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HIGHER ORDER TIME FILTERS FOR EVOLUTION EQUATIONS

Ahmet Guzel, PhD

University of Pittsburgh, 2018

Time filter is a non-intrusive technique that post-processes the previously computed values

of given numerical methods. The purpose of this study is to construct new time filters, which

will increase the accuracy and stability of existing legacy codes. We focus on time filters for

the leapfrog method and the backward Euler method.

The leapfrog scheme is a second-order, symplectic, explicit method, which is widely used

in the numerical models of weather and climate, currently in conjunction with the Robert-

Asselin (RA) and Robert-Asselin-Williams (RAW) time filters.

• We propose and analyze a novel filter, which combines the higher-order Robert-Asselin

(hoRA) filter with a Williams’ step (LF-hoRAW). This filter better addresses the issue

of time-splitting instability of the leapfrog scheme and increases the stability of hoRA,

reduces the magnitude of the truncation error, improves the accuracy of amplitude com-

pared to the hoRA, and conserves the three-time-level mean.

• We perform linear error analysis for general high-order Robert-Asselin (ghoRA) time

filter applied to the leapfrog scheme, and derive the phase and amplitude errors for a

pre-determined order of accuracy using the modified equation.

The fully implicit (backward) Euler method is one of the first method commonly implemented

when extending a code for the steady state problem, and often the method of last resort for

complex applications.
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• We construct a time filter for the backward Euler method, which reduces the discrete cur-

vature of the solution, increases accuracy from first to second-order, gives an immediate

error estimator and induces an equivalent two-step, A-stable, linear multistep method.

Keywords: A-stability, Backward Euler method, Leapfrog method, Modified equation,

Robert-Asselin-Williams, Time filters.

v



TABLE OF CONTENTS

PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.0 HIGHER ORDER ROBERT-ASSELIN-WILLIAMS TIME FILTER . 5

2.1 Linear Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 The LF-hoRAW as a Linear Multistep Method . . . . . . . . . . . . . 8

2.1.3 The Consistency Order of LF-hoRAW . . . . . . . . . . . . . . . . . . 11

2.1.4 The Stability Domain of LF-hoRAW . . . . . . . . . . . . . . . . . . . 11

2.2 Curvature Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Error Analysis for Phase and Amplitude . . . . . . . . . . . . . . . . . . . . 15

2.4 Comparison of LF-hoRA, LF-hoRAW and AB3 Methods . . . . . . . . . . . 19

2.5 Numerical Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.1 Simple Pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.2 Ozone Photochemistry . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.3 Lorenz System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.0 THE GENERAL HIGH-ORDER ROBERT-ASSELIN TIME FILTER 28

3.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.0 BACKWARD EULER PLUS FILTER . . . . . . . . . . . . . . . . . . . . 36

4.1 Constant Time Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vi



4.1.1 Derivation of the Method . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.2 Stability for Constant Time Step . . . . . . . . . . . . . . . . . . . . . 40

4.2 Variable Time Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Time Filter for Variable Time Step . . . . . . . . . . . . . . . . . . . 42

4.2.2 The Local Truncation Error . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.3 Stability for Variable Time Step . . . . . . . . . . . . . . . . . . . . . 46

4.2.4 Adaptive Time Step Algorithm . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Error Analysis for Phase and Amplitude . . . . . . . . . . . . . . . . . . . . 49

4.4 Numerical Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.1 The Lorenz System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.2 Preservation of Lyapunov Stability . . . . . . . . . . . . . . . . . . . . 54

4.4.3 Periodic and Quasi-Periodic Oscillations . . . . . . . . . . . . . . . . . 55

4.4.4 The Van der Pol Equation . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.0 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vii



LIST OF TABLES

2.1 Summary of the conservation of three-time-level mean, stability, and accuracy

properties of the LF-hoRAW for some values of α. . . . . . . . . . . . . . . . 19

2.2 The comparison of LF-hoRAW, LF-hoRA and AB3 schemes with some fea-

tured values of α and β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 The comparison of halving, doubling and the same step using variable time

step backward Euler and backward Euler plus filter algorithm for the Van der

Pol equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

viii



LIST OF FIGURES

2.1 The exact solution of simple harmonic motion for variable x(t) with four nu-

merical solutions using ∆t = 0.2 s . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 The amplification factors of the physical mode (solid line) and two computa-

tional modes (dotted line) of LF-hoRAW . . . . . . . . . . . . . . . . . . . . 10

2.3 The magnitudes of the physical mode (solid line) and computational modes

(dotted line) of LF-hoRAW. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Root locus curve of LF-hoRAW with various α and β. . . . . . . . . . . . . . 12

2.5 The magnitude of physical mode amplitudes while α ' 2−β
8−5β

for β = 0.2 (left)

and β = 0.4(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 The hoRAW filter moves the inner and right outer points through displace-

ments αβ(κnold − κn−1
new )/2 and (1− α)β(κnold − κn−1

new )/2, respectively . . . . . . 14

2.7 Amplitude (top) and relative phase change (bottom) of the physical mode of

LF-hoRAW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.8 Root locus curves of LF-hoRA, LF-hoRAW the AB3 schemes . . . . . . . . . 20

2.9 Comparison of the coefficients C1β
2 , Cαaβ

2 (2.8) and CAB3 = 3/8 . . . . . . . . 20

2.10 The comparison of amplitude (top) and relative phase (bottom) of physical

mode of LF-hoRA, LF-hoRAW and AB3. . . . . . . . . . . . . . . . . . . . . 21

2.11 Numerical solution to the simple pendulum problem . . . . . . . . . . . . . . 23

2.12 Numerical solutions for chemical concentrations . . . . . . . . . . . . . . . . 25

2.13 Computed numerical solutions to the Lorenz system . . . . . . . . . . . . . . 26

4.1 Stability region of backward Euler plus time filter . . . . . . . . . . . . . . . 41

4.2 Boundaries of Stability Regions . . . . . . . . . . . . . . . . . . . . . . . . . 42

ix



4.3 A-stable for ν ≤ dark curve, Dashed Curve = O(∆t2) . . . . . . . . . . . . . 47

4.4 Comparison of phase speed and amplitude of physical mode for backward Euler

method and second-order backward Euler plus filter method. . . . . . . . . . 53

4.5 Numerical solution of X for the Lorenz system with time step ∆t = 0.01(left)

and ∆t = 0.02(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.6 Numerical solution of Lyapunov stability test problem with time step ∆t = 0.2 55

4.7 Numerical solution of pendulum test problem with time step ∆t = 0.1 . . . . 56

4.8 Exact soln, non-adaptive and adaptive backward Euler plus filter . . . . . . . 57

4.9 Numerical solution of Van der Pol equation using variable time step backward

Euler and backward Euler plus filter . . . . . . . . . . . . . . . . . . . . . . . 58

x



LIST OF ALGORITHMS

4.1 Halving and Doubling Time step . . . . . . . . . . . . . . . . . . . . . . . . . 48

xi



PREFACE

I would like to express my deepest gratitude and appreciation to my advisor, Professor

Catalin Trenchea, for his unwavering support, collegiality and mentorship throughout my

graduate study. I would also like to thank him for always taking his time and providing

answers to my endless questions towards my research. Besides mathematics, He is a great

friend and life mentor. It is a great honor for me to have him as my advisor.

I would like to extend my gratitude to Professor William Layton for his continuous

support, encouragement and priceless guidance on my research. His deep knowledge and a

unique perspective on research and mathematics helped me to make this dissertation better.

I would also like to thank Professor Michael Neilan and Professor Patrick Smolinski for

giving their valuable time to be part of my committee. I am also grateful for their useful

comments and suggestions.

I wish to thank all my fellow numerical analysis group, staff and faculty in Department

of Mathematics for the help and support they provided during my graduate study.

I would also like to express my sincerest gratitude and appreciation to my parents, Halil

and Menci, my wife, Fatıma Zehra, my siblings, and their families for moral support, endless

patience and constant encouragement during my studies in the United States.

I would like to thank my daughters, Firdevs and Cennet, for always making me smile

and understanding when I was at school instead of spending time with them.

I dedicate this dissertation to my daughters, Firdevs and Cennet, with love.

xii



1.0 INTRODUCTION

The computational approach for predicting the behaviour of a dynamical system consists in

the construction of an algorithm that accurately simulates its evolution. The task of the

forecasting procedure may be reduced to the following iterative algorithm: given the current

state of the system (the input), use the governing equations to approximate the state at a

slightly later time (the output), and repeat as many times as needed. The output of this

algorithm exhibits modeling errors (unknown initial and boundary data, forcing terms, and

the numerical model) and numerical approximation errors (parameterizations of sub-grid

processes, semi-discretization in time and space). In this thesis we focus on reducing the

errors due to the semi-discrete time approximation. Specifically, we develop and analyze post-

processing non-intrusive techniques to obtain more accurate solutions, at low computational

costs, from solutions generated by existing numerical algorithms.

Consider the initial value problem (IVP)

u′(t) = f
(
u(t)

)
, for t > 0 and u(0) = u0 (1.1)

which is approximated by the following k-step (k ≥ 1) method

k∑
i=0

αi un+1−i = ∆t f

( k∑
i=0

βi un+1−i

)
, given {ui}k−1

i=0 . (1.2)

The relation (1.2) defines a one-leg linear multistep method [12], where α0 6= 0,
k∑
i=0

βi = 1

and the starting values {ui}k−1
i=0 are given or computed with a different numerical method1.

Here ∆t denotes the constant time step, un is the numerical solution approximating the

1The linear multistep method (1.2) is explicit if β0 = 0, otherwise it is implicit.
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exact solution u(tn) at time tn = n∆t. This notation convention will be used through out

the text. We define a time filter for the linear multistep method (1.2) as follows:

un+θ = γ0 un+1 + γ1 un +
∑̀
j=2

γj un+1−j, ` ≥ k (1.3)

where un+θ denotes the once filtered solution, approximating un+θ, using previously com-

puted values, γj are real numbers and θ is either 0 or 1.

In this work we focus on time filters for two widely used numerical methods applied to

the first-order differential equation, namely, the leapfrog and backward Euler method.

• The leapfrog scheme applied to (1.1) is given by

un+1 − un−1 = 2∆t f(un), given u0, u1. (1.4)

In Chapter 2, we introduce and analyze the leapfrog scheme filtered twice with a higher-order

Robert-Asselin time filter and Williams’ step. In Chapter 3, the leapfrog scheme is filtered

once by the general high-order Robert-Asselin time filter (LF-ghoRA) given as

un = un + an+1un+1 + anun +
k∑
j=1

an−jun−j, k ≥ 1.

• The backward Euler method applied to (1.1) is given by

un+1 − un = ∆t f(un+1), given u0. (1.5)

In Chapter 4, the solution of backward Euler method is filtered once by a simple finite

difference approximation of the second time-derivative given as

un+1 = un+1 −
ν

2
(un+1 − 2un + un−1).

The filtered solution u of the combination of the given numerical method (1.2) with the

time filter (1.3) exhibits better stability and accuracy compared to unfiltered solution u. In

the following, we give a brief account of existing time filters for the leapfrog scheme, currently

used in the weather and climate models.

The leapfrog scheme, also known as the midpoint rule or the explicit Nyström method,

is an explicit, two-step, three-time-level, second-order accurate, weakly-stable, neutral time

2



stepping scheme. It is best suited for the time integration of linear oscillatory systems and

is widely used in weather and climate computational models. The major weakness of the

leapfrog scheme is the spurious growth of the computational mode when applied to nonlinear

equations [16, 34, 49], the so-called “time-splitting” instability [15, 33, 48]. There are various

ways to damp computational mode of leapfrog scheme, see e.g. [16]. In the atmospheric

science, it is common to control the computational mode by non-intrusively post-process the

leapfrog scheme based legacy codes through a second-order time filter. This filter is closely

related to the centered second-derivative time filter

un = un + γ(un+1 − 2un − un−1),

where un denotes the solution at time n∆t prior to time filtering, un is the solution after

filtering and γ is a positive real constant which determines the strength of the filter.

The Robert-Asselin (RA) time filter, designed by Robert [30] and analyzed by Asselin

[2], filters once the middle value un obtained by (1.4) into

un = un +
ν

2
(un+1 − 2un + un−1).

