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THE STUDY OF A SINGLE-PHASE FULL-WAVE UNCONTROLLED

RECTIFIER WITH A CONSTANT POWER LOAD IN A POWER GRID

Dong Yan, M.S.

University of Pittsburgh, 2018

The single-phase uncontrolled rectifier supplying a constant power load (CPL) is common

in a power system, especially for digital devices such as telecommunication equipment. The

characteristics of CPLs may de-stabilize the system and cause the output voltage collapse if

the initial capacitor voltage is too low. Based on a mathematical model of the rectifier-CPL

circuit, a method is proposed to estimate the minimum initial voltage which makes the system

converge. Also, some non-linear factors including the source impedance and the inertia of

the CPL. When the rectifier operates in steady states, a high load power may cause the

bifurcation phenomenon. Some analysis is made for the bifurcation and its negative effects

on the power grid.

Keywords: Constant power load, Rectifier, Convergence, Bifurcation.
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1.0 INTRODUCTION

The constant power load (CPL) is one of nonlinear loads which consumes constant power

regardless the states of the power source. This conception has been focused since 1990’s as

the application of switched converters increases in power systems. When a resistive load is

supplied by a converter with fast voltage control, and all the losses are neglected (Fig.1) , the

power injected to the converter is constant since the voltage across the load doesn’t change.

Then the converter with resistive load can be treated as an instantaneous dc CPL. One

Figure 1: A typical example of a CPL. This figure is reprinted from [1]

typical example is the telecommunication equipment which takes more and more proportion

in today’s power system[2].

A system with CPLs could face the instability. [3] and [4] analyze this problem in

the multi-converter systems. In general, CPLs have a negative impedance characteristic.

Meanwhile, most sources also show the droop characteristic in i − v plot. Therefore, any

disturbance could make the system lose its stability easily.
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Many works has been done to deal with the de-stabilizing effects of CPLs. For the DC

system, [5] proposes a slide-mode control method to stabilize the dc/dc forward converter

with a CPL in a automotive system. [6] uses PD controller for a buck converter based on

passivity system control. Also, boundary control is applied for dc/dc converters in [7]. For

the AC system, relative researches are fewer compared to those for DC systems. [8] proves

that, based on Popov’s Criterion, the required initial condition for the stability of a 3-phase

rectifier with a CPL can be determined, but it only suitable for 3-phase devices which usually

operates in continuous conduction mode (CPL). For many single-phase rectifiers, instead,

the current is discontinuous because of a large filter capacitor. Besides, one-phase rectifier is

studied in [9] and this reference focuses more on interactions between the rectifier and CPL.

This thesis concentrates on a single-phase uncontrolled rectifier connected with a CPL,

which is a common topology for the power supply of digital devices. For instance, Fig.2 from

the datasheet [10] is a basic circuit of a 12V output voltage supply, which is able to operate

as the power source of many digital devices such as laptops. If the load connected to this

Figure 2: A simplified circuit for a power adapter using LM78XX voltage regulator.

circuit is treated as a resistor, the whole system can be simplified as a rectifier-CPL model.

in this example, the power level is relatively low, thus, the characteristics of CPL may not

considerable in a macro power grid.

However, if similar topology is used for some high power devices such as a data center

or telecom station, the effect may become significant. What’s more, in the microgrid and
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distributed power systems, the influence of CPL emerges since it could take up a large

proportion of the total load[11]. Therefore, it is worthwhile to do more research on the

properties of the system with a CPL.

In this paper, dynamic behaviors of the rectifier-CPL model is studied. In addition, this

system is put into a non-ideal power system which indicates the source impedance is not

zero. In this case, the interaction between the rectifier and the power grid is analyzed. In

Chapter.2, a mathematical model for the circuit is established and some non-ideal factors

are involved. Chapter.3 discusses the convergence of the rectifier under CPL’s influence. A

method is proposed to estimate the minimum initial capacitor voltage which prevents the

rectifier from voltage collapse. The effects of the non-ideal factors (source impedance and

load inertia) are also considered. Chapter.4 focus on how the CPL affects the steady state

operation of the rectifier. The bifurcation phenomenon in steady states is analyzed specif-

ically. In this chapter, the influence of the bifurcation on the power grid is also discussed.

