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ABSTRACT 

The implementation of vaccines is one of the most profound advancements in the world of 

public health. While the scientific process underlying vaccine development is important, 

determining a vaccine’s efficacy and safety profile would not be possible without vaccine efficacy 

trials. In terms of trial design, sample size estimation is one of the essential considerations to be 

made, ensuring that the trial achieves the targeted power, minimizing chances of a false-negative 

finding.  

An often considered hypothesis for such trials is testing if a new vaccine is more efficacious 

than a placebo or the current standard-of-care. We investigated two relevant methods, the Z-Test 

Normal Approximation and the Exact Conditional Test under Poisson Assumption as presented by 

Chan and Bohidar. While the Normal Approximation is a generally acceptable method, the Exact 

Conditional approach may be better suited for trials with low disease incidence. 

In this Thesis, we develop SAS code for estimating sample size via both methods, in 

addition to calculating exact power. Sample size and power calculations are performed under a 

range of different scenarios, stratified by high, intermediate, and low incidence of disease in the 

control group. Furthermore, under each scenario, simulations are utilized to evaluate the 

performance of the Exact Conditional approach. 

SAMPLE SIZE ESTIMATION AND POWER CALCULATIONS FOR VACCINE 

EFFICACY TRIALS FOR EXCEEDINGLY RARE DISEASES 

Matthew M. Loiacono, MS 

University of Pittsburgh, 2018
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Both methods are generally reasonable approaches to sample size estimation and power 

calculations for vaccine efficacy trials. In trials of higher disease incidence, the Normal 

Approximation is simpler to implement, and should adequately power the trial. For scenarios of 

low incidence (< 0.01), the Exact Conditional approach may be more favorable, as it may provide 

greater power to the trial. To minimize the chance of an underpowered trial, we propose 

implementing a strategic inflation of sample size. Lastly, we highlight the importance of 

congruency between methods used for sample size estimation, trial design, and data analysis. 

Public Health Significance: Vaccine efficacy trials are required for vaccine licensure and 

distribution to the public. A robustly estimated sample size is crucial, as it ensures a trial is 

adequately powered, thereby improving the odds of obtaining conclusive results. The methods 

investigated here represent viable approaches to sample size estimation for such trials.  



vi 

TABLE OF CONTENTS 

PREFACE .................................................................................................................................... IX 

1.0 INTRODUCTION ........................................................................................................ 1 

1.1 HISTORICAL OVERVIEW .............................................................................. 1 

1.2 MODERN DAY AND CLINICAL TRIALS ..................................................... 3 

1.3 VACCINE EFFICACY TRIALS AND SAMPLE SIZE ESTIMATION ....... 5 

2.0 METHODS ................................................................................................................... 8 

2.1 POWER AND ALPHA LEVEL OF THE TEST .............................................. 8 

2.2 HYPOTHESIS TESTING................................................................................... 8 

2.3 Z-TEST NORMAL APPROXIMATION ........................................................ 10 

2.4 EXACT CONDITIONAL TEST UNDER POISSON ASSUMPTION......... 12 

2.5 COMPUTATION AND SOFTWARE ............................................................. 14 

2.6 METHODOLOGY EVALUATION ................................................................ 15 

3.0 RESULTS ................................................................................................................... 18 

4.0 DISCUSSION ............................................................................................................. 26 

APPENDIX:  SAS CODE ........................................................................................................... 30 

BIBLIOGRAPHY ....................................................................................................................... 35 



vii 

LIST OF TABLES 

Table 1. Sample size estimates and power calculations for scenarios of high incidence (P1=0.15, 

π1 = 0.65). ...................................................................................................................................... 21 

Table 2. Sample size estimates and power calculations for scenarios of intermediate incidence 

(P1=0.05, π1 = 0.65). ...................................................................................................................... 22 

Table 3. Sample size estimates and power calculations for scenarios of low incidence (P1=0.01, π1

= 0.65). .......................................................................................................................................... 23 



viii 

LIST OF FIGURES 

Figure 1. Sample size estimates versus pre-specified power (%). ................................................ 24 

Figure 2. Sample size estimates under varying levels of vaccine efficacy lower bound (a) and true 

vaccine efficacy (b). ...................................................................................................................... 25 



ix 

PREFACE 

Firstly, I would like to thank my Thesis advisor and mentor, Dr. Hanna Bandos, for her consistent 

guidance and support throughout this endeavor. The research and organizational skills I further 

developed under her guidance will certainly benefit my future studies and work. Similarly, I want 

to thank Dr. Wilbert van Panhuis and Dr. Robert Krafty for serving on my committee and for their 

feedback throughout this research. Additionally, I would like to thank my supervisors and mentors 

from my Summer 2017 Internship at Sanofi Pasteur, who inspired and helped direct the initial 

sample size work that ultimately led to this Thesis (Dr. Ayman Chit, Dr. Vitali Pool, Dr. Ed 

Thommes, Dr. Kerry Go, and Dr. Alex Selmani). Furthermore, I want to extend a warm thank you 

to my family, friends and loved ones for their constant support and motivation. On a lighter note, 

lastly, I would like to acknowledge both Constellation Coffee and Crazy Mocha Coffee Co., where 

a large portion of the code and writing for this Thesis were produced, for consistently providing 

excellent coffee and a work-friendly atmosphere. 



1 

1.0 INTRODUCTION 

1.1 HISTORICAL OVERVIEW 

Throughout the history of public health, there have been a number of particularly notable 

achievements that have not only altered the course of public health history for the better, but more 

importantly, have drastically improved health at an individual and population level. Some of these 

advancements and discoveries made in the 20th century include, but are not limited to, the 

fluoridation of drinking water, control of infectious diseases, standardization of motor-vehicle 

safety, and implementation of workplace safety protocols. These advancements, alongside many 

others, have made for an overall healthier population, with greater quality and quantity of life, all 

while dramatically reducing associated health care costs (Porter, 1999). However, aiding in the 

near-eradication of countless harmful diseases, the wide-scale implementation of vaccines is 

certainly one of the most profound advancements in the world of public health. 

Although vaccines are frequently considered to be an advancement associated with the 

aforementioned 20th century public health advancements, the first known use of a vaccine, as we 

know them, dates back to the late 18th century. Edward Jenner, a country doctor in rural England, 

performed what we now regard as one of the first legitimate clinical trials. Jenner discovered that, 

by inoculating an individual with pus from a cowpox lesion, immunity to any subsequent 

exposures of small pox could be developed (Jenner, 1798; Stern & Markel, 2005). However, he 
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was not the first individual to attempt creating immunity via inoculation. The process of 

inoculation can be traced to the 15th century across parts of Asia, where subjects were 

inoculated with the live small pox virus. This particular method, though, was not only more 

dangerous, due to use of the live virus, but also less effective at producing immunity to repeated 

exposures (Plotkin, 2011). Jenner’s method of inoculation, using a less dangerous variant of the 

virus, marked a turning point in the history of immunization, allowing us to create immunity well 

beyond the first or second exposure to a virus. His discovery, ultimately, laid the groundwork for 

the future of immunizations and vaccines. 

