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Slips and falls are a serious occupational and health problem. Insufficient friction between a shoe 

and flooring, quantified by the coefficient of friction (COF), increases the likelihood of slips 

and falls. Moreover, shoe’s slip-resistant properties change over its lifetime due to wear. This 

dissertation applies physics-based computational finite element modeling techniques to predict 

shoe-floor-contaminant friction. Computational models that simulate COF due to hysteresis are 

developed using multiscale methods. These models are used to assess the effects of shoe design 

factors and biomechanical parameters of human gait on the predicted COF. To address a gap in 

the literature regarding models that simulate shoe wear progression, this dissertation develops 

and validates an innovative finite element modeling process utilizing Archard’s law that predicts 

shoe wear. Models introduced in this dissertation not only increase the understanding of slips and 

falls but also offer a valuable tool that can be used in designing slip-resistant and durable shoes 

in order to achieve the ultimate goal of reducing slip and fall injuries. 
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1.0  SPECIFIC AIMS 

Slips and falls are routinely among the leading causes of serious work-related injuries. 

Inadequate friction between shoes and flooring, quantified by coefficient of friction (COF), is the 

main parameter that contributes to an increased probability of slips and falls. Shoe design can 

impact the COF. Physics-based computational modeling may offer potential in predicting shoe-

floor COF and guiding shoe tread designs with higher COFs. Previous studies have demonstrated 

that a shoe’s slip-resistance properties change over its lifetime due to wear. However, there is a 

lack of computational models in the shoe-floor friction literature that are capable of simulating 

shoe-floor friction and shoe wear progression. The dissertation develops and validates innovative 

models that predict shoe friction and wear. The long-term goal of this project is to utilize 

computational modeling to guide tread designs in order to reduce slip and fall injuries in the 

workplace. The objective of this proposed research is to develop computational models that 

predict shoe-floor COF and wear and apply these models to shoe-floor designs. The proposed 

research consists of four aims that are outlined in this chapter. 

1.1 SIGNIFICANCE 

Slips and falls are among the primary causes of occupational accidents. In 2015, slip, trip, 

and fall incidences contributed to 27% of non-fatal occupational injuries [1]. In 2016, 16.5% of 



2 

fatal occupational injuries were related to slips, trips and falls [2]. According to the Centers for 

Disease Control and Prevention, falls occurring in a single year account for a total cost of $170 

billion in the United States [3]. Between the years of 1998 and 2010, workers’ compensation 

costs due to same level falls had the fastest growth among all the main injury causes [4]. 

Approximately 50% of occupational falls are initiated by slips [5]. 

Amongst different environmental and biomechanical factors that affect slips and falls, 

frictional characteristics of the shoe-floor interface has a significant importance. Statistical 

models have indicated that the probability of slips and falls can be determined by the difference 

between the friction present between shoe and flooring, quantified by the available coefficient of 

friction (ACOF) and the minimum friction required in order to sustain normal walking, that is 

quantified by the required of coefficient of friction (RCOF) [6, 7]. Evaluative methods that 

utilize slip-testers are typically employed by researchers to measure the available COF [6-9]. 

Different slip-testers have been reported to yield inconsistent results in predicting the risk of slips 

and falls [9] and repeatability of some of the slip-tester results has been questioned in the 

literature [10]. Furthermore, these methods have mostly emphasized on examining different 

floorings rather than shoes [9, 11]. Another set of studies have investigated the effects of tread 

design properties such as hardness, tread depth, width, and orientation on shoe-floor friction [12-

15], but there is no consensus on the effects and contributions from different shoe design 

parameters. Effects of some parameters such as tread orientation and groove width are not 

completely understood and are inconsistent across different studies [12-14]. Models of shoe-floor 

friction, on the other hand, can help simulate the contributing mechanisms to shoe-floor friction. 

Therefore, this approach can identify the relative contributions of shoe design parameters, their 

interactions and guide design improvements. Previous research has demonstrated the promise of 
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tribological models in predicting the available COF and identifying the fundamental tribological 

mechanisms relevant to the shoe-floor-contaminant friction complex [16-19]. The proposed 

research will present an existing line of investigation on developing physics-based models of 

shoe-floor-contaminant friction that are capable of predicting COF and aiding in design for slip-

resistance. 

Wear of shoes is another important factor that affects their frictional properties and 

therefore their slip-resistance potential [20-27]. Worn down shoes decrease COF [23, 26] and 

have been reported to increase slipping risk in occupational settings [20, 21, 27]. Specifically, a 

crossover study conducted in the limited-service industry revealed a 55% reduction in slip risk 

by replacing worn slip-resistant shoes with new ones [27]. A previous study in a laboratory 

setting, has also demonstrated an increased slip severity in subjects walking in worn shoes [22]. 

While it is known that shoe and flooring design affects shoe wear progression rate, there are no 

published results on the underlying mechanisms and the most important shoe and flooring design 

parameters that influence shoe wear. Rubber material properties, the counterpart’s surface 

characteristics and the contact pressure between the interacting surfaces have shown to affect 

wear of the elastomers [28]. Research on computational modeling of rubber wear, similar to 

models that have been developed for tires and seals [29, 30], has the potential to increase 

understanding of the shoe wear mechanisms and identify effects of shoe design and material 

properties on shoe wear. The proposed research will apply computational techniques of modeling 

elastomers to the shoe outsole in an effort to predict safe life of shoes and aid in design for 

durable slip-resistance. 

The proposed research will produce an improved understanding of the shoe-floor 

interface friction and wear phenomena. Through the computational models that will be 
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introduced in this dissertation it will become possible to deploy finite element methods in the 

shoe design process. The outcomes will not only advance the field of shoe-floor friction research 

but will also have broad impacts on improving quality of life by reducing the number of slip and 

fall accidents caused by insufficient shoe-floor friction and/or worn shoes. 

1.2 INNOVATION AND RESEARCH OUTCOMES 

This dissertation implements two important innovations: 1. It is expected to develop and 

perform validation analyses for a novel computational methodology that predicts shoe-floor COF 

based on shoe and flooring microscopic and macroscopic features. Such a multiscale modeling 

approach has been introduced for modeling frictional behavior of rubber [31, 32] but has not 

been used in shoe-floor friction research or applied to predict slipping risk. 2. It will develop a 

computational model that predicts shoe wear. Physics-based models for wear of elastomers have 

been around for other tribological modeling purposes [29, 30] but have not been developed for 

shoes or used for predicting shoe’s slip-resistant life. The research proposed in this dissertation 

deviates from the currently used methods for shoe-floor friction in that it is predictive rather than 

evaluative [6-9, 33, 34]. 

The research plan introduced in this dissertation will have the following impacts: 1) It 

will identify critical footwear characteristics for slip-resistance and will lead to a smart selection 

of footwear to reduce slip and fall accidents. 2) It will provide an engineering tool to evaluate 

and design slip- and wear-resistant footwear. 3) It will provide a priori predictions of shoe’s 

frictional behavior and allow for optimizing shoe tread design to achieve superior slip-resistance. 

The framework presented in this dissertation lays the foundation for future efforts to package the 
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modeling efforts introduced in this dissertation into a software. Such a software package will 

allow for these methods to be widely used for designing shoe treads. 

1.3 SPECIFIC AIMS 

1.3.1 Specific aim 1 

Develop and validate a predictive computational model of shoe-floor-contaminant 

interface friction at the microscopic level. 

The computational model includes measurable properties such as surface topography, 

material properties, shoe-floor interface contact pressure, and sliding velocity and predicts 

hysteresis and adhesion COF at shoe-floor interface. The model’s predictions are compared to 

the experimentally-measured tribological COF values obtained from a pin-on-disk tribometer. 

Experimental tribological techniques are used to separate hysteresis friction from adhesion 

friction. 

1.3.2 Specific aim 2 

Develop and validate a predictive multiscale computational model of shoe-floor-

contaminant friction.  

The multiscale computational model combines the microscopic COF predictions from 

aim 1 with the contact pressure distribution over the macroscopic surface of the outsole (i.e. 

tread) to predict the whole shoe-floor COF. The model also predicts shoe-floor interface contact 
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area. The model’s predictions are compared to shoe-floor interface’s experimentally-measured 

COFs (via a robotic slip-tester) and the experimentally-measured shoe contact areas (via ink 

imprints of the shoe outsole on the flooring). 

1.3.3 Specific aim 3 

Apply the computational model of shoe-floor-contaminant friction (Specific aim 2) 

to interfaces with different shoe design parameters and biomechanical parameters of 

human gait. 

The computational model of shoe-floor friction is utilized to explain the effects of shoe 

design parameters such as shoe material properties, shoe’s geometrical curvature and kinetic and 

kinematic parameters of gait such as normal loading and shoe-floor contact angle on shoe-floor 

COF. 

1.3.4 Specific aim 4 

Develop and validate a computational model of shoe wear progression.  

The computational model simulates the contact pressures between the shoe and flooring 

to predict shoe wear. The model’s predictions are compared to a custom-developed experimental 

setup (shoe wear simulator apparatus). 



7 

1.4 DISSERTATION STRUCTURE 

This dissertation is structured in seven chapters: 

1. Chapter 1.0 represents the specific aims, significance and the innovative aspects 

of the research that is presented in this dissertation.  

2. Chapter 2.0 provides the reader with the background and theory that is required 

for the research that is presented in this dissertation. 

3. Chapter 3.0 represents the microscopic computational model of shoe-floor-

contaminant friction (Specific aim 1). 

4. Chapter 4.0 represents the multiscale model of shoe-floor-contaminant friction 

(Specific aim 2). 

5. Chapter 5.0 represents the applications of the multiscale model of shoe-floor-

contaminant friction to human factors and shoe design (Specific aim 3). 

6. Chapter 6.0 represents the computational model of shoe wear progression 

(Specific aim 4) 

7. Chapter 7.0 summarizes the findings of the research that is presented in this 

dissertation and provides recommendations for continuing this line of research. 
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2.0  BACKGROUND AND THEORY 

The purpose of this chapter is to provide the reader with the necessary background 

information and relevant theory to the research that is presented in the following chapters of this 

dissertation. Specifically, this chapter presents a brief review of the epidemiology of slip and fall 

accidents, biomechanics of slips as it relates to shoe-floor friction, and tribology mechanisms 

relevant to shoe-floor interface. 

2.1 EPIDEMIOLOGY 

Slips and falls are a serious health and financial problem. Falls occurring in a year lead to 

a lifetime cost of $180 billion in the United states [3]. According to the Liberty Mutual 

Workplace Safety index, falls account for 28% of the cost of work-related injuries (Figure 2-1) 

[4] and workers’ compensation costs due to slips and falls is approximately 18.5 billion [35]. 

During the past few years, the costs associated with slips and falls in the workplace have been 

persistently increasing while a decrease in the costs associated with other workplace hazards 

such as overexertion have been occurring [4] perhaps because of the ergonomic interventions 

that have been developed in those areas. The increase in costs and size of slip and fall accident 

problem necessitates the development of preventive measures to reduce slip and falls accidents. 
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Figure 2-1. Major causes of work-related injuries. 

Slipping is the preceding event to more than a half of injurious falling incidents [5]. 

Frictional properties of the shoe are a critical factor in determining the propensity of slips and 

falls. Increasing the available friction between the shoe and walkways has been demonstrated to 

be an effective method for preventing slips and falls [7, 9, 34, 36]. The available friction of shoes 

changes across the shoe’s life as the tread material wears. Severely worn shoes are associated 

with a reduction in friction which in turn increases the risk of slips and falls [22, 23, 26, 27]. 

Enhancing the shoe-floor friction by developing superior slip-resistance and durable shoe and 

floor designs focuses on fitting the environment to the individual. Thus, it is an effective 

approach to reducing slip and fall accidents. 
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Figure 2-2. Major triggering events to falling accidents. 

2.2 BIOMECHANICS OF SLIPS AS IT RELATES TO SHOE-FLOOR FRICTION 

This section provides a brief review of the methods used in the literature to connect shoe 

friction to the risk of slips and falls. Furthermore, it reviews the under-shoe dynamic conditions 

during walking, human gait parameters relevant to slipping and their influences on the chance of 

slips and falls. 
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2.2.1 Available coefficient of friction/Required coefficient of friction 

Previous research has demonstrated that the probability of slips and falls can be 

effectively estimated using the available friction between the shoe and flooring, quantified by the 

available coefficient of friction (ACOF) and the minimum amount of friction required to 

maintain normal walking, quantified by the required coefficient of friction (RCOF).  

ACOF is measured using a tribometer or a slip-tester (Figure 2-3). Typically, a normal 

force, shoe angle and sliding speed is specified and shear force is measured. ACOF is then 

calculated as the ratio of shear to normal force. Shoe design parameters such as tread depth, 

width, orientation and presence of a contaminant at the interface affect ACOF [13, 14]. 

Computational models developed in chapter 4.0 of this dissertation simulate ACOF.  

 

Figure 2-3. A robotic slip tester that measures the whole-shoe ACOF (Courtesy of Human 

Movement and Balance Laboratory, University of Pittsburgh). 



12 

RCOF is influenced by the biomechanics of gait and therefore it is measured on dry 

surfaces in a gait laboratory using force plates and human subjects [7, 37, 38]. Instantaneous 

RCOF is calculated by dividing the resultant friction force by the normal force during the gait 

cycle [39]. Peak RCOF is then typically extracted from the time-series of the instantaneous 

RCOF when several criteria are met [38] and is used as a measure of the required friction. 

Once ACOF and RCOF are measured, logistic regression models can be developed that 

are able to predict the probability of slips and falls as a function of the difference between ACOF 

and RCOF [7, 9, 33, 34, 36, 37, 40]. Slips can be prevented through the increase of ACOF or a 

decrease of RCOF.  

2.2.2 Under-shoe dynamic conditions during gait/slipping 

Previous research on under-shoe dynamic conditions during slipping has identified the 

kinematic and kinetic parameters that are relevant to slipping. These conditions sometimes are 

referred to as ‘biofidelic’ testing conditions. In 2001, a group of researchers introduced a range 

of biofidelic testing conditions [41]. Biofidelic recommendations suggest that slip-testing should 

be conducted at sliding velocities within the range of 0-1 m/s and at normal loads that simulate 

contact pressures within the range of 0-1 MPa [37, 41, 42]. Shoe-floor angles within the range 0-

20 degrees are also reported as biofidelic [10, 12, 33, 37, 43]. These parameters provide some of 

the inputs to the computational models introduced in chapters 3.0 to 6.0 of this dissertation. 
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2.2.3 Influence of human factors on under-shoe conditions 

Human gait parameters are known to influence the under-shoe dynamic conditions. 

Higher gait speeds have been associated with higher risk of slips and falls [44]. Human gait 

speed influences the heel contact velocity [45, 46]. Heel contact velocity can be simply 

interpreted as sliding velocity in friction testing experiments. Therefore, the effect of sliding 

velocity on COF is investigated in chapter 3.0 of this dissertation via computational modeling. 

Another gait factor that influences slip and fall risk is step length. Larger step lengths will lead to 

higher shoe-floor angles which are also associated with higher slip rates in human subject studies 

[46]. A person’s body weight which determines the magnitude of the normal load that is applied 

during gait also affects the risk of slips and falls. Obese and overweight people have been 

demonstrated to have a higher risk of slips and falls [47-49]. Thus, the effect of shoe-floor angle 

and normal load on COF is investigated in chapter 5.0 of this dissertation. 

2.3 TRIBOLOGY MECHANISMS REALTED TO SHOE-FLOOR INTERFACE 

This section provides the reader with an overview of the tribology mechanisms relevant 

to the shoe-floor interface. Specifically, lubrication, friction and wear mechanisms are reviewed. 

A brief description of the computational approaches for modeling friction and wear is also 

provided. 
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2.3.1 Overview of lubrication mechanisms 

The Stribeck curve (Figure 2-4) describes the relationship between dynamic conditions of 

the interface (i.e. normal loading and sliding velocity) and the contaminant (i.e. viscosity) with 

the COF and fluid film thickness [50-52]. According to this theory, three distinct lubrication 

regimes can are predicted: 1. Boundary lubrication in which there is minimal presence of a fluid 

film and therefore COF is relatively high. 2. Mixed lubrication, in which the surfaces begin to 

separate from each other as a fluid film begins to develop; this phenomenon results in a drop in 

COF as the fluid film thickness increases. 3. Hydrodynamic lubrication regime, in which both 

the COF and fluid film thickness begin to increase as a result of further separation of the surfaces 

due to the relatively high fluid shear stresses and fluid pressures, respectively. 

