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ABSTRACT 

In the genomic setting, most data have relative small sample size (n) considering large number of 

covariates (p). For this type of data structure, it is not appropriate to fit simple linear regression 

models since the variance would be large and it could encounter over-fitting. Methods for 

restraining the number of variables contained in the model are necessary. 

In this study, constrained best subset (CBS) and LASSO methods were performed to select 

covariates and detect differentially expressed (DE) genes. For comparison purpose, we set two 

different simulation settings for each method. Under univariate settings, all methods had type I 

error well controlled and CBS methods were more powerful than LASSO. However, LASSO had 

better prediction results compared to CBS methods even though it had more false positive 

covariates selected. Under genome-wide simulation settings, FDR only well controlled for larger 

sample size (n=50, 100). Other results have a similar trend as in the univariate setting. 

Beyond simulations, eight transcriptomic studies from post-mortem brain tissues of major 

depressive disorder (MDD) patients were used as a real data application to further compare the 

CBS2 method and LASSO. As the result of meta-analysis combining all eight studies, CBS2 

method generated more DE genes compared to LASSO. It also detected more significant pathways 

compared to LASSO. Our evaluations suggest that no method performs universally the best in the 
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small-n-large-p scenario and selection of the best method depends on sample size, dimensionality 

and the desired biological purpose. From the public health significance perspective, using CBS2 

method under small sample size genomic setting could help us detect more DE genes as well as 

more meaningful pathways. 
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1.0  INTRODUCTION 

Linear regression models are a simple linear approach modeling the relationship between a 

dependent variable and many independent variables. In real applications, there are usually a pool 

of candidate covariates among which only a few are predictive of the outcome. As a result, we 

need to apply model selection methods to find the important predictors. Common model selection 

techniques include forward selection, backward elimination, stepwise regression and criterion-

based procedures using e.g. Akaike information criterion (AIC), Bayes Information Criterion 

(BIC) or Mallow’s Cp statistics, etc. Tibshirani (1996) proposed a regularization method called 

“LASSO (least absolute shrinkage and selection operator)” to perform variable selection by putting 

a L1 penalty on the coefficients. As compared to other regularization methods such as ridge 

regression, the L1 penalty in LASSO can shrink coefficients to exact zeros, thus achieving the goal 

of variable selection (those variables with non-zero coefficients are retained). Due to its sparsity-

inducing property and easiness of implementation, it became a popular and useful alternative to 

traditional variable selection methods. However, when the sample size is small, it may encounter 

over-fitting problem (James, Gareth, et al. 2013). The BIC-based best subset selection (i.e. 

choosing the model that minimizes BIC) method can be a good alternative. In real scenarios, the 

searching space can grow too large when there are many candidate covariates, thus it is reasonable 

to put a maximum number of covariates allowed to balance biological interpretation and 

computation feasibility. Such methods can be called Constrained Best Subset selection (CBS) 
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methods. Wang et al. (2012) proposed a CBS approach using either BIC or p-values to determine 

the best set of confounders in each gene while detecting disease-associated genes with a random 

intercept model. However, when the number of covariate (p) is large, computing will become a 

problem to get the best model among all possible models (2p). As an alternative, we could use 

shrinkage method, also known as the regularization method. More details about LASSO regression 

will be explained in the method section. 

In addition to prediction and variable selection, quantifying the uncertainty in the 

coefficient estimates is also important in linear regression models to allow for valid statistical 

inference. Lee et al. (2016) developed a general approach to valid inference for LASSO estimates 

after model selection. For the CBS based methods, to correct the potential bias of the variable 

selection procedure, people usually use permutation to get the p-values for inference (Wang et al., 

2012). Till today, there is a lack of guidance for researchers on which methods to use for variable 

selection in real studies, especially when sample size is small. In this thesis, we will perform a 

thorough comparison between LASSO and CBS methods under small sample size genomic setting 

and evaluate their performance in type I error and false discovery rate (FDR) control, detection 

power, prediction, variable selection as well as valid inference. We will perform both simulations 

and real data analysis to assess the two methods. 

As the technology of generating genomic data improves, there are various kinds of genomic 

data type in biomedical field. (Babu, M. Madan, 2004) In our study, the real data sets that we used 

is the micro-array data which is obtained by microarray technology. It is an indispensable tool that 

many biologists use to monitor genome wide expression levels of genes in a given organism (Babu, 

M. Madan, 2004). Specifically, we will investigate eight major depressive disorder (MDD) 

datasets from Wang et al. (2012). They come from three patient cohorts (MD1, MD2, MD3) 
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obtained from different sources at different times. Tissues from the dorsolateral prefrontal cortex 

(DLPFC), anterior cingulated cortex (ACC) and amygdala (AMY) brain regions were analyzed by 

microarray experiments to generate eight data sets. Since the tissue used for microarray experiment 

comes from brain, it is expensive and rare. Therefore, the sample size for each study is small. 

