction free energies evaluated at realistic

temperatures can be dramatically different from those evaluated at 0 K with DFT. This

procedure enables us to characterize reaction energies and barrier heights that are more

accurate than those determined with DFT calculations on stationary molecular clusters.

Molecular Pourbaix diagrams are useful tools for visualizing redox properties. However,

Pourbaix diagrams do not contain any kinetic information, and it is difficult to assess the fea-

sibility of redox reactions. Future work should be addressed towards evaluating the feasibility

of different reaction processes by incorporating kinetic information into Pourbaix diagrams.
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This would make Pourbaix diagrams even more useful tools for evaluating electrocatalysts.

This could involve characterizing transitions states, or training machine learned potentials

to predict barriers for electrochemical reactions. Predicting the barriers for redox reactions

involving the transfer of electrons is very challenging and developing a standard approach

would be highly beneficial to the field of computational catalysis.

7.2 INHIBITING SURFACE OXYGEN REDUCTION REACTIVITY

Chapter 5 described an in silico procedure for predicting how dopants affect the ORR over-

potentials of amorphous TiO2. Our methodology successfully predicted ORR overpotential

trends for seven different dopants, and our top three predicted dopants (Mn, Al, and V)

were experimentally shown to inhibit ORR currents by up to 77%. Chapter 6 attempted to

utilize the methodology developed in Chapter 5 to perform an analogous study on TiAl2O5

(a native oxide of Ti-6Al-4V, a commonly used Ti alloy). By using neural networks trained

to TiAl2O5 structures, we generated a large number of unique defective and amorphous sur-

face models. Characterizing the ORR overpotentials of these surfaces showed that the more

stable surfaces were less reactive. We were able to identify a set of dopants that inhibited

ORR activity on both TiO2 and TiAl2O5 (the two native oxides of Ti-6Al-4V). These in-

sights shed light on the atomic scale factors that influence corrosion reactions and may help

design materials that better resist corrosion.

Our TiAl2O5 predictions have not yet been experimentally verified. If our predictions

differ from experimental results, there would be an opportunity to refine and improve the

model. Our current approach does not account for any type of atomic segregation within

the oxide surface. Modeling the segregation of dopants within an oxide structure could help

explain how different dopants contribute to ORR reactivity trends. These processes are

too computationally expensive to model with DFT, but machine learned potentials (such as

neural networks) could be trained to model doped oxide structures and used to model the

long term distribution of metal dopants within an oxide surface. These simulations could

help create more realistic oxide surface models.
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If successful, our approach could be extended to other metals/metal alloys. Many other

metals, such as stainless steels and nickel alloys, can serve as the cathode of a galvanic corro-

sion process. Studying these materials could help identify the material-property relationships

that promote/inhibit galvanic corrosion mechanisms across different types of materials. The

ability of neural networks to generate accurate metal or metal oxide surface models could

also be further explored. Neural networks and other machine learned potentials can facilitate

the discovery of surface models that contain new surface morphologies or defects by decreas-

ing the computational cost associated with Monte-Carlo modeling or molecular dynamics

simulations. While neural networks have facilitated Monte-Carlo modeling of materials,[281]

there have been relatively few studies that use neural networks to perform molecular dy-

namics simulations (either for annealing simulations or obtaining other material properties).

Machine learned potentials could obtain DFT caliber energies and properties at a fraction

of the computational cost. Further studying how to train reliable potentials could greatly

decrease the time required to perform in-depth computational quantum chemistry studies.
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APPENDIX A

SUPPORTING INFORMATION FOR STRUCTURAL AND SUBSTITUENT

GROUP EFFECTS ON MULTIELECTRON STANDARD REDUCTION

POTENTIALS OF AROMATIC N-HETEROCYCLES

As seen in Table A.1, the differences between B3LYP/ACCD energies on B3LYP/6-31+G*

or/B3LYP/ACCD optimized structures are minimal.

Table A.2 shows the substituent group effects that are summarized by Figure 2.3. Molecules

with electron withdrawing groups are easier to reduce, while molecules with electron donating

groups are harder to reduce.

Figures A.1 through A.27 show the full Pourbaix diagrams for all of the ANH molecules

studied in Chapter 2.
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Table A.1: Energy differences between B3LYP/ACCD//B3LYP/6-31+G* and

B3LYP/ACCD//B3LYP/ACCD

dE (kcal/mol) =

E(B3LYP/6-31+G*)-

E(B3LYP/aug-cc-pVDZ)

quinoline 0.00

Hquinoline+ 0.04

Hquinoline radical 0.04

dihydroquinoline radical 0.05

dihydroquinoline 0.04

naphthyridine 0.04

naphthyridine radical 0.03

Hnaphthyridine radical 0.04

dihydronaphthyridine radical 0.02

quadhydronapthyridine 0.06
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Table A.2: Substituent group effects on absolute pK as and redox potentials

pka (calc) 1e 1e1h 2e2h 2e1h to prot

quinoline 4.6 -2.40 -0.89 -0.42 -0.55

Electron 4-chloroquinoline 2.4 -2.19 -0.81 -0.17 -0.24

Withdrawing 4-CN-quinoline -0.3 -1.59 -0.43 -0.37 -0.36

Groups 4-NH3-quinoline -1.2 -1.96 -0.67 0.02 0.05

Electron 4-methylquinoline 6.0 -2.47 -0.95 -0.47 -0.65

Donating 4-OH-quinoline 6.6 -2.51 -1.05 -0.47 -0.67

Groups 4-NH2-quinoline 10.5 -2.65 -1.11 -0.62 0.93

1,8-naphthyridine 3.1 -2.06 -0.72 -0.34 -0.44

4-chloro-1,8-naphthyridine 1.0 -1.84 -0.62 -0.12 -0.15

Figure A.1: Quinoline Pourbaix diagram
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Figure A.2: 2-quinoline Pourbaix diagram

Figure A.3: 1,2-diazine Pourbaix diagram
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Figure A.4: 1,3-diazine Pourbaix diagram

Figure A.5: 1,4-diazine Pourbaix diagram

111



Figure A.6: 1,4-naphthyridine Pourbaix diagram

Figure A.7: 1,6-naphthyridine Pourbaix diagram
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Figure A.8: 1,8-naphthyridine Pourbaix diagram

Figure A.9: Phenanthroline Pourbaix diagram
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Figure A.10: 2,2’-bipyridine Pourbaix diagram

Figure A.11: 4,4’-bipyridine Pourbaix diagram
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Figure A.12: 4-Cl-quinoline Pourbaix diagram

Figure A.13: Pteridine Pourbaix diagram
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Figure A.14: Adenine Pourbaix diagram

Figure A.15: Purine Pourbaix diagram
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Figure A.16: Benzimidazole Pourbaix diagram

Figure A.17: 4-CN-quinoline Pourbaix diagram
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Figure A.18: Mercaptopteridine Pourbaix diagram

Figure A.19: 2-picoline Pourbaix diagram
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Figure A.20: 3-picoline Pourbaix diagram

Figure A.21: 4-picoline Pourbaix diagram
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Figure A.22: 2,6-lutadine Pourbaix diagram

Figure A.23: 2,5-lutadine Pourbaix diagram
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Figure A.24: 4-aminopyridine Pourbaix diagram

Figure A.25: N,N-dimethyl-4-aminopyridine Pourbaix diagram
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Figure A.26: Nicotinamide Pourbaix diagram

Figure A.27: 4-acetylquinoline Pourbaix diagram
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APPENDIX B

POURBAIX DIAGRAM GENERATION PROCEDURE

This appendix briefly explains the Pourbaix diagram generation procedure used by Chapter

2. The procedure is currently implemented with the python library for automating molecular

simulations (PLAMS) in the ADF modeling suite. Our Pourbaix diagram calculator use a

screening procedure to reduce the number of total required quantum chemical calculations,

and automates the quantum chemical calculations that are required to generate molecular

Pourbaix diagrams.

B.1 POURBAIX DIAGRAM SCREENING PROCEDURE

One must consider all possible combinations of proton and electron combinations to a

molecule to generate accurate molecular Pourbaix diagrams. One proton, one electron pro-

cesses such as proton coupled electron transfers (PCET) are frequently reported in the

literature. In theory, many simultaneous proton and electron transfers could occur, but

these processes are typically limited to up to 2 simultaneous proton and electron transfers

(corresponding to a proton coupled hydride transfer). The number of additional structures

that must be considered to model these processes can increase exponentially with the size of

the original molecule as demonstrated in Figure B.1.
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Figure B.1: The basic connectivity for the molecules produced by adding protons to pyridine.

This demonstrates the exponential growth of unique molecular structures with additional

protons.

To reduce the number of molecular structures that must be considered, we utilized the

five step screening procedure described by Figure B.2. Starting from a user defined molecule,

the procedure generates all of the unique combinations of proton additions to the original

molecule by bonding additional H atoms to under-coordinated atoms. The procedure then

optimizes the molecules with a range of charges (defined by the user, default = -1, 0, +1

relative to the original molecule) using DFTB or PM7 in mopac. These methods require

significantly less computational resources than full DFT optimizations. The procedure then

calculates the energies of the DFTB/PM7 optimized structures using small basis set DFT

calculations, and the molecules that are above a user-defined cutoff from the lowest energy

molecules are removed from the screening process. The remaining molecules are fully opti-
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mized with DFT, and the molecules that are still not within a smaller energy cutoff of the

lowest energy molecules are removed. The energies and vibrational frequencies of the final

molecules are then calculated with DFT and used to generate molecular Pourbaix diagrams.

This procedure automatically eliminates a large number of irrational structures while

using methods that are computationally inexpensive. This could be done with chemical

intuition, but more complex molecules are difficult to differentiate without insight from

semi-empirical or quantum chemical data. Each stage of the screening process is fully cus-

tomizable. The user can change the maximum number of protons/electrons, the maximum

allowed charges, the type of PM7, DFTB, or DFT used at any point in the procedure, or

even the criteria used to define where protons are added. The python script that generates

the quantum chemical data is shown in section B.4. That data can then be easily converted

into a molecular Pourbaix diagram by the python script shown in section B.5. Both of these

segments of code rely on functions defined in the ”pourbaixlibrary” module. This module

has been omitted for the sake of space. A full explanation of all possible keywords is listed

below.