The combination of LF-RA successfully suppresses the leapfrog scheme’s computational

mode, but also weakly damps the physical mode, reducing the second-order accuracy of

the unfiltered leapfrog scheme to first-order. The effect of RA filter has been investigated in

[4, 7, 14, 41]. It is currently used in the majority of the operational numerical weather pre-

diction models, atmospheric general circulation models for climate simulation, ocean general

circulation models, models of the fluids in rotating annulus laboratory experiments (see e.g.,

[48] and references therein).

Williams [1, 48, 49] made a significant improvement to the RA filter, altering both values

un and un+1, obtained by (1.4) into

un = un +
να

2
(un+1 − 2un + un−1), and

un+1 = un+1 −
ν(1− α)

2
(un+1 − 2un + un−1)

respectively. Filtering one more time compared to RA, the RAW filtered leapfrog scheme

almost conserves the three-time-level mean of the predicted field, increases the accuracy of

3



amplitude errors by two orders, yielding third-order accuracy, and greatly reduces the mag-

nitude of the first-order truncation error. The RAW filter has been studied and implemented

in various model (see [38, 40, 47, 51, 52]).

Using a filter closely related to the third time-derivative, Li and Trenchea [33] introduced

a higher-order Robert-Asselin (hoRA) type time filter. hoRA filters once the middle value

un obtained by (1.4) into

un = un +
β

2
(un+1 − 2un + un−1)− β

2
(un − 2un−1 + un−2).

It is a linear post-process to the leapfrog scheme, which controls the undamped computational

modes, and increases the numerical accuracy of the RA time filter to third-order when

β = 0.4, yielding fourth-order accuracy for the phase and amplitude of the physical mode

[33, 34].

The plan of this thesis as follows. In Chapter 2, we propose an extension of the hoRA

time filter, by altering both values un, un+1 obtained by (LF) with a hoRA step and a

Williams-type step. This combination further increases the stability, reduces the magnitude

of the truncation error, improves the accuracy of amplitude compared to the hoRA filtered

leapfrog scheme, and also conserves the three-time-level mean. In Chapter 3 we perform the

error analysis of the general high-order Robert-Asselin (ghoRA) time filter using a modified

equations. The modified equation gives a natural and simple way to find the error distribu-

tion between phase and amplitude. In Chapter 4 we construct a time filter for the backward

Euler method, and show that the combination reduces the discrete curvature of the solution,

increases the accuracy from first to second-order, gives an immediate error estimator and

induces a method akin to BDF2. The effect of each step in the combination of 2-step is

conceptually clear. The combination also extends easily to variable time steps.
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2.0 HIGHER ORDER ROBERT-ASSELIN-WILLIAMS TIME FILTER

In this chapter, we construct and analyzed a higher order Robert-Asselin-Williams(hoRAW)

time filter. The work of this chapter is based on [23]. The proposed hoRAW filtered leapfrog

scheme applied to initial value problem (1.1) is:

wn+1 = un−1 + 2∆tf(vn)

un = vn +
αβ

2
(wn+1 − 2vn + un−1)− αβ

2
(vn − 2un−1 + un−2)

vn+1 = wn+1 +
β(α− 1)

2
(wn+1 − 2vn + un−1)− β(α− 1)

2
(vn − 2un−1 + un−2)

where the dimensionless parameters β ∈ [0, 1] and α ∈ [0, 1]. Here w, v, u denote the

unfiltered, once and twice filtered values, respectively. The last two terms in each step can

be combined as wn+1− 3vn + 3un−1− un−2, which is a finite difference approximation to the

third time-derivative. The LF-hoRAW is generally second-order accurate, and third-order

when α = 2+2β
7β

, yielding fourth-order accuracy for the phase and amplitude of the physical

mode. Using a backward error analysis approach, the modified equation, we shall prove

that when α = 2−β
8−5β

, the LF-hoRAW method achieves sixth-order accuracy in amplitude.

The hoRAW time filter has a twenty percent increase in stability compared hoRA, and the

LF-hoRAW is twenty five percent more stable than the AB3 method:

un+1 = un +
∆t

12

(
23f(un)− 16f(un−1) + 5f(un−2)

)
when

α =
4− 12β + 5β2 − 2

√
4 + 12β − 15β2 + 4β3

25β2 − 36β
.

The storage factor for the leapfrog scheme combined with hoRAW filter is five. Compared

with the intrusive AB3 method (three function evaluations per time iteration), the hoRAW
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filtered leapfrog scheme is almost as accurate, stable and efficient, yet non-intrusive and

easily implementable in existing legacy codes. We briefly illustrate the improvement that

may be achieved by the proposed hoRAW filter, when used in conjunction with the leapfrog

scheme, by numerically integrating the simple harmonic motion

dx

dt
=− y, x(0) = 1,

dy

dt
=x, y(0) = 0.

We compare the exact solution with the numerical solutions of LF-RA (ν = 0.2), LF-RAW

(ν = 0.2, α = 0.53), LF-hoRA (β = 0.1) and LF-hoRAW (β = 0.1, α = 0.27)1 in Figure 2.1.

The amplitude error of the hoRAW filter is significantly smaller than the RA, RAW and

hoRA filters2. The energy of the oscillation corresponding to x2 + y2, which is conserved

by the continuous equations, decreases to 0 using the RA filter, decreases to 57% using the

RAW filter, to 70% using hoRA, but is 99% conserved using the hoRAW filter, on the time

interval [0, 500].

2.1 LINEAR ANALYSIS

The phase and amplitude errors of time stepping schemes for non-dissipative dynamical

systems is typically evaluated by analyzing the solutions of the oscillation equation (see

[16, 24]),

u′(t) = iω u(t) (2.1)

where ω is real constant. In this section we derive the consistency and stability properties

of the hoRAW filter. First we briefly recall the properties of the Robert-Asselin, Robert-

Asselin-Williams and hoRA time filters.

1The chosen values yield, in the limit of good time resolution, the same damping rates of computational
modes (The damping rate of the computational mode for both LF-RA and LF-RAW is 1− ν. The damping
rates of the most unstable computational mode of LF-hoRA is 1−2β. The damping rate of the most unstable

computational mode of LF-hoRAW is
2−3β−αβ+

√
4+4β(α−5)+(αβ+3β)2

4 ).
2We note that for these parameter values, LF-RA has second-order amplitude accuracy, LF-RAW is

almost fourth-order, LF-hoRA is fourth-order, while LF-hoRAW is sixth-order accurate in amplitude.

6



0 10 20 30 40 50 60 70 80 90 100

-1

-0.5

0

0.5

1

400 410 420 430 440 450 460 470 480 490 500

-1

-0.5

0

0.5

1

Figure 2.1: The exact solution of simple harmonic motion for variable x(t) with four

numerical solutions using ∆t = 0.2 s, on the time interval [0, 100], and [400, 500].(
Exact —, LF-RA — , LF-hoRA · · · , LF-RAW - - -, and LF-hoRAW − -−

)

2.1.1 Previous Work

The RAW filtered leapfrog scheme applied to (2.1) writes

wn+1 = un−1 + 2iω∆t vn, (Leapfrog)

un = vn +
αν

2
(wn+1 − 2vn + un−1), (Robert-Asselin)

vn+1 = wn+1 +
(α− 1)ν

2
(wn+1 − 2vn + un−1), (Williams)

where w, v, u are the unfiltered, once filtered and twice filtered values, respectively. The

dimensionless parameters ν ∈ [0, 1] and α ∈ [0.5, 1]. When α = 1 the (Williams) step drops

7



out and the LF-RAW becomes the LF-RA scheme, and when ν = 0 the leapfrog scheme

is recovered. Both RA and RAW filters are generally first-order accurate and successfully

dampen the computational mode. However, the RAW filter provides a higher accuracy for the

amplitude of the physical mode, compared to the RA filtered leapfrog scheme. When α = 0.5,

the LF-RAW preserves three-time-level mean, it is second-order accurate, yielding third-

order accuracy for the amplitude of the physical mode; however LF-RAW is unconditionally

unstable in this case. Nevertheless, with α slightly larger than 0.5, e.g., α = 0.53, LF-RAW

yields almost third-order accuracy for the amplitude of the physical mode (see [34, 48]).

The hoRA filtered leapfrog (LF-hoRA) applied to (2.1) is given by

vn+1 = un−1 + 2iω∆t vn (Leapfrog)

un = vn +
β

2
(vn+1 − 2vn + un−1)− β

2
(vn − 2un−1 + un−2) (high-order RA)

where v, u are the unfiltered and once filtered values, respectively, and β ∈ (0, 1). In the

limit of good time resolution, i.e., ω∆t� 1, the LF-hoRA scheme is generally second-order

accurate, and third-order accurate when β = 0.4 (see [33]).

2.1.2 The LF-hoRAW as a Linear Multistep Method

The hoRAW filtered leapfrog(LF-hoRAW) scheme applied (2.1) writes as the following

wn+1 = un−1 + 2iω∆t vn (LF)

un = vn +
αβ

2
(wn+1 − 2vn + un−1)− αβ

2
(vn − 2un−1 + un−2) (hoRA)

vn+1 = wn+1 +
β(α− 1)

2
(wn+1 − 2vn + un−1)− β(α− 1)

2
(vn − 2un−1 + un−2) (W)

where w, v, u are unfiltered, once filtered and twice filtered values, respectively and dimen-

sionless parameter β ∈ [0, 1] and α ∈ [0, 1]3.

3The LF-hoRA is recovered when α = 1.
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First we solve the linear system (LF)-(hoRA)-(W) for wn+1, vn , vn+1 in terms of

un, un−1, un−2, we obtain

vn =
un − 2αβun−1 + αβ

2
un−2

1− 3αβ
2

+ iω∆tαβ
,

vn+1 =(1 + 2αβ − 2β)un−1 −
αβ − β

2
un−2

+
4iω∆t+ 2iω∆tαβ − 2iω∆tβ − 3αβ + 3β

2− 3αβ + 2iω∆tαβ

(
un − 2αβun−1 +

αβ

2
un−2

)
.

Then identifying the expression for vn+1 with the one obtained from vn after shifting indeces

n→ n + 1, we infer that the hoRAW filtered leapfrog scheme is equivalent to the following

linear multistep method

un+1 =
(αβ + 3β

2

)
un + (1− 2β)un−1 −

(αβ − β
2

)
un−2

+ iω∆t
(
(2− β + αβ)un − 3αβun−1 + αβun−2

)
.

(2.2)

Therefore the numerical amplification factor A = un+1

un
of the LF-hoRAW method satisfies

the characteristic equation

A3 −
(αβ + 3β

2
+ (2 + αβ − β)iω∆t

)
A2

− (1− 2β − 3iω∆tαβ)A+
αβ − β

2
− iω∆tαβ = 0,

(2.3)

with one of the three roots, the physical mode, denoted by A+, and two computational

modes.4 The exact solution u(t) = exp(iωt)u(0) of oscillation equation (2.1) has the exact

amplification factor Aexact = exp(iω∆t). The behaviour of the exact and numerical amplifi-

cation factors of LF-hoRAW scheme in the complex plane is shown in Figure 2.2 for various

α and β. The exact amplification factor remains on the unit circle when ω∆t increases from

0 to 1. One of the computational modes of LF-hoRAW is amplified when ω∆t ≥ Σαβ(see

equation (2.4)) while the physical mode A+ of LF-hoRAW stays inside the unit circle, sim-

ilarly to the physical modes of AB3 [15, 16] and LF-hoRA [33]. The magnitudes of the

physical and computational modes of LF-hoRAW are shown in Figure 2.3 for various values

of α and β. This indicates that the LF-hoRAW scheme successfully controls the growth of

its computational modes within the stability interval.

4The roots of (2.3) are obtained using Matlab’s Symbolic Math Toolbox.
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Figure 2.2: The amplification factors of the physical mode (solid line) and two computational

modes (dotted line) of LF-hoRAW. From left to right: α = 0.3, 0.5, 0.7, 0.9, with β = 0.2

(top) and β = 0.4 (bottom).
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Figure 2.3: The magnitudes of the physical mode (solid line) and computational modes

(dotted line) of LF-hoRAW. From left to right: α = 0.3, 0.5, 0.7, 0.9, with β = 0.2 (top) and

β = 0.4 (bottom).
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2.1.3 The Consistency Order of LF-hoRAW

Using the Taylor expansions of u(tn+1), u(tn−1) and u(tn−2) at time tn, the local truncation

error of LF-hoRAW (2.2) writes

τn+1(∆t) =
1

∆t

(
u(tn+1)− αβ + 3β

2
u(tn)− (1− 2β)u(tn−1) +

αβ − β
2

u(tn−2)
)

− (2 + αβ − β)iωu(tn) + 3αβiωu(tn−1)− αβiωu(tn−2)

=
2 + 2β − 7αβ

6
(iω∆t)2u′(tn) +

28αβ − 6β

24
(iω∆t)3u′(tn) +O((iω∆t)4).