Beyond that, there are three additional clinical variables (alcohol dependence, evidence of taking 

anti-depressant drugs and death by suicide) and two technical variables (PH level of brain tissues 

and post-mortem interval PMI) available for each patient. Our interest of this study is to identify 

differentially expressed genes that are related to MDD and corrected for the confounding effects 

from the clinical and technical variables. 

Consider the relative small sample size and the noise of the technology, it is of great 

importance to use the above variable selection methods to constrain the covariates that can be 

included in the model. Beyond that, we also performed meta-analysis using Fisher’s method to 

combine the p-values since the signal in each study is relatively weak. It helps us to improve the 

results of DE gene detection and find enriched biological pathways. 
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2.0  METHODS 

2.1 CONSTRAINED BEST SUBSET METHOD 

Due to the relatively small sample size and large number of covariates in the data set, it is not 

appropriate to use simple linear regression for variable selection and identifying differentially 

expressed genes. In this study, improved linear model called Constrained best subset model (CBS) 

with gene-specific variable selection was performed. Denote gene by g (1≤g ≤G), sample by i 

(1 ≤i ≤n), covariate by j (1 ≤j ≤p). To adjust for potential cofactors while detecting disease 

associated genes, consider the following linear model for each gene: 

𝑌𝑌𝑔𝑔𝑔𝑔 = �𝑋𝑋𝑖𝑖𝑖𝑖𝛽𝛽𝑔𝑔𝑔𝑔

𝑝𝑝

𝑗𝑗=1

+ 𝛽𝛽𝑔𝑔𝑔𝑔 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑖𝑖 + 𝜀𝜀𝑔𝑔𝑔𝑔  

Ygi: gene expression level for gene g in ith sample. 

Xij: value of jth covariate in ith sample. 

βgj: effect of jth covariate on the expression level of gene g. 

βgd: disease effect on the expression level of gene g. 

diseasei: disease indicator for ith sample. 

εgi: error term of ith sample for gene g. 

 

Among all the p covariates available, we assume only a small number of covariates 

(denoted as s, s<<p) are predictive of the gene expression thus β's of the other (p-s) covariates are 

zeros. The CBS method we introduce here test the disease effect while at the same time selecting 

for the best subset of covariates. It constrains the number of covariates that can be selected to be 
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at most K and searches for the best subset of variables which has the smallest Bayesian Information 

Criterion (BIC) among all possible pC1+pC2+…+pCk subsets. Three CBS methods with different 

K values (CBS1 (K=1), CBS2 (K=2) and CBS3 (K=3)) were compared for variable selection and 

differentially expressed gene detection in both simulation and real data application. 

Taking CBS2 method as an example, all possible linear models that included the disease 

indicator variable and at most two covariates were fitted and the one with the smallest BIC was 

selected.  After the best model was determined for each gene, we used likelihood ratio test to test 

whether there was disease effect on the gene expression for each gene (H0: βgd=0). However, this 

p-value is biased due to the best subset selection procedure and type I error is not well controlled. 

To solve this problem, we treated the observed p-value as the test statistics and performed a 

permutation test by shuffling sample labels (i.e. disease status) of patients. In this study, Bp is used 

to denote the number of permutations. At each permutation, the p-value of disease effect is 

obtained for all genes and generates a large matrix (G x Bp) as the null distribution of the p-value 

for disease status variable. Denoted by pg
(o) the derived p-value for gene g in observed data and 

pg’
(b) the derived p-value for gene g’ in the b-th permuted data. The permutation test p-value for 

gene g is obtained by: 

 

Similar process was performed for CBS1 and CBS3 models. 
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2.2 LASSO METHOD 

For comparison, we will compare CBS method to the commonly used regularization and variable 

selection method LASSO (R. Tibshirani 2016). Letting , the LASSO estimate: 

     subject to ∑ |𝛽𝛽𝛽𝛽| ≤ 𝑡𝑡𝑝𝑝
𝑗𝑗=1 , 

which is equivalent to:  

It starts with the full model with all the covariates included in the model and later shrinks some 

coefficients directly to zero based on the tuning parameter λ. The non-zero coefficients returned 

by LASSO indicates the selected variables. We use the R package “glmnet” (Jerome Friedman et 

al. 2017) to implement the LASSO method. Different values of the tuning parameter λ will give 

different degrees of sparsity. Therefore, the selection of tuning parameter is very important. In this 

study, we use leave-one-out cross-validation to select the best λ that minimizes the mean square 

error (MSE) for each gene. 

For LASSO, we use post-selective method to generate p-values of variables for inference. 