Over the course of the following century, the small pox vaccine, as defined by Jenner, 

would go on to be used throughout Europe and the United States (Strassburg, 1982). Worthy of 

noting, the word vaccine, as Jenner had used it, was derived from the term Variolae vaccinae, or 

cowpox (Jenner, 1798). According to the World Health Organization, as of 2018, “a vaccine is a 

biological preparation that improves immunity to a particular disease… made from weakened or 

killed forms of the microbe, its toxins, or one of its surface proteins” (WHO, 2018). With that said, 

Jenner’s smallpox vaccine would not meet the modern-day definition of a vaccine.  

Nearly 100 years after the work of Jenner, it was the work of French chemist Louis Pasteur 

and his colleague, Emile Roux, that helped broaden and shape the definition of vaccines. Pasteur 

and Roux developed the first rabies vaccine by attenuating rabies grown in live rabbits in a lab 

setting. First tested on canines, and then on a small number of people over the course of the 19th 

century, their vaccine revealed its incredibly high success rate with minimal side effects (Geison, 

2014). While this vaccine would now be more accurately described as an antitoxin, it nevertheless 

helped expand the definition of vaccines to include treatments beyond Jenner’s cowpox vaccine. 
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Although many others contributed to the historical development of vaccines, Jenner, Pasteur, and 

Roux are worthy of highlighting, due to their particularly influential contributions. 

1.2 MODERN DAY AND CLINICAL TRIALS 

As of 2018, there are nearly 100 vaccines approved for use in the United States, with an estimated 

21 million hospitalizations and 700,000+ deaths having been prevented between 1994-2014, due 

to vaccines (CDC, 2014; FDA, 2018). Similarly, an estimated 2-3 million deaths are prevented 

annually across the globe as a result of vaccine implementation. The realized benefits of 

vaccination as a form of preventive care, in terms of overall population health as well as associated 

health care costs, are not to be underestimated (WHO, 2017). Although the scientific discovery 

process that underlies vaccine discovery and development is certainly fundamental to bringing 

these vaccines to the public, the rigorous testing protocol to determine their effectiveness as well 

as any potential side effects is paramount to their licensure, distribution, and successful 

implementation. 

In order for any new pharmaceutical product to be released to the general public, each 

product must be assessed over a series of tests, or clinical trial phases. Prior to the initiation of a 

clinical trial for a new product, however, certain preclinical studies must first be performed. 

Primarily relying on animal testing, preclinical studies are intended to determine a safe baseline 

dosage for the first phases of the clinical trials, while also providing a preliminary assessment of 

the product’s safety. Species are chosen to ensure maximum relatability to humans and in doing 

so, safe baseline dosages can be estimated allometrically (Atanasov et al., 2015). Following 

preclinical studies, phases 0-IV of the clinical trial introduce human subjects and allow for further 
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assessment of product safety, dosing, and efficacy. Phase 0, introduced by the FDA in 2006, is an 

exploratory investigational study in which a small number of subjects (usually less than 20) receive 

a micro-dose of the product to demonstrate possible therapeutic benefits. This phase serves as a 

way of quickly separating effective from ineffective new products, and is not required for product 

licensure (Fromer, 2006). More traditionally, clinical trials begin with phase I, a study intended to 

establish the dose and schedule of a drug, conducted on a small cohort of volunteers. Design for 

phase I trials varies based on the drug and the results from the preclinical studies, but one of the 

most common methods is the “3 + 3” dose-escalation design. Differences in particular designs 

aside, phase I trial designs expose all subjects to the drug and aim to implement escalating doses 

and varied scheduling to ultimately determine the recommended phase II dose, in addition to the 

drug’s safety (Hansen, Graham, Pond, & Siu, 2014; Le Tourneau, Lee, & Siu, 2009).  

While phase 0 and I trials establish the baseline dosing, safety, and scheduling, a phase II 

trial, conducted in up to several hundred individuals, serves to further investigate the new drug’s 

efficacy, dosing, and safety profile, in addition to potentially adverse effects. In general, the most 

commonly used design in phase II trials is a single-arm trial. However, in some cases, a 

randomized control design may also be implemented, where the control group receives the current 

standard-of-care, if it exists (Mandrekar & Sargent, 2010).  

After a successful phase II trial, a large scale phase III trial is conducted to more precisely 

assess these same characteristics across a larger group of patients. Phase III trials follow a 

randomized control design, and generally include anywhere from 250-3,000 individuals, with 

varying levels of risk. It is possible that the size of these trials can even reach upwards of 10,000 

individuals. In terms of treatment, in some special cases, individuals may continue to receive 

treatment outside of the trial to maintain the therapeutic benefits while the drug is undergoing 
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licensing. This particular type of trial is referred to as phase IIIB trial (Friedman, Furberg, DeMets, 

Reboussin, & Granger, 2015).  More generally, a phase III trial helps investigators to get a much 

more accurate estimate of the drug’s true efficacy. Following a successful phase III trial, a drug 

receives its licensure and is then ready to be released to its target market or the general public.  

Once a drug has received licensing and complete the phase III trial, a phase IV trial can 

take place. As opposed to the experimental nature of phase 0-III trials, a phase IV trial is an 

observational trial in nature. Although not all phase IV trials are the same, the majority take shape 

as post-marketing surveillance. Phases 0-III trials help to identify most adverse effects, but in the 

case of excessively rare adverse effects, the phase IV trial is crucial to identifying these events 

(Mitchell, Philipose, & Sanford, 1993; Suvarna, 2010). Semantics aside, this generalized outline 

of clinical trials is applicable to nearly all new pharmaceutical products, including the vast 

majority of vaccines. 

1.3 VACCINE EFFICACY TRIALS AND SAMPLE SIZE ESTIMATION 

While assessing the safety profile and dosing schedule of a new vaccine are both important aspects 

of its development, the primary objective in conducting clinical trials is to establish the efficacy of 

the vaccine in question. In establishing the efficacy, more specifically, investigators aim to 

demonstrate that the test vaccine reduces the incidence of a particular disease, relative to a placebo 

or the standard-of-care. In terms of the physiological components, preclinical studies and phase I 

trials are useful to establish these characteristics, therefore setting the stage for phases II-IV. 

However, from a statistical standpoint, one of the vital calculations to be made for a vaccine 
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efficacy trial is the sample size estimation, that helps ensure the pre-specified statistical power is 

achieved, thus minimizing the chance of a false negative finding.  

Prior to sample size estimation, the desired minimum power for the trial must first be 

specified, usually by the lead investigator(s) and/or statisticians involved in the trial design. 

Similarly, the significance level of the test must also be specified during the earlier trial design 

stages, where the level of the test is indicative of the maximum allowed chance of a Type I error 

rate, or false-positive rate. After establishing the desired level of the test, power for the trial, and 

anticipated effect size, the expected required sample size can be estimated. This calculation is 

crucial for a number of reasons, and over or underestimation can have a range of negative 

consequences. An incorrectly calculated sample size, where the sample size is underestimated, can 

result in the specified power never being achieved, potentially leading to inconclusive results. As 

phase II-IV clinical trials become larger and more costly, an overestimated sample size, 

conversely, could incur unnecessarily high expenses for the organization leading the clinical trial 

(Sakpal, 2010).  

