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Major depressive disorder (MDD) is a common, often severe illness of mood regulation that 

affects approximately 350 million people worldwide. Women are twice as likely to be diagnosed 

with depression compared to men, but the molecular mechanisms underlying this sex difference 

are unclear. Previous human postmortem studies suggest that there is a dysfunction of inhibitory 

gamma-aminobutyric acid (GABA) function and brain-derived neurotropic factor (BDNF) 

function across corticolimbic brain regions, including the basolateral amygdala (BLA).  

Interestingly, post-mortem brain tissue from depressed patients suggests that there might be a sex 

difference in the way GABA is affected in depression, with more robust deficits in women with 

depression. Proper GABA function is also crucial during adolescence, as disruption could lead to 

susceptibility to mood disorders in adulthood. In our translational approach, we used the Four 

Core Genotypes (FCG) mouse model, in which genetic and gonadal sex are decoupled, to 

examine how sex-related factors influence GABA- and BDNF-related gene expression in the 

BLA in both adulthood and development. In a cohort of chronically-stressed adult mice (N=12-

20/group) as well as in a cohort of gonadally-intact mice at three developmental time-points 

(N=19-26/group), we quantified the gene expression of five genes: Sst, a marker a marker of a 

GABA-interneuron subtype that preferentially targets distal dendrites of pyramidal cells; Gad67 

and Gad65, genes that code for rate-limiting enzymes of GABA synthesis; TrkB, a gene that 

codes for the BDNF receptor, and Bdnf, a gene that codes for BDNF protein. We found an 
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opposing effect of testosterone (similar to a typical male level) and male genetic sex (XY) on 

expression of Sst, with testosterone increasing Sst expression (p<0.04), but lower Sst expression 

in XY mice (p<0.04). This result also mirrored the behavioral results, with lower anxiety-like 

behavior in testosterone-treated mice, but higher anxiety-like behavior in XY mice. We also 

found genetic sex effects suggesting a differing developmental trajectory of the GABA and 

BDNF systems, where XY mice develop later than XX mice. Together, my findings highlight the 

complex relationship of sex-related factors on GABA- and BDNF-related gene expression 

through development that, if altered, could lead to adult psychopathology. 
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1.0  INTRODUCTION 

1.1 MDD 

Major Depressive Disorder (MDD) is a common, chronic, and often severe illness of altered 

mood regulation that affects approximately 350 million people worldwide [1]. Depression is 

characterized by sadness, irritability, low mood, and altered psychophysiology, which together 

disrupt normal daily functioning and familial relationships. Currently, there is no isolated cause 

of depression, no established mechanism, and an inconsistent response to present-day treatments 

[2].  

1.2 BASOLATERAL AMYGDALA IN MDD 

Human postmortem studies of depressed subjects suggest that the corticolimbic neural 

network of mood regulation is dysregulated in depression [3, 4]. The corticolimic brain regions 

include the dorsolateral prefrontal cortex (DLPFC; important for executive function, decision 

making, and mood regulation), the hippocampus (memory center), subgenual anterior cingulate 

cortex (sgACC; important for regulating emotional responses), and the basolateral amygdala 

(BLA; the “fear” center). The sgACC facilitates communication between the DLPFC and the 
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BLA [5, 6]. After processing emotionally salient stimuli from the environment, the BLA, 

together with cortical feedback, initiates behavioral responses [7]. fMRI neuroimaging studies 

suggest that patients with MDD abnormally process emotional stimuli and exhibit prolonged 

hyperactivity in the BLA in response to various adverse stimuli [8, 9]. However other studies 

report no significant difference in BLA activation between MDD patients and control subjects 

[10, 11]. Patients with other anxiety disorders, such as post-traumatic stress, social anxiety, and 

generalized anxiety have similar hyperactivity of the BLA [12].  

1.3 SEX DIFFERENCES IN MDD 

Women are twice as likely as men to be diagnosed with MDD in their lifetime. Symptom 

prevalence and severity differ between men and women, as women experience both more 

symptoms and higher symptom severity [13]. Additionally, women are more likely to have 

comorbid hyperphagia, hypersomnia, seasonal affective disorder, and an anxiety disorder along 

with MDD, but men are more likely to have comorbid substance abuse with MDD [14]. 

Interestingly, cross-cultural and epidemiological studies suggest that although women are more 

likely to report and seek medical assistance for their symptoms, this is not a contributing factor 

to the sex difference in MDD prevalence [15]. Thus, by controlling for potentially confounding 

variables, such as healthcare access, these studies suggest that the underlying cause for the sex 

difference in MDD incidence is biological. The sex differences in symptom prevalence and 

severity suggest that MDD progresses differently in men and women, with possibly different 

underlying biological mechanisms. Understanding depression in both sexes will not only 
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improve our understanding of MDD overall, but might also ultimately contribute to the 

development of sex-specific treatments for depression [16].  

1.4 GABA AND BDNF DYSFUNCTION IN MDD 

Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain and is 

present at each node of the corticolimbic circuit. Both magnetic resonance spectroscopy [17-19] 

and molecular studies [20, 21] demonstrate a GABA-deficit in MDD, which possibly leads to 

reduced GABA-mediated inhibition [22]. The decrease in GABA-inhibition within the circuit 

can lead to impaired excitation/inhibition balance in mood disorders [17, 20]. Previous studies 

conducted in our lab suggest a reduction in dendritic-targeting GABA interneurons in the sgACC 

[23, 24], DLPFC [25], and BLA [21] of MDD patients. Somatostatin (SST), a marker of a 

GABA-interneuron subtype that preferentially targets distal dendrites of pyramidal cells, was 

more robustly decreased in female subjects with MDD than men with MDD [23, 24, 26]. In the 

BLA, females MDD subjects have reduced SST, but depressed males do not [26]. GAD67 and 

GAD65 are genes that code for rate-limiting enzymes in GABA synthesis. There is a high level 

of SST, GAD67, and GAD65 found in human postmortem brains of MDD patients, suggesting a 

common function of these three genes or shared common regulatory pathways e.g. hormone 

signaling or transcription factors [26, 27].  Our human studies are supported by causal mouse 

studies in which slight reduction in GABA-signaling induces depressive-like behaviors [28]. 

Brain-derived neurotropic factor (BDNF), known for growth and neuronal survival in the brain, 

also exhibits altered expression in MDD [21]. A robust decrease of BDNF expression is found in 
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sgACC of both sexes and in the BLA of females specifically [21, 24]. There is also reduced 

expression of TrkB, the gene that codes for the BDNF receptor, in subjects with MDD [24]. This 

suggests there may also be an sex difference in BDNF-related signaling in the BLA of MDD 

subjects [16]. 

1.5 STUDYING SEX DIFFERENCES 

Our lab is interested in understanding the underlying biological mechanisms of these sex 

differences observed in MDD subjects. We investigate three types of sex differences: effects of 

genetic sex, effects of developmental gonadal hormone (organizational effects of hormones; 

leads to permanent, and thus irreversible, sex differences), and effects of adult circulating 

hormones (activational effects of hormones; leads to transient sex differences in adulthood) [29, 

30]. We are limited in our ability to clearly identify the underlying sex dependent mechanisms 

that could explain the observed human sex differences in MDD. For example, genetic sex always 

determines gonadal sex in humans; consequently, it is impossible to distinguish if the observed 

sex differences are driven solely by genetic sex or gonadal sex. We also do not know how 

circulating hormone levels of our postmortem subjects varied over their lifetime or at the time of 

death. Combined, these limitations interfere with our ability to discern specifically which sex-

related variables drive any of the observed sex differences in MDD.  Moving our studies to 

mouse models allows us to tightly control different sex-related factors and easily manipulate our 

system of interest [31]. We can study analogous brain regions in a mouse model to expand our 
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understanding of the overall circuit, as the corticolimbic circuit is comparable to that of humans 

[32, 33].  

1.6 FCG MICE 

Genetic sex drives gonadal sex in typical wildtype mice, which makes it difficult to identify the 

three major types of sex differences explained earlier. Genetic engineering, however, allows for 

us to take advantage of genetically modified mouse strains, such as the Four Core Genotypes 

(FCG) mice. Genetic sex and gonadal sex are decoupled in this model. Crossing a C57BL/6J 

female mouse with a XY-Sry (XYM) male (testes-determining gene, Sry, is located on an 

autosomal transgene instead of its endogenous location on the Y chromosome) allows for genetic 

sex and gonadal sex decoupling in this model. We can generate four different genotypes in which 

genetic sex does not determine gonadal sex: XXF (genetic and gonadal female), XYF (genetic 

male, gonadal female), XXM (genetic female, gonadal male), and XYM (genetic and gonadal 

male). Utilizing this model lets us independently analyze both genetic sex and gonadal sex 

effects, as well as better understand which component is responsible for observed sex 

differences. In addition to these genome manipulations, we also can control adult circulating 

hormone levels to examine activational effects of hormone.  

Our lab previously studied Sst, Gad67, and Gad65 expression in the frontal cortex of 

Four Core Genotypes (FCG) adult mice that were exposed to unpredictable chronic mild stress 

(see ‘Methods’). Interestingly, we found that chronically stressed XY mice, regardless of 

gonadal sex or circulating hormone, had lower expression of Sst, Gad67, and Gad65 compared 
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to XX mice. This was surprising to us given the increased female prevalence to MDD. However, 

XY mice also exhibited increased anxiety-like behavior, which is consistent with them having 

decreased Sst, Gad67, and Gad65 expression. As we predicted given previous findings, 

testosterone treatment strongly decreased anxiety-like behavior [34], but testosterone did not 

affect gene expression in the frontal cortex [26, 35]. This led us to hypothesize that in a healthy 

male, circulating testosterone may override the underlying vulnerability to increased anxiety-like 

behaviors caused by male genetic sex.  

