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EFFICIENT DISCRETIZATION TECHNIQUES AND DOMAIN

DECOMPOSITION METHODS FOR POROELASTICITY

Eldar Khattatov, PhD

University of Pittsburgh, 2018

This thesis develops a new mixed finite element method for linear elasticity model with

weakly enforced symmetry on simplicial and quadrilateral grids. Motivated by the multipoint

flux mixed finite element method (MFMFE) for flow in porous media, the method utilizes

the lowest order Brezzi-Douglas-Marini finite element spaces and the trapezoidal (vertex)

quadrature rule in order to localize the interaction of degrees of freedom. Particularly, this

allows for local elimination of stress and rotation variables around each vertex and leads to a

cell-centered system for the displacements. The stability analysis shows that the method is

well-posed on simplicial and quadrilateral grids. Theoretical and numerical results indicate

first-order convergence for all variables in the natural norms.

Further discussion of the application of said Multipoint Stress Mixed Finite Element

(MSMFE) method to the Biot system for poroelasticity is then presented. The flow part of

the proposed model is treated in the MFMFE framework, while the mixed formulation for

the elasticity equation is adopted for the use of the MSMFE technique.

The extension of the MFMFE method to an arbitrary order finite volume scheme for

solving elliptic problems on quadrilateral and hexahedral grids that reduce the underlying

mixed finite element method to cell-centered pressure system is also discussed.

A Multiscale Mortar Mixed Finite Element method for the linear elasticity on non-

matching multiblock grids is also studied. A mortar finite element space is introduced on

the nonmatching interfaces. In this mortar space the trace of the displacement is approx-

imated, and continuity of normal stress is then weakly imposed. The condition number
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of the interface system is analyzed and optimal order of convergence is shown for stress,

displacement, and rotation. Moreover, at cell centers, superconvergence is proven for the

displacement variable. Computational results using an efficient parallel domain decompo-

sition algorithm are presented in confirmation of the theory for all proposed approaches.

Keywords: mixed finite element methods, finite volume schemes, multiscale mortar MFEM,

domain decomposition, linear elasticity, Biot consolidation model.

iv



TABLE OF CONTENTS

1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 The model problem and its constituents . . . . . . . . . . . . . . . . . . . . 8

1.3.1 The Darcy’s model for flow in porous media . . . . . . . . . . . . . . 9

1.3.2 Linear elasticity model . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.3 The Biot consolidation model of poroelasticity . . . . . . . . . . . . . 11

1.4 Fundamentals of Mixed Finite Element method . . . . . . . . . . . . . . . . 13

1.5 A quadrature rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.0 MULTIPOINT STRESS MIXED FINITE ELEMENT METHODS FOR

THE LINEAR ELASTICITY MODEL . . . . . . . . . . . . . . . . . . . . 25

2.1 The multipoint stress mixed finite element method with constant rotations 25

2.1.1 Reduction to a cell-centered displacement-rotation system of MSMFE-

0 method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 The multipoint stress mixed finite element method with (bi)-linear rotations 29

2.2.1 Well-posedness of the MSMFE-1 method on simplices . . . . . . . . . 30

2.2.1.1 The macroelement definition . . . . . . . . . . . . . . . . . . 33

2.2.1.2 Null space NM . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.1.3 Assumptions on the macroelements and partitioning of the do-

main . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.1.4 The inf-sup for the Stokes problem . . . . . . . . . . . . . . . 39

2.2.2 Well-posedness for the MSMFE-1 method on quadrilaterals . . . . . . 42

v



2.2.2.1 The inf-sup for the Stokes problem . . . . . . . . . . . . . . . 43

2.2.3 Reduction to a cell-centered displacement system of the MSMFE-1

method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3.1 First order convergence of the solution of MSMFE-0 method . . . . . 59

2.3.2 First order convergence of the solution of MSMFE-1 method . . . . . 64

2.3.3 Second order convergence for displacement . . . . . . . . . . . . . . . 68

2.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.0 COUPLED MULTIPOINT FLUX MULTIPOINT STRESS MIXED

FINITE ELEMENT METHOD FOR THE BIOT POROELASTICITY

MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.1 The coupled multipoint stress multipoint flux mixed finite element method 85

3.2 Stability analysis in semidiscrete case . . . . . . . . . . . . . . . . . . . . . 86

3.3 Reduction to a cell-centered displacement-pressure system . . . . . . . . . . 92

3.4 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.4.2 Optimal convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.5.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.5.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.5.3 Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.0 HIGHER ORDER MULTIPOINT FLUX MIXED FINITE ELEMENT

METHODS FOR FLOW IN POROUS MEDIA . . . . . . . . . . . . . . 114

4.1 Definition of the method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.1.1 The Raviart-Thomas mixed finite element spaces . . . . . . . . . . . 114

4.1.2 Enhanced Raviart-Thomas finite elements . . . . . . . . . . . . . . . 116

4.1.2.1 Shape functions . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.1.2.2 Degrees of freedoms and unisolvency . . . . . . . . . . . . . . 119

4.1.2.3 Mixed finite element spaces . . . . . . . . . . . . . . . . . . . 122

4.1.3 Quadrature rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

vi



4.1.4 The k-th order MFMFE method . . . . . . . . . . . . . . . . . . . . . 129

4.1.5 Reduction to a pressure system and its stencil . . . . . . . . . . . . . 131

4.2 Velocity error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.2.1 Optimal convergence for the velocity . . . . . . . . . . . . . . . . . . 142

4.3 Error estimates for the pressure . . . . . . . . . . . . . . . . . . . . . . . . 144

4.3.1 Optimal convergence for the pressure . . . . . . . . . . . . . . . . . . 144

4.3.2 Superconvergence of the pressure . . . . . . . . . . . . . . . . . . . . 145

4.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.0 DOMAIN DECOMPOSITION AND MULTISCALE MORTAR MIXED

FINITE ELEMENT METHODS FOR LINEAR ELASTICITY WITH

WEAK SRESS SYMMETRY . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.1 Formulation of the methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.2 Reduction to an interface problem and condition number analysis . . . . . . 156

5.2.1 Method 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.2.2 Method 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.3 A multiscale mortar MFE method on non-matching grids . . . . . . . . . . 165

5.3.1 Formulation of the method . . . . . . . . . . . . . . . . . . . . . . . . 165

5.3.2 The space of weakly continuous stresses . . . . . . . . . . . . . . . . . 167

5.3.3 Optimal convergence for the stress . . . . . . . . . . . . . . . . . . . 172

5.3.4 Convergence for the displacement . . . . . . . . . . . . . . . . . . . . 174

5.3.4.1 Optimal convergence for the displacement . . . . . . . . . . . 174

5.3.4.2 Superconvergence for the displacement . . . . . . . . . . . . . 175

5.3.5 Convergence for the mortar displacement . . . . . . . . . . . . . . . . 177

5.3.6 Convergence for the rotation . . . . . . . . . . . . . . . . . . . . . . . 179

5.3.7 Multiscale stress basis implementation . . . . . . . . . . . . . . . . . 180

5.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

5.4.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

5.4.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.4.3 Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.4.4 Example 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

vii



5.4.5 Example 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.0 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

APPENDIX. CODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

A.1 Higher order MFMFE method implementation in deal.II . . . . . . . . . . . 192

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

viii



LIST OF TABLES

2.1 Relative errors and convergence rates for Example 1, triangles. . . . . . . . . 78

2.2 Relative errors and convergence rates for Example 1, h2-parallelograms. . . . 79

2.3 Relative errors and convergence rates for Example 1, squares. . . . . . . . . . 80

2.4 Relative errors and convergence rates for Example 2, tetrahedra. . . . . . . . 81

2.5 Relative errors and convergence rates for Example 3, triangles. . . . . . . . . 83

2.6 Relative errors and convergence rates for Example 3, MSMFE-1 on triangles

with force rotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.1 Physical parameters, Examples 1 and 2. . . . . . . . . . . . . . . . . . . . . . 107

3.2 Example 1, computed numerical errors and convergence rates. . . . . . . . . 108

3.3 Example 2, computed numerical errors and convergence rates. . . . . . . . . 111

4.1 Relative errors and convergence rates for Example 1. . . . . . . . . . . . . . . 152

4.2 Relative errors and convergence rates for Example 2. . . . . . . . . . . . . . . 153

5.1 Theoretical convergence rates for the choices of finite elements and mortars in

the numerical tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

5.2 Numerical errors, convergence rates, and number of CG iterations with dis-

continuous quadratic mortars (m = 2) for Example 1. . . . . . . . . . . . . . 183

5.3 Numerical errors, convergence rates, and number of CG iterations with dis-

continuous cubic mortars (m = 3) for Example 1. . . . . . . . . . . . . . . . 183

5.4 Numerical errors, convergence rates, and number of CG iterations with dis-

continuous quadratic mortars (m = 2) for Example 2. . . . . . . . . . . . . . 184

5.5 Numerical errors, convergence rates, and number of CG iterations with dis-

continuous cubic mortars (m = 3) for Example 2. . . . . . . . . . . . . . . . 185

ix



5.6 Numerical errors, convergence rates, and number of CG iterations with dis-

continuous linear mortars (m = 1) for Example 3. . . . . . . . . . . . . . . . 186

5.7 Number of CG iterations for Example 4. . . . . . . . . . . . . . . . . . . . . 187

5.8 Number of subdomain solves for Example 5. . . . . . . . . . . . . . . . . . . 188

x



LIST OF FIGURES

1.1 First elasticity triple BDM1 × P0 × P0, on triangles. . . . . . . . . . . . . . 19

1.2 Second elasticity triple BDM1 × P0 × P1, on tetrahedra. . . . . . . . . . . . 20

2.1 Finite elements sharing a vertex (left) and displacement stencil (right), sim-

plicial grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Finite elements sharing a vertex (left) and displacement stencil (right), quadri-

lateral grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 P2 − P1 DoFs, Dirichlet boundaries . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Macroelement with NT triangles . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Two possible configurations of macroelements. Left: interior, vertically ori-

ented macroelement; right: vertically oriented macroelement with bottom edge

on the Neumann part of the boundary ΓN . . . . . . . . . . . . . . . . . . . . 43

2.6 Macroelement M = EM,1 ∪ EM,2 surrounded by four macroelements Mi =

EMi,1 ∪ EMi,2, i = 1, . . . , 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.7 Computed solution for Example 1, MSMFE-0 on simplices, h = 1/32. . . . . 78

2.8 Computed solution for Example 1, MSMFE-1 on h2-parallelogram mesh, 34113

DOFs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.9 Computed solution for Example 2, MSMFE-1 on simplices, h = 1/32. . . . . 80

2.10 Computed solution for Example 3, MSMFE-1 on simplices, h = 1/48. . . . . 82

3.1 Example 1, computed solution at the final time step. . . . . . . . . . . . . . . 109

3.2 Example 2, computed solution at the final time step. . . . . . . . . . . . . . . 112

3.3 Example 3, computed pressure solutions. . . . . . . . . . . . . . . . . . . . . 113

4.1 Degrees of freedom of the enhanced Raviart-Thomas elements . . . . . . . . . 122

xi



4.2 Computed solution for Example 1 on the third level of refinement . . . . . . 150

4.3 Computed solution for Example 2 on the third level of refinement. . . . . . . 152

5.1 Computed solution for Example 1, h = 1/16. . . . . . . . . . . . . . . . . . . 184

5.2 Computed solution for Example 2, h = 1/16. . . . . . . . . . . . . . . . . . . 185

5.3 Computed solution for Example 3, h = 1/32. . . . . . . . . . . . . . . . . . . 186

5.4 Example 5, fine scale stress and displacement, vs. multiscale stress and dis-

placement with cubic mortars, and Young’s modulus, H = 1/8. . . . . . . . . 189

xii



ACKNOWLEDGEMENTS

I would like to deeply thank my advisor Ivan Yotov for his guidance throughout these years.

The knowledge and experience I have got from working with him is invaluable.

I would also like to express my gratitude towards professors William Layton, Michael

Neilan and Paolo Zunino for serving in the thesis committee and their input in shaping my

research approaches and results.

I would like to thank all the help and guidance I received from ChangQing Wang as well

as the insightful discussions with Wietse Boon. For great new research ideas and helpful

suggestions I thank Jeonghun Lee and Jan Nordbotten.

Last, but certainly not least, I am infinitely thankful to Ilona, without whom this achieve-

ment would have never been possible to unlock. I am also grateful to my parents, who

supported me along this journey.

xiii



1.0 INTRODUCTION

1.1 METHODOLOGY

Geoscience applications such as environmental cleanup, petroleum production, solid waste

disposal, and carbon sequestration are inherently coupled with field phenomena such as

surface subsidence, uplift displacement, pore collapse, cavity generation, hydraulic fracturing,

thermal fracturing, wellbore collapse, sand production, and fault activation. This coupled

nature of fluid motion through porous media and solid deformation makes it challenging for

numerical modeling and simulation.

In this work we use the classical Biot consolidation system in poroelasticity [18, 83]

under a quasi-static assumption as the mathematical model for such coupled fluid-solid

system. The system of equations consists of an equilibrium equation for the solid and a

mass balance equation for the fluid. The contribution of the fluid pressure to the total

stress of the solid, and the divergence of the solid displacement represent additional terms

in the fluid content. Numerical modeling of this coupled system is well studied in the

literature. In [69,70], Taylor-Hood finite elements are employed for a displacement-pressure

variational formulation. A least squares formulation that approximates directly the solid

stress and the fluid velocity is studied in [58,59]. Finite difference schemes on staggered grids

designed to avoid nonphysical oscillations at early times have been developed in 1D in [33,43].

The method in [33] can handle discontinuous coefficients through harmonic averaging. A

formulation based on mixed finite element (MFE) methods for flow and continuous Galerkin

(CG) for elasticity has been proposed in [75, 76]. The coupled multipoint flux mixed finite

element method (MFMFE) for flow and CG method for elasticity has been studied in [94]. On

the other hand, as the MFE methods for elasticity become more popular in the finite element
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community, the five-field MFE formulation for the Biot system was presented in [61]. The

advantages of this approach is that the fluid and mechanics approximations are locally mass

conservative and the fluid velocity and poroelastic stress are computed directly. Moreover,

this approach guarantees robustness and locking-free properties with respect to physical

parameters. In [44], a parallel domain decomposition method has been developed for coupling

a time-dependent poroelastic model in a localized region with an elastic model in adjacent

regions. Each model is discretized independently on nonmatching grids and the systems are

coupled using DG jumps and mortars. Applications of the Biot system to the computational

modeling of coupled reservoir flow and geomechanics can be found in [23,38,39,82].

The focus of this thesis is on developing a discretization method for the poroelasticity

system in the mixed form that is suitable for irregular and rough grids, discontinuous full

tensor permeabilities and Lamé coefficeints that are often encountered in modeling subsurface

flows. To this end, we develop a formulation that couples multipoint flux mixed finite element

(MFMFE) methods for flow with multipoint stress mixed finite element (MSMFE) methods

for elasticity. The MFMFE method was developed for Darcy flow in [52,92,95]. It is locally

conservative with continuous fluxes and can be viewed within a variational framework as a

mixed finite element method with special approximating spaces and quadrature rules. The

MFMFE method allows for an accurate and efficient treatment of irregular geometries and

heterogeneities such as faults, layers, and pinchouts that require highly distorted grids and

discontinuous coefficients. The resulting discretizations are cell-centered with convergent

pressures and velocities on general hexahedral and simplicial grids. The reader is referred

to [91] for the performance of the MFMFE method for flow on a benchmark test using

rough 3D grids and anisotropic coefficients. On the other hand, for the mechanics part of

the system, motivated by MPSA method, we design a multipoint stress MFE method for

linear elasticity [3,4]. For this, we consider the formulation with weakly imposed symmetry

[8,9,13,19,25] based on either Arnold-Falk-Winther (AFW) [13], PEERS [11,68] or Arnold-

Awanou-Qiu [9] finite element discretization. In case of simplicial grids and AFW elements,

for example, in d = 2, 3 dimensions, there are exactly d stress degrees of freedom per facet.

A special quadrature rule is then employed allowing for local stress and rotation elimination

and leads to a cell-centered stencil either for rotations and displacements, or displacements

2



only, both of which lead to a symmetric and positive definite system. Following the authors

in [95] and due to the similarity with MPSA methods (in particular to the one based on weak

symmetry [53]) we called the method a multipoint stress mixed finite element (MSMFE)

method.

MFMFE and MSMFE methods allow for local flux and stress elimination around grid

vertices and reduction to a cell-centered pressure and displacement scheme, respectively. The

coupled scheme based on MPSA and MPFA methods for the elasticity and flow parts of the

Biot system was proposed in [71]. Similar elimination can be achieved in the MFMFE and

MSMFE variational framework, by employing appropriate finite element spaces and special

quadrature rules. Both methods are based on the BDM1 [21] spaces with a trapezoidal

quadrature rule applied on the reference element, [52,92,95]. The advantage of the MFMFE

and MSMFE methods over the hybrid approach is in smaller size of the arising algebraic

system [28, 29, 95], due to smaller number of facets compared to the number of elements

in a finite element partition. Moreover, since CCFD are widely used in existing petroleum

simulators their data structures have more similarities to the ones needed for MSMFE, rather

than hybrid MFE. Our goal in this thesis is to emphasize the applicability of the MSMFE

method for solid mechanics in the Biot system, which, together with the MFMFE method

used for the flow part of the model will result in an efficient technique for solving a coupled

saddle-point type problem.

Chapter 2 of the thesis is devoted to the MSMFE methods on simplicial and quadrilateral

grids. This chapter is structured as follows. Two MSMFE-type methods are developed and

analyzed in in Sections 2.1-2.2. Section 2.3 addresses the convergence analysis of the solution,

as well as the superconvergence of the displacement variable. The last section, Section 2.4

of Chapter 2 presents the numerical results to verify the analysis.

We further continue in Chapter 3 with the coupled MFMFE-MSMFE method for the

Biot poroelasticity model. Section 3.1 introduces the method and the its stability studied

in Section 3.2. Section 3.3 shows the reduction of the method to the cell-centered finite

difference (CCFD) scheme. The convergence analysis for the continuous in time scheme is

developed in Section 3.4. Finally, Section 3.5 is devoted to the computational experiments.

The aforementioned MFMFE methods are limited to the lowest order approximation.

3



In the corresponding chapter of thesis we develop a family of arbitrary order symmetric

MFMFE methods on quadrilateral and hexahedral grids. The main obstacle in extending

the original lowest order BDM1 and BDDF1 MFMFE methods to higher order is that the

degrees of freedom of their higher order versions cannot be associated with tensor-product

quadrature rules. To circumvent this difficulty, we construct a new family of mixed finite

elements fulfilling this requirement. A key of the construction is the finite element exterior

calculus framework [12, 14], which is used in the extension of MFMFE to Hodge Laplace

equations [62]. However, we consider only the two and three dimensional cases with H(div)

element, so no prerequisite of the exterior calculus language is necessary in this chapter. The

new spaces are enhanced Raviart-Thomas spaces with bubbles that are curls of specially

chosen polynomials, so that each component of the velocity vector is of dimension Qk(Rd)

and the velocity degrees of freedom can be associated with the points of a tensor-product

Gauss-Lobatto quadrature rule [1]. The application of this quadrature rule leads to a block-

diagonal velocity mass matrix with blocks corresponding to the nodes associated with the

velocity degrees of freedom. This allows for a local elimination of the fluxes in terms of

the pressures from the surrounding elements, either sharing a vertex, or an edge/face. This

procedure results in a symmetric and positive-definite cell-based system for the pressures with

a compact stencil, allowing for efficient solvers to be used. The proposed technique allows

for more straightforward and efficient implementation and results in reduced computational

time. The resulting family of methods is a generalization of the original low order MFMFE

method to arbitrary order approximation. Interestingly, while the lowest order version of

the new spaces has the same number of degrees of freedom as the BDM1 spaces in 2d

and the enhanced BDDF1 spaces in 3d, their polynomial bases are different. Therefore the

lowest order version of our proposed method has the same computational complexity and

comparable accuracy to the original MFMFE method, but it is not identical to it.

We present well-posedness and convergence analysis of the proposed family of higher or-

der methods. To this end, we establish unisolvency and approximation properties of arbitrary

order k of the new family of enhanced Raviart-Thomas family of spaces. Since we study the

symmetric version of the MFMFE method, which relies on mapping to a reference element

via the Piola transformation, the analysis is limited to h2-perturbed parallelograms or paral-

4



lelepipeds, similar to the restriction in the lowest order symmetric MFMFE method [52,95].

The convergence analysis combines MFE analysis tools with quadrature error analysis, using

that the Gauss-Lobatto quadrature rule possesses sufficient accuracy to preserve the order

of convergence. We establish convergence of k-th order for the velocity in the H(div)-norm

and the pressure in the L2-norm. We also employ a duality argument to show that the

numerical pressure is (k + 1)-st order superconvergent to the L2-projection of the pressure

in the finite element space, which implies superconvergence at the Gauss points. Moreover,

we show that a variant of the local postprocessing developed in [86] results in a pressure

that is (k + 1)-st order accurate in the full L2-norm. All theoretical results are verified nu-

merically. We also compare computational results of the method with the Raviart-Thomas

MFE method of order k. We observe that the k-th order MFMFE method has significantly

reduced computational cost and comparable accuracy, with even smaller velocity error in

the L2-norm.

Chapter 4 of the thesis is devoted to the method outlined above. Is organized as follows.

The new family of finite element spaces and the general order MFMFE methods are developed

in Section 4.1. The error analyses for the velocity and pressure are presented in Sections 4.2

and 4.3, respectively. Numerical experiments are presented in Section 4.4.

In many physical applications, obtaining the desired resolution may result in a very large

algebraic system. Therefore a critical component for the applicability of MFE methods for

elasticity is the development of efficient techniques for the solution of these algebraic systems.

Domain decomposition methods [78,88] provide one such approach. They adopt the ”divide

and conquer” strategy and split the computational domain into multiple non-overlapping

subdomains. Then, solving the local problems of lower complexity with an appropriate choice

of interface conditions leads to recovering the global solution. This approach naturally leads

to designing parallel algorithms, and also allows for the reuse of existing codes for solving

the local subdomain problems. Non-overlapping domain decomposition methods for non-

mixed displacement-based elasticity formulations have been studied extensively [37, 44, 50,

55–57], see also [47, 72] for displacement-pressure mixed formulations. To the best of our

knowledge, non-overlapping domain decomposition methods for stress-displacement mixed

elasticity formulations have not been studied.

5



This thesis develops two non-overlapping domain decomposition methods for the mixed

finite element discretization of linear elasticity with weakly enforced stress symmetry. The

first method uses a displacement Lagrange multiplier to impose interface continuity of the

normal stress. The second method uses a normal stress Lagrange multiplier to impose

interface continuity of the displacement. These methods can be thought of as elasticity

analogs of the methods introduced in [46] for scalar second order elliptic problems, see also

[26]. In both methods, the global system is reduced to an interface problem by eliminating

the interior subdomain variables. We show that the interface operator is symmetric and

positive definite, so the interface problem can be solved by the conjugate gradient method.

Each iteration requires solving Dirichlet or Neumann subdomain problems. The condition

number of the resulting algebraic interface problem is analyzed for both methods, showing

that it is O(h−1). We note that in the second method the Neumann subdomain problems

can be singular. We deal with floating subdomains by following the approach from the FETI

methods [36,88], solving a coarse space problem to ensure that the subdomain problems are

solvable.

We also develop a multiscale mortar mixed finite element method for the domain decom-

position formulation of linear elasticity with non-matching grids. We note that domains with

complex geometries can be represented by unions of subdomains with simpler shapes that are

meshed independently, resulting in non-matching grids across the interfaces. The continuity

conditions are imposed using mortar finite elements, see e.g. [5, 37, 44, 50, 55, 56, 73]. Here

we focus on the first formulation, using a mortar finite element space on the non-matching

interfaces to approximate the trace of the displacement and impose weakly the continuity

of normal stress. We allow for the mortar space to be on a coarse scale H, resulting in a

multiscale approximation, see e.g. [6,42,74]. A priori error analysis is performed. It is shown

that, with appropriate choice of the mortar space, optimal convergence on the fine scale is

obtained for the stress, displacement, and rotation, as well as some superconvergence for the

displacement.

Chapter 5 of the thesis is organized as follows. First an MFE approximation of the prob-

lem of interest, and the two domain decomposition methods are formulated in Section 5.1.

The analysis of the resulting interface problems is presented in Section 5.2. The multiscale
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mortar MFE element method is developed and analyzed in Section 5.3. A multiscale stress

basis implementation for the interface problem is also given in this section. The chapter

concludes with computational results in Section 5.4, which confirm the theoretical results

on the condition number of the domain decomposition methods and the convergence of the

solution of the multiscale mortar MFE element method.

1.2 NOTATIONS

Let Ω be a simply connected bounded domain in Rd, d = 2, 3. We write M, S and N for the

spaces of d×d matrices, symmetric matrices and skew-symmetric matrices, all over the field

of real numbers, respectively.

Throughout this thesis the divergence operator is the usual divergence for vector fields,

which produces vector field when applied to matrix field by taking the divergence of each

row. We will also use the curl operator which is the usual curl when applied to vector fields

in three dimension, and defined as

curlφ = (∂2φ,−∂1φ)

for a scalar function φ in two dimension. Similarly, for a vector field in two dimension or a

matrix field in three dimension, curl operator produces a matrix field by acting row-wise.

Throughout this thesis, C denotes a generic positive constant that is independent of

the discretization parameter h. We will also use the following standard notation. For a

domain G ⊂ Rd, the L2(G) inner product and norm for scalar and vector valued functions

are denoted (·, ·)G and ‖ · ‖G, respectively. The norms and seminorms of the Sobolev spaces

W k,p(G), k ∈ R, p > 0 are denoted by ‖ · ‖k,p,G and | · |k,p,G, respectively. The norms and

seminorms of the Hilbert spaces Hk(G) are denoted by ‖ · ‖k,G and | · |k,G, respectively.

We omit G in the subscript if G = Ω. For a section of the domain or element boundary

S ⊂ Rd−1 we write 〈·, ·〉S and ‖ · ‖S for the L2(S) inner product (or duality pairing) and
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norm, respectively. For a tensor-valued function M , let ‖M‖α = maxi,j ‖Mi,j‖α for any norm

‖M‖α. We will also use the spaces

H(div; Ω) = {v ∈ L2(Ω,Rd) : div v ∈ L2(Ω)},

H(div; Ω,M) = {τ ∈ L2(Ω,M) : div τ ∈ L2(Ω,Rd)},

equipped with the norm

‖τ‖div =
(
‖τ‖2 + ‖ div τ‖2

)1/2
.

We will also make use of the following notation. For a matrix τ , let

as (τ) = τ12 − τ21 in 2d and as (τ) = (τ32 − τ23, τ31 − τ13, τ21 − τ12)T in 3d,

and define the invertible operators S and Ξ as follows,

d = 2 : S(w) = w for w ∈ Rd, Ξ(p) =

 0 p

−p 0

 for p ∈ R

d = 3 : S(w) = tr (w)I − wT for w ∈M, Ξ(p) =


0 −p3 p2

p3 0 −p1

−p2 p1 0

 for p ∈ Rd.

(1.2.1)

A direct calculation shows that for all w ∈ Rd in 2d and w ∈M in 3d,

as (curl(w)) = − divS(w), (1.2.2)

and for all τ ∈M and ξ ∈ N,

(τ, ξ) =
(
as (τ), Ξ−1(ξ)

)
. (1.2.3)

1.3 THE MODEL PROBLEM AND ITS CONSTITUENTS

In this section we introduce the common model for the poroelasticity, namely the Biot’s

consolidation system, by first discussing the flow and mechanics parts of it separately, and

then showing how the two are coupled in order to achieve the resulting model.
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1.3.1 The Darcy’s model for flow in porous media

We consider a second order elliptic PDE written as a system of two first order equations,

z = −K∇p, ∇ · z = f in Ω, (1.3.1)

p = g on ΓD, z · n = 0 on ΓN , (1.3.2)

where the boundary the domain is ∂Ω = Γ̄D ∪ Γ̄N , ΓD ∩ ΓN = ∅, measure(ΓD) > 0, n the

outward unit normal vector field on ∂Ω, and K is symmetric and uniformly positive definite

tensor satisfying, for some 0 < k0 < k1 <∞,

k0ξ
T ξ ≤ ξTK(x)ξ ≤ k1ξ

T ξ, ∀x ∈ Ω, ∀ξ ∈ Rd. (1.3.3)

In applications related to modeling flow in porous media, p is the pressure, z is the Darcy

velocity, and K represents the permeability tensor divided by the viscosity. The above choice

of boundary conditions is made for the sake of simplicity. More general boundary conditions,

including nonhomogeneous full Neumann ones, can also be treated.

The weak formulation for (1.3.1)–(1.3.2) reads as follows: find (z, p) ∈ Z ×W such that

(
K−1z, q

)
− (p, ∇ · q) = −〈g, q · n〉ΓD , q ∈ Z, (1.3.4)

(∇ · z, w) = (f, w) , w ∈ W, (1.3.5)

where

Z = {q ∈ H(div; Ω) : q · n = 0 on ΓN}, W = L2(Ω).

It was shown [22,80] that (1.3.4) - (1.3.5) has a unique solution.

9



1.3.2 Linear elasticity model

Let the domain Ω be occupied by a linearly elastic body. The material properties are

described at each point x ∈ Ω by a compliance tensor A = A(x), which is a self-adjoint,

bounded, and uniformly positive definite linear operator acting from S to S. We assume that

A can be extended to an operator from M to M with the same properties. In particular, in

the case of homogeneous and isotropic body,

Aσ =
1

2µ

(
σ − λ

2µ+ dλ
tr(σ)I

)
, (1.3.6)

where I is the d× d identity matrix and µ > 0, λ ≥ 0 are the Lamé coefficients.

Given a vector field f on Ω representing body forces, the equations of static elasticity in

Hellinger-Reissner form determine the stress σ and the displacement u satisfying the following

constitutive and equilibrium equations respectively, together with appropriate boundary

conditions:

Aσ = ε(u), div σ = −f in Ω, (1.3.7)

u = gD on ΓD, σ n = 0 on ΓN , (1.3.8)

where ε(u) = 1
2
(∇u + (∇u)T ) and as before n is the outward unit normal vector field on

∂Ω = Γ̄D ∪ Γ̄N , ΓD ∩ ΓN = ∅. For simplicity we assume that meas (ΓD) > 0, in which case

the problem (1.3.7)–(1.3.8) has a unique solution.

We note that, using (1.3.6), we have

(Aσ, τ) =
1

2µ
(σ, τ)− λ

2µ(2λ+ dµ)
(tr (σ), tr (τ)) ,

implying
1

2µ+ dλ
‖σ‖2 ≤ (Aσ, σ) ≤ 1

2µ
‖σ‖2. (1.3.9)

We consider the mixed variational formulation for (1.3.7)–(1.3.8) with weakly imposed

stress symmetry. Introducing a rotation Lagrange multiplier γ ∈ N to penalize the asymme-

try of the stress tensor, we obtain: find (σ, u, γ) ∈ X× V ×W such that

(Aσ, τ) + (u, div τ) + (γ, τ) = 〈gD, τ n〉ΓD , ∀τ ∈ X, (1.3.10)
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(div σ, v) = − (f, v) , ∀v ∈ V, (1.3.11)

(σ, ξ) = 0, ∀ξ ∈W, (1.3.12)

where

X =
{
τ ∈ H(div; Ω,M) : τ n = 0 on ΓN

}
, V = L2(Ω,Rd), W = L2(Ω,N),

with norms

‖τ‖X =
(
‖τ‖2 + ‖ div τ‖2

)1/2
, ‖v‖V = ‖v‖, ‖ξ‖W = ‖ξ‖.

It is known [13] that (1.3.10)–(1.3.12) has a unique solution.

1.3.3 The Biot consolidation model of poroelasticity

Using the notation of the previous section, and given a vector field f on Ω representing body

forces, the quasi-static Biot system determines the displacement u, together with the Darcy

velocity z and pressure p:

div σ(u) = −f, in Ω, (1.3.13)

K−1z +∇p = 0, in Ω, (1.3.14)

∂

∂t
(c0p+ α∇ · u) +∇ · z = q, in Ω, (1.3.15)

where the poroelastic stress σ(u) is such that:

σ(u) = σE(u)− αpI,

where σE(u) = 2µε(u) +λ∇·u I is the elastic stress, the same we introduced in the previous

section. As before, K stands for the permeability tensor while c0 represents mass storativity

and α is the Biot-Willis constant.

To close the system, the appropriate boundary conditions should also be prescribed

u = gu on ΓdisplD , σ n = 0 on ΓstressN , (1.3.16)

p = gp on ΓpresD , z · n = 0 on ΓvelN , (1.3.17)
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where Γ̄displD ∪ Γ̄stressN = Γ̄presD ∪ Γ̄velN = ∂Ω are the domain boundaries on which Dirichlet and

Neumann data is specified for displacement, pressure and normal fluxes, respectively. We

assume for simplicity that Γ∗D 6= ∅, for ∗ = {displ, pres}.

We notice that due to the constitutive equation in a linear elasticity system, namely

AσE = ε(u), we have

div u = tr (AσE)

With this, the problem reads: find (σ, u, γ, z, p) such that

(Aσ, τ) + (AαpI, τ) + (u, div τ) + (γ, τ) = 〈gu, τ n〉, ∀τ ∈ X, (1.3.18)

(div σ, v) = − (f, v) , ∀v ∈ V, (1.3.19)

(σ, ξ) = 0 ∀ξ ∈W, (1.3.20)(
K−1z, q

)
− (p, ∇ · q) = −〈gp, v · n〉, ∀q ∈ Z, (1.3.21)

c0

(
∂p

∂t
, w

)
+ α

(
∂

∂t
Aσ, wI

)
+ α

(
∂

∂t
tr (AαpI), w

)
+ (∇ · z, w) = (g, w) , ∀w ∈W, (1.3.22)

σ n = 0, on ΓstressN , (1.3.23)

u · n = 0, on ΓvelN , (1.3.24)

where the spaces are

X =
{
τ ∈ H(div; Ω,M) : τ n = 0 on ΓstressN

}
, V = L2(Ω,Rd), W = L2(Ω,N),

Z =
{
v ∈ H(div; Ω,Rd) : v · n = 0 on ΓvelN

}
, W = L2(Ω).

It was shown in [61] that (1.3.18)-(1.3.24) has a unique solution.
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1.4 FUNDAMENTALS OF MIXED FINITE ELEMENT METHOD

We consider Zh, Wh to be the lowest order pair of Brezzi-Douglas-Marini spaces [21,22], i.e.,

we choose BDM1 finite element space for Zh and P0 for Wh. We define the space of tensor

rotations as Wh, and choose either piecewise constant (P0)d×d,skew or continuous piecewise

linear (Pcts1 )
d×d,skew

space for it. By W0
h we denote the former choice, while W1

h stands for the

latter. We then obtain the stress space Xh by taking multiple copies of the Darcy velocity

space, i.e. Xh = (Zh)
d, similarly the displacement space is Vh = (Wh)

d. Notice that the

above choices are made with simplicial grids in mind. For the quadrilateral cases, while

pressure and displacement spaces do not change, the continuous version of rotation space

needs to be replaced by its quadrilateral analogue, namely W1
h = (Qcts1 )

d×d,skew
. Both stress-

displacement-rotation triples that can be obtained from the aforementioned spaces were

shown to be inf-sup stable for the mixed elasticity problem with weak symmetry in [12, 14]

for simplicial grids, and in [4] for the case of convex quadrilaterals.

On the reference simplex, these spaces are defined as (j = 0, 1)

X̂h(Ê) =
(
P1(Ê)d

)d
, V̂h(Ê) = P0(Ê)d, Ŵj

h(Ê) = Ξ(υ), υ ∈
(
Pj(Ê)

)d(d−1)/2

, (1.4.1)

Ẑh(Ê) = P1(Ê)d, Ŵh(Ê) = P0(Ê). (1.4.2)

On the reference unit square the stress and the velocity spaces are defined as

X̂(Ê) =
(
P1(Ê)2 + r curl(x̂2ŷ) + s curl(x̂ŷ2)

)2

=

α1x̂+ β1ŷ + γ1 + r1x̂
2 + 2s1x̂ŷ α2x̂+ β2ŷ + γ2 − 2r1x̂ŷ − s1ŷ

2

α3x̂+ β3ŷ + γ3 + r2x̂
2 + 2s2x̂ŷ α4x̂+ β4ŷ + γ4 − 2r2x̂ŷ − s2ŷ

2

 ,

V̂h(Ê) = P0(Ê)d, Ŵh(Ê) = Ξ(υ), υ ∈ Qj(Ê),

Ẑ(Ê) = P1(Ê)2 + r curl(x̂2ŷ) + s curl(x̂ŷ2)

=

α5x̂+ β5ŷ + γ5 + r3x̂
2 + 2s3x̂ŷ

α6x̂+ β6ŷ + γ6 − 2r3x̂ŷ − s3ŷ
2

 ,

Ŵh(Ê) = P0(Ê).

(1.4.3)
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An important property these spaces possess is that

d̂ivX̂(Ê) = V̂ (Ê), d̂ivẐ(Ê) = Ŵ and (1.4.4)

∀τh ∈ X̂(Ê), q̂ ∈ Ẑ(Ê), ê ∈ Ê τ̂ n̂ê ∈ P1(ê)d and q̂ · n̂ê ∈ P1(ê). (1.4.5)

It is known [21, 22] that the degrees of freedom for BDM1 space can be chosen to be the

values of normal fluxes at any two points on each edge ê if Ê is a reference triangle or

square, or any three points one each face ê if Ê is a reference tetrahedron. This also applies

to normal stresses in the case of (BDM1)d. For this work we choose said points to be at the

vertices of ê for both the velocity and stress spaces. This choice is motivated by the use of

quadrature rule introduced in the next section.

In case of triangular meshes, Ê is the reference right triangle with vertices r̂1 = (0, 0T ),

r̂2 = (1, 0)T and r̂3 = (0, 1)T . Let r1, r2 and r3 be the corresponding vertices of E, oriented

counterclockwise. In this case FE is a linear mapping of the following form

FE(r̂) = r1(1− x̂− ŷ) + r2x̂+ r3ŷ, (1.4.6)

with constant Jacobian matrix and determinant given by

DFE = [r21, r31]T and JE = 2|E|, (1.4.7)

where rij = ri − rj. The mapping for tetrahedra is described similarly.

In case Th is a finite element partition of Ω consisting of quadrilaterals in 2d or hexahedra

in 3d, where h = maxE∈Th diam(E), the above mapping would become bilinear or trilinear,

respectively. We assume Th to be shape regular and quasi-uniform [31]. For any element

E ∈ Th there exists a bilinear (trilinear) bijection mapping FE : Ê → E, where Ê = [−1, 1]d

is the reference square (cube). Denote the inverse mapping by F−1
E , its Jacobian matrix by

DF−1
E , and let JF−1

E
= | det(DF−1

E )|. For x̂ = F−1
E (x) we have that

DF−1
E (x) = (DFE)−1(x̂), JF−1

E
(x) =

1

JE(x̂)
.

Denote by r̂i, i = 1, . . . , 2d, the vertices of Ê, where r̂1 = (0, 0)T , r̂2 = (1, 0)T , r̂3 = (1, 1)T ,

and r̂4 = (0, 1)T in 2d, and r̂1 = (0, 0, 0)T , r̂2 = (1, 0, 0)T , r̂3 = (1, 1, 0)T , r̂4 = (0, 1, 0)T , r̂5 =

(0, 0, 1)T , r̂6 = (1, 0, 1)T , r̂7 = (1, 1, 1)T , and r̂8 = (0, 1, 1)T in 3d. Let ri, i = 1, . . . , 2d, be
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the corresponding vertices of element E. The outward unit normal vector fields to the facets

of E and Ê are denoted by ni and n̂i, i = 1, . . . , 2d, respectively, where facet is a face in 3d

or an edge in 2d. The bilinear (trilinear) mapping is given by

FE(r̂) = r1 + r21x̂+ r41ŷ + (r34 − r21)x̂ŷ, in 2d, (1.4.8)

FE(r̂) = r1 + r21x̂+ r41ŷ + r51ẑ + (r34 − r21)x̂ŷ + (r65 − r21)x̂ẑ + (r85 − r41)ŷẑ

+ ((r21 − r34)− (r65 − r78))x̂ŷẑ, in 3d, (1.4.9)

where rij = ri − rj. For the 3d case we note that the elements can have nonplanar faces.

Let φ̂(x̂) be defined on Ê, and let φ = φ̂ ◦ F−1
E . Using the classical formula ∇φ =

(DF−1
E )T ∇̂φ̂, it is easy to see that for any facet ei ⊂ ∂E

ni =
1

Jei
JE(DF−1

E )T n̂i, Jei = |JE(DF−1
E )T n̂i|Rd , (1.4.10)

where | · |Rd denotes the Euclidean vector norm in Rd. Another straightforward calculation

shows that, for all element types, the mapping definitions and the shape-regularity and

quasi-uniformity of the grids imply that

‖DFE‖0,∞,Ê ∼ h, ‖JE‖0,∞,Ê ∼ hd,

‖DF−1
E ‖0,∞,E ∼ h−1, and ‖JF−1

E
‖0,∞,E ∼ h−d,

(1.4.11)

where the notation a ∼ b means that there exist positive constants c0, c1 independent of h

such that c0b ≤ a ≤ c1b.

We then define the above spaces on any physical element E ∈ Th through the transfor-

mations mentioned above

τ ↔ τ̂ : τ =
1

JE
DFE τ̂ ◦ F−1

E , v ↔ v̂ : v = v̂ ◦ F−1
E ,

ξ ↔ ξ̂ : ξ = ξ̂ ◦ F−1
E , q̂ ↔ q̂ : q =

1

JE
DFE q̂ ◦ F−1

E ,

w ↔ ŵ : w = ŵ ◦ F−1
E ,

here we consider τ ∈ X, v ∈ V , ξ ∈W, q ∈ Z and w ∈ W .

The first and the forth transformations provided above are known as Piola transformation

applied to tensor and vector valued functions, respectively. Its advantage is in preserving
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the normal components of the stress tensor and velocity vector on the edges (faces), and it

satisfies the following properties

(div τ, v)E = (d̂ivτ̂ , v̂)Ê and 〈τ ne, v〉e = 〈τ̂ n̂ê, v̂〉ê, (1.4.12)

(div q, w)E = (d̂ivq̂, ŵ)Ê and 〈q · ne, w〉e = 〈q̂ · n̂ê, ŵ〉ê. (1.4.13)

It also follows that for functions in stress and velocity spaces, there holds

τ ne =
1

JE
DFE τ̂

1

|e|
JE(DF−1

E )T n̂ê =
1

|e|
τ̂ n̂ê, (1.4.14)

q · ne =
1

JE
DFE q̂ ·

1

|e|
JE(DF−1

E )T n̂ê =
1

|e|
q̂ · n̂ê. (1.4.15)

First equation in (1.4.12) can be written as (div τ, v)E = (d̂iv τ , JE v̂)Ê which leads to

div τ =

(
1

JE
d̂iv · χ̂

)
◦ F−1

E (x), (1.4.16)

showing that div τ
∣∣
E

is constant on simplicial elements. Similarly, one concludes that div q
∣∣
E

is also constant on simplicial elements.

We now introduce the finite dimensional spaces for the method on a given partition of

the domain Th:

Xh = {τ ∈ X : τ |E ↔ τ̂ , τ̂ ∈ X̂(Ê) ∀E ∈ Th},

Vh = {v ∈ V : v|E ↔ v̂, v̂ ∈ V̂ (Ê) ∀E ∈ Th},

Wh = {ξ ∈W : ξ|E ↔ ξ̂, ξ̂ ∈ Ŵ(Ê) ∀E ∈ Th},

Zh = {q ∈ Z : q|E ↔ q̂, q̂ ∈ Ẑ(Ê) ∀E ∈ Th},

Wh = {w ∈ W : w|E ↔ ŵ, ŵ ∈ Ŵ (Ê) ∀E ∈ Th}.

(1.4.17)

We denote by Π a mixed projection operator acting on tensor valued functions, such that

Π : X∩H1(Ω,M)→ Xh. We will also use the same notation for a projection operator acting

on vector valued functions, so that in this case Π maps from Z ∩ H1(Ω,Rd) onto Zh. It

was shown in [21,22] and [90] that such projection operator exists and satisfies the following

properties

(div(Πτ − τ), v) = 0, ∀v ∈ Vh,

(div(Πq − q), w) = 0, ∀w ∈ Wh.
(1.4.18)
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In both cases the operator Π is defined locally on each element E by

Πτ ↔ Π̂τ , Π̂τ = Π̂τ̂ , (1.4.19)

Πq ↔ Π̂q, Π̂q = Π̂q̂, (1.4.20)

where Π̂ : H1(Ê,M)→ X̂h(Ê) is the reference element projection operator satisfying

∀ê ⊂ ∂Ê, 〈(Π̂τ̂ − τ̂)n̂, φ̂1〉ê = 0, ∀φ̂1 ∈ (P1(ê))d, (1.4.21)

and similarly, Π̂ : H1(Ê,Rd)→ Ẑh(Ê) is an operator satisfying

∀ê ⊂ ∂Ê, 〈(Π̂q̂ − q̂) · n̂, ψ̂1〉ê = 0, ∀ψ̂1 ∈ P1(ê). (1.4.22)

It is straightforward to see from (1.4.12), (1.4.19), (1.4.21) that τ n = 0 on ΓstressN implies

Πτ n = 0 on ΓstressN . For this we note that for all φ↔ φ̂ ∈ (P1(ê))d,

〈Πτ n, φ〉e = 〈Π̂τ n, φ̂〉ê = 〈Π̂τ̂ n̂, φ̂〉ê = 〈τ̂ n̂, φ̂〉 = 0.

Similar argument using (1.4.13), (1.4.20), (1.4.22) shows that q · n = 0 on ΓvelN implies

Πq · n = 0 on ΓvelN .

In addition to the mixed projection operator presented above, we will make use of a

similar projection operator onto the lowest order Raviart-Thomas spaces [22, 79]. This ad-

ditional construction is solely motivated by the purposes of error analysis on quadrilaterals.

To deal with errors in stress and velocity variables we consider RT 0 spaces of tensor and

vector valued functions, respectively, where the former is obtained as 2 copies of the latter.

Said spaces are defined on a unit square as follows

X̂0(Ê) =

α1 + β1x̂ α2 + β2ŷ

α3 + β3x̂ α4 + β4ŷ

 , V̂ 0(Ê) =
(
Q0(Ê)

)2

, (1.4.23)

Ẑ0(Ê) =

α5 + β5x̂

α6 + β6ŷ

 , Ŵ 0(Ê) = Q0(Ê). (1.4.24)

There holds

div X̂0(Ê) = V̂ 0(ê) and τ̂ n̂ ∈ (P0(ê))d ,
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div Ẑ0(Ê) = Ŵ 0(ê) and q̂ · n̂ ∈ P0(ê).

The degrees of freedom of X̂0(Ê) are the values of normal stress τ̂ n̂ at the midpoints of all

edges (faces) ê. Similarly, the degrees of freedom of Ẑ0(Ê) are the values of normal fluxes

q̂ · n̂ at the same points. The projection operator Π̂0 acting on tensor valued functions from

H1(Ω,M) onto X̂0(Ê); and acting on vector valued function so that Π̂0 : H1(Ω,Rd)→ Ẑ0(Ê)

satisfies

∀ê ⊂ ∂Ê, 〈(Π̂0τ̂ − τ̂)n̂, φ̂0〉ê = 0, ∀φ̂0 ∈ (P0(ê))d,

∀ê ⊂ ∂Ê, 〈(Π̂0q̂ − q̂) · n̂, ψ̂0〉ê = 0, ∀ψ̂0 ∈ P0(ê).
(1.4.25)

The spaces X0
h, V

0
h , Z

0
h and W 0

h on the entire partition Th and the projection operator Π0 for

both tensor and vector valued functions are defined similarly to the case of BDM1 spaces.

Notice also that X0
h ⊂ Xh and Z0

h ⊂ Zh, while the corresponding spaces V 0
h and W 0

h coincide

with Vh and Wh, respectively. The definition of RT 0 projector implies that

div τ = div Π0τ and ‖Π0τ‖ ≤ C‖τ‖, ∀τ ∈ Xh,

div q = div Π0q and ‖Π0q‖ ≤ C‖q‖, ∀q ∈ Zh.
(1.4.26)

1.5 A QUADRATURE RULE.

For any pair of tensor or vector valued functions (φ, ψ) from Xh or Zh, respectively, and for

any linear uniformly bounded and positive-definite operator L we define the global quadra-

ture rule

(Lφ, ψ)Q ≡
∑
E∈Th

(Lφ, ψ)Q,E.

The integration on any element E is performed by mapping to the reference element Ê.

The quadrature rule is defined on Ê. Using the definition of the finite element spaces and

omitting the subscript E, we get∫
E

Lφ · ψ dx =

∫
Ê

L̂
1

J
DFφ̂ · 1

J
DFψ̂ J dx̂

=

∫
Ê

1

J
DF T L̂DF φ̂ · ψ̂ dx ≡

∫
Ê

Lφ̂ · ψ̂ dx̂,
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Figure 1.1: First elasticity triple BDM1 × P0 × P0, on triangles.

where · has a meaning of inner product for both tensor and vector valued functions, and

Lφ =
1

J
DF T L̂DF φ̂ (1.5.1)

is also a symmetric and positive definite operator. Notice that due to (1.4.11),

‖Lφ̂‖Ê ∼ h2−d‖Lφ‖E. (1.5.2)

The quadrature rule on an element E is defined as

(Lφ, ψ)Q,E ≡ (Lφ̂, ψ̂)Q̂,Ê ≡
|Ê|
s

s∑
i=1

Lφ̂(r̂i) : ψ̂(r̂i), (1.5.3)

where s = 3 for the unit triangle and s = 4 for the unit tetrahedron or the unit square.

This quadrature rule is often referred to as a vertex quadrature rule on unit simplices and

as trapezoid rule on unit squares.

When applied to the elasticity and Darcy coercive terms in our coupled problem, the

quadrature rule defined above guarantees the coupling of stress and velocity basis function

only around vertices (see [3, 4, 95]), i.e., the coupled stress basis functions are only the ones

associated with a corner, and same statement applies for the velocity basis functions. For

example, for the elasticity mass term in the case of simplicial elements, the corner tensor

χ̂(r̂i) is uniquely determined by its normal components to the two edges (three faces) that

share that vertex. Recall that we chose the stress degrees of freedom to be the normal
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Figure 1.2: Second elasticity triple BDM1 × P0 × P1, on tetrahedra.

components evaluated at vertices. Therefore for each corner r̂i there are four (nine) stress

degrees of freedom associated with it i.e.

χ̂(r̂i) =
d∑
j=1

χ̂ n̂ij(r̂i)n
T
ij,

where n̂ij, j = 1, d are the outward unit normal vectors to the two edges (three faces)

intersecting at r̂i, and χ̂ n̂ij(r̂i) are the stress degrees of freedom associated with this corner.

Let us denote the basis functions associated with r̂i by τ̂ij, as seen in Figures 1.1 and 1.2,

i.e.,

n̂Tij(r̂i) τ̂
(l)
ij n̂ij(r̂i) = 1, l = 1, d

n̂Tij(r̂i) τ̂
(l)
ij n̂ik(r̂i) = 0, k 6= j, l = 1, d

n̂Tij(r̂i) τ̂
(l)
ij n̂ih(r̂l) = 0, l 6= i, k = 1, d, l = 1, d,

here superscript (l) stands for the fact that our stress space consists of d copies of vector

valued BDM1 spaces. It is now straightforward to see that the quadrature rule (1.5.3)

couples only the four (nine) basis functions associated with a corner. On a reference triangle

for example

(Aτ̂ (1)
11 , τ̂

(1)
11 )Q̂,Ê =

1

6
(Aχ̂)1,1, (Aτ̂ (1)

11 , τ̂
(2)
12 )Q̂,Ê =

1

6
(Aχ̂)2,2 (1.5.4)
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and

(Aτ̂ (1)
11 , τ̂

(l)
ij )Q̂,Ê = 0, ∀ij 6= 11, 12, ∀l = 1, 2. (1.5.5)

We also construct the quadrature rule for the term involving stress with second variable

being pressure or rotation. Given τ = Xh, ζ ∈Wh or ζ ∈ (Wh)
d×d and any linear uniformly

bounded positive-definite operator M we get:∫
E

Mτ : ζ dx =

∫
Ê

1

J
M̂DF τ̂ : ζ̂ J dx̂ =

∫
Ê

M̂DF τ̂ : ζ̂ dx̂ =

∫
Ê

Mτ̂ : ζ̂ dx̂,

where Mτ̂ = M̂DF τ̂ . For this case we also define

(τ, ζ)Q,E ≡
(
Mτ̂ , ζ̂

)
Q̂,Ê
≡ |Ê|

s

s∑
i=1

Mτ̂(r̂i) : ζ̂(r̂i). (1.5.6)

Remark 1.5.1. The quadrature rules can be defined directly on an element E. It is easy to

see from definitions (1.5.3), (1.5.6) that on simplicial elements, for φ, ψ ∈ Xh or φ, ψ ∈ Zh,

τ ∈ Xh and ζ ∈Wh or ζ ∈ (Wh)
d×d

(Lφ, ψ)Q,E =
|E|
s

s∑
i=1

Lφ(ri) · ψ(ri), (Mτ, ζ)Q,E =
|E|
s

s∑
i=1

Mτ(ri) : ζ(ri), (1.5.7)

where L and M are any linear uniformly bounded and positive definite operators. On quadri-

laterals the above definitions read as

(Lφ, ψ)Q,E =
1

2

4∑
i=1

|Ti|Lφ(ri) · ψ(ri), (Mτ, ζ)Q,E =
1

2

4∑
i=1

|Ti|Mτ(ri) : ζ(ri), (1.5.8)

where |Ti| is the area of a triangle formed by two edges sharing vertex ri.

The above quadrature rules are closely related to some inner products arising in mimetic

finite difference methods [51].
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For φ, ψ ∈ Xh or φ, ψ ∈ Zh, τ ∈ Xh and ζ ∈ Wh or ζ ∈ (Wh)
d×d denote the element

quadrature errors by

θ(Lφ, ψ) ≡ (Lφ, ψ)E − (Lφ, ψ)Q,E, (1.5.9)

δ(Mτ, ζ) ≡ (Mτ, ζ)E − (Mτ, ζ)Q,E, (1.5.10)

and define the global quadrature errors by θ(Lφ, ψ)E = θ(Lφ, ψ), δ(Mτ, ζ)E = δ(Mτ, ζ).

Similarly denote the quadrature errors on the reference element by

θ̂(Lφ̂, ψ̂) ≡ (Lφ̂, ψ̂)Ê − (Lφ̂, ψ̂)Q,Ê, (1.5.11)

δ̂(Mτ̂ , ζ̂) ≡ (Mτ̂ , ζ̂)Ê − (Mτ̂ , ζ̂)Q,Ê. (1.5.12)

Lemma 1.5.1. On simplicial elements, if χ ∈ Xh(E) and r ∈ Zh(E), then

θE(χ, τ0) = 0 for all constant tensors τ0,

θE(r, v0) = 0 for all constant vectors v0.

Also, if ζ ∈Wh(E), then

δE(χ, ξ0) = δE(τ0, ζ) = 0, for all constant tensors ξ0 and τ0.

Proof. It is enough to consider τ0 such that it has only one nonzero component, say, (τ0)1,1 =

1, the arguments for other cases are similar. Since the quadrature rule (f)E = |E|
s

∑s
i=1 f(ri)

is exact for linear functions and using Remark 1.5.1 we have

(χ, τ0)Q,E =
|E|
s

s∑
i=1

(χ)1,1(ri) =

∫
E

χ : τ0 dx,

The same reasoning applies for the other two statements.

Lemma 1.5.2. On the reference square, for any χ̂ ∈ X̂h(Ê) and r̂ ∈ Ẑh(Ê),(
χ̂− Π̂0χ̂, τ̂0

)
Q̂,Ê

= 0 for all constant tensors τ̂0, (1.5.13)(
r̂ − Π̂0r̂, ẑ0

)
Q̂,Ê

= 0 for all constant vectors ẑ0. (1.5.14)
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Proof. On any edge ê, if the degrees of freedom of χ̂ are (χ̂ê,11, χ̂ê,12)T and (χ̂ê,21, χ̂ê,22)T ,

then (1.4.25) and an application of trapezoid quadrature rule imply that

Π̂0χ̂
∣∣
E

=

1
2
(χ̂ê,11 + χ̂ê,21)

1
2
(χ̂ê,12 + χ̂ê,22)

 .

Using (1.5.3) the simple calculation shows that the statement holds for the case of χ̂ ∈ X̂h(Ê).

Similar reasoning applied to the degrees of freedom of r̂ shows that the statement is also

valid for r̂ ∈ Ẑh(Ê).

For the justification of well-posedness and stability of the proposed methods later on in

the thesis, we show several important results involving the quadrature rule (1.5.3).

Lemma 1.5.3. If E ∈ Th and φ ∈ L2(E,M), φ ∈ L2(E,Rd) is a function mapped using

Piola transformation, then

‖φ‖E ∼ h
2−d
d ‖φ‖Ê. (1.5.15)

Proof. The statement follows from the bounds given in (1.4.11) and the following relations∫
E

φ · φ dx =

∫
Ê

1

J
DFφ̂ · 1

J
DFφ̂ dx̂,∫

Ê

φ̂ · φ̂ dx̂ =

∫
E

1

JF−1

DF−1φ · 1

JF−1

DF−1φ dx,

where · stands for the inner product when applied to tensor valued functions.

Lemma 1.5.4. There exists a positive constant C independent of h, such that for any linear

uniformly bounded and positive-definite operator L

(Lφ, φ)Q ≥ C‖φ‖2, ∀φ ∈ Xh or ∀φ ∈ Zh. (1.5.16)

23



Proof. Let φ =
∑s

i=1

∑d
j=1 φijψij on an element E where ψij is a basis function. Using the

definitions of the quadrature rule as in Remark 1.5.1 we obtain

(Lφ, ψ)Q,E =
|E|
s

s∑
i=1

Lφ(ri) · φ(ri) ≥ C(l0)
|E|
s

s∑
i=1

φ(ri) · φ(ri) ≥ C(l0)
|E|
s

s∑
i=1

d∑
j=1

φ2
ij,

where C(l0) involves the constant from the lower bound of the operator L. On the other

hand

‖φ‖2
E =

(
s∑
i=1

d∑
j=1

φijψij,

s∑
k=1

d∑
l=1

φklψkl

)
≤ C|E|

s∑
i=1

d∑
j=1

φ2
ij.

And the assertion of the lemma follows from the combination of the above two estimates.

The following corollary is a result of the above lemma.

Corollary 1.5.1. The bilinear form (Lφ, ψ)Q is an inner product on Xh and Zh, (Lφ, ψ)
1/2
Q

is also a norm in Xh and Zh equivalent to ‖ · ‖X and ‖ · ‖Zh, respectively.

Proof. Since (Lφ, ψ)Q is symmetric and linear, Lemma 1.5.4 implies that it is an inner

product and (Lφ, ψ)
1/2
Q is a norm on Xh and Zh, which we denote by ‖ · ‖Q,L. It remains

to show that it is bounded above by ‖ · ‖ which together with the Lemma above will give

the equivalence of norms. Using (1.5.3), (1.5.16) and the equivalence of norms on reference

element Ê we have that for all φ ∈ Xh and for all φ ∈ Zh

(Lφ, φ)Q,E =
(
Lφ̂, φ̂

)
Q̂,Ê
≤ C‖φ̂‖2

Ê
= C

∫
Ê

φ̂ · φ̂ dx̂

= C

∫
Ê

1

J−1
E

DF−1
E φ · 1

J−1
E

DF−1
E φJ−1

E dx ≤ C‖φ‖2
E,

which, combined with (1.5.16), implies that

c0‖φ‖ ≤ ‖φ‖Q,L ≤ c1‖φ‖, (1.5.17)

for positive constants c0, c1 depending on the properties of any uniformly bounded operator

L. The proof of the second statement is similar.
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2.0 MULTIPOINT STRESS MIXED FINITE ELEMENT METHODS FOR

THE LINEAR ELASTICITY MODEL

We start the chapter by providing the mixed finite element approximation of (1.3.10)–(1.3.12)

that reads as follows: Find (σh, uh, γh) ∈ Xh × Vh ×Wj
h (j = 0, 1) such that:

(Aσh, τ) + (uh, div τ) + (γh, τ) = 〈g, τ n〉ΓD , τ ∈ Xh, (2.0.1)

(div σh, v) = (f, v), v ∈ Vh, (2.0.2)

(σh, ξ) = 0, ξ ∈Wj
h. (2.0.3)

The method has a unique solution and is first order accurate for all of the variables in

corresponding norms on both, simplicial and quadrliateral grids with both choices of elements

[13,25]. The drawback is that the resulting algebraic system is a coupled system with three

variables of a saddle point type. However the quadrature rule, that we developed in the

previous chapter, allows for local eliminations of the stresses and rotations which leads to

a cell-centered displacement-rotation in the case of j = 0 in (1.4.1), (1.4.3), or further,

displacement only system in the case of j = 1.

2.1 THE MULTIPOINT STRESS MIXED FINITE ELEMENT METHOD

WITH CONSTANT ROTATIONS

Let P0 be the L2-orthogonal projection onto X0
hn, the space of piecewise constant vector-

valued functions on the trace of Th on ∂Ω in the case of quadrilateral grids:

∀φ, 〈φ− P0φ, τn〉∂Ω = 0, ∀τ ∈ X0
h. (2.1.1)
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In case of simplicial meshes, we define as identity operator P0 = I. The projection operator

is needed to obtain optimal order of convergence while incorporating the Dirichlet data in

case of quadrilateral grids, similarly to [52].

We define our first method as follows, we seek σh ∈ Xh, uh ∈ Vh and γh ∈W0
h such that

(Aσh, τ)Q + (uh, div τ) + (γh, τ) = 〈P0g, τ n〉ΓD , τ ∈ Xh, (2.1.2)

(div σh, v) = (f, v), v ∈ Vh, (2.1.3)

(σh, ξ) = 0, ξ ∈W0
h. (2.1.4)

Theorem 2.1.1. With the quadrature rule defined as in (1.5.3) and the finite element spaces

chosen as in (1.4.17) with j=0, the method (2.1.2)-(2.1.4) has a unique solution (σh, uh, γh).