Therefore, the LF-hoRAW scheme exhibits third-order accuracy when α = 2+2β
7β

, otherwise

second-order.

2.1.4 The Stability Domain of LF-hoRAW

We determine the maximum interval of ω∆t for which all numerical amplification factors of

LF-hoRAW scheme are non-amplified using the root locus curve method [25]. The charac-

teristic equation of LF-hoRAW (2.2) is

ζ3 −
(αβ + 3β

2

)
ζ2 − (1− 2β)ζ +

(αβ − β
2

)
− z
(
(2 + αβ − β)ζ2 − 3αβζ + αβ

)
= 0

where ζ = exp(iθ), θ ∈ [0, 2π] represent the points on the unit circle, and z ∈ C is the

root locus curve (see Figure 2.4). The stability interval of LF-hoRAW is determined by the

intersection of the imaginary axis with the root locus curve z. Setting the real part of ζ to

zero gives

cos(θ) = 1 or cos(θ) =
5αβ − 4α− β + 2

4α
,

and

z = 0 or z = ±i(2 + αβ − β)
√
β + 8α− 5αβ − 2

2α(2− β)
√

2 + 5αβ − β
,

which are the intersections of the root locus curve with the imaginary axis. Therefore,

LF-hoRAW is stable provided

ω∆t ≤ Σαβ,
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Figure 2.4: Root locus curve of LF-hoRAW with various α and β.

where

Σαβ =
(2 + αβ − β)

√
β + 8α− 5αβ − 2

2α(2− β)
√

2 + 5αβ − β
, (2.4)

with β ∈ (0, 1) and α ∈ (0, 1]. For any given β ∈ (0, 1), the optimal value of α which

maximizes Σαβ is

αs =
4− 12β + 5β2 − 2

√
4 + 12β − 15β2 + 4β3

25β2 − 36β
. (2.5)

Hence, LF-hoRAW attains maximum stability when α = αs, i.e.,

ω∆t ≤ Σαsβ =

√
2
(√

1 + 4β + 1
) 1

2
(
17− 10β +

√
1 + 4β

) 3
2(

2− β
)(

13 + 5
√

1 + 4β
) 3

2

, (2.6)

(see also Figure 2.9). From equation (2.4) we also note that the method becomes unstable

when

α = 1− 2

β
or α =

2− β
8− 5β

.

Since for β ∈ (0, 1) we have 1 − 2
β
< 0 < 2−β

8−5β
< 1, henceforth we will only consider

α ∈ (αa, 1], where

αa =
2− β
8− 5β

. (2.7)
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We shall see in Section 2.3 that even if the scheme is unconditionally unstable when α = αa,

for slightly larger values α ' αa, the LF-hoRAW is conditionally stable and the solution

achieves almost sixth-order accuracy in amplitude. This phenomenon is similar to LF-RAW

[48]. The amplitudes of the physical mode of LF-hoRAW are plotted in Figure 2.5 for several

α ' αa, and given β = 0.2 and 0.4.
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Figure 2.5: The magnitude of physical mode amplitudes while α ' 2−β
8−5β

for β = 0.2 (left)

and β = 0.4(right).

2.2 CURVATURE EVOLUTION

This section gives a geometric interpretation of the hoRAW filter in terms of the curvature

evolution [28, 31]. We define the discrete curvature of ϕn by

κ(ϕn) = ϕn+1 − 2ϕn + ϕn−1.

Two discrete curvatures are computed at every time integration of the system (1.4), one

before and one after the time filter:

κnold = wn+1 − 2vn + un−1, κnnew = vn+1 − 2un + un−1.
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Figure 2.6 illustrates how the hoRAW time filter reduces the discrete curvature of the solu-

tion. After solving for wn+1 in the LF step (LF) the first solution curve is the continuous

line. The curvature obtained is κnold. Next, performing the (hoRA) and (W) steps leads to

the new solution curve (the dashed line of Figure 2.6), with curvature κnnew.

t
n-1

t
n

t
n+1

αβ

2
(κnold − κn−1new)

(α− 1)β

2
(κnold − κn−1new)

u
n-1

u
n

v
n

v
n+1

w
n+1

Figure 2.6: The hoRAW filter moves the inner and right outer points through displacements

αβ(κnold−κn−1
new )/2 and (1−α)β(κnold−κn−1

new )/2 , respectively, where α ∈ (αa, 1], β ∈ [0, 1]. The

standard hoRA filter moves only the inner point through a displacement β(κnold − κn−1
new )/2.

The next result shows that the hoRAW filter preserves the three-time-level mean of the

solution curve, and decreases the discrete curvature of the solution.

Proposition 2.2.1. For n ≥ 1, we have

κnnew ≤ max{κn−1
new , κ

n
old}

for all α ∈ [αa, 1], β ∈ [0, 1]. When α = 1/2, the hoRAW filter preserves the three-time-level

mean of the solution curves

vn+1 + un + un−1

3
=
wn+1 + vn + un−1

3
.
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Proof. The first step (hoRA) of the hoRAW filter is un = vn + βα
2
κnold −

βα
2
κn−1

new and the

second step (W) of the hoRAW filter is vn+1 = wn+1 + β(α−1)
2

κnold −
β(α−1)

2
κn−1

new . Then

κnnew = vn+1 − 2un + un−1

= (vn+1 − wn+1) + 2(vn − un) + (wn+1 − 2vn + un−1)

=
β(α− 1)

2
(κnold − κn−1

new ) + βα(κn−1
new − κnold) + κnold

=
β(α + 1)

2
κn−1

new +
(

1− β(α + 1)

2

)
κnold.

The claim follows by taking the maximum of {κn−1
new , κ

n
old}. Adding the (hoRA) and (W)

steps of the hoRAW filter, for α = 1/2, yields

vn+1 + un + un−1

3
=
wn+1 + vn + β(2α−1)

2
κnold −

β(2α−1)
2

κn−1
new + un−1

3

=
wn+1 + vn + un−1

3
,

hence the three-time-level means are preserved.

2.3 ERROR ANALYSIS FOR PHASE AND AMPLITUDE

We will derive the phase and amplitude errors of the LF-hoRAW scheme (2.2) using modified

equation [5, 20, 26, 46].

We define the following real constants Cαβ
1 , Cαβ

2 and Cαβ
3 , depending on α ∈ [αa, 1],

β ∈ [0, 1] as:

Cαβ
1 =

2 + 2β − 7αβ

6(2− β − αβ)
,

Cαβ
2 =

5αβ2 − 8αβ + 2β − β2

4(2− β − αβ)2
,

Cαβ
3 =

β3(113α3 + 54α2 − 101α + 18)− 2β2(169α2 − 112α + 9) + 4β(19α− 6)− 24

40(αβ + β − 2)3
,

(2.8)

and the three term modified equation of LF-hoRAW corresponding to (2.1):

x′(t) =
(

1− Cαβ
1 (iω∆t)2 + Cαβ

2 (iω∆t)3 + Cαβ
3 (iω∆t)4

)
iω x(t). (2.9)
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Proposition 2.3.1. The LF-hoRAW (2.2) is a fifth-order approximation to the modified

equation (2.9)

τ̂(∆t) = G(x)∆t5,

while only second-order approximation to the oscillation equation (2.1).

Proof. Consider a general three term modified equation corresponding to the oscillation

equation

y′(t) = iω y(t) + ∆t2g1

(
y(t)

)
+ ∆t3g2(y(t)) + ∆t4g3(y(t)). (2.10)

Then the local truncation error of LF-hoRAW (based on the modified equation, not on the

oscillation equation) is

τ̂n+1(∆t) =
1

∆t

[
y(tn+1)−

(αβ + 3β

2

)
y(tn)− (1− 2β)y(tn−1) +

(αβ − β
2

)
y(tn−2)

]
− (2 + αβ − β)iωy(tn) + 3αβiωy(tn−1)− αβiωy(tn−2).

Using the Taylor expansions of y(tn+1), y(tn−1), y(tn−2) at time tn, and substitute in y(i)(tn),

i = 1, . . . , 5, the local truncation error writes

τ̂n+1(∆t) =

(
(2− β − αβ)g1(y(tn)) +

αβ

2
iω3y(tn)− 2− 4αβ + 2β

6
iω3y(tn)

)
∆t2

+

(
(2− β − αβ)g2(y(tn)) + αβiωg′1(y(tn))y(tn) +

28αβ − 6β

24
ω4y(tn)

)
∆t3

+

(
(2− β − αβ)g3(y(tn)) + αβiωg′2(y(tn))y(tn) +

αβ

2
ω2g1(y(tn))

+
αβ

2
ω2g′1(y(tn))y(tn)− 2− 4αβ + 2β

6
ω2g1(y(tn))

− 4− 8αβ + 4β

6
ω2g′1(y(tn))y(tn) +

2− 81αβ + 14β

120
iω5y(tn)

)
∆t4 +O(∆t5).

Setting the coefficients of ∆t2, ∆t3 and ∆t4 to zero, we obtain that g1(y) = Cαβ
1 iω3y,

g2(y) = Cαβ
2 ω4y and g3(y) = Cαβ

3 iω5y, concluding the proof.
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Recall that the global error based on the modified equation (2.9) is x(tn) − un and it

coincides with the truncation error ∆t τ̂n(∆t) under the localizing assumption un−i = x(tn−i),

i = 1, 2, 3. Thus, we have

x(tn)− un = O(∆t6),

by Proposition 2.3.1. Therefore, the global error of LF-hoRAW

u(tn)− un = u(tn)− x(tn) + x(tn)− un = u(tn)− x(tn) +O(∆t6)

can be characterized by the difference between the curves u(t) and x(t).

Theorem 2.3.1. The phase and amplitude errors of the LF-hoRAW scheme applied to os-

cillation equation (2.1) are

R+ − 1 =
2 + 2β − 7αβ

6(2− β − αβ)
(ω∆t)2 +

[
β3(113α3 + 54α2 − 101α + 18)

40(αβ + β − 2)3

− 2β2(169α2 − 112α + 9)− 4β(19α− 6) + 24

40(αβ + β − 2)3

]
(ω∆t)4 +O

(
(ω∆t)6

)
,

|A+| − 1 =
5αβ2 − 8αβ + 2β − β2

4(2− β − αβ)2
(ω∆t)4 +O

(
(ω∆t)6

)
.

(2.11)

Proof. With the initial conditions u(0) = x(0) = 1, the exact solution of oscillation equation

(2.1) is u(t) = exp(iωt) and the exact solution to the modified equation (2.9) is

x(t) = exp(iωt+ Cαβ
1 iω3(∆t)2t+ Cαβ

2 ω4(∆t)3t+ Cαβ
3 iω5(∆t)4t)

= exp(Cαβ
2 ω4(∆t)3t)

(
cos
(
ωt+ Cαβ

1 ω3(∆t)2t+ Cαβ
3 ω5(∆t)4t

)
+ i sin

(
ωt+ Cαβ

1 ω3(∆t)2t+ Cαβ
3 ω5(∆t)4t

))
where Cαβ

1 , Cαβ
2 and Cαβ

3 are defined in (2.8). Thus, the phase and amplitude errors of the

LF-hoRAW method in one time step are

R+ − 1 =
arg
(
x(∆t)

)
arg
(
u(∆t)

) − 1 = Cαβ
1 (ω∆t)2 + Cαβ

3 (ω∆t)4 +O
(
(ω∆t)6

)
,

|A+| − 1 = |x(∆t)| − |u(∆t)| = | exp(Cαβ
2 (ω∆t)4)| − 1 = Cαβ

2 (ω∆t)4 +O
(
(ω∆t)6

)
,

in the limit of good time resolution ω∆t� 1.
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Remark 2.3.1. The phase and amplitude errors of the LF-hoRA [33] are recovered when

α = 1, and also the phase and amplitude errors of the leapfrog method are recovered when

α = 1, β = 0.