 

Figure 2-4. Typical representation of the Stribeck curve. Asperities at the top of each lubrication 

regime represent the amount of separation that the surfaces experience. 
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Recent research has emphasized the importance of boundary lubrication in treaded shoes 

and in presence of a contaminant [18, 19, 53] and its relevance to slipping accidents. These 

effects are further explained in section 2.3.3 of this dissertation and friction mechanisms in 

boundary lubrication are discussed in section 2.3.2. The models introduced in chapters 3.0 and 

4.0 investigate the available friction in boundary lubrication. 

2.3.2 Overview of friction mechanisms relevant to elastomers 

Shoe outsoles are typically made of rubber (i.e. elastomers). Previous research on friction 

in elastomers have identified hysteresis and adhesion as the two major friction mechanisms [41, 

54-56]. According to the theory, while both mechanisms originate from the microscopic 

interactions at the interface, they are different in nature. Hysteresis is due to the material 

deformation and adhesion is due to the force occurring between the materials. These differences 

are depicted in Figure 2-5, discussed in the following subsections and further analyzed via 

computational modeling in chapter 3.0 of this dissertation.  
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Equation 2-1. 

 

Figure 2-5. Schematic of the origins of hysteresis and adhesion friction as they apply to shoe-

floor interface. 

2.3.2.1 Hysteresis 

Hysteresis friction originates from the deformations occurring in a viscoelastic material 

due to asperity interactions at the microscopic scale of the two contacting surfaces. When 

asperities of a viscoelastic material (such as shoe) engage in contact with a harder surface (such 

as flooring), differences in pressures developed in trailing and leading edges of those asperities 

are typically observed [56-58]. This is due to the stress relaxation in the viscoelastic material and 

the time it takes for the material to recover to its original state because of its viscoelastic nature 

(Figure 2-5. Bottom left). This difference in pressures will lead to the development of a net force 

(Equation 2-1.) that causes hysteresis friction. 
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Equation 2-2. 

2.3.2.2 Adhesion 

Adhesion friction also has its origins at the microscopic scale. Adhesion friction occurs at 

the surface level and it is due to the intermolecular adhesive bonds and attractive forces [59-61] 

that generate when the surfaces come into contact (Figure 2-5. Bottom right). Therefore, 

adhesion force is dependent on the true interfacial shearing stress (σs) that is required to break 

those adhesive junctions at the contact interface and the real area of contact (Ac) (Equation 2-2.). 

The interfacial shear stress and the real area of contact are influenced by on the material 

properties, surface roughness and contact pressure [55, 60, 62]. 

 

2.3.3 Tribology of shoe-floor-contaminant complex 

Tribology research have identified that both friction components (i.e. hysteresis and 

adhesion) are relevant to the shoe-floor-contaminant system [18, 19, 22, 41] (Figure 2-6). 

However, recent literature suggests that hysteresis friction is the dominant and unaffected 

mechanism in the presence of a liquid contaminant (i.e. presence of a contaminant results in a 

drop in adhesion friction) [19, 53]. Analyzing both of these friction mechanisms at the 

microscopic scale using computational modeling is conducted in chapter 3.0  of this dissertation. 

Afterwards in chapter 4.0 , this dissertation focuses on models for hysteresis friction which 

seems to be the reliable friction in treaded shoes and in presence of fluid contaminants (Figure 

2-6). 
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Figure 2-6. Spectrum of the friction and lubrication mechanisms relevant to the shoe-floor-

contaminant complex. 

2.3.3.1 Relevant friction models in other applications 

Finite element modeling has been demonstrated to be effective in modeling the contact 

between elastomers and rigid surfaces. Specifically, computational models have been developed 

that investigate the contact between rubber and hard surfaces at the microscopic asperity (i.e. 

µm) scale [57, 63] and utilize multiscale modeling schemes (i.e. utilizing the information 

provided by modeling in one scale by models operating in another scale) to investigate the 

contact interface at the macroscopic (i.e. mm) scale [31, 32, 64]. In these models, a response 

surface is created that describes the COF as a function of surface characteristics, material 

properties and contact pressure at the microscopic scale. The macroscopic model will then use 

response surface from the microscopic scale along with the results of the model at the 

macroscopic scale to calculate COF at the macroscopic scale. However, these modeling 

techniques have yet to be applied to shoe-floor-contaminant interface. This dissertation aims to 

fill the knowledge gap in modeling shoe-floor friction by applying some of the concepts from the 

above-mentioned techniques to the interface. To this end, the microscopic contact modeling 
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method using LS-Dyna® similar to one in [63] and a multiscale modeling scheme similar to one 

in [32] are used in chapters 3.0 and 4.0 of this dissertation, respectively. 

2.3.4 Wear mechanisms relevant to shoe-floor interface 

Previous research on wear of the shoes has identified abrasive and adhesive wear as the 

major wear mechanisms relevant to shoe-floor interface [24, 25, 65]. Abrasive wear occurs when 

the asperities of the hard material (flooring) penetrate into the soft rubber (shoe) material and 

cause material removal. Therefore, abrasive wear is more prevalent on rough surfaces. Adhesive 

wear typically takes place on relatively smooth surfaces. It occurs when the relative motion of 

the soft rubber (shoe) with respect to the relatively rigid counter-surface (floor) results in 

breakage of the adhesive junctions at the contact interface [65]. Both of the above-mentioned 

mechanisms seem to be relevant to the shoe-floor interface given the wide variability in the 

roughness of the walkway surfaces. 

2.3.4.1 Archard’s law 

Classic equation developed by Archard [28] is still widely used to predict the abrasive 

and adhesive wear in elastomers [29, 30, 66-68]. Archard’s law (Equation 2-3.) states that wear 

depth (Δh) is proportional to contact pressure (p) at the interface and sliding distance (s). In 

Equation 2-3., k is interpreted as wear constant that can be measured experimentally. Contact 

pressure in Equation 2-3. can be estimated using computational modeling techniques (Chapter 

4.0 ). Chapter 6.0 of this dissertation utilizes contact modeling methods introduced in chapter 4.0 

along with Equation 2-3. to develop a computational model of shoe wear progression. 
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Equation 2-3. 

 
 

2.3.4.2 Wear modeling 

Finite element modeling techniques along with Archard’s law have been demonstrated to 

be successful in predicting wear in several applications such as tires, seals, and disc brakes [29, 

30, 66-69]. Typically, wear models employ finite element method to predict contact pressure 

distribution at the contact interface and utilize Archard’s law to predict the resulting wear. These 

models use an iterative approach to update the geometry and contact pressures as the material 

wears away. Updating the geometry due to wear can be accomplished by either moving the 

contact nodes at the interface or destroying the elements at the contact [66]. In either case, the 

wear geometry will need to be re-meshed (i.e. global remeshing) due to the distorted elements or 

geometrical irregularities that are likely to occur [29]. Methods of moving nodes and global 

remeshing are used in chapter 6.0 of this dissertation for modeling shoe wear progression. 
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3.0  A MICROSCOPIC FINITE ELEMENT MODEL OF SHOE-FLOOR HYSTERESIS AND 

ADHESION FRICTION 

3.1 ABSTRACT 

Few efforts have attempted to model the tribological interaction of shoe-floor contacting 

surfaces despite the high prevalence of slipping accidents. Hysteresis and adhesion are the two 

main contributing mechanisms in shoe-floor friction at the microscopic asperity level. This study 

developed a three-dimensional microscopic finite element model of shoe-floor surfaces to 

quantify the effect of surface topography, shoe material properties and sliding speed on 

hysteresis and adhesion friction. The validity of the model was assessed by comparing model 

predictions to pin-on-disk experimental data. The model predicts that hysteresis friction increases 

for harder shoe materials, rougher shoe surfaces and rougher floor surfaces, while adhesion 

increases for smoother shoe surfaces, smoother floor surfaces and decreasing sliding speed. The 

effects of shoe material and floor roughness on the predicted hysteresis friction values were 

consistent with the experimental data. The effects of sliding speed on adhesion friction were 

moderately consistent with the experimental data. In addition, the predicted hysteresis 

magnitudes were consistent with experimental data. This model is a significant step towards 

development of a comprehensive shoe-floor friction model. 
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3.2 INTRODUCTION 

Increasing friction between shoe soles and floor surfaces is a critical strategy for 

improving public and occupational safety. According to the US Bureau of Labor Statistics, 23% 

of non-fatal occupational accidents occur due to a fall [70] and about half of those falls are due to 

slips. According to Liberty Mutual Workplace Safety Index, fall accidents had the highest 

percentage of cost growth trends among the most disabling workplace injuries between 1998 and 

2010 [4]. Previous research has reported an increase in the probability of slips and falls when the 

available coefficient of friction between shoe and floor becomes less than the required 

coefficient of friction [6, 7]. Improving friction through enhanced slip-resistant shoes and 

flooring designs is an effective strategy for reducing slip and fall injuries. 

Previous studies have developed empirical relationships between coefficient of friction 

and sliding speed [50, 71], vertical force [36, 50, 72], shoe material and tread [13, 14, 19, 23], 

and floor surface roughness [36, 72, 73]. However, each of these studies used a limited set of 

testing conditions and the findings cannot be easily generalized or integrated given the complex 

interactions among the factors affecting friction [19]. Developing a physics-based computational 

model of shoe-floor friction may have potential for efficiently considering these multiple factors 

including shoe/floor roughness, shoe material properties and sliding velocity. Once a 

comprehensive model of shoe-floor friction is developed, different parameters can be easily 
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changed to assess their effects on the friction phenomenon. Additionally, such a predictive model 

would be capable of optimizing shoe and floor design parameters to maximize friction.  

Over thirty-six computational models of shoes have been developed and implemented in 

order to reduce high pressure regions for improving shoe comfort or athletic performance [74]. 

Yet few studies have developed models for improving the safety of shoe outsoles and examining 

shoe-floor friction [17, 75].  This study will address this paucity of knowledge by developing a 

finite element model for investigating the components of shoe-floor friction at the microscopic 

level.  

The proposed computational model is based upon relevant tribological theory. Shoe soles 

are typically made of elastomers and the two dominant friction mechanisms in elastomer 

contacts are adhesion and hysteresis [55, 61, 76]. Adhesion occurs when contacting asperities 

form an adhesional bond at the molecular level [61]. The adhesion force is proportional to the 

real contact area and real contact area is a function of the topographic parameters such as 

asperity geometry and roughness of the two contacting materials [61, 76]. Hysteresis is the result 

of viscoelastic energy loss during deformation of the soft elastomer caused by its interactions 

with the asperities of the hard contacting surface [61]. Moreover, boundary lubrication [18, 19] 

and hydrodynamic lubrication [16, 18, 50] are reported as the two different lubrication 

mechanisms relevant to shoe-floor-contaminant friction. In the boundary lubrication regime, the 

fluid reduces the adhesion component but does not have a significant effect on hysteresis [19]. 

Thus, hysteresis friction is important for maintaining adequate friction in boundary lubricated 

regime. Simulating the microscopic interactions of shoe-floor asperities is a critical first step 

towards developing a comprehensive friction model since microscopic features play a major role 

in adhesion, hysteresis and overall friction [51, 54, 55, 60, 61, 76-78]. 
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Finite element analysis is an effective approach for modeling the friction between 

elastomer and hard surfaces. For example, computational models have been successfully used to 

model the friction and wear in contact between rubber and other surfaces [57, 63, 79-81]. Yet 

these models are typically applied to tire mechanics and rubber-metal contacts. Research by 

Tokura demonstrated the ability of explicit finite element modeling to simulate the microscopic 

contact of rubber against hard surfaces [63]. Applying similar methods with multiple asperities to 

shoe and flooring may provide opportunities to improve shoe-floor-contaminant friction much 

like previous models have been used to investigate elastomer friction in other applications. 

In this study, a three-dimensional finite element microscopic model is developed to 

simulate the frictional interactions between shoe and floor surfaces in boundary lubrication. The 

model calculates the real contact area between the surfaces, which is known to be proportional to 

the adhesion friction, and the shear force due to hysteresis. The finite element analysis is 

conducted with dynamic conditions relevant to slipping (i.e. normal interface pressure, slipping 

speeds, genuine shoe sole material properties, and roughness levels for actual shoe and floor 

surfaces). Model results are compared with experimental data to assess its validity in predicting 

the effects of surface roughness, material properties and sliding speed on adhesion and hysteresis 

friction. This model represents a first step towards developing a full multi-scale model of shoe-

floor friction. 
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3.3 METHODS 

3.3.1 Finite element model  

Three-dimensional shoe and floor models were created using eight-node solid hexahedral 

elements in explicit finite element analysis software (LS-Dyna®, Livermore Software 

Technology Corporation, Livermore, California, USA). This type of element is efficient and 

accurate in contact simulations and when exposed to severe deformations [82]. The model was 

created based on the topography and material properties of two shoe materials and three ceramic 

tiles with different roughness levels, which were physically measured to ensure that the model 

inputs were relevant to the actual shoe and floor samples (Section 3.3.2). Finite element models 

of contact of rough surfaces at microscopic scale typically utilize simplifying assumptions to 

simulate the effects of surface roughness parameters [83]. Within this context, various geometric 

shapes including but not limited to probabilistic distribution of hemispherical asperities, half 

cylinders, saw tooth and sine waves have been examined [83-85]. For this work, a sawtooth 

pattern was chosen to represent the surface asperity distribution because it simply allows for 

including surface roughness and slope parameters that are strongly correlated to lubricated 

friction at shoe-floor interface [86, 87]. Roughness was applied to the interface side of the shoe 

and floor surfaces by raising and lowering nodes to achieve a sawtooth pattern (Figure 3-1). 

Asperity peaks and valleys were displaced from the mean line of the surface by half of the 

desired average peak to valley distance roughness (Rz) and the spacing between asperities was 

selected such that the slope of the asperities was consistent with the measured root mean square 

slope (Δq). The microscopic shoe sample models were 0.415 mm in length, 0.28 mm in width, 

and 0.275 mm in height. The floor models were 1 mm in length, 0.6 mm in width, and 0.06 mm 
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in height. Mesh sizes for shoe samples elements ranged from 5 to 62.5 µm while mesh size for 

floor elements was 29 µm (Figure 3-1). In the preliminary modeling efforts, mesh refinement in 

the floor did not significantly impact the von mises stresses developed in the shoe, so all the 

simulations were performed without mesh refinement of the floor elements. Shoe samples were 

meshed with a finer mesh for regions near the contact area. Mesh size for the shoe samples was 

determined based on the convergence in the ratio of real contact area to normal force (Equation 

3-5.) 

 

Figure 3-1. Shoe and floor surfaces with microscopic asperities created in finite element 

software. (High shoe roughness and medium floor roughness) 
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Equation 3-1. 

 

A viscoelastic material model was applied to the shoe elements (See section 3.3.2 for 

material properties) while a rigid material model was applied to the floor elements. A rigid 

material model was used for the floor because the modulus of ceramic floor material model was 

orders of magnitude larger than the shoe materials’ moduli. The viscoelastic material used for the 

shoe was chosen because time-dependent material properties are needed for simulating adhesion 

and hysteresis friction since both components are related to the viscoelastic properties of the 

rubber [54]. The viscoelastic model describes shear stress relaxation of the material using a 

multi-term exponentially decaying function [88], (Equation 3-1.).  

 

Boundary conditions were set to achieve pressure and sliding speeds relevant to walking 

and slipping. The contact pressure was controlled using the vertical displacement of the nodes on 

the top surface of the shoe. This downward movement occurred until an average normal contact 

pressure of 160 kPa was achieved. The contact pressure was set to this value to match the 

experimental conditions that were used in the validation (Section 3.3.2). This pressure is of the 

same order of magnitude of under-shoe contact pressures during walking [89]. The second 

loading step moved the nodes on the top surface of the shoe in the shear direction at the desired 

speed. Sliding speeds between 0.1 and 1 m/s were simulated to maintain consistency with the 

experimental validation research and because these speeds are relevant to slipping [41]. In all of 

the simulations, floor elements were constrained from both translation and rotation. 

A segment based automatic surface to surface contact was used in the modeling efforts to 

overcome the instabilities in simulating contact of rubber with rigid surfaces [63]. During model 
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Equation 3-2. 

 

development, this contact algorithm was the only method capable of handling the large 

deformations of the soft rubber material and avoiding 'hourglassing' and 'checkerboarding' 

problems. The shoe sample was considered the slave material since it is softer and the floor 

sample was considered the master since it is harder.  

Hysteresis coefficient of friction (COFHysteresis) was calculated by dividing the average 

shear force due to hysteresis by the average normal force between the two surfaces (Equation 

3-2.). COFHysteresis was averaged across the second loading step time period during sliding 

(Figure 3-2). 

 

 

Figure 3-2. Representative plot of real contact area (Ac), normal force (FN) and shear force due 

to hysteresis (FHysteresis) generated between shoe and floor model with respect to time (rubber 

material, medium floor roughness, high shoe roughness, sliding speed of 1 m/s). 
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Equation 3-3. 