Proof. We use the classic stability result from the theory of mixed finite element methods.

For this particular case the Babuŝka-Brezzi conditions [22] are stated as

(S1) There exists a constant c1 > 0 such that

c1‖τ‖2
div ≤ (Aτ, τ)Q ,

for τ ∈ Xh satisfying (div τ, v) + (τ, ξ) = 0 for all (v, ξ) ∈ Vh ×W0
h.

(S2) There exists c2 such that

inf
06=(v,ξ)∈Vh×W0

h

sup
06=τ∈Xh

(div τ, v) + (τ, ξ)

‖τ‖div (‖v‖+ ‖ξ‖)
≥ c2.

The condition (S1) is satisfied due to the Corollary 1.5.1 and it was shown in [13, 19] that

the condition (S2) is satisfied for our choice of spaces for the method (2.1.2)-(2.1.4) in case

of simplicial meshes. Thus, the method is well-posed.
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Figure 2.1: Finite elements sharing a vertex (left) and displacement stencil (right), simplicial

grid.

Figure 2.2: Finite elements sharing a vertex (left) and displacement stencil (right), quadri-

lateral grid.
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2.1.1 Reduction to a cell-centered displacement-rotation system of MSMFE-0

method

Let us consider any interior vertex r and suppose that it is shared by k elements E1, ..., Ek

as shown in Figures 2.1–2.2. Let e1, ..., ek be the edges (faces) that share the vertex r and

let τ1, ..., τd k, be the stress basis functions on these edges (faces) associated with the vertex.

Denote the corresponding values of the normal components of σh by σ1, ..., σd k. Note that

for the sake of clarity the normal stresses are drawn at a distance from the vertex.

We mentioned that the quadrature rule localizes the basis functions interaction, therefore

the d k equations obtained by taking τ = τ1, ..., τd k form a linear system for σ1, ..., σd k.

Lemma 2.1.1. The d k × d k local linear system obtained by taking τ = τ1, ..., τd k described

above is symmetric and positive definite.

Proof. The system is obtained by taking τ = τ1, ..., τd k in the first term of (2.1.2), so on the

left-hand side we have

(Aσh, τ)Q =
d k∑
j=1

σj(Aτj, τi)Q ≡
d k∑
j=1

mijσj, i = 1, ..., d k.

and by Corollary 1.5.1 we conclude that the matrix Aσσ = {mij} is symmetric and positive

definite.

The algebraic system that arises from the (2.1.2)-(2.1.4) is of the form
Aσσ ATσu ATσγ

Aσu 0 0

Aσγ 0 0



σ

u

γ

 =


g

f

0

 , (2.1.5)

where (Aσσ)ij = (Aτi, τj)Q, (Aσu)ij = (div τi, vj) and (Aσγ)ij = (τi, γj). It was already shown

in Lemma 2.1.1 that matrix Aσσ is block-diagonal with symmetric and positive definite

blocks. Hence, elimination of σ leads to a displacement-rotation systemAσuA−1
σσA

T
σu AσuA

−1
σσA

T
σγ

AσγA
−1
σσA

T
σu AσγA

−1
σσA

T
σγ

u
γ

 =

f̃
h̃

 . (2.1.6)
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Lemma 2.1.2. The cell-centered displacement-rotation system (2.1.6) is symmetric and pos-

itive definite.

Proof. The symmetry of A implies that AσγA
−1
σσA

T
σu = (AσuA

−1
σσA

T
σγ)

T hence proving the

symmetry of the matrix in (2.1.6). To show the positive definiteness, consider an arbitrary

vector
(
vT ξT

)
6= 0, so

(
vT ξT

)AσuA−1
σσA

T
σu AσuA

−1
σσA

T
σγ

AσγA
−1
σσA

T
σu AσγA

−1
σσA

T
σγ

v
ξ

 = vTAσuA
−1
σσA

T
σuv

+vTAσuA
−1
σσA

T
σγξ+ξ

TAσγA
−1
σσA

T
σuv+ξTAσγA

−1
σσA

T
σγξ = (ATσuv+ATσγξ)

TA−1
σσ(ATσuv+ATσγξ) > 0,

due to inf-sup condition (S2).

While this method reduces the initial saddle-point problem to the SPD system for dis-

placement and rotation, we proceed further in order to obtain the system for displacement

only. For doing so we would want to be able to do local computations in order to eliminate

the rotation variable, in a way similar to the one described above. However, to achieve this,

we must modify the method, by changing the space for rotation variable, and applying the

vertex quadrature rule to the terms involving this variable. The next chapter discusses this

in more details.

Remark 2.1.1. We refer to the method (2.1.2)-(2.1.4), obtained by combining quarature rule

and j = 0 in (1.4.1)-(1.4.3) as the MSMFE-0 method. The method described in equations

(2.2.1)-(2.2.3), is consequently referred to as the MSMFE-1 method.

2.2 THE MULTIPOINT STRESS MIXED FINITE ELEMENT METHOD

WITH (BI)-LINEAR ROTATIONS

As discussed earlier, we modify the first method so that it now reads: seek σh ∈ Xh, uh ∈ Vh
and γh ∈W1

h such that

(Aσh, τ)Q + (uh, div τ) + (τ, γh)Q = 〈P0g, τ n〉ΓD , τ ∈ Xh, (2.2.1)
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(div σh, v) = (f, v), v ∈ Vh, (2.2.2)

(σh, ξ)Q = 0, ξ ∈W1
h. (2.2.3)

Note that this method deviates from the method (2.1.2)-(2.1.4) both in utilizing the space

W1
h instead of W0

h, which allows for introducing quadrature on the term in equation (2.2.3).

The stability conditions for the modified method can be written in the following form

(S3) There exists c3 such that

c3‖τ‖2
div ≤ (Aτ, τ)Q ,

for τ ∈ Xh satisfying (div τ, v) + (τ, q)Q = 0 for all (v, ξ) ∈ Vh ×W0
h.

(S4) There exists c4 such that

inf
06=(v,ξ)∈Vh×W1

h

sup
06=τ∈Xh

(div τ, v) + (τ, ξ)Q
‖τ‖div (‖v‖+ ‖ξ‖)

≥ c4.

2.2.1 Well-posedness of the MSMFE-1 method on simplices

While the condition (S3) is again satisfied due to the Corollary (1.5.1), we need to verify

that the inf-sup condition holds for our choice of spaces. The next theorem provides sufficient

conditions for a triple of spaces to satisfy (S4).

Theorem 2.2.1. Let Sh ⊂ H(div; Ω) and Uh ⊂ L2(Ω) be a stable mixed Poisson pair of

spaces and suppose that Qh ⊂ H1(Ω,Rd×d(d−1)/2) and W1
h = Wh ⊂ L2(Ω,Rd(d−1)/2) satisfy

(2.2.5). Suppose further that,

curlQh ⊂ (Sh)
d. (2.2.4)

Then, Xh = (Sh)
d ⊂ H(div; Ω,Rd×d), Vh = (Uh)

d ⊂ L2(Ω,Rd) and Wh ⊂ L2(Ω,Rd(d−1)/2)

satisfy (S4).
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Proof. Let v ∈ Vh, w ∈ Wh be given. Since Xh = (Sh)
d and Vh = (Uh)

d there exists η ∈ Xh

such that

(div η, v) = ‖v‖2, and ‖η‖div ≤ C‖v‖.

Next, from (2.2.5) there exists qh ∈ Qh such that

PQ
Wh

div q = w − PQ
Wh

as η.

Setting τ = η − curlS−1(q) so that as τ = as η + div q ∈ Xh and using (1.2.2) we get

(as τ, w)Q = (as η, w)Q + (div q, w)Q

= (PQ
Wh

as η, w)Q + (PQ
Wh

div q, w)Q

= (PQ
Wh

as η, w)Q + (w − PQ
Wh

(as η), w)Q.

Thus, (as τ, w)Q = (w,w)Q. Since there holds

(div τ, v) = (div η, v) = ‖v‖2,

with ξ = Ξ(w) we finally obtain

(∇ · τ, v) + (τ, ξ)Q = (∇ · τ, v) + (as τ, w)Q ≥ c‖τ‖∇·(‖v‖+ ‖ξ‖).

which completes the proof.

Therefore, in order to construct spaces Xh and Wh such that (S4) is satisfied, one should

consider the pair of stable Stokes spaces Qh, Wh satisfying

sup
06=q∈Qh

b(q, w)Q
‖q‖1

≥ C‖w‖, ∀w ∈ Wh, (2.2.5)

for some constant C > 0. Here b(q, w)Q = −(div q, w)Q is a usual divergence term arising in

Stokes equations, with our choice of quadrature rule used for integration. We notice that in

3 dimensions, this result should be understand as applied row-wise to Qh and Wh, as these

spaces are over R3×3 and R3, respectively.
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Following the statement of the theorem above and our choice for the stress space Xh =

(BDM1)d we are restricted to considering the quadratic Lagrangian space for the velocity

in this auxiliary Stokes problem, since

curl(P2)d×d(d−1)/2 ⊂ (BDM1)d.

It is well known that P2 −P1 is a stable Taylor-Hood pair of spaces for the Stokes problem

on simplices, however, we still need to verify the inf-sup condition with quadrature (2.2.5).

Before moving on to proving the modified inf-sup condition for the Stokes problem, we

need to discuss the subtleties arising due to the choice of boundary conditions for the initial

elasticity problem and how they translate into the ones of the Stokes problem that we will

consider in the next section.

In case ΓN 6= ∅ in the initial problem (1.3.10)–(1.3.12), for the choice τ = η− curlS−1(q)

to be correct, we must guarantee that η − curlS−1(q) ∈ Xh holds (recall that Neumann

boundary condition for the elasticity problem is essential). As we have flexibility for the

choice of η, let η ∈ Xh, so that it remains to provide the right space Qh such that

(
curlS−1(q)

)
nΓN = 0, ∀q ∈ Qh. (2.2.6)

For this, we need an auxiliary lemma.

Lemma 2.2.1. Let Ω be a bounded domain of Rd, d = 2, 3 and let H = {w ∈ H1(Ω,Rd(d−1)/2) :

w = 0 on Γ} where Γ is a non-empty part of the boundary ∂Ω. Then the following holds

(curlw) · nΓ = 0.

Proof. First, in 2 dimensions we consider the tangential gradient of w

∇w · τΓ =
∂w

∂x
τ1 +

∂w

∂y
τ2 =

∂w

∂x
n2 −

∂w

∂y
n1 = 0, (2.2.7)

since this coincides with the definition of curl in 2 dimensions we gave earlier, the statement

follows.

In 3 dimensions, we write

w = (w · nΓ)nΓ + wΓ = (w · nΓ) · nΓ,
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where wΓ is a tangential part of w, which is zero due to the choice of space. Then, w×nΓ =

(w · nΓ)(nΓ × nΓ) = 0, and thus,

(curlw) · nΓ = (∇× w) · nΓ = ∇ · (w × nΓ) = 0.

Next, recall that we apply curl operations row-wise, so the above lemma tells us that for

(2.2.6) to be satisfied, the space Qh should be chosen as

Qh = {q ∈ H1(Ω,Rd×d(d−1)/2) : qi|E ∈ P2, i = 1, . . . d2(d− 1)/2, q = 0 on ΓN}.

So, conceptually, the essential boundary conditions of elasticity problem should be matched

by essential boundary conditions of the auxiliary Stokes problem that we consider for the

proof of well-posedness.

2.2.1.1 The macroelement definition Adopting the approach by R. Stenberg [84] we

introduce and prove a macroelement condition which is sufficient for (2.2.5) to be valid. We

first provide the necessary terminology and notation. By a macroelement we consider a union

of one or more neighboring simplices, satisfying the usual shape-regularity and connectivity

conditions. We denote by Mh the partitioning of the domaind into such macroelements.

We say that a macroelement M is equivalent to a reference macrolement M̂ , if there is a

mapping FM : M̂ →M , such that

(i) FM is continuous and one-to-one;

(ii) FM(M̂) = M ;

(iii) If M̂ = ∪mj=1T̂j, where T̂j, j = 1, . . . ,m are simplices in M̂ , then Tj = FM(T̂j), j =

1, . . . ,m are simplices in M ;

(iv) FM |T̂j
= FTj ◦ F−1

T̂j
, j = 1, . . . ,m, where FT̂j and FTj are the affine mappings from the

reference simplex onto T̂j and Tj, respectively.
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The family of macroelements equivalent to M̂ will be denoted by EM̂ .

Next, we define the following spaces on a macroelementM , keeping in mind the discussion

of boundary conditions from the previous section.

Q0,M = {q ∈ H1
0 (M,Rd) : qi|K ∈ P2, i = 1, d, ∀K ⊂M}, (2.2.8)

WM = {w ∈ L2(M) ∩ C(M̄) : w|K ∈ P1, ∀K ⊂M}. (2.2.9)

We further introduce

W0,M = WM ∩ L2
0(M), (2.2.10)

NM = {w ∈ PM : b(q, w) = 0, ∀q ∈ Q0,M}. (2.2.11)

We notice here, that with this choice of macroelements spaces we would be able to show the

modified inf-sup condition (2.2.5) over the space Q0
h, defined as

Q0
h = {q ∈ H1

0 (Ω,Rd) : qi|E ∈ P2, i = 1, d},

while we will state a corollary later, that allows us to extend the results to the desired space

Qh. The next step of the argument is to consider the possible macroelement partitions of

the domain, and prove that the null space on such macroelements possesses the desired

properties. For this we start by considering the two adjacent triangles (four tetrahedra in 3

dimensions), see Figure 2.3, and further extend the result to a macroelement consisting of

NT triangles (2NT tetrahedra in 3 dimensions) put together in a way that will be discussed

in details later (see Figure 2.4).
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Figure 2.3: P2−P1 DoFs, Dirichlet bound-

aries

Figure 2.4: Macroelement with NT trian-

gles

2.2.1.2 Null space NM We first focus on 2 dimensions. Consider two adjacent triangles

T1 and T2 and the corresponding reference triangles T̂1 and T̂2. We denote the vertices of

T̂1 by r̂1 = (0, 0), r̂2 = (1, 0), r̂4 = (0, 1) and the rest one of T̂2 by r̂3 = (1, 1), as shown in

Figure 2.3. Assuming homogeneous Dirichlet boundary condition on such macroelement, the

unrestricted velocity basis functions correspond to the degrees of freedom at the midpoint

of the edge r24:

q̂1

∣∣
T̂1

=

4x̂ŷ

0

 , q̂1

∣∣
T̂2

=

4− 4x̂− 4ŷ + 4x̂ŷ

0

 ,

q̂2

∣∣
T̂1

=

 0

4x̂ŷ

 , q̂2

∣∣
T̂2

=

 0

4− 4x̂− 4ŷ + 4x̂ŷ

 .

For a given ŵ ∈ ŴT̂1∪T̂2 , we compute

2∑
i=1

(∇̂ · q̂1, ŵ)T̂i,Q̂ =
4|T̂1|

3
ŵ(r̂4)− 4|T̂2|

3
ŵ(r̂2), (2.2.12)

2∑
i=1

(∇̂ · q̂2, ŵ)T̂i,Q̂ =
4|T̂1|

3
ŵ(r̂2)− 4|T̂2|

3
ŵ(r̂4). (2.2.13)

Similarly, in 3 dimensions, we consider a square pyramid composed of four tetrahedra.

We denote the vertices of T̂1 by r̂1 = (0, 0, 1), r̂2 = (0, 0, 0), r̂3 = (1, 0, 0) and r̂4 = (0, 1, 0),

35



and the rest will be r̂5 = (0,−1, 0) and r̂6 = (0, 0,−1). The only unrestricted velocity basis

functions correspond to the middle-edge of r23 with the first component q̂1 being given by

q̂1

∣∣
T̂1

=


4x− 4xy − 4xz − 4x2

0

0

 , q̂1

∣∣
T̂2

=


4x+ 4xy − 4xz − 4x2

0

0

 ,

q̂1

∣∣
T̂3

=


4x+ 4xy + 4xz − 4x2

0

0

 , q̂1

∣∣
T̂4

=


4x− 4xy + 4xz − 4x2

0

0

 .

The q̂2 and q̂3 are then easily obtained. The computation of the divergence terms is then a

straightforward calculation.

Recall, |T̂i| = 1
2

in 2D and |T̂i| = 1
6

in 3D. Hence, we obtain the following systems:

(
0 −2/3 0 2/3
0 2/3 0 −2/3

)ŵ(r̂1)
ŵ(r̂2)
ŵ(r̂3)
ŵ(r̂4)

 =

0
0
0
0

 ,

0 2/3 −2/3 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



ŵ(r̂1)
ŵ(r̂2)
ŵ(r̂3)
ŵ(r̂4)
ŵ(r̂5)
ŵ(r̂6)

 =


0
0
0
0
0
0

 ,

(2.2.14)

which imply that the null space NT̂1∪T̂2 in 2 dimensions consists of

• ŵ such that ŵ(r̂2) = ŵ(r̂4) 6= 0 and ŵ(r̂1) = ŵ(r̂3) = 0;

• ŵ such that ŵ(r̂2) = ŵ(r̂4) = 0 and either ŵ(r̂1) 6= 0 or ŵ(r̂3) 6= 0;

while the null space NT̂1∪T̂2∪T̂3∪T̂4 in 3 dimensions consists of

• ŵ such that ŵ(r̂2) = ŵ(r̂3) 6= 0 and ŵ(r̂1) = ŵ(r̂4) = ŵ(r̂5) = ŵ(r̂6) = 0;

• ŵ such that ŵ(r̂2) = ŵ(r̂3) = 0 and either one of the rest is non-zero.

Remark 2.2.1. Another configuration of interest is when at least one edge (face) of two

adjacent triangles (four tetrahedra) belongs to a part of the boundary on which Neumann

data is prescribed. For simplicity, we discuss this in 2 dimensions, while the results could be

naturally extended to 3 dimensions.
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Assume that the side r̂14, see Figure 2.3, is now a part of Neumann boundary. This

implies, that there are two more unrestricted velocity degrees of freedom associated with the

midpoint of this edge, denote it by (q̂3, q̂4), such that

q̂3

∣∣
T̂1

=

4x̂− 4x̂ŷ − 4ŷ2

0

 , q̂3

∣∣
T̂2

=

0

0

 ,

q̂4

∣∣
T̂1

=

 0

4x̂− 4x̂ŷ − 4ŷ2

 , q̂4

∣∣
T̂2

=

0

0

 .

Similarly to (2.2.12)-(2.2.13), one obtains the system 0 −2/3 0 2/3
0 2/3 0 −2/3

2/3 2/3 0 0
0 −2/3 0 −2/3


ŵ(r̂1)
ŵ(r̂2)
ŵ(r̂3)
ŵ(r̂4)

 =

0
0
0
0

 , (2.2.15)

which shows that the null space in such case consists of the function ŵ such that ŵ(r̂1) =

ŵ(r̂2) = ŵ(r̂4) = 0 and ŵ(r̂3) 6= 0. It is also clear from the above calculations, that NT̂1
is

empty.

In the same fashion one may show that in case both r̂14 and r̂43 belong to Neumann parts

of the boundary, the null space NT̂1∪T̂2 would be empty.

We will further consider a macroelement M consisting of NT triangles with NT ≥ 3 in 2D,

all such triangles Ti ∈M, i = 1, . . . , NT must share a vertex and for every vertex other than

this particular one there are exactly three edges sharing it. An example is shown on Figure

2.4. In 3D, analogously, we will consider a macroelement M consisting of NT tetrahedra,

with NT ≥ 4 and NT -even, such that both vertex r̂2 and the line r̂16 stay strictly inside the

macroelement, and all other vertices are shared by exactly four faces.

Lemma 2.2.2. On a macroelement M constructed as above, the null space NM is one

dimensional, consisting of functions that are constant on M .
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Proof. First, observe that trace of a matrix is invariant under a change of variables, so

(div q, w)M,Q =
d∑
i=1

(tr (∇q) , w)Ti,Q =
d∑
i=1

(
tr
(
DF−TTi ∇̂q̂

)
, ŵJTi

)
T̂i,Q̂

.

From this, and the fact that in case of simplicial meshes mapping FT iM is affine and JT iM 6= 0,

we conclude that w ∈ NM if and only if ŵ ∈ NM̂ .

In 2D, using the above observation, we group two adjacent triangles and map such union

to the reference macroelement shown in Figure 2.3. Then for each union T̂i ∪ T̂i+1, i =

1, . . . , NT the null space consists of functions that are constant along the edge connecting r̂1

and r̂i+2 and functions that are nonzero only at r̂i+1 or r̂i+3. For the last union T̂NT ∪ T̂1,

the null space consists of functions that are constants along the edge connecting r̂1 and r̂NT

and the ones that are nonzero only at r̂2 or r̂NT−1, see Figure 2.4. More precisely, for each

i = 1, . . . , NT + 1, there exists q̂i such that

(∇̂ · q̂i, ŵ)T̂i∪T̂i+1,Q̂
=

2

3
ŵ (r̂1)− 2

3
ŵ (r̂i+2) and (∇̂ · q̂NT+1, ŵ)T̂NT ∪T̂1,Q̂

=
2

3
ŵ (r̂1)− 2

3
ŵ (r̂2) ,

and ∇̂ · q̂i(r̂i) = ∇̂ · q̂NT+1(r̂2) = ∇̂ · q̂NT+1(r̂NT ) = 0, ∀r̂i 6= 1, i+ 2.

Setting q̂ =
∑NT+1

i=1 αiq̂i, one gets

(∇̂ · q̂, ŵ)M̂,Q̂ =

NT∑
i=1

αi(∇̂ · q̂i, ŵ)T̂i∪T̂i+1,Q̂
+ αNT+1(∇̂ · q̂NT+1, ŵ)T̂NT ∪T̂1,Q̂

=
2

3

NT∑
i=1

αi(ŵ(r̂1)− ŵ(r̂i+2)) +
2

3
αNT+1(ŵ(r̂1)− ŵ(r̂2)).

Hence, (∇̂ · q̂, ŵ)M̂,Q̂ = 0 only if for all i 6= 1

ŵ(r̂1)− ŵ(r̂i) = 0,

which implies that ŵ is constant on M̂ , and therefore w is constant on M due to the

observation from the beginning of the proof.

The exact same reasoning applies in 3D, so we omit the details for the sake of space.
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2.2.1.3 Assumptions on the macroelements and partitioning of the domain As-

sume that there is a fixed set of classes EM̂i
, i = 1, ..., n, n ≥ 1 and further assume that:

(M1) For each M ∈ EM̂i
, the space NM is one-dimensional, consisting of functions that are

constant on M ;

(M2) There exists a union of macroelements (of the type in Figure 2.4) such that every

vertex in Th is a vertex of an element in this union;

2.2.1.4 The inf-sup for the Stokes problem

Theorem 2.2.2. If the above conditions (M1)-(M2) are satisfied, then there holds

sup
06=q∈Q0

h

b(q, w)Q
‖q‖1

≥ C‖w‖, ∀w ∈ Wh, (2.2.16)

Before we prove this result, we need to state three auxiliary lemmas, similar to the ones

in [84]. For the sake of space we will omit the details in the proofs of the forthcoming lemmas

if they appear in the mentioned paper.

Lemma 2.2.3. Let EM̂ be a class of equivalent macroelements. Suppose that for every

M ∈ EM̂ , the space NM is one dimensional, consisting of functions that are constant on

M . Then there exists is a positive constant βM̂ = βM̂(M̂, σ, γ) (here σ and γ are constants,

characterizing mesh regularity, independent of h) such that the condition

sup
06=q∈Q0,M

b(q, w)Q,M
|q|1,M

≥ βM̂‖w‖M , ∀w ∈ W0,M ,

holds for every M ∈ EM̂ .

Proof. Consider a fixed M ∈ EM̂ . Define the constant βM as follows:

βM = b(q, w)Q,M .

Since the null space NM consists of functions that are constant on M , and W0,M and Q0,M

are finite dimensional, it follows that βM > 0. One can argue that there exists a constant

βM̂ such that βM ≥ βM̂ > 0 for every M in EM̂ , using the same compactness argument as in

the proof of Lemma 3.1 in [84].
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Next, let Ph denote the L2 projection from Wh onto the space

Mh = {µ ∈ L2
0(Ω) : µ

∣∣
M

is constant ∀M ∈Mh}.

Lemma 2.2.4. Suppose the conditions (M1)-(M2) are valid. Then there exists a constant

C1 > 0, such that for every w ∈ Wh, there is a q ∈ Qh satisfying

b(q, w)Q = b(q, (I − Ph)w)Q ≥ C1‖(I − Ph)w‖2
0, and |q|1 ≤ ‖(I − Ph)w‖0.

Proof. For every w ∈ W 1
h we have:

(I − Ph)w ∈ W0,M , ∀M ∈Mh.

Since every M ∈ Mh belongs to some of the classes M ∈ EM̂ , i = 1, ..., n, Lemma 2.2.3

implies that for every M there exists qM ∈ Q0,M such that

b(qM , (I − Πh)w)M,Q ≥ C2‖(I − Ph)w‖2
M and |qM |1,M ≤ ‖(I − Ph)wh‖2

0,M ,

where C2 = min{βM̂i
, i = 1, ..., n} and the positive constants βM̂i

are chosen as in Lemma

2.2.3. Let us now define q through

q
∣∣
M

= qM ∀M ∈Mh.

By our assumptions,

b(q, (I − Πh)w)Q =
∑

M∈Mh

b(qM , (I − Πh)w)M,Q ≥ CC2(I − Ph)w‖2
0,

where the constant C comes from equivalence of norms and doesn’t depend on h. So, we set

C1 = CC2.

Moreover, since q = 0 on ∂M ∈Mh we conclude that q ∈ Qh and

b(q,Phw)Q = 0, ∀w ∈ Wh

and the assertion of the lemma now follows from combining the results above.
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Lemma 2.2.5. There is a constant C2 > 0 such that for every w ∈ Wh there is a g ∈ Qh

such that

b(g,Phw)Q = ‖Phw‖2
0 and |g|1 ≤ C2‖Phw‖0.

Proof. Let w ∈ Wh be arbitrary. Since Phw ∈ L2
0(Ω), there exists z ∈ H1

0 (Ω) such that

∇ · z = Phw and |z|1 ≤ C‖Phw‖0.

Following [84] we construct an operator Ih : H1
0 (Ω)→ Qh such that

(∇ · z, µ) = b(Ihz, µ)Q, ∀µ ∈Mh, and |Ihz|1 ≤ C|z|1.

Finally, since the trapezoidal quadrature rule is exact for linears, we seek for an operator

satisfying

(∇ · z, µ) = (∇ · Ihz, µ), ∀µ ∈Mh.

The rest of the construction then is the same as in Lemma 3.5 in [84].

We are finally ready to prove the main result stated in Theorem 2.2.2:

Proof of Theorem 2.2.2. Let w ∈ Wh be given, and let q ∈ Qh, g ∈ Qh, C1 and C2 be as in

Lemma 2.2.4 and Lemma 2.2.5. Set z = q + δg, where δ = 2C1(1 + C2
2)−1. We then have

b(z, w)Q = b(q, w)Q + δb(g, w)Q = b(q, w)Q + δb(g,Phw)Q + δb(g, (I − Ph)w)Q

≥ C1‖(I − Ph)w‖2
0 + δ‖Phw‖2

0 − δ|g|1‖(I − Ph)w‖0

≥ C1(1 + C2
2)−1‖w‖2

0

and, |z|1 ≤ ‖(I − Ph)w‖0 + δC2‖Phw‖0 ≤ C‖w‖0, implying that (2.2.16) holds.

Corollary 2.2.1. Under the assumptions made in the current section, the modified inf-sup

condition (2.2.5) holds.
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Proof. To show this, one needs to extend the (2.2.16) to the case q ∈ H1(Ω). For this, one

may consider the triangulation obtained by removing the simplices that have edges (faces)

on the Neumann part of the boundary, hence resulting in the situation discussed in details

in the current section. In particular, this will guarantee that the (2.2.16) holds, and the

pressure is determined up to a constant.

On the other hand, due to the Remark 2.2.1, on the removed simplices the null space

is empty, hence it is possible (in the same logic as was described in the above lemmas) to

combine these parts of the triangulation, determining the pressure uniquely.

2.2.2 Well-posedness for the MSMFE-1 method on quadrilaterals

Similarly to the simplicial case, in order to establish the well-posedness of the MSMFE-1

method over quadrilaterals, one checks the conditions of Theorem 2.2.1. According to the

definition (1.4.3), we have Ŝh(Ê) = BDM1(Ê), Ûh(Ê) = Q0(Ê), Ŵ 1
h (Ê) = Q1(Ê) and the

corresponding spaces on Th are given as follows

Sh = {χ ∈ H(div; Ω) : χ =
1

JE
DFEχ̂ ◦ F−1

E , χ̂ ∈ Ŝh(Ê) ∀E ∈ Th, and χ · n = 0 on ΓN},

Uh = {v ∈ L2(Ω) : v = v̂ ◦ F−1
E , v̂ ∈ Ûh(Ê) ∀E ∈ Th}, (2.2.17)

W1
h = {w ∈ L2(Ω) : w = ŵ ◦ F−1

E , ŵ ∈ Ŵ 1
h (Ê) ∀E ∈ Th}.

Recall [22] that Sh × Uh is a stable mixed pair. It remains to show (2.2.5) with a choice for

Qh satisfying (2.2.6).

Let SS2(Ê) be the reduced bi-quadratics (serendipity) space [24]:

SS2(Ê) = P2(Ê) + span{x̂2ŷ, x̂ŷ2}.

We define the space Qh as

Qh = {q ∈ (H1(Ω))2 : q|i,E = q̂i ◦ F−1
E , q̂i ∈ SS2(Ê), i = 1, 2, ∀E ∈ Th,

and q = 0 on ΓN}. (2.2.18)

One can verify that curlSS2(Ê) ⊂ BDM1(Ê)×BDM1(Ê). To satisfy the Neumann bound-

ary condition τ n = 0 on ΓN for Xh, elements of Sh must satisfy χ ·n = 0 on ΓN and we need

42



Figure 2.5: Two possible configurations of macroelements. Left: interior, vertically oriented

macroelement; right: vertically oriented macroelement with bottom edge on the Neumann

part of the boundary ΓN .

for q ∈ Qh to have curl q · n = 0 on ΓN , which is guaranteed by definition of Qh (2.2.18), as

it was shown in [3]. Then we have that curlQh ⊂ Sh×Sh, [9]. In the following we show that

with the above choice of Qh, the Stokes inf-sup condition (2.2.5) holds.

2.2.2.1 The inf-sup for the Stokes problem Similarly to the case of simplicial el-

ements of the previous section, we prove (2.2.5) using a modification of the macroelement

technique presented by R.Stenberg [84]. We recall that in [84], it was sufficient to consider

H1
0 (M) velocity basis functions on each macroelement M in order to control pressures. In

this section we show how similar result can be obtained without restricting velocity basis

functions on the boundary of macroelements, but assuming several conditions on the mesh

Th.

We consider a partition Mh of the domain Ω by NM macroelements Mi, i = 1, . . . , NM ,

where each Mi is a union of two elements of Th, i.e., for every i = 1, . . . , NM Mi = EMi,1 ∪

EMi,2, EMi,1, EMi,2 ∈ Th. An example of such macroelement is given on Figure 2.5. For

a given element E or macroelement M , we denote the corresponding bilinear forms on an
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element or a macroelement by

b(q, w)Q,E = b(q, w)Q
∣∣
E
, and b(q, w)Q,M = b(q, w)Q

∣∣
M
,

∀E ∈ Th,M ∈Mh, ∀q ∈ Qh, w ∈ W 1
h .

We recall that the space Qh(Ê) has sixteen degrees of freedom, with eight degrees of freedom

associated with the vertices of Ê and another eight - with the mid-edges. We define the space

Qe
h(Ê) to be the span of all edge degrees of freedom of Qh(Ê) and

Qe
h = {q ∈ H1(Ω) : q|E = q̂ ◦ F−1

E , q̂ ∈ Qe
h(Ê), and q = 0 on ΓN}.

Next for every macroelement M , we define the local velocity space as a restriction Qe
h,M =

Qe
h

∣∣
M

. We note that depending on the location of M , the space Qe
M,h may have different

number of unrestricted degrees of freedom. For instance, if M is an interior macroelement

or it has several edges on the Dirichlet part of the boundary ΓD, then there are seven

unrestricted degrees of freedom (see Figure 2.5 (left)). On the other hand, if has k edges on

the Neumann part of the boundary ΓN , then there are 7− k unrestricted degrees of freedom

(see Figure 2.5 (right), where k = 1). We denote the number of unrestricted degrees of

freedom on M by N e
M .

We also define the local pressure spaces as W 1
h,M = W 1

h

∣∣
M
, W 1

h,M,0 = W 1
h,M ∩ L2

0(M) and

also

NM = {w ∈ W 1
h,M : b (q, w)Q,M = 0, ∀q ∈ Qe

h,M}.

The next Lemma summarizes the properties of NM .

Lemma 2.2.6. Let M be a macroelement having at most one edge on the Neumann part

of the boundary, then the space NM is one-dimensional, consisting of w ∈ W 1
h,M that are

constant on M .
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Proof. We recall that for any q ∈ Qh, w ∈ W 1
h and E ∈ Th

b(q, w)Q,E =
1

4

4∑
j=1

tr
[
DF−TE (r̂j)∇̂(q̂)(r̂j)

]
ŵ(r̂j)J(r̂j).

Consider M ∈ Mh. Without loss of generality, let us assume that M is vertically oriented,

as shown on Figure 2.5. In particular, we assume that x2−x1 6= 0, x3−x4 6= 0, x5−x6 6= 0,

y4− y1 6= 0, y3− y2 6= 0, y6− y4 6= 0, y5− y3 6= 0, y6− y1 6= 0, and y5 6= y2. If any of these do

not hold, we can consider a horizontally oriented macroelement. We first consider the case

of interior macroelement (see Figure 2.5 (left)). One can verify using direct calculations that

for the basis functions qi = (qni , q
t
i)
T i = 1, . . . , 7, we get

b(qt1, w)Q,M = b(qt1, w)Q,EM,1 = (y4 − y1)w(r1) + (y2 − y3)w(r2), (2.2.19)

b(qn1 , w)Q,M = b(qn1 , w)Q,EM,1 = (y1 − y2)w(r1) + (y2 − y1)w(r2), (2.2.20)

b(qt2, w)Q,M = b(qt2, w)Q,EM,1 = (x2 − x1)w(r2) + (x4 − x3)w(r3), (2.2.21)

b(qn2 , w)Q,M = b(qn2 , w)Q,EM,1 = (x2 − x3)w(r2) + (x3 − x2)w(r3), (2.2.22)

b(qt4, w)Q,M = b(qt4, w)Q,EM,1 = (x2 − x1)w(r1) + (x4 − x3)w(r4), (2.2.23)

b(qn4 , w)Q,M = b(qn4 , w)Q,EM,1 = (x1 − x4)w(r1) + (x4 − x1)w(r4), (2.2.24)

b(qt5, w)Q,M = b(qt5, w)Q,EM,2 = (x3 − x4)w(r3) + (x6 − x5)w(r5), (2.2.25)

b(qn5 , w)Q,M = b(qn5 , w)Q,EM,2 = (x3 − x5)w(r3) + (x5 − x3)w(r5), (2.2.26)

b(qt6, w)Q,M = b(qt6, w)Q,EM,2 = (y3 − y5)w(r5) + (y6 − y4)w(r6), (2.2.27)

b(qn6 , w)Q,M = b(qn6 , w)Q,EM,2 = (y5 − y6)w(r5) + (y6 − y5)w(r6), (2.2.28)

b(qt7, w)Q,M = b(qt7, w)Q,EM,2 = (x3 − x4)w(r4) + (x6 − x5)w(r6), (2.2.29)

b(qn7 , w)Q,M = b(qn7 , w)Q,EM,2 = (x4 − x6)w(r4) + (x6 − x4)w(r6), (2.2.30)

b(qt3, w)Q,M = b(qt3, w)Q,EM,1 + b(qt3, w)Q,EM,2 = (y2 − y5)w(r3) + (y6 − y1)w(r4), (2.2.31)

b(qn3 , w)Q,M = b(qn3 , w)Q,EM,1 + b(qn3 , w)Q,EM,2 = 2(y3 − y4)w(r3) + 2(y4 − y3)w(r4). (2.2.32)

We note that (2.2.19)-(2.2.24) correspond only to EM,1, (2.2.25)-(2.2.30) correspond only to

EM,2 and (2.2.31)-(2.2.32) - to both EM,1 and EM,2.
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We start by setting the first six equations equal to zero. From (2.2.21), (2.2.23) we

immediately get

w(r2) = w(r3)
x4 − x3

x1 − x2

, (2.2.33)

w(r1) = w(r4)
x4 − x3

x1 − x2

. (2.2.34)

If x2 6= x3, we also get from (2.2.22), that w(r2) = w(r3). This together with (2.2.33)-

(2.2.34) implies that w(r1) = w(r4). If x2 = x3 and x1 6= x4, it follows from (2.2.24) that

w(r1) = w(r4). Hence, similarly to the previous case, w(r2) = w(r3). Finally, if x2 = x3 and

x1 = x6, we arrive to the same conclusion directly from (2.2.33)-(2.2.34).

Next, we set the second six equations to zero. Then from (2.2.25), (2.2.27), (2.2.29) we

immediately get

w(r3) = w(r5)
x6 − x5

x4 − x3

, (2.2.35)

w(r5) = w(r6)
y6 − y4

y5 − y3

, (2.2.36)

w(r4) = w(r6)
x6 − x5

x4 − x3

. (2.2.37)

Let x3 6= x5, then due to (2.2.26), w(r3) = w(r5), and, consequently, it follows from

(2.2.35),(2.2.37) that w(r4) = w(r6). Similarly, if x3 = x5, but x4 6= x6, we get from

(2.2.30) that w(r4) = w(r6) and, hence, w(r3) = w(r5). If x3 = x5 and x4 = x6, then again

it follows from (2.2.35), (2.2.37) that w(r3) = w(r5) and w(r4) = w(r6).

Finally, we explore the last two equations. If y3 6= y4, using (2.2.32) we conclude that

w(r3) = w(r4) and therefore, w is constant on M . If y3 = y4 and y5 6= y6, it follows from

(2.2.28) that w(r5) = w(r6). Otherwise, if y3 = y4 and y5 = y6, we obtain from (2.2.36) that

w(r5) = w(r5). Hence, w must be constant on M .

Next we consider the case when one of the edges of M is on the Neumann part of the

boundary. We focus on the configuration shown on Figure 2.5 (right). We note that since

the argument above for the interior maroelement did not use the conditions (2.2.19)-(2.2.20),

the conclusion still applies.

We next state the conditions sufficient for (2.2.5) to hold. Let Mh = ∪NMi=1Mi be the

cover of Ω by macroelements. We assume
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(Q1) Each M ∈Mh is given as M = EM,1 ∪ EM,2, where EM,1, EM,2 ∈ Th.

(Q2) There are no macroelements in Mh with more than one edge on the Neumann part

of the boundary ΓN .

(Q3) The mesh size h is sufficiently small and there exists a constant C such that for every

pair of edges e, e′ that share a vertex,

‖re − re′‖R2 ≤ Ch2,

where re and re′ are the vectors corresponding to e and e′, respectively, and ‖ · ‖R2 is the

Euclidean vector norm.

Remark 2.2.2. Conditions (Q1)-(Q2) guarantee that Lemma 2.2.6 holds, which in turn

allows us to show that the inf-sup condition is satisfied on each macroelement. Condition

(Q3) is needed to combine local results and prove (2.2.5). The condition on mesh size is

stated in Lemma 2.2.7.

As in [84] and the previous subsection, the proof of Theorem 2.2.2 is based on three lemmas

we have stated in the simplicial case, namely Lemmas 2.2.3, 2.2.4 and 2.2.5. The proofs of

Lemmas 2.2.3 and 2.2.5 are the same as in the original reference [84], and we also discussed

them in the previous section. Below we provide the proof of Lemma 2.2.4, that requires

different construction in case of quadrilateral grids.

Let Ph denote the L2 projection from W 1
h onto the space

Mh = {µ ∈ L2(Ω) : µ
∣∣
M

is constant ∀M ∈Mh}.

Lemma 2.2.7. Suppose the conditions (Q1)-(Q3) hold. Then there exists a constant C1 >

0, such that for every w ∈ W 1
h , there exists q ∈ Qh satisfying

b(q, w)Q = b(q, (I − Ph)w)Q ≥ C1‖(I − Ph)w‖2, and |q|1 ≤ ‖(I − Ph)w‖.
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Figure 2.6: Macroelement M = EM,1 ∪ EM,2 surrounded by four macroelements Mi =

EMi,1 ∪ EMi,2, i = 1, . . . , 4.
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Proof. For every w ∈ W 1
h we have:

w′ := (I − Ph)w ∈ W 1
h,M,0, ∀M ∈Mh.

Lemma 2.2.3 implies that for every M there exists qM ∈ Qe
h,M such that

b(qM , w
′)Q,M ≥ C2‖w′‖2

M and |qM |1,M ≤ ‖w′‖2
M . (2.2.38)

We note that qM does not vanish outside of M , however, we can verify that under the

assumption (Q3)

b(qM , w
′)Q,Ω\M ≥ 0. (2.2.39)

In order to prove (2.2.39) let us consider N macroelements Mi neighboring M . For example,

for the interior macroelementsN = 4, as shown on Figure 2.6, and let us denote M̃ = ∪Ni=1Mi.

We first notice that

b(qM , w
′)Q,Ω\M̃i∪M = 0.

Let qM =
∑Ne

M
i=1 αiqi, then due (2.2.38) and equivalence of norms, there exists a constant C

independent of h such that

b(qM , w
′)Q,M =

Ne
M∑

i=1

αib(qi, w
′)Q,M ≥ Ch2

6∑
j=1

(w′(rj))
2. (2.2.40)

Next, consider, for instance, the tangential degree of freedom qt1, associated with the edge

e12. Using (2.2.19), we have

b(qt1, w
′)Q,M = (y4 − y1)w′(r1) + (y2 − y3)w′(r2) =

6∑
j=1

δ1,jw
′(rj),

where δ1,1 = (y4 − y1), δ1,2 = (y2 − y3) and δ1,j = 0 for j = 3, . . . , 6. Using similar argument

for the rest of the degrees of freedom, we obtain

b(qM , w
′)Q,M =

Ne
M∑

i=1

6∑
j=1

αiδi,jw
′(rj).
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We note that for all i, j, δi,j = 0 or |δi,j| ∼ O(h), due to the shape regularity of Th. We also

compute

b(qt1, w
′)Q,M̃ = b(qt1, w

′)Q,M1 = (y1 − y7)w′(r1) + (y8 − y2)w′(r2) :=
6∑
j=1

σ1,jw
′(rj),

where σ1,1 = (y1 − y7), σ1,2 = (y8 − y2) and σ1,j = 0 for j = 3, . . . , 6. Therefore,

b(qM , w
′)Q,M̃ =

Ne
M∑

i=1

6∑
j=1

αiσi,jw
′(rj).

Moreover, we note that, due to assumption (Q3),

σi,j = δi,j + θi,j,

with θi,j = 0 if δi,j = 0 and |θi,j| ≤ Ch2 otherwise. Indeed, consider, for instance i = j = 1,

then, by (Q3),

|σ1,1 − δ1,1| = |(y1 − y7)− (y4 − y1)| ≤ Ch2.

Therefore, we obtain

b(qM , w
′)Q,M̃ =

Ne
M∑

i=1

6∑
j=1

αiσi,jw
′(rj) =

Ne
M∑

i=1

6∑
j=1

αi(δi,j + θi,j)w
′(rj)

≥ Ch2

6∑
j=1

(w′(rj))
2 +

Ne
M∑

i=1

6∑
j=1

αiθi,jw
′(rj).

Finally, the second inequality in (2.2.38) implies that for every i = 1, . . . N e
M there exist

constants bi,k, k = 1, . . . , 6, independent of h such that

αi = h

6∑
k=1

bi,kw
′(rk).

Then, there exists a constant C̃ independent of h such that∣∣∣∣∣∣
Ne
M∑

i=1

6∑
j=1

αiθi,jw
′(rj)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
Ne
M∑

i=1

6∑
j=1

h

6∑
k=1

bi,kw
′(rk)θi,jw

′(rj)

∣∣∣∣∣∣ ≤ C̃h3

6∑
j=1

(w′(rj))
2
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and it is easy to see that (2.2.39) holds for h small enough, i.e., h < C/C̃:

b(qM , w
′)Q,M̃ ≥ Ch2

6∑
j=1

(w′(rj))
2 − C̃h3

6∑
j=1

(w′(rj))
2 ≥ (C − C̃h)h2

6∑
j=1

(w′(rj))
2 > 0.

Let us now define q through

q =
∑

M∈Mh

qM .

By our assumptions,

b(q, w′)Q =
∑

M∈Mh

b(qM , w
′)Q,M ≥ C‖w′‖2.

Moreover, we have

b(q,Phw)Q = 0, ∀w ∈ W 1
h ,

and the assertion of the lemma now follows from combining the results above.

With the above Lemmas being proven for the case of quadrilateral grids, the proof of

Theorem 2.2.2 is equivalent to its simplicial analogue. We conclude with the solvability

result for the MSMFE-1 method, (2.2.3)-(2.2.3).

Theorem 2.2.3. Under the assumptions (Q1)-(Q3), there exist a unique solution of

MSMFE-1 method (2.2.3)-(2.2.3) on quadrilateral grids.
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2.2.3 Reduction to a cell-centered displacement system of the MSMFE-1 method

Adopting the notation of the previous section we denote the rotation basis functions

ξ1, . . . , ξd(d−1)/2 associated with the vertex r, and the corresponding values of the rotation

tensor γh by γ1, . . . , γd(d−1)/2. As in the previous section, by taking τ = τ1, ..., τd k we obtain

the matrix corresponding to the third term in equation (2.2.1)

(τj, γh)Q =

d(d−1)/2∑
i=1

γi(τj, ξi)Q, j = 1, ..., d k. (2.2.41)

We are now ready to state the following important result

Lemma 2.2.8. If Aσγ is d(d − 1)/2 × d k local linear system obtained as described above,

then AσγA
−1
σσA

T
σγ is diagonal and invertible.

Proof. Consider the action of matrix Aσγ at the vertex. It transforms d(d− 1)/2 degrees of

freedom of the rotation space into d k degrees of freedom in the space of stress, which are

then transformed by A−1
σσ into the same amount of degrees of freedom in the stress space.

These are afterwards transformed into exactly d(d− 1)/2 degrees of freedom in the rotation

space by ATσγ. Hence, the AσγA
−1
σσA

T
σγ is a scaling matrix at the vertex and therefore it is

diagonal. The invertability then follows from the inf-sup condition (S4).

Solving the small local d k × d k system allows us to express the stresses σi in terms of

cell-centered displacements and rotations. Substituting these into equations (2.2.2)-(2.2.3)

leads to a cell-centered stencil, i.e. the displacements and rotations in each element E are

coupled to the displacements and rotation of all elements that share a vertex with E, see

Figure 2.1 (right).

In this case the elimination of γ reduces the algebraic system (2.1.6) to the following

equation for u

(AσuA
−1
σσA

T
σu − AσuA−1

σσA
T
σγ(AσγA

−1
σσA

T
σγ)
−1AσγA

−1
σσA

T
σu)u = f̂ . (2.2.42)

Lemma 2.2.9. The cell-centered displacement system (2.2.42) is symmetric and positive

definite.
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Proof. The matrix in the displacement system is a Schur complement of the matrix as in

(2.1.6) which is SPD due to (S4). Moreover AσγA
−1
σσA

T
σγ is an SPD matrix due to Lemma

2.2.8, hence we conclude that the matrix in (2.2.42) is also symmetric and positive definite.

2.3 ERROR ANALYSIS

In this section we estimate the behavior of the numerical errors of the proposed methods. For

this purpose we would need several well known projection operators. For the rest of the chap-

ter we will assume that the quadrilateral elements are O(h2)-perturbations of parallelograms

known as h2 -parallelograms:

‖r34 − r21‖ ≤ Ch2.

Elements of this type are obtained by uniform refinements of a general quadrilateral grid.

In such a case one can show that

|DFE|1,∞,Ê ≤ Ch2 and

∣∣∣∣ 1

JE
DFE

∣∣∣∣
j,∞,Ê

≤ Chj−1, j = 1, 2. (2.3.1)

We consider the L2-orthogonal projection V → Vh such that for any v ∈ V ⊂ L2(Ω,Rd), its

projection Qu
hv ∈ Vh satisfies

(v −Qu
hv, w) = 0, ∀w ∈ Vh (2.3.2)

and the L2-orthogonal projection W → Wk
h, such that for any ξ ∈ W ⊂ L2(Ω,N), its

projection Qγ
hξ ∈Wk

h satisfies

(ξ −Qγ
hξ, ζ) = 0, ∀ζ ∈Wk

h, for k = 0, 1. (2.3.3)

We will also use MFE projection operator introduced in [21, 22] Π : X ∩
(
H1(Ω))d

)d → Xh

such that

(div(Πτ − τ), χ) = 0, ∀χ ∈ Xh. (2.3.4)

Next Lemma summarizes the well-known properties of operators above, as well as mixed

interpolants Π and Π0.
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Lemma 2.3.1. On h2-parallelograms

‖u−Qu
hu‖ ≤ C‖u‖rhr, ∀u ∈ Hr(Ω,R2), 0 ≤ r ≤ 1,

‖γ −Qγ
hγ‖ ≤ C‖γ‖rhr, ∀γ ∈ Hr(Ω,M), 0 ≤ r ≤ 1,

‖σ − Πσ‖ ≤ C‖τ‖rhr, ∀σ ∈ Hr(Ω,M), 1 ≤ r ≤ 2,

‖σ − Π0σ‖ ≤ C‖σ‖1h, ∀σ ∈ H1(Ω,M),

‖ div(σ − Πσ)‖+ ‖ div(σ − Π0σ)‖ ≤ C‖ div σ‖rhr, ∀σ ∈ Hr+1(Ω,M), 0 ≤ r ≤ 1.

(2.3.5)

Proof. The first two estimates can be found in [24], the latter three are proven in [10,90].

We note that on general quadrilateral grids the third and fifth estimates hold only with

r = 1 and r = 0, respectively.

Corollary 2.3.1. For every τ ∈ H1(Ω,M), γ ∈ H1(Ω,M),∑
E∈Th

‖Πτ‖j,E ≤ C‖τ‖j, j = 1, 2, (2.3.6)

∑
E∈Th

‖Π0τ‖j,E ≤ C‖τ‖j, (2.3.7)

∑
E∈Th

‖Qγ
hγ‖1,E ≤ C‖γ‖1. (2.3.8)

Proof. Let τ ∈ H1(Ω,M) and E ∈ Th be given. If follows from the inverse inequality [17]

and (3.4.11):

‖Πτ‖j,E ≤ ‖Πτ − τ‖j,E + ‖τ‖j,E ≤ Ch−1‖Πτ − τ‖j−1,E + ‖τ‖j,E ≤ C‖τ‖j,E.

Then (2.3.6) follows from summation over the elements. Similarly, using (3.4.10) and

(3.4.12),

‖Π0τ‖1,E ≤ ‖Π0τ − τ‖1,E + ‖τ‖1,E ≤ Ch−1‖Π0τ − τ‖E + ‖τ‖1,E ≤ C‖τ‖j,E,

‖Qγ
hγ‖1,E ≤ ‖Qγ

hγ − γ‖1,E + ‖γ‖1,E ≤ Ch−1‖Qγ
hγ − γ‖E + ‖γ‖1,E ≤ C‖γ‖1,E.
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We will also use the fact (see [35]) that on h2-parallelograms

|τ̂ |j,Ê ≤ Chj‖τ‖j,E, ∀τ ∈ Hj(E,M), j ≥ 0. (2.3.9)

Lemma 2.3.2. Let τ ∈ Xh and ξ ∈W1
h, then

|(τ, ξ)Q| ≤ C‖τ‖‖ξ‖. (2.3.10)

Proof. We present the proof on quadrilaterals, simplicial case is treated similarly. By defini-

tion of the quadrature rule,

|(τ, ξ)Q,E| =
|Ê|
4

∣∣∣∣∣
4∑
i=1

τ̂ 0(ri) : ξ̂(ri)

∣∣∣∣∣ ≤ |Ê|4

4∑
i=1

|τ̂ 0(ri)||ξ̂(ri)| ≤
|Ê|
4

4∑
i=1

|τ̂ 0(ri)|
4∑
i=1

|ξ̂(ri)|.

Using the equivalence of norms on the reference element and the fact that trapezoidal quadra-

ture rule is exact for bilinears, we get

4∑
i=1

|ξ̂(ri)| =
∫
Ê

|ξ̂|dx̂ ≤ C‖ξ̂‖Ê.

Similarly, using the definition of τ̂ 0 and (1.4.11), we have

4∑
i=1

|τ̂ 0(ri)| ≤ C‖DFE‖0,∞,Ê‖τ̂‖0,∞,Ê ≤ Ch‖τ̂‖Ê.

Combining these results and using (1.4.11), we obtain

|(τ, ξ)Q,E| ≤ Ch‖τ̂‖Ê‖ξ̂‖Ê ≤ Ch‖DF−1
E ‖0,∞,Ê‖τ‖E‖ξ‖E ≤ C‖τ‖E‖ξ‖E.

The desired result then follows from the summation over all elements.

We also derive the bounds for quadrature error for the further use in error analysis, and

state them as the following lemma.
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Lemma 2.3.3. If A ∈ W 1,∞
Th , then there exists a constant C independent of h such that for

all τ, χ ∈ Xh,

|θ(Aχ, τ)| ≤ C
∑
E∈Th

h‖A‖1,∞,E‖χ‖1,E‖τ‖E. (2.3.11)

Also, there exist constants independent of h such that for all ξ ∈ W 1
h ,

|δ(τ, ξ)| ≤ C
∑
E∈Th

h2‖ξ‖1,E‖τ‖E, and (2.3.12)

|δ(χ, ξ)| ≤ C
∑
E∈Th

h2‖ξ‖E‖χ‖1,E. (2.3.13)

Proof. For the first statement, on any element we have

|θE(Aχ, τ)| ≤ |θE
(
(A− Ā)χ, τ

)
|+ |θE

(
Āχ, τ

)
|, (2.3.14)

where Ā is the operator A evaluated at cell center of E. For the first term on the right we

then have

|θE
(
(A− Ā)χ, τ

)
| ≤ Ch|A|1,∞,E‖χ‖E‖τ‖E, (2.3.15)

where we used Taylor expansion and Corollary 1.5.1. Let χ̄ be the L2-projection of χ onto

the space of constant tensors on E. For the second term, using Lemma 1.5.1 we get

|θE
(
Āχ, τ

)
| = |θE

(
Ā(χ− χ̄), τ

)
| ≤ Ch‖A‖0,∞,E‖χ‖1,E‖τ‖E, (2.3.16)

using (2.3.5). Combining (2.3.14) - (2.3.16) implies the first statement of the lemma.

Denoting by ξ̄ the L2-projection of ξ onto the space of skew-symmetric constant tensors

we proceed similarly, using Lemma 1.5.1 and (2.3.5) we get

|δE (τ, ξ) | = |δE
(
τ, ξ − ξ̄

)
| ≤ Ch‖ξ‖1,E‖τ‖E, and (2.3.17)

|δE (χ, ξ) | = |δE (χ− χ̄, ξ) | ≤ Ch‖ξ‖E‖χ‖1,E, (2.3.18)

which completes the proof for the last two statements of the lemma.

56



Lemma 2.3.4. Given a function v ∈ L2(Ω,M) satisfying

div v = 0, (2.3.19)

there exists φ ∈ H1(Ω, K) with K = Rd when d = 2 and K = M when d = 3, such that

v = curlφ. (2.3.20)

Moreover, with S(φ) defined as in (1.2.1) there holds∫
Ω

∇ · S(φ) = 0. (2.3.21)

Proof. Since the problem should be understood row-wise, we can use results of Theorems

3.1, 3.4 in [45] to see that (2.3.19)-(2.3.20) has solutions for d = 2, 3. Moreover, in 2D

all solutions are exactly divergence free. Hence, we only need to check that there exists a

solution such that (2.3.21) holds.

Consider the case when d = 2. Let ψ be a solution of (2.3.20), then ψ + ∇λ is also a

solution, provided λ is a smooth enough function. Since the problem

∆λ = − divψ

has a solution λ ∈ H1(Ω,Rd) (here we again consider the problem above row-wise), we set

φ = ψ +∇λ, to get

div φ = ∇ · (ψ +∇λ) = ∇ · ψ + ∆λ = 0,

that implies (2.3.21).

In case d = 3 writing φT = [φ1, φ2, φ3] we can (applying Theorem 3.6 [45] row-wise)

choose a solution of (2.3.19)-(2.3.20), to satisfy

φi × n = 0 on ∂Ω, ∀i = 1, 2, 3. (2.3.22)

Next, by definition

S(φ)n =


φ2,2 n1 + φ3,3 n1 − φ2,1 n2 − φ3,1 n3

−φ1,2 n1 + φ1,1 n2 + φ3,3 n2 − φ3,2 n3

−φ1,3 n1 − φ2,3 n2 + φ1,1 n3 + φ2,2 n3


and a straightforward calculation shows that (2.3.22) implies

∫
∂Ω

S(φ)n ds = 0. An appli-

cation of the divergence theorem completes the proof.
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Lemma 2.3.5. If E is an h2-parallelogram, then there exist a constant C independent of h

such that

|A|j,∞,Ê ≤ Chj‖A‖j,∞,E, j = 1, 2. (2.3.23)

Proof. Using definition of A (1.5.1) and (2.3.1) together with (1.4.11), we obtain:

|A|1,∞,Ê =

∣∣∣∣ 1

JE
DF T

E ÂDFE

∣∣∣∣
1,∞,Ê

≤ C
(
|Â|1,∞,Ê + h‖Â‖0,∞,Ê

)
≤ Ch‖A‖1,∞,E.

Since DFE is bilinear, |DF |2,∞,Ê = 0 and we have

|A|2,∞,Ê ≤ C
(
|Â|2,∞,Ê + h|Â|1,∞,Ê + h2‖Â‖0,∞,Ê

)
≤ Ch2‖A‖2,∞,E.

Lemma 2.3.6. If A ∈ W 1,∞
Th , then there exists a constant C independent of h such that for

all χ ∈ Xh,

|(AΠσ, τ − Π0τ)Q| ≤ Ch‖σ‖1‖τ‖. (2.3.24)

Proof. We compute

(AΠσ, τ − Π0τ)Q,E = (AΠ̂σ̂, τ̂ − Π̂0τ̂)Q̂,Ê = ((A− Ā)Π̂σ̂, τ̂ − Π̂0τ̂)Q̂,Ê − (ĀΠ̂σ̂, τ̂ − Π̂0τ̂)Q̂,Ê.

Using Taylor expansion, (2.3.23), (1.4.18) and Corollary 1.5.1, we bound the first term:

((A− Ā)Π̂σ̂, τ̂ − Π̂0τ̂)Q̂,Ê ≤ C|A|1,∞,Ê‖Π̂σ̂‖Ê‖τ̂‖Ê ≤ Ch‖A‖1,∞,E‖σ‖1,E‖τ‖E.

And we bound the second term using Lemma 1.5.2 and estimates (2.3.9), (2.3.6) and (1.5.2):

(ĀΠ̂σ̂, τ̂ − Π̂0τ̂)Q̂,Ê = (Ā(Π̂σ̂ − Π̂σ̂), τ̂ − Π̂0τ̂)Q̂,Ê

≤ C‖A‖0,∞,Ê|Π̂σ̂|1,Ê ≤ Ch‖A‖0,∞,E‖σ‖1,E‖τ‖E.

Lemma 2.3.7. On h2-parallelograms there exists a constant C independent of h such that

for all τ ∈ Xh

|(τ − Π0τ,Qhγ)Q| ≤ Ch2‖γ‖1‖τ‖. (2.3.25)
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Proof. On any element E we have

(τ − Π0τ,Qhγ)Q,E = (τ̂ 0 − Π̂0τ̂ 0, Q̂hγ̂)Q̂,Ê

= (τ̂ 0 − Π̂0τ̂ 0, Q̂hγ̂ − Q̂hγ̂)Q̂,Ê + (τ̂ 0 − Π̂0τ̂ 0, Q̂hγ̂)Q̂,Ê.

The first term above can be bounded using (2.3.5), (2.3.6) and (2.3.8):

(τ̂ 0 − Π̂0τ̂ 0, Q̂hγ̂ − Q̂hγ̂)Q̂,Ê ≤ C‖τ̂ 0 − Π̂0τ̂ 0‖Ê‖Q̂hγ̂ − Q̂hγ̂‖Ê ≤ Ch2‖τ̂ 0‖1,Ê‖Q̂hγ̂‖1,E

≤ Ch2‖DFE‖0,∞,Ê‖τ̂‖Ê‖γ‖1,E ≤ Ch2‖γ‖1,E‖τ‖E.

The second term is equal to zero by Lemma 1.5.2.