The post-selection method for LASSO was developed by Lee et al. (2016) to generate valid 

inference after model selection, so only those variables selected in the previous step will have 

meaningful p-values (Lee et al. Exact post-selection inference, with application to the lasso). If the 

disease indicator variable is not selected, we will enforce its p-value to be 1 since LASSO method 

does not treat it as an important predictor. We use the R package “selectiveInference” (Ryan 

Tibshirani et al. 2017) to perform the post-selection inference. 
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2.3 EVALUATION CRITERIA 

In the simulation section, we will perform univariate and genome-wide settings. For univariate 

setting in simulation, we evaluated the power, Type I error as well as variable selection 

performance for constrained best subset methods and LASSO. For genome-wide setting, we 

evaluated the detection power of differentially expressed genes, False Discovery Rate (FDR) and 

the variable selection performance. 

To evaluate variable selection performance of four methods (CBS1, CBS2, CBS3 and 

LASSO), we compared sensitivity, specificity and Youden index under both simulation settings. 

Sensitivity is calculated as the number of detected true features (true positives) divided by the total 

number of true features. Specificity is obtained by the number of negative features that are not 

detected (true negatives) divided by the total number of negative features. Negative features are 

those covariates not supposed to have relationship with the gene expression. To evaluate the 

overall performance, we use Youden index = sensitivity+ specificity -1. (All results are averaged 

over B=1000 replications for univariate setting and B=50 replications for genome-wide setting) 

Under univariate simulation setting, both Power and Type I error for differentially 

expressed gene detection were evaluated at the significance level of 0.05. Power is defined as the 

average number of detected DE genes divided by the simulation times (B=1000 replications). Type 

I error is defined as the incorrect positive findings under null (“false positive”). Beyond that, we 

also calculated the root mean square error (RMSE) in an independent testing set with sample size 

n=10,000 under univariate simulation setting. RMSE is defined as below: 
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Under genomic simulation setting, we evaluated the false discovery rate (FDR) considering 

the multiple comparison issue. FDR in this study is defined as the number of false positive genes 

among all detected genes. We use Benjamini-Hochberg method to correct p-value for multiple 

comparison and get q-values. We set q-value cutoff of 0.05 (nominal FDR) to detect differentially 

expressed genes between case and control groups and assess the true FDR. 

To evaluate the detection power of disease associated genes under genomic simulation 

setting, we plotted the number of true positive genes on the y-axis against top ranked genes (by p-

values) on the x-axis for each of the four methods. 

For real genomic data, since we do not know what is the true set of covariates that are 

related with gene expression level for each specific gene and which gene is significantly associated 

with the disease, we only compare CBS2 and LASSO model based on the number of detected 

genes given different FDR threshold. We also perform pathway enrichment analysis to examine 

biological annotation of detected genes using different methods. 
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3.0  SIMULATION 

3.1 SIMULATION SETTINGS 

We conducted both univariate and genomic simulations to evaluate the performance of constrained 

best subset method and LASSO method for differentially expressed gene detection and variable 

selection. For univariate simulation, we will assess the type I error, power, variable selection 

performance as well as the prediction error. For genomic simulation, we will assess both false 

discovery rate (FDR) and power.  

3.1.1 UNIVARIATE SETTING 

1. We simulated sample size n∈{20, 50, 100}. Each sample has 10 covariates (X1– X10) and a 

disease indicator variable. Each of X1-X10 was sampled from a standard normal distribution, i.e. 

X1– X10~ N (0, 1). Disease indicator variable was randomly sampled from {0, 1} for each sample. 

In addition, we also simulated an independent test set with sample size n=10,000 to evaluate the 

prediction errors (RMSE). 

2. We assume s=2 or 4 covariates that are predictive of the outcome. For s=2, we simulate each yi 

from N (β1•X1i+ β2•X2i+ β0•diseasei,1).  β0=β1=β2=β were set as {0.5, 1.3, 2} for each of the setting 

for a thorough comparison of the four methods. 

For s=4, we simulate each yi from N(β1•X1i+ β2•X2i +β3•X3i+ β4•X4i + β0•diseasei, 1). 

3. We similarly set β0=β1=β2=β3=β4=β ∈{0.5, 1.3, 2}. We run each of the univariate 

settings for B=1000 time and take the averaged results. 
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3.1.2 GENOMIC SETTING 

To better mimic the real data scenarios, we simulate another genomic setting with 100 genes in 

total. Further, we also simulate gene-gene dependency structure.  

1. We simulate 40 genes from 2 gene clusters (20 genes in each cluster) and another 60 

genes 

not belonging to any clusters. Each cluster has 5 differentially expressed genes and 15 noise 

genes. For the 60 independent genes, 10 out of 60 are generated as DE genes. In total, we have 20 

DE genes out of 100. 

2. For each of the two clusters (k=1,2), we sampled ∑k 20*20 ~ W-1 (ψ,60) (k=1,2), where Ψ 

= 0.5*I20 × 20 + 0.5*J20 × 20, W-1 denotes the inverse Wishart distribution, I is the identity matrix and 

J is the matrix with all elements equal to 1.  