It is interesting that while SST exhibits lower levels in the sgACC of both men and 

women, the SST reduction in the BLA is specific to females with MDD. This finding points to a 

potential sex difference in the BLA of MDD patients [26]. Human and mouse studies together 

support the hypothesis of an overall GABA dysfunction in MDD, but specifically a dysfunction 

of GABA in the BLA of females with MDD[16]. Additionally, there is a strong BDNF 

dysfunction in the BLA of female MDD patients, but not males [27]. Together, we hypothesized 

that the BLA is the brain region involved in the sex difference in MDD. In cohort 1, I aimed to 

test two alternative hypotheses: 1) there a brain-wide effect of genetic sex on GABA- and BDNF 

related genes; or 2) the genetic sex effect on GABA- and BDNF related genes is brain region-

specific.  

1.7 UNPREDICTABLE CHRONIC MILD STRESS 

Our lab uses UCMS, a behavioral paradigm designed to strongly increase anxiety- and 

depressive-like behavior and produce homologous features that are associated with human major 
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depressive disorder (MDD)[26, 36, 37]. UCMS induces a UCMS syndrome in mice with 

construct validity, face validity, and predictive validity. Construct validity refers to the mice 

exposed to and coping with small stressors over a long period of time as is often true in 

depression, rather than a singular traumatizing event, like post-traumatic stress disorder. Face 

validity refers to the observable increased anxiety- and depressive-like behaviors of the mice. 

Predicative validity refers to the use of antidepressant treatments to reverse the UCMS 

syndrome, just like in depression: one dose of antidepressant treatment will not reverse the 

UCMS syndrome, but chronic exposure to antidepressants does reverse the UCMS syndrome 

[16, 26].  

1.8 ADOLESCENCE AND GABA IN MOOD 

Adolescence is a transitional time in development that includes various physiological and 

behavioral changes between pre-puberty and adulthood that are not fully understood. Child abuse 

and neglect leads to stress and trauma during early development, which can affect mood disorder 

susceptibility in adulthood. The development of the GABA system specifically affects both the 

structure and the communication of the cortex. GABA originates as an excitatory 

neurotransmitter at birth, but becomes inhibitory during pre-pubertal stages of development [38]. 

The developing GABA system also contributes to cortical activity synchronization in 

adolescence [39]. Dysregulated cortical synchronization is believed to perhaps contribute to the 

development of MDD, as subjects with the disorder have increased synchronization of neuron 

firing [40]. This suspected developmental window of vulnerability overlaps with the well-known 
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developmental window for sex differences. Differences between male and female GABA 

function during adolescence could influence sex-specific synaptic development and/or cortical 

synchronization later in life. Ultimately, this could negatively impact cortical development and 

foreshadow vulnerability in adulthood for psychiatric disease, like MDD [16]. In cohort 2, I 

aimed to determine if genetic sex and/or organizational hormone influence GABA-related genes 

expression in the BLA of pre- and peri-pubertal mice.  
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2.0  METHODS 

2.1 MICE 

This study utilized a unique strain of mice called the Four Core Genotypes (FCG) mice. In a 

wildtype mouse, genetic sex and gonadal sex are entirely linked due to the testes-determining 

gene, Sry, on the Y chromosome. This means that if a wildtype organism has a Y chromosome, 

they have Sry, and therefore, will develop gonadally male (both genetically and gonadally male). 

If a wildtype organism does not have a Y chromosome, they do not have Sry, and therefore, will 

develop gonadally female (both genetically and gonadally female). Using genetic engineering, 

the Sry gene was removed from the Y chromosome and placed on an autosome instead, thereby 

decoupling genetic and gonadal sex.   

The FCG mice used in these studies (originating from Jackson Laboratories, Bar Harbor, 

ME, USA; B6.Cg- Tg(Sry)2Ei Srydl1Rlb/Arnoj) were generated by crossing a C57BL/6J female 

with an XY-Sry male. Y- indicates the absence of Sry on the Y chromosome, with Sry present 

instead as an autosomal transgene. Here, we use the male (M) and female (F) designation to 

indicate gonadal sex. This cross yielded four groups of mice: XXM (XXSry), XXF (XX), XYM 

(XY-Sry) and XYF (XY-). These four genotypes allow us to investigate the effects of genetic sex 

and developmental gonadal sex (i.e., organizational effects of hormones) independent of the 

other, as genetic sex and gonadal sex are inherited independently in this model. The addition of a 
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testosterone or blank capsule (discussed below) after gonadectomy in adulthood also allows us to 

investigate the effects of circulating hormones (i.e., activational effects of testosterone). The 

mice were maintained under standard conditions (12-hour light and dark cycles; 22 ± 1°C, food 

and water ad libitum), in accordance with the University of Pittsburgh Institutional Animal Care 

and Use Committee. 

2.2 EXPERIMENT 1: ADULTS (COHORT 1) 

Adult FCG mice were bilaterally gonadectomized at 15 weeks under isoflurane anesthesia to 

remove the endogenous source of circulating gonadal hormone. Half of each genotype was 

implanted with a subcutaneous testosterone-filled capsule containing 5-mm crystalline 

testosterone (1.57-mm ID x 2.41-mm OD) or with a similarly sized blank capsule [16]. [XXF + 

B (n=12), XXF + T (n = 18), XYF + B (n=13), XYF + T (n=13), XXM + B (n=18), XXM + T (n 

= 13), XYM + B (n=12), XYM + T (n = 13)]. It is important to note that the concentration the 

testosterone capsules were at or slightly above physiologically normal male levels. After 

allowing 4 weeks for mice to recover from surgery and for hormone levels to equilibrate, the 

mice were exposed to 8 weeks of unpredictable chronic mild stress (UCMS; see details below). 

After 7 weeks of UCMS exposure, mice were assessed for anxiety-like behaviors in the elevated 

plus maze and open field. (Figure 1). Mice were exposed to UCMS during behavior testing, thus 

the mice were exposed to UCMS for a total of 8 weeks. 
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Figure 1: Experimental design for cohort 1.  

Mice were gonadectomized (GDX) at ~15 weeks of age and implanted subcutaneously with either a testosterone 

(T)-filled or blank capsule. After GDX, mice in cohort 1 were exposed to 8 weeks of unpredictable chronic mild 

stress (UCMS) followed by behavioral testing and were then sacrificed. At the time of sacrifice, the brains were 

harvested for gene expression analyses and bloods were collected for hormone assays [16].  

2.2.1 Unpredictable Chronic Mild Stress 

Group-housed adult mice (gonadal sex and hormone treatment matched) were exposed to a 

randomized schedule of environmental stressors 7 days a week for 8 weeks, gradually increasing 

in intensity, starting with 1–2 separate stressors a day and ending with 4–5 stressors a day 

(separately and in tandem with one another) during the final week, as performed previously in 

our lab [16, 26]. Disturbances included light cycle disruption, tilted cage (45° tilt), social stress 

(rotate mice into previously occupied cages), reduced space (limiting mice to 1/3 of typical space 

in cage), aversive smell (20 min of exposure to bobcat or fox urine), no bedding or wet bedding 

overnight, mild restraint (50-mL conical tube with air hole for 15 min), and forced bath 

(approximately 2 cm of 21°C water for 15–45 min). We assessed body weight and fur weekly to 

track progression of the UCMS syndrome. Behavior testing occurred while mice were still being 
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exposed to UCMS. We previously reported frontal cortex gene expression results from this 

cohort [16, 26, 35]. 

2.2.2 Behavioral Testing 

2.2.2.1 Elevated Plus Maze 

The elevated plus maze is a behavioral test used to measure anxiety-like behavior [41]. This 

cross maze was constructed with 2 open and 2 closed 30 cm x 5 cm arms. Performed during the 

light phase, the mouse was initially placed at the intersection of the four arms. Over 10 minutes, 

the amount of time spent in the open arms and percent entries (entries into open arms divided by 

entries into open or closed arm x 100) in the open arms were recorded to measure anxiety-like 

behavior. An index of locomotor behavior was indicated by the total number of entries into any 

arm [26, 42]. 

2.2.2.2 Open Field Test 

The open field test is a behavioral test used to measure anxiety-like behavior[43]. During the light 

phase, the open field test was performed in a 50.8 cm x 50.8 cm square arena. The centermost 

portion was identified at 25.4 cm X 25.4 cm of the arena. Behavior was tracked using ANY-

Maze software (Stoelting; Wood Dale, IL, USA) and a ceiling-mounted camera. Over 10 

minutes, the amount of time spent in the center of the arena and the percent distance (distance in 

the center divided by the total distance x 100) was recorded to measure anxiety-like behavior. An 

index of locomotor activity was indicated by the total distance traveled [26].  
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2.3 EXPERIMENT 2: DEVELOPMENTAL TRAJECTORY (COHORT 2) 

We decided to study time-points clearly before puberty (late postnatal) through early 

adolescence. We used FCG mice aged postnatal day 16 (P16), P21, and P26 [P16 (pre-weaning), 

P21 (at time of weaning), and P26 (post-weaning)]. P16 had 79 gonadally intact FCG mice [XXF 

(n=20), XYF (n=19), XXM (n=20), XYM (n=20)]. P21 had 88 gonadally intact FCG mice [XXF 

(n=22), XYF (n=26), XXM (n=21), XYM (n=19)]. P26 had of 80 gonadally intact mice [XXF 

(n=20), XYF (n=20), XXM (n=20), XYM (n=20)]. These groups were not exposed to stress and 

did not have circulating hormone manipulations. At the time of sacrifice, mice were rapidly 

decapitated. Brains were collected for gene expression studies (qPCR) and bloods were collected 

for the ELISA testosterone assay (Figure 2). 