2.3.1 First order convergence of the solution of MSMFE-0 method

Theorem 2.3.1. Let (σ, u, γ) ∈ X ∩ H1(Ω,M) × V ∩ H1(Ω,R2) ×W ∩ H1(Ω,N) be the

solution of (1.3.10)-(1.3.12) and let (σh, uh, γh) ∈ Xh × Vh × W0
h be the solution of the

MSMFE-0 method (2.1.2)-(2.1.4). If A ∈ W 1,∞
T , then there exists a constant C independent

of h such that

‖σ − σh‖div + ‖u− uh‖+ ‖γ − γh‖ ≤ Ch(‖σ‖1 + ‖u‖1 + ‖γ‖1). (2.3.26)

Proof for the case of simplicial grids. Subtracting the numerical method (2.1.2)-(2.1.4) from

the variational formulation (1.3.10)-(1.3.12), we obtain the error equations

(Aσ, τ)− (Aσh, τ)Q + (u− uh, div τ) + (γ − γh, τ) = 0, τ ∈ Xh, (2.3.27)

(div(σ − σh), v) = 0, v ∈ Vh, (2.3.28)

(σ − σh, ξ) = 0, ξ ∈W0
h. (2.3.29)

Choosing v = div(Πσ − σh) in (2.3.28) we conclude from (2.3.3) and (1.4.18) that

(Qu
hu− u, div τ) = 0 and div(Πσ − σh) = 0. (2.3.30)
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Rewriting the first equation using Lemma 1.5.1 and the above we obtain

(A(Πσ − σh), τ)Q + (Qu
hu− uh, div τ) + (Qγ

hγ − γh, τ)

= (AΠσ, τ)Q − (Aσ, τ) + (Qγ
hγ − γ, τ)

= (A(Πσ − σ), τ)− θ (AΠσ, τ) + (Qγ
hγ − γ, τ) . (2.3.31)

With this, the error system can be written as

(A(Πσ − σh), τ)Q + (Qu
hu− uh, div τ) + (Qγ

hγ − γh, τ)

= (A(Πσ − σ), τ)− θ (AΠσ, τ) + (Qγ
hγ − γ, τ) , (2.3.32)

div(Πσ − σh) = 0, (2.3.33)

(Πσ − σh, ξ) = (Πσ − σ, ξ) . (2.3.34)

We then start by giving bounds for the terms on the right of (2.3.32). Cauchy-Schwarz

inequality together with (2.3.5) yields

(A(Πσ − σ), τ) ≤ Ch‖σ‖1‖τ‖, (2.3.35)

and it follows from Lemma 2.3.3, (2.3.6) and Young’s inequality, that

|θ (AΠσ, τ) | ≤ C
∑
E∈Th

h‖A‖1,E,∞‖Πσ‖1,E‖τ‖E ≤ Ch‖A‖1,∞‖σ‖1‖τ‖ ≤ Ch2‖σ‖2
1 + ε‖τ‖2.

(2.3.36)

Similarly, (2.3.5), Cauchy-Schwarz and Young’s inequality imply

| (Qγ
hγ − γ, Πσ − σh) | ≤ h2‖γ‖2

1 + ε‖τ‖2. (2.3.37)

Finally, due to (2.3.34) Lemma 2.3.4 implies that there exists φ ∈ H1(Ω, K) such that

Πσ − σh = curlφ and (2.3.38)∫
Ω

divS(φ) = 0, (2.3.39)
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and since Qγ
hγ − γh is constant on each element, (2.3.39) yields

(Πσ − σh, Qγ
hγ − γh) =

∑
E∈Th

(Πσ − σh, Qγ
hγ − γh)E = −

∑
E∈Th

(divS(φ), Qγ
hγ − γh)E = 0.

(2.3.40)

Now, by choosing τ = Πσ − σh in the error system and using (2.3.35)-(2.3.37) and (2.3.40)

we get the following result

‖Πσ − σh‖2 ≤ Ch2(‖σ‖1 + ‖γ‖1)2 + ε‖Πσ − σh‖2, (2.3.41)

which with ε chosen to be small enough yields ‖Πσ − σh‖2 ≤ Ch2(‖σ‖1 + ‖γ‖1)2 and thus

‖σ − σh‖ ≤ ‖Πσ − σh‖+ ‖Πσ − σ‖ ≤ Ch(‖σ‖1 + ‖γ‖1). (2.3.42)

Also, using the above and (2.3.34) we get for the H(div; Ω) norm

‖σ − σh‖div ≤ C (‖σ − σh‖+ ‖ div(σ − σh)‖)

≤ C (‖σ − σh‖+ ‖ div(σ − Πσ)‖)

≤ Ch(‖σ‖1 + ‖γ‖1). (2.3.43)

On the other hand, from the inf-sup condition (S2) we know that there exists a constant

C such that for each v ∈ Vh and ξ ∈W0
h, there is a nonzero τ ∈ Xh with

(div τ, v) + (τ, ξ) ≥ C‖τ‖Hdiv
(‖v‖+ ‖ξ‖). (2.3.44)

From (2.3.32) we then obtain

(Qu
hu− uh, div τ) + (Qγ

hγ − γh, τ)

= (A(Πσ − σ), τ)− (A(Πσ − σh), τ)Q + θ (AΠσ, τ) + (Qγ
hγ − γ, τ) .

(2.3.45)

Choosing τ so that (2.3.44) holds for v = Qu
hu− uh and ξ = Qγ

hξ − ξh leads to

‖τ‖div (‖ Qu
hu− uh‖+ ‖Qγ

hγ − γh‖)

≤ C
[

(A(Πσ − σ), τ)− (A(Πσ − σh), τ)Q − θ (AΠσ, τ) + (Qγ
hγ − γ, τ)

]
≤ C‖τ‖div (‖Πσ − σ‖+ ‖Πσ − σh‖+ h‖σ‖1 + ‖Qγ

hγ − γ‖)
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≤ Ch‖τ‖div (‖σ‖1 + ‖γ‖1) .

Thus,

‖γ−γh‖+‖u−uh‖ ≤ ‖Qu
hu−uh‖+‖Qu

hu−u‖+‖Q
γ
hγ−γh‖+‖Q

γ
hγ−γ‖ ≤ Ch (‖σ‖1 + ‖γ‖1) ,

and finally

‖σ − σh‖div + ‖u− uh‖+ ‖γ − γh‖ ≤ Ch(‖σ‖1 + ‖γ‖1). (2.3.46)

Proof for the case of quadrilateral grids. Subtracting the numerical method (2.1.2)-(2.1.2)

from the variational formulation (1.3.10)-(1.3.12), we obtain the error system:

(Aσ, τ)− (Aσh, τ)Q + (u− uh, div τ) + (γ − γh, τ) = 〈g − P0g, τn〉ΓD , τ ∈ Xh, (2.3.47)

(div(σ − σh), v) = 0, v ∈ Vh, (2.3.48)

(σ − σh, ξ) = 0, ξ ∈W0
h. (2.3.49)

We rewrite the first error equation as follows:

(A(Πσ − σh), τ)Q + (Qu
hu− uh, div τ) + (Qγ

hγ − γh, τ)

= (AΠσ, τ)Q − (Aσ, τ) + (Qu
hu− u, div τ) + (Qγ

hγ − γ, τ)

+ 〈g, (τ − Π0τ)n〉ΓD − 〈P0g, (τ − Π0τ)n〉ΓD + 〈g − P0g, (Π0τ)n〉ΓD . (2.3.50)

By the orthogonality properties of the operators (1.4.26), (2.3.2) and (2.1.1), the last three

terms in (2.3.50) vanish:

(Qu
hu− u, div τ) = 0, 〈g − P0g, (Π0τ)n〉ΓD = 0, 〈P0g, (τ − Π0τ)n〉ΓD = 0.

For the first two terms on the right-hand side in (2.3.50) we write:

(AΠσ, τ)Q − (Aσ, τ)

= (AΠσ,Π0τ)Q + (AΠσ, τ − Π0τ)Q − (Aσ, τ − Π0τ)− (A(σ − Πσ),Π0τ)− (AΠσ,Π0τ)

= −θ(AΠσ,Π0τ) + (AΠσ, τ − Π0τ)Q − (A(σ − Πσ),Π0τ)− (Aσ, τ − Π0τ). (2.3.51)
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Then, using Lemma 2.3.3, (1.4.26) and (2.3.6), we bound the first term on the right-hand

side in (2.3.51) in the following way:

|θ(AΠσ,Π0τ)| ≤ C
∑
E∈Th

h‖Πσ‖1,E‖Π0τ‖E ≤ Ch‖σ‖1‖τ‖ ≤ Ch2‖σ‖2
1 + ε‖τ‖2. (2.3.52)

By Lemma 2.3.6, we have:

|(AΠσ, τ − Π0τ)Q| ≤ Ch‖σ‖1‖τ‖ ≤ Ch2‖σ‖2
1 + ε‖τ‖2. (2.3.53)

We use (2.3.5) to bound the third term on the right-hand side in (2.3.51):

|(A(σ − Π0σ),Π0τ)| ≤ Ch‖σ‖1‖τ‖ ≤ Ch2‖σ‖2
1 + ε‖τ‖2. (2.3.54)

Testing (1.3.10) with τ − Π0τ yields

−(Aσ, τ − Π0τ)− (u, div(τ − Π0τ))− (γ, τ − Π0τ) + 〈g, (τ − Π0τ)n〉ΓD = 0.

Using (1.4.26), we can write:

−(Aσ, τ − Π0τ) + 〈g, (τ − Π0τ)〉ΓD = (γ, τ − Π0τ).

Applying Lemma 2.3.4 as in previous section, and using (2.3.50)-(2.3.54) together with

(2.3.5), we obtain

(A(Πσ − σh), τ)Q + (Qu
hu− uh, div τ) + (Qγ

hγ − γh, τ) ≤ Ch2‖σ‖2
1 + ε‖τ‖2 + (Qγ

hγ − γ, τ)

≤ Ch2(‖σ‖2
1 + ‖γ‖2

1) + ε‖τ‖2.

(2.3.55)

The rest follows in the same way as in the simplicial case.
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2.3.2 First order convergence of the solution of MSMFE-1 method

Theorem 2.3.2. Let (σ, u, γ) ∈ X ∩ H1(Ω,M) × V ∩ H1(Ω,R2) ×W ∩ H1(Ω,N) be the

solution of (1.3.10)-(1.3.12) and let (σh, uh, γh) ∈ Xh × Vh × W0
h be the solution of the

MSMFE-1 method (2.2.1)-(2.2.3). If A ∈ W 1,∞
T , then there exists a constant C independent

of h such that

‖σ − σh‖div + ‖u− uh‖+ ‖γ − γh‖ ≤ Ch(‖σ‖1 + ‖u‖1 + ‖γ‖1). (2.3.56)

Following the approach of the previous chapter, with v = Πσ − σh, (2.3.3), (2.3.30) and

(1.5.9) allow us to write the error system for MSMFE-1 as

(A(Πσ − σh), τ)Q + (Qu
hu− uh, div τ) + (τ,Qγ

hγ − γh)Q

= (A(Πσ − σ), τ)− θ (AΠσ, τ) + (τ, Qγ
hγ − γ)− δ (τ, Qγ

hγ) , (2.3.57)

div(Πσ − σh) = 0, (2.3.58)

(Πσ − σh, ξ)Q = (Πσ − σ, ξ)− δ (Πσ, ξ) . (2.3.59)

Proof for the case of simplicial grids. Due to the modified inf-sup condition (2.2.5), with a

slight abuse of notation, there exists an elliptic projection operator Π, with similar properties

to (1.4.18), but

(σ, ξ)− (Πσ, ξ)Q = 0, ∀ξ ∈W1
h. (2.3.60)

Then, the first two terms on the right were already treated in the previous chapter, while

(τ, Qγ
hγ − γ) = 0,

due to (2.3.60). We then proceed with the remaining quadrature error term. Using the

Lemma 2.3.3 together with (2.3.8) and Young’s inequality, we obtain

|δ (τ, Qγ
hγ) | ≤ C

∑
E∈Th

h‖Qγ
hγ‖1,E‖τ‖E ≤ Ch‖γ‖1‖τ‖ ≤ Ch2‖γ‖2

1 + ε‖τ‖2. (2.3.61)
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As in the previous chapter we choose τ = Πσ − σh and ξ = Qγ
hγ − γh so that subtracting

(2.3.59) from (2.3.57) makes the third term in (2.3.57) vanish

(A(Πσ − σh),Πσ − σh)Q + (Qu
hu− uh, div(Πσ − σh))

= (A(Πσ − σ), Πσ − σh)− θ (AΠσ, Πσ − σh)− δ (Πσ − σh, Qγ
hγ)

− (Πσ − σ, Qγ
hγ − γh) + δ (Πσ, Qγ

hγ − γh) .

The last two terms are then bounded as follows

(Πσ − σ, Qγ
hγ − γh) ≤ Ch‖σ‖1‖Qγ

hγ − γh‖ ≤ Ch2‖σ‖2
1 + ε‖Qγ

hγ − γh‖
2 (2.3.62)

|δ (Πσ, Qγ
hγ − γh) | ≤ C

∑
E∈Th

h‖Πσ‖1,E‖Qγ
hγ − γh‖E

≤ Ch‖σ‖1‖Qγ
hγ − γh‖ ≤ Ch2‖σ‖2

1 + ε‖Qγ
hγ − γh‖

2, (2.3.63)

where we used Cauchy-Schwarz and Young’s inequalities together with (2.3.5), and in addi-

tion - Lemma 2.3.3 and (2.3.6) for the second statement.

Therefore, combining (2.3.35)-(2.3.37), (2.3.61) and (2.3.62)-(2.3.63) we obtain

‖Πσ − σh‖2 ≤ Ch2(‖σ‖1 + ‖γ‖1)2 + ε‖Πσ − σh‖2 + ε‖Qγ
hγ − γh‖

2, (2.3.64)

and thus ‖Πσ − σh‖2 ≤ Ch2(‖σ‖1 + ‖γ‖1)2 + ε‖Qγ
hγ − γh‖2.

We then repeat the argument as in the previous chapter using the inf-sup condition (S4)

as follows

‖τ‖div (‖ Qu
hu− uh‖+ ‖Qγ

hγ − γh‖)

≤ C
[

(A(Πσ − σ), τ)− (A(Πσ − σh), τ)Q − θ (AΠσ, τ)− δ (τ, Qγ
hγ)
]

≤ C‖τ‖div (‖Πσ − σ‖+ ‖Πσ − σh‖+ h‖σ‖1 + h‖γ‖1)

≤ C‖τ‖div (h(‖σ‖1 + h‖γ‖1) + ε‖Qγ
hγ − γh‖) .

The above, with the ε chosen small enough, yields

‖ Qu
hu− uh‖+ ‖Qγ

hγ − γh‖ ≤ Ch(‖σ‖1 + h‖γ‖1), (2.3.65)
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which with (2.3.64) provides

‖σ − σh‖ ≤ Ch(‖σ‖1 + ‖γ‖1). (2.3.66)

Repeating the argument for the H(div; Ω) norm, we finally conclude that

‖σ − σh‖div + ‖u− uh‖+ ‖γ − γh‖ ≤ Ch(‖σ‖1 + ‖γ‖1). (2.3.67)

Proof for the case of quadrilateral grids. We form the error system by subtracting the MSMFE-

1 method (2.2.1)-(2.2.1) from (1.3.10)-(1.3.12), we obtain

(Aσ, τ)− (Aσh, τ)Q + (u− uh, div τ) + (γ, τ)− (τ, γh)Q

= 〈g − P0g, τn〉ΓD , τ ∈ Xh, (2.3.68)

(div(σ − σh), v) = 0, v ∈ Vh, (2.3.69)

(σ, ξ)− (σh, ξ)Q = 0, ξ ∈W1
h. (2.3.70)

Similarly to the error analysis for the MSMFE-0 method, we start with rewriting the first

error equation:

(A(Πσ − σh), τ)Q + (Qu
hu− uh, div τ)

= (AΠσ, τ)Q − (Aσ, τ) + (Qγ
hγ − γ, τ) + 〈g, (τ − Π0τ)n〉ΓD

− 〈P0g, (τ − Π0τ)n〉ΓD + (Qu
hu− u, div τ) + 〈g − P0g, (Π0τ)n〉ΓD − (γ, τ) + (τ, γh)Q.

(2.3.71)

We can use the bounds from the previous section for all terms on the right-hand side, except

for the last two, for which we have:

− (γ, τ) + (τ, γh)Q = (τ,Qγ
hγ)Q − (γ, τ) + (τ, γh −Qγ

hγ)Q = (τ − Π0τ,Qγ
hγ)Q + (Π0τ,Qγ

hγ)Q

− (τ, γ −Qγ
hγ)− (Π0τ,Qγ

hγ)− (τ − Π0τ,Qγ
hγ) + (τ, γh −Qγ

hγ)Q = (τ − Π0τ,Qγ
hγ)Q

− θ(Π0τ,Qγ
hγ)− (γ −Qγ

hγ, τ)− (Qγ
hγ, τ − Π0τ) + (τ, γh −Qγ

hγ, )Q. (2.3.72)
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The first term on the right can be bounded using Lemma 2.3.7:

|(τ − Π0τ,Qγ
hγ)Q| ≤ Ch‖γ‖1‖τ‖ ≤ Ch2‖γ‖2

1 + ε‖τ‖2. (2.3.73)

By Lemma 2.3.3 and (1.4.26), (2.3.8),

|θ(Π0τ,Qγ
hγ)| ≤

∑
E∈Th

h‖Π0τ‖E‖Qhγ‖1,E

≤
∑
E∈Th

h‖τ‖E‖γ‖1,E ≤ Ch‖τ‖‖γ‖1 ≤ Ch2‖γ‖2
1 + ε‖τ‖2. (2.3.74)

Next two terms are bounded by (2.3.5) and continuity of Π0:

|(γ −Qγ
hγ, τ) + (Qγ

hγ, τ − Π0τ)| ≤ Ch‖γ‖1‖τ‖ ≤ Ch2‖γ‖2
1 + ε‖τ‖2. (2.3.75)

Combining (2.3.71)- (2.3.75), we get

(A(Πσ − σh), τ)Q + (Qu
hu− uh, div τ) ≤ Ch2(‖σ‖2

1 + ‖γ‖2
1) + ε‖τ‖2 + |(τ, γh −Qγ

hγ)Q|.

(2.3.76)

It follows from (2.3.70) and (2.3.60) that

(Πσ − σh, ξ)Q = (Πσ, ξ)Q − (σ, ξ) = 0, ∀ξ ∈W1
h. (2.3.77)

Now we choose τ = Πσ − σh, then similarly to the MSMFE-0 case, we get:

(A(Πσ − σh),Πσ − σh)Q ≤ Ch2(‖σ‖2
1 + ‖γ‖2

1) + ε‖Πσ − σh‖2. (2.3.78)

The rest of the proof follows the same steps as in the simplicial case.
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2.3.3 Second order convergence for displacement

We continue with the superconvergence estimate for the displacement variable for both

methods presented in the chapter. We first derive a bound on the quadrature error that will

be used in the analysis.

Lemma 2.3.8. Let A ∈ W 2,∞
Th . On simplicial elements, for all χ, τ ∈ Xh there exists a

positive constant C independent of h such that

|θ (Aχ, τ) | ≤ C
∑
E∈Th

h2‖χ‖1,E‖τ‖1,E, (2.3.79)

while on h2-parallelograms there holds

|θ (Aχ, τ) | ≤ C
∑
E∈Th

h2‖χ‖2,E‖τ‖1,E, (2.3.80)

Also, for all ξ ∈W1
h there exists a positive constant C independent of h such that

|δ (χ, ξ) | ≤ C
∑
E∈Th

h2‖ξ‖1,E‖χ‖1,E. (2.3.81)

Proof. For any simplicial element by Lemma 1.5.1 we have

θE (χ, τ) = θE
(
(A− Ā)(χ− χ̄), τ

)
+ θE

(
(A− Ā)χ̄, τ − τ̄

)
+ θE (Aχ̄, τ̄) + θE

(
Ā(χ− χ̄), τ − τ̄

)
, (2.3.82)

where χ̄, τ̄ are L2−orthogonal projections of χ, τ respectively onto the space of constant

matrices and Ā is an operator A evaluated at a cell center. By Lemma 1.5.1 the first, second

and the last terms on the right of the above equation are bounded by

Ch2‖A‖2,∞‖χ‖1‖τ‖1. (2.3.83)

For the third term on the right in (2.3.82) by Bramble-Hilbert lemma [20] we obtain

|θE (Aχ̄, τ̄) | ≤ Ch2|Aχ̄|2,E‖τ̄‖ ≤ Ch2|A|2,∞,E‖χ‖E‖τ‖E. (2.3.84)

Similar reasoning is used to show (2.3.81) as Lemma 1.5.1 allows to write

δE (χ, ξ) = δE
(
χ− χ̄, ξ − ξ̄

)
, (2.3.85)
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where χ̄, ξ̄ are L2−orthogonal projections of χ, ξ respectively, onto the space of constant and

constant skew-symmetric matrices. Corollary 1.5.1 then yields

δE
(
χ− χ̄, ξ − ξ̄

)
≤ Ch2‖χ‖1,E‖ξ‖1,E, (2.3.86)

which proves the second statement of the lemma.

For the statement of the lemma on quadrilaterals, we write

θE(Aτ, χ) = θ̂Ê(Aτ̂ , χ̂) =
2∑

i,j=1

θ̂Ê((Aτ̂)ij, χ̂ij).

Let us consider one term in the sum above. Due to the exactness of the quadrature rule for
bilinear functions, the Peano kernel theorem (see Theorem 5.2-3 in [87]) implies

θ̂Ê((Aτ̂)ij , χ̂ij) =

∫ 1

0

∫ 1

0
φ(x̂)

∂2

∂x̂2
((Aτ̂)ijχ̂ij)(x̂, 0) dx̂dŷ +

∫ 1

0

∫ 1

0
φ(ŷ)

∂2

∂ŷ2
((Aτ̂)ijχ̂ij)(0, ŷ) dx̂dŷ

+

∫ 1

0

∫ 1

0
ψ(x̂, ŷ)

∂2

∂x̂∂ŷ
((Aτ̂)ijχ̂ij)(x̂, ŷ) dx̂dŷ.

where φ(s) = s(s− 1)/2 and ψ(s, t) = (1− s)(1− t)− 1/4. Since χ is linear, we have

|θ̂Ê((Aτ̂)ij, χ̂ij)| ≤ C((|A|1,∞,Ê‖τ̂‖Ê + ‖A‖0,∞,Ê|τ̂ |1,Ê)|χ̂|1,Ê

+ (|A|2,∞,Ê‖τ̂‖Ê + |A|1,∞,Ê|τ̂ |1,Ê + ‖A‖0,∞,Ê|τ̂ |2,Ê)‖χ̂‖Ê).

Hence, summing over i, j and using (2.3.23), (2.3.9), (1.4.11), we obtain

|θE(Aτ, χ)| ≤ Ch2‖A‖2,∞,Ê‖τ̂‖2,Ê‖χ̂‖1,Ê,

which implies (2.3.80).

Theorem 2.3.3. Assuming elliptic regularity (2.3.90), then for the displacement uh of both

the MSMFE-0 and MSMFE-1 methods, there exists a constant C independent of h such that

‖Qu
hu− uh‖ ≤ Ch2 (‖σ‖1 + ‖γ‖1 + ‖ div σ‖1) on simplices. (2.3.87)

‖Qu
hu− uh‖ ≤ Ch2 (‖σ‖2 + ‖γ‖1) on h2-parallelograms.. (2.3.88)
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Proof for the simplicial case. The idea of the proof is based on the duality argument. Let φ

be a solution of the elasticity problem

ψ = A−1D(φ) in Ω,

∇ · ψ = (Qu
hu− uh) in Ω,

φ = 0 on ΓD,

ψ n = 0 on ΓN ,

(2.3.89)

where D(·) is a symmetrized gradient defined as in Section 1.3.2.

We assume that this problem has elliptic regularity

‖φ‖2 ≤ ‖Qu
hu− uh‖0, (2.3.90)

sufficient conditions for (2.3.90) can be found in [24,49,63].

We first consider the MSMFE-0 method, and write its error equation (2.3.32) as

(A(σ − σh), τ) = − (Qu
hu− uh, div τ)− (γ − γh, τ)− θ (Aσh, τ) . (2.3.91)

Taking τ = ΠA−1ε(φ) in the equation above, one gets

‖Qu
hu− uh‖2 = −

(
A(σ − σh), ΠA−1ε(φ)

)
−
(
γ − γh, ΠA−1ε(φ)

)
− θ

(
Aσh, ΠA−1ε(φ)

)
.

(2.3.92)

For the first term on the right, we have

−
(
A(σ − σh), ΠA−1ε(φ)

)
= −

(
A(σ − σh), ΠA−1ε(φ)− A−1ε(φ)

)
− (σ − σh, ε(φ))

= −
(
A(σ − σh), ΠA−1ε(φ)− A−1ε(φ)

)
+ (div(σ − σh), φ−Qu

hφ)

≤ C
(
‖A(σ − σh)‖‖ΠA−1ε(φ)− A−1ε(φ)‖+ h‖ div(σ − σh)‖‖φ‖1

)
≤ C (h‖A‖‖σ − σh‖‖φ‖2 + h‖ div(σ − σh)‖‖φ‖1)

≤ C‖A‖h2 (‖σ‖1 + ‖γ‖1 + ‖ div σ‖1) ‖φ‖2,

(2.3.93)

where we used the properties of projection operators together with the error analysis result

from (2.3.46).
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We treat the second term in a similar fashion

−
(
γ − γh, ΠA−1ε(φ)

)
= −

(
γ − γh, ΠA−1ε(φ)− A−1ε(φ)

)
−
(
γ − γh, A−1ε(φ)

)
= −

(
γ − γh, ΠA−1ε(φ)− A−1ε(φ)

)
≤ Ch2 (‖σ‖1 + ‖γ‖1) ‖φ‖2,

(2.3.94)

where the second inequality is due to the skew-symmetry of the quantity (γ − γh) and

symmetry of A−1ε(φ), and the inequality follows from (2.3.46).

We next deal with the last term using Lemma 2.3.8

|θ
(
Aσh, ΠA−1ε(φ)

)
| ≤ C

∑
E∈Th

h2‖σh‖1,E‖ΠA−1ε(φ)‖1,E

≤ C
∑
E∈Th

h2 (‖σh − Πσ‖1,E + ‖Πσ‖1,E) ‖A−1ε(φ)‖1,E

≤ C
∑
E∈Th

h2
(
h−1‖σh − Πσ‖E + ‖σ‖1,E

)
‖ε(φ)‖1,E

≤ C
∑
E∈Th

h2 (C(‖σ‖1,E + ‖γ‖1,E) + ‖σ‖1,E) ‖φ‖2,E

≤ Ch2 (‖σ‖1 + ‖γ‖1) ‖φ‖2,

(2.3.95)

here we used (2.3.8), the inverse inequality [20] and (2.3.46). Hence, the statement of the

theorem follows by combining (2.3.93)-(2.3.95) and elliptic regularity (2.3.90).

Next, we consider the MSMFE-1 method and its error equation (2.3.57) can be written

as

(A(σ − σh), τ) = − (Qu
hu− uh, div τ)− θ (Aσh, τ)− δ (τ, γh) . (2.3.96)

With the same choice τ = ΠA−1ε(φ), we obtain

‖Qu
hu− uh‖2 = −

(
A(σ − σh), ΠA−1ε(φ)

)
− θ

(
Aσh, ΠA−1ε(φ)

)
− δ

(
ΠA−1ε(φ), γh

)
.

(2.3.97)
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The first two terms on the right have been already analyzed in the case of MSMFE-0 so we

only consider the quadrature error in Lagrange multiplier

|δ
(
ΠA−1ε(φ), γh

)
| ≤ C

∑
E∈Th

h2‖γh‖1,E‖ΠA−1ε(φ)‖1,E

≤ C
∑
E∈Th

h2 (‖γh −Qγ
hγ‖1,E + ‖Qγ

hγ‖1,E) ‖A−1ε(φ)‖1,E

≤ C
∑
E∈Th

h2
(
h−1‖γh −Qγ

hγ‖E + ‖γ‖1,E

)
‖ε(φ)‖1,E

≤ C
∑
E∈Th

h2 (‖σ‖1,E + ‖γh‖1,E) ‖ε(φ)‖2,E

≤ Ch2 (‖σ‖1 + ‖γh‖1) ‖ε(φ)‖2,

(2.3.98)

where we used (2.3.8), the inverse inequality [20] and (2.3.67). Combining this result with

(2.3.90), (2.3.93) - (2.3.95) we get the statement.

Proof for the quadrilateral case. We start by considering the same auxiliary elasticity prob-

lem as in the simplicial case, namely 2.3.89. For the MSMFE-0 method we rewrite the error

equation (2.3.50) as follows:

(A(Πσ − σh), τ)Q = −(Qu
hu− uh, div τ)− (γ − γh, τ)− θ(AΠσ, τ) + 〈g − P0g, (τ − Π0τ)n〉ΓD .

We choose τ = Π0A−1ε(φ). Then the last term on the right-hand side cancels and we obtain

‖Qu
hu− uh‖2

0 = −(A(Πσ − σh),Π0A−1ε(φ))Q − (γ − γh,Π0A−1ε(φ))

− θ(AΠσ,Π0A−1ε(φ)). (2.3.99)

The last term on the right-hand side of (2.3.99) can be bounded using (2.3.80), (2.3.6) and

(2.3.7):

|θ(AΠσ,Π0A−1ε(φ))| ≤ C
∑
E∈T

h2‖AΠσ‖2,E‖Π0A−1ε(φ)‖1,E ≤ Ch2‖σ‖2‖φ‖2. (2.3.100)

We bound the second term on the right-hand side of (2.3.99) using (2.3.5) and the fact that

A−1m ∈ S, ∀m ∈ S:

|(γ − γh,Π0A−1ε(φ))| = |(γ − γh,Π0A−1ε(φ)− A−1ε(φ)) + (γ − γh, A−1ε(φ))|
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= |(γ − γh,Π0A−1ε(φ)− A−1ε(φ))| ≤ Ch2(‖γ‖1 + ‖σ‖1)‖φ‖2. (2.3.101)

The first term on the right-hand side of (2.3.99) is manipulated as follows:

(A(Πσ − σh),Π0A−1ε(φ))Q,E

= ((A− A0)(Πσ − σh),Π0A−1ε(φ))Q,E + (A0(Πσ − σh),Π0(A−1 − A−1
0 )ε(φ))Q,E

+ (A0(Πσ − σh),Π0A−1
0 (ε(φ)− ε(φ1)))Q,E + (A0(Πσ − σh),Π0A−1

0 ε(φ1))Q,E, (2.3.102)

where A0 is the value of A at the center of E and φ1 is the linear approximation to φ such

that (see [20])

‖φ− φ1‖E ≤ Ch2‖φ‖2,E, ‖φ− φ1‖1,E ≤ Ch‖φ‖2,E. (2.3.103)

The first term on the right-hand side in (2.3.102) can be bounded using (2.3.7):

|((A− A0)(Πσ − σh),Π0A−1ε(φ))Q,E| ≤ Ch‖A‖1,∞,E‖A−1‖1,∞,E‖Πσ − σh‖E‖φ‖2,E.

(2.3.104)

For any ζ ∈ H1(E) we have by (2.3.5):

‖Π0ζ‖E ≤ ‖Π0ζ − ζ‖E + ‖ζ‖E ≤ C (h‖ζ‖1,E + ‖ζ‖E) .

Hence, for the second and third terms on the right-hand side of (2.3.102) we have

|(A0(Πσ − σh),Π0(A−1 − A−1
0 )ε(φ))Q,E| ≤ Ch‖A‖1,∞,E‖A−1‖1,∞,E‖Πσ − σh‖E‖φ‖2,E,

(2.3.105)

|(A0(Πσ − σh),Π0A−1
0 (ε(φ)− ε(φ1)))Q,E| ≤ Ch‖A0‖0,∞,E‖A−1

0 ‖0,∞,E‖Πσ − σh‖E‖φ‖2,E.

(2.3.106)

We write last term on the right-hand side of (2.3.102) as follows:

(A0(Πσ − σh),Π0A−1
0 ε(φ1))Q,E = (Πσ − σh, ε(φ1))Q,E = (Π̂σ̂ − σ̂h, ε̂(φ̂1))Q̂,Ê, , (2.3.107)

where

ε(φ) =
∇φ+ (∇φ)T

2
=

(DF−1)T ∇̂φ̂+ ((DF−1)T ∇̂φ̂)T

2
.

73



Denote by φ̄1 the linear part of φ̂1. Then we have

(Π̂σ̂ − σ̂h, ε̂(φ̂1))Q̂,Ê = (Π̂σ̂ − σ̂h, ε̂(φ̂1 − φ̄1))Q̂,Ê + (Π̂σ̂ − σ̂h, ε̂(φ̄1))Q̂,Ê.

From (1.4.8) we have

∇̂(φ̂1 − φ̄1) = [(r34 − r21) · ∇φ1]

ŷ
x̂

 .

Hence,

|(Π̂σ̂ − σ̂h, ε̂(φ̂1 − φ̄1))Q̂,Ê| ≤ Ch2‖Π̂σ̂ − σ̂h‖Ê‖ε(φ)‖2,Ê ≤ Ch‖Πσ − σh‖E‖φ‖2,E. (2.3.108)

Using exactness of the quadrature rule for bilinear functions and (2.3.7), we have:

(Π̂σ̂ − σ̂h, ε̂(φ̄1))Q̂,Ê = (Π̂0(Π̂σ̂ − σ̂h), ε̂(φ̄1))Q̂,Ê = (Π̂0(Π̂σ̂ − σ̂h), ε̂(φ̄1))Ê

= (Π̂0(Π̂σ̂ − σ̂h), ε̂(φ̄1 − φ̂1))Ê + (Π̂0(Π̂σ̂ − σ̂h), ε̂(φ̂1))Ê

= (Π̂0(Π̂σ̂ − σ̂h), ε̂(φ̄1 − φ̂1))Ê + (Π0(Πσ − σh), ε(φ1))E. (2.3.109)

We bound the first term on the right-hand side of (2.3.109) as follows:

(Π̂0(Π̂σ̂ − σ̂h), ε̂(φ̄1 − φ̂1))Ê ≤ Ch2‖Π̂σ̂ − σ̂h‖Ê‖ε(φ)‖1,Ê ≤ Ch‖Πσ − σh‖E‖φ‖2,Ê.

(2.3.110)

Combining (2.3.102) -(2.3.110) and summing over the elements, we obtain

(A(Πσ − σh),Π0A−1ε(φ))Q,E ≤ Ch‖A‖1,∞‖A−1‖1,∞‖Πσ − σh‖‖φ‖2 + Ch‖Πσ − σh‖‖φ‖2

+
∑
E∈Th

(Π0(Πσ − σh), ε(φ1))E.

(2.3.111)

Consider the integration by parts formula for the symmetrized gradient:

(Π0(Πσ − σh), ε(φ))E = −1

2
(div Π0(Πσ − σh), ε(φ))E

+
1

2

〈(
Π0(Πσ − σh) + (Π0(Πσ − σh))T

)
n, φ

〉
∂E
. (2.3.112)
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Due to (1.4.18), the fact that div(Πσ − σh) = 0 and hat φ = 0 on ΓD and (Πσ − σh)n = 0

on ΓN ∑
E∈Th

(Π0(Πσ − σh), ε(φ))E = 0.

This together with (1.4.26) implies∣∣∣∣∣∑
E∈Th

(Π0(Πσ − σh), ε(φ1))E

∣∣∣∣∣ =

∣∣∣∣∣∑
E∈Th

(Π0(Πσ − σh), ε(φ1 − φ))E

∣∣∣∣∣
≤ C

∑
E∈Th

‖Πσ − σh‖E‖φ1 − φ‖1,E ≤ Ch2(‖σ‖1 + ‖p‖1)‖φ‖2. (2.3.113)

Thus, we have

(A(Πσ − σh),Π0A−1ε(φ))Q,E ≤ Ch2(‖σ‖1 + ‖p‖1)‖φ‖2. (2.3.114)

Combining (2.3.99)-(2.3.101), (2.3.114) and (2.3.90), we obtain the desired result for the

MSMFE-0 method

‖Qu
hu− uh‖ ≤ Ch2(‖σ‖2 + ‖p‖1). (2.3.115)

Similarly, for the MSMFE-1 method we rewrite the error equation (2.3.71) as follows:

(A(Πσ − σh), τ)Q = −(Qu
hu− uh, div τ)− (γ, τ) + (τ, γh)Q

− θ(AΠσ, τ) + 〈g − P0g, (τ − Π0τ)n〉ΓD ,

and choosing τ = Π0A−1ε(φ):

‖Qu
hu− uh‖2

0 =− (A(Πσ − σh),Π0A−1ε(φ))Q − (p− ph,Π0A−1ε(φ))− θ(AΠσ,Π0A−1ε(φ))

− (γ,Π0A−1ε(φ)) + (Π0A−1ε(φ), γh)Q. (2.3.116)

Note, that most of the terms on the right in (2.3.116) have already been bounded. We

rewrite the rest using (2.3.72):

− (γ,Π0A−1ε(φ)) + (Π0A−1ε(φ), γh)Q

= −θ(Π0A−1ε(φ), Qγ
hγ)− (γ −Qγ

hγ,Π
0A−1ε(φ)) + (Π0A−1ε(φ), γh −Qγ

hγ)Q. (2.3.117)
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For the first term on the right-hand side we use (2.3.81) and (2.3.7):

|θ(Π0A−1ε(φ), Qγ
hγ)| ≤ C

∑
E∈T

h2‖Π0A−1ε(φ)‖1,E‖Qγ
hγ‖1,E ≤ C

∑
E∈T

h2‖φ‖2‖Qγ
hγ‖1,E.

(2.3.118)

The second term on the right-hand side of (2.3.117) is bounded using the fact that A−1ε(φ)

is symmetric and (2.3.5):

|(Π0A−1ε(φ), γ −Qγ
hγ)| = |(Π0A−1ε(φ)− A−1ε(φ), γ −Qγ

hγ) + (A−1ε(φ), γ −Qγ
hγ)|

= |(Π0A−1ε(φ)− A−1ε(φ), γ −Qγ
hγ)| ≤ Ch2‖γ‖1‖φ‖2. (2.3.119)

For the last term we have:

(Π0A−1ε(φ), γh −Qγγ)Q

= (Π0(A−1 − A−1
0 )ε(φ), γh −Qγγ)Q + (Π0A−1

0 (ε(φ)− ε(φ1)), γh −Qγγ)Q

+ (ph −Qhp,Π
0A−1ε(φ1), γh −Qγγ)Q. (2.3.120)

We bound the first two terms on the right-hand side of (2.3.120) element-wise using (2.3.103):

|(Π0(A−1 − A−1
0 )ε(φ), γh −Qγγ)Q,E + (Π0A−1

0 (ε(φ)− ε(φ1)), γh −Qγγ)Q,E|

≤ Ch‖A−1‖1,∞,E‖γh −Qγγ‖E‖φ‖2,E + Ch‖A−1
0 ‖0,∞,E‖γh −Qγγ‖E‖φ‖2,E. (2.3.121)

The last term cancels, since A−1ε(φ1) is symmetric:

(Π0A−1ε(φ1), γh −Qγγ)Q,E = (A−1ε(φ1), γh −Qγγ)Q,E = 0. (2.3.122)

Combining (2.3.117) - (2.3.122) and using (2.3.8) and (2.3.5), we obtain:

| − (γ,Π0A−1ε(φ)) + (Π0A−1ε(φ), γh)Q| ≤ Ch2(‖σ‖1 + ‖γ‖1)‖φ‖2,E.

Hence, the solution of MSMFE-1 method satisfies

‖Qu
hu− uh‖ ≤ Ch2(‖σ‖2 + ‖γ‖1). (2.3.123)
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2.4 NUMERICAL RESULTS

Remark 2.4.1. Due to the complications related to implementation of spaces that preserve

skew-symmetry, both MSMFE-0 and MSMFE-1 methods were implemented using the rotation

variable ph = Ξ−1(γh), where Ξ is an operator defined in (1.2.1), whose algebraic properties

allow us to write methods (e.g. MSMFE-1) as

(Aσh, τ)Q + (uh, div τ) + (as τ, ph)Q = 〈g, τ〉ΓD , τ ∈ Xh, (2.4.1)

(div σh, v) = (f, v), v ∈ Vh, (2.4.2)

(as σh, w)Q = 0, w ∈ Ξ−1(W1
h), (2.4.3)

i.e. for a Lagrange multiplier we use a scalar space Pj in two dimensions, and a vector space

(Pj)3 in three dimensions with j = 0, 1 for MSMFE-0 and MSMFE-1, respectively. Here,

the third term in (2.4.1) should be understood in light of the following definition

(as τ, w)Q,E ≡ (as (DFτ̂) , ŵ)Q̂,Ê ≡
|Ê|
s

s∑
i=1

as (DFτ̂(r̂i)) · ŵ(r̂i), (2.4.4)

with · denoting the usual multiplication when d = 2.

We first study the convergence of the proposed methods on a unit square simplicial mesh

with homogeneous Dirichlet boundary conditions and the analytical solution given by

u =

cos(πx) sin(2πy)

cos(πy) sin(πx)

 .

The body force is then determined using Lamé coefficients λ = 123, µ = 79.3 as motivated

by the test case presented in [9]. As mentioned in the Remark 2.4.1 we use ph = Ξ−1(γh)

for the Lagrange multiplier, and hence the errors are also computed using this variable.

However, it is clear that operator Ξ does not introduce extra numerical error.

In Table 2.1 we show errors and convergence rates in the corresponding norms, computed

using MSMFE-0 and MSMFE-1 methods. The superconvergence results are also included in

the said table. All rates are in accordance with the result of the error analysis presented in

the previous section.
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(a) x-comp. of stress (b) y-comp. of stress (c) Displacement (d) Rotation

Figure 2.7: Computed solution for Example 1, MSMFE-0 on simplices, h = 1/32.

MSMFE-0
‖σ − σh‖ ‖ div(σ − σh)‖ ‖u− uh‖ ‖Qu

hu− uh‖ ‖p− ph‖
h error rate error rate error rate error rate error rate

1/2 8.01E-01 – 8.98E-01 – 8.37E-01 – 8.24E-01 – 1.02E+00 –
1/4 3.58E-01 1.17 4.26E-01 1.09 3.50E-01 1.27 1.82E-01 2.34 5.03E-01 1.02
1/8 1.53E-01 1.23 1.99E-01 1.10 1.73E-01 1.02 4.70E-02 1.96 3.13E-01 0.69
1/16 7.03E-02 1.12 9.84E-02 1.02 8.67E-02 1.00 1.20E-02 1.97 1.71E-01 0.87
1/32 3.42E-02 1.04 5.00E-02 0.98 4.35E-02 0.99 3.03E-03 1.99 8.78E-02 0.96
1/64 1.70E-02 1.01 2.60E-02 0.95 2.18E-02 1.00 7.59E-04 2.00 4.42E-02 0.99

MSMFE-1
‖σ − σh‖ ‖ div(σ − σh)‖ ‖u− uh‖ ‖Qu

hu− uh‖ ‖p− ph‖
h error rate error rate error rate error rate error rate

1/2 7.96E-01 – 9.01E-01 – 8.60E-01 – 8.47E-01 – 9.95E-01 –
1/4 3.67E-01 1.13 4.26E-01 1.09 3.55E-01 1.29 1.95E-01 2.28 4.55E-01 1.12
1/8 1.56E-01 1.23 1.93E-01 1.14 1.76E-01 1.01 5.67E-02 1.78 1.68E-01 1.44
1/16 7.11E-02 1.14 9.34E-02 1.05 8.75E-02 1.01 1.55E-02 1.87 5.37E-02 1.65
1/32 3.43E-02 1.05 4.66E-02 1.00 4.37E-02 1.00 4.01E-03 1.95 1.66E-02 1.70
1/64 1.70E-02 1.02 2.37E-02 0.98 2.18E-02 1.00 1.02E-03 1.98 5.26E-03 1.66

Table 2.1: Relative errors and convergence rates for Example 1, triangles.

The solution obtained on mesh consisting of h2-parallelograms is given in Figure 2.8. We

present the results of the convergence studies in Table 2.2 and Table 2.3 for the MSMFE-1

method on both quadrilateral and square meshes. We observe at least first order for all

variables, as predicted in (2.3.56), as well as the superconvergence of the displacement error

evaluated at the cell centers (2.3.88).
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(a) x-comp. of stress (b) Displacement (c) Rotation

Figure 2.8: Computed solution for Example 1, MSMFE-1 on h2-parallelogram mesh, 34113

DOFs.

MSMFE-1
‖σ − σh‖ ‖ div(σ − σh)‖ ‖u− uh‖ ‖Qu

hu− uh‖ ‖p− ph‖
h error rate error rate error rate error rate error rate

1/2 5.915e-01 - 7.997e-01 - 5.347e-01 - 1.629e-01 - 5.978e-01 -
1/4 2.779e-01 1.09 4.060e-01 0.98 3.109e-01 0.78 1.053e-01 0.63 3.379e-01 0.82
1/8 1.366e-01 1.02 2.030e-01 1.00 1.577e-01 0.98 2.945e-02 1.84 1.377e-01 1.30

1/16 6.934e-02 0.98 1.014e-01 1.00 7.895e-02 1.00 8.041e-03 1.87 4.865e-02 1.50
1/32 3.497e-02 0.99 5.066e-02 1.00 3.946e-02 1.00 2.083e-03 1.95 1.658e-02 1.55
1/64 1.756e-02 0.99 2.533e-02 1.00 1.973e-02 1.00 5.263e-04 1.98 5.669e-03 1.55

Table 2.2: Relative errors and convergence rates for Example 1, h2-parallelograms.

The second test case shows the methods’ performance on a unit cube simplicial mesh

with homogeneous Dirichlet boundary conditions and the analytical solution given by

u =


0

−(ex − 1)(y − cos( π
12

)(y − 1
2
) + sin( π

12
)(z − 1

2
)− 1

2
)

−(ex − 1)(z − sin( π
12

)(y − 1
2
)− cos( π

12
)(z − 1

2
)− 1

2
)

 . (2.4.5)

Similarly to the previous case, the body force is determined from this function with Lamé

coefficients λ = µ = 100.
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MSMFE-1
‖σ − σh‖ ‖ div(σ − σh)‖ ‖u− uh‖ ‖Qu

hu− uh‖ ‖p− ph‖
# dofs error rate error rate error rate error rate error rate

65 7.614e-01 - 9.728e-01 - 7.199e-01 - 4.758e-01 - 8.171e-01 -
217 3.742e-01 1.02 5.422e-01 0.84 4.561e-01 0.66 1.057e-01 2.17 3.909e-01 1.06
785 1.664e-01 1.17 2.721e-01 0.99 2.334e-01 0.97 2.775e-02 1.93 1.149e-01 1.77

2977 7.911e-02 1.07 1.358e-01 1.00 1.171e-01 0.99 7.254e-03 1.94 3.043e-02 1.92
11585 3.897e-02 1.02 6.789e-02 1.00 5.860e-02 1.00 1.841e-03 1.98 7.753e-03 1.97
45697 1.941e-02 1.01 3.394e-02 1.00 2.931e-02 1.00 4.623e-04 1.99 1.949e-03 1.99

Table 2.3: Relative errors and convergence rates for Example 1, squares.

In Table 2.4 we show errors and convergence rates in the corresponding norms obtained

with both MSMFE-0 and MSMFE-1 method. These numerical results verify the predicted

theoretical rates stated in the error analysis section, Section 3.4.

49.8

Stress 1

0.41

(a) x-comp. of stress

45.3

Stress 2

0.332

(b) y-comp. of stress

45.5

Stress 3

0.246

(c) z-comp. of stress

0.306
Displacement

2.54e-05

(d) Displacement

0.507

Rotation

0.00301

(e) Rotation

Figure 2.9: Computed solution for Example 2, MSMFE-1 on simplices, h = 1/32.

Our third example is to demonstrate that MSMFE methods accurately honor disconti-
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MSMFE-0
‖σ − σh‖ ‖ div(σ − σh)‖ ‖u− uh‖ ‖Qu

hu− uh‖ ‖p− ph‖
h error rate error rate error rate error rate error rate

1/2 4.46E-01 – 2.45E-01 – 4.15E-01 – 1.32E-01 – 2.41E-01 –
1/4 1.96E-01 1.19 1.21E-01 1.02 2.06E-01 1.01 3.11E-02 1.98 1.20E-01 1.00
1/8 9.08E-02 1.11 6.02E-02 1.01 1.03E-01 1.00 7.72E-03 1.98 6.01E-02 1.00
1/16 4.40E-02 1.05 3.01E-02 1.00 5.14E-02 1.00 1.94E-03 1.99 2.99E-02 1.00
1/32 2.17E-02 1.02 1.51E-02 1.00 2.57E-02 1.00 4.85E-04 2.00 1.49E-02 1.00

MSMFE-1
‖σ − σh‖ ‖ div(σ − σh)‖ ‖u− uh‖ ‖Qu

hu− uh‖ ‖p− ph‖
h error rate error rate error rate error rate error rate

1/2 5.40E-01 – 2.45E-01 – 4.20E-01 – 1.55E-01 – 2.38E-01 –
1/4 2.42E-01 1.16 1.21E-01 1.02 2.07E-01 1.02 4.04E-02 1.83 1.00E-01 1.24
1/8 1.09E-01 1.15 6.02E-02 1.01 1.03E-01 1.01 1.07E-02 1.89 3.93E-02 1.35
1/16 5.05E-02 1.12 3.01E-02 1.00 5.14E-02 1.00 2.81E-03 1.93 1.47E-02 1.42
1/32 2.39E-02 1.08 1.51E-02 1.00 2.57E-02 1.00 7.20E-04 1.96 5.38E-03 1.45

Table 2.4: Relative errors and convergence rates for Example 2, tetrahedra.

nuities in material properties. For this, let χ(x, y) indicate a heterogeneity in the ”middle”

block of a 3× 3 partitioning of a unit square, e.g.

χ(x, y) =

1 if min(x, y) > 1
3

and max(x, y) < 2
3
,

0 otherwise.

Then, we choose κ = 106 to characterize the discontinuity in Lamé coefficients as follows

µ = (1− χ) + κχ and λ = µ.

We finally choose the continuous displacement solution as

u =
1

(1− χ) + κχ

sin(3πx) sin(3πy)

sin(3πx) sin(3πy)

 ,

so that the stresses are also continuous and independent of κ. The body forces are recovered

from the above solution using the governing equations. The computed relative errors and

convergence rates are presented in Table 2.5 for the both methods. While the results of

method with constant rotations (MSMFE-0) agree with theory, we see the deterioration in
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stress and rotation convergence rates obtained by the method with linear rotations (MSMFE-

1). This is due to the discontinuity of the rotation true solution - the MSMFE-1 method

uses continuous Lagrangian finite element space for the rotation variable, and hence, fails

to resolve the discontinuity along the boundary of the middle block of the domain. One

potential remedy to this issue is to change the way Lagrange multiplier is defined. One can

consider γ̃ = A−1γ as a ”force rotation”, and write a mixed method with it. Specifically, the

MSMFE-1 method would then read: Find σh ∈ Xh, uh ∈ Vh and γ̃h ∈W1
h

(Aσh, τ)Q + (uh, div τ) + (τ, Aγ̃h)Q = 〈P0g, τ n〉ΓD , τ ∈ Xh, (2.4.6)

(div σh, v) = (f, v), v ∈ Vh, (2.4.7)

(σh, Aξ)Q = 0, ξ ∈W1
h. (2.4.8)

The convergence results obtained from using the method (2.4.6)-(2.4.8) are shown in Ta-

ble 2.6. As one can see, this computational trick indeed resolves the convergence deteriora-

tion in stress and rotation variables. We used FEniCS Project [65] for the implementation

(a) Stress, x-comp. (b) Stress, y-comp. (c) Displacement (d) Rotation (e) Force rotation

Figure 2.10: Computed solution for Example 3, MSMFE-1 on simplices, h = 1/48.

of the methods on simplicial grids both in 2 and 3 dimensions and [7] for the test cases on

quadrilateral.
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MSMFE-0
‖σ − σh‖ ‖ div(σ − σh)‖ ‖u− uh‖ ‖Qu

hu− uh‖ ‖p− ph‖
h error rate error rate error rate error rate error rate

1/3 1.27E+00 - 1.20E+00 - 1.61E+00 - 1.49E+00 - 1.46E+00 -
1/6 6.97E-01 0.87 7.28E-01 0.73 5.87E-01 1.45 4.55E-01 1.71 6.50E-01 1.17
1/12 2.68E-01 1.38 3.33E-01 1.13 2.73E-01 1.10 1.19E-01 1.93 4.70E-01 0.47
1/24 1.05E-01 1.35 1.58E-01 1.07 1.33E-01 1.04 3.08E-02 1.95 2.76E-01 0.77
1/48 4.72E-02 1.16 7.79E-02 1.02 6.57E-02 1.01 7.79E-03 1.98 1.45E-01 0.93
1/96 2.28E-02 1.05 3.88E-02 1.01 3.28E-02 1.00 1.96E-03 1.99 7.34E-02 0.98

MSMFE-1
‖σ − σh‖ ‖ div(σ − σh)‖ ‖u− uh‖ ‖Qu

hu− uh‖ ‖p− ph‖
h error rate error rate error rate error rate error rate

1/3 1.24E+00 - 1.20E+00 - 1.59E+00 - 1.48E+00 - 1.15E+00 -
1/6 7.05E-01 0.82 7.28E-01 0.73 5.75E-01 1.48 4.37E-01 1.76 6.09E-01 0.93
1/12 2.89E-01 1.29 3.33E-01 1.13 2.74E-01 1.07 1.22E-01 1.84 2.87E-01 1.07
1/24 1.26E-01 1.20 1.58E-01 1.07 1.35E-01 1.02 3.95E-02 1.63 1.58E-01 0.86
1/48 6.58E-02 0.94 7.78E-02 1.02 6.71E-02 1.01 1.59E-02 1.31 1.05E-01 0.59
1/96 3.87E-02 0.77 3.88E-02 1.01 3.35E-02 1.00 7.43E-03 1.10 7.39E-02 0.51

Table 2.5: Relative errors and convergence rates for Example 3, triangles.

‖σ − σh‖ ‖ div(σ − σh)‖ ‖u− uh‖ ‖Qu
hu− uh‖ ‖p̃− p̃h‖

h error rate error rate error rate error rate error rate
1/3 1.26E+00 - 1.20E+00 - 1.73E+00 - 1.59E+00 - 1.20E+00 -
1/6 6.82E-01 0.88 7.28E-01 0.73 5.74E-01 1.59 4.28E-01 1.89 5.46E-01 1.14
1/12 2.60E-01 1.39 3.33E-01 1.13 2.72E-01 1.08 1.17E-01 1.87 2.10E-01 1.38
1/24 1.03E-01 1.34 1.58E-01 1.07 1.33E-01 1.04 3.08E-02 1.92 6.68E-02 1.66
1/48 4.65E-02 1.14 7.79E-02 1.02 6.57E-02 1.01 7.90E-03 1.96 2.11E-02 1.66
1/96 2.26E-02 1.04 3.88E-02 1.01 3.28E-02 1.00 2.01E-03 1.98 6.95E-03 1.60

Table 2.6: Relative errors and convergence rates for Example 3, MSMFE-1 on triangles with

force rotation.

83



3.0 COUPLED MULTIPOINT FLUX MULTIPOINT STRESS MIXED

FINITE ELEMENT METHOD FOR THE BIOT POROELASTICITY MODEL

The lowest order coupled five field mixed finite element approximation of Biot’s poroelasticity

system of equations (1.3.18)-(1.3.24) reads as follows: Find (σh, uh, γh, zh, ph) ∈ Xh × Vh ×

Wh × Zh ×Wh such that:

(Aσh, τ) + (AαphI, τ) + (uh, div τ) + (γh, τ) = 〈gu, τ n〉Γdispl
D

∀τ ∈ Xh (3.0.1)

(div σh, v) = − (f, v) ∀v ∈ Vh (3.0.2)

(σh, ξ) = 0 ∀ξ ∈Wh (3.0.3)(
K−1zh, q

)
− (ph, div q) = −〈gp, v · n〉Γpres

D
∀q ∈ Zh (3.0.4)

c0

(
∂ph
∂t

, w

)
+ α

(
∂

∂t
Aσh, wI

)
+ α

(
∂

∂t
tr (AαphI), w

)
+ (div zh, w) = (g, w) ∀w ∈Wh. (3.0.5)

The method has a unique solution and is first order accurate for all of the variables in

corresponding norms on simplicial and quadrilateral grids with our choices of elements [61].

While the method inherits all the advantages of a MFE method, its major drawback is

in the resulting coupled algebraic system for five variables being of a saddle point type.

Motivated by MFMFE and MSMFE methods, in the next sections we develop a quadrature

rule that allows for local elimination of the stresses, rotations and fluxes, which leads to a

positive-definite cell-centered displacement-pressure system.
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3.1 THE COUPLED MULTIPOINT STRESS MULTIPOINT FLUX MIXED

FINITE ELEMENT METHOD

As in the MSMFE method on quadrilaterals, care should be taken in order to incorporate

the the Dirichlet boundary data for displacement and pressure variables. For this, we first

introduce an L2-orthogonal projection operator acting onto the space of piecewise constant

scalar or vector valued function on the trace of Th on ∂Ω:

P0 : L2(∂Ω,Rd)→ X0
h n,

such that ∀φ ∈ L2(Ω,Rd), 〈φ− P0φ, τ n〉∂Ω = 0, ∀τ ∈ X0
h, (3.1.1)

P0 : L2(∂Ω,R)→ Z0
h · n,

such that ∀ψ ∈ L2(Ω), 〈ψ − P0ψ, q · n〉∂Ω = 0, ∀q ∈ Z0
h. (3.1.2)

We use P0 = I on simplicial grids, i.e., the projection is not required in such a case.

Our method is defined as follows. We seek (σh, uh, γh, zh, ph) ∈ Xh× Vh×Wh×Zh×Wh

such that:

(Aσh, τ)Q + (AαphI, τ)Q + (uh, div τ) + (γh, τ)Q = 〈P0gu, τ n〉Γdispl
D

, ∀τ ∈ Xh, (3.1.3)

(div σh, v) = − (f, v) , ∀v ∈ Vh, (3.1.4)

(σh, ξ)Q = 0, ∀ξ ∈Wh, (3.1.5)(
K−1zh, q

)
Q
− (ph, div q) = −〈P0gp, v · n〉Γpres

D
, ∀q ∈ Zh, (3.1.6)

c0

(
∂ph
∂t

, w

)
+ α

(
∂

∂t
Aσh, wI

)
Q

+ α

(
∂

∂t
tr (AαphI), w

)
+ (div zh, w) = (g, w) , ∀w ∈Wh. (3.1.7)
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3.2 STABILITY ANALYSIS IN SEMIDISCRETE CASE

In this section we show that the coupled multipoint stress multipoint flux system for the

Biot model (3.1.3)-(3.1.7) is well-posed. Throughout this section we assume for simplicity

that ΓdisplD = ΓpresD = ∂Ω.

Step 1: L2 in space estimates:

We differentiate (3.1.3) and choose (τ, v, ξ, q, w) = (σh, ∂tuh, ∂tγh, zh, ph) in equations (3.1.3)-

(3.1.7) to obtain the following system:

(A∂tσh, σh)Q + (Aα∂tpI, σh)Q + (∂tuh, div σh) + (∂tγh, σh)Q = 〈∂tP0gu, σh n〉, (3.2.1)

(div σh, ∂tuh) = − (f, ∂tuh) , (3.2.2)

(σh, ∂tγh)Q = 0, (3.2.3)(
K−1zh, zh

)
Q
− (ph, div zh) = 〈P0gp, zh · n〉, (3.2.4)

c0 (∂tph, ph) + α (∂t tr (Aσh), ph)Q + α (∂t tr (AαphI), ph)Q + (div zh, ph) = (g, ph) . (3.2.5)

Combining (3.2.1)-(3.2.5), we get

(A∂tσh, σh)Q + (Aα∂tpI, σh)Q +
(
K−1zh, zh

)
Q

+ c0 (∂tph, ph) + α (∂t tr (Aσh), ph)Q

+ α (∂t tr (AαphI), ph)Q = 〈∂tP0gu, σh n〉+ (f, ∂tuh) + 〈P0gp, zh · n〉+ (g, ph) .

(3.2.6)

Using the definition of the quadrature rule (1.5.3) and the product rule, we can write the

first term on the left hand side of (3.2.6) as follows

(A∂tσh, σh)Q =
∑
E∈Th

(A∂tσh, σh)E,Q =
∑
E∈Th

(A∂tσ̂h, σ̂h)Ê,Q =
∑
E∈Th

|Ê|
s

s∑
i=1

A∂tσ̂h(r̂i) : σ̂h(r̂i)

=
∑
E∈Th

|Ê|
s

s∑
i=1

∂tA1/2σ̂h(r̂i) : A1/2σ̂h(r̂i) =
1

2

∑
E∈Th

|Ê|
s
∂t

s∑
i=1

A1/2σ̂h(r̂i) : A1/2σ̂h(r̂i)

=
∑
E∈Th

1

2
∂t
(
A1/2σh, A

1/2σh
)
E,Q

=
1

2
∂t
(
A1/2σh, A

1/2σh
)
Q

and (3.2.6) becomes:

1

2
∂t
(
A1/2σh, A

1/2σh
)
Q

+ (Aα∂tpI, σh)Q + α (∂t tr (Aσh), ph)Q
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+ α (∂t tr (AαphI), ph)Q + ‖K−1/2zh‖2
Q +

c0

2
∂t‖ph‖2

= 〈∂tP0gu, σh n〉+ (f, ∂tuh) + 〈P0gp, zh · n〉+ (g, ph) . (3.2.7)

Using the identity

tr (τ)w = τ : (wI), ∀τ ∈M, w ∈ R,

we combine the first four terms on the left-hand side of (3.2.7):

1

2
∂t
(
A1/2σh, A

1/2σh
)
Q

+ (Aα∂tpI, σh)Q + α (∂t tr (Aσh), ph)Q + α (∂t tr (AαphI), ph)Q

=
1

2
∂t
(
A1/2σh, A

1/2σh
)
Q

+ α
(
A1/2∂tphI, A

1/2σh
)
Q

+ α
(
∂tA

1/2σh, A
1/2phI

)
Q

+
α2

2

(
∂tA

1/2phI, ∂tA
1/2phI

)
Q

=
1

2
∂t
(
A1/2(σh + αphI), A1/2(σh + αphI)

)
Q

=
1

2
∂t‖A1/2(σh + αphI)‖2

Q. (3.2.8)

Combining (3.2.7) with (3.2.8) and using the product rule, we get

1

2
∂t
[
‖A1/2(σh + αphI)‖2

Q + c0‖ph‖2
]

+ ‖K−1/2zh‖2
Q

= 〈∂tP0gu, σh n〉+ (f, ∂tuh) + 〈∂tP0gp, zh · n〉+ (g, ph)

= 〈∂tP0gu, σh n〉+ ∂t (f, uh)− (∂tf, uh) + 〈P0gp, zh · n〉+ (g, ph) . (3.2.9)

Next, integrating (3.2.9) in time from 0 to an arbitrary t ∈ (0, T ]:

1

2

[
‖A1/2(σh(t) + αphI(t))‖2

Q + c0‖ph(t)‖2

]
+

∫ t

0

‖K−1/2zh(s)‖2
Q ds

=

∫ t

0

((g(s), ph(s))− (∂tf(s), uh(s))) ds+

∫ t

0

(〈∂tP0gu(s), σh(s)n〉

+ 〈P0gp(s), zh(s) · n〉) ds+
1

2

[
‖A1/2(σh(0) + αphI(0))‖2

Q + c0‖ph(0)‖2
]

+ (f(t), uh(t)) + (f(0), uh(0))

and applying Cauchy-Schwartz and Young inequalities we have:

1

2

[
‖A1/2(σh(t) + αphI(t))‖2

Q + c0‖ph(t)‖2
]

+

∫ t

0

‖K−1/2zh(s)‖2
Q ds

≤ ε

(
‖uh(t)‖2 +

∫ t

0

(‖ph(s)‖2 + ‖uh(s)‖2) ds

)
+ ε̃

∫ t

0

(‖σh(s)n‖2
−1/2 + ‖zh · n‖2

−1/2) ds
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+
C

ε

(
‖f(t)‖2 +

∫ t

0

(‖g(s)‖2 + ‖∂tf(s)‖2) ds

)
+
C

ε̃

∫ t

0

(‖∂tP0gu(s)‖2
1/2 + ‖P0gp(s)‖2

1/2) ds

+
1

2

[
‖A1/2(σh(0) + αphI(0))‖2

Q + c0‖ph(0)‖2 + ‖uh(0)‖2 + ‖f(0)‖2
]
. (3.2.10)

Using the inf-sup condition as in Chapter 2, we obtain

‖uh‖+ ‖γh‖ ≤ C sup
06=τ∈Xh

(uh, div τ) + (γh, as τ)Q
‖τ‖div

= C sup
06=τ∈Xh

−
(
A1/2(σh + αphI), A1/2τ

)
Q

+ 〈P0gu, τ n〉
‖τ‖div

≤ C‖A1/2(σh + αphI)‖+ ‖P0gu‖ 1
2
, (3.2.11)

where in the last step we used equivalence of norms as stated in Corollary 1.5.1.