Finally, conclusions of this thesis are made in Chapter.5 and, also, the limitation and future

works are discussed.
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2.0 THE MODEL OF THE SYSTEM

In order to analyze the dynamical behavior of the rectifier with a constant power load (CPL),

a model should be built which can reflect the mechanism of the whole circuit. To eliminate

too many non-ideal factors and make the simulation quicker and more accurate, the model

is based on the state space equations rather than the real circuit topology in the simulation

tool. In addition, source impedance and load inertia are intently considered as non-ideal

factors to study their influence on the behavior of the system.

2.1 MATHEMATICAL MODEL FOR THE SINGLE-PHASE RECTIFIER

A simplified topology for the uncontrolled single-phase rectifier is shown in Fig.3. In this

Figure 3: the circuit of an uncontrolled single-phase rectifier

circuit, an ideal AC voltage source and the impedance represent the power grid. Four ideal

diodes (D1 −D4) indicate that all the losses and non-ideal effects of the semiconductors are

neglected. The source impedance is considered in order to reflect the rectifier’s influence on
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the bus voltage. To reduce the ripple of output voltage, a LC filter is applied. In this thesis,

the rectifier is assumed to operate in the DCM.

According to the different input voltage, the rectifier operates in two modes[12][13].

When the voltage on the left side of the diode bridge (v1) is less than the one on the right

side (v2), the diodes are off, the equivalent circuit (Fig.4) is actually a first-order system

since only the capacitor works in this mode. Therefore, the state equation for this mode is

Figure 4: the equivalent circuit for the first-

order mode

Figure 5: the equivalent circuit for the

second-order mode

C
dvC
dt

= −iload, iL = 0 (2.1)

where vC is the capacitor voltage, iload is the load current.

When v1 > v2, the diode bridge turns on depending on the polarity of the input voltage.

Since the diodes are ideal, as is shown in Fig.5, the bridge can be treated as a line and the

input voltage is always positive. Then the circuit start to operate as a second-order system

which can be expressed as (neglect the source impedance)

LdiL
dt

= |vs| − vC , iL > 0

C dvC
dt

= iL − iload

(2.2)

where vs is the source voltage, iL is the inductor current. It can be observed that Eq.2.1 and

Eq.2.2 can be combined with a limitation of the inductor current (iL ≥ 0).
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if the source impedance is considered, it should be noticed that the impedance has no

influence on the first-order mode (Fig.4,Eq.2.1). In the second-order mode (Eq.2.2), the

source impedance (Ls, Rs) is in series with the filter inductor (Lf ). And that means if

we only focus on the states iL, vC , the source impedance is equivalent to adding a series

resistance to the filter inductor. Eventually, the mathematical model of the rectifier is

(Lf + Ls)
diL
dt

= |vs| −RsiL − vC , iL ≥ 0

C dvC
dt

= iL − iload

(2.3)

2.2 MATHEMATICAL MODEL FOR THE CONSTANT POWER LOAD

The rectifier with a LC output filter can be treated as a voltage source for the load, so an ideal

constant power load operates like a voltage-controlled current source and the relationship is

iload =
Pload

vC
(2.4)

where Pload is the load power of CPL and keeps constant. However, in the real world, the

CPL is usually a voltage regulator or a DC-DC converter with a fast output voltage control.

Although the converter can regulate the output voltage extremely quickly, it still need some

time to transit from a transient state to a steady state. Therefore, a inertia element should

be added to the current source model to represent the time response of the CPL (Fig.6). A

simple inertial element can be expressed as a transfer function

G(s) =
1

sTs + 1
(2.5)

where Ts indicates how fast the system can restore into a steady state. If Ts = 0, the load

becomes an ideal instantaneous CPL.
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Figure 6: the block diagram of the CPL model

2.3 THE REALIZATION OF THE MODEL

Based on the mathematical analysis in the previous sections, the model for simulation can

be built using MATLAB/Simulink. The important parts of the model are shown in Fig.7.

