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EFFICIENT DISCRETIZATION TECHNIQUES AND DOMAIN
DECOMPOSITION METHODS FOR POROELASTICITY

Eldar Khattatov, PhD

University of Pittsburgh, 2018

This thesis develops a new mixed finite element method for linear elasticity model with
weakly enforced symmetry on simplicial and quadrilateral grids. Motivated by the multipoint
flux mixed finite element method (MFMFE) for flow in porous media, the method utilizes
the lowest order Brezzi-Douglas-Marini finite element spaces and the trapezoidal (vertex)
quadrature rule in order to localize the interaction of degrees of freedom. Particularly, this
allows for local elimination of stress and rotation variables around each vertex and leads to a
cell-centered system for the displacements. The stability analysis shows that the method is
well-posed on simplicial and quadrilateral grids. Theoretical and numerical results indicate
first-order convergence for all variables in the natural norms.

Further discussion of the application of said Multipoint Stress Mixed Finite Element
(MSMFE) method to the Biot system for poroelasticity is then presented. The flow part of
the proposed model is treated in the MFMFE framework, while the mixed formulation for
the elasticity equation is adopted for the use of the MSMFE technique.

The extension of the MFMFE method to an arbitrary order finite volume scheme for
solving elliptic problems on quadrilateral and hexahedral grids that reduce the underlying
mixed finite element method to cell-centered pressure system is also discussed.

A Multiscale Mortar Mixed Finite Element method for the linear elasticity on non-
matching multiblock grids is also studied. A mortar finite element space is introduced on
the nonmatching interfaces. In this mortar space the trace of the displacement is approx-

imated, and continuity of normal stress is then weakly imposed. The condition number
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of the interface system is analyzed and optimal order of convergence is shown for stress,
displacement, and rotation. Moreover, at cell centers, superconvergence is proven for the
displacement variable. Computational results using an efficient parallel domain decompo-

sition algorithm are presented in confirmation of the theory for all proposed approaches.

Keywords: mixed finite element methods, finite volume schemes, multiscale mortar MFEM,

domain decomposition, linear elasticity, Biot consolidation model.
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1.0 INTRODUCTION

1.1 METHODOLOGY

Geoscience applications such as environmental cleanup, petroleum production, solid waste
disposal, and carbon sequestration are inherently coupled with field phenomena such as
surface subsidence, uplift displacement, pore collapse, cavity generation, hydraulic fracturing,
thermal fracturing, wellbore collapse, sand production, and fault activation. This coupled
nature of fluid motion through porous media and solid deformation makes it challenging for
numerical modeling and simulation.

In this work we use the classical Biot consolidation system in poroelasticity [18, 83]
under a quasi-static assumption as the mathematical model for such coupled fluid-solid
system. The system of equations consists of an equilibrium equation for the solid and a
mass balance equation for the fluid. The contribution of the fluid pressure to the total
stress of the solid, and the divergence of the solid displacement represent additional terms
in the fluid content. Numerical modeling of this coupled system is well studied in the
literature. In [69,70], Taylor-Hood finite elements are employed for a displacement-pressure
variational formulation. A least squares formulation that approximates directly the solid
stress and the fluid velocity is studied in [58,59]. Finite difference schemes on staggered grids
designed to avoid nonphysical oscillations at early times have been developed in 1D in [33,43].
The method in [33] can handle discontinuous coefficients through harmonic averaging. A
formulation based on mixed finite element (MFE) methods for flow and continuous Galerkin
(CG) for elasticity has been proposed in [75,76]. The coupled multipoint flux mixed finite
element method (MFMFE) for flow and CG method for elasticity has been studied in [94]. On

the other hand, as the MFE methods for elasticity become more popular in the finite element



community, the five-field MFE formulation for the Biot system was presented in [61]. The
advantages of this approach is that the fluid and mechanics approximations are locally mass
conservative and the fluid velocity and poroelastic stress are computed directly. Moreover,
this approach guarantees robustness and locking-free properties with respect to physical
parameters. In [44], a parallel domain decomposition method has been developed for coupling
a time-dependent poroelastic model in a localized region with an elastic model in adjacent
regions. Each model is discretized independently on nonmatching grids and the systems are
coupled using DG jumps and mortars. Applications of the Biot system to the computational
modeling of coupled reservoir flow and geomechanics can be found in [23, 38,39, 82].

The focus of this thesis is on developing a discretization method for the poroelasticity
system in the mixed form that is suitable for irregular and rough grids, discontinuous full
tensor permeabilities and Lamé coefficeints that are often encountered in modeling subsurface
flows. To this end, we develop a formulation that couples multipoint flux mixed finite element
(MFMFE) methods for flow with multipoint stress mixed finite element (MSMFE) methods
for elasticity. The MFMFE method was developed for Darcy flow in [52,92,95]. It is locally
conservative with continuous fluxes and can be viewed within a variational framework as a
mixed finite element method with special approximating spaces and quadrature rules. The
MFMFE method allows for an accurate and efficient treatment of irregular geometries and
heterogeneities such as faults, layers, and pinchouts that require highly distorted grids and
discontinuous coefficients. The resulting discretizations are cell-centered with convergent
pressures and velocities on general hexahedral and simplicial grids. The reader is referred
to [91] for the performance of the MFMFE method for flow on a benchmark test using
rough 3D grids and anisotropic coefficients. On the other hand, for the mechanics part of
the system, motivated by MPSA method, we design a multipoint stress MFE method for
linear elasticity [3,4]. For this, we consider the formulation with weakly imposed symmetry
8,9,13,19,25] based on either Arnold-Falk-Winther (AFW) [13], PEERS [11,68] or Arnold-
Awanou-Qiu [9] finite element discretization. In case of simplicial grids and AFW elements,
for example, in d = 2,3 dimensions, there are exactly d stress degrees of freedom per facet.
A special quadrature rule is then employed allowing for local stress and rotation elimination

and leads to a cell-centered stencil either for rotations and displacements, or displacements



only, both of which lead to a symmetric and positive definite system. Following the authors
in [95] and due to the similarity with MPSA methods (in particular to the one based on weak
symmetry [53]) we called the method a multipoint stress mixed finite element (MSMFE)
method.

MFMFE and MSMFE methods allow for local flux and stress elimination around grid
vertices and reduction to a cell-centered pressure and displacement scheme, respectively. The
coupled scheme based on MPSA and MPFA methods for the elasticity and flow parts of the
Biot system was proposed in [71]. Similar elimination can be achieved in the MFMFE and
MSMFE variational framework, by employing appropriate finite element spaces and special
quadrature rules. Both methods are based on the BDM; [21] spaces with a trapezoidal
quadrature rule applied on the reference element, [52,92,95]. The advantage of the MEMFE
and MSMFE methods over the hybrid approach is in smaller size of the arising algebraic
system [28,29,95], due to smaller number of facets compared to the number of elements
in a finite element partition. Moreover, since CCFD are widely used in existing petroleum
simulators their data structures have more similarities to the ones needed for MSMFE, rather
than hybrid MFE. Our goal in this thesis is to emphasize the applicability of the MSMFE
method for solid mechanics in the Biot system, which, together with the MFMFE method
used for the flow part of the model will result in an efficient technique for solving a coupled
saddle-point type problem.

Chapter 2 of the thesis is devoted to the MSMFE methods on simplicial and quadrilateral
grids. This chapter is structured as follows. Two MSMFE-type methods are developed and
analyzed in in Sections 2.1-2.2. Section 2.3 addresses the convergence analysis of the solution,
as well as the superconvergence of the displacement variable. The last section, Section 2.4
of Chapter 2 presents the numerical results to verify the analysis.

We further continue in Chapter 3 with the coupled MFMFE-MSMFE method for the
Biot poroelasticity model. Section 3.1 introduces the method and the its stability studied
in Section 3.2. Section 3.3 shows the reduction of the method to the cell-centered finite
difference (CCFD) scheme. The convergence analysis for the continuous in time scheme is
developed in Section 3.4. Finally, Section 3.5 is devoted to the computational experiments.

The aforementioned MFMFE methods are limited to the lowest order approximation.



In the corresponding chapter of thesis we develop a family of arbitrary order symmetric
MFMFE methods on quadrilateral and hexahedral grids. The main obstacle in extending
the original lowest order BDM; and BDDJF; MFMFE methods to higher order is that the
degrees of freedom of their higher order versions cannot be associated with tensor-product
quadrature rules. To circumvent this difficulty, we construct a new family of mixed finite
elements fulfilling this requirement. A key of the construction is the finite element exterior
calculus framework [12,14], which is used in the extension of MFMFE to Hodge Laplace
equations [62]. However, we consider only the two and three dimensional cases with H(div)
element, so no prerequisite of the exterior calculus language is necessary in this chapter. The
new spaces are enhanced Raviart-Thomas spaces with bubbles that are curls of specially
chosen polynomials, so that each component of the velocity vector is of dimension QF(R?)
and the velocity degrees of freedom can be associated with the points of a tensor-product
Gauss-Lobatto quadrature rule [1]. The application of this quadrature rule leads to a block-
diagonal velocity mass matrix with blocks corresponding to the nodes associated with the
velocity degrees of freedom. This allows for a local elimination of the fluxes in terms of
the pressures from the surrounding elements, either sharing a vertex, or an edge/face. This
procedure results in a symmetric and positive-definite cell-based system for the pressures with
a compact stencil, allowing for efficient solvers to be used. The proposed technique allows
for more straightforward and efficient implementation and results in reduced computational
time. The resulting family of methods is a generalization of the original low order MEFMFE
method to arbitrary order approximation. Interestingly, while the lowest order version of
the new spaces has the same number of degrees of freedom as the BDM; spaces in 2d
and the enhanced BDDJF; spaces in 3d, their polynomial bases are different. Therefore the
lowest order version of our proposed method has the same computational complexity and
comparable accuracy to the original MEMFE method, but it is not identical to it.

We present well-posedness and convergence analysis of the proposed family of higher or-
der methods. To this end, we establish unisolvency and approximation properties of arbitrary
order k of the new family of enhanced Raviart-Thomas family of spaces. Since we study the
symmetric version of the MFMFE method, which relies on mapping to a reference element

via the Piola transformation, the analysis is limited to h2-perturbed parallelograms or paral-



lelepipeds, similar to the restriction in the lowest order symmetric MEMFE method [52,95].
The convergence analysis combines MFE analysis tools with quadrature error analysis, using
that the Gauss-Lobatto quadrature rule possesses sufficient accuracy to preserve the order
of convergence. We establish convergence of k-th order for the velocity in the H(div)-norm
and the pressure in the L?:-norm. We also employ a duality argument to show that the
numerical pressure is (k + 1)-st order superconvergent to the L2-projection of the pressure
in the finite element space, which implies superconvergence at the Gauss points. Moreover,
we show that a variant of the local postprocessing developed in [86] results in a pressure
that is (k + 1)-st order accurate in the full L>-norm. All theoretical results are verified nu-
merically. We also compare computational results of the method with the Raviart-Thomas
MFE method of order k. We observe that the k-th order MEFMFE method has significantly
reduced computational cost and comparable accuracy, with even smaller velocity error in
the L2-norm.

Chapter 4 of the thesis is devoted to the method outlined above. Is organized as follows.
The new family of finite element spaces and the general order MFMFE methods are developed
in Section 4.1. The error analyses for the velocity and pressure are presented in Sections 4.2
and 4.3, respectively. Numerical experiments are presented in Section 4.4.

In many physical applications, obtaining the desired resolution may result in a very large
algebraic system. Therefore a critical component for the applicability of MFE methods for
elasticity is the development of efficient techniques for the solution of these algebraic systems.
Domain decomposition methods [78,88] provide one such approach. They adopt the ”divide
and conquer” strategy and split the computational domain into multiple non-overlapping
subdomains. Then, solving the local problems of lower complexity with an appropriate choice
of interface conditions leads to recovering the global solution. This approach naturally leads
to designing parallel algorithms, and also allows for the reuse of existing codes for solving
the local subdomain problems. Non-overlapping domain decomposition methods for non-
mixed displacement-based elasticity formulations have been studied extensively [37,44, 50,
55-57], see also [47,72] for displacement-pressure mixed formulations. To the best of our
knowledge, non-overlapping domain decomposition methods for stress-displacement mixed

elasticity formulations have not been studied.



This thesis develops two non-overlapping domain decomposition methods for the mixed
finite element discretization of linear elasticity with weakly enforced stress symmetry. The
first method uses a displacement Lagrange multiplier to impose interface continuity of the
normal stress. The second method uses a normal stress Lagrange multiplier to impose
interface continuity of the displacement. These methods can be thought of as elasticity
analogs of the methods introduced in [46] for scalar second order elliptic problems, see also
[26]. In both methods, the global system is reduced to an interface problem by eliminating
the interior subdomain variables. We show that the interface operator is symmetric and
positive definite, so the interface problem can be solved by the conjugate gradient method.
Each iteration requires solving Dirichlet or Neumann subdomain problems. The condition
number of the resulting algebraic interface problem is analyzed for both methods, showing
that it is O(h™!). We note that in the second method the Neumann subdomain problems
can be singular. We deal with floating subdomains by following the approach from the FETI
methods [36,88], solving a coarse space problem to ensure that the subdomain problems are
solvable.

We also develop a multiscale mortar mixed finite element method for the domain decom-
position formulation of linear elasticity with non-matching grids. We note that domains with
complex geometries can be represented by unions of subdomains with simpler shapes that are
meshed independently, resulting in non-matching grids across the interfaces. The continuity
conditions are imposed using mortar finite elements, see e.g. [5, 37,44, 50, 55,56, 73]. Here
we focus on the first formulation, using a mortar finite element space on the non-matching
interfaces to approximate the trace of the displacement and impose weakly the continuity
of normal stress. We allow for the mortar space to be on a coarse scale H, resulting in a
multiscale approximation, see e.g. [6,42,74]. A priori error analysis is performed. It is shown
that, with appropriate choice of the mortar space, optimal convergence on the fine scale is
obtained for the stress, displacement, and rotation, as well as some superconvergence for the
displacement.

Chapter 5 of the thesis is organized as follows. First an MFE approximation of the prob-
lem of interest, and the two domain decomposition methods are formulated in Section 5.1.

The analysis of the resulting interface problems is presented in Section 5.2. The multiscale



mortar MFE element method is developed and analyzed in Section 5.3. A multiscale stress
basis implementation for the interface problem is also given in this section. The chapter
concludes with computational results in Section 5.4, which confirm the theoretical results
on the condition number of the domain decomposition methods and the convergence of the

solution of the multiscale mortar MFE element method.

1.2 NOTATIONS

Let Q be a simply connected bounded domain in R?, d = 2,3. We write M, S and N for the
spaces of d X d matrices, symmetric matrices and skew-symmetric matrices, all over the field
of real numbers, respectively.

Throughout this thesis the divergence operator is the usual divergence for vector fields,
which produces vector field when applied to matrix field by taking the divergence of each
row. We will also use the curl operator which is the usual curl when applied to vector fields

in three dimension, and defined as

curl ¢ = (0o, —019)

for a scalar function ¢ in two dimension. Similarly, for a vector field in two dimension or a
matrix field in three dimension, curl operator produces a matrix field by acting row-wise.
Throughout this thesis, C' denotes a generic positive constant that is independent of
the discretization parameter h. We will also use the following standard notation. For a
domain G' C R%, the L?(G) inner product and norm for scalar and vector valued functions
are denoted (-, -), and || - ||, respectively. The norms and seminorms of the Sobolev spaces
WhP(G), k € R,p > 0 are denoted by || - ||xpc and | - |xp.c, respectively. The norms and
seminorms of the Hilbert spaces H*(G) are denoted by | - |lx.c and | - |x.q, respectively.
We omit G in the subscript if G = ). For a section of the domain or element boundary

S C R we write (-, -)s and || - ||s for the L*(S) inner product (or duality pairing) and



norm, respectively. For a tensor-valued function M, let ||M||, = max; ; || M; ;|| for any norm

| M||n. We will also use the spaces
H(div; Q) = {v € L*(Q,R?%) : dive € L*(Q)},
H(div; Q,M) = {r € L*(Q,M) : divr € L*(Q,R%)},

equipped with the norm

. 1/2
I7llaw = ([I7]1* + [ div 7][*) .

We will also make use of the following notation. For a matrix 7, let
as(7) = Tig — To1 in 2d and as (1) = (739 — T3, 731 — T13, To1 — 7.12)T in 3d,

and define the invertible operators S and = as follows,

d - 0 p
d=2: Sw)=w forweR? E(p) = forpe R
0 —p3s po
d=3: S(w)=tr(w)l —w" forweM, Zp)=| ps 0 -p for p € RY.
—p2 p1 O
(1.2.1)
A direct calculation shows that for all w € R? in 2d and w € M in 3d,
as (curl(w)) = —div S(w), (1.2.2)
and for all 7 € M and &£ € N,
(1, €) = (as (1), E71(9)) - (1.2.3)

1.3 THE MODEL PROBLEM AND ITS CONSTITUENTS

In this section we introduce the common model for the poroelasticity, namely the Biot’s
consolidation system, by first discussing the flow and mechanics parts of it separately, and

then showing how the two are coupled in order to achieve the resulting model.



1.3.1 The Darcy’s model for flow in porous media
We consider a second order elliptic PDE written as a system of two first order equations,

z2=—KVp, V.-z=/finQQ, (1.3.1)

p=gonlp, z-n=0onTy, (1.3.2)

where the boundary the domain is 9Q = I'p UTy, I'p N Ty = 0, measure(T'p) > 0, n the
outward unit normal vector field on 0f2, and K is symmetric and uniformly positive definite

tensor satisfying, for some 0 < ky < b < o0,
kotTe < ETK(x)€ < ky£7¢, Vx e Q, VE e R (1.3.3)

In applications related to modeling flow in porous media, p is the pressure, z is the Darcy
velocity, and K represents the permeability tensor divided by the viscosity. The above choice
of boundary conditions is made for the sake of simplicity. More general boundary conditions,
including nonhomogeneous full Neumann ones, can also be treated.

The weak formulation for (1.3.1)—(1.3.2) reads as follows: find (z,p) € Z x W such that
(K7'2,q) — (p. V-q) = —(g9, ¢- n)r,, g€ Z, (1.3.4)

(V-2 w) = (f, w), weWw, (1.3.5)

where

Z={qe H(div;Q) :q-n=00on Ty}, W=L*Q).

It was shown [22,80] that (1.3.4) - (1.3.5) has a unique solution.



1.3.2 Linear elasticity model

Let the domain €2 be occupied by a linearly elastic body. The material properties are
described at each point x € Q by a compliance tensor A = A(x), which is a self-adjoint,
bounded, and uniformly positive definite linear operator acting from S to S. We assume that
A can be extended to an operator from M to Ml with the same properties. In particular, in

the case of homogeneous and isotropic body,

1 A
AO' = ﬂ <O' — mtl‘((j)[) s (136)

where [ is the d x d identity matrix and g > 0, A > 0 are the Lamé coefficients.

Given a vector field f on € representing body forces, the equations of static elasticity in
Hellinger-Reissner form determine the stress o and the displacement u satistying the following
constitutive and equilibrium equations respectively, together with appropriate boundary

conditions:

Ao =¢€(u), dive=—f inQ, (1.3.7)

u=gp onl'p, on=0 only, (1.3.8)

where e(u) = $(Vu + (Vu)”) and as before n is the outward unit normal vector field on
0Y=TpUlyN, TpNTy =0. For simplicity we assume that meas (I'p) > 0, in which case
the problem (1.3.7)—(1.3.8) has a unique solution.

We note that, using (1.3.6), we have

1 A
(AUJ)—Z(U;T)—m(tf(a)atf(ﬂ),
implying
1
— _JolP< (A < o2 1.3.
sl < (A0, @) < 5ol (139

We consider the mixed variational formulation for (1.3.7)—(1.3.8) with weakly imposed
stress symmetry. Introducing a rotation Lagrange multiplier v € N to penalize the asymme-

try of the stress tensor, we obtain: find (o,u,v) € X x V x W such that

(Ao, 7) + (u, divT) + (v, 7) = {9p, T R)ry, vr e X, (1.3.10)
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(dive, v) = —(f, v), Yo eV,
(07 g) =0, VEeW,

where

X={re Hdiv;Q,M):7n=0o0nTy}, V=L*(QRY, W=L*(N),

with norms

. 1/2
I7llx = (I l* + [ divel®) ", follv = lloll, - [1€lw = lI€]-

It is known [13] that (1.3.10)—(1.3.12) has a unique solution.

1.3.3 The Biot consolidation model of poroelasticity

(1.3.11)

(1.3.12)

Using the notation of the previous section, and given a vector field f on (2 representing body

forces, the quasi-static Biot system determines the displacement u, together with the Darcy

velocity z and pressure p:

divo(u) = —f, in €,
K 1'24+Vp=0, in Q,
0

a(cop—i—onm)%—V-z:q, in €,

where the poroelastic stress o(u) is such that:

o(u) = op(u) —apl,

(1.3.13)
(1.3.14)

(1.3.15)

where og(u) = 2ue(u) + AV - u [ is the elastic stress, the same we introduced in the previous

section. As before, K stands for the permeability tensor while ¢y represents mass storativity

and « is the Biot-Willis constant.

To close the system, the appropriate boundary conditions should also be prescribed

displ
w=g, onIp", on=0 on '3,

p=g, onIT z.n=0 onI%,

11

(1.3.16)
(1.3.17)



where TUPh U Tsiress = TP* U T3¢ = 9 are the domain boundaries on which Dirichlet and
Neumann data is specified for displacement, pressure and normal fluxes, respectively. We
assume for simplicity that I}, # (), for * = {displ, pres}.

We notice that due to the constitutive equation in a linear elasticity system, namely

Aog = €(u), we have

divu = tr (Aog)

With this, the problem reads: find (o, u,", z,p) such that

(Ao, 7) + (Aapl, 7) + (u, divr) + (v, 7) = (gu, TN), vreX, (1.3.18)
(divo, v) = — (f, v), YoeV, (1.3.19)
(0,8) =0 VEe W, (1.3.20)
(K12, 9) = (0, V-9) = —(gp, v+ 1), Vge Z, (1.321)
on =0, on T35 (1.3.23)
u-n=0, on I'¥¢,  (1.3.24)

where the spaces are

X={r€e Hdiv; QM) :7n=0on Iy}, V=L*(QRY), W=L*QN),
Z={ve Hdiv;QRY) :v-n=00nT¥}, W=L*Q).

It was shown in [61] that (1.3.18)-(1.3.24) has a unique solution.

12



1.4 FUNDAMENTALS OF MIXED FINITE ELEMENT METHOD

We consider Z;,, W}, to be the lowest order pair of Brezzi-Douglas-Marini spaces [21,22], i.e.,
we choose BDM; finite element space for 7, and Py for W),. We define the space of tensor
rotations as W, and choose either piecewise constant (PO)dXd’Skew or continuous piecewise

. dxd,sk
linear (Pgts)*®55e

space for it. By W9 we denote the former choice, while W} stands for the
latter. We then obtain the stress space X, by taking multiple copies of the Darcy velocity
space, i.e. X, = (Z;)?, similarly the displacement space is Vj, = (W})? Notice that the
above choices are made with simplicial grids in mind. For the quadrilateral cases, while
pressure and displacement spaces do not change, the continuous version of rotation space
needs to be replaced by its quadrilateral analogue, namely W1 = (Qgts)™*“** Both stress-
displacement-rotation triples that can be obtained from the aforementioned spaces were
shown to be inf-sup stable for the mixed elasticity problem with weak symmetry in [12,14]

for simplicial grids, and in [4] for the case of convex quadrilaterals.

On the reference simplex, these spaces are defined as (j =0, 1)

%,(8) = (PuB))". V(B) = Po(B), W(E) =) ve (@)L (La)
Zn(E) = Py (E)Y, Wi(E) = Po(E). (1.4.2)
On the reference unit square the stress and the velocity spaces are defined as
X(E) = (731(@)2 + 7 curl(2?g) + s curl(fcg}z)>2
(@ + B+ 4 20187 and 4 Bof + 92 — 2mdY — 5197
- a3l + B3 + 3+ 1od” 4 28087 ud 4 By + 4 — 2ra@Y — S99 ’
VW(E) = Po(E)!, Wi(E) =Z(v), v e Q(E), (1.4.3)

A

Z(E) = Pi(E)?* 4 r curl(@%)) + s curl(2?)

5@+ B5y + V5 + r3d? + 25387

a6 + Bsy + Y6 — 2r3ty — s39°

~ A A

Wi(E) = Po(E).
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An important property these spaces possess is that

divX(E) = V(E), divZ(E)=W and (1.4.4)
Vv, e X(E), Ge Z(E),é € E 7he € P1(é)? and ¢ - 1 € P1(é). (1.4.5)

It is known [21,22] that the degrees of freedom for BDM; space can be chosen to be the
values of normal fluxes at any two points on each edge é if E is a reference triangle or
square, or any three points one each face é if E is a reference tetrahedron. This also applies
to normal stresses in the case of (BDM;)?. For this work we choose said points to be at the
vertices of € for both the velocity and stress spaces. This choice is motivated by the use of
quadrature rule introduced in the next section.

In case of triangular meshes, E is the reference right triangle with vertices £; = (0,07),
f, = (1,0)7 and #35 = (0,1)7. Let ry, ry and r3 be the corresponding vertices of E, oriented

counterclockwise. In this case Fg is a linear mapping of the following form

Fp(t) =ri(1 — & — ) + ro + r3y, (1.4.6)
with constant Jacobian matrix and determinant given by

DFp = [ro1,r31]7 and Jp = 2|E|, (1.4.7)

where r;; = r; —r;. The mapping for tetrahedra is described similarly.

In case 7Ty, is a finite element partition of €2 consisting of quadrilaterals in 2d or hexahedra
in 3d, where h = maxgey, diam(E), the above mapping would become bilinear or trilinear,
respectively. We assume 7T;, to be shape regular and quasi-uniform [31]. For any element
E € Ty there exists a bilinear (trilinear) bijection mapping Fg : E — E, where £ = [—1,1]¢
is the reference square (cube). Denote the inverse mapping by Fj*', its Jacobian matrix by

DFy', and let Jp1 = |det(DFy")|. For X = Fj;' (x) we have that

1
Jp(X)

Denote by £;, i = 1,...,2% the vertices of E, where £, = (0,0)7, £, = (1,0)7, £5 = (1,1)7,

DFg'(x) = (DFp)"'(%),  Jpo(x) =

and £, = (0,1)7 in 2d, and #; = (0,0,0)7, £, = (1,0,0)T, #5 = (1,1,0)7, £, = (0,1,0)7, £5 =
(0,0,1)7, £ = (1,0,1)7, #7 = (1,1,1)7, and £5 = (0,1,1)7 in 3d. Let r;, i = 1,...,2% be

14



the corresponding vertices of element F. The outward unit normal vector fields to the facets
of E and F are denoted by n; and n;, 1 = 1,...,2d, respectively, where facet is a face in 3d

or an edge in 2d. The bilinear (trilinear) mapping is given by

FE(f') =TI + I'Ql.f + 1'41:& + (1'34 — 1'21).%];, n 2d, (148)

Fg(f) =r1 + 1912 + 100 + 1512 + (T34 — T21)2Y + (Te5 — r21)T2 + (rgs — ra1)y2

+ ((I’Ql - I'34) - (1'65 - I'78))Zi'g7:’, in 3d, (149)

where r;; = r; — r;. For the 3d case we note that the elements can have nonplanar faces.

Let é(f{) be defined on F, and let ¢ = ¢ o F -1 Using the classical formula V¢ =
(DF}EI)T@gg7 it is easy to see that for any facet e; C OF

1
m::j—ﬁxpﬁngm, Je, = |Je(DF5" ) Rilpa, (1.4.10)

where | - |ga denotes the Euclidean vector norm in R%. Another straightforward calculation
shows that, for all element types, the mapping definitions and the shape-regularity and
quasi-uniformity of the grids imply that

IDFullg i ~ by 1 Ellgooi ~ %
oo oo (1.4.11)

IDEg o008 ~ bt and [[Jp1lloeem ~ h 77,
where the notation a ~ b means that there exist positive constants cg, ¢; independent of h
such that cob < a < ¢1b.
We then define the above spaces on any physical element E € 7T, through the transfor-

mations mentioned above

1
TH%:T:J—EDFE%OFE?I, v biv="00Fgt
. . 1
{odiE=CoFy, G d4:q=—DFpjoFy',
E

w4 D w = o Fyt,

here we consider re X, veV, £ e W, g€ Zand we W.
The first and the forth transformations provided above are known as Piola transformation

applied to tensor and vector valued functions, respectively. Its advantage is in preserving
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the normal components of the stress tensor and velocity vector on the edges (faces), and it

satisfies the following properties

(divr,v)p = (divF, 0) s and (T, v)e = (F g, e, (1.4.12)
(divg,w)g = (&i\wj,w)]@ and (G- ne, w)e = (¢ - Mg, W)e. (1.4.13)

It also follows that for functions in stress and velocity spaces, there holds

1 1 1
Tn, = —DFgr — Jp(DF;)The = —7 i, (1.4.14)
JE le] le]
L pFuge g (DF;HT7 L (1.4.15)
. ne = —_— e — né — * né- * *
q JE Eq |€| E E |€|

First equation in (1.4.12) can be written as (div7,v)g = ((iv\T, Jg¥) ; which leads to
. 1 T A -1
divr = J—dlv ‘X | o Fg (), (1.4.16)
E

showing that div 7|, is constant on simplicial elements. Similarly, one concludes that div q‘ 5

E
is also constant on simplicial elements.
We now introduce the finite dimensional spaces for the method on a given partition of

the domain 7:
Xp={reX: 7lge7 7eX(E) VEeT,),
Vi={veV: vgeo oeV(E) VEeT},
Wy={6eW: ¢€pe§ EeWE) VEE T, (1.4.17)
Zv={a€Z: dp+d qi€Z(E) VEET},
Wy={weW: wlged oeW(E) VYEeT}.
We denote by II a mixed projection operator acting on tensor valued functions, such that
II: XNHYQ,M) — X;,. We will also use the same notation for a projection operator acting
on vector valued functions, so that in this case II maps from Z N H*(Q,RY) onto Z,. It

was shown in [21,22] and [90] that such projection operator exists and satisfies the following
properties
(div(Ilr — 7),v) =0, Yv € Vp,

(1.4.18)
(div(Ilg — q),w) = 0, Yw € W,
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In both cases the operator II is defined locally on each element E by

r < Ir, Ir =117, (1.4.19)
Mg < g, Tig = 114, (1.4.20)

where I : H'(E, M) — X,,(E) is the reference element projection operator satisfying

Ve c 0F, (17 — )R, d1)e =0, Vi € (P1(6))%, (1.4.21)

A

and similarly, IT : H'(E,R%) — Z,(E) is an operator satisfying

>

vecoE,  ((IG—q) -n,d)e =0, Vi € Pi(é). (1.4.22)

It is straightforward to see from (1.4.12), (1.4.19), (1.4.21) that 7n = 0 on I'{"*S implies
Il n = 0 on 555, For this we note that for all ¢ <> ¢ € (Py(é))",

(7, ¢)e = (rn, d)e = (17 7, d)e = (771, ¢) = 0.

Similar argument using (1.4.13), (1.4.20), (1.4.22) shows that ¢ -n = 0 on I'{¢ implies
Ig-n =0 on I'{.

In addition to the mixed projection operator presented above, we will make use of a
similar projection operator onto the lowest order Raviart-Thomas spaces [22,79]. This ad-
ditional construction is solely motivated by the purposes of error analysis on quadrilaterals.
To deal with errors in stress and velocity variables we consider R7T spaces of tensor and
vector valued functions, respectively, where the former is obtained as 2 copies of the latter.

Said spaces are defined on a unit square as follows

fo A a1 + 512 as + oy 2

XO(E) = A VB = (QulB)) (1.4.23)
az + B3 g+ Buy

20y = [T vy = o), (1.4.24)
ag + Bel

There holds

divXO(E) = VO(é) and 77 € (Py(é))?,
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div Z°(E) = W°(é) and G- € Py(é).

The degrees of freedom of XO(E) are the values of normal stress 77 at the midpoints of all
edges (faces) é. Similarly, the degrees of freedom of Z°(E) are the values of normal fluxes
q - n at the same points. The projection operator I, acting on tensor valued functions from
H(Q, M) onto X°(E); and acting on vector valued function so that Iy : H(2, RY) — Z°(E)

satisfies

ve C oL, ((of —7)i,go)e =0, Vo € (Po(€))",
R R X R (1.4.25)
Ve C 8E7 <(H0(j - qA) : /ﬁ'a Q/}0>é = 07 VT/JO € Pg(é)
The spaces X9, V}?, Z? and W} on the entire partition 7;, and the projection operator II; for
both tensor and vector valued functions are defined similarly to the case of BDM; spaces.

Notice also that X9 C X}, and Z? C Z;,, while the corresponding spaces V}? and W} coincide

with V}, and W), respectively. The definition of R7T projector implies that

divr =divIlyr and ||lp7|| < C||7||, V7€ X,
(1.4.26)

divg=divIlgg and ||Hoq| < Cllgll, Vq € Z.

1.5 A QUADRATURE RULE.

For any pair of tensor or vector valued functions (¢, 1) from X, or Z,, respectively, and for
any linear uniformly bounded and positive-definite operator L we define the global quadra-

ture rule

(Lo o= > (Lo, v)q.e

EcTy,

The integration on any element E is performed by mapping to the reference element E.
The quadrature rule is defined on E. Using the definition of the finite element spaces and
omitting the subscript F, we get

~ 1 ~ 1 P

/ Lo -dx = / L—DF¢-—-DF¢ Jdz
1 ~ A A A A
:/jDFTLDng-@Dde/ﬁgb-wdi,
- 3

E
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Figure 1.1: First elasticity triple BDM; x Py x Py, on triangles.

where - has a meaning of inner product for both tensor and vector valued functions, and
1 T ~
Lo = jDF LDF¢ (1.5.1)
is also a symmetric and positive definite operator. Notice that due to (1.4.11),
L8] 5 ~ B> Ll (1.5.2)

The quadrature rule on an element E is defined as

oI

(Lo, ¥)or = (Lo, 1)g

Z (1), (1.5.3)

where s = 3 for the unit triangle and s = 4 for the unit tetrahedron or the unit square.
This quadrature rule is often referred to as a vertex quadrature rule on unit simplices and
as trapezoid rule on unit squares.

When applied to the elasticity and Darcy coercive terms in our coupled problem, the
quadrature rule defined above guarantees the coupling of stress and velocity basis function
only around vertices (see [3,4,95]), i.e., the coupled stress basis functions are only the ones
associated with a corner, and same statement applies for the velocity basis functions. For
example, for the elasticity mass term in the case of simplicial elements, the corner tensor
X(F;) is uniquely determined by its normal components to the two edges (three faces) that

share that vertex. Recall that we chose the stress degrees of freedom to be the normal
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Figure 1.2: Second elasticity triple BDM; x Py x Py, on tetrahedra.

components evaluated at vertices. Therefore for each corner ¥; there are four (nine) stress

degrees of freedom associated with it i.e.

d
= 2 RwEn

where 7,5, j = 1,d are the outward unit normal vectors to the two edges (three faces)
intersecting at ¥;, and X n;;(T;) are the stress degrees of freedom associated with this corner.

Let us denote the basis functions associated with #; by 7;;, as seen in Figures 1.1 and 1.2,

Le.,
PN () DU o
Ry (Bi) 7oy i (B) = 1, l=1,d
il (£:) 74 fan(B) = 0, kg l=T.d
AL (3 70 Aun () = 0, I4i k=14 1=1.4d

here superscript (1) stands for the fact that our stress space consists of d copies of vector
valued BDM; spaces. It is now straightforward to see that the quadrature rule (1.5.3)
couples only the four (nine) basis functions associated with a corner. On a reference triangle

for example

~(1) ~(1 1 ~ ~(1) A 1 ~
(A 7)o = (AL, (ARY 71))g 5 = 5 (A2 (15.4)
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and
(A 7)o 5 =0, Vij #£11,12,VI=1,2. (1.5.5)

We also construct the quadrature rule for the term involving stress with second variable
being pressure or rotation. Given 7 = Xj, ¢ € W), or ¢ € (W},)?? and any linear uniformly

bounded positive-definite operator M we get:
1 - ~ R ~ “
/MT:Cd:{::/—MDF%:CJd:%:/MDF%:Cdi:/M%:Cdi,
B g B B

where M# = M DF#. For this case we also define

>
—~~

>

.
SN—

"\w

(1,0)er = (Mf, 5) op = L C(F;). (1.5.6)

Remark 1.5.1. The quadrature rules can be defined directly on an element E. It is easy to
see from definitions (1.5.3), (1.5.6) that on simplicial elements, for ¢, € Xy, or ¢, € Z,
7€ X, and ¢ € Wy, or ¢ € (W),)4x4

(Lo, ) _ Bl Zw r;)-(r), (M71,{)o _E ZMT r;) : C(r;) (1.5.7)

where L and M are any linear uniformly bounded and positive definite operators. On quadri-

laterals the above definitions read as

(Lol = 5 - ITILO0) 6(r), (M7, Qo= 3 30 ITIMr(r) : C(r), (158

where |T;| is the area of a triangle formed by two edges sharing vertex r;.

The above quadrature rules are closely related to some inner products arising in mimetic

finite difference methods [51].
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For ¢, ¢ € X, or ¢, ¢ € Zy, 7 € X, and ¢ € W), or ¢ € (W},)?? denote the element

quadrature errors by

0(Lo,v) = (Lo, ¥)g — (Lo, V)g,E, (1.5.9)
S(MT,¢) = (MT1,0)p — (MT,()q.5, (1.5.10)

and define the global quadrature errors by (Lo, vV)g = 0(Lp, ), §(M7,()p = §(MT,().

Similarly denote the quadrature errors on the reference element by

)i — (£, ) g 5 (1.5.11)
8(/\/171?6) = (M7, 6) — (M7, C)QE (1.5.12)

Lemma 1.5.1. On simplicial elements, if x € X,(E) and r € Z,(E), then

0e(x,70) =0 for all constant tensors Ty,

Or(r,v9) =0 for all constant vectors vy.
Also, if ¢ € W, (E), then
r(x, &) = 0r(10,¢) =0, for all constant tensors & and To.

Proof. 1t is enough to consider 7y such that it has only one nonzero component, say, (79)11 =
1, the arguments for other cases are similar. Since the quadrature rule (f)g = |E‘ Yo f(r)

is exact for linear functions and using Remark 1.5.1 we have

E
(X;TO | |Z llrz —/XiTodiU>
E

The same reasoning applies for the other two statements. O

Lemma 1.5.2. On the reference square, for any x € Xh( ) and r € Zh(E)

()2 — TIy¥, %0>Q =0 for all constant tensors Ty, (1.5.13)
B

(f — TL,#, 2’0> =0 for all constant vectors Zy. (1.5.14)
O.F
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Proof. On any edge é, if the degrees of freedom of x are (¢ 11, Xé712)T and ()A(é721,)%é722)T,
then (1.4.25) and an application of trapezoid quadrature rule imply that

ESEN (Xea1 + Xe21)

ITpx

E

N[—= D=

(Xea2 + Xe22)

Using (1.5.3) the simple calculation shows that the statement holds for the case of ¥ € X, (E).
Similar reasoning applied to the degrees of freedom of 7 shows that the statement is also

valid for 7 € Zy,(E). O

For the justification of well-posedness and stability of the proposed methods later on in

the thesis, we show several important results involving the quadrature rule (1.5.3).

Lemma 1.5.3. If E € T, and ¢ € L*(E,M), ¢ € L*(E,R?) is a function mapped using

Piola transformation, then

Iolle ~ B0 5. (1.5.15)

Proof. The statement follows from the bounds given in (1.4.11) and the following relations

1 ~ 1 ~
/(ﬁ-(ﬁdm:/—Dngﬁ-—DF(bdi‘,
E g J

N 1 1
/gb-gbdi:/ DF 4. DF ¢ dx,
E E JF*1 prl

where - stands for the inner product when applied to tensor valued functions. O

Lemma 1.5.4. There exists a positive constant C independent of h, such that for any linear

uniformly bounded and positive-definite operator L

(Lo, ¢)g = CllolIP, Vo € Xy or Vo € Z. (1.5.16)
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Proof. Let ¢ =7, Z;l:l ¢i;1;; on an element £ where 1;; is a basis function. Using the

definitions of the quadrature rule as in Remark 1.5.1 we obtain

|B| & NEEN Bl & v
(Lo, ¥)g Zqu r;) - o(r;) > C(l Zaﬁrl rZ)EC(lo)?;g 2,

where C(lp) involves the constant from the lower bound of the operator L. On the other

hand

s d s d s d
lolls = (ZZ@;’@%A ZZ%MH) < C|E]| ZZQQ]

i=1 j=1 k=1 I=1 i=1 j=1

And the assertion of the lemma follows from the combination of the above two estimates. [
The following corollary is a result of the above lemma.
Corollary 1.5.1. The bilinear form (L¢, ), is an inner product on Xy, and Zy, (L&, 1/))22/2

is also a norm in X}, and Zy, equivalent to || - ||x and || - || z,, respectively.

Proof. Since (L, ¢)Q is symmetric and linear, Lemma 1.5.4 implies that it is an inner
product and (L, w)gg is a norm on X, and Zj,, which we denote by || - ||g,r. It remains
to show that it is bounded above by | - || which together with the Lemma above will give
the equivalence of norms. Using (1.5.3), (1.5.16) and the equivalence of norms on reference

element E we have that for all ¢ € X, and for all ¢ € Z,

(Lo, O)ge = (£6,9), , < 0||¢3||% —c [ é-das
1
~C [ D' S DFg 0I5 ds < Clol

which, combined with (1.5.16), implies that

col[oll < lI9lle. < elloll; (1.5.17)

for positive constants ¢y, ¢; depending on the properties of any uniformly bounded operator

L. The proof of the second statement is similar. O
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2.0 MULTIPOINT STRESS MIXED FINITE ELEMENT METHODS FOR
THE LINEAR ELASTICITY MODEL

We start the chapter by providing the mixed finite element approximation of (1.3.10)—(1.3.12)
that reads as follows: Find (o5, un, vn) € Xp X Vj, X W{l ( = 0,1) such that:

(Aoy, 7) + (up, div 1) + (Y4, T7) = (9, T 1)1, T e Xy, (2.0.1)
(divop,v) = (f,v), v € Vi, (2.0.2)
(on,€) =0, £ew. (2.0.3)

The method has a unique solution and is first order accurate for all of the variables in
corresponding norms on both, simplicial and quadrliateral grids with both choices of elements
[13,25]. The drawback is that the resulting algebraic system is a coupled system with three
variables of a saddle point type. However the quadrature rule, that we developed in the
previous chapter, allows for local eliminations of the stresses and rotations which leads to
a cell-centered displacement-rotation in the case of 7 = 0 in (1.4.1), (1.4.3), or further,

displacement only system in the case of 7 = 1.

2.1 THE MULTIPOINT STRESS MIXED FINITE ELEMENT METHOD
WITH CONSTANT ROTATIONS

Let Py be the L?-orthogonal projection onto X%n, the space of piecewise constant vector-

valued functions on the trace of T, on 0f2 in the case of quadrilateral grids:

Vo, <¢ — Poo, Tn>aQ =0, Vre Xz (2.1.1)
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In case of simplicial meshes, we define as identity operator Py = Z. The projection operator
is needed to obtain optimal order of convergence while incorporating the Dirichlet data in
case of quadrilateral grids, similarly to [52].

We define our first method as follows, we seek o, € X, up € Vj, and v, € W?l such that

(A0h7T)Q + (uha div 7—) + (’th T) = <7D097 Tn>FD7 T E Xh, (212)
(le Uh7v) = (f7 U)? (NS Vh, (213)
(on,§) =0, £ewy. (2.1.4)

Theorem 2.1.1. With the quadrature rule defined as in (1.5.3) and the finite element spaces
chosen as in (1.4.17) with j=0, the method (2.1.2)-(2.1.4) has a unique solution (o, un,ys)-

Proof. We use the classic stability result from the theory of mixed finite element methods.

For this particular case the BabuSka-Brezzi conditions [22] are stated as

(S1) There exists a constant ¢; > 0 such that
Cl||TH(2iiv S (AT, T)QJ

for 7 € X}, satisfying (divr, v) + (7, §) = 0 for all (v,&) € V}, x WY.
(S2) There exists ¢o such that

>, (div T, v) + (7, §)
in >
0£(0.£)eVix W, 0zrex, || Tllaiv (l0l] + [I€])

Co.

The condition (S1) is satisfied due to the Corollary 1.5.1 and it was shown in [13,19] that
the condition (S2) is satisfied for our choice of spaces for the method (2.1.2)-(2.1.4) in case

of simplicial meshes. Thus, the method is well-posed. O
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Figure 2.1: Finite elements sharing a vertex (left) and displacement stencil (right), simplicial

grid.

\ A/
HH

Figure 2.2: Finite elements sharing a vertex (left) and displacement stencil (right), quadri-

lateral grid.
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2.1.1 Reduction to a cell-centered displacement-rotation system of MSMFE-0
method

Let us consider any interior vertex r and suppose that it is shared by k elements E, ..., Ej
as shown in Figures 2.1-2.2. Let ey, ..., e, be the edges (faces) that share the vertex r and
let 71, ..., Tak, be the stress basis functions on these edges (faces) associated with the vertex.
Denote the corresponding values of the normal components of o, by o1, ...,04%. Note that
for the sake of clarity the normal stresses are drawn at a distance from the vertex.

We mentioned that the quadrature rule localizes the basis functions interaction, therefore

the d k equations obtained by taking 7 = 711, ..., 74x form a linear system for oy, ..., o4%.

Lemma 2.1.1. The dk x dk local linear system obtained by taking T = 7, ..., Tq described

above is symmetric and positive definite.

Proof. The system is obtained by taking 7 = 71, ..., 7qx in the first term of (2.1.2), so on the

left-hand side we have
dk dk
(Aop,T)o :ZO'j(ATj,TZ')QEZmijO'j, i=1,...dk.
j=1 j=1

and by Corollary 1.5.1 we conclude that the matrix A,, = {m;;} is symmetric and positive

definite. u
The algebraic system that arises from the (2.1.2)-(2.1.4) is of the form

Ay AL AZW o g
Asw 0 0 ul=17r1. (2.1.5)
Ay 00 ~ 0

where (Ay0)ij = (AT, )0, (Asu)ij = (div 7, v;) and (Ay-)ij = (73,77;). It was already shown
in Lemma 2.1.1 that matrix A,, is block-diagonal with symmetric and positive definite

blocks. Hence, elimination of o leads to a displacement-rotation system

AguAS AL, AnuAL) AZW u f
e e -(7]. (2.1.6)
AU'YA;J Aau AU'YA;a' Aa'y v h
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Lemma 2.1.2. The cell-centered displacement-rotation system (2.1.6) is symmetric and pos-

itive definite.