Similarly, using the inf-sup condition [22] and (3.1.6), we have

‖ph‖ ≤ C sup
0 6=q∈Zh

(ph, div q)

‖q‖div

= C sup
0 6=q∈Zh

(K−1zh, q)Q + 〈P0gp, q · n〉
‖q‖div

≤ C‖K−1/2zh‖+ ‖P0gp‖ 1
2
. (3.2.12)

Combining (3.2.10)-(3.2.12), from equivalence of norms we have

‖A1/2(σh(t) + αphI(t))‖2 + ‖uh(t)‖2 + ‖γh(t)‖2

+ c0‖ph(t)‖2 +

∫ t

0

(‖K−1/2zh(s)‖2 + ‖ph(s)‖2) ds

≤ C
[
ε

(
‖uh(t)‖2 +

∫ t

0

(‖ph(s)‖2 + ‖uh(s)‖2) ds

)
+ ε̃

∫ t

0

(‖σh(s)n‖−1/2 + ‖zh(s) · n‖−1/2) ds

+
C

ε

(
‖f(t)‖2 +

∫ t

0

(‖g(s)‖2 + ‖∂tf(s)‖2) ds

)
+
C

ε̃

∫ t

0

(‖∂tP0gu(s)‖2
1/2 + ‖P0gp(s)‖2

1/2) ds

+ C
[
‖A1/2(σh(0) + αphI(0))‖2

Q + c0‖ph(0)‖2 + ‖uh(0)‖2 + ‖f(0)‖2
]

+ ‖P0gu(t)‖2
1/2

]
.

Finally, choosing ε small enough, we obtain the following inequality

‖A1/2(σh(t) + αphI(t))‖2 + ‖uh(t)‖2 + ‖γh(t)‖2

+ c0‖ph(t)‖2 +

∫ t

0

(‖K−1/2zh(s)‖2 + ‖ph(s)‖2) ds

≤ C
[
ε

∫ t

0

‖uh(s)‖2 ds+ ε̃

∫ t

0

(‖σh(s)n‖2
−1/2 + ‖zh(s) · n‖2

−1/2) ds
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+
C

ε̃

∫ t

0

(‖∂tP0gu(s)‖2
1/2 + ‖P0gp(s)‖2

1/2) ds+

(
‖f(t)‖2 +

∫ t

0

(‖g(s)‖2 + ‖∂tf(s)‖2) ds

)
+ ‖P0gu(t)‖2

1/2 + ‖A1/2(σh(0) + αphI(0))‖2
Q + c0‖ph(0)‖2 + ‖uh(0)‖2 + ‖f(0)‖2

]
.

(3.2.13)

Let us denote the right hand side of (3.2.13) by H1. We proceed with deriving estimates for

div σh and div zh.

Step 2: H(div) in space estimate for the stress:

Testing (3.1.4) with v = div σh, we immediately obtain a bound on divergence of stress:

‖ div σh‖ ≤ ‖f‖. (3.2.14)

On the other hand setting τ = sh, v = uh, ξ = γh in (3.1.3)-(3.1.5) and using equivalence of

norms, we obtain

‖σh‖2 ≤ C(‖p‖2 + ‖P0gu‖2
1/2 + ‖f‖2) + ε(‖σh n‖2

−1/2 + ‖u‖2) (3.2.15)

We combine (3.2.14)-(3.2.15) and integrate in time:∫ t

0

(‖σh(s)‖2 + ‖ div σh(s)‖2) ds

≤ C

∫ t

0

(
(‖p(s)‖2 + ‖P0gu(s)‖2

1/2 + ‖f(s)‖2) + ε(‖σh(s)n‖2
−1/2 + ‖u(s)‖2)

)
ds.

Using (3.2.11), we obtain∫ t

0

(‖σh(s)‖2
div + ‖uh(s)‖2 + ‖γh(s)‖2) ds ≤ C

∫ t

0

(‖p(s)‖2 + ‖P0gu(s)‖2
1/2 + ‖f(s)‖2) ds

≤ H1 +

∫ t

0

(‖P0gu(s)‖2
1/2 + ‖f(s)‖2) ds. (3.2.16)

Step 3: H(div) in space estimate for the velocity:

It follows from equation (3.1.7) and Corollary 1.5.1 that

‖ div zh‖ ≤ C
(
c0‖∂tph‖+ ‖A1/2∂t(σh + αphI)‖+ ‖g‖

)
. (3.2.17)
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To control the first two terms on the right hand side of (3.2.17), we differentiate equations

(3.1.3)-(3.1.6) and combine (3.1.3)-(3.1.7) as it was done in (3.2.1)-(3.2.10), with the choice

(τ, v, ξ, q, w) = (∂tσh, ∂tuh, ∂tγh, zh, ∂tph):∫ t

0

(
‖A1/2∂t(σh(s) + αphI(s))‖2

Q + c0‖∂tph(s)‖2

)
ds+

1

2
‖K−1/2zh(t)‖2

Q

≤
∫ t

0

(
‖ph(s)‖‖∂tg(s)‖+ ‖∂tuh(s)‖‖∂tf(s)‖

+ ‖σh n‖−1/2‖∂tP0gu‖1/2 + ‖zh · n‖−1/2‖∂tP0gp‖1/2

)
ds

+ ‖ph(t)‖‖g(t)‖+
1

2
‖K−1/2zh(0)‖2

Q − ‖ph(0)‖‖g(0)‖. (3.2.18)

Using the inf-sup condition as in Chapter 2 and (3.1.3), differentiated in time, we get

‖∂tuh‖+ ‖∂tγh‖ ≤ C‖A1/2∂t(σh + αphI)‖+ ‖∂tP0gu‖ 1
2
. (3.2.19)

Combining (3.2.12), (3.2.19) and (3.2.18), we get:∫ t

0

(
‖A1/2∂t(σh(s) + αphI(s))‖2 + ‖∂tuh(s)‖2 + ‖∂tγh(s)‖2 + c0‖∂tph(s)‖2

)
ds

+ ‖K−1/2zh(t)‖2 + ‖ph(t)‖2

≤ ε

(∫ t

0

(‖ph(s)‖2 + ‖∂tuh(s)‖2) ds+ ‖ph(t)‖2

)
+ ε̃

∫ t

0

(‖σh(s)n‖2
−1/2 + ‖zh(s) · n‖2

−1/2) ds

+
C

ε

(∫ t

0

(‖∂tg(s)‖2 + ‖∂tf(s)‖2) ds+ ‖g(t)‖2

)
+
C

ε̃

∫ t

0

(‖∂tP0gu(s)‖2
1/2 + ‖∂tP0gp(s)‖2

1/2) ds

+ C(‖zh(0)‖2 + ‖ph(0)‖2 + ‖g(0)‖2).

Choosing ε small enough, we obtain∫ t

0

(
‖A1/2∂t(σh(s) + αphI(s))‖2 + ‖∂tuh(s)‖2 + ‖∂tγh(s)‖2 + c0‖∂tph(s)‖2

)
ds

+ ‖K−1/2zh(t)‖2 + ‖ph(t)‖2

≤ ε̃

∫ t

0

(‖σh(s)n‖2
−1/2 + ‖zh(s) · n‖2

−1/2) ds+
C

ε̃

∫ t

0

(‖∂tP0gu(s)‖2
1/2 + ‖∂tP0gp(s)‖2

1/2) ds

+ C

(∫ t

0

(‖∂tg(s)‖2 + ‖∂tf(s)‖2) ds+ ‖g(t)‖2 + ‖zh(0)‖2 + ‖ph(0)‖2 + ‖g(0)‖2 +H1

)
.

(3.2.20)
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Integrating (3.2.17) in time and using (3.2.20), results in∫ t

0

‖ div zh(s)‖2 ds+ ‖K−1/2zh(t)‖2 + ‖ph(t)‖2

≤ ε̃

∫ t

0

(‖σh(s)n‖2
−1/2 + ‖zh(s) · n‖2

−1/2) ds+
C

ε̃

∫ t

0

(‖∂tP0gu(s)‖2
1/2 + ‖∂tP0gp(s)‖2

1/2) ds

+ C
( ∫ t

0

(‖g(s)‖2 + ‖∂tg(s)‖2 + ‖∂tf(s)‖2) ds+ ‖g(t)‖2

+ ‖zh(0)‖2 + ‖ph(0)‖2 + ‖g(0)‖2 +H1

)
. (3.2.21)

We note that initial condition for Darcy velocity can be computed as a suitable projection

of −K∇p(0), provided the initial condition is regular enough.

Step 4: obtaining the final result:

We combine (3.2.13), (3.2.16) and (3.2.21):

‖A1/2(σh(t) + αphI(t))‖2 + ‖uh(t)‖2 + ‖γh(t)‖2 + ‖zh(t)‖2 + ‖ph(t)‖2

+

∫ t

0

(‖σh(s)‖2
div + ‖uh(s)‖2 + ‖γh(s)‖2 + ‖zh(s)‖2

div + ‖ph(s)‖2) ds

≤ C
[ ∫ t

0

(
‖P0gu(s)‖1/2 + ‖∂tP0gu(s)‖1/2 + ‖P0gp(s)‖1/2 + ‖∂tP0gp(s)‖1/2 + ‖g(s)‖2

+ ‖∂tg(s)‖2 + ‖f(s)‖2 + ‖∂tf(s)‖2

)
ds+ ε

∫ t

0

‖uh(s)‖2 ds+ ‖f(t)‖2 + ‖g(t)‖2

+ ‖P0gu(t)‖1/2 + ‖f(0)‖2 + ‖g(0)‖2 + ‖A1/2(σh(0) + αphI(0))‖2
Q

+ ‖ph(0)‖2 + ‖uh(0)‖2 + ‖zh(0)‖2
]
. (3.2.22)

Note that we can also obtain an estimate on ‖σh(t)‖ as follows:

‖σh(t)‖ ≤ C‖A1/2σh(t)‖ ≤ C
(
‖A1/2(σh(t) + αphI(t))‖+ ‖A1/2αphI(t)‖

)
≤ C

(
‖A1/2(σh(t) + αphI(t))‖+ ‖ph(t)‖

)
(3.2.23)

Then, (3.2.23) together with (3.2.14) yield

‖σh(t)‖div ≤ C
(
‖A1/2(σh(t) + αphI(t))‖+ ‖ph(t)‖+ ‖f(t)‖

)
. (3.2.24)

Finally, (3.2.22)-(3.2.24) yield the following result.
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Theorem 3.2.1. Let (σh, uh, γh, zh, ph) ∈ Xh×Vh×Θh×Zh×Wh be the solution of (3.1.3)-

(3.1.7). Then the following stability estimate holds:

‖σh‖L∞(0,T ;H(div,Ω)) + ‖uh‖L∞(0,T ;L2(Ω)) + ‖γh‖L∞(0,T ;L2(Ω)) + ‖zh‖L∞(0,T ;L2(Ω))

+ ‖ph‖L∞(0,T ;L2(Ω)) + ‖σh‖L2(0,T ;H(div,Ω)) + ‖uh‖L2(0,T ;L2(Ω))

+ ‖γh‖L2(0,T ;L2(Ω)) + ‖zh‖L2(0,T ;H(div,Ω)) + ‖ph‖L2(0,T ;L2(Ω))

≤ C
[
‖ph(0)‖+ ‖σh(0)‖+ ‖uh(0)‖+ ‖zh(0)‖+ ‖f‖L∞(0,T ;L2(Ω)) + ‖f‖H1(0,T ;L2(Ω))

+ ‖gp‖H1(0,T ;H1/2(∂Ω)) + ‖g‖L∞(0,T ;L2(Ω)) + ‖g‖H1(0,T ;L2(Ω))

+ ‖gu‖L∞(0,T ;H1/2(∂Ω)) + ‖gu‖H1(0,T ;H1/2(∂Ω))

]
. (3.2.25)

3.3 REDUCTION TO A CELL-CENTERED DISPLACEMENT-PRESSURE

SYSTEM

The choice of trapezoidal quadrature rule implies that on each element, the stress and velocity

degrees of freedom associated with a vertex become decoupled from the rest of the degrees

of freedom. As a result, the assembled velocity mass matrix in (3.1.6) has a block-diagonal

structure with one block per grid vertex. The dimensions of each velocity block equals the

number of velocity DOFs associated with the vertex. For example, this dimension is 4 for

logically rectangular quadrilateral grids. Inverting each local block in mass matrix in (3.1.6)

allows for expressing the velocity DOF associated with a vertex in terms of the pressures at

the centers of the elements that share the vertex.

Similarly, inverting each local block in mass matrix in (3.1.3) allows for expressing the

stress DOF associated with a vertex in terms of the corresponding displacements, rotations

and pressures. By substituting these expressions into equations (3.1.4)-(3.1.5) one gets the

intermediate step, where the elasticity system was reduced to a cell-centered displacement-

rotation system. Due to the choice of the quadrature rule, the rotation basis functions

corresponding to each vertex of the grid become decoupled from the rest of the variables

other than the stress DOF at this same vertex, leading to matrix AσγA
−1
σσA

T
σγ being diagonal

(see [3, 4]). With this, one obtains the expression for the rotation DOF in terms of the
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displacements and pressures, which can be further substituted into (3.1.4) leading to a final

displacement-pressure system.
More precisely, in matrix form we have

Aσσ ATσu ATσγ 0 ATσp
−Aσu 0 0 0 0
−Aσγ 0 0 0 0

0 0 0 Azz ATzp
Aσp 0 0 −Azp App



σ
u
γ
z
p


σ=−A−1

σσA
T
σuu−A

−1
σσA

T
σγγ−A

−1
σσA

T
σpp−−−−−−−−−−−−−−−−−−−−−−−→


AσuA

−1
σσA

T
σu AσuA

−1
σσA

T
σγ 0 AσuA

−1
σσA

T
σp

AσγA
−1
σσA

T
σu AσγA

−1
σσA

T
σγ 0 AσγA

−1
σσA

T
σp

0 0 Azz ATzp
−AσpA−1

σσA
T
σu −AσpA−1

σσA
T
σγ −Azp App −AσpA−1

σσA
T
σp



u
γ
z
p


z=−A−1

zz A
T
zpp−−−−−−−−→

 Auσu Auσγ Auσp
ATuσγ Aγσγ Aγσp
−ATuσp −ATγσp Apσzp

uγ
p


γ=−A−1

γσγAγσpp−A−1
γσγA

T
uσγu−−−−−−−−−−−−−−−−−−→

(
Auσu −AuσγA−1

γσγA
T
uσγ Auσp −AuσγA−1

γσγAγσp
−ATuσp +ATuσpA

−1
γσγA

T
uσγ Apσzp +ATγσpA

−1
γσγAγσp

)(
u
p

)
.

And finally, the displacement-pressure system for the Biot poroelasticity model reads as

follows  Auσu − AuσγA−1
γσγA

T
uσγ Auσp − AuσγA−1

γσγAγσp

−ATuσp + ATuσpA
−1
γσγA

T
uσγ Apσzp + ATγσpA

−1
γσγAγσp

u
p

 =

Fu
Fp,

 (3.3.1)

where

Auσu := AσuA
−1
σσA

T
σu, Auσγ := AσuA

−1
σσA

T
σγ,

Aγσγ := AσγA
−1
σσA

T
σγ, Auσp := AσuA

−1
σσA

T
σp,

Aγσp := AσγA
−1
σσA

T
σp, Apσzp := App − AσpA−1

σσA
T
σp + AzpA

−1
σσA

T
zp,

and Fu, Fp are the right-hand side functions transformed accordingly to the procedure above.

Lemma 3.3.1. The cell-centered finite difference system for the displacement and pressure

obtained from (3.1.3)-(3.1.7) using the procedure described above is symmetric and positive

definite.

Proof. The proof follows from the inf-sup conditions for the MSMFE and MFMFE methods,

Corollary 1.5.1 and the combined stress-pressure coercivity estimate, see [3,4,95] for details.
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3.4 ERROR ANALYSIS

As this method is based, partially, on MSMFE method we presented in the previous chapter,

some of the preliminary results were already introduced there as well. However for the sake

of readability the crucial ones will be provided in the section, we will omit the details and

proofs where possible, though.

3.4.1 Preliminaries

Similarly to the MFMFE and MSMFE methods, due to the reduced approximation properties

of the MFE spaces on general quadrilaterals [10], we restrict the quadrilateral elements to

be O(h2)-perturbations of parallelograms. We introduce the L2-projection operators Q0 :

L2(Ω)→ Wh and Q1 : L2(Ω)→Wh satisfying

(φ−Q0φ, ψh) = 0, ∀ψh ∈ Wh, (3.4.1)

(φ−Q1φ, ψh) = 0, ∀ψh ∈Wh. (3.4.2)

We will use projection operator Q1 for approximation of the rotation variable, and Q0 op-

erator for approximation of the pressure. Notice also, that the same operator Q0 applied

component-wise can be used for approximation of the displacement variable.

In the error analysis of we will utilize the elliptic projection Π̃ : H1(Ω,M) → Xh intro-

duced in [15]. Given σ ∈ X there exists a unique triple (σh, uh, γh) ∈ Xh × Vh ×Wh such

that

(σh, τ)Q + (uh, div τ) + (γh, τ)Q = (σ, τ) , ∀τ ∈ Xh, (3.4.3)

(div σh, v) = (div σ, v) , ∀v ∈ Vh, (3.4.4)

(σh, ξ)Q = (σ, ξ) , ∀ξ ∈Wh. (3.4.5)

Namely, (σh, uh, γh) is a multipoint stress mixed finite element (see MSMFE-1, (2.2.1)-

(2.2.3)) method approximation of (σ, 0, 0). We then define Π̃σ = σh. If σ ∈ Xh we have
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σh = σ, uh = 0 and γh = 0 so Π̃ is indeed a projection. It follows from (3.4.4)-(3.4.5) and

the inf-sup condition of the MSMFE-1 (S4) method that(
div Π̃σ, v

)
= (div σ, v) , v ∈ Vh, (3.4.6)(

Π̃σ, ξ
)

= (σ, ξ) , ξ ∈Wh. (3.4.7)

Moreover, the error estimate for the MSMFE method (2.3.56), allows us to show that there

exists a positive constant C such that

‖Π̃σ‖div ≤ ‖σ‖div, ‖σ − Π̃σ‖ ≤ C‖σ − Πσ‖, σ ∈ H1(Ω,M). (3.4.8)

The following lemma summarizes well-known continuity and approximation properties

of the projection operators.

Lemma 3.4.1. There exists a constant C > 0 such that on simplices and h2-parallelograms

‖φ−Q0φ‖ ≤ C‖φ‖rhr, ∀φ ∈ Hr(Ω), 0 ≤ r ≤ 1, (3.4.9)

‖φ−Q1φ‖ ≤ C‖φ‖rhr, ∀φ ∈ Hr(Ω), 0 ≤ r ≤ 1, (3.4.10)

‖ψ − Πψ‖ ≤ C‖ψ‖rhr, ∀ψ ∈ Hr(Ω), 1 ≤ r ≤ 2, (3.4.11)

‖ψ − Π0ψ‖ ≤ C‖ψ‖1h, ∀ψ ∈ H1(Ω), (3.4.12)

‖ div(ψ − Πψ)‖+ ‖ div(ψ − Π0ψ)‖ ≤ C‖ divψ‖rhr, ∀ψ ∈ Hr+1(Ω), 0 ≤ r ≤ 1. (3.4.13)

Proof. Proof of bounds for the L2-projections (3.4.9)-(3.4.10) can be found in [24]; and

bounds (3.4.11)-(3.4.13) can be found in [22, 80] for affine elements and [10, 90] for h2-

parallelograms. Finally, the proof of (2.3.6)-(2.3.7) was presented in [95].

The next result summarizes the error bounds for the terms arising from the use of quadra-

ture rule.
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Lemma 3.4.2. If K−1 ∈W 1,∞
Th and A ∈W 1,∞

Th , then there is a constant C > 0 such that∣∣θ (K−1q, v
)∣∣ ≤ C ∑

E∈Th

h‖K−1‖1,∞,E‖q‖1,E‖v‖E , ∀q ∈ Vh, v ∈ V 0
h , (3.4.14)

|θ (Aτ, χ+ wI)| ≤ C
∑
E∈Th

h‖A‖1,∞,E‖τ‖1,E‖χ+ wI‖E , ∀τ ∈ Xh, χ ∈ X0
h, w ∈Wh, (3.4.15)

|θ (AwI, r)| ≤ C
∑
E∈Th

h‖A‖1,∞,E‖w‖E‖r‖E , ∀w, r ∈Wh, (3.4.16)

|θ (χ, ξ)| ≤ C
∑
E∈Th

h‖χ‖1,E‖ξ‖E , ∀χ ∈ X0
h, ξ ∈Wh. (3.4.17)

Moreover, on h2-parallelograms, if K−1 ∈W 1,∞
Th and A ∈W 1,∞

Th , there is a constant c > 0 such that∣∣∣(K−1Πu, v −Π0v
)
Q

∣∣∣ ≤ ch‖q‖1‖v‖, v ∈ Vh, (3.4.18)∣∣∣∣(A(Π̃σ +Q0p), χ−Π0χ
)
Q

∣∣∣∣ ≤ ch(‖σ‖1 + ‖p‖)‖χ‖, ∀χ ∈ Xh, (3.4.19)∣∣∣(χ−Π0χ, Q1γ
)
Q

∣∣∣ ≤ ch‖γ‖1‖χ‖, ∀χ ∈ Xh. (3.4.20)

Proof. The estimates (3.4.14) and (3.4.18) can be found in [95], while (3.4.15), (3.4.17),

(3.4.19) and (3.4.20) were proven in Chapter 2 for p = w = 0.

Next we prove (3.4.15) for the case w 6= 0. We note that (3.4.16) can be obtained in the

say way. We compute for any E ∈ Th

|θ (Aτ, wI)E | =
∣∣∣θ (ÂDFE τ̂ , ŵI)

Ê

∣∣∣ ≤ ∣∣∣θ ((ÂDFE − ÂDFE)τ̂ , ŵI
)
Ê

∣∣∣+
∣∣∣θ (ÂDFE τ̂ , ŵI)

Ê

∣∣∣ ,
where the overline notation stands for the mean value. For the first term on the right hand

side, we use Taylor expansion, (1.4.11) and (2.3.1):∣∣∣θ ((ÂDFE − ÂDFE)τ̂ , ŵI
)
Ê

∣∣∣ ≤ C|ÂDFE|1,∞,Ê‖τ̂‖Ê‖ŵ‖Ê

≤ C(|Â |1,∞,Ê‖DFE‖0,∞,Ê + |DFE|1,∞,Ê‖Â‖0,∞,Ê)‖τ̂‖Ê‖ŵ‖Ê

≤ Ch‖A‖1,∞,E‖τ‖E‖w‖E. (3.4.21)

For the second term we note that since the quadrature rule is exact for (bi)-linears,

θ
(
ÂDFEΠ̂0τ̂ , ŵI

)
Ê

= 0. Therefore, using (1.4.11) and (3.4.12) we obtain∣∣∣θ (ÂDFE τ̂ , ŵI)
Ê

∣∣∣ =
∣∣∣θ (ÂDFE(τ̂ − Π̂0τ̂), ŵI

)
Ê

∣∣∣ ≤ C‖ÂDFE‖0,∞,Ê‖τ̂ − Π̂0τ̂‖Ê‖ŵ‖Ê

≤ Ch‖A‖0,∞,E‖τ‖1,E‖w‖E. (3.4.22)
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Combining (3.4.21)-(3.4.22) and summing over all E ∈ Th, we get

|θ (Aτ, wI)| ≤ C
∑
E∈Th

h‖A‖1,∞,E‖τ‖1,E‖w‖E,

as desired. We use similar arguments to prove (3.4.19) with nonzero p. First, we write:∣∣∣(AQ0p, χ− Π0χ
)
Q,E

∣∣∣ =

∣∣∣∣(DF T
E Â Q̂

0p, χ̂− Π̂0χ̂
)
Q̂,Ê

∣∣∣∣
≤
∣∣∣∣(DF T

E Â Q̂
0p, χ̂− Π̂0χ̂

)
Q̂,Ê

∣∣∣∣
+

∣∣∣∣((DF T
E Â−DF T

E Â) Q̂0p, χ̂− Π̂0χ̂
)
Q̂,Ê

∣∣∣∣ .
The first term on the right is equal to zero due to Lemma 1.5.2. For the second term we use

Taylor expansion, equivalence of norms, (1.4.11) and (1.4.26):∣∣∣∣((DF T
E Â−DF T

E Â) Q̂0p, χ̂− Π̂0χ̂
)
Q̂,Ê

∣∣∣∣ ≤ C|DF T
E Â|1,∞,Ê‖Q̂0p‖Ê‖χ̂− Π̂0χ̂‖Ê

≤ Ch‖p‖E‖χ‖E.

3.4.2 Optimal convergence

We form the error system by subtracting the discrete problem (3.1.3)-(3.1.7) from the con-
tinuous one (1.3.18)-(1.3.22)

(Aσ, τ)− (Aσh, τ)Q + (AαpI, τ)− (AαphI, τ)Q + (u− uh, div τ)

+ (γ, τ)− (γh, τ)Q = 〈gu − P0gu, τ n〉, ∀τ ∈ Xh, (3.4.23)

(div σ − div σh, v) = 0, ∀v ∈ Vh, (3.4.24)

(σ, ξ)− (σh, ξ)Q = 0, ∀ξ ∈ Θh, (3.4.25)(
K−1z, q

)
−
(
K−1zh, q

)
Q
− (p− ph, div q) = 〈gp − P0gp, q · n〉, ∀q ∈ Zh, (3.4.26)

c0 (∂tp− ∂tph, w) + α (∂t tr (Aσ), w)− α (∂t tr (Aσh), w)Q

+ α (∂t tr (AαpI), w)− α (∂t tr (AαphI), w)Q + (div z − div zh, w) = 0, ∀w ∈Wh. (3.4.27)

We split the errors, as per usual:

es = σ − σh = (σ − Π̃σ) + (Π̃σ − σh) := ψs + φs,

eu = u− uh = (u−Q0u) + (Q0u− uh) := ψu + φu,
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eγ = γ − γh = (γ −Q1γ) + (Q1γ − γh) := ψγ + φγ,

ez = z − zh = (z − Πz) + (Πz − zh) := ψz + φz,

ep = p− ph = (p−Q0p) + (Q0p− ph) := ψp + φp.

Step 1: L2 in space estimates:

With these notations we can rewrite the first equation (3.4.23) in the error system in the

following way:

(Aφs, τ)Q + α (AφpI, τ)Q + (φu, div τ) + (φγ, τ)Q

=
(
AΠ̃σ, τ

)
Q
− (Aσ, τ) + α

(
AQ0pI, τ

)
Q
− α (ApI, τ) + (ψu, div τ)

+
(
Q1γ, τ

)
Q
− (γ, τ) + 〈gu − P0gu, τ n〉.

It follows from the definition of Q0 operator (3.4.1) that (ψu, div τ) = 0. Combining the rest
of the terms, we write

(Aφs, τ)Q + α (AφpI, τ)Q + (φu, div τ) + (φγ , τ)Q

= −
(
A(σ + αpI), τ −Π0τ

)
−
(
A(ψs + αψpI), Π0τ

)
−
(
A(Π̃σ + αQ0pI), Π0τ

)
+
(
A(Π̃σ + αQ0pI), Π0τ

)
Q

+
(
A(Π̃σ + αQ0pI), τ −Π0τ

)
Q
−
(
γ, τ −Π0τ

)
−
(
ψγ , Π0τ

)
−
(
Q1γ, Π0τ

)
+
(
Q1γ, Π0τ

)
Q

+
(
Q1γ, τ −Π0τ

)
Q

+ 〈gu, (τ −Π0τ)n〉, (3.4.28)

where we also used (3.1.1). Taking τ − Π0τ as a test function in (1.3.18), we obtain

(
A(σ + αpI), τ − Π0τ

)
+
(
u, div (τ − Π0τ)

)
+
(
γ, τ − Π0τ

)
= 〈gu, (τ − Π0τ)n〉.

Hence, due to (3.4.6) and (1.4.26),

−
(
A(σ + αpI), τ − Π0τ

)
−
(
γ, τ − Π0τ

)
+ 〈gu, (τ − Π0τ)n〉 = 0. (3.4.29)

Combining (3.4.28)-(3.4.29) and rewriting terms, coming from the use of quadrature rule,

we get

(Aφs, τ)Q + α (AφpI, τ)Q + (φu, div τ) + (φγ, τ)Q

= −
(
A(ψs + αψpI), Π0τ

)
−
(
ψγ, Π0τ

)
− θ

(
AΠ̃σ, Π0τ

)
− θ

(
AαQ0pI, Π0τ

)
− θ

(
Q1γ, Π0τ

)
+
(
A(Πσ + αQ0pI), τ − Π0τ

)
Q

+
(
Q1γ, τ − Π0τ

)
Q
. (3.4.30)
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From (1.4.18) and (3.4.24) we have

div φs = 0. (3.4.31)

It also follows from (1.3.20) (3.1.5) that

(φs, ξ)Q =
(

Π̃σ, ξ
)
Q
− (σh, ξ)Q = 0, (3.4.32)

where we used the property (3.4.7). We rewrite (3.4.26) similarly to how it was done in

(3.4.28)-(3.4.30):

(
K−1φz, q

)
q
− (φp, div q)

= (ψp, div q)−
(
K−1z, q − Π0q

)
−
(
K−1(z − Πz), Π0q

)
−
(
K−1Πz, Π0q

)
+
(
K−1Πz, Π0q

)
Q

+
(
K−1Πz, q − Π0q

)
Q
− 〈gp, (q − Π0q) · n〉.

Using (3.4.1), we conclude that (ψp, div q) = 0. Moreover, testing (1.3.18) with q −Π0q, we

also obtain

−
(
K−1z, q − Π0q

)
− 〈gp, (q − Π0q) · n〉 = 0.

Hence, we have

(
K−1φz, q

)
Q
− (φp, div q) =−

(
K−1ψz, Π0q

)
− θ

(
K−1Πz, Π0q

)
+
(
K−1Πz, q − Π0q

)
Q
.

(3.4.33)

Finally, using (3.4.1) and (3.4.6), we rewrite the last equation, (3.4.27), in the error system

as follows

c0 (∂tφp, w) + α (∂t tr (Aφs), w)Q + α2 (∂t tr (Aφp), w)Q + (div φz, w)− α (∂t tr (Aψs), w)

= −αθ
(
∂t tr (AΠ̃σ), w

)
− α2 (∂t tr (AψpI), w)− α2θ

(
∂t tr (AQ0pI), w

)
. (3.4.34)

Next we differentiate (3.4.30), set τ = φs, ξ = ∂tφγ, q = φz, w = φp and combine (3.4.30)-

(3.4.33):

1

2
∂t
[
‖A1/2(φs + αφpI)‖2

Q + c0‖φp‖2
]

+
(
K−1φz, φz

)
Q

= −
(
A∂t(ψs + αψpI), Π0φs

)
−
(
∂tψγ, Π0φs

)
− θ

(
A∂tΠ̃σ, Π0φs + αφpI

)
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− θ
(
∂tQ

1γ, Π0φs
)

+
(
A∂t(Π̃σ + αQ0pI), φs − Π0φs

)
Q

+
(
∂tQ

1γ, φs − Π0φs
)
Q

−
(
K−1ψz, Π0φz

)
− θ

(
K−1Πz, Π0φz

)
+
(
K−1Πz, φz − Π0φz

)
Q
− α (∂t tr (Aψs), φp)

− α2 (∂t tr (AψpI), φp)− αθ
(
∂tAQ

0pI, Π0φs + αφp
)
. (3.4.35)

Using (3.4.9)-(3.4.11) and (2.3.7), we have∣∣∣ (A∂t(ψs + αψpI), Π0φs
)

+
(
∂tψγ, Π0φs

)
+
(
K−1ψz, Π0φz

)
+ α (∂t tr (Aψs), φp)− α2 (∂t tr (AψpI), φp)Q

∣∣∣
≤ Ch2(‖∂tσ‖2

1 + ‖∂tp‖2
1 + ‖∂tγ‖2

1 + ‖z‖2
1) + ε(‖φs‖2 + ‖φp‖2 + ‖φz‖2). (3.4.36)

Applying (3.4.14)-(3.4.17) and continuity of projection operators∣∣∣θ (A∂tΠ̃σ, Π0φs + αφpI
)

+ θ
(
K−1Πz, Π0φz

)
− αθ

(
∂tAQ

0pI, Π0φs + αφp
)
− θ

(
∂tQ

1γ, Π0φs
) ∣∣∣

≤ Ch2(‖∂tσ‖21 + ‖z‖21 + ‖∂tp‖20 + ‖∂tγ‖20) + ε(‖φs‖2 + ‖φp‖2 + ‖φz‖2). (3.4.37)

Due to (3.4.18) -(3.4.20), we have∣∣∣∣(A∂t(Π̃σ + αQ0pI), φs − Π0φs

)
Q

+
(
∂tQγ, φs − Π0φs

)
Q

+
(
K−1Πz, φz − Π0φz

)
Q

∣∣∣∣
≤ Ch2(‖∂tσ‖2

1 + ‖∂tp‖2
1 + ‖∂tγ‖2

1 + ‖z‖2
1) + ε(‖φs‖2 + ‖φz‖2). (3.4.38)

Next, we combine (3.4.35)-(3.4.38) and integrate the result in time from 0 to arbitrary

t ∈ (0, T ]:

‖A1/2(φs(t)+αφpI(t))‖2
Q + c0‖φp(t)‖2 +

∫ t

0

‖K−1/2φz(s)‖2
Q ds

≤ ε

∫ t

0

(‖φs(s)‖2 + ‖φp(s)‖2 + ‖φz(s)‖2) ds

+ Ch2

∫ t

0

(‖∂tσ(s)‖2
1 + ‖∂tp(s)‖2

1 + ‖∂tγ(s)‖2
1 + ‖z(s)‖2

1) ds

+ ‖A1/2(φs(0) + αφpI(0))‖2
Q + c0‖φp(0)‖2. (3.4.39)

Choosing σh(0) = Πσ(0) and ph(0) = Q0p(0), we obtain

‖A1/2(φs(0) + αφpI(0))‖2
Q + c0‖φp(0)‖2 = 0. (3.4.40)

100



Hence, we can write (3.4.39) as

‖A1/2(φs(t) + αφpI(t))‖2
Q + c0‖φp(t)‖2 +

∫ t

0

‖K−1/2φz(s)‖2
Q ds

≤ ε

∫ t

0

(‖φs(s)‖2 + ‖φp(s)‖2 + ‖φz(s)‖2) ds

+ Ch2

∫ t

0

(‖∂tσ(s)‖2
1 + ‖∂tp(s)‖2

1 + ‖∂tγ(s)‖2
1 + ‖z(s)‖2

1) ds. (3.4.41)

Using the inf-sup condition (S4) and (3.4.23), we get

‖φu‖+ ‖φγ‖ ≤C sup
0 6=τ∈Xh

(φu, div τ) + (φγ, τ)Q
‖τ‖div

= C sup
06=τ∈Xh

(
(A(σh + αphI), τ)Q − (A(σ + αpI), τ)

‖τ‖div

+
(Q1γ, τ)− (γ, τ)Q + 〈gu −Q0gu, τ n〉

‖τ‖div

)
. (3.4.42)

Using the calculations as in (3.4.28)-(3.4.30), (3.1.1) and (1.4.25), we have

(A(σh + αphI), τ)Q − (A(σ + αpI), τ) +
(
Q1γ, τ

)
− (γ, τ)Q + 〈gu − P0gu, τ n〉

= − (A(φs + αφpI), τ)Q −
(
A(ψs + αψpI), Π0τ

)
−
(
ψγ, Π0τ

)
− θ

(
AΠ̃σ, Π0τ

)
+
(
A(Π̃σ + αQ0pI), τ − Π0τ

)
Q

+
(
Q1γ, τ − Π0τ

)
Q

≤ Ch(‖σ‖1 + ‖p‖1 + ‖γ‖1)‖τ‖+ C‖A1/2(φs + αφpI)‖‖τ‖ (3.4.43)

Combining (3.4.42) and (3.4.43) and using orthogonality of projections, we get

‖φu‖+ ‖φγ‖ ≤ Ch(‖σ‖1 + ‖p‖1 + ‖γ‖1) + C‖A1/2(φs + αφpI)‖.

Thus, (3.4.41) becomes

‖A1/2(φs(t) + αφpI(t))‖2 + ‖φu(t)‖2 + ‖φγ(t)‖2 + c0‖φp(t)‖2 +

∫ t

0

‖φz(s)‖2 ds

≤ ε

∫ t

0

(‖φs(s)‖2 + ‖φp(s)‖2 + ‖φz(s)‖2) ds+ Ch2(‖σ(t)‖2
1 + ‖p(t)‖2

1 + ‖γ(t)‖2
1),

+Ch2

∫ t

0

(‖∂tσ(s)‖2
1 + ‖∂tp(s)‖2

1 + ‖∂tγ(s)‖2
1 + ‖z(s)‖2

1) ds, (3.4.44)

where we also used the equivalence of norms, see Corollary 1.5.1.
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Using the fact that Z0
h×Wh is a stable Darcy pair, (3.4.26), (3.1.2), (3.4.11) and (3.4.14)

we also obtain

‖φp‖ ≤ C sup
06=q∈Z0

h

(div q, φp)

‖q‖div

= C sup
06=q∈Z0

h

(K−1z, q)− (K−1zh, q)Q
‖q‖div

= C sup
06=q∈Z0

h

(K−1φz, q)Q − (K−1ψz, q) + θ (K−1Πz, q)

‖q‖div

≤ Ch‖z‖1 + ‖φz‖. (3.4.45)

Therefore, we have

‖A1/2(φs(t) + αφpI(t))‖2 + ‖φu(t)‖2 + ‖φγ(t)‖2 + c0‖φp(t)‖2 +

∫ t

0

(‖φz(s)‖2 + ‖φp(s)‖2) ds

≤ ε

∫ t

0

(‖φs(s)‖2 + ‖φp(s)‖2 + ‖φz(s)‖2) ds+ Ch2(‖σ(t)‖2
1 + ‖p(t)‖2

1 + ‖γ(t)‖2
1),

+Ch2

∫ t

0

(‖∂tσ(s)‖2
1 + ‖∂tp(s)‖2

1 + ‖∂tγ(s)‖2
1 + ‖z(s)‖2

1).

(3.4.46)

Next, we choose τ = φs in (3.4.30) and use (3.4.31)- (3.4.32) and (3.4.36)-(3.4.38):

C‖φs‖2 ≤ −α (AφpI, φs)Q −
(
A(ψs + αψpI), Π0φs

)
−
(
ψγ, Π0φs

)
− θ

(
AΠσ, Π0φs

)
− θ

(
AαQ0pI, Π0φs

)
− θ

(
Q1γ, Π0φs

)
+
(
A(Πσ + αQ0pI), φs − Π0φs

)
Q

+
(
Q1γ, φs − Π0φs

)
Q
≤ Ch2(‖σ‖2

1 + ‖p‖2
1 + ‖γ‖2

1) + C‖φp‖2 + ε‖φs‖2,

where in the last step we used (3.4.9)-(3.4.11) and Lemma 3.4.2. Thus, we have∫ t

0

‖φs(s)‖2 ds ≤ C

∫ t

0

h2(‖σ(s)‖2
1 + ‖p(s)‖2

1 + ‖γ(s)‖2
1) ds+ C

∫ t

0

‖φp(s)‖2 ds. (3.4.47)

On the other hand, it follows from (3.4.42)-(3.4.43) and (3.4.47) that∫ t

0

(‖φu(s)‖+ ‖φγ(s)‖) ds ≤ C

∫ t

0

(h(‖σ(s)‖1 + ‖p(s)‖1 + ‖γ(s)‖1) + ‖φs(s)‖+ ‖φp(s)‖) ds.

(3.4.48)

Combining (3.4.46)-(3.4.48), we obtain

‖A1/2(φs(t) + αφpI(t))‖2 + ‖φu(t)‖2 + ‖φγ(t)‖2 + c0‖φp(t)‖2

+

∫ t

0

(‖φz(s)‖2 + ‖φp(s)‖2 + ‖φs(s)‖2 + ‖φu(s)‖2 + ‖φγ(s)‖2) ds
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≤ ε

∫ t

0

(‖φs(s)‖2 + ‖φp(s)‖2 + ‖φz(s)‖2) ds+ Ch2(‖σ(t)‖2
1 + ‖p(t)‖2

1 + ‖γ(t)‖2
1),

+ Ch2

∫ t

0

(‖σ(s)‖2
1 + ‖∂tσ(s)‖2

1 + ‖p(s)‖2
1 + ‖∂tp(s)‖2

1 + ‖γ(s)‖2
1 + ‖∂tγ(s)‖2

1 + ‖z(s)‖2
1).

(3.4.49)

Choosing ε small enough, we get

‖A1/2(φs(t) + αφpI(t))‖2 + ‖φu(t)‖2 + ‖φγ(t)‖2 + c0‖φp(t)‖2

+

∫ t

0

(‖φz(s)‖2 + ‖φp(s)‖2 + ‖φs(s)‖2 + ‖φu(s)‖2 + ‖φγ(s)‖2) ds

≤ Ch2(‖σ(t)‖2
1 + ‖p(t)‖2

1 + ‖γ(t)‖2
1),

+ Ch2

∫ t

0

(‖σ(s)‖2
1 + ‖∂tσ(s)‖2

1 + ‖p(s)‖2
1 + ‖∂tp(s)‖2

1 + ‖γ(s)‖2
1 + ‖∂tγ(s)‖2

1 + ‖z(s)‖2
1).

(3.4.50)

Step 2: H(div) in space estimate for stress and velocity:

Estimate for stress error follows immediately due to (3.4.31).

It follows from (3.4.34) that

‖ div φz‖ ≤ c0‖∂tφp‖+ ‖∂tA1/2(φs + αφpI)‖+ Ch(‖σ‖1 + ‖∂tσ‖1). (3.4.51)

Next we differentiate (3.4.30)-(3.4.33) , set τ = ∂tφs, ξ = ∂tφγ, q = φz, w = ∂tφp and
combine (3.4.30)-(3.4.34):

1

2
∂t‖K−1/2φz‖2Q + ‖A1/2∂t(φs + αφpI)‖2Q + c0‖∂tφp‖2

= −
(
A∂t(ψs + αψpI), Π0∂tφs

)
−
(
∂tψγ , Π0∂tφs

)
− θ

(
A∂tΠ̃σ, Π0∂tφs + α∂tφpI

)
+
(
A∂t(Π̃σ + αQ0pI), ∂tφs −Π0∂tφs

)
Q
− θ

(
∂tQ

1γ, ∂tΠ
0φs
)

+
(
∂tQ

1γ, ∂tφs −Π0∂tφs
)
Q

−
(
K−1ψz, Π0∂tφz

)
− θ

(
K−1Πz, ∂tΠ

0φz
)

+
(
K−1Πz, ∂tφz − ∂tΠ0φz

)
Q
− α (∂t tr (Aψs), ∂tφp)

− α2 (∂t tr (AψpI), ∂tφp)− αθ
(
∂tAQ

0p, ∂tΠ
0φs + α∂tφp

)
. (3.4.52)

For all terms not corresponding to error in Darcy velocity, we repeat the arguments from

(3.4.35)-(3.4.39), combining stress and pressure errors into one.

∣∣− θ (A∂tΠ̃σ, Π0∂tφs + α∂tφpI
)
− θ

(
∂tQ

1γ, ∂tΠ
0φs
)
− αθ

(
∂tAQ

0p, ∂tΠ
0φs + α∂tφp

) ∣∣
=

∣∣∣∣∣ ∑
E∈Th

(
θ
(
A∂tΠ̃σ, Π0∂t(φs + αφpI)

)
E

+ θ
(
∂tQ

1γ, Π0∂t(φs + αφpI)
)
E

(3.4.53)
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+ αθ
(
∂tAQ

0p, Π0∂t(φs + αφpI)
)
E

)∣∣∣∣∣
≤ Ch2(‖∂tσ‖2

1 + ‖∂tp‖2
1 + ‖∂tγ‖2

1) + ε‖Π0∂tφs + α∂tφpI‖2, (3.4.54)

where we used the fact that on every E ∈ Th, φpI|E ∈ X0
h(E) and also that as (φpI) = 0.

Similarly,∣∣− (A∂t(ψs + αψpI), Π0∂tφs
)
−
(
∂tψγ , Π0∂tφs

)
− α (∂t tr (Aψs), ∂tφp)− α2 (∂t tr (AψpI), ∂tφp)

∣∣
= | −

(
A∂t(ψs + αψpI), ∂t(Π

0φs + αφp)
)
−
(
∂tψγ , ∂t(Π

0φs + φp)
)
|

= |
∑
E∈Th

((
A∂t(ψs + αψpI), ∂tΠ

0(φs + αφp)
)
E

+
(
∂tψγ , ∂tΠ

0(φs + φp)
)
E

)
|

≤ Ch2(‖∂tσ‖21 + ‖∂tp‖21 + ‖∂tγ‖21) + ε‖∂tφs + α∂tφpI‖2, (3.4.55)

and

|
(
A∂t(Π̃σ + αQ0pI), ∂tφs − Π0∂tφs

)
Q

+
(
∂tQ

1γ, ∂tφs − Π0∂tφs
)
Q
|

=
∣∣∣ ∑
E∈Th

((
A∂t(Π̃σ + αQ0pI), ∂t(φs + φpI)− Π0∂t(φs + φpI)

)
Q,E

+
(
∂tQ

1γ, ∂t(φs + φpI)− Π0∂t(φs + φpI)
)
E,Q

)∣∣∣
≤ Ch2(‖∂tσ‖2

1 + ‖∂tp‖2
1 + ‖∂tγ‖2

1) + ε‖∂tφs + α∂tφpI‖2. (3.4.56)

Combining (3.4.52)-(3.4.56), we obtain

‖K−1/2φz(t)‖2
Q +

∫ t

0

(
‖A1/2∂t(φs(s) + αφpI(s))‖2

Q + c0‖∂tφp(s)‖2
)
ds

≤ C
(
‖K−1/2φz(0)‖2

Q + ε

∫ t

0

‖∂tφs(s) + α∂tφp(s)I‖2 ds

+ Ch2

∫ t

0

(‖∂tσ(s)‖2
1 + ‖∂tp(s)‖2

1 + ‖∂tγ(s)‖2
1) ds

+

∫ t

0

(
−
(
K−1ψz(s), Π0∂tφz(s)

)
− θ

(
K−1Πz(s), ∂tΠ

0φz(s)
)

+
(
K−1Πz(s), ∂tφz(s)− ∂tΠ0φz(s)

)
Q

)
ds
)
. (3.4.57)

We integrate by parts the terms involving error in Darcy velocity∫ t

0

(
−
(
K−1ψz(s), Π0∂tφz(s)

)
− θ

(
K−1Πz(s), ∂tΠ

0φz(s)
)

+
(
K−1Πz(s), ∂tφz(s)− ∂tΠ0φz(s)

)
Q

)
ds

= −
(
K−1ψz(t), Π0φz(t)

)
− θ

(
K−1Πz(t), Π0φz(t)

)
+
(
K−1Πz(t), φz(t)−Π0φz(t)

)
Q

+
(
K−1ψz(0), Π0φz(0)

)
+ θ

(
K−1Πz(0), Π0φz(0)

)
+
(
K−1Πz(0), φz(0)−Π0φz(0)

)
Q
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−
∫ t

0

(
−
(
K−1∂tψz(s), Π0φz(s)

)
− θ

(
K−1∂tΠz(s), Π0φz(s)

)
+
(
K−1∂tΠz(s), φz(s)−Π0φz(s)

)
Q

)
ds.

Choosing zh(0) = Πz(0), we obtain

(
K−1ψz(0), Π0φz(0)

)
+ θ

(
K−1Πz(0), Π0φz(0)

)
+
(
K−1Πz(0), φz(0)− Π0φz(0)

)
Q

= 0,

(3.4.58)

and for the rest of the terms we use (3.4.11), (3.4.14) and (3.4.18):

−
(
K−1ψz(t), Π0φz(t)

)
− θ

(
K−1Πz(t), Π0φz(t)

)
+
(
K−1Πz(t), φz(t)− Π0φz(t)

)
Q

−
∫ t

0

(
−
(
K−1∂tψz(s), Π0φz(s)

)
− θ

(
K−1∂tΠz(s), Π0φz(s)

)
+
(
K−1∂tΠz(s), φz(s)− Π0φz(s)

)
Q

)
ds

≤ C(h2‖z(t)‖2
1 + ε‖φz(t)‖2) +

∫ t

0

(h2‖∂tz(s)‖2
1 + ε‖φz(s)‖2) ds. (3.4.59)

From (3.4.57)-(3.4.59) we obtain:

‖K−1/2φz(t)‖2
Q +

∫ t

0

(
‖A1/2∂t(φs(s) + αφpI(s))‖2

Q + c0‖∂tφp(s)‖2
)
ds

≤ C(h2‖z(t)‖2
1 + ε‖φz(t)‖2) + C

∫ t

0

(h2(‖∂tz(s)‖2
1 + h2‖∂tσ(s)‖2

1 + ε‖φz(s)‖2) ds. (3.4.60)

Combining (3.4.60), (3.4.57),(3.4.45) and using the equivalence of norms, we get

‖φz(t)‖2 + ‖φp(t)‖2 +

∫ t

0

(
‖∂t(φs(s) + αφpI(s))‖2 + c0‖∂tφp(s)‖2

)
ds

≤ C

∫ t

0

h2(‖∂tz(s)‖2
1 + ‖∂tσ(s)‖2

1 + ‖∂tp(s)‖2
1 + ‖∂tγ(s)‖2

1) ds

+ ε

∫ t

0

(‖φz(s)‖2 + ‖∂t(φs(s) + αφpI(s))‖2) ds+ C(h2‖z(t)‖2
1 + ε‖φz(t)‖2). (3.4.61)

Hence, (3.4.51) and (3.4.61) yield

‖φz(t)‖2 + ‖φp(t)‖2 +

∫ t

0

‖ div φz‖2 ds

≤ ε

∫ t

0

‖φz(s)‖2 ds
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+ C

(∫ t

0

h2(‖∂tz(s)‖2
1 + ‖σ(s)‖2

1 + ‖∂tσ(s)‖2
1 + ‖∂tp(s)‖2

1 + ‖∂tγ(s)‖2
1) ds+ ‖z(t)‖2

1

)
.

(3.4.62)

Step 3: obtaining the final result:

We note that

‖φs‖ ≤ C‖A1/2φs‖ ≤ C
(
‖A1/2(φs + αφpI)‖+ ‖A1/2αφpI‖

)
≤ C

(
‖A1/2(φs + αφpI)‖+ ‖φp‖

)
. (3.4.63)

Therefore, combining (3.4.50), (3.4.62) and (3.4.63), we obtain the following result.

Theorem 3.4.1. Let (σh, uh, γh, zh, ph) ∈ Xh×Vh×Θh×Zh×Wh be the solution of (3.1.3)-

(3.1.7) and (σ, u, γ, z, p) ∈ X×V ×W×Z×W∩ H1(0, T ; (H1(Ω))d×d)×H1(0, T ; (H1(Ω))d)

×H1(0, T ;H1(Ω)d×d,skew)×H1(0, T ; (H1(Ω))d)×H1(0, T ;H1(Ω)) be the solution of (1.3.18)-

(1.3.22). Then the following error estimate holds:

‖σ − σh‖L∞(0,T ;H(div,Ω)) + ‖u− uh‖L∞(0,T ;L2(Ω)) + ‖γ − γh‖L∞(0,T ;L2(Ω)) + ‖z − zh‖L∞(0,T ;L2(Ω))

+ ‖p− ph‖L∞(0,T ;L2(Ω)) + ‖σ − σh‖L2(0,T ;H(div,Ω)) + ‖u− uh‖L2(0,T ;L2(Ω)) + ‖γ − γh‖L2(0,T ;L2(Ω))

+ ‖z − zh‖L2(0,T ;H(div,Ω)) + ‖p− ph‖L2(0,T ;L2(Ω))

≤ Ch
(
‖s‖H1(0,T ;H1(Ω)) + ‖u‖L2(0,T ;H1(Ω)) + ‖γ‖H1(0,T ;H1(Ω)) + ‖z‖H1(0,T ;H1(Ω))

+ ‖p‖H1(0,T ;H1(Ω)) + ‖σ‖L∞(0,T ;H1(Ω)) + ‖u‖L∞(0,T ;L2(Ω))

+ ‖γ‖L∞(0,T ;H1(Ω)) + ‖z‖L∞(0,T ;H1(Ω)) + ‖p‖L∞(0,T ;H1(Ω))

)
. (3.4.64)

3.5 NUMERICAL RESULTS

In this section we provide several numerical tests verifying the theoretically predicted conver-

gence rates and illustrating the behavior of the proposed method on simplicial and quadri-

lateral grids. We also briefly address the issue of locking when dealing with small storativity

coefficient.
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3.5.1 Example 1

We first verify the method’s convergence on simplicial grids in 3 dimensions. For this, we

use a unit cube as a computational domain, and choose the analytical solution for pressure

and displacement as follows:

p = cos(t)(x+ y + z + 1.5),

u = sin(t)


−0.1(ex − 1) sin(πx) sin(πy)

−(ex − 1)(y − cos( π
12

)(y − 0.5) + sin( π
12

)(z − 0.5)− 0.5)

−(ex − 1)(z − sin( π
12

)(y − 0.5)− cos( π
12

)(z − 0.5)− 0.5)

 .

The permeability tensor is of the form

K =


x2 + y2 + 1 0 0

0 z2 + 1 sin(xy)

0 sin(xy) x2y2 + 1

 ,

and the rest of the parameters are presented in Table 3.1.

Parameter Symbol Values

Lame coefficient µ 100.0
Lame coefficient λ 100.0
Mass storativity c0 1.0
Biot-Willis constant α 1.0
Total time T 10−3

Time step ∆t 10−4

Table 3.1: Physical parameters, Examples 1 and 2.

Using the analytical solution provided above and equations (1.3.13)-(1.3.15) we recover

the rest of variables and right-hand side functions. Dirichlet boundary conditions for the

pressure and the displacement are specified on the entire boundary of the domain.
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‖σ − σh‖L2(0,T ;L2(Ω)) ‖ div(σ − σh)‖L2(0,T ;L2(Ω)) ‖u− uh‖L2(0,T ;L2(Ω))

h error rate error rate error rate

1/4 3.07E-02 - 2.29E-01 - 8.54E-01 -
1/8 9.92E-03 1.6 1.14E-01 1.0 2.32E-01 1.9
1/16 4.90E-03 1.0 5.68E-02 1.0 7.44E-02 1.6
1/32 2.50E-03 1.0 2.84E-02 1.0 2.97E-02 1.3

‖γ − γh‖L2(0,T ;L2(Ω)) ‖z − zh‖L2(0,T ;L2(Ω)) ‖div(z − zh)‖L2(0,T ;L2(Ω))

h error rate error rate error rate

1/4 7.65E-01 - 1.06E-02 - 5.85E-02 -
1/8 2.32E-01 1.7 2.66E-03 2.0 2.31E-02 1.3
1/16 7.00E-02 1.7 6.64E-04 2.0 7.70E-03 1.6
1/32 2.12E-02 1.7 1.66E-04 2.0 2.71E-03 1.5

‖p− ph‖L2(0,T ;L2(Ω)) ‖σ − σh‖L∞(0,T ;L2(Ω)) ‖p− ph‖L∞(0,T ;L2(Ω))

h error rate error rate error rate

1/4 1.92E-04 - 2.29E-01 - 2.18E-04 -
1/8 5.56E-05 1.8 1.14E-01 1.0 6.39E-05 1.8
1/16 1.28E-05 2.1 5.70E-02 1.0 1.30E-05 2.3
1/32 2.55E-06 2.3 2.85E-02 1.0 2.78E-06 2.2

Table 3.2: Example 1, computed numerical errors and convergence rates.
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(a) Stress, x-
component

(b) Stress, y-
component

(c) Stress, z-
component

(d) Displacement,
magnitude

(e) Rotation (f) Darcy velocity (g) Darcy pressure

Figure 3.1: Example 1, computed solution at the final time step.

In Table 3.2 we present computed relative errors and rates for this example. For the

sake of space we report only the errors that would normally be of interest in studying the

behavior of this problem. As one can observe, the results agree with theory of the previous

section.

3.5.2 Example 2

The second test case is to study the convergence of the method on an h2-parallelogram grid.

We consider the following analytical solution

p = exp(t)(sin(πx) cos(πy) + 10), u = exp(t)

(
x3y4 + x2 + sin((1− x)(1− y)) cos(1− y)

(1− x)4(1− y)3 + (1− y)2 + cos(xy) sin(x)

)
.
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and the permeability tensor of the form

K =

(x+ 1)2 + y2 sin(xy)

sin(xy) (x+ 1)2

 .

The Poisson ratio is set to be ν = 0.2 and Young’s modulus varies over the domain as

E = sin(5πx) sin(5πy) + 5. The Lamé parameters are then computed using the well known

relations

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
.

The time discretization parameters are the same as in Table 3.1.

The computational grid for this case is obtained by taking a unit square with initial

partitioning into a mesh with h = 1
4
, and further transforming it by the following map (see

Figure 3.2):

x = x̂+ 0.03 cos(3πx̂) cos(3πŷ), y = ŷ − 0.04 cos(3πx̂) cos(3πŷ).

As in the previous test case we observe optimal convergence rates for all variables in

their respective norms.
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‖σ − σh‖L2(0,T ;L2(Ω)) ‖div(σ − σh)‖L2(0,T ;L2(Ω)) ‖u− uh‖L2(0,T ;L2(Ω))

h error rate error rate error rate

1/8 6.505e-02 - 4.305e-01 - 7.985e-02 -
1/16 3.130e-02 1.1 2.336e-01 0.9 3.959e-02 1.0
1/32 1.506e-02 1.1 1.172e-01 1.0 1.975e-02 1.0
1/64 7.435e-03 1.0 5.856e-02 1.0 9.869e-03 1.0
1/128 3.709e-03 1.0 2.927e-02 1.0 4.934e-03 1.0

‖γ − γh‖L2(0,T ;L2(Ω)) ‖z − zh‖L2(0,T ;L2(Ω)) ‖ div(z − zh)‖L2(0,T ;L2(Ω))

h error rate error rate error rate

1/8 1.964e-01 - 5.321e-01 - 2.531e+00 -
1/16 7.444e-02 1.4 2.935e-01 0.9 1.599e+00 0.7
1/32 2.767e-02 1.4 9.757e-02 1.6 5.864e-01 1.5
1/64 1.016e-02 1.5 2.999e-02 1.7 1.767e-01 1.7
1/128 3.697e-03 1.5 1.080e-02 1.5 4.984e-02 1.8

‖p− ph‖L2(0,T ;L2(Ω)) ‖σ − σh‖L∞(0,T ;L2(Ω)) ‖p− ph‖L∞(0,T ;L2(Ω))

h error rate error rate error rate

1/8 1.588e-02 - 6.595e-02 - 2.519e-02 -
1/16 6.755e-03 1.2 3.180e-02 1.1 1.170e-02 1.1
1/32 2.647e-03 1.4 1.516e-02 1.1 3.863e-03 1.6
1/64 1.178e-03 1.2 7.449e-03 1.0 1.387e-03 1.5
1/128 5.680e-04 1.1 3.710e-03 1.0 5.973e-04 1.2

Table 3.3: Example 2, computed numerical errors and convergence rates.
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(a) Stress, x-comp. (b) Stress, y-comp. (c) Displacement (d) Rotation

(e) Darcy velocity (f) Darcy pressure

Figure 3.2: Example 2, computed solution at the final time step.

3.5.3 Example 3

Our third example is to confirm that the coupled MFMFE-MSMFE method for the Biot

system is locking free, due to its mixed nature. It was shown in [77] that with continuous

finite elements used for the elasticity part of the system, locking occurs when the storativity

coefficient is very small. One of the typical model problems that illustrates such behavior is

the cantilever bracket problem [64].