 
 

Figure 2: Experimental design for cohort 2.  

Mice in cohort 2 were sacrificed at one of three developmental time-points: postnatal day 16, 21 or 26.  P16 and P21 

are both prior to the onset of puberty while P26 is closer to the onset of puberty. At the time of sacrifice, the brains 

were harvested for gene expression analyses and bloods were collected for testosterone hormone assays.   
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2.4 SACRIFICE AND TISSUE PROCESSING 

Mice were sacrificed at postnatal day 16, postnatal day 21, postnatal day 26, and week 24 (while 

adults were still being exposed to stressors), and the brains and bloods were collected. Adult 

mice were anesthetized by isoflurane and both adult and developmental mice were rapidly 

decapitated. The brains were dissected out and immediately flash frozen on dry ice. Trunk blood 

was collected, allowed to clot at room temperature for 90 min, and the serum separated out to 

measure testosterone levels [16]. 

2.5 TESTOSTERONE ASSAY 

Circulating testosterone levels of this cohort were measured from collected serum samples. In 

adults, the serum samples were sent to the University of Virginia Center for Research in 

Reproduction Ligand Assay and Analysis Core (supported by the Eunice Kennedy Shriver 

NICHD/HIH (SCCPIR) Grant U54-HD28934), and an ELISA kit was used to determine 

testosterone concentration. Using the same ELISA kit and protocol as the ones used at University 

of Virginia, we measured circulating testosterone levels of P16, P21 and P26 mice by using a 

testosterone (mouse/rat) ELISA assay (IBL America; Minneapolis, MN) in accordance with kit 

instructions. Subjects found to be statistical outliers by using the Graphpad Grubb’s Outlier Test 

were excluded from qPCR analysis [16].  
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2.6 PROCESSING OF BRAIN TISSUE: BLA DISSECTION AND GENE 

EXPRESSION ANALYSIS  

Bilateral micropunches (1mm bore punch) of the BLA (between Bregma −0.94 and −1.82 mm; 

[31]) were obtained from approximately six 160-μm thick coronal tissue sections cut on a 

cryostat within the boundaries created by the internal and external capsule. All tools were treated 

with RNase Zap to prevent RNases contamination. Punches were stored in RNase free 1.5mL 

tubes at −80°C prior to RNA extraction [16]. 

2.7 RNA EXTRACTION AND CDNA SYNTHESIS 

Total RNA was extracted from BLA tissue punches using RNeasy Plus Micro Kits (Qiagen; 

Valencia, CA, USA). RNA was reverse-transcribed into complementary DNA (cDNA) using 

QScript cDNA Supermix (olido(dT) and random primers (Quanta Biosciences, Gaithersburg, 

MD, USA)) [16].  

2.8 QUANTITATIVE POLYMERASE CHAIN REACTION 

In the adult cohort, small PCR products were amplified on a MJ Research (Waltham, MA, USA) 

DNA Engine Opticon System for qPCR using universal PCR conditions (65 to 59 °C touch-

down and 40 cycles (10 s at 95°C, 10s at 59°C, and 10s at 72°C)). cDNA was amplified in 20-μL 

reactions (0.1 × SYBR Green, 3 mM MgCl2, 200 nM dNTPs, 200 nM primers, 0.25 unit 
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Platinum Taq DNA Polymerase (Invitrogen, Carlsbad, CA, USA)) [16]. In the developmental 

trajectory cohort, gene expression was measured using CFX96 Touch™ Real-Time PCR 

Detection System using the following PCR conditions (5s at 95°C, 30s at 60°C) for 39 cycles. 

cDNA was amplified in 20 μL reactions (10 μL supermix (add official name), 9 μL primer 

associated with gene of interest, and 1 μL cDNA in each well) [16]. 

Samples were run in triplicate, and results were calculated as the geometric mean of 

relative intensities compared to three internal controls (actin, glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH), and cyclophilin). Actin, GAPDH, and cyclophilin are considered 

good housekeeping genes because sex-related factors do not influence their expression or 

abundance, thus we consider them to be internal controls. The results are expressed as arbitrary 

signal (2-dCT × 10,000). We eliminated actin from the P26 experiments because it was not 

strongly correlated with the other two housekeeping genes. The arbitrary signals in the P26 

study, then, were calculated from the geometric mean of cyclophilin and GAPDH. Genes of 

interest (Sst, Gad67, Gad65, TrkB, and Bdnf) were selected based on our human postmortem 

brain findings in depression. Grubbs’ outlier test determined statistical outliers in gene 

expression values. These outliers were excluded from qPCR analysis [16]. I performed qPCR for 

P16 and P26 groups, while another lab member ran qPCR for the P21 group.  

2.9 CORRELATING GENE EXPRESSION AND ANXIETY-LIKE BEHAVIOR 

A Spearman correlation was used to compare BLA expression of the five genes of interest to 

anxiety-like behavior tested in the adult cohort (behavior separately reported [26]). Results were 
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combined into anxiety-like Z-scores to reduce the complexity of the correlation analysis. The 

first step is to calculate the Z-score for each behavioral test measure (e.g., Z-EPM-

PercentCrossesOpenArms or Z-OF-PercentTimeCenter); this is performed by normalizing an 

individual mouse’s test measure to the mean and standard deviation of the comparison group. 

For all Z-scores, we used XX blank mice as the comparison group. The directionality of the Z-

score was adjusted such that increased values represented increased anxiety-like behavior (e.g., 

decreased time in the open arms of the elevated plus maze was considered increased anxiety-like 

behavior). We next calculated the Z-score for each mouse per behavioral test by averaging the 

two individual Z-measures for each test (e.g., averaging Z-EPM-TimeOpenArms and Z-EPM-

PercentCrossesOpenArms to get Z-EPM-Anxiety). Finally, the overall anxiety-like Z-score was 

calculated by averaging the Z-EPM-Anxiety and Z-OF-Anxiety scores. Correlations were 

performed between the Z-Anxiety measure for each mouse and expression of each gene (for the 

entire stressed cohort, as well as performed in groups based on main effects (XX vs. XY, ovaries 

vs. testes, and blank vs. testosterone treatment)) [16]. 

2.10 STATISTICAL ANALYSIS 

In adult mice, we used a three-way analysis of variance (ANOVA), (genetic sex x developmental 

gonadal sex x hormone treatment) to analyze the gene expression data from this cohort. In the 

developmental trajectory cohort, we used a two-way ANOVA, (genetic sex x developmental 

gonadal) to analyze dependent measures. We did not examine the main effects of hormone in the 

P16, P21 and P26 groups, as these mice did not receive hormone manipulations. However, in the 
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developmental cohort, we correlated testosterone levels with gene expression using Pearson 

correlation to determine whether endogenous testosterone levels affected gene expression. If the 

ANOVA was significant for any main effect or interaction, we performed planned comparisons 

using Tukey’s post hoc test. We did not correct for multiple testing in these studies, as we had a 

priori hypotheses for these genes to be altered based on our findings in the frontal cortex of FCG 

mice and in human postmortem brain tissue of patients with MDD [23, 24, 26].  Data are 

expressed as mean ± SEM, and significance was set at p < 0.05 [16]. 
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3.0  RESULTS 

3.1 EXPERIMENT 1: ADULTS (COHORT 1) 

The adult FCG mice in cohort 1 were gonadectomized and given testosterone or blank capsules 

at 15-weeks old. Mice were subjected to 8 weeks of UCMS to induce elevated anxiety-

/depressive-like behaviors. Importantly, adult mice treated with testosterone did not differ in 

testosterone levels and had significantly higher testosterone levels when compared to blank-

treated mice [16]. Compared to XX mice, XY mice had significantly lower Sst expression in the 

BLA (p < 0.04; Fig. 3A). There was no effect of genetic sex on expression of Gad67, Gad65, 

TrkB, or Bdnf in the BLA (p > 0.1 for all comparisons; Fig. 3B-E). There were no gonadal sex 

differences on expression of Sst, Gad67, Gad65, TrkB, or Bdnf in the BLA (p > 0.1 for all 

comparisons; Fig. 3A-E). We found a main activational effect of testosterone exposure on Sst, 

with testosterone increasing Sst expression (p < 0.04; Fig. 3A). There was also a main effect of 

circulating testosterone on BLA Bdnf expression (p < 0.03; Fig. 3E) with testosterone decreasing 

BLA Bdnf expression. There was no effect of testosterone on expression of Gad67, Gad65, or 

TrkB expression the BLA (p > 0.2 for all comparisons; Fig. 3B-D). In graphs representing results 

in this cohort, we show graphs summarized by main effects [XX (n = 61), XY (n = 51); F 

(n=56), M (n = 56); B (n = 55), T (n = 57)].  
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Figure 3: Main effects of sex-related factors on GABA- and Bdnf-related gene expression in the BLA 

of adult stressed mice.  

(A) XY mice had lower expression of Sst. Additionally, mice treated with testosterone had higher Sst expression. 