3. We assume s=2 or 4 covariates predictive of the outcome as in the univariate setting. For 

s=2, we simulate (y1i, y2i, … y20i) from N (μ, ∑k 20*20) for genes from cluster k=1,2, where μ= (μ, 

μ, μ, μ, μ, 0, …, 0)T, μ= β11• X1i+ β12• X2i+ β10• diseasei. For s=4, μ= β11• X1i+ β12• X2i+ β13• X3i+ 

β14• X4i+ β10• diseasei  

The 60 independent genes are generated in a similar way as in the univariate setting. All 

effective coefficients βs are set as {0.5, 1.3, 2} for each of the two sub-settings. 

4. We run each of the genomic settings for B=50 times and take the averaged results. 
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3.2 SIMULATION RESULTS 

3.2.1 UNIVARIATE SETTING 

1. Type I error rate  

Table 1 shows the type I error rate of disease variable inference for four methods under 

different sample size situations. The simulation was repeated for B=1000 times for CBS and 

B=5000 for LASSO. To calculate permutation p-value for CBS, Bp=100 was used. 

As we can see from Table 1, all of the four methods well controlled the Type I error even 

when sample size is very small.  

 
Table 1. Type I error rate of four methods under different sample size situation 

 n=20 n=50 n=100 

CBS1 0.049(0.007) 0.039(0.006) 0.057(0.007) 

CBS2 0.051(0.007) 0.046(0.007) 0.030(0.005) 

CBS3 0.047(0.007) 0.053(0.007) 0.038(0.006) 

LASSO 0.0528(0.003) 0.0514(0.003) 0.0506(0.003) 

 

2. Power  

Table 2 shows the results of power for disease inference under different sample size and 

different effect size settings for each of the four methods when s=2. 

When the sample size is small (n=20), all the CBS methods are more powerful than LASSO 

method. As the sample size increases, LASSO becomes more powerful. In addition, the CBS 

methods outperform LASSO method when the signals are weaker (β=0.5, 1.3) and perform more 
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similarly as LASSO when the signal is strong and sample size is large. Since the true s=2, CBS2, 

which selects covariates up to 2, is the most powerful one among all three CBS methods.   

Table 3 show the results of power for disease inference under different sample size and 

different effect size settings for each of the four methods when s=4. 

When the sample size is small (n=20), all the CBS methods are more powerful than LASSO 

method. As the sample size increases, LASSO becomes more powerful. As effect size increases, 

the power of CBS methods increases in a much large scale than LASSO. In addition, the CBS 

methods outperform LASSO method when the signals are weaker (β=0.5, 1.3) and perform more 

similarly as LASSO when the signal is strong and sample size is large. Even though the truth is 

s=4, CBS methods still perform better at disease inference when sample size is small and CBS3 is 

close to the truth so that it is the most powerful one among all three methods. 

 

Table 2.Power of four methods under different sample size and different effect size situation when s=2 

 β=0.5 β=1.3 β=2 

 n=20 n=50 n=100 n=20 n=50 n=100 n=20 n=50 n=100 

CBS1 0.132 0.312 0.604 0.339 0.766 0.975 0.429 0.872 0.995 

CBS2 0.132 0.357 0.689 0.626 0.989 1 0.964 1 1 

CBS3 0.122 0.344 0.682 0.563 0.984 1 0.927 1 1 

LASSO 0.074 0.423 0.741 0.098 0.824 0.914 0.119 0.883 0.944 
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Table 3. Power of four methods under different sample size and different effect size situation when s=4 

 β=0.5 β=1.3 β=2 

 n=20 n=50 n=100 n=20 n=50 n=100 n=20 n=50 n=100 

CBS1 0.113 0.245 0.486 0.18 0.41 0.738 0.19 0.446 0.776 

CBS2 0.105 0.269 0.528 0.189 0.534 0.856 0.225 0.603 0.901 

CBS3 0.104 0.302 0.586 0.269 0.734 0.967 0.35 0.839 0.991 

LASSO 0.056 0.455 0.778 0.067 0.855 0.931 0.088 0.909 0.953 

 

3. Youden index of variable selection performance 

Youden index is calculated as sensitivity+ specificity -1. Table 8-9 below show the Youden 

Index for each of the four methods. 

All the three CBS methods perform better than LASSO in variable selection. Among them, 

since the true s=2, CBS2 performs the best. When sample size is fixed for each method, Youden 

Index increases as the effect size increases. In addition, when effect size is fixed for each method, 

Youden Index increases as the sample size increases.  

