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MATHEMATICAL AND NUMERICAL MODELING OF
FLUID-POROELASTIC STRUCTURE INTERACTION

Ilona Ambartsumyan, PhD

University of Pittsburgh, 2018

The focus of this thesis is on finite element computational models for solving the coupled
problem arising in the interaction between a free fluid and a fluid in a poroelastic medium.
We assume that the free fluid is governed by the Stokes equations, while the flow in the
poroelastic medium is modeled using the Biot poroelasticity system. We further impose
equilibrium and kinematic conditions along the interface between two regions. As we employ
the mixed Darcy formulation, continuity of flux condition becomes of the essential type and
we use a Lagrange multiplier method to impose weakly this condition.

The thesis consists of three major parts. First, we investigate a Lagrange multiplier
method for the linear Stokes—Biot model under the assumption of Newtonian fluid. We
perform a stability and error analysis for the semi-discrete continuous-in-time and the fully
discrete formulations, that indicate optimal order of convergence. We proceed with per-
forming a series of numerical experiments, designed to confirm the theoretical convergence
rates and to study the applicability of the method to modeling physical phenomena and the
sensitivity of the model with respect to its parameters.

In the second part, we present a nonlinear extension of the model, applicable to modeling
non-Newtonian fluids. More precisely, we focus on the quasi-Newtonian fluids that exhibit
a shear-thinning property. We establish existence and uniqueness of the solution of two
alternative formulations of the proposed method in both fully continuous and semi-discrete
continuous-in-time settings, and derive the error bounds for the formulation that appears

more appealing from the computational point of view. We conclude with numerical tests,
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verifying theoretical findings and illustrating behavior of the method.

Lastly, we discuss coupling of the Stokes—Biot model with an advection—diffusion equation
for modeling transport of chemical species within the fluid, which we discretize using the
non-symmetric interior penalty Galerkin method. We discuss the stability and convergence
properties of the scheme, and provide extensive numerical studies showing applicability of
the method to modeling fluid flow in an irregularly shaped fractured reservoir with physical

parameters.

Keywords: numerical methods, mixed finite element methods, FPSI, Stokes-Biot model,

quasi-Newtonian fluids, coupled flow and transport, discontinuous Galerkin methods,

NIPG.
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1.0 INTRODUCTION

1.1 MOTIVATION AND OVERVIEW OF EXISTING METHODS

In this work we develop methods and tools to model processes involving the interaction of a
free incompressible viscous Newtonian fluid with a fluid within a poroelastic medium. This is
a challenging multiphysics problem with applications to predicting and controlling processes
arising in groundwater flow in fractured aquifers, oil and gas extraction, arterial flows, and
industrial filters. In these applications, it is important to model properly the interaction
between the free fluid with the fluid within the porous medium, and to take into account
the effect of the deformation of the medium. For example, geomechanical effects play an
important role in hydraulic fracturing, as well as in modeling phenomena such as subsidence
and compaction.

The free fluid region can be modeled by the Stokes or the Navier-Stokes equations, while
the flow through the deformable porous medium is modeled by the quasi-static Biot system
of poroelasticity [13]. The two regions are coupled via dynamic and kinematic interface
conditions, including balance of forces, continuity of normal velocity, and a no slip or slip
with friction tangential velocity condition. These multiphysics models exhibit features of
coupled Stokes-Darcy flows and fluid-structure interaction (FSI). There is extensive literature
on modeling these separate couplings, see e.g. [39,54,64,82,94,96] for Stokes-Darcy flows
and [9,11,22,46,51, 78| for FSI. More recently there has been growing interest in modeling
Stokes-Biot couplings, which can be referred to as fluid-poroelastic structure interaction
(FPSI). The well-posedness of the mathematical model based on the Stokes-Biot system for
the coupling between a fluid and a poroelastic structure is studied in [87]. A numerical study

of the problem, using the Navier-Stokes equations for the fluid, is presented in [7], utilizing a



variational multiscale approach to stabilize the finite element spaces. The problem is solved
using both a monolithic and a partitioned approach, with the latter requiring subiterations
between the two problems. The reader is also referred to [20], where a non-iterative operator-
splitting method for a coupled Navier-Stokes-Biot model is developed.

An alternative partitioned approach for the coupled Stokes-Biot problem based on the
Nitsche’s method is developed in [19]. The resulting method is loosely coupled and non-
iterative with conditional stability. Unlike the method in [20], which is suitable for the
pressure formulation of Darcy flow, the Nitsche’s method can handle the mixed Darcy for-
mulation. It does, however, suffer from a reduced convergence, due to the splitting across the
interface. This is typical for Nitsche’s splittings, see e.g. [23] for modeling of FSI. Possible
approaches to alleviate this problem include iterative correction [24] and the use of the split
method as a preconditioner for the monolithic scheme [19].

In applications to flow in fractured poroelastic media, an alternative modeling approach
is based on a reduced-dimension fracture model. We mention recent work using the Reynolds
lubrication equation [56,70] as well as an averaged Brinkman equation [21]. Earlier works
that do not account for elastic deformation of the media include averaged Darcy models
[32,47,49,68,71], Forchheimer models [48], and Brinkman models [66], as well as an averaged
Stokes flow that results in a Brinkman model for the fracture flow [72].

In this work we focus on the monolithic scheme for the full-dimensional Stokes-Biot prob-
lem with the approximation of the continuity of normal velocity condition through the use of
a Lagrange multiplier. We consider the mixed formulation for Darcy flow in the Biot system,
which provides a locally mass conservative flow approximation and an accurate Darcy veloc-
ity. However, this formulation results in the continuity of normal velocity condition being
of essential type, which requires weak enforcement through either a penalty or a Lagrange
multiplier formulation. Here we study the latter, as an alternative to the previously devel-
oped Nitsche formulation [19]. The advantage of the Lagrange multiplier method is that it
does not involve a penalty parameter and it can enforce the continuity of normal velocity
with machine precision accuracy on matching grids [2]. The method is also convergent on
non-matching grids. After deriving a finite element based numerical approximation scheme

for the Stokes-Biot problem, we provide a detailed theoretical analysis of stability and er-



ror estimates. A critical component of the analysis is the construction of a finite element
interpolant into the space of velocities with weakly continuous normal components. This
interpolant is shown to have optimal approximation properties, even for grids that do not
match across the interface. The numerical tests confirm the theoretical convergence rates
and illustrate that the method is applicable for simulating real world phenomena with a wide
range of realistic physical parameters.

An additional advantage of the Lagrange multiplier formulation is that it is suitable for
efficient parallel domain decomposition algorithms for the solution of the coupled problem,
via its reduction to an interface problem, see, e.g. [94] for the Stokes-Darcy problem. It can
also lead to multiscale approximations through the use of a coarse-scale Lagrange multiplier
or mortar space [3,53,55].

We discuss the Stokes-Biot model in details in Chapter 2, which is organized as follows.
In Section 2.1 we derive the weak formulation for the Stokes-Biot model. Section 2.2 is
devoted to the semi-discrete continuous-in-time numerical scheme and the uniqueness and
existence of its solution, as well as its stability and convergence analysis. A discussion of the
fully discrete scheme is presented in Section 2.3. Finally, extensive numerical experiments
are discussed in Section 2.4.

We note that in many applications the fluid exhibits properties that cannot be captured
by a Newtonian fluid assumption. For instance, during water flooding in oil extraction,
polymeric solutions are often added to the aqueous phase to increase its viscosity, resulting
in a more stable displacement of oil by the injected water [67]. In hydraulic fracturing,
proppant particles are mixed with polymers to maintain high permeability of the fractured
media [65]. In blood flow simulations of small vessels or for patients with a cardiovascular
disease, where the arterial geometry has been altered to include regions of recirculation, one
needs to consider models that can capture the sheer-thinning property of the blood [62].

Motivated by such applications, we develop FPSI with non-Newtonian fluids, which, to
the best of our knowledge, has not been studied in the literature. We focus on fluids that
possess the sheer thinning property, i.e., the viscosity decreases under shear strain, which
is typical for polymer solutions and blood. Viscosity models for such non-Newtonian fluids

include the Power law, the Cross model and the Carreau model [28,67,75,76]. The Power



law model is popular because it only contains two parameters, and it is possible to derive
analytical solutions in various flow conditions [14]. On the other hand, it implies that in
the flow region the viscosity goes to infinity if the deformation goes to zero, which may not
be representative in certain applications and also significantly complicates the theoretical
aspects of the problem. The Cross and Carreau models were deduced empirically as im-
provements of the Power law model. In both of these models the viscosity is strictly greater
than zero and bounded, but knowledge of three parameters is required. We assume that the
viscosity in each subdomain satisfies one such model, with dependence on the magnitude
of the deformation tensor and the magnitude of Darcy velocity in the fluid and poroelastic
regions, respectively. We further assume that along the interface the fluid viscosity is a
function of the fluid and structure interface velocities.

Since we allow for unbounded viscosity models, such as the Power law, the analysis
is performed in an appropriate Sobolev space setting, using spaces such as W', where
1 < r < 2 is the viscosity shear thinning parameter. Nonlinear Stokes-Darcy models with
bounded viscosity have been studied in [26,40,45], while the unbounded case is considered
in [44]. The resulting weak formulation is a nonlinear time-dependent system, which is
difficult to analyze, due to to the presence of the time derivative of the diplacement in
some non-coercive terms. We consider an alternative mixed elasticity formulation with the
structure velocity and elastic stress as primary variables, see also [87]. In this case we obtain
a system with a degenerate evolution in time operator and a nonlinear saddle-point type
spatial operator. The structure of the problem is similar to the one analyzed in [88], see
also [16] in the linear case. However, the analysis in [88] is restricted to the Hilbert space
setting and needs to be extended to the Sobolev space setting. Furthermore, the analysis
in [88] is for monotone operators, see [89], and as a result requires certain right hand side
terms to be zero, while in typical applications these terms may not be zero. Here we explore
the coercivity of the operators to reformulate the problem as a parabolic-type system for the
pressure and stress in the poroelastic region.

We present the analysis of the nonlinear Stokes—Biot model in Chapter 3. In Section
3.1 we describe the properties of quasi-Newtonian fluids that possess the shear-thinning

property. Next, in Section 3.2 we state two weak formulations of the model and show



that both formulations are well-posed in Section 3.3. Section 3.4 presents the analysis for
the semi-discrete continuous-in-time scheme. Numerical experiments, verifying convergence
properties and illustrating the behavior of the method in the blood flow setting, are provided
in Section 3.5.

Another topic of our interest is coupling FPSI with transport, as these are fundamental
processes arising in many diversified fields such as petroleum engineering, groundwater hy-
drology, environmental engineering, soil mechanics, earth sciences, chemical and biomedical
engineering. Realistic simulations for simultaneous flow, transport and chemical reaction
present significant computational challenges. In particular, one area of applications includes
simulating processes in subsurface waste repositories. This setting assumes a solid concrete
matrix to seal the radioactive wastes underground, however, due to the erosion by water,
acid solute or other undetermined elements during the long time periods as well as potential
deformations the fractures are inevitable. This leads to necessity of consideration of how
these radioactive wastes leak through the concrete matrix from these apertures since the
convection in fractures is much faster than that in structure matrix. Other important ap-
plications include approximation to proppant modeling in hydraulic fracturing, groundwater
contamination simulation and others.

For the modeling of transport, the discontinuous Galerkin (DG) methods [5,5,6,8,10,30,
31,33,74,80,81,91] are considered as being advantageous over the more conventional FEM
methods for many attractive properties including local mass conservation, less numerical dif-
fusion and more accurate local approximations for problems with rough and discontinuous
coefficients. In addition to that, DG methods allow more general meshes with variable de-
grees of approximation, since the approximation spaces are localized on each element. This
results in a substantially easier h — p adaptive implementations for DG in comparison with
the conventional approaches. The flexibility of the method also increases the efficiency in
adaptivity, since the conformity of the mesh does not need to be maintained and, in turn,
the unnecessary areas do not need to be refined. Furthermore, for time dependent problems,
the non-conforming nature of DG allows for an easy and effective mesh modification dynam-
ically with time [90], which is crucial for large transient problems involving a long period of

simulation time, in particular, for problems where strong physics occurs in a small part of



the domain with a moving location.

Traditional algorithms for the coupled transport problem employ operator splitting to
treat flow, advection, diffusion-dispersion and chemical reaction sequentially and separately.
Characteristics methods [4,36] are popular for the advection-diffusion subproblem. While the
operator splitting approach allows one to employ different algorithms to each subproblem as
well as to implement complicated kinetics in a modular fashion [37,38], it can result in slow
convergence and a loss of accuracy [37,38]. This brings our attention to the DG methods that
have been applied for flow and transport problems in porous media [92]. Four versions of
primal DG methods have been developed, namely, OBBDG (Oden-Babuska-Baumann [74]
scheme), NIPG (non-symmetric interior penalty Galerkin) [81], SIPG (symmetric interior
penalty Galerkin) [91,95] and IIPG (incomplete interior penalty Galerkin) [35,91], for so-
lutions of flow and reactive transport problems. DG for miscible displacement has been
investigated by numerical experiments and was reported to exhibit good numerical perfor-
mance. However, to the best of our knowledge, the mathematical analysis on the convergence
behavior of DG applied to coupled Stokes-Biot flow and transport problems has not been
conducted. In this paper, we restrict ourselves to the primal DG method with interior
penalty term (NIPG) for the transport equation.

Chapter 4 is devoted to the analysis of coupled FPSI-transport problem. We start by
introducing the transport equation and its spacial discretization in Section 4.1 and Section
4.2. In Section 4.3 we discuss the stability and convergence properties of the method. Finally,
Section 4.4 presents the convergence study and various numerical experiments, designed to

study flow and concentration of the interested species in fractured poroelastic medium.

1.2 STOKES-BIOT MODEL PROBLEM

We consider a multiphysics model problem for free fluid’s interaction with a flow in a de-
formable porous media, where the simulation domain @ ¢ R? d = 2,3, is a union of
non-overlapping regions €2y and €2,. Here €2y is a free fluid region with flow governed by the

Stokes equations and 2, is a poroelastic material governed by the Biot system. For simplic-



ity of notation, we assume that each region is connected. The extension to non-connected
regions is straightforward. Let I'f, = 0Q;N0S2,. Let (u,, p,) be the velocity-pressure pair in
O, x= [, p, and let n,, be the displacement in 2,. Let v > 0 be the fluid viscosity, let f, be
the body force terms, and let g, be external source or sink terms. Let D(uy) and o ¢(uy, py)

denote, respectively, the deformation rate tensor and the stress tensor:
1
D(uy) = §(Vuf + Vu?), or(ur,pr) = —prl+2vD(uy). (1.2.1)
In the free fluid region ¢, (uys,ps) satisty the Stokes equations

—V‘O'f(Uf,pf) :ff in Qf X (O,T], (122)
V- Ur =qr in Qf X (O,T], (123)

where T > 0 is the final time. Let o.(n,) and o,(n,, p,) be the elastic and poroelastic stress

tensors, respectively:

Ge(np) = /\p<v ’ T’p)I + QIMPD(T’p)7 o'p('rlpapp) = Ue(np) - appI7 (124)

where 0 < Apin < Ap(X) < Ao and 0 < fonin < f4p(X) < fhmas are the Lamé parameters
and 0 < a <1 is the Biot-Willis constant. The poroelasticity region (2, is governed by the

quasi-static Biot system [13]

~V - o,(n,pp) =, vK 'u, + Vp, =0, in Q, x (0,77, (1.2.5)
0 .
g (sopp +aV-m,) +V -u, =g, in Q, x (0,77, (1.2.6)

where sg > 0 is a storage coefficient and K the symmetric and uniformly positive definite

rock permeability tensor, satisfying, for some constants 0 < kin < kmaz,

VEERY, kpin € < &K (X)€ < kpanl’ €, Vx € Q.

Following [7,87], the interface conditions on the fluid-poroelasticity interface I' s, are mass
conservation, balance of stresses, and the Beavers-Joseph-Saffman (BJS) condition [12, 83]
modeling slip with friction:

0
g+ (%ﬂp) ‘n, =0, onTy % (0,7], (127



— (omy) -np = py, omy+o,n, =0, on I'g, x (0,77, (1.2.8)

- on
— (O’fl’lf) . tfyj = Vapjs Kj ! (llf — a_tp) . tf,j, on Ffp X (O,T], (129)

where ny and n,, are the outward unit normal vectors to 91, and 052, respectively, Ty,
1 <j <d—1,is an orthogonal system of unit tangent vectors on I'y,, K; = (Kty;)-ts;, and
apys > 0is an experimentally determined friction coefficient. We note that the continuity
of flux constrains the normal velocity of the solid skeleton, while the BJS condition accounts
for its tangential velocity. The first equation in (1.2.8), along with the definition of o in

(1.2.1), implies the jump in pressure condition

py —2u(D(uy)ny) -0y = pp. (1.2.10)

We note that a different pressure jump condition is obtained in [25,61] using asymptotic
analysis.

The above system of equations needs to be complemented by a set of boundary and
initial conditions. Let 'y = 9Q; N 9Q and 'y = 9Q, N 9Q. Let I', = '’ UT). We assume

for simplicity homogeneous boundary conditions:

u; =0on Ty x(0,7], n,=0o0nT,x (0,7,

pp=00onT2 x (0,T], w,-n,=0onTl) x(0,7].

For the uniqueness purposes we either assume that ]F}? | > 0 or restrict the mean value of the
pressure. We also assume that sz;j is not adjacent to the interface I'y,, i.e., dist(l“f L) >
s > 0. Non-homogeneous displacement and velocity conditions can be handled in a standard
way by adding suitable extensions of the boundary data. The pressure boundary condition
is natural in the mixed Darcy formulation, so non-homogeneous pressure data would lead to

an additional boundary term. We further set the initial conditions

Pp(%,0) = ppo(x), m,(%,0) = 1m,,0(x) in 2.



1.3 PRELIMINARIES

1.3.1 Notations

Throughout the thesis, we make use of the usual notation for the Lebesgue spaces LP(S),

S c R?, equipped with the norm

16120 s —/fb”dA

Similarly, we consider the Sobolev space W*?(S) with the norm and the seminorm

ooy = 32 [ iy = 3 [ ot

|| <K |a|=k

We further define the space of (LP(£2,))%vectors with divergence in LP(Q,), LP(div;S) =
{¢ € (LP(S))*: V- ¢ € LP(S)}, with the norm

i —— quwwmm

We note that with p = 2, the above spaces reduce to L*(S), H*(S) and H(div;S), respec-
tively. We denote by W~%?'(S) the dual space of W*?(S), where p' is the conjugate of p,
i.e, 1/p+1/p' =1. For 0 < p < 1, the fractional order Sobolev space W*?(9S) is equipped

with the norm

|P
O i S // 160 = 9O 45 .
os Jos |t — s

The L?(S) inner product is denoted by (-,-)s for scalar, vector and tensor valued func-
tions. For a section of a subdomain boundary G we write (-, -)g for the L?*(G) inner product
(or duality pairing). We also denote by C' a generic positive constant independent of the
discretization parameters, and abuse notation by denoting ¢ as an arbitrary constant with
different values at different occurrences.

For a time-dependent function ¢, we introduce the Bochner spaces equipped with norms:

T
121 Zo07:x) 12/0 lo@x ds, 19l (0,m5x) = ess supyeo,ryllo(8) ]| x

[@llwrso.1:x) 7= ess supyego,r o)l x5 0:0() |l x }- (1.3.1)



We will make use of the following well-known inequalities:

e (Holder/Cauchy-Schwarz) For any ¢ € LP(S), ¢ € L”(S),

o ¥llLis) < N0llos) ¥l e ()

e (Trace) For any ¢ € WP(9),

||¢HW1/10’,1>(35) < C“U”Wl,p(s),

e (Korn’s) For any ¢ € W'r(S),

ID@)llzr(s) = Cllellwrncs),

e (Poincare) For any ¢ € W,™”(S),

19llzr(s) < ClIVO Lr(s),

e (Young’s) For any real numbers a,b and € > 0,

ePaP i
ab < — + ——,
D e’y

e (Gronwall’s) Let g(t) > 0 and ¢(t) < f(t) + fstg(7)¢(7)d7, then

o)< 1)+ [ FGIatrex (/ tg(r)dr) dr

(1.3.2)

(1.3.3)

(1.3.4)

(1.3.5)

(1.3.6)

(1.3.7)

e (Discrete Gronwall’s) Let 7 > 0, B > 0, and let a,, by, cn,d,, n > 0, be non-negative

sequences such that ag < B and

n n—1 n
an—l—TZbl STZdlal—i-Tch—l—B, n > 1.
=1 =1 =1

Then,

—_

n—

Qp + T Z by < exp(T
=1 1

10

dy) (TZCH—B) ., n>1.
1 =1

(1.3.8)



1.3.2 Discretization of Stokes—Darcy problem

We also recall several fundamental results related to the discretization of Stokes and Darcy
problems. Consider a shape-regular and quasi-uniform partitions [29] of {2, ﬁlf , consisting
of affine elements with maximal element diameter h. For the discretization of Stokes velocity

and pressure variables we choose finite element spaces, which are assumed to be LBB-stable:

Vf,h C (Hl(Qf))d, Wf’h C L2(Qf), and

nf —(Vovyinwsn)o,
WLozws neWsn SUP0v eV TVinTm

(1.3.9)

25f>0.

(Qf)wa,hHLQ(Qf)
Examples of such spaces include the MINI elements, the Taylor-Hood elements and the
conforming Crouzeix-Raviart elements, [15]. We assume that the spaces Vg, and Wy,
contain at least polynomials of degree k¢ and sy, respectively.

We recall that there exists the Scott-Zhang interpolant, Sy, satisfying [85]:

Vs = Savillory + MV = Spavplle@,) < CR1Vellyprpr gy, 1< e, <k 41
(1.3.10)

For the discretization of the Darcy problem we choose V,,;, C V,, and W, ; C W, to be
any of well-known inf-sup stable mixed finite element spaces, such as the Raviart-Thomas

or the Brezzi-Douglas-Marini spaces, [15], satisfying

V,n C H(div; Q,), Wy, C L*(€,), and

—(Vvp nwp.n)a;

(1.3.11)

1Hf07$wp,h6Wp7h Sup07évp,hEVp,h va,h”H(div;Qp)||wPahHL2(Qp) — /Bp > O

We will use the MFE interpolant, 11, , satisfying for any # > 0 and for all v, € V, N
HQ(QP>7

(V- Iy pvp, wpp) = (V- Vi, wp ), Ywyn € Wy, (1.3.12)

(p vy - Ny, Vi - Mp)p, = (V- Ny, Vi - D)1 YVpn € V. (1.3.13)
The following bounds on II,; hold [1,29,42,69]:

vy = WVl o,y < CR™ [Vllyripngg ) 1<, < Ky + 1, (1.3.14)

1LVl zr@,) < C (Vpllir,) + 2Vl re,)) - (1.3.15)

11



For the pressure variables we use the L2-projection operators onto Wen and Wy p, Qpp

and @, 5, respectively:

(pf — Qrapyswin)a, =0, Ywsn € Wi (1.3.16)

(Pp — QpaPps Wpn)a, = 0, Y wpn € Wy (1.3.17)

These operators satisfy the approximation properties [29]:

lps — vahpf”Lp(Qf) < Ch'*s |prWT5f‘p(Qf)’ 0< rs, < Sf+ L, (1.3.18)

1Py — Qpaitpllzr,) < Ch™e |ppllwrsnr(a,), 0 <75, <sp+ 1. (1.3.19)

12



2.0 A LAGRANGE MULTIPLIER METHOD FOR A STOKES-BIOT
FLUID-POROELASTIC STRUCTURE INTERACTION MODEL

2.1 WEAK FORMULATION FOR STOKES-BIOT MODEL PROBLEM

We first introduce the following spaces:

Vf:{VfGHl(Qf)dZVfZOOH Ff}, Wf:L2(Qf),
V, ={v, € H(div;Q,) : v, -n, =0 on I')'}, W, = L*(€,),
X, ={¢, € H'(Q,)": £, =00nT,}. (2.1.1)

We define the global velocity and pressure spaces as
V={v=1_(vs,vp) € Vi x V., }, W=A{w=(wyp,w,) € Wy x Wy},

with norms

IvII3 = ||Vf||%11(szf) + ||Vp||%1(div;§2p)7 Jwllfy = ||wf||2L2(Qf) + ||wp||%2(9p)-

The weak formulation is obtained by multiplying the equations in each region by suitable
test functions, integrating by parts the second order terms in space, and utilizing the interface

and boundary conditions. Let

ag(uy,vy) = (2vD(uy), D(vy))a;,

ag(“w Vp) = (VK?lupv Vp)ﬂpv

a;(nzﬂ Ep) = (2MPD(TIp)7 D(Ep))Qp + (APV ’ T’pv V : Ep)Qp

13



be the bilinear forms related to Stokes, Darcy and the elasticity operators, respectively. Let
b(v,w)=—(V-v,w)g,.
Multiplying both sides of (1.2.2) by vy € V; and integrating over €2, we obtain
/Q fr-vidA = —/Q (V- (=pI+2vD(uy))) - vydA
f f

:/Q 2VD(uf):D(Vf)dA_/ pr'VfdA—/ (or(uy,py) - my) - vyds

Qf Lp
= as(uy,v5) +bs(vy, pr) —/ (of(uy,ps) -my) - vyds. (2.1.2)
Lsp
Similarly, from the first equation in (1.2.5) multiplying both sides by £, € X, and integrating

over {2, we have

/ £, ¢,dA = /Q (V- (u(m,) — ap,)) - &,dA = / o.(n,) - D(E,)dA

P P QP

— /Ffp(a'e(np) ‘ny) - €,ds —a /Qp pp(V - &,)dA + a/ pp(ny, - §,)ds

Cyp

— aS(m,,€,) + aby(€,p,) — /

Cyp

(oe(n,) -ny) - §,ds + a/ pp(ny, - &,)ds

Lyp

= ap(1,,€,) + aby(§,,pp) — / (05 (1, Pp) - 1) - €, s, (2.1.3)

Tsp

and from the second equation in (1.2.6) , multiplying both sides by v, € V,, and integrating

-
QP

= az(umvp) + bp(Vp, pp) + /1“ pp(n, - v,)ds. (2.1.4)
fp

yields

vK ', - v,dA — /Q Pp(V - vy)dA + /r pp(ny, - vp)ds

fp

Using the fact that {ns,t7;,j = 1,...,n — 1} forms an orthonormal basis on I'f,, the first
condition in (1.2.8) and (1.2.9), we have

/F(Uf(ufapf)'nf)'vdeZ/ ((of(uy,pr) -mp) -ng)(ng-vy)ds

Lyp

n—1
+Z/F ((or(ug,pr) -mp) - tp;)(ts; - vy)ds = —/ ppNy - Vyds
j=1 fp

Cyp

14



n—1

_ Z /Ffp(VOéBJS\/ Kj_l(uf — (9t17p) . tf’j)(tf,j . Vf)ds, (2'1'5)

j=1
where we used the notation 0, = 0 - /0,. Similarly, we use the fact that t,; = —t;;, the
second condition in (1.2.8) and (1.2.9) to obtain

/F fp(ap(np,pp) ‘n,) - €,ds = — / Py - €,ds

Tsp
n—1
- Z/F (vaps\/ K (up —0m,) - ty)(=ty; - €,)ds. (2.1.6)
j=1'Tsp

Next, we add (2.1.2)—(2.1.4) and use (2.1.5)—(2.1.6) to write

af(uf7 Vf) + aZ(upa Vp) + a;(n;ﬂ £p) + a’BJS(uf7 atn? Vf7 Sp)

+ b (v, pr) + bp(Vp, pp) + O‘bp(sp»pp) + /F pp(ny - vy + (v, + €p) -1,)ds
fp

= (f,vp)o, + (£,€,)a,, (2.1.7)

where

U

-1

apss(uy, 0my,; vy &) = > (vapisy/K;'(up—0m,) -ty (v —&,) 'tf,j>pfp-

7=1

Multiplying both sides of (1.2.3) and (1.2.6) with wy € Wy, w, € W, and integrating

over {2y and €2, respectively, and then adding them up, we get

/ S00ipywpdA — aby(0ymy, wy) — by(0y, wy) — by(uy, wy) = (gp, wp)o, + (a7, wr)a,. (2.1.8)
Q

P
In order to incorporate the mass conservation interface condition (1.2.7), we introduce a
Lagrange multiplier

A=—(omy) -np=p, € Aonly,.

Then (2.1.7) reads

ap(uy, vy) + a(wy, vy) + ag(n,, €,) + apss(uy, Om; vy, €,) + bp (v, py) + by(vp, pyp)

+ aby(&,,0p) +br(ve v, &, ) = (B, vi)a, + (£,,€,)q,, (2.1.9)
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and (1.2.7) can be enforced as
bF(ufv atnpv Uyp; :u) =0, VN €A, (2110)

where

br(vy, vp, &) = (vy-myp+ (&, +Vp) -0y, 1)1, -

For the well-posedness of by we require that A € A = (V,-ny|r, )'. According to the normal
trace theorem, since v, € V,, C H(div;(,), then v, - n, € H=Y/2(9Q,). Tt is shown in [52]
that, if v, -n, = on dQ, \ ['y,, then v, - n, € H1/2(I';,). The argument there uses the

fact that, for any ¢ € HY*(T'y,), (v, - 0y, 0)r,, = (v, - 0, E@)aq,, where Ep € HY?(9Q,)

Lsp
is a continuous extension. In our case, since v, -n, = 0 on FI]JV and dist(Ff L) > 5 >0,
the argument can be modified by first extending ¢ continuously to HS(§2(Ffp UTY), and
then by zero to H'/2(0(),), again concluding that v, - n, € H /2(I';,). We note that
[V - 0yl r-1/2(r,,) depends on s. Therefore we can take A = HY2(Ty,).

Combining (2.1.8)-(2.1.10) we obtain the Lagrange multiplier variational formulation: for
t € (0,T], find ugp(t) € Vi, ps(t) € Wy, uy(t) € Vy, py(t) € Wy, m,(t) € X, and A(t) € A,
such that p,(0) = ppo, 1,(0) = 0,0, and for all vy € Vs, wy € Wy, v, € V,, w, € W,
€, € X,, and p € A,

af(uf7 Vf) + CLZ(U.p, Vp) + a;(ngﬁ ép) + QBJS(uﬁ atnp; Vi, £p) + bf(vapf) + bp(vp7pp)

+abp(€,,pp) +br(vy, vy, €, A) = (Fr, vi)a, + (£, €,)a,, (2.1.11)
(500iPp: Wp)g, = @by (Oimy, wp) — byp(Wp,wy) — by(uy, wy)

= (a5, ws)a; + (@p, wp)a,, (2.1.12)
br (uf, u,, Gmp;,u) = 0. (2.1.13)

We note that the balance of normal stress, BJS, and conservation of momentum interface
conditions (1.2.8)(1.2.9) are natural and have been utilized in the derivation of the weak
formulation, while the conservation of mass condition (1.2.7) is essential and it is imposed
weakly in (2.1.13). The weak formulation (2.1.11)—(2.1.13) is suitable for multiscale numer-

ical approximations and efficient parallel domain decomposition algorithms [3,53,55,94].