There was no genetic sex effect on expression of Gad67 (B), Gad65 (C), TrkB (D), or Bdnf (E). Gonadal sex did not 

influence expression of any gene (A–E). Testosterone significantly increased expression of Sst (A) and decreased 

expression of Bdnf (E), but did not affect expression of Gad67 (B), Gad65 (C), or TrkB (D). Numbers at the base of 

the bars indicate N. *p < 0.05; #, p < 0.1. T, testosterone, B, blank, F, gonadal female, M, gonadal male[16] 

. 

3.1.1 Correlation between gene expression and anxiety-like behavior 

Given the potential links between GABA- and BDNF-related gene expression and mood (see 

Literature Review), we next probed for potential correlations between anxiety-like behavior and 

BLA gene expression. We previously studied these same genes in the frontal cortex of FCG 
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mice, but the gene expression results did not match the behavioral results. In the BLA, we found 

that Sst expression was negatively correlated with anxiety-like behavior (p = 0.041; (i.e., higher 

Sst expression levels were correlated with decreased anxiety-like behavior). There was also a 

trend (p = 0.077) for a positive correlation between Bdnf expression and anxiety-like behavior 

(i.e., higher Bdnf expression levels were correlated with increased anxiety-like behavior). There 

were no other significant correlations between anxiety-like behavior and expression of the 

remaining genes (Gad67, Gad65, TrkB; p > 0.25 for all comparisons). Anxiety-like behaviors 

(Fig. 4E) are measured in z-scores and separated by main effects of genetic, gonadal, and 

circulating hormone treatment. XY mice had significantly higher anxiety-like behavior than XX 

mice. There was no significant difference between gonadal females and gonadal males. 

Testosterone treated-mice had significantly lower anxiety-like behavior than blank-treated mice. 

Sst expression (Fig. 4F) shows that XY mice have lower expression than XX mice and mice that 

received a testosterone capsule had significantly increased Sst expression compared to blank-

treated mice. 
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Figure 4: Behavioral assays after UCMS reveal an inverse relationship between anxiety-like behavior 

and expression of Sst in the BLA adult stressed mice.  

(A) Post-UCMS elevated plus maze (EPM) results for time and (B) Percent crosses into open arms. (C) Post-UCMS 

Open Filed (OF) results for time and (D) Percent distance in the center[26]. (E) Data from A-D were combined to 
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calculate anxiety-like behavior Z-scores (see Correlating gene expression and anxiety-like behavior above). Genetic 

males exhibited more anxiety-like behaviors than genetic female mice. Testosterone (T)-treated mice exhibited 

lower anxiety-like behaviors than blank (B)-treated mice. (F) Sst expression is lower in XY mice compared to XX 

mice, but testosterone-treated mice had increased Sst expression in the BLA compared to blank-treated mice. 

Numbers at the base of the bars in the graph on the right indicate N. Error bars indicate mean ± SEM. ***p < 0.001; 

**p < 0.01; *p < 0.05; #p < 0.1. F, gonadal female, M, gonadal male, B, blank, T, testosterone.  

3.2 EXPERIMENT 2: DEVELOPMENTAL COHORT (COHORT 2)  

Gonadally intact FCG mice (XXF, XXM, XYF, XYM) were sacrificed at three developmental 

time-points from late postnatal through early adolescence: P16 (pre-weaning), P21 (at time of 

weaning), and P26 (post-weaning). We then examined the effects genetic and gonadal sex (i.e., 

organizational effects of hormones) on expression of the same GABA- and BDNF-related genes 

in the BLA. 

3.2.1 P16 

We found an effect of genetic sex on expression of Sst (p < 0.01) and TrkB (p < 0.001) in the 

BLA, with XY mice having lower expression of both genes compared to XX mice (Fig. 5A, D). 

With respect to Sst, this is the same genetic sex effect we observed in the BLA of adult stressed 

mice. There was no effect of genetic sex on Gad67 (Fig. 5B), Gad65 (Fig. 5C), or Bdnf (Fig. 5E) 

expression in the BLA. Compared to gonadal females, there was a trend for gonadal males to 

have higher expression of Bdnf (p = 0.088; Fig. 5E).  There was no significant main effect of 

gonadal sex, however, on expression of Sst, Gad67, Gad65, or TrkB in the BLA (p > 0.3 for all 
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comparisons; Fig. 5A-D). There were no significant interactions between genetic and gonadal 

sex (p > 0.3 for all comparisons). In graphs representing results for P16, P21, and P26, we show 

graphs summarized by main effects.  

As expected, gonadal males had higher testosterone levels than gonadal females (M 0.233 

ng/mL ± 0.02; F 0.170 ng/mL ± 0.07; p < 0.01; Fig. 6A). Four subjects were eliminated due to 

testosterone levels outside of the expected normal circulating hormone levels and were excluded 

from gene expression analysis. Importantly, there were no significant differences in circulating 

testosterone between XX and XY mice (XX 0.211 ng/mL ± 0.02; XY 0.192 ng/mL ± 0.01; p > 

0.3) Further, testosterone levels at P16 did not differ between XXM and XYM mice (XXM 0.137 

ng/mL ± 0.01; XYM 0.139 ng/mL ± 0.011; p > 0.45; Fig. 6A), suggesting that the genetic sex 

difference does not affect testosterone levels in gonadal males.  

Additionally, circulating testosterone did not correlate with expression levels of any gene 

of interest (p > 0.5 for all correlation analyses). Together, this suggests that any difference in 

gene expression we might observe based on gonadal sex at P16 will be due to organizational 

effects of hormones rather than activational effects of testosterone.  
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Figure 5: Main effects of GABA-related and BDNF-related gene expressin in the BLA of P16 Mice 

XY mice had lower expression of Sst (A) and TrkB (D) than XX mice; there was no effect of genetic sex on Gad67 

(B), Gad65 (C), or Bdnf expression (E). Gonadal males (M) had significantly higher expression of Gad65 (C) and 

Bdnf (E); there were no gonadal sex effects on Sst (A), Gad67 (B), and TrkB (D). Numbers at the base of the bars 

indicate N. **p < 0.01; *p < 0.05; #p < 0.1. F, gonadal female, M, gonadal male. 
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Figure 6: P16, P21, and P26 Testosterone Concentrations Compared Genetically and Gonadally 

Gonadal males had higher testosterone levels at P16 (A), P21 (B), and P26 (C). There was no effect of genetic sex 

on testosterone levels at any age (A, B, C). Numbers at the base of the bars in the graph on the right indicate N. ***p 

< 0.001; **p < 0.01.  F, gonadal female, M, gonadal male.  

3.2.2 P21 

We found an effect of genetic sex, with XY mice having lower expression of Gad67 (p = 0.01; 

Fig. 7B), and Gad65 (p < 0.015; Fig. 7C), in the BLA compared to XX mice. We also found a 

trend for an effect of genetic sex on Sst (p < 0.07; Fig. 7A) and TrkB (p < 0.08; Fig. 7D) where 

XX mice have higher levels compared to XY mice.  There was no effect of genetic sex 

on Bdnf expression in the BLA (Fig. 7E, p > 0.1). Compared to gonadal females, gonadal males 

showed no significant difference in expression of Sst, Gad67, Gad65, TrkB, or Bdnf (p > 0.3 for 

all comparisons; Fig. 7A-E).  

There was not a genetic sex effect on circulating testosterone (XX 0.156 ng/mL ± 0.01; 

XY 0.160 ng/mL ± 0.02; p > 0.3; Fig. 6B) but there was a main effect of gonadal sex (M 

0.130 ng/mL ± 0.01; F 0.185 ng/mL ± 0.02; p < 0.01; Fig. 6B). Importantly, testosterone levels at 

P21 did not differ between XXM and XYM mice (XXM 0.181 ng/mL ± 0.02; XYM 
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0.19 ng/mL ± 0.03; p > 0.45), suggesting that genetic sex did not influence testosterone levels in 

gonadal males. Additionally, circulating testosterone did not correlate with expression levels of 

any gene of interest (p > 0.5 for all correlation analyses). Together, this suggests that any 

difference in gene expression we might observe based on gonadal sex in weanlings will be due to 

organizational effects of hormones rather than activational effects of testosterone [16]. 

 

 

Figure 7: Sex differences in GABA-related and BDNF-related gene expression in the BLA of P21 

mice 

XY mice had lower expression of Sst (A), Gad67 (B), and Gad65 (C), and TrkB (D) compared to XX mice; there 

was no effect genetic sex on Bdnf expression (E). There were no organizational effects of hormones on expression of 

any gene investigated (A–E). Numbers at the base of the bars indicate N. **p < 0.01; *p < 0.05; #p < 0.1. F, gonadal 

female, M, gonadal male.  
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3.2.3 P26 

There was no effect of genetic sex on expression of Sst, Gad67, TrkB or Bdnf (p > 0.05 for all 

comparisons; Fig. 8A, B, D, E). We did find, however, a trend for an effect of genetic sex on 

Gad65, with XY mice having higher expression than XX mice (p = 0.068; Fig. 8C). There was 

no effect of gonadal sex on expression of Sst, Gad67, Gad65, TrkB, or Bdnf in the BLA (p > 0.1; 

Fig. 8A-E). There were no significant interactions between genetic and gonadal sex (p > 0.2 for 

all comparisons). 

At P26, gonadal males had significantly higher testosterone levels than gonadal females 

(M 0.499 ng/mL ± 0.06; F 0.122 ng/mL ± 0.007; p < 10-8; Fig. 6C). Four subjects were 

eliminated using the Graphpad Grubb’s Outlier Test due to testosterone levels outside the 

expected normal circulating hormone levels and were excluded from gene expression analysis.  