Proof. The symmetry of A implies that A,,A tAT = (AUUA;;AZW)T hence proving the

o

symmetry of the matrix in (2.1.6). To show the positive definiteness, consider an arbitrary

vector (UT gT) # 0, so

AgAIAT A, ATLAT
<1)T £T> oo‘tou oo‘toy v _ UTAguA;;AZuU
AryAsg Az AcyAzs AT, | \§
+UTAUUA;;Ag'yg_’_gTAU’YA;;AZMU+§TAUWA;;AZWS = (AZuU+AZW§)TA;; (AZuU+AZW§) > 07
due to inf-sup condition (S2). O

While this method reduces the initial saddle-point problem to the SPD system for dis-
placement and rotation, we proceed further in order to obtain the system for displacement
only. For doing so we would want to be able to do local computations in order to eliminate
the rotation variable, in a way similar to the one described above. However, to achieve this,
we must modify the method, by changing the space for rotation variable, and applying the
vertex quadrature rule to the terms involving this variable. The next chapter discusses this

in more details.

Remark 2.1.1. We refer to the method (2.1.2)-(2.1.4), obtained by combining quarature rule
and j = 0 in (1.4.1)-(1.4.3) as the MSMFE-0 method. The method described in equations
(2.2.1)-(2.2.3), is consequently referred to as the MSMFE-1 method.

2.2 THE MULTIPOINT STRESS MIXED FINITE ELEMENT METHOD
WITH (BI)-LINEAR ROTATIONS

As discussed earlier, we modify the first method so that it now reads: seek o, € Xp,, up, € Vj,

and 7, € W} such that

(Aop, 7)o + (un, div ) + (7,71)0 = (Pog, Tn)1rp, T e Xy, (2.2.1)
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(divop,v) = (f,v), v eV, (2.2.2)

(on,§)q =0, £ew,. (2.2.3)

Note that this method deviates from the method (2.1.2)-(2.1.4) both in utilizing the space
W} instead of WY, which allows for introducing quadrature on the term in equation (2.2.3).

The stability conditions for the modified method can be written in the following form

(S3) There exists c3 such that

C3||T||(211v S (ATv T)Qu

for 7 € X, satisfying (div 7, v) + (7, ¢)o = 0 for all (v,§) € Vi, x W},
(S4) There exists ¢4 such that

. (le T, 'U) + (7-7 g)Q
inf sup > Cy.
07w &)eVix W ozrex,, [|Tllaw ([[0ll + 1I€1)

2.2.1 Well-posedness of the MSMFE-1 method on simplices

While the condition (S3) is again satisfied due to the Corollary (1.5.1), we need to verify
that the inf-sup condition holds for our choice of spaces. The next theorem provides sufficient

conditions for a triple of spaces to satisfy (S4).

Theorem 2.2.1. Let S, C H(div;Q) and U, C L*(Q) be a stable mized Poisson pair of
spaces and suppose that Q, C H'(Q,R>U=D/2) qnd W} = W, C L*(Q, RU=1D/2) satisfy
(2.2.5). Suppose further that,

curl Q, C (Sy)% (2.2.4)

Then, X;, = (Sp)¢ C H(div; Q,R™9), V}, = (Up)? C L*(Q,RY) and W), C L*(Q, RU4-1/2)
satisfy (S4).
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Proof. Let v € Vj,, w € W), be given. Since X, = (S,)? and V}, = (U,)? there exists n € X,
such that
(divn,v) = [[vl*, and [[9llaw < Cllv].

Next, from (2.2.5) there exists ¢, € @, such that
PV?,h divg =w — PI;?,h as 1.
Setting 7 = 1 — curl S~!(q) so that as 7 = as n + div ¢ € X;, and using (1.2.2) we get

(as T,w)g = (as n,w)g + (divg, w)g
= (PV?,}L as n,w)q + (PMQ,h div g, w)g
= (P, as nw)q + (w — P, (as 1), w)e.
Thus, (as 7,w)g = (w, w)q. Since there holds
(div7,v) = (divy,v) = [|v],
with £ = Z(w) we finally obtain
(V-70) +(1,8)e = (V- 7,0) + (as 7, w)q = c|[7llv-(lvll + [I€])-

which completes the proof. O

Therefore, in order to construct spaces X; and Wy, such that (S4) is satisfied, one should

consider the pair of stable Stokes spaces @, W), satisfying

b
sup bla, w)q > Cllw||, Vw € W, (2.2.5)
0#geQ  |lalh
for some constant C' > 0. Here b(q,w)q = —(div g, w)q is a usual divergence term arising in

Stokes equations, with our choice of quadrature rule used for integration. We notice that in
3 dimensions, this result should be understand as applied row-wise to ), and W), as these

spaces are over R3*3 and R?, respectively.
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Following the statement of the theorem above and our choice for the stress space X, =
(BDM,)? we are restricted to considering the quadratic Lagrangian space for the velocity

in this auxiliary Stokes problem, since
curl(Py) > 4d=D/2 « (BDM,)?.

It is well known that Py — P; is a stable Taylor-Hood pair of spaces for the Stokes problem
on simplices, however, we still need to verify the inf-sup condition with quadrature (2.2.5).

Before moving on to proving the modified inf-sup condition for the Stokes problem, we
need to discuss the subtleties arising due to the choice of boundary conditions for the initial
elasticity problem and how they translate into the ones of the Stokes problem that we will
consider in the next section.

In case 'y # ) in the initial problem (1.3.10)-(1.3.12), for the choice 7 = n— curl S7*(q)
to be correct, we must guarantee that n — curl S7'(¢) € X, holds (recall that Neumann
boundary condition for the elasticity problem is essential). As we have flexibility for the

choice of n, let n € X},, so that it remains to provide the right space )5, such that
(curl S™'(q)) nry =0, Vg € Q. (2.2.6)

For this, we need an auxiliary lemma.

Lemma 2.2.1. Let Q be a bounded domain of RY, d = 2,3 and let H = {w € H'(Q, RU4-1/2) .
w =0 on '} where I" is a non-empty part of the boundary 0. Then the following holds

(curlw) - np = 0.

Proof. First, in 2 dimensions we consider the tangential gradient of w

Vw - = 8—wﬁ a—sz = a—wng - a—wnl =0, (2.2.7)

ox oy ox oy

since this coincides with the definition of curl in 2 dimensions we gave earlier, the statement
follows.

In 3 dimensions, we write

w = (w - nr)nr +wr = (w - nr) - nr,
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where wr is a tangential part of w, which is zero due to the choice of space. Then, w x np =

(w-nr)(nr X nr) = 0, and thus,
(curlw) -np = (Vxw) -npr =V - (w xnr) =0.
[

Next, recall that we apply curl operations row-wise, so the above lemma tells us that for

(2.2.6) to be satisfied, the space @}, should be chosen as
Qn={qe H(QR»-D2) 1o e Py i=1,...d*d—1)/2, ¢=0on Iy}

So, conceptually, the essential boundary conditions of elasticity problem should be matched
by essential boundary conditions of the auxiliary Stokes problem that we consider for the

proof of well-posedness.

2.2.1.1 The macroelement definition Adopting the approach by R. Stenberg [84] we
introduce and prove a macroelement condition which is sufficient for (2.2.5) to be valid. We
first provide the necessary terminology and notation. By a macroelement we consider a union
of one or more neighboring simplices, satisfying the usual shape-regularity and connectivity
conditions. We denote by M, the partitioning of the domaind into such macroelements.
We say that a macroelement M is equivalent to a reference macrolement M , if there is a

mapping Fiy : M — M, such that

(i) Fy is continuous and one-to-one;
(i) Fu(AD) = M;
(iii) If M = Tzlfj, where Tj,j = 1,...,m are simplices in M, then T; = FM(f}),j =
1,...,m are simplices in M;

(iv) Fay, = Fr, o FTfl, j =1,...,m, where FT], and Fr, are the affine mappings from the
J J

reference simplex onto TJ and Tj, respectively.
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The family of macroelements equivalent to M will be denoted by &
Next, we define the following spaces on a macroelement M, keeping in mind the discussion

of boundary conditions from the previous section.

Qon = {q € HY(M,RY) : qj|x € Pa, i =1,d, VK C M}, (2.2.8)
WM:{wGLZ(M)ﬂC(M):w]KEPbVKCM}. (229)

We further introduce

Wonr = Wy N L3(M), (2.2.10)

Ny =A{w € Py b(q,w) =0, Vg € Qo }- (2.2.11)

We notice here, that with this choice of macroelements spaces we would be able to show the

modified inf-sup condition (2.2.5) over the space @Y, defined as
h={q€ Hy(QR) : gi|p € Po, i = 1,d},

while we will state a corollary later, that allows us to extend the results to the desired space
@n. The next step of the argument is to consider the possible macroelement partitions of
the domain, and prove that the null space on such macroelements possesses the desired
properties. For this we start by considering the two adjacent triangles (four tetrahedra in 3
dimensions), see Figure 2.3, and further extend the result to a macroelement consisting of
Ny triangles (2Np tetrahedra in 3 dimensions) put together in a way that will be discussed

in details later (see Figure 2.4).
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Figure 2.3: P, —P; DoFs, Dirichlet bound- Figure 2.4: Macroelement with Np trian-

aries gles

2.2.1.2 Null space N); We first focus on 2 dimensions. Consider two adjacent triangles
Ty and T; and the corresponding reference triangles T; and Th. We denote the vertices of
Ty by #1 = (0,0), 5 = (1,0), £, = (0,1) and the rest one of Ty by 5 = (1,1), as shown in
Figure 2.3. Assuming homogeneous Dirichlet boundary condition on such macroelement, the

unrestricted velocity basis functions correspond to the degrees of freedom at the midpoint

of the edge ro4:

) A 4 — 4j — 4g + 4dg
|y = o gy, = 0 )
) 0 ) 0

I DTS R I VR Ty

For a given w € Wy, 4, we compute

2 ~ -
- ATy AT
SV iy g = i) - Mg, (2212)
=1
2 ~ -
o AT 4T
D (Vo) o= |31|w(r2) - |32|w(r4). (2.2.13)
=1

Similarly, in 3 dimensions, we consider a square pyramid composed of four tetrahedra.

We denote the vertices of T} by £, = (0,0,1), ¥, = (0,0,0), #5 = (1,0,0) and £4 = (0,1,0),
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and the rest will be 5 = (0, —1,0) and ¥ = (0,0, —1). The only unrestricted velocity basis

functions correspond to the middle-edge of ro3 with the first component ¢; being given by

4 — 4oy — 4oz — 42 dx + 4oy — daz — 42
Q1 7= 0 . Q1 Py = 0 5
0 0
4r + 4oy + 4oz — 42 4o — 4oy + 4oz — 42
QO|gp = 0 S 0
0 0

The @2 and ¢35 are then easily obtained. The computation of the divergence terms is then a
straightforward calculation.

Recall, |T}| = $ in 2D and Ty = & in 3D. Hence, we obtain the following systems:

W(f) 0
w(t) 0 w(t2) 0
(0 —2/3 0 2/3) w(ka) | _ [0 8 2[/)3 %/3 8 8 8 w(Es) | _ |0
0 2/3 0 —2/3) | w(ks) ol \g o o oo of @) 0f°
W (Ry) 0 W(t5) 0
W(fg) 0
(2.2.14)

which imply that the null space Nz 3, in 2 dimensions consists of

e w such that (&) = w(fy) # 0 and w(f) = w(t3) = 0;

e w such that w(fe) = w(F4) = 0 and either w(¥;) # 0 or w(f3) # 0;

while the null space Ny, in 3 dimensions consists of

WUTLUTUTY
e w such that w(fy) = w(fs) # 0 and w(f) = W(ty) = W(F5) = w(Ts) = 0;
e w such that w(fs) = w(F3) = 0 and either one of the rest is non-zero.
Remark 2.2.1. Another configuration of interest is when at least one edge (face) of two
adjacent triangles (four tetrahedra) belongs to a part of the boundary on which Neumann
data is prescribed. For simplicity, we discuss this in 2 dimensions, while the results could be

naturally extended to 3 dimensions.
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Assume that the side T14, see Figure 2.3, is now a part of Neumann boundary. This
implies, that there are two more unrestricted velocity degrees of freedom associated with the

midpoint of this edge, denote it by (ds,qs), such that

A 4i — dig — 42\ 0
qs ™ 0 y 43 i = 0 )
. 0 . 0
qa|p = y Q4 =
i\ 4 — 4ag — 492 =o\o
Similarly to (2.2.12)-(2.2.13), one obtains the system
0 —2/3 0 2/3\ /i) 0
0 2/3 0 —2/3) [wG@)]| [0
23 2/3 0 0 | |a@wy]| = o] (2.2.15)
0 —2/3 0 —2/3) \u(Es) 0

which shows that the null space in such case consists of the function w such that (%) =
W(#y) = w(f4) = 0 and w(f3) # 0. It is also clear from the above calculations, that Ny, is
empty.

In the same fashion one may show that in case both t14 and t43 belong to Neumann parts

of the boundary, the null space Ny, 7 would be empty.

We will further consider a macroelement M consisting of N triangles with Ny > 3 in 2D,
all such triangles T; € M, ¢ =1, ..., N7 must share a vertex and for every vertex other than
this particular one there are exactly three edges sharing it. An example is shown on Figure
2.4. In 3D, analogously, we will consider a macroelement M consisting of Nr tetrahedra,
with Np > 4 and Npr-even, such that both vertex 5 and the line 14 stay strictly inside the

macroelement, and all other vertices are shared by exactly four faces.

Lemma 2.2.2. On a macroelement M constructed as above, the null space Ny; is one

dimensional, consisting of functions that are constant on M.
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Proof. First, observe that trace of a matrix is invariant under a change of variables, so

d d
div g, w tr (V) _ (t (DF—_TV),AJ.> .
(div g, w Z r (Vg),w)r, o 2; r 7 V{),wlr, o

i=1 i= o
From this, and the fact that in case of simplicial meshes mapping Frpi is affine and Jri, #0,
we conclude that w € Ny, if and only if w € Ny,

In 2D, using the above observation, we group two adjacent triangles and map such union
to the reference macroelement shown in Figure 2.3. Then for each union TZ U Tz‘+17 1 =
1,..., Np the null space consists of functions that are constant along the edge connecting
and T;,o and functions that are nonzero only at #;,; or ;3. For the last union TNT U TI,
the null space consists of functions that are constants along the edge connecting #; and 'y,
and the ones that are nonzero only at T5 or fy,_1, see Figure 2.4. More precisely, for each

1=1,..., Nr+ 1, there exists ¢; such that

. S A 2 . 2 ..
W (Fir2) and (V- QNT+1>7U)TNTUT1,Q — 3% (F1) — 3% (F2),

OOI[\D

A 2. .
(V " i, w)TiUTZ‘Jrl,Q = §w (rl)

and V - (%) = V. ANy 11(F2) = v Gnp+1(Eng) =0, VE; # 1,0+ 2.
Setting ¢ = Zfﬁ“ «;(;, one gets

Nr
(V-4.@)yr0=D_ iV @)y, 0+ st (V- Qg D)y, Uty
=1
2 & 2
=3 > ai(i(Ey) — w(fisa)) + goéNTH(w(f“l) — (f2)).
=1

which implies that w is constant on M , and therefore w is constant on M due to the
observation from the beginning of the proof.

The exact same reasoning applies in 3D, so we omit the details for the sake of space. [
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2.2.1.3 Assumptions on the macroelements and partitioning of the domain As-

sume that there is a fixed set of classes &y, , i =1,...,n,n > 1 and further assume that:

(M1) For each M € &y, the space Ny is one-dimensional, consisting of functions that are
constant on M,
(M2) There exists a union of macroelements (of the type in Figure 2.4) such that every

vertex in 7}, is a vertex of an element in this union;

2.2.1.4 The inf-sup for the Stokes problem
Theorem 2.2.2. If the above conditions (M1)-(M2) are satisfied, then there holds

b
sup bla, w)g > C||lwl], Yw € Wy, (2.2.16)

0#4q€Q) ||QHI
Before we prove this result, we need to state three auxiliary lemmas, similar to the ones

in [84]. For the sake of space we will omit the details in the proofs of the forthcoming lemmas

if they appear in the mentioned paper.

Lemma 2.2.3. Let £ be a class of equivalent macroelements. Suppose that for every
M € &y, the space Ny is one dimensional, consisting of functions that are constant on
M. Then there exists is a positive constant 3y, = BM(M, 0,7) (here o and v are constants,

characterizing mesh reqularity, independent of h) such that the condition

b(q, w)q

sup M Z ﬁMHw”Ma vw S WO,M7

0#9€Qo, M |Q|1,M

holds for every M € &,;.
Proof. Consider a fixed M € &;. Define the constant 8y, as follows:
6M = b(Q7 w)Q,M

Since the null space Nj; consists of functions that are constant on M, and Wy »s and Qo
are finite dimensional, it follows that 8, > 0. One can argue that there exists a constant
By such that By > B, > 0 for every M in &y, using the same compactness argument as in

the proof of Lemma 3.1 in [84]. O
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Next, let P, denote the L? projection from W), onto the space
My, = {p € L) : ,u‘M is constant VM € M,;}.

Lemma 2.2.4. Suppose the conditions (M1)-(M2) are valid. Then there exists a constant
C1 > 0, such that for every w € Wy, there is a q € Qy, satisfying

b(g,w)q = blg, (I = Pr)w)q = CLll(I = Pr)wlg, and [gh < [|(I —Pr)wllo.
Proof. For every w € W} we have:
(I — IF’h)w € W()’M, VM € M.

Since every M € M, belongs to some of the classes M € £;;,% = 1,...,n, Lemma 2.2.3

implies that for every M there exists gy € Qo ar such that

blgur, (I = Mp)w)arg = Coll(I = Pr)wlli, and  anrliar < 17 = Pr)wnlg ar,

where Cy = min{f,; ,7 = 1,...,n} and the positive constants /3;; are chosen as in Lemma
K2 K2

2.2.3. Let us now define ¢ through
q‘M =qum VM GM}L.
By our assumptions,

b(g, (I —T)w)g = Y blaw, (I = Tp)w)arg > CC(I — Pywlf3,
MeMy,

where the constant C' comes from equivalence of norms and doesn’t depend on h. So, we set
C, = CCs.
Moreover, since ¢ = 0 on M € M, we conclude that ¢ € @)}, and

b(qg,Prw)g =0, Yw e W,

and the assertion of the lemma now follows from combining the results above. O]
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Lemma 2.2.5. There is a constant Cy > 0 such that for every w € W), there is a g € Qp,
such that

b(g, Prw)q = [Prwlls  and  |gh < Ca|Pywllo.
Proof. Let w € W, be arbitrary. Since Prw € LE(Q), there exists z € H}(Q2) such that
V-z=Pyw and |z]; <C|Prwlo.
Following [84] we construct an operator I, : H}(2) — @, such that
(V-z,p) =b(Ipz, pt)g, Ype M, and |Ihz|3 <Clz.

Finally, since the trapezoidal quadrature rule is exact for linears, we seek for an operator

satisfying
(V-z,u)=(V-Ipz,p), Yu€ M,
The rest of the construction then is the same as in Lemma 3.5 in [84]. O

We are finally ready to prove the main result stated in Theorem 2.2.2:

Proof of Theorem 2.2.2. Let w € W), be given, and let ¢ € @)y, g € @y, C; and Cs be as in
Lemma 2.2.4 and Lemma 2.2.5. Set z = q + dg, where 6 = 2C;(1 + C%)~'. We then have

b(z,w)q = b(q,w)q + db(g,w)q = blq,w)q + db(g, Prw)g + 6b(g, (I — Pp)w)g
> Ci||(1 = Pr)w|l§ + 6||Prwllg — 6lglil|(I — Pr)wllo

> Ci(1+C35) wlg
and, |z|y < |[(I = Pp)wllo + ICs||Prw||o < Cllwlo, implying that (2.2.16) holds. O

Corollary 2.2.1. Under the assumptions made in the current section, the modified inf-sup

condition (2.2.5) holds.
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Proof. To show this, one needs to extend the (2.2.16) to the case ¢ € H'(). For this, one
may consider the triangulation obtained by removing the simplices that have edges (faces)
on the Neumann part of the boundary, hence resulting in the situation discussed in details
in the current section. In particular, this will guarantee that the (2.2.16) holds, and the
pressure is determined up to a constant.

On the other hand, due to the Remark 2.2.1, on the removed simplices the null space
is empty, hence it is possible (in the same logic as was described in the above lemmas) to

combine these parts of the triangulation, determining the pressure uniquely. O]

2.2.2 Well-posedness for the MSMFE-1 method on quadrilaterals

Similarly to the simplicial case, in order to establish the well-posedness of the MSMFE-1
method over quadrilaterals, one checks the conditions of Theorem 2.2.1. According to the
definition (1.4.3), we have S,(E) = BDM,(E), U,(E) = Qu(E), W}(E) = Qi(E) and the
corresponding spaces on 7, are given as follows
1 A
Sp={x € H(div;Q) : x = J—DFEf(oFbil, X €ShE) YE€T,, and x-n=0 on I'y},
E
Uy={vel*:v=00F;" o€ U(E) VE€T,}, (2.2.17)
W ={we L*Q): w=1woFg', weW\E) VEeT,}.

Recall [22] that Sy, x Uy, is a stable mixed pair. It remains to show (2.2.5) with a choice for
Qy, satisfying (2.2.6).

A

Let SS»(E) be the reduced bi-quadratics (serendipity) space [24]:
88(E) = Po(E) + span{a*y, 5},
We define the space @), as

Qh = {q € (Hl(Q))Q : q|Z,E = Cjz o FE_17 (jz S 882(E>7 1= 1727 VE € 77“

and ¢=0 onIy}. (2.2.18)

One can verify that curl SSy(E) € BDM,(E) x BDM;(E). To satisfy the Neumann bound-

ary condition 7n = 0 on 'y for X, elements of S}, must satisfy x-n = 0 on 'y and we need
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Figure 2.5: Two possible configurations of macroelements. Left: interior, vertically oriented
macroelement; right: vertically oriented macroelement with bottom edge on the Neumann

part of the boundary I'y.

for ¢ € @y, to have curlg-n = 0 on I'y, which is guaranteed by definition of @, (2.2.18), as
it was shown in [3]. Then we have that curl Q, C Sj, X Sy, [9]. In the following we show that
with the above choice of @, the Stokes inf-sup condition (2.2.5) holds.

2.2.2.1 The inf-sup for the Stokes problem Similarly to the case of simplicial el-
ements of the previous section, we prove (2.2.5) using a modification of the macroelement
technique presented by R.Stenberg [84]. We recall that in [84], it was sufficient to consider
H} (M) velocity basis functions on each macroelement M in order to control pressures. In
this section we show how similar result can be obtained without restricting velocity basis
functions on the boundary of macroelements, but assuming several conditions on the mesh
Th.

We consider a partition M, of the domain €2 by N, macroelements M;, i = 1,..., Ny,
where each M, is a union of two elements of 7y, i.e., for every i = 1,..., Ny M; = Ep 1 U
Ev, o, Evia, Evi2 € The An example of such macroelement is given on Figure 2.5. For

a given element E or macroelement M, we denote the corresponding bilinear forms on an
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element or a macroelement by

b(Q? )QE - b Q7 QlE’ and b(Qa )QM - b qa Q|M’
VE € T, M € My, ¥q € Qp,w € W

We recall that the space Qp(E ) has sixteen degrees of freedom, with eight degrees of freedom
associated with the vertices of F and another eight - with the mid-edges. We define the space
Q5 (E) to be the span of all edge degrees of freedom of Q,(E) and

Q5 ={qe H'(Q) : qlg=Go Fg', e Q5(F), and ¢=0 onIy}.

Next for every macroelement M, we define the local velocity space as a restriction Qf, 5, =
Qi} v+ We note that depending on the location of M, the space ), may have different
number of unrestricted degrees of freedom. For instance, if M is an interior macroelement
or it has several edges on the Dirichlet part of the boundary I'p, then there are seven
unrestricted degrees of freedom (see Figure 2.5 (left)). On the other hand, if has k edges on
the Neumann part of the boundary I'y, then there are 7 — k unrestricted degrees of freedom
(see Figure 2.5 (right), where £k = 1). We denote the number of unrestricted degrees of
freedom on M by Njy;.

W}%,M,O = WI%,M N L§(M) and

We also define the local pressure spaces as Wﬁ v =Wl | Ve

also

NM = {w € Wi},M : b(Q? w)Q,M = 07 vq € QZ,M}'

The next Lemma summarizes the properties of N;.

Lemma 2.2.6. Let M be a macroelement having at most one edge on the Neumann part
of the boundary, then the space Ny is one-dimensional, consisting of w € W,}M that are

constant on M.
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Proof. We recall that for any ¢ € Qp,, w € W}l and E € T,

b, w)os = D tr [DFST(E)V(@)(E)] a5,) ).

Jj=1

Consider M € M. Without loss of generality, let us assume that M is vertically oriented,

as shown on Figure 2.5. In particular, we assume that zo —xy # 0, x3 — x4 # 0, x5 — 26 # 0,

Y=y #0, Y3 —y2 # 0, Y6 —ys # 0, y5 —y3 # 0, yo —y1 # 0, and y5 # yo. If any of these do

not hold, we can consider a horizontally oriented macroelement. We first consider the case

of interior macroelement (see Figure 2.5 (left)). One can verify using direct calculations that

for the basis functions ¢; = (¢%, ¢/)T i =1,...,7, we get

We note that (2.2.19)-(2.2.24) correspond only to Eps 1, (2.2.25)-(2.2.30) correspond only to

Epo and (2.2.31)-(2.2.32) - to both Ejq and Ejys.
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We start by setting the first six equations equal to zero. From (2.2.21), (2.2.23) we

immediately get

Ty — X

w(ry) = w(rs xj — xz (2.2.33)
Ty — X

w(ry) = w(r4)$j — wz (2.2.34)

If xo # x3, we also get from (2.2.22), that w(ry) = w(r3). This together with (2.2.33)-
(2.2.34) implies that w(r;) = w(ry). If o = x5 and x; # x4, it follows from (2.2.24) that
w(ry) = w(ry). Hence, similarly to the previous case, w(ry) = w(r3). Finally, if zo = x5 and
x1 = xg, we arrive to the same conclusion directly from (2.2.33)-(2.2.34).

Next, we set the second six equations to zero. Then from (2.2.25), (2.2.27), (2.2.29) we

immediately get

Teg — T
w(rs) = w(r; xi — xz (2.2.35)
w(rs) = wirg) 22, (2.2.36)
Ys — Ys
g — X
w(ry) = w(rg xi — £Z (2.2.37)

Let 3 # w5, then due to (2.2.26), w(rs) = w(rs), and, consequently, it follows from
(2.2.35),(2.2.37) that w(ry) = w(re). Similarly, if x3 = x5, but 4 # x, we get from
(2.2.30) that w(rs) = w(rg) and, hence, w(rs) = w(rs). If x3 = x5 and x4 = x4, then again
it follows from (2.2.35), (2.2.37) that w(rs) = w(rs) and w(rs) = w(re).

Finally, we explore the last two equations. If y3 # 4, using (2.2.32) we conclude that
w(r3) = w(ry) and therefore, w is constant on M. If y3 = y, and y5 # ys, it follows from
(2.2.28) that w(rs;) = w(rg). Otherwise, if y3 = y4 and y5 = ys, we obtain from (2.2.36) that
w(rs) = w(rs). Hence, w must be constant on M.

Next we consider the case when one of the edges of M is on the Neumann part of the
boundary. We focus on the configuration shown on Figure 2.5 (right). We note that since
the argument above for the interior maroelement did not use the conditions (2.2.19)-(2.2.20),

the conclusion still applies. ]

We next state the conditions sufficient for (2.2.5) to hold. Let M) = UM M; be the

cover of ) by macroelements. We assume
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(Q1) Each M € My, is given as M = Ey1 U Epyo, where Eyq, Epro € Th.

(Q2) There are no macroelements in M, with more than one edge on the Neumann part
of the boundary I'y.

(Q3) The mesh size h is sufficiently small and there exists a constant C' such that for every

pair of edges e, ¢’ that share a vertex,
||re - re’HR2 S Ch27

where r, and r. are the vectors corresponding to e and €', respectively, and || - ||g2 is the

Euclidean vector norm.

Remark 2.2.2. Conditions (Q1)-(Q2) guarantee that Lemma 2.2.6 holds, which in turn
allows us to show that the inf-sup condition is satisfied on each macroelement. Condition
(Q3) is needed to combine local results and prove (2.2.5). The condition on mesh size is

stated in Lemma 2.2.7.

As in [84] and the previous subsection, the proof of Theorem 2.2.2 is based on three lemmas
we have stated in the simplicial case, namely Lemmas 2.2.3, 2.2.4 and 2.2.5. The proofs of
Lemmas 2.2.3 and 2.2.5 are the same as in the original reference [84], and we also discussed
them in the previous section. Below we provide the proof of Lemma 2.2.4, that requires
different construction in case of quadrilateral grids.

Let P, denote the L? projection from W} onto the space
My, ={p € L*(Q): ,u‘M is constant VM € M,}.

Lemma 2.2.7. Suppose the conditions (Q1)-(Q3) hold. Then there exists a constant Cy >

0, such that for every w € W}, there exists q € Qy, satisfying

b(g, w)q = blq, (I = Pr)w)q = Ci[|(I = Pr)w|?, and |qls < [[(1 = Pp)w].
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Figure 2.6: Macroelement M = Ej 1 U Ey o surrounded by four macroelements M; =

EMi,l U EMi727 ’l — 1, .. ,4.
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Proof. For every w € W}l we have:
w' = (I —Pp)w € W 10, VM € My,
Lemma 2.2.3 implies that for every M there exists gy € Qf, 5, such that
b(gar, ) = Caollw'll3; and  quloar < [Jw']3, (2.2.38)

We note that ¢); does not vanish outside of M, however, we can verify that under the

assumption (Q3)

b(ga, w0 = 0. (2.2.39)

In order to prove (2.2.39) let us consider N macroelements M; neighboring M. For example,
for the interior macroelements N = 4, as shown on Figure 2.6, and let us denote M = U | M;.

We first notice that

b(qu, w/)Q,Q\MiUM = 0.

Let gy = Zﬁ{ a;q;, then due (2.2.38) and equivalence of norms, there exists a constant C

independent of h such that

N, 6
b(qars w)om = Z&ib(qi,w')Q,M > Ch? Z(w’(rj))Q. (2.2.40)
i=1 =1

Next, consider, for instance, the tangential degree of freedom ¢!, associated with the edge

e12. Using (2.2.19), we have
6
(g, w' ) = (ya — yr)w'(r1) + (y2 — ys)w'(ry) = Z oy 5w (r;),
j=1

where 011 = (Y4 — 11), 012 = (Y2 —y3) and 6, ; = 0 for j = 3,...,6. Using similar argument
for the rest of the degrees of freedom, we obtain

Ny 6

b(qars w)om = Z Z ;0; jw'(r;).

i=1 j=1
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We note that for all 4, j, d; ; = 0 or |d; ;| ~ O(h), due to the shape regularity of 7. We also

compute
b(Qi7wl>Q,M = b(q, W) = (y1 — yr)w'(r1) + (ys — = 201 Jw'(r;),

where 011 = (y1 — y7), 012 = (ys — y2) and o1, = 0 for j = 3,...,6. Therefore,

NX/[ 6
b(qnr, w')g 57 = Z Z ;o jw'(r;).

i=1 j=1

Moreover, we note that, due to assumption (Q3),
0ij = 0ij + 0,

with 6;; = 0if ;; = 0 and |6; ;| < Ch? otherwise. Indeed, consider, for instance i = j =1,
then, by (Q3),

o110 — 01| = [(y1 — y7) — (ya — 11)| < CR%.

Therefore, we obtain

Niy Niy
b(qar, w QM—ZZOQJ”QU rj) ZZO&, 8ij + 0;)w'(r))
i=1 j=1 =1 j=1
6
>C’h22 +ZZC¥zww r;).
7j=1 =1 j=1

Finally, the second inequality in (2.2.38) implies that for every ¢ = 1,... N}, there exist
constants b,k = 1,...,6, independent of h such that

6
oy = h Z b@kw/(rk).
k=1

Then, there exists a constant C' independent of & such that

6 6
ZZaéuw r;) ZZthmw ri)0; jw' (r;) < Ch? Z (r))

i=1 j=1 i=1 j=1 k=1
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and it is easy to see that (2.2.39) holds for A small enough, i.e., h < C'/C"

6 6 ) 6

blan, w)gur = Ch* Y~ (w'(15)* = Ch* Y (w'(x;))* = (C = Ch)R® Y (w!(x;))* > 0.
j=1 j=1 Jj=1
Let us now define ¢ through
q= Z qnm -
MeMy,

By our assumptions,

bg.w)g =" blar,w)our = Clw'|

MeMy,

Moreover, we have
b(q,Paw)g =0, Yw e W,
and the assertion of the lemma now follows from combining the results above. O

With the above Lemmas being proven for the case of quadrilateral grids, the proof of

Theorem 2.2.2 is equivalent to its simplicial analogue. We conclude with the solvability

result for the MSMFE-1 method, (2.2.3)-(2.2.3).

Theorem 2.2.3. Under the assumptions (Q1)-(Q3), there exist a unique solution of
MSMFE-1 method (2.2.3)-(2.2.3) on quadrilateral grids.
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2.2.3 Reduction to a cell-centered displacement system of the MSMFE-1 method

Adopting the notation of the previous section we denote the rotation basis functions

15 .-+, &a(a—1y/2 associated with the vertex r, and the corresponding values of the rotation
tensor v, by 71,...,%4a-1)/2- As in the previous section, by taking 7 = 7, ..., 74 We obtain
the matrix corresponding to the third term in equation (2.2.1)

d(d—1)/2
(e =Y. %lm.&)e J=1..dk (2.2.41)

=1

We are now ready to state the following important result

Lemma 2.2.8. If A, is d(d — 1)/2 x dk local linear system obtained as described above,

then Ay, A AL is diagonal and invertible.

Proof. Consider the action of matrix A,, at the vertex. It transforms d(d — 1)/2 degrees of
freedom of the rotation space into d k degrees of freedom in the space of stress, which are
then transformed by Al into the same amount of degrees of freedom in the stress space.
These are afterwards transformed into exactly d(d — 1)/2 degrees of freedom in the rotation
space by Al Hence, the A, A7} AT is a scaling matrix at the vertex and therefore it is

diagonal. The invertability then follows from the inf-sup condition (S4). O

Solving the small local dk x dk system allows us to express the stresses ¢; in terms of
cell-centered displacements and rotations. Substituting these into equations (2.2.2)-(2.2.3)
leads to a cell-centered stencil, i.e. the displacements and rotations in each element E are
coupled to the displacements and rotation of all elements that share a vertex with E, see
Figure 2.1 (right).

In this case the elimination of 7 reduces the algebraic system (2.1.6) to the following

equation for u
(AUUA;;AZU - AUUA;;Any(AU"/A;;AZ'y)_IAUVA;;AZu)u = f (2242)

Lemma 2.2.9. The cell-centered displacement system (2.2.42) is symmetric and positive

definite.

52



Proof. The matrix in the displacement system is a Schur complement of the matrix as in

(2.1.6) which is SPD due to (S4). Moreover A,, A, AL is an SPD matrix due to Lemma

(e

2.2.8, hence we conclude that the matrix in (2.2.42) is also symmetric and positive definite.

]

2.3 ERROR ANALYSIS

In this section we estimate the behavior of the numerical errors of the proposed methods. For
this purpose we would need several well known projection operators. For the rest of the chap-
ter we will assume that the quadrilateral elements are O(h?)-perturbations of parallelograms

known as h? -parallelograms:
Irs4 — 21| < Ch2.

Elements of this type are obtained by uniform refinements of a general quadrilateral grid.

In such a case one can show that

1 .
|DFgl, .5 < Ch* and J—DFE <CORW™ j=1,2. (2.3.1)

E

j,oo,E
We consider the L2-orthogonal projection V' — Vj, such that for any v € V C L*(Q, RY), its
projection Q}v € V}, satisfies
(v —Qpv,w) =0, Yw eV, (2.3.2)
and the L%orthogonal projection W — W¥% such that for any ¢ € W C L?(Q,N), its
projection Q)& € W¥ satisfies
(E—-Ql¢,¢) =0, V¢ e W, for k=0, 1. (2.3.3)
We will also use MFE projection operator introduced in [21,22] IT: XN (Hl(Q))d)d — X

such that
(div(Ilr — 7),x) =0, Vy € X,,. (2.3.4)

Next Lemma summarizes the well-known properties of operators above, as well as mixed

interpolants II and II°.
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Lemma 2.3.1. On h?-parallelograms

v — Qpull < Cllul|,h", Vue H(Q,R?Y), 0<r<l,
Iy = Qv < ClAllh, Vye H (M), 0<r<I,
o — o] < C7||,h", Vo € H" (2, M), 1<r<2,
o — 1% || < C||o]|1h, Vo € H'(Q,M),

| div(e — Ho)| + || div(e — I%)|| < C||dive|,.h", Yo H T (Q,M), 0<r<1.
(2.3.5)
Proof. The first two estimates can be found in [24], the latter three are proven in [10,90].

We note that on general quadrilateral grids the third and fifth estimates hold only with
r =1 and r = 0, respectively. ]

Corollary 2.3.1. For every T € H'(Q,M), v € H'(Q, M),

S rlie <Clrl;,  J=12 (2.3.6)
EeT,
> |l < Clirll;, (2.3.7)
EeT,
S Qe < Cllh- (2.3.8)
EeTy,

Proof. Let 7 € H(Q,M) and E € T, be given. If follows from the inverse inequality [17]
and (3.4.11):

7|6 < 7 =78+ |7le < CRH T = 7]lj216 + |7li6 < CliTllsE.

Then (2.3.6) follows from summation over the elements. Similarly, using (3.4.10) and

(3.4.12),

7 ll1p < 7 = 7lle + I7lhe < CRTHIT — 7]l + 17l < Ol

1Q .2 < 1Q1y = Ylhe + Ivhe < CAHQY —Yle + Ve < Clvihe
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We will also use the fact (see [35]) that on h?-parallelograms
17,6 < CH ||7||., vr € H/(E,M), j > 0. (2.3.9)
Lemma 2.3.2. Let 7 € X, and £ € W}, then
(7, E)al < ClITlllEll- (2.3.10)
Proof. We present the proof on quadrilaterals, simplicial case is treated similarly. By defini-

tion of the quadrature rule,

5
(7, €)ge] = £

4 Z%O(Tz') 5 é(rz)

=1

< BS iliée) < 2 Y 5w Y ol

Using the equivalence of norms on the reference element and the fact that trapezoidal quadra-

ture rule is exact for bilinears, we get

1
S 1éw)| = [ 1€ldi < Clél
i=1 E
Similarly, using the definition of 7° and (1.4.11), we have
4
Y 17%) < CIDFllg o £l e < ChIF -
i=1
Combining these results and using (1.4.11), we obtain

(7.).e] < ChI#| 1€l 5 < CRIDFG o oo sllTl €N < ClirllBlE] 2

The desired result then follows from the summation over all elements. O

We also derive the bounds for quadrature error for the further use in error analysis, and

state them as the following lemma.
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Lemma 2.3.3. If A € W%’LOO, then there exists a constant C' independent of h such that for

all 7, x € Xy,

0(Ax. ) < C 3 Ml A sl sl s (2.3.11)
EeTy

Also, there exist constants independent of h such that for all £ € W},

5(r.O1<C Y PElhellrlle,  and (2.3.12)
EcTy

50¢GO1 < C Y R2Ellelxlhe. (2.3.13)
EeTy,

Proof. For the first statement, on any element we have
05(Ax, )| < |05 (A= A)x, 7) |+ 106 (Ax, 7) |, (2.3.14)

where A is the operator A evaluated at cell center of E. For the first term on the right we

then have
06 (A= A)x, 7) | < ChlA| soellx| 27| 2, (2.3.15)

where we used Taylor expansion and Corollary 1.5.1. Let ¥ be the L?-projection of y onto

the space of constant tensors on E. For the second term, using Lemma 1.5.1 we get

05 (Ax, 7) | = 0p (A(x — X), 7) | < Ch||Allocs.llX]I1.E]7] £, (2.3.16)

using (2.3.5). Combining (2.3.14) - (2.3.16) implies the first statement of the lemma.
Denoting by & the L?-projection of £ onto the space of skew-symmetric constant tensors

we proceed similarly, using Lemma 1.5.1 and (2.3.5) we get

105 (1, &) | = 105 (7, € =€) | < Ch[|EelITl|z, and (2.3.17)
08 (x: )| =105 (x — X, ) | < ChlE]lBlIX]E, (2.3.18)
which completes the proof for the last two statements of the lemma. n
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Lemma 2.3.4. Given a function v € L*(Q,M) satisfying
dive =0, (2.3.19)
there exists ¢ € H*(Q, K) with K = R% when d = 2 and K = M when d = 3, such that
v = curl ¢. (2.3.20)
Moreover, with S(¢) defined as in (1.2.1) there holds
/Qv - S(¢) = 0. (2.3.21)

Proof. Since the problem should be understood row-wise, we can use results of Theorems
3.1, 3.4 in [45] to see that (2.3.19)-(2.3.20) has solutions for d = 2,3. Moreover, in 2D
all solutions are exactly divergence free. Hence, we only need to check that there exists a
solution such that (2.3.21) holds.

Consider the case when d = 2. Let ¢ be a solution of (2.3.20), then ¢» + VA is also a

solution, provided X is a smooth enough function. Since the problem
AN = —divy

has a solution A € H'(Q,R?) (here we again consider the problem above row-wise), we set

¢ =19+ VA to get
divé =V - (b +VA) =V -9+ AX =0,

that implies (2.3.21).
In case d = 3 writing ¢ = [¢1, do, 3] we can (applying Theorem 3.6 [45] row-wise)
choose a solution of (2.3.19)-(2.3.20), to satisfy

¢; xn=0ono0), Vi=1,23. (2.3.22)
Next, by definition

P22M1 + G331 — Pa 1Ny — P31 13
S(g)n = —@12n1 + P11 N2 + P33M2 — P32 M3
—@13M1 — Pa3No + P11 N3 + P22 N3

and a straightforward calculation shows that (2.3.22) implies / S(p)nds = 0. An appli-
o0
cation of the divergence theorem completes the proof. O
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Lemma 2.3.5. If E is an h®-parallelogram, then there exist a constant C independent of h

such that

Al o < CW N Alljoop, 5 =1,2. (2.3.23)

Js

Proof. Using definition of A (1.5.1) and (2.3.1) together with (1.4.11), we obtain:

< C(JAh o+ Ml ) < CHIAl e,

1 A
Al .5 = 'J DFYADFg
1,00,F

E

Since DFp is bilinear, [DF|,  » = 0 and we have
Ao € C (1Al + blAl o+ B Ally ) < CH2 ) All2ce.
O

Lemma 2.3.6. If A € W;ioo, then there exists a constant C' independent of h such that for
all x € Xy,
|(Allo, 7 — 11°7)g| < Chlo|l1]7]. (2.3.24)

Proof. We compute

(AHU, T — HOT)QE = (Aﬂﬁy T — HO%)Q,E = ((A - .A)flé‘, T— ﬂo%)Q,E - ("Ztﬂ&’ T— ﬂof-)Qﬁ'

Using Taylor expansion, (2.3.23), (1.4.18) and Corollary 1.5.1, we bound the first term:

(A= A5, 7 — 1) < CM, o 115|171 5 < Chll Al e llo 1.2 ]17 5
And we bound the second term using Lemma 1.5.2 and estimates (2.3.9), (2.3.6) and (1.5.2):
(ATlg,7 — T1°%) 5 = (A(ll6 — T16), 7 — 11°7) 5
< Ollllo oo 51161, 2 < ORI Alloss,sllo |l £ll7]l &
[

Lemma 2.3.7. On h?-parallelograms there exists a constant C independent of h such that

forall T € X},
(7 = II°7, Quy)el < CRZ |1 ]l. (2.3.25)
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Proof. On any element E we have

(T - HOT) Qh,}/)Q,E - (720 - ﬂ0%07 Qhﬁ)@yﬁ‘
= (#7 = 11°%%, Quy — Q@A) g5 + (F° = T1°7°, @A) -

The first term above can be bounded using (2.3.5), (2.3.6) and (2.3.8):

(70 = T1°7°, Quy — Qu¥)o.p < CIIF° = T°#°|| 2 Qny — QuAll 5 < ORI, 1 QnF e

< CW?|| DFplly oo eIl slVlI1E < CRA AL ENT ] E-

The second term is equal to zero by Lemma 1.5.2.

2.3.1 First order convergence of the solution of MSMFE-0 method

Theorem 2.3.1. Let (o,u,7) € XN HY(Q,M) x VN HY(Q,R?*) x Wn HY(Q,N) be the
solution of (1.3.10)-(1.3.12) and let (op,up,n) € Xp x Vi x WY be the solution of the
MSMFE-0 method (2.1.2)-(2.1.4). If A € W™, then there ewists a constant C' independent

of h such that

lo = onllaiv + [[u = unll + Iy =l < Ch(llolly + llulls + 171l

(2.3.26)

Proof for the case of simplicial grids. Subtracting the numerical method (2.1.2)-(2.1.4) from

the variational formulation (1.3.10)-(1.3.12), we obtain the error equations

(Ao, 7) — (Aon, 7)o + (u — up, div ) + (v — Y, 7) = 0, T € X,
(div(e — ap),v) = 0, v € Vp,
(O-_O-haf):(L §€Wg

Choosing v = div(Ilo — 03) in (2.3.28) we conclude from (2.3.3) and (1.4.18) that

(Qiu—u, divr) =0 and div(Ilo —ay,) = 0.
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(2.3.27)
(2.3.28)

(2.3.29)

(2.3.30)



Rewriting the first equation using Lemma 1.5.1 and the above we obtain

(Ao — o4), 7)o + (Qpu — up, divT) + (Q)y — W, T)
= (Allo, 7), — (Ao, 7) +(Q)y — 7, 7)

= (A(Ilo — o), 7) — 0 (Allo, 7) + (Q)y — 7, T) . (2.3.31)
With this, the error system can be written as

(A(Tlo — 01,), T)g + (Qpu — up, div 1) + (Q)y — Va, )
= (A(Tlo — o), 7) — 6 (Allo, 7) + (Q)y — v, 7), (2.3.32)
div(llo — ap,) = 0, (2.3.33)

(Ilo —0p,§) = (o — 0, §) . (2.3.34)

We then start by giving bounds for the terms on the right of (2.3.32). Cauchy-Schwarz

inequality together with (2.3.5) yields
(A(Tlo — o), 7) < Chl|a]1]||l, (2.3.35)
and it follows from Lemma 2.3.3, (2.3.6) and Young’s inequality, that
0 (Allo, 7) | < C Y hl|Alseelloluslrlle < Chl Aol < CH|lo|} + ll7*

EecTy
(2.3.36)

Similarly, (2.3.5), Cauchy-Schwarz and Young’s inequality imply
[(Qhy =, Lo —a3) | < B2||y]f; + el 7]*. (2.3.37)
Finally, due to (2.3.34) Lemma 2.3.4 implies that there exists ¢ € H'(2, K) such that

[lo — o, = curl¢p and (2.3.38)

/ div S(¢) = 0, (2.3.39)
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and since ()} — 75, is constant on each element, (2.3.39) yields

(Mo —on, Qv =) = Y Mo =0, Qv —m)p=— > (divS(s), Quy —m)p =0.