B.2 POURBAIX DIAGRAM GENERATOR KEYWORDS

-f : This flag must be followed by the path to an xyz coordinate file. This is the only

mandatory keyword. For example, ”-f test.xyz” creates a molecular Pourbaix diagram for

the molecule in ”test.xyz”

-c: This flag is followed by the charge of the molecule. For example, ”-c 1” for a molecule

with a 1+ charge (Default = 0).

-skip: This flag is followed by a list of atomic indices of atoms that will not be protonated

during the procedure. For example, ”-skip 1,2,3” would exclude the first, second, and third

atom listed in the coordinate file (Default = skip nothing).

-only: Only add protons to the atomic indices listed behind this flag. For example,

”-only 1,2,3” would ignore all atoms except for atoms 1, 2, and 3 when generating molecular

structures with additional Hs (Default = protonate all non-H atoms).
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Figure B.2: The screening procedure used to calculate molecular Pourbaix diagrams.
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-ignore dft warning: If this flag is included, calculations that finished with warnings

are included in the final analysis. Be sure to check the warnings if you include this keyword.

For example, ”-ignore warning” (default = exclude calculations with warnings from the final

analysis)

-ignore structure warning: Including this flag will cause molecules that form/break

bonds during the DFTB or MOPAC preoptimization to not be excluded from the screening

process (this is not recommended in most cases...).

-screening type: Specifies the types of calculations performed for the initial screening

procedure. ”1” = All molecules are sorted based on their DFTB (or MOPAC) energies/struc-

tures. ”2” = Neutral molecules are treated the same as in type 1. Charged molecules

sorted by DFT energies calculated on DFTB (or MOPAC) optimized structures. ”3” = All

molecules are sorted based on DFT energies calculated on DFTB (or MOPAC) optimized

molecules. This is the default mode. ” 4” = Molecules sorted by their energy at the end of

a DFT optimization. This method does not require DFTB (or MOPAC) parameters. All

DFT calculations are controlled by the ”-screen” keyword.

-maxH: The maximum number of protons that will be added to the molecule. For

example, ”-maxH 3” creates structures with up to 3 additional protons (Default = 2).

-maxe: The maximum number of electrons that will be added to each molecule. For

example, ”-maxe 3” creates structures with up to 3 additional electrons (Default = 2).

-maxchar: The maximum +/- charge that is allowed during the screening process. The

script will not create a molecule with a charge larger than defined here. For example, ”-

maxchar 2” allows structures with a +/- 2 charge to be included in the analysis (Default =

1).

-maxmult: The maximum multiplicity tested. For example, ”-maxmult 5” would test

multiplicities of 1, 3, and 5 for molecules with an even number of electrons, and 2, for

molecules with unpaired electrons. The default analysis includes only doublets (default =

2).

-unintended bond detection: This constant proportionally effects the detection ra-

dius for atoms that are too close to the added proton (default = 1.0). Larger values are more

restrictive when adding protons to highly coordinated atoms, and decrease the likelihood that
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a proton will be added. Smaller values may add protons too close to atoms other than the

intended protonation site. The cutoff for detecting neighbors that are too close is defined

by the larger of either ((radius(atom1) + radius(H))*0.92)*(constant) or (((radius(atom1) +

radius(H))*0.8)**1.66)*(constant). If atoms neighboring atoms are closer than this distance,

that structure is excluded from the screening procedure.

-altermaxbond: Overrides the maximum default coordination of specified elements.

For example, ”-altermaxbond C,5.N,6” would change the maximum coordination of carbon

from 4 to 5 and nitrogen from 4 to 6.

-sort: Determines the number of structures that are kept during the screening (Default

= ”bottom 3”. For example, ”-sort ”Bottom n”” keeps the lowest n structures for each com-

bination of protons and electrons. ”-sort ”m kcal/mol”” keeps the minimum energy structure

for each combination of protons and electrons as well as molecules within m kcal/mol.

-numfreq: If included, the final dft calculations are performed with numerical frequen-

cies instead of analytical frequencies.

-serial: If present, the calculations will run serially (instead of in parallel).

-ppj: The number of processors per calculation (default = 1). This is ignored if the

calculations are run in serial.

-procs: The total number of processors (default = 1). This is ignored if the calculations

are run in serial.

-mopac: MOPAC is used for screening instead of DFTB if this flag is included.

Screen/opt/sp/solv/freq define the types of DFT performed at each subsequent screening

stage. Any additional ADF/DFTB/MOPAC keywords can be added to these strings. The

DFT type, Basis set, and Numerical quality must ALWAYS be defined.

-mopa key: default = LBFGS=True PM7=True INT=True’

-dftb: default = ’Task.RunType=”Go” dftb.ResourcesDir = ”QUASINANO2015” dftb.

model= ”dftb0”’

-screen: default = ’XC.GGA=”PBE” Basis.Type=”DZP” Basis.Core=”Large” Numer-

icalQuality=”Basic” Dependency=True’

-opt: default = ’XC.GGA=”PBE” Basis.Type=”DZP” Basis.Core=”Large” Numeri-

calQuality=”Basic” Dependency=True’
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-sp: default = ’XC.HYBRID=”B3LYP” Basis.Type= ”AUG/ATZP” Basis.Core=”Large”

NumericalQuality=”good” Dependency=True’

-solv: default = ’SOLVATION.SOLV=”EPS=78.4”’, help=’COSMO keywords for sol-

vation calculation (default: EPS=78.4)’)

-freq: default = ’XC.GGA=”PBE” Basis.Type=”DZP” Basis.Core=”Large” Numeri-

calQuality=”Basic” Dependency=True’

-test: Overrides all default settings to use small basis sets and less expensive DFT

calculations. This should only be used for testing.

Command Line Example: ”$ADFBIN/startpython pourbaix data generator.py -f

pyr.xyz -procs 8 -skip 1,2,4,5 -sort ”1 kcal/mol” -ignore warning”

B.3 POURBAIX DIAGRAM GENERATOR KEYWORDS

-f : The Pourbaix diagram input file generated by the pourbaix data generator script. De-

fault = ’Pourbaix Input’.

-fout: The name of the Pourbaix diagram plot created by this script. Default =

’plot pourbaix’.

-ph max (default = 10.000001), -ph min (default = 0), -v max (default = 0.5000001),

and -v min (default = -2) control the pH and applied potential ranges for the Pourbaix

diagram. Change the pH/potential range of the final Pourbaix diagram plot

-tol: Controls the grid spacing for locating species on the Pourbaix diagram. Smaller

tolerances will yield a higher quality Pourbaix diagram. Default = 0.1.

-line tol: Controls the accuracy used when searching for boundaries between Pourbaix

diagram regions. Smaller tolerances will yield a higher quality plot. Default = 0.005

Command Line Example: $ADFBIN/startpython pourbaix diagram generator.py -f

Pourbaix Input -ph max 14
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B.4 POURBAIX DIAGRAM DATA GENERATION

import argparse

import os

import sys

import numpy as np

from pourbaixlibrary import *

from scm.plams import *

import time

init()

#Input options that vary from test to test

parser = argparse.ArgumentParser(prog=’PourbaixDiagramGenerator’, description =

’Automatically generates Pourbaix diagram data’)

parser.add_argument(’-f’, type=str, help=’The filepath to the xyz-coordinate

file used for the calculation’, required=True)

parser.add_argument(’-c’, type=int, default=0, help=’The original molecular

charge (default = 0)’)

parser.add_argument(’-skip’, type=str, default=’’, help=’Atomic indices of atoms

that should be ignored (i.e. 1,2,3,... default=ignore nothing)’)

parser.add_argument(’-only’, type=str, default=’’, help=’Indices of atoms that

should protonated (all others will be ignored. i.e. 1,2,3,...

default=protonate everything)’)

parser.add_argument(’-ignore_dft_warning’, action=’store_true’, default=False,

help=’Include the data from calculations with warnings. Be sure you know what

you are doing. The warnings may be reduced/eliminated with the dependency

keyword (default = False)’)

parser.add_argument(’-ignore_structure_warning’, action=’store_true’,

default=False, help=’Including this flag will cause molecules that have

different final connectivity to not be removed from the screening process

(Not recommended for organic molecules).’)

parser.add_argument(’-screening_type’, type=int, default=3, help=’The method

used for the initial screening procedure. Possible options: DFTB only, 2.

DFTB + some DFT, 3. DFTB + DFT, or 4. DFT optimizaitons(default: 3 (DFTB +

DFT)). DFT parameters are controlled by -screen.’ )

#These input options can be changed, but the defaults should usually suffice

parser.add_argument(’-maxH’, type=int, default=2, help=’The maximum number of

protons added to the molecule (default=2)’)

parser.add_argument(’-maxe’, type=int, default=2, help=’The maximum number of

electrons added to the molecule (default=2)’)

parser.add_argument(’-maxchar’, type=int, default=1, help=’The maximum allowed

charge change from the original molecular charge’)
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parser.add_argument(’-maxmult’, type=int, default=2, help=’The maximum allowed

multiplicity, must be greater than 1. Using mult=1 ignores all radicals

(default = 1)’)

parser.add_argument(’-unintended_bond_detection’, type=float, default=1.0,

help=’Effects the detection radius for neighboring atoms when protons are

added to high coordinate atoms (default = 1). Larger values will be more

restrictive, smaller values can result in poor initial structures.’)

parser.add_argument(’-altermaxbond’, type=str, default = ’ ’, help=’overides the

default maximum coordination of the specified atom type(s) (ex. C,5.N,5...)’)