For the CPL model, the inertial element is added at the output (iLoad) of the model because

that can prevent the zero-dividing at the beginning of simulation. For the rectifier model,

Figure 7: The Simulink model for the rectifier and the CPL

the limitation of iL is realized by setting a lower saturation limit for the integrator. Other

parts in the simulation model including the measurements and links between subsystems are

not presented in this paper.
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3.0 THE STUDY OF CONVERGENCE

For the rectifier working in the DCM, the state trajectory in the phase portrait should be

convergent which means the system trajectory will converge into a limited cycle around an

equilibrium point instead of the point itself. When the rectifier starts to operate, it could lose

the convergence which is indicated by the output voltage collapse. A method is proposed

to estimate a necessary condition of the convergence. Meanwhile, this chapter will study

how the non-ideal factors (inertia of the load, source impedance) will affect the convergence

of the rectifier. After that, some solutions will be discussed in order to avoid the voltage

collapse and guarantee the convergence.

3.1 THE NECESSARY CONDITION FOR THE CONVERGENCE IN THE

IDEAL CASE

By observing the mathematical model for the rectifier in the last chapter, similarities can

be found between this model and the one for a buck converter. Therefore, it is expected

that the rectifier would show similar characteristics as the buck converter when the initial

capacitor voltage is low. Fig.8 displays the vC − iL phase portrait of a rectifier with different

initial capacitor voltages (vC(0)). The arrows show the direction of each path alone the time.

The phase portrait indicates that, like the buck converter, the initial capacitor voltage could

determine whether the rectifier operates normally or the voltage collapse happens.

There must be a minimum vC(0) acting as the threshold below which the rectifier will

face the voltage collapse. From Figure.9, the first cycle of the trajectory (red curve) is much
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larger than the ones in steady state, which means if the first cycle does not lead to the

voltage collapse, then the system will be convergent unless other parameters change. So in

this part, the dynamical behavior in the first period (0 < t < 0.0167s) is considered.

The reference [6] provides a method to estimate vC(0)min for buck converter.A similar

method could also applied for the rectifier. Define that vC(t0) is the capacitor voltage

when the rectifier start to operate in the second-order mode (diodes turn on). It can be

calculated (Eq.3.1) by the initial condition vC(0) easily if using a triangle wave to represent

the sinusoidal waveform of the source voltage[9].

vC(t0) =
1

4fVs
[−Pload

C
+

√
(
Pload

C
)2 + (4fVsvC(0))2] (3.1)

where Vs is the RMS value of the source voltage. Once the rectifier operate as a 2nd-order

system, vC continue to decrease since at that time iL < iload. One sufficient condition for

the voltage collapse is

iL < iload ⇒ dvC
dt

< 0

diL
dt
< diload

dt

(3.2)

At the same time, Eq.3.2 is also a necessary condition for the convergence which can be

used to estimate the minimum vC(0). Combine the second line of Eq.3.2 and Eq.2.2, we can

obtain

iL <

LP2
load

Cv3
C

+vC−vs(t)

LPload
Cv2

C

ϕ : iL =

LP2
load

Cv3
C

+vC−vs(t)

LPload
Cv2

C

(3.3)

Eq.3.3 actually provides a boundary ϕ in the vC − iL phase portrait. If the trajectory of the

rectifier goes blow the boundary, voltage collapse will happen definitely. The dash line in

Fig.9 is one example of the boundary.

One problem to estimate vC(0)min is that in Eq.3.3, the term vs(t) is not constant, so

the boundary ϕ keeps moving in the vC − iL plate, as is shown in Fig.10.
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By observing this figure, although the boundary changes a lot in the vC − iL plate, it

moves quickly when vs(t) is relatively low. If vs(t) is close to the peak value or is around

the average value Vavg, the boundary tend to stay still. It is hard to describe the dynamical

process by a brief mathematical algebra system, but it can be deduced that, at the beginning

when vc = vc(t0) (Eq.3.1), the trajectory of the rectifier could stay below the boundary

temporarily, but shortly after that, the boundary moves down quickly as vs(t) increases.