 Equation 3-4. 

 
Equation 3-5. 

The ratio of real contact area to normal force was used as a measure of the adhesion 

coefficient of friction. Adhesion frictional force, FAdhesion, is commonly calculated as the product 

of the real contact area, Ac, and the interfacial true shearing stress required to break the contact 

junctions, σs (Equation 3-3.) [59, 60, 90]. The interfacial shear stress is estimated by fitting 

Equation 3-3. to the experimental data [60] and is dependent on the elastomer material, substrate 

surface and liquid contaminant [55, 60, 62]. Since the adhesion coefficient of friction 

(COFAdhesion) is the ratio of adhesion friction force and the normal force (Equation 3-4.), the ratio 

of real contact area to normal force (Ac/FN) should be proportional to the adhesion coefficient of 

friction (Equation 3-5.). The Ac/FN was averaged across the second loading step (Figure 3-2). 

This approach for quantifying adhesion friction is inappropriate for comparing adhesion across 

different materials since the interfacial shearing strength, σs, and the real contact area, Ac, vary 

across material properties. Therefore, this ratio was only used to assess the effects of sliding 

speed, shoe roughness and floor roughness on adhesion friction within each shoe material. 
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3.3.2 Experimental validation 

Two shoe materials (Neolite and nitrile rubber) were modeled and tested experimentally. 

Neolite had a Shore A hardness of 95 and it is considered a standard raw material in shoe-floor 

friction research [72]. The nitrile rubber sample (Referred to as “rubber” in this chapter), 

removed from an intact work shoe, had a Shore A hardness value of 50. Test samples included 

cylindrical untreaded specimens of the materials (Diameter of 13.5 mm and height of 5.7 mm) 

[53]. Roughness parameters were measured using a stylus profilometer. Eight roughness 

measurements were collected at different locations and orientations for each shoe and floor 

surface using a scan length of 12.5 mm and a cutoff length of 0.80 mm. The roughness was 

described with the average peak-to-valley distance (Rz) and root mean square slope of the profile 

(Δq) averaged across the scans (Table 3-1). These parameters have been reported to have a strong 

positive correlation with shoe-floor-contaminant coefficient of friction [86, 87]. Therefore, these 

parameters were chosen as the parameters for surface description. Because the materials that 

were used in this study had different material properties and different roughness levels, 

simulations were conducted using both shoe roughness levels and both shoe material properties 

in order to isolate roughness versus material effects.  
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Table 3-1. Surface roughness parameters for shoe and floor surfaces. 

Shoe/Floor Material/Roughness level Rz (µm) Δq (Degrees) 

Shoe 
Neolite (Low) 6.7 28 

Rubber (High) 51.2 36.7 

Floor 

Low 16.6 15.9 

Medium 24.3 22.6 

High 35.1 26.3 

Material parameters were primarily determined experimentally. Density of the shoe 

samples was measured based on the volume and mass of the samples. The shear relaxation and 

the exponential decay constants (Equation 3-1.) were measured with compression stress 

relaxation tests (MTS Systems Corporation, Eden Prairie, Minnesota, USA) [91]. Two 

rectangular blocks of Neolite (Average thickness of 5.5 mm, average area of 612 mm2) and 

rubber (Average thickness of 6.1 mm, average area of 552 mm2) with approximately equal and 

uniform thickness were adhered to aluminum plates. The compression test was repeated three 

times and the results were averaged for each shoe material. The testing method compresses the 

materials by 10% of the total thickness of elastomers (10% strain), then applies this constant 

displacement level for 240 seconds (Figure 3-3) and finally unloads the samples. 
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Equation 3-6. 

 

 

Figure 3-3. Relaxation modulus versus time during the stress relaxation test for the Neolite and 

rubber material and the corresponding curve fits. 

Poisson's ratio was set to 0.499 for the shoe sample since rubber is typically categorized 

as a nearly incompressible material and is reported to have a Poisson's ratio of 0.49-0.499 [92]. 

Equation 3-6. governs the relationship between shear modulus, compressive modulus, and 

Poisson's ratio [92] and was used to find shear modulus as a function of time where compressive 

modulus was calculated as the ratio of the applied force to area divided by the applied strain 

(10%). In order to find the required coefficients in Equation 3-1. from stress-relaxation tests, an 

exponential curve fitting (Figure 3-3) was done using the curve fitting toolbox in MATLAB® 

(Mathworks, Natick, Massachusetts, USA). The values obtained for viscoelastic material 

parameters of Neolite and rubber are summarized in Table 3-2. 
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Table 3-2. Viscoelastic material parameters used for modeling Neolite and rubber 

 
Gm(MPa) 

 
Material G1 G2 G3 G4 G5 τ1(s) 

Neolite 

Rubber 

16.36 

0.5044 

3.47 

0.007879 

5.028 

0.06938 

2.638 

0.05364 

3.093 

0.01377 

4703.7 

3546.1 

Model output was compared with experimental data collected with a pin-on-disk 

tribometer (Figure 3-4) on 300 mm x 300 mm square ceramic tiles with three different roughness 

levels for both shoe materials (Neolite and rubber) at six sliding speeds [53]. The three surface 

roughness levels for the ceramic tiles were achieved using a sandblasting process that used 

aluminum oxide as the abrasive. The simulated speeds included 0.1, 0.25, 0.5, 0.75, and 1 m/s to 

match the speeds used in the experimental study. The experimental study quantified hysteresis 

using a lubricant (SAE 75W140) that dramatically reduces adhesion [19]. The study also 

quantified fluid lubricated adhesion friction at each of the speeds by subtracting the hysteresis 

friction (measured with SAE 75W140) from the wet friction. Dry adhesion from the 

experimental study (at speed of 0.01 m/s) was compared with lowest simulated speed (0.1 m/s) 

to assess validity of the model in simulating the effects of shoe and floor roughness on dry 

adhesion because the experimental study did not measure dry adhesion for higher speeds. To 

examine the effects of speed on adhesion, the wet adhesion data from the lowest viscosity fluid, 

25% glycerol/75% water lubricant, was compared with the model output as part of the validation 

for the effects of speed on adhesion. 
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Figure 3-4. (a) Custom pin-on-disk tribometer used for collecting friction data (Courtesy of 

Human Movement and Balance Laboratory, University of Pittsburgh). (b) schematic of the shoe 

(Pin) and floor (Disk) material and shear and normal forces. Picture from [19] (Permission 

obtained.) 

3.4 RESULTS  

3.4.1 Hysteresis 

Increased shoe and floor roughness in the model generated large increases in COFHysteresis 

for both materials (Figure 3-5). The mean increase in hysteresis coefficient of friction was 160% 

(range of 56 to 200%) with increasing shoe roughness for the Neolite material and a mean 

increase of 20% (range of 15 to 22%) with increasing shoe roughness for the rubber material. 

Increasing floor roughness caused a mean increase of 21% (range of -28 to 50%) in hysteresis 
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coefficient of friction for the Neolite material and a mean increase of 34% (range of 17 to 52%) 

for the rubber material. Thus, the Neolite shoe material was more sensitive to shoe roughness, 

while the rubber material was more sensitive to floor roughness. 

 

Figure 3-5. COFHysteresis across different shoe and floor roughness levels averaged across 

different speeds for Neolite (Left) and rubber (Right). Error bars represent standard deviations 

across the different speeds. 

Sliding speed had a minor and inconsistent effect on hysteresis friction depending on the 

shoe material, shoe roughness and floor roughness (Figure 3-6). The mean decrease in hysteresis 

coefficient of friction was 8% (range of -24 to 31%) with increasing sliding speed from 0.1 to 1 

m/s.
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a) 

 

b) 

 

Figure 3-6. Effect of speed on COFHysteresis for Neolite (a) and rubber (b) for the different 

combinations of shoe-floor roughness. 
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3.4.2 Adhesion 

The model indicated that increasing sliding speed led to a reduction in the real contact 

area, indicating that the adhesion coefficient of friction was dependent on sliding speed. With 

increasing sliding speed from 0.1 m/s to 1 m/s, a decrease in the ratio of real contact area to 

normal force was observed in rubber and majority of Neolite simulations (Figure 3-7). The ratio 

of real contact area to normal force decreased an average of 19% (range of -28 to 54%) with 

increasing sliding speed for Neolite and decreased an average of 35% (range of 29 to 40%) for 

the rubber material. 



38 

a) 

 
b) 

 
Figure 3-7. Effect of speed on the ratio of real contact area to normal force (Ac/FN) for Neolite 

(a) and rubber (b) across different combinations of shoe-floor roughness. 
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Increasing shoe or floor roughness reduced the contact area indicating that increased 

roughness leads to a reduction in adhesion friction in majority of the simulations (Figure 3-8). 

The ratio of real contact area to normal force decreased an average of 41% (range of 16 to 64%) 

with increasing Neolite shoe roughness and decreased an average of 7% (range of -46 to 48%) 

with increasing rubber shoe roughness. Increasing floor roughness caused an average decrease of 

5% (range of -67 to 44%) in the ratio of real contact area to normal force in the Neolite material 

and an average decrease of 4% (range of -43 to 36%) in the rubber material. Increasing floor 

roughness caused a decrease in the ratio of real contact area to normal force for the low shoe 

roughness but caused an increase for the high shoe roughness. 

 

Figure 3-8. Effects of shoe and floor roughness on the ratio of real contact area to normal force 

(Ac/FN) averaged across different speeds for Neolite (Left) and rubber (Right). Error bars 

represent the standard deviations across the different testing speeds. 
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3.4.3 Experimental validation of model 

The hysteresis coefficient of friction magnitudes and the effects of shoe material and 

floor roughness on hysteresis friction were consistent between the model and the experimental 

studies (Figure 3-9). Both the experiments and the model demonstrated hysteresis coefficient of 

friction values ranging from approximately 0.1 to 0.3. Increasing floor roughness led to larger 

hysteresis friction values both experimentally and in the model. Also, the increase in hysteresis 

friction between the rougher and softer rubber material in reference to the smooth and hard 

Neolite was consistent between the model and experiments. Overall, hysteresis coefficient of 

friction from the model demonstrated a better agreement with the experimental results in the case 

of the smooth Neolite (Figure 3-9. Left). The predicted effect of sliding speed on hysteresis 

coefficient of friction differed from the experimental results. The model predicted a fairly 

constant hysteresis friction with increasing speed while the experimental studies demonstrated a 

substantial decrease in hysteresis friction with increasing sliding speeds. 
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Figure 3-9. Comparison between model and experiment in COFHysteresis: for the two shoe 

materials averaged across different speeds and floors (Left); for the three floor roughness levels 

averaged across different speeds and shoe materials (Middle); and for the different sliding speeds 

averaged across different floor roughness levels and shoe materials (Right). Error bars represent 

standard deviations across the averaged parameters. 

The model and experiments were more consistent in reproducing the effects of speed on 

adhesion for the rubber material than for the Neolite material (Figure 3-10). The model was not 

effective in reproducing the effects of floor roughness on adhesion friction (Figure 3-10). The 

model predicted a decreasing trend with increasing floor roughness for the Neolite material 

whereas experiments showed that it was relatively constant. Also, the model predicted an 

increasing trend with increasing floor roughness for the rubber material whereas the experiments 

demonstrated a decreasing trend. Both the model and experiments demonstrated a decay trend in 

adhesion friction as sliding speed increased for rubber material. This effect was less present for 

the Neolite models. The reduction in adhesion friction due to increasing sliding speed from 0.25 

to 1 m/s was 37% and 41% for Neolite and rubber in the experiments, respectively, while the 

model predicted a reduction of 2% and 27%, respectively. Therefore, the trend between speed 



42 

and adhesion friction was similar between the model and experiments but the model 

underestimated the magnitude of the adhesion reduction with increasing sliding speed. 

a) 

 
b) 

 
Figure 3-10. Comparison between the ratio of real contact area for the model and adhesion 

friction from the experiments for Neolite (a) and rubber (b) for: different floor roughness levels 

averaged across sliding speeds (Left) and different sliding speeds averaged across floor 

roughness levels (Right). Error bars represent the standard deviations across the averaged 

parameter. 

3.5 DISCUSSION 

The finite element model developed in this paper successfully predicted several trends in 

hysteresis, partially predicted speed trends for adhesion friction and produced hysteresis 
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coefficient of friction values similar to those observed experimentally. The model was based on 

shoe and floor roughness levels, shoe material properties and shoe sliding speeds that are 

relevant to slipping. Thus, this effort represents a successful step towards the utilization of finite 

element modeling in evaluating the relationship between shoe and floor design and coefficient of 

friction. 

The finite element model reproduced several experimental trends including the effects of 

shoe material and floor roughness on hysteresis friction and the effects of speed on adhesion 

friction. Increased floor roughness resulted in elevated hysteresis coefficient of friction for both 

materials. Also, the net effect of a softer yet rougher shoe led to an increase in hysteresis friction. 

The overall magnitude of the predicted hysteresis coefficient of friction values were similar to 

those measured experimentally. Predicted trends in adhesion friction with floor roughness did 

not agree with those in the measured friction for either material. Increased sliding speed led to a 

lower ratio of real contact area to normal force, which was consistent with the experimental data 

but the model underestimated the magnitude of this reduction compared to experimental results. 

The predicted effects of shoe and floor roughness on adhesion and hysteresis friction are 

consistent with the previous modeling studies and tribological theory. The model predicted a 

consistent positive correlation between roughness of the shoe or floor material and hysteresis 

friction. Typically, higher levels of roughness will result in higher deformation in contacting 

asperities [54, 77, 78], which results in additional energy loss in the viscoelastic material as it 

was observed in the finite element model of Bui and Ponthot [93], experimental study of [54] 

and theoretical studies of [77, 78]. The model demonstrated an 80% increase in hysteresis 

coefficient of friction with increasing floor roughness across the shoe materials. This increase is 

larger than the increase in hysteresis coefficient of friction due to roughness reported by other 
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researchers as 33% [53] and 48% [19]. It should be noted that those studies used a narrower 

range of roughness and different shoe materials which might explain the smaller increase in 

hysteresis with respect to increasing floor roughness in those studies. The model predicted a 

lower adhesion friction with increasing shoe/floor roughness due to a reduction in the real 

contact area. The decrease in the ratio of real contact area to normal force with increasing 

shoe/floor roughness suggests that increased asperity height reduces the amount that the soft 

shoe material conforms around the floor surface asperities in agreement with tribological theory 

[51] and experimental research [19]. There existed a 50% reduction and 31% increase in the ratio 

of real contact area to normal force with increasing floor roughness for rubber and Neolite, 

respectively. These effects were not consistent with the effects observed in [53] where 10-30% 

increase is reported but agree with the findings of [19] that reports a 28% reduction in force of 

adhesion with increasing floor roughness. Given that the effect of floor roughness on real contact 

area was reversed for the high shoe roughness (i.e., an increase in real contact area was observed 

between the medium and high roughness flooring), a likely different explanation is needed for 

high roughness shoe materials. When shoe roughness is high, increasing floor roughness can 

cause an interlocking effect between the shoe and floor asperities where the floor geometry 

conforms with the shoe asperities and leads to a higher area of contact [59]. Thus, an interesting 

interaction exists between shoe roughness and floor roughness for adhesion friction. This effect 

may disappear in the model if a distribution of asperity heights were used instead of a constant 

asperity height, which may reduce this interlocking effect. 

The model predictions for the effects of sliding speed on adhesion are largely supported 

by tribological theory. The model, in agreement with the experimental studies on wet adhesion, 

demonstrated a reduction in real contact area with increasing sliding speed. At higher sliding 
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velocities, asperities of the soft shoe surface will have less time to viscoelastically conform 

around the harder floor asperities to form adhesional bonds, which reduces the real contact area 

and decreases adhesion [41]. The model indicated a 25-35% reduction in the ratio of real contact 

area to normal force with increasing sliding speed. This finding is generally in agreement with 

that findings of [18, 53] where they report a 28-60% reduction in lubricated friction with 

increasing sliding speed for a shoe material.  

Results of the simulations indicated that speed does not have a dramatic effect on the 

hysteresis friction, while the experimental studies indicate that increasing sliding speed 

consistently reduced the hysteresis coefficient of friction. The lack of agreement between the 

simulations and experimental results may be due to limitations in the experimental studies to 

isolate hysteresis from hydrodynamic effects. Those experiments used a high viscosity oil to 

block adhesion and isolate hysteresis friction, which may have increased hydrodynamic 

pressures and reduce interaction by causing a separation between the surfaces [22, 26]. To 

conclusively test the ability of the model in simulating the effects of speed on hysteresis friction, 

novel experiments that isolate hysteresis friction without viscous fluid would need to be 

developed. Alternatively, the model developed in this paper would need to simulate the 

hydrodynamic effects of the fluid [16]. 