16



2.2 SEMI-DISCRETE FORMULATION

Let 77Lf and 7 be shape-regular and quasi-uniform partitions [29] of 2 and €2, respectively,
both consisting of affine elements with maximal element diameter h. The two partitions may
be non-matching at the interface I'y,. For the discretization of the fluid velocity and pressure
we choose finite element spaces V¢, C V; and Wy, C Wy, which are assumed to be inf-sup
stable and for the discretization of the porous medium problem we choose V,;, C V, and
W, C W, to be any of well-known inf-sup stable mixed finite element spaces. The global

Spaces are
V,, = {Vh = (Vf,h,Vp,h) € Vﬁh X Vp7h}, W, = {wh = (U}f,h, ’LUpJL) < Wf}h x W, ,h}-

We employ a conforming Lagrangian finite element space X,; C X, to approximate the
structure displacement. Note that the finite element spaces V¢, V1, and X, j, satisfy the
prescribed homogeneous boundary conditions on the external boundaries. For the discrete

Lagrange multiplier space we take
Ah = Vp,h . rlph‘fp.

The semi-discrete continuous-in-time problem reads: given p,,(0) and n,,,(0), for t € (0,7},
find llf,h(t) € Vf’h, pf’h(t) € Wf,h, up7h(t) € Vp,ha pp7h(t) € Wpﬁ, ’I’]p7h(t) € Xp,ha and
An(t) € Ay such that for all v, € Vi, win € Wi, Vo € Vpn, wpn € Wyn, €,5 € Xy,

and pup € Ap,

ar(upn, Vin) + a(pn, vpn) + a5 (M €pn) + asas(rn, Oimyw; Vin, Epn) + 0r(Vin, Drn)

+ bp (Vs Pp.i) + @b (&, 1 Pp.n) + 00 (Vs Vs §p i An) = (£, vin)a, + (£, €5 0)0,,

(2.2.1)

(800uPp,, Wp,n) e, — by (Ot s wp ) — by(Wp py W) — bp(Wpn, wyp)
= (a5, wrn)a, + (@, Wpn)a,, (2.2.2)
br(ugp, upp, Oy, i k) = 0. (2.2.3)

We will take p,,(0) and n,,,(0) to be suitable projections of the initial data p,o and n,,.
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The assumptions on the fluid viscosity v and the material coefficients K, \,, and p,

d

imply that the bilinear forms ay(-,-), aj

(+;+), and ag(-,-) are coercive and continuous in the
appropriate norms. In particular, there exist positive constants ¢/, ¢?, ¢, C¥, C?, C*¢ such

that

INvilltn,) < ar(veve), ag(viar) < Clvillmopllaslae,), ¥ ar € Vi, (2.2.4)
CPHVPH%Q(QP) < GZ(VmVp)a ag(vpvqp) < CPlvpllezopllapllzz@,),  Vvpap €V, (2.25)

Ce”ngzl(Qp) < a;(fp,ﬁp), a;<€p’ Cp) < Cengqu(ﬂp)”CpHHl(Qp)7 vfp’ Cp € X, (22.6)

where (2.2.4) and (2.2.6) hold true thanks to Poincare inequality (1.3.5) and (2.2.6) also
relies on Korn’s inequality (1.3.4), see [29] or [43] for more details. We further define, for
\ZTES Vf, ép € Xp,

d—1

—1/4
vy =& 2, s = apss(ve, &, vy E,) = Z vags| K / (vi—&,)- tf,j“%?(rfp)-
=1

We next state a discrete inf-sup condition, which will be utilized to control the pressure in

the two regions and the Lagrange multiplier. Following [52], we define a seminorm in Ay,

|”h|?\h = a’g(u;h(:uh)v u;,h(p“h))a (227)

where (uj,;,(1n), Py 5 (1tn)) € Vpn X Wy is the mixed finite element solution to the Darcy

problem with Dirichlet data p;, on I'sy:

ag(“;,h(ﬂh)avp,h) + bp(Vp,h’pZ(/Lh)) = _<Vp,h 1, Mh>rfp7 VVpn € Vg,

bp(“—;,h(:uh)va,h) =0, Vwpy€ Wyp.

We equip A, with the norm || l|3, = llpallZ2qr, ) + a3, This norm can be considered

Lyp
as a discrete version of the HY2(T';,)-norm [52]. For convenience of notation we define the

composite norms

1V, & i)V, = IVillY + 1€p allzin e,y 1wns )l sn, = lwnlliy + lamll3,

as well as
b(Viy & i wn) = b (Vin, Wen) + bp(Vp s wpn) + aby(&,, s Wpn),

18



br (v, fp,h; [n) = bF(Vf,m Vp,hs fp,h; fn)-

The next result establishes the Ladyzhenskaya-Babuska-Brezzi (LBB) condition for the
mixed Stokes-Darcy problem, where it is understood that the zero functions are excluded

from the inf-sup.
Lemma 2.2.1. There exists a constant 3 > 0 independent of h such that

nf sup br(Vinswin) + bp(Vpns wpn) + (Vin 0y + Vi p - Dy, i)
(Wh,p1h) EWR X AR v, €V, vallvl (w, Nh)HWXAh

> 8. (2.28)

Proof. The result is proven in [52] in the case of velocity boundary conditions on 02 by

restricting the mean value of Wj. It can be easily verified that, since |I’ ]’? | > 0, the result

holds with no restriction on W, ]
This result implies the inf-sup condition for the formulation (2.2.1)-(2.2.3).

Corollary 2.2.1. There exists a constant 5 > 0 independent of h such that

b(Vh, &y ps wh) + br(Vi, &, 3 in)

inf sup > 0. 2.2.9
W e TV Ep) 3 0 1) [, 229)
Proof. The statement follows from Lemma 2.2.1 by simply taking &, , = 0. O

2.2.1 Existence and uniqueness of the solution

In this subsection we show that the semi-discrete Stokes-Biot system is well-posed. For the
existence of the solution we adopt the theory of differential-algebraic equations (DAEs) [17].

Let {py, i}, {@u,it {Pn, i} {&p,i}, {dp,.i} and {@a;} be bases of Viyp, Vin, Xon, Win,
W, n and Ay, respectively. Let M,, A¢, Ay, Ae, B?f, BZ;J and BeTp denote the matrices whose
(i, )-entries ave, Tespectively, (6,5, Gy i)s 5 (B 5+ By )s LBy By )s 45( Dy 1+ B ),
bp(V - by, js psi)s 0p(V - @y, gy bp,i), and b,(V - @y, ;. ¢p,:). We also introduce matrices
ARIS AZTS and ABJS whose (1, j)-entries are, respectively,
apss(Py, 05 By, 4,0), aps(Pu, ;o 0:0,, ;), and apys(0,é, ;:0,¢, ;). Finally, let Bir,
Bl and B!} stand for the matrices with (i,j)-entries defined by br(@y, ;:0,0; dx4),

b[‘(07 ¢up,j7 07 ¢)\,i)7 and bF<07 07 Q,)'qp,j; ¢A,i>7 respectively.
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Taking in (2.2.1)-(2.2.3) uypp(t,x) = >, upi(t)dus i Upn(t,X) = >, Up (L) Puyir Myp(t, X)
= D iMpiO)bn iy Pra(t,x) = 32 0ri(O)Pppis Ppn(t,X) = 32 0pi(t)@p,: and An(t,x) =
> i Ai(t)éa s with (time-dependent) coefficients Uy, 0,, 1, Dy, D, X, leads to the matrix-vector

system
+(Bir+ Byr + Bip) A = Fu, + Fy, (2.2.10)
M, 0ip,, — aB, O, — By, — By Uy + A?GJS,T -+ AiJS om, = For + Fpps (2.2.11)

Beruy + Byru, + Berom, = 0, (2.2.12)

which can be written in the DAE system form

E9,X(t) + HX(t) = L(t), (2.2.13)
where
T, (t) Fu 00 A8 0 o0 o0
u,(t) 0 00 0 0 0 0
7,(t) Fu, 00 AB/S 0o 0 o0
X(t) = . L(t) = , E= . (2.2.14)
Pe(t) Fos 00 0 0 0 0
py(t) F, 00 —aB, 0 sgM, 0
Alt) 0 00 —Bor 0 0 0
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BJS T T
0 A, 0 0 B]Z; BpTF
AT 0 A 0 BT B,
H = . (2.2.15)
—Byy 0 0 0 0 0
0 B,, 0 0 0 0
—Bysr -B,r 0 0 0 0
We note that the matrix
BJS BJS T T
0 A, 0 0 B;;, BZ,:F
AT 0 A+ABS 0 aBl BT,
E+H=
—Byy 0 0 0 0 0
0 By, aBe, 0 soM, O
—Byr —B,r —B.r 0 0 0

can be written as a block 2 x 2 matrix

A B7
E+H= :
-B C
where
Ap+ AR5 0 AR Bfy 0 Bj; 0 0 0
— T _ —
A= 0 A, 0 Bi=10 B B |-C=]0 sM, 0
APIST 0 A 4 ABIS 0 aBl B, 0 0 0

The following result can be found in [97].
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Lemma 2.2.2. If A and C are positive semi-definite and ker(A) N ker(B) = ker(C) N
ker(BT) = {0}, then E + H is invertible.

It is convenient to associate with matrices A, B, and C the bilinear forms ¢a (-, ), ¢B(-, *)
and ¢c(+, ) on (Vi X X)X (Vi X Xp,), (Vi X Xp) X (Wh, x Ap) and (W, x Ap) < (Wy, X A),

respectively:

OA((ns Mp1)s (Vi €)= ap(Upn, Vin) + ap(Wpn, Vin) + ap(m,4: €,)
+ aprs(Wpn, My ps Vin: Epn)
oB((un, My 1), (Wh, pn)) = by(app, wen) + bp(Wpp, wp )
+ by (M s Wp,n) + Or(Wgp, Wy s M 15 1)

¢C<<ph7 Ah)a (wfw Mh)) = (SOPPJL? wp,h)Qp'

By identifying functions in the finite element spaces with algebraic vectors of their degrees

of freedom, we note that ker(¢a) = ker(A), ker(¢p) = ker(B), and ker(¢c) = ker(C). Also,
for pgr ((wh, pin), (Vi, €, 1)) = ¢B((Va, €, 1), (Wh, f1n)), we have that ker(¢gr) = ker(B”). We

next show that the conditions of the Lemma 2.2.2 are satisfied.

Lemma 2.2.3. The bilinear forms ¢a, ¢ and ¢c satisfy

ker(¢a) Nker(¢p) = {(0,0)},
ker(¢c) Nker(¢pgr) = {(0,0)}.

Moreover, ¢a and ¢c are positive definite and semi-definite, respectively.

Proof. The coercivity of az(-,-), al(-,-), and ag(-,-), (2.2.4)-(2.2.6), and the non-negativity
of apys(-,-) imply that ¢a(-,-) is coercive and ker(¢a) = 0, hence the first statement of the

lemma follows. We next note that ker(¢gr) consists of (wp, 1) € Wy, X Ay, such that

¢BT((wh, Mh)v (Vha €p,h)) =0, V (th £p7h) € Vy x vah’

therefore the inf-sup condition (2.2.9) implies that ker(¢gr) = {(0,0)}, which gives the
second statement of the lemma. The positive semi-definiteness of ¢¢(-,-) is straightforward.

]
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Theorem 2.2.1. There exists a unique solution (W n, Pf.h, Uphs Pphs My ps An) 0
LOO(O,T; Vf7h)>< LOO(O,T, Wﬁh) X LOO(O, T; Vp,h) X Wl,oo(()’ T; Wp,h) X WL"O(O, T; Xp,h) X
L>(0,T;Ap) of the weak formulation (2.2.1)-(2.2.3).

Proof. According to the DAE theory, see Theorem 2.3.1 in [17], if the matrix pencil sE + H
is nonsingular for some s # 0 and the initial data is consistent, then (2.2.13) has a solution.
Lemma 2.2.3 guarantees that in our case the pencil with s = 1 is invertible. Also, the initial
data p, ,(0) and 1, ;,(0) does not lead to consistency issues. In particular, the only algebraic
constraints in the DAE system (2.2.13) are the second and fourth equations, see the definition
of E in (2.2.14). The second equation is the discretized Darcy’s law, and the initial value
u, ,(0) can be chosen to satisfy it for any given p,,(0), while the fourth equation is the
discretized incompressibility constraint for Stokes, which does not involve the initial data.
Furthermore, the initial data can be assumed to satisfy the boundary conditions. As a result,
Theorem 2.3.1 in [17] implies existence of a solution of the weak semi-discrete formulation
(2.2.1)-(2.2.3).

To show uniqueness, we assume that there are two solutions satisfying these equations
with the same initial conditions. Then their difference (Qspn,pfn, Qpn, ﬁp,h,ﬁpvh,j\h) sat-
isfies (2.2.1)-(2.2.3) with zero data. By taking (vyn, Wsn, Vpn, Wphs &pns tn) = (Wpn, Db
Uy 1y Dp,s DTy 1 5\h) in (2.2.1)-(2.2.3), we obtain the energy equality

ap(Qpp, Upn) + (s Upn) + a5 (A Ofipn) + (560iBpns Bp) + [pn — Kityn]. =0

aBJjs

Using the following algebraic identity

/¢ 28tH¢”L2(5)’ (2.2.16)

we write the energy equality as

1 . o
50 <So||29p,h||%2(szp) + ap (M s np,h)) (g, pn) + 0y n, Wpn) + |8p — O, p

apJjs -
Integrating in time over [0, t] for arbitrary ¢ € (0,7, we obtain

1

5 (50llBn (8) 3, + a5, (8),7,(1) )

23



/0 Duf,h — Gmp,h\ams + af(ﬁm, ﬁfﬁ) + a;‘f(ﬁpﬁ, ﬁp7h) ds = 0. (2.2.17)

Due to the coercivity of bilinear forms, we conclude that ty,(t) = 0, G, (t) = 0, 7,,,(t) =
0, Vt € [0,T]. If s9 # 0, we also have that p,,(t) = 0, but we can also obtain uniqueness
for both pressure variables and the Lagrange multiplier simultaneously and independently of

parameters. In particular, from the inf-sup condition (2.2.9) and (2.2.1), we have for (py,, A)

BBy An) |,
b (Vs D) + 0p(Viphs o) + b€ Bon) + br (Vihs Vs €ppi An)

< sup
(Vi iy )EVH XK (Vi &) lvxx,

_ sup _af<ﬁf7h> Vf,h) ad<up hy Vp,h ) (Up ho €p, )
(Vhi&p ) EVRXXp ||(Vh7 €h)||VXXp

—aps(Usn, My pi Vin Epn)

1(vhs &)l xx,

Therefore, we conclude that §,(t) = 0, pu(t) = 0, Ap(t) = 0, Vt € (0,T] and the solution
of (2.2.1)-(2.2.3) is unique. O

The next two subsections are devoted to the stability and error analysis of the semi-

discrete problem.

2.2.2 Stability analysis of the semi-discrete formulation

By taking (Vyu, Wrn, Vs Wyn, Epps tn) = (Wpns Db Ups Ppis Oty An) in (2.2.1)~(2.2.3)

and proceeding as in the uniqueness proof, Theorem 2.2.1, we obtain

% (SOHPp, (t )HL2 )+ ag(m, (1t )’npvh(t»)

t
—|—/ qu,h—amm
0

1 . t
= 5 (ollpan0) ey + 0,000, 0)) + [ F (b330, 00,121
0

(2.2.18)

+ap(upp,upp) + a;,l(upﬁh, upﬁh)} ds

aBJjs

where F (t; uyp, Gmpﬁ,pf,h,ppﬁ) denotes the total forcing term:
F (tupn, 0y pnsppn) = (Er,upn)q, + (£, atnpﬁ)gp + (a7, Prn)o; + (@, Pp)e,
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Using integration by parts in time, we write the forcing term as

F (t;upp, atnp7h7pf,happ,h> = (fr,upn)a, + 0 (fp7np,h)Qp — (i, "p,h)g,,

+ (g7, prn)e; + (G, Ppi)y -

Therefore, for any ¢; > 0, we have

t
/f(t;uf,hyatnp,hapf,happ,h) ds
0

1 1 1 [ 9
< 5, (07200, + 5150200, + 5 / (I, 413200, + 106130, ) s

€1

t
+ 5 (I + [ (hasalian) + sl + Ionalla,) &)

1 2 K
+2—€1(||fp<t>||m(gp)+ / (nffn%sz)+||qf||%sz>+||qp||izm,,))ds). (2:2.19)

Combining (2.2.18), (2.2.19) and (2.2.4)—(2.2.6), and taking €; small enough, we obtain

t
2
50||pp,h(t)||i2(ﬂp) + ||"7p,h(t)|\12r{1(np) +/0 <‘uf,h - (9t"7p,h’aBJS + Huﬁhﬁ{l(gf) + ”up’hH%Q(Qp)) ds

t
< Cﬁl/ (pr,h
0

t
+C (So||pp,h(0)||%2(gp)+ 17,1 (O) 1720, + Ipr(0)||2L2(Qp)+/ 1081720, ds)
0

t
%2(Qf) + pr,hH%%Qp)> ds + C/O an,hH%Q(Qp)dS

t
+ O (nfp@)nizmp) [ (Ul + ey + Nl ds> . (2:2.20)
0

Finally, from the inf-sup condition (2.2.9) and (2.2.1), we have

(P An) llw <A,
by(Vin, Drn) + bp(Vpns Ppn) + b€, 1 Pon) + 00 (Vi Vs €, i An)

<C sup
V1.8, )V 1 &pa)lvex,

=C sup —af(uf,h, Vf,h) - aZ(up,h, Vp7h) — ag(nm, fp,h)
(Vii&p n)EVRXXy H(Vh, ép,h)HVXXp

?

N —agys(Wsn, OMyp; Vin Epn) + (Er, vin) + (£, £p,h)}
|(Vh, &y n)llvx,

which, combined with (2.2.4)-(2.2.6), gives

t t
& [ (sl + Imalla, + IM3,) ds < Cea [ (usa
0 0

2 2
mp T 1allzaq,)
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2
+ H"7p,h||H1(Qp) + Jugn — atnp,h’ZBJS + HffH%%Qf) + ”pr%Z(Qp)) ds. (2.2.21)

Adding (2.2.20) and (2.2.21) and taking €, small enough, and then €; small enough, implies

2

apJjs

t
sollo O + 1O+ [ (g = 0,
0

+IAnllR, + pr,hH%Q(Qf) + pr,hH%Z(Qp) + [l n ?r{l(ﬂf) + Hup,hH%Z(Qp)) ds

t
<C (/O 17, w171 0,y @5 + 0l1Po (O)|Z2(0,) + 17,0 ()21 @) + IE(0) 1220, )

t
2
+ / (1E7122(0,) + 18120, + 108 20,y + 0713200y + lapllE2qe, ) ) ds) (2222)
The use of the Gronwall’s inequality (1.3.7) implies the following stability result.

Theorem 2.2.2. The solution of the semi-discrete problem (2.2.1)—(2.2.3) satisfies

Vsollppmlle o2 ) + 1My nllze om0, + 10snllz2omm @) + W sllz20.1;20,))
+ |psnllzorzep) + IPonllzzome2@,)) + 1Al z20a,) + ’uf,h - 8t/’7p7h|L2(07T;aBJS)
< Cyexp(T) (&pryh(o)nﬁ(ﬂp) 75,1 (0) | r2(0,) + ||fp||L00(()7T;L2(Qp)) + ||fp||L2(o,T;L2(Qp))

+I€ |l L20,7:12(05)) + Hatfp”LQ(QT;L?(Qp)) +1lasllz20,75z205)) + qu”LQ(O,T;LZ(Qp))> . (2.2.23)

2.2.3 Error analysis

2.2.3.1 Construction of a weakly-continuous interpolant Let @, be the L* -

projection operator onto Ay, satisfying:

(A= Qs pn)ry, =0, Y pn € Ay, (2.2.24)

IX = Qrplle2r,,) < Ch%||A||H 0<rg <k, +1. (2.2.25)

ka (Ffp) 9
Since the discrete Lagrange multiplier space is chosen as A, = V5 - n,|p ;> We have

<)‘ - Q)\,hA7 Vph - np>Ffp =0, VVp’h € Vp’h.

We note that the discrete seminorm (2.2.7) in Ay, is well defined for any function in L?(T',).

It is easy to see that |A — QxxAlp, = 0, hence
IA = QupAlla, = IA = QanAllrzry,)- (2.2.26)
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We use the operators defined in Chapter 1 to build an operator onto the space that satisfies

the weak continuity of normal velocity condition (2.2.3). Let
U={(v,v,,€,) € Vy x V,NH’(Q) x X, : vy -0y +v,-n,+&, -0, =0}
Consider its discrete analog
U, = {(vﬂh,vp,h, £p’h) €EVyn XV, x X, br (vﬂh,vp,h,ﬁp’h; uh) =0,Yu, € Ah} )
We will construct an interpolation operator I, : U — U, as a triple
(v, v &) = LV, LpnVips Isn€,)

with the following properties:

br (Iﬁth, Ip7th, Is,hsp; ,uh) =0, V,uh e Ny, (2227)

by(LpnVp — Vp, wpp) =0, Vwpn € Wy p. (2.2.28)

We let Iy, := Sy and I, := S5 . To construct I, ,, we first consider an auxiliary problem:

(
V-Vo=0 in Q,,
¢=0 on 'Y,
P (2.2.29)
V¢-n, =0 on F;V,
(Vo -y, = (vy—Lpnvy) -ngp+ (€, — [sp€,) -mp  on Ly,
Let z = V¢ and define w = z + v,,. From (2.2.29) we have
V-w=V.z24+V.v,=V.v,inQ,, (2.2.30)
and
Wen, =2, N, +V, N, =vy-ny—Ilrpve-ng+ &, -n,—[,§, -n,+v, 1,
= —Ippvy-ny —I,3§,-n, onlp,. (2.2.31)
We now let
Ip7th = Hp,hW~ (2232)
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Next, we verify that the operator I, = (In, Ipn, Isy) satisfies (2.2.27)-(2.2.28). Using
(1.3.12) and (2.2.30), property (2.2.28) follows from

(V . IpJZVp, wp’h)Qp = (V . Hp,hW, /U)p,h)Qp = (V W, wp,h)gp = (V . Vp, U}p’h)Qp, va,h S Wp’h.
Using (2.2.31) and (1.3.13), we have for all u; € Ay,

(IpnVp - 0y, pin)r,, = (T nW -0y, i), = (W -1y, 1)1,
= (—Lppvy-np — Lp€, 0y, pa)ry,,

which implies (2.2.27).

The approximation properties of the components of I, are the following.

Lemma 2.2.4. For all sufficiently smooth v¢, v,, and §,,

HVf — If,thHHl(Qf) < Ch'*s HVf”Hrkf-H 0< Ty < k‘f, (2233)

(Qy)’
1€, — 11€,ll22(0,) + PIE, — 1hE, | H1(0,) < Ch™

¥ = Tpavollizia,) < € (W ¥yl ) + B 1y

Ellnmen,), 1<, <k +1, (22.34)

ap T I rmiay)

(
1STkp§k?p+1,OSka.Skf,OSTkSSkS. (2235)

Proof. The bounds (2.2.33) and (2.2.34) follow immediately from (1.3.10). Next, using
(2.2.32), we have

va - p,thHLQ(Qp) = va — vy — Hp,hZHL2(Qp) < “Vp - Hp,hvp”LQ(Qp) + HHp,hZHLQ(Qp)-
(2.2.36)
Elliptic regularity for (2.2.29) [34] implies, for some 0 < § < 1/2,

Izl oo,y < € (10vs = Leave) - ngllo-vae,y + 1 (€ = Tony) - Dplla-riaeyyy) - (2:237)

Since V -z = 0 by construction, using (1.3.15), (2.2.37), and (1.3.3), we get

1T, 2] 22(0,) < Cllz| Ho@,)
<C (H(Vf — Ipnvy) vl ooz, + [ (€, — Tsn€,) - anHefl/%rfp))

< C(llvy - Ipnvillmop + 1€, — I p€, |l ey - (2.2.38)

A combination of (2.2.36), (2.2.38), (1.3.14), (2.2.33), and (2.2.34) implies (2.2.35). O
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2.2.3.2 Error estimates In this section we derive a priori error estimate for the semi-
discrete formulation (2.2.1)-(2.2.3). We recall that, due to (2.1.13), (uy,u,,dn,) € U and we
can apply the interpolant I,(uy, vy, 9n,) = (Iynuy, I, sy, Is,0m,) € Uy, for any ¢ € (0,T].
We introduce the errors for all variables and split them into approximation and discretization

errors:

ep:=uy—upp = (uy — Ippup) + (Ippup —upp) == X5+ @pp,

e, =u, —u,, = (0, — Lpu,) + (Lpuy, —Wpp) =X, + @pp,

€s =1y, = Mpp = (M — Lswmy) + (LsnMy — Mpn) = Xs + Py
erp =D —Drh = 0f — Qrapy) + (Qrnpr — Drn) == Xsp + Orphs

Epp = Pp — Pph = (pp - Qp,hpp) + (Qp,hpp - pp,h) = Xpp T Ppp,hs

ex =A== (A= Quu\) + (Qrpd — M) = X + Dan. (2.2.39)

Subtracting (2.2.1)—(2.2.2) from (2.1.11)—(2.1.12) and summing the two equations, we obtain

the error equation

le(ef, Vf,h) + ag(epa Vp,h) + a;i(esa €p,h) + aBJS(ef7 82583; Vih, €p,h> + bf(vf,h7 efp)
+ bp(Vp s €pp) + O‘bp(ép,ha epp) + r(Vin, Vpn, Ep,h; ex) + (S0 eepp; Wp 1)

- osz(ﬁtes, ’wpﬁ) - bp(ep, wp,h) - bf(ef, wﬁh) = O, (2240)
Setting Vin = @pp, Voh = Gpp: Epn = 0Py Wen = Gppn, and Wy = Gppp, e have

ag(Xgs Prn) + ar(Dpi Drn) + 4y (Xps ) + ap(Dps Do) + @ (Xr Debi)

+ 0 (Do, Orbs 1) + aBis (Xg OXsi Ppp 01D ) + aBss (Ppp 1Py i Prpy 1P 1)
F0p(Dpn Xp) + 05 (D Bron) + 0p(Dy s Xop) + 0p( Dy Popt) + Ay (8 s Xip)

+ aby (Db s Sppn) + 0 (D s Ppns Deduni X2) + 0 (D15 Py Dehops D)

+ (50 O Xpps Popn) + (50 Osbpp,s Dpp.n) — by (0Xs: Pppin) — by (0 s Pppin) — (X Popin)
— byp(Dp s Pown) — br (X2 Bppn) — bp(Dyps Dppn) = 0. (2.2.41)
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The following terms simplify, due to the properties of projection operators (1.3.17),(2.2.24)
and (2.2.28):

bp<va Gpp.n) = bp(¢p,h7pr) =0, (500 Xpps Pop,n) = <¢'p,h : np7X>\>Ffp =0, (2.2.42)

where we also used that Ay, = V5, - n,|r,, for the last equality. We also have

br <¢f,h7 d)p,h? atd)s,h; ¢A,h) =0, br (d)f,hv d)p,h? atd)s,h; X/\) = <¢f,h "Ny + at¢s,h * 1y, X/\>Ffp )

where we have used (2.2.27) and (2.2.3) for the first equality and the last equality in (2.2.42)
for the second equality. Using (2.2.16), we write

1

e 1 e
(50 OrPpp,h» Ppp,n) = 550 8t||¢pp,h||%2(ﬂp)a a, (d)s,h’ 8t¢s,h) = 5@% (Cbs,m ¢s,h) .

