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COMPUTATIONAL MODELS FOR PREDICTING SHOE FRICTION AND WEAR
Seyed Reza Mirhassani Moghaddam, Ph.D.

University of Pittsburgh, 2018

Slips and falls are a serious occupational and health problem. Insufficient friction between a shoe
and flooring, quantified by the coefficient of friction (COF), increases the likelihood of slips
and falls. Moreover, shoe’s slip-resistant properties change over its lifetime due to wear. This
dissertation applies physics-based computational finite element modeling techniques to predict
shoe-floor-contaminant friction. Computational models that simulate COF due to hysteresis are
developed using multiscale methods. These models are used to assess the effects of shoe design
factors and biomechanical parameters of human gait on the predicted COF. To address a gap in
the literature regarding models that simulate shoe wear progression, this dissertation develops
and validates an innovative finite element modeling process utilizing Archard’s law that predicts
shoe wear. Models introduced in this dissertation not only increase the understanding of slips and
falls but also offer a valuable tool that can be used in designing slip-resistant and durable shoes

in order to achieve the ultimate goal of reducing slip and fall injuries.
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1.0  SPECIFIC AIMS

Slips and falls are routinely among the leading causes of serious work-related injuries.
Inadequate friction between shoes and flooring, quantified by coefficient of friction (COF), is the
main parameter that contributes to an increased probability of slips and falls. Shoe design can
impact the COF. Physics-based computational modeling may offer potential in predicting shoe-
floor COF and guiding shoe tread designs with higher COFs. Previous studies have demonstrated
that a shoe’s slip-resistance properties change over its lifetime due to wear. However, there is a
lack of computational models in the shoe-floor friction literature that are capable of simulating
shoe-floor friction and shoe wear progression. The dissertation develops and validates innovative
models that predict shoe friction and wear. The long-term goal of this project is to utilize
computational modeling to guide tread designs in order to reduce slip and fall injuries in the
workplace. The objective of this proposed research is to develop computational models that
predict shoe-floor COF and wear and apply these models to shoe-floor designs. The proposed

research consists of four aims that are outlined in this chapter.

1.1 SIGNIFICANCE

Slips and falls are among the primary causes of occupational accidents. In 2015, slip, trip,

and fall incidences contributed to 27% of non-fatal occupational injuries [1]. In 2016, 16.5% of

1



fatal occupational injuries were related to slips, trips and falls [2]. According to the Centers for
Disease Control and Prevention, falls occurring in a single year account for a total cost of $170
billion in the United States [3]. Between the years of 1998 and 2010, workers’ compensation
costs due to same level falls had the fastest growth among all the main injury causes [4].
Approximately 50% of occupational falls are initiated by slips [5].

Amongst different environmental and biomechanical factors that affect slips and falls,
frictional characteristics of the shoe-floor interface has a significant importance. Statistical
models have indicated that the probability of slips and falls can be determined by the difference
between the friction present between shoe and flooring, quantified by the available coefficient of
friction (ACOF) and the minimum friction required in order to sustain normal walking, that is
quantified by the required of coefficient of friction (RCOF) [6, 7]. Evaluative methods that
utilize slip-testers are typically employed by researchers to measure the available COF [6-9].
Different slip-testers have been reported to yield inconsistent results in predicting the risk of slips
and falls [9] and repeatability of some of the slip-tester results has been questioned in the
literature [10]. Furthermore, these methods have mostly emphasized on examining different
floorings rather than shoes [9, 11]. Another set of studies have investigated the effects of tread
design properties such as hardness, tread depth, width, and orientation on shoe-floor friction [12-
15], but there is no consensus on the effects and contributions from different shoe design
parameters. Effects of some parameters such as tread orientation and groove width are not
completely understood and are inconsistent across different studies [12-14]. Models of shoe-floor
friction, on the other hand, can help simulate the contributing mechanisms to shoe-floor friction.
Therefore, this approach can identify the relative contributions of shoe design parameters, their

interactions and guide design improvements. Previous research has demonstrated the promise of



tribological models in predicting the available COF and identifying the fundamental tribological
mechanisms relevant to the shoe-floor-contaminant friction complex [16-19]. The proposed
research will present an existing line of investigation on developing physics-based models of
shoe-floor-contaminant friction that are capable of predicting COF and aiding in design for slip-
resistance.

Wear of shoes is another important factor that affects their frictional properties and
therefore their slip-resistance potential [20-27]. Worn down shoes decrease COF [23, 26] and
have been reported to increase slipping risk in occupational settings [20, 21, 27]. Specifically, a
crossover study conducted in the limited-service industry revealed a 55% reduction in slip risk
by replacing worn slip-resistant shoes with new ones [27]. A previous study in a laboratory
setting, has also demonstrated an increased slip severity in subjects walking in worn shoes [22].
While it is known that shoe and flooring design affects shoe wear progression rate, there are no
published results on the underlying mechanisms and the most important shoe and flooring design
parameters that influence shoe wear. Rubber material properties, the counterpart’s surface
characteristics and the contact pressure between the interacting surfaces have shown to affect
wear of the elastomers [28]. Research on computational modeling of rubber wear, similar to
models that have been developed for tires and seals [29, 30], has the potential to increase
understanding of the shoe wear mechanisms and identify effects of shoe design and material
properties on shoe wear. The proposed research will apply computational techniques of modeling
elastomers to the shoe outsole in an effort to predict safe life of shoes and aid in design for
durable slip-resistance.