E€T,, E€Ty,

(2.3.40)

Now, by choosing 7 = Ilo — ¢}, in the error system and using (2.3.35)-(2.3.37) and (2.3.40)
we get the following result

o — onll* < CR(llolls + 17111)* + €l — on]?, (2.3.41)

which with € chosen to be small enough yields ||Tlo — o> < CR2(||o ||y + ||7]|1)? and thus

lo = onll < o — 0wl + [[Tlo — o < Chljo]ly + [|7]l1)-

(2.3.42)
Also, using the above and (2.3.34) we get for the H(div;{2) norm
lo = onllaiy < C(lo = onl + [[div(e — an)]))
< C(llo = onll + | div(e — o))
< Ch(llolls + [I71)- (2.3.43)

On the other hand, from the inf-sup condition (S2) we know that there exists a constant

C such that for each v € V}, and £ € W), there is a nonzero 7 € X, with

(div 7, v) + (7, ) = Ol 7| s, (0l + IE]D- (2.3.44)

From (2.3.32) we then obtain

(Qhu — up, divT) + (Q)y — Y, 7)

(A(Ilo — o), 7) — (A(Ilo — 04),T)g + 0 (Allo, 7) + (Q)y — 7, 7).

(2.3.45)
Choosing 7 so that (2.3.44) holds for v = Q}u — uj, and £ = Q] & — &, leads to

I7llaw (I @ru = unll + 1Q5y = all)

< C[(A(Ha —0),7)— (A(lle — 01,),7)g — 0 (Allo, 7) + (Q)v — 7, T)]
< |7l (JTIo — o] + [|[Ho — ol + hlloll + [|Qy — )
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< ChlIllaiv ([l fl +lIvll) -

Thus,

Iy =l + lu—=unll < [Qhu—unl|+ | Qpu—ul + 1@y =l +1Qy =7l < Ch(llolly + [I71)

and finally
lo = onllai + [[u = wnll + |7 = ll < Ch({lol[s + [|7]]1)- (2.3.46)

[]

Proof for the case of quadrilateral grids. Subtracting the numerical method (2.1.2)-(2.1.2)

from the variational formulation (1.3.10)-(1.3.12), we obtain the error system:

(Ao, 7) — (Ao, 7)o + (v — up, div ) + (v — Y, 7) = (g — Pog, ™0)r,, 7€ Xp, (2.3.47)
(div(e — ap),v) = 0, veVy (2.3.48)

(0 —0on,&) =0, £eW). (2.3.49)
We rewrite the first error equation as follows:

(A(Ilo — 03,),7)g + (Qru — up, divt) + (Q)y — Yh, T)
= (Allo, 7)o — (Ao, 7) + (Qfu — u,divT) + (Q)y —v,7)

+ (g, (r = I"T)n)r,, — (Pog, (1 — I°7)n)r,, + (g — Pog, (II°T)n)r,.  (2.3.50)

By the orthogonality properties of the operators (1.4.26), (2.3.2) and (2.1.1), the last three
terms in (2.3.50) vanish:

(Q4u —u,divr) =0, (g—Pog, I°T)n)r, =0, (Pog, (r —°7)n)r, = 0.
For the first two terms on the right-hand side in (2.3.50) we write:

(Allo, 7)g — (Ao, T)
= (Allo, 1°7) + (Allo, 7 — 11°7)g — (Ao, 7 — II°7) — (A(0 — o), 11°7) — (Allo, 11°7)
= —0(Allo, 11°7) + (Allo, T — 11°7)g — (A(0 — o), I1°7) — (Ao, 7 — 11°7). (2.3.51)
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Then, using Lemma 2.3.3, (1.4.26) and (2.3.6), we bound the first term on the right-hand

side in (2.3.51) in the following way:

0(Allo, I°7)| < C ) h|[Uo gl < Chlol|rll < CR|lo|l} +ell7]*.  (2.3.52)
E€Th

By Lemma 2.3.6, we have:

(Allo, 7 — II°7) | < Chllo|h[I7]| < Ch?||o ||} + €lI7]1*. (2.3.53)
We use (2.3.5) to bound the third term on the right-hand side in (2.3.51):

(A(0 = 1I%), 11°7)| < Chllo|ls|I7]| < Ch*|loll} + €7 (2.3.54)
Testing (1.3.10) with 7 — I1°7 yields

—(Ao, 7 —11I°7) — (u,div(r — I1I°7)) — (v, 7 — I°7) + (g, ( — °7)n)r, = 0.
Using (1.4.26), we can write:
—(Ao, 7 —T1I°7) + (g, (t — I°7))p, = (7,7 — 7).

Applying Lemma 2.3.4 as in previous section, and using (2.3.50)-(2.3.54) together with
(2.3.5), we obtain

(A(Tlo — 03), T)q + (Qpu — up, div ) + (Qy =, 7) < CR2||o [} + €| T]|* + (@ — 7. 7)
< CR¥([lo I + V1) + ell 7%
(2.3.55)

The rest follows in the same way as in the simplicial case. O
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2.3.2 First order convergence of the solution of MSMFE-1 method

Theorem 2.3.2. Let (o,u,7) € XN HY(Q,M) x VN H (Q,R?) x WN HY(Q,N) be the
solution of (1.3.10)-(1.3.12) and let (op,un,vn) € Xp x Vi X WY be the solution of the
MSMFE-1 method (2.2.1)-(2.2.3). If A € Wf}’oo, then there exists a constant C' independent
of h such that

lo = onllaw + lu = unll + Iy =l < Ch(llofly + [[ully + [|7]}l)- (2.3.56)

Following the approach of the previous chapter, with v = Ilo — oy, (2.3.3), (2.3.30) and
(1.5.9) allow us to write the error system for MSMFE-1 as

(A(Mo — o4),7)g + (Qhu — up, div ) + (1, Qv — Yn)o
= (A(Tlo — o), 7) — 0 (Allo, 7) + (1, Q)y — ) — o (7, Q}7), (2.3.57)
div(Ile — op,) =0, (2.3.58)

(Ilo — 04, &) g = (llo — 0, &) — 0 (Ilo, &). (2.3.59)

Proof for the case of simplicial grids. Due to the modified inf-sup condition (2.2.5), with a
slight abuse of notation, there exists an elliptic projection operator II, with similar properties

to (1.4.18), but
(0,6) — (Ilo,&)g =0, VEEW;. (2.3.60)
Then, the first two terms on the right were already treated in the previous chapter, while
(7, Qpy —7) =0,

due to (2.3.60). We then proceed with the remaining quadrature error term. Using the
Lemma 2.3.3 together with (2.3.8) and Young’s inequality, we obtain

5, Q1 < C 3 MQAelrle < Chlvlhlirll < CRA1E + il (23.61)
E€Ty,
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As in the previous chapter we choose 7 = Ilo — 0, and € = @]y — 7, so that subtracting

(2.3.59) from (2.3.57) makes the third term in (2.3.57) vanish

(A(Tlo — op,), o — 03) g + (Qru — up, div(Ilo — o))
= (A(lle — o), llo — o3,) — 0 (Allo, o — 01,) — 0 (Ilo — oy, Q)

— (o — 0, Q)y — ) + 6 (Ilo, Q) — W) -

The last two terms are then bounded as follows

(o — o, Qpy — ) < Chllo|h[|Q}y — ll < CR?||o||F + €l @y — ll? (2.3.62)
6 (Mo, @y — )| < C Y hlTo|ly ellQ1y — ulle
E€Ty
< Chllo [ 1@y — wmll < CR*|la|1F + el @y — ll?, (2.3.63)

where we used Cauchy-Schwarz and Young’s inequalities together with (2.3.5), and in addi-
tion - Lemma 2.3.3 and (2.3.6) for the second statement.

Therefore, combining (2.3.35)-(2.3.37), (2.3.61) and (2.3.62)-(2.3.63) we obtain
Mo — oul* < Ch*(llofly + [I711)* + €llllo — owl* + el Qhy — ll*, (2.3.64)

and thus [TIo — o3 [|* < CR2(|lolly + ||711)* + €ll @y — 7l
We then repeat the argument as in the previous chapter using the inf-sup condition (S4)

as follows

17 lasv (I} @iw = unll + [[Qpy — ll)
< C[(A(HO’ —0),7) — (A(llo —op,), 7)o — 0 (Allo, 7) — 6 (7, Z’y)}
< Clrllawv (Mo — ol + [T = on[| + hl[o |l + Alv]1)

< Cll7llas (RCllolls + Allvla) + el @iy = mll) -

The above, with the € chosen small enough, yields

I Qiu — unll + |@3y — mll < Ch(llolly + ), (2.3.65)
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which with (2.3.64) provides
lo = onll < Ch(llofls + lIvll1)- (2.3.66)
Repeating the argument for the H(div;{2) norm, we finally conclude that
lo = onllai + [lu = wnll + Iy = wll < Ch(llofls + [Ivll1). (2.3.67)

]

Proof for the case of quadrilateral grids. We form the error system by subtracting the MSMFE-
1 method (2.2.1)-(2.2.1) from (1.3.10)-(1.3.12), we obtain

(Ao, ) — (Aon, 7)o + (u — up, divr) + (7, 7) — (1,7)0

= (9 = Pog, )1y, T € Xp, (2.3.68)
(div(c — op),v) =0, v € Vp, (2.3.69)
(0,8) = (on,8)q = 0, £eW.. (2.3.70)

Similarly to the error analysis for the MSMFE-0 method, we start with rewriting the first

error equation:

(A(Ilo — op,), 7)o + (Qpu — up, div T)
= (AHJv T)Q - (A07 T) + ( Z’Y -7 T) + <g7 (T - HOT)”>FD
- <P097 (T - HOT)”>FD + (QZU -, div T) + <g - ,P()g’ (HOT)n>FD o (77 T) + (7—7 ’Yh)Q'
(2.3.71)

We can use the bounds from the previous section for all terms on the right-hand side, except

for the last two, for which we have:

- (77 T) + (T7 ’Yh)Q - (T7 QZ,’Y)Q - (77 7_) + (T7 Yh — Z’Y)Q = (T - HOT7 Q’]Z,’Y)Q + (HOT7 QZ’}/)Q
— (1,7 = Qi) — (7, Q)y) — (1 = T°7,Q)y) + (1,9 — Qi) = (7 = TI°7, Q)7)q

— 07, Q) = (v = @i, 7) = (Qhy, 7 = T°7) + (7,7 — Q47 e (2.3.72)
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The first term on the right can be bounded using Lemma 2.3.7:
(7 = I°7, Q37)e| < Chllv[liliTll < CRA|I T + el 7] (2.3.73)

By Lemma 2.3.3 and (1.4.26), (2.3.8),

T, Q)1 < 3 AT Qurln e
EeT

< > hlirlelylle < Chlirlllivh < CR2|IyIE + el (2.3.74)
E€Ty,

Next two terms are bounded by (2.3.5) and continuity of I1%:
(v = @y, 1) + (@ 7 = TI°7)| < ChllylLlI7ll < CR? [T + el 7|1 (2.3.75)
Combining (2.3.71)- (2.3.75), we get

(A(To — on), 7)o + (Qhu — up, divr) < CR*(|lo|lf + 9117 + €l 7l* + (7, 9 — @i)al.

(2.3.76)
It follows from (2.3.70) and (2.3.60) that
(Ilo — o1, &) = (Mo, &)g — (0,€) =0, VE€W,. (2.3.77)
Now we choose 7 = Ilo — 0y, then similarly to the MSMFE-0 case, we get:
(Ao — on), o — a3)q < CR*(|lo||F + (1Y) + €l[Tlo — o], (2.3.78)
The rest of the proof follows the same steps as in the simplicial case. n
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2.3.3 Second order convergence for displacement

We continue with the superconvergence estimate for the displacement variable for both
methods presented in the chapter. We first derive a bound on the quadrature error that will

be used in the analysis.

Lemma 2.3.8. Let A € W%;OO. On simplicial elements, for all x,7 € X} there exists a

positive constant C independent of h such that

0 (Ax. ) [ <C Y RIxlhelrih.e. (2.3.79)
EET,,

while on h?-parallelograms there holds

0(A. 7)< C Y R xllaeli7le (2.3.80)
EeTy,

Also, for all ¢ € W} there exists a positive constant C independent of h such that

506 O1<C Y RlEh.elxle (2.3.81)

E€Th

Proof. For any simplicial element by Lemma 1.5.1 we have

O0p(x, ) =05 (A= A)(x —X), 7) +0p (A= A)x, 7= 7)
+0p (AY, 7) +0p (A(x — X), T — 7), (2.3.82)

where y, 7 are L?—orthogonal projections of x,7 respectively onto the space of constant
matrices and A is an operator A evaluated at a cell center. By Lemma 1.5.1 the first, second

and the last terms on the right of the above equation are bounded by
Ch*[[All2.00 Xl I ]l (2.3.83)
For the third term on the right in (2.3.82) by Bramble-Hilbert lemma [20] we obtain
105 (AX, )| < CR?|AX|2,B[I7]| < CR?|Alo e IX 5 I7 |- (2.3.84)
Similar reasoning is used to show (2.3.81) as Lemma 1.5.1 allows to write
0p (. §) =0s (x =X, £ =€), (2.3.85)
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where Y, £ are L?—orthogonal projections of x, € respectively, onto the space of constant and

constant skew-symmetric matrices. Corollary 1.5.1 then yields

which proves the second statement of the lemma.

For the statement of the lemma on quadrilaterals, we write
2
Op(AT,X) = 05(AF,X) = > 05((AP)ij, %ij)-
ij=1

Let us consider one term in the sum above. Due to the exactness of the quadrature rule for
bilinear functions, the Peano kernel theorem (see Theorem 5.2-3 in [87]) implies

AT Z]?XZ_] / / ZJXZJ)(CC O d:cdy+/ / (ZJ yj 8 BYY) (./472)1])2@])(07@) d.%d:g
NS )
[ / ¥(2,9) %ag< (A)i5) (@) did.

where ¢(s) = s(s —1)/2 and ¢(s,t) = (1 — s)(1 —¢) — 1/4. Since x is linear, we have

105((AD)igs Xig)| < CUIAlL o 21715 + 14000, 21711, R 12

+ (Ml £l 7l 2 + [ AL o 21711 2 + [ Allo o, 21712.2) 1X112)-
Hence, summing over 4, j and using (2.3.23), (2.3.9), (1.4.11), we obtain
0(AT,X)| < CR*[|Ally e gll7 2,6l X 11 6
which implies (2.3.80). O

Theorem 2.3.3. Assuming elliptic reqularity (2.3.90), then for the displacement uy, of both
the MSMFE-0 and MSMFE-1 methods, there exists a constant C independent of h such that

Q4w — up| < CR? (lo|ly + |y|ls + || divelly)  on simplices. (2.3.87)

Q4w — up|| < Ch? (lo|l2 + ||yvlli)  on h2-parallelograms.. (2.3.88)
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Proof for the simplicial case. The idea of the proof is based on the duality argument. Let ¢

be a solution of the elasticity problem
Yv=A"'D($) nQ,

V= (Qhu—up) in

(2.3.89)
¢ =0 on FD;
Yvn =20 on 'y,
where D(-) is a symmetrized gradient defined as in Section 1.3.2.
We assume that this problem has elliptic regularity
9]l < [|@pu — unlfo, (2.3.90)

sufficient conditions for (2.3.90) can be found in [24,49,63].
We first consider the MSMFE-0 method, and write its error equation (2.3.32) as

(A(c —op), 7) = — (Qpu — up, divr) — (y — v, 7) — 0 (Aoy, 7). (2.3.91)

Taking 7 = [TA™'e(¢) in the equation above, one gets

1Qhu — wp||> = — (Ao — on), AT () — (v =, LA e(¢)) — 0 (Ao, ITA 'e(9)) .

(2.3.92)
For the first term on the right, we have
— (A(a — o), HA e ) (A o—op), A e ) (0 —on, €(0))
(Acr—ah A )+ (div(e — an), ¢ — Q) 9)

< C(IAlo — o)A e(¢) — A7 'e(@)]| + k| div(o — on) [ ]1)
< C (Wl Alllle = anllll@ll2 + Il div(e — on)[[l¢ll1)

< CANR? (llofl + [yl + [ divelly) [[6]l2,
(2.3.93)

where we used the properties of projection operators together with the error analysis result

from (2.3.46).
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We treat the second term in a similar fashion

— (v = TATe(0)) = — (v — v, TA e(9) — A7'e(9) — (v — s A7 'e(9))
= — (v = A e(¢) — Ae(9)) (2.3.94)
< CR* (Jlolly + vl el

where the second inequality is due to the skew-symmetry of the quantity (v — 7,) and
symmetry of A7'¢(¢), and the inequality follows from (2.3.46).
We next deal with the last term using Lemma 2.3.8

0 (Aon, TA™'e(¢)) | < C Y Bllon|,el|TA™ e(d) |15
EGWL

<C Y K (lon—Tolhe + [Hofue) A e(@)l.e
E€Th

<3 W (W ow — oz + llo.e) (@)l (2.3.95)
Ee€Ty,

<0y 1 (C(lolle + Ie) + llolue) 19].e

E€Th

< Ch* (llolls + 1711 lIgll2,

here we used (2.3.8), the inverse inequality [20] and (2.3.46). Hence, the statement of the
theorem follows by combining (2.3.93)-(2.3.95) and elliptic regularity (2.3.90).
Next, we consider the MSMFE-1 method and its error equation (2.3.57) can be written

as
(A(c —op), 7) = — (Qpu — up, divr) — 0 (Aop, 7) — 6 (T, ) - (2.3.96)
With the same choice 7 = I[TA™'¢(¢), we obtain

Q4w — up|* = — (A(a —op), HA_le(qu)) —0 (Aah, HA_le(gb)) ) (HA_le(qb), %) .
(2.3.97)
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The first two terms on the right have been already analyzed in the case of MSMFE-0 so we
only consider the quadrature error in Lagrange multiplier

|6 (A" e(@), ) | < C Y (Il el LA e(9)[|1,m

E€T

<C Y P (Il = Qlhe + 11Q57he) 1A e(@)lh,m

EcTy

<O R (Wl = Qe + [vle) (@)1 (2.3.98)

E€Ty

<C Y R (lolhe + e led)z.e

E€Ty

< Ch* (llolly + Il lle(@)]l2,

where we used (2.3.8), the inverse inequality [20] and (2.3.67). Combining this result with
(2.3.90), (2.3.93) - (2.3.95) we get the statement. O

Proof for the quadrilateral case. We start by considering the same auxiliary elasticity prob-
lem as in the simplicial case, namely 2.3.89. For the MSMFE-0 method we rewrite the error
equation (2.3.50) as follows:

(A(To — 04),7)g = —(Q¥u — up, divT) — (v — Y, 7) — O(Allo, 7) + (g — Pog, (1 — °T)n)r,.
We choose 7 = ITI°A~1¢(). Then the last term on the right-hand side cancels and we obtain

1@ — unllg = —(A(Ilo — 04), I°A™e(¢)) g — (v — 1, 1P A7 e(9))
— 0(Allo, TI° A~ e (). (2.3.99)

The last term on the right-hand side of (2.3.99) can be bounded using (2.3.80), (2.3.6) and
(2.3.7):

0(ATlg, TI°A™"e(9)) < C Y B?||ATlo ||| TP A7 (@) 1.2 < CH|ol2]l@l2.  (2.3.100)
EeT

We bound the second term on the right-hand side of (2.3.99) using (2.3.5) and the fact that
A7lm €S, Vm € S:

(v =, IPA™ ()] = [(y =, IPAT e(9) — A7'e(9)) + (v =, A e(9))]
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= |(y =, 1P A7 e(¢) — A7'e(9))] < CR*(|[7ll + llo )l ]l (2.3.101)

The first term on the right-hand side of (2.3.99) is manipulated as follows:

(A(Tlo — oy,), HOAfle((b))Q,E
= (A= Ag)(lo — 04), TI°A™ e(¢)) .2 + (Ao(To — 0), TI°(A™ — Agh)e(6)) g,
+ (ATl — 03, TOAT €(6) — e(0)))as + (Aolllo — 1), TOAG e(dn)), (23.102)

where A is the value of A at the center of E' and ¢; is the linear approximation to ¢ such

that (see [20])

I = ¢1lle < CR?(|¢ |2, ¢ — ¢1ll,e < Chl|@]l2,5- (2.3.103)
The first term on the right-hand side in (2.3.102) can be bounded using (2.3.7):

(A = Ao)(To — 03,), A7 () g,| < COY| Al e, 2| A7 1 00,6 IT0 — onl[ Bl ]2,
(2.3.104)

For any ¢ € H'(E) we have by (2.3.5):

IM¢Clle < IT1°C = ¢lle + 1I¢lle < C (RlICle + lI¢]le) -
Hence, for the second and third terms on the right-hand side of (2.3.102) we have

[(Ag(Ilo — 0,), II°(A™" — Ag"e(@))g,6| < Ch||Al|1 005l A 1,00,6]o — o4 £l ¢l2.E,
(2.3.105)

(Aol — 03,), TI°AG (e(8) — (1)) @,6] < ChllAollo,0e,2lAG lo,00,2 1Tl — onl| £ ¢ l2.-
(2.3.106)

We write last term on the right-hand side of (2.3.102) as follows:

~

(Ao(Tlo — 03), TI°A " e(¢1)) g2 = (Lo — 0w, (1)) g.p = (116 — 61, €(d1)) g, (2.3.107)

where

_Vé+ (V9"  (DFY)'Vé+ (DF)TVE)

) : ;
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Denote by ¢; the linear part of ngﬁl. Then we have

~ —

(116 — 63, €(61)) . = (116 — 61, (01 — 01)) .5 + (116 — 60, €(01)) g -

From (1.4.8) we have

@(le - &1) = [(1‘34 - 1‘21) : V¢1]

=

Hence,
(116 — 64, é(01 — 1)) 2l < CH?|T16 = 6| glle() 5z < Chl|Tlo — o Bl |2~ (2.3.108)

Using exactness of the quadrature rule for bilinear functions and (2.3.7), we have:

(116 — &3, é(61)) g = (°(T16 = 61), é(d1)) g p = (°(T16 — 62), é(61))

A — ~ ~

= (I°(I16 — 61), é(¢1 — 1)) + (TI°(16 — 63), (1)) 5
= (II°(116 — 63,), é(d1 — 1)) g + (II°(TTo — 01), €(1 ). (2.3.109)

>
|
>

We bound the first term on the right-hand side of (2.3.109) as follows:

(°(116 = 60), é(d1 — 61)) s < CR?|T16 — &l plle(@)l, < ChlTo = on ]Sl -
(2.3.110)
Combining (2.3.102) -(2.3.110) and summing over the elements, we obtain
(A(Tlo — 02), TI"A™'¢(¢))o.e < Chl|All1coll A7 100 ITTo = anlllI¢ll2 + ChlTIo — oull]| 612
+ Y (I°(Ilo — 03), €(¢1)) -

EET;,
(2.3.111)
Consider the integration by parts formula for the symmetrized gradient:
L, ..
(MI(To — o), ¢(6))5 = —5(div (o — a1), €(¢))
1
+3 ((I°(To — o) + (I°(Ilo — 04))") n, b)Y, - (2.3.112)
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Due to (1.4.18), the fact that div(Ile — op) = 0 and hat ¢ =0 on I'p and (Ilo — op)n =0

on I'y
Z (II°(Tlo — a3,), €(4)) g = 0.
E€Th

This together with (1.4.26) implies

> ([°(Ho —o4), €(¢1))

> (M°(Tlo — o), e(¢1 — )i

EcT, E€Ty,
<C Y o —aullellér — ¢llue < CR(loll + [lpll)ll¢]l2. (2.3.113)
EeTy
Thus, we have
(A(Ilo — 03,), 1" A7 e(9)) g, < CR* ([l + IIplh) | ¢]l2. (2.3.114)

Combining (2.3.99)-(2.3.101), (2.3.114) and (2.3.90), we obtain the desired result for the
MSMFE-0 method

1Qhu — unll < CR(llol2 + llpll)- (2.3.115)
Similarly, for the MSMFE-1 method we rewrite the error equation (2.3.71) as follows:

(A(Mlo — 04),7)q = —(Qpu — up, div T) — (v, 7) + (7,7)q
— 0(Allo, 7) + (g — Pog, (1 — I°T)n)r,,,

and choosing 7 = [T A t¢(9):

1Qhu — unlls = — (A(Tlo — 01), P A7 e(¢))@ — (p — 1, TI"A™"€(9)) — O(ATlo, II° A" e(¢))
— (7, 1I°A7"e(9)) + (II"A™"e(¢), ). (2.3.116)

Note, that most of the terms on the right in (2.3.116) have already been bounded. We

rewrite the rest using (2.3.72):

— (7, I°Ae(9)) + (II°A'e(), )
= —0(I’A7"e(9), Q) — (v — @)1, IPA™"e(9)) + (IPA™ e(9), 1 — Q). (2:3.117)
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For the first term on the right-hand side we use (2.3.81) and (2.3.7):

O A" (), Qi) < C Y WA (@)L el Qe < C ) B8]l Qi e-

EecT EecT
(2.3.118)

The second term on the right-hand side of (2.3.117) is bounded using the fact that A=1e(¢)

is symmetric and (2.3.5):

(A7 e(0),y — Q)| = [(IT"A”e(¢) — A7'e(0), 7 — @) + (A7 e(0), 7 — @)
= |[(II°A™"e(¢) — Ae(9), v — Qp)l < CR*[[lall 2. (2.3.119)

For the last term we have:

(MPA™e(6), 1 — @)q
= (I°(A™" = Ay e(@), 1 — Q")q + (I"Ag  (€(6) — €(¢1)), 7w — @"7)g

+ (pn — Qup, TIPA™ e(¢1), 7 — Q7)o (2.3.120)

We bound the first two terms on the right-hand side of (2.3.120) element-wise using (2.3.103):

(TTO(A™Y — AgDe(d), v — Q) o.e + (TP A (e(d) — e(d1)), v — Q7)o
< Chl||A 1008l — @Bl 2.6 + ChIIAG 0,00,8l70 — QY| ENll26- (2.3.121)

The last term cancels, since A~'e(¢;) is symmetric:

(A7 (1), — Q") = (A7 e(é1), 1 — Q7)o = 0. (2.3.122)
Combining (2.3.117) - (2.3.122) and using (2.3.8) and (2.3.5), we obtain:

| = (7. IPA7"e(9)) + (P A7 e(9), m)el < CR*(loll + [Vl
Hence, the solution of MSMFE-1 method satisfies

1Qhu — up|l < CR*([lo]la + [1v]1h)- (2.3.123)
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2.4 NUMERICAL RESULTS

Remark 2.4.1. Due to the complications related to implementation of spaces that preserve
skew-symmetry, both MSMFE-0 and MSMFE-1 methods were implemented using the rotation
variable p, = Z7 (1), where = is an operator defined in (1.2.1), whose algebraic properties

allow us to write methods (e.g. MSMFE-1) as

(Ao, 7)o + (up, div ) + (as 7,p)g = (9, T)rp, 7 € Xy, (2.4.1)
(le O_hav) - (fav)7 v E Vh, (242)
(as op, w)g =0, w e =Z"HW}), (2.4.3)

i.e. for a Lagrange multiplier we use a scalar space P; in two dimensions, and a vector space
(P;)? in three dimensions with j = 0,1 for MSMFE-0 and MSMFE-1, respectively. Here,
the third term in (2.4.1) should be understood in light of the following definition

(as T,w)q.r = (as (DF'T), 0)g 5 = @ Z as (DF7(#;)) - w(#), (2.4.4)

with - denoting the usual multiplication when d = 2.

We first study the convergence of the proposed methods on a unit square simplicial mesh

with homogeneous Dirichlet boundary conditions and the analytical solution given by

[ cos(mz) sin(2my)

cos(my) sin(mz)

The body force is then determined using Lamé coefficients A = 123, u = 79.3 as motivated
by the test case presented in [9]. As mentioned in the Remark 2.4.1 we use p, = Z ()
for the Lagrange multiplier, and hence the errors are also computed using this variable.
However, it is clear that operator = does not introduce extra numerical error.

In Table 2.1 we show errors and convergence rates in the corresponding norms, computed
using MSMFE-0 and MSMFE-1 methods. The superconvergence results are also included in

the said table. All rates are in accordance with the result of the error analysis presented in

the previous section.
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(a) z-comp. of stress  (b) y-comp. of stress (c) Displacement (d) Rotation

Figure 2.7: Computed solution for Example 1, MSMFE-0 on simplices, h = 1/32.

MSMFE-0
o= onll [ div(e —on)|l l[u— un| [Qhu — uall [p — pall
h error rate error rate error rate error rate error rate
1/2 8.01E-01 — 8.98E-01 — 8.37E-01 — 8.24E-01 — 1.02E+00 —

1/4 | 3.58E-01 1.17 | 4.26E-01 1.09 | 3.50E-01 1.27 | 1.82E-01 2.34 | 5.03E-01 1.02
1/8 | 1.563E-01 1.23 | 1.99E-01 1.10 | 1.73E-01 1.02 | 4.70E-02 1.96 | 3.13E-01  0.69
1/16 | 7.03E-02 1.12 | 9.84E-02 1.02 | 8.67E-02 1.00 | 1.20E-02 1.97 | 1.71E-01 0.87
1/32 | 3.42E-02 1.04 | 5.00E-02 0.98 | 4.35E-02 0.99 | 3.03E-03 1.99 | 8.78E-02 0.96
1/64 | 1.70E-02 1.01 | 2.60E-02 0.95 | 2.18E-02 1.00 | 7.59E-04 2.00 | 4.42E-02 0.99

MSMFE-1
o —onll [ div(o — o)l [[u—un| |@hu — unl| [P — pall
h error rate error rate error rate error rate error rate
1/2 7.96E-01 — 9.01E-01 8.60E-01 — 8.47E-01 9.95E-01 —

1/4 | 3.67TE-01 1.13 | 4.26E-01 1.09 | 3.55E-01 1.29 | 1.95E-01 2.28 | 4.55E-01 1.12
1/8 | 1.56E-01 1.23 | 1.93E-01 1.14 | 1.76E-01 1.01 | 5.67E-02 1.78 | 1.68E-01 1.44
1/16 | 7.11E-02 1.14 | 9.34E-02 1.05 | 8.75E-02 1.01 | 1.55E-02 1.87 | 5.37E-02 1.65
1/32 | 3.43E-02 1.05 | 4.66E-02 1.00 | 4.37E-02 1.00 | 4.01E-03 1.95 | 1.66E-02 1.70
1/64 | 1.70E-02 1.02 | 2.37E-02 0.98 | 2.18E-02 1.00 | 1.02E-03 1.98 | 5.26E-03 1.66

Table 2.1: Relative errors and convergence rates for Example 1, triangles.

The solution obtained on mesh consisting of h%-parallelograms is given in Figure 2.8. We
present the results of the convergence studies in Table 2.2 and Table 2.3 for the MSMFE-1
method on both quadrilateral and square meshes. We observe at least first order for all
variables, as predicted in (2.3.56), as well as the superconvergence of the displacement error

evaluated at the cell centers (2.3.88).
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Stress 1
[ 1.17e+03

[582 89

EQ 03e+00

(a) x-comp. of stress

(b) Displacement

Displacement
1.00e+00

Rotation
tA 71e+00

EO

[-4 71e+00

lo 49986

[5 57e-05

(c) Rotation

Figure 2.8: Computed solution for Example 1, MSMFE-1 on h2?-parallelogram mesh, 34113

DOFs.
MSMFE-1
o —onll [ div(o — o)l l[u— unl [Qhu — un [ — pall

h error rate error rate error rate error rate error rate

1/2 5.915e-01 - 7.997e-01 - 5.347e-01 - 1.629e-01 - 5.978e-01 -
1/4 2.779e-01  1.09 | 4.060e-01 0.98 | 3.109e-01 0.78 | 1.053e-01 0.63 | 3.379e-01 0.82
1/8 | 1.366e-01 1.02 | 2.030e-01 1.00 | 1.577e-01 0.98 | 2.945e-02 1.84 | 1.377e-01 1.30
1/16 | 6.934e-02 0.98 | 1.014e-01 1.00 | 7.895¢-02 1.00 | 8.041e-03 1.87 | 4.865e-02 1.50
1/32 3.497e-02  0.99 | 5.066e-02 1.00 | 3.946e-02 1.00 | 2.083e-03 1.95 | 1.658e-02 1.55
1/64 1.756e-02 0.99 | 2.533e-02 1.00 | 1.973e-02 1.00 | 5.263e-04 1.98 | 5.669e-03 1.55

Table 2.2: Relative errors and convergence rates for Example 1, h?-parallelograms.

The second test case shows the methods’ performance on a unit cube simplicial mesh

with homogeneous Dirichlet boundary conditions and the analytical solution given by

u =

—(e” = 1)(y — cos(
—(e” —1)(z — sin(

—_

Sl

0
B~ 1)+ sin(E)E -5~ 245
)y —3) —cos({3)(z — 3) — 3)

Similarly to the previous case, the body force is determined from this function with Lamé

coefficients A = p = 100.
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MSMFE-1

o —onll | div(o — o)l l[w—unl [Qhu — uall [P — pall
# dofs error rate error rate error rate error rate error rate
65 | 7.614e-01 9.728e-01 7.199e-01 4.758e-01 8.171e-01

217 | 3.742e-01 1.02 | 5.422e-01 0.84 | 4.561e-01 0.66 | 1.057e-01 2.17 | 3.909e-01 1.06
785 | 1.664e-01 1.17 | 2.721e-01  0.99 | 2.334e-01 0.97 | 2.775e-02 1.93 | 1.149e-01 1.77
2977 | 7.911e-02 1.07 | 1.358e-01 1.00 | 1.171e-01  0.99 | 7.254e-03 1.94 | 3.043e-02 1.92
11585 | 3.897e-02 1.02 | 6.789e-02 1.00 | 5.860e-02 1.00 | 1.841e-03 1.98 | 7.753e-03 1.97
45697 | 1.941e-02 1.01 | 3.394e-02 1.00 | 2.931e-02 1.00 | 4.623e-04 1.99 | 1.949e-03 1.99

Table 2.3: Relative errors and convergence rates for Example 1, squares.

In Table 2.4 we show errors and convergence rates in the corresponding norms obtained
with both MSMFE-0 and MSMFE-1 method. These numerical results verify the predicted

theoretical rates stated in the error analysis section, Section 3.4.

Stress 2 Stress 3
455

Svess 1 FE 1

] 1

| i i

I o1 0.332 0.246
(a) z-comp. of stress (b) y-comp. of stress (c) z-comp. of stress

Displacement
6 Rotation
0507

I 0.30¢
1
1

2.54e-05

0.00301

(d) Displacement (e) Rotation

Figure 2.9: Computed solution for Example 2, MSMFE-1 on simplices, h = 1/32.

Our third example is to demonstrate that MSMFE methods accurately honor disconti-
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MSMFE-0

llo—onll | div(o — o)l llu — un| [@pu — ual| lp — pall
h error rate error rate error rate error rate error rate
1/2 4.46E-01 — 2.45E-01 4.15E-01 1.32E-01 2.41E-01

1/4 | 1.96E-01 1.19 | 1.21E-01 1.02 | 2.06E-01 1.01 | 3.11E-02 1.98 | 1.20E-01 1.00
1/8 | 9.08E-02 1.11 | 6.02E-02 1.01 | 1.03E-01 1.00 | 7.72E-03 1.98 | 6.01E-02 1.00
1/16 | 4.40E-02 1.05 | 3.01E-02 1.00 | 5.14E-02 1.00 | 1.94E-03 1.99 | 2.99E-02 1.00
1/32 | 2.17E-02 1.02 | 1.51E-02 1.00 | 2.57E-02 1.00 | 4.85E-04 2.00 | 1.49E-02 1.00

MSMFE-1
o= onl [ div(o —on)|| l[u— | [Qhu — uall lp = pall
h error rate error rate error rate error rate error rate
1/2 5.40E-01 — 2.45E-01 4.20E-01 1.55E-01 2.38E-01

1/4 | 2.42E-01 1.16 | 1.21E-01 1.02 | 2.07E-01 1.02 | 4.04E-02 1.83 | 1.00E-01 1.24
1/8 | 1.09E-01 1.15 | 6.02E-02 1.01 | 1.03E-01 1.01 | 1.07E-02 1.89 | 3.93E-02 1.35
1/16 | 5.06E-02 1.12 | 3.01E-02 1.00 | 5.14E-02 1.00 | 2.81E-03 1.93 | 1.47TE-02 1.42
1/32 | 2.39E-02 1.08 | 1.51E-02 1.00 | 2.57E-02 1.00 | 7.20E-04 1.96 | 5.38E-03 1.45

Table 2.4: Relative errors and convergence rates for Example 2, tetrahedra.

nuities in material properties. For this, let x(z,y) indicate a heterogeneity in the ”middle”

block of a 3 x 3 partitioning of a unit square, e.g.

2

1 if min(z,y) > & and max(z,y) < 2,

x(z,y) =
0 otherwise.

Then, we choose k = 10° to characterize the discontinuity in Lamé coefficients as follows
p=(1—x)+rx and A = p.
We finally choose the continuous displacement solution as

1 sin(37z) sin(37y)

U=
(1—x) +rx sin(37z) sin(3my)

Y

so that the stresses are also continuous and independent of k. The body forces are recovered
from the above solution using the governing equations. The computed relative errors and
convergence rates are presented in Table 2.5 for the both methods. While the results of

method with constant rotations (MSMFE-0) agree with theory, we see the deterioration in
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stress and rotation convergence rates obtained by the method with linear rotations (MSMFE-
1). This is due to the discontinuity of the rotation true solution - the MSMFE-1 method
uses continuous Lagrangian finite element space for the rotation variable, and hence, fails
to resolve the discontinuity along the boundary of the middle block of the domain. One
potential remedy to this issue is to change the way Lagrange multiplier is defined. One can
consider ¥ = A~y as a "force rotation”, and write a mixed method with it. Specifically, the

MSMFE-1 method would then read: Find oj, € Xj,, up, € Vj, and 7, € W,ll

(Aop, 7)g + (up, divT) + (7, A%n) g = (Pog, Tn)r,, 7 e Xy, (2.4.6)
(div oy, v) = (f,v), v eV, (2.4.7)
(Uh, Af)Q =0, e W,ll (248)

The convergence results obtained from using the method (2.4.6)-(2.4.8) are shown in Ta-
ble 2.6. As one can see, this computational trick indeed resolves the convergence deteriora-

tion in stress and rotation variables. We used FEniCS Project [65] for the implementation

StressY, mdgnitude
00 100 200 294
— e -

StressX, magnitude
00 100 200 294
— e —

Displacement, magnitude Rotation Rotation
77605 05 09 1.4e+00 63 27 00 27 53 94 47 00 47 94
—t— | — — e —— 0 —

(a) Stress, x-comp. (b) Stress, y-comp. (c¢) Displacement (d) Rotation (e) Force rotation

Figure 2.10: Computed solution for Example 3, MSMFE-1 on simplices, h = 1/48.

of the methods on simplicial grids both in 2 and 3 dimensions and [7] for the test cases on

quadrilateral.
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MSMFE-0

lo — onll Tdiv(o —on)] T — un] Qs — unl] o —pal
h error rate error rate error rate error rate error rate

1/3 | 1.27TE+00 - 1.20E+00 - 1.61E+00 - 1.49E+00 - 1.46E+00 -

1/6 6.97E-01 0.87 | 7.28E-01 0.73 | 5.87E-01 145 | 4.55E-01 1.71 | 6.50E-01 1.17
1/12 | 2.68E-01 1.38 | 3.33E-01 1.13 | 2.73E-01 1.10 | 1.19E-01 1.93 | 4.70E-01 0.47
1/24 | 1.05E-01 1.35 | 1.58E-01 1.07 | 1.33E-01 1.04 | 3.08E-02 1.95 | 2.76E-01 0.77
1/48 | 4.72E-02 1.16 | 7.79E-02 1.02 | 6.57E-02 1.01 | 7.79E-03 1.98 | 1.45E-01 0.93
1/96 | 2.28E-02 1.05 | 3.88E-02 1.01 | 3.28E-02 1.00 | 1.96E-03 1.99 | 7.34E-02 0.98

MSMFE-1
o —onll | div(e — o) [l — | 1Qpw — uall 1P — pall

h error rate error rate error rate error rate error rate

1/3 | 1.24E+00 - 1.20E4-00 - 1.59E+-00 - 1.48E400 - 1.15E400 -

1/6 7.06E-01 0.82 | 7.28E-01 0.73 | 5.75E-01 148 | 4.37E-01 1.76 | 6.09E-01 0.93
1/12 | 2.89E-01 1.29 | 3.33E-01 1.13 | 2.74E-01 1.07 | 1.22E-01 1.84 | 2.87E-01 1.07
1/24 | 1.26E-01 1.20 | 1.58E-01 1.07 | 1.35E-01 1.02 | 3.95E-02 1.63 | 1.58E-01 0.86
1/48 | 6.58E-02 0.94 | 7.78E-02 1.02 | 6.71E-02 1.01 | 1.59E-02 1.31 | 1.05E-01 0.59
1/96 | 3.87E-02 0.77 | 3.88E-02 1.01 | 3.35E-02 1.00 | 7.43E-03 1.10 | 7.39E-02 0.51

Table 2.5: Relative errors and convergence rates for Example 3, triangles.
lo — onll Tdiv(o —on)] T — ] Q5w — unl] 15— ]

h error rate error rate error rate error rate error rate
1/3 | 1.26E400 - 1.20E+00 - 1.73E+00 - 1.59E+00 - 1.20E+00 -
1/6 6.82E-01 0.88 | 7.28E-01 0.73 | 5.74E-01 1.59 | 4.28E-01 1.89 | 5.46E-01 1.14
1/12 | 2.60E-01 1.39 | 3.33E-01 1.13 | 2.72E-01 1.08 | 1.17E-01 1.87 | 2.10E-01 1.38
1/24 | 1.03E-01 1.34 | 1.58E-01 1.07 | 1.33E-01 1.04 | 3.08E-02 1.92 | 6.68E-02 1.66
1/48 | 4.65E-02 1.14 | 7.79E-02 1.02 | 6.57TE-02 1.01 | 7.90E-03 1.96 | 2.11E-02 1.66
1/96 | 2.26E-02 1.04 | 3.88E-02 1.01 | 3.28E-02 1.00 | 2.01E-03 1.98 | 6.95E-03 1.60

Table 2.6: Relative errors and convergence rates for Example 3, MSMFE-1 on triangles with

force rotation.
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3.0 COUPLED MULTIPOINT FLUX MULTIPOINT STRESS MIXED
FINITE ELEMENT METHOD FOR THE BIOT POROELASTICITY MODEL

The lowest order coupled five field mixed finite element approximation of Biot’s poroelasticity
system of equations (1.3.18)-(1.3.24) reads as follows: Find (o4, up, Y4, 2n, Pr) € Xp X Vj, X
Wy, x Zy x W), such that:

(Aon, 7) + (Aapnl, 7) + (un, divT) + (n, T) = (Gu, T0)paier vr e X, (3.0.1)
(divon, v) = = (f, v) Yo €V, (3.0.2)
(o, §) =0 VEEW,  (3.0.3)
(K~'2n, @) — (pn, divg) = —(gp, v n)ppres Vg € Z, (3.0.4)
o <88pth7 w) +a <8atAUh’ wI) + o (gt tr (Aappl), w) + (div zp, w) = (g, w) Yw € Wy, (3.0.5)

The method has a unique solution and is first order accurate for all of the variables in
corresponding norms on simplicial and quadrilateral grids with our choices of elements [61].
While the method inherits all the advantages of a MFE method, its major drawback is
in the resulting coupled algebraic system for five variables being of a saddle point type.
Motivated by MFMFE and MSMFE methods, in the next sections we develop a quadrature
rule that allows for local elimination of the stresses, rotations and fluxes, which leads to a

positive-definite cell-centered displacement-pressure system.
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3.1 THE COUPLED MULTIPOINT STRESS MULTIPOINT FLUX MIXED
FINITE ELEMENT METHOD

As in the MSMFE method on quadrilaterals, care should be taken in order to incorporate
the the Dirichlet boundary data for displacement and pressure variables. For this, we first
introduce an L?-orthogonal projection operator acting onto the space of piecewise constant

scalar or vector valued function on the trace of 7, on 0f2:

Py : L2090, RY) — X0 n,

such that Vo € L*(Q,RY), (¢ — Py, Tn)oq =0, V7 e XY, (3.1.1)
Py : L*(0QL,R) — Z)) - n,

such that Voo € L*(Q), (¢ — Py, ¢-n)aa =0, Yq€ Zj. (3.1.2)

We use Py = Z on simplicial grids, i.e., the projection is not required in such a case.