Rearranging terms and using the results above, the error equation (2.2.41) becomes

2

1
af(¢f,h7 ¢f,h> + a’j}(¢p,h7 ¢p,h) + 5875 <a§(¢s,h? ¢s,h) + SOHQSPPJZH%Q(QP)) + ‘¢f,h - a7f(ﬁs,h|

apJjs
=ay Xfa ¢f,h) + GZ(va ¢p,h) + Cl; (st 8t¢s,h)
d—1
+ Z <V043JS\/ KN (X = 0ixs) - trgs (g — Orbs ) - tf7j> +bs(@fns Xip)
j=1 Tp
+ bf(va Pfph) + abp(at¢s,h7 Xpp) + by (0eX s, Ppp.n) + <¢f,h ‘ny A+ at¢s,h 1y, X/\>Ffp-
(2.2.43)

We proceed with bounding the terms on the right-hand side in (2.2.43). Using the continuity
of the bilinear forms (2.2.4) and (2.2.5) and inequalities (1.3.2) and (1.3.6), we have

as(Xp $1n) + 20 Bpa) < Ot (17130 + 1%, 320,

t+e <H¢f,h”%{l(9f) + "(bp,hH%Q(Qp)) . (2.2.44)

Similarly, using inequalities (1.3.2), (1.3.3) and (1.3.6), we obtain

d—1

Z <VCVBJS\/ Kj_l(Xf — OiXs) * trgs (¢f,h — 0Py p) - tf,j>
j=1 Cyp
2 _
<elpn =0l + O (I ) + 10xBnw,) - (2245)
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Finally, using (1.3.2),(1.3.3) and (1.3.6), we bound the rest of the terms that do not involve
at¢s,h:

bp(Drns Xpp) + 05 (X g Pppn) + by (X5, Pppn) + (P - 0y X)TS, < 0551"Xf“%2(9f)

+ €2||¢fp,h||%2(ﬂf) +Cert <||Xfp||%2(ﬂf) + V- athHiz(Qp) + ||XA||%2(rfp)>

te (HV : ¢f,h”3:2(§zf) + H(/bpp,h”%%gp) + [l bsp - nf”?:?(rfp))

< e (Ibsalifnay + 1wl + Cat (Il + 103, + X3,

+ €2H¢fp,h|’%2(9f) + 0551‘|Xf||%2(9f)- (2.2.46)
Combining (2.2.43)—(2.2.46), integrating over [0, ], where 0 < ¢t < T, using the coercivity of

the bilinear forms (2.2.4)—(2.2.6), and taking ¢; small enough, we obtain

||¢s,h(t)||?{l(gf) + 30||¢pp,h(t)||%2 o) T ||¢fh||%2 (0,6, H1 ()
+ “gbp,hH%Q(O,t;L2 + ’¢fh Sh|L2(0taBJS)
< 61H¢pp7h”%2(0,t;L2(Qp)) +Cet <Hatxs”L2(0,t;H1(Qp)) + HXpr%2(0,t;L2(Qf))

+HXf”%2 O:HL(2)) T HXp”%Q(O,t;LQ(Qp)) + ”X/\H%Q(O,t;LQ(Ffp)))

+ C/ Xs7 at s h) + ab (atq’)s h XPP) <at¢s,h -y, X)‘>Ffp) ds

+C (H‘ﬁs,h(o)”m(gf) + 30H¢pp,h(0)Hi2(Qp)) +ellorpnllizg, + Ot IxslTam,)  (2:2.47)
For the initial conditions, we set p,(0) = Qpnppo and n,,(0) = I, ,n, o, implying
¢s,h(0> = 07 (bpp,h(o) =0 (2248)

We next bound the terms on the right involving 0;¢, ;. Using integration by parts in time,

(1.3.2), (1.3.6), (2.2.6) and (2.2.48), we obtain

t t
A a;e) (Xs? atd)s,h) ds = a’;ez(Xs7 ¢s,h)‘g - /0 a; (athv ¢s,h) ds

_ 2
<C <€1 Hixs )10,y + HathHB(o,t;Hl(Qp))) +elldon (O, + 1Dsnllizounm @)
(2.2.49)
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Similarly, using (1.3.2), (1.3.3), (1.3.6) and (2.2.48), we have

t t
A <at¢57h 1, X)\>Ffp ds T /(; Osz (at¢s,h7 pr) ds = <¢s,h 1y, X>\>Ffp}f) + Oébp (d)s,h? 8tpr) |E)

t t
- /0 <¢s,h R atX)‘>FfP ds = /0 aby (¢s,h= atpr) ds < €1H¢svh(t> ’ an%2(Ffp)
F P - ol 202200,y + @IV - Do (O 720,) + IV - DunllT202200,))
+ C(Q”\XA(I?)H%?(FM) + HatXAHQLQ(o,t;LQ(rfp)) +e X (DI22(0,) + HatprH%%o,t;LQ(Qp)))
< €1H¢s,h(t)|’12ql(szp) + “¢s,hHi2(0,t;H1(Qp))
+ (O, + 1000 + oDl + oxmlssny )
(2.2.50)

Using (2.2.48)—(2.2.50) and taking €; small enough, we obtain from (2.2.47),

Hd)s,h(t”ﬁ{l(ﬂp) + 50H¢pp,h(t)||%2(szp) + ||¢f,hH%2(0,t;H1(Qf))

By allze 0622020 + [Prn — at¢s,h‘i2(07t;aBJS)
< 61||¢pp,h||%2(o,t;L2(Qp)) + 62||¢fz>,h||%2(o,t;L2(Qf)) + ||¢s,h||2L2(0,t;H1(Qp))
+Ce! (HXfp”%Q(O,t;LQ(Qf)) + HXfH%?(o,t;Hl(Qf)) + HXpH%Q(O,t;LQ(Qp))
+||XA(t)||iz(rf,,) + X (D720, + ||X)\H%2(O7t;L2(Ffp)) + HXs(t)Hl%Il(Qp))

+C (HathH%?(O,t;Hl(Qp)) + ||3tXA||2L2(o,t;L2(rfp)) + HatX’PPH%Q(O,t;LQ(Qp))) . (2.2.51)

Next, we use the inf-sup condition (2.2.9) with the choice (wp, pn) = ((Pfp.hs Ppp.n)s Oan) and
the error equation obtained by subtracting (2.2.1) from (2.1.11):

CI((Dsp,ns Pop)s Dan) lwxa,,
by (Vi Ppn) + 0p(Vphs Oppn) + abp(&, s Popn) + 00 (Vin, Vpn, €y ns Oan)

< sup
(Vi n)EVRXXp 1 (v, &) v,
_ sup (_af(ef, Vin) = ap(ep Vin) = ay(€s: &yn) — anss(er, 0 Vi €pn)
(Vioky ) EVAX Xy, (Vi €p ) lvxx,

I _bf(Vf,ha Xfp) — by (Vs Xpp) — O‘bp(gp,ha Xpp) — bF<Vf,ha Vp:h7£p,h; XA)>
|(Vh: &) v x,
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Due to (1.3.17) and (2.2.24), by(Vpn, Xpp) = (Vpn - Dy, Xa)r,, = 0. Then, integrating over
[0,¢] and using the continuity of the bilinear forms (2.2.4)—(2.2.6) and the trace inequality
(1.3.3), we get

%2(O,t;L2(Qp)) + ||¢A,h||%2(o,t;L2(rfp))>

< Ce <H¢f,hH%2(O,t;H1(Qf)) + @ nll 220020 T 19,

62(‘|¢fp7h||%2(0,t;L2(Qf)) + || Ppp.n

2
(0,6H(2p))

2
+ ‘Qbfh sh‘LQ Ot:apss) T HXfH%Z(O,t;Hl(Qf)) + HXpH%Q(O,t;LQ(Qp)) 10Xl 220,01 (0,))

+||Xfp||%2(0,t;L2(Qf)) + IXepll 20,220,y ||XA||L2(0,t;L2(Ffp))> : (2.2.52)

Adding (2.2.51) and (2.2.52) and taking €5 small enough, and then €; small enough, gives

||¢s,h(t)||%{1(9 + 50||¢pp7h(t)||%2(9 y T ||¢f,h||%2 o T e wll3e (0,6:22(2,))
+ |¢f7h 3t¢

(Otsa575) ||¢fph||L2 (0.L2(25)) T | Gpp.nll 2 0.422(,) T D, h||L2 (0,6:An)

< C(H(ﬁshHL?(OtHl @) T ”athHm O.6H Q) T HXf;DHL2 o029 T HXfHL2(0tH1(Qf))
+ HXpH%2(0,t;L2(Qp)) + HXA(t)|’%2(r,-p) + Hpr(t)H%%Qp) + HX)\H%Z(O,t;LZ(Ffp))
2
+ 10l T2 05220 ,,)) 1 deXpplI 220 1:22(0)) Hath(t)H%rl(Qp)) (2.2.53)

Applying Gronwall’s inequality (1.3.7) and using the triangle inequality and the approxi-
mation properties (1.3.18)—(1.3.19), (2.2.26) and (2.2.33)—(2.2.35), results in the following

theorem.

Theorem 2.2.3. Assuming sufficient smoothness for the solution of (2.1.11)—(2.1.13), the
solution of the semi-discrete problem (2.2.1)~(2.2.3) with p,n(0) = Qprppo and n,,(0) =

Iy nm, o satisfies

17, = My pllze om0 @) + VS0llPp — Ppnllzerir2@,)) + 10y — Wpnll20,0m )
+ Hup - up,hHLQ(O,T;LQ(Qp)) + ‘<uf - amp) - (uf:h - atnpvh)|L2(0,T;aBJs)

+lpr = prallzzomzn) + 1Py — Posllzzorzz@,)) + 1A = Anllz2oan)

< C@(/ﬂf Jug| N

L2011 () |pf||L2(0,T;HTSf @) T h'ke ||uPHL2(O,T;HT’9P ()

0% (1IN aoiraaio ey + Mmooy + 10z oiraaio ey )
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FyA (HPPHLOO(O,T;HTSP ) T pr”LQ(O,T;HTSP @) T+ Hatpp”Lz(O,T;H“P (Qp)))

+ h's (”anLOO(O,T;H%S“(Qp)) + HTIPHLQ(O,T;HT’“SH(Q;))) * HampHLQ(O’T;H%SH(Q”)» )7

Ogrkfgkfv O§T5f§5f+1, 1§{Tkp’fkp}§kp+1’ 0§T5p§8p+1, Ogrksgks.

2.3 FULLY DISCRETE FORMULATION

For the time discretization we employ the backward Euler method. Let 7 be the time step,
T = N7, and let t, = n7, 0 < n < N. Let d,u” := 771 (u" — u"!) be the first order
(backward) discrete time derivative, where u™ := u(t,). Then the fully discrete model reads:
given pl ,, = ppn(0) and 0, = m,,,,(0), find u}, € Viyp, pty, € Wep, wly € Vo, piy € Wy,
Myn € Xpn, and Ap € A, 1 <n < N, such that for all vy, € Vg, wrn € Wep, vpn € Vi,

Wy, h € Wp,ha Ep,h € Xp,ha and JUS Aha

ap(uf,, vin) + az(uz,hv V) + a1, & n) + ais(Ws g, demy i Vin, €y n) + 05 (Vin, D7)

+ by (Vs Py i) + @0p (& s Do) + 00 (Vin, Vo §p i An) = (7, vin)a, + (£€,0)0,,

(2.3.1)

(50dzPpy 1y Wp )0, — Abp(drtly s Wpp) = bp (W) s W) — by (W s wi )
= (g}, wrn)a; + (4, Wpn)ay, (2.3.2)
br(u}y, upp, demy ps fin) = 0. (2.3.3)

We will need the discrete-in-time norms, defined as follows:

0<n<N

N 1/2
el = (TZII¢"II§<> ;o llEerx) == max [¢"]|x.
n=1

Next, we state the main results for the formulation (2.3.1)-(2.3.3).
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Theorem 2.3.1. The solution of fully discrete problem (2.3.1)-(2.3.3) satisfies

Vsollppnllieorie2@p)) + 1M pllie om0y + s nlleoma @) + l0pnlleorze,)
+ uygy, — dr"”lp7h|l2(o,T;aBJS) + ||pp,h||l2(O,T;L2(Qp)) + pr,h||l2(O,T;L2(Qf)) + ||)\hH12(O,T;Ah)
+ 7 (Vsolldrppalleorizze,) + e, nlleorm @)
< C\/M(@HP%}LHL?(QP) sl + 1lli=or220,)) + 10l 120,7:220,)

+ 117 le0r220p + laslleomasion + lapleoraen + Glleora ).
Proof. We choose
(Vs Wy Vi iy Wy b £p,h7 fn) = (u?,hv P?,h: u;",m pz,hu dﬂ?;:,hv An)
n (2.3.1)—(2.3.3) and use the discrete analog of (2.2.16)
[ oA = S s+ 51 s (234)

to obtain the energy equality

1 7 & n n T n n
sdr (sollppiliEaqe,) + a5 min) ) + 5 (solldebhalliaa,) + ab (e, dems)

g ) () + = d 2, = Ft). (23.5)

The right-hand side can be bounded as follows, using inequalities (1.3.2) and (1.3.6),

F(tn) = (£r(tn), ufy) + (fp(tn) dempn) + (@5 (ta), D70) + (@p(tn), Py )
< (lta), derips) + 5 (G alaay) + 9l 3ecap) + P leca,))
+Co (187t By + Nartta) ooy + lan(tn) ) - (2.3.6)

Combining (2.3.5) and (2.3.6), summing up over the time index n = 1, ..., N, multiplying by
7 and using the coercivity of the bilinear forms (2.2.4)—(2.2.6), we obtain

N
sollpphu (e, + M5y + 7 2 (NGl + I0alZaqa,) + s — demial2, )

n=1

N
+72 3 (solldetpali3sca,) + Il ) < C (sollphaliaa,) + Impaln,)
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N
+€1TZ <||u?,h||%2(ﬂf) + ||p?,h||%2(9f) + ”pZ,hH%?(Qp)) + TZ tn), drmy )

+er TZ <||ff Wiz, + llas )12, + ||qp(tn)||%2(ﬂp)>) : (2.3.7)

To bound the last term on the right we use summation by parts:

N

TZ(fp(tn)? dTnz,h) = (fp(tN)a 771]3\7[11) - (f nph - T Z d fn>"7p,

n=1

€1
< S lmpaliz, +—||f (t3) 20, 5 ZanhHL?

1 n
t3 (H"??;,h”%?(szp) + 1£,(0)[1 7200,y + 7 Z ld-£; ||%2(Q,,)) : (2.3.8)
n=1

Next using the inf-sup condition (2.2.9) for (p},,,py,, Ai;) we obtain, in a similar way to
(2.2.21),

N
ard (P} al2ca) + a3y + IARIR, )

< CGQTZ (Hff ||L2 @ + 5 )||%2(Qp) + ||u?,h||%11(gf) + ||u;,h||%2(ﬂp)
a0y + 10— Aol ) (2.3.9)

Combining (2.3.7)—(2.3.9), and taking €, small enough, and then €; small enough, and using

discrete Gronwall’s (1.3.8) with a,, = Hn;‘th%{l(Qp), gives

N
sollplzcay) + I, +7 2 [IGalgay) + Iupalay, + Wfn = demial2, o]

n=1
N N
+ 723 [sollderipnlEaqa,) + Nl | + 730 [BEal3a,) + 195alEq) + IR,
n=1 n=1
< Cexp(T) <50Hp2,h‘|%2(gp) + Hng,h\l?p(gp) + ||fp(0>‘|%2(gp)

+ TZ L1E7 (1) 3200y + 1) 20y + s () ey + lap () g,y + ldeEolizcayy] ).

which implies the statement of the theorem using the appropriate space-time norms. O

36



Theorem 2.3.2. Assuming sufficient smoothness for the solution of (2.1.11)—(2.1.13), the
solution of the fully discrete problem (2.3.1)-(2.3.3) satisfies

Vsollpp = Pppllio iz, + 1M = Mpnllisoommie,)) + luy — wpnllizorme,)
+ 1wy = wonllzorc2@,) + ay — dmy, — (U — deny ) l20ram,s)
+ s = pralleomrczap) + 0o — Penllzorczo,) + I = Anllzoran

+ \/F<\/s_o||d7(pp — ppa)llzorieze,) + lld-(m, — np,h)||l2(0,T;H1(Qp))>
< Cvexp(T) (hrkf Huf”ﬁ(o,T;H’”’“f“(Qf)) + b pslleommer @) + Il om0 0,)

(N S+ J+l1aA

0.T5H " (T 1) 122(0,T;H ™ (T 1) 20,130 (Ffp))>
£ e (pr||loo(o,T;H% @) T 1Pplleomass @) + 1100l 20751750 (Qp)))
+ At <H"?;a“loo(o,T;H%s“(Qp)) + H”szZ(O,T;H’“ks“(Qp)) - Haﬂ’pHL2(0,T;H%S+1(QP))>
7 (Voo + e, loorma,) )
0< 1, <hky, 0< 7, <sp+1, L<{rp,, Th,} <kp+1, 0<r,, <s,4+1, 0< 1y, <k,
For the sake of space, we do not present the proof of Theorem 2.3.2. The error equations
are obtained by subtracting the first two equations of the fully discrete formulation (2.3.1)—
(2.3.2) from the their continuous counterparts (2.1.11)—(2.1.12):
ar(€},vin) + ag(ey, vpn) + ag(el, &, ) + apss(ef, drel;vin, &, 5) + br(Vin, €},)
+ by (Voo ) 4 by (€, s €0) 4+ b (Vs Vi, Epns €5) + (S0 drepy, wp ) — aby(d-€l, wy )
— bp(ey, wpn) = be(€f, wen) = (sorn(pp), wpn) + aBss(0,7(1,); Vin, €y )
— aby(rn(n,), wpn), (2.3.10)

where r,, denotes the difference between the time derivative and its discrete analog:
rn(0) = 0,0(t,) — d.0".
It is easy to see that [20, Lemma 4] for sufficiently smooth 6,
N
T Z Hrn<9)!|?{k<5) < 07-2Hatt(gH%?(O,T;Hk(S))'
n=1

The proof of Theorem 2.3.2 follows the structure of the proof of Theorem 2.2.3, using discrete-

in-time arguments as in the proof of Theorem 2.3.1.
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2.4 NUMERICAL RESULTS

In this subsection, we present results from several computational experiments in two di-
mensions. The fully discrete method (2.3.1)—(2.3.3) has been implemented using the finite
element package FreeFem++ [59]. The first test confirms the theoretical convergence rates
for the problem using an analytical solution. The second and third examples show the ap-
plicability of the method to modeling fluid flow in an irregularly shaped fractured reservoir

with physical parameters, while the last one performs an analysis for the robustness of the

method with respect to various parameters.
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Figure 1: Computational domains.

2.4.1 Convergence test

In this test we study the convergence for the space discretization using an analytical solution.
The domain is Q = [0, 1] x [—1, 1], see Figure 1a. We associate the upper half with the Stokes
flow, while the lower half represents the flow in the poroelastic structure governed by the

Biot system. The appropriate interface conditions are enforced along the interface y = 0.
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The solution in the Stokes region is

—3x + cos(y
uy = mcos(nt) ) ,  py = e sin(rx) COS(%) + 27 cos(mt).

y+1

The Biot solution is chosen accordingly to satisfy the interface conditions (1.2.7)-(1.2.9):

. [ cos(mx) cos(%) .. Ty ‘ —3x + cos(y)
u, = e ,  pp=esin(mz)cos(—), m,=sin(rt)

+sin(rx) sin( %) 2 y+1

The right hand side functions fy, ¢, f, and ¢, are computed from (1.2.2)—(1.2.6) using the
above solution. The model problem is then complemented with the appropriate Dirichlet
boundary conditions and initial data. The total simulation time for this test case is T' = 0.01s
and the time step is At = 1073s. The time step is sufficiently small, so that the time
discretization error does not affect the convergence rates.

We study the convergence for two choices of finite element spaces. The lower order choice
is the MINI elements P? — P, for Stokes, the Raviart-Thomas R7T, — Py and continuous
Lagrangian P; elements for the Biot system, and piecewise constant Lagrange multiplier Py.
In this case ky =1, sy =1, k, =0, s, = 0, and ks = 1, so Theorem 2.3.2 implies first order of
convergence for all variables. The higher order choice is the Taylor-Hood P, — Py for Stokes,
the Raviart-Thomas RT1 — P and P, for Biot, and P for the Lagrange multiplier, with
ky =2, s =1k, =1, s, =1, and k; = 2, in which case second order convergence rate
for all variables is expected. These theoretical results are verified by the rates shown in
the Table 1, where the errors were computed on a sequence of refined meshes, which are
matching along the interface.

We also perform a convergence test with the lower order choice of finite elements on
non-matching grids along the interface. We prescribe the ratio between mesh characteristic
sizes to be hgiokes = ghBiOt as shown in Figure la. According to the results shown in Table

2, first order convergence is observed for all variables, which agrees with Theorem 2.3.2.
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Pb— Py, RTo — Po, Py and Py

lerllzyy | lemlizae@yy | leplie@e@,y) | lepllico2@,)) | lleslliem @)
h error rate error rate error rate error rate error rate
1/8 8.96E-03 — 2.61E-03 — 1.05E-01 — 1.03E-01 — 5.09E-02 —

1/16 | 4.47E-03 1.0 | 8.33E-04 1.6 | 5.23E-02 1.0 | 5.17E-02 1.0 | 1.34E-02 1.9
1/32 2.24E-03 1.0 | 2.76E-04 1.6 | 2.61E-02 1.0 | 2.59E-02 1.0 | 3.94E-03 1.8
1/64 1.12E-03 1.0 | 943E-05 1.6 | 1.31E-02 1.0 | 1.29E-02 1.0 | 1.43E-03 1.5
1/128 559E-04 1.0 | 3.28E-05 1.5 | 6.63E-03 1.0 | 6.47E-03 1.0 | 6.32E-04 1.2
Py — P1, RT1 — P, Py and P

leflliemr,y | lemlliewz@yy) | llepllizwe@,)) | lepllic@zy)) | lesllico @)
h error rate error rate error rate error rate error rate
1/8 1.25E-04 — 1.31E-03 — 1.82E-02 — 1.60E-02 — 1.54E-01 —

1/16 | 2.90E-05 2.1 | 3.25E-04 2.0 | 4.38E-03 2.1 | 4.01E-03 2.0 | 3.82E-02 2.0
1/32 | 7.06E-06 2.0 | 8.07E-05 2.0 | 1.08E-03 2.0 | 1.00E-03 2.0 | 9.51E-03 2.0
1/64 | 1.77E-06 2.0 | 1.97E-05 2.0 | 2.67E-04 2.0 | 2.51E-04 2.0 | 2.37E-03 2.0
1/128 | 4.73E-07 1.9 | 4.51E-06 2.1 | 6.47E-05 2.0 | 6.23E-05 2.0 | 5.89E-04 2.0

Table 1: Example 1: relative numerical errors and convergence rates on matching grids.

PP —P1, RTo — Po, P1 and Py

lerllizyy | lemlizae@py | leplie@e@,y) | lepllicore@,)) | llesllism @)
hBiot error rate error rate error rate error rate error rate
1/8 1.43E-02 - 6.06E-03 - 1.05E-01 - 1.03E-01 - 5.09E-02 -

1/16 | 7.16E-03 1.0 | 1.79E-03 1.8 | 5.23E-02 1.0 | 5.17E-02 1.0 | 1.34E-02 1.9
1/32 | 3.58E-03 1.0 | 5.81E-04 1.6 | 2.61E-02 1.0 | 2.59E-02 1.0 | 3.94E-03 1.8
1/64 | 1.79E-03 1.0 | 1.95E-04 1.6 | 1.31E-02 1.0 | 1.29E-02 1.0 | 1.43E-03 1.5
1/128 | 8.94E-04 1.0 | 6.77E-05 1.5 | 6.53E-03 1.0 | 6.47E-03 1.0 | 6.32E-04 1.2

Table 2: Example 1: relative numerical errors and convergence rates on non-matching grids.

2.4.2 Application to flow through fractured reservoirs

For the rest of the cases, we introduce the reference domain Q given by the rectangle [0, 1Jm x

[—1, 1]m, see Figure 1b. A fracture, which represents the reference fluid domain Q ¢ is then
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positioned in the middle of the rectangle, with the boundary defined by
2% =200(0.05 — §)(0.05 +9), ¢ € [~0.05,0.05].

Furthermore, the physical domain €2, see Figure 1c, with more realistic geometry, is defined

as a transformation of the reference domain 2 by the mapping [19]

x T
Yy 5COS(%) Cos(%)2+g/2—i/10

The external boundary of €2; is denoted as I'f 100, While the external boundary of €2, is
split into I', +, where = € {left, right, top, bottom}.

The next example is focused on modeling the interaction between a stationary fracture
filled with fluid and the surrounding poroelastic reservoir. We are interested in the solution
on the physical domain 2. The physical units are meters for length, seconds for time, and

KPa for pressure. The boundary conditions are chosen to be

Injection: ur-ny =10, uy-7,=0 on It in flow,

No flow: u, -n,=0 on 'y jeft,

Pressure: pp = 1000 on L'y, pottom U L'p right U L'p tops
Normal displacement: M, -0, =0 on 'y top ULy right U I'p pottom
Shear traction: (opny) -7, =0 on L'y top ULy right U T'p pottom
Normal stress: opn, =0 on 'y jere.

The initial conditions are set accordingly to 1,(0) = 0 m and p,(0) = 10° KPa. The total
simulation time is 7" = 300 s and the time step is At = 1 s. The model parameters are given
in Table 3. These parameters are realistic for hydraulic fracturing and are similar to the
ones used in [56]. The Lamé coefficients are determined from the Young’s modulus E and
the Poisson’s ratio v, via the relationships A\, = Ev,/[(1 4+ v,)(1 —2v,)], pp = E/[2(1 4+ 1,)].
We note that this is a challenging computational test due to the large variation in parameter
values.

For this and the rest of the test cases we use the Taylor-Hood Py — Py [93] elements

for the fluid velocity and pressure in the fracture region, the Raviart-Thomas RT; — P
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Parameter Symbol  Units Values

Young’s modulus E (KPa) 107

Poisson’s ratio Vp 0.2

Lamé coefficient Ap (KPa) 5/18 x 107

Lamé coefficient Lp (KPa) 5/12 x 107

Dynamic viscosity v (KPas) 1076

Permeability K (m?) diag(200, 50) x 10712
Mass storativity 50 (KPa~!) 6.89 x 1072
Biot-Willis constant a 1.0
Beavers-Joseph-Saffman coefficient apjg 1.0

Total time T (s) 300

Table 3: Poroelasticity and fluid parameters in Example 2.

elements for the Darcy velocity and pressure, the continuous Lagrangian P; elements for the
displacement, and the Pg¢ elements for the Lagrange multiplier.

Figure 3 shows the computed solution in the reservoir (top and middle) and fracture
(bottom) regions at the final time 7" = 300 s. The grayscale velocity legend in Figure 2a
is included to show the range of the Darcy velocity magnitude. We observe channel-like
flow in the fracture region, which concentrates at the tip. There is also leak-off into the
reservoir. The fluid pressure in the reservoir has increased in the vicinity of the fracture
from the initial value of 1000 KPa to approximately 2450 KPa, which is close to the pressure
in the fracture. A relatively small pressure jump is observed, consistent with (1.2.10). In
particular, the magnitude of D(uy) is in the order of 10*, which, together with v = 107¢,
results in a pressure jump of order 107! — 1072 KPa. The pressure drop in the reservoir
in the direction away from the fracture is significant, but the resulting Darcy velocity is
relatively small, due to the very low permeability. The displacement field shows that the
fracture tends to open as the fluid is being injected, with the deformation of the rock being
largest around the fracture and quickly approaching zero away from the it, which is expected
due to large stiffness of the rock. The stress, which is computed by postrpocessing from the

displacement, exhibits singularity at the tip of the fracture and some of the corners of the
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poroelastic domain. This example demonstrates the ability of the proposed method to handle
irregularly shaped domains with a computationally challenging set of parameters, which are

realistic for hydraulic fracturing in tight rock formations.

Pressure

2453.6
2090.5 Displacement
2.36e-04
1727.0 ]
= 1.77e-04
1363.5 ]
1.77e-04
1999.8 ]
Velocity 3 592605
-7.55e+00 ;
0
~ 204603
(a) Darcy velocity field (m/s) over pressure (b) Displacement field (m)
(KPa)
Stress-X Stress-Y
-2500.0 -5000.0
1893.0 2 3795.0
£ 12620 + 25900

2 6310

i-7.6

= 1385.0

i 180.9

(c) Poroelastic stress, z-component (KPa) (d) Poroelastic stress, y-component (KPa)
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Pressure Velocity
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= : 1159
24531 ' 4774

3 =389

W 24530 C:\ Hoos
\ _—

(a) Fluid pressure (KPa) in the fracture (b) Fluid velocity field (m/s) in the fracture

Figure 3: Computed solution in Example 2, fluid flow in a fractured reservoir, t = 300 s.

2.4.3 Flow through fractured reservoir with heterogeneous permeability

In this example we illustrate the ability of the method to handle heterogeneous permeability
and Young’s modulus. For this simulation we use the reference domain Q, see Figure 1b.
The same boundary and initial conditions as in the previous test case are specified, and the
same physical parameters from Table 3 are used, except for the permeability K and the
Young’s modulus F. The permeability and porosity data is taken from a two-dimensional
cross-section of the data provided by the Society of Petroleum Engineers (SPE) Comparative
Solution Project!. The SPE data, which is given on a rectangular 60 x 220 grid is projected
onto the triangular grid on the reference domain ), and visualized in Figure 4. We note
that the permeability tensor is isotropic in this example. Given the porosity ¢ the Young’s

modulus is determined from the law

2.1
E=10" <1 — ?) :
C

where the constant ¢ = 0.5 refers to the porosity at which the effective Young’s modulus
becomes zero. This constant is chosen in general based on the properties of the porous
medium. The justification for this law can be found in [63].

The simulation results at the final time 7" = 300s are shown in Figure 5. Figures ba
and 5b show that the propagation of the fluid in the Darcy region, as evidenced by the

variation in the velocity and pressure, follows the contours of regions of higher permeability

Lwww.spe.org/web/csp
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seen in Figure 4b). As in the previous test case, the highest velocity in the reservoir is near
the fracture tip. However, the leak-off along the fracture is less uniform, with a significant
leak-off near the middle-top of the fracture due to the region of relatively high permeability
located there. The last Figure 5¢ depicts the nonuniform displacement field in the reservoir
caused by the heterogeneous Young’s modulus. We note that the effect of heterogeneity of
the elastic coefficients is less pronounced due to the large stiffness of the rock. The general

displacement profile is similar to the homogeneous case.

Porosity Permeability Young's mod.
EA.OOOe—O] E'I.‘WAQ-OS E] .000e+07
= —E'Ie-Q =
-0.27 _1e-10 E
Te-11
0.13 Te-12
Te-13
0.000e+00 3.663e-15 3.421e+06
(a) Porosity (b) Permeabiltiy (c¢) Young’s modulus

Figure 4: Heterogeneous material coefficients in Example 3.
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Pressure

Velocity Displacement

11e+01 g 272467 13.1%-03
= 7.5400 3 204508 = 239603
E 11362335 E
| 5.0e+00 2 1.60e-03
E 1 681167 E
7 250400 ; < 7.98¢-04
i #1000 ;
E B _ Velocity N

1.842e-10 ;45]%0] 0

= 184e10

(a) Darcy velocity magnitude (b) Velocity over pressure (c) Displacement field (m)
(m/s) (KPa)

Figure 5: Example 3: fluid flow in a fractured reservoir with heterogeneous permeability and

Young’s modulus, ¢ = 300 s.

2.4.4 Robustness analysis

The goal of this section is to investigate how the developed model behaves when the param-
eters are modified, moving from mild non-physical values towards more realistic values that
resemble the ones used in the hydraulic fracturing examples. We progressively update the
parameters K, s; and E as shown in Table 4, while the rest of the parameters are taken
from Table 3. All test cases in this section are governed by the same boundary and initial

conditions as in the previous two examples.

Case A: The pressure gradient is small as seen from the contour plot, this is due to the
large permeability. Also, from continuity of flux across the interface, one would expect
to see that the magnitude of the Darcy velocity is close to the magnitude of the Stokes
velocity, which we indeed observe in all the simulations.

Case B: The permeability now is 4 orders of magnitude smaller, resulting in a larger pres-

sure gradient, which is consistent with Darcy’s law (1.2.5). Also, more flow is going
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K (m?) so (KPa™) FE (KPa)
A Ix10°° 1.0 103
B | diag(200,50) x 1012 1.0 107
C | diag(200,50) x 1072 1072 10°
D | diag(200,50) x 1072 1072 10%0

Table 4: Set of parameters for the sensitivity analysis in Example 4.

toward the tip of the fracture, since its walls are now much less permeable. The displace-
ment magnitude is also larger, while keeping the same profile.