parser.add_argument(’-sort’, type=str, default=’Bottom 3’, help=’Select the

"Bottom X" or select all molecules within "Y kcal/mol"’)

parser.add_argument(’-numfreq’, action=’store_false’, default=True,

help=’perform numerical frequency calculations instead of analytical (only

recommended if using hybrid DFT for frequency calculations)’)

parser.add_argument(’-serial’, action=’store_true’, default=False, help=’If this

flag is present the calculations will run serially’)

parser.add_argument(’-ppj’, type=int, default=1, help=’The number of processors

used per calculation. This is ignored if calculations are run serially’)

parser.add_argument(’-procs’, type=int, default=1, help=’The number of

simultaneous calculations (this x ppj = total number of processors). This is

ignored if calculations are run serially’)

parser.add_argument(’-mopac’, action=’store_true’, default=False, help=’perform

mopac optimizations for the screening process’)

parser.add_argument(’-mopac_key’, type=str, default=’LBFGS=True PM7=True

INT=True’, help=’mopac keywords’)

parser.add_argument(’-dftb’, type=str, default=’Task.RunType="Go"

dftb.ResourcesDir="QUASINANO2015" dftb.model="dftb0"’, help=’DFTB keywords

for the screening phase’)

parser.add_argument(’-screen’, type=str, default = ’XC.GGA="PBE"

Basis.Type="DZP" Basis.Core="Large" NumericalQuality="Basic"

Dependency=True’, help=’DFT keywords for screening procedure’)

parser.add_argument(’-opt’, type=str, default = ’XC.GGA="PBE" Basis.Type="DZP"

Basis.Core="Large" NumericalQuality="Basic" Dependency=True’, help=’DFT

keywords for DFT optimizations’)

parser.add_argument(’-sp’, type=str, default = ’XC.HYBRID="B3LYP"

Basis.Type="AUG/ATZP" Basis.Core="Large" NumericalQuality="good"

Dependency=True’, help=’DFT keywords for final energy calculations’)

parser.add_argument(’-solv’, type=str, default = ’SOLVATION.SOLV="EPS=78.4"’,

help=’COSMO keywords for solvation calculation (default: EPS=78.4)’)

parser.add_argument(’-freq’, type=str, default = ’XC.GGA="PBE" Basis.Type="DZP"

Basis.Core="Large" NumericalQuality="Basic" Dependency=True’, help=’DFT

keywords for frequency calculations’)

parser.add_argument(’-test’, action=’store_true’, default=False, help=’overides

defaults to perform quick calculations...’)
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args = parser.parse_args()

#Determine if DFT is used during the screening process

if args.screening_type == 1:

dftb_only = "YES"

screening_method = ’DFTB only’

elif args.screening_type == 2:

dftb_only = ’PARTIAL’

screening_method = ’DFTB for neutral molecules and DFT for charged species’

elif args.screening_type == 3:

dftb_only = ’NO’

screening_method = ’DFTB and DFT for all species’

elif args.screening_type == 4:

screening_method = ’DFT only’

#only multiplcities greater than two can be tested.

if args.maxmult < 2:

args.maxmult = 2

#a list of atomic indices to not protonate

skip = [int(i) for i in args.skip.split(’,’) if i]

only = [int(i) for i in args.only.split(’,’) if i]

#’-test’ overrides the default parameters for faster calculations

if args.test:

args.maxH = 2

args.maxe = 2

args.screening_type = 1

args.screen = ’XC.GGA="PBE" Basis.Type="SZ" Basis.Core="None"

NumericalQuality="Basic"’

args.opt = ’XC.GGA="PBE" Basis.Type="SZ" Basis.Core="None"

NumericalQuality="Basic"’

args.sp = ’XC.GGA="PBE" Basis.Type="SZ" Basis.Core="None"

NumericalQuality="Basic"’

args.freq = ’XC.GGA="PBE" Basis.Type="SZ" Basis.Core="None"

NumericalQuality="Basic"’

args.solv = ’SOLVATION.SOLV="EPS=78.4"’

dftb_only = ’YES’

args.sort=’Bottom 1’

if (’geometry’ not in args.screen) and (args.screening_type == 4):

args.screen += ’ geometry.Iterations="50"’

elif ’geometry’ not in args.screen:

args.screen += ’ geometry.sp=True’

if ’geometry’ not in args.sp:

args.sp += ’ geometry.sp=True’
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if ’geometry’ not in args.opt:

args.opt += ’ geometry.Iterations="50"’

if not args.serial:

str = (’\nCalculation is running in parallel, ’

’{0} jobs running simultaneously using {1} processor per

job\n’.format(args.procs, args.ppj))

job_log(str, print2screen=True)

config.default_jobrunner = JobRunner(parallel=True, maxjobs=abs(args.procs))

config.log.stdout = 0

#------------------------PROCESSING-----------------------------

#Open a log file in the plams working directory

job_log(’\nKeywords\n’ + \

’maxH = {0}\n’.format(args.maxH) + \

’maxe = {0}\n’.format(args.maxe) + \

’maxchar = {0}\n\n’.format(args.maxchar) + \

’maxmult = {0}\n\n’.format(args.maxmult) + \

’file = {0}\n’.format(args.f) + \

’Initial charge = {0}\n’.format(args.c) + \

’skipped atoms # {0}\n’.format(args.skip if args.skip else ’N/A’) + \

’only atoms # {0}\n\n’.format(args.only if args.only else ’N/A’) + \

’Screening method: {0}\n’.format(screening_method) + \

’Sort method = {0}\nEnd keywords\n\n’.format(args.sort) + \

’Ignoring warnings: {0}\n’.format(args.ignore_dft_warning) + \

’\nWARNING... THESE CALCULATIONS CAN BE VERY EXPENSIVE FOR LARGE

MOLECULES...\n’ + \

’To limit the computational cost of these calculations you can:\n’ + \

’ 1. Use smaller basis sets\n’ + \

’ 2. Restrict the number of protons/electrons to be added

(-maxH/-maxe/-maxchar)\n’ + \

’ 3. Choose to not protonate selected atoms (-skip)’, print2screen=True)

#create a plams molecule from a xyz coordinate file

mol = MoleculeData(args.f)

mol.guess_bonds()

num_e = sum((PeriodicTable.get_atomic_number(atom.symbol) for atom in mol)) -

args.c

#generates large list of MoleculeData objects containing molecules with added

protons/electrons:

job_log(’Generating input structures... this may take a few seconds.’,

print2screen=True)

molecule_list = [mol]

t00 = int(time.time())

for num_H in range(args.maxH): molecule_list = add_proton(num_H+1,

molecule_list, skip, only, args.altermaxbond, args.unintended_bond_detection)
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molecule_list = add_electron(args.maxe, molecule_list, args.maxchar,

-args.maxchar, args.c, num_e, args.maxmult)

t01 = int(time.time())

job_log(’Generating structures required {0}s’.format(t01-t00), print2screen=True)

#Screen the molecules using only DFTB, DFTB/DFT, or only DFT

t1 = int(time.time())

if args.screening_type != 4:

screened_molecule_list = run_screen(molecule_list, dftb_only, args.screen,

args.dftb, args.ignore_dft_warning, args.ignore_structure_warning,

args.serial, args.ppj, args.mopac, args.mopac_key)

else:

screened_molecule_list = run_dft_opt(molecule_list, args.screen,

args.ignore_dft_warning, args.serial, args.ppj, screening=True)

job_log(’Skipping step 2...’, print2screen=True)

molecules_screened = sort_energy(screened_molecule_list, args.sort)

t2 = int(time.time())

job_log(’\n***Initial screening procedure completed after

{0}s***\n’.format(t2-t1), print2screen=True)

#Optimize the molecules with DFT, write the final molecular structures to a

directory

dft_opt_molecules = run_dft_opt(molecules_screened, args.opt,

args.ignore_dft_warning, args.serial, args.ppj)

dft_opt_molecules = sort_energy_final(dft_opt_molecules, ’Bottom 2’)

write_final_structures(dft_opt_molecules)

t3 = int(time.time())

job_log(’\n***Geometry optimizations completed after {0}s***\n’.format(t3-t2),

print2screen=True)

#Run the final DFT energy calculations

data = run_dft_final(dft_opt_molecules, args.sp, args.solv, args.freq,

args.numfreq, args.ignore_dft_warning, args.serial, args.ppj)

t4 = int(time.time())

job_log(’***Final energy calculations completed after {0}s***’.format(t4-t3),

print2screen=True)

job_log(’***Screening procedure completed after {0}s***’.format(t4-t1),

print2screen=True)

#Open a Pourbaix diagram input file in the plams working directory

log_file = open(config.jm.workdir + ’/Pourbaix_Input’, ’w’)

log_file.write(’#Formula(charge)_id, Gas phase energy, Solvation energy, ’)
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log_file.write(’Gibbs free energy correction, # protons, # electrons (all

energies in kcal/mol)\n’)

for d in data:

gas_kcal = Units.convert(d.dft_gas, ’hartree’, ’kcal/mol’)

solv_kcal = Units.convert(d.dft_solv, ’hartree’, ’kcal/mol’)

dG_kcal = Units.convert(d.dft_dG, ’hartree’, ’kcal/mol’)

log_file.write(’{6}({7})_{5}, {0}, {1}, {2}, {3}, {4}\n’.format(gas_kcal,

solv_kcal, dG_kcal, d.num_H, d.num_e, d.id_number, d.get_formula(),

d.charge))

finish()

B.5 GENERATING POURBAIX DIAGRAMS

import sys

import numpy as np

import argparse

from pourbaixlibrary import *

#The purpose of this script is to generate a Pourbaix diagram based on energies

stored in an input file

#This script is build to use the "Pourbaix_Input" style file produced by the

pourbaix_data_generator.py script

#Each line should contain: <molecule id number>, <Escf>, <SCF to G298>,

<Solvation energy>, <#protons added>, <#electrons added>

parser = argparse.ArgumentParser(prog = ’PourbaixDiagramGenerator’, description

= ’Creates a Pourbaix diagram from QM data’)

#The user can define the input/output filenames

parser.add_argument(’-f’, type=str, default=’Pourbaix_Input’, help = ’The file

path to the QM data file (default = Pourbaix_Input)’)

parser.add_argument(’-fout’, type=str, default=’plot_pourbaix’, help = ’The file

name for the generated Pourbaix diagram (default = plot_pourbaix)’)