Different approaches exist to calculating a sample size for a vaccine efficacy 

trial, depending on the hypothesis being tested. In regards to the classical test of 

comparing two proportions or incidences, appropriate sample size formulas have been derived 

(Breslow & Day, 1987). However, these methods cannot account for a non-zero bound for the 

value of the null vaccine efficacy, and are thus limiting in terms of the scope of their 

applicability. Different test statistics have been proposed for this precise situation, and 

corresponding asymptotic sample size calculations have also been derived (Chan & Bohidar, 

1998; Chow, Shao, & Wang, 2003; Farrington & Manning, 1990; Gart & Nam, 1988; 

Miettinen & Nurminen, 1985). Although these methods take into account a non-zero lower 

bound, they may not be optimal for trials with a large 
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sample size and excessively low disease incidence. For this type of scenario, an exact conditional 

test where the number of cases is assumed to follow a Poisson distribution has been previously 

presented by Breslow and Day, and further modified by Chan and Bohidar to account for 

hypotheses with a non-zero lower bound (Bohidar & Chan, 1996; Breslow & Day, 1987; Chan & 

Bohidar, 1998).  

In this paper, we investigated the sample size estimation methods as presented by 

Chan and Bohidar, including the Z-Test Normal Approximation and the Exact Conditional Test 

under Poisson Assumption (Chan & Bohidar, 1998). In Section 2.1, the concepts of statistical 

power and level of the test are reviewed. In Section 2.2, the specific hypothesis of interest for a 

vaccine efficacy trial is established. Two approaches to power and sample size calculation are 

presented in Sections 2.3 and 2.4. In Section 2.5, a description is provided of the software used to 

program both of these methods, as well as our algorithm to determine the correct required number 

of cases for the Exact Conditional approach. In Section 2.6, the chosen scenarios for projecting 

sample size are discussed. Our results are presented in Section 3.  Lastly, in Section 4, our findings 

are summarized, the importance of continuity in trial design and analysis is highlighted, and a 

potential strategy to help avoid under-powering a trial is proposed. 
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2.0 METHODS 

2.1 POWER AND ALPHA LEVEL OF THE TEST 

Two vital parameters that must be specified, prior to sample size estimation, are the significance 

level of the test and the minimum desired statistical power for the trial. In specifying the level of 

the test, the investigator is establishing the maximum chance of a Type I Error, or false-positive, 

which is denoted as (α). Generally, the level of the test is designated within the range of 2.5% to 

5%. The power of the study is the likelihood to detect a protective effect of the vaccine, if the 

vaccine does in fact have a protective effect. We denote power as (1-β), where (β) is the 

probability of making a Type II Error, or a false-negative. Clinical trials are generally designed to 

achieve a minimum of 80% power (Chow et al., 2003). Studies can be designed to have a targeted 

power greater than 80%, but this will usually result in a substantial increase in the sample size. 

2.2 HYPOTHESIS TESTING 

For the simplicity of the presentation, all of the formulas here are presented for a case of equal 

sample sizes between the test and control groups. Let us define n as the number of patients in each 

group, P1 as the incidence of disease in the control group, and P2 as the incidence of disease in the 

test vaccine group, where P2 < P1. We then denote vaccine efficacy (π) as (1 – relative risk) of test 

subjects having the disease relative to control subjects: 

(1)  𝜋 =  1 – (𝑃2 / 𝑃1) 
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In the case of a vaccine efficacy trial, where a pre-existing vaccine is already the standard-

of-care, we generally refer to the new vaccine’s expected efficacy as the relative vaccine efficacy, 

a term that is frequently used in vaccine efficacy studies of this nature (Ashkenazi et al., 2006; 

Comstock, 1994; DiazGranados et al., 2014; Storsaeter & Olin, 1992). Therefore, the relative 

vaccine efficacy value is not the test vaccine’s true efficacy, but rather, it is the test vaccine’s 

efficacy in relation to the control vaccine’s efficacy (Shim & Galvani, 2012). In either case, 

whether we are working with a relative vaccine efficacy of the new test vaccine and standard-of-

care, or simple vaccine efficacy compared to a placebo, the general process of hypothesis testing, 

power calculation, and sample size estimation remain the same. 

In a vaccine efficacy trial, we are interested in determining whether or not a new vaccine 

is more efficacious than the control. Specifying a minimum vaccine efficacy level of the new 

vaccine, denoted as π0, the hypothesis used to test that the new vaccine is more efficacious than 

the control is represented as follows: 

(2) 𝐻0:  𝜋 ≤ 𝜋0   𝑣𝑒𝑟𝑠𝑢𝑠    𝐻1:  𝜋 > 𝜋0

For a trial with measurements of relative vaccine efficacy, π0 would be set equal to zero, 

as the new vaccine’s efficacy is relative to that of the control. If the control group is entirely 

unvaccinated, then π0 would be set to a value greater than zero, to test whether or not the new 

vaccine’s efficacy is greater than π0, thus demonstrating some level of efficacy. 
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2.3 Z-TEST NORMAL APPROXIMATION

For the Z-Test Normal Approximation method, we used the test statistic that has been previously 

established, for the given hypothesis (2) (Chan & Bohidar, 1998; Farrington & Manning, 1990; 

Miettinen & Nurminen, 1985):  

(3)  𝑍 =
�̂�2 − (1−𝜋0)�̂�1

�̂�0 √𝑛⁄

(4) �̂�0 = [𝑃2̃(1 − 𝑃2̃) + (1 − 𝜋0)2 𝑃1̃(1 − 𝑃1̃)]1 2⁄

Here, small values of the Z statistics provide evidence against the null hypothesis. In this case, �̂�1 

and �̂�2 are the observed incidence in the control and test groups, respectively, and 𝑃1̃ and 𝑃2̃ are

the maximum likelihood estimates of P1 and P2, within the confines of the null hypothesis (Chan 

& Bohidar, 1998). In this test statistic, n represents the sample size of either the control or test 

group, in accordance with our assumption of equal sample sizes between the test and control 

groups. 

Based on this test statistic, asymptotic formulas for power and sample size have also been 

previously derived (Chan & Bohidar, 1998). Firstly, the limiting values of  𝑃1̃ and 𝑃2̃  can be

denoted as 𝑃1̅ and 𝑃2
̅̅ ̅ . Using the planned incidence in the test and control vaccine groups, P1 and

P2, the respective values of 𝑃1̅ and 𝑃2
̅̅ ̅ can be determined as follows:

(5) 𝑃2
̅̅ ̅ = {𝑎 − [𝑎2 − 8𝑏]1 2⁄ }/4      and       𝑃1̅ = 𝑃2

̅̅ ̅/(1 − 𝜋0)
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where, the values for a and b in this expression can be calculated as such: 

(6) 𝑎 = (1 − 𝜋0)(1 + 𝑃1) + 1 + 𝑃2  and      𝑏 = (1 − 𝜋0)(𝑃1 + 𝑃2)

Consequently, 𝑃1̅ and 𝑃2
̅̅ ̅ can then be used in place of 𝑃1̃ and 𝑃2̃ in (4) to determine the limiting

value of �̂�0, denoted as 𝜎0̅̅ ̅: 

(7) 𝜎0̅̅ ̅ = [𝑃2
̅̅ ̅(1 − 𝑃2

̅̅ ̅) + (1 − 𝜋0)2 𝑃1̅(1 − 𝑃1̅)]1 2⁄

Furthermore,  𝜎1 can be calculated by replacing 𝑃1̃ and 𝑃2̃ with P1 and P2 in (4):

(8) 𝜎1 = [𝑃2(1 − 𝑃2) + (1 − 𝜋0)2 𝑃1(1 − 𝑃1)]1 2⁄

With 𝜎0̅̅ ̅ and 𝜎1 defined, the asymptotic power for a Z-Test of α level to test our given null 

hypothesis (2), can be determined, where Φ is the standard Normal distribution function: 