One strength of the model is its ability to evaluate the net change in hysteresis friction 

across shoe materials that have different material properties and roughness. Nosonovsky et al. 

[94] explained that materials self-organize to different steady-state roughness values dependent 

on their material properties and the counter surface that is causing the wear. Previous work that 

has attempted to describe the effects of shoe material properties on shoe-floor friction has led to 

conclusions that softer shoe materials lead to larger lubricated or hysteresis friction [15, 19, 58, 
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95, 96]. The model used in this study reveals that the increased hysteresis friction for softer shoe 

materials is likely due to the fact that softer materials typically have higher roughness [25, 58, 

94, 96]. Thus, the increased lubricated friction that has been observed for soft shoes is likely 

caused by the increased roughness of soft materials and not by their hardness. The model used in 

this study was able to successfully determine that the soft yet rougher shoe material had a net 

increase in the hysteresis friction when compared to the hard but smoother material. Therefore, 

this model may have benefits in identifying shoe materials with high hysteresis friction by 

considering both their material properties and steady-state roughness. This contribution is 

significant considering that hysteresis is the dominant friction mechanism relevant to shoe-floor-

contaminant friction in boundary lubrication regime [53]. 

Future enhancements to the model may improve its ability to reproduce experimental 

trends. For example, the relationship between the hysteresis friction and sliding speed may be 

improved be incorporating a hybrid model capable of considering the effects of both fluid and 

solid. The fluid component of this model would need to capture the hydrodynamic effects on the 

separation and deformation of the shoe material similar to [16].  

Also, using statistical models for describing asperity distribution of the contacting 

surfaces might improve the model’s predictive capabilities [77, 97]. Future versions of this 

model should also aim at using various shapes for describing surface asperities and examine its 

effect on the predicted friction [83]. This first generation of the microscopic model of model of 

shoe-floor-contaminant friction provided reasonable agreement in trends of the hysteresis and 

adhesion friction with the experimental results using the simplifying assumption of sawtooth 

profile. The model could be used as a basic framework for more advanced models of complex 

multi-factorial shoe-floor-contaminant friction by also considering the macroscopic features of 
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shoes such as tread. Lastly, more research is needed to quantify interfacial shear stresses for 

different combinations of shoe materials, floor materials and contaminants in order for the model 

to predict adhesion coefficient of friction values. 

The ultimate goal of these models is to assist in improving shoe and floor design to 

reduce slips and fall injuries. Our findings suggest that shoe roughness, floor roughness and 

material properties have a dramatic impact on hysteresis friction, while shoe roughness, floor 

roughness and sliding speed have an impact on adhesion friction. Thus, controlling these 

parameters can be useful in designing slip-resistant shoe and flooring surfaces.  As these models 

continually develop, more conditions and parameters that impact friction can be incorporated and 

more sophisticated designs can be done, leading to the ultimate goal of reduced injuries due to 

slip accidents. 
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4.0  PREDICTIVE MULTISCALE COMPUTATIONAL MODEL OF SHOE-FLOOR 

COEFFICIENT OF FRICTION 

4.1 ABSTRACT 

Understanding the frictional interactions between the shoe and floor during walking is 

critical to prevention of slips and falls, particularly when contaminants are present. A multiscale 

finite element model of shoe-floor-contaminant friction was developed that takes into account 

the surface and material characteristics of the shoe and flooring in microscopic and macroscopic 

scales. The model calculates shoe-floor coefficient of friction (COF) in boundary lubrication 

regime where effects of adhesion friction and hydrodynamic pressures are negligible. The 

validity of model outputs was assessed by comparing model predictions to the experimental 

results from mechanical COF testing. The multiscale model estimates were linearly related to the 

experimental results (p<0.0001).  The model predicted 73% of variability in experimentally-

measured shoe-floor-contaminant COF. The results demonstrate the potential of multiscale finite 

element modeling in aiding slip-resistant shoe and flooring design and reducing slip and fall 

injuries. 

Keywords: Slips and falls; Shoe-floor friction; Coefficient of friction; Finite element 

modeling  
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4.2 INTRODUCTION 

Slips and falls are among the primary causes of injuries. According to the Centers for 

Disease Control and Prevention, falls were the leading cause of non-fatal injuries between 2001 

and 2014 and are responsible for an annual financial burden of $180 billion in the United States 

[3, 98]. More than 50% of falls are initiated by slipping accidents in occupational settings [5]. 

Frictional characteristics of the shoe-floor interface impact the likelihood of slips and 

falls [6, 7, 37]. The probability of slips has been predicted with the available coefficient of 

friction (ACOF) and the required coefficient of friction (RCOF) [6, 7, 33, 37]. RCOF is 

measured during gait using force plates on dry surfaces [38]. ACOF is typically measured using 

a mechanical device that quantifies the ratio of friction to normal forces between the shoe and 

flooring [6-8, 33]. Physics-based computational models of frictional behavior of the shoe-floor-

lubricant complex have recently been developed to predict ACOF [16, 99]. These models have 

advantages in that: 1. they can help explain the underlying friction mechanisms pertinent to shoe-

floor friction, and 2. they can be used to predict and optimize ACOF of hypothetical shoe-floor 

designs (i.e., they can be used as a design tool). 

Shoe-floor friction is influenced by microscopic and macroscopic features of the shoe and 

flooring. Relevant factors affecting ACOF on the microscopic scale include shoe and flooring 

surface topography, contact pressure, and outsole material properties [16, 99, 100]. Relevant 

factors on the macroscopic scale include shoe tread design features such as geometry, tread 

depth, width and orientation [12-14], material hardness [15, 101], sliding speed and shoe-floor 

contact angle [46, 102, 103]. Physics-based modeling of the shoe-floor interface has the potential 

to elucidate how these various features contribute to friction mechanisms. 
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Contaminants, particularly liquids, play an important role in slipping accidents and can 

impact friction. Fluid can reduce ACOF by either becoming pressurized, causing a separation of 

the contacting surfaces (hydrodynamic lubrication) or by reducing adhesion friction without 

causing a separation (boundary lubrication). While some studies have utilized solely 

hydrodynamic theory to explain ACOF of lubricated surfaces [13, 50], research by our group 

suggests that dangerously low ACOF values can occur even without hydrodynamic effects [18, 

19, 53, 99]. Shoes with at least some tread are demonstrated to operate in boundary lubrication 

[22, 26] suggesting that boundary lubrication is relevant to slipping. In boundary lubrication, 

hysteresis deformation of the shoe sole material is the major mechanism contributing to friction 

[19, 53, 99]. Hysteresis friction originates from viscoelastic deformation of the surface asperities 

[61]. Therefore, modeling hysteresis at the shoe-floor interface is relevant to predicting friction 

on liquid-contaminated surfaces. 

An opportunity exists to use finite element modeling to simulate and predict shoe-floor 

COF. Finite element modeling has been demonstrated to be effective in modeling the impact of 

microscopic shoe and floor features on COF [99]. Furthermore, multiscale computational models 

have been developed for tires that take into account surface features in both microscopic and 

macroscopic levels to determine hysteresis COF [31, 32]. However, multiscale computational 

methods have not yet been applied to investigate shoe COF. This study addresses this knowledge 

gap by applying multiscale computational modeling techniques to actual shoe geometries to 

predict whole shoe-floor COF.  

The purpose of this study is to develop and quantify the predictive ability of a multiscale 

finite element model for shoe-floor COF. The predictive ability of the multiscale computational 

model as well as each of its components (microscopic and macroscopic) to predict experimental 
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ACOF are assessed to evaluate the validity of the model. The scope of this model is boundary 

lubrication regime where adhesion and hydrodynamic pressure effects are negligible.  

4.3 METHODS 

4.3.1 Multiscale model 

A computational model was developed that included a microscopic and macroscopic 

finite element model. The microscopic model simulated the interaction between shoe and floor 

surface asperities to predict the frictional shear stress due to hysteresis as a function of contact 

pressure [56, 78, 104]. The macroscopic model simulated shoe heel to floor contact to determine 

the contact pressure distribution across the outsole surface (Figure 4-1). Contact pressure values 

from the macroscopic model were then combined with the microscopic model to predict the 

hysteresis COF. Explicit finite element software (LS-Dyna® Livermore Software Technology 

Corporation, Livermore, California, USA) was used for simulations. 



52 

 

Figure 4-1. Representative microscopic (Left. S1-Vinyl) and macroscopic (Right. S6) finite 

element models. Flooring is not shown in the macroscopic model. A magnified representation of 

surface asperities is shown in the top left corner. 

4.3.1.1 Microscopic model 

The microscopic model simulated contact between a rough viscoelastic shoe material and 

a rough rigid floor. A five-term exponentially decaying function was applied to the shoe, which 

described the time-dependent behavior of the shear modulus (G(t)) (Equation 4-1.) [99]. Flooring 

was modeled as rigid because it is orders of magnitude harder than the shoe [17, 99]. Roughness 

parameters including the peak-to-valley distance roughness (Rz) and root mean square slope (Δq), 

were incorporated into the models that were consistent with shoes and floors tested in the 

experimental measurements (See section 4.3.2). Specifically, the peak-to-valley distance (Rz) 

was used to define the vertical distance between peak and valley nodes. Root mean square slope 

(Δq) was used to define the slope of the asperities, which affected the spacing between the 

asperities (Figure 4-1. Left) [99].  
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Equation 4-1. 

  

Boundary conditions for the microscopic models included: 1. constraints on the 

translational and the rotational degrees of freedom at the bottom surface of the floor nodes. 2. 

Constraints on the translational degrees of freedom at the top surface of the shoe nodes. 3. 

Contact pressure was controlled using the vertical displacement boundary conditions that were 

applied at the top surface of the shoe nodes; higher contact pressures were achieved by applying 

more downward vertical displacement. 4. Velocity boundary conditions consistent with 

experiments (Section 4.3.2) were applied to the nodes at the top surface of the shoes. The 

microscopic model geometries were meshed using eight node hexahedral elements. These 

elements are well suited for simulating extreme deformations of soft materials [82]. Mesh 

settings that were previously examined for the finite element models of chapter 3.0 (Section 

3.3.1) were used for the microscopic models. 

4.3.1.2 Macroscopic model 

Macroscopic models were either created based on non-contact 3D laser scans (FaroArm®, 

Faro Technologies, Lake Mary, Florida, USA) of the shoes or CAD models developed based on 

the measured shoe geometries (ANSYS DesignModeler®, ANSYS Inc., Canonsburg, 

Pennsylvania, USA). For shoes with repeated pattern geometries, CAD models were developed. 

For shoes with irregular tread patterns, laser scans were collected, processed to repair surface 

irregularities (Geomagics®, 3D Systems Corporation, Rock Hill, South Carolina, USA), and 

tread surface texturing was added to the surface based on the texture’s shape, size and orientation 
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(ANSYS DesignModeler®). Since viscoelastic effects were accounted for in the microscopic 

models, a linear elastic material based on durometer readings was used for the shoes in 

macroscopic models (Section 4.3.1.1).  

Displacements and rotations of the nodes at the bottom surface of the flooring and the top 

surface of the shoe in the macroscopic models were constrained similar to the microscopic 

models. The shoe was slid against the flooring at a normal force of 250 N and a horizontal speed 

of 0.3 m/s. The vertical velocity was 0.3 m/s until the desired vertical force was reached (Section 

4.3.1.2). Shoe-floor angles consistent with experimental measurements were used in macroscopic 

models (Section 4.3.1.2). Macroscopic models were meshed using tetrahedral elements that are 

recommended for simulating complex geometries [82]. Flooring was modeled as a rigid material 

similar to microscopic simulations [17, 99]. Mesh refinement was applied to the elements of the 

contact region of the shoe. Mesh size for the macroscopic models was determined based on a 

tradeoff between the convergence in the normal force and the computational cost. 

4.3.1.3 Analysis of model data 

Frictional shear stress due to hysteresis (σf) was calculated as the ratio of the average 

hysteresis force to the nominal area (Equation 4-2.). Average contact pressure in the microscopic 

models was calculated by dividing the average normal force by the area of the shoe interface in 

the horizontal plane (i.e., nominal area). Between 16 and 21 contact pressures were evaluated 

using the model for each shoe-floor combination. A piecewise polynomial fit (f(p)) [32, 64] was 

used (MATLAB®, Mathworks, Natick, Massachusetts, USA) to interpolate the shear stress 

between the discrete levels of contact pressure simulated in microscopic models (Figure 4-2 and 

Equation 4-3.). Friction forces for the macroscopic models were calculated based on the 

predicted shear stresses and areas of the contact elements. These friction forces were summed 



55 

across the contact elements to calculate the net friction force (Equation 4-4.). Normal force was 

calculated based on the contact pressure and the area of elements (Equation 4-5.). Whole-shoe 

COF was the ratio of friction force to normal force (Equation 4-6.). A preliminary analysis of the 

modeling data and experimental data (described in section 4.3.2) revealed that the relationship 

between friction force and normal force was linear with a y-intercept of approximately 0 

indicating that this definition of whole-shoe COF is relevant even though Amontons’ laws are 

not broadly applicable to polymers [105]. 

 

Figure 4-2. Representative plot of the frictional shear stress, σf, as a function of contact pressure. 

The gray line indicates the piecewise polynomial curve fit. 
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Equation 4-3. 

 
Equation 4-2. 

 

Equation 4-4. 

 

Equation 4-5. 

 

Equation 4-6. 

 

 

 

 

 

 

4.3.1.4 Multiscale computational modeling of shoe-floor hysteresis friction: An alternative 

approach for calculating shoe-floor-contaminant coefficient of friction 

In this section, an alternative method for analyzing the data from multiscale model to the 

one that was introduced in section 4.3.1 is presented. This method is based on the premise that it 

will make it possible that the COF for whole shoe can estimated with the assumption that the 

entire shoe geometry is at a certain contact pressure level. Later on in this dissertation (Chapter 

5.0 ), this approach is used to investigate the effect of shoe design factors and biomechanical 

parameters on the COF. 

In this alternative framework, instead of utilizing the frictional shear stress (σf), COF at 

the microscopic scale (COFMicro) was calculated as the ratio of average hysteresis force to the 

average normal force during the time period where horizontal sliding was occurring (Equation 

4-7.)[99]. Average contact pressure in the microscopic models was calculated by dividing the 

average normal force by the nominal area of the shoe interface. Between 15 and 19 contact 
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pressures were evaluated using the model for each shoe-floor combination. The resulting 

relationship between contact pressure and COFMicro was described with an exponential decay 

function for each shoe-floor combination (Figure 4-3 & Equation 4-8.). Based on this 

exponential decay function and the simulated contact pressure in the macroscopic model, the 

COF in each of the shoe outsole contact elements was determined. Friction forces were 

calculated based on the COFMicro (p), contact pressures and contact areas of the contact elements 

[101]. These friction forces were summed across the contact elements to calculate the whole 

shoe friction force (Equation 4-9.). Normal force was calculated based on the contact pressure 

and area of elements (Equation 4-5.). Whole shoe COF was the ratio of whole shoe friction force 

to whole shoe normal force (Equation 4-6.). 
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Equation 4-8. 

 

Equation 4-7. 

Equation 4-9. 

 

 

 

 

 

Figure 4-3. Representative plot of COFMicro as a function of contact pressure. The gray line 

indicates the exponential curve fit. 

The exponential decay curve (Equation 4-8.) for relating COFMicro values to contact 

pressure fit the data for all shoe-floor combinations (R2 between 0.96 and 0.99 for all shoe 

materials and across the two floorings) (Figure 4-4 & Table 4-1). COFMicro was generally higher 

for the ceramic flooring (higher roughness) compared to the vinyl flooring (lower roughness) 

(Figure 4-4). COFMicro values ranged between 0.11-0.28 for the vinyl flooring (Figure 4-4. Left 
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& Table 4-1. Left) and between 0.14-0.36 for the ceramic flooring (Figure 4-4. Right & Table 

4-1. Right). 

 

Figure 4-4. COFMicro as a function of contact pressure for different shoes when modeled against 

vinyl (Left) and ceramic (Right) flooring. 

Table 4-1. Curve fit parameters for Equation 4-8., describing the COFMicro as a function of 

contact pressure. 