There were no genetic sex effects on circulating testosterone (XX 0.321 ng/mL ± 0.04; XY 0.301 

ng/mL ± 0.06; p > 0.3). Additionally, there was no significant difference between XXM and 

XYM mice (XXM 0.513 ng/mL ± 0.06; XYM 0.485 ng/mL ± 0.11; p > 0.3), suggesting that the 

genetic sex difference does not affect testosterone levels in gonadal males. Additionally, 

circulating testosterone did not correlate with expression levels of any gene of interest (p > 0.2 

for all correlation analyses). 
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Figure 8: Sex differences in GABA-related and BDNF-related gene expression in the BLA of P26 

mice 

There was no effect of genetic sex on Sst (A), Gad67 (B), TrkB (D), or Bdnf expression (E). XY mice had a trend for 

higher expression of Gad65 expression (C) compared to XX mice. There were no organizational effects of hormone 

on expression of any gene investigated (A-E). Numbers at the base indicate N. #p < 0.1.  F, gonadal female, M, 

gonadal male.  
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3.3 SUMMARY OF EXPERIMENTAL FINDINGS 

Table 1: Summary of experimental results. 

 

This table displays a summary of the experimental results of this study. Additionally, the results from a non-stressed 

adult cohort studied by another lab member are included to more completely visualize the proposed development 

trajectory [16]. ***, p < 0.001; **, p < 0.01; *, p < 0.05; #, p < 0.1; F, gonadal female, M, gonadal male, T, 

testosterone, B, blank.  
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4.0  DISCUSSION 

We discovered several sex-related differences in the GABA and BDNF systems in the BLA 

(Table 1). To isolate the specific effects of genetic sex, development gonadal sex, and 

activational effects of adult hormones, we used the FCG mice. In cohort 1, we investigated 

GABA- and BDNF-related genes in gonadectomized adult mice exposed to unpredictable 

chronic mild stress.  In cohort 2, we studied GABA- and BDNF-related genes in a developmental 

cohort across three time-points pre- and peri-pubertally: P16, P21, and P26.    

In cohort 1 (Fig. 3), we found a main effect of genetic sex on Sst expression the BLA, 

with genetic females having higher expression of Sst than genetic males (XX > XY) and an 

opposing main effect of male-like testosterone levels, where testosterone-treated mice had higher 

Sst expression compared to blank-treated mice. Behavioral testing in these mice revealed that 

genetic sex significantly influenced behavior as well, with XY mice exhibiting higher anxiety-

like behavior than XX mice (Fig. 4E). Also, mice with male-like testosterone exposure had 

significantly lower anxiety-like behavior compared to blank-treated mice (previously reported in 

[26]).  Higher testosterone levels correlated with lower anxiety-like behavior in the mice.  In 

cohort 2, we studied three developmental time-points. In P16 mice (Fig. 5), genetic sex 

significantly influenced expression of Sst and TrkB (XX > XY) and gonadal sex influenced 

Gad65 and Bdnf expression (F < M). In P21 mice (Fig. 7), XY mice had significantly lower 

expression of Gad67 and Gad65, and a trend for Sst and TrkB compared to XX mice.  In P26 
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mice (Fig. 8), we found a trending main effect of genetic sex where genetic male mice had 

higher expression of Gad65 than genetic female mice. Gonadal sex did not influence any of the 

five genes investigated. At all three developmental time-points, gonadal males had higher T 

levels compared to gonadal females (Fig. 6). There were no genetic sex differences in T levels at 

the three developmental time-points. 

Our lab investigated GABA- and BDNF-related gene expression in the BLA of adult 

FCG mice under stressed conditions (cohort 1) to further investigate the relationship between 

gene expression and anxiety-like behavior. A previous study in our lab aimed to understand the 

same gene expression in the frontal cortex, and this is where we initially found the main effect of 

genetic sex on the expression of Sst where XX > XY [26]. However, we found that testosterone 

did not influence Sst expression in the frontal cortex despite testosterone strongly decreasing 

anxiety-like behavior. These results encouraged us to investigate gene expression in another 

brain region of the corticolimibic circuit, such as the BLA, in the same mice that could 

potentially correlate with these behavioral results. Our human postmortem work suggested that 

SST was reduced in the BLA of depressed women, but not depressed men. Thus, we turned our 

focus in mice on the BLA as the node in the corticolimbic network that might mediate sex 

differences in mood. The pattern of Sst expression that we found in the BLA of mice (lower Sst 

levels in XY mice, with testosterone increasing Sst expression) is consistent with the behavioral 

results. Lower Sst expression in XY mice is accompanied by higher anxiety-like behavior, while 

an increase in Sst expression with testosterone treatment is accompanied by a decrease in 

anxiety-like behavior. Our correlation analysis of these results revealed a significant negative 

correlation between Sst expression and anxiety-like behavior; moreover, higher Sst expression is 

correlated with lower anxiety-like behavior. Our Sst results suggest that male genetic sex and 
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male-like testosterone levels have opposing effects on BLA expression to modulate behavior. It 

seems that high circulating testosterone is compensating for the genetic vulnerability in XY 

mice. The compensation hypothesis suggests that gonadal hormones may act to abolish innate 

sex differences determined by genetic sex [44]. We believe testosterone acts to increase gene 

expression in the BLA to prevent the undesirable effects of lower expression in genetic males. 

Although XY mice may have a genetic deficit of Sst expression, testosterone serves to increase 

Sst expression and mask this underlying male vulnerability [16]. This pattern has been observed 

in other studies, which ultimately serves to decrease male-female differences. [44, 45]. For 

instance, mouse experiments reveal testosterone treatment increases male sex behavior, but 

having a Y chromosome decreases male sex behavior. It is thought that the genes on the X 

chromosome act to compensate for the unequal androgen experiences between males and 

females [45].  We previously found reduced SST expression in both the sgACC and DLPFC of 

both males and females with MDD, but reduced SST expression in the BLA was only found in 

females with MDD. The action of Sst that we revealed in cohort 1 may be in accordance with 

female vulnerability to MDD, as females do not typically have high levels of circulating 

testosterone [16].  

Our testosterone findings in cohort 1 that show decreased anxiety-like behavior and 

increased expression of GABA-related genes are consistent with findings in both humans and 

rodents. For example, androgen insensitive males show higher levels of mood disorders ([46-

50]). Low testosterone in human males is also associated with higher anxiety levels, but 

testosterone treatments reduce their anxiety [51, 52]. Rodent studies also report similar anti-

anxiety effects of testosterone. Rats with testicular feminization mutation (Tfm) of the androgen 

receptor, both spontaneous and induced, have elevated anxiety-like behaviors compared to 
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wildtype males and females. Our results for the effect of testosterone on GABA and BDNF-

related gene expression suggest the anti-anxiety effects of testosterone may be mediated by 

expression of these mood-related genes. Together, we hypothesize that men might be protected 

from anxiety and MDD via effects of testosterone on SST in the BLA.   

When comparing non-stressed to stressed cohorts, we discovered interesting patterns of 

gene expression that allow us to construct an interpretation of the GABA and BDNF systems 

under these conditions. For example, the opposing effects of male genetic sex and testosterone 

on Sst expression discussed earlier only emerged under stressed conditions (Fig. 3). Bdnf 

expression was also affected based on stress conditions where testosterone increased expression 

under non-stressed conditions, but testosterone decreased expression in mice under chronically 

stressed conditions. Additionally, some sex-related factors are masked by chronic stress. Both 

the effect of genetic sex on expression of TrkB and the organizational effect on Bdnf expression 

disappear under chronic stress conditions [16]. These results signify the complex relationship 

between GABA- and BDNF-related gene expression and stress conditions. 

Given the adult mice results, we asked whether there would be GABA- and BDNF-

related sex differences in the BLA during development. We chose time-points considered to be 

pre- and peripubertal: P16, P21, and P26. Studying gonadally-intact developing mice allowed us 

to understand the GABA- and BDNF-related gene expression that exists pre- and peripubertally.  

We believe that events like abuse and neglect during critical periods of development could lead 

to pathologies in gene expression that would make one more vulnerable to mood disorders upon 

stressful situations in adulthood.  

We found a main effect of genetic sex on expression of Sst and TrkB at P16. We also 

found a trend for a genetic sex effect of Sst and TrkB expression at P21. The main effect of 
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genetic sex in Sst and TrkB expression is present at P16, suggesting that this genetic sex 

difference originates at an earlier time point in the BLA (earlier than P16). The main effect of 

gonadal sex on circulating testosterone levels at P26 was more exaggerated than at P21, 

suggesting more pronounced gonadal hormone synthesis at this older age. It is interesting to note 

that even at these time-points before puberty, gonadal males still have higher testosterone levels 

than gonadal females. Our lab is conducting follow-up experiments to investigate gene 

expression of these same five genes in the BLA and circulating testosterone levels of P0 mice 

(the day of birth) to see if these sex effects are evident at birth.  

The P16, P21, and P26 time-points are all within the organizational window in which sex 

differences in hormone exposure cause permanent sex differences. These time-points also, 

overlap with the well-known developmental trajectory of mood. The genetic sex differences in 

gene expression were present at P16 through P21. By P26, however, these differences almost 

completely disappear, with the exception of Gad65 where there is a trending genetic sex 

difference (XX < XY). This pattern suggests a naturally differing developmental trajectory of the 

GABA system between XX and XY mice where the GABA system in the XY mice develops 

later than XX mice. We believe that disrupting this development could lead to adult 

psychopathology. 