When vs(t) reaches a high value, the boundary changes slowly and the trajectory stays

above ϕ, which means the voltage collapse is avoided. Therefore, in most cases, whether the

rectifier converges depends on whether the trajectory penetrates the boundaries close to the

red curve in Fig.10.

In order to determine vC(0)min, a constant boundary should be selected. Through many

times of simulation, it is found that the boundary corresponding to vs(t) = Vavg (the red

curve in Fig.10) is relatively accurate, in other word, most trajectories that penetrate or

even too close to this boundary will hit the iL axis (voltage collapse).

With the selected boundary, vC(0)min can be estimated following several steps:

1. Use the system parameters to calculate the boundary ϕ (in Eq.3.3, let vs = Vavg), and

then obtain its intersection point with the vC axis, which is denoted as vϕ0.

2. Let vC(t0) = vϕ0, then vC(0) can be calculated using Eq.3.1.

3. The result got in the previous step can be treated as the minimum voltage vC(0)min, but

it should be noticed that the actual minimum initial voltage is usually higher than this

result because not only the boundary we select is a approximation of the real one, but

also the actual minimum vC(t0) is larger than vϕ0.

The method proposed in this paper is a rough estimation because 1)the principle is

a necessary condition of the convergent system; 2)many approximation is involved in the

calculation; 3)this method is based on the ideal case without considering inertia, source

impedance and other factors.
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3.2 THE EFFECT OF THE NON-IDEAL FACTORS ON THE

CONVERGENCE

In this part, several non-ideal factors are involved in the system. Usually, a real power grid

is equivalent to an ideal voltage source in series with the source impedance Zs. For the

large-scale grid, the reactance is much larger than the resistance, so Zs ≈ Xs. However, for

the microgrid, the resistance of the transmission line cannot be ignored and Rs should be

considered in the source impedance. In addition, the inertia of the load could also affect the

dynamical process.

3.2.1 The effect of the source impedance Ls, Rs

If Ls and Rs are added in the system, the equation of boundary ϕ should be revised as

ϕ : iL =

(Lf+Ls)P 2
load

Cv3C
+ vC − vs(t)

(Lf+Ls)Pload

Cv2C
−Rs

(3.4)

When Rs is neglected, the addition of Ls is the same as changing the value of L. Fig.11

shows the variation of the boundary with different Ls. In this figure, the boundary moves

to the right as Ls increases, and the method proposed in Section3.1 can be used to estimate

the minimum initial capacitor voltage if replace the filter inductance L by Ls + Lf .

When only Rs is considered, it could let the denominator of Eq.3.4 equals to zero and

change the boundary’s shape. But if Rs is relatively low, this problem could be avoided,

because the capacitor voltage which makes the denominator crosses zero is greater than vC(t)

in the steady state. So the shape of the boundary corresponding to the low voltage is not

changed. Fig.12 shows the variation of the boundary with different Rs. Since the intersection

of the boundary and vC-axis does not change, the estimation method in Section 3.1 can’t

reflect the effect of Rs. However, the simulation results (Fig.13) indicates that the vC(0)min

will increase linearly as Rs rises, or we can say the existence of Rs makes the capacitor

voltage easier to collapse. This result is expected because the resistor reduces the changing

rate of inductor current and consequently the capacitor will discharge more quickly.
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3.2.2 The effect of the inertia element

In the section 2.2, an inertia element is set to represent the time response of a CPL depending

on the parameter Ts (Eq.2.5). In practice, if the CPL refers to a voltage regulator, the time

response to the input voltage or load shift could be several microseconds or even tens of

nanoseconds. Compared to the source voltage, whose period is about 0.017s, the load can

be treated as an instantaneous load (Ts ≈ 0).

If the CPL includes a DC/DC converter with voltage control, the time response could be

hundreds of microseconds, so the inertia should not be ignored. According to Fig.14, vC(0)min

drops when Ts increases. This result is expected because the inertial element actually limits

the change of the load current, thus it is easier for vC(t) to stop dropping at the beginning.