#Change the pH/potential range of the final Pourbaix diagram plot

parser.add_argument(’-ph_max’, type=float, default=10.000001, help = ’The

maximum pH considered (default = 10.000001)’)

parser.add_argument(’-ph_min’, type=float, default=0, help = ’The minimum pH

considered (default = 0)’)

parser.add_argument(’-v_max’, type=float, default=0.5000001, help = ’The maximum

considered applied potential vs SCE (default = 0.5000001)’)

parser.add_argument(’-v_min’, type=float, default=-2, help = ’The minimum

considered applied potential vs SCE (default = -2)’)
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#These parameters control the creation of the Pourbaix diagram, smaller values

will produce better plots, but take much longer to create

parser.add_argument(’-tol’, type=float, default=0.1, help = ’Use smaller values

to improve the quality of the plot. The default value is sufficient in most

cases. (default = 0.1)’)

parser.add_argument(’-line_tol’, type=float, default=0.005, help = ’Use smaller

values to improve the quality of the plot. The default value is sufficient in

most cases. (default = 0.005)’)

args = parser.parse_args()

#Read the data from the Pourbaix diagram data file, and identify the relevant

molecules

data, names = extract_data(args.f)

relevant_molecules, reference_molecule = simplify(data)

#Print the data to the screen so the user can check the numbers

#print(’\n’)

#print(’Lowest energy species for each e/H addition are:’)

#print(’Name, G(298,Solvent), H+ added, e- added’)

#for molecule in relevant_molecules:

# print(molecule.name, molecule.energy, molecule.num_H, molecule.num_e)

#print(’\n{0} {1} {2} {3} is the original

molecule’.format(reference_molecule.name, reference_molecule.energy,

reference_molecule.num_H, reference_molecule.num_e))

#Generate a pH and potential range to search over

ph_range = np.arange(args.ph_min, args.ph_max + args.tol, args.tol)

potential_range = np.arange(args.v_max, args.v_min - args.tol, -args.tol)

#Find the molecules that are the lowest in energy at the pH/potentials created

above

minimal_energy_species, region_boundaries = Gmin(reference_molecule,

relevant_molecules, ph_range, potential_range)

#identify the molecules that are equally stable at some conditions (identifying

isochemical potential lines)

species_change = specieschange(minimal_energy_species, ph_range, potential_range)

#Find the line coefficients for the isochemical potential lines

line_coefficients = coefficients(species_change, relevant_molecules,

reference_molecule)

#Generate a higher precision pH/potential range

ph_range = np.arange(args.ph_min, args.ph_max + args.line_tol, args.line_tol)
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potential_range = np.arange(args.v_max, args.v_min - args.line_tol,

-args.line_tol)

#Use the new pH/potential range to determine the domains/ranges of each line on

the Pourbaix diagram

new_line_coefficients = intersections(line_coefficients, relevant_molecules,

reference_molecule, potential_range, ph_range)

#plot Pourbaix diagrams. One is plotted with molecule id labels, and one without

pourbaix_plot(relevant_molecules, args.fout, new_line_coefficients, args.ph_min,

args.ph_max, args.v_min, args.v_max, names, True, region_boundaries)
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APPENDIX C

SUPPORTING INFORMATION FOR EXPLICITLY UNRAVELING THE

ROLES OF COUNTER IONS, SOLVENT MOLECULES, AND ELECTRON

CORRELATION IN SOLUTION PHASE REACTION PATHWAYS

Figure C.2 shows the relative energetics vary by up to 0.26 eV when using different levels of

theory. This difference is significant and about as large as the differences presented in the

main text. The structures had the following energies.

Transition state energies with 1 H2O range from 0.66 to 0.87 eV.

Transition state energies with 2 H2Os range from 0.65 to 0.83 eV.

Transition state energies with 4 H2Os range from 0.71 to 0.87 eV.

Reaction energies with 1 H2O range from 0.14 to 0.23 eV.

Reaction energies with 2 H2Os range from -0.49 to -0.63 eV.

Reaction energies with 4 H2Os range from -0.58 to -0.69 eV.

Table C.1 shows that the counter ion also moves closer to the oxygen in CO2 as it is

converted into formate. The distance traveled by the Na+ is much smaller in this case (∼0.3

Å here vs. ∼1.7 Å for scheme 3.2) but this movement suggests that the counter ion plays a

similar (but lesser) role in this reaction pathway.
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Figure C.1: Additional energetics for Model 1 at the B3LYP/PBE/PBE0/MP2/DLPNO-

CCSD (def2-TZVP) level. The energetics correspond to the coordinates shown in a) Figure

3.3a (1 H2O molecule) in the main text, b) figure 3.3b (2 H2O molecules) in the main text,

and c) figure 3.3c (4 H2O molecules) in the main text. The transition state and product

energies vary by up to 0.2 eV, but the overall trend is the same for every level of theory

considered.
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Figure C.2: Additional energetics for Figure 3.10 using Model 1 at the B3LYP, PBE,

PBE0, MP2, DLPNO-CCSD (def2-TZVP) level. The energetics correspond to the coordi-

nates shown in Figure 3.11a.

Table C.1: Bond lengths for Figure 3.10

Bond Distance in Å

RC−H RB−H RO−Na

R 2.51 1.25 2.53

TS 1.66 1.30 2.38

P 1.13 3.04 2.23
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APPENDIX D

SUPPORTING INFORMATION FOR QUANTUM CHEMICAL ANALYSES

OF BH−
4 AND BH3OH− HYDRIDE TRANSFERS TO CO2 IN AQUEOUS

SOLUTION WITH POTENTIALS OF MEAN FORCE

D.1 UMBRELLA SAMPLING CONSTRAINTS FOR REACTION 1 (BH−
4

+ CO2 ⇀↽ [BH3-H-CO2]
−)

Table D.1 contains the sets of bond lengths and harmonic bond restraints used for our um-

brella sampling simulations for reaction 1. The bond pairs labeled in black were obtained

directly from our generalized solid-state nudged elastic band (G-SSNEB) calculations in pre-

vious work[216] while those in red, bold, italic were interpolated between G-SSNEB images.

Interpolated images were selected to produce the best overlap between umbrella sampling

simulation windows without needlessly increasing the number of required simulations.

D.2 UMBRELLA SAMPLING SIMULATION OVERLAP FOR REACTION

1 (BH−
4 + CO2 ⇀↽ [BH3-H-CO2]

−)

Figure D.1 shows the overlap between umbrella sampling windows for the reported reaction

pathways and reaction energetics for reaction 1. The overlap between neighboring umbrella

sampling windows corresponds to adequate sampling along the reaction pathway.
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Table D.1: The bond lengths and force constants used to harmonically restrain bonds for

Reaction 1.

C-H (Å) Restraint (eV/Å2) B-H (Å) Restraint (eV/Å2)

2.80 10.71 1.24 14.28

2.66 10.71 1.24 14.28

2.54 10.71 1.24 14.28

2.43 10.71 1.23 14.28

2.30 7.14 1.23 14.28

2.19 7.14 1.23 14.28

2.02 7.14 1.23 14.28

1.90 7.14 1.24 14.28

1.74 7.14 1.26 14.28

1.62 7.14 1.28 14.28

1.50 7.14 1.31 14.28

1.31 10.71 1.37 14.28

1.24 14.28 1.43 14.28
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Figure D.1: The umbrella sampling simulation overlap between umbrella sampling win-

dows. Gray B-H and C-H bond length distributions correspond to reaction coordinates from

G-SSNEB calculations, while red B-H and C-H bond distributions correspond to reaction

coordinates interpolated between G-SSNEB images.
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D.3 UMBRELLA SAMPLING CONSTRAINTS FOR REACTION 2 (H2O

+ [BH3-H-CO2]
− ⇀↽ BH3OH− + HCOOH)

Table D.2 contains the sets of bond lengths and harmonic bond restraints used for our

umbrella sampling simulations for reaction 2. The bond pairs labeled in black were obtained

directly from our generalized solid-state nudged elastic band (G-SSNEB) calculations in

previous work[216] while those in labeled in red, bold, italic were interpolated between G-

SSNEB images. Interpolated images were selected to produce the best overlap between

umbrella sampling simulation windows without needlessly increasing the number of required

simulations.

D.4 UMBRELLA SAMPLING SIMULATION OVERLAP FOR REACTION

2 (H2O + [BH3-H-CO2]
− ⇀↽ BH3OH− + HCOOH)

Figure D.2 shows the overlap between umbrella sampling windows for the reported reaction

pathways and reaction energetics for reaction 2. The overlap between neighboring umbrella

sampling windows corresponds to adequate sampling along the reaction pathway.

D.5 UMBRELLA SAMPLING CONSTRAINTS FOR REACTION 3

(BH3OH− + CO2 ⇀↽ BH2OH + HCOO−)

Table D.3 contains the sets of bond lengths and harmonic bond restraints used for our

umbrella sampling simulations for reaction 3. The bond pairs labeled in black were obtained

directly from our generalized solid-state nudged elastic band (G-SSNEB) calculations in

previous work[216] while those in labeled in red, bold, italic were interpolated between G-

SSNEB images. Interpolated images were selected to produce the best overlap between

umbrella sampling simulation windows without needlessly increasing the number of required

simulations.
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Table D.2: The bond lengths and force constants used to harmonically restrain bonds for

Reaction 2.

B-H (Å) Restraint (eV/Å2) B-O (Å) Restraint (eV/Å2)

1.43 7.14 3.34 7.14

1.49 7.14 3.15 7.14

1.61 7.14 2.98 7.14

1.75 7.14 2.82 7.14

1.90 7.14 2.63 7.14

2.06 7.14 2.44 7.14

2.15 7.14 2.24 7.14

2.30 7.14 2.01 7.14

2.45 7.14 1.78 7.14

2.70 7.14 1.70 7.14

2.92 7.14 1.62 7.14

3.10 7.14 1.61 7.14

3.25 7.14 1.60 14.28

3.49 7.14 1.59 14.28

3.70 7.14 1.59 14.28

3.85 10.71 1.58 14.28

3.98 14.28 1.58 14.28

4.19 14.28 1.57 14.28
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Figure D.2: The umbrella sampling simulation overlap between umbrella sampling win-

dows. Gray B-H and C-H bond length distributions correspond to reaction coordinates from

G-SSNEB calculations, while red B-H and C-H bond distributions correspond to reaction

coordinates interpolated between G-SSNEB images.
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Table D.3: The bond lengths and force constants used to harmonically restrain bonds for

Reaction 3.