When the true s=4, CBS methods performs better than LASSO when sample size is small 

(n=20) and similar as LASSO when sample size is large. LASSO method performs better than 

CBS methods when sample size is large (n=50, 100) and effect size is large (β=2). 
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Table 4. Youden Index of four methods under different sample size situation and different effect size for 
variable selection performance when s=2 

 
 n=20 n=50 n=100 

 β=0.5 β=1.3 β=2 β=0.5 β=1.3 β=2 β=0.5 β=1.3 β=2 

CBS1 0.307 0.485 0.494 0.476 0.5 0.5 0.498 0.5 0.5 

CBS2 0.474 0.981 0.999 0.855 1 1 0.995 1 1 

CBS3 0.483 0.900 0.913 0.842 0.952 0.949 0.963 0.965 0.968 

LASSO 0.378 0.684 0.778 0.553 0.643 0.816 0.569 0.619 0.821 

 

Table 5. Youden Index of four methods under different sample size situation and different effect size for 
variable selection performance when s=4 

 
 n=20 n=50 n=100 

 β=0.5 β=1.3 β=2 β=0.5 β=1.3 β=2 β=0.5 β=1.3 β=2 

CBS1 0.192 0.230 0.239 0.244 0.249 0.250 0.250 0.250 0.250 

CBS2 0.316 0.458 0.468 0.480 0.499 0.500 0.499 0.500 0.500 

CBS3 0.396 0.693 0.721 0.687 0.750 0.750 0.749 0.750 0.750 

LASSO 0.345 0.604 0.695 0.425 0.565 0.758 0.441 0.528 0.755 

 

4. Root mean square error (RMSE) 

Tables 10-11 below show the results of RMSE for each of the four methods. 

LASSO method has the smallest RMSE in all scenarios for both s=2 and s=4, even with 

small sample size (n=20). When sample size is fixed for each method under either setting, RMSE 

will increase if effect size increases. In addition, when effect size is fixed for each method, RMSE 

will decrease if sample size increases. Among the three CBS models, CBS2 and CBS3 have a 

better prediction performance (smaller RMSE) than CBS1.  
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Table 6. RMSE of four methods under different sample size situation and different effect size when s=2 

 n=20 n=50 n=100 

 β=0.5 β=1.3 β=2 β=0.5 β=1.3 β=2 β=0.5 β=1.3 β=2 

CBS1 1.282 1.804 2.424 1.161 1.689 2.300 1.136 1.665 2.269 

CBS2 1.300 1.443 1.772 1.110 1.375 1.745 1.073 1.367 1.739 

CBS3 1.278 1.438 1.783 1.101 1.376 1.746 1.072 1.367 1.739 

LASSO 1.238 1.414 1.767 1.097 1.130 1.370 1.045 1.054 1.230 

 

Table 7. RMSE of four methods under different sample size situation and different effect size when s=4 

 n=20 n=50 n=100 

 β=0.5 β=1.3 β=2 β=0.5 β=1.3 β=2 β=0.5 β=1.3 β=2 

CBS1 1.493 2.719 3.967 1.370 2.544 3.722 1.347 2.506 3.667 

CBS2 1.461 2.463 3.542 1.308 2.322 3.366 1.287 2.305 3.342 

CBS3 1.416 2.371 3.416 1.296 2.308 3.346 1.284 2.297 3.330 

LASSO 1.333 1.702 2.293 1.119 1.204 1.539 1.055 1.083 1.317 

 

3.2.2 GENOMIC SETTING 

1. False discovery rate (FDR) 

Table 12 show the true FDR at nominal FDR equal to 0.05 for the four methods when s=2. 

When the sample size is small (n=20) and signal is weak (β=0.5), FDR of all the four 

methods is not well controlled at 0.05. However, as effect size increases (β=1.3 and β=2), CBS2 

and CBS3 will have much smaller FDR compared to CBS1 and LASSO method. When n=50, all 

the methods except for CBS1 can control the FDR at 0.05. When sample size is large (n=100), all 

the four methods control the FDR well. 
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Similar results of FDR from s=4 sub-setting are shown in table 13. 

Table 8. FDR of four methods under different effect size and sample size situation for disease inference when s=2  
 

 n=20 n=50 n=100 

 β=0.5 β=1.3 β=2 β=0.5 β=1.3 β=2 β=0.5 β=1.3 β=2 

CBS1 0.931 0.827 0.826 0.439 0.237 0.235 0.070 0.037 0.037 

CBS2 0.838 0.048 0.059 0.057 0.036 0.037 0.046 0.046 0.049 

CBS3 0.798 0.045 0.055 0.055 0.038 0.037 0.044 0.046 0.044 

LASSO 0.930 0.897 0.908 0.070 0.037 0.041 0.034 0.033 0.033 

 

Table 9. FDR of four methods under different effect size and sample size situation for disease inference when s=4  

 n=20 n=50 n=100 

 β=0.5 β=1.3 β=2 β=0.5 β=1.3 β=2 β=0.5 β=1.3 β=2 

CBS1 0.951 0.895 0.903 0.647 0.276 0.232 0.318 0.046 0.047 

CBS2 0.939 0.818 0.160 0.596 0.034 0.035 0.085 0.046 0.047 

CBS3 0.938 0.741 0.154 0.364 0.030 0.028 0.062 0.044 0.044 

LASSO 0.930 0.900 0.905 0.060 0.038 0.040 0.035 0.034 0.033 

 

2. Detection power of disease associated genes 

Since the power plots have similar trend under s=2 and s=4 for fixed effect size and fixed 

sample size, we just show the results for s=4 to compare the four methods. 