Remark 2.3.2. The LF-hoRAW method attains sixth-order accuracy in amplitude when

α = αa and fourth-order accuracy in phase when α = 2+2β
7β

. .

The amplitude and the relative phase change of the physical mode of LF-hoRAW are

illustrated in Figure 2.7 with various of α and β. Next, the summary of stability, accuracy

in terms of phase and amplitude, and conservation of three-time-level mean for LF-hoRAW

is presented in Table 2.1.
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Figure 2.7: Amplitude (top) and relative phase change (bottom) of the physical mode of

LF-hoRAW for α = 0.3, 0.5, 0.7, 0.9 with β = 0.2(left) and β = 0.4(right).
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Table 2.1: Summary of the conservation of three-time-level mean, stability, and accuracy

properties of the LF-hoRAW for some values of α.

α

Conserves three

time level mean Stability

Order of accuracy

Amplitude Phase*

= αa(2.7) No Unconditionally Unstable 6 2 (resp. 4)

' αa(2.7) No Conditionally Stable 4 2 (resp. 4)

1/2 Yes Conditionally Stable 4 2 (resp. 4)

1 No Conditionally Stable 4 2 (resp. 4)

* The phase is fourth-order when α = 2+2β
7β

.

2.4 COMPARISON OF LF-HORA, LF-HORAW AND AB3 METHODS

First we summarize the properties of the third-order methods LF-hoRA (β = 0.4) [33],

LF-hoRAW (α = 2+2β
7β

, β ∈ [0, 1]) and AB3 [15].

• The truncation errors are:

τn(∆t) =
11

30
(iω∆t)3u′(tn) +O((iω∆t)4) (hoRA, β = 0.4)

τn(∆t) =
β + 4

12
(iω∆t)3u′(tn) +O((iω∆t)4) (hoRAW, α = 2+2β

7β
)

τn(∆t) =
3

8
(iω∆t)3u′(tn) +O((iω∆t)4) (AB3)

When β ∈ [0, 0.4], we have that β+4
12
∈ [1

3
, 11

30
], therefore LF-hoRAW method has a smaller

truncation error compared to LF-hoRA and AB3.

• The methods are stable for:

ω∆t ≤ 0.69 (hoRA, β = 0.4)

ω∆t ≤ (16−5β)
√
β
√

16−8β−3β2

4
√

3(2−β)(1+β)
√
β+8

(hoRAW, α = 2+2β
7β

)

ω∆t ≤ 0.72 (AB3)

19



In long-time integrations, probably the most important quantities are the stability interval

and the amplitude accuracy. The comparison of stability regions determined by root locus

curves for LF-hoRAW, LF-hoRA and AB3 methods are plotted in Figure 2.8. The compar-

ison of stability and leading coefficient of amplitude error are shown in Figure 2.9.
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Figure 2.8: Root locus curves of LF-hoRA, LF-hoRAW and AB3 schemes. The stability

interval is given by the intersection of the root locus curve with the imaginary axis.
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Figure 2.9: Comparison of the coefficients C1β
2 , Cαaβ

2 (2.8) and CAB3 = 3/8 corresponding the

LF-hoRA, LF-hoRAW and AB3 amplitude errors (2.11) (left). Comparison of the maximum

stability for LF-hoRA (Σ1β), LF-hoRAW (see(2.6)) and AB3 (0.7236) (right).
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The phase and amplitude of the physical mode of LF-hoRAW, LF-hoRA and AB3 are il-

lustrated in Figure 2.10. We next compare the accuracy of amplitude and the stability

intervals of the second-order LF-hoRAW with the second and third-order LF-hoRA, and the

AB3 methods in Table 2.2, with some featured values of α and β.
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Figure 2.10: The comparison of amplitude (top) and relative phase (bottom) of physical

mode of LF-hoRA, LF-hoRAW and AB3.

From the Table 2.2 and Figure 2.9 we infer that the LF-hoRAW (β = 0.2, α = αs(β) ≡

0.4887) method exhibits about a twenty percent increase in stability compared to LF-hoRA

method, and twenty five percent compared to the three-level intrusive AB3 method. More-

over, the LF-hoRAW increases the amplitude accuracy by one significant digit. Also, when

β = 0.2, α = 0.27 ' αa(0.2) = 0.2571 and β = 0.4, α = 0.28 ' αa(0.2) = 0.2667 the increase

in amplitude accuracy is by two significant digits.
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Table 2.2: The comparison of LF-hoRAW, LF-hoRA and AB3 schemes with some featured

values of α and β

Method β α Order Amplitude Max. ω∆t

LF - - 2 1 1

LF-hoRA 0.2 - 2 1− .1016(ω∆t)4 0.7571

LF-hoRAW 0.2 0.27 2 1− .0015(ω∆t)4 0.3977

LF-hoRAW 0.2 0.3 2 1− .0050(ω∆t)4 0.6509

LF-hoRAW 0.2 0.4887 2 1− .0280(ω∆t)4 0.9078

LF-hoRAW 0.2 0.5 2 1− .0294(ω∆t)4 0.9075

LF-hoRA 0.4 - 3 1− .3056(ω∆t)4 0.6910

LF-hoRAW 0.4 0.28 2 1− .0036(ω∆t)4 0.3677

LF-hoRAW 0.4 0.3 2 1− .0091(ω∆t)4 0.5402

LF-hoRAW 0.4 0.4961 2 1− .0701(ω∆t)4 0.8256

LF-hoRAW 0.4 0.5 2 1− .0714(ω∆t)4 0.8255

AB3 - - 3 1− .3750(ω∆t)4 0.7236

19.9%

25%19.4%

14%

2.5 NUMERICAL TESTS

We present three numerical tests on the LF-hoRAW, LF-hoRA and the AB3 methods to

validate the stability and error analysis presented in previous section.

2.5.1 Simple Pendulum

Consider a simple pendulum problem, given by the following two coupled nonlinear equations

(see [33, 50])

dθ

dt
=
v

L
,

dv

dt
= −g sin θ,

(2.12)
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where θ, v, L and g denote, respectively, the angular displacement, velocity along the arc, 

length of the pendulum, and the acceleration due to gravity.

     Set the initial condition (θ(0), v(0)) = (0.9π, 0) close to the unstable equilibrium point, g = 

9.8, L = 49, and numerically integrate the third-order LF-hoRA (α = 1, β = 0.4), the third-

order AB3, and the second-order LF-hoRAW (α = 0.3, β = 0.4) over the time interval [0, 400], 

with the time step ∆t = 0.5. The fourth-order Runge-Kutta method is used to initialize the 

second and third steps for hoRA, hoRAW and AB3. We then compare the results with the 

reference solution, which computed using the adaptive RK4-5 method with the relative error 

tolerance 10−10 and absolute error tolerance 10−15. The comparison is shown in Figure 2.11. 

The plots show that the LF-hoRA and AB3 damp the amplitude, and the phase errors are 

relatively large. The hoRAW filter preserves the phase and amplitude, with high accuracy, for 

a long-time period.
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Figure 2.11: Numerical solution to the simple pendulum problem, computed by LF-hoRA

(β = 0.4), AB3 and LF-hoRAW (α = 0.3, β = 0.4) methods, are compared with the

reference solution of the adaptive RK4-5 method with relative error tolerance 10−10 and

absolute error tolerance 10−15. The initial condition is (θ(0), v(0)) = (0.9π, 0), and the time

step is ∆t = 0.5.
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2.5.2 Ozone Photochemistry

We consider a classic example from chemical reaction (see e.g., [27, 33]) between atomic

oxygen(O), nitrogen oxides (NO and NO2), and ozone (O3):

NO2 + hν
k1→ NO +O,

O +O2
k2→ O3,

NO +O3
k3→ O2 +NO2,

where hν denotes a photon of solar radiation. Assuming that the background concentration

of O2 is constant, the concentration c = (c1, c2, c3, c4), in molecules per cubic centimeter, of

O, NO, NO2 and O3, modeling the chemical reactions above, satisfies the system:

dc1

dt
= k1c3 − k2c1,

dc2

dt
= k1c3 − k3c2c4,

dc3

dt
= k3c2c4 − k1c3,

dc4

dt
= k2c1 − k3c2c4.

We choose5

k1 = 10−2 max{0, sin(2πt/td}s−1,

k2 = 10−2s−1, k3 = 10−16cm3molecule−1s−1,

as in [33], where td is the length of 1 day in seconds, and the initial condition c0 = (0, 0, 5×

1011, 8 × 1011) molecules cm−3 at t = 0. The reference solution is computed using the

adaptive RK4-5 method, with the same error tolerances as before. We compare two numerical

solutions, LF-hoRA(β = 0.4) and LF-hoRAW(α = 0.3, β = 0.4), computed with the time

step ∆t = 45 second. The chemical concentrations over the next 48 hours are shown in

Figure 2.12. The LF-hoRAW method is able to capture the behaviour of concentrations

with reasonable accuracy.

5k2 is chosen to make chemical reaction equations non-stiff instead of 105 as in [33]
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Figure 2.12: Numerical solutions for chemical concentrations, computed using LF-hoRAW

(α = 0.3, β = 0.4) and LF-hoRA(β = 0.4), are compared with the reference solutions

obtained from adaptive RK4-5 method with relative error tolerance 10−10 and absolute tol-

erance 10−15. The initial condition is c0 = (0, 0, 5× 1011, 8× 1011) molecules cm−3 at t = 0

with time step ∆t = 45 second.

2.5.3 Lorenz System

Consider the Lorenz system:

dX

dt
= σ(Y −X),

dY

dt
= −XZ + rX − Y,

dZ

dt
= XY − bZ,

(2.13)
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with σ = 12, r = 12, b = 6, and the initial condition (X0, Y0, Z0) = (−10,−10, 25), as in

[15, 33]. The system is numerically integrated over the time interval [0, 5] using the third-

order LF-hoRAW (α = 34/49, β = 0.7), the third-order LF-hoRA (β = 0.4) and the third-

order AB3 methods. The reference solution is computed with the adaptive RK4-5 method,

using the same error tolerance as in 2.5.1. The numerical solutions of X are plotted in Figure

2.13 with various time steps ∆t = 0.025, 0.029, 0.035 and 0.045. The augmented stability

property of LF-hoRAW is exhibited as the time step is increased, pushing the LF-hoRA and

AB3 to become unstable and it also shows that the third-order LF-hoRAW is as accurate

the third-order LF-hoRA and AB3 methods.
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Figure 2.13: Computed numerical solutions to the Lorenz system with LF-hoRA(β = 0.4),

LF-hoRAW(α = 34/49, β = 0.7) and AB3 with constant time step ∆t = 0.025(top left),

∆t = 0.029(top right) and ∆t = 0.035(bottom left), ∆t = 0.045(bottom right).
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2.6 SUMMARY

We have constructed and analyzed a higher order Robert-Asselin-Williams time filter. The

LF solution is once-filtered in the (hoRA) step and twice-filtered in the (W) step. The LF-

hoRAW has an increased stability and accuracy of amplitude when compared to LF-RA,

LF-RAW, LF-hoRA and AB3 (see Figure 2.1, and Table 2.2, Figure 2.9). The effect of

the twice-filtering with the Williams’ step (W) is the increase by almost twenty percent in

stability, compared to the only once-filtered LF-hoRA. The LF-hoRAW recovers the full-

stability of LF when α = αs, β = 0 unlike the hoRA filtered LF method (see Figure 2.9).

The LF-hoRAW can achieve almost sixth-order accuracy in amplitude when α ' αa(β) ( see

Theorem 2.3.1). The increase in amplitude accuracy is by two significant digits for the specific

values β = 0.2, α = 0.27 ' αa(0.2) = 0.2571 and β = 0.4, α = 0.28 ' αa(0.2) = 0.2667.

The hoRAW is an efficient and accurate post-process which successfully controls the growth

of the computational modes and may be suitable for long-time simulations of weather and

climate models.
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3.0 THE GENERAL HIGH-ORDER ROBERT-ASSELIN TIME FILTER

In this chapter, we derive phase and amplitude error for general high-order Robert-Asselin

(ghoRA) time filter proposed by Li in his PhD thesis [32]. We first briefly recall the properties

of ghoRA.