The developmental cohort results are quite interesting when considered in the context of 

previous studies conducted in our lab. We previously studied a cohort of gonadectomized mice 

under non-stressed conditions [16]. Interestingly, TrkB expression was influenced by genetic sex 

(XX > XY) and Bdnf expression was influenced by both gonadal sex and hormone treatment (F 

< M; blank > testosterone) in the BLA of non-stressed mice (Table 1). Additionally, we found 

that the Sst expression observed at P16 and P21 is similar to the Sst expression in adulthood 
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under chronic stress conditions (XX > XY). Sst, Gad67, and Gad65 expression of the non-

stressed cohort revealed no main effects, just like at P26. Interestingly, this main effect of genetic 

sex in Sst expression before puberty seems to disappear in adulthood, and only reemerges under 

stress conditions in adulthood. It appears that by P26, the gene expression in XY mice have 

caught up to XX mice. We predict that if we were to study a time-point between P26 and 

adulthood, we would find similar gene expression results to P26.  

The peak of the effect of genetic sex on GABA- and BDNF-related gene expression 

appears to be at P21. Four out of the five genes of interest are significantly affected (XX > XY). 

As a general pattern, Sst expression and TrkB expression seem to move together over the course 

of development. In adulthood, the genetic sex effect on TrkB persists in non-stressed adults and 

the effect of stress eliminates this difference. The opposite happens for Sst expression; the 

genetic sex effect reappears under stressed conditions. Perhaps these results suggest an inverse 

relationship between the GABA and BDNF systems in adulthood under different stress 

conditions. Gad65 and Bdnf expression also seem to move in concert with each other over the 

course of development. Gad65 expression is significantly different in either genetic or gonadal 

sex before and during puberty, but this difference disappears in adulthood under both non-

stressed and stressed conditions. While Bdnf is trending for an effect of gonadal sex at P16, 

expression is not significantly affected until adulthood. The effect of testosterone on Bdnf 

expression has opposite responses to stress conditions in adulthood: testosterone increases Bdnf 

in non-stressed mice, but decreases Bdnf expression in stressed mice. Our gene expression results 

highlight the intricate relationships between the GABA and BDNF systems over the course of 

development and under stress conditions.  



 37 

There are a few limitations of our studies that I want to address. First, the FCG mice 

model is an artificial system that is not equivalent to male and female mice or humans. This 

model is necessary for our studies, however, to differentiate the sex-related factors that underlie 

the sex differences that are observed in wild-type mice and in humans. Testosterone levels also 

may vary by genetic sex during development. Although we did not test for testosterone levels at 

every point of development, we did not find a genetic sex difference in testosterone 

concentrations at P16, P21, or P26. Thus, our reported effects based on genetic sex are not 

confounded by potential differences in gonadal hormones. We used testosterone as our hormone 

treatment because it can be converted into estradiol in the brain. Thus, testosterone can act at 

both estrogen and androgen receptors. We will need to study receptor specificity in future 

studies, however, as our current study does not specify which receptors are in fact driving the 

effect of testosterone. We also did not compare our stressed and non-stressed cohorts at the same 

time. Using tissue homogenate of the BLA masks any cell-specific changes that may be 

occurring. We would have to change our methods moving forward, such as using laser 

microdissection of certain cell types, to identify cell-specific changes.  

In conclusion, I found differential expression of GABA- and BDNF-related genes in the 

BLA that illustrates a different developmental trajectory of these systems between the genetic 

sexes. Together, my results suggest that gene expression pre- and peripubertally that make up the 

developmental trajectory overlap well with the developmental trajectory of mood. My studies 

support the hypothesis that testosterone acts on SST in the BLA to affect mood. The genetic sex 

differences in the developmental trajectory of the GABA system and the influence of circulating 

testosterone uncovered in my studies could affect adult susceptibility to mood disorders.  
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APPENDIX 

THE EFFECT OF SEX-SPECIFIC FACTORS ON SEROTONIN- AND DOPAMINE-

RELATED GENE EXPRESSION IN THE BASOLATERAL AMYGDALA OF ADULT 

STRESSED MICE 

A.1 INTRODUCTION 

A.1.1 Serotonin in Major Depressive Disorder 

Serotonin (5-Hydroxytryptamine) is one of the monoamine neurotransmitters. Synthesis of 

serotonin depends on the level of the essential amino acid tryptophan and the activity of its rate 

limiting enzyme, tryptophan hydroxylase [53] (Figure 9).  

 

Figure 9: Serotonin synthesis pathway. 
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Serotonin is created by converting tryptophan into 5-hydroxytryptophan via the rate limiting enzyme tryptophan 

hydroxylase. This intermediate is then converted into 5-hydroxytrypamine (serotonin) via the enzyme aromatic 

amino acid decarboxylase (AADC). 

 

Serotonin is largely found in the gastrointestinal tract and other tissues in the 

periphery[54]. Serotonin neurons in the brain are primarily located in the raphe nucleus and have 

widespread projections to have coordinated actions affecting mood, anxiety, and circadian 

rhythms [55, 56]. To measure serotonin metabolism from the central nervous system, a spinal tap 

is performed to measure 5-hydroxyindoleacetic acid (5-HIAA), a metabolite of serotonin [57, 

58]. Only 1-2% of total serotonin concentration is found in the brain, yet serotonin has been 

found to have an active role in mood regulation, behavior, and psychopathology etiology and 

treatment [59].  

Evidence for serotonin involvement in major depressive disorder (MDD) includes 

decreased tryptophan, the amino acid from which serotonin is made [60, 61]. MDD also exhibits 

decreased serotonin metabolites, such as 5-Hydroxyindoleacetic acid (5-HIAA),  in the 

cerebrospinal fluid [58]. Altered markers of transmission in the frontal cortex and of midbrain 

factors involved in serotonin production suggests ineffective subcortical-cortical serotonergic 

transmission [62]. Extensive rodent studies have explored the link between the serotonin system 

and anxiety-/depressive-like behaviors [63, 64].  Other studies revealed sex differences in the 

serotonin system in both human and rodent systems [65, 66]. Interestingly, studies have shown 

that depressed women respond better to selective serotonin reuptake inhibitors (SSRIs) than men 

[67].  

 



 40 

A.1.2 Dopamine in Major Depressive Disorder 

Dopamine is a catecholamine derived from the amino acid tyrosine, which is present at saturated 

concentrations in the body. The rate-limiting enzyme in this monoamine’s synthesis pathway is 

tyrosine hydroxylase (Figure 10). 

 

Figure 10: Dopamine synthesis pathway. 

Dopamine is created by first converting tyrosine into L-DOPA via the rate limiting enzyme tyrosine hydroxylase. L-

DOPA is then converted to Dopamine via the enzyme aromatic amino acid decarboxylase (AADC).  

 

There is strong evidence that dopamine is involved in the anticipation of reward and the 

motivation to gain rewards [68-72]. Dopamine is commonly known to be involved in modulating 

these emotional responses, but it also has had implications in the pathophysiology of depression 

as well as antidepressant medication mechanisms [73, 74]. In response to antidepressant 

treatment, dopaminergic neurotransmission is altered [75-78]. To measure dopamine metabolism 

from the central nervous system, a spinal tap is performed to measure homovanillic acid (HVA) 

[79]. 

It has been hypothesized that altered dopamine function underlies anhedonia and 

amotivational behaviors in depression [73, 80]. Evidence for dopamine involvement in MDD 

includes both postmortem and imaging studies suggesting changes in receptor levels, yet these 

results remain uncertain [81-83]. Optogenetic studies demonstrate a causal link between ventral 

tegmental area (VTA) dopaminergic neuron firing and anhedonia-like behavior in mice [84]. 
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Human imaging studies reveal dopamine-related sex differences in the frontal cortex of control 

subjects, where women have increased dopamine D2-like receptors compared to men [85]. There 

is conflicting evidence that indicates depressed patients have lower metabolites of dopamine in 

the cerebrospinal fluid, suggesting dopamine hypofunction [86].  However, subsequent rodent 

studies reveal sex differences in the dopamine system and report lower dopamine levels and 

higher turnover in the frontal cortex of female rats when compared to male rats (i.e., higher 

HVA/DA ratio in female rats) [35, 87]. 

A.1.3 Serotonin and Dopamine in the frontal cortex of FCG Mice 

Our lab previously studied expression of serotonin- and dopamine-related genes in the frontal 

cortex of FCG mice exposed to unpredictable chronic mild stress (UCMS). Results were 

previously reported in [35]. Overall, we found main effects of genetic sex, gonadal sex, and 

circulating testosterone on expression of genes coding for serotonin and dopamine receptors, 

components of both the cAMP/PKA and AKT signal transduction pathways, and other serotonin 

related genes in the frontal cortex of these mice. Specifically, genetic sex was the main factor 

influencing serotonin- and dopamine-related gene expression in the frontal cortex under chronic 

stress conditions [35]. These results were quite interesting to us and led us to formulate two 

alternative hypotheses when studying expression of these same pathways in the basolateral 

amygdala (BLA). We aimed to determine if effects of these sex-specific factors are 1) brain-wide 

in serotonin- and dopamine systems or if 2) the genetic sex differences observed in the previous 

study were specific to the frontal cortex. The frontal cortex and the BLA are both regions 

involved in the corticolimbic neural network of mood regulation [3], with the frontal cortex 
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providing top-down processing and the amygdala providing bottom-up processing [88]. Top-

down processing and bottom-up processing are two different responses to sensory stimuli in the 

environment. Top-down processing refers to the perception of information via cognition while 

bottom-up processing refers to the perception of information via the external stimulus itself [89]. 