C-H (Å) Restraint (eV/Å2) B-H (Å) Restraint (eV/Å2)

2.51 14.28 1.25 14.28

2.39 14.28 1.25 14.28

2.28 14.28 1.25 14.28

2.11 14.28 1.24 14.28

2.00 14.28 1.26 14.28

1.85 14.28 1.28 14.28

1.67 14.28 1.30 14.28

1.54 14.28 1.36 14.28

1.45 14.28 1.43 14.28

1.32 14.28 1.50 14.28

1.26 14.28 1.54 14.28

1.23 14.28 1.65 14.28

1.19 14.28 1.78 14.28

1.17 14.28 1.96 14.28

1.16 14.28 2.07 14.28

1.15 14.28 2.20 14.28

1.14 14.28 2.38 14.28

1.14 14.28 2.55 14.28

1.14 14.28 2.69 14.28

1.14 14.28 2.85 14.28

1.13 14.28 3.04 14.28

1.13 14.28 3.16 14.28

1.13 14.28 3.30 14.28
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D.6 UMBRELLA SAMPLING SIMULATION OVERLAP FOR REACTION

3 (BH3OH− + CO2 ⇀↽ BH2OH + HCOO−)

Figure D.3 shows the overlap between umbrella sampling windows for the reported reaction

pathways and reaction energetics for reaction 3. The overlap between neighboring umbrella

sampling windows corresponds to adequate sampling along the reaction pathway.

D.7 COMPARING REACTION ENERGIES AGAINST AVERAGE

POTENTIAL ENERGIES

Figure D.4 shows that the relative average potential energies from the umbrella sampling

windows yield reaction energies that agree with the PMF free energy profile. The reac-

tion barrier from the average potential energies is significantly larger (0.78 eV) than those

predicted by either the PMF free energy profile or the NEB energy profile. The difference

between these barrier heights suggest that the potential energy of the umbrella sampling

window requires longer simulation times to completely converge relative to the reactant and

product windows or that other thermodynamic factors are responsible for the smaller barrier

height in the PMF free energy profile.

D.8 UMBRELLA SAMPLING SIMULATION TIMESTEP COMPARISON

Figure D.5 compares reaction energetics calculated with different umbrella sampling simu-

lation timesteps. The similarity between reaction energy profiles for Reaction 1 show that a

0.5 fs timestep is sufficient for the reactions reported in this work.
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Figure D.3: The umbrella sampling simulation overlap between umbrella sampling win-

dows. Gray B-H and C-H bond length distributions correspond to reaction coordinates from

G-SSNEB calculations, while red B-H and C-H bond distributions correspond to reaction

coordinates interpolated between G-SSNEB images.
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Figure D.4: The NEB energy profile, PMF free energy profile, and average unbiased poten-

tial energies from umbrella sampling windows containing the reactant, transition state, and

product for reaction three.

Figure D.5: Umbrella sampling energetics for Reaction 1 using an 0.5 and 0.25 fs timestep
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APPENDIX E

SUPPORTING INFORMATION FOR DOPED TI OXIDES TO

DEOPTIMIZE OXYGEN REDUCTION REACTION CATALYSIS

E.1 CREATING DOPED TI ALLOYS

XRD of the alloys after casting and processing is shown in Figure E.1 . For all of the cast

alloys except Ti-Mn1, the diffraction patterns indicate a single HCP phase. Shifts from the

as-cast Ti HCP lattice peaks are likely due to lattice expansion or contraction due presence of

the alloying additions in solid solution. In the case of Ti-Mn1, a secondary peak is observed

at 57° which indicates that there is a secondary, likely BCC phase present. In this case, the

BCC phase is also a solid solution, but would have an approximately 15x higher ratio of Mn

to Ti than the HCP phase.[282] There is also some texture differences between the different

alloys. In particular, Ti-Sn shows a significant prevalence of the {103} orientation that is

not seen in the other alloys.

E.2 METAL OXIDE X-RAY PHOTOELECTRON SPECTROSCOPY DATA

X-ray photoelectron spectroscopy (XPS) scans were performed on each of the alloys to de-

termine composition of metal oxides natively formed on the alloy surface using the K-alpha

XPS system. An Al X-ray source was used for monochromatic radiation and was focused to

a 400 micron diameter spot size. Twenty high-resolution scans of the pure Ti were examined
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Figure E.1: X-ray diffraction spectra for each alloy after casting and machining processing.
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Table E.1: Alloy and Oxide Compositions

Nominal Alloy Composition Composition of Dopant in Oxide (at %)

Ti99Cr1 6.2

Ti99Sn1 2.1

Ti99Co1 0.6

Ti99V1 0.6

Ti99Mn1 0.5

Ti99Al1 1.0

Ti99Ag1 1.1

to provide baseline oxide information on the native Ti oxide and 50 high-resolution scans

of each alloying element were performed to maximize signal capture to aid in determining

values of the dopant concentrations. Data analysis was performed using the CasaXPS soft-

ware system and standard XPS references.[283, 284] All XPS data is referenced to the Au

4f7/2 peak at 84.0 eV. The scans of the minor component of these alloys generally yielded

low signal to noise spectra due to the low dopant concentrations.

E.3 XPS CHARACTERIZATION OF SN DOPED TI OXIDE

E.4 REAXFF ANNEALING SIMULATIONS

We created amorphous TiO2 surfaces by annealing crystalline TiO2 slabs using the reax/c[237]

implementation of ReaxFF[238] in LAMMPS.[239] All annealing simulations used the force-

field parameterized by Kim and Kubicki[240] and a timestep of 1 fs. Rutile TiO2 slabs were

heated from 0 K to 1100 K at a rate of 0.06 K/fs. After 300 ps at 1100 K, we quenched

the structures to 0 K at a rate of 0.05 K/fs. Increasing the initial surface size from a 1x1
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Figure E.2: Representative sample of chemical characterization of the oxides by XPS. Plot

of counts per second as a function of binding energy for the oxide formed from the Ti99Sn1

alloy after 96 hours exposure to air.
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Figure E.3: The Ti-Ti pair radial distribution function for rutile TiO2 annealed with ReaxFF

in LAMMPS. The initial surfaces were supercells composed of 1x1, 3x3, 7x7, and 15x15 rutile

TiO2 unit cells. The average features of the material converge by the 3x3 simulation cell.

rutile unit cell to 3x3, 7x7, or 15x15 rutile unit cells (all three trilayers thick) shows that the

features of the Ti-Ti radial distribution function (RDF) converge by the 3x3 simulation cell

(Figure E.3). We use the 3x3 surface for subsequent calculations.
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Figure E.4: Comparing Mn Bader charges in materials were Mn’s oxidation state is well

known. Benchmarking bader charges helps determine the oxidation state of Mn in our

amorphous surface.

E.5 DETERMINING DOPANT OXIDATION STATES

Determining the oxidation states of the metal dopants embedded in our model amorphous

surface is an integral part to creating an accurate predictive model. Although Bader charges

will not be equivalent to oxidation states, they will correlate with oxidation state.[285, 286]

We compared Bader charges of metal oxides with known oxidation states against the charges

of the metal dopants embedded in our surface model to determine their oxidation states. The

metal oxides and resulting Bader charges are different for each dopant, but Figure E.4 shows

the structure of MnO, Mn2O3, and MnO2 as well as the Mn oxidation state and Bader charge

as an example.

After compiling the Bader charges for all considered dopants in Table E.2, we deter-

mined the oxidation states of the dopants in the amorphous surface as discussed previously.

Originally, we incorporated metal dopants into the surface by directly replacing a Ti atom

with a dopant atom. Table E.2 shows that this direct substitution results in higher dopant

oxidation states than would be preferred for many dopants at the experimental conditions

reported in our study (-0.8 VSHE, pH 10). We modified the surface by reducing the number
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of dopant-oxygen bonds to achieve lower oxidation states. For dopants that had their favored

oxidation state in the unmodified surface (Al, Ga, Ge, Nb, Sc, Si, Sn, and Zn), the same

charge and oxidation state are listed in both columns.

E.6 ORR INTERMEDIATE SCALING RELATIONSHIPS

Creating an activity volcano (shown in the main text) requires a relationship between the

binding energies of the intermediates that limit the reaction rates. Figure E.5 shows the

scaling relationship between *OOH and *OH when adsorbed to the different dopants included

in this study. We attribute the relatively low R2 to irregularities in the binding energies

caused by the amorphous surface.

E.7 EFFECT OF SOLVATION ON ORR OVERPOTENTIALS

Figure E.6 shows that VASPsol solvation energies generally shifts data points to lower inter-

mediate energies. Some dopants (such as Ti, Ag+, and Sn4+) are shifted by 0.2-0.5 eV, while

other dopants (such as V3+, V5+, Al3+ and Cr3+) are much less effected. Comparing Figure

E.6a and E.6b shows that this can yield larger overpotentials for dopants on the left side of

the volcano plot, smaller overpotentials for dopants on the right (Si4+ and Sn4+), or similar

overpotentials for dopants near the peak (Ti and Ag+).These comparisons show that, with

the exception of Co2+ and Cr3+, the ordering of the overpotentials calculated with PBE are

in good agreement with those calculated with HSE06 and VASPsol. While solvation energies

are not negligible in most cases, PBE gas phase energies appear to be a good approximation

for higher level energies calculated with HSE06 and VASPsol.
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Table E.2: Determining the oxidation state of metal dopants embedded in our amorphous

TiO2 surface by comparing their Bader charges to those of the dopants in metal oxides where

the oxidation state is known.