Our method is defined as follows. We seek (o, un, Yh, 2n, Pn) € Xp X Vi, x Wy, X Zp, x W,

such that:

(Aop, 7)g + (Aapnl, 7)o + (un, divT) + (yn, 7)o = (Pogus Tn)FdDispz, VreX,, (3.1.3)

(divop, v) == (f, v), Yo € Vy, (3.1.4)

(o, §)g =0, VEe W, (3.1.5)

(K_lzh, q)Q — (pn, divgq) = —(Pogp, v - n>rg’657 Yq € Zy, (3.1.6)
Opn 0 0 .

co| =, w|+a|=Aoy, wl | +a|=tr(Aappl), w) + (divzy, w) = (g, w), Yw e W, (3.1.7)
ot ot 0 ot
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3.2 STABILITY ANALYSIS IN SEMIDISCRETE CASE

In this section we show that the coupled multipoint stress multipoint flux system for the
Biot model (3.1.3)-(3.1.7) is well-posed. Throughout this section we assume for simplicity
that T3 = T7 = 9Q.

Step 1: L? in space estimates:
We differentiate (3.1.3) and choose (7, v, &, q, w) = (on, Opun, O yn, 2n, pr) in equations (3.1.3)-
(3.1.7) to obtain the following system:

(40,01, 1) + (AaDpl, 1) + (Ouun, divon) + (Dim, o) = (OPogs anm),  (3:21)
(div op, Owup) = — (f, Oyuy) , (3.2.2)
(oh, D) = O, (3.2.3)
(K 2, zh)Q — (pn, div z) = (Pogp, 21 - n), (3.2.4)
co (Oepn, pn) + a (Op tr (Aon), pn)g + a (9 tr (Aapwl), pr)g + (div zp, pr) = (g, pr) . (3.2.5)

Combining (3.2.1)-(3.2.5), we get

(Adyon, on)g + (Aadpl, on)g + (K 2, 21) o + co (O, pr) +  (Ortr (Aow), pr)q

+ a (O tr (Aapnl), pr)g = (0:Pogu, onn) + (f, Orun) + (Pogp, 2 - 1) + (9, pn) -
(3.2.6)

Using the definition of the quadrature rule (1.5.3) and the product rule, we can write the
first term on the left hand side of (3.2.6) as follows

(Ao, on)g = Y (Adon, on)pg= Y (Addn, G1)pg= D % > " AQG(E:) ¢ oulE:)

EcTy, EeTy, EcTy, =1
:Z ’ |Za./41/2 .Al/2 ( )_22 ’ ’8 ZAl/Q Al/? ( )
E<Ty, i=1 EE<Ty,
1 1
=) 50 (Ao, Aay) o = S0 (Ao, APay)

EcTy,

and (3.2.6) becomes:

1
5& (A1/2o'h, A1/2Uh)Q + (Aadipl, o4) g + a (O tr (Aown), pr)g
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B c
+a (0t (Aapd), g + K220 + 2ol

= (0:Pogu, onn) + (f, Ovun) + (Pogp, 2n - 1) + (g9, pn) . (3.2.7)
Using the identity

tr(T)w=r71:(wl), VreM, weR,
we combine the first four terms on the left-hand side of (3.2.7):

1
5& (AYV2ay,, A1/2O'h)Q + (Aadpl, op)g + a (Ostr (Aon), pr)g + a (Os tr (Aaprl), pr)g

= %at (AYV20n, AV20y), + a (AYV20pnl, AYay),,

2
(67
+« (8tA1/20'h, A1/2ph[)Q + ? <8tA1/2ph[, atA1/2phl)Q

1 1
= 5@ (AYV2(oy, + appI), AY?(oy, + aphI))Q = §8t||A1/2(0h + app]) || (3.2.8)

Combining (3.2.7) with (3.2.8) and using the product rule, we get

1 .
500 [1AY2(@n + apu DG + collpall”] + 11K 22413

= <at7DOgu7 Oh ’I’L> + (fa atuh) + <at730.gp7 Zh - TL) + (97 ph)
= (0 Pogu, onn) + 0 (f, un) — (Ouf, un) + (Pogp, 21 - 1) + (g, pn) - (3.2.9)

Next, integrating (3.2.9) in time from 0 to an arbitrary ¢ € (0,7]:
1 t
3 [14%(00) + amT OV + allm I + [ 1520061 ds
0

- / ((9(5), pn(s)) — (Buf(s), un(s))) ds + / (0Pogu(s). on(s) n)
F(Pag(s). 2a(s) - m)) s+ 3 [ 47(0n(0) + apuLO)) [ + colpn(O)|]

+ (f(#), un(t)) + ((0), un(0))

and applying Cauchy-Schwartz and Young inequalities we have:

[IIAY2(03,(t) + apr I (1)) ]13 + collpa(®)]*] + /0 1EC223,(5) |G ds

N | —

<e (IIUh(lt)II2 +/0 (Ilpa(s)II* + IIUh(S)IIQ)dS) +€/0 (lon(s) nll2y o + 120 - 124 )2) ds
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(3.2.10)

+ S (10 + [ Ao 410801 as) + S [ 1P + I1Pasylo)E)
+ 2 11AY2(0,(0) + O + colpn (O + (O + /O]

Using the inf-sup condition as in Chapter 2, we obtain

(un, divT) + (7a, as 7)g

[unll + llnll < € sup

0#4TEX), HTHdiv
_ (A1/2(0h + ozphf), A1/27-)Q + <Pogu, TTL)
=C sup
0#ATEX), ||7'Hdiv

< C||AY2 (a3, + apnI)|| + [|Pogull s,

where in the last step we used equivalence of norms as stated in Corollary 1.5.1.

Similarly, using the inf-sup condition [22] and (3.1.6), we have

||th < C sup M =C sup (K—lzhv Q)Q + <7Dogp, q- 7”L>
= 0#q€Zp, HQHdiv 0£q€Z), Hq”div

< CIE 2] + [Pogylls.

Combining (3.2.10)-(3.2.12), from equivalence of norms we have

1A (on () + apn I (O)* + un (O + [lya ()1

+ collpa (t)I* +/0 (1K 22n(s) 17 + llpn(s)]1%) ds

(3.2.11)

(3.2.12)

< Cfe (Il + [ Al + )P ds )+ [ Qon(s) s + ante) - ll-ua) s

t

+ S (WOR+ [ Qo + 176 ds) + E [ 1P + 1Py (o)1) s

+ C [ AY2(0n(0) + apn (D) + collpn(O)* + NunO)* + 1F O] + 1Pogu(®)]13 2] -

Finally, choosing € small enough, we obtain the following inequality

1AY2(on(t) + apn (D) + llun(@)* + lla (t)]1

+ collpn (81 + /0 (12 2n(5) 1 + [lpn(s)]1%) ds

t t
<Cle [ Pds+e [ (ontshnlP o + 124() - nlF ) ds
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+ & [0 + 1P ) ds+ (15 + [ ool + a0l ds )

+ [ Pogu(®)I3 )5 + [IA"*(04(0) + apal (0) I3 + collpa(0) 1 + [[un(0)[|* + Hf(O)HZ} -
(3.2.13)

Let us denote the right hand side of (3.2.13) by H;. We proceed with deriving estimates for
div o3, and div zj,.
Step 2: H(div) in space estimate for the stress:

Testing (3.1.4) with v = div o, we immediately obtain a bound on divergence of stress:
| divon < I£1 (3.2.14)

On the other hand setting 7 = s, v = up, £ = 7, in (3.1.3)-(3.1.5) and using equivalence of

norms, we obtain
lonll* < CUPI* + Pogallljs + IFI7) + eCllon nlly o + ull?) (3.2.15)
We combine (3.2.14)-(3.2.15) and integrate in time:
t
/0(||0h(8)||2+ I div on(s)|*) ds
< C/Ot (I + 1Pogu ()2 + I ()IF) + ellon(s) nllZy o + lluls)]*)) ds.
Using (3.2.11), we obtain
/Ot(||ffh(8)||c2nv +lun ()1 + () [I*) ds < C/Ot(llp(S)ll2 + 1 Pogu(s)lij2 + 1£(s)I°) ds
< Hp+ /Ot<HPOgu<5)|ﬁ/2 +I£()I*) ds. (3.2.16)

Step 3: H(div) in space estimate for the velocity:
It follows from equation (3.1.7) and Corollary 1.5.1 that

Idiv za]| < C (collOwpnll + [|AY20,(on + apn )| + llgll) - (3.2.17)
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To control the first two terms on the right hand side of (3.2.17), we differentiate equations
(3.1.3)-(3.1.6) and combine (3.1.3)-(3.1.7) as it was done in (3.2.1)-(3.2.10), with the choice

(7,v,§, ¢, w) = (0ron, Opuun, Oiyh, 2, Oipn):
t
1
[ (142010000) + oI + oo ) ds + 1201
0
t
< [ (melog)l + lowm oo

+ 0wl 1,2 10Pogulyyz + 2 - 2ll 12 8Pogyll2) ds
I Ollgl + SIE 22013 - I O)llg©].  (3:2.18)
Using the inf-sup condition as in Chapter 2 and (3.1.3), differentiated in time, we get
9]l + 10l < CIAY20, (0 + amnT) ] + [9:Pogalls. (3:2.19)
Combining (3.2.12), (3.2.19) and (3.2.18), we get:
/ t (1420401(5) + apI D17 + s ) + 100 + oo (9 s
IR @R + @)
<(| eI + 19rn(5)[?) s + moI) +é [ lon(s) 1o+ 12n(s) -l j2) ds
+E( [ tago+ 1056 s+ o)
+< 0Pz + 10 Pag ()2 2) ds
L) + IO + [9O)]P).
Choosing € small enough, we obtain
[ (14°201(00(0) + apuT I + [uan(s)? + 100a(6) I + colpn(] ) s
FIE 201 + ()

~ t C t
< 6/0 (lon(s)nlZ1j + llzn(s) - nl|2y)2) ds + —/0 (10:Pogu(s)l17 /2 + 0 Pogy(s)I132) ds

€

+C (/0 (10eg()11* + 10:f ()11*) ds + lg(I* + [z ()] + lpa(0)]I* + [lg(O)I* + Hl) :

(3.2.20)
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Integrating (3.2.17) in time and using (3.2.20), results in

t
/0 [ div 2 (s)[* ds + [|K 220 ()] + lpa(t)]]*

~ t C t
< 6/0 (lon(s)nlZy) + IIZh(S)-n||21/2)ds+—/0 (10:Pogu(s)l11 /2 + 0 Pogp(s)I132) ds

+C(/O (lg()1* + 9g(s)II* + l0nf (s)II*) ds + [lg ()|

+ 11z 0)12 + (O + llg(O)|I* + Hy). (3.2.21)

We note that initial condition for Darcy velocity can be computed as a suitable projection
of —K'Vp(0), provided the initial condition is regular enough.

Step 4: obtaining the final result:
We combine (3.2.13), (3.2.16) and (3.2.21):

1A (on(t) + apn @) + lun@OI + 1 ON + a1 + llpa @)1
+ /0 (lon()lld + llun()IF + 1y ($)II* + llzn ()G + lpa(s)]1*) ds
< C[/O <H7’ogu(8)lh/z + 110Pogu(s)ll1/2 + [1Pogn(s)ll1/2 + 10 Pogp(s) 112 + [lg(s)]

+10g(s)II* + £ ()1* + \Iatf(8)||2) ds + 6/0 lun(s)1* ds + [LF O + lg(®)]I*

+ 1 Pogu(®)ll12 + LFO)17 + [lg(O) > + [ AY2(01(0) + apn (0)]1
+ [lpr(O)[I* + lun (0)]* + th(O)HZ] (3.2.22)

Note that we can also obtain an estimate on ||o,(t)]| as follows:

lon(®)]| < CA2on(t)]] < C (1A (on(t) + apnl (1))]| + [ A apul ()]))

< C (| A"2(on() + apu (D) + llpa(D]) (3.2.23)
Then, (3.2.23) together with (3.2.14) yield
low(®)llaiv < C (IAY2(on(t) + aprI (E)] + IOl + 1FD1]) - (3.2.24)

Finally, (3.2.22)-(3.2.24) yield the following result.
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Theorem 3.2.1. Let (o, up, Vn, 2n, Pr) € Xp X Vi X O X Zy, x W), be the solution of (3.1.3)-
(3.1.7). Then the following stability estimate holds:

lonll Lo 0,8 @iv.0) + lunll o020 + [0l o 0,7:02(0)) + (120l Lo (0,152 (02))
+ ol L o,ms2@)) + ol L2051 @iv,0)) + |1 usl 220,02 0)
+ [l 220722 09)) + 120l 20,1 (a1v.0)) + PRl 220,7:22(0))

< ClpnO) | + lon(O)l| + [[un(O) + |21 O + [ f[| oo (0,7;220)) + [ | 2 0,7522(0))
+ 9ol i1 0, 11200)) + 19| Lo 0.1522(0)) + 91l 0,7322(02))

+ 19ull oo 0,7 m1200)) + [19ull 50,0512 (00 |- (3.2.25)

3.3 REDUCTION TO A CELL-CENTERED DISPLACEMENT-PRESSURE
SYSTEM

The choice of trapezoidal quadrature rule implies that on each element, the stress and velocity
degrees of freedom associated with a vertex become decoupled from the rest of the degrees
of freedom. As a result, the assembled velocity mass matrix in (3.1.6) has a block-diagonal
structure with one block per grid vertex. The dimensions of each velocity block equals the
number of velocity DOF's associated with the vertex. For example, this dimension is 4 for
logically rectangular quadrilateral grids. Inverting each local block in mass matrix in (3.1.6)
allows for expressing the velocity DOF associated with a vertex in terms of the pressures at
the centers of the elements that share the vertex.

Similarly, inverting each local block in mass matrix in (3.1.3) allows for expressing the
stress DOF associated with a vertex in terms of the corresponding displacements, rotations
and pressures. By substituting these expressions into equations (3.1.4)-(3.1.5) one gets the
intermediate step, where the elasticity system was reduced to a cell-centered displacement-
rotation system. Due to the choice of the quadrature rule, the rotation basis functions
corresponding to each vertex of the grid become decoupled from the rest of the variables

T

other than the stress DOF at this same vertex, leading to matrix A,,A;; AL being diagonal

(see [3,4]). With this, one obtains the expression for the rotation DOF in terms of the
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displacements and pressures, which can be further substituted into (3.1.4) leading to a final

displacement-pressure system.

More precisely, in matrix form we have

Ay AL, AL, 0 AL\ [o
—Agu 0 0 0 0 u
Ay 0 0 0 0 ||~
O O 0 Azz AZp z
Aop 0 0 —Ap Ap p
AguAGFAY,  An AJYAT 0 Agu Az AT "
oAbttt aly | ApAzial,  Apaiall o Anaglall )[4
0 0 Az AT 2
~ApAsg AL —AnpA AL —Au Ay — AnpAs AT \p
z=—AZATp A%‘m Auory Auap) (u)
—— | Auoy  Ayor Ao y
_Agap _A;thp Apozp p
V== A3dy Aqopp— Ay g ALy yu <Auau—Aua»yA§leAZm Augp—AumA;olvAwp) <u>
AT+ AT AL AT Ay + AT AT A ) \p)

And finally, the displacement-pressure system for the Biot poroelasticity model reads as

follows
—1 AT -1
Auau - AUU’YA’Y(T’YAUO"Y Auap - Aua’yA»yg—yA’yop [ _ Fu (331)
T T A—1 AT T a1
_Auop + AuapA'yU'yAua'y APUZP + A'yapA'yU’yA’YUP p FP?
where
Auau = AUuA;;AZua Aua’y = AUuA;;AZrW
Ay = Ay ALLAT, Aury = A A1 AT,
Asop = Aoy Ass AZp? Apgap = App — AopA;;AZp + A AL, Afp,

and F,,, F}, are the right-hand side functions transformed accordingly to the procedure above.

Lemma 3.3.1. The cell-centered finite difference system for the displacement and pressure
obtained from (3.1.3)-(3.1.7) using the procedure described above is symmetric and positive

definite.

Proof. The proof follows from the inf-sup conditions for the MSMFE and MFMFE methods,
Corollary 1.5.1 and the combined stress-pressure coercivity estimate, see [3,4,95] for details.

O
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3.4 ERROR ANALYSIS

As this method is based, partially, on MSMFE method we presented in the previous chapter,
some of the preliminary results were already introduced there as well. However for the sake
of readability the crucial ones will be provided in the section, we will omit the details and

proofs where possible, though.

3.4.1 Preliminaries

Similarly to the MEFMFE and MSMFE methods, due to the reduced approximation properties
of the MFE spaces on general quadrilaterals [10], we restrict the quadrilateral elements to

be O(h?)-perturbations of parallelograms. We introduce the L2-projection operators Q° :

L*(Q)) — Wy, and Q' : L*(Q2) — W), satisfying

(¢ — Q%,¢n) =0, Vb, € Wh, (3.4.1)
(Qb - ngba @Z)h) = 07 V’l?bh € Wh- (342)

We will use projection operator Q! for approximation of the rotation variable, and Q° op-
erator for approximation of the pressure. Notice also, that the same operator Q° applied
component-wise can be used for approximation of the displacement variable.

In the error analysis of we will utilize the elliptic projection II : H 1(Q,M) — X, intro-

duced in [15]. Given o € X there exists a unique triple (op, up,y,) € X X Vi x Wy, such

that
(on, T)g + (un, divT) + (30, 7)o = (0, 7), V7 € Xy, (3.4.3)
(divop, v) = (divo, v), Vv €V, (3.4.4)
(on, §)g = (0, &), VE € W, (3.4.5)

Namely, (op,un,vs) is a multipoint stress mixed finite element (see MSMFE-1, (2.2.1)-
(2.2.3)) method approximation of (¢,0,0). We then define ITo = o3,. If 0 € X, we have
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on = 0, u, = 0 and v, = 0 so II is indeed a projection. It follows from (3.4.4)-(3.4.5) and
the inf-sup condition of the MSMFE-1 (S4) method that

(div Io, v) = (divo, v), v € Vp, (3.4.6)
(ﬁmg):(mgy £ €W, (3.4.7)

Moreover, the error estimate for the MSMFE method (2.3.56), allows us to show that there

exists a positive constant C' such that
||I~Ia||diV <llo|law, |lo— fI0|| < Clle —Io||, o€ HY(Q,M). (3.4.8)

The following lemma summarizes well-known continuity and approximation properties

of the projection operators.

Lemma 3.4.1. There exists a constant C > 0 such that on simplices and h?-parallelograms

o — Q% < C|lo|.h", Vo e H' (), 0<r<1, (3.4.9)
lp — Q*¢ll < Cllollh", Voe H'(Q), 0<r<1, (3.4.10)
[ = 11| < Cll|-n", Vipe H'(Q), 1<r<2, (34.11)
[ = || < Clly[lih, vy € H'(), (3.4.12)
| div(yp — )| + || div(yy — TI°)|| < C|| divy|.h", Yy € HH), 0<r<1. (3.4.13)

Proof. Proof of bounds for the L*-projections (3.4.9)-(3.4.10) can be found in [24]; and
bounds (3.4.11)-(3.4.13) can be found in [22,80] for affine elements and [10,90] for h?-
parallelograms. Finally, the proof of (2.3.6)-(2.3.7) was presented in [95]. O

The next result summarizes the error bounds for the terms arising from the use of quadra-

ture rule.
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Lemma 3.4.2. I[f K~ ' ¢ W71—;LO° and A € W%;Oo, then there is a constant C > 0 such that

0(K g, v)| <C > WK e eldlhelvle, Vg € Vi, v e VP, (3.4.14)
EcTy
0 (A7, x + wI)| < C Y bl AlhcoellTlhelx + wlle, Vr€Xp x €X),w e Wy, (3.4.15)
EeT,
10 (Awl, r)| < C Y h||Alleoslwllzlrz, Yw,r € W, (3.4.16)
EcTy,
606 I <C D hlxlheliél s, Vx € X},£ € W (3.4.17)

EcThy

Moreover, on h?-parallelograms, if K~ € Wflﬁ’fo and A € Wfln’loo, there is a constant ¢ > 0 such that

(K—MIu, v — H%)Q’ < chllq|l1|lv], v eV, (3.4.18)
(AlfTo + Q). x - HOX)Q\ < ch(llos + 1Pl Il VX € X, (3.4.19)
(x =% @") | < chllrllaxll VX € X (3.4.20)

Proof. The estimates (3.4.14) and (3.4.18) can be found in [95], while (3.4.15), (3.4.17),
(3.4.19) and (3.4.20) were proven in Chapter 2 for p = w = 0.
Next we prove (3.4.15) for the case w # 0. We note that (3.4.16) can be obtained in the

say way. We compute for any E € Ty,

)

10 (Ar, wl) 5| = ‘9 (ADFy#, wI)E’ < (0 ((ADFy - ADFp)7, wI)E‘ + ’0 (ADFy#, @)

E
where the overline notation stands for the mean value. For the first term on the right hand

side, we use Taylor expansion, (1.4.11) and (2.3.1):

0 ((ADFs — ADFy)7, 1) | < ClADFg], g7l gllil
< CUAly sl DPsllg e + 1D i e ol Allo ) 1711 101 5
< Chl| Al ezl (3.4.21)

For the second term we note that since the quadrature rule is exact for (bi)-linears,

0 (ADFETAIO%, dd) = 0. Therefore, using (1.4.11) and (3.4.12) we obtain

E

]9 (ADFEﬁ wJ)E) - ‘0 (ADFE(% _110%), wI)E‘ < CI|ADFglly o 57 = 17 sl

< Ch[lA

0,00, Tl B[l w]|E- (3.4.22)
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Combining (3.4.21)-(3.4.22) and summing over all E € T, we get

0 (A7, wD)] < C Y hl| Al e pllTlelwle,

EET;,

as desired. We use similar arguments to prove (3.4.19) with nonzero p. First, we write:

MA@mx—H%%E}ﬂQMEA@mx—ﬂ%)

Q’E

<|(pFz A, 5 - i)

Q7E

Y

s pra@ s 1)

The first term on the right is equal to zero due to Lemma 1.5.2. For the second term we use

Taylor expansion, equivalence of norms, (1.4.11) and (1.4.26):

((DFEA-DFER) @ 2~ 1) | < CIDFE Al s @0l - 14

< Chliplelxlle

3.4.2 Optimal convergence

We form the error system by subtracting the discrete problem (3.1.3)-(3.1.7) from the con-
tinuous one (1.3.18)-(1.3.22)

(Ao, 7) — (Aon, T)g + (Aapl, 7) — (Aappl, 7)o + (u — up, div )

+ (% 7) = (W T)g = (9u — Pogu, TN, vreX,, (3.4.23)
(dive —divoy, v) =0, Yo e Vy, (3.4.24)
(0, &) = (on, §)g =0, VE €O, (3.4.25)
(K_lz, q) — (K_lzh, q)Q — (p—pn, divg) = (9p — Pogp, ¢ 1), Vg € Zy, (3.4.26)

co (Orp — Orpn, w) + a (O tr (Ao), w) — a (9 tr (Aoy), w)g
+ a (O tr (Aapl), w) — a (O tr (Aappl), w)g + (divz — divz,, w) =0, Yw € Wj. (3.4.27)

We split the errors, as per usual:

es =0 —op = (0 — o) + (Ilo — 03) = Vs + ¢s,

ew=1u—1u, = (u— Q%) + (Qu — up) 1= Yy + du,
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ey =7 == (v = Q)+ (Q"y =) =1y + ¢,
e,=z—zp=(z2—z)+ (Ilz — z) := ¢, + ¢,
=p—pr=(p— Q%)+ (Q° —p1) ==V, + ¢,
Step 1: L? in space estimates:

With these notations we can rewrite the first equation (3.4.23) in the error system in the

following way:

(Ads, T)g + a (Apl, 7)o + (du, divT) + (4, T)
= <A1:[0, T)Q — (Ao, 7))+« (AQOpI, T)Q —a(Apl, 7) + (Y, divT)
+ (Ql’yv T)Q - (’77 7—) + <gu - Pogua 7"/1).

It follows from the definition of Q° operator (3.4.1) that (¢, div7) = 0. Combining the rest
of the terms, we write

(A¢57 + o (A¢pl T) (¢ua le T) + ((b"y’? T)Q

7)o
(A o+apl), T — HOT) — (A(¢s + ayyl), HOT) — (A(f[a + aQpl), H07'>
+ (A flo + aQ%pI), %7 )Q + (A(ﬁa +aQl), T — HOT)Q — (y, 7 —11%)
= (¥
(@'

1) — (@', I°7) + (@', II°7)
v, T — o ) + (gu, (1 —T7)n), (3.4.28)

+
where we also used (3.1.1). Taking 7 — II°7 as a test function in (1.3.18), we obtain

(A(o +apl), 7= 1°7) + (u, div (7 — 11°7)) + (v, 7 — 1°7) = (gu, (7 — 1°7) n).
Hence, due to (3.4.6) and (1.4.26),

- (A(U +apl), T — HOT) — (’y, T — HOT) +{gu, (1 =TI°7T)n) = 0. (3.4.29)

Combining (3.4.28)-(3.4.29) and rewriting terms, coming from the use of quadrature rule,

we get

(Ao, T)Q + o (Agyl, T)Q + (¢u, div ) + (¢4, T)Q
— (A(ws + o, 1), HOT) — (¢77 HOT) —0 <Aﬁ0, HOT> —0 (AaQOpI, HOT)

=0 (Q", I'7) + (A(Ilo + aQ"pI), 7 = 1I7) , + (Q'y, 7 = 1I'7) . (3.4.30)
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From (1.4.18) and (3.4.24) we have
div ¢, = 0. (3.4.31)
It also follows from (1.3.20) (3.1.5) that

(¢sa 5)@ = <ﬁ0‘, §>Q - (0h7 S)Q = 0, (3432)

where we used the property (3.4.7). We rewrite (3.4.26) similarly to how it was done in
(3.4.28)-(3.4.30):

(K_1¢Z7 Q)q - (pr? div Q>
= (¢, divg) — (K_lz, q— Hoq) — (K_l(z —1Iz), Hoq) — (K_IHZ, Hoq)

+ (K2, Toq) , + (K 'z, g — %) , = gy, (g — T1%) - ).

Using (3.4.1), we conclude that (¢, divg) = 0. Moreover, testing (1.3.18) with ¢ — I, we

also obtain

— (K72, q—11%) — (gp, (¢ — %) - n) =
Hence, we have

(K762, q) = (¢, divg) = = (K1, %) — 0 (K12, M%) + (K 'z, ¢ — %) .
(3.4.33)

Finally, using (3.4.1) and (3.4.6), we rewrite the last equation, (3.4.27), in the error system

as follows

co (Orgp, w) + a (O tr (Ags), w)y + a? (O tr (As,), W), + (div ¢z, w) — a (9 tr (As), w)
= —af (@ tr (Allo), w) — o® (9, tr (Appl), w) — 6 (9, tr (AQ"pI), w) . (3.4.34)

Next we differentiate (3.4.30), set 7 = ¢5, & = 0y, ¢ = ¢., w = ¢, and combine (3.4.30)-
(3.4.33):

1
50 [IAY2(65 + agp DG + coll$pl”] + (K~ '¢2, ¢2),,

= — (AD (s + oty ), TI°9,) — (Byy, T1°,) — 0 (Aatﬁa, %, + a¢p1)
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—0(2Q". T°6.) + (A0(Mlo +aQpD). 6.~ I6,) +(2Q"y. 6, '),
— (K ', I%,) — 0 (K~ 'z, I%,) + (K 'Lz, ¢, — H%Z)Q — a (0 tr (Ady), ¢)
— o® (O, tr (Apl), ¢p) — ab (0, AQDI, I + agp,) - (3.4.35)

Using (3.4.9)-(3.4.11) and (2.3.7), we have

(A0, + D), T0,) + (O, 1) + (K1, T06,)
+a(0,r (A,), 6,) — o2 (D1 (ALyT), 6y), |
< CR([10se Iy + 10epl3 + 19vl17 + NI211) + e(lldsll” + ldpl* + ll6:11%)- (3.4.36)
Applying (3.4.14)-(3.4.17) and continuity of projection operators

‘9 <A6t1:[0, ¢, + aqﬁpI) +0 (K2, T1%,) — af (9,AQ°pI, %, + agy) — 0 (5:Qy, I1°%,)
< CR* (10w llF + 112113 + 110pl3 + 10:7115) + €(lldsll® + ldpll® + ll=]1%).- (3.4.37)

Due to (3.4.18) -(3.4.20), we have
‘ <Aat(ﬁ0- + O'/Qopl)v gbs - HO(bs)Q + (atQ/% ¢s - Hogbs)Q + (K_IHZ, ¢z - HO¢Z)Q‘
< CR2(00 |13 + 10pl3 + 107117 + 112017) + elldsl® + o= %) (3.4.38)

Next, we combine (3.4.35)-(3.4.38) and integrate the result in time from 0 to arbitrary
t e (0,77

|AY2 () +ad LN + coll (D] + / 15120, (5)]2 ds
< / (6s(8) 2 + 6w(s)[2 + l6(s)]) s

t
+Cn* / 9k ()12 + 10p()I + 18 () + [12(5)II) ds

+ | AY2(64(0) + agp 1 (0) 15 + collop(0) . (3.4.39)
Choosing 04(0) = I1o(0) and p,(0) = Q°p(0), we obtain

A2 (5(0) + I (0)) I3, + collpp(0)[|* = 0. (3.4.40)
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Hence, we can write (3.4.39) as
IAY2(64(t) + ag, LE)1G + collgp(®)]” + /Ot 1K1 26.(5) 13 ds
< E/Ot(chﬁs(S)H2 +llp()I* + llo=(s)II) ds
+Ch’ /Ot(HatO'(S)H? +110p(s) [T + 97 ()1 + [12(s)I17) ds. (3.4.41)

Using the inf-sup condition (S4) and (3.4.23), we get

(P, divT) + (¢4, T)g

[full + ll¢5]] <C sup

0#£7€X), HTHdiv
(A(on + apul), 7)o — (A(o + apl), 7)
=(C sup
0rEX), 17y

_|_

(@', 7) — (7, T)g + {9 — Q°9u, Tn>> ' (3.4.42)

17 [ aie

Using the calculations as in (3.4.28)-(3.4.30), (3.1.1) and (1.4.25), we have

(Ao +apnl), 7)o — (Alo + apl), 7) + (@', 7) — (7, T)g + {9u — Pogu, T1)
= — (A(¢s + adpl), 7)o — (Alths + atppI), TI°7) — (b, II°7) — 6 (Aﬁa, HOT)
+ (A(f[a +aQ'pl), T — HOT>Q + (Ql'y, T — HOT)Q

< Ch(lloll + NIl + Iyl + CIAY2 (65 + agp D |17l (3.4.43)
Combining (3.4.42) and (3.4.43) and using orthogonality of projections, we get
6ull + 611 < Chlloll + Ipll + [71) + CIAY2(6, + ad, D]
Thus, (3.4.41) becomes
1AY2(0(t) + adp (D)1 + a1 + 6501 + coll o) |1* + /Ot lo-(s)]1* ds
< e/ot(Hﬁés(S)H2 +op()* + ll¢=()1) ds + CR* (e ()T + [T + v ()I),
+Ch* /Ot(HatU(S)Hf +110p(s) [T + 107 (s)IT + llz(s)I7) ds,  (3.4.44)

where we also used the equivalence of norms, see Corollary 1.5.1.
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Using the fact that Z) x W}, is a stable Darcy pair, (3.4.26), (3.1.2), (3.4.11) and (3.4.14)

we also obtain

[¢pl| < C sup (dive. 6) _ sup (K72 q) = (KT d)g
P 0#£¢€Z) | aiv 0#£q€Z) gl aiv
(K_1¢Z7 q) - (K_ll/Jm q> + 6 (K_l]__[Z, q)
=C jupo Q il < Chllzly + ||| (3.4.45)
0#q€Z;, iv

Therefore, we have

1AY2(5(2) + agp LD + [ @u()I + o5 (D11 + collop(B)]1* + /0 (l=(s)1* + gy (s)1I*) ds
< 6/0 (s ()1 + N6p()I* + 6:()11*) ds + CRA(le (@)1 + PO + @I,

+Ch2/0 (10 (s)IIT + 19ep(s) 1T + N0y ()T + I=(s)17)-
(3.4.46)
Next, we choose 7 = ¢, in (3.4.30) and use (3.4.31)- (3.4.32) and (3.4.36)-(3.4.38):
Cllgsl* < —a(Agpl, 65) o — (AlWs + aty D), TP¢,) — (¥, T°9;) — 6 (Allo, T1%)
—0 (AO[QOp], H0¢s) -0 (Ql'% H0¢s) + (A(HJ + aQOp]), ¢s - HOQbS)Q

+ (@1, 65 —11%4) , < CR([l|l¥ + 1Pl + 17111 + Cllgpll* + ellos 1,

where in the last step we used (3.4.9)-(3.4.11) and Lemma 3.4.2. Thus, we have

/0 l6s(s)|ds < C / B2 (o ()] + ()2 + () ds + C / I6p() 2 ds.  (3.4.47)

On the other hand, it follows from (3.4.42)-(3.4.43) and (3.4.47) that

t

/0 (Iu(S)I + llo5(s)]) ds < C/O (h(llo(s) Il + lp(s)lls + v ($)l12) + [[os(s)]| + I dp(s)1]) ds.

(3.4.48)

Combining (3.4.46)-(3.4.48), we obtain

1AY2(4 () + agp LD + @I + llon DI + collp(t)]
+ /0 (le=()II* + lep(s)I1* + 185 ()1 + Ndu(s)1* + 165 ()]%) ds
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< e/o (s ()I* + Nop()I* + 0= ()11) ds + CRA(le ()] + IIp@I1F + [ @OI),

O [ o) + 100+ p(s) 1 + 100()E + 1(6)1E + 10 (I + ()
(3.4.49)

Choosing € small enough, we get
1AY2(6,(t) + ad IO)IZ + lou(®I2 + 1oy DI + coll p(B)]12
+ /0 (o=()I1 + lldp()1Z + 1D () I* + lpu(S)* + [lo5(s)]1%) ds
< CR* (o1 + lp®IF + v @OI117),

+Ch? /0 (lo ()T + 10 (s)IF + lIp(s)IE + 10 ()T + ()1 + 10y ()T + [I=(s)II7)-

(3.4.50)
Step 2: H(div) in space estimate for stress and velocity:
Estimate for stress error follows immediately due to (3.4.31).
It follows from (3.4.34) that
I div 6.l < collaegyll + 10:AY2(¢s + agyp DIl + Ch(lloll + [|0]1). (3.4.51)

Next we differentiate (3.4.30)-(3.4.33) , set 7 = 0,05, { = 01y, ¢ = ¢, w = O,¢p, and
combine (3.4.30)-(3.4.34):

1 _
SOUET26:3 + | AY20,(65 + adpD) Iy + coll el
= — (A0, (¥s + atppl), 1°0s005) — (Opt)y, 11°0,005) — 0 (Af)tﬁff, 11°0,5 + aat%-’)
+ (A@t(f[a +aQ’l), dyps — Hoatqss)Q —0(0Q"y, 011°¢s) + (2Q"y, Dups — 1°0p5)

— (K", 1°0;6.) — 0 (K12, 911°9,) + (K112, 8. — 0,11°6.) , — a (9 tr (Aths), Diyp)
— a? (Optr (Appl), Opep) — b (0, AQp, QI b5 + ) - (3.4.52)

For all terms not corresponding to error in Darcy velocity, we repeat the arguments from

(3.4.35)-(3.4.39), combining stress and pressure errors into one.

B (A&tf[a, 11°0; 6 + oz@t(pr) — 0 (0:Q"y, a11°,) — ab (3,AQ"D, H11° + ady,) |

3 (9 <A8tfla, 11°, (¢, + a¢p1))E +60(0Q", I°0,(6s + ad, 1)), (3.4.53)

E€Ty,
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+ af (0,AQ"p, I°0,(¢s + adyl)) )

< CR(10w0 |1} + 19wl7 + 19:7117) + €l T1°0r65 + adepI |, (3.4.54)

where we used the fact that on every E € Ty, ¢,I|p € X)(E) and also that as(¢,I) = 0.
Similarly,

|— (A0 (s + app D), T1°04bs) — (Opthy, I°0ybs) — v (O tr (Adps), i) — & (Op tr (Apl), Dydhy) |
= ‘ - (Aat(ws + awpl)a 8t(H0¢s + ad)p)) - (8t¢'77 at(H0¢s + ¢p)) |
= | Z ((Aat(l/}s + aypl), I (s + a‘bp))}; + (atww I (95 + ¢p))E) |

EeET,,
< CR*(||0olT + 10plIT + 10:7117) + €l|Oes + adpI|?, (3.4.55)

and

| (Aat(ﬁg + CYQOPI)a Orps — H06t¢s>Q + (ath% Orps — H08t¢s)Q |

B ‘ Z ( (Aat(ﬂa +aQ°pl), 0(ds + ¢pI) — T°0,(¢s + ¢p])>Q,E

EeTy
+ (2R, l6s + 0p1) = T°0,(6, + 6,1)) g ) |
< CR2(|940112 + 19113 + 19113) + €l 9ugs + adro, | (3.4.56)

Combining (3.4.52)-(3.4.56), we obtain
K200+ [ (147206,) + adnl ()1 + colrtn(s)?) s
< C(IK20. 0l + ¢ [ 1016.05) + adioy (o)1 s
+0n? [ (1001 + 100(6)1E + 100()17) ds
[ (= (000, 1090:(9) =0 (K~ Te(5), 01%.(5)

+ (K7L2(s), 0 (s) — 011°0.(5)) ) ds). (3.4.57)

We integrate by parts the terms involving error in Darcy velocity

/0 (— (K~4.(s), °0,¢.(s)) — 0 (K ~'T1z(s), 011°.(s)) + (K ~'T1z(s), Dps(s) — atn%z(s))Q) ds

= — (K7 1(t), 0. (1)) — 0 (K TLa(t), M0.(1)) + (K2 (1), 2 (t) — 9. (1)),
+ (K 12(0), I°92(0)) + 6 (K '2(0), °¢(0)) + (K 'T12(0), ¢:(0) — I1°6.(0)) ,
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_/0 (_ (K718t¢z(5)7 HOQSZ(S)) -0 (KﬁlatHZ(S), Hod)z(s))

+ (K10ITA(s), 6:(s) — 100 (s)) ) ds.
Choosing z,(0) = I1z(0), we obtain

(K~'.(0), 1°¢.(0)) + 6 (K '112(0), I1°.(0)) + (K ~'1z(0), ¢.(0) — I1°.(0)) 0="0,
(3.4.58)

and for the rest of the terms we use (3.4.11), (3.4.14) and (3.4.18):
(K1), TO.(0) — 6 (K TLa(8), T06.(0)) + (K TIa(0), 6-(6) — T9.(1)),
~ [ (= 061000, 100.(9) - 0 (56 A=(5), T0%.(6)
+ (K0 12(5), ¢.(s) — 1%, (s)) Q) ds
< COPI +lon O + [ 02102 + x5 s (3..59)
From (3.4.57)-(3.4.59) we obtain:
K200l + [ (147206, + ao I ) + col ()7 s
< COONE + el (0 +C [ 210 + 1210061 + ell6. () ds. (3460
Combining (3.4.60), (3.4.57),(3.4.45) and using the equivalence of norms, we get
[6:O1 + 6017+ [ (1016.05) + adnl (DI + cldan () ds
< © [ W10+ 10 ) + 100061 + [ ()17 ds
b [+ 1006405) + a, DIV s+ COAO1 + o). (3460
Hence, (3.4.51) and (3.4.61) yield
601 + lop(07 + [ 1o s
<c [ oo as
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+C (/O W ([10:2(s)II + llo(s)II + 100 ()17 + 10 () 1T + 10ev(s)117) ds + ||Z(t)||?) :

(3.4.62)
Step 3: obtaining the final result:
We note that
ps]l < CIAY2 )| < C (A2 (s + agpD)|| + |AY?ag, 1))
< C (J|A2(¢s + ag, D] + |6,]1) - (3.4.63)

Therefore, combining (3.4.50), (3.4.62) and (3.4.63), we obtain the following result.

Theorem 3.4.1. Let (o, up, Vn, 2n, Pr) € Xp X Vi X O X Zp, x W), be the solution of (3.1.3)-
(3.1.7) and (o,u,v,2,p) € XxV xWx ZxWn HY0,T; (H' ()™ x H'(0,T; (H'(2))%)
x HY(0, T; HY(Q) 4 dskewy s HY(0,T; (HY(Q))4) x HY(0,T; H*()) be the solution of (1.3.18)-
(1.3.22). Then the following error estimate holds:

o = onllLoe 0,13 E(div,0)) T+ v = Unll o 0,m;22(0)) + 17 = WallLoe (0,7522(0)) + 112 = 2nll oo 0,1:02(02))
+1Ip = prlleo.r;e2) + lo = onll20.1;m@iv,0) + 1w — unllL20,r:02(0)) + 17 = Wl z20,1,02(9)

+ 112 = 2ull 20,1 H(div,0)) T+ 1P = Prll 220,702 (02))
< Ch(HSHHl(o,T;Hl(Q)) + [[ullL20,msm1 @) + IV E (0,781 (@) + 12 EH (0,751 ()
1l Er 0,11 Q) F N0l oo (0,751 () + Ul oo 0,722 (02))

+ 17l oo (0,75 11 () + 121 oo 0,751 () + HpHLoo(o,T;Hl(Q))>~ (3.4.64)

3.5 NUMERICAL RESULTS

In this section we provide several numerical tests verifying the theoretically predicted conver-
gence rates and illustrating the behavior of the proposed method on simplicial and quadri-
lateral grids. We also briefly address the issue of locking when dealing with small storativity

coeflicient.
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3.5.1 Example 1

We first verify the method’s convergence on simplicial grids in 3 dimensions. For this, we
use a unit cube as a computational domain, and choose the analytical solution for pressure

and displacement as follows:

p=cos(t)(x +y+z+1.5),

—0.1(e” — 1) sin(7x) sin(my)

u=sin(t) | —(e® — 1)(y — cos(Z)(y — 0.5) +sin(Z)(z — 0.5) — 0.5)
—(e” = 1)(z —sin(55)(y — 0.5) — cos({5)(z — 0.5) — 0.5)
The permeability tensor is of the form
2+t +1 0 0
K = 0 22+1 sin(zy) |,
0 sin(zy) x%y? +1
and the rest of the parameters are presented in Table 3.1.
Parameter Symbol Values
Lame coefficient @ 100.0
Lame coefficient A 100.0
Mass storativity co 1.0
Biot-Willis constant « 1.0
Total time T 1073
Time step At 104

Table 3.1: Physical parameters, Examples 1 and 2.

Using the analytical solution provided above and equations (1.3.13)-(1.3.15) we recover
the rest of variables and right-hand side functions. Dirichlet boundary conditions for the

pressure and the displacement are specified on the entire boundary of the domain.
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lo = anllz20,1,020))

I div(o —on)llL2(0,1;22())

lu — unllL20,7;22(02))

h error rate error rate error rate
1/4 | 3.07E-02 - 2.29E-01 - 8.54E-01 -
1/8 | 9.92E-03 1.6 1.14E-01 1.0 2.32E-01 1.9
1/16 | 4.90E-03 1.0 5.68E-02 1.0 7.44E-02 1.6
1/32 | 2.50E-03 1.0 2.84E-02 1.0 2.97E-02 1.3
17 = nllz20.1;22(02)) 12 = znllL20.1:22(02)) I div(z = zn)ll2(0,7,L2(0))
h error rate error rate error rate
1/4 | 7.65E-01 - 1.06E-02 - 5.85E-02 -
1/8 | 2.32E-01 1.7 2.66E-03 2.0 2.31E-02 1.3
1/16 | 7.00E-02 1.7 6.64E-04 2.0 7.70E-03 1.6
1/32 | 2.12E-02 1.7 1.66E-04 2.0 2.71E-03 1.5
lp— ph||L2(O,T;L2(Q)) |o = UhHLOO(QT;LQ(Q)) lp — thLOO(O,T;LQ(Q))
h error rate error rate error rate
1/4 | 1.92E-04 - 2.29E-01 - 2.18E-04 -
1/8 | 5.56E-05 1.8 1.14E-01 1.0 6.39E-05 1.8
1/16 | 1.28E-05 2.1 5.70E-02 1.0 1.30E-05 2.3
1/32 | 2.55E-06 2.3 2.85E-02 1.0 2.78E-06 2.2

Table 3.2: Example 1, computed numerical errors and convergence rates.
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| | | i

¥ Stress-X, magnitude ¥ Stress-Y, magnitude ¥ Stress-Z, magnitude X ¥ Displacement, magnitude
00 04 0.8 12 1.5 00 04 08 12 1.5 OO 0.4 08 12 1.6e-07 1.5e-4 3.1e-04
[ — i ol

(a) Stress, x- (b) Stress, y- () Stress, z- (d) Displacement,
component component component magnitude

¥ Rotation, magnitude ¥ Velocity, magnitude ¥ Pressure
33906 3.0e-4 54904 '\7 28 35 42 50 15 -0.8 OD 08 15
|

(e) Rotation (f) Darcy velocity (g) Darcy pressure

Figure 3.1: Example 1, computed solution at the final time step.

In Table 3.2 we present computed relative errors and rates for this example. For the
sake of space we report only the errors that would normally be of interest in studying the
behavior of this problem. As one can observe, the results agree with theory of the previous

section.

3.5.2 Example 2

The second test case is to study the convergence of the method on an h2-parallelogram grid.

We consider the following analytical solution

23yt + 22 +sin((1 — 2)(1 — cos(1 —
p = exp(t)(sin(mzx) cos(my) + 10), u = exp(t) ((1 iy:v—)z(l j_y)?’ (j(Ll(l —)y()12 +yc)czs(33y()1sin?(iz)> .
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and the permeability tensor of the form

(x+1)2+y* sin(zy)
sin(zy) (x+1)2

The Poisson ratio is set to be v = 0.2 and Young’s modulus varies over the domain as
E = sin(57x) sin(bmy) + 5. The Lamé parameters are then computed using the well known

relations

- Ev B E
T arv)-22) M oarw)

The time discretization parameters are the same as in Table 3.1.

The computational grid for this case is obtained by taking a unit square with initial
partitioning into a mesh with h = i, and further transforming it by the following map (see

Figure 3.2):
x =2+ 0.03cos(37z) cos(31y), y =y — 0.04cos(37Z) cos(37y).

As in the previous test case we observe optimal convergence rates for all variables in

their respective norms.