There is a dynamic interplay between these two processes when one is tasked with processing 

sensory information. An emotionally salient stimulus that evokes a fear response, such as seeing 

a snake in the woods, is an example of bottom-up processing. Conversely, realizing that the 

“snake” in the woods was actually a stick is an example of top-down processing. Since our lab 

has studied gene expression in the frontal cortex extensively, we decided to study BLA, which is 

at the opposite end of this circuit, with the goal of understanding the relationship between these 

two regions. 

A.2 METHODS 

A.2.1 Mice 

This study utilized a unique strain of mice called the Four Core Genotypes (FCG) mice. In a 

wildtype mouse, genetic sex and gonadal sex are entirely linked due to the testes-determining 

gene, Sry, on the Y chromosome. This means that if a wildtype organism has a Y chromosome, 

they have Sry, and therefore, will develop gonadally male (both genetically and gonadally male). 

If a wildtype organism does not have a Y chromosome, they do not have Sry, and therefore, will 

develop gonadally female (both genetically and gonadally female). Using genetic engineering, 
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the Sry gene was removed from the Y chromosome and placed on an autosome instead, thereby 

decoupling genetic and gonadal sex.   

The FCG mice used in these studies (originating from Jackson Laboratories, Bar Harbor, 

ME, USA; B6.Cg- Tg(Sry)2Ei Srydl1Rlb/Arnoj) were generated by crossing a C57BL/6J female 

with an XY-Sry male. Y- indicates the absence of Sry on the Y chromosome, with Sry present 

instead as an autosomal transgene. Here, we use the male (M) and female (F) designation to 

indicate gonadal sex. This cross yielded four groups of mice: XXM (XXSry), XXF (XX), XYM 

(XY-Sry) and XYF (XY-). These four genotypes allow us to investigate the effects of genetic sex 

and developmental gonadal sex (i.e., organizational effects of hormones) independent of the 

other, as genetic sex and gonadal sex are inherited independently in this model. The addition of a 

testosterone or blank capsule (discussed below) after gonadectomy in adulthood also allows us to 

investigate the effects of circulating hormones (i.e., activational effects of testosterone). The 

mice were maintained under standard conditions (12-hour light and dark cycles; 22 ± 1°C, food 

and water ad libitum), in accordance with the University of Pittsburgh Institutional Animal Care 

and Use Committee [16]. We studied the GABA-related gene expression in this same cohort of 

mice previously (Cohort 1).  

A.2.2 Gonadectomies and testosterone treatment 

Adult FCG mice were bilaterally gonadectomized at 15 weeks under isoflurane anesthesia to 

remove the endogenous source of circulating gonadal hormone. Half of each genotype was 

implanted with a subcutaneous testosterone-filled capsule containing 5-mm crystalline 

testosterone (1.57-mm ID x 2.41-mm OD) or with a similarly sized blank capsule [16]. [XXF + 
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B (n=10), XXF + T (n = 16), XYF + B (n=12), XYF + T (n=12), XXM + B (n=15), XXM + T (n 

= 14), XYM + B (n=10), XYM + T (n = 12)]. It is important to note that the concentration the 

testosterone capsules were at or slightly above physiologically normal male levels. After 

allowing 4 weeks for mice to recover from surgery and for hormone levels to equilibrate, the 

mice were exposed to 8 weeks of unpredictable chronic mild stress (UCMS; see details below). 

After 7 weeks of UCMS exposure, mice were assessed for anxiety-like behaviors in the elevated 

plus maze and open field (Figure 11). Mice were exposed to UCMS during behavior testing, thus 

the mice were exposed to UCMS for a total of 8 weeks.  

 

Figure 11: Experimental design for adult stressed mice. 

Mice were gonadectomized (GDX) at ~15 weeks of age and implanted subcutaneously with either a testosterone 

(T)-filled or blank capsule. After GDX, mice in cohort 1 were exposed to 8 weeks of unpredictable chronic mild 

stress (UCMS) followed by behavioral testing and were then sacrificed. At the time of sacrifice, the brains were 

harvested for gene expression analyses and bloods were collected for hormone assay [16]. 

A.2.3 Unpredictable Chronic Mild Stress 

Group-housed adult mice (gonadal sex and hormone treatment matched) were exposed to a 

randomized schedule of environmental stressors 7 days a week for 8 weeks, gradually increasing 

in intensity, starting with 1–2 separate stressors a day and ending with 4–5 stressors a day 
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(separately and in tandem with one another) during the final week, as performed previously in 

our lab [16, 26]. Disturbances included light cycle disruption, tilted cage (45° tilt), social stress 

(rotate mice into previously occupied cages), reduced space (limiting mice to 1/3 of typical space 

in cage), aversive smell (20 min of exposure to bobcat or fox urine), no bedding or wet bedding 

overnight, mild restraint (50-mL conical tube with air hole for 15 min), and forced bath 

(approximately 2 cm of 21°C water for 15–45 min). We assessed body weight and fur weekly to 

track progression of the UCMS syndrome. Behavior testing occurred while mice were still being 

exposed to UCMS. We previously reported frontal cortex gene expression results from this 

cohort [26, 35]. 

A.2.4 Processing of brain tissue: BLA dissection and gene expression analyses 

Bilateral micropunches (1mm bore punch) of the BLA (between Bregma −0.94 and −1.82 mm; 

[31]) were obtained from approximately six 160-μm thick coronal tissue sections cut on a 

cryostat within the boundaries created by the internal and external capsule. All tools were treated 

with RNase Zap to prevent RNases contamination. Punches were stored in RNase free 1.5mL 

tubes at −80°C prior to RNA extraction [16]. 

A.2.5 RNA extraction and cDNA synthesis 

Total RNA was extracted from BLA tissue punches using RNeasy Plus Micro Kits (Qiagen; 

Valencia, CA, USA). RNA was reverse-transcribed into complementary DNA (cDNA) using 

QScript cDNA Supermix (olido(dT) and random primers (Quanta Biosciences, Gaithersburg, 

MD, USA)) [16].  



 46 

A.2.6 Gene Selection in the BLA 

Similar to our frontal cortex study, we utilized the Allen Brain Atlas to determine which 

serotonin- and dopamine-related genes have high expression in the basolateral amygdala (BLA) 

expression of mice. These genes with high BLA expression were selected for quantitative 

polymerase chain reaction (qPCR) analysis. We examined 13 genes related to serotonin and 

dopamine in the BLA of FCG mice: Adcy2, Adcy5, Adrbk2, Akt3, App, Cacna1a, Cdk5, Comt, 

Gsk3a, Gsk3b, Mapk1, Ppp1r1b, and Syn2 (See Table 2). 

Table 2: Serotonin and Dopamine Gene Selection in the BLA of Adult Mice. 

 

We selected serotonin- and dopamine-related genes that had high expression in the BLA according to the Allen 

Brain atlas. We previously analyzed expression of some of these genes in the frontal cortex of FCG mice [35]. 
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A.2.7 Quantitative Polymerase Chain Reaction (qPCR) 

Small PCR products were amplified on a MJ Research (Waltham, MA, USA) DNA Engine 

Opticon System for qPCR using universal PCR conditions (65 to 59 °C touch-down and 40 

cycles (10 s at 95°C, 10s at 59°C, and 10s at 72°C)). cDNA was amplified in 20-μL reactions 

(0.1 × SYBR Green, 3 mM MgCl2, 200 nM dNTPs, 200 nM primers, 0.25 unit Platinum Taq 

DNA Polymerase (Invitrogen, Carlsbad, CA, USA)) [16]. 

Samples were run in triplicate, and results were calculated as the geometric mean of 

relative intensities compared to three internal controls (actin, glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH), and cyclophilin). Actin, GAPDH, and cyclophilin are considered 

good housekeeping genes because sex-related factors do not influence their expression or 

abundance, thus we consider them to be internal controls. The results are expressed as arbitrary 

signal (2-dCT × 10,000). Grubbs’ outlier test determined statistical outliers in gene expression 

values. These outliers were excluded from qPCR analysis [16].  

A.2.8 Statistical analysis 

We used a three-way analysis of variance (ANOVA), (genetic sex x developmental gonadal sex 

x hormone treatment) to analyze gene expression data. This is the same approach we used for 

Cohort 1 in the GABA study (see Methods). If the ANOVA was significant for any main effect 

or interaction, we performed planned comparisons using the Least Significant Difference (LSD) 

post hoc test. We did not correct for multiple testing in these studies, as we had a priori 

hypotheses for these genes to be altered based on our findings in the frontal cortex of FCG mice 
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and in human postmortem brain tissue of patients with MDD[23, 24, 26].  Data are expressed as 

mean ± SEM, and significance was set at p < 0.05 [16]. 

A.3 RESULTS 

Compared to XX mice, XY mice had significantly lower expression of App in the BLA (p 

< 0.04; Figure 4A). There was no effect of genetic sex on expression of Adcy2, Adcy5, Adrbk2, 

Akt3, Cacna1a, Cdk5, Comt, Gsk3a, Gsk3b, Mapk1, Ppp1r1b, or Syn2, (p > 0.2 for all 

comparisons). We found a trend for gonadal males to have higher expression of Adrbk2 

compared to gonadal females (p < 0.09; Figure 12B). There was no effect of gonadal sex on 

expression of Adcy2, Adcy5, Akt3, App, Cacna1a, Cdk5, Comt, Gsk3a, Gsk3b, Mapk1, Ppp1r1b, 

or Syn2 (p > 0.1 for all comparisons). There was also a trend for testosterone increasing 

expression of both Comt (p < 0.1; Figure 12C) and Mapk1 (p < 0.1; Figure 4D) in the BLA. 