(9) 1 − 𝛽 = Φ{
1

𝜎1
[𝑍1−𝛼𝜎0̅̅ ̅ + 𝑛1 2⁄ 𝑃1(𝜋1 − 𝜋0)]}

Based on this formula for asymptotic power of the test, the total sample size, N, can then be 

determined as follows: 

(10) 𝑁 = 2[(𝑍1−𝛼𝜎0̅̅ ̅ + 𝑍1−𝛽𝜎1)
2

 / (𝑃1(𝜋1 − 𝜋0))
2

]
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2.4 EXACT CONDITIONAL TEST UNDER POISSON ASSUMPTION 

If the disease of interest is rare and has a low incidence rate, a large scale trial may be required. In 

this particular situation, an exact conditional test, where the number of cases in the study can be 

approximated by a Poisson distribution, has been previously proposed (Breslow & Day, 1987; 

Gail, 1AD). Slightly modified by Chan and Bohidar to account for a null hypothesis with a non-

zero lower bound, this Exact Conditional Test procedure, is presented below (Bohidar & Chan, 

1996; Chan & Bohidar, 1998). 

Let X and Y represent the number of cases in the control and test vaccine groups, where 

they independently follow Binomial distributions, BIN(n, P1) and BIN(n, P2), respectively. In the 

case of a rare disease, where n is adequately large and P1 and P2 are adequately small, we can 

assume that nP1 → λ1 and nP2 → λ2.  Therefore, X and Y can be approximated as POI(λ1) and 

POI(λ2), respectively. The total accumulated number of cases observed during the course of the 

trial, X+Y,  is denoted as T. Consequently, the appropriate distribution of Y (number of cases in 

the test vaccine group), conditional upon T = t, for any t ∈ {0, 1 ,2, 3…, T}, can be derived as 

follows: 

𝑋~𝑃𝑂𝐼(𝜆1) 𝑎𝑛𝑑 𝑌~𝑃𝑂𝐼(𝜆2), 𝑤ℎ𝑒𝑟𝑒 𝑋 𝑎𝑛𝑑 𝑌 𝑎𝑟𝑒 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 𝑇 = 𝑋 + 𝑌~𝑃𝑂𝐼(𝜆1 + 𝜆2) 

𝑃(𝑌 = 𝑘|𝑇 = 𝑡) =
𝑃(𝑌 = 𝑘, 𝑇 = 𝑡)

𝑃(𝑇 = 𝑡)

𝑃(𝑌 = 𝑘, 𝑋 + 𝑌 = 𝑡)

𝑃(𝑇 = 𝑡)
 =

𝑃(𝑌 = 𝑘, 𝑋 = 𝑡 − 𝑘)

𝑃(𝑇 = 𝑡)

=

𝜆2
𝑘

𝑘!
∗

𝜆1
𝑡−𝑘

(𝑡 − 𝑘)!

(𝜆1 + 𝜆2)𝑡

𝑛!

= (
𝑡

𝑘
)

𝜆2
𝑘 𝜆1

𝑡−𝑘

(𝜆1 + 𝜆2)𝑛
= (

𝑡

𝑘
) (

𝜆2

𝜆1 + 𝜆2
)

𝑘

(
𝜆1

𝜆1 + 𝜆2
)

𝑡−𝑘
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𝐿𝑒𝑡 𝛳 =
𝜆2

𝜆1 + 𝜆2

=
𝑛𝑃2

𝑛𝑃1 + 𝑛𝑃2

=
1 − 𝜋

2 − 𝜋

Substituting ϴ into the final step of the derivation above, the conditional distribution of Y given T 

is then shown to follow a Binomial distribution: 

 (11) 𝑌 | 𝑇 ~ 𝐵𝐼𝑁(𝑇, 𝛳) = (𝑇
𝑘

)𝛳𝑘(1 − 𝛳)𝑇−𝑘 

To accommodate for the decreasing nature of ϴ, our hypothesis (2) can then be represented 

accordingly: 

(12)  𝐻0:  𝛳 ≥ 𝛳0   𝑣𝑒𝑟𝑠𝑢𝑠    𝐻1:  𝛳 < 𝛳0 

where 𝛳0 = (1 − 𝜋0)/(2 − 𝜋0). If Yobs is the number of cases observed in the test vaccine group, 

the exact conditional p-value can then be calculated as: 

(13)  𝑝 = Pr[𝑌 ≤ 𝑌𝑜𝑏𝑠| 𝑌~BIN(𝑇, 𝛳0)] =  ∑ (𝑇

𝑘
)𝛳0

𝑘(1 − 𝛳0)𝑇−𝑘𝑌𝑜𝑏𝑠
𝑘=0

Similarly, given our hypothesis (2) against a specified alternative, the exact power and critical 

value (Yc) at a pre-specified level (α) can be calculated as such: 

(14) 1 − 𝛽 = Pr[𝑌 ≤ 𝑌𝑐| 𝑌~BIN(𝑇, 𝛳1)] = ∑ (𝑇

𝑘
)𝛳1

𝑘(1 − 𝛳1)𝑇−𝑘𝑌𝑐
𝑘=0

𝑤ℎ𝑒𝑟𝑒   𝛳1 = (1 − 𝜋1)/(2 − 𝜋1) 
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With a minimum value of T determined for the level of the test that will also achieve the 

desired minimum power, a vaccine efficacy trial can then be designed around accruing a specified 

total number of cases. The corresponding total sample size (N) for the vaccine efficacy trial can be 

calculated by the following formula: 

(15)  𝑁 ≈ 2 ∗
𝑇

(2−𝜋1)𝑃1

2.5 COMPUTATION AND SOFTWARE 

All formulas and methodology, as described here, were coded with SAS® software (Version 9.4, 

Cary, NC). Aside from assuming equal sample sizes between the control and test groups, all 

formulas were coded exactly as presented by Chan and Bohidar, and are provided in the Appendix 

(Chan & Bohidar, 1998). Using what we refer to as a “brute force” type algorithm, we were able 

to determine the correct minimum number of cases to be accrued over the trial (T), as  required for 

the Exact Conditional approach, and then the projected sample size. The logic of this procedure is 

described below: 

1) Consider all values of T from 1 to 1000

2) Determine a critical value (Yc) for each respective T, if it exists

a) Using equation (14) and considering all Y values ∈  {0, 1 ,2, 3…, T}, Yc is the minimum

value at which power is > the pre-specified minimum power

b) Any values of T without a determined Yc value are no longer considered



15 

3) Level of the test, for each combination of T and its respective Yc value is considered

a) Only values of T where exact level, using equation (13), is < the pre-specified alpha

are considered

4) Determine the minimum required value of T from this reduced set of T’s

a) The minimum T at which all following T’s increase by a value of 1 without skipping

i) Due to the discrete nature of the Binomial distribution, we want to ensure that if an

extra case is obtained, power does not drop below the pre-specified minimum

power

5) Determine the expected sample size for the trial using equation (15)

2.6 METHODOLOGY EVALUATION 

In their work, Chan and Bohidar compared the statistical power and size of the Exact Conditional 

and Normal Approximation approaches, as well as compared their performance, in terms of the 

sample size requirements. In order to further assess the performance of these methods, we 

expanded upon the set of vaccine efficacy trial scenarios considered in their paper. A scenario, as 

we denoted it, can be described by three primary variables: the incidence of disease in the control 

group (P1), true vaccine efficacy (π1), and the vaccine efficacy lower bound (π0).  