3.1 PREVIOUS WORK

The ghoRA filtered leapfrog scheme applied to oscillation equation (2.1) is given by

vn+1 = un−1 + 2iω∆t vn (LF)

un = vn + an+1vn+1 + anvn +
k∑
j=1

an−jun−j, k ≥ 1. (ghoRA)

where aj, j = n + 1, n, ..., n− k are coefficient to be determined by Taylor expansion and v

and u are unfiltered and once filtered values, respectively.

Theorem 3.1.1. The general high-order Robert-Asselin (ghoRA) filtered leapfrog (LF) scheme

(LF-ghoRA) is equivalent to following linear multistep method

un+1 − an+1un − (1 + an)un−1 −
k∑
j=1

an−jun+1−j = 2iω∆t
(
un −

k∑
j=1

an−jun−j
)

(3.1)

for all k = 1, 2, · · · , n.
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Proof. Solving (LF) and (ghoRA) for vn, we get

vn =
un − an+1un−1 −

∑k
j=1 an−jun−j

1 + 2iω∆tan+1 + an
. (3.2)

Similarly, solving (LF) and (ghoRA) for vn+1, we obtain

vn+1 =
(1 + an)un−1 + 2iω∆tun − 2iω∆t

∑k
j=1 an−jun−j

1 + an + 2iω∆tan+1

(3.3)

Take n→ n+ 1 in (3.2) and set to (3.3) gives the (3.1).

Theorem 3.1.2. The linear multistep method (3.1) is consistent if and only if the following

two condition holds,

k∑
j=−1

an−j = 0,
k∑
j=0

(j + 1)an−j = 0. (3.4)

Furthermore, the linear multistep method (3.1) is pth-order accurate for any 1 < p ≤ k + 1

if and only if the condition (3.4) holds and following condition for ` = 2, · · · , p are satisfied,

an +
k∑
j=1

an−j
(
(j − 1)` + 2`(j)`−1

)
= (−1)` − 1 (3.5)

Proof. The local truncation error of LF-ghoRA is

∆tτn =u(tn+1)− an+1un − (1 + an)un−1 −
k∑
j=1

an−jun+1−j

− 2iω∆t
(
un −

k∑
j=1

an−jun−j
)
.

(3.6)

Apply Taylor expansion at time tn for any j ≥ 1 and assume that all numerical solution at

previous time are exact i.e. um = u(tm) for m = 1, · · · , n where tm = m∆t, then

u(tn−j) =

p∑
`=0

(−j∆t)`

`!
u (`)(tn) +O(∆tp+1).
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Substitute u(tn−j) and u(tn+1−j) in (3.6) and eliminate higher order terms with O(∆tp+1),

∆tτn =

(
−

k∑
j=−1

an−j

)
un +

(
k∑
j=0

an−j(j + 1)

)
∆tu ′n

+

p∑
`=2

(
1− (1 + an)(−1)` −

k∑
j=1

an−j
(
(1− j)` − 2`(−j)`−1

)) ∆t`

`!
u (`)
n +O(∆tp+1).

The consistency condition (3.4) follows by setting the coefficients of un and u ′n equal to 0.

The additional condition (3.5) for pth-order accuracy is obtained by setting the coefficient of

u
(`)
n to 0 for all ` = 2, . . . , p, i.e.,

1− (1 + an)(−1)` −
k∑
j=1

an−j
(
(1− j)` − 2`(−j)`−1

)
= 0

=⇒ an +
k∑
j=1

an−j
(
(j − 1)` + 2`(j)`−1

)
= (−1)` − 1.

3.2 ERROR ANALYSIS

In this section, we derive the phase and amplitude errors of the LF-ghoRA scheme (3.1) using

the notion of modified equation, an idea related to backward error analysis. The concept is

to view the numerical solution of LF-ghoRA not as an approximate solution to oscillation

equation (2.1), but as an exact solution to a nearby equation, called modified equation.

Proposition 3.2.1. The two term modified equation of oscillation equation (2.1) for pth-

order accurate LF-ghoRA with initial value u(0) = x(0) = 1 is

x′(t) = iωx(t) + C1(iω∆t)piωx(t) + C2(iω∆t)p+1iωx(t), (3.7)
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where C1 and C2 are defined as;

C1 =

(
− 1 + (1 + an)(−1)p+1 +

∑k
j=1 an−j

(
(1− j)p+1 − 2(p+ 1)(−1)pjp

))
(2 + an −

∑k
j=1 an−j(1− j))(p+ 1)!

,

C2 =
−1 + (1 + an)(−1)p+2 +

∑k
j=1 an−j

(
(1− j)p+2 − 2(p+ 2)(−1)p+1jp+1

)(
2 + an −

∑k
j=1 an−j(1− j)

)
(p+ 2)!

+

(
an +

∑k
j=1 an−j(1− j)2

)
C1

2
(

2 + an −
∑k

j=1 an−j(1− j)
) .

Proof. Consider general two term modified equation of oscillation equation for LF-ghoRA,

x′(t) = iωx(t) + ∆tpg1(x(t)) + ∆tp+1g2(x(t)).

Therefore,

x′′(t) = −ω2x(t) + iω∆tpg1(x(t)) + iω∆tpg′1(x(t))x(t) +O(∆tp+1),

x′′′(t) = −iω3x(t) +O(∆tp).

Similarly,

x(q)(t) = (iω)qx(t) +O(∆tp+3−q) for all q = 4, . . . , p+ 2.

The local truncation error (LTE) of two term modified equation is

∆tτn =x(tn+1)− an+1un − (1 + an)un−1 −
k∑
j=1

an−jun+1−j

− 2iω∆t
(
un −

k∑
j=1

an−jun−j
)
.

Assume that all previous numerical solution are exact, i.e. um = x(tm) for m = 1 · · ·n, then

∆tτn =

p+2∑
`=0

h`

`!
x(`)(tn)− an+1x(tn)− (1 + an)

p+2∑
`=0

(−∆t)`

`!
x(`)(tn)

−
k∑
j=1

an−j

p+2∑
`=0

((1− j)∆t)`

`!
x(`)(tn)− 2iω∆tx(tn)

+ 2iω∆t
k∑
j=1

an−j

p+2∑
`=0

(−j∆t)`

(`)!
x(`)(tn) +O(∆tp+3).
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Use condition of pth-order scheme given in (3.4) and (3.5), then all term are telescoping and

cancel each other up to ∆tp+1. Thus, LTE reduced to

∆tτn =

(
1− (1 + an)(−1)p+1 −

k∑
j=1

an−j(1− j)p+1

+ 2(p+ 1)(−1)p
k∑
j=1

jpan−j

)
∆tp+1

(p+ 1)!
(iω)p+1x(tn)

+

(
2 + an −

k∑
j=1

an−j(1− j)

)
∆tp+1g1(x(tn))

+

(
1− (1 + an)(−1)p+2 −

k∑
j=1

an−j(1− j)p+2

+ 2(p+ 2)(−1)p+1

k∑
j=1

jp+1an−j

)
∆tp+2

(p+ 2)!
(iω)p+2x(tn)

+

(
−4

k∑
j=1

jan−j − an −
k∑
j=1

an−j(1− j)2

)
iω

∆tp+2

2
g1(x(tn))

+

(
2 + an −

k∑
j=1

an−j(1− j)

)
∆tp+2g2(x(tn))

+

(
−an −

k∑
j=1

an−j(1− j)2

)
iωg′1(x(tn))x(tn)

∆tp+2

2
+O(∆tp+3).

The claim follows by setting coefficient of ∆tp+1 and ∆tp+2 to zero.

Theorem 3.2.1. The phase and amplitude error of pth-order accurate LF-ghoRA is

R+ − 1 =

C2(iω∆t)p+1 +O(∆tp+3), when p is odd

C1(iω∆t)p +O(∆tp+2), when p is even

|A+| − 1 =

C1(iω∆t)p+1 +O(∆tp+3), when p is odd

C2(iω∆t)p+2 +O(∆tp+4), when p is even

Proof. Consider the exact solution of oscillation and modified equation with initial value

u(0) = x(0) = 1,

u(t) = exp(iωt),

x(t) = exp
(
iωt+ C1(iω)p+1∆tpt+ C2(iω)p+2∆tp+1t

)
.
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Case 1: p is even.

The phase and amplitude error are

R+ − 1 =
arg(x(t))

arg(u(t))
− 1 =

ωt+ C1(iω)p+1∆tpt

ωt
− 1 = C1(iω∆t)p +O(∆tp+2)

|A+| − 1 = |x(t)| − |u(t)| = | exp(iωt+ C1(iω)p+1∆tpt+ C2(iω)p+2∆tp+1t)| − 1

= | exp(C2(iω)p+2∆tp+1t)| − 1.

Using approximation exp(C2(iω)p+2∆tp+1t) ≈ 1 + C2(iω)p+2∆tp+1t since |iω∆t| � 1 and

taking t = ∆t for local truncation error, we obtain

|A+| − 1 = | exp(C2(iω)p+2∆tp+1∆t)| − 1 = C2(iω∆t)p+2 +O(∆tp+4).

Case 2: p is odd.

The phase and amplitude error are

R+ − 1 =
arg(x(t))

arg(u(t))
− 1 =

ωt+ C2(iω)p+2∆tp+1t

ωt
− 1 = C2(iω∆t)p+1 +O(∆tp+3)

|A+| − 1 = |x(t)| − |u(t)| = | exp(iωt+ C1(iω)p+1∆tpt+ C2(iω)p+2∆tp+1t)| − 1

= | exp(C1(iω)p+1∆tpt)| − 1.

Similarly, exp(C1(iω)p+1∆tpt) ≈ 1 + C1(iω)p+1∆tpt since |iω∆t| � 1 and taking t = ∆t for

local truncation error, we obtain

|A+| − 1 = | exp(C1(iω)p+1∆tp∆t)| − 1 = C1(iω∆t)p+1 +O(∆tp+3).

Corollary 3.2.1. In particular Proposition (3.2.1) and Theorem (3.2.1) holds for second-

order hoRA and fourth-order hoRA(see [32] for detail).
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Proof. First we consider the general form of second-order hoRA with p = 2 and k = 2,

vn+1 = un−1 + 2∆t f(vn),

un = vn + an+1vn+1 + anvn + an−1un−1 + an−2un−2

where

an+1 =
β

2
, an = −3β

2
, an−1 =

3β

2
, an−2 = −β

2
.

Therefore,

C1 =

(
− 1 + (1 + an)(−1)2+1 +

∑2
j=1 an−j

(
(1− j)2+1 − 2(2 + 1)(−1)2j2

))
(2 + 1)!(2 + an −

∑2
j=1 an−j(1− j))

=

(
− 2− an − 6an−1 − 25an−2

)
6(2 + an + an−2)

=
5β − 2

12(1− β)
.

Substitute C1 in C2, we obtain,

C2 =

(
− 1 + (1 + an)(−1)4 + an−1

(
− 2(4)(−1)313 + an−2

(
(−1)4 − 2(4)(−1)323

))
(2 + an − an−1(1− 1)− an−2(1− 2)) (4)!

+
(an + an−2(1− 2)2)C1

2 (2 + an − an−2(1− 2))

=
an + 8an−1 + 65an−2

24(2 + an + an−2)
+

(an + an−2)C1

2 (2 + an + an−2)

=
2β2 − 3β

8(1− β)2
.

Since p is even then phase and amplitude error are

R+ − 1 = C1(iω∆t)2 +O(∆t4) =
2− 5β

12(1− β)
(ω∆t)2 +O((ω∆t)4),

|A+| − 1 = C2(iω∆t)4 +O(∆t6) =
2β2 − 3β

8(1− β)2
(ω∆t)4 +O((ω∆t)6).

We next consider the general form of fourth-order hoRA for k = 3 and p = 4,

vn+1 = un−1 + 2∆t f(vn),

un = vn + an+1vn+1 + anvn + an−1un−1 + an−2un−2 + an−3un−3

34



with coefficients

an+1 =
15

53
, an =

−56

53
, an−1 =

78

53
, an−2 =

−48

53
, an−3 =

11

53
.