Case C: This case shows how the model reacts to decrease in mass storativity - which is by
exhibiting larger pressure gradient and displacement magnitude while keeping the overall
behavior as in case B.

Case D: The last case is to show the effect of a significant change in Young’s modulus.
Increasing it by 7 orders of magnitude, which makes the material much stiffer, results in

the displacement being decreased by 7 orders of magnitude as expected.
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Figure 6: Robustness analysis simulations, ¢ = 300 s. Cases A-D are shown from top
to bottom. The left figures show the Darcy velocity superimposed with contour plot for
the pressure. The right figures show the structure displacement field over the displacement

magnitude contour plot. The grayscale velocity legend shows the range of velocity magnitude.

48



The above results show that the displacement magnitude directly increases with the
magnitude of the pressure, while the profile of the displacement field stays the same. This
is consistent with the dependence of the poroelastic stress on the fluid pressure, see (1.2.4).
In addition, the displacement magnitude is inversely proportional to the Youngs modulus,

which is consistent with the constitutive law for the elastic stress in (1.2.4).
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3.0 A NONLINEAR STOKES-BIOT MODEL FOR THE INTERACTION
OF A NON-NEWTONIAN FLUID WITH POROELASTIC MEDIA

3.1 QUASI-NEWTONIAN FLUIDS

In the fluid domain 2 we consider a generalized Newtonian fluid with the viscosity v depen-
dent on the magnitude of the deformation tensor, in particular shear-thinning fluids with v
a decreasing function of |D(uy)|. We consider the following models [28,75], where 1 < r < 2,
0 < ve < 1y, and Ky > 0 are constants:

Carreau model:
p(D(uy)) = vae + (o — vae) /(1 + K |D(up) )22, (3.1.1)
Cross model:
v(D(uy)) = veo + (1o — Vo) /(1 + K¢ |D(us)[*), (3.1.2)

Power law model:
v(D(uy)) = K¢D(uy)|". (3.1.3)
In turn, in €, we consider the following two models for the effective viscosity v.s; in

Q, [67,76], where 1 <17 < 2,0 < vy < 1, and K, > 0 are constants:

Cross model:

Vers(Up) = Voo + (V0 — Voo) /(1 + Kp|up|2_T)a (3.1.4)

Power law model:

Vers () = (] / (Vme))" 2, (3.1.5)
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where m, is a constant that depends on the internal structure of the porous media. We
note that even though the analysis of our formulation is valid for a symmetric and positive
definite permeability tensor, we restrict it to kI, due to assumptions made in the derivations
of some of the viscosity functions suitable for modeling non-Newtonian flow in porous media.

We assume that along the interface the fluid viscosity v; is a function of the magnitude
of the tangential component of the slip velocity Zj;i ((uy —9m,) - ty;)ty | given by the
Cross model (3.1.4) or the Power law model (3.1.5). For the rest of the chapter we will write
V, Vers OF V1 keeping in mind that these are nonlinear functions as defined above.

Adopting the approach from [44,45], we assume that the viscosity functions satisfy one
of the two sets of assumptions (A1)—(A2) or (B1)—(B2) below. Let g(x) : R¢ — R* U {0}
and let G(x) : R — R? be given by G(x) = g(x)x. For x,h € R%, let G(x) satisfy, for

constants Cy,...,Cy > 0 and ¢ > 0,

(G(x+h) — G(x))-h > Ci|h]?, (A1)
|G(x +h) — G(x)| < Cy/hl, (A2)
|h|?
(@) - GO > o (B1)
G(x+h)— GX)| < C [h (B2)

= e x4 [x + R

with the convention that G(x) = 0 if x = 0, and |h|/(c + |x| + |h|) = 0 if ¢ = 0 and
x = h = 0. From (B1)-(B2) it follows that there exist constants Cj,Cs > 0 such that for
s, t,w € (L"(G))4 [84]

Is = tl1Z
(G(s) = G(t),s —t)e =2 C5 | [ |G(s) = G(t)][s — t]dx + 7 5 |
Q ¢+ ||S||LT(G) + ||t||Lr(G)
(3.1.6)
s—t| || L
— G(t < _— — G(t —t Q) 1.
(G(s) — G(t), W) < Cs TR LOO(G)(|G(S) G(t)],[s —the [[Wlrr@- (3.1.7)
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Remark 3.1.1. It is shown in [{0] that conditions (A1)-(A2) are satisfied for g(D(uy)) =
v(D(uy)) given in the Carreau model (3.1.1) with v > 0, in which case Vo < g(x) < 1.
A similar argument can be applied to show that (A1)—(A2) hold for the Cross model, with
g(D(uy)) = v(D(uy)) given in (3.1.2) for Stokes and g(u,) = vesr(u,) given in (3.1.4) for
Darcy, in the case of v > 0. Furthurmore, it is shown in [84] that conditions (B1)—(B2)
with ¢ > 0 hold in the case of the Carreau model (3.1.1) with v, = 0, and that conditions
(B1)—(B2) with ¢ = 0 hold for the Power law model (3.1.3) and (3.1.5).

3.2 VARIATIONAL FORMULATION

We will consider two cases when defining the functional spaces, depending on which set of

assumptions holds. In the case (B1)—(B2), we consider Sobolev spaces:

Vf = {Vf S Wl’r<Qf)d :vyp=0o0n Ff}, Wf = LTI(Qf), (3.2.1)
and

V,={v, € L'(div; Q) : v, n, =0 on I')'}, W, = L"(,),

X,={¢, € H(Q,)":§,=00nT,}. (3.2.2)

In the case of (A1)-(A2), we consider Hilbert spaces, with the above definitions replaced by

Vf = {Vf c Hl(Qf)d Vp = 0 on Ff}, Wf = LZ(QJC), (323)

V, ={v, € H(div;Q,) : v, n, =0on I}, W, = L*(Q,). (3.2.4)
The global spaces are products of the subdomain spaces. For simplicity we assume that each
region consists of a single subdomain.

Remark 3.2.1. For simplicity of the presentation, for the rest of the paper we focus on the

case (B1)—(B2), which is the technically more challenging case. The arguments apply directly
to the case (A1)—(A2).
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3.2.1 Lagrange multiplier formulation

We consider the variational formulation reads: given f; € W0, T; V), f, € WH(0,T; X)),
qr € WHH(0,T5W}), g € WHH0,T: W), and py(0) = ppo € Wy, n,(0) = m,0 € X,
find, for t € (0,T], (uy(t) pr(t), uy(t), (6), 7, (), A(B) € L0, T5V,) x I¥(0,T5 W) x
L>=(0,T;V,) x Whee(0,T;W,) x Wh(0,T;X,,) xL>(0,T;A), such that for all vy € Vy,
wy € Wy, v, €V, wp €Wy, §, € X, and p € A,

CLf(U.f, Vf) + CLZ(U.p, Vp) + a;(”p’ gp) + CLBJS(uf> atnp; Vi, gp) + bf(vf7pf) + bp(vp7pp)
+ O‘pbp(gwpp) + bF("fﬂ Vps Sp; )‘) = (ff7 Vf)Qf + (fp’ €p>Qp’ (3'2'5)
(500:pp, wp)Qp — apby (3t77p7wp) — by(uy, wy) — by(uy, wy) = (Qf7wf)§2f + (%7“’1))%7

(3.2.6)

br (uy, u,, Oim,; i) = 0. (3.2.7)

Although (3.2.5)-(3.2.7) look very similar to (2.1.11)-(2.1.13), we keep in mind that the

d

o(+,-) as well as the functional corresponding to the

Stokes and Darcy functionals, af(-, ), a
BJS condition, apys(-,; -, ), are now nonlinear.

For the term br to be well-defined, we choose the Lagrange multiplier space as A =
W/ (Ty,). 1t is shown in [44] that in the case dist(I'2,T'y,) > s > 0, if v, € L"(div; ©,,),
then v, - m,|p,, can be identified with a functional in W=/""(I's,). Furthermore, for vy €
WL (Qy), vy -y € WY (09Qy), and for €, € H'(Q,) C W (), &, -n, € WY (9Q,).
Therefore, with 1 € WY/ (T's,), the integrals in b (v, v,, €,; ) are well-defined.

Note that (s0;pp, wy)a, is well-defined, since for r < 2, we have that 7 > 2 and L™ () C
L3(2,).

Although related models have been analyzed previously, e.g. the non-Newtonian Stokes-
Darcy model was investigated in [44] and the Newtonian dynamic Stokes-Biot model was
studied in [87], the well posedness of (3.2.5)—(3.2.7) has not been established in the litera-
ture. Analyzing this formulation directly is difficult, due to the presence of d;m, in several
non-coercive terms. Instead, we analyze an alternative formulation and show that the two

formulations are equivalent.
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3.2.2 Alternative formulation

Our goal is to obtain a system of evolutionary saddle point type, which fits the general
framework studied in [88]. Following the approach from [87], we do this by considering a
mixed elasticity formulation with the structure velocity and elastic stress as primary vari-
ables. Recall that the elasticity stress tensor o is connected to the displacement n,, through

the relation [18]:
Ao, =D(n,), (3.2.8)

where A is a symmetric and positive definite compliance tensor. In the isotropic case A has
the form
Ao, = L (0'6 - Ltr(o;)l) , with A o, =2u,0. + Mtr(o)L.  (3.2.9)
241 2pp + dAp
To derive a new variational formulation, we start by multiplying (1.2.2) and the second
equation in (1.2.5) by test functions vy € V; and v, € V,,, respectively, and integrating by
parts to obtain:

/ (2vD(uy) : D(vy) = psV - vy) dA +/ (Vers K™ay - vy = ppV - v,) dA
Qf

Qp

—|—/ (—omy-vy+p,v,-ny) ds = / fr-vydA. (3.2.10)
Tsp Qy

Decomposing the stress term into its normal and tangential components, and using the

balance of normal stress condition (1.2.9), we obtain:

n—1
/ _o'fnf'VdeZ/ —(Ufnf)'anf'lflde—Z/F (g mp)-ty;)(vy-ty;)ds
j=17Trp

Csp Lsp

:/r PpVy -1y dS"‘Z/ (viopss\/ K (ap — 0my,) - ty5) (Ve -ty;) ds.  (3.2.11)

Lyp

We multiply the first equation in (1.2.5) by v, € X, and integrate by parts, using the fact
that o, = o, + a,p,l:

J

(e — apppl) : D(vs)) dA+ / (apppVs - My, — Oy, - V) ds = / f,-vsdA. (3.2.12)

P P
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For the elastic stress, conservation of momentum (1.2.9) reads:

(emy)-ng=(oemy,) 0, —appy,  (opng) -ty; = —(oem,) -ty; on Ly

We use this modified condition to rewrite the interface terms in (3.2.12), similarly to how it

was done for the fluid stress in (3.2.11)
/ —(oeny) - vids = / (—(osny) -nyv, - n, — a,p,vs - ny,) ds
Lp Lyp

- ”Z‘l/r ((oe-mp) - ty;)(vs-ty;)ds = /Ff (1— a,)p,vs -, ds

7=1 fp
n—1
2
Jj=1

Therefore, (3.2.10)-(3.2.13) can be combined as follows:

p

(—l/[ aBJjsA/ Kj_l(llf - 8t"7p) : tf,j)(vs : tf’j) ds. (3213)

Csp

/Q (2vD(uy) : D(vy) —pfV - vy) dA

—|—/ (Verr My - vy = ppV - vy + (0 — appy) - D(vy)) dA
n—1

S / (e JBG g = o) 41,0 (57— v2) ) s

j=1
+/ (vp-ny+vy-n,+v,-n,)p,) ds:/ ff-vfdA+/ £, vsdA. (3.2.14)
Uyp Q2 Qp

We note that we can eliminate the displacement, n,,, from the system by differentiating
(3.2.8) and introducing a new variable u, := d;m, € X,, , which has a meaning of structure

velocity. Now, multiplying (1.2.3), (3.2.8) and (1.2.6) by corresponding test functions and

adding the result, we obtain:
/ (AOo. : T. — D(uy) : Te + soOippw, + ,V - usw, + V - uyw,) dA
Qp

—l—/Qf(V~ufwf)dA:/Q

qupdA+/ qrwy dA. (3.2.15)

P Qf
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As in the first formulation, we use a Lagrange multiplier to impose the mass conserva-
tion interface condition (1.2.7). Finally, we introduce the space for the elastic stress X, =

L2, (9,)%4 with the norm

sym

d
= D @0l

4,j=1

loe]

Then, the weak formulation is: Given f; € WH(0,T; Vi), fp € Wl’l(O,T;V;), and
2p(0) = ppo € Wy, 0(0) = A D) € B, for ¢ € (0,7], find (upt),py(t), wy(t),
(), us(t), 0. (t), A(t)) € L>=(0,T;Vy) x L=(0,T; W) xL®(0,T;V,) x Whee(0,T; W,) x
L>(0,T;X,) x Whe(0,T;%,) x L=(0,T;A), such that for allvy € Vi, wy € Wy, v, € V,,

wy, € W, ve € X, 7. € B¢, and p € A,
/ (0'6 :D(vy) — app,V - v + vy Ky, - v, — p,V - v, + Adio. - T, — D(u,) Te) dA
Qp

+/ (s00ippwy + a,V - usw, + V - wyw,) dA
Q

P

+ [ @Dl Dvy) =5,V vy + V) dA
Qy

B [ sy /B g =)0 = v ) ds

j=1 fp

+/ (Vi mp+vs-my+v,-mp)A) ds—/ ((ug-my+u,-n,+u,-0p) 1) ds
Uyp Uyp

I/ (fp'Vs+qup) dA+/ (ff'Vf—i—Qf’LUf) dA.
Q

P Qf
(3.2.16)
We introduce the functionals b,(-,-) : X, x 3. — R and a;(-,-) : ¥ x 3. — R defined
by

bs<VsaTe) = (D(Vs)aTe)Qpa 0’2(0-677-6) = (Ao-e:Te)Qp'

Hence, we can rewrite (3.2.16) in a more compact form:

af(uf> Vf) + aZ(um Vp) + aBJS(ufv Us; Vg, VS) + bf(vapf) + bp(vpvpp)

+ apby(Vs, pp) + bs(Vs, o) + br (v, vy, v A) = (£, vi)a, + (£, vs)a (3.2.17)

p)

o6



(500¢pp, wp)Qp + a;(ﬁtae, Te) — apby (Us, wy) — by(Wy, wy) — bs(us, Te) — by(uy, wy)
= (g, wf)a, + (G, wp)ay, (3.2.18)

br (uy,u,, us; 1) = 0. (3.2.19)

We can also write (3.2.17)—(3.2.19) in an operator notation as a degenerate evolution problem

in a mixed form:

%ﬂq(t) +Aq(t) + B's(t) = £(1), in &, (3.2.20)
%gQS(t) — Bq(t) + Cs(t) = g(t), in S, (3.2.21)

where we define Q, the space of generalized displacement variables, as
Q= {q: (Vp, Vs, Vi) € V x X, X Vf}v
and, similarly, the space S, consisting of generalized stress variables, as
S ={s=(wpy, Te,ws, 1) € W, x B x W x A}.
The spaces Q and S are equipped with norms:

lalle = [[Vpllzr@ivie,) + IVsllm@,) + 1vellwir @),

Islls = llwpll 1,y + ITellzzc,) + lwill o @) + ey @y,

The operators A: Q@ - Q' B: Q — 5", C:S — 5, and the functionals f € Q', g € S’ are

defined as follows:

Veffliil 0 0
A= 0 apys MVIVE 'Y —apys i VIVE Iy )
0 —apysviVE y 2vD D+ apysy v VET
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Vo a,V- 0 0000 dp
0
0 -D 0 0000 0
B = , C= , = £, 9= ,
0 0o Vv 0000 qf
fy
Yo Yn  Tn 0 00O 0

where v, and 7, denote the tangential and normal trace operators, respectively, and 7, is the

adjoint operator of ;. The operators & : Q — @', & : S — 5’ are given by:

s9 0 00
000
0 A0 0
S=(oo0o0] &=
0 000
000
0 0 00

3.3 WELL-POSEDNESS OF THE MODEL

In this section we establish the solvability of (3.2.5)-(3.2.7). We start with the analysis of
the alternative formulation (3.2.17)—(3.2.19).

3.3.1 Existence and uniqueness of a solution of the alternative formulation

We first explore important properties of the operators introduced at the end of Section 3.2.

Lemma 3.3.1. The operator B and its adjoint B’ are bounded and continuous. Moreover,
there exist constants [y, Po > 0 such that

bs (V57 Te)

> By, (3.3.1)

inf sup
0£(0,v5,00€Q (0,7..00)es [[(0, Vs, 0)[|o]| (0, T¢,0,0)||s

inf qup 2500 5,V wy) +be(vy, ¥y, 05 1)
0 (wp, 0w, L)ES (v,,0,v7)eQ (v, 0,v )l oll(w,, 0, wy, 1) 5

> fs. (3.3.2)
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Proof. The operator B is linear and satisfies for all q = (v, v, vy) € Qand s = (w,, Te, Wy, 1)

€ s,

B(a)(s) = bs(vy, wr) + bp(Vp, wp) + apbp(Ve, wp) + bs(Ve, Te) + br(Vy, Vi, Vs 1)
< IV villwraepllwgllior @, + IV - Vollzr@p lwpll o,y + llV - Vsl lwpll L @,
+ DVl 2@ ITellz2@,) + 1vy -y + (v + Vo) - mpllw—vmr e Il o,
< C(HVwaw(ﬂf)waHLr/(Qf) + Vol o divep 1wpll L ) + Vsl @ llwpll L g,
+ Vsllmr@plITellz ) + Ivellwir@pllelwime o,y + Vel prdivia, I lwre @,
+ HVsHHl(ﬂp>Hunvw(rfp)) < Cllallells]]s,
which implies that B and B’ are bounded and continuous.

Next, let 0 # (0, vy, 0) € Q be given. We choose 7. = D(v,) and, using Korn’s inequality
(1.3.4) for w € X,,, we obtain

b(Vs, Te) HD<VS)H%2(QP) B

”Te”LQ(Qp) B HD<VS) HLQ(QP)

D)2, 2 CrpllVsllm @,)-

Therefore, (3.3.1) holds.
Finally, we note that (3.3.2) was proven in [44] in the case of velocity boundary conditions
with restricted mean value of Wy x W,,. However, it can be shown that the result holds with

no restriction on Wy x W, since |I'p| > 0. O

Slightly abusing the notation from Chapter 1, we denote for vy € V; and v, € X,,,

d—1

Vi = Vslpss = Z Ve = Vslpssg, Ve —Vslis; = O‘BJS“Kf
j=1

4
/ (Vf — V) thHL’"(Ffp)‘

Lemma 3.3.2. The operators A and & are bounded, continuous, and monotone. In addi-
tion, the following continuity and coercivity estimates hold with constants cy, ¢y, CY, cp, Cp,

Cy, cr, ¢, Cr >0 for alluy, vy € Vg, u,, v, € V, and u,, v, € X,

crlvillwir,y —exr < ap(ve,vy), ap(uy,vy) < CfHuwaim(gf)!\Vfllvvl,r(szf), (3.3.3)
r/r’

lIVpllvir,) — 6 < &z(vpvvp)> ag(upvvp) < OpHupHLr(Qp)HVPHL”(Qp)ﬁ (3.3.4)

CI|Vf - V5|TBJS —cxcp < aBJS(Vfavs;Vf7VS>a
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apss(p, 05 vy, ve) < Crlug = wli5slve = vill ey, (3.3.5)
where ¢ is the constant from (B1)-(B2).

Proof. The operator & is linear and, using (3.2.9), it satisfies

Ex(s)(t) = (sopp, wp)a, + (Ao, 7)o, < C (IIppll 2@ llwpllr2(0,) + loell L2 ITell 2(,)) 5

Ex(5)(5) = (s0pps Pp)e, + (A0e, 0o, = C (Iplaqa,) + loelB,)) . Vst e S,

which imply that &, is bounded, continuous and monotone. The continuity and monotonicity
of the operator A follow from (B1)-(B2), see [44] and [89, Example 5.a, p.59].

For the continuity of af(-,-), we apply (3.1.7) with G(x) = v(x)x, s = D(uy), t = 0 and
w = D(vy):

2—7r
T

D (uy)]

CLf(llf,Vf) S 206 m

([v(D(uy))D(ug)], [D(up) ), IDV)1rop)-

Lo (Qy)
Using (B2) with x = 0, h = D(uy), we also have

[D(uy)l  _ \ D (up)[
¢+ [D(up)P = eD(uy) 2 41

v (D(uy))D(uy)| < Cy < CyD(uy) "

Combining the above two estimates, we obtain
as(uy,vy) < CIDp) o IPE ) @y < Crluglihs o Ivellwr ).

To establish the coercivity bound for a(-,-) given in (3.3.3) we consider three cases.

(i) ¢ = 0. From (3.1.6) we have

IDO e
IDE A,

ar(vy,vy) =2 2Cs = QC5HD<Vf)||Lr ) = 2C5CK HVfHWlT Q) (3.3.6)

where C ¢ is the constant arising in Korn’s inequality (1.3.4).

(i) ¢ # 0 and v; € V; with [|D(vy)||?

(o) = ¢ Then from (3.1.6) we have

D (v )||2Lr(9f)
c+ DR,

ap(vy.vy) 2 20 > C5IDMV )iy = CsCi Vil (33.7)
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(ili) ¢ # 0 and vy € Vy with ||D(Vf)||iZ(TQf) < ¢. Then C’}’<||Vf||’{,V1,T(Qf) < ||D(Vf)||2T(Qf) <

¢"/2=") Denote the coercivity constant from (3.3.7) as ¢; = C5C% and let ¢; = Cjc(2=2/2=7),

Now,

crlveliviay) < CGIDEVAlLrq,) < Csc’™ = ey,

hence

crlvellvir,) —cér <0 <ap(vy, vy). (3.3.8)

Combining (3.3.6)-(3.3.8) yields the coercivity estimate given in (3.3.3). The reader is also
referred to [73], where a similar result is proven under slightly different assumptions, which
are satisfied by the Carreau model with v,, = 0.

The continuity and coercivity bounds (3.3.4) and (3.3.5) follow in the same way. O

Remark 3.3.1. The system (3.2.20)—(3.2.21) is a degenerate evolution problem in a mized
form, which fits the structure of the problems studied in [88]. However, the analysis in [88]
1s restricted to the Hilbert space setting and needs to be extended to the Sobolev space setting.
Furthermore, the analysis in [88] is for monotone operators, see [89], and it is restricted
tof € Q) and g € Sy, where Q) and S are the spaces Q and S with semiscalar products
arising from £ and &, respectively. In our case this translates to f, = £y = 0 and ¢y = 0.
To avoid this restriction, we take a different approach, based on reformulating the problem as
a parabolic problem for p, and o.. The well-posedness of the resulting problem is established

using the coercivity of the functionals established in Lemma 3.5.2.

Denote by W), 5 and X, 5 the closure of the spaces W, and 3. with respect to the norms

prH‘Q/Vp,Q = (Sowp7wp)L2(Qp)’ ”Te”%e,g = (ATeaTe)LQ(Qp)-

Note that W, o = L*(€,), and 3.5 = X.. Let Sy = W5 x X.o. We introduce the inner
product (-,-)s, defined by ((w1,T1), (w2, T2))g, := (Sow1, wa)r2(0,) + (AT1,T2)r2(0,)-
Define the domain
D = {(py,0.) € W, x B, : for given (fy,f,,qs) € Vi x X x W
3 ((up, us,uy),pr, A) € @ x Wy x A such that V((v,, vs, vy), (wp, Te, ws, 1)) € Q X S:

ar(uy,vy) + GZ(upv Vp) +aggs(uy,ug vy, ve) +bp (v, pr) + by (v, pp)
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+ by (Vs Pp) + bs(Vs, o) + br(vy, vp, v A) = (£}, Vf)Qf + (fp>VS)Qpa (3.3.9)
(50Pp, wP)Qp + a;(ae, Te) — apby (Us, wy) — by(uy, wy) — bs(us, Te) — by(uy, wy)
= (g7, wr)o, + (S0Gp: wp)o, + (Age, Te)a,, (3.3.10)
br (uy,u,, ug; i) =0, (3.3.11)
for some (g, ge) € Wiy X Xy } C Wpyp X Bes. (3.3.12)
We note that (3.3.9)—(3.3.11) can be written in an operator form as
Aq+B's=f in Q,
—Bq+&s=¢g in S,
where g € S’ is the functional on the right hand side of (3.3.10).
Next, define operator L : D — W], x 3, as
Pp gp Pp
L - — , (3.3.13)
Ue ge 0-6

and consider the following problem: given h, € W"(0,T;W),) and h € W"'(0,T; X ,),
find (p,, o) € D satistying

— +L = . (3.3.14)

A key result that we use to establish the existence of a solution to (3.2.17)—(3.2.19) is the

following theorem; for details see [89, Theorem 6.1(b)].
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Theorem 3.3.1. Let the linear, symmetric and monotone operator N be given for the real
vector space E to its algebraic dual E*, and let E; be the Hilbert space which is the dual of

E with the seminorm
2y = Wz (2))?, z€E.
Let M C E x Ej be a relation with domain D = {x € E : M(x) # 0}.

Assume M is monotone and Rg(N + M) = E;. Then, for each ug € D and for each
f e Wh\(0,T; E)), there is a solution u of

%(N’u(t)) + M(u(t) > f(t), 0<t<T,
with
NueWr(0,T;E), ult)eD, foral0<t<T, and Nu(0) = Nug.

Using Theorem 3.3.1, we can show that the problem (3.2.17)—(3.2.19) is well-posed.

Theorem 3.3.2. For each fy € WH1(0,T;VY), f, € WHY(0,T;X]), ¢ € WH(0,T; W}),
g € WH(0,T;W)), and py(0) = ppo € Wy, 0.(0) = A™'D(n,,) € X, there exists a
solution of (3.2.17)(3.2.19) with (uy, py, Wy, Pp, Us, 0c, A) € L=(0,T; V) x L>(0,T; W) x
L°(0,T;V,) x W0, T W,) x L®(0,T; X,) x Wh(0,T; S,) x L0, T; A).

To prove Theorem 3.3.2 we proceed in the following manner.
Step 1. (Section 3.3.1.1) Establish that the domain D given by (3.3.12) is nonempty.
Step 2. (Section 3.3.1.2) Show solvability of the parabolic problem (3.3.14).
Step 3. (Section 3.3.1.3) Show that the original problem (3.2.17)—(3.2.19) is a special case
of (3.3.14).

Each of the steps will be covered in details in the corresponding subsection.
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3.3.1.1 Step 1: The Domain D is nonempty We begin with a number of preliminary
results used in the proof. We first introduce operators that will be used to regularize the
problem. Let Ry : X, — X, R, : V, — V], Ly + Wy — Wy, L, : W, — W be
defined by

Ry(ug)(vs) = 75(us, vs) = (D(u,), D(vs))a,, (3.3.15)
Ry(wy)(vy) = (1, vp) = (IV - 0,72V -1, V- v, ), (3.3.16)
Ly(py)(wy) := L(ps,wp) = (Ips[" *prswy)oy, (3.3.17)
Ly(pp) (wp) := Ly(pp, wp) = (Ipp]" Dy wp)a, - (3.3.18)

Lemma 3.3.3. The operators Rs, R,, Ly, and L, are bounded, continuous, coercive, and

monotone.

Proof. The operators satisfy the following continuity and coercivity bounds:

R, (w,)(vs) < 1wl Vil o, R, (u,)(w,) = Cieyllulff ), V. vs € X,
Ry(w,)(vy) < IV -, IV Vol Ro(w)(wy) 2 IV - wyllf 0,y Yoy v, €V
Li(p)(wy) < Ips ) g los sy L)) (pr) 2 Ipsloq,  Vppwy € Wy,
Ly(pp) (wp) < Ipplly gy el - Lye)0p) 2 [0l Topwp € W,

The coercivity bounds follow directly from the definitions, using Korn’s inequality (1.3.4)
for Rs. The continuity bounds follow from the Cauchy-Schwarz or Holder’s inequalities,
(1.3.2). The above bounds imply that the operators are bounded, continuous, and coercive.
Monotonicity follows from bounds similar to (3.1.6), which can be established in a way

similar to the Power law model [84]. O

It was shown in [44] that there exists a bounded extension of A from W™ (T's,) to
W' (09),), defined as ErA = v¢()\), where v is the trace operator from W'7(Q,) to
W (09,) and ¢(\) € WH'(Q,) is the weak solution of

—V - [VoN)["2Ve(N\) =0, inQ,, (3.3.19)
#(A) = A, only, (3.3.20)
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IVo(N)["2Vp(N) -n =0, ondQ,\Ty,. (3.3.21)

We have the following equivalence of norms statement.

Lemma 3.3.4. For A € WV (T's,) and ¢()\) defined by (3.3.19)-(3.3.21), there exists cy,

co > 0 such that

alloMllwir @, < IMlwre @) < 2@l q,): (3.3.22)

Proof. For ¢ € WH'(Q), |[Vo(\)|"2V¢()\) € L7 (div;Q) and, therefore, from (3.3.19)-
(3.3.21), we have

(IVON)[" 72V (), Vo(N)a, = (VN[ 2Vé(A) - n, ErA)ag,
< VO 2V S(A) - nlly-1/rr @, B My 06, )
< C[IVON" 2V O - 1llyw-1/mr @) M i o, -
(3.3.23)

Now, for 1 € W' (Q,),

/ VSO 2VH(N) - i ds = / V[V V() ¢ dx
CIon Q,

+ [ VoW TPV(N) - Vidx < [V VoM@ 18 llwirq,,  (using (3.3.19))

Qp

= V9l 1w, - (3.3.24)

Using the fact the trace operator, v(+), is a bounded, linear, bijective operator for the quotient

space W19(Q,)/Wy?(Q,) onto Wlﬁ’q(aﬁp) [50], we have

VeI 2V 6(A) - nlly-1/mr o, )
_ sup (Vo7 2V O(N) - 1, )y 1m0,y wisee (90,)
ceWL/nr (99,) 1€ llwr1/m 00,
Jo, VO 2Ve(N) - nvy(v) ds

PeEW L™ (Qy) ||¢HW1W(QP)

<C

<C|Vell L, . (using (3.3.24)). (3.3.25)
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Combining (3.3.23) and (3.3.25) with the Poincare inequality (1.3.5) implies that

I6 @y < ClM o, - (3.3.26)

On the other hand, due to (3.3.20) and the trace inequality (1.3.3), we have

H)\le/m’(rfp) < C“QS()‘)”WLT’(Q)' (3.3.27)
Combining (3.3.26) and (3.3.27), we obtain (3.3.22). O

Introduce Lr : A — A’ defined by

LA () = o\ p) = (IVoN)["*Vo(A), Vo(u)), - (3.3.28)

Lemma 3.3.5. The operator Ly is bounded, continuous, coercive, and monotone.