In real-world scenarios, disease incidence can range drastically, depending on a large 

number of factors. In their paper, Chan and Bohidar suggested that the Exact Test has substantially 

less power than the Z-Test when the incidence rate in the control group is > 0.3. Therefore, we 

focused on the rates less than 0.3, stratifying by high, intermediate, and low incidence scenarios. 

The three values of disease incidence of the control group used in this paper were based upon what 
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we considered to be realistic values that might be observed today, for a range of diseases. The 

high incidence value was baselined off of the world-wide incidence of malaria in 2000 

(~0.155), an incidence much higher than observed today, as this was expected to adequately 

represent a realistic upper bound for incidence (World Bank, 2018). For the low incidence 

scenario, an incidence of 0.01 was used, as this was low enough to demonstrate differences 

between the two methods, while still producing realistically viable sample size estimates. 

Similarly, vaccine efficacy values range widely, from 0% up to nearly 100% in real-

world trials. After reviewing a number of different vaccine efficacy trials, we decided to fix the 

true efficacy at an intermediate value of 65%. In addition to a zero lower-bound for the null 

efficacy, a  lower-bound of 15% was also considered, as this represented what we found to be a 

realistic lower-bound in a vaccine efficacy trial design (Alonso et al., 1994; Aronson et al., 2004; 

Cassio de Moraes et al., 1992; Coursaget et al., 1986; Fine et al., 1994; Gross, et al., 1995; Kulkarni 

et al., 2017; Rerks-Ngarm et al., 2009).  

With the scenarios defined as such, the changes in sample size requirements were 

investigated, while simultaneously increasing the minimum pre-specified power, from 80% to 

95%, in increments of 5%, as well as two values for the significance level of the test, 2.5% and 

5.0%. The minimum sample size required under these scenarios was evaluated by the Exact 

Conditional and Normal Approximation approaches, as described in Sections 2.3 and 2.4. 

Furthermore, the validity of the Exact Conditional approach to sample size estimation was 

investigated via simulations. Empirical power was calculated under the same set of scenarios 

described above, allowing us to evaluate the performance of the Exact Conditional approach, in 

terms of power. Briefly, the simulations were performed as follows. The number of cases in the 

control and treatment groups was simulated independently, based on BIN(n, P1) for the control 
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subjects and BIN(n, P2) for the test subjects, where n is 1/2 of the sample size for the scenario, as 

estimated via the Exact Conditional approach. For each simulated trial, a p-value was calculated 

using formula (13). Simulating 2,000,000 trials per scenario, statistical power was then calculated 

as the proportion of those trials in which the null hypothesis was rejected at the pre-specified level 

for that particular scenario. 
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3.0 RESULTS 

Estimates of the sample sizes under a range of  hypothetical vaccine efficacy trial scenarios are 

presented in Tables 1, 2, and 3. Within these tables, we presented identical sets of scenarios, 

except for different disease incidence in the control group (P1), stratified by high, intermediate, 

and low disease incidence.  

Regardless of the specific incidence in the control group, there were a number of 

overarching patterns that arose across the three scenarios. First, the exact power, number of total 

required cases, and exact level remained the same across Tables 1, 2, and 3. As explained in 

Section 2.5, these components were reliant upon the null and true vaccine efficacy values, which 

were identical across the three primary incidence scenarios, thus explaining this particular 

pattern. 

When specifying a smaller alpha level under the same scenario, estimated sample size 

increased. Similarly, when specifying a greater minimum power for two otherwise identical 

scenarios, estimated sample size again increased. This observation was logical, as both decreasing 

alpha and increasing power serve to provide one with greater certainty in the findings of a trial, 

consequently, requiring a greater number of subjects to be accrued. To confirm the trend in the 

relationship between power and sample size, additional scenarios were considered (Figure 1). 

In terms of the vaccine efficacy values, an increase in the efficacy lower bound resulted in 

an increase in sample size for both methods, across all three disease incidence scenarios. To further 

investigate this relationship, as well as the effect of varying the true vaccine efficacy value (π1), 

an additional set of scenarios was considered, where either the efficacy lower bound or true vaccine 

efficacy were changing, while keeping all other parameters fixed (Figure 2). In Figure 2a, with the 
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true efficacy fixed, increasing the efficacy lower bound translated to a decreased effect size and 

therefore, increased sample size. On the contrary, in Figure 2b, with the efficacy lower bound 

fixed, increasing the true efficacy translated to an increased effect size and therefore, decreased 

sample size. These two observations succinctly demonstrated the generally expected relationship 

between effect size and sample size, where sample size estimates increase as effect size decreases. 

The results of the simulations are also presented in Tables 1-3. Within this identified set of 

scenarios, the empirical power was almost always less than the exact power for the targeted number 

of cases. This can be attributed to the fact that, when using the two Binomial distributions to 

simulate our data, many of the “trials” resulted in fewer than the targeted number of cases (T). In 

each of those trials, the exact power could be substantially lower than the targeted power. Although 

theoretically it is possible that there are scenarios in which the empirical (unconditional) power is 

higher than the targeted power, we can generally expect that in regular scenarios when the targeted 

range of statistical power is 70-90%, unconditional power would be lower than exact. 

Furthermore, there are some particular patterns that arose as a result of changes in the 

disease incidence of the control group.  For the case of high incidence, sample size estimates were 

smaller overall. More specifically, comparing a fixed scenario across any two tables, the sample 

size estimates of the Exact Conditional approach increased proportional to the factor decrease in 

the control incidence. Referencing the Exact Conditional sample size formula (15), the sample 

size only relies upon the control incidence via P1 in the denominator, as neither the minimum 

required number of cases (T) nor the true efficacy (π1) rely upon control incidence. On the other 

hand, while a similarly inverse relationship was observed between the Normal Approximation 

sample size and control incidence, this relationship was not exactly proportional as observed with 



20 

the Exact Conditional approach. Likewise, in referencing equations (6) through (10), the 

relationship between sample size and P1 cannot be as easily disentangled. 

The differences in sample size estimates of the Exact Conditional approach and the Normal 

Approximation method were similarly reflected by the efficiency measure in Tables 1-3. Within 

our designated set of scenarios, efficiency values were always less than 100%, indicating that the 

estimated sample sizes via the Normal Approximation were predominantly less than those from 

the Exact Conditional approach. On average, efficiency was overall lowest when incidence was 

highest. In comparing Table 1 and Table 2, there were some individual scenarios where this does 

not hold true, but this is likely attributed to the discrete nature of the Binomial distribution used 

for the Exact Conditional approach.  The higher efficiency observed in Table 3 suggests that, 

under a scenario of low incidence, sample size estimates using the Exact Conditional approach 

should be relatively close to those when using the Normal Approximation approach.
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Table 1. Sample size estimates and power calculations for scenarios of high incidence (P1=0.15, π1 = 0.65). 