Therefore C1 and C2 are found to be,

C1 =
−2− an − 10an−1 − 161an−2 − 842an−3

120(2 + an + an−2 + 2an−3)
= −0.8208,

C2 =
an + 12an−1 + 385an−2 + 2980an−3

720(2 + an + an−2 + 2an−3)
+

an + an−2 + 4an−3

2(2 + an + an−2 + 2an−3

C1 = 1.9045.

Since p is even then phase and amplitude error are

R+ − 1 = −0.8208(ω∆t)4 +O((ω∆t)6),

|A+| − 1 = −1.9045(ω∆t)6 +O((ω∆t)8).

Remark 3.2.1. The phase and amplitude of second-order hoRA was founded by using Taylor

expansion of physical mode and fourth-order hoRA was computed by estimating limit of

physical mode while ω∆t approaches to zero (see [32] for detail).

3.3 SUMMARY

We derived phase and amplitude error of pre-determined order of accuracy for general high-

order Robert-Asselin time filter using notion of modified equation. In particular, we recovered

error analysis for second- and fourth-order hoRA.
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4.0 BACKWARD EULER PLUS FILTER

In this chapter, we have investigate the effect of simple time filter used with implicit backward

Euler method. The work of this chapter is based on [22]. The fully implicit or backward

Euler method is one of the first method commonly implemented when extending a code for

the steady state problem and often the method of last resort for complex applications. The

issue can then arise of how to increase numerical accuracy in a complex, possibly legacy

code without implementing a better method. We show herein that adding one line of code

to backward Euler reduces discrete curvature of the solution, increases accuracy from first to

second-order, gives an immediate error estimator and induces a method akin to the second-

order backward differentiation formula (BDF2). The effect of each step in the combination

of 2-step is conceptually clear. The combination also extends easily to variable time step.

Consider the discretization of initial value problem (1.1) by the standard backward Euler

(fully implicit) method followed by a simple time filter (next for constant time step)

Step 1 :
vn+1 − un

∆t
= f(vn+1),

Step 2 : un+1 = vn+1 −
ν

2
{vn+1 − 2un + un−1} .

(4.1)

where v and u denote unfiltered and once filtered values, respectively. Denote the nth variable

time step by ∆tn and algorithm parameter by ν. Define tn+1 = tn+∆tn and τ = ∆tn/∆tn−1.

Step 2 is the only 3-point filter for which the combination of backward Euler plus a

time filter produces a consistent approximation and the combination achieves second-order

accuracy for ν = 2/3 (Proposition 4.1.1). Tests in Section 4.4 confirm the theoretical pre-

diction of good accuracy with ν = 2/3. They also show (surprisingly) that, in this specific

combination, filtering every time step reduces numerical dissipation.
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The combination (4.1) is 0-stable for −2 ≤ ν < 2 and A-stable for −2/3 ≤ ν ≤ 2/3 (Propo-

sition 4.1.2). The local truncation error (LTE) for the combination when ν = 2/3 is

LTE = −5

6
∆t3u

′′′
(tn) +O(∆t4).

The constant 5/6, while larger than the smallest error constant 1/12 obtained from Crank-

Nicolson for second-order and A-stable methods [9], is moderate. Since Step 2 with ν = 2/3

has greater accuracy than Step 1, the pre- and post-filter difference

EST = ‖un+1 − vn+1‖ (4.2)

can be used in a standard way as an estimator. The variable time step case is considered in

Section 4.2 based on a definition of discrete curvature and the curvature reducing filter in

Step 2:

Step 1 :
vn+1 − un

∆tn
= f(vn+1),

Step 2 : un+1 = vn+1 −
ν

2

{
2∆tn−1

∆tn + ∆tn−1

vn+1 − 2un +
2∆tn

∆tn + ∆tn−1

un−1

}
.

(4.3)

For second-order accuracy of (4.3), the choice of ν depends on τ = ∆tn/∆tn−1 and given

by ν = τ(1 + τ)/(1 + 2τ) (Proposition 4.2.2). The filter step reduces the discrete curvature

(Definition 4.2.1) at the three points (tn+1, un+1), (tn, un), (tn−1, un−1) provided 0 < ν < 1+τ

(Proposition 4.2.1). The special value of ν = 2/3 for constant time step induces a one-leg,

two-step, second-order accurate and strongly A-stable method which is given by

3

2
un+1 − 2un +

1

2
un−1 = ∆t f(

3

2
un+1 − un +

1

2
un−1). (4.4)

For general ν and variable time step, the equivalent linear multistep method is given in (4.13). 

The left hand side of (4.4) is the same as BDF2. The right hand side differs from BDF2 by

3

2
u(tn+1)− u(tn) +

1

2
u(tn−1) = u(tn+1) +O(∆t2).

Remark 4.0.1. The filter with ν = 1 + τ is inconsistent since it forces un+1 to be the

linear extrapolation of un, un−1. Thus we assume ν 6= 1 + τ . Filtering twice is equivalent to

increasing the value of the filter parameter ν → ν(2− ν
2
) and filtering once.
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Remark 4.0.2. The two-step leapfrog scheme is commonly used in geophysical fluid dy-

namics simulations. The main issue it faces is an undamped computational mode, known

as a time-splitting instability, [15]. Time filters centered at tn rather than tn+1, are often

used in those simulations to reduce oscillations caused by this computational mode ( see e.g.

[2, 42, 48, 49]). The first time filter, proposed by Robert [42] and analyzed by Asselin [2], is

called Robert-Asselin (RA) filter. The combination of RA filter with leapfrog is given by

Step 1 :
vn+1 − un−1

2∆t
= f(vn) (LF)

Step 2 : un = vn +
ν

2
{vn+1 − 2vn + un−1} , ν ' 0.1. (RA)

The extension of the RA filter to variable time steps based on Section 4.2 is

un = vn +
ν

2

{
2∆tn−1

∆tn + ∆tn−1

vn+1 − 2vn +
2∆tn

∆tn + ∆tn−1

un−1

}
.

While this combination of leapfrog plus RA filter controls the computational mode it also over-

damps the physical mode and degrades the amplitude error to first-order, [50]. Williams [48]

developed a second filter step that increased the amplitude accuracy to third-order, conserved

three-time-level solution mean and increased the predictability horizon of the discretized sys-

tem. This combination, known as the RAW filter, is now nearly universally used in atmo-

sphere simulations. For a one-step method, filters centered at tn, like the RA filter, post

process the computed solution but do not alter the evolution of the approximate solution.

(The value of yn is changed after un is used to calculate un+1. The changed value is not

used thereafter.) For that reason the filter is shifted to tn+1 herein for use with single step

methods.

4.1 CONSTANT TIME STEP

We develop the properties of the method for constant time step in this section.
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4.1.1 Derivation of the Method

Consider backward Euler plus a general 3-point time filter

Step 1 :
vn+1 − un

∆t
= f(vn+1),

Step 2 : un+1 = vn+1 + {avn+1 + bun + cun−1}.
(4.5)

Proposition 4.1.1. Let the time step be constant and ν 6= 2; (4.5) is consistent if and only

if a = −ν
2
, c = −ν

2
, b = ν for some ν. Thus, the step 2 of (4.5) is

un+1 = vn+1 −
ν

2
(vn+1 − 2 un + un−1) . (4.6)

In this case, the combination of 2-step gives following equivalent linear multistep method;

1

1− ν
2

un+1 −
1 + ν

2

1− ν
2

un +
ν
2

1− ν
2

un−1 =

= ∆t f(
1

1− ν
2

un+1 −
ν

1− ν
2

un +
ν
2

1− ν
2

un−1).

(4.7)

The combination is second-order accurate if and only if ν = 2/3.

Proof. Eliminating vn+1 = 1
1+a

(un+1 − bun − cun−1) yields the equivalent one-leg, linear mul-

tistep method for the post-filtered values

1

1 + a
un+1 −

1 + a+ b

1 + a
un −

c

1 + a
un−1 = ∆t f(

1

1 + a
un+1 −

b

1 + a
un −

c

1 + a
un−1).

A Taylor series calculation shows that consistency requires

a+ b+ c = 0 and a = c.

Thus, the method is consistent when

c = a and b = −2a.

Taking a = ν/2 gives (4.6) and (4.7). The same Taylor series expansion for second-order

accuracy yields c = −1/3 corresponding to ν = 2/3 as claimed.
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4.1.2 Stability for Constant Time Step

The general two-step method obtained from(1.2) with k = 2 is given by

α0un+1 + α1un + α2un−1 = ∆t f(β0un+1 + β1un + β2un−1). (4.8)

The equivalent linear multistep method (4.7) corresponds to (4.8) with coefficients

α0 =
1

1− ν
2

, α1 = −
1 + ν

2

1− ν
2

, α2 =
ν
2

1− ν
2

,

β0 =
1

1− ν
2

, β1 = − ν

1− ν
2

, β2 =
ν
2

1− ν
2

.

The A-stability of general two-step methods (4.8) are characterized in terms of their

coefficients in [10, 11, 13, 21, 37]. In this section and the following one we apply the charac-

terization for variable time step in [11], which states that the method is A-stable if
−α1 ≥ 0,

1− 2β1 ≥ 0,

2(β0 − β2) + α1 ≥ 0.

(4.9)

Proposition 4.1.2. The linear multistep method (4.7) is 0-stable for −2 ≤ ν < 2 and

A-stable for

−2

3
≤ ν ≤ 2

3
.

Proof. For 0-stability, the associated polynomial

1

1− (ν/2)
z2 − 1 + (ν/2)

1− (ν/2)
z +

(ν/2)

1− (ν/2)
= 0

has roots

z± = 1,
ν

2

from which 0-stability follows for −2 ≤ ν < 2.

We apply the characterization (4.9) to show A-stability for −2 ≤ ν < 2. A short calculation

show the first condition −α1 ≥ 0 holds if and only if ν ≥ −2. The second condition

1 − 2β1 ≥ 0 holds if and only if ν ≥ −2
3
. The third condition 2(β0 − β2) + α1 ≥ 0 holds if

and only if ν ≤ 2
3
.
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For ν = 2/3, the stability region of (4.1) is computed by root locus curve method, e.g.,

[19, 24], and presented in Figure 4.1. For comparison, Figure 4.2 presents the stability region

boundaries of backward Euler, backward Euler plus filter and BDF2. The boundaries of the

stability regions in Figure 4.2 suggest that all three methods comparably dissipative with

backward Euler plus filter the most dissipative. This is incorrect. Tests with periodic and

quasi-periodic solution in Section 4.4 show that BDF2 and backward Euler plus filter are

comparably dissipative. In these tests, both are significantly less dissipative than backward

Euler.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5
BE+Filter

Stability Region

Figure 4.1: Stability region of backward Euler plus time filter
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Figure 4.2: Boundaries of Stability Regions

4.2 VARIABLE TIME STEP

Since backward Euler is a one-step method its extension to variable time step is clear. Thus,

the key to a variable time step realization of the method (4.5) is to extend the time filter

(4.6) to variable time step.

4.2.1 Time Filter for Variable Time Step

To extend time filters to variable time step, we must first define the discrete curvature.

The extension of differential geometry to discrete setting is an active research field with
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considerable work on discrete curvature, e.g., [36]. For three points the natural definitions

are either the discrete second difference or the inverse of the radius of the interpolating

circle. We employ the former scaled by ∆tn−1∆tn in order to be consistent with work in

geophysical fluid dynamics [29, 49]. Let the standard Lagrange basis functions for tn−1, tn,

tn+1 be `n−1(t), `n(t), `n+1(t), respectively. The quadratic interpolant polynomial φ, from

which a discrete curvature is calculated, through the points (tn−1, un−1), (tn, un), (tn+1, un+1)

is

φ(t) = un+1`n+1(t) + un`n(t) + un−1`n−1(t).

Definition 4.2.1. The discrete curvature at (tn−1, un−1), (tn, un), and (tn+1, un+1) is

κ = ∆tn−1∆tnφ
′′ =

2∆tn−1

∆tn + ∆tn−1

un+1 − 2un +
2∆tn

∆tn + ∆tn−1

un−1

=
2

1 + τ
un+1 − 2un +

2τ

1 + τ
un−1.

The extension of (4.6) to variable time step is

un+1 = vn+1 −
ν

2

{
2

1 + τ
vn+1 − 2un +

2τ

1 + τ
un−1

}
. (4.10)

Proposition 4.2.1 shows that the step (4.10) is curvature reducing. This establishes that

Step 2 does not introduce oscillatory instabilities.