M2O MO M2O3 MO2 M2O5 Original Surface Modified Surface

Oxidation

State

I II III IV V Bader

Charge

Oxidation

State

Bader

Charge

Oxidation

State

Ag 0.46 0.84 1.13 - - 1.24 4+ 0.66 1+

Al - 2.27 2.47 2.57 - 2.45 3+ 2.45 3+

Co - 1.21 - 1.38 - 1.43 4+ 1.21 2+

Cr - 1.39 1.6 1.77 - 1.77 4+ 1.59 3+

Cu - 0.95 - 1.21 - 1.13 4+ 0.96 2+

Ga - - 1.53 - - 1.68 3+ 1.68 3+

Ge - - - 2.28 - 2.16 4+ 2.16 4+

Mn - 1.29 1.48 1.58 - 1.64 4+ 1.4 2+

Nb - 1.36 - 2.3 2.67 2.63 5+ 2.63 5+

Ni - 1.17 - 1.3 - 1.28 4+ 1.09 2+

Sc - - 1.77 - - 1.8 3+ 1.8 3+

Si - - - 1.15 - 1.06 4+ 1.06 4+

Sn - 1.10 - 2.47 - 2.34 4+ 2.34 4+

V - 1.47 - 1.86 1.91 1.91 5+ 1.59 3+

Zn - 1.18 - - - 1.27 2+ 1.27 2+

158



Figure E.5: The scaling relationship between the energy of OH and OOH adsorbed to

dopant atoms in the amorphous surface. This correlation is used to create the volcano in

the Sabatier activity volcano plots in the main text.

E.8 ORR INTERMEDIATES ADSORBED TO DOPANTS

Figure E.7, E.8, E.9, E.10, and E.11 on the following pages depict the ORR intermediates

(*OOH, *O, *OH) adsorbed to each of the studied dopants embedded in the amorphous

surface.
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Figure E.6: Sabatier volcano plots of computationally predicted dopant overpotentials.

Dopants that were predicted and tested in this work are labeled in red, and dopants not yet

experimentally verified are labeled in black. Overpotentials calculated with a) PBE, b) PBE

+ VASPsol solvation, c) HSE06, and d) HSE06 + VASPsol solvation. Although already

shown in the main text, a) and d) are shown here as a comparison.
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Figure E.7: Reaction intermediates adsorbed to the 4 different sites on the undoped surface.

Pink spheres denote Ti atoms, red spheres atoms denote O atoms, and white spheres denote

H atoms.

161



Figure E.8: ORR intermediates adsorbed to Ag+, Al3+, Co2+, and Cr3+. Pink spheres

denote Ti atoms, red spheres atoms denote O atoms, white spheres denote H atoms, and

other colored spheres denote dopant atoms.
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Figure E.9: ORR intermediates adsorbed to Cu2+, Ga3+, Ge4+, and Mn2+. Pink spheres

denote Ti atoms, red spheres atoms denote O atoms, white spheres denote H atoms, and

other colored spheres denote dopants atoms.
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Figure E.10: ORR intermediates adsorbed to Nb5+, Ni2+, Sc3+, and Si4+. Pink spheres

denote Ti atoms, red spheres atoms denote O atoms, white spheres denote H atoms, and

other colored spheres denote dopant atoms.
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Figure E.11: ORR intermediates adsorbed to Sn4+, V3+, V5+, and Zn2+. Pink spheres

denote Ti atoms, red spheres atoms denote O atoms, white spheres denote H atoms, and

other colored spheres denote dopant atoms.
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APPENDIX F

SUPPLEMENTARY ANALYSIS OF AVERAGE OXYGEN REDUCTION

REACTION OVERPOTENTIALS

The material in this Appendix was not included in M. C. Groenenboom, R. M. Anderson, D.

J. Horton, Y. Basdogan, D. F. Roeper, S. A. Policastro, and J. A. Keith, ”Doped Amorphous

Ti Oxides to Deoptimize Oxygen Reduction Reaction Catalysis” J. Phys. Chem. C 121

(2017) 16825-16830. The data presented in Figure F.1 and Table F.1 help justify several

assumptions made in Chapter 5.

F.1 CALCULATING ORR OVERPOTENTIALS OF THE TWO

ELECTRON ORR MECHANISM

Chapter 5 used ORR overpotentials calculated on an amorphous TiO2 surface model to de-

scribe the reactivity trends of doped Ti oxides. The two electron ORR mechanism shown in

Figure F.1a is a competing ORR mechanism that should be considered. The ORR overpo-

tentials for the four electron ORR mechanism are determined by the *OOH binding energy,

or the *OH desorption energy. The two electron ORR reaction only has a single reaction

intermediate. As a result, two electron ORR overpotenials are always determined by the

adsorption or desorption of *OOH.

166



Figure F.1: a) The two electron ORR mechanism and four electron ORR mechanism. b)

Comparing the four electron (left) and two electron ORR (right) mechanism thermodynamic

onset potentials. ”A” = the most active amorphous surface site. All energetics computed

with PBE.

Figure F.1b compares the thermodynamic onset potentials of the two and four electron

ORR mechanisms. The dopants that fall on the right side of the volcano plot (Sn4+ and

Al3+) have identical onset potentials. These processes are limited by the adsorption of *OOH

(reaction 1 in both mechanisms). The amorphous surface site occurs near the peak of the

two electron ORR volcano plot. The thermodynamic onset potentials of dopants that bind

*OOH weaker than amorphous TiO2 become more negative when calculated with the two
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electron ORR mechanism. Although the thermodynamic onset potentials of the two electron

ORR mechanism predict that V, Mn, Cr, Co, and Ag will be more effective ORR inhibitors,

the majority of the ORR trends are consistent between the two mechanisms. The activity

volcano plots predict that the four electron ORR mechanism would be exponentially more

active (for V, Mn, Cr, Co, and Ag) or have equivalent thermodyamic onset potentials (A, Sn,

Al) compared to the two electron ORR mechanism. Because we seek to limit the maximum

reactivity of the surface, we consider the trends from the four electron ORR mechanism to

be more relevant.

F.2 COMPUTING AVERAGE OVERPOTENTIAL INCREASE FROM A

METAL DOPANT

Chapter 5 assumed that the ability of metal dopants to inhibit the ORR activity of neigh-

boring Ti sites would correlate with the ORR overpotential of the dopant. We showed that

when amorphous TiO2 was doped with Al3+, the ORR overpotentials of the 1st and 2nd

neighboring Ti sites increased from 0.50 V to 0.65 and 0.60 V, respectively. Our unit cell

was not large enough to model an Al3+ dopant three sites away from any Ti adsorption site,

so we assumed that the 3rd nearest neighboring Ti site would have an increased overpoten-

tial of approximately 0.55 V. All of these overpotential increases are significantly smaller

than the 1.4 V overpotential of the Al3+ reaction site. Al was experimentally measured to

decrease ORR activity of amorphous TiO2 by approximately 60%. We have yet to determine

if overpotential increases of 0.15, 0.10, and 0.05 V can account for an overall ORR activity

decrease of 60%.

Table F.1 shows two test cases for evaluating the average ORR current decrease of an

amorphous TiO2 surface doped with Al3+. The first case considers a 1% dopant concentra-

tion in the surface and subsurface of the oxide. The number of surface sites that are 1st,

2nd, and 3rd neighbors to the dopant atom were obtained by visually inspecting the surface.

These calculations assume that the dopants are uniformly distributed and provide the max-

imum possible inhibition. We calculated the ORR current decrease relative to the undoped
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material with the Butler-Volmer equation (Eq 1.6) for each type of surface atom. The max-

imum predicted ORR current decrease was obtained by weighting the current decrease of

each surface type relative to their concentration. In this best case scenario, the maximum

predicted ORR current decrease is 46%. If we assume an enrichment of Al3+ in the surface

(up to 2%), the ORR current decrease improves from 46% to 73%. These predictions make

several favorable assumptions and represent the maximum possible ORR inhibition, but they

suggest that the experimentally measured ORR activity decrease caused by the presence of

dopants is feasible based on our predicted ORR energetics.
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Table F.1: Computing average surface ORR inhibition for an Al3+ dopant in amorphous

TiO2

1% Dopant in the Surface and 1% Dopant in the Subsurface

% of

Surface Sites

Effective

Overpotential (V)

ORR Current

Decrease

Dopant 1 1.40 99%

1st Neighbor 6 0.65 95%

2nd Neighbor 20 0.60 86%

3rd Neighbor 35 0.55 62%

Rest 38 0.50 0%

Total 100 46%

2% Dopant in the Surface and 1% Dopant in the Subsurface

% of

Surface Sites

Effective

Overpotential (V)

ORR Current

Decrease

Dopant 2 1.40 99%

1st Neighbor 10 0.65 95%

2nd Neighbor 30 0.60 86%

3rd Neighbor 58 0.55 62%

Rest 0 0.50 0%

Total 100 73%
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APPENDIX G

SUPPORTING INFORMATION FOR INHIBITING THE OXYGEN

REDUCTION REACTION ACTIVITY ON THE OXIDES OF TI-6AL-4V

G.1 TRAINING AND VALIDATION OF NEURAL NETWORKS

We created a dataset of 1077 TiAl2O5 structures from which 850 structures were selected

as an initial training set. The dataset contained the coordinates, energies, and forces of

307 equation of state structures, 352 structures with stressed and strained unit cells, 124

crystalline structures with individual Ti/Al/O atoms moved within the crystalline lattice,

127 annealed annealed surface structures, 50 annealed bulk structures, and 117 structures

from surface vacancy diffusion pathways. We later added 100 amorphous surface structures to

the training set. These structures were produced from crystalline surface structures that were

annealed with our initial neural network. We calculated the energies of all structures using

VASP and PBE as described in the computational methods section. Geometry optimizations

were only performed on crystalline surface structures and the fully amorphous surfaces.

Vacancy diffusion pathways were optimized with gSS-NEB optimizations.

All equation of state and unit cell stress and strain structures consisted of a single

TiAl2O5 unit cell containing two Ti atoms, four Al atoms, and ten O atoms. All 124

structures with moved Ti, Al, or O atoms consisted of a 2x2x1 supercell of TiAl2O5 unit

cells. Annealed surfaces were periodic in the x and y directions and consisted of a 3x2x2

slab of TiAl2O5 unit cells with 20 Å of vacuum space. Annealed bulk structures consisted

of a 3x2x1 supercell of TiAl2O5 unit cells. Vacancy diffusion pathways were located using
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gSS-NEB optimizations on a 2x3 supercell of the (010) crystalline surface that was two layers

thick, and a 3x2 supercell of the (001) crystalline surface that was two layers thick. All of

the surface structures produced from neural network annealing simulations originated from a

3x2 supercell of a (010) crystalline surface that was two layers thick, consisted of 144 atoms,

30 Å of vacuum space, and had 9.77 x 10.85 Å surface. All of the structures, energies, and

forces are provided in a json database file.