Efficacy 

Lower 

Bound 

Pre-specified 

Alpha 

Pre-specified 

Power 
Exact Level 

Exact 

Power 

Simulated 

Power 
Exact Conditional Test Z-Test Efficiency  

(Z-Test/Exact) 

(%) (π0) (%) (%) (%) (%) (%) 
Total # of 

Cases 

Expected 

Sample 

Size 

Asymptotic 

Sample 

Size 

(T) (N) (N) 

0 2.5 80.0 2.35 86.2 82.4 37 366 300 82.0 

0 2.5 85.0 2.18 89.6 87.8 42 416 342 82.2 

0 2.5 90.0 2.00 92.1 91.6 47 466 400 85.8 

0 2.5 95.0 2.20 96.2 95.8 56 554 492 88.8 

0.15 2.5 80.0 2.45 85.2 82.1 51 504 422 83.7 

0.15 2.5 85.0 1.94 86.9 86.4 57 564 482 85.5 

0.15 2.5 90.0 2.02 92.1 91.8 67 662 562 84.9 

0.15 2.5 95.0 2.02 96.3 96.4 82 810 690 85.2 

0 5.0 80.0 4.36 83.4 80.3 28 278 236 84.9 

0 5.0 85.0 4.01 87.7 86.5 33 326 274 84.1 

0 5.0 90.0 4.03 92.8 92.3 40 396 326 82.3 

0 5.0 95.0 4.27 96.7 96.3 49 484 410 84.7 

0.15 5.0 80.0 4.05 85.6 84.4 44 436 332 76.2 

0.15 5.0 85.0 4.11 89.0 88.1 49 484 384 79.3 

0.15 5.0 90.0 4.13 91.6 91.1 54 534 456 85.4 

0.15 5.0 95.0 4.49 96.0 95.6 66 652 572 87.7 
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Table 2. Sample size estimates and power calculations for scenarios of intermediate incidence (P1=0.05, π1 = 0.65). 

Efficacy 

Lower 

Bound 

Pre-specified 

Alpha 

Pre-specified 

Power 
Exact Level 

Exact 

Power 

Simulated 

Power 
Exact Conditional Test Z-Test Efficiency  

(Z-Test/Exact) 

(%) (π0) (%) (%) (%) (%) (%) 
Total # of 

Cases 

Expected 

Sample 

Size 

Asymptotic 

Sample 

Size 

(T) (N) (N) 

0 2.5 80.0 2.35 86.2 81.4 37 1098 968 81.4 

0 2.5 85.0 2.18 89.6 86.8 42 1246 1106 86.8 

0 2.5 90.0 2.00 92.1 90.7 47 1394 1294 90.7 

0 2.5 95.0 2.20 96.2 95.1 56 1660 1600 95.1 

0.15 2.5 80.0 2.45 85.2 81.1 51 1512 1364 81.1 

0.15 2.5 85.0 1.94 86.9 85.5 57 1690 1556 85.5 

0.15 2.5 90.0 2.02 92.1 91.0 67 1986 1814 91.0 

0.15 2.5 95.0 2.02 96.3 95.8 82 2430 2232 95.8 

0 5.0 80.0 4.36 83.4 79.0 28 830 762 79.0 

0 5.0 85.0 4.01 87.7 85.5 33 978 886 85.5 

0 5.0 90.0 4.03 92.8 91.4 40 1186 1054 91.4 

0 5.0 95.0 4.27 96.7 95.7 49 1452 1332 95.7 

0.15 5.0 80.0 4.05 85.6 83.3 44 1304 1072 83.3 

0.15 5.0 85.0 4.11 89.0 87.2 49 1452 1242 87.2 

0.15 5.0 90.0 4.13 91.6 90.2 54 1600 1474 90.2 

0.15 5.0 95.0 4.49 96.0 95.0 66 1956 1854 95.0 
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Table 3. Sample size estimates and power calculations for scenarios of low incidence (P1=0.01, π1 = 0.65). 

Efficacy 

Lower 

Bound 

Pre-specified 

Alpha 

Pre-specified 

Power 
Exact Level 

Exact 

Power 

Simulated 

Power 
Exact Conditional Test Z-Test Efficiency  

(Z-Test/Exact) 

(%) (π0) (%) (%) (%) (%) (%) 
Total # of 

Cases 

Expected 

Sample 

Size 

Asymptotic 

Sample 

Size 

(T) (N) (N) 

0 2.5 80.0 2.35 86.2 80.9 37 5482 4980 90.8 

0 2.5 85.0 2.18 89.6 86.4 42 6224 5696 91.5 

0 2.5 90.0 2.00 92.1 90.3 47 6964 6666 95.7 

0 2.5 95.0 2.20 96.2 94.8 56 8298 8244 99.4 

0.15 2.5 80.0 2.45 85.2 80.7 51 7556 7014 92.8 

0.15 2.5 85.0 1.94 86.9 85.1 57 8446 7998 94.7 

0.15 2.5 90.0 2.02 92.1 90.6 67 9926 9330 94.0 

0.15 2.5 95.0 2.02 96.3 95.6 82 12150 11488 94.6 

0 5.0 80.0 4.36 83.4 78.6 28 4150 3924 94.6 

0 5.0 85.0 4.01 87.7 85.1 33 4890 4562 93.3 

0 5.0 90.0 4.03 92.8 91.1 40 5926 5434 91.7 

0 5.0 95.0 4.27 96.7 95.5 49 7260 6864 94.6 

0.15 5.0 80.0 4.05 85.6 82.9 44 6520 5512 84.5 

0.15 5.0 85.0 4.11 89.0 86.9 49 7260 6388 88.0 

0.15 5.0 90.0 4.13 91.6 89.9 54 8000 7582 94.8 

0.15 5.0 95.0 4.49 96.0 94.8 66 9778 9540 97.6 
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Figure 1. Sample size estimates versus pre-specified power (%). 

Scenario parameters fixed as follows: P1=0.01, π0=0.15 π1=0.65, Alpha=5% 
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Figure 2. Sample size estimates under varying levels of vaccine efficacy lower bound (a) 

and true vaccine efficacy (b). 

Scenario parameters fixed as follows: (a): P1=0.01, π0=0.00, Alpha=5%, Power=80% 

 (b): P1=0.01, π1=0.65, Alpha=5%, Power=80% 

π0 π1 

(a) (b) 
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4.0 DISCUSSION 

In planning and designing a vaccine efficacy trial, both the Exact Conditional approach and 

Normal Approximation approach are viable methods to sample size estimation, each with their 

own advantages and disadvantages. The Normal Approximation procedure represents a 

reasonable and less specialized approach, requiring minimal programming and computational 

complexity. This technique is also conveniently available in some statistical packages, such as 

PASS (NCSS LLC, Kaysville, Utah). Therefore, the simplicity of implementing it is one of its 

strong advantages. The Exact Conditional method, on the other hand, requires more initial 

programming to be performed, but is still relatively fast to execute on a modern-day computer. 

In terms of sample size requirements, we found that the Exact Conditional method 

provided estimates consistently larger than those of the Normal Approximation, particularly, 

up to 25% larger in scenarios of higher incidence. These differences, however, became 

substantially smaller under low incidence scenarios, with most being under 10%, but no 

greater than ~16%. Our observations agreed with those by Chan and Bohidar. They concluded 

that, under scenarios of low incidence and fixed large sample sizes (~4,000+), the Exact 

Conditional Test performed similarly to the Z-Test, in terms of power, and for some cases, 

tended to be even more powerful (Chan & Bohidar, 1998).  