Proposition 4.2.1. For (4.10) the discrete curvature before, κold, and after, κnew, filtering

satisfies

κnew = (1− ν

1 + τ
)κold.

It reduces, without changing sign, the discrete curvature, |κnew| < |κold|, provided

0 < ν < 1 + τ.
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Proof. First multiply (4.10) through by 2
1+τ

, we get

2

1 + τ
un+1 =

2

1 + τ
vn+1 −

ν

2
· 2

1 + τ

{
2

1 + τ
vn+1 − 2un +

2τ

1 + τ
un−1

}
. (4.11)

Then, adding −2un + 2τ
1+τ

un−1 to both sides of (4.11) gives

2

1 + τ
un+1 − 2un +

2τ

1 + τ
un−1 = (1− ν

1 + τ
)

{
2

1 + τ
vn+1 − 2un +

2τ

1 + τ
un−1

}
.

Thus, we obtain

κnew = (1− ν

1 + τ
)κold.

Curvature reduction holds provided 0 < ν
1+τ

< 1, as claimed.

4.2.2 The Local Truncation Error

Since Step 1 and Step 2 are now well defined for variable time step, the method is determined.

It is as follows:

Step 1 :
vn+1 − un

∆tn
= f(vn+1),

Step 2 : un+1 = vn+1 −
ν

2

{
2

1 + τ
vn+1 − 2un +

2τ

1 + τ
un−1

}
.

(4.12)

Step 2 in (4.12) is used to solve for vn+1 = 1+τ
1+τ−νun+1−ν 1+τ

1+τ−νun+ τν
1+τ−νun−1 and eliminate

vn+1 in Step 1. This gives the equivalent two-step method

1 + τ

1 + τ − ν
un+1 − ν

1 + τ

1 + τ − ν
un +

τν

1 + τ − ν
un−1 − un =

= ∆tn f(
1 + τ

1 + τ − ν
un+1 − ν

1 + τ

1 + τ − ν
un +

τν

1 + τ − ν
un−1).

(4.13)

This corresponds to a linear multistep method (4.8) with coefficients

α0 =
1 + τ

1 + τ − ν
, α1 = −1 + τ + ντ

1 + τ − ν
, α2 =

τν

1 + τ − ν
,

β0 =
1 + τ

1 + τ − ν
, β1 = −ν 1 + τ

1 + τ − ν
, β2 =

τν

1 + τ − ν
.

(4.14)
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Proposition 4.2.2. The variable time step method (4.13) is consistent for ν 6= 1 + τ . It is

second-order accurate provided

ν =
τ(1 + τ)

1 + 2τ
. (4.15)

Moreover, the local truncation error (LTE) for ν = τ(τ+1)
1+2τ

is

LTE = −(1 + 4τ)

6τ
∆t3nu

′′′(tn) +O(∆t4n). (4.16)

Proof. By a Taylor expansion, the method is consistent if and only if

1 + τ

1 + τ − ν
+ (−ν 1 + τ

1 + τ − ν
− 1) +

τν

1 + τ − ν
= 0,

and
1 + τ

1 + τ − ν
− 1

τ

τν

1 + τ − ν
− (

1 + τ

1 + τ − ν
− ν 1 + τ

1 + τ − ν
+

τν

1 + τ − ν
) = 0.

These two consistency conditions identically hold. By the same expansion, the method is

second-order accurate if and only if

τ 2 1 + τ

1 + τ − ν
+

τν

1 + τ − ν
− 2τ 2 1 + τ

1 + τ − ν
+ 2τ

τν

1 + τ − ν
= 0.

This holds if and only if ν is given by

ν =
τ + τ 2

1 + 2τ
. (4.17)

For ν = τ(τ+1)
1+2τ

the leading term in the LTE is calculated to be (4.16).

Remark 4.2.1. The usual variable time step BDF2 method, [3, 17], is given by

2τ + 1

τ + 1
un+1 − (τ + 1)un +

τ 2

τ + 1
un−1 = ∆tn f(un+1). (4.18)

For ν = τ(1+τ)/(1+2τ) the left hand side of (4.13) is the same as variable time step BDF2

while the right hand side again differs.
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4.2.3 Stability for Variable Time Step

As defined by Dahlquist, Liniger and Nevanlinna [13] in equation (1.12) p.1072, a variable

time step method is A-stable if, when applied as a one-leg scheme to

u′ = λ(t)u, where Re(λ(t)) ≤ 0,

solutions are always bounded for any sequence of time step and any such λ(t). Conditions

(4.9) were derived in [11] for variable time step. We therefore analyze A-stability for variable

time step applying conditions (4.9).

Proposition 4.2.3. The method (4.13) is A-stable for

− 1 + τ

1 + 2τ
≤ ν ≤ min{1 + τ

3τ
, 1 + τ}.

Proof. We check conditions (4.9) for the coefficients (4.14). The first condition holds if

1 + τ + ντ

1 + τ − ν
≥ 0.

This holds if and only if

−1 + τ

τ
≤ ν ≤ 1 + τ.

The second condition holds if

1 + 2ν
1 + τ

1 + τ − ν
≥ 0.

This holds if and only if

− 1 + τ

1 + 2τ
≤ ν.

As ν ≤ 1 + τ condition 3 holds if

2

(
1 + τ

1 + τ − ν
− τν

1 + τ − ν

)
− 1 + τ + ντ

1 + τ − ν
≥ 0.

This condition holds if and only if

ν ≤ 1 + τ

3τ
.

Since min{1+τ
τ
, 1+τ

1+2τ
} = 1+τ

1+2τ
the result follows.
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Since the filter is curvature reducing only for 0 < ν < 1 + τ , it is sensible to restrict

the values to 0 < ν ≤ min{1+τ
3τ
, 1 + τ}. We plot next this region in Figure 4.3. The region

of variable step A-stability is below the dark curve in the (τ, ν) plane. The dashed curve

plotted is the choice of ν = ν(τ) that yields second-order accuracy. The method is A-stable

for constant or decreasing time step. If increasing the time step, one must either accept first-

order accuracy with A-stability or second-order with some reduced (and yet undetermined)

A(α)-stability for α < π/2.

0 0.5 1 1.5 2

τ

0

0.5

1

1.5

2

ν

Figure 4.3: A-stable for ν ≤ dark curve, Dashed Curve = O(∆t2)

Remark 4.2.2. Variable time step BDF2 is A-stable for τ ≤ 1. This is the same constraint

as for the method herein when ν chosen for second-order accuracy.
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4.2.4 Adaptive Time Step Algorithm

The combination of backward Euler plus filter lends itself to adaptive implementation. There

are various choices that must be made in such an implementation(see [6, 18, 39, 43]). We

have purposefully made the simplest one of each option. The general adaptive method with

simple halving and doubling time step, safety factor s and order p implemented as follows1.

Algorithm 4.1: Halving and Doubling Time step

Given : un, un−1, ∆tn, ∆tn−1, Tol and tF inal;

while tn < tFinal do

• tn+1 = tn + ∆tn;

• ν = ∆tn(∆tn+∆tn−1)
∆tn−1(2∆tn+∆tn−1)

;

• vn+1 − un = ∆tnf(vn+1);

• un+1 = vn+1 − ν
2
{ 2∆tn−1

∆tn+∆tn−1
vn+1 − 2un + 2∆tn

∆tn+∆tn−1
un−1};

• Est = ‖un+1 − vn+1‖;

if Tol < s ∗ Est then

∆tn = ∆tn
2

;

n = n;

else if Est ≤ s ∗ Tol
2p+1 then

∆tn+1 = 2∆tn;

n = n+ 1;

else

∆tn+1 = ∆tn;

n = n+ 1;

end

end

1The safety factor s is usually taken around 0.95.
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4.3 ERROR ANALYSIS FOR PHASE AND AMPLITUDE

In this section, we use modified equation to derive phase and amplitude error of backward

Euler plus filter. The linear multistep method (4.13) is generally a first-order approximation

to oscillation equation (2.1) and second-order for the choice ν = τ(1 + τ)/(1 + 2τ). To

delineate the distribution of error between phase error and amplitude error we construct the

modified equation of the method for the oscillation equation. We note that the modified

equation is based on an expansion that assumes implicity condition |ω∆tn| � 1.

Proposition 4.3.1. The three term modified equation of oscillation equation (2.1) with

initial value u(0) = 1 for linear multistep method (4.13) is

x′(t) = iωx(t) + ∆tnC1(iω)2x(t) + ∆t2nC2(iω)3x(t) + ∆t3nC3(iω)4x(t),

x(0) = 1.

(4.19)

where C1, C2, C3, are

C1 =
τ + τ 2 − ν − 2ντ

2τ(1 + τ − ν)
,

C2 =
2τ 4 + τ 3(4− 5ν) + ν(1 + 2ν) + τν(1 + 6ν) + τ 2(2− 5ν + 6ν2)

6τ 2(1 + τ − ν)2
,

C3 =
6τ 6 + τ 5(18− 20ν)− τν2(31 + 24ν) + τ 2ν(4− 33ν − 36ν2)

24τ 3(1 + τ − ν)3

+
τ 4(18− 39ν + 23ν2) + τ 3(6− 16ν + 13ν2 − 24ν3)− ν(1 + 8ν + 6ν2)

24τ 3(1 + τ − ν)3
.

Proof. The general three term modified equation of oscillation equation with initial value

x(0) = 1 takes the form

x′ = iωx+ ∆tng1(x) + ∆t2ng2(x) + ∆t3ng3(x).

Thus,

x′′ =− ω2x+ iω∆tng1(x) + iω∆t2ng2(x)

+ iω∆tng
′
1(x)x+ ∆t2ng

′
1(x)g1(x) + iω∆t2ng

′
2(x)x+O(∆t3n),

x′′′ =− iω3x− ω2∆tng1(x)− 2ω2∆tng
′
1(x)x+O(∆t2n),

x(4) =w4x+O(∆tn).
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Consider linear multistep method (4.13) applied to oscillation equation (2.1),

un+1 −
ντ + 1 + τ

τ + 1
un +

ντ

1 + τ
un−1 = iω∆tnun+1 − iω∆tnνun +

ντ

1 + τ
iω∆tnun−1.

Rearrange term and eliminate un+1, we obtain

un+1 =
1

1− iω∆tn

(
ντ + 1 + τ

τ + 1
un −

ντ

1 + τ
un−1 − iω∆tnνun +

ντ

1 + τ
iω∆tnun−1

)
.

We can use approximation of 1
1−iω∆tn

≈ 1+ iω∆tn−ω2∆t2n− iω3∆t3n+ω4∆t4n+O(∆t5n) since

|iω∆tn| � 1. Therefore,

un+1 =
ντ + 1 + τ

τ + 1
un −

ντ

1 + τ
un−1 +

(
1 + τ − ν
τ + 1

)
iω∆tnun +

(
ν − 1− τ
τ + 1

)
ω2∆t2nun

+

(
ν − 1− τ
τ + 1

)
iω3∆t3nun +

(
1 + τ − ν
τ + 1

)
ω4∆t4nun +O(∆t5n).

The local truncation error of variable time step method (4.13) with modified equation is

LTE =x(tn+1)− un+1 = x(tn+1)− ντ + 1 + τ

τ + 1
un +

ντ

1 + τ
un−1

−
(

1 + τ − ν
τ + 1

)
iω∆tnun −

(
ν − 1− τ
τ + 1

)
ω2∆t2nun

−
(
ν − 1− τ
τ + 1

)
iω3∆t3nun −

(
1 + τ − ν
τ + 1

)
ω4∆t4nun +O(∆t5n).