We used∼80% of the dataset to train neural networks and saved the remaining datapoints

as a validation set. A uniform percentage of structures were selected from each type of data.

The accuracy of a neural network can depend on number and combination of nodes and

hidden layers. We trained four neural networks with different combinations of nodes and

hidden layers (shown in Table G.1) to find the neural network architecture that provided

the best fit to our DFT data. For the systems reported here, the neural network with four

hidden layers composed of six, five, five, and three nodes (Type three in Table G.1) always

provided the best fit to the training and validation sets. Table G.2 shows the error per

formula unit for neural network one (NN1) and neural network two (NN2) for the training

and validation sets. The average error, mean unsigned error, and standard deviation for the

validation set is always similar or smaller than those of the training set. This indicated that

our neural networks are not overfit for these types of structures. NN1 and NN2 were both

composed of four hidden layers with six, five, five, and three nodes. NN1 is the best neural

network that was trained to only crystalline TiAl2O5 structures, and NN2 is the best neural

network that was trained to crystalline and amorphous TiAl2O5 structures.

The error for amorphous surfaces is significantly larger than the error of the bulk crys-

talline structures and structures annealed with DFT (2-3x larger for NN2 and 13-14x larger

for NN1). This is expected because our initial training set contained no amorphous surface

structures. Fortunately, the addition of amorphous structures to the dataset significantly

improved the ability of NN2 to model these structures (decreasing the error by more than

50%). This suggests that we could approach the same level of accuracy that was achieved

for the other types of TiAl2O5 structures if we incorporated more amorphous structures into

the training set.
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Table G.1: The combinations nodes in each hidden layer that were used to train neural

networks

Hidden Layer Nodes

Type 1 Type 2 Type 3 Type 4

1 6 6 6 7

2 5 5 5 4

3 3 5 5 4

4 3 5 3

5 3

Figures G.1 and G.2 show the errors between the neural network energies and DFT

energies for different types of bulk crystalline TiAl2O5 structures computed with neural

network one and two. Although the exact fit is different for each neural network, there

is a similar overall distribution of data. This is in agreement with the statistics shown in

Table G.2. The accuracy of NN1 and NN2 for these types of surface structures could not

be reduced without increasing the cutoff radius of the symmetry functions that describe the

local atomic environments. Increasing the cutoff radius corresponded to dramatic increases

in computational cost, especially when calculating atomic forces.

Figure G.3 shows the error distribution of annealed surfaces and bulk structures for neural

network one and two. Again, the error and distribution of each neural network is similar,

but the addition of amorphous structures into the training set of neural network two slightly

improves the ability of the neural network to represent some annealed surfaces. No vacancy

diffusion pathways are compared in Figures G.1, G.2, or G.3. Our dataset contained more

than 100 data points from 13 different surface vacancy diffusion pathways. Nine images from

each pathway were not sufficient for NN1 to recreate the diffusion energetics, so we excluded

the diffusion structures from the training set of NN2. The absence of diffusion pathway

structures did not negatively affect the fit of any other structures with NN2.
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Table G.2: The average error, mean unsigned error (mue), and standard deviation for

portions of the training and validation sets.

Error (meV/atom)

Amorphous Surfaces

NN2 NN2 NN1 NN1

Training Validation Training Validation

Average -12.8 -21.3 NA -70.0

MUE 14.8 21.3 NA 70.0

St. Dev. 15.1 12.6 NA 32.3

Annealed Surface and Bulk Structures

NN2 NN2 NN1 NN1

Training Validation Training Validation

Average 5.4 0.3 6.6 4.7

MUE 5.7 2.9 6.7 4.9

St. Dev. 6.7 3.5 7.5 5.9

Bulk Crystalline Structures

NN2 NN2 NN1 NN1

Training Validation Training Validation

Average -0.1 -1.6 0.1 0.3

MUE 10.7 9.2 12.9 10.9

St. Dev. 16.6 16.0 19.9 17.4
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Figure G.1: The error in the training and validation set for neural network one for a) and b)

all equation of state data, c) and d) independent stresses on each unit cell vector, and e) and

f) moving individual Ti, Al, and O atoms in the x, y, and z directions within a crystalline

supercell. All energies are referenced against that of the crystalline material.
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Figure G.2: The error in the training and validation set for neural network two for a) and b)

all equation of state data, c) and d) independent stresses on each unit cell vector, and e) and

f) moving individual Ti, Al, and O atoms in the x, y, and z directions within a crystalline

supercell. All energies are referenced against that of the crystalline material.
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Figure G.3: The error in the training and validation set for annealed bulk structures com-

puted with a) neural network one and b) neural network two. All energies are referenced

against that of the crystalline material.
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G.2 CREATING ACCURATE SURFACE MODELS

Figure G.4 compares the energies of crystalline surfaces, defective crystalline surfaces, and

amorphous surfaces computed with NN1 and DFT. The defective and amorphous surfaces

were obtained from annealing simulations with NN1. While NN1 matches the relative trend

of the crystalline and defective surfaces (zones I and II), NN1 has large errors for the amor-

phous surface structures. NN1 was not trained to any amorphous structural data, so this

is not surprising. The DFT energetics suggest that the amorphous surfaces found by these

annealing simulations are too unstable to form at temperatures near 300 K.

Figure G.4: A comparison of neural network and DFT energies for surface structures an-

nealed and quenched with NN1. Zone I = crystalline surfaces with swapped Ti/Al atoms,

II = surface defects, III = amorphous surface structures. The 300, 400, and 600 K lines

correspond to the kinetic energy present at each temperature added to the energy of the

relaxed (010) crystalline surface (E = -1134.97 eV).

Figure G.5 shows the Ti/Al/O-Ti/Al/O and Ti-Ti/Al radial distribution functions (RDFs)

of 4 different amorphous structures that were annealed and quenched with NN1. The RDFs

show that the structures produced by NN1 do not significantly change after being fully re-

laxed with DFT. While the exact height and location of the peaks shift, the general structure
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is preserved. These changes are most noticeable in the Ti-Ti/Al RDF. The agreement be-

tween the peaks at r < 4 Å shows that structures obtained with NN1 are highly similar to

those that would be predicted by DFT. The total RDFs (Ti/Al/O-Ti/Al/O) appear simi-

lar, while the Ti-Ti/Al RDFs can be used to differentiate the amorphous surface structures.

A real amorphous TiAl2O5 surface would likely have a Ti-Ti/Al RDF that is an average

of many small amorphous surface segments that are contained in our amorphous surface

models.

Neural networks can be continuously refined with the addition of more training data.

Figure G.6 shows the energies of surfaces annealed (G.6a and G.6c) and quenched (G.6b

and G.6d) from two separate annealing simulations compared against energies calculated

with DFT. Although there is not perfect agreement between the NN2 and DFT energies, the

addition of 100 additional amorphous structures to the training set significantly improved

the relative energy trends over what was observed with NN1 (see Figure G.4). In theory,

structures created with NN2 could be incorporated into the training set, and a third neural

network would be even more accurate when modeling amorphous surfaces. This feedback

loop could be used to create neural networks that can accurately model complex surfaces at

a much lower computational cost than currently possible with DFT alone.
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Figure G.5: The Ti/Al/O-Ti/Al/O and Ti-Al/Ti RDFs for four different annealed struc-

tures. Each structure was fully relaxed with DFT (PBE) after being annealed and quenched

using a neural network. The Ti-Ti/Al radial distribution function shows the variety of

different structures that can be observed with annealing simulations.
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Figure G.6: a) and c) The neural network and DFT energies computed during on structures

obtained from MD simulations using neural network two. b) and d) The neural network and

DFT energies computed on fully quenched structures obtained from MD simulations using

neural network two.
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G.3 CALCULATING ORR OVERPOTENTIALS

We selected the 6 surface models shown in Figure G.7 to characterize the atomic scale factors

that affect the ORR activity of TiAl2O5 surfaces. These surfaces were selected to compare

how surfaces with increasing concentrations of structural defects could affect the ORR activ-

ity of an oxide catalyst. We hypothesized that minor defects (such as the crystalline surfaces

with swapped Ti/Al atoms) would have similar reactivity to the crystalline surface, while

larger defects would result in activities that converged to those of the fully amorphous oxide

surface.

Many multi-step electrochemical reactions can have their maximum activity limited by

scaling relationships between the binding energies of reaction intermediates adsorbed to the

catalyst surface. Figure G.8 shows the scaling relationship between *OOH and *OH bound

to doped and undoped surface sites in our crystalline and amorphous TiAl2O5 surfaces.

This correlation is responsible for estimating the left side of the activity volcano when ORR

overpotentials are plotted as a function of the binding energy of *OOH to the surface. The

imperfect correlation causes certain surface sites to not fall directly on the predicted activity

volcano.