110



lo = onllz20,1;20))

|| div(o — Uh)||L2(0,T;L2(Q))

|u — uhHLZ(o,T;L2(Q))

h error rate error rate error rate
1/8 6.505e-02 - 4.305e-01 - 7.985e-02 -
1/16 | 3.130e-02 1.1 2.336e-01 0.9 3.959e-02 1.0
1/32 | 1.506e-02 1.1 1.172e-01 1.0 1.975e-02 1.0
1/64 | 7.435e-03 1.0 5.856e-02 1.0 9.869e-03 1.0
1/128 | 3.709e-03 1.0 2.927e-02 1.0 4.934e-03 1.0
17 = llz20.7:22(22)) 12 = 2nllz20,7;22(02)) [ div(z = zn)ll 22 0,7,22 ()
h error rate error rate error rate
1/8 1.964e-01 - 5.321e-01 - 2.531e+00 -
1/16 | 7.444e-02 1.4 2.935e-01 0.9 1.599e+00 0.7
1/32 | 2.767e-02 1.4 9.757e-02 1.6 5.864e-01 1.5
1/64 | 1.016e-02 1.5 2.999e-02 1.7 1.767e-01 1.7
1/128 | 3.697e-03 1.5 1.080e-02 1.5 4.984e-02 1.8
lp — PhHL?(o,T;m(Q)) o — UhHLoo(o,T;L2(Q)) lp— PhHLoo(o,T;LZ(Q))
h error rate error rate error rate
1/8 1.588e-02 - 6.595e-02 - 2.519e-02 -
1/16 | 6.755e-03 1.2 3.180e-02 1.1 1.170e-02 1.1
1/32 | 2.647e-03 14 1.516e-02 1.1 3.863e-03 1.6
1/64 | 1.178e-03 1.2 7.449e-03 1.0 1.387¢e-03 1.5
1/128 | 5.680e-04 1.1 3.710e-03 1.0 5.973e-04 1.2

Table 3.3: Example 2, computed numerical errors and convergence rates.
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Figure 3.2: Example 2, computed solution at the final time step.

3.5.3 Example 3

Our third example is to confirm that the coupled MFMFE-MSMFE method for the Biot
system is locking free, due to its mixed nature. It was shown in [77] that with continuous
finite elements used for the elasticity part of the system, locking occurs when the storativity
coefficient is very small. One of the typical model problems that illustrates such behavior is
the cantilever bracket problem [64].

The computational domain is a unit square [0, 1] x [0, 1]. We impose a no-flow boundary
condition along all sides, the deformation is fixed along the left edge, and a downward
traction is applied at the top of the unit square. The bottom and right sides are enforced

to be traction-free. More precisely, with the sides of the domain being labeled as I'y to I'y,
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going counterclockwise from the bottom side, we have

z-n=20, on 0 =T Ul Ul UTly,
on=(0,-1)7, on I's,

on = (0,0)7, on 'y U,

u=(0,0)T, on I'y.

We use the same physical parameters as in [77], as they typically induce locking:

E=10°, v=04, a=093, ¢ =0 K=10".
The time step is set to be At = 0.001 and the total simulation time is 7" = 1.

12 Cantilever bracket problem, t=0.005
2 T T T T T T

—-x=.15
- —-x=.25[]
x=.35
—-x=.45[]
—+x=.55

Pressure

Pressure 0.6
20 -10 o0 1.0 20 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
—— | — y-coordinate

(a) Pressure, t = 0.001. (b) Pressure along different x—lines, ¢t = 0.005.

Figure 3.3: Example 3, computed pressure solutions.

Figure 3.3a shows that the coupled MSMFE-MFMFE method yields a smooth pressure
field, without a typically arising checkerboard pattern that one obtains with a CG-mixed
method for the Biot system (see [77]) on early time steps. In addition, Figure 3.3b shows
the pressure solution along different z—lines at time ¢ = 0.005. The latter illustrates the

lack of oscillations and that the solution of the coupled mixed method agrees with the one

obtained by DG-mixed or stabilized CG-mixed [64,77].
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4.0 HIGHER ORDER MULTIPOINT FLUX MIXED FINITE ELEMENT
METHODS FOR FLOW IN POROUS MEDIA

Due to more technical details that need to be addressed in higher order cases, as well as
the necessity of development of new finite element space, this chapter is made self-contained
with all the necessary notation and properties. Some special cases of the theory we are going
to present were known in the literature, and were presented in the introduction of this thesis.

Here aim for more generality, as we now develop arbitrary order methods.

4.1 DEFINITION OF THE METHOD

4.1.1 The Raviart-Thomas mixed finite element spaces

Let P* denote the space of polynomials of total degree < k and let QF denote the space of
polynomials of degree < k in each variable. We will make use of the Raviart-Thomas spaces
for the construction of the spaces needed for the proposed method. The R7T, spaces are
defined for k£ > 0 on the reference cube as
QF 4+ OFi
Zpr(E)=| Q"+ QFg |, WHE) = QX(E). (4.1.1)
QF + Q%2
The definition on the reference square can be obtained naturally from the one above. Intro-

ducing for ease of notation

R¥(e) = P*(e) in 2d, RF¥(e) = Q"(e) in 3d,
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it holds that

~

V- ZKE)=W*E) and §-n; € R¥@e) Vie Zh(E), Ve C OF. (4.1.2)

The projection operator 1Tk, : H'(E,R%) — Zk, (E) satisfies

(0 — TT%,0) - ne, Phe = 0 Vp € R¥(é),Ve C OE, (4.1.3)
PF1(z) @ R*(y
(@) ) in 2d,
PEL()) @ RE (%)
(ﬂ’fn@ — 7, ﬁ)E =0 Vp e [PF1(2) @ RF(Y, 2) (4.1.4)

PE(G) o REE2) |0 3d

PE(2) @ RME,9)

\
The Raviart-Thomas spaces on any quadrilateral or hexahedral element E € 7, are defined

via the transformations

1
chj:q:J—DFE(joFgl, w4 b w=wo Fyt, (4.1.5)
E

where the contravariant Piola transformation is used for the velocity space. Under this
transformation, the normal components of the velocity vectors on the facets are preserved.

In particular [22],

Vg€ ZE(B), Vi € WHE(E), (V-q, w), = (@ g, w) Cand (g ne, wYe = (G - fie, e,

B
(4.1.6)
which imply
1. . l & . 1
qg-ne=—q-ne, V-qx)=|-—V-q)oF; (x). (4.1.7)
Je JE
The RT} spaces on T, are given by
Zhen={a€Z: dlp e Q d€Zi(E), EeT}, L)

WE={weW: wp+ b, 0eWHE), EecT}.
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Using the Piola transformation, we define a projection operator 1%, from Z N H*(, RY)
onto Z ﬁT,h satisfying on each element

k0 o Tho, Tk 0 = 1Th,0. (4.1.9)
Using (4.1.7), (4.1.3)-(4.1.4) and (4.1.9), it is straightforward to show that II%,v - n is con-
tinuous across element facets, so I%v € H(div; Q). Similarly, one can see that [1%,v-n =0

on Iy if v-n = 0 on Iy, so v € Zgp,. Details of these arguments can be found

in [10,22,52,90,95).

4.1.2 Enhanced Raviart-Thomas finite elements

In this section we develop a new family of enhanced Raviart-Thomas spaces, which is used
in our method. We present the definitions of shape functions and degrees of freedom and
discuss their unisolvency. The idea of the construction is to enhance the Raviart-Thomas
spaces with bubbles that are curls of specially chosen polynomials, so that each component
of the velocity vector is of dimension Q*(R?) and the velocity degrees of freedom can be

associated with the points of a tensor-product Gauss-Lobatto quadrature rule.

4.1.2.1 Shape functions For k > 1, define on the reference element

BiE)= | {a%mg"2%dy=kords =k},
0<dy,d2,d3<k

By(E)= | {a%mg"a%di=kords =k},
0<dy,d2,d3<k

By(E)= | {a%g"%di=kordy =k},

0<dy,d2,d3<k

and let the auxiliary space B* be

q1 0 0
BYE)=span{ | 0 |, ||, 0| :aeBfE),i=1,2,37. (4.1.10)
0 0 qs
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Notice that while the above construction was done explicitly in 3d, it translates naturally
to 2d by omitting the Z terms. It is clear from the above definition that Qk(E,]Rd) =
78N (E) ® B*(F) in both 2d and 3d.

For © € B*(E), we then consider V x (& x ©). Here, we use the regular curl and cross
product operators in 3d. The cross product applies to a 2d vector by representing the vector
as a 3d one, with zeroed out third component, resulting in a scalar function. The V x
applies to a scalar function ¢ by representing the scalar function as a 3d vector with zero
first and second components, and the first and second components of the result is defined
as V x o, i.e., V x ¢ = (Do, —01¢)T. With this, we are now ready to construct the space
isomorphic to Bk(E) with an advantage of being better suited for the analysis as well as for
practical implementation. We will need to consider the 2d and 3d cases separately, due to
the difference in the action of a curl operator, mentioned above.

In 2d, if = (q1,0)" with ¢; defined as above we obtain

V X (& x 0) = g9~ e (a2 + 1)2 )
—aiy
and thus we can define
o as + 1%
BY¥(E) = span { &%~ (a2 +1) cas =k, (4.1.11)
—a1y
S —bol:
BE(E) = span { @ gt ? Ch=k . (4.1.12)
(b1 + 1)y

Similarly, in 3d we define

;

(CLQ + as + 2>§3
BY(FE) = span { #1229 —a1y cay=koraz=Fkp, (4.1.13)

—(112

—by

BE(E) =span P92 7125 | (b, 4 by +2)g | cbi=korby=ky, (4.1.14)

—byz
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—C3k
BE(E) = span { @122 —c37) cag=korc==k, (4.1.15)
(1 4+c2+2)2
where 0 < a;,b;,¢; < k fori=1...d, and we adopt a convention for simplicity that m=! =0
for a polynomial variable m unless it is multiplied by m. We finally define the space Bk(E ) as
the union of BF(E), i = 1...d, similar to (4.1.10), and note that lg’k(E) =V x (& x B¥(E)).
We now define the enhanced Raviart-Thomas space as

~ ~ ~ ~ ~k A

Z8E) = 28N E) @ B (B), (4.1.16)
Theorem 4.1.1. It holds that dim Z*(E) = dim QF(E, RY).

Proof. We show that the space Bk(E) is isomorphic to B¥(E). We start by showing that
the map 9 — V X (2 X 0) is injective on B¥(E). To see it, suppose that a linear combination
of the elements of (4.1.13)-(4.1.15) is zero. Note that all elements in each space of (4.1.13)-
(4.1.15) have distinct polynomials degrees. Therefore, for a component of fixed degrees of
Z, 9, 2 in the linear combination, only one element of each space is used to generate the

component. This implies that

(as + a3 + )i bt ot
Oé.f?al_lﬂazﬁag _alg + 6@,1)1@1)2—121)3 (bl + b3 + 2)@ + ’yfjhgc*zécs—l —C3Q =0,
by (c1+c2+2)2

with some coefficients «, 3, v and
G1:b1+1201+1, b2:a2+1:02+1, c3:a3—|—1:b3+1. (4117)

We will prove that « = § = v = 0. If ayp = k, then f = 0 due to 0 < a;,b;,¢; < k and

(4.1.17). Comparing the components of the above equation, we have
—aa; —y(az+1) =0, —aa;+7y(a;+az+1)=0,

and therefore a = v = 0. Similarly, v = 0 if a3 = k due to (4.1.17), and a similar argument

gives

—aay — flaz +1) =0, —aa +B(a;+ax+1)=0,
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which results in @ = § = 0. Since this argument holds for any component of the same
polynomial degrees, the map o — V x (Z x ) is injective, and it is an isomorphism from
B (E) to B'(E).

Noting that every basis function of B (E ) contains at least one variable of degree k + 1,

it is clear that ZF-1(E) N B" (E) = {0}, which implies the assertion of the theorem. O

4.1.2.2 Degrees of freedoms and unisolvency Using the definition (4.1.16) of Z*(E)
and the definitions of ZF;!(E) and B" (E), we have that for © € Z*(E),

in 2d: ¢, € P*H(2) @ RF(9), ¢ € PMU(y) @ R¥ (%),
in 3d: ¢ € PN (2) @ RM,2), e e PP()) @ RM&,2), g¢5 € PM(2) @ RM(Z,9).

For the degrees of freedom of ZF we consider the following moments:

@H/@-ﬁéﬁ, Vp € RE(e), Ve € OF, (4.1.18)
(
PE2(2) @ RF(g
(@) ) in 2d,
PE2(h) @ RM(2)
@H/ﬁ~ﬁ, Vp e q [ PF2(2) @ RF(, 2) (4.1.19)
E

PF2(g) @ RM (@, 2) | in 3d.

PE2(2) @ RM, 9)

\

The number of degrees of freedom given by (4.1.18) and (4.1.19) are 2d(k + 1)¢~! and
d(k — 1)(k + 1)%°1, respectively. Therefore the total number of DOFs is d(k + 1)%, which is
same as the dim Qk(E ,R%). We notice, that similarly to classical mixed finite elements such as
the Raviart-Thomas or Brezzi-Douglas-Marini families of elements, the first set of moments
(4.1.18) stands for facet DOFs, which will be required to be continuous across the facet. The
second set of moments (4.1.19) represents interior DOFs, and no continuity requirements
will be imposed on these. These new elements can be viewed as the Raviart-Thomas family

with added bubbles, which are curls of specially chosen polynomials.
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Theorem 4.1.2. Let Z*(E) be defined as in (4.1.16). For ¢ € Z*(E) suppose that the
evaluations of DOFs (4.1.18) and (4.1.19) are all zeros. Then ¢ = 0.

Proof. Without loss of generality, we present the proof for E = [—1,1]¢. We prove the
theorem in 3d, while the 2d result can be obtained in the same manner. From the definition
of shape functions of Z¥(E), ¢ -7, € QF(é) for a face é of E. Therefore, vanishing DOFs
(4.1.18) imply that

U1 (1 _‘%2)@1(‘%7Q72)
= lv|=0-9)%E792) ]|, (4.1.20)
U3 (1 —2*)03(2,9,2)

with
0 €PTHE) @ Q4G 2), B ePTIY) @ QN(E,2), U5 € PMTI(E) ® QY(a,9).
In addition, the vanishing DOFs (4.1.19) further reduce ©;, i = 1,2, 3, to
O = LN @D)wi(9,2), = LEY ) we(2,2), 0y = LT (Bws(#,9), (4.1.21)

where w; € Q%(4,2), etc., and LE~1(¢) is the monic polynomial of degree k — 1 on [—1,1]
orthogonal to P*~2(t) with weight (1 —#2). Since all monomials in Z*(E) are of degree < 3k,
§*2% is not contained in w; (g, 2). Similar statements hold with 2¥2% 2%g* and wy(z, 2),

ws(Z,y), respectively. Therefore we can write

wi(§,2) = 9" p1(2) + 20 (@) +©(9,2),  pe PR @ € PPHG) an (g, 2) € Q¥N(9, 2),

and similar expressions are available for wy and ws. If p; # 0, v; has monomials with
factor £**'g*. From the forms of l’;’f(E), 1 = 1,2,3, this can be obtained only from a
linear combination of elements in B5(E) with ¢; = ¢; = k. However, a linear combination
of elements in BY(E) which gives 25+'3*p;(2) in the first component also has the third
component —(2k + 2)2%* P, (2) where Py(2) is the anti-derivative of p;(2) with P;(0) = 0.
All terms in v3 having #*j* as a factor are obtained only from B(E). Furthermore, vs
does not contain any terms with factor 2¥4* due to the form of ws; we discussed, therefore

P, =0 and p; = 0 as well. Applying a similar argument we can conclude that ¢; = 0, so
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wy; € Q¥ 1(g,2). In addition, we can show that wy, € Q¥ (Z,2) and w3 € Q¥ (Z,9) by
similar arguments.
We now claim that V- ¢ = 0. First, V-q € Qk_l(E) holds from the definition of the

shape functions. Then the Green’s identity and the vanishing DOF's assumption give

/V-dqdiz/ q-nqdé—/Q-quizo (4.1.22)
E oF E

for any g € Qkil(E). In particular ¢ = V - ¢ gives V - ¢ = 0. From the expression of ¢ in
(4.1.21),

0=V -G=LFa)w(9,2) + LF(@))wa(d, 2) + L (2)ws(z,9)

where LF(t) = £((1 —¢*)LE71(¢)). For 0 < i < k — 1, note that

1 1

/ LFt)t'dt = —i/ (1—)LE W)=t dt =0

—1 —1

by integration by parts and the definition of LE~!. From this observation we can obtain
0= [(V-)I@wn(. 2 d = [ (LH@wn(5,2)* di

E E

which implies w; = 0. We can conclude wy = w3 = 0 with similar arguments, therefore

g=0. O
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4.1.2.3 Mixed finite element spaces For k > 1, consider the pair of mixed finite
element spaces Z%(E) x W+ (E), recalling that

~

IME) = Zig (B) e B'(B), W''(B) = @ \(B).
Note that the construction of Z*(E) and (4.1.2) imply that
V. Z8E) = WFYE), and V§e ZF(E), Ve C OF, G- he € RF(&). (4.1.23)

Recall also that dimZ*(E) = dimQF(E,R?) = d(k + 1)? and that its degrees of freedom
are the moments (4.1.18) and (4.1.19). We consider an alternative definition of degrees of
freedom involving the values of vector components at the Gauss-Lobatto quadrature points;
see Figure 4.1, where filled arrows indicate the facet degrees of freedom for which continuity
across facets is required, and unfilled arrows represent the ”interior” degrees of freedom,
local to each element. We have omitted some of the degrees of freedom from the backplane
of the cube for clarity of visualization. This choice gives certain orthogonalities for the

Gauss-Lobatto quadrature rule which we will discuss in details in the forthcoming chapters.

A V A
RS bob, , ? b
I I g
A iy Z’
- e &{ TZ’.
PP P
I Ll - . '
Y * * Y |, AA' ‘|-_
(a) Z3(E) in 2d (b) Z%(E) in 3d

Figure 4.1: Degrees of freedom of the enhanced Raviart-Thomas elements

The unisolvency of the enhanced Raviart-Thomas spaces shown in the previous section

implies the existence of a unique projection operator II* : H'(E,R?) — Z¥(E) such that

((ITF0 — ) - ng, Ple =0 Vé C OE, Vi, € R¥(é), (4.1.24)
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PF2(2) @ RF (9
@) @) in 2d,
PE2() @ RM(2)
(f[’jﬁ — 0, ]3) =0 Vpe q [ PF2(2) @ RF(, 2) (4.1.25)

PE2(g) @ RN(z,2) | in3d.

PF2(2) @ RN, 9)

\

The Green’s identity (4.1.22) together with (4.1.24) and (4.1.25) implies that

~

(V (1T — ), w>E =0, VoeW(E). (4.1.26)
Using (4.1.6), the above implies that

(V- (v —v), w)E =0, YweW"(E). (4.1.27)

Let ZF x W}™" be the pair of enhanced Raviart-Thomas spaces on 7, defined as in
(4.1.8) and the projection operator II*¥ from Z N H'(Q, R?) onto Z} be defined via the Piola

transformation as in (4.1.9).

Lemma 4.1.1. There exists a positive constant [, independent of h, such that

inf sup W) (4.1.28)
OwaW:_IO;évEZ;: ||w||||v||div
Proof. We consider the auxiliary problem
V-yp=w in€Q, =g ondf, (4.1.29)

where g € H'/?(9Q,R) is constructed such that it satisfies [,,g-n = [yw and g-n =0 on
I'y. More specifically, we choose g = ([, w)¢n, where ¢ € C°(99) is such that [, ¢ =1
and ¢ = 0 on I'y. Clearly, such construction implies ||g||1/2,00 < Cllw]|. It is known [40]

that the problem (4.1.29) has a solution satisfying

[l < O ([wll + llglh200) < Cllw]. (4.1.30)
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As the solution 1 is regular enough, I1¥1) is well defined. Using (4.1.27), the choice v =
1% € ZF yields

(Vv w) = (V- T, w) = (V- 4, w) = [lw]”.

We complete the proof by exploring the continuity bound ||T1%9||g;y < C/||%||1, which is stated

in (4.2.22) below. O
We also note that since Z5' C Z*, it follows from the definition of 1%, that
V.q=V-1l%1q, VqeZf, (4.1.31)
Mz all < Cllall, V€ Zy. (4.1.32)
4.1.3 Quadrature rule

We next present the quadrature rule for the velocity bilinear form, which is designed to allow
for local velocity elimination around finite element nodes. We perform the integration on
any element by mapping to the reference element E. The quadrature rule is defined on E.

We have for v, g € ZF,
-1 b1 1 L1 5 A
K7 v.-qgdx = K7 —DFgv- —DFgq Jgdz
1 N
= / — DFLK'DFgo - Gdi = / K- qdz,
& JE B
where
K = JgDF;'K(DF;4T. (4.1.33)
It is straightforward to show that (1.3.3) and (1.4.11) imply that
1Kllo,00,5 ~ P 2N E o005 1K o 0,8 ~ B2 NE ™ 0,00, (4.1.34)

Let 2y = {& (i)}, and Ay, := {\(4)}5_, be the points and weights of the Gauss-Lobatto
quadrature rule on [—1,1]. If k is clear in context, we use (p,q)g to denote the evaluation

of Gauss-Lobatto quadrature with k£ + 1 points for (p, q). We also define
pi = (&), ., &k(2a)),  wi(2) := Ag(21) -+ - Ax(2a) (4.1.35)
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for ¢eZy={(%1,....%), t; € {0,...,k}}. (4.1.36)
For the method of order k, the quadrature rule is defined on an element E as follows

(4.1.37)

>
S
3>
o
N—
L=
—
3>
~
N—

(K70, 0) g, = (K70, 0) g 5= > wi(dK (53)

1€Ty,

The global quadrature rule can then be defined as

(K_lv, q)Q = Z (K_lv, q)QﬁE.
EcTy,

Note that the method in the lowest order case k = 1 is very similar in nature to the one
developed in [52,95], although we use different finite element spaces.
We next show that the evaluation at the tensor-product quadrature points is a set of

DOFs of Z*(E), so the bilinear form with the quadrature is not degenerate.

Lemma 4.1.2. Forp € Qk(E), if the evaluations of p vanish at all the quadrature nodes of

the tensor product Gauss—Lobatto rules on E, then p = 0.

The above statement is obvious, because the evaluations at the tensor product quadrature

nodes become a set of DOFs of QF(E).

Lemma 4.1.3. For i € Z¥(E), if 9(p;) = 0 for all p; in (4.1.36), then 0 = 0.

Proof. Without loss of generality, we present the proof for F = [—1,1]¢. Tt suffices to show
that the vanishing quadrature evaluation assumption implies that the moments in (4.1.18)
and (4.1.19) vanish. Since 9 -n, € Q¥(e) Ve C dE, the vanishing quadrature assumption
for nodes on e implies that ¢ - n, = 0. Therefore the moments in (4.1.18) vanish and o is

reduced to the form in (4.1.20), i.e.,

q1 (1 _i2)61(:%7g72)
@ = q2 - (1 _Q2)~2(iag72) )
q3 (1_22)~3(§37g72)
with
G e PP H1) @ Q%5 2), @ e PV © QY(E,2), G e PMTH(E) ® Q%4 9).
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We want to show that all moments (4.1.19) of v are zeros. To do it, we first express ¢; as
k—1
Q=) Lh(@r(0.2), (.2 € Q5 2), (4.1.38)
j=0
where L7 is the Legendre polynomial of degree j with weight (1 — 2?) as before. For fixed 4
and 2, let us consider the Gauss-Lobatto quadrature of q;v along & with v € P*~2(%). For
fixed values of y and Z, ¢; is a polynomial of degree < k + 1, so this quadrature evaluation
of q1v equals the integration of ¢;v in Z with the fixed § and 2. In particular, if v = L"(%),
0<m<k—2,9=¢&1), 2= %&(j), then the vanishing quadrature assumption and the
expression of ¢; in (4.1.38) give

k 1

0= MDar (& (D), & (@), &())v (& (D) = / @1 (2, &(1), & (7))v(2)) dz

1=0 -1

/_ (1= )L (3))r((0), (7)),

1

This implies that 7,(9,2) = 0 for any § = &(i), 2 = & (), 0 < 4,5 < kif 0 < m <
k — 2, and therefore r,, = 0 for 0 < m < k — 2 by Lemma 4.1.2. As a consequence,
q = (1 —22) L5 Y(2)re_1(9, 2) with 7,1 € Q%(g, 2) and its evaluations at the DOFs given
by the first component in (4.1.19) vanish. We can derive similar results for ¢, and gs, i.e.,
0 gives only vanishing moments for the DOF's (4.1.19). We can conclude that © = 0 by the

same argument as in the previous proof of unisolvency. O]

The above result allows us to define a set of DOFs of Z¥(E) as the evaluations of
the vectors at the tensor-product quadrature points p;, ¢ € Z,. Examples were given in
Figure 4.1. Recall that for points on OF, some of the vector components are facet degrees of
freedom for which continuity across facets is required, while some are ”interior” degrees of
freedom, local to each element. For convenience of notation, denote the set of points p; by
Di,i=1,...,np, ng = (k+1)% Any vector 4(p;) at the node p; is uniquely determined by
its d components evaluated at this node. Since we chose the Gauss-Lobatto (or trapezoid,

when k = 1) quadrature points for the construction of the velocity degrees of freedom, we
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are guaranteed to have d orthogonal DOFs associated with each node (quadrature point) p;,

and they uniquely determine the nodal vector v(p;). More precisely,

d
0(pi) = (0 fug) (Bi )iy, (4.1.39)
j=1
where 7,5, 7 = 1,...,d, are the outward unit normal vectors to the d hyperplanes of dimen-

sion (d — 1) that intersect at p;, each one parallel to one of the three mutually orthogonal
facets of the reference element. Denote the velocity basis functions associated with p; by

inj, j = 1,...,d, i.e.,

(4.1.40)

The quadrature rule (4.1.37) couples only d basis functions associated with a node. For

example, in 3d, for any node i = 1, ... ng,

(K™ qa, (jil)QA’E = Ky ()we (i), (K 'Ga, @'2)@7]@ = K31 (bs)wi(3),

(K0, dis) g pp = Kot B)wn(@), (K70, Gg) g p =0 Vmyj #i1,i2,43. (4.1.41)
By mapping back (4.1.37) to the physical element E, we obtain
ny
(K", 0) g = > Jo(B)we() K (p:)o(p:) - a(pi). (4.1.42)
i=1
Denote the element quadrature error by

o (K_lv, q) = (K_lv, q)E — (K_lv, q)QE’ (4.1.43)

and define the global quadrature error by o (K v, q) ‘ p =08 (K ~lv, ¢). Similarly, denote

the quadrature error on the reference element by
o5 (K710, ¢) = (K710, ¢) 5 — (K710, 4) - (4.1.44)

The following lemma will be used to bound the quadrature error.
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Lemma 4.1.4. For any v € Z’“(E) and for any k > 1,
<f) — Ik, q)QE =0, for all vectors § € Q" (E,RY). (4.1.45)

Proof. Without loss of generality, we present the proof for £ = [—1,1]¢. We show a detailed
proof only for the 3d case because the 2d case is similar. Let v;, i = 1,2,3 be the -
th component of v — ﬁ’;{TI@. Considering the expression v; with the basis of Legendre
polynomials, the definition of shape functions in Z*(E) and the constraints from (4.1.4)

yield that v; has the form

vi = LF"Y@)pi(9,2) + LF(2)qu (9, 2) + LYY (@) r1(9, 2) + LF(9)ua (2, 2) + LF (2w (2, 9)
(4.1.46)

where L¢ is the standard i-th Legendre polynomial as before, py, q1, 71 € Q¥ 1(3, 2),
uy € PPHE) @ PMH(R) + Q% (2, 2), wi € PPTHE) @ PFTH(Y) + QF(4,9).  (4.1.47)

From (4.1.3), the restrictions of v; on & = —1 and on & = 1 are orthogonal to QF1(g, 2),

and it gives two equations

m+aq+r =0, p—q+r =0, (4.1.48)
therefore ¢g; = 0 and r; = —p;. A similar argument can be applied to v, and v3. In summary,
we have

U1 = (Lk_l(‘%) - Lk+1<£))p1(@a 2) + Lk(@)ul(‘%v 2) + Lk(é)wl(j:7:g)7 (4149)
U2 = (Lk—l(y) - Lk—H(Q))p?(éa ‘f;) + Lk(é)UQ(ia g) + Lk(‘%)u&(ga ’%)7 (415())
vy = (LM1(2) = LM (2)ps(2,9) + L (2)us (9, 2) + LM (G)ws (9, 2), (4.1.51)

where ugy, uz, we, ws belong to polynomial spaces similar to the spaces in (4.1.47) with

variable permutation. To prove (v1, )y 5 = 0 for ¢ € Qk_l(E), we will show

(LF1(@) - T @), 2), g p = 0. (P 2).0)g.p =0, (L¥Ewa(d,9),0)g 5 = 0.
(4.1.52)
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For the first equality, recall that the quadrature points of the Gauss-Lobatto rules are the
two endpoints and the zeros of £ L¥(t) in [-1,1]. It is clear that L¥~* — L**! vanishes at
the two endpoints. In addition, L*~! — L*™* vanishes at the zeros of £ L*(t) in [—1,1] from

the identities

2 _
Fobd ey,

(k+1)(LF — LFN#) = 2k + 1D)(tLA () — LF (1)) = (2k + 1) —

Therefore, the first equality in (4.1.52) holds. To prove the second equality in (4.1.52), let us
consider a restriction of the tensor product Gauss-Lobatto rule for fixed quadrature points of
# and 2. For fixed & and 2, the product L¥()uy(Z, 2)q(%, 7, 2) is a polynomial in § of degree
at most 2k — 1, so evaluation of LF(§)u(Z, 2)q(%, 9, 2) with the restricted Gauss-Lobatto
rule is the same as the integration of the function in . However, this integration in ¢ is zero
because L*(9) and ¢ € Q"7 (&, 9, 2) are orthogonal. Since (-, )4 5 is a sum of these restricted
Gauss-Lobatto rules, (L*(§)ui (%, 2),q)p 5 = 0. The third equality in (4.1.52) follows from
the same argument as the second equality. Finally, the same argument can be used for v,

and vz, so the assertion is proved. O

4.1.4 The k-th order MFMFE method

We first define an appropriate projection to be used in the method for the Dirichlet bound-
ary data ¢g. This is necessary for optimal approximation of the boundary condition term.
Moreover, the numerical tests suggest that this is not a purely theoretical artifact, as without
the projection we indeed see a deterioration in the rates of convergence. For a facet é € OF,

let RE! be the L?(é)-orthogonal projection onto R¥~'(é), satisfying for any ¢ € L2(é),
(p—RE1), ) =0 Vi e RF1(@).

Let RE71: L2(09) — WFt o be such that for any ¢ € L2(9Q), RE L = RE g o F' on
all e € 9Q. Recall that (4.1.2) Vg € Z51(E), Vé C OE, - he € R¥'(€). Then using (4.1.3)
and (4.1.6), we have that

Vo € L2(09Q), (¢ — R, ¢-nYoq =0, Vqe ZEHE) (4.1.53)
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and

Vg€ H'(Q,RY), ((¢—T%1q) -n, R d)an =0, ¢ € L2(09). (4.1.54)

The method is defined as follows: find (24, pn) € ZF x W}™!, where k > 1, such that

(K_lzha q)Q - (pha V- Q) = _<R2_lg7 q- n>FD7 q € Z]f) (4155)

(Vzp, w) = (f,w), weWi" (4.1.56)

Following the terminology from [52,95] we call the method (4.1.55)-(4.1.56) a k-th order
MFMFE method, due to its relation to the MPFA scheme.

1/2

Lemma 4.1.5. The bilinear form (K~'v, q), is an inner product on ZF and (K~ 'v, v)o

is a norm in ZF equivalent to || -||.

Proof. Let v € ZF be given on an element F as v = > 1", 2?21 ¢ij¢i;- Using (1.3.3), (1.4.11),
(4.1.42), and the basis property (4.1.40), we obtain

(K1, v) ZJEpl we(K (p)ulp) - o(p) = Ch* 30> g

On the other hand,

ng d d ng d
lvll% = (Zz%j%ju %z%z) < ZCI?J
i=1 '

=1 j=1 k=1 I=1

n

=

Hence,
(Ko, U)Q > Cllv]||?, (4.1.57)

and due to the linearity and symmetry, we conclude that (K~ ', q)Q is an inner product
and (K~'v, v)g” is a norm in Z§. Using (1.3.3),(4.1.34) (4.1.37), (4.1.5), (1.4.11), and the

equivalence of norms on E, we obtain

(K", 0) g p = Y we()K (5)0(ps) - 0(pi) < Ch* 8[| < Clloll% (4.1.58)

'LEIk

Combining (4.1.57) and (4.1.58) results in the equivalence of norms

colloll < (K10, v)* < el (4.1.59)
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We now proceed with the solvability of the method (4.1.55)-(4.1.56).

Theorem 4.1.3. The k-th order MFMFE method (4.1.55)-(4.1.56) has a unique solution
for any k > 1.

Proof. Since (4.1.55)-(4.1.56) is a square system, it is enough to prove uniqueness of the
solution. Letting f = 0, ¢ = 0 and choosing ¢ = z;, and w = pp,, one immediately obtains
(K~ 'zn, 2zn)g = 0, which yields 2, = 0 due to (4.1.59). Next, we use the inf-sup condition
(4.1.28) to obtain

V- Kz, v
Ipull < Comp T0e2) _ ) 2 g
vezh  Mvllav  wezr llvflaw
and thus p, = 0, which concludes the proof of the theorem. n

4.1.5 Reduction to a pressure system and its stencil

In this section we describe how the MFMFE method reduces to a system for the pressures
by local velocity elimination. Recall that the DOFs of Zk(E) are chosen as the d vector
components at the tensor-product Gauss-Lobatto quadrature points, see Figure 4.1. As a
result, in the velocity mass matrix obtained from the bilinear form (K 'z, q), the d DOFs
associated with a quadrature point in an element E are completely decoupled from other
DOFs in E, see (4.1.41). Due to the continuity of normal components across facets, there
are couplings with DOF's from neighboring elements. We distinguish three types of velocity
couplings. The first involves localization of degrees of freedom around each vertex in the grid.
Only this type occurs in the lowest order case k = 1, similar to the previously developed
lowest order MEMFE method [52,95]. The number of DOFs that are coupled around a vertex
equals the number of facets n, that share the vertex. For example, on logically rectangular
grids, n,, = 12 (faces) in 3d and n, = 4 (edges) in 2d. The second type of coupling is around
nodes located on facets, but not at vertices. In 2d, these are edge DOFs. The number of
coupled DOFs is three - one normal to the edge, which is continuous across the edge, and
two tangential to the edge, one from each of the two neighboring elements. In 3d, there
are two cases to consider for this type of coupling. One case is for nodes located on faces,

but not on edges. In this case the number of coupled DOFs is five - one normal to the
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face, which is continuous across the face, and four tangential to the face, two from each
of the two neighboring elements. The second case in 3d is for nodes located on edges, but
not at vertices. Let n. be the number of elements that share the edge, which also equals
the number of faces that share the edge. In this case the number of coupled DOF's is 2n,.
These include n, DOF's normal to the n, faces, which are continuous across the faces, and n,
DOFs tangential to the edge, one per each of the n, neighboring elements. For example, on
logically rectangular grids, n. = 4, resulting in eight coupled DOFs. Finally, the third type
of coupling involves nodes interior to the elements, in which case only the d DOF's associated
with the node are coupled.

Due to the localization of DOF interactions described above, the velocity mass matrix
obtained from the bilinear form (K 'z, q), is block-diagonal with blocks associated with the
Gauss-Lobatto quadrature points. In particular, in 2d, there are n, x n, blocks at vertices
(n, is the number of neighboring edges), 3 x 3 blocks at edge points, and 2 x 2 blocks at
interior points. In 3d, there are n, x n, blocks at vertices (n, is the number of neighboring
faces), 2n. x 2n, blocks at edge points (n. is the number of neighboring elements), 5 x 5

blocks at face points, and 3 x 3 blocks at interior points.

Proposition 4.1.1. The local matrices described above are symmetric and positive definite.

Proof. For any quadrature point, the local matrix is obtained by taking ¢ = ¢i1,...,¢n in

(4.1.55), where g; are the velocity basis functions associated with that point. We have

(K_lzh, qi)Q = Zuj (K_lqj, qi) = Zaijuj, i=1,...,m.
j=1 j=1
Using Lemma 4.1.5 we conclude that the matrix M = {a;;} is symmetric and positive
definite. O

The block-diagonal structure of the velocity mass matrix allows for local velocity elim-
ination. In particular, solving the local linear systems resulting from (4.1.55) allows us to
express the associated velocities in terms of the pressures from the neighboring elements
and boundary data. This implies that the method reduces the saddle-point problem to an

element-based pressure system.
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Lemma 4.1.6. The pressure system resulting from (4.1.55)-(4.1.56) using the procedure

described above is symmetric and positive definite.

Proof. The proof follows from the argument presented in Proposition 2.8 in [95]. We present
it here for the sake of completeness. Denoting the bases of ZF and W}™" by {¢;} and {w;},
respectively, we obtain the saddle-point type algebraic system arising from (4.1.55)-(4.1.56),

A BT\ (U G
= , (4.1.60)
B o) \p F

where A;; = (K¢, qj)Q and Bg;» = — (V- ¢, w;j). The matrix A obtained by the above pro-
cedure is symmetric and positive definite, as it is block diagonal with SPD blocks associated
with quadrature nodes shown in Proposition 4.1.1. The elimination of U leads to a system
for P with a symmetric and positive semidefinite matrix BA~'BT. It follows immediately
from the proof of Theorem 4.1.3 that BT P = 0 if and only if P = 0. Therefore, BA™'B” is

positive definite.

4.2 VELOCITY ERROR ANALYSIS

Although the proposed schemes can be defined and are well posed on general quadrilateral
or hexahedra, for the convergence analysis we need to impose a restriction on the element
geometry. This is due to the reduced approximation properties of the MFE spaces on arbi-
trary shaped quadrilaterals or hexahedra that our new family of elements inherits as well.
The necessity of said restriction is confirmed by the numerical computations. We recall that,
since the mapping Fg is trilinear in 3d, the faces of an element F may be non-planar. We
will refer to the faces as generalized quadrilaterals. We recall the notation of r;, i = 1,...,2%,

and edges r;; = r; —r; from Section 1.4.

Definition 4.2.1. A (generalized) quadrilateral with vertices vy, i = 1,...,4, is called an
h2-parallelogram if

|I'34 - I'21|Rd S Ch2
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The name follows the terminology from [35,52]. Note that elements of this type in 2d can

be obtained by uniform refinements of a general quadrilateral grid. It follows from (1.4.8)

that gj&gEg is O(h?) for h*-parallelograms.

Definition 4.2.2. A hexahedral element is called an h*-parallelepiped if all of its faces are

h2-parallelograms.

Definition 4.2.3. An h?-parallelepiped with vertices r;, i = 1,...,8, is called reqular if

|(r21 — T34) — (g5 — T7g)|rs < CRP.

It is clear from (1.4.9) that for h?-parallelepipeds, g gz, %ygg and ‘g L2 are O(h?). More-

. 2 . 8 F 3
over, in case of regular h°-parallelepipeds, 7%= gz is O(h?).

We next present some bounds on the derivatives of the mapping Fp.

Lemma 4.2.1. Let j > 0. The bounds

\JE|jooE<Ch”d J<a, wherea=11n2d, a =4 in3d, |Jp|;,5=0, j>a, (42.1)
and
SR , jra-1 o
DFs|, . 5 < " 5 1 Lpp, <COW-, |pDFgY, < ST a4
7,00, 0, ]Zd JE ]OO,E 7,00, 07 ]>d

(4.2.2)

hold if E is an h2-parallelogram or a regqular h*-parallelepiped. Moreover, the estimates
(4.2.2) hold for j = 0 if E is a general quadrilateral or hexahedron and for j = 0,1 if E is
an h?-parallelepiped.

Proof. We begin with the proof of (4.2.1). In 2d, (1.4.8) gives
DFp = [ro1,ra1] + [(r3s4 — Tr21)7, (r34 — ron)Z],

from which it can be shown easily that Jg is a linear function satisfying (4.2.1). In 3d,

(1.4.9) gives

DFg = [ra; + (r3qs — r21)y + (res — 1) + ((ra1 — ras) — (ve5 — r7s))y2;

+
Ty + (Tgq — To1)Z + (rss — ran)2 + ((ro1 — r3a) — (res — I'7s))T2; (4.2.3)
_|._

A A

r51 + (rgs — 1)@ + (rss — ra1)y + ((ra1 — rae) — (res — r7s))2y).
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It can be verified that Jg is a polynomial of three variables of total power at most 4 with

(JE)ize = (JB)ggy = (JB)s2: = 0, (4.2.4)

and it can be written as Jp = Y L0 cq Qrypary Y227, Where

|y < CRTIFTHTHS, (4.2.5)

from which (4.2.1) follows immediately.

We proceed with the proof of (4.2.2). If E is a general quadrilateral or hexahedron, the
bounds with j = 0 are stated in (1.4.11). The estimates in 2d and for j = 1, 2 in 3d were
shown in [35,52,95]. We now focus on the case when F is a regular h%-parallelepiped and

j > 2. Since DFp is bilinear, |DFg|,  » =0, Vk > 2, and (4.2.3) gives
|DFgly 05 <O k=01, 2. (4.2.6)

Therefore, it follows from the product rule that for any j > 2,

<o+
oo B J

E

1
—DF
Jp F

1
JE

1

A ‘DFE|07007E+ JE

J,00,E

j—1,00,E

|DFE|200 E> .

(4.2.7)

Jj— 200E

1
We further compute the derivatives of —:
E

1y 1 1N 6 6

<JlE> J3 (Je)i — J12 (JE)zs, (JlE> N j%(JE)i(JE)@ J12 (JE)as,

<JE>me - J4 (Te)i(Je)y + 73 (JE)i(JE)xy E(JE) i (JE) s -7 (JB)ssg
(35). =~ FrURle)tIn)s + 5 (Tr)ssti)s + 5 (Te)s(e)se + 25 (Te)s(n)ss = 5 (s

<JlE J5 (JE) (Je)g(JE): — J4 (JE) (Je)g(JE)as J4 (Je)2(Jr)g: J%(JE) +(JB):(JE)ag
+J—3(JE)M(JE)M J3 (JE) (JE)agz — 7 (JE) (JE)y (JE)wz‘f'JQ%(JE)iaE(JE)yz
J3 (JE) (JE)22z + 7 (JE) (JE)2sg — ;2 (JE)sagz-
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We note that due to (4.2.4) the higher order partial derivatives will consist of the same
partials that appear above, while the power of Jg in the denominator will continue to grow.

Therefore, it follows from (4.2.5) that

+ _ < Ch¥=3, which, combined with (4.2.6) and
Elk,o0,E

(4.2.7), implies that

1
— DF
Jg F

< C(W72h+ W *R? + W 0R%) < Ol 2,

j,00,E
To show the last inequality in (4.2.2), we note that using the cofactor formula for inverse
of a matrix, one can verify that JpDF Uis of total degree 3, which implies that for every

k> 3, |JEDF§1|k,oo,E = 0. We also compute
(JeDFg)11)zag = 2[(y1 — y2) + (y3 — ya) | [(25 — 26) + (27 — 28) + (22 — 21) + (24 — 23)]
+2[(21 = 22) + (23 — 24)] [(w6 — ¥5) + (s — y7) + (1 — %) + (y3 — ya) ],

with similar expressions for the rest of partial derivatives. Therefore |JpDF'|, 5 <

Ch®. ]

The above bounds allow us to control the norms of the velocity and permeability on the

reference element.

Lemma 4.2.2. For allv € HI(E), there exists a constant C' independent of h such that the

bound
01,5 < CH*F v (4.2.8)

holds for every j > 0 if E is an h*-parallelogram or reqular h?-parallelepiped, for 7 = 0,1 if

E is an h*-parallelepiped and for j = 0 if E is a general quadrilateral or hexahedron.
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Proof. The result in 2d was shown in [35,95], while the cases j = 0,1,2 in 3d were proven
in [52]. Tt then suffices to prove the case j > 3 for regular h?-parallelepipeds. Let

17:UOFE<£IAZ‘), ’lA):JEDFE_l’f)

As it was shown in the previous lemma |JpDFy"| 4005 = 0, hence (4.2.2) implies that for

r >3,
8], < C (B21ol, 5 + B8],y + B0, o+ B0, ) - (4.2.9)

By change of variables and the chain rule, we have that ||, 5 < Ch=32|v||; £, which,

combined with (4.2.9), completes the proof. O

Lemma 4.2.3. There exists a constant C independent of h such that the bound

K. 5 < CR Koo (4.2.10)

3,00,E

holds with j > 0 on h%-parallelograms and reqular h*-parallelepipeds, with j = 0,1 on h2-

parallelepipeds and with 5 = 0 on general quadrilaterals and hexahedra.

Proof. The above result with j = 0 was already stated in (4.1.34). Moreover, for j = 1,2
(4.2.10) was shown in [52,95], so we focus on the case j > 3 for h%-parallelograms and regular
h%-parallelepipeds. By the use of a change of variables, the chain rule, and (4.2.2), it is easy
to see that

(K™Y oir < CHK ™Y joro (4.2.11)

J,00,E

Using (4.2.2) and the definition of K~! given in (4.1.33), we have

1 N
-1 -1
Ko SC 3 15-DFsloe gl K g 61 DF sl
0<c,fy<j
vl

SC Y0 R K e < CF KT |
0<a,By<j
a+B+y=j

where we also used (4.2.11) for the second inequality. ]
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Lemma 4.2.4. There exists a constant C independent of h such that on h*-parallelograms

and reqular h?-parallelepipeds

o — 5] + [lo — TTkgto]| < OB ol (4.2.12)
o — Tl < R ol 1, (4.2.13)
IV (0= 1) | 4+ [V - (v = Wiggho) || < RV - o, (4.2.14)

for 1 < j < k. Moreover, (4.2.12) and (4.2.14) also hold on h*-parallelepipeds with j = 1.

Proof. We present the proof for II¥ only, as the argument for H’f{Tl is similar. Using (4.1.5),
(1.4.11) and (4.2.8), we have

-2 . AN =2 j
o = IEv||p < ChZ |6 — 11E0|| 5 < Ch72 [6],, 5 < O 0],

where 1 < j < k. For the second inequality in the above, we used the fact that f[f preserves
all polynomials of degree up to k, i.e., Pk(E) C Zk(E), and applied the Bramble-Hilbert
lemma [24]. Summing over the elements completes the proof of the first two statements of
the lemma.