3.3 DISCUSSION ON THE SOLUTIONS FOR AVOIDING VOLTAGE

COLLAPSE

There are several methods to prevent the rectifier from voltage collapse. The most straight-

forward way is to pre-charge the capacitor before operation. There are two main advantages

for this solution:

1. Avoid the voltage collapse directly. The pre-charge voltage can be set close to the peak

or average source voltage so that the estimation of vC(0)min could be unnecessary.

2. A high pre-charge voltage can reduce the inductor current at the start. From the phase

portrait in Fig.9, we can observe that the first cycle (red curve) is much larger than the

other ones because the inductor has to generate a huge current to charge the capacitor to

reach the voltage around the equilibrium point, which is also called the rush-in current

of the capacitor. Pre-charge is commonly used in the converters to reduce this current

no matter what the loads are.
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Nevertheless, a main defect of the pre-charge is that some additional power source and

facilities are required. Besides, especially for high-capacity converters, it takes a lone time

to charge the capacitor before operation.

Another solution is the current protection which is also applied in many converters. Once

the output voltage drops below a threshold, the load will be disconnected from the converter.

If the current protection is applied, theoretically, there is no need to set a initial voltage for

the capacitor. For the rectifier in this paper, current protection could be equivalent to pre-

charge because the load is disconnected until the capacitor is charged to the threshold of the

protection system. However, sudden disconnect and re-connect may not acceptable for some

loads and , under some specific conditions, the spikes of the load current may appear if the

protection threshold doesn’t match the power level (Fig.15).
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Figure 8: vC − iL phase portrait of

a rectifier with different vC(0). Pload =

120W, vs = |25
√

2sin(120πt)|, L =

600µH,C = 6mF . The cycles indicate

the rectifier can operate normally while

the blue trajectories mean the output

voltage collapse happens

Figure 9: vC− iL phase portrait of a rec-

tifier with two different vC(0). Pload =

120W, vs = |25
√

2sin(120πt)|, L =

600µH,C = 6mF .For the red trajectory,

vC(0) and vC(t0) are denoted.

Figure 10: The boundary ϕ changes with different vs(t). P = 120W,L = 600µH,C =

6mF, vs(t) = |25
√

2sin(120πt)|
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Figure 11: Boundary ϕ with different Ls.

Pload = 200W, vs = |25
√

2sin(120πt)|, Lf =

600µH,C = 6mF . Ls changes from 0 to

300µH

Figure 12: Boundary ϕ with different Rs.

Pload = 200W, vs = |25
√

2sin(120πt)|, Lf =

600µH,C = 6mF . Rs changes from 0 to

0.3Ω.

Figure 13: The relationship between

vC(0)min and Rs. Pload = 200W, vs =

|25
√

2sin(120πt)|, Lf = 600µH,C = 6mF .

Rs changes from 0 to 0.3Ω

Figure 14: The relationship between

vC(0)min and Ts. Pload = 200W, vs =

|25
√

2sin(120πt)|, Lf = 600µH,C = 6mF .

Ts changes from 0 to 0.001s.
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Figure 15: The load current in the steady state when the current protection causes spikes.

Pload = 400W, vs = |25
√

2sin(120πt)|, Lf = 600µH,C = 6mF, vC(0) = 0. The load is

disconnected once vC(t) < 0.8Vs.
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4.0 STEADY STATE ANALYSIS

The previous chapter discusses about the dynamical behavior of the rectifier when it starts

with certain initial condition. In this chapter, it is assumed that the rectifier is able to

operate with the convergence and its behavior in the steady state is studied.

4.1 THE STEADY STATE BEHAVIOR OF THE RECTIFIER WITH A CPL

The constant power load not only affects the convergence at the beginning of operation, it

could also change the behavior of a rectifier in the steady state. To illustrate the effect of

the CPL, another system is used as a comparison where the same rectifier is connected to

a equivalent resistive load Req. The alternative load should consume the same power as the

CPL in the steady state, which is expressed as

PCPL = PR =
1

T

∫ t+T

t

v2C(t)

Req

dt (4.1)

A part of the simulation results is shown in Fig.16. It can be observed that the CPL

and Req share almost the same trajectories. What’s more, other simulations with different

parameters indicates that the inertia of the CPL may have no influence on the results.