Figure 1-3 show the detection power comparison for different effect size when n=20. X 

axis is the top number of declared genes ranked by p-values of the disease effect, Y axis refers to 

the number of true disease associated genes. We can see that all the three CBS methods perform 

better than LASSO method and CBS3 method has the best power among the four methods. As the 
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effect size increases, the power of LASSO method does not increase much compared to the other 

three methods. Figure 4-6 show the power plot for different effect size when n=50. Here since the 

sample size increases, LASSO method performs almost equally well as the CBS2 and CBS3 

methods. 

 

Figure 1. Rank-based power curve of four methods with β=0.5, n=20 

 

Figure 2. Rank-based power curve of four methods with β=1.3, n=20 when s=4 
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Figure 3. Rank-based power curve of four methods with β=2, n=20 when s=4 

 

Figure 4. Rank-based power curve of four methods with β=0.5, n=50 when s=4 
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Figure 5. Rank-based power curve of four methods with β=1.3, n=50 when s=4 

 

Figure 6. Rank-based power curve of four methods with β=0.5, n=50 when s=4 

 

3. Variable selection performance 

Tables 14-19 below show sensitivity, specificity and Youden Index of variable selection 

for the four methods under different settings. 
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When sample size is fixed, sensitivity and specificity will increase as effect size increases 

for each method. Overall, when s=2, CBS2 and CBS3 methods have larger Youden index than 

LASSO method. More specifically, LASSO method and CBS methods have similar sensitivity. 

However, CBS methods have higher specificity since LASSO tend to select more false positive 

features. When s=4, LASSO method has larger Youden index than all CBS methods under most 

settings. Like in s=2 scenario, LASSO method has higher sensitivity than CBS methods but lower 

specificity. 

 
Table 10. Sensitivity, specificity and Youden Index of four methods under different effect size situation with 
sample size n=20 when s=2 

 
 β=0.5 β=1.3 β=2 

n=20 sen spe youden sen spe youden sen spe youden 

CBS1 0.401 0.938 0.339 0.487 0.941 0.428 0.494 0.941 0.435 

CBS2 0.733 0.888 0.621 0.988 0.895 0.882 0.999 0.895 0.894 

CBS3 0.769 0.844 0.612 0.992 0.848 0.84 1 0.849 0.849 

LASSO 0.791 0.804 0.595 0.975 0.813 0.787 0.983 0.823 0.806 
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Table 11. Sensitivity, specificity and Youden Index of four methods under different effect size situation with 
sample size n=50 when s=2 

 
 β=0.5 β=1.3 β=2 

n=50 sen spe youden sen spe youden sen spe youden 

CBS1 0.486 0.964 0.449 0.5 0.964 0.464 0.5 0.964 0.464 

CBS2 0.931 0.95 0.881 1 0.952 0.952 1 0.952 0.952 

CBS3 0.949 0.939 0.888 1 0.94 0.94 1 0.94 0.94 

LASSO 0.982 0.818 0.8 1 0.849 0.849 1 0.869 0.869 

 

Table 12. Sensitivity, specificity and Youden Index of four methods under different effect size situation with 
sample size n=100 when s=2 

 
 β=0.5 β=1.3 β=2 

n=100 sen spe youden sen spe youden sen spe youden 

CBS1 0.5 0.977 0.477 0.5 0.977 0.477 0.5 0.977 0.977 

CBS2 0.997 0.972 0.969 1 0.972 0.972 1 0.972 0.972 

CBS3 0.998 0.966 0.964 1 0.966 0.966 1 0.966 0.966 

LASSO 1 0.83 0.83 1 0.859 0.859 1 0.88 0.88 
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Table 13. Sensitivity, specificity and Youden Index of four methods under different effect size situation with 
sample size n=20 when=4 

 
 β=0.5 β=1.3 β=2 

n=20 sen spe youden sen spe youden sen spe youden 

CBS1 0.207 0.936 0.143 0.241 0.938 0.179 0.243 0.938 0.181 

CBS2 0.381 0.884 0.265 0.486 0.89 0.376 0.492 0.89 0.382 

CBS3 0.532 0.847 0.379 0.639 0.851 0.49 0.644 0.852 0.496 

LASSO 0.681 0.8 0.481 0.787 0.81 0.596 0.775 0.817 0.592 

 

Table 14. Sensitivity, specificity and Youden Index of four methods under different effect size situation with 
sample size n=50 when s=4 