Proof. The result can be obtained in a similar manner to the proof of Lemma 3.3.3, using

the equivalence of norms proved in Lemma 3.3.4. O]

To establish that the domain D is nonempty we first show that there exists a solution
to a regularization of (3.3.9)—(3.3.11). Then a solution to (3.3.9)—(3.3.11) is established by

analyzing the regularized solutions as the regularization parameter goes to zero.
Lemma 3.3.6. The domain D specified by (3.3.12) is nonempty.
Proof. We will focus on the case (B1)—(B2) with ¢ = 0, which holds for the Power law model.
The argument for the case ¢ > 0 is similar, with an extra constant term on the right-hand
side of the energy bound (3.3.33), due to coercivity estimates (3.3.3)—(3.3.5).

For q¥ = (v,i,vei,vsi) € Q, sO = (w4, Tei,wpipi) € S, 4 = 1,2, define the
operators R : @ — Q" and L: 5 — 5 as

R(@M)(@®) := Ry(va1)(ve2) + Rp(vp1)(Vp2) = 7s(Var,Va2) + 7p(Vp1, vp2),
and L(sM)(s®) := Ly(wsa)(wra) + Lp(wpi)(wp2) + Lr(pm)(pe)

= lp(wp1, wypa) + lp(wp 1, wy2) + Ir(p, p2).
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For € > 0, consider a regularization of (3.3.9)-(3.3.11) defined by: Given f € Q', g € 5,

determine q. € Q, s € S satisfying

(eR+A)q.+B'sc=f inQ, (3.3.29)
—Bq.+ (eL+&)se=g in S (3.3.30)

Introduce the operator O : Q x S — (Q x S)" defined as

q eR+ A B’ q
) _
S -B eL + & S
Note that
qV q®
O = (eR+A) (@) (q?) + B'(s")(q?) — B(gW)(s?)
e 5@
+ (eL 4 &) (sW)(s?), (3.3.31)
and
q(l) q(2) q(l) q(Q)
@ -0 —
S @) ) @)

= ((eR+ A)qY — (R +.4)q?) (g — q?) + ((e£ + &)sY) — (eL + &)sP) (s — s,

From Lemmas 3.3.1, 3.3.2, 3.3.3, and 3.3.5 we have that O is a bounded, continuous, and

monotone operator. Moreover, using the coercivity bounds from (3.3.3)—(3.3.5), we also have

q q
O = (R + A)a(q) + (& + €L)s(s)

S S

= €rs(Vs, Vi) + €rp(vy, V) + ap(vy, vy) + aﬁ(Vpan) +apys(Vy, Vs Vi, Vs)

+ (sowp, Wp)a, + ay(Te, Te) + ely(wy, wy) + elp(wy, wy) + €lr(p, 1)
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> C<€“D(VS)H%2(QP) +ellV-vplira,) + DIz + 1Vollzr@,) + Ve = VilBss
+ sollwnliaga,) + sy + ellwrle ) + llwnle g,y + il 3:3:32
In the case of (B1)-(B2) with ¢ > 0, we have an extra term —c(¢y + ¢, + ¢;) on the right-
hand side of (3.3.32) due to the coercivity estimates from (3.3.3)—(3.3.5). The argument
in this case doesn’t change and we omit this term for simplicity. It follows from (3.3.32)
that O is coercive. Thus, an application of the Browder-Minty theorem [77] establishes the
existence of a solution (q, s.) € Q x S of (3.3.29)—(3.3.30), where q. = (W, us,, uy,) and

Se = (pp,sa Oce)Pfer )\5)
Now, from (3.3.32) and (3.3.29)-(3.3.30), we have

6”“3,61\%1(9,,) T eIV wpellira,) + urelviro,) + 1pelzr@,) + re = wselps
+ SOpr,EH%?(Qp) + ||0'e76||%2(ﬂp) + €||pf,6||2r’(gf) + €||pp,e||2r’(gp) + E||)‘e||11;V1/r,r’(rf.p)
< (I8l el o)+ 1650 oo

+ larller@pllprell i@,y + N9l Lr@n IPpell @,y + ||§e||L2(Qp)||Ue,e||L2(Qp)>- (3.3.33)
From (3.3.10), o, and u,, satisfy
a;(ae,ea Te) - bs(us,Ga Te) = (A§e> Te)Qpa VTG S z]e-

Therefore, applying the inf-sup condition (3.3.1), we obtain:

bs<us e;Te) as(o-e 677-6) - (AgeaTe)Q
Us |, <C sup ’ —C sup p\Ze, »
sl @) 0£0,7,000es [(0, 7¢, 0,0) || 04(0,T¢,0,0)€S (0, 7,0,0)|s
< C (loeelliz,) + 17ellr2(,)) - (3.3.34)

Combining (3.3.34) and (3.3.33), and using Young’s inequality, we obtain

Hus,eH?{l(Qz,) + eIV el + urellvirq,) + 1pellzr@,) + e = WselBs
+ellusellz o,y + sollppellizio,) + Ioeliz,) + €lpreliq,) + ellPpelli o,
bl ) < C(laslir@plipsel ooy + 13 pncl ooy + 160,

y _ 1 .
167l 1) + 13l 2200, ) + 5 (1l + Tureliver @) + Ioedli,) ) - (33:35)
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from which it follows that

||u8,6||%11(§2p) + €[V - u,, %Q(QP) + [upe — g elsg

) T lurelivir @) + el o, + loee
< C (181310 + 1€ liysr e,y + sl opllprell iy

HE o0 + 1l onlonellr@y) - (3336)

To obtain bounds for p, ., ps., and A, we use (3.3.2). With s = (pp, 0,pfc, Ae) € S, we have

||pf7€||LT/(Qf) + ||pp,e||Lr’(Qp) + ||>\e||W1/r,r’(rfp)
by (Vs D1e) + bp(Vp, Ppe) + br(vy, vp, 05 Ac)

<C sup

(vp,0,vy)EQ ||(VP707Vf)||Q
< Csup _Erp(upyﬁ’ Vp) - af(uf,67 Vf) - ag(up,ea Vp) - aBJS(uf,Ea Use; Vi, 0) + (ffa Vf)Qf
~ qeQ H(Vpaovvf)”Q

< C (6lIV - Wl + el ey + el + Mape = waelilys + 1€ lhy-10a ) -
(3.3.37)

Using Young’s inequality (1.3.6), (3.3.36) and (3.3.37), we obtain

HuS,EH?LIl(Qp) + €|V uy, %Q(Qp) + [upe — sl

zry) T Iarellivirq, + el o, + loee

+ [|py.e ZT'(QJ,) + |‘pP75’|£T’(Qp) + H)‘E"?{;Vl/r,r’(rfp)

< C (I8 1310y + 17y 1 ) + 110y + 13y + sl )
(3.3.38)

which implies that [[us|m(q,), [[urellwir@)), loeclrz@,): 1Prelle @, IPpelr @, and
[Allwi/rrv(r,,) are bounded independently of €.

Also, as V- V,, = (W,,)’, we have from (3.3.30), (3.3.10), and the continuity of L, stated

in Lemma 3.3.3:

IV -y ellr@,) < sollgpllzr,) + sollPpellr,) + apllV - usellr@,) + €llppell L o,)

< Sol|Gpllr(0,) + SOHPP,eHLT’(Qp) + pl[usellmie,) + €llppe L ()

Therefore ||u, || 27 (givi,) is also bounded independently of e.
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Since Q and S are reflexive Banach spaces, as ¢ — 0 we can extract weakly convergent
subsequences {qc, 22, {Sentne, and {Aqc,}r,, such that q.,, = qin Q, s.,, = sin S,
Aq., — ¢ in @', and

(+Bs=f inQ,
Es—Bgq=g in 9.
Moreover, from (3.3.29)—(3.3.30) we have

lim sup (A(ge)(ge) + Ex(se)(se)) = lim fglg(—eR(qe)(qe) — €L(se)(se) +f(ac) + g(se))

< f(q) +9(s) = ¢(aq) + &(s)(s).

Since A + &5 is monotone and continuous, it follows, see [89, p. 38], that Aq = (. Hence, q
and s solve (3.3.9)—(3.3.11), which establishes that D is nonempty. O

Corollary 3.3.1. For L defined by (3.3.13) we have that Rg(I + L) = W}, X X ,.

Proof. Note that for (p,,o.) € D, (wp, T.) € Sa,

Dp Wy .
([ + L) ) = (Soppv wp) + ap(ae, Te) - apbp (u87 wp)
a-e TC
Sa
— by(u,, wy) — bs(us, 7).
Pp 9
Therefore, the problem (/ + L) = in S} is equivalent to (3.3.9)—(3.3.11), which,

O Ge

from Lemma 3.3.6, has a solution (p,, o) € D for for arbitrary (gp, ge) € Wy, X X, O
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3.3.1.2 Step 2: Solvability of the parabolic problem (3.3.14) In this section we
establish the existence of a solution to (3.3.14). We begin by showing that L defined by

(3.3.13) is a monotone operator.

Lemma 3.3.7. The operator L defined by (3.3.14) is monotone.

Proof. Let (pp,0¢) € D, (wy, T.) € Sz be given. Then we have from (3.3.10)

S

L 3 = (Sogp: wp) + (Agea Te) - (SOp;n wp) - ap(ae, Te)
So

= _apbp (118, wp) - bp(upv wp) - bs(usa Te)-

Suppose we are given (py, o), (Dp, ) € D. Then, from (3.3.9)-(3.3.11), the corresponding

(uy,py,upy, u,, A) and (ﬁf,ﬁf,ﬁp,ﬁs,j\) satisfy

ap(uy,vy) + aZ(up, vp) +aggs(uy,ug vy, ve) +bp (v, pr) + by(vy, pp)

+ by (Ve 0p) 4 bs(Vs, 0c) +br(Vy, vp, Vs A) = (£, vp)a, + (£, vi)a,,  (3.3.39)
(S0pp: wp)q, + ap(0e, Te) — apby (U5, wyp) — by(Wy, wy) — bs(us, 7e) — bp(uy, wy)

= (S00p,1, Wp)a, + (Age1, Te)o, + (g7, wy)ay,, (3.3.40)
br (uy,u,, us; 1) =0, (3.3.41)

and

ag(Qg, vy) + ay(By, vy) + apss(Ug, s V5, Vo) + by (v, Br) + 0p(Vp, By)

+ pby(Va, Bp) + ba(Ve, 80) 4 br(vVy, vy, v A) = (£, vi)a, + (£, ve)e,,, (3.3.42)
(s0Pp; Wp)q, + ap(Ge, Te) — by (s, wp) — bp(Wy, wp) — bs(Ws, Te) — by(0y, wy)

= (S00p,2, Wp)a, + (AJe2, Te)o, + (a7, wy)ay;, (3.3.43)
br (U, 0y, Us; 1) = 0. (3.3.44)
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Then we compute

F
=

p Pp = Pp . .
) = — apby, (U, pp — Pp) — bp(Wy, pp — Pp)

N
Q:
N
N

So
- bs(usa 0. — &e) + apbp (ﬁsapp - ﬁp)

+ bp(ﬁpapp - ﬁp) + bs<ﬁs, O, — &e)-
Testing equation (3.3.39) with (v, v,, vs) = (uy, u,, us), we obtain

ar(us,uy) + az(up’ w,) + apys(uy, us;up,ug) + be(ug, py) + by(a,, pp)

+apby(us, pp) + bs(us, o) + br(uy, wy, us; A) = (fr,up)a, + (f, us)o,.
On the other hand, choosing wy = py and g = A in (3.3.40) and (3.3.41), we get
—bs(uy,ps) = br(uy, up, us; A) = (a7, pr)e;-

Hence,

ar(ug,uy) + ag(up’ up) + apys(Uy, Usiug, ) + by(p, pp) + apbp (s, pp)

+ bs(us, 0'6) = (ff, U.f)Qf + (fp, HS)QP + (Qf,pf)gf. (3345)

Repeating the same argument for problem (3.3.42)—(3.3.44), we obtain

ap(uy, uy) + ag(ﬁp’ 0,) + apys(Uy, Us; Up, W) + by (0, Pp) + pby(Ts, Pp)

+ bs(ﬁs, &e) = (ff, ﬁ.f)Qf + (fp, ﬁ.s)Qp + (Qf,ﬁf)gf. (3346)

Next, we test (3.3.39) with (v, v,, vs) = (ty, Q,, Us):

ap(uy,uy) + ag(up’ U,) + apys(uy, us; Uy, Us) + b (Ur, py) + bp(0y, pp)

+apby(s, pp) + bs(0s, 07¢) + bp(0y, Wy, 053 A) = (fr,0y)a, + (f, U)o,
Choosing wy = py and p = A in (3.3.43)—(3.3.44), we conclude that

—bs(0y,ps) — br(Qy, Uy, U A) = (g7, sy
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which implies that

ar(uy,uy) + ag(up’ 0,) + apys(uy, us; y, 0,) + by (0, pp) + by (Us, pp)

+ bs(ﬁ.s, 0'6) = (ff, ﬁf)Qf + (fp, ﬁS)Qp + (Qf,pf)gf. (3347)
Similarly,

ar(uy,uy) + ag(ﬁp’ w,) + apys(Uy, Ui up, u,) + by(uy, pp) + apby(us, pp)

+ bs(us, &e) = (ff, Uf)Qf + (fp, HS)QP + (Qf,ﬁf)gf. (3348)

Manipulating (3.3.45)—(3.3.48), we finally obtain

Py Pp Pp _ﬁp d
L - L , :af(uf,uf)+ap(up,up)+aBJS(uf,us;uf,us)

O O Oc — &e
Sa

_af(ﬁﬁ uf) - ag<ﬁpv up) - aBJS(ﬁfv U,; Uy, us) - af(ufv ﬁf) - ag(um ﬁp)
—apss(up, ug Uy, Uy) + ap(y, 0y) + af (@, 0p) + apss(Uy, U Uy, Uy)
= as(uy,uy —uy) + GZ(uzn u, — U,) + apys(uy, ugup — Uy, u, — Uy)

—af(ﬁf, Uf — flf) — ag(ﬁp, up — flp) — agjs(flf, ﬁs; llf — ﬁf, u; — fls) 20,

due to the monotonicity of as(-,-), al(-,-) and apys(-,-;-, ).

[]

Lemma 3.3.8. For each h, € W"'(0,T; W} ,), he € WHH(0, T, ,), and py(0) € W,
o.(0) € X., there exists a solution to (3.3.14) with p, € W'>(0,T;W,) and
o. € Wh>(0,T;%,).

Proof. Applying Theorem 3.3.1 with N =1, M = L, E = W, x X, By = W), x X0 ,,

and using Lemma 3.3.7 and Corollary 3.3.1, we obtain existence of a solution to (3.3.14). O

73



3.3.1.3 Step 3: The original problem (3.2.17)—(3.2.19) is a special case of (3.3.14)
Finally, we establish the existence of a solution to (3.2.17)—(3.2.19) as a corollary of Lemma
3.3.8.

So 4p
Lemma 3.3.9. If (p,(t),0.(t)) € D solves (3.3.14) with data , then it also solves
0

(3.2.17)(3.2.19).

—1

So 4p
Proof. Let (p,(t),o.(t)) € D solve (3.3.14) with data . Note that (3.3.9) and

0

(3.3.11) from the definition of the domain D directly imply (3.2.17) and (3.2.19). Also,
(3.3.10) and (3.2.18) are the same when tested only with w;. Thus it remains to show

—1
So dp
(3.2.18) with wy = 0. From (3.3.14) with data we have
0
d | Pr Wp Dp w,
% ’ + L ) = (qpa wp)- (3349)
0'6 Te o'e Te
Sa S

Since from (3.3.13) and (3.3.10) with w; = 0 we have

L ) = —apby (Us, wy) — by(uy, wy) — bs(us, ),

So

we can write (3.3.49) equivalently as
(Soatppa wp) + a;;(ato'e; Te) - apbp (us; wp) - bp<up7 wp) - bs(usa Te) = (qIn wp)a
which is (3.2.18) with w; = 0. O

Proof of Theorem 3.3.2. The statement of the theorem follows from Lemma 3.3.8 and
Lemma 3.3.9. U
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3.3.2 Existence and uniqueness of solution of the original formulation

In this subsection we discuss how the well-posedness of the original formulation (3.2.5)-
(3.2.7) follows from the existence of a solution of the alternative formulation (3.2.17)—(3.2.19).

Recall that uy is the structure velocity, so the displacement solution can be recovered from

n,(t) =m0+ /0 Cu(s) ds, vt € (0, 7). (3.3.50)

Since u,(t) € L>(0,7;X,,), then n,(t) € Wh>(0,T;X,,) for any n,, € X,. By construction,
u, = Oimy, and 1,(0) =7, .

Theorem 3.3.3. For each fy € WH1(0,T;V}), f, € WHY(0,T;X), ¢ € WH(0,T; Wy),
g € WH(0,T;W)), and py(0) = ppo € Wy, m,(0) = m,o € X, there exists a unique
solution (s (1), (1), 0p(0), By (1), 7y (6), A(H) € L(0, T V) x L(0, T5 Wy)x L(0,T; Vi) x
WL (0, T; W,) x Who(0,T;X,) x L=(0,T; A) of (3.2.5)(3.2.7).

Proof. We begin by using the existence of a solution of the alternative formulation (3.2.17)—
(3.2.19) to establish solvability of the original formulation (3.2.5)—(3.2.7). Let (uy, py, u,, pp,
u,, 0., A) be asolution to (3.2.17)-(3.2.19). Let i, be defined in (3.3.50), so us = d;m,,. Then
(3.2.18) with 7. = 0 implies (3.2.6) and (3.2.19) implies (3.2.7). We further note that (3.2.5)
and (3.2.17) differ only in their respective terms af(n,,§,) and by(vy, o). Testing (3.2.18)
with 7. € 3, gives (0;(Ao.—D(n,)), Tc)a, = 0, which, using that D(X,,) C X, implies that
d(Ao. —D(n,)) = 0. Integrating from 0 to t € (0, 7] and using that o.(0) = A~'D(n,(0))
implies that o.(t) = A~'D(n,(t)). Therefore, with (3.2.9),

bs(vs, o) = (06’D<V5))QP = (A_lD(np)’D(VS))Qp = a;(npaVS)'

Therefore (3.2.17) implies (3.2.5), which establishes that (uy, py, w,, pp, M, + fot u(s)ds, \)
is a solution to (3.2.5)—(3.2.7).

Now, assume that the solution of (3.2.5)~(3.2.7) is not unique. Let (uf, p}, ul, pl, m7, \'),
1 = 1,2, be two solutions corresponding to the same data. Using the monotonicity property
(3.1.6) with G(x) = v(x)x, s = D(u;) and t = D(u}), we have

||D(‘1}f) - D(“?f)”%r(ﬂf)
c+[D(up)7q,) + D@1,
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Similarly, we use (3.1.6) with G(x) = v.fr(x)x, s = ullj and t = uIZN to obtain
Hu;l;_UQH%r(Q ) _
i s < (0 ey (wp)wy = veps (uf)ug), w, — wh)o,
s
L LT (Qp)

= ag(u}, up —uj) — ag(u?g, up —uj) =: . (3.3.52)
We apply (3.1.6) one more time to bound the terms coming from BJS condition. Set G(x) =
vi(x)x, s = ((u; — Oimy) - ty;)ty; and t = ((uf — 9my) - ty;)ts;, then

) =0 b5, = (4 =)ty
—om,) - tf]HL’“(I‘f +||(uff_at77p) tf]”l“fp

OéBJsCZ ot ||

< aBJS(ufa aﬂ?;; u} - u?ﬁ &mfg - 8m§) - aBJS(“-?’ atni; u} - u?"u aﬂ?; - aﬂ?i) =: .
(3.3.53)

From (3.2.5) we have

L+ 1+ I3+ a;(n 77p, atnp aﬂ?i) = _bf(u} - u},p} _p?f) - bp(u; - u?)ap;l; - pf,)

—ozpbp(ﬁmp — 8mp,p; — pf,) — bp(uf uf, u &mp &mi; AL ).
(3.3.54)

On the other hand, it follows from (3.2.6) and (3.2.7), with wy = py — p}, w, = p, —p;, p =
A — A2 that

(s00¢ (P — P2) s pp — P2) — (0 (M), — ) . pp — P2) — bp(u), — w2, pl — p2)
—bs(u} —uf, py —p}) —br(uf —uj,uy — w2, 9, (m, —m) ;A" = N)=0.  (3.3.55)

Combining (3.3.54) and (3.3.55), we obtain
L+ 1L+ 13+ @;(77 ”7p7 at’ﬂp at”?f;) —(50 04 ( - pp> p - p;),
which implies

1
50 (az(n}, —n2,m, — ) + sollp, — pﬁllizmp)) + L+ L+ ;=0
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Integrating in time from 0 to t € (0,77, and using p,(0) = p2(0), 1,(0) = 12(0), we obtain

5 (e5mb(0) = (0.1 (0) =m0 + solh(®) = POl ) + [ (11 Tt 1) ds = 0.

Hence, using (3.3.51)—(3.3.53), we have

5 (a5 mbte) — 200 mb(0) — m2(0)) + solIoh(0) ~ P 3o
t ID(uf) — D(uf)liz, oy = wllZ o, )
+ C’/ ( ! + ds < 0.

PP E o, + DD, o 02, + 10205,

We note that a (-, -) satisfies the bounds, for some c., C, > 0, for all ,,, §, € X,

Ce“épH%{l(Qp) < a;(€p7€p)7 a;("?p7€p) < Cean”Hl(Qp)||£p||H1(QP)7 (3357)

where the coercivity bound follows from Korn’s inequality (1.3.4). Therefore, it follows from

(3.3.56) that uj(t) = ui(t),uy(t) = uz,n'(t) = n;, vt € (0,7]. Finally, we use the inf-sup

condition (3.3.2) for py — p},p, — p2, A' — A? together with (3.2.5) to obtain

(0} — 3.0y — P2 A" = A [lwxa
<c - by(vy,pf — 3) + bp(Vp, pp — %) 4 b (v, vp, 05 X1 — A?)
(Vi vp)EV XV, (Vs vp)llvyxv,
_C sw <af(ufw vi) —ag(uf,vy) +al(ul, v,) —aj(u,, v,)
(Vi vp)EV XV ||(Vf7vp)||foVp
apys(uf, O vy, 0) — apys(uf, my; vy, 0)) 0

1V vp)llv v,

Therefore, for all t € (0,T], p; = p}, p, = Py, A' = A*, and we can conclude that (3.2.5)~
(3.2.7) has a unique solution. ]

We conclude with a stability bound for the solution of (3.2.5)—(3.2.7).
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Theorem 3.3.4. For the solution of (3.2.5)—(3.2.7), assuming sufficient regularity of the
data, there exists C' > 0 such that

HufHET(o,T;Wlw(Qf)) + ”uP”ET(O,T;LT(Qp)) + |uy — atnp’%Js + ||pf||2'f’(07T;L7‘/(Qf))
+ ‘|pPHTLr’(07T;Lr’(Qp)) + HA”Z“(O,T;Wl/rvr'(l“fp)) + ”npnioo((),T;Hl(Qp)) + SOprH%OC(O,T;LZ(Qp))
< Cexp(T) (pr|’%°°(0,T;H*1(Qp)) + an(O)H?{l(Qp) + SOHPp(O)H%Z(Qp) + |’atfp‘|%2(0,T;H*1(Qp))

+ HffII’LTI(O,T;WA,T/(W + larl o,y + 19l @p)) +c(E + 6 + 51))-

Proof. We first note that the term c(¢; + ¢, + ¢;) appears due to the use of the coercivity
bounds in (3.3.3)—(3.3.5) in the general case ¢ > 0. For simplicity, we present the proof for
¢ = 0, noting that the extra term appears in (3.3.59) and the last inequality in the proof.
We choose (v, wys, vy, wy, §,, 1) = (Us,ps, Wy, pp, 0im,,, A) in (3.2.5)-(3.2.7) to get

1 e

§at [(Sopp,pp)gp + ap(np? Tlp):| + le(llf, uf) + ag(upv llp) + (ZBJS(Uf, atnp; Uy, at,r’p)

= (ffa uf)Qf + (fpa 8tnp)ﬂp + (Qfapf)ﬂf + (qpapp)ﬂp' (3358)

Next, we integrate (3.3.58) from 0 to t € (0,7] and use the coercivity bounds in (3.3.3)-
(3.3.5) and (3.3.57):

sollpp(8) 22(0,) + 1,030, + / (sl + Bl g = By ) s
< ([ 7)o, ds + (502,000, ~ E0.1,0), — [ (08,10, ds
[ oy + ooe,) ds 5 5ol O, + I, O
< C (I6O)1-1(ay) + 17, (0) 20,y + 50ll2o(O)lE 0, + I8 F-1(0, )
+C / Iy 1 + 108 Brsoy + I By + sl + Nt liray)

t
T alln, Ol + @ / (s sy + 105l gy + 26l ) s (33.59)

using Young’s inequality (1.3.6) for the last inequality. We next apply the inf-sup condition
(3.3.2) for (ps, pp, A) to obtain

(s 2ps Mllwxa < C sup by(Vi,ps) + bp(Vp, Dp) + br(vy, vp, 0; )
P ey, Vvl v,
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o —as(uy, vy) — al(u,, vp) — apss(uy, m,; vy, 0) + (fr, vy)a,
= sup .

(V5 vp)EV XV, ||(Vfavp>||vfxvp

(3.3.60)
Using the continuity bounds in (3.3.3)—(3.3.5), we have from (3.3.60),

r/r’

1@s. 2 Mllwsa < C (Il + i)+ 0yl + g — Ay )
implying
t ! ! /
o [ (sl + 10l 0 + IV, )
0

t
< 062/0 (||ff|\;/—1,w(gf) + ugllivrr @, + Wl g, + ay = 8tnp|rBJS) ds.
(3.3.61)

Adding (3.3.59) and (3.3.61) and choosing €5 small enough, and then €; small enough, implies

t
solln Ol + I, o+ [ (Il + Il + g = Oimy ) s

+ [ (v

< C(Ipr(t)II?{—lm,,) + (0171, + 11,0 1720y + 5011Pp(0) 17,0

t
+/Wm%mwhﬁ/Ommﬂmm+MM@mmHmMmﬂﬂMMmﬁd#
0

i 1Pl + ”*Hgvl/m’<rfp>> ds

t

0
The assertion of the theorem now follows from applying Gronwall’s inequality (1.3.7). O
Remark 3.3.2. The formulation (3.2.5)-(3.2.7) is straightforward to implement, but the
presence of time derivative of displacement in non-coercive terms significantly complicates the
analysis. On the other hand, the numerical method based on formulation (3.2.17) -(3.2.19)
1s rather difficult to implement and expensive to use, since the stress space is required to

consist of symmetric matrices [18]. Therefore, we follow the same approach: we use (3.2.17)-

(3.2.19) to resolve the solvability question, and (3.2.5)-(3.2.7) to obtain the actual numerical
method.
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3.4 SEMI-DISCRETE FORMULATION

The setup for the nonlinear semi-discrete problem follows closely the one from Chapter 2.
We consider a shape-regular and quasi-uniform simplicial partitions 771f and TP of Qf and €2,
respectively, that may be non-matching along the interface I'y,. We assume that V¢, Wy,
is any inf-sup stable pair and we choose V, 5, W, to be any of well-known inf-sup stable

mixed finite element spaces. The global spaces are
Vi =Ava=(Vn Vpr) € Vi X Vipnt, Wi ={wp = (Wpn, wpn) € Wien X Wy}

We employ a conforming Lagrangian finite element spaces X, C X, to approximate the
structure displacement, and we choose a nonconforming approximation for the Lagrange
multiplier:

Ah = Vp,h . Ilp|[‘fp.

We equip Aj, with a discrete version of the W*/™"(I';,) norm:

enlla, = llenllzz2wy,) + [pnla,,

with the semi-norm defined as |uh|7;\/h = ([u ()"0, (i), 0 () )y, where (s (),

p?
i (un)) € Vpp x Wy is the mixed finite element solution to the nonlinear mixed Poisson

problem with Dirichlet data p;, on I'sy:

(|u;7h(uh)|r_2u;’h(uh), Vp,h>Qp + bp(vp,hap?L(Nh)) = <Vp,h 1, Mh>rfp7 VVpn € Vpn,

bp(u;’h(uh),wnh) =0, Vwm S th. (341)

In case of bounded viscosity functions we define the semi-norm through the velocity solution

of linear problem, |us |3, = (u} ), (un), 0, (1n))ay,-

The semi-discrete continuous-in-time problem reads: for ¢t € (0,7, find (uysx(t), pra(t),
(1), Ppn(t), Myn(t), Au(t)) € L0, T Vyp) x L0, T;Wyp) xL®(0,T; Vpi) X
Wheo(0, T, Wy p) xWhe(0,T;X,,) xL>®(0,T;Ay), such that for all vy, € Vi, wyy €

Wf,h, Vph € Vp7h, Wpp € Wpﬁ, Ep,h € Xp, and tr € Ah,
d
ar(Upn, Vin) + ap(Upn, Vpn) + aprs(pn, Oy s Vins €pn) + ap(Mp s Epn) + 05 (Vi Prn)
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+bp (Vs Pp,n) + bp(&p s Pp,n) + 00 (Vg s Vi €p i An)
= (£r,vin)a, + (£, €p0)0,, (3.4.2)
(800tDp,hs Wp ), — Abp(Oemy s Wp,n) — bp(Wp i, Wpn) = by(Wpp, win)
= (arn wrn)o, + (oo Wpn)o,, (3.4.3)

br(Wyp, Wpp, Oy i i) = 0. (3.4.4)

We assume that the initial conditions for the semi-discrete problem (2.2.1)-(2.2.3) are chosen
as suitable approximations of p,o and n,, .