For the last inequality, it follows from (4.1.5) that

A

2 1 a2 . LdIS -
/E(V-(U—va)) dx:/T%<V-(v—va)) Jpdi < Ch d\V-v!iE, (4.2.15)

B
where we have used (1.4.11), (4.1.26), and the Bramble-Hilbert lemma in the inequality. We

also have

J
V- @lgE = [JEV - U|j,E < CZ |JE|i,oo,E‘|v ) v|j—z’,E
=0 (4.2.16)
<C Y W TR vl < CHTE|V 0] ps

0<i<a

where we used (4.2.1) and change of variables back to F in the second inequality. A com-
bination of (4.2.15) and (4.2.16), and a summation over all elements completes the proof of

(4.2.14). 0
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Let O be the LQ(E)—orthogonal projection onto VAkal(E), satisfying for any ¢ €
L*(E),
(6- 016, 0) =0 Vi e W (E),
B
Let QF ' : L2(Q) — W} be the projection operator, satisfying for any ¢ € L%(),
ﬁ_lgb = QA’“_IQAS oF;! onall E.
It follows from (4.1.23) that

(6—Q ', V-q) =0 VgeZ. (4.2.17)

Using a scaling argument similar to (4.2.15)-(4.2.16), one can show that on h?-parallelograms

and regular h2-parallelepipeds,
lo — Qi 'oll < Chigll;, 1<j<k. (4.2.18)

Moreover, the above bound holds with 7 = 1 on general quadrilaterals and hexahedra and
with j = 2 on h2-parallelepipeds.
Lemma 4.2.5. For general quadrilaterals and hexahedra there exists a constant C' indepen-
dent of h such that for any finite element function ¢

lellze < Ch el J=1,... .k (4.2.19)

Proof. Let ¢ = ¢ o Fg(z). Using (1.4.11), we have

_ 1/2 ~ — 1/2 ~
el < IDFG ol Telly 2 41816 < CIDFE ol TElly 2 AlI¢l:

— 1/2 1/2 — — —
< C”DFE1||0,007E||JE||07/OO7E||JF§1||O,/oo,E||90||E < Ch'h 2R P|pllp < Ch7 ol

The general case follows by applying the above bound to any derivative of . O

We will make use of the following continuity bounds for the mixed projection operators

1% and 1%
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Lemma 4.2.6. There exists a constant C independent of h such that on h*-parallelograms

and reqular h?-parallelepipeds

Il < Cllollys, =1 k41, (4.2.20)

M ollie < Clollje, G=1.-...k (4.2.21)
The above bounds also hold with j = 1 on h%-parallelepipeds. Furthermore, on general
quadrilaterals or hexahedra

T laiv,e + Tz vllaiv,e < Cllvll, g (4.2.22)

Proof. 1t follows from (4.2.12) and the triangle inequality that
Iv]lo.e < ol

Let PJ be the L2(E)-projection onto P7(E,R%). It is well known that [24] |jv — Plo|s <
Ch v j41.6. Using (4.2.19), we have for any j =1,...,k + 1,

)5 = o — PElje < Ch77 |0 — PE oo g

< Ch (TP — vllop + [lv — PL vllos) < Cllvll;,

where we also used (4.2.12), (4.2.13) and (4.2.18). This completes the proof of (4.2.20).
The proof of (4.2.21) is similar. The proof of (4.2.22) uses a scaling argument similar to
(4.2.15)-(4.2.16) for the divergence and a scaling argument using (4.2.8) for the L?-norm.
Details can be found in Lemma 3.6 in [52]. O

Remark 4.2.1. For the rest of the chapter, all results are stated for h?-parallelograms and
reqular h*-parallelepipeds. We note that the results also hold in 3d on h*-parallelepipeds with

k =1, except for the pressure superconvergence.

In the next two lemmas we bound two terms arising in the error analysis due to the
use of the quadrature rule. We use the notation ¢ € W%oo if p € Wh(E)VE € T, and

|©]|k.00. is uniformly bounded independently of h.
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Lemma 4.2.7. On h%-parallelograms and reqular h*-parallelepipeds, if K—' € W%OO, then

there exists a constant C independent of h such that for all q € ZF,
(T2, — Tglg) | < CHE el (4.2.23)

Proof. Let P* be the L2(E)—orthogonal projection onto Pk(E, R%). For any element E € Ty,

we have

—1y7k k—1 _ (-1fks A _ frk—14
(K Iz, g — gy q)Q’E— (IC Iz, g — gy q)@jE
= (PP, G- M) (KT - PR, g - Tghg)

The first term on right is equal to zero due to (4.1.45). For the second term we use Bramble-

Hilbert lemma:

‘ (ks — PR (ML), g Tk ) ‘ < KT gllG — Tl -

Q.E

Using (4.2.10) and (4.2.8), we obtain

T2, 5 < Czk: K e, TIE2] 5 < Ci AR K [ oo, D TP 2
=0 =0
< ORI K |y o, T 21,
Therefore, using (4.2.8), (4.2.20) and (4.1.32), we get
‘ (KT — PR (KM TE2), g - ﬂ%Tlcf)Q,E‘ < O K e 2l b gl 1
< ORI K Ik oo, 5|2l llalo,5-

The proof is completed by summing over all elements. O]

Lemma 4.2.8. On h2-parallelograms and regular h*-parallelepipeds, if K~ € W%’LOO, then

there exists a constant C' independent of mesh size such that for all v € ZF and q € Zﬁ}}h

o (K0, q)| < O 32 WK s llvllslall (4.2.24)
E€T,
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Proof. For each E € Tj, we have

ow (K1, q) = og (PF1KT0), 4) +0p (K710 = PFHE0), )
The first term on the right is equal to zero, since the tensor-product Gauss-Lobatto quadra-
ture rule is exact for polynomials of degree up to 2k — 1. Using the Bramble-Hilbert lemma,
(4.2.10) and (4.2.8), we bound the second term as follows:

k
‘UE‘ (’Cfl@ - PR ), f?) <O ol plldlls < C Y0 1K i el0l: 2l 2
1=0

< CRF 2 K koo 10l 2P 22 g &

< CHM K Moo el £ll gl 2-

Summing over all £ € Tj,, we obtain (4.2.24). O

4.2.1 Optimal convergence for the velocity

We subtract the numerical method (4.1.55)-(4.1.56) from the variational formulation (1.3.4)-

(1.3.5) to obtain the error equations:

(K™20) = (K2, 0) g — (0 =10 V@) = —(g =Ry 'g, ¢ m)rpy, g€ 25, (4.2.25)
(V- (2—2), w) =0, w e WE™. (4.2.26)

Note that due to (4.1.26), it follows from (4.2.26) that
V- (IT*2 — 2,) = 0. (4.2.27)
If we take ¢ = [1¥2 — z;, in (4.2.25), then

(K‘lz, IFz — zh) — (K_lzh, Fz — zh) + (g — Rﬁ_lg, (ITF 2 — 2,) -n)r, = 0. (4.2.28)

Q

Let w = I1¥2 — 2, then an algebraic manipulation of the above gives

(K’lw, w) =— (K’lz, w) + (K’lﬂfz, w)Q —{g—Ri g, w-n)r,.

Q
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Moreover, rewriting the right-hand side gives

(K‘lw, w)Q
= — (K 'z, w - w) — (g =Ry 'g, w-n)r, — (K '(z —IIFz2), Mplw)  (4.2.29)

— (K™, Wi w) + (K0, gl w) , + (K02, w — 11 w)

Q Q"

Testing (1.3.4) with w — If'w and using that V- w = V - 5w = 0, see (4.2.27) and
(4.1.31), we can rewrite the first two terms in (4.2.29) as

— (K72, w =T w) = (9 = Ry g, w-n)r,,
- <g’ (U} - HIIC%’_TIw) : n>FD - <g - Ri_lga w - n>FD = 07

using that, due to (4.1.53)-(4.1.54), (RF'g, (w—T11%w) -n)r, = 0 and (g—R; g, Tk w-
n)r, = 0. For the third term on the right in (4.2.29) we use (4.2.12) and (4.1.32) to get

| (K7 (2 = T022), pw) | < CRHK ool 2llillw]]-

To bound the fourth and fifth terms on the right in (4.2.29), we use (4.2.24), (4.2.20) and
(4.1.32):

| = (K7'Ie, Wiphw) + (K2, Wigtw) | = o (K Tz, g w))

< ChH K lkoollz k]l
For the last term on the right in (4.2.29) we use (4.2.23):
| (K2, w — Mg w) o | < CREIE ™ kool |2] 0]
Combining the above bounds, we obtain from (4.2.29) that
(K’l(l_[ffz — zp), rz — zh)Q < Chk]|K’1Hk,oonHkHHfz — 2l (4.2.30)
implying that
T2 = 2l < CREIE koo l2 k- (4.2.31)

Bounds (4.2.31) and (4.2.27), together with (4.2.12) and (4.2.14), result in the following

theorem.
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Theorem 4.2.1. Assume that the partition T;, consists of h*-parallelograms in 2d or reqular
h2-parallelepipeds in 3d. If K—! € W%Oo, for the velocity z, of the MEMFE method (4.1.55)-
(4.1.56), there exists a constant C' independent of h such that

12 — zu| < CR*||z|Jx, (4.2.32)
IV - (2 = 2)|| < CR*||V - 2|y (4.2.33)

4.3 ERROR ESTIMATES FOR THE PRESSURE

In this section we use a standard inf-sup argument to prove optimal convergence for the

pressure. We also employ a duality argument to establish superconvergence for the pressure.

4.3.1 Optimal convergence for the pressure

Theorem 4.3.1. Assume that the partition T;, consists of h*-parallelograms in 2d or reqular
h2-parallelepipeds in 3d. If K~! € W%OO, then for the pressure p, of the MEMFEFE method
(4.1.55)-(4.1.56), there exists a constant C independent of h such that

lp = pull < CB* (121l + [lpllx) - (4.3.1)

Proof. We first note that the R7;_1 spaces ZZ}}}L X W}’f_l on general quadrilaterals and
hexahedra satisfy an inf-sup condition similar to (4.1.28). The proof is the same as the

argument in Lemma 4.1.1. Hence, using (4.2.25) and (4.1.53), we obtain

_ 1 Qi 'p—pn, Vg
1QF ' —pull <= sup (2. " )
g oyéquR’“;}h HQHdiv
1 (Kﬁl(Hfz - Zh)> Q>Q - (Kﬁl(Hﬁz - Z)a Q) + O_(Kilnl:za Q)
=—  sup
B osaevis, lqlaiv

C _
< EhkllK Hikooll2le,

where we used (4.2.31), (4.2.12), (4.2.24), and (4.2.20) in the last inequality. The result then

follows from (4.2.18) and the triangle inequality. O
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4.3.2 Superconvergence of the pressure

In this subsection we prove superconvergence of the pressure, i.e., we show that || QF 'p—py||
is O(h**1) for the MFMFE method of order k. We also apply local postprocessing to obtain
an improved approximation p; € W} such that ||p — p;|| is O(h*™1).

The following bound on the quadrature error will be used in the superconvergence anal-
ysis.

Lemma 4.3.1. On h?-parallelograms and reqular h?-parallelepipeds, if K~ € W%H’OO, then

for allv e ZF and q € Z%th, there exists a positive constant C' independent of h such that
o (K70, 0) | < € S0 WK sl elal e (132)

EeTy
Proof. For any element E we have o (K v, ¢) = 65 (K710, ¢). Since the quadrature rule
is exact for polynomials of degree up to 2k — 1 in and k > 1, then it is exact for polynomials

of degree up to k. An application of the Bramble-Hilbert lemma implies

65 (K710, )

k k+1
< O([Z |’C_1 i,00,E ®|k—zE} |d|1E + [Z |’C_1|i,oo,E|@|k+1—i,E] ||é||E)7

=0 =0

where we used that ¢ is linear. Using (4.2.8) and (4.2.10) we obtain
op (K0, q) < CRY K Y|kpr 00,80k ,m a1 2
Summation over all elements completes the proof. ]

The following result establishes superconvergence of the pressure if the H?-elliptic regu-

larity which is defined below holds.
~V-KV¢p=—(Q ' 'p—py) in, $=0 on 0. (4.3.3)
We say that this problem satisfies H>2-elliptic regularity if
1KVl + 16]l2 < ClIQ"p — pal (4.3.4)

with constant C' which may depend on K and €2 but is independent of ¢. Some sufficient
conditions for (4.3.4) can be found in [49,63]. In the proof of the theorem below, we follow

the argument in [30] with appropriate modification to deal with the quadrature terms.
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Theorem 4.3.2. Assume that the partition T;, consists of h*-parallelograms in 2d or reqular
h2-parallelepipeds in 3d. Assume also that K= € W%H’OO, and that the H?-elliptic reqularity

(4.3.4) holds. Then, for the pressure py, of the MFMFFE method (4.1.55)-(4.1.56), there exists
a constant C independent of h such that

195 P — pull < CREH(||2 ]k + IV - 2llw)- (4.3.5)

Proof. The proof makes use of a duality argument. Let ¢ be the solution of (4.3.3). Denoting
—KV¢ by z*, (2%, ¢) satisfy

(K™'2*,q) = (¢, V-q) =0, qe€ H(div;Q), (4.3.6)

(V-2 q)=— (9 'p—pnqa), q€L*Q). (4.3.7)

Taking ¢ = z — 21, ¢ = —(Q}'p — pp) and adding the two equations gives

(K_lz*> = Zh) - (¢a V- (Z - Zh)) - (v : Z*a Qz_lp _ph) = ||QI;:L_1p _thQ'
Rewriting the left-hand side, we have

(K’lz*, z) — (K’lz*, zh) + (K’lz*, zh)Q — (K’lz*, zh)Q

— (6, V- (z=2)) = (V2" Q7 'p—pn) = [Q37'p — pull” (4.3.8)

Consider the discretization of (4.3.6)—(4.3.7) as in (4.1.55)—(4.1.56) and let (z;, ¢}) be the
solution of the discrete problem. We now use the Galerkin orthogonality (4.2.25)—(4.2.26)
with ¢ = 1% 2 and w = QF'¢ to get

(", Tghof) (K o) (O — i ¥ Wit )~ (¥ - (2 — ), ©40) =0,

(4.3.9)
where we used that (p—QF'p, V-11%-' 1) = 0 due to (4.2.17) and {(g—R} g, % 25 -n)p, =
0 due to (4.1.53). Subtracting (4.3.9) from (4.3.8) and using the symmetry of (K ! -) and

(K1, ) gives

(K7 (2" =Wy 2p), 2) — (K125, z) + (K127, zh)Q — (KM (2" =Tt 2), zh)Q

— (6= Q7'0, V- (z—2)) — (V- (=" =T’ z), Q5 'p —pw) = 19570 — ™
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Since V-1I%' 25 = V.25, and (V - (2* — 2}), ¢) = 0 holds for all ¢ € W}~ from the definition
of z;, the last term in the left-hand side vanishes. Therefore we have
(KM (2" =t zn), 2 — z) —o (KMt 2y, ) — (60— Q57 ', V- (2 — 1))
= [19h~"p — pul*. (4.3.10)

with o (K5 2, 20) = (K15 21, 2) — (K 21, zh)Q. Observe that the differ-

ence of (4.3.6) and its discrete counterpart gives

(K"1 Ity — zh) (K’lzh, Itz — zh)Q =0,
because V - (II%'2 — z;,) = 0. From this we obtain
o (K 'z, ) = 0 (K W' 2, W' 2) — o (K7 2y, gtz — 23)

=0 (K~ " 2, H'I“{le) — (K~ "tz T s — zn) + (K~ "tz T s — zh)Q
= o (KM 2y, Mg 2) + (K71 (2" — My 23), Mg 2 — )

— (K (e — gt 2h), il — 20),,.
and we can rewrite (4.3.10) further as

(K" = Mg 27), 2 = Mg 2) + (K1 (2, — Mg 27), W' 2 — 2)

— o (KM 2y, T 2) — (00— Q8 ', V- (2 — 21)) = (| Q51 — pa*

(4.3.11)
We will show that the terms on left above can be bounded as follows:
(KM =g 2), 2 = T 2) | < ORI Q™ p = |2, (4.3.12)
| (K (e = Mg 23), W' 2 — ) o | < CRMHIQ ™ p — il 21, (4.3.13)
o (BT 27, T 2) | < RO p = pulll= . (4.3.14)
(6= Qi ', V- (2= ) | < CHM Q™ p = pull[IV - 2l (4.3.15)
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which, combined with (4.3.11), imply the statement of the theorem. For (4.3.12), we note
that
2% — T A < 12 — o) + T (T2 — 2l < 12 — 127 + Ot — 21
< [lo* = ' 2| + C(IM7 2" = 2%l + 12" = 23]) < Chll" |,
(4.3.16)

where we used (4.1.32), (4.2.12), and a bound for the discretization error
|z* = 2| < Ch||lz*|1, (4.3.17)

which is obtained in a manner similar to the velocity error estimate (4.2.32). Bound (4.3.12)
follows from the use of the Cauchy—Schwarz inequality, (4.3.16), (4.2.12), and (4.3.4). Bound
(4.3.13) is obtained in a similar way, by adding and subtracting z* in the first component
and z in the second component, and using (4.3.17), (4.3.16), (4.2.12), (4.2.32), and (4.3.4).
Bound (4.3.14) follows from

o (K™ M 27, W' 2) | < o (K (Mg 27, = Mgp2”), Wi 2) |+ |o (K 2, T 2) |
< CAM |12kl 2 — W™ + Bz llell=" 1) < CRMHIQp — pal 2]l

where we used (4.2.24), (4.3.2), (4.2.21), (4.3.16), (4.2.12), and (4.3.4). Finally, (4.3.15)
follows from (4.2.18), (4.2.33), and (4.3.4). O

Using the above result we can easily show superconvergence of the pressure at the Gauss
points. For an element E, let ||| - |||z denote the discrete L?( E)-norm computed by mapping
to the reference element F and applying the tensor-product Gauss quadrature rule with &
points in each variable. It is easy to see that |||w|||z = |w|z for w € W}™(E). Assuming
continuous pressure p|g, let p’|p € W} '(E) be the Lagrange interpolant of p|g at the k¢

Gauss points. It is shown in [34, Lemma 4.3] that
195" p = p'Il < CH* Il (4.3.18)

We now have
= pulll = lIp" = pulll = 0" = pa
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<llp" = &' pll + 127 "p = pull < CE* (llzlli + 1V - 2k + [Iplles),

using (4.3.18) and (4.3.5).

We next show that the above superconvergence result for ||QF 'p — py|| can be used to
compute a higher order approximation to the pressure p in the L?(€)-norm, using a variant
of the local postprocessing proposed in [86]. The postprocessing idea is also utilized for a

posteriori error estimation (see e.g., [66]). Let W/ be the L*-orthogonal complement of W

in WF. We now define p; € W} by
woh = Q0pn, (4.3.19)
(Vp;, Vg)g = —(K'2,,Vq)g, q€ WFE),YE €T, (4.3.20)

Theorem 4.3.3. Under the assumption of Theorem 4.3.2, there exists a constant C' inde-

pendent of h such that
lp = phll < CRF (2l + IV - 2]l + [lpllis). (4.3.21)

Proof. Let Qﬁ be the L? orthogonal projection onto W,’f By the triangle inequality it
is enough to estimate ||QFp — pi||. Let pn := p; — QIp,. Considering the decomposition
Qkip—pt = (QUp— Q1) +(Qkp—py), it is sufficient to estimate || QFp—py|| by Theorem 4.3.2.
Recalling that Vp = — Kz, we have

(Va(p = ph): Vag) = —(K7'(z — 2), Vag), Vg€ W,
where V}, is the element-wise gradient. From p—p; = (p— QFp)+ (Qhp— Q%ps) + (Qﬁp—ﬁh)
and by taking ¢ = Qﬁp — pyp, in the above equation, we get
IV (Qhp = )l < IVn(p = QEp)| + 1K1 (z = za) | < CRE (Il + [1118),

where we used the Bramble-Hilbert lemma, an inverse estimate, and (4.2.32). Since W} is
the space of element-wise constants on 7}, Q’,jp — Py, is orthogonal to element-wise constants.
Then the element-wise Friedrichs’ inequality yields ||Qfp — pnl| < Ch||Vi(QEp — pr)||. The

conclusion follows by combining this and the above inequality. O

Remark 4.3.1. Instead of the postprocessing (4.3.19)-(4.3.20), one may use the postprocess-
ing defined in [86] and obtain a numerical pressure that is convergent of order O(h¥). The

error analysis is almost the same as the above.
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Pressure Velocity, maginitude

-4,053e-03 0.609 1.22 1.83  2433e+00 4.047e-03 8.60 17.2 25.8 3.439e+01
- ! e | —

Figure 4.2: Computed solution for Example 1 on the third level of refinement

4.4 NUMERICAL RESULTS

In this section we present several numerical experiments on quadrilateral and hexahedral
grids that validate the theoretical results in the previous sections. In the first example we
test the method on a sequence of meshes obtained by a uniform isotropic refinement of an
initial quadrilateral mesh. The boundary conditions are chosen to be of Dirichlet type for

simplicity. The test case is constructed with the full permeability tensor coefficient
(z+1)*+y* sin(zy)
sin (zy) (z+1)2

and the analytical solution
p = 2°y" + 2” + sin(zy) cos(zy).

The computed pressure solution on the third level of refinement is shown in Figure 4.2
(left), where the colors represent the pressure values and the arrows represent the velocity
vectors. Similarly, Figure 4.2 (right) shows the velocity solution, where colors represent the
velocity magnitude. The numerical relative errors and convergence rates are obtained on a
sequence of six mesh refinements and are reported in Table 4.1 for the MEFMFE methods of

order k = 2, 3, 4. We note that in all cases we see the predicted convergence rate of order
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O(h*) for all variables in their natural norms, as well as superconvergence of the pressures at
the Gauss points, i.e., |||p — pul|| is of order O(h*1). We also observe O(h**1) convergence
for the postprocessed pressure. We note that the deterioration of the convergence rate of
the divergence and the superconvergence rate of the pressure for the 4-th order method on
the finest grid is due to the fact that these errors are very small and roundoff errors start
having a noticeable effect.

In the second example, we focus on a 3d case. We let K be a full permeability tensor

with variable coefficients
2* + (y +2)° 0 cos(zy)
K = 0 2242  sin(xy)
cos(zy) sin(zy) (y+ 3)?,
and solve the problem with Dirichlet boundary conditions and the analytical pressure solution

chosen as follows
p=2'y® + 2% + y2* + cos(wy) + sin(2).

The initial computational domain is obtained as a smooth map of the unit cube, i.e., we
start with a 4 x 4 X 4 unit cube mesh and then apply the following transformation to its

points

r =& + 0.03 cos(37) cos(3my) cos(372)
y =9 — 0.04 cos(37) cos(3my) cos(3mZ)

z = 2+ 0.05 cos(372) cos(3my) cos(37Z).

The sequence of meshes on which we perform the convergence study is then obtained by a
series of uniform refinements of the initial grid, described above. Figure 4.3 (left) presents
the pressure solution, computed on the third level of refinement, where the colors represent
the pressure values and the arrows depict the velocity vectors. The velocity magnitude is also
shown in Figure 4.3 (right). The computed numerical errors and convergence rates shown in

Table 4.2 once again confirm the theoretical results from the error analysis section. We see
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k=2
llz = znl V- (z = z)ll llp — pall [[lp = palll lp — pill
h error rate error rate error rate error rate error rate
1/3 8.80E-02 - 1.46E-01 - 3.20E-02 - 5.80E-03 — 1.19E-02 —
1/6 2.36E-02 1.9 3.74E-02 2.0 7.90E-03 2.0 7.73E-04 2.9 1.42E-03 3.1
1/12 6.01E-03 2.0 9.41E-03 2.0 1.98E-03 2.0 1.18E-04 2.7 1.66E-04 3.1
1/24 1.50E-03 2.0 2.36E-03 2.0 4.96E-04 2.0 1.70E-05 2.8 1.94E-05 3.1
1/48 3.74E-04 2.0 5.89E-04 2.0 1.24E-04 2.0 2.30E-06 2.9 2.29E-06 3.1
1/96 9.31E-05 2.0 1.47E-04 2.0 3.10E-05 2.0 2.99E-07 29 2.78E-07 3.1

k=3
llz = znl IV (z = z)ll llp — prll [[lp — palll lp — pill
h error rate error rate error rate error rate error rate
1/3 1.35E-02 1.96E-02 3.16E-03 4.36E-04 1.03E-03

1/6 | 1.69E-03 3.0 2.44E-03 3.0 | 3.95E-04 3.0 | 3.33E-05 3.7 | 5.33E-05 4.3
1/12 | 2.09E-04 3.0 | 3.04E-04 3.0 | 495E-05 3.0 | 248E-06 3.8 | 2.79E-06 4.3
1/24 | 2.59E-05 3.0 | 3.80E-05 3.0 | 6.19E-06 3.0 1.74E-07 3.8 1.55E-07 4.2
1/48 | 3.22E-06 3.0 | 4.75E-06 3.0 7.73E-07 3.0 1L.17E-08 3.9 | 9.04E-09 4.1
1/96 | 4.02E-07 3.0 5.93E-07 3.0 | 9.67E-08 3.0 7.57E-10 4.0 | 5.44E-10 4.1

k=4
llz = 2l IV (z—zn)ll lp —pnll llp = pnlll o — o5l
h error rate error rate error rate error rate error rate
1/3 1.13E-03 - 1.52E-03 - 2.46E-04 - 2.83E-05 - 5.17E-05 -

1/6 | 6.84E-05 4.1 9.24E-05 4.0 1.52E-05 4.0 1.00E-06 4.8 1.26E-06 5.4
1/12 | 4.20E-06 4.0 5.74E-06 4.0 9.50E-07 4.0 3.55E-08 4.8 3.20E-08 5.3
1/24 | 2.59E-07 4.0 3.58E-07 4.0 5.94E-08 4.0 1.20E-09 4.9 8.74E-10 5.2
1/48 | 1.61E-08 4.0 2.25E-08 4.0 3.71E-09 4.0 3.98E-11 4.9 2.59E-11 5.1
1/96 | 1.00E-09 4.0 4.96E-09 2.2 2.32E-10 4.0 8.78E-12 2.2 8.72E-12 1.6

Table 4.1: Relative errors and convergence rates for Example 1.

Pressure Velocity, magnitude

o X 9.512e-01 245 327 4.216e+00 & X 6.127e+0022.8 394  56.0 7.268e+01

[ ] — e o

Figure 4.3: Computed solution for Example 2 on the third level of refinement.
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k=2

llz = 2l V- (z—zn)ll llp = pall [[lp — prlll llp — »5 I
h error rate error rate error rate error rate error rate
1/4 | 7.47E-03 2.92E-02 4.97E-03 1.63E-04 3.34E-04

1/8 | 1.82E-03 2.0 7.24E-03 2.0 1.24E-03 2.0 2.23E-05 2.9 3.99E-05 3.1
1/16 | 4.51E-04 2.0 1.81E-03 2.0 3.11E-04 2.0 3.07E-06 2.9 4.86E-06 3.0
1/32 | 1.12E-04 2.0 4.51E-04 2.0 7.77E-05 2.0 4.12E-07 2.9 6.00E-07 3.0
1/64 | 2.80E-05 2.0 1.13E-04 2.0 1.94E-05 2.0 5.38E-08 2.9 7.47E-08 3.0

k=3
llz = znll V- (z = 2)ll llp — pall [[lp — palll lp — pill
h error rate error rate error rate error rate error rate
1/4 | 5.06E-04 2.01E-03 2.03E-04 — 3.78E-06 1.23E-05

1/8 | 6.37E-05 3.0 2.46E-04 3.0 2.54E-05 3.0 2.56E-07 3.9 6.93E-07 4.2
1/16 | 7.93E-06 3.0 3.06E-05 3.0 3.17E-06 3.0 1.87E-08 3.8 4.06E-08 4.1
1/32 | 9.87TE-07 3.0 3.81E-06 3.0 3.97E-07 3.0 1.35E-09 3.8 2.46E-09 4.0
1/64 | 1.21E-07 3.0 4.88E-07 3.0 4.96E-08 3.0 8.83E-11 3.9 1.50E-10 4.0

Table 4.2: Relative errors and convergence rates for Example 2.

the optimal O(h¥) order of convergence for all variables, and also O(h*™!) superconvergence
for the pressure.

In summary, the numerical experiments confirm the theoretical convergence results for
the higher order MFMFE method both on h2-parallelograms and regular h?-parallelepipeds.

As a result of our work on higher order MEFMFE methods, we have implemented the
enhanced Raviart-Thomas space (4.1.16) and contributed it to deal.Il open-source finite
element library [7] together with its necessary dependencies. The new finite element class
template named FE_RT_Bubbles is now available in the development version of deal.Il and
will be included in the 9.0.0 release. In the Appendix of this thesis, in Listing A.1.1, a
complete deal.Il implementation of the higher order MFMFE method is provided.
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5.0 DOMAIN DECOMPOSITION AND MULTISCALE MORTAR MIXED
FINITE ELEMENT METHODS FOR LINEAR ELASTICITY WITH WEAK
SRESS SYMMETRY

In the first part of this chapter we consider a global conforming shape regular and quasi-
uniform finite element partition Ty, of Q. We assume that T}, consists of simplices or rect-
angular elements, but note that the proposed methods can be extended to other types of
elements for which stable elasticity MFE spaces have been developed, e.g., the quadrilateral
elements in [9]. Let

Xp X VexW, CXxV xW

be any stable triple of spaces for linear elasticity with weakly imposed stress symmetry, such
as the Amara-Thomas [2], PEERS [11], Stenberg [85], Arnold-Falk-Winther [9, 13, 16], or
Cockburn-Gopalakrishnan-Guzman [25, 48] families of elements. For all spaces div X, =V},
and there exists a projection operator 1T : H' (2, M) — X, such that for any 7 € H'(Q, M),
The MFE approximation of (1.3.10)—(1.3.12) was already given in Chapter 2, namely we
refer the reader to (2.0.1)-(2.0.3).

The well-posedness of (2.0.1)—(2.0.3) has been shown in the above-mentioned references.

It was also shown in [13,25,48] that the following error estimate holds:
lo = onll + 1Qhw — unll + Iv = Wl < C(llo = ol + Iy = Q1) (5.0.1)

where Q! is the L?(Q)-projection onto Vj, and Q] is the L?(2)-projection onto Wy, similarly
to the notation of the Chapter 2. Later we will also use the restrictions of the global

projections on a subdomain €;, denoted as II;, Q¥ ,, and Q] ..
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5.1 FORMULATION OF THE METHODS

Let 2 = U ,$; be a union of nonoverlapping shape regular polygonal subdomains. Let
[y =00;n0Q;, I'=U,_ I, and I = 9; N T = 98 \ 092 denote the interior subdomain
interfaces. Denote the restrictions of Xj, Vj,, and W, to Q; by Xj,;, Vi, and Wy, ;, respec-
tively. Let TAhM be a finite element partition of I'; ; obtained from the trace of T, and let
Ay = X n be the Lagrange multiplier space on TAh,m. Let Ay, = @lgi,an Ay j. We now

present two domain decomposition formulations. The first one uses a displacement Lagrange

multiplier to impose weakly continuity of normal stress.

Method 1: For 1 <1< n, find (O'h7i,uh7i,’}/h’i, >\h> c Xhﬂ' X Vh,i X Wh,i X Ah such that

(Ao, T)Qi + (upi, div ) + (Yhis T)Qi

i

= (An, Tni)r; + (9ps T idoasrp v € X, (5.1.1)
(divoni, v)g, = (f; Vg, Vv € Vi, (5.1.2)
(0ni §)g, =0, VE € Wy, (5.1.3)
Z<Jh,i ni, pr, =0, Vi € A, (5.1.4)

i=1
where n; is the outward unit normal vector field on 0€2;. We note that the subdomain
problems in the above method are of Dirichlet type.

The second method uses a normal stress Lagrange multiplier to impose weakly continuity
of displacement. Let X), = {7 € X;; : 7n = 0 on I'} and let X} be the complementary

subspace:

Xp = @X?L,l"'@xg,n@xg‘

Method 2: For 1 <i <mn, find (05, Uni, Vi) € Xpi X Vi x Wy, such that

(Aon, T)Qi + (up, div T)Qi + (Vs T)Qi = (9p, TNi)o.Tp V7 € X?M-, (5.1.5)
(divon, v)g, = ([ Vg, Yu € Vi, (5.1.6)
(Uh,ia S)QZ - 07 Vf S Wh’“ (517)
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> opini=0 onT, (5.1.8)
=1

n

Z [(Aah,i, T)a, T Wais divT)g + (Y, T)Ql] =0, Vr € X}, (5.1.9)

i=1
We note that (5.1.9) imposes weakly continuity of displacement on the interface, since taking

7€ X} in (5.1.5) and summing gives

n n

0= Z [(Acrh,i, T)g, + (Wni, divT)g + (Va4 T)Q} = thvi’ Tn)r VT E€X].

i=1 i=1
It is easy to see that both (5.1.1)—(5.1.4) and (5.1.5)—(5.1.9) are equivalent to the global for-
mulation (2.0.1)—(2.0.3) with (o, up, Y1)

0, = (Ons, Uni, Yni)- In Method 1, A, approximates

u|1".

5.2 REDUCTION TO AN INTERFACE PROBLEM AND CONDITION
NUMBER ANALYSIS

5.2.1 Method 1
To reduce (5.1.1)—(5.1.4) to an interface problem for A,, we decompose the solution as

Oni = 0p(An) + Tni Upg = Uy ;(An) + Un, VYri = Vi(An) + Fnis (5.2.1)
where, for A\, € Ay, (o7 (An), wf(An), Vi (An)) € Xpi X Vi x Wi, 1 <@ < n, solve

(Aoy i (M), T)g, + (whi(An), divT) o, + (97:(n), 7),,

K3 (3 7

= (A, T, VT e Xy, (5.2.2)
(div oy (M), v), =0, Vo € Vi, (5.2.3)
(i), €) g, =0, VE € Wy, (5.2.4)

and (5h,i7ﬂh,ia;yh,i> € X}m' X Vh,i X Wh,i solve

(Aa'h’i, T>Qi + (fbh,i, div T>Q + (’7}171, T)Qi = <gD7 TTLZ'>(3Q1.QFD), V7 e Xh,ia (525)

%
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(le Ohis U)Qi = (f, U)Qi , Yv; € Vhﬂ', (526)
(Ghi» §)g, =0, VEEe W,  (5.2.7)

k3

Define the bilinear forms a; : A, x A, > R, 1 <i<nanda:A, xA, = R and the linear

functional g : A, — R by

ai(An, 1) = ={o3,:(An) niy pyrs, @A, ) Zaz (Ans 1), (5.2.8)

Z Gi N, J)T,- (5.2.9)

Using (5.1.4), we conclude that the functions satisfying (5.2.1) solve (5.1.1)-(5.1.4) if and

only if A, € Ay, solves the interface problem

a(An, 1) = g(p) Vi € Ay (5.2.10)

In the analysis of the interface problem we will utilize the elliptic projection IT; : H'(;, M) —
X,; introduced in [15]. Given o € X there exists a triple
(5}”', ﬁ}m, :}/h,i) c Xhﬂ' X Vhﬂ‘ X W}m such that

(Gnis T)g, + (g, divT)g + (Fni, T)g, = (0, T)g, » vre Xy, (5.2.11)
(div Gn, v)g, = (dive, v)g Yo € Vi, (5.2.12)
(@hs &), = (0, &g, VE € Wy, (5.2.13)
nini = (Il;o)n; on 09;. (5.2.14)

Namely, (65, UnisJni) is a mixed method approximation of (,0,0) based on solving a
Neumann problem. We note that the problem is singular, with the solution determined up
to (0, x, Skew(Vx)), x € RM(€;), where RM(€2;) is the space of rigid body motions in €2;
and Skew(7) = (7 —771)/2 is the skew-symmetric part of 7. The problem is well posed, since

the data satisfies the compatibility condition
(dive, x)q, — ((ILig)ns, X)aa, + (0, Skew(Vx))q, =0, Vx € RM(Q;),

where we used (1.4.21) on 0€2;. We note that the definition in [15] is based on a Dirichlet

problem, but it is easy to see that their arguments extend to the Neumann problem. We
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now define fIZ'O' = op;. If 0 € Xp,; we have 64, = o, tp; = 0, Y4, = 0, so Iis a projection.
It follows from (5.2.12)-(5.2.14) and (1.4.21) that for all 0 € X, £ € W}, the projection

operator II satisfies
divIlo = Pp.idivo, <l:[ia, 5)9 = (o, 5)92 , (f[ia)ni = Qp.i(on;), (5.2.15)

where Qy,; is the L?(0€;)-projection onto X ;n;. Moreover, the error estimate (5.0.1) for

the MFE approximation (5.2.11)—(5.2.13) implies that, see [15] for details,
o —Lio|lq, < Cllo —ollq,, o€ H(Q,M). (5.2.16)

We also note that for 0 € H(Q;, M) N X;, 0 < e < 1, I;0 is well defined [5,67], it satisfies

Miollo; < C(llolleo: + [ divalla,),
and, if dive =0,
llo —ILollq, < Chlo]leq;- (5.2.17)
Bound (5.2.16) allows us to extend these results to IT;o:
Iiolle, < C (lolleg, + Il divalle,), (5.2.18)
and, if dive =0,
lo — iolla, < ChY|o||eq;- (5.2.19)

We are now ready to state and prove the main results for the interface problem (5.2.10).

Lemma 5.2.1. The interface bilinear form a(-,-) is symmetric and positive definite over Ay,.
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Proof. For p € Ay, consider (5.2.2) with data p and take 7 = o7, ;(As), which implies

n

Ao ) = 37 (Ao i), 070, (5.2.20)

i=1 i
using (5.2.8), (5.2.3) and (5.2.4). This implies that a(-,-) is symmetric and positive semi-
definite over A,. We now show that if a(Ap, Ap) = 0, then A\, = 0. Let ©; be a domain
adjacent to I'p, i.e. meas (02 NT'p) > 0. Let (1, ;) be the solution of the auxiliary

problem
¢; =0 on dNTp, (5.2.22)
0 ond; NIy,
Yin; = (5.2.23)
/\h on Fz

Since ¢; € H(;, M) NX, for some € > 0, see e.g. [49], ﬁﬂﬂz is well defined and we can take
7 = II;ap; in (5.2.2). Noting that a(\,, Ap) = 0 implies o} i(An) = 0, we have, using (5.2.15),

P Andrs = (A, (L) m)r,

= (i), div i) =+ (77,00, Taw) =0, (5.2.24)

which implies A, = 0 onI';. Next, consider a domain €; adjacent to €; such that meas (I'; ;) >
0. Let (3}, ¢;) be the solution of (5.2.21)—(5.2.23) modified such that ¢; = 0 on I'; ;. Repeat-
ing the above argument implies that that A\, = 0 on I';. Iterating over all domains in this
fashion allows us to conclude that A\, = 0 on I'. Therefore a(-,-) is symmetric and positive

definite over Ay,. O

As a consequence of the above lemma, the conjugate gradient (CG) method can be
applied for solving the interface problem (5.2.10). We next proceed with providing bounds
on the bilinear form a(-, -), which can be used to bound the condition number of the interface

problem.

Theorem 5.2.1. There exist positive constants Cy and Cy independent of h such that

412

VA A C
h € N\p, 02M+d>\

INallf < @, An) < Cu(Zu+ dA)AT [ Anl [ (5.2.25)
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Proof. Using the definition of a;(-,-) from (5.2.8) we get

ai(An, An) = —(0p:(An) 1iy At

< ok () nille [ Anlle, < Ch72lag () [l [ Anl I (5.2.26)
where in the last step we used the discrete trace inequality
V1 e Xh,i? ||7' nz”@ﬂz S Ch_1/2||7'||gi, (5227)

which follows from a scaling argument. Using (5.2.26) together with (1.3.9) and (5.2.20) we
get

a;(An, An) < C2p+ dA)h’lHMH%,

Summing over the subdomains results in the upper bound in (5.2.25).
To prove the lower bound, we again refer to the solution of the auxiliary problem (5.2.21)—

(5.2.23) for a domain Q; adjacent to I'p and take 7 = II;¢; in (5.2.2) to obtain

IAGNIE, = (Mns Yinadr, = (A, (T )na)r,
= (Aoi O, T ) o (wi g, divils) 4+ (57O, )

* B 1 * 1 *
= <A0h,i<)‘)a H@Di)gi < C@H%i(/\h)HQi [Pilless < Cﬂnah,i()‘h)HQi||/\h||ri7
where we used (5.2.15), (5.2.18), (1.3.9), and the elliptic regularity [49, 63]
|%ill1/2,0. < Cl|Anllr,- (5.2.28)

Using (1.3.9) and (5.2.20), we obtain that

21+ dA
42

IAull7, < C ai(An, An).-

Next, consider a domain €; adjacent to €; with meas (I'; ;) > 0. Let (¢;, ¢;) be the solution
of (5.2.21)-(5.2.23) modified such that ¢; = 0 on I'; ;. Taking 7 = I1;2; in (5.2.2) for Q;, we

obtain

Pl e, = (Ao, (0, Ty ) = O, gy e,

Q;
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1
<c (@uahmmrwnrj\ri,j b

Fi,j>
20+ dA
< C% (ajl./z()\h, An) + a3/2(>\h; Ah)) H)‘hHF]’\Fi,j’

| n;

Lij

where for the last inequality we used the trace inequality ||1; n;

ri,; < CijHl/ZQj, which
follows by interpolating || n;ll-1/2,00, < Cll¥jllnive,) = Cllvjlle, [22] and [[¢;n;llcon, <
CllYjllij2+e00, [49], together with the elliptic regularity (5.2.28). Iterating over all subdo-

mains in a similar fashion completes the proof of the lower bound in (5.2.25). O

Corollary 5.2.1. Let A: A, — Ay, be such that (AN, wyr = a(\, 1) YA, € Ay. Then there

exists a positive constant C' independent of h such that

2
cond(A) < C <2u2—F d)\> ht.
v

5.2.2 Method 2
We introduce the bilinear forms b; : X} x X] - R, 1 <i<mn,and b: X}, x X} — R by
bi(Aha M) - (Ao-;;i(/\h)? /’L)Q + (uz,i()\h)J div 'LL)QL + (’Y;kz,z<)\h)7 Iu)Q )

b(/\ha M) = Z bi()\hv /u)a
=1

where, for a given A, € X}, (07 :(An), uj, ;(An), 75 (An)) € Xpi X Vii X Wy solve

(Adhi(Mn)s 7) g, + (uni(Mn), divr) o + (W), 7)o, =0, V7 € X, (5.2.29)

(div oy, ;(An), U)Q. =0, Yu € Vi, (5.2.30)

(@A), &), =0, VEe W, (5231

ohi(An) i = Ayn;  on Iy (5.2.32)
Define the linear functional  : X} — R by

i—1
where (7;, U;,7%;) € X%,i X Vii x Wy ; solve
(Aoni, T)g, + (Uni, divT)g + (Gni, T)g, = (9p, TNi)oqinr,, VT € Xhio (5.2.34)

1
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(div o, v)g, = (f; v)g, Yo € Vi, (5.2.35)

(Onis §)g, =0, VEE W,  (5.2.36)
By writing
Ohi = 0hi(An) + T, Up,i = Uy ;(An) + Ung, Vi = Vi(An) + Fnis (5.2.37)

it is easy to see that the solution to (5.1.5)—(5.1.9) satisfies the following interface problem:
find \;, € X] such that

DM, 1) = hip), Vue X}, (5.2.38)

Remark 5.2.1. We note that the Neumann subdomain problems (5.2.29)—(5.2.32) and

(5.2.34)-(5.2.36) are singular if 0Q;NC'p = 0. In such case the compatibility conditions for the
solvability of (5.2.29)—(5.2.32) and (5.2.34)—(5.2.36) are, respectively, (Apn;, x)r, = 0 and
(f, X)Qi =0 for all x € RM(;). These can be guaranteed by employing the one-level FETI
method [36, 88]. This involves solving a coarse space problem, which projects the interface
problem onto a subspace orthogonal to the kernel of the subdomain operators, see [89] for

details. In the following we analyze the interface problem in this subspace, denoted by
Xho={n e X, (uni, X)r, =0Vx € RM(),Vi such that 9 NTp = 0}.

Lemma 5.2.2. The interface bilinear form b(-,-) is symmetric and positive definite over

T
Xh,(]

Proof. We start by showing that

n

(A, 1) = Y (Ach;(Mn)is o5 (10)), - (5.2.39)

7
i=1

To this end, consider the following splitting of u:
H = U;(M) + Zag,ia
i=1

where o} (11)|, = o7 (1) and o}, ; € X3 ;. The the definition of b (-, -) reads

Q;

bi(An, ) = (AUZ,i(Ah), U;,i(“))g, + (u;;,,i()‘h)? div U;,i(u))g, + (7;;,@'0‘}1)7 Uz,i(ﬂ))g

i i 7
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+ (AUZ,,-(M% O_l?,,i)Qi + (u;,i()‘h)7 div U?L,i)Qi + (VZ,i()‘h)a Og,i)gi
= (Ao, (), O-Z,i(y’))gi7
using (5.2.29), (5.2.30) and (5.2.31). Therefore (5.2.39) holds, which implies that b(\, 1)
is symmetric and positive definite. We next note that, since o} ;(A\y) € H(div,;) and

U;K%)m = 0on 0Q;\T';, then a;7i(/\h)ni = \wn; € H~Y2(I;) and the normal trace inequality

[41] implies
Cldnnillz- ey < Ioh i)l Fravny = 1omi Al 2@, < 20+ dN)bi(An, M), (5.2.40)

using (1.3.9) and (5.2.30). Summing over §2; proves that b(Ap, Ap) is positive definite on
X};O. [

The lemma above shows that the system (5.2.38) can be solved using the CG method.
We next prove a bound on b(Ap, Ap) that provides an estimate on the condition number of

the algebraic system arising from (5.2.38).

Theorem 5.2.2. There exist positive constants ¢y and c; independent of h such that

VA, € le:’o,

1 1
%t e < 00w M) < Cl@lwnll%- (5.2.41)

Proof. Using (5.2.40) and the inverse inequality [24] we have

1
Il ey = C—chl A 12, (5.2.42)

bi(An, An) >

1
20+ dA
and the left inequality in (5.2.41) follows from summing over the subdomains. To show the

right inequality, we consider the auxiliary problem
Ay = €(¢i), divy; =0 in €,
Qbi =0 on GQZHFD,
0 on GQZ NI N
Yin; =

Apn; oon 1.
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Since A\, € Xg,m the problem is well posed, even if 9Q; NT'p = (. From elliptic regularity
[49,63], ¢; € H(2;, M) N X; for some ¢ > 0 and

|Villeo; < ClIARNG|le—1/2,r;-

We also note that oy ;(As) is the MFE approximation of ¢;, therefore, using (5.0.1), (5.2.17),

and a similar approximation property of QZJ., the following error estimate holds:

loh,i(An) — ¢l

Using the above two bounds, we have
o5, An)lla; < llogi(An) = dilla; + [[¥illa; < Clldillea; < ClliAnnllr;.