The computational domain is a unit square [0, 1]× [0, 1]. We impose a no-flow boundary

condition along all sides, the deformation is fixed along the left edge, and a downward

traction is applied at the top of the unit square. The bottom and right sides are enforced

to be traction-free. More precisely, with the sides of the domain being labeled as Γ1 to Γ4,
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going counterclockwise from the bottom side, we have

z · n = 0, on ∂Ω = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4,

σ n = (0,−1)T , on Γ3,

σ n = (0, 0)T , on Γ1 ∪ Γ2,

u = (0, 0)T , on Γ4.

We use the same physical parameters as in [77], as they typically induce locking:

E = 105, ν = 0.4, α = 0.93, c0 = 0, K = 10−7.

The time step is set to be ∆t = 0.001 and the total simulation time is T = 1.

(a) Pressure, t = 0.001. (b) Pressure along different x−lines, t = 0.005.

Figure 3.3: Example 3, computed pressure solutions.

Figure 3.3a shows that the coupled MSMFE-MFMFE method yields a smooth pressure

field, without a typically arising checkerboard pattern that one obtains with a CG-mixed

method for the Biot system (see [77]) on early time steps. In addition, Figure 3.3b shows

the pressure solution along different x−lines at time t = 0.005. The latter illustrates the

lack of oscillations and that the solution of the coupled mixed method agrees with the one

obtained by DG-mixed or stabilized CG-mixed [64,77].
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4.0 HIGHER ORDER MULTIPOINT FLUX MIXED FINITE ELEMENT

METHODS FOR FLOW IN POROUS MEDIA

Due to more technical details that need to be addressed in higher order cases, as well as

the necessity of development of new finite element space, this chapter is made self-contained

with all the necessary notation and properties. Some special cases of the theory we are going

to present were known in the literature, and were presented in the introduction of this thesis.

Here aim for more generality, as we now develop arbitrary order methods.

4.1 DEFINITION OF THE METHOD

4.1.1 The Raviart-Thomas mixed finite element spaces

Let Pk denote the space of polynomials of total degree ≤ k and let Qk denote the space of

polynomials of degree ≤ k in each variable. We will make use of the Raviart-Thomas spaces

for the construction of the spaces needed for the proposed method. The RT k spaces are

defined for k ≥ 0 on the reference cube as

Ẑk
RT (Ê) =


Qk +Qkx̂

Qk +Qkŷ

Qk +Qkẑ

 , Ŵ k(Ê) = Qk(Ê). (4.1.1)

The definition on the reference square can be obtained naturally from the one above. Intro-

ducing for ease of notation

Rk(e) = Pk(e) in 2d, Rk(e) = Qk(e) in 3d,

114



it holds that

∇̂ · Ẑk(Ê) = Ŵ k(Ê) and q̂ · n̂ê ∈ Rk(ê) ∀q̂ ∈ Ẑk
RT (Ê), ∀ê ⊂ ∂Ê. (4.1.2)

The projection operator Π̂k
RT : H1(Ê,Rd)→ Ẑk

RT (Ê) satisfies

〈(v̂ − Π̂k
RT v̂) · nê, p̂〉ê = 0 ∀p̂ ∈ Rk(ê), ∀ê ⊂ ∂Ê, (4.1.3)

(
Π̂k
RT v̂ − v̂, p̂

)
Ê

= 0 ∀p̂ ∈



Pk−1(x̂)⊗Rk(ŷ)

Pk−1(ŷ)⊗Rk(x̂)

 in 2d,


Pk−1(x̂)⊗Rk(ŷ, ẑ)

Pk−1(ŷ)⊗Rk(x̂, ẑ)

Pk−1(ẑ)⊗Rk(x̂, ŷ)

 in 3d.

(4.1.4)

The Raviart-Thomas spaces on any quadrilateral or hexahedral element E ∈ Th are defined

via the transformations

q ↔ q̂ : q =
1

JE
DFE q̂ ◦ F−1

E , w ↔ ŵ : w = ŵ ◦ F−1
E , (4.1.5)

where the contravariant Piola transformation is used for the velocity space. Under this

transformation, the normal components of the velocity vectors on the facets are preserved.

In particular [22],

∀q̂ ∈ Ẑk
RT (Ê), ∀ŵ ∈ Ŵ k(Ê), (∇ · q, w)E =

(
∇̂ · q̂, ŵ

)
Ê

and 〈q · ne, w〉e = 〈q̂ · n̂ê, ŵ〉ê,

(4.1.6)

which imply

q · ne =
1

Je
q̂ · n̂ê, ∇ · q(x) =

(
1

JE
∇̂ · q̂

)
◦ F−1

E (x). (4.1.7)

The RT k spaces on Th are given by

Zk
RT,h =

{
q ∈ Z : q|E ↔ q̂, q̂ ∈ Ẑk

RT (Ê), E ∈ Th
}
,

W k
h =

{
w ∈ W : w|E ↔ ŵ, ŵ ∈ Ŵ k(Ê), E ∈ Th

}
.

(4.1.8)
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Using the Piola transformation, we define a projection operator Πk
RT from Z ∩ H1(Ω,Rd)

onto Zk
RT,h satisfying on each element

Πk
RTv ↔ Π̂k

RTv, Π̂k
RTv = Π̂k

RT v̂. (4.1.9)

Using (4.1.7), (4.1.3)-(4.1.4) and (4.1.9), it is straightforward to show that Πk
RTv · n is con-

tinuous across element facets, so Πk
RTv ∈ H(div; Ω). Similarly, one can see that Πk

RTv ·n = 0

on ΓN if v · n = 0 on ΓN , so Πk
RTv ∈ Zk

RT,h. Details of these arguments can be found

in [10,22,52,90,95].

4.1.2 Enhanced Raviart-Thomas finite elements

In this section we develop a new family of enhanced Raviart-Thomas spaces, which is used

in our method. We present the definitions of shape functions and degrees of freedom and

discuss their unisolvency. The idea of the construction is to enhance the Raviart-Thomas

spaces with bubbles that are curls of specially chosen polynomials, so that each component

of the velocity vector is of dimension Qk(Rd) and the velocity degrees of freedom can be

associated with the points of a tensor-product Gauss-Lobatto quadrature rule.

4.1.2.1 Shape functions For k ≥ 1, define on the reference element

Bk1(Ê) =
⋃

0≤d1,d2,d3≤k

{
x̂d1 ŷd2 ẑd3 : d2 = k or d3 = k

}
,

Bk2(Ê) =
⋃

0≤d1,d2,d3≤k

{
x̂d1 ŷd2 ẑd3 : d1 = k or d3 = k

}
,

Bk3(Ê) =
⋃

0≤d1,d2,d3≤k

{
x̂d1 ŷd2 ẑd3 : d1 = k or d2 = k

}
,

and let the auxiliary space Bk be

Bk(Ê) = span



q1

0

0

 ,


0

q2

0

 ,


0

0

q3

 : qi ∈ Bki (Ê), i = 1, 2, 3

 . (4.1.10)
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Notice that while the above construction was done explicitly in 3d, it translates naturally

to 2d by omitting the ẑ terms. It is clear from the above definition that Qk(Ê,Rd) =

Ẑk−1
RT (Ê)⊕Bk(Ê) in both 2d and 3d.

For v̂ ∈ Bk(Ê), we then consider ∇̂ × (x̂ × v̂). Here, we use the regular curl and cross

product operators in 3d. The cross product applies to a 2d vector by representing the vector

as a 3d one, with zeroed out third component, resulting in a scalar function. The ∇̂×

applies to a scalar function φ by representing the scalar function as a 3d vector with zero

first and second components, and the first and second components of the result is defined

as ∇̂ × φ, i.e., ∇̂ × φ = (∂2φ,−∂1φ)T . With this, we are now ready to construct the space

isomorphic to Bk(Ê) with an advantage of being better suited for the analysis as well as for

practical implementation. We will need to consider the 2d and 3d cases separately, due to

the difference in the action of a curl operator, mentioned above.

In 2d, if v̂ = (q1, 0)T with q1 defined as above we obtain

∇̂ × (x̂× v̂) = x̂a1−1ŷa2

(a2 + 1)x̂

−a1ŷ

 ,

and thus we can define

B̃k1(Ê) = span

x̂a1−1ŷa2

(a2 + 1)x̂

−a1ŷ

 : a2 = k

 , (4.1.11)

B̃k2(Ê) = span

x̂b1 ŷb2−1

 −b2x̂

(b1 + 1)ŷ

 : b1 = k

 . (4.1.12)

Similarly, in 3d we define

B̃k1(Ê) = span

x̂
a1−1ŷa2 ẑa3


(a2 + a3 + 2)x̂

−a1ŷ

−a1ẑ

 : a2 = k or a3 = k

 , (4.1.13)

B̃k2(Ê) = span

x̂
b1 ŷb2−1ẑb3


−b2x̂

(b1 + b3 + 2)ŷ

−b2ẑ

 : b1 = k or b3 = k

 , (4.1.14)
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B̃k3(Ê) = span

x̂
c1 ŷc2 ẑc3−1


−c3x̂

−c3ŷ

(c1 + c2 + 2)ẑ

 : c1 = k or c2 = k

 , (4.1.15)

where 0 ≤ ai, bi, ci ≤ k for i = 1 . . . d, and we adopt a convention for simplicity that m−1 = 0

for a polynomial variable m unless it is multiplied by m. We finally define the space B̃k
(Ê) as

the union of B̃ki (Ê), i = 1 . . . d, similar to (4.1.10), and note that B̃k
(Ê) = ∇̂× (x̂×Bk(Ê)).

We now define the enhanced Raviart-Thomas space as

Ẑk(Ê) = Ẑk−1
RT (Ê)⊕ B̃k

(Ê), (4.1.16)

Theorem 4.1.1. It holds that dim Ẑk(Ê) = dimQk(Ê,Rd).

Proof. We show that the space B̃k
(Ê) is isomorphic to Bk(Ê). We start by showing that

the map v̂ 7→ ∇̂× (x̂× v̂) is injective on Bk(Ê). To see it, suppose that a linear combination

of the elements of (4.1.13)-(4.1.15) is zero. Note that all elements in each space of (4.1.13)-

(4.1.15) have distinct polynomials degrees. Therefore, for a component of fixed degrees of

x̂, ŷ, ẑ in the linear combination, only one element of each space is used to generate the

component. This implies that

αx̂a1−1ŷa2 ẑa3

(a2 + a3 + 2)x̂
−a1ŷ
−a1ẑ

+ βx̂b1 ŷb2−1ẑb3

 −b2x̂
(b1 + b3 + 2)ŷ
−b2ẑ

+ γx̂c1 ŷc2 ẑc3−1

 −c3x̂
−c3ŷ

(c1 + c2 + 2)ẑ

 = 0,

with some coefficients α, β, γ and

a1 = b1 + 1 = c1 + 1, b2 = a2 + 1 = c2 + 1, c3 = a3 + 1 = b3 + 1. (4.1.17)

We will prove that α = β = γ = 0. If a2 = k, then β = 0 due to 0 ≤ ai, bi, ci ≤ k and

(4.1.17). Comparing the components of the above equation, we have

−αa1 − γ(a3 + 1) = 0, −αa1 + γ(a1 + a2 + 1) = 0,

and therefore α = γ = 0. Similarly, γ = 0 if a3 = k due to (4.1.17), and a similar argument

gives

−αa1 − β(a3 + 1) = 0, −αa1 + β(a1 + a2 + 1) = 0,
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which results in α = β = 0. Since this argument holds for any component of the same

polynomial degrees, the map v̂ 7→ ∇̂ × (x̂ × v̂) is injective, and it is an isomorphism from

Bk(Ê) to B̃k
(Ê).

Noting that every basis function of B̃k
(Ê) contains at least one variable of degree k+ 1,

it is clear that Ẑk−1
RT (Ê) ∩ B̃k

(Ê) = {0}, which implies the assertion of the theorem.

4.1.2.2 Degrees of freedoms and unisolvency Using the definition (4.1.16) of Ẑk(Ê)

and the definitions of Ẑk−1
RT (Ê) and B̃k

(Ê), we have that for v̂ ∈ Ẑk(Ê),

in 2d: q1 ∈ Pk+1(x̂)⊗Rk(ŷ), q2 ∈ Pk+1(ŷ)⊗Rk(x̂),

in 3d: q1 ∈ Pk+1(x̂)⊗Rk(ŷ, ẑ), q2 ∈ Pk+1(ŷ)⊗Rk(x̂, ẑ), q3 ∈ Pk+1(ẑ)⊗Rk(x̂, ŷ).

For the degrees of freedom of Ẑk we consider the following moments:

v̂ 7→
∫
ê

v̂ · n̂ê p̂, ∀p̂ ∈ Rk(ê),∀ê ∈ ∂Ê, (4.1.18)

v̂ 7→
∫
Ê

v̂ · p̂, ∀p̂ ∈



Pk−2(x̂)⊗Rk(ŷ)

Pk−2(ŷ)⊗Rk(x̂)

 in 2d,


Pk−2(x̂)⊗Rk(ŷ, ẑ)

Pk−2(ŷ)⊗Rk(x̂, ẑ)

Pk−2(ẑ)⊗Rk(x̂, ŷ)

 in 3d.

(4.1.19)

The number of degrees of freedom given by (4.1.18) and (4.1.19) are 2d(k + 1)d−1 and

d(k − 1)(k + 1)d−1, respectively. Therefore the total number of DOFs is d(k + 1)d, which is

same as the dimQk(Ê,Rd). We notice, that similarly to classical mixed finite elements such as

the Raviart-Thomas or Brezzi-Douglas-Marini families of elements, the first set of moments

(4.1.18) stands for facet DOFs, which will be required to be continuous across the facet. The

second set of moments (4.1.19) represents interior DOFs, and no continuity requirements

will be imposed on these. These new elements can be viewed as the Raviart-Thomas family

with added bubbles, which are curls of specially chosen polynomials.
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Theorem 4.1.2. Let Ẑk(Ê) be defined as in (4.1.16). For q̂ ∈ Ẑk(Ê) suppose that the

evaluations of DOFs (4.1.18) and (4.1.19) are all zeros. Then q̂ = 0.

Proof. Without loss of generality, we present the proof for Ê = [−1, 1]d. We prove the

theorem in 3d, while the 2d result can be obtained in the same manner. From the definition

of shape functions of Ẑk(Ê), q̂ · n̂ê ∈ Qk(ê) for a face ê of Ê. Therefore, vanishing DOFs

(4.1.18) imply that

q̂ =


v1

v2

v3

 =


(1− x̂2)ṽ1(x̂, ŷ, ẑ)

(1− ŷ2)ṽ2(x̂, ŷ, ẑ)

(1− ẑ2)ṽ3(x̂, ŷ, ẑ)

 , (4.1.20)

with

ṽ1 ∈ Pk−1(x̂)⊗Qk(ŷ, ẑ), ṽ2 ∈ Pk−1(ŷ)⊗Qk(x̂, ẑ), ṽ3 ∈ Pk−1(ẑ)⊗Qk(x̂, ŷ).

In addition, the vanishing DOFs (4.1.19) further reduce ṽi, i = 1, 2, 3, to

ṽ1 = Lk−1
w (x̂)w1(ŷ, ẑ), ṽ2 = Lk−1

w (ŷ)w2(x̂, ẑ), ṽ3 = Lk−1
w (ẑ)w3(x̂, ŷ), (4.1.21)

where w1 ∈ Qk(ŷ, ẑ), etc., and Lk−1
w (t) is the monic polynomial of degree k − 1 on [−1, 1]

orthogonal to Pk−2(t) with weight (1− t2). Since all monomials in Ẑk(Ê) are of degree ≤ 3k,

ŷkẑk is not contained in w1(ŷ, ẑ). Similar statements hold with ẑkx̂k, x̂kŷk and w2(x̂, ẑ),

w3(x̂, ŷ), respectively. Therefore we can write

w1(ŷ, ẑ) = ŷkp1(ẑ) + ẑkq1(ŷ) + w̃1(ŷ, ẑ), p1 ∈ Pk−1(ẑ), q1 ∈ Pk−1(ŷ), w̃1(ŷ, ẑ) ∈ Qk−1(ŷ, ẑ),

and similar expressions are available for w2 and w3. If p1 6= 0, v1 has monomials with

factor x̂k+1ŷk. From the forms of B̃ki (Ê), i = 1, 2, 3, this can be obtained only from a

linear combination of elements in B̃k3(Ê) with c1 = c2 = k. However, a linear combination

of elements in B̃k3(Ê) which gives x̂k+1ŷkp1(ẑ) in the first component also has the third

component −(2k + 2)x̂kŷkP1(ẑ) where P1(ẑ) is the anti-derivative of p1(ẑ) with P1(0) = 0.

All terms in v3 having x̂kŷk as a factor are obtained only from B̃k3(Ê). Furthermore, v3

does not contain any terms with factor x̂kŷk due to the form of w3 we discussed, therefore

P1 = 0 and p1 = 0 as well. Applying a similar argument we can conclude that q1 = 0, so
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w1 ∈ Qk−1(ŷ, ẑ). In addition, we can show that w2 ∈ Qk−1(x̂, ẑ) and w3 ∈ Qk−1(x̂, ŷ) by

similar arguments.

We now claim that ∇ · q̂ = 0. First, ∇ · q̂ ∈ Qk−1(Ê) holds from the definition of the

shape functions. Then the Green’s identity and the vanishing DOFs assumption give∫
Ê

∇ · q̂q dx̂ =

∫
∂Ê

q̂ · n q dŝ−
∫
Ê

q̂ · ∇q dx̂ = 0 (4.1.22)

for any q ∈ Qk−1(Ê). In particular q = ∇ · q̂ gives ∇ · q̂ = 0. From the expression of q̂ in

(4.1.21),

0 = ∇ · q̂ = L̃k(x̂)w1(ŷ, ẑ) + L̃k(ŷ)w2(x̂, ẑ) + L̃k(ẑ)w3(x̂, ŷ)

where L̃k(t) = d
dt

((1− t2)Lk−1
w (t)). For 0 ≤ i ≤ k − 1, note that∫ 1

−1

L̃k(t)ti dt = −i
∫ 1

−1

(1− t2)Lk−1
w (t)ti−1 dt = 0

by integration by parts and the definition of Lk−1
w . From this observation we can obtain

0 =

∫
Ê

(∇ · q̂)L̃k(x̂)w1(ŷ, ẑ) dx̂ =

∫
Ê

(L̃k(x̂)w1(ŷ, ẑ))2 dx̂,

which implies w1 = 0. We can conclude w2 = w3 = 0 with similar arguments, therefore

q̂ = 0.
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4.1.2.3 Mixed finite element spaces For k ≥ 1, consider the pair of mixed finite

element spaces Ẑk(Ê)× Ŵ k−1(Ê), recalling that

Ẑk(Ê) = Ẑk−1
RT (Ê)⊕ B̃k

(Ê), Ŵ k−1(Ê) = Qk−1(Ê).

Note that the construction of Ẑk(Ê) and (4.1.2) imply that

∇̂ · Ẑk(Ê) = Ŵ k−1(Ê), and ∀q̂ ∈ Ẑk(Ê), ∀ê ⊂ ∂Ê, q̂ · n̂ê ∈ Rk(ê). (4.1.23)

Recall also that dimẐk(Ê) = dimQk(Ê,Rd) = d(k + 1)d and that its degrees of freedom

are the moments (4.1.18) and (4.1.19). We consider an alternative definition of degrees of

freedom involving the values of vector components at the Gauss-Lobatto quadrature points;

see Figure 4.1, where filled arrows indicate the facet degrees of freedom for which continuity

across facets is required, and unfilled arrows represent the ”interior” degrees of freedom,

local to each element. We have omitted some of the degrees of freedom from the backplane

of the cube for clarity of visualization. This choice gives certain orthogonalities for the

Gauss-Lobatto quadrature rule which we will discuss in details in the forthcoming chapters.

(a) Ẑ3(Ê) in 2d (b) Ẑ2(Ê) in 3d

Figure 4.1: Degrees of freedom of the enhanced Raviart-Thomas elements

The unisolvency of the enhanced Raviart-Thomas spaces shown in the previous section

implies the existence of a unique projection operator Π̂k
∗ : H1(Ê,Rd)→ Ẑk(Ê) such that

〈(Π̂k
∗ v̂ − v̂) · nê, p̂〉ê = 0 ∀ê ⊂ ∂Ê, ∀p̂k ∈ Rk(ê), (4.1.24)
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(
Π̂k
∗ v̂ − v̂, p̂

)
Ê

= 0 ∀p̂ ∈



Pk−2(x̂)⊗Rk(ŷ)

Pk−2(ŷ)⊗Rk(x̂)

 in 2d,


Pk−2(x̂)⊗Rk(ŷ, ẑ)

Pk−2(ŷ)⊗Rk(x̂, ẑ)

Pk−2(ẑ)⊗Rk(x̂, ŷ)

 in 3d.

(4.1.25)

The Green’s identity (4.1.22) together with (4.1.24) and (4.1.25) implies that(
∇̂ · (Π̂k

∗ v̂ − v̂), ŵ
)
Ê

= 0, ∀ŵ ∈ Ŵ k−1(Ê). (4.1.26)

Using (4.1.6), the above implies that

(
∇ · (Πk

∗v − v), w
)
E

= 0, ∀w ∈ W k−1(E). (4.1.27)

Let Zk
h × W k−1

h be the pair of enhanced Raviart-Thomas spaces on Th defined as in

(4.1.8) and the projection operator Πk
∗ from Z ∩H1(Ω,Rd) onto Zk

h be defined via the Piola

transformation as in (4.1.9).

Lemma 4.1.1. There exists a positive constant β, independent of h, such that

inf
06=w∈Wk−1

h

sup
06=v∈Zkh

(∇ · v, w)

‖w‖‖v‖div

≥ β. (4.1.28)

Proof. We consider the auxiliary problem

∇ · ψ = w in Ω, ψ = g on ∂Ω, (4.1.29)

where g ∈ H1/2(∂Ω,Rd) is constructed such that it satisfies
∫
∂Ω
g · n =

∫
Ω
w and g · n = 0 on

ΓN . More specifically, we choose g = (
∫
∂Ω
w)φn, where φ ∈ C0(∂Ω) is such that

∫
∂Ω
φ = 1

and φ = 0 on ΓN . Clearly, such construction implies ‖g‖1/2,∂Ω ≤ C‖w‖. It is known [40]

that the problem (4.1.29) has a solution satisfying

‖ψ‖1 ≤ C
(
‖w‖+ ‖g‖1/2,∂Ω

)
≤ C‖w‖. (4.1.30)
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As the solution ψ is regular enough, Πk
∗ψ is well defined. Using (4.1.27), the choice v =

Πk
∗ψ ∈ Zk

h yields

(∇ · v, w) =
(
∇ · Πk

∗ψ, w
)

= (∇ · ψ, w) = ‖w‖2.

We complete the proof by exploring the continuity bound ‖Πk
∗ψ‖div ≤ C‖ψ‖1, which is stated

in (4.2.22) below.

We also note that since Zk−1
RT ⊂ Zk, it follows from the definition of Πk

RT that

∇ · q = ∇ · Πk−1
RT q, ∀q ∈ Zk

h , (4.1.31)

‖Πk−1
RT q‖ ≤ C‖q‖, ∀q ∈ Zk

h . (4.1.32)

4.1.3 Quadrature rule

We next present the quadrature rule for the velocity bilinear form, which is designed to allow

for local velocity elimination around finite element nodes. We perform the integration on

any element by mapping to the reference element Ê. The quadrature rule is defined on Ê.

We have for v, q ∈ Zk
h ,∫

E

K−1v · q dx =

∫
Ê

K̂−1 1

JE
DFE v̂ ·

1

JE
DFE q̂ JEdx̂

=

∫
Ê

1

JE
DF T

E K̂
−1DFE v̂ · q̂ dx̂ ≡

∫
Ê

K−1v̂ · q̂ dx̂,

where

K = JEDF
−1
E K̂(DF−1

E )T . (4.1.33)

It is straightforward to show that (1.3.3) and (1.4.11) imply that

‖K‖0,∞,Ê ∼ hd−2‖K‖0,∞,E, ‖K−1‖0,∞,Ê ∼ h2−d‖K−1‖0,∞,E. (4.1.34)

Let Ξk := {ξk(i)}ki=0 and Λk := {λk(i)}ki=0 be the points and weights of the Gauss-Lobatto

quadrature rule on [−1, 1]. If k is clear in context, we use (p, q)Q to denote the evaluation

of Gauss-Lobatto quadrature with k + 1 points for (p, q). We also define

p̂i := (ξk(i1), ..., ξk(id)), wk(i) := λk(i1) · · ·λk(id) (4.1.35)
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for i ∈ Ik ≡ {(i1, ..., id), ij ∈ {0, ..., k}}. (4.1.36)

For the method of order k, the quadrature rule is defined on an element E as follows

(
K−1v, q

)
Q,E
≡
(
K−1v̂, q̂

)
Q̂,Ê
≡
∑
i∈Ik

wk(i)K−1(p̂i)v̂(p̂i) · q̂(p̂i). (4.1.37)

The global quadrature rule can then be defined as

(
K−1v, q

)
Q
≡
∑
E∈Th

(
K−1v, q

)
Q,E

.

Note that the method in the lowest order case k = 1 is very similar in nature to the one

developed in [52,95], although we use different finite element spaces.

We next show that the evaluation at the tensor-product quadrature points is a set of

DOFs of Ẑk(Ê), so the bilinear form with the quadrature is not degenerate.

Lemma 4.1.2. For p ∈ Qk(Ê), if the evaluations of p vanish at all the quadrature nodes of

the tensor product Gauss–Lobatto rules on Ê, then p = 0.

The above statement is obvious, because the evaluations at the tensor product quadrature

nodes become a set of DOFs of Qk(Ê).

Lemma 4.1.3. For v̂ ∈ Ẑk(Ê), if v̂(p̂i) = 0 for all p̂i in (4.1.36), then v̂ = 0.

Proof. Without loss of generality, we present the proof for Ê = [−1, 1]d. It suffices to show

that the vanishing quadrature evaluation assumption implies that the moments in (4.1.18)

and (4.1.19) vanish. Since v̂ · ne ∈ Qk(e) ∀ e ⊂ ∂Ê, the vanishing quadrature assumption

for nodes on e implies that v̂ · ne = 0. Therefore the moments in (4.1.18) vanish and v̂ is

reduced to the form in (4.1.20), i.e.,

v̂ =


q1

q2

q3

 =


(1− x̂2)q̃1(x̂, ŷ, ẑ)

(1− ŷ2)q̃2(x̂, ŷ, ẑ)

(1− ẑ2)q̃3(x̂, ŷ, ẑ)

 ,

with

q̃1 ∈ Pk−1(x̂)⊗Qk(ŷ, ẑ), q̃2 ∈ Pk−1(ŷ)⊗Qk(x̂, ẑ), q̃3 ∈ Pk−1(ẑ)⊗Qk(x̂, ŷ).
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We want to show that all moments (4.1.19) of v̂ are zeros. To do it, we first express q̃1 as

q̃1 =
k−1∑
j=0

Ljw(x̂)rj(ŷ, ẑ), rj(ŷ, ẑ) ∈ Qk(ŷ, ẑ), (4.1.38)

where Ljw is the Legendre polynomial of degree j with weight (1− x̂2) as before. For fixed ŷ

and ẑ, let us consider the Gauss-Lobatto quadrature of q1v along x̂ with v ∈ Pk−2(x̂). For

fixed values of ŷ and ẑ, q1 is a polynomial of degree ≤ k + 1, so this quadrature evaluation

of q1v equals the integration of q1v in x̂ with the fixed ŷ and ẑ. In particular, if v = Lmw (x̂),

0 ≤ m ≤ k − 2, ŷ = ξk(i), ẑ = ξk(j), then the vanishing quadrature assumption and the

expression of q̃1 in (4.1.38) give

0 =
k∑
l=0

λk(l)q1(ξk(l), ξk(i), ξk(j))v(ξk(l)) =

∫ 1

−1

q1(x̂, ξk(i), ξk(j))v(x̂)) dx̂

=

∫ 1

−1

(1− x̂2)(Lmw (x̂))2rm(ξk(i), ξk(j)).

This implies that rm(ŷ, ẑ) = 0 for any ŷ = ξk(i), ẑ = ξk(j), 0 ≤ i, j ≤ k if 0 ≤ m ≤

k − 2, and therefore rm = 0 for 0 ≤ m ≤ k − 2 by Lemma 4.1.2. As a consequence,

q1 = (1 − x̂2)Lk−1
w (x̂)rk−1(ŷ, ẑ) with rk−1 ∈ Qk(ŷ, ẑ) and its evaluations at the DOFs given

by the first component in (4.1.19) vanish. We can derive similar results for q2 and q3, i.e.,

v̂ gives only vanishing moments for the DOFs (4.1.19). We can conclude that v̂ = 0 by the

same argument as in the previous proof of unisolvency.

The above result allows us to define a set of DOFs of Ẑk(Ê) as the evaluations of

the vectors at the tensor-product quadrature points p̂i, i ∈ Ik. Examples were given in

Figure 4.1. Recall that for points on ∂Ê, some of the vector components are facet degrees of

freedom for which continuity across facets is required, while some are ”interior” degrees of

freedom, local to each element. For convenience of notation, denote the set of points p̂i by

p̂i, i = 1, . . . , nk, nk = (k + 1)d. Any vector v̂(p̂i) at the node p̂i is uniquely determined by

its d components evaluated at this node. Since we chose the Gauss-Lobatto (or trapezoid,

when k = 1) quadrature points for the construction of the velocity degrees of freedom, we
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are guaranteed to have d orthogonal DOFs associated with each node (quadrature point) p̂i,

and they uniquely determine the nodal vector v̂(p̂i). More precisely,

v̂(p̂i) =
d∑
j=1

(v̂ · n̂ij)(p̂i)n̂ij, (4.1.39)

where n̂ij, j = 1, . . . , d, are the outward unit normal vectors to the d hyperplanes of dimen-

sion (d − 1) that intersect at p̂i, each one parallel to one of the three mutually orthogonal

facets of the reference element. Denote the velocity basis functions associated with p̂i by

q̂ij, j = 1, . . . , d, i.e.,

(q̂ij · n̂ij)(p̂i) = 1, (q̂ij · n̂im)(p̂i) = 0, m 6= j, and (q̂ij · n̂lm)(p̂l) = 0, l 6= i, m = 1, . . . , d.

(4.1.40)

The quadrature rule (4.1.37) couples only d basis functions associated with a node. For

example, in 3d, for any node i = 1, . . . , nk,(
K−1q̂i1, q̂i1

)
Q̂,Ê

= K−1
11 (p̂i)wk(i),

(
K−1q̂i1, q̂i2

)
Q̂,Ê

= K−1
21 (p̂i)wk(i),(

K−1q̂i1, q̂i3
)
Q̂,Ê

= K−1
31 (p̂i)wk(i),

(
K−1q̂i1, q̂mj

)
Q̂,Ê

= 0 ∀mj 6= i1, i2, i3. (4.1.41)

By mapping back (4.1.37) to the physical element E, we obtain

(
K−1v, q

)
Q,E

=

nk∑
i=1

JE(p̂i)wk(i)K
−1(pi)v(pi) · q(pi). (4.1.42)

Denote the element quadrature error by

σE
(
K−1v, q

)
≡
(
K−1v, q

)
E
−
(
K−1v, q

)
Q,E

, (4.1.43)

and define the global quadrature error by σ (K−1v, q)
∣∣
E

= σE (K−1v, q). Similarly, denote

the quadrature error on the reference element by

σ̂E
(
K−1v̂, q̂

)
≡
(
K−1v̂, q̂

)
Ê
−
(
K−1v̂, q̂

)
Q̂,Ê

. (4.1.44)

The following lemma will be used to bound the quadrature error.
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Lemma 4.1.4. For any v̂ ∈ Ẑk(Ê) and for any k ≥ 1,(
v̂ − Π̂k−1

RT v̂, q̂
)
Q̂,Ê

= 0, for all vectors q̂ ∈ Qk−1(Ê,Rd). (4.1.45)

Proof. Without loss of generality, we present the proof for Ê = [−1, 1]d. We show a detailed

proof only for the 3d case because the 2d case is similar. Let vi, i = 1, 2, 3 be the i-

th component of v̂ − Π̂k−1
RT v̂. Considering the expression v1 with the basis of Legendre

polynomials, the definition of shape functions in Ẑk(Ê) and the constraints from (4.1.4)

yield that v1 has the form

v1 = Lk−1(x̂)p1(ŷ, ẑ) + Lk(x̂)q1(ŷ, ẑ) + Lk+1(x̂)r1(ŷ, ẑ) + Lk(ŷ)u1(x̂, ẑ) + Lk(ẑ)w1(x̂, ŷ)

(4.1.46)

where Li is the standard i-th Legendre polynomial as before, p1, q1, r1 ∈ Qk−1(ŷ, ẑ),

u1 ∈ Pk+1(x̂)⊗ Pk−1(ẑ) +Qk(x̂, ẑ), w1 ∈ Pk+1(x̂)⊗ Pk−1(ŷ) +Qk(x̂, ŷ). (4.1.47)

From (4.1.3), the restrictions of v1 on x̂ = −1 and on x̂ = 1 are orthogonal to Qk−1(ŷ, ẑ),

and it gives two equations

p1 + q1 + r1 = 0, p1 − q1 + r1 = 0, (4.1.48)

therefore q1 = 0 and r1 = −p1. A similar argument can be applied to v2 and v3. In summary,

we have

v1 = (Lk−1(x̂)− Lk+1(x̂))p1(ŷ, ẑ) + Lk(ŷ)u1(x̂, ẑ) + Lk(ẑ)w1(x̂, ŷ), (4.1.49)

v2 = (Lk−1(ŷ)− Lk+1(ŷ))p2(ẑ, x̂) + Lk(ẑ)u2(x̂, ŷ) + Lk(x̂)w2(ŷ, ẑ), (4.1.50)

v3 = (Lk−1(ẑ)− Lk+1(ẑ))p3(x̂, ŷ) + Lk(x̂)u3(ŷ, ẑ) + Lk(ŷ)w3(ŷ, ẑ), (4.1.51)

where u2, u3, w2, w3 belong to polynomial spaces similar to the spaces in (4.1.47) with

variable permutation. To prove (v1, q)Q̂,Ê = 0 for q ∈ Qk−1(Ê), we will show

((Lk−1(x̂)− Lk+1(x̂))p1(ŷ, ẑ), q)Q̂,Ê = 0, (Lk(ŷ)u1(x̂, ẑ), q)Q̂,Ê = 0, (Lk(ẑ)w1(x̂, ŷ), q)Q̂,Ê = 0.

(4.1.52)
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For the first equality, recall that the quadrature points of the Gauss-Lobatto rules are the

two endpoints and the zeros of d
dt
Lk(t) in [−1, 1]. It is clear that Lk−1 − Lk+1 vanishes at

the two endpoints. In addition, Lk−1 − Lk+1 vanishes at the zeros of d
dt
Lk(t) in [−1, 1] from

the identities

(k + 1)(Lk+1 − Lk−1)(t) = (2k + 1)(tLk(t)− Lk−1(t)) = (2k + 1)
t2 − 1

k

d

dt
Lk(t).

Therefore, the first equality in (4.1.52) holds. To prove the second equality in (4.1.52), let us

consider a restriction of the tensor product Gauss-Lobatto rule for fixed quadrature points of

x̂ and ẑ. For fixed x̂ and ẑ, the product Lk(ŷ)u1(x̂, ẑ)q(x̂, ŷ, ẑ) is a polynomial in ŷ of degree

at most 2k − 1, so evaluation of Lk(ŷ)u1(x̂, ẑ)q(x̂, ŷ, ẑ) with the restricted Gauss-Lobatto

rule is the same as the integration of the function in ŷ. However, this integration in ŷ is zero

because Lk(ŷ) and q ∈ Qk−1(x̂, ŷ, ẑ) are orthogonal. Since (·, ·)Q̂,Ê is a sum of these restricted

Gauss-Lobatto rules, (Lk(ŷ)u1(x̂, ẑ), q)Q̂,Ê = 0. The third equality in (4.1.52) follows from

the same argument as the second equality. Finally, the same argument can be used for v2

and v3, so the assertion is proved.

4.1.4 The k-th order MFMFE method

We first define an appropriate projection to be used in the method for the Dirichlet bound-

ary data g. This is necessary for optimal approximation of the boundary condition term.

Moreover, the numerical tests suggest that this is not a purely theoretical artifact, as without

the projection we indeed see a deterioration in the rates of convergence. For a facet ê ∈ ∂Ê,

let R̂k−1
ê be the L2(ê)-orthogonal projection onto Rk−1(ê), satisfying for any φ̂ ∈ L2(ê),

〈φ̂− R̂k−1
ê φ̂, ŵ〉ê = 0 ∀ ŵ ∈ Rk−1(ê).

Let Rk−1
h : L2(∂Ω) → W k−1

h |∂Ω be such that for any φ ∈ L2(∂Ω), Rk−1
h φ = R̂k−1

ê φ̂ ◦ F−1
E on

all e ∈ ∂Ω. Recall that (4.1.2) ∀q̂ ∈ Ẑk−1
RT (Ê), ∀ê ⊂ ∂Ê, q̂ · n̂ê ∈ Rk−1(ê). Then using (4.1.3)

and (4.1.6), we have that

∀φ ∈ L2(∂Ω), 〈φ−Rk−1
h φ, q · n〉∂Ω = 0, ∀q ∈ Ẑk−1

RT (Ê) (4.1.53)
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and

∀q ∈ H1(Ω,Rd), 〈(q − Πk−1
RT q) · n, R

k−1
h φ〉∂Ω = 0, φ ∈ L2(∂Ω). (4.1.54)

The method is defined as follows: find (zh, ph) ∈ Zk
h ×W k−1

h , where k ≥ 1, such that(
K−1zh, q

)
Q
− (ph, ∇ · q) = −〈Rk−1

h g, q · n〉ΓD , q ∈ Zk
h , (4.1.55)

(∇ · zh, w) = (f, w) , w ∈ W k−1
h . (4.1.56)

Following the terminology from [52, 95] we call the method (4.1.55)-(4.1.56) a k-th order

MFMFE method, due to its relation to the MPFA scheme.

Lemma 4.1.5. The bilinear form (K−1v, q)Q is an inner product on Zk
h and (K−1v, v)

1/2
Q

is a norm in Zk
h equivalent to ‖ · ‖.

Proof. Let v ∈ Zk
h be given on an element E as v =

∑nk
i=1

∑d
j=1 qijqij. Using (1.3.3), (1.4.11),

(4.1.42), and the basis property (4.1.40), we obtain

(
K−1v, v

)
Q,E

=

nk∑
i=1

JE(p̂i)wk(i)K
−1(pi)v(pi) · v(pi) ≥ Chd

nk∑
i=1

d∑
j=1

q2
ij.

On the other hand,

‖v‖2
E =

(
nk∑
i=1

d∑
j=1

qijqij,

nk∑
k=1

d∑
l=1

qklqkl

)
≤ Chd

nk∑
i=1

d∑
j=1

q2
ij.

Hence, (
K−1v, v

)
Q
≥ C‖v‖2, (4.1.57)

and due to the linearity and symmetry, we conclude that (K−1v, q)Q is an inner product

and (K−1v, v)
1/2
Q is a norm in Zk

h . Using (1.3.3),(4.1.34) (4.1.37), (4.1.5), (1.4.11), and the

equivalence of norms on Ê, we obtain(
K−1v, v

)
Q,E

=
∑
i∈Ik

wk(i)K−1(p̂i)v̂(p̂i) · v̂(p̂i) ≤ Ch2−d‖v̂‖2
Ê
≤ C‖v‖2

E. (4.1.58)

Combining (4.1.57) and (4.1.58) results in the equivalence of norms

c0‖v‖ ≤
(
K−1v, v

)1/2

Q
≤ c1‖v‖. (4.1.59)
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We now proceed with the solvability of the method (4.1.55)-(4.1.56).

Theorem 4.1.3. The k-th order MFMFE method (4.1.55)-(4.1.56) has a unique solution

for any k ≥ 1.

Proof. Since (4.1.55)-(4.1.56) is a square system, it is enough to prove uniqueness of the

solution. Letting f = 0, g = 0 and choosing q = zh and w = ph, one immediately obtains

(K−1zh, zh)Q = 0, which yields zh = 0 due to (4.1.59). Next, we use the inf-sup condition

(4.1.28) to obtain

‖ph‖ ≤ C sup
v∈Zkh

(∇ · v, ph)
‖v‖div

= sup
v∈Zkh

(K−1zh, v)Q
‖v‖div

= 0

and thus ph = 0, which concludes the proof of the theorem.

4.1.5 Reduction to a pressure system and its stencil

In this section we describe how the MFMFE method reduces to a system for the pressures

by local velocity elimination. Recall that the DOFs of Ẑk(Ê) are chosen as the d vector

components at the tensor-product Gauss-Lobatto quadrature points, see Figure 4.1. As a

result, in the velocity mass matrix obtained from the bilinear form (K−1zh, q), the d DOFs

associated with a quadrature point in an element E are completely decoupled from other

DOFs in E, see (4.1.41). Due to the continuity of normal components across facets, there

are couplings with DOFs from neighboring elements. We distinguish three types of velocity

couplings. The first involves localization of degrees of freedom around each vertex in the grid.

Only this type occurs in the lowest order case k = 1, similar to the previously developed

lowest order MFMFE method [52,95]. The number of DOFs that are coupled around a vertex

equals the number of facets nv that share the vertex. For example, on logically rectangular

grids, nv = 12 (faces) in 3d and nv = 4 (edges) in 2d. The second type of coupling is around

nodes located on facets, but not at vertices. In 2d, these are edge DOFs. The number of

coupled DOFs is three - one normal to the edge, which is continuous across the edge, and

two tangential to the edge, one from each of the two neighboring elements. In 3d, there

are two cases to consider for this type of coupling. One case is for nodes located on faces,

but not on edges. In this case the number of coupled DOFs is five - one normal to the
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face, which is continuous across the face, and four tangential to the face, two from each

of the two neighboring elements. The second case in 3d is for nodes located on edges, but

not at vertices. Let ne be the number of elements that share the edge, which also equals

the number of faces that share the edge. In this case the number of coupled DOFs is 2ne.

These include ne DOFs normal to the ne faces, which are continuous across the faces, and ne

DOFs tangential to the edge, one per each of the ne neighboring elements. For example, on

logically rectangular grids, ne = 4, resulting in eight coupled DOFs. Finally, the third type

of coupling involves nodes interior to the elements, in which case only the d DOFs associated

with the node are coupled.

Due to the localization of DOF interactions described above, the velocity mass matrix

obtained from the bilinear form (K−1zh, q), is block-diagonal with blocks associated with the

Gauss-Lobatto quadrature points. In particular, in 2d, there are nv × nv blocks at vertices

(nv is the number of neighboring edges), 3 × 3 blocks at edge points, and 2 × 2 blocks at

interior points. In 3d, there are nv × nv blocks at vertices (nv is the number of neighboring

faces), 2ne × 2ne blocks at edge points (ne is the number of neighboring elements), 5 × 5

blocks at face points, and 3× 3 blocks at interior points.

Proposition 4.1.1. The local matrices described above are symmetric and positive definite.

Proof. For any quadrature point, the local matrix is obtained by taking q = q1, . . . , qm in

(4.1.55), where qi are the velocity basis functions associated with that point. We have

(
K−1zh, qi

)
Q

=
m∑
j=1

uj
(
K−1qj, qi

)
≡

m∑
j=1

aijuj, i = 1, . . . ,m.

Using Lemma 4.1.5 we conclude that the matrix M = {aij} is symmetric and positive

definite.

The block-diagonal structure of the velocity mass matrix allows for local velocity elim-

ination. In particular, solving the local linear systems resulting from (4.1.55) allows us to

express the associated velocities in terms of the pressures from the neighboring elements

and boundary data. This implies that the method reduces the saddle-point problem to an

element-based pressure system.
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Lemma 4.1.6. The pressure system resulting from (4.1.55)-(4.1.56) using the procedure

described above is symmetric and positive definite.

Proof. The proof follows from the argument presented in Proposition 2.8 in [95]. We present

it here for the sake of completeness. Denoting the bases of Zk
h and W k−1

h by {qi} and {wi},

respectively, we obtain the saddle-point type algebraic system arising from (4.1.55)-(4.1.56),A BT

B 0

U
P

 =

G
F

 , (4.1.60)

where Aij = (K−1qi, qj)Q and BT
ij = − (∇ · qi, wj). The matrix A obtained by the above pro-

cedure is symmetric and positive definite, as it is block diagonal with SPD blocks associated

with quadrature nodes shown in Proposition 4.1.1. The elimination of U leads to a system

for P with a symmetric and positive semidefinite matrix BA−1BT . It follows immediately

from the proof of Theorem 4.1.3 that BTP = 0 if and only if P = 0. Therefore, BA−1BT is

positive definite.

4.2 VELOCITY ERROR ANALYSIS

Although the proposed schemes can be defined and are well posed on general quadrilateral

or hexahedra, for the convergence analysis we need to impose a restriction on the element

geometry. This is due to the reduced approximation properties of the MFE spaces on arbi-

trary shaped quadrilaterals or hexahedra that our new family of elements inherits as well.

The necessity of said restriction is confirmed by the numerical computations. We recall that,

since the mapping FE is trilinear in 3d, the faces of an element E may be non-planar. We

will refer to the faces as generalized quadrilaterals. We recall the notation of ri, i = 1, . . . , 2d,

and edges rij = ri − rj from Section 1.4.

Definition 4.2.1. A (generalized) quadrilateral with vertices ri, i = 1, . . . , 4, is called an

h2-parallelogram if

|r34 − r21|Rd ≤ Ch2.
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The name follows the terminology from [35,52]. Note that elements of this type in 2d can

be obtained by uniform refinements of a general quadrilateral grid. It follows from (1.4.8)

that ∂2FE
∂x̂∂ŷ

is O(h2) for h2-parallelograms.

Definition 4.2.2. A hexahedral element is called an h2-parallelepiped if all of its faces are

h2-parallelograms.

Definition 4.2.3. An h2-parallelepiped with vertices ri, i = 1, . . . , 8, is called regular if

|(r21 − r34)− (r65 − r78)|R3 ≤ Ch3.

It is clear from (1.4.9) that for h2-parallelepipeds, ∂2FE
∂x̂∂ŷ

, ∂
2FE
∂ŷ∂ẑ

and ∂2FE
∂x̂∂ẑ

are O(h2). More-

over, in case of regular h2-parallelepipeds, ∂3FE
∂x̂∂ŷ∂ẑ

is O(h3).

We next present some bounds on the derivatives of the mapping FE.

Lemma 4.2.1. Let j ≥ 0. The bounds

|JE|j,∞,Ê ≤ Chj+d, j ≤ α, where α = 1 in 2d, α = 4 in 3d, |JE|j,∞,Ê = 0, j > α, (4.2.1)

and

|DFE |j,∞,Ê ≤

{
Chj+1, j < d,

0, j ≥ d
,

∣∣∣∣ 1

JE
DFE

∣∣∣∣
j,∞,Ê

≤ Chj−d+1, |JEDF−1
E |j,∞,Ê ≤

{
Chj+d−1, j ≤ d
0, j > d

(4.2.2)

hold if E is an h2-parallelogram or a regular h2-parallelepiped. Moreover, the estimates

(4.2.2) hold for j = 0 if E is a general quadrilateral or hexahedron and for j = 0, 1 if E is

an h2-parallelepiped.

Proof. We begin with the proof of (4.2.1). In 2d, (1.4.8) gives

DFE = [r21, r41] + [(r34 − r21)ŷ, (r34 − r21)x̂],

from which it can be shown easily that JE is a linear function satisfying (4.2.1). In 3d,

(1.4.9) gives

DFE = [r21 + (r34 − r21)ŷ + (r65 − r21)ẑ + ((r21 − r34)− (r65 − r78))ŷẑ;

r41 + (r34 − r21)x̂+ (r85 − r41)ẑ + ((r21 − r34)− (r65 − r78))x̂ẑ;

r51 + (r65 − r21)x̂+ (r85 − r41)ŷ + ((r21 − r34)− (r65 − r78))x̂ŷ].

(4.2.3)
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It can be verified that JE is a polynomial of three variables of total power at most 4 with

(JE)x̂x̂x̂ = (JE)ŷŷŷ = (JE)ẑẑẑ = 0, (4.2.4)

and it can be written as JE =
∑

0≤r1+r2+r3≤4 αr1r2r3x̂
r1ŷr2ẑr3, where

|αr1r2r3| ≤ Chr1+r2+r3+3, (4.2.5)

from which (4.2.1) follows immediately.

We proceed with the proof of (4.2.2). If E is a general quadrilateral or hexahedron, the

bounds with j = 0 are stated in (1.4.11). The estimates in 2d and for j = 1, 2 in 3d were

shown in [35, 52, 95]. We now focus on the case when E is a regular h2-parallelepiped and

j > 2. Since DFE is bilinear, |DFE|k,∞,Ê = 0, ∀k > 2, and (4.2.3) gives

|DFE|k,∞,Ê ≤ Chk+1, k = 0, 1, 2. (4.2.6)

Therefore, it follows from the product rule that for any j > 2,

∣∣∣∣ 1

JE
DFE

∣∣∣∣
j,∞,Ê

≤ C

(∣∣∣∣ 1

JE

∣∣∣∣
j,∞,Ê

|DFE |0,∞,Ê +

∣∣∣∣ 1

JE

∣∣∣∣
j−1,∞,Ê

|DFE |1,∞,Ê +

∣∣∣∣ 1

JE

∣∣∣∣
j−2,∞,Ê

|DFE |2,∞,Ê

)
.

(4.2.7)

We further compute the derivatives of
1

JE
:

(
1

JE

)
x̂

= − 1

J2
E

(JE)x̂,

(
1

JE

)
x̂x̂x̂

= − 6

J4
E

(JE)3
x̂ +

6

J3
E

(JE)x̂(JE)x̂x̂,(
1

JE

)
x̂x̂

=
2

J3
E

(JE)2
x̂ −

1

J2
E

(JE)x̂x̂,

(
1

JE

)
x̂ŷ

=
2

J3
E

(JE)x̂(JE)ŷ −
1

J2
E

(JE)x̂ŷ,(
1

JE

)
x̂x̂ŷ

= − 6

J4
E

(JE)2
x̂(JE)ŷ +

4

J3
E

(JE)x̂(JE)x̂ŷ +
2

J3
E

(JE)ŷ(JE)x̂x̂ −
1

J2
E

(JE)x̂x̂ŷ(
1

JE

)
x̂ŷẑ

= − 6

J4
E

(JE)x̂(JE)ŷ(JE)ẑ +
2

J3
E

(JE)x̂ẑ(JE)ŷ +
2

J3
E

(JE)x̂(JE)ŷẑ +
2

J3
E

(JE)ẑ(JE)x̂ŷ −
1

J2
E

(JE)x̂ŷẑ,(
1

JE

)
x̂x̂ŷẑ

=
24

J5
E

(JE)2
x̂(JE)ŷ(JE)ẑ −

12

J4
E

(JE)x̂(JE)ŷ(JE)x̂ẑ −
6

J4
E

(JE)2
x̂(JE)ŷẑ −

12

J4
E

(JE)x̂(JE)ẑ(JE)x̂ŷ

+
4

J3
E

(JE)x̂ẑ(JE)x̂ŷ +
4

J3
E

(JE)x̂(JE)x̂ŷẑ −
6

J4
E

(JE)ẑ(JE)ŷ(JE)x̂x̂ +
2

J3
E

(JE)x̂x̂(JE)ŷẑ

+
2

J3
E

(JE)ŷ(JE)x̂x̂ẑ +
2

J3
E

(JE)ẑ(JE)x̂x̂ŷ −
1

J2
E

(JE)x̂x̂ŷẑ.
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We note that due to (4.2.4) the higher order partial derivatives will consist of the same

partials that appear above, while the power of JE in the denominator will continue to grow.

Therefore, it follows from (4.2.5) that
∣∣∣ 1
JE

∣∣∣
k,∞,Ê

≤ Chk−3, which, combined with (4.2.6) and

(4.2.7), implies that∣∣∣∣ 1

JE
DFE

∣∣∣∣
j,∞,Ê

≤ C
(
hj−3h+ hj−4h2 + hj−5h3

)
≤ Chj−2.

To show the last inequality in (4.2.2), we note that using the cofactor formula for inverse

of a matrix, one can verify that JEDF
−1
E is of total degree 3, which implies that for every

k > 3, |JEDF−1
E |k,∞,Ê = 0. We also compute

((JEDF
−1
E )11)x̂x̂ŷ = 2

[
(y1 − y2) + (y3 − y4)

][
(z5 − z6) + (z7 − z8) + (z2 − z1) + (z4 − z3)

]
+ 2
[
(z1 − z2) + (z3 − z4)

][
(y6 − y5) + (y8 − y7) + (y1 − y2) + (y3 − y4)

]
,

with similar expressions for the rest of partial derivatives. Therefore |JEDF−1
E |3,∞,Ê ≤

Ch5.

The above bounds allow us to control the norms of the velocity and permeability on the

reference element.

Lemma 4.2.2. For all v ∈ Hj(E), there exists a constant C independent of h such that the

bound

|v̂|j,Ê ≤ Chj+
d−2
2 ‖v‖j,E (4.2.8)

holds for every j ≥ 0 if E is an h2-parallelogram or regular h2-parallelepiped, for j = 0, 1 if

E is an h2-parallelepiped and for j = 0 if E is a general quadrilateral or hexahedron.

136



Proof. The result in 2d was shown in [35, 95], while the cases j = 0, 1, 2 in 3d were proven

in [52]. It then suffices to prove the case j ≥ 3 for regular h2-parallelepipeds. Let

ṽ = v ◦ FE(x̂), v̂ = JEDF
−1
E ṽ.

As it was shown in the previous lemma |JEDF−1
E |4,∞,Ê = 0, hence (4.2.2) implies that for

r ≥ 3,

|v̂|r,Ê ≤ C
(
h2|ṽ|r,Ê + h3|ṽ|r−1,Ê + h4|ṽ|r−2,Ê + h5|ṽ|r−3,Ê

)
. (4.2.9)

By change of variables and the chain rule, we have that |ṽ|j,Ê ≤ Chj−3/2‖v‖j,E, which,

combined with (4.2.9), completes the proof.

Lemma 4.2.3. There exists a constant C independent of h such that the bound

|K−1|j,∞,Ê ≤ Chj−d+2‖K−1‖j,∞,E. (4.2.10)

holds with j ≥ 0 on h2-parallelograms and regular h2-parallelepipeds, with j = 0, 1 on h2-

parallelepipeds and with j = 0 on general quadrilaterals and hexahedra.

Proof. The above result with j = 0 was already stated in (4.1.34). Moreover, for j = 1, 2

(4.2.10) was shown in [52,95], so we focus on the case j ≥ 3 for h2-parallelograms and regular

h2-parallelepipeds. By the use of a change of variables, the chain rule, and (4.2.2), it is easy

to see that

|K̂−1|j,∞,Ê ≤ Chj|K−1|j,∞,E. (4.2.11)

Using (4.2.2) and the definition of K−1 given in (4.1.33), we have

|K−1|j,∞,Ê ≤ C
∑

0≤α,β,γ≤j
α+β+γ=j

| 1

JE
DFE|α,∞,Ê|K̂

−1|β,∞,Ê|DFE|γ,∞,Ê

≤ C
∑

0≤α,β,γ≤j
α+β+γ=j

hα−d+1hβhγ+1‖K−1‖j,∞,E ≤ Chj−d+2‖K−1‖j,∞,E,

where we also used (4.2.11) for the second inequality.
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Lemma 4.2.4. There exists a constant C independent of h such that on h2-parallelograms

and regular h2-parallelepipeds

‖v − Πk
∗v‖+ ‖v − Πk−1

RT v‖ ≤ Chj‖v‖j, (4.2.12)

‖v − Πk
∗v‖ ≤ Chj+1‖v‖j+1, (4.2.13)

‖∇ ·
(
v − Πk

∗v
)
‖+ ‖∇ ·

(
v − Πk−1

RT v
)
‖ ≤ Chj‖∇ · v‖j, (4.2.14)

for 1 ≤ j ≤ k. Moreover, (4.2.12) and (4.2.14) also hold on h2-parallelepipeds with j = 1.

Proof. We present the proof for Πk
∗ only, as the argument for Πk−1

RT is similar. Using (4.1.5),

(1.4.11) and (4.2.8), we have

‖v − Πk
∗v‖E ≤ Ch

d−2
2 ‖v̂ − Π̂k

∗ v̂‖Ê ≤ Ch
d−2
2 |v̂|j+1,Ê ≤ Chj+1‖v‖j,E,

where 1 ≤ j ≤ k. For the second inequality in the above, we used the fact that Π̂k
∗ preserves

all polynomials of degree up to k, i.e., Pk(Ê) ⊂ Ẑk(Ê), and applied the Bramble-Hilbert

lemma [24]. Summing over the elements completes the proof of the first two statements of

the lemma.

For the last inequality, it follows from (4.1.5) that∫
E

(
∇ · (v − Πk

∗v)
)2
dx =

∫
Ê

1

J2
E

(
∇̂ · (v̂ − Π̂k

∗ v̂)
)2

JE dx̂ ≤ Ch−d|∇̂ · v̂|2
j,Ê
, (4.2.15)

where we have used (1.4.11), (4.1.26), and the Bramble-Hilbert lemma in the inequality. We

also have

|∇̂ · v̂|j,Ê = |JE∇̂ · v|j,Ê ≤ C

j∑
i=0

|JE|i,∞,Ê|∇̂ · v|j−i,Ê

≤ C
∑

0≤i≤α

hi+dhj−i−
d
2 |∇ · v|j−i,E ≤ Chj+

d
2‖∇ · v‖j,E,

(4.2.16)

where we used (4.2.1) and change of variables back to E in the second inequality. A com-

bination of (4.2.15) and (4.2.16), and a summation over all elements completes the proof of

(4.2.14).
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Let Q̂k−1 be the L2(Ê)-orthogonal projection onto Ŵ k−1(Ê), satisfying for any φ̂ ∈

L2(Ê), (
φ̂− Q̂k−1φ̂, ŵ

)
Ê

= 0 ∀ŵ ∈ Ŵ k−1(Ê).

Let Qk−1
h : L2(Ω)→ W k−1

h be the projection operator, satisfying for any φ ∈ L2(Ω),

Qk−1
h φ = Q̂k−1φ̂ ◦ F−1

E on all E.

It follows from (4.1.23) that

(
φ−Qk−1

h φ, ∇ · q
)

= 0 ∀q ∈ Zk
h . (4.2.17)

Using a scaling argument similar to (4.2.15)-(4.2.16), one can show that on h2-parallelograms

and regular h2-parallelepipeds,

‖φ−Qk−1
h φ‖ ≤ Chj‖φ‖j, 1 ≤ j ≤ k. (4.2.18)

Moreover, the above bound holds with j = 1 on general quadrilaterals and hexahedra and

with j = 2 on h2-parallelepipeds.

Lemma 4.2.5. For general quadrilaterals and hexahedra there exists a constant C indepen-

dent of h such that for any finite element function ϕ

‖ϕ‖j,E ≤ Ch−1‖ϕ‖j−1,E, j = 1, . . . , k. (4.2.19)

Proof. Let ϕ̃ = ϕ ◦ FE(x̂). Using (1.4.11), we have

|ϕ|1,E ≤ ‖DF−1
E ‖0,∞,E‖JE‖1/2

0,∞,Ê|ϕ̃|1,Ê ≤ C‖DF−1
E ‖0,∞,E‖JE‖1/2

0,∞,Ê‖ϕ̃‖Ê

≤ C‖DF−1
E ‖0,∞,E‖JE‖1/2

0,∞,Ê‖JF−1
E
‖1/2

0,∞,E‖ϕ‖E ≤ Ch−1hd/2h−d/2‖ϕ‖E ≤ Ch−1‖ϕ‖E.

The general case follows by applying the above bound to any derivative of ϕ.

We will make use of the following continuity bounds for the mixed projection operators

Πk
∗ and Πk

RT .
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Lemma 4.2.6. There exists a constant C independent of h such that on h2-parallelograms

and regular h2-parallelepipeds

‖Πk
∗v‖j,E ≤ C‖v‖j,E, j = 1, . . . , k + 1, (4.2.20)

‖Πk−1
RT v‖j,E ≤ C‖v‖j,E, j = 1, . . . , k, (4.2.21)

The above bounds also hold with j = 1 on h2-parallelepipeds. Furthermore, on general

quadrilaterals or hexahedra

‖Πk
∗v‖div,E + ‖Πk−1

RT v‖div,E ≤ C‖v‖1,E. (4.2.22)

Proof. It follows from (4.2.12) and the triangle inequality that

‖Πk
∗v‖0,E ≤ ‖v‖1,E.

Let PjE be the L2(E)-projection onto Pj(E,Rd). It is well known that [24] ‖v − PjEv‖E ≤

Chj+1‖v‖j+1,E. Using (4.2.19), we have for any j = 1, . . . , k + 1,

|Πk
∗v|j,E = |Πk

∗v − P
j−1
E v|j,E ≤ Ch−j‖Πk

∗v − P
j−1
E v‖0,E

≤ Ch−j(‖Πk
∗v − v‖0,E + ‖v − Pj−1

E v‖0,E) ≤ C‖v‖j,

where we also used (4.2.12), (4.2.13) and (4.2.18). This completes the proof of (4.2.20).

The proof of (4.2.21) is similar. The proof of (4.2.22) uses a scaling argument similar to

(4.2.15)-(4.2.16) for the divergence and a scaling argument using (4.2.8) for the L2-norm.

Details can be found in Lemma 3.6 in [52].

Remark 4.2.1. For the rest of the chapter, all results are stated for h2-parallelograms and

regular h2-parallelepipeds. We note that the results also hold in 3d on h2-parallelepipeds with

k = 1, except for the pressure superconvergence.

In the next two lemmas we bound two terms arising in the error analysis due to the

use of the quadrature rule. We use the notation ϕ ∈ W k,∞
Th if ϕ ∈ W k,∞(E) ∀E ∈ Th and

‖ϕ‖k,∞,E is uniformly bounded independently of h.
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Lemma 4.2.7. On h2-parallelograms and regular h2-parallelepipeds, if K−1 ∈ W k,∞
Th , then

there exists a constant C independent of h such that for all q ∈ Zk
h ,

|
(
K−1Πk

∗z, q − Πk−1
RT q

)
Q
| ≤ Chk‖z‖k‖q‖. (4.2.23)

Proof. Let P̂k be the L2(Ê)-orthogonal projection onto Pk(Ê,Rd). For any element E ∈ Th,

we have

(
K−1Πk

∗z, q − Πk−1
RT q

)
Q,E

=
(
K−1Π̂k

∗ ẑ, q̂ − Π̂k−1
RT q̂

)
Q,Ê

=
(
P̂k−1(K−1Π̂k

∗ ẑ), q̂ − Π̂k−1
RT q̂

)
Q,Ê

+
(
K−1Π̂k

∗ ẑ − P̂k−1(K−1Π̂k
∗ ẑ), q̂ − Π̂k−1

RT q̂
)
Q,Ê

.