In order to prove that the semi-discrete formulation (3.4.2) -(3.4.4) is well-posed, we
will follow the same strategy as in the fully continuous case. For the analysis purposes
only, we consider a conforming discretization of the weak formulation (3.2.17)-(3.2.19). Let
the spaces Vy,, Wj,, X, and A, be as described above. Let X, consist of polynomials of
degree at most kg, then we introduce the stress space X, C 3. as discontinuous symmetric

polynomials of degree at most k,_1:
Yen= {o.€ X, ‘ O'e|T€7’p € Plzlml( )}

Then the corresponding semi-discrete formulation is: for ¢ € (0,7, find (ws(t), prn(t),
up7h(t), pp7h(t), u57h(t),0'e7h(t), )\h(t)) S LOO(O,T; Vf7h) X LOO(O,T; Wﬁh) X LOO(O,T; Vp,h) X
WLe(0, T Wy p) x L0, T5 X, 5) XWh(0,T; 3, ) x L=(0,T; Ay), such that for all vy, €

Vin, Wrn € Wen, Vo € Vo, Wpn € Wy, Ve € Xphy Ten € 2ep, and py, € Ap,

ar(upn, Vin) + @ (Wpn, Vpn) + aprs(Wpn, Wsns Vin, Von) + b (Vin, 0rn) + bp(Von, Do)

+ apbp(vs,happ,h) + bs("s,ha Ue,h) + bF(Vf,h> Vp,hy Vs,h3 )\h) = (ff, Vf,h)Qf (f Vs h)

(3 4.5)

(500D, Wp.n)g, + ap(010 e n, Ten) = apby (Wsny Wpn) = bp(Wpn, Wpn) = bs(Wsps Ten)
= bp(upn, wrn) = (45, wen)op + (gp, Wpn)ay, (3.4.6)
br (Wpp, Uy, Usps; pin) = 0. (3.4.7)

We define the spaces of generalized velocities and pressures, Q) = V,, x X, X Vg

and S, = W, x 3.5 x Wy, X Ay, respectively, equipped with the corresponding norms:

larlle, = llanlle, Isulls, = llwpnllq,) + ITenllrze,) + lwenll i@, + linlla,-
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3.4.1 Well-posedness of the semi-discrete problem

3.4.1.1 The inf-sup condition We first recall the following LBB condition for the
mixed Stokes-Darcy problem [42,44,64] .

Lemma 3.4.1. There exists a constant Cy , > 0 independent of h such that

inf sup b1 (Vi wrn) + by(Vons W) > Cp. (3.4.8)

07 (wp,n0.01,n,0€Sh 0£aneQn |(Vpns 0, Vin)llall(wpn, 0,wpp, 0)[s, —

We will next prove the inf-sup condition between spaces Q) and Ay, as well as 3., and

X, Let us define A) C Ay and Qf) C 9y, as follows:

AO:{MhGAhI/ Mhzo},
Lyp

Q?L = {(prh,Vs,h,ijh) c Qh VA Vph = V- Vs h = V- Vip = O}

We note that |up|a, is a norm for any pj, € A). Indeed, let u, € AY) such that |usla, = 0 be

given we have

M (i) ) = C (g ()2 (i) 0y )0, = Clianly, =0

Moreover, choose a test function v, j, in (3.4.1) such that v, ,-n,|r,, = pp and by (Vpn, wpn) =

0, prﬁ S Wp,h. Then

||ﬂh||%2(1‘fp) = (Vph Dy, :Uh>Ffp = as(u;,h(ﬂh>7 vah)Qp + bp (Vs Wpn) = 0.
Hence, |pn|a, = 0 implies that pj, = 0 and since the opposite is also true, |- |5, is a norm on
AY. We obtain the following result.
Lemma 3.4.2. There exists a constant Cyp > 0 independent of h such that

b s.h
inf sup 00V g Vi Vouns ) > Cyp. (3.4.9)

0£mneA] oxque0  |Anllollpnlla,
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Proof. Let p, € A} be given, let w5, (i) be the solution of (3.4.1). Choosing w,, =
V-u; ,,(pn) in the second equation of (3.4.1), we obtain that V- uj ;, (1r) = 0. So, we choose
an = (w),,(pn),0,0) € Qp, then

br(0,uy , (pn), 05 pn) — (ay ()~ 0y, pin)ry, — ag(ay , (pn),wy, g ()

100 (i), 0,00l Ty (e)llzry g (n) ey

In the case of Power Law or Carreau/Cross models with v, = 0,

r—2_ %

I () 0,y < OO (en) [ 0y 1 (in) s wp ), = Clinly, < Cllpnlly,

Thus, we have:

br (0, wpp(pn), 0 ) -, linl, it

* et 7 :O“’Lh’ :O|/1Jh|A ZOH/“LhHA ]
||(up,h(luh)7070)||g |/ﬁh‘j\£r Ap, . .

Using these results, we prove the inf-sup condition for the formulation (3.4.5)-(3.4.7).

Theorem 3.4.1. There exist constants 51, B2 > 0 independent of h such that

. b(an; sn) + br(an; sn)
inf sup
07 (Wp,h,0,w g b fin) ESH O €Qn ||qh||Q|| (wp,h, 0, wpgn, Mh) Hsh
. bs (Vs,fw Te,h)
inf sup
0#£(0,v5,,,0)€Qn 0#£(0,7¢,1,0,0)€S, H (07 Vs,h, 0) HQH (07 Tehs 07 0) HSh

> B, (3.4.10)

> [, (3.4.11)
where

b(an; sn) = by (Vin, wen) + bp(Vpn, Wpn) + aby(Ven, Wyh),

br(aQn; Sn) = br(Vin, Vph, Vsas fh)-
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Proof. Let s, = (wpp, 0, wyp, up) € S, be given. We write py, = p13, + fin, where pj € A). Let
further s, = (wyp, 0, wpp, ) and let qj = (v} 4,,0,v5,) € Qp and q; = (v2,,0,0) € Q) be
such that (3.4.8) and (3.4.9) are achieved for s;.

We note that for any f, € Ay N C(I'y,), the seminorms | - |5, and |- |/ p, ) are

equivalent. Therefore, in this case the following continuity result holds

br(an; 5n) < Crllanllallfnlla,,  Yan € Qn.

Moreover, due to assumption [I'2| > 0, we can restrict v; R 118 = 0. Then, choosing Cr
7 Typ
large enough, we obtain
br(Qp; sn) = (Vi - 0p + Vo, Ny, fin)ry, = (Vg 0y, pn)ry, < ClIViallee,)llimllee,,)

< Oijl’,h

wi-ver@op lnll 2wy, < Crliaallellualla, -

We set r, = q; + q; (1 + CrCyllasllo/llgille) and compute:

1
b(rn;sp) = bp (Vi wen) + bp(Vy i wes) + (1 + CrCy, H }5” ) by (V2 s Wy )
h

= bp(Vipswrn) + bp(Vy s wrn) = Crall(wpn, 0,wen, 0)|ls, llaslle,

br (e 1) = br(als sb) + (1 s crczi::qh”z) br(q2: s1)

laillo
> Cun (14 GeCo B ) bl = Crllaillollaila, > Casllt el
qn

Hence, we obtain

b(rs; sy) + br(ra; si) > Cilltallallsp s, (3.4.12)
If fip, # 0, we choose v, ), = |r 75 80 that
||‘7p,h||LTQp < O(|Qp|a |Ffp|)7 and bp({’pvh’wp,h) =0, Ywpn € Wpp. (3-4-13)

We further define q, =rj, + QOFHI'hHQ'“hl T p|2(¥,.1,0,0). Then

lanllo < llrallo (14 2Cr|T 4,219,

v,) < Cllrallo.
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and we also have

br(an; sn) = br(ra; in) + 20r||1“h||QﬁWprﬂbr((‘_’p,h’ 0,0); pn)
_ U _ _
= br(rp; py) + br(rn; fin) + QCFHthQmWfp!l/ZbF((Vp,m 0,0); fin)

> br(ra; ) — CrllrnllolT ol V2 in] + 2Cr ||rall T sp| 2| fin)

> br(ra; i) + Crlleall ol T |2l (3.4.14)
Moreover,
b(qh; Sh) = b(I‘h; Sh) —+ 2CF||rh||Q|Ffp‘1/2|Z_Z|bp<Vp’h’ wp’h) = b(rh; Sh). (3415)

Combining (3.4.14), (3.4.15) and (3.4.12), we obtain

b(an; sn) + br(an; sn) > b(rn; s) + br(rs; si) + Crlleallo|T | /2|l
> Cillenllo (Ishlls, + CrlT Y ?linl) > Cllanllllsnlls,-
Finally, let 0 # (0,v,;,0) € Q; be given. We choose 7., = D(v,;) and, using Korn’s
inequality (1.3.4), we obtain

bS(VS,]’HTeJl) - ||D(Vs,h)||%2(9p

||7'e,h||L2(Qp) B ||D(Vs,h)||L2(Qp

)
) = [[D(ven)llr2,) = CollVsnllai,)

Therefore, (3.4.11) holds. O
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3.4.1.2 Existence and uniqueness of the solution In order to show well-posedness
of (3.4.5)-(3.4.7), and consequently (3.4.2)-(3.4.4), we proceed as in the case of continuous
problem. We introduce W/, and X", as the closure of the spaces W, ; and ., with the

norms

lwpnlliyr, = (Sowpn wpn)i2y),  NTenllzn, = (ATen Ten)r2@,)

and set S§ = W), x T7,.

Define the domain

Dy = {(pp,h,ae’h) € Wyp X Doy o for given (£, £, q;) € W (Q) x HH(Q,) x L™ (Qy)
3 (an, prns An) € Qn X Wyp x Aj, such that:
ap(Wpn, Vi) + ag(Upn, Vi) + ars(Wpn, Weps Vin, Ven) + 07 (Vin i)
+ bp(Vph, Ppn) + Qb (Vs iy Dpi) + bs(Va s Ten) + 00(Vien, Vphs Ven An)
= (Frn vin)a, + (fons Van)a,, (3.4.16)
(SoPp,h, wp,h)Qp + ap(Tens Ten) = Wby (Wsns Wp ) — bp(Wp s Wy p) — bs(Ws s Te)
—b(upn wen) = (qr, wen)o, + (S0Gp Wpn)a, + (Ae; Ten)a,, (3.4.17)
br (Wfp, W, Us i fin) = 0. (3.4.18)

for some (gy, ge) € (W) )/ X (222)/} CW)yxxl,. (3.4.19)

D2

Next, define operator Ly, Ly : D, — (W;Q)/ X (222),, as

Pp,n dp DPp,h
Ly = - , (3.4.20)

Och Ge Och

and consider the following problem:

d Pp(t) Pp.n(t) gp(t)
- +L = . (3.4.21)

o'e,h(t) a'e,h(t) Ge(t)

As before, a key result we use to establish the existence of a solution to (3.4.5)-(3.4.7) is

Theorem 3.3.1, using which we can prove the following theorem.
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Theorem 3.4.2. For each f; € WH1(0,T;VY), f, € WHY(0,T;X]), ¢ € WH(0,T; W}),
g € WH(0,T;W)), and ppn(0) € Wy, 0en(0) = A7'D(n,4(0)) € Xep, there exists a
solution of (3.4.5)~(3.4.7) with (Wsn, Drh, Uphs Pphs Ush, Oen, M) € L¥(0,7;Vyy) X
L(0,T: W) x L(0,T:V,p) x Wh(0,T; W) x L2(0,T5X,5) x Wh(0,T; Sep)
L>(0,T;Ap).

We note that the proof of Theorem 3.4.2 can be split into the following steps:
Step 1. Establish that the domain D), given by (3.4.19) is well-defined.
Step 2. Show solvability of parabolic problem (3.4.21).
Step 3. Show that the initial problem (3.4.5)-(3.4.7) is a special case of (3.4.21).

The proofs of Step 2 and Step 3 in the discrete setting are identical to the continuous
case and the proof of Step 1 is very similar as well. The only difference is in the defi-
nition of operator £, which is corrected in accordance with the discrete norm || - ||a, for
the Lagrange multiplier variable. More precisely, to prove that the domain D) is well-
defined, one needs to verify that Lr : A, — A} defined as Lr(pn1)(tn2) == (fn1s /,Lh72>rfp +
(Ja ), ()20 3, (i), s g, (fn,2) ), is @ bounded, continuous, coercive and monotone op-
erator. The desired properties follow immediately from Lemma 3.3.2 and the fact that
(Lp(uh)(,uh))l/r/ defines a norm on Ay,.

As an immediate corollary of Theorem 3.4.2, we obtain the well-posedness result for the

semi-discrete problem (3.4.2)-(3.4.4).

Theorem 3.4.3. For each fy € WH1(0,T;V}), f, € WHY(0,T;X), qp € WH(0,T; Wp),
g € WHH0,T;W)), and ppn(0) € Wyn, m,,(0) € Xpp, there exists a unique solution
(wpn (), pra(t); Wpn(t), Ppn(t), myn(t), An(t)) € L=(0,T; Vyp) x L0, T; Wi p)

K L°(0,T5 V) X WE(0,T; Wyp) x WH(0,T5X,5) % L0, T; Ay) of (3.4.2)(3.4.4).

We also note that one can obtain a stability estimate for the solution of (3.4.2)—(3.4.4)

in a similar way, as it was done for the continuous formulation (3.2.5)-(3.2.7).

87



3.4.2 Error analysis

3.4.2.1 Preliminaries As in the analysis for the linear problem, in order to derive the
error estimate for (3.4.2)-(3.4.4), we would like to use an interpolant, satisfying (2.2.27)-
(2.2.28). Following the steps from Section 2.2.3.1, we can verify that such interpolant indeed
can be constructed and it also satisfies approximation properties, similar to (2.2.33)—(2.2.35),
which we present below for the sake of completeness. However we omit the details to avoid

duplication.

Lemma 3.4.3. For all sufficiently smooth v¢, v,, and §,,

”Vf - ]f’th”Wl,r(Qf) S Ohf’“f HVfHererl,l 0 S ka S ]{Zf, (3422)

()’

||€p - ]}iEpHLZ(Qp) + h|£p - ]Z€p|H1(Qp) < Ch'™s ||Ep||HrkS (Qp)> 1< Tk, < ks+ L, (3423)

1% = TVl < € (B8l gy + B 197y 18+ 57 1€ 10y )

(
1STkp§k3p+1,OSkaSk’f,OSTkSSkS. (3424)

To analyze the error in Lagrange multiplier variable we use the L2-projection operator

onto Ay, satisfying

1A = @unAllrr ) < CRIIAI ey 00 < 7, < By + 1 (3.4.25)

(Ffp)

Finally, we introduce the following notations. For u = (uy,u,,n,) and u, = (uss, Wpn, M,4),

let’s define

T T

ID(uy) — D(uy)|
¢+ [D(ug)| + Dagn)l ] wq,) Lo (9,)

d—1 2—1r
[(af —0m,) ty; — (Wpn —0m,,) - trj ’

et |(uy = Oimy) byl + |(upn — 9my, ) -t

[u, — uy |

¢+ |up| + |up7h|

E(u,uy) =

and
Loo(Ffp)

+

Jj=1

G(u,uy) = /Q [v(D(uy))D(uy) — v(D(uyn))D(uys)||D(uy) — D(uysp)|dA

d—1
apjs
Jr/F > vy = omy) - t5)t55((ug = 9my) - 7,50t
fr =1 M
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—vi(((wgn = Omyp) - tri)trs) (g — Omy p) - br )byl
|((ap —0my) - tr)trs — ((apn — Omyp) - trj)tslds, (3.4.26)

where kj; is the largest eigenvalue of K.

3.4.2.2 Error estimates

Theorem 3.4.4. Let (uy,w,,n,pys,pp, A) be the solution of (3.2.5)-(3.2.7) and (usu, wpp,
Nphr PfdPpiy Mn) e the solution of (3.4.2)-(3.4.4). Under the assumption of sufficient

smoothness for the solution of the continuous problem, the following estimate holds

Juy—uyp H%Q((LT;WLT(Qf)) +luy —up ||%2(0,T;LT(QP)) +[luy —0m, — (usn—0m,,) ||2L2(0,T;BJS)
+ pr - pf,hHZr’ (0,T:L7 () + pr - pp,hH;;r’(o,T;Lr’(Qp)) =+ HQA,h)\ — )\hHZr’(QT;Lr’(rfp))
+[In, — np,h”LOO O,T:HY(2,) T sollpy — pp,h||2L°<>(0 T:02(Q,) T 1G (0, up) |10,

< Cexp(T )[h%fHume(()TW’“f“’“(Q- h”“fHufH

+ R pg |

L7 (0,T;WrFThT ()

+ R pg |2

L2(0,T; W1 Q) L (0,Tw ()

+ prketD) ||up||2r(0,T;Wkp+1 T (Qp + et pr”m 0,T;Wsp 17 (Q))

2(sp+1 2
Y <Hatp”||L2(07T;W3p“*’(ﬂp>) + ”p”||L°°(0,T;WSP“’T’(QP)>)
ke
h* <”"7P||%2(07T;Hk5+1(9p>> +10m, [0 asrros)) + ||”7p||%°°<o,T;H’cs+1(ﬂp>)>

+ hrks||atnp||LT(OTHks+1(Qp + h' (D) ||)\||L’" (0,T; wkp+1,r! (Tsp))

+ A2 (|| x)2 + 1o I

1t
(3.4.27)

L2(0,T;Whet 17 (T p,) L2(0,T;Wkp 1" (T4

Proof. We start by using (3.1.6) with G(u) = v(u)u, s = D(uy) and t = D(uy,):

ID(uy) = D(usn)lz o,
e+ D (up)|Zg,, + D)z,

+/Q [v(D(uy))D(uy) — v(D(uysn)D(ugs))|[D(uy) — D(uysp)|dA

<c / (v(D(uy))D(uy) — »(D(uy,))D(uy,)) : (D(uy) — D(uy,)) dA
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C/ D(uy) —v(D(uy))D(ugp)) : (D(uy) = D(vy)) dA
Qf
+ C/Q D(uy) —v(D(uyp))D(uysp)) : (D(vyn) — D(ugs)) dA
= C(Il + [2>, \V/Vﬂh S VfJL. (3.4.28)

The term I; can be estimated using (3.1.7) with s = D(uy), t = D(uy,), w = D(uy) —
D(v¢p), Vvin € Vg, and Young's inequality (1.3.6):

/Q (v(D(uy))D(uy) = v(D(usp))D(uys)) : (D(uy) = D(vyn))dA

1/’
C( i [v(D(uy))D(uy) — v(D(ugn))D(uyy)||D(uy) —D(uf,h)\dA>

2—7‘

[D(uy) — D(uys)|
¢+ D(ug)| + D(ugp)l |

<e : [v(D(us))D(us) — v(D(uysn))D(usn)| [D(uy) — D(uy,)|dA

ID(us) = D)l o)

ID(uy) — D(uy)|

+C
¢+ [D(uy)| + [D(uy)l

H ID(uy) = D(ven)llirq,)- (3-4.29)

We choose € small enough and combine (3.4.28)-(3.4.29):
ID(uy) = D(ugn)llir o,
¢+ ID(up)lzfa,) + D)o,

+ [ [v(D(ug)D(uy) — v(D(uyp))Duyn)|[D(uy) = D(uygp)|dA

Qf

<o

Similarly, to bound the error in Darcy velocity we use (3.1.6) and (3.1.7) with

ID(u;) — D(ugs)| ||

¢+ [D(uy)| + [D(usn)l ]

ID(uy) = D(vyn)

Gu) = K 'vgp(u)u, s = uy, t = upp, and w = u, — vpp, vy € V5, together with

Young’s inequality (1.3.6) to we obtain:

[u, —ayp %v(ﬂp) /
+ [ (k) vers(up)u, — vepp(upp)uppl[a, — wpp|dA
c+ ||up||% 0T ||uph||Lr(Q ) a, p)5p p,h)Up,n|[Up — Up

<o

[, — w4
¢+ |up| + |up,h| 00

Iy = Vpullzra, + I4> , (3.4.31)
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where

L= | K™ (epr(wp)uy = veps () upp) - (Vo — ) dA.

We apply (3.1.6) and (3.1.7) one more time to bound the terms coming from BJS condition.
Set G(u) = apssK; Pvr(u)u, s = ((up — 9m,) - tr)ts, t = (Wpn — dm,p) - tri)ts, and
w o= ((uy = 0m,) - tp)tp; — (Vin = &pp) - trs)trgs Vin € Vi, €5 € Xpp, then

S [(ay = 0im,) - tr; — (pn — Oy ) - trjlliee, )
c+ ||

(uy = 0m,) bl e, + 1 0pn = 0m,n) - trliE)

apjs
+ Z/ a vr(((uy —9my) - tr)tr ;) ((up — Om,) - ty5)ts;

—vr(((upn = 0myp) - tr)tr ) ((Wpn — Oimyp) - tr)tsl

N((ay —0m,) -ttty — (Wpn — 0my,p) - trj)tslds
d—1

<C).
j=1

2—r
[(uy —0m,) -ty — (upn —0m,,) -ty

c+|(up —0Om,) -ty +[(arn —0m,,) -ty

x [y =0m,) -ty — (vin = &) trillir,,) + Cls, (3.4.32)

where
d—1

Is = Z/F apys(vi(((uy — 0m,) - try)ts ;) (uy — Omy,) -ty
j=1 fp

—vi(((upn = Oy ) - bt (Wpn — Omyp) - ) (Vin — €pn) -ty — (Wpn — Oy ) - tr).
Note that

L =ag(ug,vin —upn) = ap(apn, Vin = upn), o = ay(Wp, Vi — Wpn) = ap(pn, Vin — W)
Is = apys(ug, 0m,; Vin — Upn, &, — 0y ) — aprs(Wpn, Omy s Vin — Upn, &y — 0iMyp)-
We subtract (3.4.2) from (3.2.5) and choose to test this difference with (v, —uysp, vy —

W, Epn = OMpn)s Vi € Vin, Vo € Vi, &, € Xy

ap(ug, Vin —upn) + ag(Wy, vy — Wn) + as(n,, &, — 0m, )
+ aBJS(ufa aﬂ?p; Vin — Ufh, fp,h - at’?p,h) + bf(Vf,h - uf,h>pf) + bp(VpJL - up,mpp)

+abp(&pn — 0Ny Pp) + b0 (Vin — Wpn, Vo — Upn, &, — Oimy i3 A)

91



—ap(Upp, Vin —Upp) — a;‘f(up,h, Vph — Upp) — a;i(np,h, Ep,h - 3t77p,h)
—apss(Wpn, OMy i Vi — Ui, Epn — OMyn) +05(Vin — Wpn, Dpn) + bp(Vpr — Uy, Dpoi)

—aby(§,1 — OMyps Ppn) +00(Vin — Upn, Vo — Wpn, €y — Oy s An) = 0.

Then, we have:

Lt Iit+1Is = ay(n, ="M & n—0iMyp) 0 (Vi —p 0, pa—ps) +by(&p = 0y s Poh —Pp)
+0p(Vph = Wp s P — Pp) 00 (Vin — Wpns Vo — Upn, & — OiMy s An — A)
= ap(Mpn — My Epp — OiMy) + ay (M, — My Oy, — Oy ) + 05 (Vin — g, Dpn — Qpapy)
+by(Vin—rn, Qrapy —pr) +aby(§, 1 — Oy p, Dpn — Qpubp) +0bp(& 1 = OMy, 1 Qpnbp — Pp)
+ by (Vo — Up s Dph — Qpabp) + bp(Vpr — Wp s Qpapp — Dp)
+ bF(Vf,h — Ugh, Vph — Upp, €p,h - 5t77p,h; An — Q/\,h)\)

+ br(Vﬁh — Ufh, Vph — Uphp, €p,h - 8t17p7h; Q/\,h)\ - /\) (3433)
Since V- Vi = Wy, Vi -nplr, = Ay and (1.3.17), (2.2.24), the following terms cancel:
bp(Vp,n = Upny QpnPp — Pp) = br(0, v — Upp, 0; QapA — A) = 0.

Note that the calculations above are valid for any vy, € Vi, vpn € Vi, &, € X, 5. Now

we would like to make a specific choice:

(Vins Vpus Epn) = (Upnuy, Iy pay, I ,0im,,).
Then (3.4.33) can be written as follows:
Iy + Iy + Is + agy (0, , — M, Omy, p, — Omy,) = ag (M5, — Ny, LsnOmy, — Oim,)
+or(Lppuy—upn, prn—Qraps) +br(Lrnuy —aypn, Qpnps —pr)+bp(Lpatty — Wy p, Ppp— Qpnbp)
+ abp([s,hatnp - 8t77p,h>pp7h - Qp,hpp) + abp(ls,hatnp - at{r’pJL? Qp,hpp - pp)

+br(Iypap —upp, Ly — Wy, Is,0m, — 0y, 1 An — QanA)
+ br([ﬁhujc — llf,h, 0, Isﬁhﬁmp — &mp’h; Q)\,h)\ — >\) (3434)

Note that due to (3.4.4) and (2.2.27), we have:
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br(Ippuy — uypp, L ny — Uy p, Lo 1 0imy, — Opmy 15 An — Qan)

= br([fﬁllf, Ip,hupa ]57}1675')’];0; )\h — Q)\,h)\) — br(uﬁh, Up h, &mp’h; )\h — Qk,h)\) = 0. (3435)

We subtract (3.4.3) from (3.2.6) with the choice (wsn, wpn) = (Qraps — Dby Qprlp — Pp.i):

30<8tpp - Qp,hatppa Qp,hpp - pp,h)Qp + SO(Qp,hatpp - atpp,lw Qp,hpp - pp,h)Qp
- abp(atnp - [s,hatnp7 Qp,hpp - pp,h) - abp([s,hatnp - atnp,ha Qp,hpp - pp,h)
- bp(up - Ip,hu;m Qp,hpp - pp,h) - bp(Ip,hup — Uy p, Qp,hpp - pp,h)

—bp(uy — Ippuy, Qrnps — vpn) — bp(Ippay — g, Qpaps — prn) = 0. (3.4.36)

By (1.3.17) and (2.2.28), we have

30(8tpp - Qp,hatppa Qp,hpp - ppﬁ)Qp = bp(up - [p,hupa Qp,hpp - pp7h) =0.

Then (3.4.36) becomes:

30<Qp,hatpp - atpp,ha Qp,hpp - pp,h)Qp
= Oébp(&%”?p - [s,hatnpa Qp,hpp - pp,h) + Oébp([s,hatnp - atnpjw Qp,hpp - pp,h)
by (Lp,n0p =Wy 1, Qp nDp—Pp.n) +05 (W =Ty p0y, Qprpy—psn) s (L p0y—ysn, Qraps—Dsn)-

(3.4.37)

Next we combine (3.4.34),(3.4.35) and (3.4.37):

I+ I+ Is + ag (M, — My, Oimy,p — Oimy,) + 50(Qpn0ipp — Ouppops Qp Py — Ppp)e,
= ay (M = My LsnOimy, — Omy,) +bp(uy — Iy, Qpupy —pra) +br(Lppvy —upn, Qrapy —py)

+ aby (15,0, — 0M,, Qp.nPp — Ppi) + by (L ,OM, — Omy, 1y QpaPp — Pp)
+br(Ippuy —upp, 0,1 ,0m, — Omy, s Qand — A). (3.4.38)

We bound the first four terms of the right hand side, using Holder’s and Young’s inequalities
(1.3.2), (1.3.6):

ag(Myn — Ny LsnOmy, — Oimy,) + bp(ay — Iy pug, Qpnpy — prp) + 0p(Lppy — upn, Qrrps — py)

+ aby(Ls10imy, — 0my, Qpuby — Ppp) < €1 <||uf = sl + Ipra = nyhPfHZw(Qf))
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-+ €2pr,h - Qp,hppHZT’(Qp) + C <HQf,hpf - pf”iT’(Qf) + H[f:huf B ufH%/Vl’T(Qf)
+HIf’hllf - Uqu{/VLr(Qf)) +C (”np,h - an%Tl(Qp) + H[&hatnp - atnPH%ﬂ(Qp)

+|[Zs,n0my, — at%”?[l((@)) : (3.4.39)

We combine (3.4.38) and (3.4.39) :

I+ Iy + Is + ay(n, — My, 0N, — My 1)) + 50(Qpn0iPp — OeDp.ns QpnPp — Pop)e,
< e <||Pf,h = Qrapsle ) + 1Ppn — Qp,hppHZw(gp)) + eafluy —upnlffir o)
+ aby (1510, — Oy py QpinPp — Pp) + br(Lppuy — s, 0, I n0imy, — 0imy, 1 QanA — A)
(I = Myl ) + 1T Oem, = Om, s,y + IMoDen, = Dl e

+1Qsaps = Pill o)y + Mty = Uglliprr o, + [ ppuy — uf||§vwmf)>~ (3.4.40)
Next we integrate (3.4.40) in time from 0 to t € (0,T]:

1 t
5 (450(0) = 71,0001, 0) = ,0(00)+ 50l Qo) = P )+ | (ot Tiot T s

t
< [ (e (s = @uas oy + 1n = Quutnlo ) + eallay = sl s

1

5 (01,0 = 1,,(0),1,(0) = 1,.,(0)) + 50| @25(0) = (O30,

t
+/ (aby (s n0m, — Oimy 1, Qpibp — Pp) + br(Lppuy — uypp, 0, 1, ,0im, — Oimpy, s Qaph — N)) ds
0

t
+ /O C(Imps = mlBincay + 1 adim, = Om, e,y + 1 adim, = 0m, i,y
+H1Qsaps = Prll o,y + Mty = uglliir o, + [pauy — uf||§v1m(gf)> ds. (3.4.41)

We bound the remaining terms on the right hand side using integration by parts, (1.3.2),
(1.3.3) and (1.3.6):

t
/ (aby (15 n0m, — Oy 1 Qpibp — Pp) + br(Lppuy — upp, 0, I, 0im, — Om, 55 QapA — A)) ds
0

sS=

t
= abp<]s,h77p - "7p,h; Qp,hpp - pp) 0 + bF(Ou 0’ [s,hnp - 77p,h§ Q)\,hA - )\)

s=t
s= s

=0

t
- / (abp(]s,hnp — Mo Qp,hatpp - atpp) + bF(O7 07 Is,hnp = Ny, Q)\,hat/\ - 81?/\)) ds
0
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t
‘|‘/ br([fﬁllf — llfjh, 0, 0; Q)\,h)\ — )\) dS
0

t
< o (a0 = 1Oy + [ (Vs = wsallins o+ Voot = i) )
+C (1Qnapp(t) = Pol1) 2100y + 1QAAE) = DI r, )
+C (IQrA0) = MO, v, + 1@piol0) = PO g, + Mo, (0) = 1, (0) 31, )

t
+/0 C <”Qp,hatpp - 8tppH2r’(Qp) + ||Q/\,hat)\ - at)\ ir’(l"fp) + ”Q)\,h/\ - )\”i'r/([‘fp)> ds

t
< € (||"7p — M )||%11(Qp) +/ (”uf - uf,h||%/v1w(nf) +n, — np,h”?fl(ﬂp)) ds)
0
+C (I, (1) = Lo, (O, + Qi) = BB 0, + QAL = XD 2, )
+C (1200 0) = PO, + T, (0) = 1, (0) 310,y + 1Q1AD) = AO) 2, )
2
LT/(Ffp)) dS

t
+/0 C (HQp,hatpp - 3tpp||2’“’(ﬂp) + [|QxnOeA — at)‘||2T’(Ffp)> ds.
(3.4.42)

t
+/ C <H77p - Is,hanfql(Qp) + [luy — [f,h“f”%vw(ﬂf) + [ @anA = A
0

We choose p,n(0) = Qpnpp(0), m,,(0) = I,,m,(0), then using coercivity of ag(-,-) form,
(2.2.6), we obtain:

11,0 = O+ 0l = o + [ (s 1 1) ds
< & (1,000 = Ty + [ =gl )
rer [ (Iosa = Quasl5 iy + s = Quulf ) d
+C <||Qp,hpp(0) - P(O)”iw(ﬂp) + 11,(0) = Lewm, (0) 1310,y + 1@ A(0) — >\(0>||ir/(1“fp)>
[ €I = il + e, = 0, )+ Ve, — o, i,
+lm, — Loam, 13 g )+||Q>\,h>\_/\|‘2r’(rfp)+”Qp,hatpp_gtppHZr’(Qp)+||Q>\,hat)‘_at/\”2r’(p

+1Qsaps = Pill o)y + Mty — uglliprr o, + [ ppuy — uf||9v1n-<9f)> ds

C (Imy(8) = Loyl ) + 1Qnnpp(8) = PO g, + QA = AD e, ) -
(3.4.43)
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We combine (3.4.30), (3.4.31), (3.4.32) and (3.4.43):

! D (uy) = Dasn)lli,) [y = wpnll7 g,
(g(u u,) +
0 ¢+ ||D(uf)||y apn T ||D(ufh)||y o) ¢t ||up||LT @) T ||uph||Lr(Q )
luy — Oimy, — (ugn — Oimy, h)HL’”(Ff

= ds
c+lluy = amylr,, + lurn — 0m,ull,)

+1m,(8) = (Ol (0, + 50/ Qo) = Po(t) 720,

t
< C/O E(u,uy)" (HD(Uf) = D(Lynuy)l|zr @) + Tap = Lpnplie e ) ds
t
+ C/ E(u,w) luy —0my, — (Irpuy — Londm)|lier,,) ds + e2l|m,(t) — 1,0 (0170 (q,)
0

+ € /Ot [uy — uf,hHIQ/Vl,r(Qf) ds + € /Ot <||Pf,h - Qf,hprZ/w(Qf) + |pp.n — Qp,hpp”’;,mp)) ds
€ (1Qurp(0) = PO} 2 + 1,(0) = Lo, (0) s ) + 1Q0AO) = AO) e, )
+ /Ot C(an,h — 3@, + 11sndm, — 0m, 3@, + 1 Tendm, — 0m,llin g,

+ I, = Ll 0,) T 1QxA = Al 1, )+ 1Qpndepp — Oyl 70 ) + 1QAON = DN 1,

+1Qraps = PellTe o, + Ity = urlliinq, + I pnuy — uf||§v1m<nf)> ds

C (Imy(8) = Lo, D1y + 1Qnapp(8) = PoOI, g, + QAL = XD r, ) -
(3.4.44)

Using (3.4.10), we obtain the bound for the pressure variables:

|((prh — Qaps, Poh — QpiPp), A — Qan) [wxa,

< swp br(VinsDrn — Qrals) + 0p(Vpn, Poh — Qpibp) + 00(Vin, Vo, 03 A — Qa )
- vLEV], HVhHV

ap(apavin) = ap(up, ven) | ap(Upn, Vpn) = ap(Up, Vi)
[vhllv [vallv
apys(Wsn, OiMypi Vin, 0) — apss(uy, 0im,; Vi, 0)
[vallv
n by (Vi Qraps — pf) + bp(Viy, Qﬂ,hp;ﬁ — Dp) + br(Vin, Vipn, 0, Qup) — A)]
Vhllv

<C (5(117 w,)G (W, w) "+ |Qaps = pellie o) + 1Quary = Poll 1)

HIQAA = Al ey, - (3:4.45)

< sup |

VLEV
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Hence,

t
61/0 <pr,h - Qp,hpszr’(Qp) + pr,h - Qf,hprZT’(Qf) + H)‘h - QA,hA‘|2T'(Ffp)) ds
t
< 610/ E(u,up)" G(u, uy) ds
0
t
+ 610/ (||Qf,hpf = Pl o) F 1Qprpp = Dol o) + Q1A = >\\|TL~(FM)> ds. (3.4.46)
0

Using stability of both continuous and semi-continuous solutions, we combine (3.4.44) and

(3.4.46) and apply Gronwall’s Lemma (1.3.7) to obtain:

Juy—uyp H%2(07T;W17T(Qf)) +luy — ”%Q(O,T;LT(QP)) +[luy —0m, — (usn—0m, ;) ||2L2(0,T;BJS)

+ pr - pf,h”zr'(()’T-LT'(Q + |lpp — ppthzr'([)VT;Lr'(Qp)) +[[A — AhHZH(o,T;Lr’(rfp))

+m, — 1 L°°(0TH1( )+ Sol|Qpnpp — pp”%‘”(O,T;L?(Qp)) + 16 (w, wp)|| L1 0m)
< Cexp(T)|[Juy — If,hume(o,T;WLr(Qf)) + fluy — [fvhuszr(O,T;leT(Qf))

+ |lm, — s h"7pHL2 o)) T 1 = Lawpllr o ri0m0,)) + 106, — LsnOimy e 0,00 0,

+ Hamp - IS,hatanL2(0,T;H1(Qp)) + HQf,hpf - prL2 (0,T5L7 () + HQA,h)\ - )\H?y(o T;L7 (Ty,))
+ |Qpn0spp — atppHLZ or:nr @,y T 1@AnOA — 3t)\||Lz o sy T 1705 — Lonyli o mm1 0y))

+ 1 Qpary — ppumwmp)) QA = Mooy + 1@sapr = Pr oy
+ 1Qpipp = Pollyr o pirr ) + 1@ = Al g,y |- (B447)
Then the error estimate (3.4.27) follows from (3.4.47) and (1.3.18)-(1.3.19), (3.4.22)-(3.4.24).
]
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3.5 NUMERICAL RESULTS

3.5.1 Convergence test

In this subsection we discuss numerical results that verify the theoretical bound (3.4.27).
We discretize the problem (3.4.2)-(3.4.4) in time using backward Euler method. Let T
denote the final time and 7 the length of time step, then for each n = 1,..., N the n-th time

step is t,, = n7. To approximate the time derivatives we use:

n __ 4n—1
qus:u, n=1,... N.
T

For the spacial discretization in fluid domain we will use P;b—"P;b MINI elements, we will also
use RTo—Py for V,, , x W, ;,, continuous piecewise linears P; for X,, , and piecewise constants
Py for Ay. We handle nonlinearity in Stokes and Darcy terms using Picard iterations and we
assume that the constant in the Beavers-Joseph-Saffman condition (1.2.9) does not depend
on fluid viscosity.

We consider a computational domain © = [0, 2] x [0, 1], where Q; = [0, 1] X [0, 1] represents
the fluid region and €2, = [1,2] x [0, 1] — the solid region. The flow is driven by the pressure
drop: on the left boundary of Q; we set p;, = 1 kPa and on the right boundary of €2,
Pouwt = 0 kPa, which is also chosen as initial condition for Darcy pressure. Along the top
and bottom boundaries, we impose a no-slip boundary condition for the Stokes flow and
a no-flow boundary condition for the Darcy flow. We also set zero displacement boundary
condition on top, bottom and right parts of boundary of structure subdomain, as well as
zero initial condition for the displacement. We set \, = p, = sp = a = apys = 1.0 and
K=1

We assume that the fluid viscosity in Stokes region satisfies the Cross model:

Vf70 — Vf,oo
1+ Ky D(ug)>rs

vi(|[D(ug)]) = vyeo +

And the effective viscosity in Darcy region also satisfies the Cross model:

I/p70 — Vp,oo
1+ Kp|u,|?—m’

Vp([up]) = Voo +
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where the parameters are chosen as follows: Ky = K, =1, Vfo = Vpoo = 1, Vf o = 1po = 10,
ry =1, = 1.35. The simulation time is 7' = 1.0 s and the time step At = 0.01 s. To verify
the convergence estimate (3.4.27), we compute a reference solution, obtained on the mesh
with characteristic size h = 1/320. Table 5 shows the relative errors and rates of convergence
for the solutions computed with discretization steps h = 1/20,1/40,1/80 and 1/160 for the
case of lowest order elements. Since we use bounded functions to model viscosity in both
regions, we compute the norms of the errors using r = ' = 2. As we can see, the results

agree with theory, i.e. we observe at least first convergence rate for all variables.

PP — Py, RTo — Po, P1, and Py.

Helel’(Hl(Qf)) Heprﬂ(LZ(Qf)) ”ep”l2(L2(Q;D)) Hepleoo(LQ(Qp)) Hes”l‘x’(Hl(Qp))
h €error rate error rate error rate error rate error rate
1/20 4.83E-03 — 2.75E-02 — 1.55E-01 — 1.15E-01 — 4.98E-02 —

1/40 | 2.31E-03 1.06 | 1.03E-02 1.41 | 8.63E-02 0.85 | 5.28E-02 1.12 | 2.88E-02 0.79
1/80 | 1.04E-03 1.16 | 4.62E-03 1.16 | 4.08E-02 1.08 | 2.25E-02 1.23 | 1.61E-02 0.84
1/160 | 3.94E-04 1.40 | 2.14E-04 1.11 | 2.07E-02 0.98 | 7.48E-03 1.59 | 6.59E-03 1.29

Table 5: Example 1: relative numerical errors and convergence rates.

viscosity
I 1.000e+01

[9.333e+00

viscosity
t9.998e+00

|

E9.027e+00

(a) Viscosity at ¢t = 0.01s (b) Viscosity at t = 1s

Figure 7: Example 1: nonlinear viscosity computed at ¢ = 0.01s (left) and at t = 1s (right).
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pressure velocity

l: 1.000e+00 I: 1.312e-02

I |

[0.000e+OO [0.000e+OO
(a) Pressure solution (b) Velocity solution

Figure 8: Example 1: pressure (left) and velocity (right) solutions at time ¢ = 1s.

displacement
[8'4] 5e-04

lO.OOOe+DD

displacement
IE4.20<)e-03

E

lO.OOOe+OD

(a) Nonlinear solution (b) Difference

Figure 9: Example 1: displacement solution (left) and difference (right) at time ¢ = 1s.

We also investigate the behavior of solution visually and compare it to the solution of
the linear method (2.3.1)-(2.3.3). For visualization we use the solutions corresponding to
the mesh size h = 1/40. All plots are presented at the first and final time steps. For a fair
comparison between models, we calculate the viscosity in linear case as V}"” = Vf|rf:2 =55

and V;)m = Vp| _, = 9.5. Figures with difference between velocity and displacement solutions
Tp=

; 3 nonlin lin nonlin lin nonlin lin
are obtained by plotting up3™" —uy’, upf™" —u} and 95" —n,% , where colors represent

the magnitude of the corresponding difference and arrows represent the direction.
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velocity
lB. 831e-03

|

EO .000e+00

pressure
lA. 121e-06

|

[9.2 12e-03

(a) Difference in pressure (b) Difference in velocity

Figure 10: Example 1: difference between non-Newtonian and Newtonian solutions at time

t=1.

As we can see from Figure 7, in nonlinear case the viscosity is high in the middle of the
fluid domain and it decreases towards the boundary, which is due to the fact that the strain
rate increases towards the boundary. On the other hand, the viscosity does not vary as much
in the solid domain due to almost uniform velocity profile (see Figure 7). We note that these
observations agree with conclusions in [45]. Moreover, use of non-Newtonian model results
in lower Stokes velocity, as shown on Figure 10(b), which in turn entails lower displacement,

Figure 9(b).

3.5.2 Towards bloodflow applications

The focus of our method is on the non-Newtonian fluids, which exhibit the so-called shear
thinning properties, which is typical for blood. Therefore, in this subsection we present a
preliminary 2d test case, in which we consider blood flow in idealized artery, shown in Figure

11. The geometry of the domain is as follows:
inflow = 1em,  doutfiow = 0.5cm,  dyay = 0.1cm,  ligtar = 6cm,  lginge = 1.6cm.

where [, is a distance from inflow to the splitting point of the fluid region.

We prescribe zero initial condition and the following boundary conditions:
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Figure 11: Example 2: computational grid, where red region corresponds to free fluid, blue

- to the medium.

up-7=0 on 't in tiows UL out flows

up-n =0, on L'y infiow U L'p out flow>

n =0, on I'y inflow U Up out flows
n-1=0, on 'y \ (Tp,infiow U Tpoutflow),
(ofn)-n=g(z,y), on L'y in fiow

(ofn)-n=0, on I'¢ out flow-

Here, the inflow part of the boundary corresponds to x = 0, while the outflow part — to
r = 6.

Except for the geometry of the domain, the setup in this test case follows closely the
one in [58]. In particular, for the sake of more realistic simulations, we consider the Navier—
Stokes equations for the flow in the fluid region. We also follow [19,57] and add a spring
term &n to the governing equation for elastic skeleton (1.2.5) in order to keep the top and
bottom structure displacements connected. We allow for the motion of the domain due to the
deformation of the solid region, which we deal with by adopting the Arbitrary Lagrangian—
Eulerian (ALE) approach [41,60].
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For the viscosity in the fluid region we use Carreau-Yasuda model [27]

n—1

V(J?,y,t) = Voo T (VO - VOO)(l + (/\;y(x?iyvt)a)T)v

where y(z,y,t) = \/%D(Uf) : D(uyg). We adopt the same nonlinearity law with the same
parameters for the Darcy region, but with 4(z,y,t) = /u, - 4,. The values of the parameters
that define this model are chosen as A\ = 1.902s, n = 0.22, a = 1.25, vy = 0.56 Poi and
Voo = 0.035 Poi.

The function that drives the flow in the fluid region (simulating the heart pulse) is given

by

6667[1 — cos(gmgz)],  if ¢ < 0.003,

g(z,y) =
0, otherwise.

The rest of the parameters are given in Table 6.

Parameter Symbol  Units Values

Fluid density Pf (g/cm?) 1

Lamé coefficient A, (dyne/cm?)  4.28 x 106

Lamé coefficient  p,, (dyne/cm?)  1.07 x 106

Permeability K (cm?) diag(0.035,0.035) x 107°
Mass storativity sg (cm?/dyne) 5 x 1076

Spring coeff. 19 (dyne/cm*) 5 x 107

Total time T (ms) 6

Time step At (ms) 0.01

Table 6: Example 2: poroelasticity and fluid parameters.

The results presented in Figures 12-14. For the illustration purposes, we show the
pictures with the deformation magnified by a factor of 50. We do not present Darcy pressure
and velocity as there is very little flow observed in this region.

As a result of this simulation, we observe the flow following the geometry of the vessel,
with slightly pronounced bifurcation region at the splitting point of the domain (see Fig-

ure 13). The velocity solution agrees with the pulse-nature of the injection, namely we see
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the wave-like region of higher velocity traveling across the domain. This is coherent with
our expectation of an idealized simulated heart beat driven flow. While it is not visually
obvious that the fluid exhibits shear—thinning properties, the realization of the viscosity field
indicates that it is indeed the case. We note how the viscosity in the fluid region is being
affected by the variation in the velocity field - we see that the viscosity next to the artery
wall is hardly different from the initially specified coefficient, while it exhibits more varia-
tion further from the walls(see Figure 12). It is also worth seeing that the regions of higher
viscosity propagate with the higher velocity front, the effect one expects to see in modeling

of shear—thinning fluids.

Viscost
3.60-02 02 03 04 5.6001
—

(a) Fluid viscosity, ¢t = 1.5ms (b) Fluid viscosity, t = 2.5ms

Viscosity Viscosity
03

3.6e-02 02 0.4 5.6e-01 3.6e-02 02 03 0.4 5.6e-01
U — — e | —

(c) Fluid viscosity, t = 3.5ms (d) Fluid viscosity, t = 4.5ms

Figure 12: Example 2: viscosity solution at different time.
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Velocity Magnitude
0.0e+00 2 4 6 8 10 12 1.5e+01 0.0e+00 2
— o | — —

‘elocity Magnitude
6 8 10 12 15e+01
i —

—n<

(a) Fluid velocity, t = 1.5ms (b) Fluid velocity, t = 2.5ms

0.0e+00 2

—

Velocity Magnitude
4 6 8 10 12 1.5e+0l 0.0e+00 2
i

—

Velocity Magnitude
4 6 8 10 12 15e+0]
I I

| — o

(c) Fluid velocity, t = 3.5ms (d) Fluid velocity, t = 4.5ms

Figure 13: Example 2: velocity solution at different time.

We also present the displacement solution on Figure 14. As expected, higher values are
observed near the regions of high fluid velocity in the flow region. We note that we do not
see any singularities near the bifurcation area, which can be explained by smoothness of the
computational domain. However, we do expect to see singularities in stress, which can be

recovered from the displacement solution, using (1.2.4).
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Displacement Magnitude Displacement Magnitude
008400 0,0005 0,001 0.0015 0.002 2.46-03 008400 0.0005 0001 0.0015 0.002 2.46-03
— ) ! h —-— ! N

(a) Structure displacement, t = 1.5ms (b) Structure displacement, t = 2.5ms

Displacement Magnitude
0.0e+00 0.0005 0.001 0.0015 0.002 2.4e-03
— d : ol

Displacement Magnitude
0.0e+00 0.0005 0.001 0.0015 0.002 2.4e-03
— . ’ ]

(c) Structure displacement, t = 3.5ms (d) Structure displacement, t = 4.5ms

Figure 14: Example 2: structure displacement solution at different time.

This is a proof-of-concept numerical example with an idealized geometry of a blood
vessel. However, our future work is in extending this simulation towards a real X-ray scan

based artery geometries, involving ones with severe stenosis and/or constricted areas.
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4.0 TRANSPORT SIMULATION IN FLUID-POROELASTIC STRUCTURE
INTERACTION

4.1 TRANSPORT PROBLEM

In this chapter we consider coupling of the Stokes—Biot problem with the transport equation

on 2 =QyUQ,:
¢ + V- (cu(t) — DVe) = qc¢*,  in Qx (0,77, (4.1.1)

where ¢(x,t) is the concentration of some chemical component, 0 < ¢, < ¢(x) < ¢* is the
porosity of the medium in €2, (it is set to 1 in ), u(t) is the velocity field over 2, defined
as u(t)|o, = uy(t),u(t)|, = uy(t), ¢ is the source term given by q|Qf = ¢y and q‘Q = qp,

and
injected concentration ¢, ¢q >0,
resident concentration ¢, ¢ < 0.
We assume that the diffusion/dispersion tensor D is a nonlinear function of the velocity,

given by
D(u) = dp,I + [u{aE + oy (I - E)}, (4.1.2)

where d,,, = ¢7D,,, T is the tortuosity coefficient, D,, is the molecular diffusivity, E(u) is the

Ui U4
|u|2 )

tensor that projects onto the u direction with (E(u));; = and oy, oy are the longitudinal

and transverse dispersion, respectively.

The model is complemented by the initial condition

c(x,0) = ¢(x), in €, (4.1.3)
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and the boundary conditions

(cu —DVe) -n = (¢pu) - n, on Iy, x (0,77, (4.1.4)

(DVe) -n =0, on Ty % (0,77, (4.1.5)

where I';, ;= {x € 00 :u-n < 0}, I'pyy := {x € 92 : u-n > 0} and n is the unit outward

normal vector to 0f).

4.2 SEMI-DISCRETE FORMULATION

We consider a shape-regular and quasi-uniform partitions of €2, denoted by 7,. We note that
T, may be different from Ef and T;”. We denote by Ej, the set of all interior edges(faces) of
Tr and on each edge(face) we arbitrarily fix a unit normal vector n,. We further denote E¢“
and E}l” the set of edges(faces) on Iy, and I';;,, for which n, coincides with the outward unit
normal vector.

Since the details of the discretization of the flow problem were presented in Chapter 2, we
focus only on derivation of the numerical method for the transport problem. Following [92],
we adopt the discontinuous Galerkin scheme, known as Non-symmetric Interior Penalty
Galerkin (NIPG) [79].

For s > 0, we define the space
H(Th) ={¢ € L*(Q) : ¢ € H*(E), E € T},

equipped with the norm

1/2
ol = (Z 9] %s(E)) :
EcTy

We now define the jump and average for ¢ € H*(7}),s > 1/2 as follows. Let E;, E; € T,
and e = 0F; N OL; € L), with n, exterior to E;. We denote

9] = (¢lz)le — (Bl z,)le, (4.2.1)

(4.2.2)

108



We consider the finite element space
D.(Ty) ={¢ € L*(Q) : ¢|p € P.(E), E € Th},

where P,.(E) denotes the space of polynomials of degree less than or equal to r on E.

Let the bilinear form By, (¢z, %) and the linear functional Ly (¢,) be defined as follows:

By, (ch, Yn) = Z / (up)Vey, — cpuy) - Vb, — Z /{D u,)Vey - ne )

Ec€T, eckEy,
+Z/{Duhv"¢h n, Ch+2/0huh n. [
eEEh eeEh
+ Z /Chuh ne¢h—/0hq U + I3 (en, ),
eeEout

Lh(wh) :/Cqurwh_ Z /Cznuh newh (423)

eeEm
Here g7 = max(q, 0) is the injection part of source term and ¢~ = min(g, 0) is the extraction
part of source term, c;|. is the upwind value of concentration, defined as

. cnle, ifuy -me >0,
Crle = (4.2.4)

Ch‘Eg if u, - ne < O,

and J7? (¢p, 1p,) is the interior penalty term
J7 (cn tn) = /Ch [Vn], (4.2.5)
€€Eh

where, o is a discrete positive function that takes constant value o. on the edge and is
bounded below by o, > 0 and above ¢*, h, is the side of edge(face) e and 8 > 0 is a real
number. It was shown in [92], that the optimal choice for g is 5* = 1.

The continuous-in-time DG scheme for the transport problem reads as follows: find

cn(t) € D, (Tr) such that Vi, € D, (Tp)

(@0rch, ¥n) + Buy, (chy ¥n) = Li(1n) (4.2.6)

and the initial condition ¢,(0) is a suitable approximation of c.
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4.3 ANALYSIS OF SEMI-DISCRETE PROBLEM

In this section we discuss the stability and error estimates for the transport problem (4.2.6).
We note that a similar scheme has been used and analyzed in details in [92]. The main
difference and improvement in this work is the fact that the numerically computed velocity
field uy, is directly incorporated into the scheme for transport (4.2.6), while in [92] the authors
used a special ”cut-off” operator in order to ensure optimal properties of the method.

In next lemma, we present the main ingredient required for the analysis — the point-wise

stability of the flow solution.

Lemma 4.3.1. Let the solution of (2.1.11)-(2.1.13) be reqular enough. Then there exists a

positive constant C' = C(uy, py, Wy, pp, M, A) such that

Huf B uf,hHL‘X’(O,T;Hl(Qf)) + ||up B up,hHLoo(O,T;LQ(Qp)) <C /eXp(T)hmin{kf,5f+1,kp+1,3p+1,ks}_
(4.3.1)

Proof. We differentiate (2.1.11) and (2.2.1) in time, and then subtract (2.2.1)—(2.2.2) from
(2.1.11)~(2.1.12) to form the error equation

ar(Oer,vin) + at(Ohep, vpn) + ab(0ies, €, 1) + apss(Oiey, Oues; Vin. &pp) + br(Vin, Oregp)
+ bp(Vp,n, Orepp) + Oébp(&p,h? Orepp) + br(Vin, Vpn, ép,h; drex) + (50 Orepp, Wp.n)

— abp(Oses, wpn) = bp(€p, wpp) = byes, wrp) =0, (4.3.2)
Setting vin = @1, Vprh = @y, & = 04 Py Wrn = OrPppp, and wyp = Oydpp n, We have

ap(OX s, Prn) +as(Oidsp, dpp) + aZ(atxw bpn) + ag(at¢p,h> dpn) +a, (Oexsr Orbs )
+ a,, (8t¢s,h7 atd’s,h) +apys (3tXf7 Ot Xss Dty at¢s,h) +aps (at¢f,ha OitPs s D atd)s,h)
+ bf(¢f,h7 atXfp) + bf(¢f,h7 AP ppn) + bp(¢p,h7 atpr) + bp(¢p,ha 8t¢pp,h) + ab, (at('bs,h? atX;np)
+ by, (0@, 1 Orppin) + br (D Dy 1 13 00xn) + br (Dp sy, Dy iy s Deorn)
+ (50 O Xpps Ocppn) + (50 0ePpp s Do) — by (X5 Orbpp,) — by (Dsby s Dep,n)
- bP(Xp? at¢pp,h) - bp<¢p,h’ atﬁbpp,h) - bf(va 3t¢fp,h) - bf(¢f,h7 at¢fp,h) = 0. (4.3.3)
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The following terms simplify, due to the properties of projection operators (1.3.17),(2.2.24)
and (2.2.28):

bp(Xp7 6t¢pp,h) = bp(¢p,ha 8tpr) = 07 (30 @pr, at(b;mo,h) = <¢p,h -1y, 8tX)\>Ffp = O, (4-3-4)

where we also used that Ay, = V5, - n,|r,, for the last equality. We also have

bF (¢f,h7 ¢p,h7 atgbs,fﬁ at(b)\,h) = 07 bF (¢f,h7 d)p,h’ atqbs,iﬁ atX)\) = <¢f,h ‘1 + at¢s,h R atX>x>pfp )

where we have used (2.2.27) and (2.2.3) for the first equality and the last equality in (4.3.4)
for the second equality. Rearranging terms and using the results above, the error equation

(4.3.3) becomes

1 ) .
5075 (af<¢f,h7 ¢f,h> + az<¢p,h7 ¢p,h) + ’(pf,h - 8t¢s,h‘aBJS) + ap(at¢s,h7 at¢s,h) + 80H8t¢pp,h“%2(gp)

=ar (atXfﬂ ¢f,h) + az(atX;m ¢p,h) + a; (ath? at¢s,h) + bf(Xf7 at¢fp,h)
d—1

+) <VOéBJs K70 (x; — 0ixs) - Trj, (D — Ortpyp) - Tf,j> —by(bs 1, OrXsp)
j=1 Lyp
- abp(at¢s,h> O Xpp) + bp(0rX s, OrPpp,n) — <¢f,h ‘ny o+ at¢s,h ‘1, 8tX)\>Ffp' (4.3.5)

Using Cauchy-Schwartz (1.3.2), Young’s (1.3.6) and trace (1.3.3) inequalities, we bound the
right-hand side of (4.3.5) as follows

a (atva Dpp) + ad(athﬂ Gpn) + a5 (X, Orbs )

+ Z <VO<BJS\/ T 00Xy = 0iXs) - Trgs (Dpn — Oips) - Tf,j> — b(Dyn: OeXpp)

Lyp
bp (0P 1 OiXpp) + Abp(OiXss Ocbppn) — (Dyp - 0p + Orby p, - 1y, DiXn)T4,
<e <H¢fh”H1 @) T H¢ph”L2 @) T 10: shHHl @) 1 ‘¢fh X0 sh|aB]S>
+ C (1905 110y + 100 ) + 190 W) + 190 10,

—aby(0iy 1, D xpp) + ||atpr||%2(Qp) + ||atXA||%2(rfp))- (4.3.6)

We combine (4.3.5)—(4.3.6) and integrate the result in time from 0 to an arbitrary ¢ € (0, T:

2

apJjs

ap(dpn(t), dsu(t)) + aﬁ((ﬁp,h(t), D,n(1)) + |¢f,h(t) - at¢s,h(t)‘

111



+ / (5O ) + 50106l 32 ) s
< ap(7(0), B12(0)) + a8, (0), 6,(0)) + [014(0) — O (0)]]

apJjs

t
2
+e / (161 0y + 1B ll32(0,) + 10y + D10 — O, ) ds
0

apJj
t
+ C/O (HatXfH%{l(Qf) + HatXpH%Q(Qp) + HathH?{l(Qp) + HatthHirl(Qp) + HatXfp”%%Qf)
+Hatpr”2L2(Qp) + HatXAH%Z’(rfp) + aby(Oixs, Oebpp,p) + br (X, at(bfp,h)) ds. (4.3.7)

Using integration by parts, we get

/0 (O‘bp@thv at¢pp,h) + bf(Xfa atqﬁfp,h)) ds = abp(ath(t)a ¢pp,h(t)) - abp(ath(O>7 ¢pp,h(o))
+br (x4 (1), Dppn(t) = bp(x(0), d1pn(0)) — /0 (0by (X Opw) + b (OeX s, Dpon)) ds

< < (lom@Em + 10Ny + [ (Il + Mol ds)

+C <||¢pp(0)||%2(9p) + ||¢fp(0)||%2(9f) + 10, ()1 F1 ) + ||Xf(t)||§{1(9f) + 110ix, (0) 131,
I (07710, + /Ot (HatthH?{l(Qp) + ||atXf||§{1(Qf)> d3>

(4.3.8)

We assume that at the initial moment ¢ = 0 both the medium and the fluid are at rest, i.e.,

us(0) = u,(0) = 9m(0) = 0 with constant p;(0) and p,(0), which implies

Hd)f,h(o)H%{l(Qf) + H¢p,h(0)H%2(Qp) + ‘(tbﬁh(o) - at(bs,h(())‘? + ||ath(O)H§11(Qp)

apJjs

+HXf(O)H?{1(Qf) + Hd)pp(O)H%%Qp) + Hd)fp(o)H%%Qf) =0. (43.9)

We use coercivity of bilinear forms ay(-,-), a%(-,-) and a(-,-) and choose € small enough to

obtain:

’|¢f,h<t>||§{1(ﬂf) + ||¢p,h(t)||%2(ﬂp) + ‘¢f,h(t) - at¢s,h(t)|2

apJjs
t
+ / (100 Ol 0, + 501OBpplE2(0, ) s

t
2
<e / (1620 + U220,y + |00 — Abenll |+ 10502200y + I0mnliaa,y ) ds

aBJjs
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t
+ E(H%p,h(t)H%?(Qp) + “¢fp,h(t)H%2(Qf)) + C/O <Hatxf||§{1(ﬂf) + ”atxp”%2(9p) + Hath”%ﬂ(Qp)
+||3tth||%11(ﬂp) + ||8tXfp||%2(Qf) + HatprH%Q(Qp) + ||3tXA||2L2(rfp)> ds

+ (I, Ol + X Ol ) - (4.3.10)

Next, we use the inf-sup condition (2.2.9) with the choice (wp, tn) = ((Pfp,hs Ppp.i)s Pan) and
the error equation obtained by subtracting (2.2.1) from (2.1.11):

1@ gp. Pop.)s )l

<C sup br (Vs @pn) + bp(Vp s Gppn) + bp(&, 1, Pppn) + 0 (Vs Vih, € i Oan)
(Vi) EVAX Xy (Vi &) lvxx,
B “up (_af(eﬁ Vin) — ag(€y, Vi) — as(es, &, 1) — apss(er, Ores; Vin &,p)
(Vhobp ) EVRX Xy [(Vh: €p ) v,

n —bs(Vin Xsp) = bp(Vpns Xpp) — O‘bp(ép,m Xpp) = br (Vi Vo, gp,h; XA))
(v, &) lvxx,

We have b, (Vyn, Xpp) = (Vpr Dy, Xa)r;, = 0. Then, using the continuity of the bilinear forms

and the trace inequality, we get

€(||¢fp,hH%oo(o,t;Lz(Qf)) + | Ppp.n
< Ce (I

%oo(o,t;m(gp)) + ||¢A,h||%oo(o,t;L2(rfp)))

2
%"O(O,t;Hl(Qf)) + [l ,hH%oo(o,t;L%Qp)) + H(ﬁs,hl‘%m(o,t;Hl(Qp)) + ‘¢’f,h - 6t¢s,h|Loo(

0,tapss)
2 2
+ HXfH%OO(O,t;Hl(Qf)) + HXpH%OO(OJ;LQ(QP)) X6l 0,611 0,)) T 106Xl o0 (0,611 0

FIX ol Foe0,62200,)) T IXepll 2o 0.6:2200,)) + HX)\HLOO(O,t;LQ(Ffp))) : (4.3.11)
It follows from (4.3.10), (4.3.11) and Lemma 2.2.3 that
luy — uf,hHLOO(O,T;Hl(Qf)) + [lup — uppll Lo 0m522(0,))
< VoD 1 (sl i+ 195 Tt g + 100 s )

+ b <prHL2(07T;HSf+1(Qf)) + prHLOO(QT;HSf'H(Qf)) + HatpfHLZ(O,T;HSf“(Qf)))

+ ot <||upHL2(O,T;H’“P+1(Qp)) + ||up”L°°(0,T;H’“P+1(Qp)) + Hatup||L2(0,T;HkP+1(Qp))
+ ||/\||L2(0,T;Hkp+1(rfp)) + ||/\||Loo(o,T;Hkp+1(rfp)) + “at)‘||L2(0,T;Hkp+1(rfp)))
+ hortt (||Pp||Loo(0,T;HSp+1(Qp)) + 1Pl 20,7501 (2,)) T+ ||atpp||L2(o,T;H5p+1(Qp)))

113



+ hks (anHLoo((LT;Hks‘FI(QP)) + anHLQ(O,T;H’CS‘H(Qp)) + HatanLQ(O,T;H’“S"'I(QP))
H0im || oo o1 (2, )) + 106yl 20 mibs 1 (,)) |
which implies (4.3.1). O

Lemma 4.3.2. Under the assumptions of Lemma 4.5.1, there exists a positive constant M =

M(uyg, py, Wy, Py, My, A), such that the solution wy, of (2.2.1)-(2.2.3) satisfies
| o0, 1inoe () < M (REpTIm4/2 4 povti=d/2), (4.3.12)
Proof. We recall that by definition

Urn in Qf,
up =
u,;, in (.