Assume that numerical solution of all previous time steps are exact, i.e., ui = x(ti) for all

i = 1 · · ·n ,

LTE =x(tn+1)− ντ + 1 + τ

τ + 1
x(tn) +

ντ

1 + τ
x(tn−1)

−
(

1 + τ − ν
τ + 1

)
iω∆tnx(tn)−

(
ν − 1− τ
τ + 1

)
ω2∆t2nx(tn)

−
(
ν − 1− τ
τ + 1

)
iω3∆t3nx(tn)−

(
1 + τ − ν
τ + 1

)
ω4∆t4nx(tn) +O(∆t5n).
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Apply the Taylor expansion of x(tn−1), x(tn+1) at time tn and substitute x(tn+1), x(tn−1),

x′(tn), x′′(tn), x′′′(tn) and x(4)(tn) in LTE, we get

LTE =

[(
1 + τ − ν

1 + τ

)
g1(x(tn))− 1

2
ω2x(tn)− ν

2(τ + τ 2)
ω2x(tn)−

(
ν − 1− τ
τ + 1

)
ω2x(tn)

]
∆t2n

+

[(
1

2
+

ν

2(τ + τ 2)

)
iωg1(x(tn)) +

(
1

2
+

ν

2(τ + τ 2)

)
iωg′1(x(tn))x(tn)

−
(

1

6
− ν

6(τ 2 + τ 3)

)
iω3x(tn)−

(
ν − 1− τ
τ + 1

)
iω3x(tn) +

1 + τ − ν
1 + τ

g2(x(tn))

]
∆t3n

+

[
1 + τ − ν

1 + τ
g3(x(tn)) +

(
1

2
+

ν

2(τ + τ 2)

)
iωg2(x(tn))

+

(
1

2
+

ν

2(τ + τ 2)

)
g1(x(tn))g′1(x(tn)) +

(
1

2
+

ν

2(τ + τ 2)

)
iωg′2(x(tn))x(tn)

−
(

1

6
− ν

6(τ 2 + τ 3)

)
ω2g1(x(tn))−

(
1

6
− ν

6(τ 2 + τ 3)

)
2ω2g′1(x(tn))x(tn)

+

(
1

24
+

ν

24(τ 3 + τ 4)

)
w4x(tn)−

(
1 + τ − ν
τ + 1

)
ω4x(tn)

]
∆t4n.

Setting coefficient of ∆t2n term equal to zero to find g1(x)

g1(x) =
2ντ − τ − τ 2 + ν

2τ(1 + τ − ν)
ω2x = C1(iω)2x.

We use g1(x) and set coefficient of ∆t3n equal to zero, we obtain g2(x) as following,

g2(x) = −2τ 4 + τ 3(4− 5ν) + ν(1 + 2ν) + τν(1 + 6ν) + τ 2(2− 5ν + 6ν2)

6τ 2(1 + τ − ν)2
iω3x = C2(iω)3x.

Finally, we use g1(x) and g2(x) and set coefficient of ∆t4n to zero, we get

g3(x) =

[
6τ 6 + τ 5(18− 20ν)− τν2(31 + 24ν) + τ 2ν(4− 33ν − 36ν2)

24τ 3(1 + τ − ν)3

+
τ 4(18− 39ν + 23ν2) + τ 3(6− 16ν + 13ν2 − 24ν3)− ν(1 + 8ν + 6ν2)

24τ 3(1 + τ − ν)3

]
ω4x

= C4(iω)4x.
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Remark 4.3.1. The linear multistep method (4.13) of variable time step is generally a first-

order approximation oscillation equation (2.1) and fourth-order approximation to modified

equation (4.19).

Theorem 4.3.1. The phase and amplitude error of linear multistep method (4.13) for vari-

able time step is

R+ − 1 = −C2(ω∆tn)2 +O((ω∆tn)4)

|A+| − 1 = −C1(ω∆tn)2 + C3(ω∆tn)4 +O((ω∆tn)6).

where C1, C2, C3 are defined in (4.3.1).

Proof. Consider exact solution of oscillation equation (2.1) and modified equation (4.19) with

initial value u(0) = x(0) = 1,

u(t) = exp(iωt) = cos(ωt) + i sin(ωt).

x(t) = exp(iωt+ ∆tnC1(iω)2t+ ∆t2nC2(iω)3t+ ∆t3nC3(iω)4t)

= exp(−∆tnC1ω
2t+ ∆t3nC3ω

4t)
[
cos(ωt−∆t2nC2ω

3t) + i sin(ωt−∆t2nC2ω
3t)
]
.

Thus, phase error is

R+ − 1 =
arg(x(t))

arg(u(t))
− 1 =

ωt−∆t2nC2ω
3t

ωt
− 1 = −C2(ω∆tn)2,

and amplitude error is

|A+| − 1 = exp(−∆tnC1ω
2t+ ∆t3nC3ω

4t)− 1.

Since we are looking for local error in one step, take t = ∆tn and use approximation

exp(−∆t2nC1ω
2 + ∆t4nC3ω

4) ≈ 1− C1(ω∆tn)2 + C3(ω∆tn)4.

Thus,

|A+| − 1 = −C1(ω∆tn)2 + C3(ω∆tn)4.

The comparison of phase speed and amplitude of backward Euler and backward euler

plus filter is presented in Figure 4.4.

Remark 4.3.2. The linear multistep method (4.13) with variable time step is second-order

accurate and fourth-order accurate in amplitude when C1 = 0 i.e. ν = τ(τ+1)
2τ+1

.
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Figure 4.4: Comparison of phase speed and amplitude of physical mode for backward Euler

method and second-order backward Euler plus filter method.

4.4 NUMERICAL TESTS

We present a few numerical illustrations. Where appropriate the RKF4-5 solution is used

as benchmark. The first tests is for the Lorenz system. First backward Euler plus filter

(ν = 2/3) is compared with backward Euler (Step 1 without Step 2) and BDF2. The second

test, from [44], is an example of one for which backward Euler preserves Lyapunov stability

of the steady state while common variants do not. The third test is for a periodic (nonlinear

pendulum) and a quasi-periodic oscillation. The fourth test is for the Van der Pol equation

[45] with parameter µ = 1000. This is a classic test problem for stiff solvers.

4.4.1 The Lorenz System

Consider the Lorenz system from [35]

dX

dt
= 10(Y −X),

dY

dt
= −XZ + 28X − Y,

dZ

dt
= XY − 8

3
Z.
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We use the standard parameter values of Lorenz [35]. These produce a chaotic system. It

is noted in [15] that chaotic test problems tend to exaggerate differences between methods.

The initial conditions are (X0, Y0, Z0) = (0, 1, 0). The system is solved over the time interval

[0, 5] with backward Euler, backward Euler plus filter and BDF2 with constant time step.

A reference solution is obtained by self-adaptive RK4-5. We present solutions of the Lorenz

system for ∆t = 0.01 (left) and 0.02 (right) in Figure 4.5. The left figure shows that

for moderately small time step backward Euler over-damps severely while both BDF2 and

backward Euler plus filter are accurate, even for constant time steps. Both have a small

positive phase error. The right figure in Figure 4.5 shows that for large time step, each is

inaccurate.
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Figure 4.5: Numerical solution of X for the Lorenz system with time step ∆t = 0.01(left)

and ∆t = 0.02(right).

4.4.2 Preservation of Lyapunov Stability

The implicit method approaches steady state in the test problem below, from [44]. The

nonlinear system is

du1

dt
+ u2u2 + u1 = 1,

du2

dt
− u2u1 + u2 = 1.
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with u1(0) = 0 and u2(0) = 0. In this test, given in Figure 4.6, adding a filter step preserves

Lyapunov stability; the approximate solution (correctly) approaches steady state.
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Figure 4.6: Numerical solution of Lyapunov stability test problem with time step ∆t = 0.2

4.4.3 Periodic and Quasi-Periodic Oscillations

Consider the pendulum test problem from [34, 50] given by

dθ

dt
=
v

L
,

dv

dt
= −g sin θ,

where θ, v, L and g denote, respectively, angular displacement, velocity along the arc, length

of the pendulum, and the acceleration due to gravity. Set θ(0) = 0.9π, v(0) = 0, g = 9.8,

time step ∆t = 0.1 and L = 49. The behavior of the numerical solutions over several periods

is depicted in Figure 4.7. Consistently with test 1, the phase and amplitude errors in both

backward Euler plus filter and BDF2 are small while both are large for backward Euler.

Adding the filter step to backward Euler has greatly increased accuracy.
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Figure 4.7: Numerical solution of pendulum test problem with time step ∆t = 0.1

Next, we test the method on quasi-periodic oscillations, we solve the following initial value

problem(IVP)

x ′′′′ + (π2 + 1)x ′′ + π2x = 0, 0 < t < 20,

x(0) = 2, x ′(0) = 0, x ′′(0) = −(1 + π2) and x ′′′(0) = 0,

written as a first order system. This has exact solution x(t) = cos(t) + cos(πt), the sum of

two periodic functions with incommensurable periods, hence quasi-periodic, [8]. We solve

using backward Euler plus filter with fixed time step ∆t = 0.1 and with a rudimentary

adaptive backward Euler plus filter method. In the latter we use initial time step ∆t = 0.1,

the heuristic estimator (4.2), tolerance TOL = 0.1 and adapt by halving and doubling time

step Algorithm 4.1. The plots of both with the exact solution are given in Figure 4.8.

This test suggests that quasi-periodic oscillations are a more challenging test than periodic.

Adaptivity is required but even simple adaptivity suffices to obtain an accurate solution.
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Figure 4.8: Exact soln, non-adaptive and adaptive backward Euler plus filter

4.4.4 The Van der Pol Equation

The last test problem is the Van der Pol equation

x ′′ − µ(1− x2)x ′ + x = 0,

x(0) = 2 and x ′(0) = 0.

The Van der Pol equation with parameter µ = 1000 is a common test problem for stiff

solvers. The Matlab routine ode15s with relative tolerance 10−14 and absolute tolerance

10−16 provided a reference solution. We solved this with adaptive backward Euler and

adaptive backward Euler plus filter for tolerances 10−4 and 10−6. The approximate solutions

and the time step evolutions are presented in Figure 4.9. The total number of halving,

doubling and the same step is given in Table 4.1.
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Table 4.1: The comparison of halving, doubling and the same step using variable time step

backward Euler and backward Euler plus filter algorithm for the Van der Pol equation.

Method Halving Doubling Same Tolerance

backward Euler 185 201 41317 10−4

backward Euler plus filter 278 295 7083 10−4

backward Euler 208 228 415519 10−6

backward Euler plus filter 968 990 31830 10−6
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Figure 4.9: Numerical solution of Van der Pol equation using variable time step backward

Euler and backward Euler plus filter with 10−4(left) and 10−6(right) tolerances.
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4.5 SUMMARY

While a satisfactory, variable time step BDF2 method exists, the combination of backward

Euler plus a curvature reducing time filter gives another option that is conceptually clear.

Its implementation does require storage of one extra previous value un−1. The usual barrier

in legacy codes is simply identifying the variables needed to be filtered. If this is possible, the

filter is easily added by one additional line. If the code solves a partial differential equation,

the filter step is a single instruction multiple data (SIMD) instruction across the spacial

points. Thus, it maps well to many architectures. Both theory and numerical test show

that backward Euler with filter reduces discrete curvature of the solution, increases accuracy

from first to second-order, gives an immediate error estimator and induces a method akin to

BDF2.
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5.0 CONCLUSIONS

The main contribution of this study consists in the construction and analysis of non-intrusive

techniques, time filters, which improve the quality of solutions to existing numerical methods,

possibly legacy codes.

In Chapter 2 we constructed a higher order Robert-Asselin-Williams filtered leapfrog

scheme. The effect of the hoRAW time filter has been analyzed and compared numerically

with LF-hoRA and AB3. The hoRAW time filter increases the stability, improves the accu-

racy of the amplitude of the physical mode up-to two significant digits, effectively suppresses

the computational modes, and further diminishes the numerical damping of the hoRA filter.

The hoRAW time filter has a twenty percent increase in stability compared hoRA, and the

LF-hoRAW is twenty five percent more stable than the AB3 method.

In Chapter 3 we used the notion of modified equations to derive the phase and amplitude

errors of pre-defined order for a general high-order Robert-Asselin time filter.

In Chapter 4 we constructed and analyzed a backward Euler plus filter method for constant

and variable timesteps. We showed that adding the filter step to the backward Euler method

increases accuracy to second-order, reduces oscillations and anti-diffuses the backward Euler

method. The numerical tests on oscillatory problems indicate that the numerical dissipation

in the new method is comparable to BDF2.

We constructed time filters for two widely used numerical methods for approximation of

differential equations, the leapfrog and backward Euler schemes. The combinations of the

methods with our time filters are at least second-order accurate and more stable than the

original numerical methods, at practically no extra-cost.
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