Therefore, in this case, it’s hard to know the type of load by observing the input current of

the rectifier in the steady state. In other word, we can use a resistor to represent a CPL in

the steady state.
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Figure 16: vC − iL phase portrait and the plot of vC(t) in the steady states.Both the results

of CPL and Req are displayed in the same plot. Pload = 150W, vs = |25
√

2sin(120πt)|, Lf =

600µH,C = 6mF .

However, the rectifier with a CPL will have different characteristics if the CPL power

increases. In Fig.17, the trajectory corresponding to the CPL diverges into two cycles in the

steady state, while the resistive load doesn’t. This phenomenon is called bifurcation which

is common in different types of converters. As the power continues to rise, the trajectory

will bifurcate into more cycles until the voltage collapse happens.

4.2 THE ANALYSIS ON BIFURCATION

For power converters, the bifurcation is noticed and analyzed in many researches. For ex-

ample, [14] presents the bifurcation in a buck converter with current-mode control but it

dose not provide any explanation to the findings. [15] provides simulation and experiment

results of the bifurcation in a buck-boost converter. In these researches, some mathematical

methods are proposed to determine the condition of bifurcation, but for now these methods

are only suitable for LTI systems [16] or fast-switching systems which can be linearized.
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Figure 17: vC − iL phase portrait and the plot of vC(t) in the steady states.Both the results

of CPL and Req are displayed in the same plot. Pload = 280W, vs = |25
√

2sin(120πt)|, Lf =

600µH,C = 6mF .

Many factors are involved to determine whether the bifurcation appears. In practice,

since the power source and components of the rectifier are usually unchanged, the load power

Pload is treated as the direct cause. Define that PTH is the threshold and the bifurcation

happens if Pload > PTH . Therefore, the main task is to determine PTH by other parameters

including VS, Lf and Cf . Unfortunately, it is hard to derive an exact relationship between

PTH and component parameters by mathematical equations. But simulation results illustrate

some regulations which could provide some clues for the future study.

4.2.1 The simulation results in ideal cases

In the ideal situation, both the source impedance and the inertia are not considered. Eighteen

sets of simulation results are summarized in Fig.18. For each time of simulation, different

components (Lf , Cf ) are used. In the figure, PTH is an approximated value of the minimum

load power when bifurcation appears. And vC is the average capacitor voltage when PLoad =

PTH . The results indicate that if the source voltage is defined, PTH should be found on a
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Figure 18: Summary of the simulation results. vs = |25
√

2sin(120πt)|, Lf = 600µH,C =

6mF, vC(0) = 25V , Rs, Ls and the inertia of CPL are not involved.

plane according to the filter inductance and capacitance, while the plane should only depend

on the source voltage. At the same time, the averatge output voltage of the rectifier may

have a linear relationship with the product of Lf and Cf , which indicates, when bifurcation

starts, the output voltage could be determined by the cut-off frequency of the filter.

According to these findings, if the source voltage is known, the vC − LC line and the

plane can be obtained by at least three times of simulation or experiments. Then for any

combination of Lf and Cf , PTH and the corresponding vC can be estimated.

4.2.2 The effects of the non-ideal factors Ts, Rs

If the load is not equivalent to an instantaneous CPL, the inertia element should be added in

the system, whose characteristic can be reflected by the parameter Ts in the inertia element

(Fig.6). Meanwhile, source impedance also needs to be considered. The source inductance

Ls is not studied because it can be combined with the filter inductance L = Ls + Lf . Then

only the effect of Rs is studied.
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Figure 19: The change of PTH and vC when non-ideal factors are involved.

Fig.19 shows the effects of the parameters Ts and Rs. As the inertia of CPL increase, the

threshold for bifurcation rises too, thus, if the CPL gets closer to an instantaneous one, the

rectifier will be easier to face the bifurcation. In addition, the existence of source resistance

could also increase PTH . Recalling the conclusion in Section 3.2, although Rs leads the

rectifier easier to face voltage collapse at the beginning, it brings a positive influence on the

rectifier in the steady state.