The proposed research will produce an improved understanding of the shoe-floor

interface friction and wear phenomena. Through the computational models that will be



introduced in this dissertation it will become possible to deploy finite element methods in the
shoe design process. The outcomes will not only advance the field of shoe-floor friction research
but will also have broad impacts on improving quality of life by reducing the number of slip and

fall accidents caused by insufficient shoe-floor friction and/or worn shoes.

1.2 INNOVATION AND RESEARCH OUTCOMES

This dissertation implements two important innovations: 1. It is expected to develop and
perform validation analyses for a novel computational methodology that predicts shoe-floor COF
based on shoe and flooring microscopic and macroscopic features. Such a multiscale modeling
approach has been introduced for modeling frictional behavior of rubber [31, 32] but has not
been used in shoe-floor friction research or applied to predict slipping risk. 2. It will develop a
computational model that predicts shoe wear. Physics-based models for wear of elastomers have
been around for other tribological modeling purposes [29, 30] but have not been developed for
shoes or used for predicting shoe’s slip-resistant life. The research proposed in this dissertation
deviates from the currently used methods for shoe-floor friction in that it is predictive rather than
evaluative [6-9, 33, 34].

The research plan introduced in this dissertation will have the following impacts: 1) It
will identify critical footwear characteristics for slip-resistance and will lead to a smart selection
of footwear to reduce slip and fall accidents. 2) It will provide an engineering tool to evaluate
and design slip- and wear-resistant footwear. 3) It will provide a priori predictions of shoe’s
frictional behavior and allow for optimizing shoe tread design to achieve superior slip-resistance.

The framework presented in this dissertation lays the foundation for future efforts to package the

4



modeling efforts introduced in this dissertation into a software. Such a software package will

allow for these methods to be widely used for designing shoe treads.

1.3  SPECIFIC AIMS

1.3.1 Specificaim 1

Develop and validate a predictive computational model of shoe-floor-contaminant
interface friction at the microscopic level.

The computational model includes measurable properties such as surface topography,
material properties, shoe-floor interface contact pressure, and sliding velocity and predicts
hysteresis and adhesion COF at shoe-floor interface. The model’s predictions are compared to
the experimentally-measured tribological COF values obtained from a pin-on-disk tribometer.
Experimental tribological techniques are used to separate hysteresis friction from adhesion

friction.

1.3.2 Specific aim 2

Develop and validate a predictive multiscale computational model of shoe-floor-
contaminant friction.

The multiscale computational model combines the microscopic COF predictions from
aim 1 with the contact pressure distribution over the macroscopic surface of the outsole (i.e.

tread) to predict the whole shoe-floor COF. The model also predicts shoe-floor interface contact



area. The model’s predictions are compared to shoe-floor interface’s experimentally-measured
COFs (via a robotic slip-tester) and the experimentally-measured shoe contact areas (via ink

imprints of the shoe outsole on the flooring).

1.3.3 Specific aim 3

Apply the computational model of shoe-floor-contaminant friction (Specific aim 2)
to interfaces with different shoe design parameters and biomechanical parameters of
human gait.

The computational model of shoe-floor friction is utilized to explain the effects of shoe
design parameters such as shoe material properties, shoe’s geometrical curvature and kinetic and
kinematic parameters of gait such as normal loading and shoe-floor contact angle on shoe-floor

COF.

1.3.4 Specificaim 4

Develop and validate a computational model of shoe wear progression.
The computational model simulates the contact pressures between the shoe and flooring
to predict shoe wear. The model’s predictions are compared to a custom-developed experimental

setup (shoe wear simulator apparatus).



1.4  DISSERTATION STRUCTURE

This dissertation is structured in seven chapters:

1.

Chapter 1.0 represents the specific aims, significance and the innovative aspects
of the research that is presented in this dissertation.

Chapter 2.0 provides the reader with the background and theory that is required
for the research that is presented in this dissertation.

Chapter 3.0 represents the microscopic computational model of shoe-floor-
contaminant friction (Specific aim 1).

Chapter 4.0 represents the multiscale model of shoe-floor-contaminant friction
(Specific aim 2).

Chapter 5.0 represents the applications of the multiscale model of shoe-floor-
contaminant friction to human factors and shoe design (Specific aim 3).

Chapter 6.0 represents the computational model of shoe wear progression
(Specific aim 4)

Chapter 7.0 summarizes the findings of the research that is presented in this

dissertation and provides recommendations for continuing this line of research.



20 BACKGROUND AND THEORY

The purpose of this chapter is to provide the reader with the necessary background
information and relevant theory to the research that is presented in the following chapters of this
dissertation. Specifically, this chapter presents a brief review of the epidemiology of slip and fall
accidents, biomechanics of slips as it relates to shoe-floor friction, and tribology mechanisms

relevant to shoe-floor interface.

21 EPIDEMIOLOGY

Slips and falls are a serious health and financial problem. Falls occurring in a year lead to
a lifetime cost of $180 billion in the United states [3]. According to the Liberty Mutual
Workplace Safety index, falls account for 28% of the cost of work-related injuries (Figure 2-1)
[4] and workers’ compensation costs due to slips and falls is approximately 18.5 billion [35].
During the past few years, the costs associated with slips and falls in the workplace have been
persistently increasing while a decrease in the costs associated with other workplace hazards
such as overexertion have been occurring [4] perhaps because of the ergonomic interventions
that have been developed in those a