Squaring the above bound, using (5.2.39) and (1.3.9), and summing over the subdomains

completes the proof of the right inequality in (5.2.41). ]

Corollary 5.2.2. Let B : X — X} be such that (BX, p)r = b(\, p) VA, € X . Then

there exists a positive constant C' independent of h such that

2 d\
cond(B) < C%hl.
W
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5.3 A MULTISCALE MORTAR MFE METHOD ON NON-MATCHING
GRIDS

5.3.1 Formulation of the method

In this section we allow for the subdomain grids to be non-matching across the interfaces
and employ coarse scale mortar finite elements to approximate the displacement and im-
pose weakly the continuity of normal stress. This can be viewed as a non-matching grid
extension of Method 1. The coarse mortar space leads to a less computationally expensive
interface problem. The subdomains are discretized on the fine scale, resulting in a multiscale
approximation. We focus on the analysis of the multiscale discretization error.

For the subdomain discretizations, assume that X, ;, V4 ;, and W, ; contain polynomials
of degrees up to k > 1,1 > 0, and p > 0, respectively. Let

Xp= P Xniv Vi= P Vi, Wi= P Wi,
1<i<n 1<i<n 1<i<n
noting that the normal traces of stresses in X, can be discontinuous across the interfaces. Let
Tw,i; be a shape regular quasi-uniform simplicial or quadrilateral finite element partition of
I'; ; with maximal element diameter H. Denote by Ay, ; C L*(T; ;) the mortar finite element
space on I'; ;, containing either continuous or discontinuous piecewise polynomials of degree
m >0 on Tg,;. Let
A= B Auij
1<i,j<n

be the mortar finite element space on I'. Some additional restrictions are to be made on the
mortar space Ay, in the forthcoming statements.

The multiscale mortar MFE method reads: find (o, upi, Vhis Amr) € Xp i X Viy X Wy, ; X

Ay such that, for 1 <i <n,

(Aop, T)Qi + (up;, div T)Qi + (Vs T)Qi

= <)\H, Tni>pi + <gD, Tﬂ)agimrD, V71 € Xh,i? (531)
(divon, v)g, = (f, v)g, Yo € Vi, (5.3.2)
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(Thir §)g, =0, Vg € Wy, (5.3.3)

Z<0h’i n;, /~L>F, = 0, V/JJ € AH (534)

i=1
Note that Ay approximates the displacement on I' and the last equation enforces weakly

continuity of normal stress on the interfaces.

Lemma 5.3.1. Assume that for anyn € Ay
Qnin=0, 1<i<mn, implies thatn=0. (5.3.5)

Then there ezists a unique solution of (5.3.1)—(5.3.3).

Remark 5.3.1. Condition (5.3.5) requires that the mortar space Ay cannot be too rich
compared to the normal trace of the stress space. This condition can be easily satisfied in

practice, especially when the mortar space is on a coarse scale.

Proof. It suffices to show uniqueness, as (5.3.1) - (5.3.4) is a square linear system. Let f =0
and gp = 0. Then, by taking (7,v,&, ) = (on, Un, Yn, Ag) in (5.3.1)—(5.3.4), we obtain that
oy = 0. Next, for 1 < i < n, let u,,; be the L?(£2;)-projection of uy; onto RM(€;) and let
Op.idy be the L?(T;)-projection of Qp, ;A\ onto RM(§;)

r,- Consider the auxiliary problem
Vi = €(di) in £,
div @ZJZ = Up; — m in Qi7
_(Qh,i)\H - Qh,i)\H) on I';,
Ying =

0 on 0€2; N OSY,

which is solvable and ¢ is determined up to an element of RM(€2;). Now, setting 7 = f[iwl-

in (5.3.1) and using (5.2.15), we obtain
(Uhyiy Uhi — Thi)g. + (Qnirm, Qnidg — Qnirm)r, =0,

i

which implies uy,; = Up; and Qp Ay = Qp i Ay. Taking 7 to be a symmetric matrix in (5.3.1)

and integrating by parts gives
— (€(uni), T)g, + (uni — Am, Tni)r; + (uni, Tni)ao,r, = 0.
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The first term above is zero, since wj,; € RM(2;). Then the last two terms imply that
up; = QpiAg on I'; and up,; = 0 on 09Q; N I'p, since RM(€;)]sq, € Xpni. Using that
up; € RM(€;), this implies that for subdomains €; such that meas (0; N I'p) > 0, up,; =
OpiAx = 0. Consider any subdomain §2; such that 9Q; N 9Q; = T';; # 0. Recalling that

k > 1, we have that for all linear functions ¢ on I ;,

0= <Qh,i>\H7 90>Fi,j = <)\H’ 90>Fi,j = <Qh7j>\H7 30>Fi,j’

which implies that Q, ;A g = 0 on 99, since Qp, ; Ay € RM(;)|an,. Repeating the above
argument for the rest of the subdomains, we conclude that Q, Ay = 0 and u,; = 0 for
1 < ¢ < n. The hypothesis (5.3.5) implies that Ay = 0. It remains to show that 7, = 0. The

stability of Xj; x Vj; x W), ; implies an inf-sup condition, which, along with (5.3.1), yields

(un,is div 7)o + (Vs T)g,

Clllunille; + lvnilla) < sup

r€Xn.s 71| 2 (aivsen)
— (Aah’i, T)Qi + <)\H, Tn>1‘i
= sup =Y
r€Xn.s 17| 21aivics)
implying v, = 0. U

5.3.2 The space of weakly continuous stresses

We start by introducing some interpolation or projection operators and discussing their
approximation properties. Recall the projection operators introduced earlier: II; - the mixed
projection operator onto X, ;, I1; - the elliptic projection operator onto Xp,;, @, ; - the L2(82)-
projection onto Vj,;, @ ; - the L?(€;)-projection onto Wy, ;, and Qp; - the L*(§2;)-projection
onto X ;n;. In addition, let Z§ be the Scott-Zhang interpolation operator [81] into the space
AS;, which is the subset of continuous functions in Ay, and let Py be the L?(T')-projection
onto Ay. Recall that the polynomial degrees in the spaces X, Vi, W, and Ay are
k>1,1>0,p >0, and m > 0, respectively, assuming for simplicity that the order of

approximation is the same on every subdomain. the projection/interpolation operators have

the approximation properties:

00y < CH ™ Inllsr

In —Zgmller,, < 1<s<m+1,0<t<1, (5.3.6)

4,57
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17— Punll-er,, < CH™|Inllsr.,, 0<s<m+1,0<t< 1, (5.3.7)
v — Qf wlla, < Ch[lv]le0,, 0<t<Ii+1, (5.3.8)
| div(7 — IL7) [0, < CRY||div 7¢.q,, 0<t<i+1 (5.3.9)
l§ = @ lla, < Chllwllgz,, 0<g<p+l, (5.3.10)
|7 — 7o, < CH|I7 |0, 1<r<k+1, (5.3.11)
In = Qi nll-er.; < CH nller,, s 0<r<k+1,0<t<k+1, (5312
| (7 — TL7) ng| - —ory, < CRHYIT s, s 0<r<k+1,0<t<k+1. (5.3.13)

Bound (5.3.6) can be found in [81]. Bounds (5.3.7)—(5.3.10) and (5.3.12)—(5.3.13) are well
known L?-projection approximation results [24]. Bound (5.3.11) follows from (5.2.16) and a
similar bound for II;, which can be found, e.g., in [22,80].

We will use the trace inequalities [49, Theorem 1.5.2.1]

Inllrr:; < Clnllrsi20, >0 (5.3.14)
and [22, 80]

- (5.3.15)

(n, T)aq, < Cllnl|

We now introduce the space of weakly continuous stresses with respect to the mortar

space,

Xh70 = {T e Xy, Z(Tmi, M)Fz =0 V[L € AH} . (5316)

i=1
Then the mixed method (5.3.1)-(5.3.4) is equivalent to: find (o, up, vn) € Xpo X Vi, x Wy,
such that

Ao-h’ + Z U, leT Q; + Z (fyhv T)Qi = <gD7 Tn)l"p; VT € Xmo, (5317)

n

> (divon, v)g, = (f, v), Yo € Vi, (5.3.18)
=1

> (on, &g, =0, YgeW,.  (5.3.19)

i=1
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We note that the above system will be used only for the purpose of the analysis. We next
construct a projection operator II, onto Xy 0 with optimal approximation properties. The

construction follows closely the approach in [5,6]. Define

Xun = {(nr,nr) € L*(T,R?) x L*(T,RY) :

iy, € Xnini, nrlp, € Xnjn; V1<i<j<n}
and

Xnon = {(nr,nr) € L*(T,R?) x L*(T,RY) : 37 € X} such that

nL|Fi,j = 1;n; and nR‘Fm = T;n,; V1<i <j < n}

For any n = (nz,ng) € (LQ(F,R”Z))2 we write n‘rw = (mi,m;), 1 <i < j < n. Define the
L?-projection Qy : (LQ(F,]R"))2 — X0 n such that, for any n € (LQ(F,Rd))2,

n

Z(m — (Qnom)is ¢i)r, =0, Vo € Xpgn. (5.3.20)

i=1

Lemma 5.3.2. Assume that (5.3.5) holds. Then, for any n € (LQ(F,]Rd))Q, there exists

A € Ay such that on 15, 1 <i < j <n,

Qn.irm = Qnini — (Ln.on)i, (5.3.21)

On A = Lnjny — (Lnon);, (5.3.22)
1

e xiras = 5+ mg e Vx € RM(Q U Q)] (5.3.23)

Proof. The proof is given in [5, Lemma 3.1] with a straightforward modification to show

(5.3.23) for x € RM(€; U Q;)|r, ,, rather than for constants. O

The next lemma shows that, under a relatively mild assumption on the mortar space

Ay, 9 has optimal approximation properties.
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Lemma 5.3.3. Assume that there exists a constant C, independent of h and H, such that

||:u||F < C(HQ}M,UJHFU + ||Qh7jlu||ri,j) \V/p, S AHa 1<i< ] <n. (5324)

hj —

Then for any n € (L2(F,]Rd))2 such that n‘r_ = (ms, —m;), there exists a constant C, inde-
pendent of h and H such that

1/2
( 5 ngh,mi—<Qh,on>inzs,ri,j) ¢S WHll,

1<i<j<n 1<i<j<n (5.3.25)

0<r<k+1,0<s<k+1.

Proof. The proof is given in [5, Lemma 3.2] with a changes necessary for the two scales h

and H. O

Remark 5.3.2. The condition (5.3.24) is related to (5.3.5) and it requires that the mortar
space Ay 1s controlled by its projections onto the normal traces of stress spaces with a constant
independent of the mesh size. It can be satisfied for fairly general mesh configurations,
see [5,0,73].

We are now ready to construct the projection operator onto X, o.

Lemma 5.3.4. Under assumption (5.3.24), there exists a projection operator

Iy : HY*+4(Q, M) N X — X0 such that

(div(f[oT —7), v) — 0, veVi, 1<i<n, (5.3.26)
(ﬁOT o g) — 0, £ €W, (5.3.27)
o7l < ClI7lhy24e + || divrl), (5.3.28)
ITo7 — TI7|| < CR"HY?||7|r11/2, 0<r<k+1, (5.3.29)

HﬂOT . TH <C (htHTHt + hTHl/QHTHH-l/Q) ’ 1<t<k+ 1, 0<r< k+1. (5330)
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Proof. For any 7 € HY/?*¢(Q, M) N X define

where 07; solves

o1 = €(¢;) in € (5.3.31)

divor, =0 in €, (5.3.32)
0, on 0€); N 0SY,

57 — (5.3.33)

—OQniTtn; + (Qpotn);, only,

wherein, on any I'; ;, Tn|1,_ = (7n;,7n;). Note that the assumed regularity of 7 and the
trace inequality (5.3.14) imply that 7n; = —7n; € L*(T';;,R?), so Lemma 5.3.3 holds for
- The Neumann problems (5.3.31)—(5.3.33) are well-posed, since Vx € RM(2;)

7

(5.3.21) and (5.3.23) there holds

T™n

¥y by

1
(QniT i — (QnoT )i, X)1:, = (Pnirm, X)10, = §<T n; +7n;j, X)r,, = 0.

Also, note that the piecewise polynomial Neumann data are in H¢(0S;), so
§7; € HPY2(Q,;, M); thus, II; can be applied to d7;, see (5.2.18). We have by (5.2.15) that

n n

Z((ﬁ(ﬂ—) ng, M)Fz = Z«Qh,OT n)i7 :U“>F1 = 07 VN € AH:

i=1 i=1

therefore [T € Xp0. Also, (5.2.15) implies

i

<div Ty, U)Q = (div L7, v)g + <div I1;07;, v) = (divr, v)g. , Vv €& Vi,

so (5.3.26) holds. In addition, (5.3.27) holds due to (5.2.15) and the fact that J7; is a
symmetric matrix. It remains to study the approximation properties of IIy. Since IIyr —7 =
ﬁﬂ' -7+ lzlién on €;, and using (5.3.11), it suffices to bound only the correction term. By
the elliptic regularity of (5.3.31)-(5.3.33) [49,63], for any 0 <t < 1/2,

H(STth,m < Z HQh,iT n; — (Qh,oT n)i”t—l/zri,j- (5.3.34)
J
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We then have, using (5.2.19),

ITL07illo.0; < |[TL07 — 07illo.0s + 1670, < CAY2(|07: |1 y2.0, + [167:]l0.0;

< OZ [hl/QHQh,ﬂ' ni — (Qnomn)illor., + 119niTni — (ot n)ill—1/2.r:,] »
J

which, together with (5.3.25) and (5.3.14), implies (5.3.29). Then (5.3.28) follows from
(5.2.18) and (5.3.30) follows from (5.3.11). O

5.3.3 Optimal convergence for the stress

We start by noting that, assuming that the solution u of (1.3.10)-(1.3.12) belongs to H'(Q2),
integration by parts in the second term in (1.3.10) implies that

n

(u, divr) = Z ((u, divT)g, — (u, Tni)r,) -

i=1
Using the above and subtracting (5.3.17)-(5.3.19) from (1.3.10)—(1.3.12) gives the error equa-

tions

n

(A(O- - Uh)? T)Q + Z [(u — Up, div T)Qi + (’7 — Vhs T)QJ

=1
= (u, Tn)r,, vr € X, (5.3.35)
=1

> (div(e — o), v)g, =0, Yo € Vi, (5.3.36)

=1
(O' —0op, &) =0, Vg € Wy, 5.3.37

Qz
=1

It follows from (5.3.36) and (5.3.26) that
div(Ilopo — o) =0 in Q. (5.3.38)
Similarly, (5.3.37) and (5.3.27) imply

(1:[00 — op, §> =0, &eW,.
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Taking 7 = Tlpo — 0y, in (5.3.35) and using that 3, (Z§v, 7n;)p, = 0 for any 7 € Xy, we

obtain

(A(ﬁoa — op), yo — ah> = <A(1:[00 —0), Hyo — Jh>

+ Z ( 7y =, Moo — 0'h>ﬂ + Z<IJCLIU —u, (oo — o3) ma)r,
i=1 C=1
< ¢ (Iflor = ol Tloc — o0l + 1@}y = Y 1Tloe — o
+ Z | Ei(Zfu — U)H1/2,am

i=1

< C (Bllolls +h H 2ol rirjz + hllly + H> 2 ulls1/2) [Too — oull,

(oo — Uh)”H(div;Qﬁ)

1<t<k+1,0<r<k+1,0<qg<p+1,1<s<m+]1,

where F;(Z§u — u) is a continuous extension by zero to 0f2; and we have used the Cauchy-
Schwarz inequality, (5.3.15), (5.3.30), (5.3.10), (5.3.6), and (5.3.14). The above inequality,
together with (5.3.30), (5.3.38), and (5.3.9), results in the following theorem.

Theorem 5.3.1. For the stress o, of the mortar mized finite element method (5.3.1)-(5.3.4),
if (5.3.24) holds, then there exists a positive constant C' independent of h and H such that

lo = oull < C (Rl + h"H 2o llviajo + hlg + H 2 Jufls12)
1<t<k+1,0<r<k+1,0<g<p+1,1<s<m+1,

| div(o — op)|lo, < Ch"||divolrq, 0<r<Il+1.

Remark 5.3.3. The above result implies that for sufficiently reqular solution, ||o — o] =
O(R*+1 + hp+t o H™+Y2) " The mortar polynomial degree m and the coarse scale H can be
chosen to balance the error terms, resulting in a fine scale convergence. Since in all cases
p < k, the last two error terms are of the lowest order and balancing them results in the choice
H = O(h%). For example, for the lowest order Arnold-Falk-Winther space on simplices
[13] and its extensions to rectangles in two and three dimensions [16] or quadrilaterals [9],
Xpi X Vi ix Wy ; = BDMi xPyx Py, sok =1 andl =p=0. In this case, takingm = 2 and
the asymptotic scaling H = O(h*®) provides optimal convergence rate O(h). Similarly, for
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the lowest order Gopalakrishnan-Guzman space on simplices [48] or the modified Arnold-Falk-
Winther space on rectangles with continuous @y rotations [{], k =1,1=0, andp =1. In
this case, taking m = 2 and the asymptotic scaling H = O(h*®) or m = 3 and H = O(h*/7)

provides optimal convergence rate O(h?).

5.3.4 Convergence for the displacement

On a single domain, the error estimate for the displacement and the rotation follows from
an inf-sup condition. For the mortar method, we would need an inf-sup condition for the
space of weakly continuous stresses X . This can be approached by finding a global stress
function with specified divergence and asymmetry and applying the projection operator Ilo.
Unfortunately, the regularity of the global stress function, which can be constructed by
solving two divergence problems, is only H(div; (), which is not sufficient to apply Il,. For
this reason, we split the analysis in three parts. First, we construct a weakly continuous
symmetric stress function with specified divergence to control the displacement and show
both optimal convergence and superconvergence. In the second step we estimate the error
in the mortar displacement by utilizing the properties of the interface operator established
in the earlier domain decomposition sections. Finally we construct on each subdomain a
divergence-free stress function with specified asymmetry to bound the error in the rotation

in terms of the error in stress and mortar displacement.

5.3.4.1 Optimal convergence for the displacement Let ¢ be the solution of the

problem
div (A7"e(9)) = (Qju — ) in Q, (5.3.39)
¢ = on I'p, (5.3.40)
A le(p)n =0 on I'y. (5.3.41)

Since Q is polygonal and Q%u — u;, € L?(2), the problem is H'™-regular for a suitable
r>1/2 27 and ||§]|14r < C||Q%u — upl|. Let 7 = Iy A~ e(¢), which is well defined, since

A~te(p) € H™(2). Note that (5.3.26) implies that divT = Q¥u — uy,. Also, (5.3.28) implies
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that ||7]] < C(Q}u — wuyp,). Taking this 7 as the test function in the error equation (5.3.35)

gives

Qi —unll® = = (Ao —on), ) + Y _{u—Tju, Ta)r,

i=1

<C (IlJ —onlllrll + Y I1E(w = Zgu) | 00,
i=1

THH(diV;Qi)>

<C (”0 —onll + Z | Ei(u — Ifq“)”l/z,é)@) [ Pru — ugll,

i=1
which, together with Theorem 5.3.1, (5.3.6), and (5.3.8), implies the following theorem.

Theorem 5.3.2. For the displacement uy, of the mortar mized method (5.3.1)~(5.3.4), if
(5.3.24) holds, then there ezists a positive constant C' independent of h and H such that

1Qiu — wnll < C (llolle + A H' 2|0l vsapz + B IVllg + H 2 fullss12) (5.3.42)
lu = unll < C (Rl lle + B H 2ol oje + WVl + H 2 [lullspape + B ullr,) . (5.3.43)

1<t<k+1,0<r<k+1,0<q¢<p+1,1<s<m+1,0<r, <Il+1.

Remark 5.3.4. The above result shows that |Q}u — uyl|| is of the same order as ||o — o

and it does not depend on the approximation order of V.

5.3.4.2 Superconvergence for the displacement We present a duality argument to
obtain a superconvergence estimate for the displacement. We utilize again the auxiliary
problem (5.3.39)(5.3.41), but this time we assume that the problem is HZ-regular, see

e.g. [49] for sufficient conditions:
[8ll2 < CllQpu — unll. (5.3.44)

Taking 7 = IIgA~'e(¢) in (5.3.35), we get

n

Q30— wnll == 3 | (Ao = o), lade(0))

=1

. - <U — PHU, ﬁoA_IE(Qb) ni)Fi

Qi

(5.3.45)
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Noting that (o — oy, €(¢)) = (0 — o, V¢ — Skew(V¢)), we manipulate the first term on the

right as follows,

i <A(U — on), ﬁox‘rlﬁ(@)

Q‘
i=1 ‘

n

(A0 = o, WA e(6) — A7(0)) |+ (Alo = on), Ae(0) |

i=1

I

{ (A(a — o), HoA ™ e() — A‘le(qb))m — (div(o —on), ¢ — Qpo)q,

=1

(0 = 00 6~ T, (0~ on, Sow(¥6 - GV

<oy [whmmna —oulla, + Al div(o — o),

=1

L Hllo - ahumdw} 16/l (5.3.46)

where we used (5.3.30), (5.3.8), (5.3.6), and (5.3.10) for the last inequality with C' =
C(max; ||[A™Y|1,00.0,)- Next, for the second term on the right in (5.3.45) we have
(u — Pyu, oA~ e(d) ni)r,
= (u=Puu, (loA™e(9) = LA™ e(9) ) mi)r,
+ (1= Puu, (AT e(9) = A7) ) mi + A e(0)m)

<> lu—Puulr,, [n (TloA~"e(6) = TA™e(9)) millr,,

(A7) — A7) il

+ Z ||u - PHUH*l/ZzFi,j

J

< CHS+1/2||U||5+1/2,QZ-

|A_1€(¢) ”z‘”l/z,ri,j

Ollag, 0<s<m+1, (5.3.47)

where we used (5.3.7), (5.3.13), (5.2.27), and (5.3.29) for the last inequality. A combination
of (5.3.44)—(5.3.47), and Theorem 5.3.1 gives the following theorem.
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Theorem 5.3.3. Assume H?-reqularity of the problem on Q and that (5.3.24) holds. Then

there exists a positive constant C, independent of h and H such that
Qb =l < (K Hlol+ K H ol + WH |
+ H 2 lul 412 + h™ H || div 0’”m>’

1<t<k+1,0<r<k+1,0<q<p+1,1<s<m+1,0<r,<Il+1.

Remark 5.3.5. The result shows that ||Q%u — uy|| = O(H(hF+ 4 hp+t 4 piHL 4 gm+1/2))
which is of order H higher that |0 — op||r(divi0,)- Similar to Remark 5.5.3, the error terms
can be balanced to obtain fine scale convergence. For spaces with optimal stress convergence,
I < p < k, so balancing the last two terms results in the choice H = (’)(hml%ll/?) For
the lowest order spaces in [9, 13, 16] with k = 1 and | = p = 0, taking m = 2 and the
asymptotic scaling H = O(h?®) provides superconvergence rate O(h7/®). We further note
that the above result is not useful for spaces with | = p — 1, in which case the bound (5.3.42)

from Theorem 5.3.2, which does not depend on I, provides a better rate.

5.3.5 Convergence for the mortar displacement

Recall the interface bilinear form a(-,-) : L*(T") x L?*(I') — R introduced in (5.2.8) and its
characterization (5.2.20), a(A, ) = Y1, (Aoj (1), cr;;i(/\))g_. Denote by |||, the seminorm
induced by a(-,-) on L*(T), i.e.,

lpelle = a(u, )", @€ LA(I).

Theorem 5.3.4. For the mortar displacement Ay of the mized method (5.3.1)~(5.3.4), if
(5.3.24) holds, then there ezists a positive constant C', independent of h and H, such that

lu = Arlla < C (BNl lle + B H 2|l |lvs1 /2 + Rl + HZ 2 |lullsy2) (5.3.48)

1<t<k+1,0<r<k+1,0<¢g<p+1,1<s<m+1.
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Proof. The characterization (5.2.20) implies that
lu = Aulla < Cllog(w) = a5, (Am)]l (5.3.49)
Define, for p € L*(T),

on() = op() +on,  un(p) = up(p) +an, () = 41 + T

Recalling (5.2.2)—(5.2.4) and (5.2.5)—(5.2.7), we note that (o (1), up(p), ya(p)) € Xp x Vi, X
W, satisfy, for 1 <i <n,

(Ao (p), T)Qi + (up(p), div T)Qi + (Y (1), g,

= (9, Tn)oqunrp + (1 T )T, V7 € Xpa, (5.3.50)
(divon(p), v)g, = (f,v)e Yv € Vi, (5.3.51)
(on(p); §)g, =0 VE € Wp . (5.3.52)

3

We note that (o, (Ag), un(An), yu(Aw)) = (on, un, vn) and that (on(w), up(u), y4(u)) is the
MFE approximation of the true solution (¢, u, y) on each subdomain §2; with specified bound-

ary condition v on I';. We then have

lok(w) = o (Aa)ll = llon(u) = on(Am)|l = llon(u) = oull < [lon(u) = ol +[lo — onl|

(5.3.53)

The assertion of the theorem (5.3.48) follows from (5.3.49), (5.3.53), Theorem 5.3.1, and the
standard mixed method estimate (5.0.1) for (5.3.50)—(5.3.52). O
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5.3.6 Convergence for the rotation

We first note that the result of Theorem 5.2.1 holds in the case of non-matching grids. In
particular, it is easy to check that its proof can be extended to this case, assuming that on
each T j, C1l|Qniptllr,; < 1Qnjullr,; < CollQuaptllr,; for all u € Ag. It was shown in [73]
that this norm equivalence holds for very general grid configurations. Therefore (5.2.25)
implies that || - ||, is a norm on Ag.

The stability of the subdomain MFE spaces X, ; X V},; x W}, ; implies a subdomain inf-

sup condition: there exists a positive constant § independent of h and H such that, for all

v € Vi, § € Wy,

divr, v)o + (7, .
ap BT Va7 Oas 5,
O#Texh’i HTHH(diV?QiaM)

o, + [I€lle:) - (5.3.54)

Then, using the error equation obtained by subtracting (5.3.1) from (1.3.10), we obtain

(div T, Qfu — uh)Qi + (7, Q) — %)gi

1@y — mlle, < C sup
0#£TEX ; HTHH(div;Qi,M)
—(A(c — o), T)g, + (U — g, TN,
<C s (A( n)s T)o, + Hy T )
07£T€Xh,¢ HTHH(dIV,Q“M)
< Cllo = anlla, + b~ 2(lu = Aullr,),

using the discrete trace inequality (5.2.27) in the last inequality. Summing over the subdo-

mains results in the following theorem.

Theorem 5.3.5. For the rotation vy, of the mized method (5.3.1)~(5.3.4), if (5.3.24) holds,

then there exists a positive constant C', independent of h and H, such that
1@ =l < C(llo = anll +h~2|lu = Aullr).

Remark 5.3.6. The above result, combined with (5.2.25), implies convergence for the rota-
tion reduced by O(h~Y2) compared to the other variables, which is suboptimal. Since || - ||, is
equivalent to a discrete H'/2(T')-norm, see [73], one expects that ||[u—Ag||r < ChY2||u—Ng||a,
which is indeed observed in the numerical experiments, and results in optimal convergence

for the rotation.
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5.3.7 Multiscale stress basis implementation

The algebraic system resulting from the multiscale mortar MFE method (5.3.1)—(5.3.4) can
be solved by reducing it to an interface problem similar to (5.2.10), as discussed in Sec-
tion 5.2.1. The solution of the interface problem by the CG method requires solving sub-
domain problems on each iteration. The choice of a coarse mortar space Ay results in an
interface problem of smaller dimension, which is less expensive to solve. Nevertheless, the
computational cost may be significant if many CG iterations are needed for convergence.
Alternatively, following the idea of a multiscale flux basis for the mortar mixed finite ele-
ment method for the Darcy problem [42,93], we introduce a multiscale stress basis. This
basis can be computed before the start of the interface iteration and requires solving a fixed
number of Dirichlet subdomain problems, equal to the number of mortar degrees of freedom
per subdomain. Afterwards, an inexpensive linear combination of the multiscale stress basis
functions can replace the subdomain solves during the interface iteration. Since this imple-
mentation requires a relatively small fixed number of local fine scale solves, it makes the cost
of the method comparable to other multiscale methods, see e.g. [32] and references therein.

Let Ay : Ay — Ay be an interface operator such that (AgA, w)yr = a(A\, pu), YA, u €
Apg. Then the interface problem (5.2.10) can be rewritten as AyAy = gy. We note that
Agig = > A, where Ap,; : Apy; — Ap; satisfies

(A idmi, )1, = _<U]>;7i<)\H,i)nia wr, V€ Ap.

Let Qpn;: A — Xpn; be the L*(9€2;)-projection from the mortar space onto the normal
trace of the subdomain velocity and let Qy ; : Xp, ;n; — Ag,; be the L*(9€;)-projection from

the normal velocity trace onto the mortar space. Then the above implies that
AH,MH,Z‘ = - foZz(AHz)nz

We now describe the computation of the multiscale stress basis and its use for computing

the action of the interface operator Ag ;Ap;. Let {qﬁ%)l}ivfl denote the basis functions of the
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mortar space Ap;, where Ny ; is the number of mortar degrees of freedom on subdomain €2;.

Then, for A\gy,; € Ag,; we have
Ny

k) (k
>‘H7i = Z ASLI)qug{)z
k=1
Once the multiscale stress basis is computed, the action of interface operator Ay ; involves

only a simple linear combination of the multiscale basis functions:

Np,; Ny Ny

Aaidas = Amg | A 60 | = 300 Ao = S 2B ®.
k=1 k=1 k=1

54 NUMERICAL RESULTS

In this section, we provide several numerical tests confirming the theoretical convergence
rates and illustrating the behavior of Method 1 on non-matching grids, testing both the
conditioning of the interface problem studied in Section 5.2.1 and the convergence of the
numerical errors of the multiscale mortar method studied in Section 5.3. The computational
domain for all examples is a unit hypercube partitioned with rectangular elements. For
simplicity, Dirichlet boundary conditions are specified on the entire boundary in all examples.
In 3 dimensions we employ the BDM; x Qy x Q triple of elements proposed by Awanou
[16], which are the rectangular analogues of the lowest order Arnold-Falk-Winther simplicial
elements [13]. In 2 dimensions we use BDM; x Qy x Qf**, a modified triple of elements
with continuous Q; space for rotation introduced earlier in Chapter 2. This choice is of
interest, since it allows for local elimination of stress and rotation via the use of trapezoidal
quadrature rules, resulting in an efficient cell-centered scheme for the displacement.

We use the Method 1, with a displacement Lagrange multiplier, for all tests. The CG
method is employed for solving the symmetric and positive definite interface problems. It is
known [54] that the number of iterations required for the convergence of the CG method is
O(y/k), where £ is the condition number of the interface system. According to the theory
in Section 5.2.1, kK = O(h™!), hence the expected growth rate of the number of iterations is

O(h~/%). We set the tolerance for the CG method to be ¢ = 107! for all test cases and
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use the zero initial guess for the interface data, i.e. Ay = 0. We used deal.Il finite element
library [7] for the implementation of the method.

The convergence rates are established by running each test case on a sequence of refined
grids. The coarsest non-matching multiblock grid consists of 2 x 2 and 3 x 3 subdomain grids
in a checkerboard fashion. The mortar grids on the coarsest level have only one element per
interface, i.e. H = % In 2 dimensions, with BDM; x Qg x Qf*,
and [ = 1. According to Remark 5.3.3, m = 2
and H = O(h*°) or m = 3 and H = O(h*7) should result in O(h?) convergence. In the

we have £ =1, p = 0,

We test quadratic and cubic mortars.

numerical test we take H = 2h for m = 2 and H = h'/? for m = 3, which are easier to do
in practice. In 3 dimensions, with BDM; x Qg x 9y, we have k = 1, p =1 = 0. We test
linear mortars, m = 1. From Remark 5.3.3, the choice H = O(h*3) should result in O(h)
convergence. In the numerical test we take H = 2h. The theoretically predicted convergence

rates for these choices of finite elements and subdomain and mortar grids are shown in Table

5.1.

BDM; x Qp x Qf¢ (k=1,1=0,p=1) in 2 dimensions

m | H | |lo—ou|l | [[div(c —on)|l | [lu—unll | [Pru—unll | [y =l | [[u—A#lla
2 2h 2 1 1 2 2 2
hl/2 2 1 1 2 2 2
BDM1 x Qyx Qy (k=1,1=0,p=0) in 3 dimensions
m | H | |lo—ou|l | [[div(c —on)| | [lu—unll | [Pru—unll | [y =l | [lu—Anlla
1 2h 1 1 1 2 1 1

Table 5.1: Theoretical convergence rates for the choices of finite elements and mortars in the

numerical tests.

In the first three examples we test the convergence rates and the condition number of
the interface operator. The error ||Pnu — uy| is approximated by the discrete L*-norms
computed by the midpoint rule on 7, which is known to be O(h?)-close to ||Pyu — uy||. The
mortar displacement error |[u — Ag||, is computed in accordance with the definition of the
interface bilinear form a(-, -). In all cases we observe that the rates of convergence agree with

the theoretically predicted ones. Also, in all cases the number of CG iterations grows with
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rate O(h~'/2), confirming the theoretical condition number x = O(h™!).

5.4.1 Example 1

In the first example we solve a two-dimensional problem with a known analytical solution
23yt + 2% + sin(zy) cos(y)
2ty + y? + cos(zy) sin(z)

The Poisson’s ratio is ¥ = 0.2 and the Young’s modulus is F = sin(37z) sin(37wy) + 5, with

the Lamé parameters determined by
- Ev B E
- -2) "oty

Relative errors, convergence rates, and number of interface iterations are provided in Tables

5.2 and 5.3. The computed solution is plotted in Figure 5.1.

lo =onll |lldivie —on)ll| llu—=wall | [IPru—unl | [y ="l | lu=2ulla |CG iter.
h error rate| error rate | error rate| error rate| error rate| error rate| # rate
1/4 |2.02E-1 - |5.64E-1 4.57E-1 - |2.54E-1 - |4.08E-1 - |5.01E-1 - |24 -

1/8 |543E-2 1.9 |2.98E-1 0.9 |2.12E-1 1.1 |7.14E-2 1.8 |1.04E-1 2.0 [1.33E-1 1.9 | 33 -04
1/16 |1.37E-2 2.0 [1.51E-1 1.0 |1.04E-1 1.0 |1.84E-2 2.0 [2.60E-2 2.0 |3.25E-2 2.0 | 48 -0.5
1/32 |3.42E-3 2.0 |7.58E-2 1.0 |5.15E-2 1.0 [4.63E-3 2.0 |6.47E-3 2.0 |7.83E-3 2.1 | 63 -0.5
1/64 |8.53E-4 2.0 [3.79E-2 1.0 [2.57E-2 1.0 |1.16E-3 2.0 [1.61E-3 2.0 |1.88E-3 2.1 | 96 -0.5
1/128(2.13E-4 2.0 [1.90E-2 1.0 |1.28E-2 1.0 [2.90E-4 2.0 |4.02E-4 2.0 |4.55E-4 2.1 |136 -0.6
1/2565.33E-5 2.0 [9.48E-3 1.0 |6.42E-3 1.0 |7.25E-5 2.0 |1.00E-4 2.0 |1.10E-4 2.0 |194 -0.5

Table 5.2: Numerical errors, convergence rates, and number of CG iterations with discon-

tinuous quadratic mortars (m = 2) for Example 1.

llo—onll |lldivie —on)ll| llu—unll | IPeu—unll| lv="ul | lu=Aula |CG iter.
h error rate| error rate | error rate| error rate| error rate| error rate| # rate
1/4 |4.05E-2 - |3.75E-1 - 1.36E-1 - |1.09E-2 - |1.79E-1 - |1.99E-2 - |26 -

1/16 |3.35E-3 1.8 [1.11E-1 0.9 [3.41E-2 1.0 |9.13E-4 1.8 |1.06E-2 2.0 |9.42E-4 2.2 |46 -04
1/64 |2.14E-4 2.0 [2.80E-2 1.0 [8.53E-3 1.0 |5.84E-5 2.0 |6.74E-4 2.0 |4.97E-5 2.1 |78 -04
1/2561.34E-5 2.0 |7.01E-3 1.0 |2.13E-3 1.0 [3.62E-6 2.0 |4.19E-5 2.0 |2.63E-6 2.1 |124 -0.3

Table 5.3: Numerical errors, convergence rates, and number of CG iterations with discon-

tinuous cubic mortars (m = 3) for Example 1.
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Displacement, magnitude Rotatfion
3.3e-02 1.5 3.1e+00 -5.1e-01-0.156 2.3e-01

-_— - e ] — - ——t

Stress y, magnitude
2.1e+00 21 4.0e+01

Stress x, magnitude
2.1e+00 23 4.4e+01

Figure 5.1: Computed solution for Example 1, h = 1/16.

5.4.2 Example 2

In the second example, we solve a problem with discontinuous Lamé parameters. We choose

A=p=1for 0 <z <0.5and A =pu =10 for 0.5 < x < 1. The solution

22y — 2%y3 sin(7wx)
u g
22y — 2%y sin(7x)
is chosen to be continuous with continuous normal stress and rotation at z = 0.5. Con-

vergence rates are provided in Tables 5.4 and 5.5. The computed solution is plotted in

Figure 3.2.
llo—onll |lldivie —on)ll| llu—unll | IPew—unll| lv="al | lu=Agrla |CG iter.
h error rate| error rate | error rate| error rate| error rate| error rate| # rate
1/4 |2.02E-1 - |5.64E-1 - |4.57E-1 - |2.54E-1 - |4.08E-1 - |5.01E-1 - |45 -

1/8 |5.43E-2 1.9 |2.98E-1 0.9 [2.12E-1 1.1 |7.14E-2 1.8 |1.04E-1 2.0 |1.33E-1 1.9 | 61 -0.4
1/16 |1.37E-2 2.0 |[1.51E-1 1.0 |1.04E-1 1.0 |1.84E-2 2.0 |2.60E-2 2.0 |3.25E-2 2.0 | 85 -0.5
1/32 |3.42E-3 2.0 |7.58E-2 1.0 |5.15E-2 1.0 |4.63E-3 2.0 |6.47E-3 2.0 |7.83E-3 2.1 [122 -0.5
1/64 |8.53E-4 2.0 [3.79E-2 1.0 |2.57E-2 1.0 |1.16E-3 2.0 |1.61E-3 2.0 |1.88E-3 2.1 [170 -0.5
1/128(2.13E-4 2.0 [1.90E-2 1.0 |1.28E-2 1.0 [2.90E-4 2.0 |4.02E-4 2.0 |4.55E-4 2.1 |252 -0.6
1/256|5.33E-5 2.0 |9.48E-3 1.0 |6.42E-3 1.0 |7.25E-5 2.0 |1.00E-4 2.0 |1.10E-4 2.0 |354 -0.5

Table 5.4: Numerical errors, convergence rates, and number of CG iterations with discon-

tinuous quadratic mortars (m = 2) for Example 2.
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lo—onll [ldiv(e —on)ll| llu—unll | [Pru—unll| [|v—"wmll | [u—2Aulla |CG iter.
h error rate| error rate | error rate| error rate| error rate| error rate| # rate
1/4 |2.04E-1 - |5.64E-1 - |4.58E-1 - |2.54E-1 - |4.04E-1 - |5.11E-1 - |52 -
1/16 |1.37E-2 1.9 [1.51E-1 1.0 [1.04E-1 1.1 |1.85E-2 1.9 |2.62E-2 2.0 |3.27E-2 2.0 | 83 -0.3
1/64 |8.68E-4 2.0 [3.79E-2 1.0 [2.57E-2 1.0 |1.16E-3 2.0 |1.71E-3 2.0 |1.90E-3 2.1 |135 -0.4
1/256|5.51E-5 2.0 |9.48E-3 1.0 |6.42E-3 1.0 |7.23E-5 2.0 |1.15E-4 2.0 |1.19E-4 2.0 |211 -0.3

Table 5.5: Numerical errors, convergence rates, and number of CG iterations with discon-

tinuous cubic mortars (m = 3) for Example 2.

Displacement, magnitude Rotation
7.0e-06 0.175 3.5e-01 1.9e-05 0.125 2.5e-01 5.9e-08 0.012 2.4e-02 -4.4e-02 0.015 7.5e-02

— — - —— ——

Stress x, magnitude Stress y, magnitude

Figure 5.2: Computed solution for Example 2, h = 1/16.

5.4.3 Example 3

In third example we study a three-dimensional problem, which models simultaneous twisting
and compression (about x-axis) of the unit cube. The displacement solution is
—0.1(e® — 1) sin(mz) sin(my)
u= | —(e® = 1)(y — cos(55)(y — 0.5) +sin(5)(z — 0.5) — 0.5)
—(e” = 1)(z —sin(5)(y — 0.5) — cos({5)(z — 0.5) — 0.5)
The Lamé parameters are A = g = 100. The computed relative errors, convergence rates,
and the number of interface iterations are shown in Table 5.6. We note that the mortar dis-
placement exhibits slightly higher convergence rate than the theoretical rate. The computed

solution is plotted in Figure 5.3.
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o —onll |l[div(e —on)ll| llu—wunll |[Pru—unl| v ="l | llu—Aulla |CG iter.
h error rate| error rate | error rate| error rate| error rate| error rate|# rate
1/4 |2.71E-1 - |3.85E-1 - |2.60E-1 - |3.87E-2 - |1.37E-1 - |2.80E-2 - (21 -

1/8 {1.22E-1 1.2 |1.96E-1 1.0 |1.31E-1 1.0 |8.40E-3 2.2 |6.83E-2 1.0 |7.99E-3 1.8 |37 -0.8
1/16(5.79E-2 1.1 |9.87E-2 1.0 |6.54E-2 1.0 [2.09E-3 2.0 |3.41E-2 1.0 |[2.39E-3 1.7 |56 -0.6
1/32]2.82E-2 1.0 |[4.94E-2 1.0 |3.27E-2 1.0 |5.31E-4 2.0 |1.71E-2 1.0 |8.18E-4 1.6 |80 -0.5

Table 5.6: Numerical errors, convergence rates, and number of CG iterations with discon-

tinuous linear mortars (m = 1) for Example 3.

Stress y, magnitude y Stress z, magnitude y  Displacement, magnitude y Rotation, magnitude
5.8e-01 32 6.4e+01 8.7e-01 32 639+01 1.0e-03 0.15 31901 3.2e-03 0.29 5.6e-01

PR Stress x, magnitude
1.2e+01 53 9.4e+01

—— —— ——

Figure 5.3: Computed solution for Example 3, h = 1/32.

5.4.4 Example 4

In this example we study the dependence of the number of CG iterations on the number of
subdomains used for solving the problem. We consider the same test case as in Example 1
with discontinuous quadratic mortars, but solve the problem using 2 x 2, 4 x 4 and 8 x 8
subdomain partitionings. We report the number of CG iterations in Table 5.7. For the sake
of space and clarity we do not show the rate of growth for each refinement step, but only the
average values. For each fixed domain decomposition (each column) we observe growth of
O(h™%?) as the grids are refined, confirming condition number x = O(h™!), as in the previous
examples with 2 x 2 decompositions. Considering each row, we observe that the number of
CG iterations grows as the subdomain size A decreases with rate O(A~%9) implying that
k = O(A™'). This is expected for an algorithm without a coarse solve preconditioner [88].

This issue will be addressed in forthcoming work.
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h 2 x 2 4 x4 8 x 8 Rate
1/16 48 67 94  |O(A79)
1/32 63 94 118 |O(A799)
1/64 96 133 167  |O(A79)
1/128| 136 189 230 |O(A704)
1/256| 194 267 340 |O(AT0Y
Rate |O(h=05)|O(h=9%)|O(h~09)

Table 5.7: Number of CG iterations for Example 4.

5.4.5 Example 5

In the last example we test the efficiency of the multiscale stress basis (MSB) technique
outlined in the previous section. With no MSB the total number of solves is #CG iter. + 3,
one for each CG iteration plus one solve for the right hand side of type (5.2.5)—(5.2.7), one for
the initial residual and one to recover the final solution. On the other hand, the method with
MSB requires dim(Ag) + 3 solves, hence its use is advantageous when dim(A;) < #CG iter.,
that is when the mortar grid is relatively coarse.

We use a heterogeneous porosity field from the Society of Petroleum Engineers (SPE)
Comparative Solution Project2!. The computation domain is 2 = (0, 1)? with a fixed rectan-
gular 128 x 128 grid. The left and right boundary conditions are u = (0.1,0)” and v = (0,0)7.
Zero normal stress, o n = 0, is specified on the top and bottom boundaries. Given the poros-
ity ¢, the Young’s modulus is obtained from the relation [60] E =107 (1 — %)2'1, where the
constant ¢ = 0.5 refers to the porosity at which the effective Young’s modulus becomes zero.
The choice of this constant is based on the properties of the deformable medium, see [60] for
details. The resulting Young’s modulus field is shown in Figure 5.4.

A comparison between the fine scale solution and the multiscale solution with 8 x 8
subdomains and a single cubic mortar per interface is shown in Figure 5.4. We observe that

the two solutions are very similar and that the multiscale solution captures the heterogeneity

thttp:/ /www.spe.org/csp
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very well, even for this very coarse mortar space. In Table 5.8 we compare the cost of using

MSB and not using MSB for several choices of mortar grids.

We report the number of

solves per subdomain, which is the dominant computational cost. We conclude that for

cases with relatively coarse mortar grids, the MSB technique requires significantly fewer

subdomain solves, resulting in faster computations. Moreover, as evident from the last row

in Table 5.8, computing the fine scale solution is significantly more expensive than computing

the multiscale solution.