 
 β=0.5 β=1.3 β=2 

n=50 sen spe youden sen spe youden sen spe youden 

CBS1 0.244 0.962 0.206 0.25 0.963 0.213 0.25 0.963 0.213 

CBS2 0.472 0.948 0.421 0.5 0.95 0.45 0.5 0.95 0.45 

CBS3 0.614 0.942 0.556 0.638 0.943 0.581 0.638 0.943 0.581 

LASSO 0.841 0.823 0.665 0.837 0.847 0.684 0.788 0.864 0.652 
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Table 15. Sensitivity, specificity and Youden Index of four methods under different effect size situation with 
sample size n=100 when s=4 

 
 β=0.5 β=1.3 β=2 

n=100 sen spe youden sen spe youden sen spe youden 

CBS1 0.25 0.976 0.226 0.25 0.976 0.226 0.25 0.976 0.226 

CBS2 0.499 0.971 0.47 0.5 0.971 0.471 0.5 0.971 0.471 

CBS3 0.633 0.968 0.601 0.634 0.968 0.602 0.634 0.968 0.602 

LASSO 0.857 0.836 0.692 0.844 0.86 0.704 0.787 0.878 0.665 

 

3.3 CONCLUSION OF SIMULATIONS 

From univariate and genomic simulation settings, we can see CBS2 and CBS3 have a better 

performance in both variable selection and power when sample size is small regardless of the effect 

size. The reason why CBS methods perform better is that they are very close to the truth and we 

constrain the number of covariates to be selected. This indicates that LASSO method will contain 

more false covariates in the model. However, LASSO method is preferred when sample size is 

large (50-100) since it has similar performance as CBS methods and it require less computing. In 

addition, LASSO method is better at making prediction for future patient compared to CBS 

methods. Although it does not always select the correct covariates, the estimate coefficient for the 

false covariates would be very close to 0 so that it could still generate the smallest RMSE. 
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4.0  REAL DATA APPLICATION 

4.1 METHOD USED FOR REAL DATA APPLICATION 

1. Data pre-processing method 

We collected the eight datasets from Wang et al. (2012). The microarrays were scanned and 

summarized as by the manufacturers’ default settings and the raw microarray data was 

preprocessed in a standard pipeline (Ding et al., 2015). The data was log2 transformed and the 

gene symbols were matched across 8 studies. In total, there are 16,689 common genes matched for 

eight studies before data pre-processing. Two sequential steps of gene filtering were implement 

according to Ding et al. (2015). We first calculated the mean expression level for each gene of 

eight studies and rank them from the smallest to largest. Then we sum the ranks for each gene 

across 8 studies and filters 30% genes that has the lowest rank sum. Similar process was done to 

filter the 40% genes that has the lowest rank sum of standard deviation. After gene filtering, 10680 

common genes were left for eight studies.  

 

2. Identification of disease associated genes. 

There are a total of seven candidate confounders and we would like to select the ones most 

predictive of the gene expression. We applied both CBS2 method as well as LASSO method to 

identify MDD associated genes while adjusting for potential cofactors.    
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3. Meta-analysis method 

Since the signal for each study is weak and individual study sample size is small, we use Fisher’s 

method to combine p-values from eight studies to improve the DE gene detection power. 

Fisher’s test statistic is defined as Tgfisher-2*∑ log (pgk)8
𝑘𝑘=1   (1≤g≤10680). Under null, Tgfisher ~ chi 

(16), and we can obtain the p-value for the test statistic. To control for multiple comparison, we 

use Benjamini-Hochberg method to obtain q-values.  

 

4. Pathway Enrichment analysis 

To annotate the DE genes detected, we further performed pathway enrichment analysis by using 

Fisher’s exact test based on four pathway databases: Gene ontology Biological Process (GOBP), 

Biocarta, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome. To ensure a fair 

comparison, we selected the same number of top DE genes (top 500) from each method to perform 

pathway enrichment analysis. 

4.2 RESULTS 

1. DE genes detection under different q-value cutoff for each individual study 

Table 20 shows the results of DE gene detection under different q-value cutoff of each individual 

study for CBS2 and LASSO method. From the table we can see that both methods do not detect 

much DE genes for most individual studies which indicates that the signal is very weak. Therefore, 

we need meta-analysis to improve the detection results. 
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Table 16. DE gene detection under different q-value cutoff of each individual study for CBS2 and LASSP 

 CBS2 method LASSO method 

 q<0.15 q<0.2 q<0.25 q<0.15 q<0.2 q<0.25 

Study1 0 820 1463 254 393 632 

Study2 5 9 23 NA NA NA 

Study3 1 1 2 136 166 240 

Study4 0 0 0 NA NA NA 

Study5 545 968 1487 91 121 149 

Study6 0 0 0 32 37 39 

Study7 0 0 0 73 100 141 

Study8 406 717 1094 12 19 72 

 