Shoe Floor COF0 COF∞ β(1/kPa) Floor COF0 COF∞ β(1/kPa) 
S1 Vinyl 0.233 0.125 0.00489 Ceramic 0.338 0.149 0.00276 
S2 Vinyl 0.232 0.114 0.00319 Ceramic 0.353 0.153 0.003 
S3 Vinyl 0.226 0.131 0.00313 Ceramic 0.349 0.141 0.00262 
S4 Vinyl 0.253 0.111 0.00182 Ceramic 0.315 0.142 0.00166 
S5 Vinyl 0.25 0.114 0.00325 Ceramic 0.349 0.128 0.0018 
S6 Vinyl 0.282 0.131 0.00456 Ceramic 0.314 0.17 0.00268 
S7 Vinyl 0.254 0.117 0.00133 Ceramic 0.313 0.144 0.00175 
S8 Vinyl 0.248 0.135 0.0015 Ceramic 0.32 0.058 0.00059 

4.3.2 Experimental validation 

Model results were compared to experimentally-measured ACOFs for eight different 

shoes (S1-S8) and two different floorings. Three shoes (work boots) had the same geometry but 

varying material properties (S6-S8). The remaining five shoes had different tread patterns, 
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material properties and roughness levels (S1-S5). The two floorings included a vinyl composite 

tile and a high roughness ceramic tile. The high roughness of the ceramic tile was achieved by 

sand blasting using an aluminum oxide abrasive [53, 106]. Surface characteristics of the shoes 

and floorings were quantified with a stylus profilometer (Taylor-Hobson Surtronic S100®, 

Leicester, UK). Specifically, roughness parameters were measured with a sampling length of 1.6 

mm and a cut-off length of 0.8 mm and averaged across eight measurements at different 

orientations (Table 4-2). The ceramic flooring (Rz = 35.6 µm; Δq = 35.4°) had a higher roughness 

than the vinyl flooring (Rz = 9.1 µm; Δq = 27.8°) for both parameters. 

Table 4-2. Roughness and material parameters for the modeled shoes. 

Shoe 
          Gm(kPa)       

Rz (µm) Δq(⁰) G1 G2 G3 G4 G5 τ1(s) 
S1 4.03 10.56 1891 40.65 177.6 355.7 0.01772 2041.65 
S2 4.81 10.59 2617 46.31 75.77 396 0.2361 1431.02 
S3 4.67 11.5 2595 45.15 240 241.7 0.04211 1999.6 
S4 7.04 11.87 3764 53.99 17.72 160.5 0.00489 1330.85 
S5 6.63 12.61 2989 0.02327 400.3 0 288.5 4450.38 
S6 9.35 13.85 2809 95.78 459.4 0.9468 595.9 1663.89 
S7 7.99 13.31 5046 583.7 366.9 1.648 235.6 895.26 
S8 7.01 13.58 8744 172.5 152.3 0.2857 885.9 1033.38 

Shore A hardness of the shoes were characterized using a durometer (Intercomp®, 

Minneapolis, Minnesota, USA) [107]. Readings were sampled over 2-minutes at 10s intervals. 

Hardness measurements were converted to shear moduli (G(t), Equation 4-1.) using methods 

recommend by Giacomin, et al. [108] and viscoelastic material models were developed (Table 

4-2, R2> 0.99 for exponential decay fits). The initial modulus (at t=0, Equation 4-1.) was used 

for modeling the linear elastic shoe material in macroscopic models. Durometer readings were 

conducted and averaged across nine heel locations for each shoe. 
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ACOF measurements were performed using a custom-developed robotic slip-tester at a 

normal force level of 250 N [33, 37, 42]; a sliding speed of 0.3 m/s; and shoe-floor angles of 

7±2° [34, 43]. This speed is within the range of 0-1 m/s that is recommended in literature as 

‘biofidelic testing’ [34, 41, 43]. The average ACOF values were calculated for the first 200 

milliseconds after reaching a normal force of 250 N [33, 37]. Testing for each shoe-floor 

combination was repeated over three different days to achieve reliable ACOF values in the 

presence of potential day to day variability. Five trials were taken for each shoe-floor 

combination on each day. Shoe-floor angles (Table 4-3) and sliding speeds were verified using 

reflective markers placed on the shoes that were tracked using a 14-camera motion capture 

system (Vicon T40S, Oxford, UK). Canola oil was used as a lubricant in all experiments because 

preliminary results revealed that this lubricant minimized adhesion forces so that the measured 

friction was primarily due to hysteresis [19, 53, 54, 109-111]. 

Table 4-3. Shoe-floor angles in friction tests (Average(SD)). 

Shoe Shoe-Floor Angle - Vinyl (⁰) Shoe-Floor Angle – Ceramic (⁰) 
S1 6.43 (1.01) 6.90 (0.39) 
S2 6.48 (0.38) 6.97 (0.13) 
S3 6.21 (0.96) 7.53 (0.18) 
S4 6.05 (0.78) 5.53 (0.43) 
S5 7.79 (0.46) 6.40 (0.34) 
S6 7.85 (0.49) 5.40 (0.59) 
S7 7.32 (0.33) 7.27 (1.27) 
S8 7.00 (0.22) 7.37 (1.32) 

Contact area was measured as an intermediate validation of the macroscopic model. 

Black ink imprints of shoes on paper [112] were created at the aforementioned angle and force 

were generated. The contact area was calculated by a custom-developed image processing code 

that summed the area of black pixels (MATLAB®, Mathworks, Natick, Massachusetts, USA). 
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4.3.3 Statistical analyses 

Statistical analyses compared the model to the experimental results. Three linear 

regression models were created to assess contributions from components of the multiscale model 

to the experimentally-measured ACOF. The first statistical analysis quantified the impact of 

COF predicted by the multiscale model on ACOF. The other statistical models quantified the 

ACOF predicted by 1. the shear stress predicted by the microscopic model at 200 kPa (roughly 

the average under-shoe contact pressure [113]) and 2. the contact area from the macroscopic 

model. A linear regression model between the experimentally-measured contact area and the 

contact area predicted by the model was performed as an intermediate validation of the 

macroscopic simulations. Goodness of fit was assessed using the R2 values in linear regression 

models. An alpha value of 0.05 was used for all statistical analyses.  

4.4 RESULTS 

The slopes of the piecewise polynomials (Equation 4-3.) for relating σf values to contact 

pressure (Figure 4-5) were generally higher at lower contact pressures. The shear stress, σf, was 

generally higher for the ceramic flooring (higher roughness) compared to the vinyl flooring 

(lower roughness) (Figure 4-5). For example, σf values at 200 kPa ranged between 34.1-43.6 kPa 

for the vinyl flooring (Figure 4-5. Left) and between 50.74-59.9 kPa for the ceramic flooring 

(Figure 4-5. Right). 
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Figure 4-5. Frictional shear stress, σf, as a function of contact pressure for different shoes when 

modeled against vinyl (Left) and ceramic (Right) flooring. 

The contact area geometry in the simulations were similar to the experimental contact 

geometries (Figure 4-6). A strong correlation existed between the predicted and measured 

contact areas (R2=0.82; p=0.002) (Figure 4-7). Similar magnitudes were observed in the model-

predicted contact areas (range of 1.44-9.29 cm2) and the experimentally-measured contact areas 

(range of 2.02-11.83 cm2).  
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Figure 4-6. Predicted macroscopic contact area and experimentally-measured contact area using 

the ink imprints. For the model, gray indicates no contact and black indicates contact. For the 

experiment, white indicates no contact and black indicates contact. 
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Figure 4-7. Experimentally-measured contact area versus contact area predicted by the 

macroscopic model. 

The multiscale model predictions of COF (COFModel) were correlated to the measured 

COF (ACOF) (p<0.001, r=+0.86) and predicted 73% of the variance (Figure 4-8). The 

magnitudes of the model predictions were lower than the experimental results. COFModel had a 

narrower range (0.13-0.26) than the ACOF (range of 0.05-0.87). The slope of this regression line 

was 5.7. The shear stress of the microscopic model, predicted only 23%of the variation in ACOF 

(p=0.059, r=+0.48). The contact area from the macroscopic model explained 34% of the 

variation in ACOF (p=0.017, r=+0.58).  
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Figure 4-8. Experimentally-measured ACOF versus COF predicted by the multiscale model. 

Marker colors represent floorings: Vinyl (Gray) and ceramic (Black). 

4.5 DISCUSSION 

The presented multiscale modeling predicted most of the variability for the 

experimentally-measured ACOF and contact area. Parameters from the microscale and 

macroscale components were much less predictive of the ACOF. This demonstrates the 

important contributions of each scale to successfully predict the whole shoe-floor ACOF. 

The model predicted that shoe designs which lead to lower contact pressures will result in 

higher COFs and therefore lower the slip risk. This finding is consistent with computational 

modeling studies on rubber [32] and experimental findings of Grönqvist [113] that reported 

lower COFs at higher contact pressures. The model also suggests that higher contact areas 

between shoe and flooring will result in higher COFs and lower fall risk in agreement with 
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previous research [41, 112-114]. The microscopic model was sensitive to changes in floor 

roughness, consistent with experimental [72, 73] and modeling studies [16, 99]. This increase in 

COF for rougher floor surfaces is due to the larger viscoelastic deformation and energy loss [54, 

77] in shoe material when it is subjected to floorings with higher asperity heights (high 

roughness floorings).  

The outcomes of this research can be particularly useful in designing shoes by focusing 

on the design characteristics that increase hysteresis COF. According to the model, a high COF 

on contaminated surfaces in boundary lubrication can be achieved by more distributed contact 

pressures. For example, the multiscale modeling framework can explain the effects of tread 

texturing on COF. Overall, shoes with harder outsoles (S7 and S8) and texturing (S5-S8) 

demonstrated lower COFs compared to the other shoes. To demonstrate the impact of texture, 

another simulation was performed on S6 with the texturing removed (S6’). When tread texturing 

was removed (Figure 4-9. Top), a lower average contact pressure (S6’) was observed (Figure 

4-9. Bottom). An increase in COF was observed on vinyl and ceramic flooring from 0.14 and 

0.19 to 0.16 and 0.21, respectively. Based on the regression equation (Figure 4-8) these changes 

in COFModel would be expected to increase ACOF on vinyl and ceramic floorings by 0.12 and 

0.17, respectively. This finding is consistent with some experimental literature that suggests the 

use of surface texturing for reducing friction in boundary lubrication [115, 116] and with the 

shoe design recommendations that suggest that tread texturing would not always cause an 

improvement in footwear slip-resistance [114, 117]. However, it should be noted that texturing 

can also lead to an increase in wet COF by preventing hydroplaning [118]. This study utilized 

treaded shoes which have been shown to operate in boundary lubrication [22, 26]. Thus, the 
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surface texturing might have been unnecessary for fluid drainage, which may explain why an 

increase in COF was not observed. 

 

Figure 4-9. Top: Contact pressure distribution in a textured shoe (S6) versus the same shoe after 

removing the texture (S6’). Bottom: Histogram of contact pressure distribution over the areas of 

a textured (S6-black) versus non-textured (S6’-gray) shoes. Circles indicate average contact 

pressures. 
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Significant differences were observed between the COF magnitudes of the model 

predictions and the experimental data.  However, these differences appear to scale linearly.  The 

differences in COF magnitude could be due to the modeling simplifications that deviate from the 

actual physics. For example, the model only considers hysteresis friction forces originating from 

the microscopic scale. However, hysteresis deformation and hysteresis friction can occur at 

multiple length scales from the nanometer scale to the millimeter scale. These forces are additive 

[32, 78, 110] and therefore increasing the number of scales used in the multiscale modeling 

would likely lead to larger overall predictions of hysteresis forces and hysteresis COF, especially 

for rough surfaces where the scale effect would be magnified. This improvement is likely to 

alleviate the disagreement between the model and experiment, particularly for high roughness 

floorings where currently a larger disagreement was observed between the model and 

experiment. Another simplifying assumption in the model is the uniform asperity heights. Real 

surfaces have a distribution of asperity heights, which causes the largest asperities to come into 

contact at lower contact pressures followed by asperities of lower heights coming into contact at 

higher contact pressures [97]. Because microscopic hysteresis friction is dependent on asperity 

height [99], using probabilistic asperity height distributions for shoe and floor topography is 

likely to alter the frictional shear stress lines (Figure 4-5) by changing the slope of those lines. 

A post-hoc analysis on the regression model of Figure 4-8 revealed a root mean square 

difference of 0.13 when comparing the model predictions with the experimental results. In order 

to further contextualize this difference and its effects on the accuracy of predicting slips and 

falls, this value was used to calculate the odds ratio using the existing logistic regression model 

of [40] that predicts the probability of slips given the ACOF as the input (For the testing 

conditions that were modeled in this study, i.e. 250 N normal loading, 0.3 m/s, and 7° angle). 
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The logistic regression indicates that an increase of 0.13 will lead to a slipping odds ratio of 0.35 

due to this difference. Thus, modeling efforts alone may be insufficient for predicting slips and 

expected improvements in friction for new designs should be confirmed experimentally. This 

finding should be considered when one is making predictive conclusions of the probability of 

slips using just the computational model of this study. 

Notably, this study suggests that modeling on multiple scales improves the ability of the 

model to estimate shoe-floor COF. The current model using simple 2-scale approach was able to 

capture much of the variability observed experimentally. While further refinements and 

potentially additional scales may increase the predictive capability, the present model might be 

sufficient when used along with a scaling factor (e.g. slope of the fit line in Figure 4-8) to predict 

ACOF. As this model is extended to more shoe and flooring designs, it should become clearer 

whether more complexity or the scaling factor provides the best predictions. 

Future improvements to the model may include more sophisticated material 

characterization and modeling adhesion forces and fluid pressures. For example, viscoelastic 

stress-relaxation testing similar to our previous work [99], can be included. The current shoe-

floor friction model did not consider the contributions due to adhesion. Thus, these findings may 

not apply to conditions where adhesion forces are substantial (dry or wet conditions with lower 

viscosity fluids). Future versions of this model may also include the impacts of the interfacial 

wear of the shoe outsole [119] to predict COF in several stages of shoe life. Furthermore, the 

modeling introduced in this paper only examined the shoe-floor friction in one subset of testing 

conditions relevant to slip-testing. Future versions should examine the effect of different shoe-

floor angles on the contact area and COF [103] since it is expected that different shoe-floor 

angles lead to changes in contact area, COF and therefore slip risk [46, 103]. 
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The long-term goal of these computational models is to reduce slip and fall accidents by 

improving shoe and floor designs. Findings of the multiscale model presented here suggest that 

floor roughness, shoe contact area, and shoe tread design influence shoe-floor COF in lubricated 

conditions. These findings can be applied to optimize shoe and flooring designs to improve their 

slip-resistance performance and achieve the ultimate goal of reducing slips and falls accidents.  
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5.0  APPLICATIONS OF THE MULISCALE MODEL OF SHOE-FLOOR FRICTION 

IN SHOE DESIGN AND CONSIDERING HUMAN FACTORS 

5.1 ABSTRACT 

The multiscale computational model of shoe-floor friction developed in chapter 4.0 was 

applied to understand the impact of specific shoe design features on the predicted COF. 

Furthermore, a sensitivity analysis was also performed to analyze the impact of gait parameters 

(i.e. normal load and shoe-floor contact angle) in order to quantify human factor contributions to 

shoe-floor tribology. Findings indicate an increase in COF for softer shoes, lower normal loads 

and lower shoe-floor angles; a finding that is consistent with the available literature. Results also 

demonstrate a difference in frictional response between flat and beveled shoes. COF of flat and 

beveled shoes demonstrated more sensitivity to shoe-floor angle and normal load, respectively; a 

finding that should be considered when designing for slip-resistance. 

Keywords: Coefficient of friction; Finite element modeling; Normal load; Shoe-floor 

contact angle; Shoe hardness; Flat shoe; Beveled shoe. 
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5.2 INTRODUCTION 

Research presented in chapter 4.0 of this dissertation demonstrated the capability of 

computational modeling in predicting the available friction of shoes on contaminated surfaces. 

Specifically, a multiscale finite element model of shoe-floor friction was developed that 

calculates the hysteresis coefficient of friction (COF) based on the microscopic and macroscopic 

features of the shoe and flooring such as surface roughness, shoe material properties, shoe-floor 

contact angle, shoe sliding velocity, normal loading, and whole shoe geometry. This chapter 

builds on this multiscale model by applying the model to shoe design parameters such as 

material hardness and beveling of the heel of the shoe and considering human factors such as 

normal loading and shoe-floor contact angle. Furthermore, some human slipping research is 

presented to support the validity of the model. 

Shoe design parameters can influence the available COF between the shoe and flooring. 

Several studies have investigated the effects of certain design parameters on the slipping risk and 

the available friction between the shoe and flooring such as shoe tread depth, width, and 

orientation [12-14], shoe outsole material hardness [15, 120] and beveling (or curving) of the 

shoe [121]. It is postulated that softer shoes result in less risk of slips and falls [13, 14] and that 

beveled shoes demonstrate a lower slip risk [121]. However, the mechanism behind the effect of 

shoe hardness and the differences in slip-resistance among flat and beveled shoes are not 

thoroughly understood. This chapter fills knowledge gap by applying the multiscale modeling 

framework of shoe-floor friction to these shoe design parameters. 