Despite the involved complexity of the Exact Conditional approach, there are some 

considerations to be made that may lend it some favorability. From a practicality and a trial design 

standpoint, this approach may be more favorable, due to its conditionality upon a required number 

of cases. With such an approach, a trial would be designed to accrue a fixed number of events, and 

a situation where the pre-specified statistical power is not achieved would therefore be avoided. 
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While a given trial is in motion, these total number of cases can be easily monitored, 

effectively serving as an indicator of the progress of the trial. Depending on the timeline and 

trial schedule, decisions to end the trial early or extend it, in order to accrue more cases, can 

be supported with a quick reference to this easily accessible value. On the contrary, under the 

fixed sample size/duration trial design, there is the possibility that the trial may be 

underpowered, due to a lower incidence rate in the control group than anticipated. An important 

and sometimes overlooked aspect of a biostatistician’s job lies in his or her ability to clearly 

communicate the rationale of their design and analysis plan to non-statistician investigators on the 

trial. Correspondingly, the required total number of cases condition and its utility as an indicator 

of trial’s progress may be a more intuitive and easily understood measure. 

While either of the methods we have investigated are generally reasonable for determining 

a sample size that should adequately power a trial, careful considerations should be given to the 

congruency between the methods used for planning, design, and final analysis of the collected 

data. As illustrated by the results of our simulations, inconsistencies between these major stages 

of a clinical trial could lead to underpowered trials. After evaluating the required sample size using 

the conditional approach, we simulated our trial data unconditionally via two independent 

Binomial distributions, with probabilities equal to the incidence rates in the control and test groups. 

Our approach to the simulation was more representative of the real-world, where trials are designed 

to accrue and observe a fixed number of subjects, and then run for a fixed amount of time. Such 

inconsistence between our method of sample size estimation and the design of the simulations led 

to a notable number of “trials” under each scenario accruing less than the required number of cases. 

This then resulted in nearly all of the scenarios we presented having a simulated power that was 

less than the exact power. This suggests that in a real-world situation, given the Exact Conditional 
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sample size estimate, a fixed sample size/duration trial may likely be underpowered, due to the 

minimum number of cases condition not being satisfied.  

In practice, it is also possible that sample size may be estimated using the Normal 

Approximation, yet, in the analysis stage, the Exact Conditional Test may be used. This might 

present a problem, similar to what was observed in our simulations, with differences in exact 

versus empirical power. Considering that the Normal Approximation sample size estimates, within 

the scenarios we defined, were consistently less than those of the Exact Conditional approach, 

these trials would be significantly less likely to accrue the necessary number of cases. Thus, if 

analyzed with the Exact Conditional Test, there is a high probability that the trial will be 

underpowered. It is therefore crucial that the method used for sample size estimation matches that 

which is used for the data analysis. 

As discussed earlier, prolonging a trial is a possible solution to accruing more cases when 

the required number of cases condition is not met, but this may not always be a logistically or 

financially viable option. In an effort to avoid under-powering a trial, we propose a potential 

inflation of the sample size estimate be used during the trial design stage of a fixed number of 

events trial to ensure that, with a given probability, the required number of cases will be observed 

(Flahault, Cadilhac, & Thomas, 2005). The specific probability used, however, should be further 

explored by investigators, in order to best determine a sample size that is manageable and 

reasonable, given the budget and other constraints of the trial. In combination with careful 

considerations of congruency in the trial design and analysis methodology, this will help to ensure 

that a trial achieves its desired power, allowing investigators to confidently draw conclusions. 

 In designing a clinical trial, one of the essential considerations to be made is the sample 

size estimation, which targets the pre-specified statistical power, minimizing the chance of a false-
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negative conclusion. Incorrectly estimated sample sizes could lead to unnecessary costs or 

inconclusive study results. In this paper, we assessed the practicality of the Exact Conditional Test 

under Poisson Assumption and Z-Test Normal Approximation approaches to sample size 

estimation and power calculation for vaccine efficacy trials (Chan & Bohidar, 1998). In trials 

where incidence in the control group is high, the Normal Approximation is a reasonable and easy 

to implement approach that should adequately power the trial. For trials with low incidence (< 

0.01), the Exact Conditional approach may be more favorable, as it may provide greater power to 

the trial, at the cost of a marginal increase in sample size. To increase the likelihood that the 

required number of cases is accrued in a trial, we advise the use of a strategic sample size inflation, 

thereby decreasing the chances of an underpowered trial. Lastly, to better ensure the trial’s targeted 

power is achieved, it is important that the methodology used for sample size estimation, study 

design, and data analysis are congruent. 
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APPENDIX:  SAS CODE 

***************************************************************************** 

MACRO: Vaccine Efficacy Trial Sample Size using the Exact Conditional Test  

***************************************************************************** 

 

-Calculates the exact power and sample size for a vaccine efficacy trial, 

using an Exact Conditional Test under Poisson Assumption 

-All formulas are based upon (Chan & Bohidar, 1998) 

-Assumes equal sample size between test and control groups 

-Vaccine efficacy here is defined as (1-relative risk) of participants in the 

test group having the disease, relative to the control group 

-This method defines the minimum # of cases required to achieve the pre-

specified power, where the trial is then designed around accruing >= this # 

of total cases 

 

*Required inputs are as follows (only values between 0 and 1 are accepted): 

 

 P1     = incidence in the control group 

 VE1    = true efficacy of test vaccine, under the alternative 

 VE0    = minimum efficacy of test vaccine, under the null (NOTE: must 

be less than VE1) 

 Power  = pre-specified power desired to achieve 

 Alpha  = pre-specified maximum one-sided level of the test 

 Output = name of temporary dataset to where the results will be output 

 

When this MACRO is run, a temporary dataset will be output, along with a 

printout of this dataset;  

 

%MACRO SampleSize_ExactConditional(P1=, VE1=, VE0=, Power=, Alpha=, Output= 

); 

%LET c = 1;  

OPTIONS SPOOL; 

/*Calculates and assigns theta values as macro variables for the power 

calculation based on input VE0 VE1 */ 

DATA _NULL_; 

 teta0=(1-&VE0)/(1+&c-&VE0); 

 teta1=(1-&VE1)/(1+&c-&VE1); 

 CALL SYMPUT("theta0", teta0); 

 CALL SYMPUT("theta1", teta1); 

RUN; 

 

/*Loops through all possible T's (where T is total # of cases accumulated) 1-

1000, calculates the power and level at ALL y(obs) values*/ 

DATA temp; 

 RETAIN VE1 P1 T Yc power level  n2; 

 VE1=&VE1; 

 P1=&P1; 

 VE0=&VE0; 

 alpha=&alpha;  *Alpha is the nominal significance level; 

 powerreq=&power; *powerreq is the required power as specified; 

  DO T=1 TO 1000; 
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   Yc=0; 

   level=0; 

   power=0; 

   DO x=1 TO T; 

     Yc=x;  

     power = PROBBNML(&theta1,T,x); *power is 

the exact power of the test; 

     level = PROBBNML(&theta0,T,x); *level is 

the exact level of the test; 

     n2=T/((&c+1-&VE1)*(&P1)); 

     N=ceil(n2)*2; 

     OUTPUT; 

   END; 

   OUTPUT; 

  END; 

DROP x; 

RUN; 

 

/*Removes any observations were level is > pre-specified ALPHA */ 

DATA temp; 

 SET temp; 

 IF (level <= &alpha AND power >= &power); 

RUN;  

 