2. DE genes detection under different q-value cutoff for meta-analysis 

Table 21 shows the results of DE gene detection under different meta-analysis q-value cutoff for 

CBS2 and LASSO method. From the table we can see that CBS2 method detects many more DE 

genes than LASSO method at all q-value cutoffs. This indicates that the CBS2 method is more 

powerful than LASSO method when sample size is small and signal is weak (e.g. with MDD 

disease) in real studies.  
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Table 17. DE gene detection under different q-value cutoff of meta-analysis for CBS2 and LASSO method 
 

q-value cutoff Number of DE genes 

detected by CBS2 method 

Number of DE genes 

detected by LASSO method 

0.05 286 43 

0.1 711 46 

0.15 1053 48 

0.2 1380 55 

 

3. Pathway enrichment analysis 

We picked top 500 DE genes from each method and perform pathway enrichment analysis. Table 

22 shows the number of pathways detected by CBS2 and LASSO method under different q-value 

cutoff. We can see that LASSO method does not detect any pathways under q-value cutoff 0.5. In 

addition, only 11 pathways are detected as q-value<1. In the contrast, CBS2 method detects many 

more pathways under certain q-value cutoff. For instance, there are 10 pathways have q-value<0.2 

and 26 pathways have q-value<0.3.  

From table 23, we can see that for the top5 pathways detected by CBS2 method, q-value 

of LASSO method all equal to 1. However, for the top5 pathways detected by LASSO method, q-

value of CBS2 method are smaller than that of LASSO method. In addition, we can see some of 

the detected pathways are related with brain disease. Therefore, CBS2 method can detect more 

meaningful pathways than LASSO method. 
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Table 18. Number of detected pathways under different q-value cutoff for CBS2 and LASSO method 

q-value cutoff CBS2 method LASSO method 

q-value<0.2 10 0 

q-value<0.3 26 0 

q-value<0.5 49 0 

q-value<0.7 118 5 

q-value<1 294 11 

 

Table 19. p-value and q-value of top 10 pathways detected by CBS2 and LASSO method 

 CBS2 method LASSO method 

Detected Pathways p-value q-

value 

p-value q-

value 

Reactome Formation of ATP by chemiosmotic coupling 0.000133 0.15 0.105889 1 

KEGG Leukocyte transendothelial migration 0.000191 0.15 0.362605 1 

BioCarta Thrombin signaling and protease-activated receptors 0.000237 0.15 0.141239 1 

Reactome G alpha (12/13) signalling events 0.000318 0.151 0.134154 1 

Reactome Axon guidance 0.00044 0.168 0.647771 1 

KEGG Oxidative phosphorylation 0.003682 0.269 0.001373 0.662 

KEGG Huntington's disease 0.047343 0.721 0.001416 0.662 

KEGG Alzheimer's disease 0.01037 0.444 0.001461 0.662 

Reactome Respiratory electron transport, ATP synthesis by 

chemiosmotic coupling, and heat production by uncoupling 

proteins. 

0.005136 0.334 0.001739 0.662 

KEGG Steroid biosynthesis 0.016352 0.516 0.002403 0.711 
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5.0  DISCUSSION AND CONCLUSION 

As we can see from the results of two simulation settings, CBS2 and CBS3 method perform well 

in both variable selection and power when sample size is small. LASSO method is better at 

prediction since it always has the smallest RMSE. When sample size is large, LASSO method 

would have similar results as two CBS methods. In conclusion, no method performs universally 

the best in the small-n-large-p scenario and selection of the best method depends on sample size, 

dimensionality and the desired biological purpose. 

From real data application results, we conclude that CBS2 can detect more meaningful DE 

genes by using Fisher’s method to implement meta-analysis in the motivation MDD data. Some 

of the pathways are related to brain disease which indicates that the DE genes detected is important 

referring to MDD disease even though each of the 8 studies has very weak signal. Although we 

use same top number of DE genes for both method, LASSO method did not perform well in 

pathway analysis since most of the top genes do not contain much information of disease and the 

number of DE genes is limited. Therefore, it is not worthwhile for LASSO to do pathway analysis 

in this setting. 

One limitation in our study is that the comparison among CBS methods and LASSO 

method is not fair, since we force the disease variable to be always selected and constrain the 

maximum number of covariates that could be chosen for three CBS methods. The reason that we 

do not force disease variable to be always retained in the model for LASSO method is the lack of 

valid method to obtain the p-value for that specific variable. The method that we used in this study 

for LASSO inference is the post-selective inference method (reference). It will return the p-values 

for all the coefficients that do not shrink to 0. Although we could use “glmnet” package for LASSO 



 30 

to fix a variable to always be in the model and obtain the coefficient estimate, right now there is 

no efficient package to obtain the corresponding p-value for inference purpose. We would like to 

develop a method that helps us obtain the valid p-value for the fixed variable in order to make it a 

fair comparison in the future. 
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