The first term on right is equal to zero due to (4.1.45). For the second term we use Bramble-

Hilbert lemma:∣∣∣∣(K−1Π̂k
∗ ẑ − P̂k−1(K−1Π̂k

∗ ẑ), q̂ − Π̂k−1
RT q̂

)
Q,Ê

∣∣∣∣ ≤ C|K−1Π̂k
∗ ẑ|k,Ê‖q̂ − Π̂k−1

RT q̂‖0,Ê.

Using (4.2.10) and (4.2.8), we obtain

|K−1Π̂k
∗ ẑ|k,Ê ≤ C

k∑
i=0

|K−1|k−i,∞,Ê|Π̂
k
∗ ẑ|i,Ê ≤ C

k∑
i=0

hk−i−d+2‖K−1‖k−i,∞,Ehi+(d−2)/2‖Πk
∗z‖i,E

≤ Chk−d/2+1‖K−1‖k,∞,E‖Πk
∗z‖k,E.

Therefore, using (4.2.8), (4.2.20) and (4.1.32), we get∣∣∣∣(K−1Π̂k
∗ ẑ − P̂k−1(K−1Π̂k

∗ ẑ), q̂ − Π̂k−1
RT q̂

)
Q,Ê

∣∣∣∣ ≤ Chk−d/2+1‖K−1‖k,∞,E‖z‖k,Eh(d−2)/2‖q‖0,E

≤ Chk‖K−1‖k,∞,E‖z‖k,E‖q‖0,E.

The proof is completed by summing over all elements.

Lemma 4.2.8. On h2-parallelograms and regular h2-parallelepipeds, if K−1 ∈ W k,∞
Th , then

there exists a constant C independent of mesh size such that for all v ∈ Zk
h and q ∈ Zk−1

RT,h

|σ
(
K−1v, q

)
| ≤ C

∑
E∈Th

hk‖K−1‖k,∞,E‖v‖k,E‖q‖E. (4.2.24)
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Proof. For each E ∈ Th we have

σE
(
K−1v, q

)
= σÊ

(
P̂k−1(K−1v̂), q̂

)
+ σÊ

(
K−1v̂ − P̂k−1(K−1v̂), q̂

)
.

The first term on the right is equal to zero, since the tensor-product Gauss-Lobatto quadra-

ture rule is exact for polynomials of degree up to 2k− 1. Using the Bramble-Hilbert lemma,

(4.2.10) and (4.2.8), we bound the second term as follows:

∣∣∣σÊ (K−1v̂ − P̂k−1(K−1v̂), q̂
)∣∣∣ ≤ C|K−1v̂|k,Ê‖q̂‖Ê ≤ C

k∑
i=0

|K−1|k−i,∞,Ê|v̂|i,Ê‖q̂‖Ê

≤ Chk−d/2+1‖K−1‖k,∞,E‖v‖k,Eh(d−2)/2‖q‖E

≤ Chk‖K−1‖k,∞,E‖v‖k,E‖q‖E.

Summing over all E ∈ Th, we obtain (4.2.24).

4.2.1 Optimal convergence for the velocity

We subtract the numerical method (4.1.55)-(4.1.56) from the variational formulation (1.3.4)-

(1.3.5) to obtain the error equations:

(
K−1z, q

)
−
(
K−1zh, q

)
Q
− (p− ph, ∇ · q) = −〈g −Rk−1

h g, q · n〉ΓD , q ∈ Zk
h , (4.2.25)

(∇ · (z − zh), w) = 0, w ∈ W k−1
h . (4.2.26)

Note that due to (4.1.26), it follows from (4.2.26) that

∇ · (Πk
∗z − zh) = 0. (4.2.27)

If we take q = Πk
∗z − zh in (4.2.25), then

(
K−1z, Πk

∗z − zh
)
−
(
K−1zh, Πk

∗z − zh
)
Q

+ 〈g −Rk−1
h g, (Πk

∗z − zh) · n〉ΓD = 0. (4.2.28)

Let w = Πk
∗z − zh then an algebraic manipulation of the above gives

(
K−1w, w

)
Q

= −
(
K−1z, w

)
+
(
K−1Πk

∗z, w
)
Q
− 〈g −Rk−1

h g, w · n〉ΓD .
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Moreover, rewriting the right-hand side gives

(
K−1w, w

)
Q

= −
(
K−1z, w − Πk−1

RT w
)
− 〈g −Rk−1

h g, w · n〉ΓD −
(
K−1(z − Πk

∗z), Πk−1
RT w

)
(4.2.29)

−
(
K−1Πk

∗z, Πk−1
RT w

)
+
(
K−1Πk

∗z, Πk−1
RT w

)
Q

+
(
K−1Πk

∗z, w − Πk−1
RT w

)
Q
.

Testing (1.3.4) with w − Πk−1
RT w and using that ∇ · w = ∇ · Πk−1

RT w = 0, see (4.2.27) and

(4.1.31), we can rewrite the first two terms in (4.2.29) as

−
(
K−1z, w − Πk−1

RT w
)
− 〈g −Rk−1

h g, w · n〉ΓD

= 〈g, (w − Πk−1
RT w) · n〉ΓD − 〈g −Rk−1

h g, w · n〉ΓD = 0,

using that, due to (4.1.53)–(4.1.54), 〈Rk−1
h g, (w−Πk−1

RT w) ·n〉ΓD = 0 and 〈g−Rk−1
h g, Πk−1

RT w ·

n〉ΓD = 0. For the third term on the right in (4.2.29) we use (4.2.12) and (4.1.32) to get

|
(
K−1(z − Πk

∗z), Πk−1
RT w

)
| ≤ Chk‖K−1‖0,∞‖z‖k‖w‖.

To bound the fourth and fifth terms on the right in (4.2.29), we use (4.2.24), (4.2.20) and

(4.1.32):

| −
(
K−1Πk

∗z, Πk−1
RT w

)
+
(
K−1Πk

∗z, Πk−1
RT w

)
Q
| = |σ(K−1Πk

∗z,Π
k−1
RT w)|

≤ Chk‖K−1‖k,∞‖z‖k‖w‖.

For the last term on the right in (4.2.29) we use (4.2.23):

|
(
K−1Πk

∗z, w − Πk−1
RT w

)
Q
| ≤ Chk‖K−1‖k,∞‖z‖k‖w‖.

Combining the above bounds, we obtain from (4.2.29) that

(
K−1(Πk

∗z − zh), Πk
∗z − zh

)
Q
≤ Chk‖K−1‖k,∞‖z‖k‖Πk

∗z − zh‖, (4.2.30)

implying that

‖Πk
∗z − zh‖ ≤ Chk‖K−1‖k,∞‖z‖k. (4.2.31)

Bounds (4.2.31) and (4.2.27), together with (4.2.12) and (4.2.14), result in the following

theorem.
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Theorem 4.2.1. Assume that the partition Th consists of h2-parallelograms in 2d or regular

h2-parallelepipeds in 3d. If K−1 ∈ W k,∞
Th , for the velocity zh of the MFMFE method (4.1.55)-

(4.1.56), there exists a constant C independent of h such that

‖z − zh‖ ≤ Chk‖z‖k, (4.2.32)

‖∇ · (z − zh)‖ ≤ Chk‖∇ · z‖k. (4.2.33)

4.3 ERROR ESTIMATES FOR THE PRESSURE

In this section we use a standard inf-sup argument to prove optimal convergence for the

pressure. We also employ a duality argument to establish superconvergence for the pressure.

4.3.1 Optimal convergence for the pressure

Theorem 4.3.1. Assume that the partition Th consists of h2-parallelograms in 2d or regular

h2-parallelepipeds in 3d. If K−1 ∈ W k,∞
Th , then for the pressure ph of the MFMFE method

(4.1.55)-(4.1.56), there exists a constant C independent of h such that

‖p− ph‖ ≤ Chk (‖z‖k + ‖p‖k) . (4.3.1)

Proof. We first note that the RT k−1 spaces Zk−1
RT,h × W k−1

h on general quadrilaterals and

hexahedra satisfy an inf-sup condition similar to (4.1.28). The proof is the same as the

argument in Lemma 4.1.1. Hence, using (4.2.25) and (4.1.53), we obtain

‖Qk−1
h p− ph‖ ≤

1

β
sup

06=q∈V k−1
RT,h

(
Qk−1
h p− ph, ∇ · q

)
‖q‖div

=
1

β
sup

0 6=q∈V k−1
RT,h

(
K−1(Πk

∗z − zh), q
)
Q
−
(
K−1(Πk

∗z − z), q
)

+ σ(K−1Πk
∗z, q)

‖q‖div

≤ C

β
hk‖K−1‖k,∞‖z‖k,

where we used (4.2.31), (4.2.12), (4.2.24), and (4.2.20) in the last inequality. The result then

follows from (4.2.18) and the triangle inequality.
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4.3.2 Superconvergence of the pressure

In this subsection we prove superconvergence of the pressure, i.e., we show that ‖Qk−1
h p−ph‖

is O(hk+1) for the MFMFE method of order k. We also apply local postprocessing to obtain

an improved approximation p∗h ∈ W k
h such that ‖p− p∗h‖ is O(hk+1).

The following bound on the quadrature error will be used in the superconvergence anal-

ysis.

Lemma 4.3.1. On h2-parallelograms and regular h2-parallelepipeds, if K−1 ∈ W k+1,∞
Th , then

for all v ∈ Zk
h and q ∈ Z0

RT,h, there exists a positive constant C independent of h such that

|σ
(
K−1v, q

)
| ≤ C

∑
E∈Th

hk+1‖K−1‖k+1,∞,E‖v‖k+1,E‖q‖1,E. (4.3.2)

Proof. For any element E we have σE (K−1v, q) = σ̂Ê (K−1v̂, q̂). Since the quadrature rule

is exact for polynomials of degree up to 2k− 1 in and k ≥ 1, then it is exact for polynomials

of degree up to k. An application of the Bramble-Hilbert lemma implies

∣∣σ̂Ê (K−1v̂, q̂
)∣∣ ≤ C

([ k∑
i=0

|K−1|i,∞,Ê|v̂|k−i,Ê
]
|q̂|1,Ê +

[ k+1∑
i=0

|K−1|i,∞,Ê|v̂|k+1−i,Ê
]
‖q̂‖Ê

)
,

where we used that q̂ is linear. Using (4.2.8) and (4.2.10) we obtain

σE
(
K−1v, q

)
≤ Chk+1‖K−1‖k+1,∞,E‖v‖k+1,E‖q‖1,E.

Summation over all elements completes the proof.

The following result establishes superconvergence of the pressure if the H2-elliptic regu-

larity which is defined below holds.

−∇ ·K∇φ = −(Qk−1
h p− ph) in Ω, φ = 0 on ∂Ω. (4.3.3)

We say that this problem satisfies H2-elliptic regularity if

‖K∇φ‖1 + ‖φ‖2 ≤ C‖Qk−1
h p− ph‖ (4.3.4)

with constant C which may depend on K and Ω but is independent of φ. Some sufficient

conditions for (4.3.4) can be found in [49, 63]. In the proof of the theorem below, we follow

the argument in [30] with appropriate modification to deal with the quadrature terms.
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Theorem 4.3.2. Assume that the partition Th consists of h2-parallelograms in 2d or regular

h2-parallelepipeds in 3d. Assume also that K−1 ∈ W k+1,∞
Th , and that the H2-elliptic regularity

(4.3.4) holds. Then, for the pressure ph of the MFMFE method (4.1.55)-(4.1.56), there exists

a constant C independent of h such that

‖Qk−1
h p− ph‖ ≤ Chk+1(‖z‖k + ‖∇ · z‖k). (4.3.5)

Proof. The proof makes use of a duality argument. Let φ be the solution of (4.3.3). Denoting

−K∇φ by z∗, (z∗, φ) satisfy

(
K−1z∗, q

)
− (φ, ∇ · q) = 0, q ∈ H(div; Ω), (4.3.6)

(∇ · z∗, q) = −
(
Qk−1
h p− ph, q

)
, q ∈ L2(Ω). (4.3.7)

Taking q = z − zh, q = −(Qk−1
h p− ph) and adding the two equations gives

(
K−1z∗, z − zh

)
− (φ, ∇ · (z − zh))−

(
∇ · z∗, Qk−1

h p− ph
)

= ‖Qk−1
h p− ph‖2.

Rewriting the left-hand side, we have

(
K−1z∗, z

)
−
(
K−1z∗, zh

)
+
(
K−1z∗, zh

)
Q
−
(
K−1z∗, zh

)
Q

− (φ, ∇ · (z − zh))−
(
∇ · z∗, Qk−1

h p− ph
)

= ‖Qk−1
h p− ph‖2. (4.3.8)

Consider the discretization of (4.3.6)–(4.3.7) as in (4.1.55)–(4.1.56) and let (z∗h, φ
∗
h) be the

solution of the discrete problem. We now use the Galerkin orthogonality (4.2.25)–(4.2.26)

with q = Πk−1
RT z

∗
h and w = Qk−1

h φ to get

(
K−1z, Πk−1

RT z
∗
h

)
−
(
K−1zh, Πk−1

RT z
∗
h

)
Q
−
(
Qk−1
h p− ph, ∇ · Πk−1

RT z
∗
h

)
−
(
∇ · (z − zh), Qk−1

h φ
)

= 0,

(4.3.9)

where we used that (p−Qk−1
h p,∇·Πk−1

RT z
∗
h) = 0 due to (4.2.17) and 〈g−Rk−1

h g, Πk−1
RT z

∗
h·n〉ΓD =

0 due to (4.1.53). Subtracting (4.3.9) from (4.3.8) and using the symmetry of (K−1·, ·) and

(K−1·, ·)Q gives

(
K−1(z∗ − Πk−1

RT z
∗
h), z

)
−
(
K−1z∗, zh

)
+
(
K−1z∗, zh

)
Q
−
(
K−1(z∗ − Πk−1

RT z
∗
h), zh

)
Q

−
(
φ−Qk−1

h φ, ∇ · (z − zh)
)
−
(
∇ · (z∗ − Πk−1

RT z
∗
h), Qk−1

h p− ph
)

= ‖Qk−1
h p− ph‖2.
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Since∇·Πk−1
RT z

∗
h = ∇·z∗h, and (∇ · (z∗ − z∗h), q) = 0 holds for all q ∈ W k−1

h from the definition

of z∗h, the last term in the left-hand side vanishes. Therefore we have

(
K−1(z∗ − Πk−1

RT z
∗
h), z − zh

)
− σ

(
K−1Πk−1

RT z
∗
h, zh

)
−
(
φ−Qk−1

h φ, ∇ · (z − zh)
)

= ‖Qk−1
h p− ph‖2. (4.3.10)

with σ
(
K−1Πk−1

RT z
∗
h, zh

)
=
(
K−1Πk−1

RT z
∗
h, zh

)
−
(
K−1Πk−1

RT z
∗
h, zh

)
Q

. Observe that the differ-

ence of (4.3.6) and its discrete counterpart gives

(
K−1z∗, Πk−1

RT z − zh
)
−
(
K−1z∗h, Πk−1

RT z − zh
)
Q

= 0,

because ∇ · (Πk−1
RT z − zh) = 0. From this we obtain

σ
(
K−1Πk−1

RT z
∗
h, zh

)
= σ

(
K−1Πk−1

RT z
∗
h, Πk−1

RT z
)
− σ

(
K−1Πk−1

RT z
∗
h, Πk−1

RT z − zh
)

= σ
(
K−1Πk−1

RT z
∗
h, Πk−1

RT z
)
−
(
K−1Πk−1

RT z
∗
h, Πk−1

RT z − zh
)

+
(
K−1Πk−1

RT z
∗
h, Πk−1

RT z − zh
)
Q

= σ
(
K−1Πk−1

RT z
∗
h, Πk−1

RT z
)

+
(
K−1(z∗ − Πk−1

RT z
∗
h), Πk−1

RT z − zh
)

−
(
K−1(z∗h − Πk−1

RT z
∗
h), Πk−1

RT z − zh
)
Q
,

and we can rewrite (4.3.10) further as(
K−1(z∗ − Πk−1

RT z
∗
h), z − Πk−1

RT z
)

+
(
K−1(z∗h − Πk−1

RT z
∗
h), Πk−1

RT z − zh
)
Q

− σ
(
K−1Πk−1

RT z
∗
h, Πk−1

RT z
)
−
(
φ−Qk−1

h φ, ∇ · (z − zh)
)

= ‖Qk−1
h p− ph‖2.

(4.3.11)

We will show that the terms on left above can be bounded as follows:

|
(
K−1(z∗ − Πk−1

RT z
∗
h), z − Πk−1

RT z
)
| ≤ Chk+1‖Qk−1

h p− ph‖‖z‖k, (4.3.12)

|
(
K−1(z∗h − Πk−1

RT z
∗
h), Πk−1

RT z − zh
)
Q
| ≤ Chk+1‖Qk−1

h p− ph‖‖z‖k, (4.3.13)

|σ
(
K−1Πk−1

RT z
∗
h, Πk−1

RT z
)
| ≤ Chk+1‖Qk−1

h p− ph‖‖z‖k, (4.3.14)

|
(
φ−Qk−1

h φ, ∇ · (z − zh)
)
| ≤ Chk+1‖Qk−1

h p− ph‖‖∇ · z‖k, (4.3.15)
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which, combined with (4.3.11), imply the statement of the theorem. For (4.3.12), we note

that

‖z∗ − Πk−1
RT z

∗
h‖ ≤ ‖z∗ − Πk−1

RT z
∗‖+ ‖Πk−1

RT (Πk−1
RT z

∗ − z∗h)‖ ≤ ‖z∗ − Πk−1
RT z

∗‖+ C‖Πk−1
RT z

∗ − z∗h‖

≤ ‖z∗ − Πk−1
RT z

∗‖+ C(‖Πk−1
RT z

∗ − z∗‖+ ‖z∗ − z∗h‖) ≤ Ch‖z∗‖1,

(4.3.16)

where we used (4.1.32), (4.2.12), and a bound for the discretization error

‖z∗ − z∗h‖ ≤ Ch‖z∗‖1, (4.3.17)

which is obtained in a manner similar to the velocity error estimate (4.2.32). Bound (4.3.12)

follows from the use of the Cauchy–Schwarz inequality, (4.3.16), (4.2.12), and (4.3.4). Bound

(4.3.13) is obtained in a similar way, by adding and subtracting z∗ in the first component

and z in the second component, and using (4.3.17), (4.3.16), (4.2.12), (4.2.32), and (4.3.4).

Bound (4.3.14) follows from

|σ
(
K−1Πk−1

RT z
∗
h, Πk−1

RT z
)
| ≤ |σ

(
K−1(Πk−1

RT z
∗
h − Π0

RT z
∗), Πk−1

RT z
)
|+ |σ

(
K−1Π0

RT z
∗, Πk−1

RT z
)
|

≤ C(hk‖z‖k‖Πk−1
RT z

∗
h − Π0

RT z
∗‖+ hk+1‖z‖k‖z∗‖1) ≤ Chk+1‖Qk−1

h p− ph‖‖z‖k,

where we used (4.2.24), (4.3.2), (4.2.21), (4.3.16), (4.2.12), and (4.3.4). Finally, (4.3.15)

follows from (4.2.18), (4.2.33), and (4.3.4).

Using the above result we can easily show superconvergence of the pressure at the Gauss

points. For an element E, let ||| · |||E denote the discrete L2(E)-norm computed by mapping

to the reference element Ê and applying the tensor-product Gauss quadrature rule with k

points in each variable. It is easy to see that |||w|||E = ‖w‖E for w ∈ W k−1
h (E). Assuming

continuous pressure p|E, let pI |E ∈ W k−1
h (E) be the Lagrange interpolant of p|E at the kd

Gauss points. It is shown in [34, Lemma 4.3] that

‖Qk−1
h p− pI‖ ≤ Chk+1‖p‖k+1. (4.3.18)

We now have

|||p− ph||| = |||pI − ph||| = ‖pI − ph‖
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≤ ‖pI −Qk−1
h p‖+ ‖Qk−1

h p− ph‖ ≤ Chk+1(‖z‖k + ‖∇ · z‖k + ‖p‖k+1),

using (4.3.18) and (4.3.5).

We next show that the above superconvergence result for ‖Qk−1
h p − ph‖ can be used to

compute a higher order approximation to the pressure p in the L2(Ω)-norm, using a variant

of the local postprocessing proposed in [86]. The postprocessing idea is also utilized for a

posteriori error estimation (see e.g., [66]). Let W̃ k
h be the L2-orthogonal complement of W 0

h

in W k
h . We now define p∗h ∈ W k

h by

Q0
hp
∗
h = Q0

hph, (4.3.19)

(∇p∗h,∇q)E = −(K−1zh,∇q)E, q ∈ W̃ k
h (E),∀E ∈ Th. (4.3.20)

Theorem 4.3.3. Under the assumption of Theorem 4.3.2, there exists a constant C inde-

pendent of h such that

‖p− p∗h‖ ≤ Chk+1(‖z‖k + ‖∇ · z‖k + ‖p‖k+1). (4.3.21)

Proof. Let Q̃kh be the L2 orthogonal projection onto W̃ k
h . By the triangle inequality it

is enough to estimate ‖Qkhp − p∗h‖. Let p̃h := p∗h − Q0
hph. Considering the decomposition

Qkhp−p∗h = (Q0
hp−Q0

hph)+(Q̃khp−p̃h), it is sufficient to estimate ‖Q̃khp−p̃h‖ by Theorem 4.3.2.

Recalling that ∇p = −Kz, we have

(∇h(p− p∗h),∇hq) = −(K−1(z − zh),∇hq), ∀q ∈ W̃ k
h ,

where ∇h is the element-wise gradient. From p−p∗h = (p−Qkhp)+(Q0
hp−Q0

hph)+(Q̃khp− p̃h)

and by taking q = Q̃khp− p̃h in the above equation, we get

‖∇h(Q̃khp− p̃h)‖ ≤ ‖∇h(p−Qkhp)‖+ ‖K−1(z − zh)‖ ≤ Chk(‖p‖k + ‖z‖k),

where we used the Bramble–Hilbert lemma, an inverse estimate, and (4.2.32). Since W 0
h is

the space of element-wise constants on Th, Q̃khp− p̃h is orthogonal to element-wise constants.

Then the element-wise Friedrichs’ inequality yields ‖Q̃khp− p̃h‖ ≤ Ch‖∇h(Q̃khp− p̃h)‖. The

conclusion follows by combining this and the above inequality.

Remark 4.3.1. Instead of the postprocessing (4.3.19)-(4.3.20), one may use the postprocess-

ing defined in [86] and obtain a numerical pressure that is convergent of order O(hk+1). The

error analysis is almost the same as the above.
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Figure 4.2: Computed solution for Example 1 on the third level of refinement

4.4 NUMERICAL RESULTS

In this section we present several numerical experiments on quadrilateral and hexahedral

grids that validate the theoretical results in the previous sections. In the first example we

test the method on a sequence of meshes obtained by a uniform isotropic refinement of an

initial quadrilateral mesh. The boundary conditions are chosen to be of Dirichlet type for

simplicity. The test case is constructed with the full permeability tensor coefficient

K =

(x+ 1)2 + y2 sin (xy)

sin (xy) (x+ 1)2

 ,

and the analytical solution

p = x3y4 + x2 + sin(xy) cos(xy).

The computed pressure solution on the third level of refinement is shown in Figure 4.2

(left), where the colors represent the pressure values and the arrows represent the velocity

vectors. Similarly, Figure 4.2 (right) shows the velocity solution, where colors represent the

velocity magnitude. The numerical relative errors and convergence rates are obtained on a

sequence of six mesh refinements and are reported in Table 4.1 for the MFMFE methods of

order k = 2, 3, 4. We note that in all cases we see the predicted convergence rate of order
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O(hk) for all variables in their natural norms, as well as superconvergence of the pressures at

the Gauss points, i.e., |||p− ph||| is of order O(hk+1). We also observe O(hk+1) convergence

for the postprocessed pressure. We note that the deterioration of the convergence rate of

the divergence and the superconvergence rate of the pressure for the 4-th order method on

the finest grid is due to the fact that these errors are very small and roundoff errors start

having a noticeable effect.

In the second example, we focus on a 3d case. We let K be a full permeability tensor

with variable coefficients

K =


x2 + (y + 2)2 0 cos(xy)

0 z2 + 2 sin(xy)

cos(xy) sin(xy) (y + 3)2,


and solve the problem with Dirichlet boundary conditions and the analytical pressure solution

chosen as follows

p = x4y3 + x2 + yz2 + cos(xy) + sin(z).

The initial computational domain is obtained as a smooth map of the unit cube, i.e., we

start with a 4 × 4 × 4 unit cube mesh and then apply the following transformation to its

points

x = x̂+ 0.03 cos(3πx̂) cos(3πŷ) cos(3πẑ)

y = ŷ − 0.04 cos(3πx̂) cos(3πŷ) cos(3πẑ)

z = ẑ + 0.05 cos(3πx̂) cos(3πŷ) cos(3πẑ).

The sequence of meshes on which we perform the convergence study is then obtained by a

series of uniform refinements of the initial grid, described above. Figure 4.3 (left) presents

the pressure solution, computed on the third level of refinement, where the colors represent

the pressure values and the arrows depict the velocity vectors. The velocity magnitude is also

shown in Figure 4.3 (right). The computed numerical errors and convergence rates shown in

Table 4.2 once again confirm the theoretical results from the error analysis section. We see
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k = 2
‖z − zh‖ ‖∇ · (z − zh)‖ ‖p− ph‖ |||p− ph||| ‖p− p∗h‖

h error rate error rate error rate error rate error rate
1/3 8.80E-02 – 1.46E-01 – 3.20E-02 – 5.80E-03 – 1.19E-02 –
1/6 2.36E-02 1.9 3.74E-02 2.0 7.90E-03 2.0 7.73E-04 2.9 1.42E-03 3.1

1/12 6.01E-03 2.0 9.41E-03 2.0 1.98E-03 2.0 1.18E-04 2.7 1.66E-04 3.1
1/24 1.50E-03 2.0 2.36E-03 2.0 4.96E-04 2.0 1.70E-05 2.8 1.94E-05 3.1
1/48 3.74E-04 2.0 5.89E-04 2.0 1.24E-04 2.0 2.30E-06 2.9 2.29E-06 3.1
1/96 9.31E-05 2.0 1.47E-04 2.0 3.10E-05 2.0 2.99E-07 2.9 2.78E-07 3.1

k = 3
‖z − zh‖ ‖∇ · (z − zh)‖ ‖p− ph‖ |||p− ph||| ‖p− p∗h‖

h error rate error rate error rate error rate error rate
1/3 1.35E-02 – 1.96E-02 – 3.16E-03 – 4.36E-04 – 1.03E-03 –
1/6 1.69E-03 3.0 2.44E-03 3.0 3.95E-04 3.0 3.33E-05 3.7 5.33E-05 4.3

1/12 2.09E-04 3.0 3.04E-04 3.0 4.95E-05 3.0 2.48E-06 3.8 2.79E-06 4.3
1/24 2.59E-05 3.0 3.80E-05 3.0 6.19E-06 3.0 1.74E-07 3.8 1.55E-07 4.2
1/48 3.22E-06 3.0 4.75E-06 3.0 7.73E-07 3.0 1.17E-08 3.9 9.04E-09 4.1
1/96 4.02E-07 3.0 5.93E-07 3.0 9.67E-08 3.0 7.57E-10 4.0 5.44E-10 4.1

k = 4
‖z − zh‖ ‖∇ · (z − zh)‖ ‖p− ph‖ |||p− ph||| ‖p− p∗h‖

h error rate error rate error rate error rate error rate
1/3 1.13E-03 – 1.52E-03 – 2.46E-04 – 2.83E-05 – 5.17E-05 –
1/6 6.84E-05 4.1 9.24E-05 4.0 1.52E-05 4.0 1.00E-06 4.8 1.26E-06 5.4

1/12 4.20E-06 4.0 5.74E-06 4.0 9.50E-07 4.0 3.55E-08 4.8 3.20E-08 5.3
1/24 2.59E-07 4.0 3.58E-07 4.0 5.94E-08 4.0 1.20E-09 4.9 8.74E-10 5.2
1/48 1.61E-08 4.0 2.25E-08 4.0 3.71E-09 4.0 3.98E-11 4.9 2.59E-11 5.1
1/96 1.00E-09 4.0 4.96E-09 2.2 2.32E-10 4.0 8.78E-12 2.2 8.72E-12 1.6

Table 4.1: Relative errors and convergence rates for Example 1.

Figure 4.3: Computed solution for Example 2 on the third level of refinement.
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k = 2
‖z − zh‖ ‖∇ · (z − zh)‖ ‖p− ph‖ |||p− ph||| ‖p− p∗h‖

h error rate error rate error rate error rate error rate
1/4 7.47E-03 – 2.92E-02 – 4.97E-03 – 1.63E-04 – 3.34E-04 –
1/8 1.82E-03 2.0 7.24E-03 2.0 1.24E-03 2.0 2.23E-05 2.9 3.99E-05 3.1

1/16 4.51E-04 2.0 1.81E-03 2.0 3.11E-04 2.0 3.07E-06 2.9 4.86E-06 3.0
1/32 1.12E-04 2.0 4.51E-04 2.0 7.77E-05 2.0 4.12E-07 2.9 6.00E-07 3.0
1/64 2.80E-05 2.0 1.13E-04 2.0 1.94E-05 2.0 5.38E-08 2.9 7.47E-08 3.0

k = 3
‖z − zh‖ ‖∇ · (z − zh)‖ ‖p− ph‖ |||p− ph||| ‖p− p∗h‖

h error rate error rate error rate error rate error rate
1/4 5.06E-04 – 2.01E-03 – 2.03E-04 – 3.78E-06 – 1.23E-05 –
1/8 6.37E-05 3.0 2.46E-04 3.0 2.54E-05 3.0 2.56E-07 3.9 6.93E-07 4.2

1/16 7.93E-06 3.0 3.05E-05 3.0 3.17E-06 3.0 1.87E-08 3.8 4.06E-08 4.1
1/32 9.87E-07 3.0 3.81E-06 3.0 3.97E-07 3.0 1.35E-09 3.8 2.46E-09 4.0
1/64 1.21E-07 3.0 4.88E-07 3.0 4.96E-08 3.0 8.83E-11 3.9 1.50E-10 4.0

Table 4.2: Relative errors and convergence rates for Example 2.

the optimal O(hk) order of convergence for all variables, and also O(hk+1) superconvergence

for the pressure.

In summary, the numerical experiments confirm the theoretical convergence results for

the higher order MFMFE method both on h2-parallelograms and regular h2-parallelepipeds.

As a result of our work on higher order MFMFE methods, we have implemented the

enhanced Raviart-Thomas space (4.1.16) and contributed it to deal.II open-source finite

element library [7] together with its necessary dependencies. The new finite element class

template named FE_RT_Bubbles is now available in the development version of deal.II and

will be included in the 9.0.0 release. In the Appendix of this thesis, in Listing A.1.1, a

complete deal.II implementation of the higher order MFMFE method is provided.
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5.0 DOMAIN DECOMPOSITION AND MULTISCALE MORTAR MIXED

FINITE ELEMENT METHODS FOR LINEAR ELASTICITY WITH WEAK

SRESS SYMMETRY

In the first part of this chapter we consider a global conforming shape regular and quasi-

uniform finite element partition T̂h of Ω. We assume that T̂h consists of simplices or rect-

angular elements, but note that the proposed methods can be extended to other types of

elements for which stable elasticity MFE spaces have been developed, e.g., the quadrilateral

elements in [9]. Let

Xh × Vh ×Wh ⊂ X× V ×W

be any stable triple of spaces for linear elasticity with weakly imposed stress symmetry, such

as the Amara-Thomas [2], PEERS [11], Stenberg [85], Arnold-Falk-Winther [9, 13, 16], or

Cockburn-Gopalakrishnan-Guzman [25, 48] families of elements. For all spaces divXh = Vh

and there exists a projection operator Π : H1(Ω,M)→ Xh, such that for any τ ∈ H1(Ω,M),

The MFE approximation of (1.3.10)–(1.3.12) was already given in Chapter 2, namely we

refer the reader to (2.0.1)-(2.0.3).

The well-posedness of (2.0.1)–(2.0.3) has been shown in the above-mentioned references.

It was also shown in [13,25,48] that the following error estimate holds:

‖σ − σh‖+ ‖Qu
hu− uh‖+ ‖γ − γh‖ ≤ C(‖σ − Πσ‖+ ‖γ −Qγ

hγ‖), (5.0.1)

where Qu
h is the L2(Ω)-projection onto Vh and Qγ

h is the L2(Ω)-projection onto Wh, similarly

to the notation of the Chapter 2. Later we will also use the restrictions of the global

projections on a subdomain Ωi, denoted as Πi, Q
u
h,i, and Qγ

h,i.
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5.1 FORMULATION OF THE METHODS

Let Ω = ∪ni=1Ωi be a union of nonoverlapping shape regular polygonal subdomains. Let

Γi,j = ∂Ωi∩∂Ωj, Γ = ∪ni,j=1Γi,j, and Γi = ∂Ωi∩Γ = ∂Ωi \∂Ω denote the interior subdomain

interfaces. Denote the restrictions of Xh, Vh, and Wh to Ωi by Xh,i, Vh,i, and Wh,i, respec-

tively. Let T̂h,i,j be a finite element partition of Γi,j obtained from the trace of T̂h and let

Λh,i,j = Xh n be the Lagrange multiplier space on T̂h,i,j. Let Λh =
⊕

1≤i,j≤n Λh,i,j. We now

present two domain decomposition formulations. The first one uses a displacement Lagrange

multiplier to impose weakly continuity of normal stress.

Method 1: For 1 ≤ i ≤ n, find (σh,i, uh,i, γh,i, λh) ∈ Xh,i × Vh,i ×Wh,i × Λh such that

(Aσh,i, τ)Ωi
+ (uh,i, div τ)Ωi

+ (γh,i, τ)Ωi

= 〈λh, τ ni〉Γi + 〈gD, τ ni〉∂Ωi∩ΓD , ∀τ ∈ Xh,i, (5.1.1)

(div σh,i, v)Ωi
= (f, v)Ωi

, ∀v ∈ Vh,i, (5.1.2)

(σh,i, ξ)Ωi
= 0, ∀ξ ∈Wh,i, (5.1.3)

n∑
i=1

〈σh,i ni, µ〉Γi = 0, ∀µ ∈ Λh, (5.1.4)

where ni is the outward unit normal vector field on ∂Ωi. We note that the subdomain

problems in the above method are of Dirichlet type.

The second method uses a normal stress Lagrange multiplier to impose weakly continuity

of displacement. Let X0
h,i = {τ ∈ Xh,i : τ n = 0 on Γ} and let XΓ

h be the complementary

subspace:

Xh =
⊕

X0
h,1 · · ·

⊕
X0
h,n

⊕
XΓ
h.

Method 2: For 1 ≤ i ≤ n, find (σh,i, uh,i, γh,i) ∈ Xh,i × Vh,i ×Wh,i such that

(Aσh,i, τ)Ωi
+ (uh,i, div τ)Ωi

+ (γh,i, τ)Ωi
= 〈gD, τ ni〉∂Ωi∩ΓD , ∀τ ∈ X0

h,i, (5.1.5)

(div σh,i, v)Ωi
= (f, v)Ωi

, ∀v ∈ Vh,i, (5.1.6)

(σh,i, ξ)Ωi
= 0, ∀ξ ∈Wh,i, (5.1.7)
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n∑
i=1

σh,i ni = 0 on Γ, (5.1.8)

n∑
i=1

[
(Aσh,i, τ)Ωi

+ (uh,i, div τ)Ωi
+ (γh,i, τ)Ωi

]
= 0, ∀τ ∈ XΓ

h. (5.1.9)

We note that (5.1.9) imposes weakly continuity of displacement on the interface, since taking

τ ∈ XΓ
h in (5.1.5) and summing gives

0 =
n∑
i=1

[
(Aσh,i, τ)Ωi

+ (uh,i, div τ)Ωi
+ (γh,i, τ)Ωi

]
=

n∑
i=1

〈uh,i, τ ni〉Γ ∀τ ∈ XΓ
h.

It is easy to see that both (5.1.1)–(5.1.4) and (5.1.5)–(5.1.9) are equivalent to the global for-

mulation (2.0.1)–(2.0.3) with (σh, uh, γh)|Ωi = (σh,i, uh,i, γh,i). In Method 1, λh approximates

u|Γ.

5.2 REDUCTION TO AN INTERFACE PROBLEM AND CONDITION

NUMBER ANALYSIS

5.2.1 Method 1

To reduce (5.1.1)–(5.1.4) to an interface problem for λh, we decompose the solution as

σh,i = σ∗h,i(λh) + σ̄h,i, uh,i = u∗h,i(λh) + ūh,i, γh,i = γ∗h,i(λh) + γ̄h,i, (5.2.1)

where, for λh ∈ Λh, (σ∗i (λh), u
∗
i (λh), γ

∗
i (λh)) ∈ Xh,i × Vh,i ×Wh,i, 1 ≤ i ≤ n, solve

(
Aσ∗h,i(λh), τ

)
Ωi

+
(
u∗h,i(λh), div τ

)
Ωi

+
(
γ∗h,i(λh), τ

)
Ωi

= 〈λh, τ ni〉Γi , ∀τ ∈ Xh,i, (5.2.2)(
div σ∗h,i(λh), v

)
Ωi

= 0, ∀v ∈ Vh,i, (5.2.3)(
σ∗h,i(λh), ξ

)
Ωi

= 0, ∀ξ ∈Wh,i, (5.2.4)

and (σ̄h,i, ūh,i, γ̄h,i) ∈ Xh,i × Vh,i ×Wh,i solve

(Aσ̄h,i, τ)Ωi
+ (ūh,i, div τ)Ωi

+ (γ̄h,i, τ)Ωi
= 〈gD, τ ni〉(∂Ωi∩ΓD), ∀τ ∈ Xh,i, (5.2.5)
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(div σ̄h,i, v)Ωi
= (f, v)Ωi

, ∀vi ∈ Vh,i, (5.2.6)

(σ̄h,i, ξ)Ωi
= 0, ∀ξ ∈Wh,i. (5.2.7)

Define the bilinear forms ai : Λh × Λh → R, 1 ≤ i ≤ n and a : Λh × Λh → R and the linear

functional g : Λh → R by

ai(λh, µ) = −〈σ∗h,i(λh)ni, µ〉Γi , a(λh, µ) =
n∑
i=1

ai(λh, µ), (5.2.8)

g(µ) =
n∑
i=1

〈σ̄i ni, µ〉Γi . (5.2.9)

Using (5.1.4), we conclude that the functions satisfying (5.2.1) solve (5.1.1)–(5.1.4) if and

only if λh ∈ Λh solves the interface problem

a(λh, µ) = g(µ) ∀µ ∈ Λh. (5.2.10)

In the analysis of the interface problem we will utilize the elliptic projection Π̃i : H1(Ωi,M)→

Xh,i introduced in [15]. Given σ ∈ X there exists a triple

(σ̃h,i, ũh,i, γ̃h,i) ∈ Xh,i × Vh,i ×Wh,i such that

(σ̃h,i, τ)Ωi
+ (ũh,i, div τ)Ωi

+ (γ̃h,i, τ)Ωi
= (σ, τ)Ωi

, ∀τ ∈ X0
h,i, (5.2.11)

(div σ̃h,i, v)Ωi
= (div σ, v)Ωi

, ∀v ∈ Vh,i, (5.2.12)

(σ̃h, ξ)Ωi
= (σ, ξ)Ωi

, ∀ξ ∈Wh,i, (5.2.13)

σ̃h,ini = (Πiσ)ni on ∂Ωi. (5.2.14)

Namely, (σ̃h,i, ũh,i, γ̃h,i) is a mixed method approximation of (σ, 0, 0) based on solving a

Neumann problem. We note that the problem is singular, with the solution determined up

to (0, χ, Skew(∇χ)), χ ∈ RM(Ωi), where RM(Ωi) is the space of rigid body motions in Ωi

and Skew(τ) = (τ − τT )/2 is the skew-symmetric part of τ . The problem is well posed, since

the data satisfies the compatibility condition

(div σ, χ)Ωi
− 〈(Πiσ)ni, χ〉∂Ωi + (σ, Skew(∇χ))Ωi

= 0, ∀χ ∈ RM(Ωi),

where we used (1.4.21) on ∂Ωi. We note that the definition in [15] is based on a Dirichlet

problem, but it is easy to see that their arguments extend to the Neumann problem. We
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now define Π̃iσ = σ̃h,i. If σ ∈ Xh,i we have σ̃h,i = σ, ũh,i = 0, γ̃h,i = 0, so Π̃ is a projection.

It follows from (5.2.12)–(5.2.14) and (1.4.21) that for all σ ∈ X, ξ ∈ Wh, the projection

operator Π̃ satisfies

div Π̃iσ = Ph,i div σ,
(

Π̃iσ, ξ
)

Ωi
= (σ, ξ)Ωi

, (Π̃iσ)ni = Qh,i(σni), (5.2.15)

where Qh,i is the L2(∂Ωi)-projection onto Xh,ini. Moreover, the error estimate (5.0.1) for

the MFE approximation (5.2.11)–(5.2.13) implies that, see [15] for details,

‖σ − Π̃iσ‖Ωi ≤ C‖σ − Πσ‖Ωi , σ ∈ H1(Ωi,M). (5.2.16)

We also note that for σ ∈ Hε(Ωi,M) ∩ Xi, 0 < ε < 1, Πiσ is well defined [5, 67], it satisfies

‖Πiσ‖Ωi ≤ C (‖σ‖ε,Ωi + ‖ div σ‖Ωi) ,

and, if div σ = 0,

‖σ − Πiσ‖Ωi ≤ Chε‖σ‖ε,Ωi . (5.2.17)

Bound (5.2.16) allows us to extend these results to Π̃iσ:

‖Π̃iσ‖Ωi ≤ C (‖σ‖ε,Ωi + ‖ div σ‖Ωi) , (5.2.18)

and, if div σ = 0,

‖σ − Π̃iσ‖Ωi ≤ Chε‖σ‖ε,Ωi . (5.2.19)

We are now ready to state and prove the main results for the interface problem (5.2.10).

Lemma 5.2.1. The interface bilinear form a(·, ·) is symmetric and positive definite over Λh.
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Proof. For µ ∈ λh, consider (5.2.2) with data µ and take τ = σ∗h,i(λh), which implies

a(λh, µ) =
n∑
i=1

(
Aσ∗h,i(µ), σ∗h,i(λh)

)
Ωi
, (5.2.20)

using (5.2.8), (5.2.3) and (5.2.4). This implies that a(·, ·) is symmetric and positive semi-

definite over Λh. We now show that if a(λh, λh) = 0, then λh = 0. Let Ωi be a domain

adjacent to ΓD, i.e. meas (∂Ωi ∩ ΓD) > 0. Let (ψi, φi) be the solution of the auxiliary

problem

Aψi = ε(φi), divψi = 0 in Ωi, (5.2.21)

φi = 0 on ∂Ωi ∩ ΓD, (5.2.22)

ψi ni =

0 on ∂Ωi ∩ ΓN ,

λh on Γi.

(5.2.23)

Since ψi ∈ Hε(Ωi,M) ∩Xi for some ε > 0, see e.g. [49], Π̃iψi is well defined and we can take

τ = Π̃iψi in (5.2.2). Noting that a(λh, λh) = 0 implies σ∗h,i(λh) = 0, we have, using (5.2.15),

〈λh, λh〉Γi = 〈λh, (Π̃iψi)ni〉Γi

=
(
u∗h,i(λh), div Π̃iψi

)
Ωi

+
(
γ∗h,i(λh), Π̃iψi

)
Ωi

= 0, (5.2.24)

which implies λh = 0 on Γi. Next, consider a domain Ωj adjacent to Ωi such that meas (Γi,j) >

0. Let (ψj, φj) be the solution of (5.2.21)–(5.2.23) modified such that φj = 0 on Γi,j. Repeat-

ing the above argument implies that that λh = 0 on Γj. Iterating over all domains in this

fashion allows us to conclude that λh = 0 on Γ. Therefore a(·, ·) is symmetric and positive

definite over Λh.

As a consequence of the above lemma, the conjugate gradient (CG) method can be

applied for solving the interface problem (5.2.10). We next proceed with providing bounds

on the bilinear form a(·, ·), which can be used to bound the condition number of the interface

problem.

Theorem 5.2.1. There exist positive constants C0 and C1 independent of h such that

∀λh ∈ Λh, C0
4µ2

2µ+ dλ
‖λh‖2

Γ ≤ a(λh, λh) ≤ C1(2µ+ dλ)h−1‖λh‖2
Γ. (5.2.25)
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Proof. Using the definition of ai(·, ·) from (5.2.8) we get

ai(λh, λh) = −〈σ∗h,i(λh)ni, λh〉Γi

≤ ‖σ∗h,i(λh)ni‖Γi‖λh‖Γi ≤ Ch−1/2‖σ∗h,i(λh)‖Ωi‖λh‖Γi , (5.2.26)

where in the last step we used the discrete trace inequality

∀ τ ∈ Xh,i, ‖τ ni‖∂Ωi ≤ Ch−1/2‖τ‖Ωi , (5.2.27)

which follows from a scaling argument. Using (5.2.26) together with (1.3.9) and (5.2.20) we

get

ai(λh, λh) ≤ C(2µ+ dλ)h−1‖λh‖2
Γi
.

Summing over the subdomains results in the upper bound in (5.2.25).

To prove the lower bound, we again refer to the solution of the auxiliary problem (5.2.21)–

(5.2.23) for a domain Ωi adjacent to ΓD and take τ = Π̃iψi in (5.2.2) to obtain

‖λh‖2
Γi

= 〈λh, ψi ni〉Γi = 〈λh, (Π̃ψi)ni〉Γi

=
(
Aσ∗h,i(λh), Π̃ψi

)
Ωi

+
(
u∗h,i(λh), div Π̃ψi

)
Ωi

+
(
γ∗h,i(λh), Π̃ψi

)
Ωi

=
(
Aσ∗h,i(λ), Π̃ψi

)
Ωi
≤ C

1

2µ
‖σ∗h,i(λh)‖Ωi ‖ψi‖ε,Ωi ≤ C

1

2µ
‖σ∗h,i(λh)‖Ωi‖λh‖Γi ,

where we used (5.2.15), (5.2.18), (1.3.9), and the elliptic regularity [49,63]

‖ψi‖1/2,Ωi ≤ C‖λh‖Γi . (5.2.28)

Using (1.3.9) and (5.2.20), we obtain that

‖λh‖2
Γi
≤ C

2µ+ dλ

4µ2
ai(λh, λh).

Next, consider a domain Ωj adjacent to Ωi with meas (Γi,j) > 0. Let (ψj, φj) be the solution

of (5.2.21)–(5.2.23) modified such that φj = 0 on Γi,j. Taking τ = Π̃jψj in (5.2.2) for Ωj, we

obtain

‖λh‖2
Γj\Γi,j =

(
Aσ∗h,j(λ), Π̃ψj

)
Ωj
− 〈λh, Π̃jψj nj〉Γi,j
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≤ C

(
1

2µ
‖σ∗h,j(λh)‖Ωj‖λh‖Γj\Γi,j + ‖λh‖Γi,j‖ψj nj‖Γi,j

)
≤ C

√
2µ+ dλ

2µ

(
a

1/2
j (λh, λh) + a

1/2
i (λh, λh)

)
‖λh‖Γj\Γi,j ,

where for the last inequality we used the trace inequality ‖ψj nj‖Γi,j ≤ C‖ψj‖1/2,Ωj , which

follows by interpolating ‖ψj nj‖−1/2,∂Ωj ≤ C‖ψj‖H(div;Ωj) = C‖ψj‖Ωj [22] and ‖ψj nj‖ε,∂Ωj ≤

C‖ψj‖1/2+ε,∂Ωj [49], together with the elliptic regularity (5.2.28). Iterating over all subdo-

mains in a similar fashion completes the proof of the lower bound in (5.2.25).

Corollary 5.2.1. Let A : Λh → Λh be such that 〈Aλ, µ〉Γ = a(λ, µ) ∀λ, µ ∈ Λh. Then there

exists a positive constant C independent of h such that

cond(A) ≤ C

(
2µ+ dλ

2µ

)2

h−1.

5.2.2 Method 2

We introduce the bilinear forms bi : XΓ
h × XΓ

h → R, 1 ≤ i ≤ n, and b : XΓ
h × XΓ

h → R by

bi(λh, µ) =
(
Aσ∗h,i(λh), µ

)
Ωi

+
(
u∗h,i(λh), div µ

)
Ωi

+
(
γ∗h,i(λh), µ

)
Ωi
,

b(λh, µ) =
n∑
i=1

bi(λh, µ),

where, for a given λh ∈ XΓ
h, (σ∗h,i(λh), u

∗
h,i(λh), γ

∗
h,i(λh)) ∈ Xh,i × Vh,i ×Wh,i solve

(
Aσ∗h,i(λh), τ

)
Ωi

+
(
u∗h,i(λh), div τ

)
Ωi

+
(
γ∗h,i(λh), τ

)
Ωi

= 0, ∀τ ∈ X0
h,i, (5.2.29)(

div σ∗h,i(λh), v
)

Ωi
= 0, ∀v ∈ Vh,i, (5.2.30)(

σ∗h,i(λh), ξ
)

Ωi
= 0, ∀ξ ∈Wh,i, (5.2.31)

σ∗h,i(λh)ni = λh ni on Γi. (5.2.32)

Define the linear functional h : XΓ
h → R by

h(µ) = −
n∑
i=1

[
(Aσ̄i, µ)Ωi

+ (ūi, div µ)Ωi
+ (γ̄i, µ)Ωi

]
, (5.2.33)

where (σ̄i, ūi, γ̄i) ∈ X0
h,i × Vh,i ×Wh,i solve

(Aσ̄h,i, τ)Ωi
+ (ūh,i, div τ)Ωi

+ (γ̄h,i, τ)Ωi
= 〈gD, τ ni〉∂Ωi∩ΓD , ∀τ ∈ X0

h,i, (5.2.34)
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(div σ̄h,i, v)Ωi
= (f, v)Ωi

, ∀v ∈ Vh,i, (5.2.35)

(σ̄h,i, ξ)Ωi
= 0, ∀ξ ∈Wh,i. (5.2.36)

By writing

σh,i = σ∗h,i(λh) + σ̄h,i, uh,i = u∗h,i(λh) + ūh,i, γh,i = γ∗h,i(λh) + γ̄h,i, (5.2.37)

it is easy to see that the solution to (5.1.5)–(5.1.9) satisfies the following interface problem:

find λh ∈ XΓ
h such that

b(λh, µ) = h(µ), ∀µ ∈ XΓ
h. (5.2.38)

Remark 5.2.1. We note that the Neumann subdomain problems (5.2.29)–(5.2.32) and

(5.2.34)–(5.2.36) are singular if ∂Ωi∩ΓD = ∅. In such case the compatibility conditions for the

solvability of (5.2.29)–(5.2.32) and (5.2.34)–(5.2.36) are, respectively, 〈λhni, χ〉Γi = 0 and

(f, χ)Ωi
= 0 for all χ ∈ RM(Ωi). These can be guaranteed by employing the one-level FETI

method [36, 88]. This involves solving a coarse space problem, which projects the interface

problem onto a subspace orthogonal to the kernel of the subdomain operators, see [89] for

details. In the following we analyze the interface problem in this subspace, denoted by

XΓ
h,0 = {µ ∈ XΓ

h : 〈µni, χ〉Γi = 0 ∀χ ∈ RM(Ωi),∀ i such that ∂Ωi ∩ ΓD = ∅}.

Lemma 5.2.2. The interface bilinear form b(·, ·) is symmetric and positive definite over

XΓ
h,0.

Proof. We start by showing that

b(λh, µ) =
n∑
i=1

(
Aσ∗h,i(λh)i, σ

∗
h,i(µ)

)
Ωi
. (5.2.39)

To this end, consider the following splitting of µ:

µ = σ∗h(µ) +
n∑
i=1

σ0
h,i,

where σ∗h(µ)
∣∣
Ωi

= σ∗h,i(µ) and σ0
h,i ∈ X0

h,i. The the definition of bi(·, ·) reads

bi(λh, µ) =
(
Aσ∗h,i(λh), σ

∗
h,i(µ)

)
Ωi

+
(
u∗h,i(λh), div σ∗h,i(µ)

)
Ωi

+
(
γ∗h,i(λh), σ

∗
h,i(µ)

)
Ωi
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+
(
Aσ∗h,i(λh), σ

0
h,i

)
Ωi

+
(
u∗h,i(λh), div σ0

h,i

)
Ωi

+
(
γ∗h,i(λh), σ

0
h,i

)
Ωi

=
(
Aσ∗h,i(λh), σ

∗
h,i(µ)

)
Ωi
,

using (5.2.29), (5.2.30) and (5.2.31). Therefore (5.2.39) holds, which implies that b(λh, µ)

is symmetric and positive definite. We next note that, since σ∗h,i(λh) ∈ H(div,Ωi) and

σ∗h,i(λh)ni = 0 on ∂Ωi\Γi, then σ∗h,i(λh)ni = λhni ∈ H−1/2(Γi) and the normal trace inequality

[41] implies

C‖λh ni‖2
H−1/2(Γi)

≤ ‖σ∗h,i(λh)‖2
H(div,Ωi)

= ‖σ∗h,i(λh)‖2
L2(Ωi)

≤ (2µ+ dλ)bi(λh, λh), (5.2.40)

using (1.3.9) and (5.2.30). Summing over Ωi proves that b(λh, λh) is positive definite on

XΓ
h,0.

The lemma above shows that the system (5.2.38) can be solved using the CG method.

We next prove a bound on b(λh, λh) that provides an estimate on the condition number of

the algebraic system arising from (5.2.38).

Theorem 5.2.2. There exist positive constants c0 and c1 independent of h such that

∀λh ∈ XΓ
h,0, c0

1

2µ+ dλ
h‖λh n‖2

Γ ≤ b(λh, λh) ≤ c1
1

2µ
‖λh n‖2

Γ. (5.2.41)

Proof. Using (5.2.40) and the inverse inequality [24] we have

bi(λh, λh) ≥ C
1

2µ+ dλ
‖λh ni‖2

H−1/2(Γi)
≥ C

1

2µ+ dλ
h‖λh ni‖2

Γi
, (5.2.42)

and the left inequality in (5.2.41) follows from summing over the subdomains. To show the

right inequality, we consider the auxiliary problem

Aψi = ε(φi), divψi = 0 in Ωi,

φi = 0 on ∂Ωi ∩ ΓD,

ψi ni =

0 on ∂Ωi ∩ ΓN

λhni on Γi.
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Since λh ∈ XΓ
h,0, the problem is well posed, even if ∂Ωi ∩ ΓD = ∅. From elliptic regularity

[49,63], ψi ∈ Hε(Ωi,M) ∩ Xi for some ε > 0 and

‖ψi‖ε,Ωi ≤ C‖λhni‖ε−1/2,Γi .

We also note that σ∗h,i(λh) is the MFE approximation of ψi, therefore, using (5.0.1), (5.2.17),

and a similar approximation property of Qγ
h,i, the following error estimate holds:

‖σ∗h,i(λh)− ψi‖Ωi ≤ Chε‖ψi‖ε,Ωi .

Using the above two bounds, we have

‖σ∗h,i(λh)‖Ωi ≤ ‖σ∗h,i(λh)− ψi‖Ωi + ‖ψi‖Ωi ≤ C‖ψi‖ε,Ωi ≤ C‖λhni‖Γi .

Squaring the above bound, using (5.2.39) and (1.3.9), and summing over the subdomains

completes the proof of the right inequality in (5.2.41).

Corollary 5.2.2. Let B : XΓ
h,0 → XΓ

h,0 be such that 〈B λ, µ〉Γ = b(λ, µ) ∀λ, µ ∈ XΓ
h,0. Then

there exists a positive constant C independent of h such that

cond(B) ≤ C
2µ+ dλ

2µ
h−1.
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5.3 A MULTISCALE MORTAR MFE METHOD ON NON-MATCHING

GRIDS

5.3.1 Formulation of the method

In this section we allow for the subdomain grids to be non-matching across the interfaces

and employ coarse scale mortar finite elements to approximate the displacement and im-

pose weakly the continuity of normal stress. This can be viewed as a non-matching grid

extension of Method 1. The coarse mortar space leads to a less computationally expensive

interface problem. The subdomains are discretized on the fine scale, resulting in a multiscale

approximation. We focus on the analysis of the multiscale discretization error.

For the subdomain discretizations, assume that Xh,i, Vh,i, and Wh,i contain polynomials

of degrees up to k ≥ 1, l ≥ 0, and p ≥ 0, respectively. Let

Xh =
⊕

1≤i≤n

Xh,i, Vh =
⊕

1≤i≤n

Vh,i, Wh =
⊕

1≤i≤n

Wh,i,

noting that the normal traces of stresses in Xh can be discontinuous across the interfaces. Let

TH,i,j be a shape regular quasi-uniform simplicial or quadrilateral finite element partition of

Γi,j with maximal element diameter H. Denote by ΛH,i,j ⊂ L2(Γi,j) the mortar finite element

space on Γi,j, containing either continuous or discontinuous piecewise polynomials of degree

m ≥ 0 on TH,i,j. Let

ΛH =
⊕

1≤i,j≤n

ΛH,i,j.

be the mortar finite element space on Γ. Some additional restrictions are to be made on the

mortar space Λh in the forthcoming statements.

The multiscale mortar MFE method reads: find (σh,i, uh,i, γh,i, λH) ∈ Xh,i×Vh,i×Wh,i×

ΛH such that, for 1 ≤ i ≤ n,

(Aσh,i, τ)Ωi
+ (uh,i, div τ)Ωi

+ (γh,i, τ)Ωi

= 〈λH , τ ni〉Γi + 〈gD, τ n〉∂Ωi∩ΓD , ∀τ ∈ Xh,i, (5.3.1)

(div σh,i, v)Ωi
= (f, v)Ωi

, ∀v ∈ Vh,i, (5.3.2)
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(σh,i, ξ)Ωi
= 0, ∀q ∈Wh,i, (5.3.3)

n∑
i=1

〈σh,i ni, µ〉Γi = 0, ∀µ ∈ ΛH . (5.3.4)

Note that λH approximates the displacement on Γ and the last equation enforces weakly

continuity of normal stress on the interfaces.

Lemma 5.3.1. Assume that for any η ∈ ΛH

Qh,iη = 0, 1 ≤ i ≤ n, implies that η = 0. (5.3.5)

Then there exists a unique solution of (5.3.1)–(5.3.3).

Remark 5.3.1. Condition (5.3.5) requires that the mortar space ΛH cannot be too rich

compared to the normal trace of the stress space. This condition can be easily satisfied in

practice, especially when the mortar space is on a coarse scale.

Proof. It suffices to show uniqueness, as (5.3.1) - (5.3.4) is a square linear system. Let f = 0

and gD = 0. Then, by taking (τ, v, ξ, µ) = (σh, uh, γh, λH) in (5.3.1)–(5.3.4), we obtain that

σh = 0. Next, for 1 ≤ i ≤ n, let uh,i be the L2(Ωi)-projection of uh,i onto RM(Ωi) and let

Qh,iλH be the L2(Γi)-projection of Qh,iλH onto RM(Ωi)|Γi . Consider the auxiliary problem

ψi = ε(φi) in Ωi,

divψi = uh,i − uh,i in Ωi,

ψi ni =

−(Qh,iλH −Qh,iλH) on Γi,

0 on ∂Ωi ∩ ∂Ω,

which is solvable and φ is determined up to an element of RM(Ωi). Now, setting τ = Π̃iψi

in (5.3.1) and using (5.2.15), we obtain

(uh,i, uh,i − uh,i)Ωi
+ 〈Qh,iλH , Qh,iλH −Qh,iλH〉Γi = 0,

which implies uh,i = uh,i and Qh,iλH = Qh,iλH . Taking τ to be a symmetric matrix in (5.3.1)

and integrating by parts gives

− (ε(uh,i), τ)Ωi
+ 〈uh,i − λH , τ ni〉Γi + 〈uh,i, τ ni〉∂Ωi∩ΓD = 0.
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The first term above is zero, since uh,i ∈ RM(Ωi). Then the last two terms imply that

uh,i = Qh,iλH on Γi and uh,i = 0 on ∂Ωi ∩ ΓD, since RM(Ωi)|∂Ωi ∈ Xh,ini. Using that

uh,i ∈ RM(Ωi), this implies that for subdomains Ωi such that meas (∂Ωi ∩ ΓD) > 0, uh,i =

Qh,iλH = 0. Consider any subdomain Ωj such that ∂Ωi ∩ ∂Ωj = Γi,j 6= ∅. Recalling that

k ≥ 1, we have that for all linear functions ϕ on Γi,j,

0 = 〈Qh,iλH , ϕ〉Γi,j = 〈λH , ϕ〉Γi,j = 〈Qh,jλH , ϕ〉Γi,j ,

which implies that Qh,jλH = 0 on ∂Ωj, since Qh,jλH ∈ RM(Ωj)|∂Ωj . Repeating the above

argument for the rest of the subdomains, we conclude that Qh,iλH = 0 and uh,i = 0 for

1 ≤ i ≤ n. The hypothesis (5.3.5) implies that λH = 0. It remains to show that γh = 0. The

stability of Xh,i × Vh,i ×Wh,i implies an inf-sup condition, which, along with (5.3.1), yields

C(‖uh,i‖Ωi + ‖γh,i‖Ωi) ≤ sup
τ∈Xh,i

(uh,i, div τ)Ωi
+ (γh,i, τ)Ωi

‖τ‖H(div;Ωi)

= sup
τ∈Xh,i

− (Aσh,i, τ)Ωi
+ 〈λH , τ n〉Γi

‖τ‖H(div;Ωi)

= 0,

implying γh = 0.