Furthermore, several studies have focused their attention to the effects of human factors 

such as shoe-floor angle and normal loading on the slipping risk. Within this context, normal 

loading is relevant to understanding the effect of a person’s weight on the available COF. 
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Typically, higher shoe floor angles are reported to result in higher risk of slips and falls [46] and 

human subjects with a higher body weight are known to be at a higher risk of fall [47-49]. Yet, 

no study has used computational modeling to systematically examine the effect of kinetics (force 

and angle) on the COF at the shoe-floor-contaminant complex. Multiscale model of shoe-floor-

contaminant friction may represent an opportunity to isolate the impacts of these parameters on 

hysteresis friction from other human factors. Thus, this chapter utilizes the computational 

modeling model of shoe-floor friction to evaluate the above-mentioned effects. 

The purpose of this chapter is to apply the multiscale model of shoe-floor friction 

(Chapter 5.0 ) to examine the impact of shoe design features (i.e. shoe material hardness and 

beveling of the heel) on COF and to conduct a sensitivity analysis on the frictional response of 

shoes to shoe-floor angle and normal load. The alternative approach for analyzing the data from 

the multiscale model, introduced in section 4.3.1.4 is used for this purpose. 

5.3 METHODS AND RESULTS 

Presentation of the three different analyses is organized as follows: 1. Subsection 5.3.1 

investigates the impact of shoe hardness on COF. 2. Subsection 5.3.2 conducts a sensitivity 

analysis on the effects of shoe-floor angle and normal load on COF. 3. Subsection 5.3.3 expands 

on the findings of subsection 5.3.2 and further investigates the differences in COF response of 

flat and beveled shoes to normal load. Details of the modeling methods used in this section are 

similar to the methods from chapter 4.0 unless mentioned otherwise.  
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5.3.1 Effect of shoe hardness using the multiscale model of shoe-floor friction 

5.3.1.1 Methods 

The multiscale model of shoe-floor friction (Section 4.3.1.4) was applied to model the 

friction between three different shoes against a vinyl flooring [101]. The three shoes had the 

same geometry (Figure 5-1). These were the shoes S6-8 in chapter 4.0 except that their texture 

was removed for this analysis. The shoes had similar roughness and the major difference 

between them was their hardness (Table 5-1). This way, hardness of the outsole was the only 

factor that could affect the frictional response of the shoes. Hardness of the shoes was collected 

using the methods introduced by Giacomin and Mix [108] and examined in section 4.3.2. and 

was converted to viscoelastic material constants that were used to describe the viscoelastic 

behavior of the three shoe materials using a three-parameter viscoelastic model [100] for 

material properties (Equation 5-1. & Table 5-1). 

 

Figure 5-1. The macroscopic shoe geometry (meshed in finite element software) recreated from 

the 3D scans of the actual shoe. 
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Equation 5-1. 

 

Table 5-1. Roughness and material properties used for the shoes. 

Shoe 
Hardness Shore A  Rz (µm) Δq (°)  G0 (MPa) G∞ (MPa) γ (s-1) E (MPa) 

High 85 26.6 33.6 4.39 1.84 0.022 13.18 
Medium 76 25.2 32.5 2.48 0.99 0.017 7.44 

Low 64 24.6 33.3 1.41 0.92 0.2 4.24 
 

 

In order to evaluate slip risk predictions of the modeled shoe outsoles, unexpected 

slipping experiments were performed. Gait and slip pattern of human subjects were examined 

when wearing the three modeled shoes to evaluate the slipperiness of the shoe-floor-contaminant 

combination [37, 40]. A subset of previously published data [37, 40] from 31 subjects that were 

recruited for the unexpected slipping experiments was used to perform a human validation of the 

available COF predictions. Healthy individuals between age of 18 and 65 (i.e. those who did not 

have any neurological or musculoskeletal problems at the time of the experiments that might 

affect their gait pattern) were asked to participate in human slipping studies.  

Gait analysis was performed at a biomechanics motion capture laboratory on a level vinyl 

flooring surface under dry and contaminated conditions. Glycerol and water solution (50% water 

and 50% glycerol by volume) was used as the contaminant in the experiment. It has been 

demonstrated that high-viscosity fluids are able of creating a lubrication film that minimizes 

adhesion friction so that the friction will be mainly from hysteresis [19, 53, 111]. Subjects were 

asked to wear one of the three pairs of the modeled boots and reflective markers to track their 

full body motion were placed on the anatomical landmarks of their body and their shoes. During 

the experiments, the subjects were fitted with a harness for safety. After 5-7 baseline dry trials, 

the contaminant was applied to the floor without subject’s prior knowledge and an unexpected 
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slip trial was recorded. Subjects were asked to listen to music between trials to keep them 

distracted and the lights at the biomechanical testing room were dimmed during testing sessions 

to minimize anticipation of a slip [22, 37]. 

5.3.1.2 Data analysis 

The COF that was predicted by the model and the COF measured by the robotic slip 

tester used in chapter 4.0 (Figure 2-3) were compared as the key outcome variables. COF for 

both the microscopic and macroscopic scale was defined as the ratio of shear force to normal 

force. Contact area, average and maximum under-shoe contact pressure were also compared 

across the shoe models. 

The marker placed at the inferior-most point of the heel was tracked and used for 

identifying slip occurrences. Since it was likely that this marker would interfere with subjects’ 

gait pattern or fall off during the trials, it was only put on during the static trial and its location 

relative to other heel markers were calculated. The occurrence of a slip was identified based on 

slip distance. The slip distance was calculated from the first local minimum in heel anterior 

velocity after heel contact to the second local minimum or when the subject’s foot slipped off the 

force plate [37, 46, 122] and a trial was considered as a slip if this slipping distance was greater 

than 3 cm [37, 123, 124]. Percentage of human subjects that slipped were compared across the 

three shoes. 

5.3.1.3 Results 

An exponential decay fit (Equation 4-8.) described the relationship between predicted 

microscopic COF and contact pressure (R2=0.99) for all three materials (Figure 5-2). The micro-
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model revealed that the hardest material experienced the greatest level of hysteresis COF and the 

medium and low hardness material had similar but less hysteresis COF. 

 

Figure 5-2. Curve fitting for the three modeled shoes. 

The macro-model revealed that contact pressures were typically on the posterior portion 

of the shoe (Figure 5-3). Increasing shoe hardness was found to increase the average and peak 

pressures and reduce contact area (Figure 5-4). Increased contact pressures of the hard shoe led 

to an overall reduction of hysteresis COF (Figure 5-5) compared to the medium and low 

hardness shoe. Also, the medium hardness shoe demonstrated a lower COF in comparison to the 

low hardness shoe because of the reduced contact area and increased contact pressure (Figure 

5-4). The model did slightly overestimate hysteresis COF since it predicted COF values around 

0.2 whereas experiments found COF values between 0.15 and 0.2 [37]. 
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Figure 5-3. Contours of under-shoe contact pressure for the shoe with low (Left) and high 

(Right) hardness. 

 

Figure 5-4. Contact pressure and contact area across the three modeled shoes. 
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Figure 5-5. COF obtained from the models versus experiments. 

The results of the unexpected slipping experiment demonstrated that the percentage of 

human subjects that slipped wearing the softer (Low hardness) shoe was less than those of 

wearing the medium hardness and harder (High hardness) shoes (Figure 5-6). Also, the 

percentage of human subjects that slipped wearing the medium hardness shoe was slightly less 

than the percentage of human subjects that slipped wearing the high hardness shoe. 

 

Figure 5-6. Percentage of human subjects that slipped in experiments across the shoes. 
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5.3.2 Sensitivity of two footwear designs to normal force and shoe-floor contact angle 

5.3.2.1 Methods 

The multiscale modeling approach introduced in section 4.3.1.4 was applied to model the 

frictional response of two shoes (Figure 5-7. S2-3 in chapter 4.0 ) against a vinyl flooring [103]. 

The two shoes had roughly similar material properties (Table 4-2). One of the shoes had a flat 

heel and the other shoe had a beveled (curved in the rear) heel style. Multiple simulations across 

several levels of normal loading (greater than 0 N and smaller than 1100 N) and shoe-floor 

contact angles (greater than 0 degrees and smaller than 20 degrees) were conducted. These forces 

and angles are reported to be relevant to slipping accidents (i.e. biofidelic testing conditions) 

[41]. Predicted COF was the key outcome variable of this analysis. 

 

Figure 5-7. The two modeled shoes. 
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5.3.2.2 Results 

Overall, COF had higher values in lower normal forces and lower shoe-floor angles for 

both shoes (Figure 5-8). The COF was more sensitive to an increase in shoe-floor angle than an 

increase in normal load for the flat shoe (1-30% and 13-34% decrease in COF in response to 

increase in normal load and shoe-floor angle, respectively). The COF was more sensitive to an 

increase in normal load than an increase in shoe-floor angle for the beveled shoe (7-39% and 5-

18% decrease in COF in response to increase in normal load and shoe-floor angle, respectively). 

The beveled shoe demonstrated a local minimum followed by a slight increase in COF at higher 

shoe-floor angles (14-18 degrees). The flat shoe did not experience this type of local minimum 

(Figure 5-8). 

 

Figure 5-8. COF response plot for the flat (Left) and beveled (Right) shoe. 



83 

5.3.3  Frictional response of multiple slip-resistant beveled and flat shoes to normal 

loading 

This subsection further expands on the findings of subsection 5.3.2 with more slip-

resistant designs by focusing solely on the effect of normal load on COF. 

5.3.3.1 Methods 

The multiscale modeling framework (Section 4.3.1.4) was applied to simulate the friction 

between four existing shoe designs (S1-4 in chapter 4.0 ) against a vinyl flooring. Four shoes 

(Figure 5-9) were considered including two flat heel shoes (F1 & F2) and two shoes with beveled 

heels (B1 & B2). Shore A hardness of the shoes was measured using a durometer (Table 5-2) and 

was used in models for quantifying material properties of the shoes.  

 

Figure 5-9. Geometries of the modeled shoes. 
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Equation 5-2. 

 
Equation 5-3. 

 

Table 5-2. Shore A hardness of the four shoes. 

Shoe F1 F2 B1 B2 
Shore A Hardness 50 56 56 72 

 

Simulations for each macroscopic shoe model were conducted over 10-11 normal load 

levels to generate a relationship between the normal loading and COF as well as contact area 

(AModel). Contact area was chosen because higher contact areas between shoe and floorings are 

hypothesized to lead to a more distributed under-shoe contact pressure [125, 126] and correlate 

with a better slip-resistance performance [112, 125, 126].  

An exponential decay function (Equation 5-2.) and a power function (Equation 5-3.) were 

used to describe the variation in macroscopic COF and AModel with respect to the change in 

normal loading, respectively. In these equations, λ and b are coefficients that are determined 

using curve fitting techniques; COFH and COFL represent COF in high and low normal loads, 

respectively.  

 

 

5.3.3.2 Results 

The computational models indicated that an increase in normal loading led to a decrease 

in COF (Figure 5-10) and an increase in AModel (Figure 5-11). The exponential decay function 

(Equation 5-2.) and the power function (Equation 5-3.) successfully described the variation in 

COF and AModel with respect to the change in normal loading for all the four shoes (R2>0.99).  
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Figure 5-10. COF versus normal loading. 

 

Figure 5-11. AModel versus normal loading. 

An analysis of the exponential decay coefficients in Equation 5-2. (Table 5-3), revealed 

that the COF response (Figure 5-10) of flat shoes was less sensitive to normal loading than the 
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beveled shoes (smaller λ in Table 5-3). The contact area, AModel, (Figure 5-11) for flat shoes more 

closely simulated a linear curve compared to the beveled shoes (larger b in Table 5-3). These 

findings demonstrate a difference in response to normal loading between flat and beveled shoes.  

Table 5-3. Exponential and power coefficients for different shoes. 

Shoe F1 F2 B1 B2 
λ  0.0035 0.0044 0.0045 0.0054 
b 0.59 0.56 0.48 0.49 

5.4 DISCUSSION 

The computational models presented in this chapter demonstrates the feasibility of 

utilizing the computational model of shoe-floor friction in explaining the impacts of shoe design 

parameters such as shoe hardness and geometrical curvature of the back of the heel of the shoe 

and also the effects of kinetic and kinematic parameters of gait such as normal loading and shoe-

floor contact angle on shoe-floor COF. Overall, findings of this chapter support the use of the 

multiscale model as a shoe design tool that can predict slipping risk. 

The computational model of subsection 5.3.1 suggests that the mechanism behind 

increased COF for soft shoe material is increased contact area and reduced contact pressures. 

This finding is consistent with the measurements of shoe-floor COF and with the slipping risk of 

unexpected human slips [37]. The decrease in COF with increasing hardness could partially 

explain the higher percentage of slips in human subjects wearing the harder shoes and it is in 

agreement with studies that report a lower rate of slips and falls in shoes with lower hardness 

[15, 120]. It should be noted these differences in COF of the shoes are within the range that 
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could affect the probability of slips and falls given their proximity to the values of RCOF for 

level walking in the literature [7, 38]. Thus, this finding indicates the possibility of modeling 

shoe-floor-contaminant friction in a way that predicts slip risk.  

The computational model of subsection 5.3.2 revealed a decrease in COF in response to 

increase in either the normal load or the shoe-floor contact angle. These findings are consistent 

with the available literature on the effect of gait kinetics on slipping and could partially explain 

the higher risk of slips and falls in overweight populations [48, 49] and human subjects with 

higher shoe-floor angles [46]. It should be noted that overweight human subjects are reported to 

have a higher RCOF in comparison to the non-obese subjects [127-129]. Therefore, combination 

of the reduction in COF (observed in the models) and the higher RCOF in overweight people is 

likely to explain the higher chance of slips and falls in this population given that the difference 

between ACOF and RCOF predicts the probability of slips and falls [6, 7]. Furthermore, 

according to the computational model, the beveled shoe demonstrated an increase in COF for 

higher shoe-floor angles (14-18 degrees) compared to the flat shoe. This effect was due to the 

higher contact area in the heel of the beveled shoe (Figure 5-12) which leads to a more 

distributed contact pressure and increases COF [125, 126]. This finding could indicate that a 

beveled shoe may reduce heel slips, since these angles are relevant to the shoe-floor angles 

observed in actual human slipping experiments at the event of slip-start [130]. Moreover, a 

beveled heel led to a more consistent contact area across shoe-floor angles leading to more 

predictable friction even as a person alters their gait. Thus, this modeling research supports the 

use of a beveled heel in slip-resistant shoes. However, it should also be noted that changes in 

shoe-floor angle and normal loading during slipping events [44] are interdependent and not 
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completely separable from each other. This might limit the applicability of the findings of this 

model to those effects. 

 

Figure 5-12. Contact areas of the flat (Top) and beveled (Bottom) shoe in different shoe-floor 

angles. Colored dots for each shoe correspond to the colored dots on Figure 5-8. 

Findings of the computational models of subsection 5.3.3 can be applied to simulate the 

effect of a person’s weight on slip-resistance performance. These findings suggest that while 
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certain (beveled) shoes might have superior slip-resistance in lower normal loads, their 

performance might decay when a heavier person wears those and suggest that slip-resistance 

performance of flat shoes is less sensitive to a person’s weight. Although it should be 

acknowledged that the range of the normal load that was used for this analysis might not fully 

represent the body weight of obese people, findings of this section (Similar to subsection 5.3.2) 

indicate a decrease in COF with increasing normal load, a phenomenon that could be partially 

responsible for the higher risk of falls in the overweight population [48]. The outcomes of this 

modeling effort should also be considered when designing slip-resistance experiments for shoes 

[41], especially for beveled shoes since those shoes demonstrated greater sensitivity to changes 

in normal loading. 

Overall, this chapter provides valuable insights on the effects of shoe design and 

biomechanical parameters on the frictional response of shoe outsoles and demonstrates 

applicability of the multiscale model of shoe-floor friction for explaining the differences in slip-

resistance behavior of shoes. Future efforts should focus on validating findings of this chapter by 

conducting COF testing experiments similar to the ones performed in chapter 4.0 . 
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6.0  COMPUTATIONAL MODEL OF SHOE WEAR PROGRESSION 

6.1 ABSTRACT 

 
Worn shoes increase slip and fall risk. Few research efforts have attempted to predict 

shoe wear progression. A computational modeling framework is presented that simulates wear 

progression in footwear outsoles based on finite element analysis and Archard’s law. The 

computational model results were qualitatively and quantitatively compared with results from a 

shoe wear protocol. Key variables of interest were the size and the shape of the worn region, and 

the order in which individual tread blocks were worn. Strong correlations existed between the 

models and experiments for the order of the shoe tread wear (rs> 0.74) and the size of the 

untreaded area (R2>0.71). Findings demonstrate the capability of the computational modeling 

methodology to provide realistic predictions of shoe wear progression. This model represents a 

promising first step to developing a model that can guide footwear replacement programs and 

footwear design with durable slip-resistance. 