It should be note that, the effect of non-ideal factors are considerable. But the linear

dependency revealed in Section.4.2.1 does not change because the plots in Fig.19 also shows

a linear relationship. So PTH can be estimated by the method in the previous section when

Ts and Rs are not zero.

4.3 THE PROBLEM BROUGHT BY THE BIFURCATION

In the steady state, even if the bifurcation appears, the rectifier and CPL connected can still

operate normally unless the ripple of vC is too large. However, if we focus on the source side
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of the rectifier, some problems may appear. Since the diodes bridge is treated as an ideal

switch, the input current iin of the rectifier (denoted in Fig.3) should equals to the inductor

current iL but the polarities are different.

iin =

 +iL, vs > 0

−iL, vs < 0
(4.2)

If the bifurcation appears, the waveform of iin could be like Fig.20. It’s easy to see the

Figure 20: Input current of the rectifier when the bifurcation appears

input current has a considerable DC component. When the load power is close to PTH , the

DC component is hard to observe unless using Fourier transform to obtain the frequency

spectrum.

The most concerning problem is the DC-current injection to the power grid because it

brings the transformer saturation. In each cycle, the core of transformer will be magnetized

in on one direction according to the polarity of DC current. With the hysteresis nature, the

core flux will increase until it reaches a maximum value, then the flux is hard to change,

which means then voltage relationship between the coupled windings is no longer maintained

and the transformer cannot transfer energy in this case[17].

In order to explain this problem, a nonlinear single-phase transformer model is applied

to supply the rectifier (Fig.21). A resistor (20Ω) is connected in parallel with the rectifier

to accelerate the simulation. Parameters and magnetizing characteristics are listed in Table

1 and Fig.22. The simulation is conducted on the system with different load power. When
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the core flux of the transformer reaches its saturation flux, the simulation will stop because

it is assumed the transformer loses its ability to transfer energy once the core saturates.

The results are presented in Fig.23. When Pload = 255W < PTH , there is no bifurcation

Table 1: Transformer parameters

Nominal power 300 VA

Nominal voltage 250/25 V

Winding resistance 0.0001 pu

Leakage inductance 0.001 pu

in the steady state, so the transformer operates normally. Nevertheless, once Pload = 265W >

PTH , an DC current component in the input current is observed. Then the excitation current

increases significantly and the core flux reaches the saturation value after tens of seconds.

Therefore, the bifurcation could cause the failure of the power grid in a short time especially

when the CPL power takes a large proportion of the total load in a power system.
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Figure 21: The circuit model including the transformer.

Figure 22: The magnetization characteristic of the core (the elementary curve).

The saturation flux is 1.2 p.u
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(a)

(b)

Figure 23: Relative states of the transformer when the load power is (a)255W and (b)265W.

For each figure, the core flux, excitation current and the input current of the transformer’s

primary side are plotted

25



5.0 CONCLUSION

The study of the rectifier with a CPL reveals that, the convergence of the system depends

on the initial capacitor voltage. A method based on the reference [6] is derived to estimate

the minimum value of this voltage. The simulations show that both the source impedance

and load inertia have an observable effect on the minimum initial voltage, which should be

considered when estimating.

When the system operates in the steady state, in a low power level, there is no difference

between a rectifier with a CPL and the one with a resistive load. However, if the load power

is higher than a threshold, the bifurcation phenomenon appears. Although the bifurcation

may not cause problem for the rectifier and CPL, it could inject DC current into the power

grid, which brings the saturation and overheat of the transformer. Therefore, the bifurcation

should be avoided in operation.

This topic still has much space for more researches. A significant limitation of this

paper is that, it is hard to explain the findings of simulations by mathematical proofs. That

is because the uncontrolled rectifier is a switched system which can’t be analyzed directly

as a LTI system. What’s more, common averaging methods used for fast-switched system

couldn’t be applied to this case because the switched frequency of the rectifier is too low

compared to its dynamic behavior we are interested. Therefore, in the future, one task is to

find a suitable way to analyze the convergence and bifurcation phenomenon based on certain

algebra method instead of simulations. Then try to derive a more accurate way to determine

vC(0)min for a convergent system and PTH for the bifurcation.
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