Mortar type

H |# Solves, no MSB

# Solves, MSB

Quadratic
Cubic
Quadratic
Cubic

Linear (fine scale solution)

1/8
1/8
1/16
1/16

1/128

180
173
219
250
295

27
35
51
67
195

Table 5.8: Number of subdomain solves for Example 5.
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Stress x, magnitude Stress y, magnitude Displacement, magnitude
1.0e+00 6.5 1.2e+01 4.4e-04 2.7 5.3e+00 3.3e-04 0.05 1.0e-01

Stress y, magnitude

Displacement, magnitude
1.0e+00 6.5 1.2e+01 8.6e-04 2.7 5.3e+00 3.3e-04 0.05 1.0e-01
——t - —l ——

Stress x, magnitude

Young's modulus
3.4e+01 68 1.0e+02
ﬁ i

Figure 5.4: Example 5, fine scale stress and displacement, vs. multiscale stress and displace-

ment with cubic mortars, and Young’s modulus, H = 1/8.
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6.0 CONCLUSIONS

In this thesis we have presented several efficient techniques for the Biot’s poroelasticity model
and its constituents. We have also developed a domain decomposition method, as well as
the multiscale mortar framework for the linear elasticity, which is a major building block in
the poroelasticity system.

First, BDM;-based MFE method with quadrature that reduces to CCFD for the dis-
placement on simplicial and quadrilateral grids was introduced. We showed that the result-
ing algebraic system is symmetric and positive definite. We demonstrated that the method
performs well in case of rough discontinuous coefficients. The analysis was done based on
combining MFE techniques with quadrature error estimates. First order convergence was
shown for all variables in their natural norms. In addition, second order convergence was
obtained for the displacements at the lelements’ centers of mass.

Second, the coupled MFMFE-MSMFE method for the Biot’s consolidation model was
presented. The method combines the ideas of local flux and stress elimination of MEMFE
and MSMFE methods, when applied to a mixed, five-field formulation for the poroelasticity
problem. The method inherits its robustness from MFE methods, and it is locally con-
servative and locking-free. We analyzed the stability of the coupled scheme as well as its
convergence properties. A range of examples illustrates the convergence results and impor-
tant robustness properties as mentioned above.

Third, we generalized the idea of MFMFE method to a family of arbitrarily high order
MFE/Finite Volume schemes. This was achieved by developing of the new, Raviart-Thomas
based, finite element family and using Gauss-Lobatto quadrature rules of appropriate order.
The method was fully analyzed, the optimal convergence rates as well as pressure supercon-

vergence at the Gaussian nodes were established. We further discussed the post-processing
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technique, and illustrated all of these results numerically.

Finally, two domain decomposition formulations were presented for the linear elastic-
ity model. The reduction to interface problem was shown, and its condition number was
analyzed. Furthermore, the multiscale mortar framework was developed for the domain de-
composition method of the first type. This included the error analysis and discussions of the
optimal interface mesh sizes. The Multiscale Stress Basis (MSB) implementation technique
was presented in order to achieve a potential speed up in case of coarse interface grids. A
range of numerical tests demonstrated the convergence of the method, the number of iter-
ations required to solve the interface problems as well as the applicability of the MSB in
realistic setting.

As for the future work, it would be of interest to apply the proposed methods in the
framework of optimal control, statistical and computational inverse problems that rely heav-
ily on the efficiency and robustness of the solution of underlying PDEs.

Another potential direction is in applying the MFMFE-MSMFE method in the fluid-
poroelastic structure interaction setting, where the coupled multipoint method can be used
to discretize the Biot part of the problem. With this, and further development of the domain
decomposition method for Stokes-Biot, we would obtain a robust and locking-free method,

suitable for efficient parallel implementation.
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APPENDIX

CODE

A.1 HIGHER ORDER MFMFE METHOD IMPLEMENTATION IN
DEALL.II

The Listing A.1.1 presents the implementation of an arbitrary order multipoint flux mixed
finite element method (MFMFE) for the Darcy equation of flow in porous medium and
illustrates the use case of the new enhanced Raviart-Thomas finite element (4.1.16) for the

purposes of local elimination of velocity degrees of freedom.

Listing A.1.1: Complete deal.IT implementation of MFMFE method of order k

1| /*

2 *

3 * This file is part of the deal.Il Code Gallery.
4 *

5 *

6 *

7 * Awuthor: FEldar Khattatov, University of Pittsburgh, 2018
8 */

9

10

11 | // @sect8{Include files}

12

13 | // First, the list of necessary header files. There is not
14 | // much new here, the files are included in order

15 | // base—lac—grid—dofs—numerics followed by the Ct+ headers.
16 |#include <deal.IIl/base/convergence_table.h>

17 |#include <deal.II/base/quadrature_lib.h>

18 |#include <deal.II/base/logstream.h>

19 |#include <deal.II/base/timer.h>

20 |#include <deal.II/base/work_stream.h>

22 |#include <deal.II/lac/full_matrix.h>

23 |#include <deal.II/lac/solver_cg.h>

24 |#include <deal.II/lac/block_sparse_matrix.h>
25 |#include <deal.II/lac/block_vector.h>
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#include <deal.IIl/lac/precondition.h>

#include <deal.II/grid/grid_-generator.h>
#include <deal.Il/grid/grid_-tools.h>
#include <deal.II/grid/grid_-in.h>

#include <deal.II/grid/tria.h>

#include <deal.II/dofs/dof_renumbering.h>
#include <deal.Il/dofs/dof_tools.h>
#include <deal.II/fe/fe_dgq.h>

#include <deal.IIl/fe/fe_system.h>

#include <deal.II/fe/fe_tools.h>

#include <deal.II/numerics/vector_tools.h>
#include <deal.Il/numerics/matrix_tools.h>
#include <deal.II/numerics/data_out.h>

#include <fstream>
#include <unordered_map>

// This is a header needed for the purposes of the
// multipoint flux mized method, as it declares the

// new enhanced Raviart—Thomas finite element.
#include <deal.Il/fe/fe_rt_bubbles.h>

// For the sake of readability, the classes representing
// data, i.e. RHS, BCs, permeability tensor and the ezact
// solution are placed in a file data.h which is included

// here
#include ”data.h”

// As always the program is in the namespace of its own with
// the deal.Il classes and functions imported into it
namespace MFMFE

{

using namespace dealii;
// @sect3{ Definition of multipoint fluz assembly data structures}

// The main idea of the MFMFE method is to perform local elimination

// of the welocity variables in order to obtain the resulting

// pressure system. Since in deal.Il assembly happens cell—wise,

// some extra work meeds to be dome in order to get the local

// mass matrices $A_i$ and the corresponding to them $B_i$.

namespace DataStructures

{
// This will be achieved by assembling cell—wise, but instead of placing
// the terms into a global system matriz, they will populate node—associated
// full matrices. For this, a data structure with fast lookup is crucial, hence
// the hash table, with the keys as Point<dim>
template <int dim>
struct hash_points

{

size_t operator ()(const Point<dim> &p) const

{
size_t hl,h2,h3;
hl = std:: hash<double>()(p[0]);

switch (dim)

{

case 1:
return hl;

case 2:
h2 = std::hash<double>()(p[1]);
return (hl "~ h2);

case 3:
h2 = std::hash<double>()(p[1
h3 = std:: hash<double>()(p[2
return (hl ~ (h2 << 1)) " h3;

default:

)
)3
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IE

//
//
a

Assert (false, ExcNotImplemented ());

}
}

Here, the actual hash—tables are defined. We use the C++ STL
<code>unordered-map</code>, with the hash function specified
above. For convenience these are aliased as follows

template <int dim>

us

ing PointToMatrixMap = std:: unordered_-map<Point<dim>,
std ::map<std :: pair<types:: global_dof_index ,types:: global_dof_index >, double>,
hash_points<dim>>;

template <int dim>

us

ing PointToVectorMap = std :: unordered_map<Point<dim>,
std :: map<types:: global_dof_index , double>,
hash_points<dim>>;

template <int dim>

us

ing PointTolndexMap = std :: unordered_map<Point<dim>,
std ::set<types:: global_dof_index >, hash_points<dim>>;

Next, since this particular program allows for the use of
multiple threads, the helper CopyData structures

are defined. There are two kinds of these, one is used

for the copying cell—wise contributions to the corresponging
node—associated data structures...

template <int dim>
struct NodeAssemblyCopyData

{

I

//
//
//

PointToMatrixMap<dim> cell_mat ;

PointToVectorMap<dim> cell_vec;

PointTolndexMap<dim> local_pres_indices;
PointTolndexMap<dim> local_vel_indices;

std :: vector<types:: global_dof_index> local_dof_indices;

... and the other one for the actual process of
local wvelocity elimination and assembling the global
pressure system:

template <int dim>
struct NodeEliminationCopyData

{

s

//
//
//
a

FullMatrix<double> node_pres_matrix;
Vector<double> node_pres_rhs;
FullMatrix<double> Ainverse;
FullMatrix<double> pressure_matrix;

Vector<double> velocity_rhs;
Vector<double> vertex_vel_solution;
Point<dim> pP;

Similarly , two ScratchData classes are defined.
One for the assembly part, where we need
FEValues, FEFaceValues, Quadrature and storage
for the basis fuctions...

template <int dim>
struct NodeAssemblyScratchData

{

NodeAssemblyScratchData (const FiniteElement<dim> &fe ,
const Triangulation<dim> &tria ,
const Quadrature<dim> &quad ,
const Quadrature<dim—1> &f_quad);

NodeAssemblyScratchData (const NodeAssemblyScratchData &scratch_data);

FEValues<dim> fe_values;
FEFaceValues<dim> fe_face_values;
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std :: vector<unsigned int> n_faces_at_vertex;

const unsigned long num-_cells;

std :: vector<Tensor <2,dim>> k_inverse_values;

std :: vector<double> rhs_values;

std :: vector<double> pres_bc_values;

std :: vector<Tensor <1,dim> > phi_u;

std :: vector <double> div_phi_u;

std :: vector <double> phi_p;

s

template <int dim>
NodeAssemblyScratchData<dim >::

NodeAssemblyScratchData (const FiniteElement<dim> &fe ,
const Triangulation<dim> &tria ,
const Quadrature<dim> &quad,
const Quadrature<dim—1> &f_quad)

fe_values (fe,
quad ,

update_values | update_gradients |
update_quadrature_points |

fe_face_values (fe,

f_quad ,

update_values

update_JxW _values
num_cells (tria.n_active_cells ()),
k_inverse_values (quad.size ()),
rhs_values (quad.size ()),
pres_bc_values (f_quad.size ()),
phi_u(fe.dofs_per_cell),
div_phi_u(fe.dofs_per_cell),
phi_p(fe.dofs_per_cell)

update_-JxW_values),

| update_quadrature_points |
| update_normal_vectors),

{
n_faces_at_vertex.resize(tria.n_vertices (), 0);
typename Triangulation<dim>::active_face_iterator
face = tria.begin_active_face (), endf = tria.end_face ();
for (; face != endf; ++face)
for (unsigned int v=0; v<GeometryInfo<dim>::vertices_per_face; ++v)
n_faces_at_vertex [face—>vertex_index (v)] 4+= 1;
}

template <int dim>
NodeAssemblyScratchData<dim >::

NodeAssemblyScratchData (const NodeAssemblyScratchData &scratch_data)

fe_values (scratch_data.fe_values.get_fe(),
scratch_data.fe_values.get_quadrature (),
update_values | update_gradients |
update_quadrature_points |

fe_face_values (scratch_data.fe_face_values.get_fe(),

scratch_data.fe_face_values.get_quadrature (),

| update_quadrature_points |

| update_normal_vectors),

n_faces_at_vertex (scratch_data.n_faces_at_vertex),

num_cells (scratch_data.num_cells),

k_inverse_values(scratch_data.k_inverse_values),

rhs_values(scratch_data.rhs_values),

pres_bc_values (scratch_data.pres_bc_values),

update_values
update_JxW _values

phi_u(scratch_data.phi-u),

div_phi_u(scratch_data.div_phi_u),

phi_p(scratch_data.phi_p)

{}

// ...and the other, simpler one, for the
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struct VertexEliminationScratchData
{
VertexEliminationScratchData () = default;
VertexEliminationScratchData (const VertexEliminationScratchData &scratch_data);

FullMatrix<double> velocity_matrix;
Vector<double> pressure_rhs;

Vector<double> local_pressure_solution;
Vector<double> tmp_rhsl;
Vector<double> tmp_rhs2;
Vector<double> tmp_rhs3;

IE

VertexEliminationScratchData ::
VertexEliminationScratchData (const VertexEliminationScratchData &scratch_data)

velocity_matrix (scratch_data.velocity_matrix),
pressure_rhs(scratch_data.pressure_rhs),
local_pressure_solution (scratch_data.local_pressure_solution),
tmp_rhsl (scratch_data.tmp-_rhsl),
tmp_rhs2(scratch_data.tmp._rhs2),

tmp_rhs3 (scratch_data.tmp_rhs3)

{

// @sect3{The <code>MultipointMizedDarcyProblem</code> class template}

// The main class, besides the constructor and destructor, has only one public member
// <code>run()</code>, similarly to the tutorial programs. The private members can
// be grouped into the omes that are used for the cell—wise assembly, nodal

// elimination , pressure solve, wvertex wvelocity recovery and postprocessing. Apart
// from the MFMFFE-specific data structures, the rest of the members should look

// familiar.

template <int dim>

class MultipointMixedDarcyProblem

public:
MultipointMixedDarcyProblem (const unsigned int degree);
“MultipointMixedDarcyProblem ();
void run (const unsigned int refine);
private:
void assemble_system_cell
(const typename DoFHandler<dim>::active_cell_iterator &cell,
DataStructures :: NodeAssemblyScratchData<dim> &scratch_data ,
DataStructures :: NodeAssemblyCopyData<dim> &copy-data );
void copy-cell_to_node (const DataStructures:: NodeAssemblyCopyData<dim> &copy_-data );
void node_assembly ();
void make_cell_centered_sp ();
void nodal_elimination
(const typename DataStructures::PointToMatrixMap<dim >::iterator &n_it ,
DataStructures:: VertexEliminationScratchData &scratch_data ,
DataStructures :: NodeEliminationCopyData<dim> &copy-data);
void copy-node_to_system
(const DataStructures:: NodeEliminationCopyData<dim> &copy_data );
void pressure_assembly ();
void solve_pressure ();
void velocity_assembly
(const typename DataStructures:: PointToMatrixMap<dim >::iterator &n_it ,
DataStructures :: VertexEliminationScratchData &scratch_data ,
DataStructures :: NodeEliminationCopyData<dim> &copy-data);
void copy-node_velocity_to_global
(const DataStructures:: NodeEliminationCopyData<dim> &copy_data);
void velocity_recovery ();
void reset_data_structures ();
void compute_errors (const unsigned int cycle);
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298 void output_-results (const unsigned int cycle, const unsigned int refine);
299

300 const unsigned int degree;

301 Triangulation<dim> triangulation;

302 FESystem<dim> fe;

303 DoFHandler<dim> dof_handler;

304 BlockVector<double> solution;

305

306 SparsityPattern cell_centered_sp;

307 SparseMatrix<double> pres_system_matrix;

308 Vector<double> pres_rhs;

309

310 std :: unordered_map<Point<dim>,

311 FullMatrix<double>,

312 DataStructures:: hash_points<dim>> pressure_matrix;

313 std :: unordered_map<Point<dim>,

314 FullMatrix<double>,

315 DataStructures :: hash_points<dim>> A _inverse;

316 std :: unordered_map<Point<dim>,

317 Vector<double >,

318 DataStructures:: hash_points<dim>> velocity_rhs;

319

320 DataStructures :: PointToMatrixMap<dim> node_matrix;

321 DataStructures :: PointToVectorMap<dim> node_rhs;

322

323 DataStructures :: PointTolndexMap<dim> pressure_indices;

324 DataStructures :: PointTolndexMap<dim> velocity_indices;

325

326 unsigned long n_.v, n_p;

327

328 Vector<double> pres_solution;

329 Vector<double> vel_solution;

330

331 ConvergenceTable convergence_table;

332 TimerOutput computing_timer;

333 s

334

335 // @sect4{ Constructor and destructor, <code>reset_data_structures</code>}
336

337 // In the constructor of this class, we store the wvalue that was

338 // passed in concerning the degree of the finite elements we shall use (a
339 // degree of one would mean the use of @ref FE_RT_Bubbles(1) and @ref FEDGQ(0)),
340 // and then construct the wvector wvalued element belonging to the space $Z_h"k$
341 // described in the thesis. The constructor also takes care of initializing the
342 // computing timer, as it is of interest for wus how well our method performs.
343 template <int dim>

344 MultipointMixedDarcyProblem<dim >:: MultipointMixedDarcyProblem

345 (const unsigned int degree)

346 :

347 degree (degree),

348 fe (FE_RT_Bubbles<dim>(degree), 1,

349 FEDGQ<dim>(degree —1), 1),

350 dof_handler (triangulation),

351 computing_timer (std :: cout, TimerOutput::summary,

352 TimerOutput:: wall_times)

353 {}

354

355

356 // The destructor clears the <code>dof_handler</code> and

357 // all of the data structures we used for the method.

358 template <int dim>

359 MultipointMixedDarcyProblem<dim >::” MultipointMixedDarcyProblem ()

360 {

361 reset_data_structures ();

362 dof_handler.clear ();

363 }

364

365

197



366 // This method clears all the data that was used after one refinement

367 // cycle.

368 template <int dim>

369 void MultipointMixedDarcyProblem<dim >::reset_data_structures ()

370 {

371 pressure_indices . clear ();

372 velocity_indices.clear ();

373 velocity_rhs.clear ();

374 A_inverse.clear ();

375 pressure_matrix.clear ();

376 node_matrix. clear ();

377 node_rhs. clear ();

378 }

379

380

381 // @sect4{Cell—wise assembly and creation of the local, nodal—based data structures}
382

383 // First, the function that copies local cell contributions to corresponding nodal
384 // matrices and vectors is defined. It places the wvalues obtained from local cell
385 // integration into the correct place in a matriz/vector corresponging to a specific
386 // mnode.

387 template <int dim>

388 void MultipointMixedDarcyProblem<dim >::copy_-cell_to_node

389 (const DataStructures:: NodeAssemblyCopyData<dim> &copy-data)

390

391 for (auto m : copy-data.cell_mat)

392 {

393 for (auto p : m.second)

394 node_matrix [m. first |[p. first] 4= p.second;

395

396 for (auto p : copy-data.cell_vec.at(m. first))

397 node_rhs [m. first |[p. first] += p.second;

398

399 for (auto p : copy-data.local_pres_indices.at(m. first))

400 pressure_indices [m. first |. insert (p);

401

402 for (auto p : copy-data.local_vel_indices.at(m. first))

403 velocity_indices [m. first]. insert(p);

404 }

405 }

406

407

408

409 // Second, the function that does the cell assembly is defined. While it is

410 // similar to the tutorial programs in a way it uses scrath and copy data

411 // structures, the need to localize the DOFs leads to several differences.

412 template <int dim>

413 void MultipointMixedDarcyProblem<dim >::

414 assemble_system_cell (const typename DoFHandler<dim>::active_cell_iterator &cell ,
415 DataStructures :: NodeAssemblyScratchData<dim> &scratch_data ,
416 DataStructures :: NodeAssemblyCopyData<dim> &copy-data)
417 {

418 copy-data.cell_mat.clear ();

419 copy-data.cell_vec.clear ();

420 copy-data.local_vel_indices.clear ();

421 copy-data.local_pres_indices.clear ();

422

423 const unsigned int dofs_per_cell = fe.dofs_per_cell;

424 const unsigned int n_q_points = scratch_data.fe_values.get_quadrature (). size ();
425 const unsigned int n_face_q_points

426 = scratch_data.fe_face_values.get_quadrature (). size ();

427

428 copy-data.local_-dof_indices.resize(dofs_per_cell);

429 cell —>get_dof_indices (copy-data.local_dof_indices);

430

431 scratch_data.fe_values.reinit (cell);

432

433 const Klnverse<dim> k_inverse;

198



434 const RightHandSide<dim> rhs;

435 const PressureBoundaryValues<dim> pressure_bc;

436

437 k_inverse.value_list (scratch_data.fe_values.get_quadrature_points(),

438 scratch_data.k_inverse_values);

439 rhs. value_list

440 (scratch_data.fe_values.get_quadrature_points (), scratch_data.rhs_values);
441

442 const FEValuesExtractors:: Vector velocity (0);

443 const FEValuesExtractors:: Scalar pressure (dim);

444

445 const unsigned int n_vel = dimxpow(degree+1,dim);

446 std :: unordered_map<unsigned int, std::unordered_map<unsigned int, double>> div_map;
447

448 // One, we need to be able to assemble the communication between wvelocity and
449 // pressure variables and put it on the right place in our final, local wversion
450 // of the B matriz. This is a little messy, as such communication is not in fact
451 // local, so we do it in two steps. First, we compute all relevant LHS and RHS
452 for (unsigned int q=0; gq<n-q-points; 4++q)

453

454 const Point<dim> p = scratch_data.fe_values.quadrature_point(q);

455

456 for (unsigned int k=0; k<dofs_per_cell; ++k)

457 {

458 scratch_data.phi_u[k]

459 = scratch_data.fe_values[velocity].value(k, q);

460 scratch_data.div_phi_u [k]

461 = scratch_data.fe_values|[velocity ].divergence (k, q);

462 scratch_data.phi_p [k]

463 = scratch_data.fe_values[pressure].value (k, q);

464 }

465

466 for (unsigned int i=0; i<dofs_per_cell; ++i)

467 {

468 for (unsigned int j=n_vel; j<dofs_per_cell; ++j)

469

470 double div_term = (— scratch_data.div_phi_u[i] * scratch_data.phi_p[j]
471 — scratch_data.phi_p[i] % scratch_data.div_phi_u[j])
472 x scratch_data.fe_values . JxW(q);

473

474 if (std::abs(div_term) > 1l.e—12)

475 div_.map[i][j] += div_term;

476 }

477

478 double source_term = —scratch_data.phi_p[i] * scratch_data.rhs_values|[q]
479 * scratch_data.fe_values.JxW(q);

480

481 if (std::abs(scratch_data.phi_p[i]) > 1l.e—12 ||

482 std :: abs(source_term) > 1.e—12)

483 copy-data.cell_vec [p]|[copy-data.local_dof_indices[i]] 4= source_term;
484

485 }

486

487 // Then, by making another pass, we compute the mass matriz terms and incorporate
488 // the divergence form and RHS accordingly. This second pass, allows us to know
489 // where the total contribution will be put in the nodal data structures, as with
490 // this choice of quadrature rule and finite element only the basis functions
491 // corresponding to the same quadrature points yield non—zero contribution.

492 for (unsigned int q=0; q<n_q.-points; ++q)

493 {

494 std ::set<types:: global_dof_index> vel_indices;

495 const Point<dim> p = scratch_data.fe_values.quadrature_point(q);

496

497 for (unsigned int k=0; k<dofs_per_cell; ++k)

498 {

499 scratch_data.phi_u[k] = scratch_data.fe_values[velocity]. value(k, q);
500 scratch_data.div_phi_u [k]

501 = scratch_data.fe_values[velocity]. divergence (k, q);

199



502 scratch_data.phi_p[k] = scratch_data.fe_values[pressure].value (k, q);
503 }

504

505 for (unsigned int i=0; i<dofs_per_cell; ++i)

506 for (unsigned int j=i; j<dofs_per_cell; 4++j)

507

508 double mass_term = scratch_data.phi_u[i]

509 x scratch_data.k_inverse_values|[q]

510 x scratch_data.phi_u[j]

511 % scratch_data.fe_values.JxW(q);

512

513 if (std::abs(mass_term) > 1l.e—12)

514 {

515 copy-data.cell_mat [p][std:: make_pair(copy-data.local_dof_indices [i],
516 copy-data.local_dof_indices[j])] += mass_term;
517 vel_indices.insert (i);

518 copy-data.local_vel_indices [p]. insert (copy-data.local_dof_indices[j]);
519

520 }

521

522 for (auto i : vel_indices)

523 for (auto el : div_map[i])

524 if (std::abs(el.second) > 1l.e—12)

525 {

526 copy-data.cell_mat [p][std:: make_pair(copy-data.local_dof_indices|[i],
527 copy-data.local_dof_indices[el.first])] += el.second;
528 copy-data.local_pres_indices [p]. insert

529 (copy-data.local_dof_indices[el.first]);

530

531 }

532

533 // The pressure boundary conditions are computed as in step—20,

534 std :: map<types:: global_dof_index ,double> pres_bc;

535 for (unsigned int face_no=0;

536 face_no<GeometryInfo<dim >:: faces_per_cell;

537 ++face_no)

538 if (cell —>at_boundary(face_no))

539 {

540 scratch_data.fe_face_values.reinit (cell, face_no);

541 pressure_bc.value_list (scratch_data.fe_face_values.get_quadrature_points (),
542 scratch_data.pres_bc_values);

543

544 for (unsigned int q=0; gq<n_face_q_points; ++q)

545 for (unsigned int i = 0; i < dofs_per_cell; ++i)

546

547 double tmp = —(scratch_data.fe_face_values[velocity].value(i, q) =
548 scratch_data.fe_face_values.normal_vector(q)
549 scratch_data.pres_bc_values[q] =x

550 scratch_data.fe_face_values .JxW(q));

551

552 if (std::abs(tmp) > 1.e—12)

553 pres_bc[copy-data.local_dof_indices [i]] 4= tmp;

554 }

555 }

556

557 // ...but we distribute them to the corresponding nodal data structures
558 for (auto m : copy-data.cell_vec)

559 for (unsigned int i=0; i<dofs_per_cell; ++i)

560 if (std::abs(pres_bc[copy.-data.local_dof_indices[i]]) > 1l.e—12)

561 copy-data.cell_vec [m. first |[copy-data.local_dof_indices[i]]

562 += pres_bc[copy_data.local_dof_indices [i]];

563 |}

564

565

566 // Finally , <code>node_assembly()</code> takes care of all the

567 // local computations via WorkStream mechanism. Notice that the choice

568 // of the quadrature rule here is dictated by the formulation of the

569 // method. It has to be <code>degree+1</code> points Gauss—Lobatto
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// for the wvolume integrals and <code>degree</code> for the face omnes,
// as mentioned in the introduction.

template <int dim>

void MultipointMixedDarcyProblem<dim >::node_assembly ()

TimerOutput :: Scope t(computing_timer, ”Nodal assembly”);

dof_handler.distribute_dofs (fe);

DoFRenumbering :: component_wise (dof_handler);

std :: vector<types:: global_dof_index> dofs_per_component (dim+1);
DoFTools:: count_dofs_per_component (dof_handler, dofs_per_component);

QGaussLobatto<dim> quad(degree+1);
QGauss<dim—1> face_quad (degree);

n_v = dofs_per_component [0];
n_p dofs_per_-component [dim ];

pres_rhs.reinit (n_p);

WorkStream :: run(dof_handler. begin_active (),
dof_handler.end (),
*this ,
&MultipointMixedDarcyProblem :: assemble_system_cell ,
&MultipointMixedDarcyProblem :: copy_-cell_to_node ,
DataStructures :: NodeAssemblyScratchData<dim>(fe ,
triangulation ,
quad ,
face_quad),
DataStructures :: NodeAssemblyCopyData<dim > ());

// @sectf{Making the sparsity pattern}

// Having computed all the local contributions, we actually have
// all the information needed to make a cell—centered sparsity
// pattern manually. We do this here, because @Qref SparseMatrizEZ
// leads to a slower solution.

template <int dim>

void MultipointMixedDarcyProblem<dim >:: make_cell_centered_sp ()

{

TimerOutput :: Scope t(computing_-timer, ”Make sparsity pattern”);
DynamicSparsityPattern dsp(n_p, n_p);

std::set<types:: global_dof_index >::iterator pi_it, pj-it;
unsigned int i, j;

for (auto el : node_matrix)
for (pi-it = pressure_indices[el.first].begin(), i = 0;
pi-it != pressure_indices[el. first].end();

++pi-it , ++i)
for (pj-it = pi-it, j = 0;
pj-it != pressure_indices[el. first].end();
Epi_it , )
dsp.add(* pi-it — n_v, *pj_it — n_v);

dsp.symmetrize ();
cell_centered_sp.copy-from (dsp);
pres_system_matrix.reinit (cell_centered_sp);

// @sectf{{The local elimination procedure}

// This function finally performs the local elimination procedure.
// Mathematically, it follows the same idea as in computing the
// Schur complement (as mentioned in the introduction) but we do
// so locally. Namely, local wvelocity DOFs are expressed in terms
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// of corresponding pressure wvalues,

// pressure

systems.

template <int dim>
void MultipointMixedDarcyProblem <dim >::
nodal_elimination (const typename DataStructures::PointToMatrixMap<dim>::iterator &n_it ,
DataStructures:: VertexEliminationScratchData &scratch_data ,

DataStructures :: NodeEliminationCopyData<dim> &copy-data)

and then wused for the local

unsigned int n_edges = velocity_indices.at((*n_it). first).size ();
unsigned int n_cells = pressure_indices.at((xn_-it). first ).size ();

scratch_data.velocity_matrix.reinit (n_edges,n_-edges);
copy-data.pressure_matrix.reinit (n_-edges,n_cells);

copy-data.
scratch_data.pressure_rhs.reinit(n_cells);

{

std ::set<types

velocity_rhs.reinit (n_edges);

unsigned int i;
for (vi-it = velocity_indices.at((*n_it ). first).begin(), i = 0;
it != velocity.indices.at((*n_it). first).end();

HHvioit , ++i)

vi_

{

unsigned int j;
for (vj-it = velocity_indices.at((*n_it).first).begin(), j = 0;
vj-it != velocity_indices.at((*xn_it). first ).end();

{

}

Hvijoit , ++j)

scratch_data.velocity_matrix .add

::global_dof_index >::iterator vi_it , vj-it, p-_it;

(i, j, node_matrix[(*n_it). first][std:: make_pair(xvi_it , *vj_it)]);

if (j 1= i)

scratch_data.velocity_-matrix.add
(j, i, node.matrix[(*xn_it ). first |[std:: make_pair(xvi_it , *xvj_it)]);

for (p-it = pressure_indices.at((*n_it ). first ).begin(), j = 0;
p-it != pressure_indices.at((*n_it). first ).end();

+Hpoit, ++j)

copy-data.pressure_matrix.add
(i, j, node_matrix[(*n_it ). first |[std:: make_pair(xvi_it, =xp_it)]);

copy-data.velocity_rhs (i) += node_rhs.at ((*n_it). first )[* vi_it ];

for (p-it = pressure_indices.at((*n_it).first).begin(), i = 0;
p-it != pressure_indices.at((*xn_it). first ).end();

+p-it , ++i)

scratch_data.pressure_rhs (i) += node_rhs.at ((*n_it ). first )[*p-it];

}

copy-data.Ainverse.reinit (n_edges ,n_edges);

scratch_data.tmp_rhsl.reinit (n_edges);
scratch_data.tmp_rhs2.reinit (n_edges);
scratch_data.tmp_rhs3.reinit (n_cells);

copy-data .
copy-data.
copy-data .

copy-data .
copy-data.

copy-data .
copy-data.

Ainverse.invert (scratch_data.velocity_matrix);

node_pres_matrix.reinit (n_cells ,

n_cells);

node_pres_.rhs = scratch_data.pressure_rhs;

node_pres_matrix = 0;

node_pres_matrix . triple_product (copy-data. Ainverse ,

copy-data.pressure_matrix ,

copy-data.pressure_matrix , true, false);

Ainverse.vmult (scratch_data.tmp_rhsl, copy-data.velocity_rhs,

pressure_matrix . Tvmult
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706 (scratch_data.tmp-rhs3, scratch_data.tmp-rhsl, false);

707 copy-data.node_pres_rhs = —1.0;

708 copy-data.node_pres_.rhs 4= scratch_data.tmp-rhs3;

709

710 copy-data.p = (xn_it). first;

711 1

712

713

714 // Each node’s pressure system is then distributed to a global pressure
715 // system, using the indices we computed in the previous stages.
716 template <int dim>

717 void MultipointMixedDarcyProblem<dim >::

718 copy-node_to_system (const DataStructures:: NodeEliminationCopyData<dim> &copy_data)
719 {

720 A_inverse [copy_data.p] = copy_-data.Ainverse;

721 pressure_matrix [copy_-data.p] = copy-data.pressure_matrix;

722 velocity_-rhs[copy-data.p] = copy-data.velocity_rhs;

723

724 {

725 std ::set<types:: global_dof_index >::iterator pi_it, pj-it;

726 unsigned int i;

727 for (pi.it = pressure_indices [copy_data.p].begin(), i = 0;

728 pi-it != pressure_indices [copy-data.p].end();

729 H+pi-it , ++i)

730 {

731 unsigned int j;

732 for (pj-it = pressure_indices|[copy-data.p].begin(), j = 0;
733 pj-it != pressure_indices[copy-data.p].end();

734 +pjoit , ++j)

735 pres_system_matrix .add

736 (xpi-it — n_v, *pj_it — n_v, copy-data.node_pres_matrix(i, j));
737

738 pres_rhs(xpi-it — n_v) += copy-data.node_pres_rhs(i);

739 }

740 }

741 1

742

743

744 // The @ref WorkStream mechanism is again used for the assembly
745 // of the global system for the pressure variable, where the

746 // previous functions are used to perform local computations.

747 template <int dim>

748 void MultipointMixedDarcyProblem<dim >:: pressure_assembly ()

749 {

750 TimerOutput :: Scope t(computing_timer, ”Pressure matrix assembly”);
751

752 QGaussLobatto<dim> quad(degree+1);

753 QGauss<dim—1> face_quad (degree);

754

755 pres_rhs.reinit (n_p);

756

757 WorkStream :: run (node_matrix . begin (),

758 node_matrix.end (),

759 *this |

760 &MultipointMixedDarcyProblem :: nodal_elimination ,
761 &MultipointMixedDarcyProblem :: copy_-node_to_system ,
762 DataStructures :: VertexEliminationScratchData (),
763 DataStructures :: NodeEliminationCopyData<dim > ());
764 }

765

766

767

768 // @sect4{ Velocity solution recovery}

769

770 // After solving for the pressure wvariable, we want to follow

771 // the above procedure backwards, in order to obtain the

772 // wvelocity solution (again, this is similar in nature to the

773 // Schur complement approach, see step—20, but here it is done
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774 // locally at each node). We have almost everything computed and
775 // stored already, including inverses of local mass matrices,

776 // so the following is a relatively straightforward implementation.
T template <int dim>

778 void MultipointMixedDarcyProblem<dim >::

779 velocity_assembly

780 (const typename DataStructures:: PointToMatrixMap<dim >::iterator &n_it ,
781 DataStructures:: VertexEliminationScratchData &scratch_data ,
782 DataStructures :: NodeEliminationCopyData<dim> &copy-data)

783 {

784 unsigned int n_edges = velocity_indices.at((*xn_it).first ).size ();
785 unsigned int n_cells = pressure_indices.at((xn_it). first ).size ();
786

787 scratch_data.tmp_rhsl.reinit (n_edges);

788 scratch_data.tmp_rhs2.reinit (n_edges);

789 scratch_data.tmp-rhs3.reinit(n_cells);

790 scratch_data.local_pressure_solution.reinit(n_cells);

791

792 copy-data.vertex_vel_solution.reinit(n-edges);

793

794 std::set<types:: global_dof_.index >::iterator p-_it;

795 unsigned int i;

796

797 for (p-it = pressure_indices [(*n_.it).first].begin(), i = 0;

798 p-it != pressure_indices[(*n_it). first].end ();

799 +Hp_it , ++i)

800 scratch_data.local_pressure_solution (i) = pres_solution(*p_it — n_v);
801

802 pressure_matrix [(*n_it ). first ].vmult(scratch_data.tmp_rhs2,

803 scratch_data.local_pressure_solution ,

804 false );

805 scratch_data.tmp_rhs2 x= —1.0;

806 scratch_data.tmp_rhs24+=velocity_rhs [(*n_it). first ];

807 A_inverse[(xn_it ). first ]. vmult(copy_-data.vertex_vel_solution ,
808 scratch_data.tmp_-rhs2

809 false);

810

811 copy-data.p = (*n_it). first;

812 }

813

814

815 // Copy modal velocities to a global solution vector by wusing
816 // local computations and indices from early stages.

817 template <int dim>

818 void MultipointMixedDarcyProblem <dim >::

819 copy-node_velocity_to_global

820 (const DataStructures:: NodeEliminationCopyData<dim> &copy_data)
821 {

822 std ::set<types:: global_dof_index >::iterator vi_it;

823 unsigned int i;

824

825 for (vi_it = velocity_indices [copy-data.p].begin(), i = 0;

826 vi_it != velocity_indices [copy-data.p].end();

827 visit , ++i)

828 vel_solution (*vi_-it) += copy-data.vertex_vel_solution (i);

829 }

830

831

832 // Use @ref WorkStream to run everything concurrently.

833 template <int dim>

834 void MultipointMixedDarcyProblem<dim>::velocity_recovery ()

835 {

836 TimerOutput :: Scope t(computing_-timer, ” Velocity solution recovery”);
837

838 QGaussLobatto<dim> quad(degree+1);

839 QGauss<dim—1> face_quad (degree);

840

841 vel_solution.reinit (n_-v);

204



842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909

WorkStream :: run (node_matrix . begin (),
node_matrix.end (),
*this ,
&MultipointMixedDarcyProblem :: velocity_assembly ,
&MultipointMixedDarcyProblem :: copy_-node_velocity_to_global ,
DataStructures:: VertexEliminationScratchData (),
DataStructures :: NodeEliminationCopyData<dim > ());

solution.reinit (2);
solution.block (0) = vel_solution;
solution.block (1) = pres_solution;
solution. collect_sizes ();

// @sect4{Pressure system solver}

// The solver part is trivial. We use the CG solver with no
// preconditioner for simplicity.

template <int dim>

void MultipointMixedDarcyProblem<dim >::solve_pressure ()

{

TimerOutput :: Scope t(computing_timer, ”Pressure CG solve”);
pres_solution.reinit (n_p);

SolverControl solver_control (2.0xn_p, le—10);
SolverCG<> solver (solver_control);

Preconditionldentity identity;
solver.solve (pres_system_matrix , pres_solution, pres_rhs, identity);

// @sect8{ Postprocessing}

// We have two postprocessing steps here, first one computes the
// errors in order to populate the convergence tables. The other
// one takes care of the output of the solutions in <code>.vtk</code>

// format.

// @sect4{Compute errors}

// The implementation of this function is almost identical to step—20.

// We use Q@ref ComponentSelectFunction as masks to use the right

// solution component (wvelocity or pressure) and @ref integrate_difference

// to compute the errors. Since we also want to compute Hdiv seminorm of the
// wvelocity error, one must provide gradients in the <code>FEzactSolution</code>
// class implementation to avoid exceptions. The only noteworthy thing here

// is that we again use lower order quadrature rule instead of projecting the
// solution to an appropriate space in order to show superconvergence, which is
// mathematically justified.

template <int dim>

void MultipointMixedDarcyProblem<dim >::compute_errors(const unsigned cycle)

{

TimerOutput :: Scope t(computing_timer, ”Compute errors”);

const ComponentSelectFunction<dim> pressure_mask (dim, dim+1);
const ComponentSelectFunction<dim> velocity_mask (std:: make_pair (0, dim), dim+1);

ExactSolution<dim> exact_solution;
Vector<double> cellwise_errors (triangulation.n_active_cells ());

QTrapez<l> q-trapez;
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QlIterated <dim> quadrature(q-trapez ,degree+2);
QGauss<dim> quadrature_super (degree);

VectorTools::integrate_difference (dof_handler, solution, exact_solution
cellwise_errors , quadrature,

VectorTools :: L2_norm,
&pressure_mask );
const double p_12_error = cellwise_errors.12_norm ();

VectorTools:: integrate_difference (dof_handler, solution, exact_solution

cellwise_errors , quadrature_super ,

VectorTools:: L2_norm,
&pressure_mask );
const double p_12_mid_error = cellwise_errors.l12_norm ();

VectorTools:: integrate_difference (dof_handler, solution, exact_solution ,

cellwise_errors , quadrature,

VectorTools :: L2 norm,
&velocity_mask);
const double u_12_error = cellwise_errors.12_norm ();

VectorTools:: integrate_difference (dof_handler, solution, exact_solution ,

cellwise_errors , quadrature,
VectorTools :: Hdiv_seminorm ,

&velocity_mask );
const double u_hd_error = cellwise_errors.12_norm ();

const unsigned int n_active_cells=triangulation.n_active_cells ();

const unsigned int n_dofs=dof_handler.n_dofs ();

convergence_table.add_value(”cycle”, cycle);
convergence_table.add_value(” cells” |, n_active_cells);
convergence_table.add-value(”dofs”, n_dofs);
convergence_table.add_value(” Velocity ,L2”, u_l2_error);
convergence_table.add-value(” Velocity ,Hdiv”, u_hd_error);
convergence_table.add_value(” Pressure ,L2”, p_l2_error);
convergence_table.add_-value(” Pressure ,L2—nodal”, p_12_mid_error);

// @sectf{Output results}

// This function also follows the same idea as in step—20 tutorial

// program. The only modification to it is the part involving
// a convergence table.

template <int dim>

void MultipointMixedDarcyProblem<dim >::output_results (const unsigned int cycle

{

const unsigned int refine)
TimerOutput :: Scope t(computing_timer, ”Output results”);

std :: vector<std ::string> solution_names (dim, 7u”);
solution_names . push_back (”p”);

std :: vector<DataComponentInterpretation:: DataComponentInterpretation>
interpretation (dim, DataComponentInterpretation:: component_is_part_of_vector);
interpretation.push_back (DataComponentlnterpretation:: component_is_scalar);

DataOut<dim> data_out;

data_out.add_-data_vector (dof_handler, solution, solution_names,

data_out.build_patches ();

std :: ofstream

interpretation);

output (”solution” + std::to_string (dim)+”d—"+4std :: to_string (cycle)+”.vtk”);

data_out.write_vtk (output);

convergence_table.set_precision (” Velocity ,L2”, 3);
convergence_table.set_precision (” Velocity ,Hdiv”, 3);
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convergence_table.set_precision (" Pressure ,L2”, 3);

convergence_table.set_precision (” Pressure ,L2—nodal”, 3);
convergence_table.set_scientific (” Velocity ,L2”, true);
convergence_table.set_scientific (” Velocity ,Hdiv”, true);
convergence_table.set_scientific (" Pressure ,L2”, true);
convergence_table.set_scientific (" Pressure ,L2—nodal”, true);
convergence_table.set_tex_caption (”cells”, "\\# cells”);
convergence_table.set_tex_caption (”dofs”, ”\\# dofs”);
convergence_table.set_tex_caption (” Velocity ,L2”, 78 \\[\\u — \\u-h\\|_-{L"2} $7);

convergence_table.set_tex_caption

(”Velocity ,Hdiv”, 7% \\|\\nabla\\cdot(\\u — \\u-h)\\|-{L"2} $7);

convergence_table.set_tex_caption (" Pressure ,L2”, ”$ \\|p — p-h\\|-{L 2} $7);
convergence_table.set_tex_caption (" Pressure ,L2—nodal”, ”$ \\|Qp — p-h\\|-{L"2} $7);
convergence_table.set_tex_format (”cells”, "1r”7);
convergence_table.set_tex_format (”dofs”, 7r”);

convergence_table.evaluate_convergence_rates

(”Velocity ,L2”, ConvergenceTable:: reduction_rate_log2);
convergence_table.evaluate_convergence_rates

(”Velocity ,Hdiv”, ConvergenceTable:: reduction_rate_log2);
convergence_table.evaluate_convergence_rates

(” Pressure ,L2” , ConvergenceTable:: reduction_rate_log2);
convergence_table.evaluate_convergence_rates
(” Pressure ,L2—nodal” , ConvergenceTable:: reduction_rate_log2);

std :: ofstream error_table_file(”error” + std::to_string (dim) + "d.tex”);

if (cycle = refine —1)
{
convergence_table. write_text (std::cout);
convergence_table.write_tex(error_table_file);

}

// @sect3{Run function}

// The driver method <code>run()</code>

// takes care of mesh generation and arranging calls to member methods in

// the right way. It also resets data structures and clear triangulation and
// DOF handler as we run the method on a sequence of refinements in order

// to record convergence rates.

template <int dim>

void MultipointMixedDarcyProblem<dim >::run(const unsigned int refine)

{

Assert(refine > 0, ExcMessage(”Must at least have 1 refinement cycle!”));

dof_handler.clear ();
triangulation.clear ();
convergence_table.clear ();

for (unsigned int cycle=0; cycle<refine; ++cycle)
{
if (cycle = 0)
{
// We first generate the hyper cube and refine it twice
// so that we could distort the grid slightly and
// demonstrate the method’s ability to work in such a
// case.
GridGenerator :: hyper_cube (triangulation, 0, 1);
triangulation.refine_global (2);
GridTools:: distort_-random (0.3, triangulation, true);
}
else
triangulation.refine_global (1);

node_assembly ();
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1046 make_cell_centered_sp ();

1047 pressure_assembly ();

1048 solve_pressure ();

1049 velocity_recovery ();

1050 compute_errors (cycle);

1051 output_results (cycle, refine);

1052 reset_data_structures ();

1053

1054 computing_timer.print_summary ();

1055 computing_timer.reset ();

1056 }

1057 }

1058 |}

1059

1060

1061 | // @sect3{The <code>main</code> function}

1062

1063 | // In the main functione we pass the order of the Finite Element as an argument
1064 | // to the constructor of the Multipoint Fluxz Mized Darcy problem , and the number
1065 | // of refinement cycles as an argument for the run method.

1066 |int main ()

1067

1068 try

1069 {

1070 using namespace dealii;

1071 using namespace MFMFE;

1072

1073 MultithreadInfo :: set_thread_limit ();

1074

1075 MultipointMixedDarcyProblem <2> mfmfe_problem (2);

1076 mfmfe_problem.run (6);

1077

1078 catch (std::exception &exc)

1079 {

1080 std::cerr << std::endl << std::endl

1081 << 7 7
1082 << std::endl;

1083 std :: cerr << ” Exception on processing: 7 << std::endl

1084 << exc.what () << std::endl

1085 << ”Aborting!” << std::endl

1086 << 7
1087 << std ::endl;

1088

1089 return 1;

1090 }

1091 catch (...)

1092 {

1093 std :: cerr << std::endl << std::endl

1094 << 7 7
1095 << std::endl;

1096 std:: cerr << ”Unknown exception!” << std::endl

1097 << " Aborting!” << std ::endl

1098 << 7 7
1099 << std ::endl;

1100 return 1;

1101 }

1102

1103 return 0;

1104 |}
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