Keywords: Wear; Shoe; Computational modeling; Finite element 
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6.2 INTRODUCTION 

Slips and falls continue to be amongst the leading causes of occupational injuries and a 

serious public health issue. In 2013, the overall annual financial burden of falls to the United 

States was $180 billion [3] and in 2017, workers’ compensation costs due to slips and falls were 

approximately $18.5 billion [35]. Roughly half of occupational falling accidents are caused by a 

slipping event [5]. Low available friction between the shoe and flooring increases the risk of 

slips and subsequent falls [6, 7]. Shoe tread design characteristics such as tread depth, tread 

width, the size of the region without tread, and the available contact area between shoe and 

flooring influence the available friction at the shoe-floor interface and therefore affect the risk of 

slips and falls [13, 14, 41, 131]. These properties change across a shoe’s lifetime as tread 

becomes worn. Specifically, severely worn shoes have been reported to decrease the available 

friction [23, 26], increase under-shoe fluid pressures [22, 26], and increase the slipping risk in 

occupational and laboratory settings [22, 27].  

Research efforts on elastomer wear have identified that the interfacial contact pressure is 

an important parameter that influences wear rate [28]. Specifically, the wear equation developed 

by Archard [28] has been utilized to describe wear of elastomers in applications such as seals and 

tires [30, 66, 67]. Since Archard’s law predicts wear primarily based on contact pressure, wear of 

the shoe outsoles is likely dependent on shoe tread design and the loading conditions [23].  

Previous research has applied computational models with Archard’s law to simulate 

rubber wear in order to predict the life of tires and seals. Typically, these models employ the 

finite element method to predict the interfacial contact pressure distribution. The geometry is 

then modified using Archard’s law [28] based on the contact pressure distribution to simulate 

wear. The modeling of contact pressures and updating of the geometry is performed using 
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iterative methods [29, 30, 66, 67]. To the best knowledge of the authors, these modeling schemes 

have not been applied to the shoe interface.  

Previous research efforts mainly focused on assessing shoe wear and its effects on slips 

and falls. Slip-resistance performance throughout the life of the shoe has been evaluated using 

slip-resistance measurement methods at a limited number of time points [23, 26] or without 

explicitly commenting on the exact degree of wear [27]. Developing a validated computational 

model of shoe wear progression can be beneficial because it will help characterize the 

relationship between shoe design properties and its progressive wear. This modeling could then 

allow for further efforts in order to optimize those properties and guide design improvements that 

achieve superior slip-resistance similar to wear modeling studies in seals and tires [29, 30, 66]. 

Furthermore, this method is likely to predict the regions of the shoe in which wear is initiated 

thus allowing for shoe replacement guidance. 

The purpose of this study is to develop a computational model of shoe wear progression 

using Archard’s law and finite element analysis. The validity of the model was assessed by 

comparing predictions to an experimental shoe wear protocol. Furthermore, this study implicitly 

examined whether Archard’s law is applicable to wear at the shoe contact interface. 

6.3 METHODS 

6.3.1 Computational wear model 

Modeling of the contact interface was performed in explicit finite element package LS-

Dyna® (LSTC, Livermore, California, USA). Efficiency of this software in modeling shoe-floor 
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Equation 6-1. 

 

contact has been previously demonstrated [126]. The finite element modeling method simulated 

the contact pressure distribution at the shoe contact interface (Figure 6-1). The output of the 

finite element model was the nodal contact pressures at the interface. This pressure was used to 

calculate the nodal wear depths in each iteration by assuming that the wear depth for each node 

in each wear iteration was proportional to the interfacial contact pressure based on Archard’s law 

[28] (Equation 6-1.). Therefore, the wear process is simulated by moving the respective nodes 

[29] in a direction perpendicular to the contact interface based on the amount of calculated wear. 

Specifically, the wear depth at the i-th node (Δhi), was a function of the wear constant (k), the 

contact pressure at the i-th node (pi), and the sliding distance on the counter-surface (s), 

(Equation 6-1.). 

 

This study was focused on developing models that predict the locations of the wear as 

opposed to the overall wear rate. Therefore, k*s in Equation 6-1. was set to a constant value in 

each wear iteration. Specifically, k*s was set so that the maximum nodal wear depth (Δhi
max) in 

each iteration was 0.2 mm. This is equivalent to varying the amount of sliding distance in each 

wear iteration to achieve a 0.2 mm of wear depth. Preliminary modeling efforts determined that 

limiting the maximum nodal wear was needed to achieve stability and convergence in wear 

progression simulations. A custom script (MATLAB®, Mathworks, Natick, Massachusetts, 

USA) was developed that calculated wear depths across the contact nodes based upon nodal 

pressures at each iteration, and moved the contact nodes in the finite element software. The 

amount of wear during the simulation and subsequent deformations that occurred necessitated 

the use of global remeshing techniques to discretize the shoe geometry throughout the wear 
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modeling cycles [29]. The global geometry remeshing was performed in meshing software 

(ANSYS®, ANSYS Inc., Canonsburg, Pennsylvania, USA) when performing the next wear 

iteration resulted in an error due to a severely deformed finite element mesh. 

The computational wear models included heel geometries of five shoes that were also 

examined experimentally (Section 6.3.2). Computer Aided Design models of the shoes were 

created in ANSYS DesignModeler® (ANSYS Inc., Canonsburg, Pennsylvania, USA), based on 

the measurements taken from the shoe outsoles. For shoes with a textured tread, texturing was 

not included in the CAD models as our preliminary experimental results (Section 6.3.2) revealed 

that texturing was worn off quickly. Linear elastic material properties in the finite element 

models for the shoes were obtained using hardness readings of the shoes (Section 6.3.2) based on 

methods described by Giacomin and Mix [108]. Shoe tread was modeled as a nearly 

incompressible material with a Poisson’s ration of 0.499 [132, 133]. 

Finite element models were used to simulate contact between the shoe and a smooth, 

rigid counter-surface. Key parameters were consistent with the experimental wear protocol, 

including: shoe angles of 2, 7, and 17 degrees, a sliding velocity of 2.4 m/s, a normal force of 40 

N, and a lateral tilt angle that was consistent with the experimental wear protocol (Section 6.3.2). 

Normal force in finite elements models was controlled using the vertical displacement boundary 

conditions that were applied to nodes at the top surface of the shoe models [126]. The shoe was 

pressed against the counter-surface until the desired normal force was achieved and then the 

horizontal sliding velocity boundary condition was applied. Other displacements and rotations of 

the nodes at the top surface of the shoes were constrained. Shoe models were meshed using 

tetrahedral elements recommended for simulating rubber-like materials with complex geometries 

[82]. Mesh size for the shoes were determined based on the following criteria: 1. It provided a 
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10% accuracy in predictions of the normal loading in the base line iteration of the shoe. 2. All of 

the shoe elements had element qualities [134] greater than 0.1 in the base line iteration. 3. Mesh 

refinement was applied only to the elements in the contact region of the shoe to reduce the 

computational cost without losing accuracy in those regions. 4. The same mesh setting was used 

for the next iterations of the shoe and when remeshing was needed. 

 
Figure 6-1. Flowchart of the iterative scheme for modeling wear. 

6.3.2 Experimental shoe wear protocol 

Five shoes were worn using a custom-developed accelerated wear apparatus. This 

apparatus utilized a sliding abrasion belt to wear shoes in angles that approximated the shoe 
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angles of the gait cycle  [131]. For each wear trial, the shoe was worn for 20 seconds at three 

different shoe angles of 2, 7, and 17 degrees at a sliding speed of 2.4 m/s and a normal load of 40 

N consistent with the modeling conditions [131] (Section 6.3.1). The wear angles mimic the 

variation in shoe-floor angles in gait cycle [44, 123] and the abrasion techniques were similar to 

previous methods for abrasively removing shoe tread and also abrasion resistance measures for 

footwear [131, 135].  

After each wear trial, volume loss of the shoes was measured and imprints of the shoe 

treads on silicone rubber mold [131] were generated. The cavities in these molds were then filled 

with water and the mass of the water was weighed to deduce the volume of the water in the tread 

cavities and subsequently the volume loss between the trials. Material properties were also 

collected as an input to the finite element models. Shore A hardness of the shoes [107] were 

characterized using a durometer (Intercomp®, Minneapolis, Minnesota, USA) and were used to 

calculate linear elastic Young’s moduli of the shoe materials [108, 126] for computational 

models (Section 6.3.1). Durometer readings were conducted on nine various portions of the heel 

for each shoe and the average was used. Table 6-1 summarizes the elastic moduli values that 

were derived from the hardness readings. 

Table 6-1. Elastic modulus of the shoes. 

Shoe S1 S2 S3 S4 S5 
Elastic Modulus (MPa) 7.5 9.36 9.27 8.2 11.01 

6.3.3 Data and statistical analyses 

A statistical analysis was performed to evaluate the prediction quality of the model to 

identify the location of wear. For this statistical analysis, each tread on the actual shoe and model 
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geometry was coded. Tread blocks on the actual and model geometry of each shoe were ranked 

based on the order that they became completely worn (Figure 6-2). Agreement between the 

model and experiments in predicting regional geometrical wear was then assessed using 

Spearman’s rank based regression method that quantified how successful the modeling scheme 

was in predicting the order of tread wear (Figure 6-3). The rectangular untreaded area in each 

wear iteration was calculated by finding the largest untreaded length in the anteroposterior 

(major axis) and mediolateral (minor axis) of the shoes and multiplying the two values [131]. For 

comparing the model results to the experimental trials, volume loss due to wear in the treaded 

regions of the shoe was used to pair a specific experimental iteration to a modeling iteration. A 

second statistical model was then created that compared the rectangular untreaded area in 

experiments and models after each wear iteration to quantify the accuracy of the model in 

predicting those areas since this untreaded area has been demonstrated to be a predictor of the 

change in shoe-floor coefficient of friction due to wear [131].  

 

Figure 6-2. Coding method that was used to rank the order that tread blocks became completely 

worn (Left); Letters represent the tread block and numbers represent the wear order. Wear 

progression of the two tread blocks is displayed in four frames (Left to right); tread A wore down 

first (1); tread B wore down afterwards (2). This technique was applied to all the treads that wore 

in the models. The same letters for each shoe were then used in labeling the experimental results. 
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Figure 6-3. Bottom: Representative plot demonstrating the order that shoe (S4) tread wore down 

in the model (Blue) and the experiment (Red). Top: The resulting correlation for this shoe. 
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6.4 RESULTS 

Shoes experienced extensive wear in both the experiments and the models (Figure 6-4). 

Similar regions wore in the models and experiments. For S1, a majority of the wear occurred in 

the posterior section of the shoe in both the model and the experiment. For S2, a majority of the 

wear occurred in the lateral and posterior region of the shoe in the model and in the lateral and 

medial portion of the shoe in the experiment. For S3, wear in the posterior region of the outsole 

was observed in both the model and the experiment. For S4, wear was dominant in the posterior 

and medial portions of the shoe in both the model and the experiment. For S5, the model 

experienced wear mainly in the posterior region of the shoe and the experimental wear trials 

resulted in wear of the shoe in the medial region. The progression of wear is demonstrated in a 

video of the shoe models (Figure 6-5). 

 
Figure 6-4. Pictures of the shoes at the end of the experimental wear protocol (Top) and models 

of wear of the shoes (Bottom). 
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Figure 6-5. Video demonstrating wear progression in shoes (Click to open). (S1: Top left, S2: 

Top right, S3: Middle center, S4: Bottom left, S5: Bottom right.) 

Based on the rank correlation analysis of the order that shoe tread blocks became fully 

worn, a strong, positive, and monotonic correlation existed between the wear model predictions 

and the accelerated wear experiment (Table 6-2). The strongest and weakest rank order 

correlations were observed in S1 (rs=0.98) and S5 (rs=0.74), respectively. For all of the shoes 

except S5, the percentage of the tread blocks that wore down in both the model and experiment 

was greater than the percentage of the tread blocks that wore down only in the model (Figure 

6-6). For all of the shoes, the percentage of the tread blocks that wore down in both the models 

and experiments was greater than the percentage of the tread blocks that wore down only in the 

experiments. For S1, a complete agreement in the number of worn tread blocks between the 

model prediction and experiment results was observed. 

http://d-scholarship.pitt.edu/id/eprint/34010
http://d-scholarship.pitt.edu/id/eprint/34010�
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Table 6-2. Results of the statistical analysis on the order of tread wear. 

Shoe S1 S2 S3 S4 S5 
Number of tread blocks 8 10 17 18 15 

Spearman’s Rho (rs) 0.98 0.87 0.94 0.92 0.74 
t-score 

(p-value) 
12.06 

(0.000) 
4.99 

(0.001) 
10.67 

(0.000) 
9.39 

(0.000) 
3.97 

(0.002) 
 

 

Figure 6-6. Percentage of tread blocks that wore down in both models and experiments, only in 

models and not in models, and only in experiments and not in models. 

An untreaded area was observed in the models similar to the experiments. Statistical 

comparison between the rectangular untreaded areas predicted by the model and observed in the 

experiments demonstrated strong correlations for all of the five shoes (Figure 6-7). For S1, the 

slope of the linear correlation was close to one and 83% of the variance was predicted.  For S2 

and S3, model predictions scaled linearly with the experimental observations and more than 76% 

of the variance was predicted. Slopes of the correlation lines for S2 and S3 were 1.7 and 2.71, 

respectively. Shoes S4 and S5 appeared not to be linear and instead a had a parabolic shape 

describing the relationship between the untreaded area of the models and experiments. 
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Figure 6-7. Comparison of the rectangular untreaded areas predicted by the model versus those 

observed experimentally. 

Further statistical analysis investigated the relationship between the major 

(anteroposterior) axis of the untreaded areas in the models with the major axis of the untreaded 

areas in the experiments (Figure 6-8. Left). For S1, S4 and S5, the model was capable of 
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predicting more than 73% of the variance in experimentally-observed major axis of the 

untreaded area and the slopes of the linear fits were comparable to unity (i.e. slope of 1.). For S2, 

the model was successful in predicting the increasing trend in the major axis (R2=0.77) and the 

areas scaled linearly with a slope of 2.35. For S3, the model predictions of the major axis of the 

untreaded area were not strongly correlated to those that were observed experimentally 

(R2=0.27). 

A similar analysis was also conducted to investigate the relationship between the minor 

(mediolateral) axis of the untreaded area in the models and experiments (Figure 6-8. Right). For 

S1 and S4, the model was capable of predicting more than 75% of the variance in 

experimentally-observed minor axis of the untreaded area and the slopes of the linear fits were 

comparable to unity (i.e. slope of 1.). For S2, model predictions of the minor axis of the 

untreaded area were only moderately correlated to the experimentally-observed ones (R2=0.51). 

It can be observed that for S2, the untreaded area occurred in the direction of the minor axis in 

the model, as opposed to the experiments where the majority of wear was observed in the 

direction of major axis (Figure 6-4; Also, slope of the correlation line for S2 in the direction of 

major axis was 2.35 (Figure 6-8. Left). For S3, model predictions of the minor axis of the 

untreaded area strongly correlated with the experimental observations (R2=0.87). For S5, 

predictions of the model for the minor axis of the untreaded area overestimated those that were 

observed experimentally by a factor of 3.4 but the correlation was strong (R2=0.74). 
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Figure 6-8. Comparison of major (Left) and minor (Right) axes of untreaded area predicted by 

the model versus those observed experimentally. 

6.5 DISCUSSION 

The computational model developed in this paper demonstrates the feasibility of using 

Archard’s law and finite element analysis in predicting shoe wear progression. Qualitative and 

quantitative agreements between the outcomes of the computational models and the results of the 

experimental shoe wear protocol were observed. Furthermore, findings of this study support the 

application and provide the rationale for the application of Archard’s law to shoe-floor contact. 

The results of this study are consistent with the experimental studies on shoe wear that 

demonstrate development of wear areas throughout the lifetime of the shoe [23, 27] at the 

regions of the shoe with higher contact pressures [23, 131, 136]. Findings of this study are also in 

agreement with the previously developed computational models of wear in other applications 
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such as disc brakes [69], seals [67] and pin-on-disk friction experiments [137] that use Archard’s 

law for describing the relationship between wear depth and interfacial pressure. Specifically, 

they demonstrate that wear of the material can be simulated using Archard’s law, global 

remeshing, and finite element analysis [29, 66, 67, 69, 137]. 