There was no effect of testosterone on expression of Adcy2, Adcy5, Adrbk2, Akt3, App, Cacna1a, 

Cdk5, Gsk3a, Gsk3b, Ppp1r1b, or Syn2 (p > 0.1 for all comparisons).  
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Figure 12: Main effects of sex-specific factors on the serotonin- and dopamine-related genes in the 

BLA of adult stressed mice. 

 (A) XY mice had lower expression of App than XX mice. There was no effect of genetic sex on Adrbk2 (B), Comt 

(C), or Mapk1 (D). (B) There was a trend for an effect of gonadal sex on Adrbk2 expression. Gonadal sex did not 

influence expression of App (A), Comt (C), or Mapk1 (D). There was a trend for an effect of testosterone exposure 

on expression of Comt (C) and Mapk1 (D), but no effect of testosterone on expression of App (A) or Adrbk2 (B). 

Numbers at the base of the bars indicate N. *p < 0.05; #, p < 0.1. T, testosterone, B, blank, F, gonadal female, M, 

gonadal male. 
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We also found some interesting interactions between the main effects on expression of 

the serotonin- and dopamine-related genes in the BLA. There was a trend for an interaction 

between genetic sex and testosterone on Adcy2 expression (p = 0.053; Figure 13A); post hoc 

analysis revealed a trend for a difference between genetic females with and without testosterone 

treatment (XX+B vs. XX+T; p = 0.053) and a significant difference between genetic males 

treated with testosterone and genetic females treated with testosterone (XX+T vs. XY+T; p = 

0.041). There was a significant interaction of gonadal sex and testosterone on App expression (p 

= 0.031; Figure 13B); post hoc analysis revealed a difference between gonadal females with and 

without testosterone treatment (F+B vs. F+T; p = 0.012) and a difference between gonadal males 

treated with testosterone and gonadal females treated with testosterone (F+T vs. M+T).  There 

was a trend for an interaction between genetic sex and testosterone on Gsk3a expression 

(p=0.053 Figure 13C); post hoc analysis revealed a difference between genetic females treated 

with testosterone and genetic males treated with testosterone (XX+T vs. XY+T; p = 0.038), as 

well as a difference between genetic males with and without testosterone treatment (XY+B vs. 

XY+T; p = 0.052). Finally, there was a significant interaction between gonadal sex and hormone 

on Gsk3a expression (p=0.019; Figure 13D); post hoc analysis revealed a difference between 

blank-treated gonadal females and blank-treated gonadal males (F+B vs. M+B; p = 0.047) as 

well as a difference between gonadal males with and without testosterone treatment (M+B vs. 

M+T; p = 0.033). 
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Figure 13: Interactions of sex-specific factors on serotonin- and dopamine-related gene expression in 

the BLA of adult stressed mice.  

 (A) There was a trend for testosterone to increase Adcy2 expression in XX mice, but no effect of testosterone in XY 

mice (B) Testosterone increases App expression in gonadal females but not gonadal males. (C) There was a trend for 

testosterone to decrease Gsk3a expression in XY mice, but no effect of testosterone in XX mice. (D) Testosterone 

treatment decreases Gsk3a expression in gonadal males, but not gonadal females. Numbers at the base of the bars 

indicate N. *p < 0.05; #, p < 0.1. T, testosterone, B, blank, F, gonadal female, M, gonadal male. 
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A.4 DISCUSSION 

We investigated the effects of genetic sex, developmental gonadal sex, and circulating 

testosterone on expression of several serotonin- and dopamine-related genes in the BLA of 

chronically stressed mice. We aimed to determine if sex-specific factors influenced serotonin- 

and dopamine-related gene expression in a brain-wide or region-specific fashion. We found a 

main effect of genetic sex on App expression in the BLA (Fig. 12A) with genetic females having 

higher expression than genetic males (XX > XY). We also found a trend for a main effect of 

gonadal sex on Adrbk2 expression in the BLA (Fig. 12B) with gonadal males trending for higher 

expression than gonadal females. Testosterone was found to have a trend for increasing the 

expression of Comt and Mapk1 in the BLA (Fig. 12C-D).  

Depending on the gene, my results support both hypotheses. For instance, the effect of 

genetic sex on App expression in the BLA is consistent with the results from our frontal cortex 

study in [35]. Specifically, in both the frontal cortex and BLA, XY mice have lower expression 

of App than XX mice. Thus, my results for App expression in the BLA support the brain-wide 

hypothesis. However, my results for other genes support the region-specific hypothesis. In the 

frontal cortex, there was an effect of circulating testosterone (T > B) and a trend for an effect of 

genetic sex (XX > XY) on Adcy2 expression [35]. In the BLA, however, there were no main 

effects in Adcy2 expression. Similarly, in the frontal cortex, there was a main effect of gonadal 

sex (F > M), a main effect of circulating testosterone (B > T), and a trend for an effect of genetic 

sex (XX > XY) on Akt3 expression [35]. There were no significant main effects found for Akt3 

expression in the BLA, thus supporting the region-specific hypothesis. My results further 
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illustrate the complexity of effects that sex-related factors have on expression of genes related to 

mood. 

We also found several interesting two-way interactions between genetic sex and hormone 

as well as gonadal sex and hormone. There was a trend for an interaction between genetic sex 

and testosterone on Adcy2 expression (p = 0.053; Fig. 13A). For instance, post hoc analysis 

revealed that testosterone treatment increased Adcy2 expression only in XX mice. This is 

interesting to consider, as the same hormone exposure is having different effects depending on 

genetic sex. There was a significant interaction of gonadal sex and testosterone on App 

expression (p = 0.031; Fig. 13B). Post hoc analysis revealed that testosterone increases App 

expression in only gonadal females. Thus, the same hormone exposure is producing different 

effects depending on gonadal sex. There was a significant interaction between gonadal sex and 

hormone on Gsk3a expression (p=0.019; Fig. 13D).  Post hoc analysis revealed that testosterone 

decreases Gsk3a expression in gonadal males only. There was also a trend for an interaction 

between genetic sex and testosterone on Gsk3a expression (p=0.053; Fig. 13C). Post hoc 

analysis revealed that testosterone decreases expression in XY mice only. These interactions are 

critical to understand, especially when considering future advancement in depression treatments. 

My studies demonstrate an important influence of genetic sex, developmental gonadal hormone, 

and adult circulating hormone on serotonin-, and dopamine-related gene expression in the BLA. 

Further, my results point out that the serotonin and dopamine systems in the BLA are not as 

affected by sex-specific factors as they are in the frontal cortex [35].  

Interestingly, depressed women tend to respond better to SSRI treatment than depressed 

men[67]. Thus, it is tempting to speculate that the serotonin system is more dysregulated in 

women with depression compared to men. Due to inherent differences (genetic sex, gonadal sex, 
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circulating hormones), men and women might have different underlying biological mechanisms 

of MDD. We found that testosterone affects serotonin and dopamine genes differently based on 

genetic or gonadal sex. Since men have higher testosterone concentrations than women, 

testosterone may protect against serotonin and dopamine deficits in men. The interactions 

uncovered in my study, therefore, emphasize the potential difference in responses to drug 

treatments between the sexes, which provides further evidence for the need for sex-specific 

treatment for depression. Considering the evidence above, it is possible that the differential 

response to SSRI treatment between men and women is due to differential interactions of sex-

specific factors. Treatment developers should take the interactions of these influences into 

consideration to ensure the effects novel drugs are consistent across all sex-specific factors.  

There are a few limitations of this study that I want to address. First, the FCG mice model 

is an artificial system that is not equivalent to male and female mice or humans. This model is 

necessary for our studies, however, to differentiate the sex-related factors that underlie the sex 

differences that are observed in wild-type mice and in humans. We did not correlate BLA 

serotonin- and dopamine-related gene expression with the behavioral results from this cohort. 

Perhaps this data can give us a deeper understanding of the effects of stress exposure on the 

serotonin and dopamine systems in the BLA. Since we found interesting results involving a 

possible protective effect of testosterone in males, we could study a cohort of blank-treated and 

testosterone-treated male and female mice with UCMS. We predict that the females treated with 

testosterone would be protected from serotonin deficits.  We also only studied BLA expression 

of serotonin- and dopamine-related genes in a stressed cohort of mice. In future studies, we will 

look at the serotonin- and dopamine-related genes in a non-stressed cohort of adult mice to add a 

control experiment. We may study serotonin- and dopamine-related gene expression in other 
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brain regions such as the hippocampus, dorsal striatum, and ventral striatum to gather further 

evidence for the two alternative hypotheses.  It is possible that one brain region may drive 

another brain region to have a certain level of activity; however, it is impossible to determine this 

from the studies conducted so far. To determine if the frontal cortex drives the amygdala, for 

instance, a follow-up study can be conducted that chronically inhibits neurons in the frontal 

cortex to see the effect on the BLA neuronal activity.  

To conclude, my study reveals the complex effects that sex-related factors have on 

expression of mood-related genes across brain regions. My results support both the brain-wide 

and region-specific hypotheses, depending on the gene of interest. Differential interactions of 

testosterone with both genetic and gonadal sex highlight the importance of considering inherent, 

physiological differences between men and women when developing treatments for depression 

to ensure therapeutic effects and proper treatment of underlying psychopathology.  
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