/*Keeps 1st observation PER T where minimum power is reached (this is the 

critical value Yc) */ 

DATA temp; 

 SET temp; 

 BY t; 

 IF first.t=1; 

RUN; 

 

/* Creates FLAG1 variable where flag1=1 if current T is previous T+1 */ 

DATA temp; 

 SET temp; 

 IF T = (LAG1(T)+1) THEN flag1=1; 

 ELSE flag1=0; 

RUN;  

 

/* Creates 20 lag variables (F1-F20) based on the flag1 variable */ 

DATA temp; 

 SET temp; 

 F1 = LAG1(FLAG1); F2 = LAG2(FLAG1); F3 = LAG3(FLAG1); F4 = LAG4(FLAG1); 

F5 = LAG5(FLAG1); 

 F6 = LAG6(FLAG1); F7 = LAG7(FLAG1); F8 = LAG8(FLAG1); F9 = LAG9(FLAG1); 

F10 = LAG10(FLAG1); 

 F11 = LAG11(FLAG1); F12 = LAG12(FLAG1); F13 = LAG13(FLAG1); F14 = 

LAG14(FLAG1); F15 = LAG15(FLAG1); 

 F16 = LAG16(FLAG1); F17 = LAG17(FLAG1); F18 = LAG18(FLAG1); F19 = 

LAG19(FLAG1); F20 = LAG20(FLAG1); 

RUN; 

 

 

/* Creates new FLAG2 variable where FLAG2=1 if all F1-F20=1, else FLAG2=0 */ 

/* logic: if we count back 20 from the last FLAG2=0, then we will end up at 

the first T when power stabilizes and T's become consecutive, increasing 

1 at a time without skipping*/ 
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DATA temp; 

 SET temp; 

 IF F1=1 AND F2=1 AND F3=1 AND F4=1 AND F5=1 AND F6=1 AND F7=1  

 AND F8=1 AND F9=1 AND F10=1 AND F11=1 AND F12=1 AND F13=1 AND  

 F14=1 AND F15=1 AND F16=1 AND F17=1 AND F18=1 AND F19=1 AND F20=1 THEN 

FLAG2=1; 

 ELSE FLAG2=0; 

RUN; 

 

/* Keeps only FLAG2=0 */ 

DATA temp; 

 SET temp; 

 WHERE FLAG2=0; 

 DROP F1-F20 FLAG1; 

RUN; 

 

/*Assigns the maximum value of T in the previous datastep to MACRO variable 

"maxT", then subtracts 20 */ 

DATA _NULL_; 

 SET temp; 

 CALL SYMPUT("maxT", MAX(T)-20); 

RUN; 

 

/*Identifies the lowest minimum T for which power will always be >= pre-

specified power based, on maxT in previous step */ 

DATA &output LABEL; 

 SET temp; 

 IF T=&maxT; 

 DROP FLAG2; 

 FORMAT power level alpha powerreq PERCENT10.2; 

 LABEL  P1 = "Incidence Rate in Control" 

   VE1 = "True Efficacy of Test Vaccine" 

   VE0 = "Efficacy Lower Bount" 

   alpha = "Pre-Specified Level" 

   powerreq = "Required Power" 

   level = "Exact Level" 

   power = "Exact Power" 

   T = "Total # of cases (Exact Conditional)" 

   N = "Expected Sample Size (Exact Conditional)"; 

RUN; 

 

PROC DELETE DATA=temp; 

RUN; 

 

/* Prints output dataset */ 

PROC PRINT DATA=&output LABEL; 

 VAR P1 VE1 VE0 powerreq alpha power level N; 

RUN; 

 

%MEND; 
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***************************************************************************** 

MACRO: Vaccine Efficacy Trial Sample Size using the Z Test Normal 

Approximation 

***************************************************************************** 

 

-Calculates an estimated asymptotic sample size for a vaccine efficacy trial 

using a normal approximation approach 

-All formulas are based upon (Chan & Bohidar, 1998) 

 

*Required inputs are as follows (only values between 0 and 1 are accepted): 

 

 P1     = incidence in the control group 

 VE1    = true efficacy of test vaccine, under the alternative 

 VE0    = minimum efficacy of test vaccine, under the null (NOTE: must 

be less than VE1) 

 Power  = pre-specified power desired to achieve 

 Alpha  = pre-specified maximum one-sided level of the test 

 Output = name of temporary dataset to where the results will be output 

 

When this MACRO is run, a temporary dataset will be output, along with a 

printout of this dataset;  

 

%MACRO SampleSize_NormalApprox(P1=, VE1=, VE0=, Power=, Alpha=, Output= ); 

%LET c = 1;  

OPTIONS SPOOL; 

 

/*Calculates and assigns p2 (incidence in test group) */ 

DATA _NULL_; 

 p2=(1-&VE1)*&P1; 

 CALL SYMPUT("p2", p2); 

RUN; 

 

/* Calculates all the necessary parameters (sigma0 and sigma1) for the Z-test 

via Normal Approximation and assigns them to macro variables */ 

DATA _NULL_; 

 sigma1=(&P2*(1-&P2)+(1/&c)*((1-&VE0)**2)*(&P1)*(1-&P1))**(1/2); 

 a=(1-&VE0)*(1+&c*&P1)+&c+&p2; 

 b=(1-&VE0)*(&c*&P1+&p2); 

 P2z=((a-((a**2)-4*b*(1+&c))**(1/2))/(2*(1+&c))); 

 p1z=p2z/(1-&VE0); 

 sigma0=(p2z*(1-p2z)+(1/&c)*((1-&VE0)**2)*(p1z)*(1-p1z))**(1/2); 

 CALL SYMPUT("sigma0", sigma0); 

 CALL SYMPUT("sigma1", sigma1); 

RUN; 

 

/* Calculates the Normal Approximation Sample Size */ 

DATA &output LABEL; 

 P1=&p1; 

 VE1=&VE1; 

 VE0=&VE0; 

 powerreq=&power; 

 alpha=&alpha; 

 zalpha=QUANTILE("norm", &alpha); 

 zbeta=QUANTILE("norm", 1-&power); 

 N2z=((zalpha*&sigma0+zbeta*&sigma1)**2)/((&P1*(&VE1-&VE0))**2); *sample 

size for vaccine group; 
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 Nz=ceil(n2z)*2; *total sample size (when c=1, this is simply 

doubling; 

 DROP zalpha zbeta N2z; 

 FORMAT power level alpha powerreq PERCENT10.2; 

 LABEL  P1 = "Incidence Rate in Control" 

   VE1 = "True Efficacy of Test Vaccine" 

   VE0 = "Efficacy Lower Bount" 

   alpha = "Pre-Specificed Level" 

   powerreq = "Required Power" 

   Nz = "Expected Sample Size (Normal Approximation)"; 

RUN;  

 

/* Prints output dataset */ 

PROC PRINT DATA=&output LABEL; 

 VAR P1 VE1 VE0 powerreq alpha Nz; 

RUN; 

 

%MEND; 

 

 

/* Example execution of macros */ 

%SampleSize_ExactConditional(P1=0.05, VE1=0.65, VE0=0.15, Power=0.85, 

Alpha=0.05, Output=sampleExact); 

%SampleSize_NormalApprox(P1=0.05, VE1=0.65, VE0=0.15, Power=0.85, Alpha=0.05, 

Output=sampleNormal); 
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