While crystalline surface models may only have one or two unique reaction sites, defective

and amorphous surface models have a larger number of unique adsorption sites. The surfaces

shown in Figure G.7 have a number of unique reaction sites, and it is important to understand

how ORR activity can vary on a site-by-site basis. Figure G.9 shows the distributions of

ORR overpotentials for each surface shown in Figure G.7 as computed with HSE06. The

amorphous surface (Figure G.9a) and defect B (Figure G.9b) have a much wider variance

of activity than surfaces with fewer defects. These surfaces are predicted to have relatively

similar gas and solvent phase ORR activity, while solvation corrections significantly affect

the reactivity of the crystalline materials. As discussed in the main text, the more stable

surfaces are less effective ORR catalysts. These trends are mirrored by the overpotentials of

each surface predicted with PBE (see Figure G.10).
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Figure G.7: The low energy (010) crystalline surface, two (010) crystalline surfaces with

swapped Ti/Al atoms, two defective surfaces produced by annealing simulations, and the

lowest energy amorphous surface located from an annealing simulation.
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Figure G.8: The scaling relationship between *OOH and *OH on the doped TiAl2O5 sur-

faces.
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Figure G.9: The ORR overpotentials for all potential reaction sites on the a) Amorphous,

b) Defect B, c) Defect A, d) Swap B, e) Swap A, and f) Crystalline TiAl2O5 surfaces. All

overpotentials are computed from HSE06 energy calculations on structures optimized with

PBE.
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Figure G.10: The ORR overpotentials for all potential reaction sites on the a) Amorphous,

b) Defect B, c) Defect A, d) Swap B, e) Swap A, and f) Crystalline TiAl2O5 surfaces. All

overpotentials are computed from PBE energies.
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G.4 DETERMINING DOPANT OXIDATION STATES

Accurately modeling dopants in the TiAl2O5 surface requires modeling the correct dopant

oxidation state. Replacing a Ti4+ or Al3+ in the surface biases the dopant toward the

oxidation state of the atom that it replaced. This is not always the correct oxidation state

for the dopant at experimentally relevant conditions. To estimate the oxidation states of

each dopant, we performed a bader charge analysis. We estimated the oxidation state of

each dopant by comparing the bader charges of metal dopants against bader charges of each

dopant in a material where their oxidation states were known. In many cases, we replaced

Ti4+ or Al3+ with dopants that should be either 4+ or 3+ to easily achieve the desired

oxidation state. Other dopants, like Mn2+ and CO2+, required surface modifications to

reach their desired oxidation states. Table G.3 shows the bader charges of each dopant in

the crystalline and amorphous surfaces. We previously used this approach to successfully

model the effect of dopants incorporated into TiO2.
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Table G.3: Determining the oxidation states of metal dopants by comparing Bader charges.

MO M2O3 MO2 M2O5

Co 1.21 - 1.38 -

Cr 1.39 1.60 1.77 -

Ga - 1.58 - -

Mn 1.29 1.48 1.58 -

Nb 1.36 - 2.30 2.67

Si - - 3.22 -

Sn 1.10 - 2.34 -

Crystalline Surface Modified Crystalline Surface

Charge Ox. State Charge Ox. State

Co 1.50 4+ 1.09 2+

Cr 1.60 3+ - -

Ga 1.70 3+ - -

Mn 1.65 4+ 1.31 2+

Nb 2.64 5+ - -

Si 3.08 4+ - -

Sn 2.16 4+ - -

Amorphous Surface Modified Amorphous Surface

Charge Ox State. Charge Ox. State

Co 1.54 4+ 1.09 2+

Cr 1.72 3+ - -

Ga 1.66 3+ - -

Mn 1.68 4+ 1.36 2+

Nb 2.64 5+ - -

Si 3.15 4+ - -

Sn 2.18 4+ - -
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[156] M. Arnó, L. R. Domingo, M. Arno, and L. R. Domingo, “Density functional theory
study of the mechanism of the proline-catalyzed intermolecular aldol reaction,” Theor.
Chem. Acc., vol. 108, no. 4, pp. 232–239, 2002.

201



[157] L. C. Dias, E. C. de Lucca, M. A. B. Ferreira, D. C. Garcia, and C. F. Tormena, “The
Role of β-Bulky Substituents in Aldol Reactions of Boron Enolates of Methylketones
with Aldehydes: Experimental and Theoretical Studies by DFT Analysis,” J. Org.
Chem., vol. 77, pp. 1765–1788, 2 2012.

[158] C. B. Shinisha and R. B. Sunoj, “Bicyclic proline analogues as organocatalysts for
stereoselective aldol reactions: an in silico DFT study,” Org. Biomol. Chem, vol. 5,
no. 8, pp. 1287–1294, 2007.

[159] F. Bernardi, A. Bottoni, and G. P. Miscione, “A Theoretical Study of Homogeneous
ZieglerNatta Catalysis,” Organometallics, vol. 17, no. 1, pp. 16–24, 1998.

[160] R. E. Plata and D. A. Singleton, “A Case Study of the Mechanism of Alcohol-Mediated
Morita Baylis-Hillman Reactions. The Importance of Experimental Observations,” J.
Am. Chem. Soc., vol. 137, pp. 3811–3826, 3 2015.

[161] D. K. Malick, G. A. Petersson, and J. A. Montgomery, “Transition states for chemical
reactions I. Geometry and classical barrier height,” J. Chem. Phys., vol. 108, no. 14,
pp. 5704–5713, 1998.

[162] P. Li, G. Henkelman, J. A. Keith, and J. K. Johnson, “Elucidation of Aqueous Solvent-
Mediated Hydrogen-Transfer Reactions by ab Initio Molecular Dynamics and Nudged
Elastic-Band Studies of NaBH4 Hydrolysis,” J. Phys. Chem. C, vol. 118, pp. 21385–
21399, 9 2014.

[163] S. J. Benkovic and S. Hammes-Schiffer, “A perspective on enzyme catalysis,” Science,
vol. 301, no. 5637, pp. 1196–1202, 2003.

[164] S. Kumar, D. Bouzida, R. H. Swendsen, P. A. Kollman, and J. M. Rosenberg, “The
Weighted Histogram Analysis Method for Free-energy Calculations on Biomolecules 1:
The Method,” J. Comput. Chem., vol. 13, no. 8, pp. 1011–1021, 1992.

[165] G. M. Torrie and J. P. Valleau, “Non-Physical Ssmpling Distributions in Monte-
Carlo Free-energy Estimation - Umbrella Sampling,” J. Comput. Phys., vol. 23, no. 2,
pp. 187–199, 1977.

[166] B. Roux, “The Calculation of the Potential of Mean Force using Computer-
simulations,” Comput. Phys. Commun, vol. 91, no. 1-3, pp. 275–282, 1995.

[167] J. R. Pliego and J. M. Riveros, “The cluster-continuum model for the calculation of the
solvation free energy of ionic species,” J. Phys. Chem. A, vol. 105, no. 30, pp. 7241–
7247, 2001.

[168] V. S. Bryantsev, M. S. Diallo, and W. A. Goddard, “Calculation of solvation free
energies of charged solutes using mixed cluster/continuum models,” J. Phys. Chem.
B, vol. 112, no. 32, pp. 9709–9719, 2008.

202



[169] D. Riccardi, H. B. Guo, J. M. Parks, B. H. Gu, L. Y. Liang, and J. C. Smith, “Cluster-
Continuum Calculations of Hydration Free Energies of Anions and Group 12 Divalent
Cations,” J. Chem. Theory Comput., vol. 9, no. 1, pp. 555–569, 2013.

[170] K. A. Grice, M. C. Groenenboom, J. D. A. Manuel, M. A. Sovereign, and J. A. Keith,
“Examining the selectivity of borohydride for carbon dioxide and bicarbonate reduction
in protic conditions,” Fuel, vol. 150, pp. 139–145, 2015.

[171] F. Neese, “The ORCA program system,” Wiley Interdisciplinary Reviews-
Computational Molecular Science, vol. 2, no. 1, pp. 73–78, 2012.

[172] C. Adamo and V. Barone, “Toward reliable density functional methods without ad-
justable parameters: The PBE0 model,” J. Chem. Phys., vol. 110, no. 13, pp. 6158–
6170, 1999.

[173] A. D. Becke, “Densityfunctional thermochemistry. III. The role of exact exchange,” J.
Chem. Phys., vol. 98, no. 7, pp. 5648–5652, 1993.

[174] M. Headgordon, J. A. Pople, and M. J. Frisch, “MP2 Energy Evaluation by Direct
Methods,” Chem. Phys. Lett., vol. 153, no. 6, pp. 503–506, 1988.

[175] C. Møller and M. S. Plesset, “Note on an approximation treatment for many-electron
systems,” Phys. Rev., vol. 46, no. 7, pp. 618–622, 1934.

[176] R. Izsak and F. Neese, “An overlap fitted chain of spheres exchange method,” J. Chem.
Phys., vol. 135, no. 14, pp. 144105/1–11, 2011.

[177] S. Kossmann and F. Neese, “Efficient Structure Optimization with Second-Order
Many-Body Perturbation Theory: The RIJCOSX-MP2 Method,” J. Chem. Theory
Comput., vol. 6, pp. 2325–2338, 8 2010.

[178] S. Kossmann and F. Neese, “Comparison of two efficient approximate Hartee-Fock
approaches,” Chem. Phys. Lett., vol. 481, no. 4-6, pp. 240–243, 2009.

[179] F. Neese, F. Wennmohs, A. Hansen, and U. Becker, “Efficient, approximate and par-
allel Hartree-Fock and hybrid DFT calculations. A ’chain-of-spheres’ algorithm for the
Hartree-Fock exchange,” Chem. Phys., vol. 356, no. 1-3, pp. 98–109, 2009.

[180] F. Neese, “An improvement of the resolution of the identity approximation for the
formation of the Coulomb matrix,” J. Comput. Chem., vol. 24, no. 14, pp. 1740–1747,
2003.

[181] C. Riplinger and F. Neese, “An efficient and near linear scaling pair natural orbital
based local coupled cluster method,” J. Chem. Phys., vol. 138, no. 3, 2013.

[182] S. Sinnecker, A. Rajendran, A. Klamt, M. Diedenhofen, and F. Neese, “Calculation of
solvent shifts on electronic g-tensors with the conductor-like screening model (COSMO)

203



and its self-consistent generalization to real solvents (Direct COSMO-RS),” J. Phys.
Chem. A, vol. 110, no. 6, pp. 2235–2245, 2006.

[183] S. Grimme, S. Ehrlich, and L. Goerigk, “Effect of the damping function in dispersion
corrected density functional theory,” J. Comput. Chem., vol. 32, no. 7, pp. 1456–1465,
2011.

[184] G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy
calculations using a plane-wave basis set,” Phys. Rev. B, vol. 54, pp. 11169–11186, 10
1996.

[185] G. Kresse, J. Furthmuller, J. Furthmüller, and J. Furthmuller, “Efficiency of ab-initio
total energy calculations for metals and semiconductors using a plane-wave basis set,”
Comput. Mater. Sci.ials Science, vol. 6, pp. 15–50, 7 1996.

[186] G. Kresse and J. Hafner, “Ab initio molecular-dynamics simulation of the liquid-metal-
amorphous-semiconductor transition in germanium,” Phys. Rev. B, vol. 49, pp. 14251–
14269, 5 1994.

[187] G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev.
B, vol. 47, pp. 558–561, 1 1993.
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