5.3.2 The space of weakly continuous stresses

We start by introducing some interpolation or projection operators and discussing their

approximation properties. Recall the projection operators introduced earlier: Πi - the mixed

projection operator onto Xh,i, Π̃i - the elliptic projection operator onto Xh,i, Q
u
h,i - the L2(Ωi)-

projection onto Vh,i, Q
γ
h,i - the L2(Ωi)-projection onto Wh,i, and Qh,i - the L2(Ωi)-projection

onto Xh,ini. In addition, let IcH be the Scott-Zhang interpolation operator [81] into the space

Λc
H , which is the subset of continuous functions in ΛH , and let PH be the L2(Γ)-projection

onto ΛH . Recall that the polynomial degrees in the spaces Xh,i, Vh,i, Wh,i, and ΛH are

k ≥ 1, l ≥ 0, p ≥ 0, and m ≥ 0, respectively, assuming for simplicity that the order of

approximation is the same on every subdomain. the projection/interpolation operators have

the approximation properties:

‖η − IcHη‖t,Γi,j ≤ CHs−t‖η‖s,Γi,j , 1 ≤ s ≤ m+ 1, 0 ≤ t ≤ 1, (5.3.6)
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‖η − PHη‖−t,Γi,j ≤ CHs+t‖η‖s,Γi,j , 0 ≤ s ≤ m+ 1, 0 ≤ t ≤ 1, (5.3.7)

‖v −Qu
h,iv‖Ωi ≤ Cht‖v‖t,Ωi , 0 ≤ t ≤ l + 1, (5.3.8)

‖ div(τ − Π̃iτ)‖0,Ωi ≤ Cht‖ div τ‖t,Ωi , 0 ≤ t ≤ l + 1 (5.3.9)

‖ξ −Qγ
h,iξ‖Ωi ≤ Chq‖w‖q,Ωi , 0 ≤ q ≤ p+ 1, (5.3.10)

‖τ − Π̃iτ‖Ωi ≤ Chr‖τ‖r,Ωi , 1 ≤ r ≤ k + 1, (5.3.11)

‖η −Qu
h,iη‖−t,Γi,j ≤ Chr+t‖η‖r,Γi,j , 0 ≤ r ≤ k + 1, 0 ≤ t ≤ k + 1, (5.3.12)

‖(τ − Π̃iτ)ni‖−t,Γi,j ≤ Chr+t‖τ‖r,Γi,j , 0 ≤ r ≤ k + 1, 0 ≤ t ≤ k + 1. (5.3.13)

Bound (5.3.6) can be found in [81]. Bounds (5.3.7)–(5.3.10) and (5.3.12)–(5.3.13) are well

known L2-projection approximation results [24]. Bound (5.3.11) follows from (5.2.16) and a

similar bound for Πi, which can be found, e.g., in [22,80].

We will use the trace inequalities [49, Theorem 1.5.2.1]

‖η‖r,Γi,j ≤ C‖η‖r+1/2,Ωi , r > 0 (5.3.14)

and [22,80]

〈η, τ n〉∂Ωi ≤ C‖η‖1/2,∂Ωi‖τ‖H(div;Ωi). (5.3.15)

We now introduce the space of weakly continuous stresses with respect to the mortar

space,

Xh,0 =

{
τ ∈ Xh :

n∑
i=1

〈τini, µ〉Γi = 0 ∀µ ∈ ΛH

}
. (5.3.16)

Then the mixed method (5.3.1)–(5.3.4) is equivalent to: find (σh, uh, γh) ∈ Xh,0 × Vh ×Wh

such that

(Aσh, τ)Ωi
+

n∑
i=1

(uh, div τ)Ωi
+

n∑
i=1

(γh, τ)Ωi
= 〈gD, τ n〉ΓD , ∀τ ∈ Xh,0, (5.3.17)

n∑
i=1

(div σh, v)Ωi
= (f, v) , ∀v ∈ Vh, (5.3.18)

n∑
i=1

(σh, ξ)Ωi
= 0, ∀q ∈Wh. (5.3.19)
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We note that the above system will be used only for the purpose of the analysis. We next

construct a projection operator Π̃0 onto Xh,0 with optimal approximation properties. The

construction follows closely the approach in [5, 6]. Define

Xh n =
{

(ηL, ηR) ∈ L2(Γ,Rd)× L2(Γ,Rd) :

ηL
∣∣
Γi,j
∈ Xh,i ni, ηR

∣∣
Γi,j
∈ Xh,j nj ∀ 1 ≤ i < j ≤ n

}
and

Xh,0 n =
{

(ηL, ηR) ∈ L2(Γ,Rd)× L2(Γ,Rd) : ∃τ ∈ Xh,0 such that

ηL
∣∣
Γi,j

= τini and ηR
∣∣
Γi,j

= τjnj ∀ 1 ≤ i < j ≤ n
}
.

For any η = (ηL, ηR) ∈
(
L2(Γ,Rd)

)2
we write η

∣∣
Γi,j

= (ηi, ηj), 1 ≤ i < j ≤ n. Define the

L2-projection Qh,0 :
(
L2(Γ,Rd)

)2 → Xh,0 n such that, for any η ∈
(
L2(Γ,Rd)

)2
,

n∑
i=1

〈ηi − (Qh,0η)i, φi〉Γi = 0, ∀φ ∈ Xh,0 n. (5.3.20)

Lemma 5.3.2. Assume that (5.3.5) holds. Then, for any η ∈
(
L2(Γ,Rd)

)2
, there exists

λH ∈ ΛH such that on Γi,j, 1 ≤ i ≤ j ≤ n,

Qh,iλH = Qh,iηi − (Qh,0η)i, (5.3.21)

Qh,jλH = Qh,jηj − (Qh,0η)j, (5.3.22)

〈λH , χ〉Γi,j =
1

2
〈ηi + ηj, χ〉Γi,j , ∀χ ∈ RM(Ωi ∪ Ωj)|Γi,j . (5.3.23)

Proof. The proof is given in [5, Lemma 3.1] with a straightforward modification to show

(5.3.23) for χ ∈ RM(Ωi ∪ Ωj)|Γi,j , rather than for constants.

The next lemma shows that, under a relatively mild assumption on the mortar space

ΛH , Qh,0 has optimal approximation properties.
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Lemma 5.3.3. Assume that there exists a constant C, independent of h and H, such that

‖µ‖Γi,j ≤ C(‖Qh,iµ‖Γi,j + ‖Qh,jµ‖Γi,j) ∀µ ∈ ΛH , 1 ≤ i < j ≤ n. (5.3.24)

Then for any η ∈
(
L2(Γ,Rd)

)2
such that η

∣∣
Γi,j

= (ηi,−ηi), there exists a constant C, inde-

pendent of h and H such that( ∑
1≤i<j≤n

‖Qh,iηi − (Qh,0η)i‖2
−s,Γi,j

)1/2

≤ C
∑

1≤i<j≤n

hrHs‖ηi‖r,Γi,j ,

0 ≤ r ≤ k + 1, 0 ≤ s ≤ k + 1.

(5.3.25)

Proof. The proof is given in [5, Lemma 3.2] with a changes necessary for the two scales h

and H.

Remark 5.3.2. The condition (5.3.24) is related to (5.3.5) and it requires that the mortar

space ΛH is controlled by its projections onto the normal traces of stress spaces with a constant

independent of the mesh size. It can be satisfied for fairly general mesh configurations,

see [5, 6, 73].

We are now ready to construct the projection operator onto Xh,0.

Lemma 5.3.4. Under assumption (5.3.24), there exists a projection operator

Π̃0 : H1/2+ε(Ω,M) ∩ X→ Xh,0 such that(
div(Π̃0τ − τ), v

)
Ωi

= 0, v ∈ Vh,i, 1 ≤ i ≤ n, (5.3.26)(
Π̃0τ − τ, ξ

)
= 0, ξ ∈Wh, (5.3.27)

‖Π̃0τ‖ ≤ C(‖τ‖1/2+ε + ‖ div τ‖), (5.3.28)

‖Π̃0τ − Π̃τ‖ ≤ ChrH1/2‖τ‖r+1/2, 0 < r ≤ k + 1, (5.3.29)

‖Π̃0τ − τ‖ ≤ C
(
ht‖τ‖t + hrH1/2‖τ‖r+1/2

)
, 1 ≤ t ≤ k + 1, 0 < r ≤ k + 1. (5.3.30)
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Proof. For any τ ∈ H1/2+ε(Ω,M) ∩ X define

Π̃0τ
∣∣
Ωi

= Π̃i(τ + δτi),

where δτi solves

δτi = ε(φi) in Ωi (5.3.31)

div δτi = 0 in Ωi, (5.3.32)

δτi ni =

0, on ∂Ωi ∩ ∂Ω,

−Qh,iτ ni + (Qh,0τ n)i, on Γi,

(5.3.33)

wherein, on any Γi,j, τ n
∣∣
Γi,j

= (τ ni, τ nj). Note that the assumed regularity of τ and the

trace inequality (5.3.14) imply that τ ni = −τ nj ∈ L2(Γi,j,Rd), so Lemma 5.3.3 holds for

τ n
∣∣
Γi,j

. The Neumann problems (5.3.31)–(5.3.33) are well-posed, since ∀χ ∈ RM(Ωi)|Γi,j by

(5.3.21) and (5.3.23) there holds

〈Qh,iτ ni − (Qh,0τ n)i, χ〉Γi,j = 〈Qh,iλH , χ〉Γi,j =
1

2
〈τ ni + τ nj, χ〉Γi,j = 0.

Also, note that the piecewise polynomial Neumann data are in Hε(∂Ωi), so

δτi ∈ Hε+1/2(Ωi,M); thus, Π̃i can be applied to δτi, see (5.2.18). We have by (5.2.15) that

n∑
i=1

〈(Π̃0τ)ni, µ〉Γi =
n∑
i=1

〈(Qh,0τ n)i, µ〉Γi = 0, ∀µ ∈ ΛH ,

therefore Π̃0τ ∈ Xh,0. Also, (5.2.15) implies(
div Π̃0τ, v

)
Ωi

=
(

div Π̃iτ, v
)

Ωi
+
(

div Π̃iδτi, v
)

Ωi
= (div τ, v)Ωi

, ∀ v ∈ Vh,i,

so (5.3.26) holds. In addition, (5.3.27) holds due to (5.2.15) and the fact that δτi is a

symmetric matrix. It remains to study the approximation properties of Π̃0. Since Π̃0τ − τ =

Π̃iτ − τ + Π̃iδτi on Ωi, and using (5.3.11), it suffices to bound only the correction term. By

the elliptic regularity of (5.3.31)-(5.3.33) [49,63], for any 0 ≤ t ≤ 1/2,

‖δτi‖t,Ωi ≤
∑
j

‖Qh,iτ ni − (Qh,0τ n)i‖t−1/2,Γi,j . (5.3.34)
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We then have, using (5.2.19),

‖Π̃iδτi‖0,Ωi ≤ ‖Π̃iδτi − δτi‖0,Ωi + ‖δτi‖0,Ωi ≤ Ch1/2‖δτi‖1/2,Ωi + ‖δτi‖0,Ωi

≤ C
∑
j

[
h1/2‖Qh,iτ ni − (Qh,0τ n)i‖0,Γi,j + ‖Qh,iτ ni − (Qh,0τ n)i‖−1/2,Γi,j

]
,

which, together with (5.3.25) and (5.3.14), implies (5.3.29). Then (5.3.28) follows from

(5.2.18) and (5.3.30) follows from (5.3.11).

5.3.3 Optimal convergence for the stress

We start by noting that, assuming that the solution u of (1.3.10)–(1.3.12) belongs to H1(Ω),

integration by parts in the second term in (1.3.10) implies that

(u, div τ) =
n∑
i=1

(
(u, div τ)Ωi

− 〈u, τ ni〉Γi
)
.

Using the above and subtracting (5.3.17)–(5.3.19) from (1.3.10)–(1.3.12) gives the error equa-

tions

(A(σ − σh), τ)Ω +
n∑
i=1

[
(u− uh, div τ)Ωi

+ (γ − γh, τ)Ωi

]
=

n∑
i=1

〈u, τ ni〉Γi , ∀τ ∈ Xh,0, (5.3.35)

n∑
i=1

(div(σ − σh), v)Ωi
= 0, ∀v ∈ Vh, (5.3.36)

n∑
i=1

(σ − σh, ξ)Ωi
= 0, ∀q ∈Wh. (5.3.37)

It follows from (5.3.36) and (5.3.26) that

div(Π̃0σ − σh) = 0 in Ωi. (5.3.38)

Similarly, (5.3.37) and (5.3.27) imply(
Π̃0σ − σh, ξ

)
= 0, ξ ∈Wh.
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Taking τ = Π̃0σ − σh in (5.3.35) and using that
∑

i〈IcHv, τ ni〉Γi = 0 for any τ ∈ Xh,0, we

obtain (
A(Π̃0σ − σh), Π̃0σ − σh

)
=
(
A(Π̃0σ − σ), Π̃0σ − σh

)
+

n∑
i=1

(
Qγ
hγ − γ, Π̃0σ − σh

)
Ωi

+
n∑
i=1

〈IcHu− u, (Π̃0σ − σh)ni〉Γi

≤ C
(
‖Π̃0σ − σ‖‖Π̃0σ − σh‖+ ‖Qγ

hγ − γ‖‖Π̃0σ − σh‖

+
n∑
i=1

‖Ei(IcHu− u)‖1/2,∂Ωi‖(Π̃0σ − σh)‖H(div;Ωi)

)
≤ C

(
ht‖σ‖t + hrH1/2‖σ‖r+1/2 + hq‖γ‖q +Hs−1/2‖u‖s+1/2

)
‖Π̃0σ − σh‖,

1 ≤ t ≤ k + 1, 0 ≤ r ≤ k + 1, 0 ≤ q ≤ p+ 1, 1 ≤ s ≤ m+ 1,

where Ei(IcHu− u) is a continuous extension by zero to ∂Ωi and we have used the Cauchy-

Schwarz inequality, (5.3.15), (5.3.30), (5.3.10), (5.3.6), and (5.3.14). The above inequality,

together with (5.3.30), (5.3.38), and (5.3.9), results in the following theorem.

Theorem 5.3.1. For the stress σh of the mortar mixed finite element method (5.3.1)-(5.3.4),

if (5.3.24) holds, then there exists a positive constant C independent of h and H such that

‖σ − σh‖ ≤ C
(
ht‖σ‖t + hrH1/2‖σ‖r+1/2 + hq‖γ‖q +Hs−1/2‖u‖s+1/2

)
,

1 ≤ t ≤ k + 1, 0 < r ≤ k + 1, 0 ≤ q ≤ p+ 1, 1 ≤ s ≤ m+ 1,

‖ div(σ − σh)‖Ωi ≤ Chr‖ div σ‖r,Ωi , 0 ≤ r ≤ l + 1.

Remark 5.3.3. The above result implies that for sufficiently regular solution, ‖σ − σh‖ =

O(hk+1 + hp+1 + Hm+1/2). The mortar polynomial degree m and the coarse scale H can be

chosen to balance the error terms, resulting in a fine scale convergence. Since in all cases

p ≤ k, the last two error terms are of the lowest order and balancing them results in the choice

H = O(h
p+1

m+1/2 ). For example, for the lowest order Arnold-Falk-Winther space on simplices

[13] and its extensions to rectangles in two and three dimensions [16] or quadrilaterals [9],

Xh,i×Vh,i×Wh,i = BDM1×P0×P0, so k = 1 and l = p = 0. In this case, taking m = 2 and

the asymptotic scaling H = O(h2/5) provides optimal convergence rate O(h). Similarly, for
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the lowest order Gopalakrishnan-Guzman space on simplices [48] or the modified Arnold-Falk-

Winther space on rectangles with continuous Q1 rotations [4], k = 1, l = 0, and p = 1. In

this case, taking m = 2 and the asymptotic scaling H = O(h4/5) or m = 3 and H = O(h4/7)

provides optimal convergence rate O(h2).

5.3.4 Convergence for the displacement

On a single domain, the error estimate for the displacement and the rotation follows from

an inf-sup condition. For the mortar method, we would need an inf-sup condition for the

space of weakly continuous stresses Xh,0. This can be approached by finding a global stress

function with specified divergence and asymmetry and applying the projection operator Π̃0.

Unfortunately, the regularity of the global stress function, which can be constructed by

solving two divergence problems, is only H(div; Ω), which is not sufficient to apply Π̃0. For

this reason, we split the analysis in three parts. First, we construct a weakly continuous

symmetric stress function with specified divergence to control the displacement and show

both optimal convergence and superconvergence. In the second step we estimate the error

in the mortar displacement by utilizing the properties of the interface operator established

in the earlier domain decomposition sections. Finally we construct on each subdomain a

divergence-free stress function with specified asymmetry to bound the error in the rotation

in terms of the error in stress and mortar displacement.

5.3.4.1 Optimal convergence for the displacement Let φ be the solution of the

problem

div
(
A−1ε(φ)

)
= (Qu

hu− uh) in Ω, (5.3.39)

φ = 0 on ΓD, (5.3.40)

A−1ε(φ)n = 0 on ΓN . (5.3.41)

Since Ω is polygonal and Qu
hu − uh ∈ L2(Ω), the problem is H1+r-regular for a suitable

r > 1/2 [27] and ‖φ‖1+r ≤ C‖Qu
hu − uh‖. Let τ = Π̃0A

−1ε(φ), which is well defined, since

A−1ε(φ) ∈ Hr(Ω). Note that (5.3.26) implies that div τ = Qu
hu − uh. Also, (5.3.28) implies
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that ‖τ‖ ≤ C(Qu
hu − uh). Taking this τ as the test function in the error equation (5.3.35)

gives

‖Qu
hu− uh‖2 = − (A(σ − σh), τ) +

n∑
i=1

〈u− IcHu, τ n〉Γi

≤ C

(
‖σ − σh‖‖τ‖+

n∑
i=1

‖Ei(u− IcHu)‖1/2,∂Ωi‖τ‖H(div;Ωi)

)

≤ C

(
‖σ − σh‖+

n∑
i=1

‖Ei(u− IcHu)‖1/2,∂Ωi

)
‖Phu− uh‖,

which, together with Theorem 5.3.1, (5.3.6), and (5.3.8), implies the following theorem.

Theorem 5.3.2. For the displacement uh of the mortar mixed method (5.3.1)–(5.3.4), if

(5.3.24) holds, then there exists a positive constant C independent of h and H such that

‖Qu
hu− uh‖ ≤ C

(
ht‖σ‖t + hrH1/2‖σ‖r+1/2 + hq‖γ‖q +Hs−1/2‖u‖s+1/2

)
, (5.3.42)

‖u− uh‖ ≤ C
(
ht‖σ‖t + hrH1/2‖σ‖r+1/2 + hq‖γ‖q +Hs−1/2‖u‖s+1/2 + hru‖u‖ru

)
, (5.3.43)

1 ≤ t ≤ k + 1, 0 < r ≤ k + 1, 0 ≤ q ≤ p+ 1, 1 ≤ s ≤ m+ 1, 0 ≤ ru ≤ l + 1.

Remark 5.3.4. The above result shows that ‖Qu
hu − uh‖ is of the same order as ‖σ − σh‖

and it does not depend on the approximation order of Vh.

5.3.4.2 Superconvergence for the displacement We present a duality argument to

obtain a superconvergence estimate for the displacement. We utilize again the auxiliary

problem (5.3.39)–(5.3.41), but this time we assume that the problem is H2-regular, see

e.g. [49] for sufficient conditions:

‖φ‖2 ≤ C‖Qu
hu− uh‖. (5.3.44)

Taking τ = Π̃0A
−1ε(φ) in (5.3.35), we get

‖Qu
hu− uh‖2 = −

n∑
i=1

[(
A(σ − σh), Π̃0A

−1ε(φ)
)

Ωi
− 〈u− PHu, Π̃0A

−1ε(φ)ni〉Γi
]
.

(5.3.45)
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Noting that (σ − σh, ε(φ)) = (σ − σh, ∇φ− Skew(∇φ)), we manipulate the first term on the

right as follows,

n∑
i=1

(
A(σ − σh), Π̃0A

−1ε(φ)
)

Ωi

=
n∑
i=1

[(
A(σ − σh), Π̃0A

−1ε(φ)− A−1ε(φ)
)

Ωi
+
(
A(σ − σh), A−1ε(φ)

)
Ωi

]
=

n∑
i=1

[(
A(σ − σh), Π̃0A

−1ε(φ)− A−1ε(φ)
)

Ωi
− (div(σ − σh), φ−Qu

hφ)Ωi

+ 〈(σ − σh)ni, φ− IcHφ〉Γi − (σ − σh, Skew(∇φ−Qγ
h∇φ))Ωi

]
≤ C

n∑
i=1

[
(
√
hH + h)‖σ − σh‖Ωi + h‖ div(σ − σh)‖Ωi

+H‖σ − σh‖H(div;Ωi)

]
‖φ‖2,Ωi , (5.3.46)

where we used (5.3.30), (5.3.8), (5.3.6), and (5.3.10) for the last inequality with C =

C(maxi ‖A−1‖1,∞,Ωi). Next, for the second term on the right in (5.3.45) we have

〈u− PHu, Π̃0A
−1ε(φ)ni〉Γi

= 〈u− PHu,
(

Π̃0A
−1ε(φ)− Π̃iA

−1ε(φ)
)
ni〉Γi

+ 〈u− PHu,
(

Π̃iA
−1ε(φ)− A−1ε(φ)

)
ni + A−1ε(φ)ni〉

≤
∑
j

‖u− PHu‖Γi,j

[
‖
(

Π̃0A
−1ε(φ)− Π̃iA

−1ε(φ)
)
ni‖Γi,j

+ ‖
(

Π̃iA
−1ε(φ)− A−1ε(φ)

)
ni‖Γi,j

]
+
∑
j

‖u− PHu‖−1/2,Γi,j‖A−1ε(φ)ni‖1/2,Γi,j

≤ CHs+1/2‖u‖s+1/2,Ωi‖φ‖2,Ωi , 0 < s ≤ m+ 1, (5.3.47)

where we used (5.3.7), (5.3.13), (5.2.27), and (5.3.29) for the last inequality. A combination

of (5.3.44)–(5.3.47), and Theorem 5.3.1 gives the following theorem.
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Theorem 5.3.3. Assume H2-regularity of the problem on Ω and that (5.3.24) holds. Then

there exists a positive constant C, independent of h and H such that

‖Qu
hu− uh‖ ≤ C

(
htH‖σ‖t + hrH3/2‖σ‖r+1/2 + hqH‖γ‖q

+Hs+1/2‖u‖s+1/2 + hruH‖ div σ‖ru
)
,

1 ≤ t ≤ k + 1, 0 < r ≤ k + 1, 0 ≤ q ≤ p+ 1, 1 ≤ s ≤ m+ 1, 0 ≤ ru ≤ l + 1.

Remark 5.3.5. The result shows that ‖Qu
hu− uh‖ = O(H(hk+1 + hp+1 + hl+1 + Hm+1/2)),

which is of order H higher that ‖σ − σh‖H(div;Ωi). Similar to Remark 5.3.3, the error terms

can be balanced to obtain fine scale convergence. For spaces with optimal stress convergence,

l ≤ p ≤ k, so balancing the last two terms results in the choice H = O(h
l+1

m+1/2 ). For

the lowest order spaces in [9, 13, 16] with k = 1 and l = p = 0, taking m = 2 and the

asymptotic scaling H = O(h2/5) provides superconvergence rate O(h7/5). We further note

that the above result is not useful for spaces with l = p− 1, in which case the bound (5.3.42)

from Theorem 5.3.2, which does not depend on l, provides a better rate.

5.3.5 Convergence for the mortar displacement

Recall the interface bilinear form a(·, ·) : L2(Γ) × L2(Γ) → R introduced in (5.2.8) and its

characterization (5.2.20), a(λ, µ) =
∑n

i=1

(
Aσ∗h,i(µ), σ∗h,i(λ)

)
Ωi

. Denote by ‖·‖a the seminorm

induced by a(·, ·) on L2(Γ), i.e.,

‖µ‖a = a(µ, µ)1/2, µ ∈ L2(Γ).

Theorem 5.3.4. For the mortar displacement λH of the mixed method (5.3.1)–(5.3.4), if

(5.3.24) holds, then there exists a positive constant C, independent of h and H, such that

‖u− λH‖a ≤ C
(
ht‖σ‖t + hrH1/2‖σ‖r+1/2 + hq‖γ‖q +Hs−1/2‖u‖s+1/2

)
, (5.3.48)

1 ≤ t ≤ k + 1, 0 < r ≤ k + 1, 0 ≤ q ≤ p+ 1, 1 ≤ s ≤ m+ 1.
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Proof. The characterization (5.2.20) implies that

‖u− λH‖a ≤ C‖σ∗h(u)− σ∗h(λH)‖. (5.3.49)

Define, for µ ∈ L2(Γ),

σh(µ) = σ∗h(µ) + σ̄h, uh(µ) = u∗h(µ) + ūh, γh(µ) = γ∗h(µ) + γ̄h.

Recalling (5.2.2)–(5.2.4) and (5.2.5)–(5.2.7), we note that (σh(µ), uh(µ), γh(µ)) ∈ Xh × Vh ×

Wh satisfy, for 1 ≤ i ≤ n,

(Aσ(µ), τ)Ωi
+ (uh(µ), div τ)Ωi

+ (γh(µ), τ)Ωi

= 〈g, τ n〉∂Ωi∩ΓD + 〈µ, τ ni〉Γi ∀τ ∈ Xh,i, (5.3.50)

(div σh(µ), v)Ωi
= (f, v)Ωi ∀v ∈ Vh,i, (5.3.51)

(σh(µ), ξ)Ωi
= 0 ∀ξ ∈Wh,i. (5.3.52)

We note that (σh(λH), uh(λH), γh(λH)) = (σh, uh, γh) and that (σh(u), uh(u), γh(u)) is the

MFE approximation of the true solution (σ, u, γ) on each subdomain Ωi with specified bound-

ary condition u on Γi. We then have

‖σ∗h(u)− σ∗h(λH)‖ = ‖σh(u)− σh(λH)‖ = ‖σh(u)− σh‖ ≤ ‖σh(u)− σ‖+ ‖σ − σh‖.

(5.3.53)

The assertion of the theorem (5.3.48) follows from (5.3.49), (5.3.53), Theorem 5.3.1, and the

standard mixed method estimate (5.0.1) for (5.3.50)–(5.3.52).
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5.3.6 Convergence for the rotation

We first note that the result of Theorem 5.2.1 holds in the case of non-matching grids. In

particular, it is easy to check that its proof can be extended to this case, assuming that on

each Γi,j, C1‖Qh,iµ‖Γi,j ≤ ‖Qh,jµ‖Γi,j ≤ C2‖Qh,iµ‖Γi,j for all µ ∈ ΛH . It was shown in [73]

that this norm equivalence holds for very general grid configurations. Therefore (5.2.25)

implies that ‖ · ‖a is a norm on ΛH .

The stability of the subdomain MFE spaces Xh,i × Vh,i ×Wh,i implies a subdomain inf-

sup condition: there exists a positive constant β independent of h and H such that, for all

v ∈ Vh,i, ξ ∈Wh,i,

sup
06=τ∈Xh,i

(div τ, v)Ωi
+ (τ, ξ)Ωi

‖τ‖H(div;Ωi,M)

≥ β (‖v‖Ωi + ‖ξ‖Ωi) . (5.3.54)

Then, using the error equation obtained by subtracting (5.3.1) from (1.3.10), we obtain

‖Qγ
hγ − γh‖Ωi ≤ C sup

06=τ∈Xh,i

(div τ, Qu
hu− uh)Ωi

+ (τ, Qγ
hγ − γh)Ωi

‖τ‖H(div;Ωi,M)

≤ C sup
06=τ∈Xh,i

− (A(σ − σh), τ)Ωi
+ 〈u− λH , τ ni〉

‖τ‖H(div;Ωi,M)

≤ C(‖σ − σh‖Ωi + h−1/2‖u− λH‖Γi),

using the discrete trace inequality (5.2.27) in the last inequality. Summing over the subdo-

mains results in the following theorem.

Theorem 5.3.5. For the rotation γh of the mixed method (5.3.1)–(5.3.4), if (5.3.24) holds,

then there exists a positive constant C, independent of h and H, such that

‖Qγ
hγ − γh‖ ≤ C(‖σ − σh‖+ h−1/2‖u− λH‖Γ).

Remark 5.3.6. The above result, combined with (5.2.25), implies convergence for the rota-

tion reduced by O(h−1/2) compared to the other variables, which is suboptimal. Since ‖ · ‖a is

equivalent to a discrete H1/2(Γ)-norm, see [73], one expects that ‖u−λH‖Γ ≤ Ch1/2‖u−λH‖a,

which is indeed observed in the numerical experiments, and results in optimal convergence

for the rotation.
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5.3.7 Multiscale stress basis implementation

The algebraic system resulting from the multiscale mortar MFE method (5.3.1)–(5.3.4) can

be solved by reducing it to an interface problem similar to (5.2.10), as discussed in Sec-

tion 5.2.1. The solution of the interface problem by the CG method requires solving sub-

domain problems on each iteration. The choice of a coarse mortar space ΛH results in an

interface problem of smaller dimension, which is less expensive to solve. Nevertheless, the

computational cost may be significant if many CG iterations are needed for convergence.

Alternatively, following the idea of a multiscale flux basis for the mortar mixed finite ele-

ment method for the Darcy problem [42, 93], we introduce a multiscale stress basis. This

basis can be computed before the start of the interface iteration and requires solving a fixed

number of Dirichlet subdomain problems, equal to the number of mortar degrees of freedom

per subdomain. Afterwards, an inexpensive linear combination of the multiscale stress basis

functions can replace the subdomain solves during the interface iteration. Since this imple-

mentation requires a relatively small fixed number of local fine scale solves, it makes the cost

of the method comparable to other multiscale methods, see e.g. [32] and references therein.

Let AH : ΛH → ΛH be an interface operator such that 〈AHλ, µ〉Γ = a(λ, µ), ∀λ, µ ∈

ΛH . Then the interface problem (5.2.10) can be rewritten as AHλH = gH . We note that

AHλH =
∑n

i=1AH,iλH,i, where AH,i : ΛH,i → ΛH,i satisfies

〈AH,iλH,i, µ〉Γi = −〈σ∗h,i(λH,i)ni, µ〉Γi ∀µ ∈ ΛH,i.

Let Qh,i : ΛH,i → Xh,ini be the L2(∂Ωi)-projection from the mortar space onto the normal

trace of the subdomain velocity and let QTh,i : Xh,ini → ΛH,i be the L2(∂Ωi)-projection from

the normal velocity trace onto the mortar space. Then the above implies that

AH,iλH,i = −QTh,iσ∗h,i(λH,i)ni.

We now describe the computation of the multiscale stress basis and its use for computing

the action of the interface operator AH,iλH,i. Let {φ(k)
H,i}

NH,i
k=1 denote the basis functions of the
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mortar space ΛH,i, where NH,i is the number of mortar degrees of freedom on subdomain Ωi.

Then, for λH,i ∈ ΛH,i we have

λH,i =

NH,i∑
k=1

λ
(k)
H,iφ

(k)
H,i.

Once the multiscale stress basis is computed, the action of interface operator AH,i involves

only a simple linear combination of the multiscale basis functions:

AH,iλH,i = AH,i

NH,i∑
k=1

λ
(k)
H,iφ

(k)
H,i

 =

NH,i∑
k=1

λ
(k)
H,iAH,iφ

(k)
H,i =

NH,i∑
k=1

λ
(k)
H,iψ

(k)
H,i.

5.4 NUMERICAL RESULTS

In this section, we provide several numerical tests confirming the theoretical convergence

rates and illustrating the behavior of Method 1 on non-matching grids, testing both the

conditioning of the interface problem studied in Section 5.2.1 and the convergence of the

numerical errors of the multiscale mortar method studied in Section 5.3. The computational

domain for all examples is a unit hypercube partitioned with rectangular elements. For

simplicity, Dirichlet boundary conditions are specified on the entire boundary in all examples.

In 3 dimensions we employ the BDM1 × Q0 × Q0 triple of elements proposed by Awanou

[16], which are the rectangular analogues of the lowest order Arnold-Falk-Winther simplicial

elements [13]. In 2 dimensions we use BDM1 × Q0 × Qcts1 , a modified triple of elements

with continuous Q1 space for rotation introduced earlier in Chapter 2. This choice is of

interest, since it allows for local elimination of stress and rotation via the use of trapezoidal

quadrature rules, resulting in an efficient cell-centered scheme for the displacement.

We use the Method 1, with a displacement Lagrange multiplier, for all tests. The CG

method is employed for solving the symmetric and positive definite interface problems. It is

known [54] that the number of iterations required for the convergence of the CG method is

O(
√
κ), where κ is the condition number of the interface system. According to the theory

in Section 5.2.1, κ = O(h−1), hence the expected growth rate of the number of iterations is

O(h−1/2). We set the tolerance for the CG method to be ε = 10−14 for all test cases and
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use the zero initial guess for the interface data, i.e. λH = 0. We used deal.II finite element

library [7] for the implementation of the method.

The convergence rates are established by running each test case on a sequence of refined

grids. The coarsest non-matching multiblock grid consists of 2×2 and 3×3 subdomain grids

in a checkerboard fashion. The mortar grids on the coarsest level have only one element per

interface, i.e. H = 1
2
. In 2 dimensions, with BDM1 × Q0 × Qcts1 , we have k = 1, p = 0,

and l = 1. We test quadratic and cubic mortars. According to Remark 5.3.3, m = 2

and H = O(h4/5) or m = 3 and H = O(h4/7) should result in O(h2) convergence. In the

numerical test we take H = 2h for m = 2 and H = h1/2 for m = 3, which are easier to do

in practice. In 3 dimensions, with BDM1 × Q0 × Q0, we have k = 1, p = l = 0. We test

linear mortars, m = 1. From Remark 5.3.3, the choice H = O(h2/3) should result in O(h)

convergence. In the numerical test we take H = 2h. The theoretically predicted convergence

rates for these choices of finite elements and subdomain and mortar grids are shown in Table

5.1.

BDM1 ×Q0 ×Qcts1 (k = 1, l = 0, p = 1) in 2 dimensions

m H ‖σ − σh‖ ‖ div(σ − σh)‖ ‖u− uh‖ ‖Phu− uh‖ ‖γ − γh‖ ‖u− λH‖a
2 2h 2 1 1 2 2 2

3 h1/2 2 1 1 2 2 2

BDM1 ×Q0 ×Q0 (k = 1, l = 0, p = 0) in 3 dimensions

m H ‖σ − σh‖ ‖ div(σ − σh)‖ ‖u− uh‖ ‖Phu− uh‖ ‖γ − γh‖ ‖u− λH‖a
1 2h 1 1 1 2 1 1

Table 5.1: Theoretical convergence rates for the choices of finite elements and mortars in the

numerical tests.

In the first three examples we test the convergence rates and the condition number of

the interface operator. The error ‖Phu − uh‖ is approximated by the discrete L2-norms

computed by the midpoint rule on Th, which is known to be O(h2)-close to ‖Phu−uh‖. The

mortar displacement error ‖u − λH‖a is computed in accordance with the definition of the

interface bilinear form a(·, ·). In all cases we observe that the rates of convergence agree with

the theoretically predicted ones. Also, in all cases the number of CG iterations grows with
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rate O(h−1/2), confirming the theoretical condition number κ = O(h−1).

5.4.1 Example 1

In the first example we solve a two-dimensional problem with a known analytical solution

u =

x3y4 + x2 + sin(xy) cos(y)

x4y3 + y2 + cos(xy) sin(x)

 .

The Poisson’s ratio is ν = 0.2 and the Young’s modulus is E = sin(3πx) sin(3πy) + 5, with

the Lamé parameters determined by

λ =
Eν

(1− ν)(1− 2ν)
, µ =

E

2(1 + 2ν)
.

Relative errors, convergence rates, and number of interface iterations are provided in Tables

5.2 and 5.3. The computed solution is plotted in Figure 5.1.
‖σ − σh‖ ‖ div(σ − σh)‖ ‖u− uh‖ ‖Phu− uh‖ ‖γ − γh‖ ‖u− λH‖a CG iter.

h error rate error rate error rate error rate error rate error rate # rate

1/4 2.02E-1 - 5.64E-1 - 4.57E-1 - 2.54E-1 - 4.08E-1 - 5.01E-1 - 24 -

1/8 5.43E-2 1.9 2.98E-1 0.9 2.12E-1 1.1 7.14E-2 1.8 1.04E-1 2.0 1.33E-1 1.9 33 -0.4

1/16 1.37E-2 2.0 1.51E-1 1.0 1.04E-1 1.0 1.84E-2 2.0 2.60E-2 2.0 3.25E-2 2.0 48 -0.5

1/32 3.42E-3 2.0 7.58E-2 1.0 5.15E-2 1.0 4.63E-3 2.0 6.47E-3 2.0 7.83E-3 2.1 63 -0.5

1/64 8.53E-4 2.0 3.79E-2 1.0 2.57E-2 1.0 1.16E-3 2.0 1.61E-3 2.0 1.88E-3 2.1 96 -0.5

1/128 2.13E-4 2.0 1.90E-2 1.0 1.28E-2 1.0 2.90E-4 2.0 4.02E-4 2.0 4.55E-4 2.1 136 -0.6

1/256 5.33E-5 2.0 9.48E-3 1.0 6.42E-3 1.0 7.25E-5 2.0 1.00E-4 2.0 1.10E-4 2.0 194 -0.5

Table 5.2: Numerical errors, convergence rates, and number of CG iterations with discon-

tinuous quadratic mortars (m = 2) for Example 1.

‖σ − σh‖ ‖ div(σ − σh)‖ ‖u− uh‖ ‖Phu− uh‖ ‖γ − γh‖ ‖u− λH‖a CG iter.

h error rate error rate error rate error rate error rate error rate # rate

1/4 4.05E-2 - 3.75E-1 - 1.36E-1 - 1.09E-2 - 1.79E-1 - 1.99E-2 - 26 -

1/16 3.35E-3 1.8 1.11E-1 0.9 3.41E-2 1.0 9.13E-4 1.8 1.06E-2 2.0 9.42E-4 2.2 46 -0.4

1/64 2.14E-4 2.0 2.80E-2 1.0 8.53E-3 1.0 5.84E-5 2.0 6.74E-4 2.0 4.97E-5 2.1 78 -0.4

1/256 1.34E-5 2.0 7.01E-3 1.0 2.13E-3 1.0 3.62E-6 2.0 4.19E-5 2.0 2.63E-6 2.1 124 -0.3

Table 5.3: Numerical errors, convergence rates, and number of CG iterations with discon-

tinuous cubic mortars (m = 3) for Example 1.
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Figure 5.1: Computed solution for Example 1, h = 1/16.

5.4.2 Example 2

In the second example, we solve a problem with discontinuous Lamé parameters. We choose

λ = µ = 1 for 0 < x < 0.5 and λ = µ = 10 for 0.5 < x < 1. The solution

u =

x2y3 − x2y3 sin(πx)

x2y3 − x2y3 sin(πx)


is chosen to be continuous with continuous normal stress and rotation at x = 0.5. Con-

vergence rates are provided in Tables 5.4 and 5.5. The computed solution is plotted in

Figure 3.2.

‖σ − σh‖ ‖ div(σ − σh)‖ ‖u− uh‖ ‖Phu− uh‖ ‖γ − γh‖ ‖u− λH‖a CG iter.

h error rate error rate error rate error rate error rate error rate # rate

1/4 2.02E-1 - 5.64E-1 - 4.57E-1 - 2.54E-1 - 4.08E-1 - 5.01E-1 - 45 -

1/8 5.43E-2 1.9 2.98E-1 0.9 2.12E-1 1.1 7.14E-2 1.8 1.04E-1 2.0 1.33E-1 1.9 61 -0.4

1/16 1.37E-2 2.0 1.51E-1 1.0 1.04E-1 1.0 1.84E-2 2.0 2.60E-2 2.0 3.25E-2 2.0 85 -0.5

1/32 3.42E-3 2.0 7.58E-2 1.0 5.15E-2 1.0 4.63E-3 2.0 6.47E-3 2.0 7.83E-3 2.1 122 -0.5

1/64 8.53E-4 2.0 3.79E-2 1.0 2.57E-2 1.0 1.16E-3 2.0 1.61E-3 2.0 1.88E-3 2.1 170 -0.5

1/128 2.13E-4 2.0 1.90E-2 1.0 1.28E-2 1.0 2.90E-4 2.0 4.02E-4 2.0 4.55E-4 2.1 252 -0.6

1/256 5.33E-5 2.0 9.48E-3 1.0 6.42E-3 1.0 7.25E-5 2.0 1.00E-4 2.0 1.10E-4 2.0 354 -0.5

Table 5.4: Numerical errors, convergence rates, and number of CG iterations with discon-

tinuous quadratic mortars (m = 2) for Example 2.
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‖σ − σh‖ ‖ div(σ − σh)‖ ‖u− uh‖ ‖Phu− uh‖ ‖γ − γh‖ ‖u− λH‖a CG iter.

h error rate error rate error rate error rate error rate error rate # rate

1/4 2.04E-1 - 5.64E-1 - 4.58E-1 - 2.54E-1 - 4.04E-1 - 5.11E-1 - 52 -

1/16 1.37E-2 1.9 1.51E-1 1.0 1.04E-1 1.1 1.85E-2 1.9 2.62E-2 2.0 3.27E-2 2.0 83 -0.3

1/64 8.68E-4 2.0 3.79E-2 1.0 2.57E-2 1.0 1.16E-3 2.0 1.71E-3 2.0 1.90E-3 2.1 135 -0.4

1/256 5.51E-5 2.0 9.48E-3 1.0 6.42E-3 1.0 7.23E-5 2.0 1.15E-4 2.0 1.19E-4 2.0 211 -0.3

Table 5.5: Numerical errors, convergence rates, and number of CG iterations with discon-

tinuous cubic mortars (m = 3) for Example 2.

Figure 5.2: Computed solution for Example 2, h = 1/16.

5.4.3 Example 3

In third example we study a three-dimensional problem, which models simultaneous twisting

and compression (about x-axis) of the unit cube. The displacement solution is

u =


−0.1(ex − 1) sin(πx) sin(πy)

−(ex − 1)(y − cos( π
12

)(y − 0.5) + sin( π
12

)(z − 0.5)− 0.5)

−(ex − 1)(z − sin( π
12

)(y − 0.5)− cos( π
12

)(z − 0.5)− 0.5)

 .

The Lamé parameters are λ = µ = 100. The computed relative errors, convergence rates,

and the number of interface iterations are shown in Table 5.6. We note that the mortar dis-

placement exhibits slightly higher convergence rate than the theoretical rate. The computed

solution is plotted in Figure 5.3.
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‖σ − σh‖ ‖ div(σ − σh)‖ ‖u− uh‖ ‖Phu− uh‖ ‖γ − γh‖ ‖u− λH‖a CG iter.

h error rate error rate error rate error rate error rate error rate # rate

1/4 2.71E-1 - 3.85E-1 - 2.60E-1 - 3.87E-2 - 1.37E-1 - 2.80E-2 - 21 -

1/8 1.22E-1 1.2 1.96E-1 1.0 1.31E-1 1.0 8.40E-3 2.2 6.83E-2 1.0 7.99E-3 1.8 37 -0.8

1/16 5.79E-2 1.1 9.87E-2 1.0 6.54E-2 1.0 2.09E-3 2.0 3.41E-2 1.0 2.39E-3 1.7 56 -0.6

1/32 2.82E-2 1.0 4.94E-2 1.0 3.27E-2 1.0 5.31E-4 2.0 1.71E-2 1.0 8.18E-4 1.6 80 -0.5

Table 5.6: Numerical errors, convergence rates, and number of CG iterations with discon-

tinuous linear mortars (m = 1) for Example 3.

Figure 5.3: Computed solution for Example 3, h = 1/32.

5.4.4 Example 4

In this example we study the dependence of the number of CG iterations on the number of

subdomains used for solving the problem. We consider the same test case as in Example 1

with discontinuous quadratic mortars, but solve the problem using 2 × 2, 4 × 4 and 8 × 8

subdomain partitionings. We report the number of CG iterations in Table 5.7. For the sake

of space and clarity we do not show the rate of growth for each refinement step, but only the

average values. For each fixed domain decomposition (each column) we observe growth of

O(h−0.5) as the grids are refined, confirming condition number κ = O(h−1), as in the previous

examples with 2× 2 decompositions. Considering each row, we observe that the number of

CG iterations grows as the subdomain size A decreases with rate O(A−0.5), implying that

κ = O(A−1). This is expected for an algorithm without a coarse solve preconditioner [88].

This issue will be addressed in forthcoming work.
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h 2× 2 4× 4 8× 8 Rate

1/16 48 67 94 O(A−0.5)

1/32 63 94 118 O(A−0.5)

1/64 96 133 167 O(A−0.4)

1/128 136 189 230 O(A−0.4)

1/256 194 267 340 O(A−0.4)

Rate O(h−0.5) O(h−0.5) O(h−0.5)

Table 5.7: Number of CG iterations for Example 4.

5.4.5 Example 5

In the last example we test the efficiency of the multiscale stress basis (MSB) technique

outlined in the previous section. With no MSB the total number of solves is #CG iter. + 3,

one for each CG iteration plus one solve for the right hand side of type (5.2.5)–(5.2.7), one for

the initial residual and one to recover the final solution. On the other hand, the method with

MSB requires dim(ΛH)+3 solves, hence its use is advantageous when dim(Λh) < #CG iter.,

that is when the mortar grid is relatively coarse.

We use a heterogeneous porosity field from the Society of Petroleum Engineers (SPE)

Comparative Solution Project21. The computation domain is Ω = (0, 1)2 with a fixed rectan-

gular 128×128 grid. The left and right boundary conditions are u = (0.1, 0)T and u = (0, 0)T .

Zero normal stress, σ n = 0, is specified on the top and bottom boundaries. Given the poros-

ity φ, the Young’s modulus is obtained from the relation [60] E = 102
(
1− φ

c

)2.1
, where the

constant c = 0.5 refers to the porosity at which the effective Young’s modulus becomes zero.

The choice of this constant is based on the properties of the deformable medium, see [60] for

details. The resulting Young’s modulus field is shown in Figure 5.4.

A comparison between the fine scale solution and the multiscale solution with 8 × 8

subdomains and a single cubic mortar per interface is shown in Figure 5.4. We observe that

the two solutions are very similar and that the multiscale solution captures the heterogeneity

1http://www.spe.org/csp
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very well, even for this very coarse mortar space. In Table 5.8 we compare the cost of using

MSB and not using MSB for several choices of mortar grids. We report the number of

solves per subdomain, which is the dominant computational cost. We conclude that for

cases with relatively coarse mortar grids, the MSB technique requires significantly fewer

subdomain solves, resulting in faster computations. Moreover, as evident from the last row

in Table 5.8, computing the fine scale solution is significantly more expensive than computing

the multiscale solution.

Mortar type H # Solves, no MSB # Solves, MSB

Quadratic 1/8 180 27
Cubic 1/8 173 35
Quadratic 1/16 219 51
Cubic 1/16 250 67
Linear (fine scale solution) 1/128 295 195

Table 5.8: Number of subdomain solves for Example 5.
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Figure 5.4: Example 5, fine scale stress and displacement, vs. multiscale stress and displace-

ment with cubic mortars, and Young’s modulus, H = 1/8.
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6.0 CONCLUSIONS

In this thesis we have presented several efficient techniques for the Biot’s poroelasticity model

and its constituents. We have also developed a domain decomposition method, as well as

the multiscale mortar framework for the linear elasticity, which is a major building block in

the poroelasticity system.

First, BDM1-based MFE method with quadrature that reduces to CCFD for the dis-

placement on simplicial and quadrilateral grids was introduced. We showed that the result-

ing algebraic system is symmetric and positive definite. We demonstrated that the method

performs well in case of rough discontinuous coefficients. The analysis was done based on

combining MFE techniques with quadrature error estimates. First order convergence was

shown for all variables in their natural norms. In addition, second order convergence was

obtained for the displacements at the lelements’ centers of mass.

Second, the coupled MFMFE-MSMFE method for the Biot’s consolidation model was

presented. The method combines the ideas of local flux and stress elimination of MFMFE

and MSMFE methods, when applied to a mixed, five-field formulation for the poroelasticity

problem. The method inherits its robustness from MFE methods, and it is locally con-

servative and locking-free. We analyzed the stability of the coupled scheme as well as its

convergence properties. A range of examples illustrates the convergence results and impor-

tant robustness properties as mentioned above.

Third, we generalized the idea of MFMFE method to a family of arbitrarily high order

MFE/Finite Volume schemes. This was achieved by developing of the new, Raviart-Thomas

based, finite element family and using Gauss-Lobatto quadrature rules of appropriate order.

The method was fully analyzed, the optimal convergence rates as well as pressure supercon-

vergence at the Gaussian nodes were established. We further discussed the post-processing
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technique, and illustrated all of these results numerically.

Finally, two domain decomposition formulations were presented for the linear elastic-

ity model. The reduction to interface problem was shown, and its condition number was

analyzed. Furthermore, the multiscale mortar framework was developed for the domain de-

composition method of the first type. This included the error analysis and discussions of the

optimal interface mesh sizes. The Multiscale Stress Basis (MSB) implementation technique

was presented in order to achieve a potential speed up in case of coarse interface grids. A

range of numerical tests demonstrated the convergence of the method, the number of iter-

ations required to solve the interface problems as well as the applicability of the MSB in

realistic setting.

As for the future work, it would be of interest to apply the proposed methods in the

framework of optimal control, statistical and computational inverse problems that rely heav-

ily on the efficiency and robustness of the solution of underlying PDEs.

Another potential direction is in applying the MFMFE-MSMFE method in the fluid-

poroelastic structure interaction setting, where the coupled multipoint method can be used

to discretize the Biot part of the problem. With this, and further development of the domain

decomposition method for Stokes-Biot, we would obtain a robust and locking-free method,

suitable for efficient parallel implementation.
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APPENDIX

CODE

A.1 HIGHER ORDER MFMFE METHOD IMPLEMENTATION IN

DEAL.II

The Listing A.1.1 presents the implementation of an arbitrary order multipoint flux mixed

finite element method (MFMFE) for the Darcy equation of flow in porous medium and

illustrates the use case of the new enhanced Raviart-Thomas finite element (4.1.16) for the

purposes of local elimination of velocity degrees of freedom.

Listing A.1.1: Complete deal.II implementation of MFMFE method of order k

1 /∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ∗
3 ∗ This f i l e i s par t o f the dea l . I I Code Ga l l e ry .
4 ∗
5 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 ∗
7 ∗ Author : Eldar Khattatov , Un ive r s i t y o f Pi t t sburgh , 2018
8 ∗/
9

10
11 // @sect3{ Inc lude f i l e s }
12
13 // Firs t , the l i s t o f necessary header f i l e s . There i s not
14 // much new here , the f i l e s are inc luded in order
15 // base−lac−gr id−dofs−numerics f o l l owed by the C++ headers .
16 #include <dea l . I I / base / conve rgence tab l e . h>
17 #include <dea l . I I / base / q u a d r a t u r e l i b . h>
18 #include <dea l . I I / base / logstream . h>
19 #include <dea l . I I / base / t imer . h>
20 #include <dea l . I I / base / work stream . h>
21
22 #include <dea l . I I / l a c / f u l l m a t r i x . h>
23 #include <dea l . I I / l a c / s o l v e r c g . h>
24 #include <dea l . I I / l a c / b l o c k s pa r s e m at r i x . h>
25 #include <dea l . I I / l a c / b l o c k v e c t o r . h>
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26 #include <dea l . I I / l a c / pr e cond i t i on . h>
27
28 #include <dea l . I I / g r id / g r i d g e n e r a t o r . h>
29 #include <dea l . I I / g r id / g r i d t o o l s . h>
30 #include <dea l . I I / g r id / g r i d i n . h>
31 #include <dea l . I I / g r id / t r i a . h>
32 #include <dea l . I I / do f s / dof renumber ing . h>
33 #include <dea l . I I / do f s / d o f t o o l s . h>
34 #include <dea l . I I / f e / f e dgq . h>
35 #include <dea l . I I / f e / f e sy s t em . h>
36 #include <dea l . I I / f e / f e t o o l s . h>
37 #include <dea l . I I / numerics / v e c t o r t o o l s . h>
38 #include <dea l . I I / numerics / m a t r i x t o o l s . h>
39 #include <dea l . I I / numerics / data out . h>
40
41 #include <fstream>
42 #include <unordered map>
43
44 // This i s a header needed fo r the purposes o f the
45 // mu l t i po in t f l u x mixed method , as i t d e c l a r e s the
46 // new enhanced Raviart−Thomas f i n i t e element .
47 #include <dea l . I I / f e / f e r t b u b b l e s . h>
48
49 // For the sake o f r e a d a b i l i t y , the c l a s s e s r ep re s en t ing
50 // data , i . e . RHS, BCs , pe rmeab i l i t y t ensor and the exac t
51 // s o l u t i on are p laced in a f i l e data . h which i s inc luded
52 // here
53 #include ” data . h”
54
55 // As always the program i s in the namespace o f i t s own with
56 // the dea l . I I c l a s s e s and func t i ons imported in to i t
57 namespace MFMFE
58 {
59 using namespace d e a l i i ;
60
61 // @sect3{De f in i t i on o f mu l t i po in t f l u x assembly data s t r u c t u r e s }
62
63 // The main idea o f the MFMFE method i s to perform l o c a l e l im ina t i on
64 // o f the v e l o c i t y v a r i a b l e s in order to ob ta in the r e s u l t i n g
65 // pressure system . Since in dea l . I I assembly happens c e l l−wise ,
66 // some ex t ra work needs to be done in order to ge t the l o c a l
67 // mass matr ices $A i$ and the corresponding to them $B i$ .
68 namespace DataStructures
69 {
70 // This w i l l be ach ieved by assembl ing c e l l−wise , but in s t ead o f p l a c ing
71 // the terms in to a g l o b a l system matrix , they w i l l popu la te node−as soc i a t ed
72 // f u l l matr ices . For t h i s , a data s t r u c t u r e with f a s t lookup i s c ruc ia l , hence
73 // the hash tab l e , wi th the keys as Point<dim>
74 template <int dim>
75 struct hash po in t s
76 {
77 s i z e t operator ( ) ( const Point<dim> &p) const
78 {
79 s i z e t h1 , h2 , h3 ;
80 h1 = std : : hash<double>()(p [ 0 ] ) ;
81
82 switch ( dim )
83 {
84 case 1 :
85 return h1 ;
86 case 2 :
87 h2 = std : : hash<double>()(p [ 1 ] ) ;
88 return ( h1 ˆ h2 ) ;
89 case 3 :
90 h2 = std : : hash<double>()(p [ 1 ] ) ;
91 h3 = std : : hash<double>()(p [ 2 ] ) ;
92 return ( h1 ˆ ( h2 << 1) ) ˆ h3 ;
93 default :
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94 Assert ( false , ExcNotImplemented ( ) ) ;
95 }
96 }
97 } ;
98
99 // Here , the ac tua l hash−t a b l e s are de f ined . We use the C++ STL