Certain outcomes of the model did not agree with the experimental results, including the 

shape of the wear region and the order of shoe tread in some of the shoes. One reason could be 

the assumption of a linear relationship between the contact pressure and wear depth. Previous 

studies have demonstrated that this phenomenological relationship is described using power-law 

equations for certain contact interfaces [68, 138]. Assuming the power-law form for the 

relationship between contact pressure and wear depth would result in a higher difference 

between the wear depth of the regions with higher and lower contact pressure and lead to a less 

uniform wear region in model results. The phenomenon of highly localized wear present in the 

wear experiments (e.g. S2 and S5) is absent in the model (Figure 6-4. The wear models 

demonstrate a more uniform wear region in comparison to their experimental pairs.). Also, the 

differences that were observed between the regions of wear development in the models and 

experiments can be related to the way that the position and angle of the shoes relative to the 

countersurface was defined in the model (i.e. how the mediolateral and anteroposterior sections 

of the shoe come into contact with the countersurface at the three different modeled angles). For 

the current version of the model, these angles were determined using measurement of the shoe 

tilt against the experimental wear apparatus and utilizing simple trigonometry. For future 

versions of this wear model, this approach could be improved by matching the two-dimensional 

location of the center of pressure [139] to achieve more realistic contact regions. 
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A computational model can be particularly useful in guiding the design of durable slip 

resistant shoes by applying design modifications within the model (e.g. increasing tread depth in 

those regions or including more wear-resistant materials in those regions) and observing the 

results. Furthermore, tread could be designed to spread the contact pressures and wear across a 

larger region which would increase COF [101, 125, 126] and durability. 

The computational model for wear can also be used to describe the “running-in” 

phenomenon [29, 69] that leads to an increase of COF for slightly worn shoes [119, 131]. An 

analysis of the contact areas before wearing the shoe and after the initial wear trials demonstrated 

an increase in contact area of the shoe due to wear both in the models (Figure 6-9) and 

experiments [131] which led to a more distributed contact pressure (Figure 6-9) over the surface 

of the shoe [126]. As predicted in previous models [101, 126] and experiments [140], increased 

contact area and decreased contact pressures led to increased hysteresis friction. This explains 

the initial increase in shoe-floor coefficient of friction at the early stages of wear [131]. 



107 

 

Figure 6-9. Under-shoe contact pressure (S2) and contact areas of the shoe at 250 N and 7° shoe 

angle at the baseline (Left) and after 7 kilometers of simulated wear (Right). Total contact area 

of the shoe in each case is reported below the shoe. 

The computational model for wear demonstrates an important first step toward 

developing more sophisticated models of the shoe wear progression. The current version of the 

model can be used to predict the wear progression of the shoe. Future versions of this wear 

model should advance this framework by using wear constants (k) which can be obtained using 

shoe material wear testing [131]. For the shoes modeled in this is study, wear constants that were 

calculated using the experimental volume loss, normal force and sliding distance were within the 

range of 0.002-0.008 mm3/(N.m). These values are consistent with the wear constants values 

available in the literature for abrasive wear of elastomers on rough surfaces [141-143]. Future 

version should also aim at including subject-specific boundary conditions based on each person’s 
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gait parameters. This will allow prospective predictions for different shoes to quantify the 

duration of usage to reach the point of increased risk of slips and falls [22, 26]. Once these 

models become available, more reliable predictions on shoe wear and durable slip-resistant 

designs will become feasible. This result will likely promote the long-term goal of reducing slip 

and fall injuries. 
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7.0  CONCLUSIONS 

7.1 SUMMARY 

This dissertation aimed to enhance the understanding of slips and falls by applying 

computational modeling methods that simulate the tribology interaction of the shoe-floor 

interface. The major contributions of this dissertation are as follows: 

• A computational model of the shoe-floor-contaminant complex at the microscopic 

scale in boundary lubrication was developed and validated. The model predicts 

the microscopic COF at the shoe-floor-contaminant complex as a function of 

measurable inputs such as shoe and floor surface topography, shoe material 

properties, shoe sliding velocity, and contact pressure at the interface. The 

microscopic model indicated that rougher shoe and floor surfaces lead to an 

increased hysteresis COF. 

• A multiscale computational model of the shoe-floor-contaminant complex in 

boundary lubrication was developed and validated. The model was demonstrated 

capable of predicting the whole shoe COF given the inputs of whole shoe 

geometry (tread), shoe material properties, shoe and floor surface topography, 

normal loading, shoe-floor contact angle, and shoe sliding velocity. The 
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multiscale model revealed that shoe designs that lead to a more distributed under-

shoe contact pressure result in higher COFs at the interface.  

• The multiscale model of shoe-floor-contaminant complex was utilized to assess 

the hysteresis friction response to shoe design parameters (i.e. shoe hardness and 

shoe heel’s geometrical curvature) and human factors (i.e. shoe-floor contact 

angle and normal loading). Results demonstrated that softer shoe materials, lower 

shoe-floor contact angles and lower normal loads result in higher COFs and that 

flat and beveled shoes respond differently to the changes in normal loading and 

shoe-floor contact angle. 

• A computational model of shoe wear progression was developed and partially 

validated. The model was capable of predicting the geometrical wear of the 

outsole given inputs such as shoe material properties, whole shoe geometry, shoe-

floor contact angle, and normal loading. Model simulations of the wear of the 

shoes quantitatively and qualitatively agreed with the experimental wear protocol. 

The computational models presented in this dissertation provided predictions that were 

mostly consistent with the experiments and also the available literature in tribology, 

biomechanics, and slips and falls research. Thus, this dissertation achieved its purpose of 

developing predictive computational models for shoe friction and wear. Applications of the 

computational models introduced in this dissertation include but are not limited to the design of 

slip-resistant and durable shoes. 

The computational models introduced in this dissertation provide an enhanced 

understanding of the friction and wear of the shoes and demonstrate the possibility of deploying 

computer models in the process of designing slip-resistant and durable shoes. The outcomes of 
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this dissertation also have a broader potential to improve quality of life by reducing the number 

of slip and fall accidents that are caused by insufficient shoe-floor friction and/or worn shoes. 

Furthermore, these models represent a predictive and evaluative tool that can be used by the 

following groups: 

• Engineers, designers, ergonomists and shoe and flooring manufacturers because it 

will help them identify the critical shoe characteristics for slip/wear-resistance and 

will aid them in the development of optimized designs in order to achieve 

superior friction and wear performance. 

• Future researchers in the field of slips and falls, biomechanics, and ergonomics 

because it will provide them with an improved understanding of the mechanisms 

behind the effects of biomechanical and design factors such as shoe-floor angle, 

normal loading, shoe hardness and shoe beveling on the friction at shoe-floor-

contaminant complex. 

• Researchers in tribology and computational modeling because it represents novel 

research methodologies in those fields that can be used in other tribological and 

finite element modeling applications. 

Overall, the computational models presented in this dissertation represent the first 

generation of predictive models with regard to shoe and flooring as it relates to slip-resistance 

and durability. Through the computational models presented in this dissertation, it became 

possible to quantify the effects of several shoe and flooring design factors and human-related 

parameters on the frictional behavior of the complex and identify the critical factors in design 

and material selection for footwear. Specifically, the computational model of shoe-floor-

contaminant friction (Chapters 3.0 -5.0 ) identified contact area of the shoe [125, 126, 144] 
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followed by flooring roughness [125, 145, 146], shoe material hardness [101, 145], beveling of 

the shoe [103], and shoe roughness [99, 146] as the key design parameters that influence shoe-

floor friction. Furthermore, the computational models identified human factors such as normal 

loading [103, 147], shoe-floor contact angle [103] and sliding velocity [99] as the parameters that 

affect friction at the interface. 

The remainder of this chapter will be dedicated to identifying how the future research can 

continue the line of modeling methods introduced in this dissertation. Specifically, the challenges 

that were met during the research that is presented earlier in this dissertation will be discussed 

and recommendations for future research to improve the computational models presented in this 

dissertation and to overcome those challenges will be presented.  

7.2 FUTURE DIRECTIONS 

It is acknowledged that while the research presented in this dissertation accomplished its 

specific aims which was the development and validation of the first generation of the 

computational models for shoe friction and wear, further work on improving the predictive 

features of the models can enhance the quality and ability to provide realistic predictions. Thus, 

this section discusses the improvements that are recommended for the computational models and 

validation experiments that were introduced earlier and devises suggestions for future research 

that enhance the predictive outcomes of these models. Also, recommendations on including the 

other relevant tribology mechanisms that were neglected in the modeling efforts of this 

dissertation are presented. Each subsection is dedicated to the respective model of its title. 

Emphasis is placed on the topics that were not in detail discussed earlier in this dissertation.  
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7.2.1 Friction model 

The multiscale model of shoe-floor-contaminant presented in chapters 4.0 and 5.0 of this 

dissertation was a successful effort in predicting COF for treaded shoes in boundary lubrication 

regime. However, there exist several features of the model that can be improved in order to make 

it a more comprehensive model that could be applicable to different shoe designs and different 

lubrication regimes. The following discusses some of these features: 

1. The multiscale model of shoe-floor-contaminant simulates the hysteresis friction 

interactions in boundary lubrication regime where the effects of hydrodynamic 

pressure and adhesional contributions are negligible. The assumption of negligible 

hydrodynamic pressures is particularly true for shoes that have sufficient amount 

of tread [22, 26]. The assumption of insignificant adhesional effects holds true 

when a high viscosity contaminant is present on the flooring [53]. However, for a 

comprehensive model of shoe-floor-contaminant friction that includes the 

situations relevant to actual slipping accidents these contributions should be 

considered: 

a. The most recent modeling effort on multiscale modeling of rubber friction 

suggests that adhesion effects (however small) are still present at 

contaminated interfaces [148]. Wagner et al. [148] introduce a hybrid 

methodology (i.e. based on friction experiments and using computational 

models) to estimate the adhesional force (FAdhesion) using the multiscale 

modeling schemes similar to the one used in chapter 4.0 of this 

dissertation. In this proposed method, true shearing stress (σs) and real 

contact area (Ac) in Equation 2-2. are estimated using curve fitting to 
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Equation 7-1. 

experimental data and finite element method, respectively. The reader is 

referred to this work [148] for further information on implementing this 

multiscale modeling scheme to estimate force of adhesion. 

b. Hydrodynamic pressures in non-fully treaded shoes are believed to 

originate from wedge and squeeze term effects described by Reynolds 

equation [22, 26, 41, 131]. Wedge effect is associated with the geometry 

of the shoe while squeeze term is due to transient effects [41]. Modeling 

squeeze film and including it in a hybrid model for shoe-floor-contaminant 

seems to be currently too complex given its temporal nature [17] and the 

quasi-dynamic nature of the current version of the multiscale model. 

However, as the first step toward including the hydrodynamic effects, the 

next generation of shoe-floor-contaminant model should aim at simulating 

wedge effect and use the equation developed by Proctor and Coleman [71] 

(Equation 7-1.) to estimate fluid film thickness and the subsequent fluid 

force. Equation 7-1. (with the assumption of a square untreaded area) 

calculates fluid film thickness (h), as a function of fluid viscosity (µ), 

length of the untreaded area (l), sliding velocity (v) and normal force 

(FNormal). Once the fluid film thickness is calculated, the force generated 

by the fluid (FFluid) can be estimated by integrating the resulting shear 

stress due to the fluid film over the untreaded area [16, 22, 41]. 
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Equation 7-2. 

Once the adhesional (a) and hydrodynamic (b) forces are calculated, force of 

friction for the whole shoe can be estimated considering the effects that each of 

these components generate (Equation 7-2.). In Equation 7-2. FHysteresis is 

equivalent to the force of friction calculated using the multiscale modeling 

method of chapter 4.0 (Equation 4-4.). Finally, whole shoe COF is calculated as 

the division of frictional force by normal force (Equation 4-6.). It should be noted 

that the different terms in Equation 7-2. are not independent from each other and 

affect one another. For example, an increase in fluid film thickness will increase 

the fluid force and also will lead to separation of the shoe and floor surfaces 

which will in turn cause a significant drop in friction force of adhesion and 

hysteresis. 

 

2. The current version of the multiscale model uses a uniform distribution of surface 

microscopic asperities to describe the surfaces of shoe and flooring in 

microscopic scale. Due to this simplifying assumption, all of the peaks of the 

surface of the shoe model come into contact with the flooring at the same time 

and stay in contact with the flooring for the same duration of time. However, 

research on real surfaces has indicated that surface asperities follow a 

probabilistic distribution [97]. Recent imaging investigation on shoe and floor 

surfaces in the laboratory (Figure 7-1) confirms this finding. Including real 

surfaces in the next version of the multiscale model will likely result in different 

frictional shear stress curves (Figure 4-5) for real shoe samples since it affects the 
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number of the contacting asperities at a time and also the time that asperities are 

in contact (Both spatial and temporal effects [99]). The next version of the 

multiscale model should aim at digitizing images from the actual scans of the 

shoe and flooring surfaces and implementing those in the finite element analyses 

for the microscopic model. As this modeling approach develops, experiments that 

aim to validate the finding of the models need to also be pursued. For example, 

the effect of contact pressure on COF should be experimentally investigated by 

conducting pin-on-disk friction testing experiments [18, 19, 53] on the shoe and 

floor samples that are scanned and models in several normal loadings. 

 

Figure 7-1. Development of the contact impression of shoe sample on glass with increasing 

normal load, captured using surface microscopy (Left. Load of 5 grams on the sample; Right. 

Load of 80 grams on the sample). Darker areas indicate asperities of the shoe that have come into 

contact with the glass at the specified load (Courtesy of Jacobs Laboratory, University of 

Pittsburgh) 
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7.2.2 Wear model 

The computational model that was presented in chapter 6.0 of this dissertation was 

effective in predicting the location of the wear. While this first version represents a significant 

step in modeling wear of the shoes, several improvements should be made to the model in order 

to make it more efficient and useful in engineering and ergonomic applications: 

1. Current version of the computational wear model lacks the feature that allows for 

inputting the experimental wear constant (k) because it focuses on predicting the 

location of the wear rather than the duration of shoe usage. Therefore, the model 

will not be capable of precisely predicting the time it takes for shoes to wear 

down without matching the model results to the experiments. Next generation of 

this model should focus on adding the above-mentioned feature to the model. 

Once the wear constants can be added to model, experimental testing of several 

shoes on various floorings (with different roughnesses) [131] should be conducted 

in order to determine the wear constants that correspond to each shoe-floor 

interface. Once such a database is created, it will become possible for the user to 

input parameters such as elastic modulus of the shoe and roughness of the 

flooring (to estimate k) and the duration of usage of the shoe (to estimate s in 

Equation 6-1.) in order to simulate the amount of wear and get the worn geometry 

of the shoe as the model output. 

2. In the current version of the wear model, different sections of the iterative wear 

modeling process (Figure 6-1) are performed in different software packages; 

Contact modeling is performed in LS-Dyna®, meshing (when needed) is 

conducted in ANSYS®, and generating the commands that move the contact 
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nodes due to wear is performed in MATLAB®. This process increases the 

computational and processing time that takes to model wear given the inherent 

differences that exists among those packages. Future versions of the wear model 

should focus on building one single platform which is capable of performing the 

iterative process of modeling wear in order to make the wear model more time-

efficient. 

3. Once the improvements that were recommended for the multiscale model in 

subsection 7.2.1 are implemented, that model can be used along with the wear 

model to estimate COF at the shoe-floor-contaminant complex and its changes 

across a shoe’s life. Specifically, the multiscale modeling approach can be applied 

after each wear iteration to calculate shoe-floor-contaminant COF at those points. 

Experimental methods that are used for measuring under-shoe fluid pressure [26] 

should be utilized to determine the governing friction and lubrication regime after 

each wear iteration. Depending on the governing friction and lubrication 

mechanisms (i.e. (only hysteresis)/(hysteresis + adhesion)/(hysteresis + 

hydrodynamic pressures)/(hysteresis + hydrodynamic pressures + adhesion)) and 

the multiscale modeling scheme relevant to those (Equation 7-2.) should be used 

for modeling the respective scenario. This will lead to the development of an 

extensive computational model of shoe friction and wear. 



119 

7.3 CONCLUDING REMARKS 

This dissertation accomplished its purpose of adding to the understanding of slips and 

falls by developing predictive computational models of friction and wear of the shoes. 

Microscopic and macroscopic contributions to the friction at shoe-floor-contaminant complex 

were investigated via finite element modeling. Effects of shoe design and human factors on shoe-

floor-contaminant friction were examined. Additionally, a computational methodology was 

developed and applied to modeling wear of the shoes. The models developed in this dissertation 

offer a significant tool to engineers, designers, ergonomists, biomechanists and slips and falls 

researchers that can be used for predicting and evaluating the slip-resistance and durability of the 

existing and future shoe designs. While improvement in some aspects of the models seem 

necessary, these models not only enhance the understanding of tribology of shoe-floor-

contaminant but also contribute to the final goal of reducing slip and fall accidents. 
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