100 // <code>unordered map</code>, wi th the hash func t i on s p e c i f i e d
101 // above . For convenience the se are a l i a s e d as f o l l ow s
102 template <int dim>
103 using PointToMatrixMap = std : : unordered map<Point<dim>,
104 std : : map<std : : pa ir<types : : g l o b a l d o f i n d e x , types : : g l o b a l d o f i n d e x >, double>,
105 hash po ints<dim>>;
106
107 template <int dim>
108 using PointToVectorMap = std : : unordered map<Point<dim>,
109 std : : map<types : : g l o b a l d o f i n d e x , double>,
110 hash po ints<dim>>;
111
112 template <int dim>
113 using PointToIndexMap = std : : unordered map<Point<dim>,
114 std : : set<types : : g l o b a l d o f i n d e x >, hash po ints<dim>>;
115
116 // Next , s ince t h i s p a r t i c u l a r program a l l ows fo r the use o f
117 // mu l t i p l e threads , the he l p e r CopyData s t r u c t u r e s
118 // are de f ined . There are two k inds o f these , one i s used
119 // fo r the copying c e l l−wise con t r i b u t i on s to the corresponging
120 // node−as soc i a t ed data s t r u c t u r e s . . .
121 template <int dim>
122 struct NodeAssemblyCopyData
123 {
124 PointToMatrixMap<dim> c e l l m a t ;
125 PointToVectorMap<dim> c e l l v e c ;
126 PointToIndexMap<dim> l o c a l p r e s i n d i c e s ;
127 PointToIndexMap<dim> l o c a l v e l i n d i c e s ;
128 std : : vector<types : : g l o b a l d o f i n d e x> l o c a l d o f i n d i c e s ;
129 } ;
130
131 // . . . and the other one fo r the ac tua l process o f
132 // l o c a l v e l o c i t y e l im ina t i on and assembl ing the g l o b a l
133 // pressure system :
134 template <int dim>
135 struct NodeEliminationCopyData
136 {
137 FullMatrix<double> node pres matr ix ;
138 Vector<double> node pr e s rh s ;
139 FullMatrix<double> Ainverse ;
140 FullMatrix<double> pre s su r e mat r i x ;
141 Vector<double> v e l o c i t y r h s ;
142 Vector<double> v e r t e x v e l s o l u t i o n ;
143 Point<dim> p ;
144 } ;
145
146 // S imi la r l y , two ScratchData c l a s s e s are de f ined .
147 // One fo r the assembly part , where we need
148 // FEValues , FEFaceValues , Quadrature and s torage
149 // fo r the b a s i s f u c t i on s . . .
150 template <int dim>
151 struct NodeAssemblyScratchData
152 {
153 NodeAssemblyScratchData ( const FiniteElement<dim> &fe ,
154 const Triangulat ion<dim> &t r i a ,
155 const Quadrature<dim> &quad ,
156 const Quadrature<dim−1> &f quad ) ;
157
158 NodeAssemblyScratchData ( const NodeAssemblyScratchData &sc ra t ch da ta ) ;
159
160 FEValues<dim> f e v a l u e s ;
161 FEFaceValues<dim> f e f a c e v a l u e s ;
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162 std : : vector<unsigned int> n f a c e s a t v e r t e x ;
163
164 const unsigned long num ce l l s ;
165
166 std : : vector<Tensor<2,dim>> k i n v e r s e v a l u e s ;
167 std : : vector<double> r h s v a l u e s ;
168 std : : vector<double> p r e s b c v a l u e s ;
169
170 std : : vector<Tensor<1,dim> > phi u ;
171 std : : vector<double> d iv ph i u ;
172 std : : vector<double> phi p ;
173 } ;
174
175 template <int dim>
176 NodeAssemblyScratchData<dim> : :
177 NodeAssemblyScratchData ( const FiniteElement<dim> &fe ,
178 const Triangulat ion<dim> &t r i a ,
179 const Quadrature<dim> &quad ,
180 const Quadrature<dim−1> &f quad )
181 :
182 f e v a l u e s ( fe ,
183 quad ,
184 update va lues | update g rad i ent s |
185 update quadrature po int s | update JxW values ) ,
186 f e f a c e v a l u e s ( fe ,
187 f quad ,
188 update va lues | update quadrature po int s |
189 update JxW values | update normal vector s ) ,
190 num ce l l s ( t r i a . n a c t i v e c e l l s ( ) ) ,
191 k i n v e r s e v a l u e s ( quad . s i z e ( ) ) ,
192 r h s v a l u e s ( quad . s i z e ( ) ) ,
193 p r e s b c v a l u e s ( f quad . s i z e ( ) ) ,
194 phi u ( f e . d o f s p e r c e l l ) ,
195 d iv ph i u ( f e . d o f s p e r c e l l ) ,
196 phi p ( f e . d o f s p e r c e l l )
197 {
198 n f a c e s a t v e r t e x . r e s i z e ( t r i a . n v e r t i c e s ( ) , 0 ) ;
199 typename Triangulat ion<dim> : : a c t i v e f a c e i t e r a t o r
200 f a c e = t r i a . b e g i n a c t i v e f a c e ( ) , endf = t r i a . end face ( ) ;
201
202 for ( ; f a c e != endf ; ++f a c e )
203 for (unsigned int v=0; v<GeometryInfo<dim> : : v e r t i c e s p e r f a c e ; ++v )
204 n f a c e s a t v e r t e x [ face−>ve r t ex index ( v ) ] += 1 ;
205 }
206
207 template <int dim>
208 NodeAssemblyScratchData<dim> : :
209 NodeAssemblyScratchData ( const NodeAssemblyScratchData &sc ra t ch da ta )
210 :
211 f e v a l u e s ( s c r a t ch da ta . f e v a l u e s . g e t f e ( ) ,
212 s c ra t ch da ta . f e v a l u e s . ge t quadrature ( ) ,
213 update va lues | update g rad i ent s |
214 update quadrature po int s | update JxW values ) ,
215 f e f a c e v a l u e s ( s c r a t ch da ta . f e f a c e v a l u e s . g e t f e ( ) ,
216 s c r a t ch da ta . f e f a c e v a l u e s . ge t quadrature ( ) ,
217 update va lues | update quadrature po int s |
218 update JxW values | update normal vector s ) ,
219 n f a c e s a t v e r t e x ( s c r a t ch da ta . n f a c e s a t v e r t e x ) ,
220 num ce l l s ( s c r a t ch da ta . num ce l l s ) ,
221 k i n v e r s e v a l u e s ( s c r a t ch da ta . k i n v e r s e v a l u e s ) ,
222 r h s v a l u e s ( s c r a t ch da ta . r h s v a l u e s ) ,
223 p r e s b c v a l u e s ( s c r a t ch da ta . p r e s b c v a l u e s ) ,
224 phi u ( s c r a t ch da ta . phi u ) ,
225 d iv ph i u ( s c r a t ch da ta . d i v ph i u ) ,
226 phi p ( s c r a t ch da ta . phi p )
227 {}
228
229 // . . . and the other , s imp ler one , f o r the v e l o c i t y e l im ina t i on and recovery
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230 struct VertexEl iminat ionScratchData
231 {
232 VertexEl iminat ionScratchData ( ) = default ;
233 VertexEl iminat ionScratchData ( const VertexEl iminat ionScratchData &sc ra t ch da ta ) ;
234
235 FullMatrix<double> v e l o c i t y m a t r i x ;
236 Vector<double> p r e s s u r e r h s ;
237
238 Vector<double> l o c a l p r e s s u r e s o l u t i o n ;
239 Vector<double> tmp rhs1 ;
240 Vector<double> tmp rhs2 ;
241 Vector<double> tmp rhs3 ;
242 } ;
243
244 VertexEl iminat ionScratchData : :
245 VertexEl iminat ionScratchData ( const VertexEl iminat ionScratchData &sc ra t ch da ta )
246 :
247 v e l o c i t y m a t r i x ( s c r a t ch da ta . v e l o c i t y m a t r i x ) ,
248 p r e s s u r e r h s ( s c r a t ch da ta . p r e s s u r e r h s ) ,
249 l o c a l p r e s s u r e s o l u t i o n ( s c ra t ch da ta . l o c a l p r e s s u r e s o l u t i o n ) ,
250 tmp rhs1 ( s c r a t ch da ta . tmp rhs1 ) ,
251 tmp rhs2 ( s c r a t ch da ta . tmp rhs2 ) ,
252 tmp rhs3 ( s c r a t ch da ta . tmp rhs3 )
253 {}
254 }
255
256
257
258 // @sect3{The <code>MultipointMixedDarcyProblem</code> c l a s s templa te }
259
260 // The main c l a s s , b e s i d e s the cons t ruc tor and des t ruc tor , has only one pu b l i c member
261 // <code>run()</code>, s im i l a r l y to the t u t o r i a l programs . The p r i v a t e members can
262 // be grouped in to the ones t ha t are used fo r the c e l l−wise assembly , nodal
263 // e l iminat ion , pressure so l ve , v e r t e x v e l o c i t y recovery and pos tp roce s s ing . Apart
264 // from the MFMFE−s p e c i f i c data s t ruc tu re s , the r e s t o f the members shou ld look
265 // f am i l i a r .
266 template <int dim>
267 class MultipointMixedDarcyProblem
268 {
269 public :
270 MultipointMixedDarcyProblem ( const unsigned int degree ) ;
271 ˜MultipointMixedDarcyProblem ( ) ;
272 void run ( const unsigned int r e f i n e ) ;
273 private :
274 void a s s e m b l e s y s t e m c e l l
275 ( const typename DoFHandler<dim> : : a c t i v e c e l l i t e r a t o r &c e l l ,
276 DataStructures : : NodeAssemblyScratchData<dim> &scratch data ,
277 DataStructures : : NodeAssemblyCopyData<dim> &copy data ) ;
278 void c o p y c e l l t o n o d e ( const DataStructures : : NodeAssemblyCopyData<dim> &copy data ) ;
279 void node assembly ( ) ;
280 void m a k e c e l l c e n t e r e d s p ( ) ;
281 void n o d a l e l i m i n a t i o n
282 ( const typename DataStructures : : PointToMatrixMap<dim> : : i t e r a t o r &n i t ,
283 DataStructures : : VertexEl iminat ionScratchData &scratch data ,
284 DataStructures : : NodeEliminationCopyData<dim> &copy data ) ;
285 void copy node to system
286 ( const DataStructures : : NodeEliminationCopyData<dim> &copy data ) ;
287 void pre s sure a s s embly ( ) ;
288 void s o l v e p r e s s u r e ( ) ;
289 void v e l o c i t y a s s e m b l y
290 ( const typename DataStructures : : PointToMatrixMap<dim> : : i t e r a t o r &n i t ,
291 DataStructures : : VertexEl iminat ionScratchData &scratch data ,
292 DataStructures : : NodeEliminationCopyData<dim> &copy data ) ;
293 void c o p y n o d e v e l o c i t y t o g l o b a l
294 ( const DataStructures : : NodeEliminationCopyData<dim> &copy data ) ;
295 void v e l o c i t y r e c o v e r y ( ) ;
296 void r e s e t d a t a s t r u c t u r e s ( ) ;
297 void compute errors ( const unsigned int c y c l e ) ;
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298 void o u t p u t r e s u l t s ( const unsigned int cyc l e , const unsigned int r e f i n e ) ;
299
300 const unsigned int degree ;
301 Tr iangulat ion<dim> t r i a n g u l a t i o n ;
302 FESystem<dim> f e ;
303 DoFHandler<dim> do f hand l e r ;
304 BlockVector<double> s o l u t i o n ;
305
306 Spar s i tyPat te rn c e l l c e n t e r e d s p ;
307 SparseMatrix<double> pres sys tem matr ix ;
308 Vector<double> p r e s r h s ;
309
310 std : : unordered map<Point<dim>,
311 FullMatrix<double>,
312 DataStructures : : hash po ints<dim>> pre s su r e mat r i x ;
313 std : : unordered map<Point<dim>,
314 FullMatrix<double>,
315 DataStructures : : hash po ints<dim>> A inver se ;
316 std : : unordered map<Point<dim>,
317 Vector<double>,
318 DataStructures : : hash po ints<dim>> v e l o c i t y r h s ;
319
320 DataStructures : : PointToMatrixMap<dim> node matrix ;
321 DataStructures : : PointToVectorMap<dim> node rhs ;
322
323 DataStructures : : PointToIndexMap<dim> p r e s s u r e i n d i c e s ;
324 DataStructures : : PointToIndexMap<dim> v e l o c i t y i n d i c e s ;
325
326 unsigned long n v , n p ;
327
328 Vector<double> p r e s s o l u t i o n ;
329 Vector<double> v e l s o l u t i o n ;
330
331 ConvergenceTable conve rgence tab l e ;
332 TimerOutput computing timer ;
333 } ;
334
335 // @sect4{Constructor and des t ruc tor , <code>r e s e t d a t a s t r u c t u r e s </code>}
336
337 // In the cons t ruc tor o f t h i s c l a s s , we s t o r e the va lue t ha t was
338 // passed in concerning the degree o f the f i n i t e e lements we s h a l l use (a
339 // degree o f one would mean the use o f @ref FE RT Bubbles (1) and @ref FE DGQ(0)) ,
340 // and then cons t ruc t the vec to r va lued element be l ong ing to the space $Z hˆk$
341 // desc r i b ed in the t h e s i s . The cons t ruc tor a l s o take s care o f i n i t i a l i z i n g the
342 // computing timer , as i t i s o f i n t e r e s t f o r us how we l l our method performs .
343 template <int dim>
344 MultipointMixedDarcyProblem<dim> : : MultipointMixedDarcyProblem
345 ( const unsigned int degree )
346 :
347 degree ( degree ) ,
348 f e ( FE RT Bubbles<dim>(degree ) , 1 ,
349 FE DGQ<dim>(degree −1) , 1 ) ,
350 do f hand l e r ( t r i a n g u l a t i o n ) ,
351 computing timer ( std : : cout , TimerOutput : : summary ,
352 TimerOutput : : wa l l t ime s )
353 {}
354
355
356 // The de s t ru c t o r c l e a r s the <code>do f hand ler</code> and
357 // a l l o f the data s t r u c t u r e s we used fo r the method .
358 template <int dim>
359 MultipointMixedDarcyProblem<dim> : :˜ MultipointMixedDarcyProblem ( )
360 {
361 r e s e t d a t a s t r u c t u r e s ( ) ;
362 do f hand l e r . c l e a r ( ) ;
363 }
364
365
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366 // This method c l e a r s a l l the data t ha t was used a f t e r one ref inement
367 // cyc l e .
368 template <int dim>
369 void MultipointMixedDarcyProblem<dim> : : r e s e t d a t a s t r u c t u r e s ( )
370 {
371 p r e s s u r e i n d i c e s . c l e a r ( ) ;
372 v e l o c i t y i n d i c e s . c l e a r ( ) ;
373 v e l o c i t y r h s . c l e a r ( ) ;
374 A inver se . c l e a r ( ) ;
375 pre s su r e mat r i x . c l e a r ( ) ;
376 node matrix . c l e a r ( ) ;
377 node rhs . c l e a r ( ) ;
378 }
379
380
381 // @sect4{Cel l−wise assembly and crea t i on o f the l o ca l , nodal−based data s t r u c t u r e s }
382
383 // Firs t , the func t i on tha t cop i e s l o c a l c e l l c on t r i b u t i on s to corresponding nodal
384 // matr ices and vec t o r s i s de f ined . I t p l a c e s the va lue s ob ta ined from l o c a l c e l l
385 // i n t e g r a t i on in to the co r r ec t p lace in a matrix / vec to r corresponging to a s p e c i f i c
386 // node .
387 template <int dim>
388 void MultipointMixedDarcyProblem<dim> : : c o p y c e l l t o n o d e
389 ( const DataStructures : : NodeAssemblyCopyData<dim> &copy data )
390 {
391 for (auto m : copy data . c e l l m a t )
392 {
393 for (auto p : m. second )
394 node matrix [m. f i r s t ] [ p . f i r s t ] += p . second ;
395
396 for (auto p : copy data . c e l l v e c . at (m. f i r s t ) )
397 node rhs [m. f i r s t ] [ p . f i r s t ] += p . second ;
398
399 for (auto p : copy data . l o c a l p r e s i n d i c e s . at (m. f i r s t ) )
400 p r e s s u r e i n d i c e s [m. f i r s t ] . i n s e r t (p ) ;
401
402 for (auto p : copy data . l o c a l v e l i n d i c e s . at (m. f i r s t ) )
403 v e l o c i t y i n d i c e s [m. f i r s t ] . i n s e r t (p ) ;
404 }
405 }
406
407
408
409 // Second , the func t i on tha t does the c e l l assembly i s de f ined . While i t i s
410 // s im i l a r to the t u t o r i a l programs in a way i t uses sc ra th and copy data
411 // s t ruc tu re s , the need to l o c a l i z e the DOFs l ead s to s e v e r a l d i f f e r e n c e s .
412 template <int dim>
413 void MultipointMixedDarcyProblem<dim> : :
414 a s s e m b l e s y s t e m c e l l ( const typename DoFHandler<dim> : : a c t i v e c e l l i t e r a t o r &c e l l ,
415 DataStructures : : NodeAssemblyScratchData<dim> &scratch data ,
416 DataStructures : : NodeAssemblyCopyData<dim> &copy data )
417 {
418 copy data . c e l l m a t . c l e a r ( ) ;
419 copy data . c e l l v e c . c l e a r ( ) ;
420 copy data . l o c a l v e l i n d i c e s . c l e a r ( ) ;
421 copy data . l o c a l p r e s i n d i c e s . c l e a r ( ) ;
422
423 const unsigned int d o f s p e r c e l l = f e . d o f s p e r c e l l ;
424 const unsigned int n q po i n t s = sc ra t ch da ta . f e v a l u e s . ge t quadrature ( ) . s i z e ( ) ;
425 const unsigned int n f a c e q p o i n t s
426 = sc ra t ch da ta . f e f a c e v a l u e s . ge t quadrature ( ) . s i z e ( ) ;
427
428 copy data . l o c a l d o f i n d i c e s . r e s i z e ( d o f s p e r c e l l ) ;
429 c e l l−>g e t d o f i n d i c e s ( copy data . l o c a l d o f i n d i c e s ) ;
430
431 s c ra t ch da ta . f e v a l u e s . r e i n i t ( c e l l ) ;
432
433 const KInverse<dim> k i n v e r s e ;
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434 const RightHandSide<dim> rhs ;
435 const PressureBoundaryValues<dim> p r e s s u r e b c ;
436
437 k i n v e r s e . v a l u e l i s t ( s c r a t ch da ta . f e v a l u e s . g e t q u a d r a t u r e p o i n t s ( ) ,
438 s c ra t ch da ta . k i n v e r s e v a l u e s ) ;
439 rhs . v a l u e l i s t
440 ( s c r a t ch da ta . f e v a l u e s . g e t q u a d r a t u r e p o i n t s ( ) , s c r a t ch da ta . r h s v a l u e s ) ;
441
442 const FEValuesExtractors : : Vector v e l o c i t y ( 0 ) ;
443 const FEValuesExtractors : : S ca l a r p r e s su r e (dim ) ;
444
445 const unsigned int n v e l = dim∗pow( degree +1,dim ) ;
446 std : : unordered map<unsigned int , s td : : unordered map<unsigned int , double>> div map ;
447
448 // One , we need to be ab l e to assemble the communication between v e l o c i t y and
449 // pressure v a r i a b l e s and put i t on the r i g h t p lace in our f i n a l , l o c a l ver s ion
450 // o f the B matrix . This i s a l i t t l e messy , as such communication i s not in f a c t
451 // l o ca l , so we do i t in two s t e p s . Firs t , we compute a l l r e l e v an t LHS and RHS
452 for (unsigned int q=0; q<n q po i n t s ; ++q )
453 {
454 const Point<dim> p = sc ra t ch da ta . f e v a l u e s . quadrature po int ( q ) ;
455
456 for (unsigned int k=0; k<d o f s p e r c e l l ; ++k )
457 {
458 s c ra t ch da ta . phi u [ k ]
459 = sc ra t ch da ta . f e v a l u e s [ v e l o c i t y ] . va lue (k , q ) ;
460 s c ra t ch da ta . d i v ph i u [ k ]
461 = sc ra t ch da ta . f e v a l u e s [ v e l o c i t y ] . d ive rgence (k , q ) ;
462 s c ra t ch da ta . phi p [ k ]
463 = sc ra t ch da ta . f e v a l u e s [ p r e s su r e ] . va lue (k , q ) ;
464 }
465
466 for (unsigned int i =0; i<d o f s p e r c e l l ; ++i )
467 {
468 for (unsigned int j=n v e l ; j<d o f s p e r c e l l ; ++j )
469 {
470 double div term = (− s c r a t ch da ta . d i v ph i u [ i ] ∗ s c r a t ch da ta . phi p [ j ]
471 − s c r a t ch da ta . phi p [ i ] ∗ s c r a t ch da ta . d i v ph i u [ j ] )
472 ∗ s c r a t ch da ta . f e v a l u e s .JxW( q ) ;
473
474 i f ( std : : abs ( div term ) > 1 . e−12)
475 div map [ i ] [ j ] += div term ;
476 }
477
478 double source term = −s c r a t ch da ta . phi p [ i ] ∗ s c r a t ch da ta . r h s v a l u e s [ q ]
479 ∗ s c r a t ch da ta . f e v a l u e s .JxW( q ) ;
480
481 i f ( std : : abs ( s c r a t ch da ta . phi p [ i ] ) > 1 . e−12 | |
482 std : : abs ( source term ) > 1 . e−12)
483 copy data . c e l l v e c [ p ] [ copy data . l o c a l d o f i n d i c e s [ i ] ] += source term ;
484 }
485 }
486
487 // Then , by making another pass , we compute the mass matrix terms and incorpora te
488 // the d ivergence form and RHS accord ing l y . This second pass , a l l ows us to know
489 // where the t o t a l c on t r i bu t i on w i l l be put in the nodal data s t ruc tu re s , as with
490 // t h i s cho ice o f quadrature ru l e and f i n i t e element only the b a s i s f unc t i ons
491 // corresponding to the same quadrature po in t s y i e l d non−zero con t r i bu t i on .
492 for (unsigned int q=0; q<n q po i n t s ; ++q )
493 {
494 std : : set<types : : g l o b a l d o f i n d e x> v e l i n d i c e s ;
495 const Point<dim> p = sc ra t ch da ta . f e v a l u e s . quadrature po int ( q ) ;
496
497 for (unsigned int k=0; k<d o f s p e r c e l l ; ++k )
498 {
499 s c ra t ch da ta . phi u [ k ] = sc ra t ch da ta . f e v a l u e s [ v e l o c i t y ] . va lue (k , q ) ;
500 s c ra t ch da ta . d i v ph i u [ k ]
501 = sc ra t ch da ta . f e v a l u e s [ v e l o c i t y ] . d ive rgence (k , q ) ;
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502 s c ra t ch da ta . phi p [ k ] = sc ra t ch da ta . f e v a l u e s [ p r e s su r e ] . va lue (k , q ) ;
503 }
504
505 for (unsigned int i =0; i<d o f s p e r c e l l ; ++i )
506 for (unsigned int j=i ; j<d o f s p e r c e l l ; ++j )
507 {
508 double mass term = sc ra t ch da ta . phi u [ i ]
509 ∗ s c r a t ch da ta . k i n v e r s e v a l u e s [ q ]
510 ∗ s c r a t ch da ta . phi u [ j ]
511 ∗ s c r a t ch da ta . f e v a l u e s .JxW( q ) ;
512
513 i f ( std : : abs ( mass term ) > 1 . e−12)
514 {
515 copy data . c e l l m a t [ p ] [ s td : : make pair ( copy data . l o c a l d o f i n d i c e s [ i ] ,
516 copy data . l o c a l d o f i n d i c e s [ j ] ) ] += mass term ;
517 v e l i n d i c e s . i n s e r t ( i ) ;
518 copy data . l o c a l v e l i n d i c e s [ p ] . i n s e r t ( copy data . l o c a l d o f i n d i c e s [ j ] ) ;
519 }
520 }
521
522 for (auto i : v e l i n d i c e s )
523 for (auto e l : div map [ i ] )
524 i f ( std : : abs ( e l . second ) > 1 . e−12)
525 {
526 copy data . c e l l m a t [ p ] [ s td : : make pair ( copy data . l o c a l d o f i n d i c e s [ i ] ,
527 copy data . l o c a l d o f i n d i c e s [ e l . f i r s t ] ) ] += e l . second ;
528 copy data . l o c a l p r e s i n d i c e s [ p ] . i n s e r t
529 ( copy data . l o c a l d o f i n d i c e s [ e l . f i r s t ] ) ;
530 }
531 }
532
533 // The pressure boundary cond i t i ons are computed as in step −20,
534 std : : map<types : : g l o b a l d o f i n d e x , double> pre s bc ;
535 for (unsigned int f a c e no =0;
536 face no<GeometryInfo<dim> : : f a c e s p e r c e l l ;
537 ++face no )
538 i f ( c e l l−>at boundary ( f a c e no ) )
539 {
540 s c ra t ch da ta . f e f a c e v a l u e s . r e i n i t ( c e l l , f a c e no ) ;
541 p r e s s u r e b c . v a l u e l i s t ( s c r a t ch da ta . f e f a c e v a l u e s . g e t q u a d r a t u r e p o i n t s ( ) ,
542 s c ra t ch da ta . p r e s b c v a l u e s ) ;
543
544 for (unsigned int q=0; q<n f a c e q p o i n t s ; ++q )
545 for (unsigned int i = 0 ; i < d o f s p e r c e l l ; ++i )
546 {
547 double tmp = −( s c r a t ch da ta . f e f a c e v a l u e s [ v e l o c i t y ] . va lue ( i , q ) ∗
548 s c ra t ch da ta . f e f a c e v a l u e s . normal vector ( q ) ∗
549 s c ra t ch da ta . p r e s b c v a l u e s [ q ] ∗
550 s c ra t ch da ta . f e f a c e v a l u e s .JxW( q ) ) ;
551
552 i f ( std : : abs (tmp) > 1 . e−12)
553 pre s bc [ copy data . l o c a l d o f i n d i c e s [ i ] ] += tmp ;
554 }
555 }
556
557 // . . . but we d i s t r i b u t e them to the corresponding nodal data s t r u c t u r e s
558 for (auto m : copy data . c e l l v e c )
559 for (unsigned int i =0; i<d o f s p e r c e l l ; ++i )
560 i f ( std : : abs ( p re s bc [ copy data . l o c a l d o f i n d i c e s [ i ] ] ) > 1 . e−12)
561 copy data . c e l l v e c [m. f i r s t ] [ copy data . l o c a l d o f i n d i c e s [ i ] ]
562 += pre s bc [ copy data . l o c a l d o f i n d i c e s [ i ] ] ;
563 }
564
565
566 // Fina l l y , <code>node assembly ()</code> t a ke s care o f a l l the
567 // l o c a l computations v ia WorkStream mechanism . Notice t ha t the cho ice
568 // o f the quadrature ru l e here i s d i c t a t e d by the formula t ion o f the
569 // method . I t has to be <code>degree+1</code> po in t s Gauss−Lobatto
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570 // fo r the volume i n t e g r a l s and <code>degree</code> f o r the face ones ,
571 // as mentioned in the in t roduc t i on .
572 template <int dim>
573 void MultipointMixedDarcyProblem<dim> : : node assembly ( )
574 {
575 TimerOutput : : Scope t ( computing timer , ”Nodal assembly ” ) ;
576
577 do f hand l e r . d i s t r i b u t e d o f s ( f e ) ;
578 DoFRenumbering : : component wise ( do f hand l e r ) ;
579 std : : vector<types : : g l o b a l d o f i n d e x> dofs per component ( dim+1);
580 DoFTools : : count dofs per component ( do f hand le r , dofs per component ) ;
581
582 QGaussLobatto<dim> quad ( degree +1);
583 QGauss<dim−1> face quad ( degree ) ;
584
585 n v = dofs per component [ 0 ] ;
586 n p = dofs per component [ dim ] ;
587
588 p r e s r h s . r e i n i t ( n p ) ;
589
590 WorkStream : : run ( do f hand l e r . b e g i n a c t i v e ( ) ,
591 do f hand l e r . end ( ) ,
592 ∗ this ,
593 &MultipointMixedDarcyProblem : : a s s emb l e sy s t em ce l l ,
594 &MultipointMixedDarcyProblem : : c o p y c e l l t o n o d e ,
595 DataStructures : : NodeAssemblyScratchData<dim>( fe ,
596 t r i a n g u l a t i o n ,
597 quad ,
598 face quad ) ,
599 DataStructures : : NodeAssemblyCopyData<dim> ( ) ) ;
600 }
601
602 // @sect4{Making the s p a r s i t y pa t t e rn }
603
604 // Having computed a l l the l o c a l con t r i bu t i ons , we a c t u a l l y have
605 // a l l the informat ion needed to make a c e l l−centered s p a r s i t y
606 // pa t t e rn manually . We do t h i s here , because @ref SparseMatrixEZ
607 // l ead s to a s lower s o l u t i on .
608 template <int dim>
609 void MultipointMixedDarcyProblem<dim> : : m a k e c e l l c e n t e r e d s p ( )
610 {
611 TimerOutput : : Scope t ( computing timer , ”Make s p a r s i t y pattern ” ) ;
612 DynamicSparsityPattern dsp ( n p , n p ) ;
613
614 std : : set<types : : g l o b a l d o f i n d e x > : : i t e r a t o r p i i t , p j i t ;
615 unsigned int i , j ;
616 for (auto e l : node matrix )
617 for ( p i i t = p r e s s u r e i n d i c e s [ e l . f i r s t ] . begin ( ) , i = 0 ;
618 p i i t != p r e s s u r e i n d i c e s [ e l . f i r s t ] . end ( ) ;
619 ++p i i t , ++i )
620 for ( p j i t = p i i t , j = 0 ;
621 p j i t != p r e s s u r e i n d i c e s [ e l . f i r s t ] . end ( ) ;
622 ++p j i t , ++j )
623 dsp . add (∗ p i i t − n v , ∗ p j i t − n v ) ;
624
625
626 dsp . symmetrize ( ) ;
627 c e l l c e n t e r e d s p . copy from ( dsp ) ;
628 pres sys tem matr ix . r e i n i t ( c e l l c e n t e r e d s p ) ;
629 }
630
631
632 // @sect4{The l o c a l e l im ina t i on procedure }
633
634 // This func t i on f i n a l l y performs the l o c a l e l im ina t i on procedure .
635 // Mathematical ly , i t f o l l ow s the same idea as in computing the
636 // Schur complement ( as mentioned in the in t roduc t i on ) but we do
637 // so l o c a l l y . Namely , l o c a l v e l o c i t y DOFs are expressed in terms
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638 // o f corresponding pressure va lues , and then used fo r the l o c a l
639 // pressure systems .
640 template <int dim>
641 void MultipointMixedDarcyProblem<dim> : :
642 n o d a l e l i m i n a t i o n ( const typename DataStructures : : PointToMatrixMap<dim> : : i t e r a t o r &n i t ,
643 DataStructures : : VertexEl iminat ionScratchData &scratch data ,
644 DataStructures : : NodeEliminationCopyData<dim> &copy data )
645 {
646 unsigned int n edges = v e l o c i t y i n d i c e s . at ( (∗ n i t ) . f i r s t ) . s i z e ( ) ;
647 unsigned int n c e l l s = p r e s s u r e i n d i c e s . at ( (∗ n i t ) . f i r s t ) . s i z e ( ) ;
648
649 s c ra t ch da ta . v e l o c i t y m a t r i x . r e i n i t ( n edges , n edges ) ;
650 copy data . p r e s su r e mat r i x . r e i n i t ( n edges , n c e l l s ) ;
651
652 copy data . v e l o c i t y r h s . r e i n i t ( n edges ) ;
653 s c ra t ch da ta . p r e s s u r e r h s . r e i n i t ( n c e l l s ) ;
654
655 {
656 std : : set<types : : g l o b a l d o f i n d e x > : : i t e r a t o r v i i t , v j i t , p i t ;
657 unsigned int i ;
658 for ( v i i t = v e l o c i t y i n d i c e s . at ( (∗ n i t ) . f i r s t ) . begin ( ) , i = 0 ;
659 v i i t != v e l o c i t y i n d i c e s . at ( (∗ n i t ) . f i r s t ) . end ( ) ;
660 ++v i i t , ++i )
661 {
662 unsigned int j ;
663 for ( v j i t = v e l o c i t y i n d i c e s . at ( (∗ n i t ) . f i r s t ) . begin ( ) , j = 0 ;
664 v j i t != v e l o c i t y i n d i c e s . at ( (∗ n i t ) . f i r s t ) . end ( ) ;
665 ++v j i t , ++j )
666 {
667 s c ra t ch da ta . v e l o c i t y m a t r i x . add
668 ( i , j , node matrix [ ( ∗ n i t ) . f i r s t ] [ s td : : make pair (∗ v i i t , ∗ v j i t ) ] ) ;
669 i f ( j != i )
670 s c ra t ch da ta . v e l o c i t y m a t r i x . add
671 ( j , i , node matrix [ ( ∗ n i t ) . f i r s t ] [ s td : : make pair (∗ v i i t , ∗ v j i t ) ] ) ;
672 }
673
674 for ( p i t = p r e s s u r e i n d i c e s . at ( (∗ n i t ) . f i r s t ) . begin ( ) , j = 0 ;
675 p i t != p r e s s u r e i n d i c e s . at ( (∗ n i t ) . f i r s t ) . end ( ) ;
676 ++p i t , ++j )
677 copy data . p r e s su r e mat r i x . add
678 ( i , j , node matrix [ ( ∗ n i t ) . f i r s t ] [ s td : : make pair (∗ v i i t , ∗ p i t ) ] ) ;
679
680 copy data . v e l o c i t y r h s ( i ) += node rhs . at ( (∗ n i t ) . f i r s t ) [ ∗ v i i t ] ;
681 }
682
683 for ( p i t = p r e s s u r e i n d i c e s . at ( (∗ n i t ) . f i r s t ) . begin ( ) , i = 0 ;
684 p i t != p r e s s u r e i n d i c e s . at ( (∗ n i t ) . f i r s t ) . end ( ) ;
685 ++p i t , ++i )
686 s c ra t ch da ta . p r e s s u r e r h s ( i ) += node rhs . at ( (∗ n i t ) . f i r s t ) [ ∗ p i t ] ;
687 }
688
689 copy data . Ainverse . r e i n i t ( n edges , n edges ) ;
690
691 s c ra t ch da ta . tmp rhs1 . r e i n i t ( n edges ) ;
692 s c ra t ch da ta . tmp rhs2 . r e i n i t ( n edges ) ;
693 s c ra t ch da ta . tmp rhs3 . r e i n i t ( n c e l l s ) ;
694
695 copy data . Ainverse . i n v e r t ( s c r a t ch da ta . v e l o c i t y m a t r i x ) ;
696 copy data . node pres matr ix . r e i n i t ( n c e l l s , n c e l l s ) ;
697 copy data . node pr e s rh s = sc ra t ch da ta . p r e s s u r e r h s ;
698
699 copy data . node pres matr ix = 0 ;
700 copy data . node pres matr ix . t r i p l e p r o d u c t ( copy data . Ainverse ,
701 copy data . pre s sure matr ix ,
702 copy data . pre s sure matr ix , true , fa l se ) ;
703
704 copy data . Ainverse . vmult ( s c r a t ch da ta . tmp rhs1 , copy data . v e l o c i t y r h s , fa l se ) ;
705 copy data . p r e s su r e mat r i x . Tvmult
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706 ( s c r a t ch da ta . tmp rhs3 , s c r a t ch da ta . tmp rhs1 , fa l se ) ;
707 copy data . node pr e s rh s ∗= −1.0;
708 copy data . node pr e s rh s += sc ra t ch da ta . tmp rhs3 ;
709
710 copy data . p = (∗ n i t ) . f i r s t ;
711 }
712
713
714 // Each node ’ s pressure system i s then d i s t r i b u t e d to a g l o b a l pressure
715 // system , us ing the i nd i c e s we computed in the prev ious s t a g e s .
716 template <int dim>
717 void MultipointMixedDarcyProblem<dim> : :
718 copy node to system ( const DataStructures : : NodeEliminationCopyData<dim> &copy data )
719 {
720 A inver se [ copy data . p ] = copy data . Ainverse ;
721 pre s su r e mat r i x [ copy data . p ] = copy data . p r e s su r e mat r i x ;
722 v e l o c i t y r h s [ copy data . p ] = copy data . v e l o c i t y r h s ;
723
724 {
725 std : : set<types : : g l o b a l d o f i n d e x > : : i t e r a t o r p i i t , p j i t ;
726 unsigned int i ;
727 for ( p i i t = p r e s s u r e i n d i c e s [ copy data . p ] . begin ( ) , i = 0 ;
728 p i i t != p r e s s u r e i n d i c e s [ copy data . p ] . end ( ) ;
729 ++p i i t , ++i )
730 {
731 unsigned int j ;
732 for ( p j i t = p r e s s u r e i n d i c e s [ copy data . p ] . begin ( ) , j = 0 ;
733 p j i t != p r e s s u r e i n d i c e s [ copy data . p ] . end ( ) ;
734 ++p j i t , ++j )
735 pres sys tem matr ix . add
736 (∗ p i i t − n v , ∗ p j i t − n v , copy data . node pres matr ix ( i , j ) ) ;
737
738 p r e s r h s (∗ p i i t − n v ) += copy data . node pr e s rh s ( i ) ;
739 }
740 }
741 }
742
743
744 // The @ref WorkStream mechanism i s again used fo r the assembly
745 // o f the g l o b a l system for the pressure va r i a b l e , where the
746 // prev ious func t i ons are used to perform l o c a l computations .
747 template <int dim>
748 void MultipointMixedDarcyProblem<dim> : : p r e s su re a s s embly ( )
749 {
750 TimerOutput : : Scope t ( computing timer , ” Pressure matrix assembly ” ) ;
751
752 QGaussLobatto<dim> quad ( degree +1);
753 QGauss<dim−1> face quad ( degree ) ;
754
755 p r e s r h s . r e i n i t ( n p ) ;
756
757 WorkStream : : run ( node matrix . begin ( ) ,
758 node matrix . end ( ) ,
759 ∗ this ,
760 &MultipointMixedDarcyProblem : : noda l e l im ina t i on ,
761 &MultipointMixedDarcyProblem : : copy node to system ,
762 DataStructures : : VertexEl iminat ionScratchData ( ) ,
763 DataStructures : : NodeEliminationCopyData<dim> ( ) ) ;
764 }
765
766
767
768 // @sect4{Ve loc i t y s o l u t i on recovery }
769
770 // After s o l v i n g f o r the pressure va r i a b l e , we want to f o l l ow
771 // the above procedure backwards , in order to ob ta in the
772 // v e l o c i t y s o l u t i on ( again , t h i s i s s im i l a r in nature to the
773 // Schur complement approach , see step −20, but here i t i s done
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774 // l o c a l l y at each node ) . We have almost e ve ry th ing computed and
775 // s to red already , i n c l ud ing inv e r s e s o f l o c a l mass matrices ,
776 // so the f o l l ow i n g i s a r e l a t i v e l y s t r a i g h t f o rwa rd implementation .
777 template <int dim>
778 void MultipointMixedDarcyProblem<dim> : :
779 v e l o c i t y a s s e m b l y
780 ( const typename DataStructures : : PointToMatrixMap<dim> : : i t e r a t o r &n i t ,
781 DataStructures : : VertexEl iminat ionScratchData &scratch data ,
782 DataStructures : : NodeEliminationCopyData<dim> &copy data )
783 {
784 unsigned int n edges = v e l o c i t y i n d i c e s . at ( (∗ n i t ) . f i r s t ) . s i z e ( ) ;
785 unsigned int n c e l l s = p r e s s u r e i n d i c e s . at ( (∗ n i t ) . f i r s t ) . s i z e ( ) ;
786
787 s c ra t ch da ta . tmp rhs1 . r e i n i t ( n edges ) ;
788 s c ra t ch da ta . tmp rhs2 . r e i n i t ( n edges ) ;
789 s c ra t ch da ta . tmp rhs3 . r e i n i t ( n c e l l s ) ;
790 s c ra t ch da ta . l o c a l p r e s s u r e s o l u t i o n . r e i n i t ( n c e l l s ) ;
791
792 copy data . v e r t e x v e l s o l u t i o n . r e i n i t ( n edges ) ;
793
794 std : : set<types : : g l o b a l d o f i n d e x > : : i t e r a t o r p i t ;
795 unsigned int i ;
796
797 for ( p i t = p r e s s u r e i n d i c e s [ ( ∗ n i t ) . f i r s t ] . begin ( ) , i = 0 ;
798 p i t != p r e s s u r e i n d i c e s [ ( ∗ n i t ) . f i r s t ] . end ( ) ;
799 ++p i t , ++i )
800 s c ra t ch da ta . l o c a l p r e s s u r e s o l u t i o n ( i ) = p r e s s o l u t i o n (∗ p i t − n v ) ;
801
802 pre s su r e mat r i x [ ( ∗ n i t ) . f i r s t ] . vmult ( s c r a t ch da ta . tmp rhs2 ,
803 s c ra t ch da ta . l o c a l p r e s s u r e s o l u t i o n ,
804 fa l se ) ;
805 s c ra t ch da ta . tmp rhs2 ∗= −1.0;
806 s c ra t ch da ta . tmp rhs2+=v e l o c i t y r h s [ ( ∗ n i t ) . f i r s t ] ;
807 A inver se [ ( ∗ n i t ) . f i r s t ] . vmult ( copy data . v e r t e x v e l s o l u t i o n ,
808 s c ra t ch da ta . tmp rhs2 ,
809 fa l se ) ;
810
811 copy data . p = (∗ n i t ) . f i r s t ;
812 }
813
814
815 // Copy nodal v e l o c i t i e s to a g l o b a l s o l u t i on vec tor by us ing
816 // l o c a l computations and ind i c e s from ear l y s t a g e s .
817 template <int dim>
818 void MultipointMixedDarcyProblem<dim> : :
819 c o p y n o d e v e l o c i t y t o g l o b a l
820 ( const DataStructures : : NodeEliminationCopyData<dim> &copy data )
821 {
822 std : : set<types : : g l o b a l d o f i n d e x > : : i t e r a t o r v i i t ;
823 unsigned int i ;
824
825 for ( v i i t = v e l o c i t y i n d i c e s [ copy data . p ] . begin ( ) , i = 0 ;
826 v i i t != v e l o c i t y i n d i c e s [ copy data . p ] . end ( ) ;
827 ++v i i t , ++i )
828 v e l s o l u t i o n (∗ v i i t ) += copy data . v e r t e x v e l s o l u t i o n ( i ) ;
829 }
830
831
832 // Use @ref WorkStream to run eve ry th ing concurren t l y .
833 template <int dim>
834 void MultipointMixedDarcyProblem<dim> : : v e l o c i t y r e c o v e r y ( )
835 {
836 TimerOutput : : Scope t ( computing timer , ” Ve loc i ty s o l u t i o n recovery ” ) ;
837
838 QGaussLobatto<dim> quad ( degree +1);
839 QGauss<dim−1> face quad ( degree ) ;
840
841 v e l s o l u t i o n . r e i n i t ( n v ) ;
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842
843 WorkStream : : run ( node matrix . begin ( ) ,
844 node matrix . end ( ) ,
845 ∗ this ,
846 &MultipointMixedDarcyProblem : : ve l o c i ty a s s emb ly ,
847 &MultipointMixedDarcyProblem : : c o p y n o d e v e l o c i t y t o g l o b a l ,
848 DataStructures : : VertexEl iminat ionScratchData ( ) ,
849 DataStructures : : NodeEliminationCopyData<dim> ( ) ) ;
850
851 s o l u t i o n . r e i n i t ( 2 ) ;
852 s o l u t i o n . b lock (0 ) = v e l s o l u t i o n ;
853 s o l u t i o n . b lock (1 ) = p r e s s o l u t i o n ;
854 s o l u t i o n . c o l l e c t s i z e s ( ) ;
855 }
856
857
858
859 // @sect4{Pressure system so l v e r }
860
861 // The s o l v e r par t i s t r i v i a l . We use the CG so l v e r with no
862 // precond i t i oner f o r s imp l i c i t y .
863 template <int dim>
864 void MultipointMixedDarcyProblem<dim> : : s o l v e p r e s s u r e ( )
865 {
866 TimerOutput : : Scope t ( computing timer , ” Pressure CG s o l v e ” ) ;
867
868 p r e s s o l u t i o n . r e i n i t ( n p ) ;
869
870 So lverContro l s o l v e r c o n t r o l ( 2 . 0∗ n p , 1e−10);
871 SolverCG<> s o l v e r ( s o l v e r c o n t r o l ) ;
872
873 P r e c o n d i t i o n I d e n t i t y i d e n t i t y ;
874 s o l v e r . s o l v e ( pres system matr ix , p r e s s o l u t i o n , p r e s rh s , i d e n t i t y ) ;
875 }
876
877
878
879 // @sect3{Pos tprocess ing }
880
881 // We have two pos tp roce s s ing s t e p s here , f i r s t one computes the
882 // er ror s in order to popu la te the convergence t a b l e s . The other
883 // one take s care o f the output o f the s o l u t i o n s in <code>. vtk</code>
884 // format .
885
886 // @sect4{Compute er ror s }
887
888 // The implementation o f t h i s func t i on i s almost i d e n t i c a l to step −20.
889 // We use @ref ComponentSelectFunction as masks to use the r i g h t
890 // s o l u t i on component ( v e l o c i t y or pressure ) and @ref i n t e g r a t e d i f f e r e n c e
891 // to compute the er ror s . Since we a l s o want to compute Hdiv seminorm of the
892 // v e l o c i t y error , one must prov ide g rad i en t s in the <code>ExactSo lut ion</code>
893 // c l a s s implementation to avoid excep t i ons . The only noteworthy th ing here
894 // i s t ha t we again use lower order quadrature ru l e in s t ead o f p r o j e c t i n g the
895 // s o l u t i on to an appropr ia t e space in order to show superconvergence , which i s
896 // mathemat ica l ly j u s t i f i e d .
897 template <int dim>
898 void MultipointMixedDarcyProblem<dim> : : compute errors ( const unsigned c y c l e )
899 {
900 TimerOutput : : Scope t ( computing timer , ”Compute e r r o r s ” ) ;
901
902 const ComponentSelectFunction<dim> pressure mask (dim , dim+1);
903 const ComponentSelectFunction<dim> ve loc i ty mask ( std : : make pair (0 , dim ) , dim+1);
904
905 ExactSolut ion<dim> e x a c t s o l u t i o n ;
906
907 Vector<double> c e l l w i s e e r r o r s ( t r i a n g u l a t i o n . n a c t i v e c e l l s ( ) ) ;
908
909 QTrapez<1> q t rapez ;
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910 QIterated<dim> quadrature ( q trapez , degree +2);
911 QGauss<dim> quadrature super ( degree ) ;
912
913 VectorTools : : i n t e g r a t e d i f f e r e n c e ( do f hand le r , s o lu t i on , e x a c t s o l u t i o n ,
914 c e l l w i s e e r r o r s , quadrature ,
915 VectorTools : : L2 norm ,
916 &pressure mask ) ;
917 const double p l 2 e r r o r = c e l l w i s e e r r o r s . l2 norm ( ) ;
918
919 VectorTools : : i n t e g r a t e d i f f e r e n c e ( do f hand le r , s o lu t i on , e x a c t s o l u t i o n ,
920 c e l l w i s e e r r o r s , quadrature super ,
921 VectorTools : : L2 norm ,
922 &pressure mask ) ;
923 const double p l 2 m i d e r r o r = c e l l w i s e e r r o r s . l2 norm ( ) ;
924
925 VectorTools : : i n t e g r a t e d i f f e r e n c e ( do f hand le r , s o lu t i on , e x a c t s o l u t i o n ,
926 c e l l w i s e e r r o r s , quadrature ,
927 VectorTools : : L2 norm ,
928 &ve loc i ty mask ) ;
929 const double u l 2 e r r o r = c e l l w i s e e r r o r s . l2 norm ( ) ;
930
931 VectorTools : : i n t e g r a t e d i f f e r e n c e ( do f hand le r , s o lu t i on , e x a c t s o l u t i o n ,
932 c e l l w i s e e r r o r s , quadrature ,
933 VectorTools : : Hdiv seminorm ,
934 &ve loc i ty mask ) ;
935 const double u hd e r ro r = c e l l w i s e e r r o r s . l2 norm ( ) ;
936
937 const unsigned int n a c t i v e c e l l s=t r i a n g u l a t i o n . n a c t i v e c e l l s ( ) ;
938 const unsigned int n do f s=do f hand l e r . n do f s ( ) ;
939
940 conve rgence tab l e . add value ( ” c y c l e ” , c y c l e ) ;
941 conve rgence tab l e . add value ( ” c e l l s ” , n a c t i v e c e l l s ) ;
942 conve rgence tab l e . add value ( ” do f s ” , n do f s ) ;
943 conve rgence tab l e . add value ( ” Veloc i ty , L2” , u l 2 e r r o r ) ;
944 conve rgence tab l e . add value ( ” Veloc i ty , Hdiv” , u hd e r ro r ) ;
945 conve rgence tab l e . add value ( ” Pressure , L2” , p l 2 e r r o r ) ;
946 conve rgence tab l e . add value ( ” Pressure , L2−nodal ” , p l 2 m i d e r r o r ) ;
947 }
948
949
950
951 // @sect4{Output r e s u l t s }
952
953 // This func t i on a l s o f o l l ow s the same idea as in step−20 t u t o r i a l
954 // program . The only mod i f i ca t i on to i t i s the par t i n v o l v i n g
955 // a convergence t a b l e .
956 template <int dim>
957 void MultipointMixedDarcyProblem<dim> : : o u t p u t r e s u l t s ( const unsigned int cyc l e ,
958 const unsigned int r e f i n e )
959 {
960 TimerOutput : : Scope t ( computing timer , ”Output r e s u l t s ” ) ;
961
962 std : : vector<std : : s t r i ng> so lut ion names (dim , ”u” ) ;
963 so lut ion names . push back ( ”p” ) ;
964 std : : vector<DataComponentInterpretation : : DataComponentInterpretation>
965 i n t e r p r e t a t i o n (dim , DataComponentInterpretation : : c o m p o n e n t i s p a r t o f v e c t o r ) ;
966 i n t e r p r e t a t i o n . push back ( DataComponentInterpretation : : c omponent i s s ca l a r ) ;
967
968 DataOut<dim> data out ;
969 data out . add data vector ( do f hand le r , s o lu t i on , so lut ion names , i n t e r p r e t a t i o n ) ;
970 data out . bu i l d pa t che s ( ) ;
971
972 std : : o f s tream
973 output ( ” s o l u t i o n ” + std : : t o s t r i n g (dim)+”d−”+std : : t o s t r i n g ( c y c l e )+” . vtk ” ) ;
974 data out . wr i t e v tk ( output ) ;
975
976 conve rgence tab l e . s e t p r e c i s i o n ( ” Veloc i ty , L2” , 3 ) ;
977 conve rgence tab l e . s e t p r e c i s i o n ( ” Veloc i ty , Hdiv” , 3 ) ;
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978 conve rgence tab l e . s e t p r e c i s i o n ( ” Pressure , L2” , 3 ) ;
979 conve rgence tab l e . s e t p r e c i s i o n ( ” Pressure , L2−nodal ” , 3 ) ;
980 conve rgence tab l e . s e t s c i e n t i f i c ( ” Veloc i ty , L2” , true ) ;
981 conve rgence tab l e . s e t s c i e n t i f i c ( ” Veloc i ty , Hdiv” , true ) ;
982 conve rgence tab l e . s e t s c i e n t i f i c ( ” Pressure , L2” , true ) ;
983 conve rgence tab l e . s e t s c i e n t i f i c ( ” Pressure , L2−nodal ” , true ) ;
984 conve rgence tab l e . s e t t e x c a p t i o n ( ” c e l l s ” , ”\\# c e l l s ” ) ;
985 conve rgence tab l e . s e t t e x c a p t i o n ( ” do f s ” , ”\\# dof s ” ) ;
986 conve rgence tab l e . s e t t e x c a p t i o n ( ” Veloc i ty , L2” , ”$ \\ |\\u − \\u h \\ | {Lˆ2} $” ) ;
987 conve rgence tab l e . s e t t e x c a p t i o n
988 ( ” Veloc i ty , Hdiv” , ”$ \\ |\\ nabla \\ cdot (\\u − \\u h )\\ | {Lˆ2} $” ) ;
989 conve rgence tab l e . s e t t e x c a p t i o n ( ” Pressure , L2” , ”$ \\ |p − p h \\ | {Lˆ2} $” ) ;
990 conve rgence tab l e . s e t t e x c a p t i o n ( ” Pressure , L2−nodal ” , ”$ \\ |Qp − p h \\ | {Lˆ2} $” ) ;
991 conve rgence tab l e . s e t t e x f o r m a t ( ” c e l l s ” , ” r ” ) ;
992 conve rgence tab l e . s e t t e x f o r m a t ( ” do f s ” , ” r ” ) ;
993
994 conve rgence tab l e . e v a l u a t e c o n v e r g e n c e r a t e s
995 ( ” Veloc i ty , L2” , ConvergenceTable : : r e d u c t i o n r a t e l o g 2 ) ;
996 conve rgence tab l e . e v a l u a t e c o n v e r g e n c e r a t e s
997 ( ” Veloc i ty , Hdiv” , ConvergenceTable : : r e d u c t i o n r a t e l o g 2 ) ;
998 conve rgence tab l e . e v a l u a t e c o n v e r g e n c e r a t e s
999 ( ” Pressure , L2” , ConvergenceTable : : r e d u c t i o n r a t e l o g 2 ) ;

1000 conve rgence tab l e . e v a l u a t e c o n v e r g e n c e r a t e s
1001 ( ” Pressure , L2−nodal ” , ConvergenceTable : : r e d u c t i o n r a t e l o g 2 ) ;
1002
1003 std : : o f s t ream e r r o r t a b l e f i l e ( ” e r r o r ” + std : : t o s t r i n g (dim ) + ”d . tex ” ) ;
1004
1005 i f ( c y c l e == r e f i n e −1)
1006 {
1007 conve rgence tab l e . w r i t e t e x t ( std : : cout ) ;
1008 conve rgence tab l e . w r i t e t e x ( e r r o r t a b l e f i l e ) ;
1009 }
1010 }
1011
1012
1013
1014 // @sect3{Run func t ion }
1015
1016 // The d r i v e r method <code>run()</code>
1017 // take s care o f mesh genera t ion and arranging c a l l s to member methods in
1018 // the r i g h t way . I t a l s o r e s e t s data s t r u c t u r e s and c l e a r t r i a n gu l a t i o n and
1019 // DOF handler as we run the method on a sequence o f re f inements in order
1020 // to record convergence ra t e s .
1021 template <int dim>
1022 void MultipointMixedDarcyProblem<dim> : : run ( const unsigned int r e f i n e )
1023 {
1024 Assert ( r e f i n e > 0 , ExcMessage ( ”Must at l e a s t have 1 re f inement c y c l e ! ” ) ) ;
1025
1026 do f hand l e r . c l e a r ( ) ;
1027 t r i a n g u l a t i o n . c l e a r ( ) ;
1028 conve rgence tab l e . c l e a r ( ) ;
1029
1030 for (unsigned int c y c l e =0; cyc l e<r e f i n e ; ++c y c l e )
1031 {
1032 i f ( c y c l e == 0)
1033 {
1034 // We f i r s t generate the hyper cube and r e f i n e i t tw ice
1035 // so tha t we could d i s t o r t the g r i d s l i g h t l y and
1036 // demonstrate the method ’ s a b i l i t y to work in such a
1037 // case .
1038 GridGenerator : : hyper cube ( t r i a n g u l a t i o n , 0 , 1 ) ;
1039 t r i a n g u l a t i o n . r e f i n e g l o b a l ( 2 ) ;
1040 GridTools : : d i s tort random ( 0 . 3 , t r i a n g u l a t i o n , true ) ;
1041 }
1042 else
1043 t r i a n g u l a t i o n . r e f i n e g l o b a l ( 1 ) ;
1044
1045 node assembly ( ) ;
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1046 m a k e c e l l c e n t e r e d s p ( ) ;
1047 pre s sure a s s embly ( ) ;
1048 s o l v e p r e s s u r e ( ) ;
1049 v e l o c i t y r e c o v e r y ( ) ;
1050 compute errors ( c y c l e ) ;
1051 o u t p u t r e s u l t s ( cyc l e , r e f i n e ) ;
1052 r e s e t d a t a s t r u c t u r e s ( ) ;
1053
1054 computing timer . print summary ( ) ;
1055 computing timer . r e s e t ( ) ;
1056 }
1057 }
1058 }
1059
1060
1061 // @sect3{The <code>main</code> f unc t i on }
1062
1063 // In the main func t i one we pass the order o f the F in i t e Element as an argument
1064 // to the cons t ruc tor o f the Mul t ipo in t Flux Mixed Darcy problem , and the number
1065 // o f re f inement c y c l e s as an argument f o r the run method .
1066 int main ( )
1067 {
1068 try
1069 {
1070 using namespace d e a l i i ;
1071 using namespace MFMFE;
1072
1073 Mul t i threadIn fo : : s e t t h r e a d l i m i t ( ) ;
1074
1075 MultipointMixedDarcyProblem<2> mfmfe problem ( 2 ) ;
1076 mfmfe problem . run ( 6 ) ;
1077 }
1078 catch ( std : : except ion &exc )
1079 {
1080 std : : c e r r << std : : endl << std : : endl
1081 << ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”
1082 << std : : endl ;
1083 std : : c e r r << ” Exception on p r o c e s s i n g : ” << std : : endl
1084 << exc . what ( ) << std : : endl
1085 << ” Aborting ! ” << std : : endl
1086 << ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”
1087 << std : : endl ;
1088
1089 return 1 ;
1090 }
1091 catch ( . . . )
1092 {
1093 std : : c e r r << std : : endl << std : : endl
1094 << ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”
1095 << std : : endl ;
1096 std : : c e r r << ”Unknown except ion ! ” << std : : endl
1097 << ” Aborting ! ” << std : : endl
1098 << ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”
1099 << std : : endl ;
1100 return 1 ;
1101 }
1102
1103 return 0 ;
1104 }
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[74] M. Peszyńska, M. F. Wheeler, and I. Yotov. Mortar upscaling for multiphase flow in
porous media. Comput. Geosci., 6(1):73–100, 2002.

[75] P. J. Phillips and M. F. Wheeler. A coupling of mixed and continuous Galerkin finite
element methods for poroelasticity. I. The continuous in time case. Comput. Geosci.,
11(2):131–144, 2007.

[76] P. J. Phillips and M. F. Wheeler. A coupling of mixed and continuous Galerkin finite
element methods for poroelasticity. II. The discrete-in-time case. Comput. Geosci.,
11(2):145–158, 2007.

[77] P. J. Phillips and M. F. Wheeler. Overcoming the problem of locking in linear elasticity
and poroelasticity: an heuristic approach. Computat. Geosci., 13(1):5, 2009.

[78] A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial Differential
equations. Clarendon Press, Oxford, 1999.

[79] P. A. Raviart and J. M. Thomas. A mixed finite element method for 2-nd order elliptic
problems. In Mathematical aspects of finite element methods, pages 292–315. Springer,
1977.

[80] J. E. Roberts and J.-M. Thomas. Mixed and hybrid methods. Handbook of numerical
analysis, 2:523–639, 1991.

[81] L. R. Scott and S. Zhang. Finite element interpolation of nonsmooth functions satisfying
boundary conditions. Math. Comput., 54(190):483–493, 1990.

214



[82] A. Settari and F. Mourits. Coupling of geomechanics and reservoir simulation models.
Computer Methods and Advances in Geomechanics, 3:2151–2158, 1994.

[83] R. E. Showalter. Diffusion in poro-elastic media. J. Math. Anal. Appl., 251(1):310–340,
2000.

[84] R. Stenberg. Analysis of mixed finite elements methods for the Stokes problem: a unified
approach. Math. Comp., 42(165):9–23, 1984.

[85] R. Stenberg. A family of mixed finite elements for the elasticity problem. Numer. Math.,
53(5):513–538, 1988.

[86] R. Stenberg. Postprocessing schemes for some mixed finite elements. RAIRO Modél.
Math. Anal. Numér., 25(1):151–167, 1991.

[87] A. H. Stroud. Approximate calculation of multiple integrals. 1971.

[88] A. Toselli and O. Widlund. Domain decomposition methods—algorithms and theory,
volume 34 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin,
2005.

[89] D. Vassilev, C. Wang, and I. Yotov. Domain decomposition for coupled Stokes and
Darcy flows. Comput. Methods Appl. Mech. Engrg., 268:264–283, 2014.

[90] J. Wang and T. Mathew. Mixed finite element methods over quadrilaterals. In Confer-
ence on Advances in Numerical Methods and Applications, IT Dimov, B. Sendov, and
P. Vassilevski, eds., World Scientific, River Edge, NJ, pages 203–214, 1994.

[91] M. F. Wheeler, G. Xue, and I. Yotov. Benchmark 3d: A multipoint flux mixed finite
element method on general hexahedra. Springer Proc. Math., 4:1055–1065, 2011.

[92] M. F. Wheeler, G. Xue, and I. Yotov. A multipoint flux mixed finite element method
on distorted quadrilaterals and hexahedra. Numer. Math., 121(1):165–204, 2012.

[93] M. F. Wheeler, G. Xue, and I. Yotov. A multiscale mortar multipoint flux mixed finite
element method. ESAIM Math. Model. Numer. Anal., 46(4):759–796, 2012.

[94] M. F. Wheeler, G. Xue, and I. Yotov. Coupling multipoint flux mixed finite ele-
ment methodswith continuous galerkin methods for poroelasticity. Computat. Geosci.,
18(1):57–75, 2014.

[95] M. F. Wheeler and I. Yotov. A multipoint flux mixed finite element method. SIAM J.
Numer. Anal., 44(5):2082–2106, 2006.

215


	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	2.1. Relative errors and convergence rates for Example 1, triangles.
	2.2. Relative errors and convergence rates for Example 1, h2-parallelograms.
	2.3. Relative errors and convergence rates for Example 1, squares.
	2.4. Relative errors and convergence rates for Example 2, tetrahedra.
	2.5. Relative errors and convergence rates for Example 3, triangles.
	2.6. Relative errors and convergence rates for Example 3, MSMFE-1 on triangles with force rotation.
	3.1. Physical parameters, Examples 1 and 2.
	3.2. Example 1, computed numerical errors and convergence rates.
	3.3. Example 2, computed numerical errors and convergence rates.
	4.1. Relative errors and convergence rates for Example 1.
	4.2. Relative errors and convergence rates for Example 2.
	5.1. Theoretical convergence rates for the choices of finite elements and mortars in the numerical tests.
	5.2. Numerical errors, convergence rates, and number of CG iterations with discontinuous quadratic mortars (m=2) for Example 1.
	5.3. Numerical errors, convergence rates, and number of CG iterations with discontinuous cubic mortars (m=3) for Example 1.
	5.4. Numerical errors, convergence rates, and number of CG iterations with discontinuous quadratic mortars (m=2) for Example 2.
	5.5. Numerical errors, convergence rates, and number of CG iterations with discontinuous cubic mortars (m=3) for Example 2.
	5.6. Numerical errors, convergence rates, and number of CG iterations with discontinuous linear mortars (m=1) for Example 3.
	5.7. Number of CG iterations for Example 4.
	5.8. Number of subdomain solves for Example 5.

	LIST OF FIGURES
	1.1. First elasticity triple BDM1P0P0, on triangles.
	1.2. Second elasticity triple BDM1P0P1, on tetrahedra.
	2.1. Finite elements sharing a vertex (left) and displacement stencil (right), simplicial grid.
	2.2. Finite elements sharing a vertex (left) and displacement stencil (right), quadrilateral grid.
	2.3. P2-P1 DoFs, Dirichlet boundaries
	2.4. Macroelement with NT triangles
	2.5. Two possible configurations of macroelements. Left: interior, vertically oriented macroelement; right: vertically oriented macroelement with bottom edge on the Neumann part of the boundary N. 
	2.6. Macroelement M=EM,1EM,2 surrounded by four macroelements Mi = EMi,1EMi,2, i=1,…, 4.
	2.7. Computed solution for Example 1, MSMFE-0 on simplices, h=1/32.
	2.8. Computed solution for Example 1, MSMFE-1 on h2-parallelogram mesh, 34113 DOFs.
	2.9. Computed solution for Example 2, MSMFE-1 on simplices, h=1/32.
	2.10. Computed solution for Example 3, MSMFE-1 on simplices, h=1/48.
	3.1. Example 1, computed solution at the final time step.
	3.2. Example 2, computed solution at the final time step.
	3.3. Example 3, computed pressure solutions.
	4.1. Degrees of freedom of the enhanced Raviart-Thomas elements
	4.2. Computed solution for Example 1 on the third level of refinement
	4.3. Computed solution for Example 2 on the third level of refinement.
	5.1. Computed solution for Example 1, h=1/16.
	5.2. Computed solution for Example 2, h=1/16.
	5.3. Computed solution for Example 3, h=1/32.
	5.4. Example 5, fine scale stress and displacement, vs. multiscale stress and displacement with cubic mortars, and Young's modulus, H = 1/8.

	1.0 INTRODUCTION
	1.1 Methodology
	1.2 Notations
	1.3 The model problem and its constituents
	1.3.1 The Darcy's model for flow in porous media
	1.3.2 Linear elasticity model
	1.3.3 The Biot consolidation model of poroelasticity

	1.4 Fundamentals of Mixed Finite Element method
	1.5 A quadrature rule.

	2.0 MULTIPOINT STRESS MIXED FINITE ELEMENT METHODS FOR THE LINEAR ELASTICITY MODEL
	2.1 The multipoint stress mixed finite element method with constant rotations
	2.1.1 Reduction to a cell-centered displacement-rotation system of MSMFE-0 method

	2.2 The multipoint stress mixed finite element method with (bi)-linear rotations
	2.2.1 Well-posedness of the MSMFE-1 method on simplices
	2.2.1.1 The macroelement definition
	2.2.1.2 Null space NM
	2.2.1.3 Assumptions on the macroelements and partitioning of the domain
	2.2.1.4 The inf-sup for the Stokes problem

	2.2.2 Well-posedness for the MSMFE-1 method on quadrilaterals
	2.2.2.1 The inf-sup for the Stokes problem

	2.2.3 Reduction to a cell-centered displacement system of the MSMFE-1 method

	2.3 Error analysis
	2.3.1 First order convergence of the solution of MSMFE-0 method
	2.3.2 First order convergence of the solution of MSMFE-1 method
	2.3.3 Second order convergence for displacement

	2.4 Numerical results

	3.0 COUPLED MULTIPOINT FLUX MULTIPOINT STRESS MIXED FINITE ELEMENT METHOD FOR THE BIOT POROELASTICITY MODEL
	3.1 The coupled multipoint stress multipoint flux mixed finite element method
	3.2 Stability analysis in semidiscrete case
	3.3 Reduction to a cell-centered displacement-pressure system
	3.4 Error analysis
	3.4.1 Preliminaries
	3.4.2 Optimal convergence

	3.5 Numerical results
	3.5.1 Example 1
	3.5.2 Example 2
	3.5.3 Example 3


	4.0 HIGHER ORDER MULTIPOINT FLUX MIXED FINITE ELEMENT METHODS FOR FLOW IN POROUS MEDIA
	4.1 Definition of the method
	4.1.1 The Raviart-Thomas mixed finite element spaces
	4.1.2 Enhanced Raviart-Thomas finite elements
	4.1.2.1 Shape functions
	4.1.2.2 Degrees of freedoms and unisolvency
	4.1.2.3 Mixed finite element spaces

	4.1.3 Quadrature rule
	4.1.4 The k-th order MFMFE method
	4.1.5 Reduction to a pressure system and its stencil

	4.2 Velocity error analysis
	4.2.1 Optimal convergence for the velocity

	4.3 Error estimates for the pressure
	4.3.1 Optimal convergence for the pressure
	4.3.2 Superconvergence of the pressure

	4.4 Numerical results

	5.0 DOMAIN DECOMPOSITION AND MULTISCALE MORTAR MIXED FINITE ELEMENT METHODS FOR LINEAR ELASTICITY WITH WEAK SRESS SYMMETRY
	5.1 Formulation of the methods
	5.2 Reduction to an interface problem and condition number analysis
	5.2.1 Method 1
	5.2.2 Method 2

	5.3 A multiscale mortar MFE method on non-matching grids
	5.3.1 Formulation of the method
	5.3.2 The space of weakly continuous stresses
	5.3.3 Optimal convergence for the stress
	5.3.4 Convergence for the displacement
	5.3.4.1 Optimal convergence for the displacement
	5.3.4.2 Superconvergence for the displacement

	5.3.5 Convergence for the mortar displacement
	5.3.6 Convergence for the rotation
	5.3.7 Multiscale stress basis implementation

	5.4 Numerical results
	5.4.1 Example 1
	5.4.2 Example 2
	5.4.3 Example 3
	5.4.4 Example 4
	5.4.5 Example 5


	6.0 CONCLUSIONS
	APPENDIX. CODE
	A.1 Higher order MFMFE method implementation in deal.II

	BIBLIOGRAPHY