Therefore, we prove (4.3.12) separately for uy in the fluid domain and for u,, in the solid

domain. Let S¢j, be the Scott-Zhang interpolant onto V¢, [86], satisfying

1Stavillze@y < Clvillze@y) + hIVVilLe(ap)), Vv e Whe(Qy),
(4.3.13)

HVf — SleVfHLQ(Qf) + h’Vf — Sf,hvf|H1(Qf) < Chkf+1HVfHka+1(Qf), VVf € ka+1(Qf).
(4.3.14)

We further write

lusnllzeome@p) < lapn — Spauylleore@p) + [1SpatyllLeore@p).  (4.3.15)

To obtain a bound on |[uy, — Synus||perro@,)), we recall that the Jacobian matrix of

the finite element mapping and its determinant satisfy
1TEl ooy ~ B, | DFgll iy ~ h, VE € T, (4.3.16)

Therefore, since the space Vy, is defined through the change of variables, we get for any

EeT!
agn = Senupllroes) < M0pn = Spalyll ooz < [0pn = Seatyllg g
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< Ch P lugy = Spausllme < Ch P lugy — ugllmm + Ch Y luy — Sy ).
(4.3.17)

Combining (4.3.15), (4.3.13), (4.3.14), (4.3.17) and (4.3.1), we obtain
[y nlleriz=@p < Clluglleri=@m) + bIVUslre©r=@,m)

+Chl_d/2+kf||uf||Loo(o,T;ka+1(Qf)) +Cmhmin{kf,sf+1,kp+1,sp+1,ks} < M,
(4.3.18)

where My = My (uy, py, Wy, Dy, My A)-
Next we consider the MFE interpolant II,; onto V,,, that satisfies [1]

TV, | Lo,y < C (||Vp||L°°(Qp) + h||vvp||L°°(Qp)) Vv, € WHR(Q,), (4.3.19)

vy = vpllL2(e,) < ChkaHVp“Hka(Qp)a Vv, € HH Q). (4.3.20)
As in (4.3.15), we split the norm of u, into two parts

[ nll Lo 0,155 (0,)) < 10pn — Ty || oo 0,752 (0,)) + T, Lo (0,732 (02,)) (4.3.21)

where the first term on the right-hand side can be bounded element-wise, using (4.3.16) and

the fact that the space V,; is constructed using the Piola transformation,

[y = T p || ooy < A = TGy || ooy < YN0 0 — T ]| 125
< Oh_d/znup,h - Hp,huf”U(E) < Ch_d/z”“nh - up||L2(E) + Ch_d/z““p - Hp,hupHL?(E)-
(4.3.22)

Combining (4.3.21), (4.3.19), (4.3.20), (4.3.22) and (4.3.1), we obtain

il Lo 0,70 (2,)) < CUMp Il Lo 0,71 (0p)) + RNV || Lo 07,10 (0,)))
+Ch_d/2+kp+1Hup”LOO(O,T;H’“PH(Qp)) +C eXp<T)h—d/2hmin{kf,Sf+1,kp+1,sp+1,ks}

S M2<hkp+1fd/2 _i_hserlfd/Q)’ (4323)

where My = My(uy, py, Wy, Dp, Mpys A)-
The final result (4.3.12) follows from combining (4.3.18) and (4.3.23). O
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Remark 4.3.1. The estimate (4.3.12) implies that ||uy||2(01;000(0)) < M when d = 2 for
any choice of stable spaces for the flow problem and when d = 3 with k, > 1, s, > 1. In the
lowest order case, k, = s, = 0 in three dimensions, HUh||L2(O7T;Loo(Q)) < Mh='2. For the rest

of the paper we will restrict k, > 1, s, > 1 in case d = 3.

We state several properties of dispersion/diffusion tensor, which are needed to derive the
stability and error estimates for the transport problem. For the proof of Lemmas 4.3.3 -

4.3.4, the reader is referred to [92].
Lemma 4.3.3. Let D(u) defined as in equation (4.1.2), where, d,,(xz) > 0,a;(z) > 0 and
ai(x) > 0 are nonnegative functions of x € Q. Then

D(u)Ve- Ve > (d,, +min(ay, oy )|ul)| Ve, (4.3.24)

In particular, if dp(x) > dp. > 0 uniformly in the domain 2, then D(u) is uniformly

positive definite and for all x € €, we have,
D(u)Ve- Ve > d,, .| Ve|*. (4.3.25)

Lemma 4.3.4. Let D(u) be defined as in equation (4.1.2), where, dy,(x) > 0,0q(x) > 0 and
ai(x) > 0 are nonnegative functions of x € ), and the dispersivities oy and oy are uniformly
bounded, i.e. ay(z) < af and ax(x) < .
Then

ID(W) ~ D)1z < kil — vllzzqe) (4.3.26)

where, kp = (4a; + 3a;)d*? is a fized number (d =2 or 3 is the dimension of domain (2.)

With the solution of the flow problem satisfying (4.3.12) and the uniformly positive
definite dispersion tensor (4.3.25), we can prove the following Garding’s inequality for the

bilinear form By, (-, -).

Lemma 4.3.5. The bilinear form By, (-,-) defined as in (4.2.3), satisfies

Buy (6 0n) = C (19l — llnlly,) in € Dy(Th)- (4.3.27)

116



Proof. For any 1y, € Ds(T),) we have

Bu, (n,00) = ) / (un) Vo — pun) - Viby — > /{D uy) Vb, - ne 1]

E€Th ecEp
+Z/{D up) Vi, - 0} +Z/¢huh n. [y
ecky, ecEy,
+ Z whllh : Ilewh — / whq_wh -+ Jg”@(wh, Qﬂh) (4.3.28)
e Q
ecEput

Next we introduce the following notations

Ji = Z / (up)Vby, —hpuy) - Vb, Jp = Z /@Dh Upluy, - ng,

EeTy, ecEy,

Jy:= Y [ i n - /Qq_l/)i + Jg (Wn, ) (4.3.29)

out ¥ €
ecky

With (4.3.29), we can rewrite (4.3.28) as
B, (¥, ¥n) = J1+ Jo + Js. (4.3.30)
Using (4.3.12), Remark 4.3.1 and (4.3.25), we bound J; term as follows

=3 [ Do Vi = 3 [ v Ve, = du V0

EeTy, EcTy,

=M Y [nllem [ Venllzm 2 dusIVnllse = Ce Ienlls o — el Veullso.

EcTy;,
(4.3.31)
For the second term we have:
h=Y" / ilnlun-n, > —M |3 / ilonl| = =M 3 16l ol
ecky, eeE;L ecky
€0,
Sy ( ol By + S22 12 e>) —er 5 nen) = 28 S
eGEh E€7—h
> —eJ (¢, Yn) — Ce |¢nllo 0 (4.3.32)

provided 3 is chosen in such a way that K%' < C.
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We rewrite J3, using (4.2.5) and the definitions of ¢~, I';, and Ty

Jyi= ) [ Y -ne - / O n + I (Wn n) = I (n, ). (4.3.33)
Q

out €
ecEyp

Finally, we combine (4.3.30)-(4.3.33):
Buy, (U, ) 2 (dins = )IVnllo.0 = Ce llvnllog + (1 = €)% (v, n).
Choosing € small enough, we obtain

Buy(Un90) = C IVl 0 = llnlly + I72 W vn)) = € (1199015 0 = Il o)

as desired. O
Theorem 4.3.1. The solution ¢, (t) € L=(0,T;D,(Tr)) of (4.2.6) satisfies

lenl[zoe o,7;020) + IV enlll 20,710 (73

< Cvexp(T) (”Ch<0)HL2(Q) + llewd™ || 20,7 2(0)) + \|Cin’\L2(o,T;L2(E;nt))> :
(4.3.34)
Proof. With the choice ¥, = ¢p,, (4.2.6) reads
/ gbchatch + Buh (Ch, Ch) = Lh<6h). (4335)
Q
Using (4.3.27), (2.2.16) and the definition of L;, (4.2.3), we obtain

1 2 2
o350 enllEze + C (IIVenllf o = Neallye) < Cllenlifzqe + Ln(er)

= CllenllF2(q) + / Cuw " Ch — Z CinWp - NeCp.
Q

ecEi" "¢
(4.3.36)
We integrate (4.3.36) in time from s = 0 to s = ¢ for 0 < t < T and use Cauchy-Schwarz
(1.3.2) and Young’s (1.3.6) inequalities

t t
()220 + / 19en()I2q ds < Cllen(0)[2aqy + C / llea(s) 12 ds

+ C’/O LCw(S)q+(S)Ch(S> — Y [ emls)en(s)un(s) -n, | ds < C <||Ch(0)||%2(9)

ecEin V¢
¢ ¢
[ a6y s+ [ [lealo)a™ )y + len(6) ] ). (4337)
The final result then follows from (4.3.37) and Gronwall’s lemma (1.3.7). O
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In the next theorem we state the error estimate for the transport problem (4.2.6). Deriva-
tion of the bound follows the steps in Theorem 4.3.1 and the analysis in [92], using the es-
timate (4.3.12), rather than a boundedness property of the ”cut-off” operator. For the sake

of space, we omit the proof and the reader is referred to [92] for the details.

Theorem 4.3.2. Let the assumptions of Lemma (4.3.2) hold and assume that only Neumann
boundary condition is imposed for the flow problem. Let further ¢ € L*>(0,T; W1h*>(Q2)) N
L*(0,T; HY(Q)) be the solution of (4.1.1), (4.1.3), (4.1.4)-(4.1.5). Then for any h <

(;—A})I/ ? there ewists a positive constant C' such that

lle = enlll Lo 0,7, 2200 + IV (e = en)ll 20,702 () < CV oxp(T)hmin{kss Lyt Lsp+ ko)
(4.3.38)

4.4 NUMERICAL RESULTS

In this section, we present results from several computational experiments in two dimensions.
The fully discrete method has been implemented using the finite element package FreeFem-++
[59]. The first test confirms the theoretical convergence rates for the problem using an
analytical solution, while the rest of the experiments show the applicability of the method

to modeling fluid flow in an irregularly shaped fractured reservoir with physical parameters.

4.4.1 Convergence test

In the first example we study the convergence of the spatial discretization using an analytical
solution. We build this test case upon the convergence test for the flow problem, described
in Section 2.4.1. The total simulation time for this test case is 7' = 10~3s and the time step
is At = 10~*s. The time step is sufficiently small, so that the time discretization error does
not affect the convergence rates.

The transport solution is chosen such that
¢ =t (cos(mz) + cos(my)) /m,
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(a) Example 1 (b) Example 2 (c) Example 3 (d) Example 4

Figure 15: Computational domains.

with diffusivity tensor chosen as D = 10731 and effective porosity ¢ = 1.

We study the convergence with the lowest order choice for the flow problem:the MINI
elements P? — P, for Stokes, the Raviart-Thomas R7Ty — Py and continuous Lagrangian P,
elements for the Biot system, and piecewise constant Lagrange multiplier Py. The transport
problem is further discretized using discontinuous piecewise linears, P{¢. Theorem 4.3.2
predicts first order of convergence in both L? and H!-type norms of the concentration solution

and the computed errors and rates shown in the Table 7, verify this.

P! —P1, RTo — Po, P1, Po and P{*

Necllizgrrryy | Neellioo(r2iay)
h error rate error rate
1/4 2.24E-01 — 2.52E-02 —

1/8 | 1.14E-01 1.0 | 6.17E-03 2.0
1/16 | 5.71E-02 1.0 | 1.56E-03 2.0
1/32 | 2.87E-02 1.0 | 3.96E-04 2.0
1/64 | 1.44E-02 1.0 | 1.00E-04 2.0

Table 7: Example 1: relative numerical errors and convergence rates.
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4.4.2 Application to coupling of transport with flow through fractured media

4.4.2.1 Example 1: Application to flow through fractured reservoirs This ex-
ample follows the one from Section 2.4.2, namely it is focused on modeling the interaction
between a stationary fracture filled with fluid and the surrounding poroelastic reservoir.
We first introduce the reference domain Q given by a square [—1,1]m x [-1,1]m. A
fracture, representing the reference fluid domain Q ¢, is then described by its top and bottom

boundaries, as follows
7 = 8(# —0.35)%(2 + 0.35)%, 2 € [-0.35,0.35].

The physical domain (see Figure 15) is further obtained from the reference one Q) via the

smooth mapping of the form

y 8 (cos(”f(;gg) + %)

The external boundary of €, is split into I', ., where x € {left, right, top, bottom}.
We are interested in the solution on the physical domain 2. The physical units are meters

for length, seconds for time, and KPa for pressure. The boundary conditions are chosen to

be

Pressure: pp = 1000 KPa/s onI'y,

Clamped boundaries: n, N, =0m on I'p.

The flow is driven by the injection of the fluid into the fracture with the constant rate
g =5-1072 kg/s. The fluid is injected into a region of radius 0.017m in the center of the
reference fracture () ¢. The contaminant species are injected in this same region, continuously
over the entire simulation period, i.e. ¢, = 1 in the circular region specified above. Other

physical parameters are the same as in the Table 3.
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The initial conditions are set accordingly to 1,(0) = 0 m, p,(0) = 10> KPa and initial
concentration ¢(0) = 0. The total simulation time is 7" = 100 s with the time step of size
At = 1s.

The diffusion tensor is chosen to be Dg, = 107°T in the Stokes region and
D(u) = d,, I+ [u{yE + oy (I — E)}

in poroelastic stucture region, as shown in (4.1.2). For this and all further examples, we
choose the molecular diffusion d,,, together with longitudinal and transverse dispersion to
be equal to 107 The effective porosity was set to be ¢ = 0.4 for this and forthcoming
examples.

This and the following test cases use the Taylor-Hood Py — P, [93] elements for the fluid
velocity and pressure in the fracture region, the Raviart-Thomas RT 1 — P elements for the
Darcy velocity and pressure, the continuous Lagrangian P; elements for the displacement,
and the P& elements for the Lagrange multiplier. We use discontinuous piecewise linears
Pie for the transport equation.

Figure 16 shows the computed velocity field in the reservoir and fracture at the final
time 7" = 100 s. We observe channel-like flow in the fracture region, which concentrates
at the tips. There is also noticeable leak-off into the reservoir. Furthermore, Figure 17
shows the solution we obtained for the concentration at various time moments. We see
the concentration of interested species propagates in accordance with the velocity field,
preferring to move in horizontal directions towards the tips of the fracture. This example
demonstrates the ability of the proposed method to handle irregularly shaped domains with
a computationally challenging set of parameters.

Qualitatively, the solution of the transport equation agrees with the flow. We see how the
interested species tend to propagate in horizontal direction at earlier time steps following the
velocity field of the Stokes flow. However, even with small permeability as in this example,
the contaminant reaches the outer poroelastic structure, and is further transported/diffused

in it.
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Pressure Velocity Displacement, magnitude 000 00 013 020 026
1000.0 1002.5 1005.0 1007.7 0.00 0.02 0.0e+00 4,0e-8 8.0e-8 1.1e-07 — e [—
(a) Velocity over pressure (b) Displacement (c) Stokes velocity field

Figure 16: Example 1, computed velocity and pressure fields.

Concentration Concentration
00 02 04 06 08 10 00 02 04 06 08 10
— | ol — | |
(a) Concentration at ¢ = 10s. (b) Concentration at t = 25s.

Concentration Concentration

00 02 04 06 08 10 00 02 04 06 08 10

. | | d — | |l
(c) Concentration at t = 50s. (d) Concentration at ¢t = 100s.

Figure 17: Example 1, computed concentration solution.
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4.4.2.2 Example 2: flow through fractured reservoir with heterogeneous per-
meability This example continues the idea of the previous test case, while we furthermore
illustrate the ability of the method to handle heterogeneous permeability and Youngs modu-
lus. For this simulation we use the domain €2 that is given by the rectangle [0, 1]m x [—1, 1}m.
A fracture, which represents the fluid domain €2 is then positioned in the middle of the rect-

angle, with the boundaries defined by
2% = 200(0.05 — )(0.05 +y), y € [-0.05,0.05].

The same boundary and initial conditions as in the previous test case are specified, and the
same physical parameters from Table 3 are used, except for the permeability K, the Youngs
modulus E and smaller diffusivity coefficients d,,, = oy = a; = 107° which would allow to see
the contaminant propagating closer to the regions of higher permeability. The permeability
and porosity data is taken from a two-dimensional cross-section of the data provided by the
Society of Petroleum Engineers (SPE) Comparative Solution Project 1.

The computed velocity and displacement solution at the last time step are shown in
Figure 18a and 18b, respectively. Five snapshots of the concentration solution at various time
steps are given in Figure 19. At the early time moments we see how the interested species tend
to stay within the channel-like regions of high permeability, with the contaminant following
the velocity field and escaping the fracture at the tip and two higher permeable regions near
the middle top and bottom of it. At the later times, we see more diffusion occurring in the
poroelastic region, however the overall profile of the contaminant front roughly resembles

the underlying permeability field.

4.4.2.3 Example 3: irregularly shaped fluid-filled cavity Our next two examples
study the behavior of the method on grids that represent poroelastic media with irregularly
shaped fractures filled with free fluid. The boundary conditions are chosen to better represent

the physical setting of the experiment, namely

Pressure drop: pp=1 on I'y, je st

pp = 0 on Fp,right7
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Pressure Velocity Displacement, magnitude

9999 1116.0 12329000 0.38 0.0e+00 6.5e-5 1.3e-04
— =l e — -
(a) Velocity over pressure (b) Displacement field

Figure 18: Example 6, computed velocity and pressure fields.

No flux: u, -n, =0 on 'y op U L'y pottoms

Clamped boundaries: n, -0, =0 on I'y right,

No normal stress: o,n, =0 on I'y, e st

No tangential displacement: M, 7 =0 on I'y top U I'y pottom,

No normal stress: (ofmy) -ng=0 on 't rights
us-7r=0 on I'¢right

The boundary condition for the transport equation ¢;, = 1 along the left boundary I', jc 4.
The physical parameters for this test case are chosen as in the previous example, except for
the permeability, which in this case is K = 1078I. The total simulation time is 10 s, with
time step size At = 0.1 s.

The velocity fields in both poroelastic structure and fracture regions are shown in Figures

20a, 20c while the structure displacement can be seen in Figure 20b. Four snapshots of the
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Concentration Concentration Concentration
000204060810 000204060810 000204060810

(T T - T T T T T

(a) Concentration at t = 0.5s. (b) Concentration at ¢t = 1s. (c) Concentration at t = 2.5s.

Concentration Concentration
000204060810 0002040608 10
e e

(d) Concentration at t = 5s. (e) Concentration at ¢ = 10s.

Figure 19: Example 6, computed concentration solution.

concentration solution at different time moments are shown in Figure 21. As one would

expect, the contaminant follows the flow, and tends to get into the free fluid region through
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the nearest fracture tip. After that, it is transported towards the opening in the right
boundary, following the Stokes velocity profile and with little diffusion happening, which

agrees with the parameters we set for the transport equation.

Pressure Velocity Displacement, magnitude Velocity

00 02 04 06 08 10 000 0.15 0.0e+00 2.6e-8 52e-8 8.2e-08 0.00 0.32 0.64 0.96
| — | o — — —— -
(a) Velocity over pressure (b) Displacement (c) Stokes velocity field

Figure 20: Example 2, computed velocity and pressure fields.

Concentration Concentration Concentration Concentration
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
T— - J— — I

— |l o O — — el |l

(a) Concentration at (b) Concentration at (¢) Concentration at (d) Concentration at
t=1s. = 2.5s. t = bs. t = 10s.

Figure 21: Example 2, computed concentration solution.

4.4.2.4 Example 4: flow through poroelastic media with channel network This
example follows the setup from Example 3, in particular the physical parameters and appro-

priate boundary conditions are the chosen to be the same, except for the boundaries of the
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Stokes region - now they satisfy the following constraints

No normal stress: (ofnyp)-np=0 on I't ight,

us -7 =0 on 'y right ULt 10p,
Injection: us-ny =02 on I'fiest,

us-7p =0 on I't e

The rest of the controls is the same as in Example 3, including initial data, physical param-
eters and the boundary conditions for the transport equation. In this case, the boundary
condition for the contaminant is set over the entire left boundary, including the fluid region,
namely ¢, = 1 on I'gepe U Ty e st

We present the computed velocity fields in poroelastic structure and fracture regions in
Figures 22a, 22¢ and the structure displacement - in Figure 22b. Similarly as before, four
snapshots of the concentration solution at different time moments are shown in Figure 23.
The concentration solution depicts how the interested species are being transported both in
porous medium and in fracture. Due to the significant difference in the velocities, we observe
how the concentration solution propagates along the fluid region, being driven by the Stokes
flow towards the outflow boundaries. It is also important to notice, that some species appear
in the fluid region by tunneling through the interface, and being further quickly transported
towards the outflow. Smaller diffusivity in the fractures, lead to the contaminant front being
much more expressed, to the point where we see two coexisting streams of species in close

proximity to each other being transported by the free fluid (see upper outflow at time t = 5s).

4.4.2.5 Example 5: flow through poroelastic media with fracture network Our
final example how a network of fractures in the porous media affects the flow and concentra-
tion of interested species. The setting for this test case matches the one from the Example 3,
namely we have a pressure drop from left to right, no flow on top and bottom boundaries, the
right boundary is clamped and the outflow regions of the fracture network have no normal
stress boundary conditions specified on them. The physical parameters, initial data and the

transport equation boundary conditions are chosen as in the previous two examples.
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Pressure Velocity Displacement, magnitude Velocity, magnitude
00 02 04 06 08 10 0.00 0.22 0.0e+00 9.0e-9 1.8e-8 2.7e-08 0.00 0.19 0.39 0.58

TR — [Q— — [— — R

(a) Velocity over pressure (b) Displacement (c) Stokes velocity field

Figure 22: Example 3, computed velocity and pressure fields.

The solution of the velocity fields in structure and fracture network regions are visualized
in Figures 24a and 24c, while the displacement of the porous media skeleton is shown in
Figure 24b. We see much higher velocity in the free fluid regions, as one would expect, since
the permeability is chosen to be small in the case and the natural behavior for the fluid
would be to flow through the fractures towards the openings in the right boundary. The
concentration solution at various time moments agrees with the flow solution in a sense that
the contaminant is quickly transported towards the outflow regions by the means of free
fluid. However, due to relatively small size of outflow boundaries, the concentration builds
up in the fracture region and starts to propagate outside of it, this can be seen at the later

times near the right boundary of the domain.
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Concentration Concentration Concentration
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
———— ———— ————

(a) Concentration at ¢t = 1s. (b) Concentration at ¢t = 2.5s. (c) Concentration at ¢t = 5s.

Concentration Concentration Concentration
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
T T — . — T —

(d) Concentration at t = 10s. (e) Concentration at t = 15s. (f) Concentration at ¢t = 25s.

Figure 23: Example 3, computed concentration solution.
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(a) Velocity over pressure (b) Velocity over pressure (c) Stokes velocity field

Figure 24: Example 5, computed velocity and pressure fields.

Concentration Concentration Concentration
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
[ o f— |- o ol

(a) Concentration at t = 1s. (b) Concentration at ¢ = 2.5s. (c) Concentration at t = 5s.
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Concentration Concentration Concentration
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
—l | — —t | — — || —

(d) Concentration at t = 10s. (e) Concentration at ¢t = 15s. (f) Concentration at ¢ = 25s.

Figure 25: Example 5, computed concentration solution.
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5.0 CONCLUSIONS

In this thesis we have studied the interaction of a free fluid with a fluid within a poroelastic
medium. Motivated by a broad range of applications, we developed and analyzed several new
mathematical modeling approaches allowing for robust and efficient numerical simulation
of phenomena arising in FPSI problems. We further coupled the proposed methods with
the transport equation, in order to address such applications as modeling subsurface waste
repositories or underground water contamination.

First, we derived the method for the Stokes-Biot model, in which we used a Lagrange
multiplier to weakly impose the continuity of normal velocity interface condition, which is of
essesntial type in the mixed Darcy formulation. We then showed that the method is stable
and convergent, with optimal order of convergence expected in all variables, even in the case
of non-matching grids across the interface. Computational experiments illustrate that this
method is an effective and robust approach for simulating fluid-poroelastic structure interac-
tion with a wide range of physical parameters, including cases of heterogeneous permeability
and Young’s modulus.

Second, we extended the method to the case of quasi-Newtonian fluids, that possess the
so-called shear-thinning property. The method assumes either unbounded viscosity models,
such as the Power law, or bounded models, such as the Cross and Carreau models. An
alternative formulation was used in order to prove the method’s well-posedness in both fully
continuous and semi-discrete continuous-in-time settings, followed by the justification of
the equivalence of two formulations. We performed convergence studies both theoretically
and numerically, and compared the numerical solution of linear and nonlinear versions of
the method. A realistic test case, which illustrates the application of the method for the

cardiovascular simulations, was also presented.
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Finally, we presented the framework for a coupled FPSI-transport problem, in which the
transport subproblem was solved using the non-symmetric interior penalty (NIPG) Galerkin
method. We performed the analysis of the semi-discrete continuous-in-time formulation, in
which we showed how to obtain the desired stability and convergence properties without
introducing an artificial cut-off operator. This allowed us to use the unmodified computed
velocity field directly in the numerical scheme for transport. We concluded with a range
of computational examples, including the convergence study as well as the realistic cases
simulating flow and concentration of the interested species in the porous and deformable
medium. The latter cases consider the fractured domains, heterogeneous permeability fields
and fracture networks within the poroelastic media.

The potential extensions of this work include a development of parallel non-overlapping
domain decomposition methods and algorithms, as well as multiscale approximations via
coarse mortar spaces. This together with an incorporation of adaptive space—time discretiza-
tion, is believed to lead to a flexible and efficient FPSI framework for complex 3d physical
experiments simulation.  After this command, chapters will be formatted as appendices.

For example:
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APPENDIX

FREEFEM++4 CODE

We first present FreeFem++ code that was used to obtain convergence results for FPSI
model coupled with transport.

Listing A.0.1: FreeFem++ code for coupled FPSI-transport problem

// Load extra files
load ” Element_Mixte”
load "MUMPS”
load ”iovtk”

// Macros

macro div (ax,ay) (dx (ax)+dy (ay)) //

macro cdot (ax,ay,bx,by) (axxbx+tayxby)//

macro tgx(ax,ay) (ax—cdot (ax,ay ,N.x,N.y)*N.x) //
macro tgy(ax,ay) (ay—cdot (ax,ay ,N.x,N.y)*N.y) //

macro Dxx(ax,ay) (diffc)//
macro Dxy(ax,ay) (0.0)//
macro Dyx(ax,ay) (0.0)//
macro Dyy(ax,ay) (diffc)//

int Ttx = —1;
int Tty

I
=)

// Time parameters
real T = 0.0001;
real delt = 0.00001;
int pr = 1;

real t = 0;

func NN T/delt;

// Flags

// true for debuging, mesh plots etc.

bool debug = false;
// true for making .vtk files
bool plotflag = true;

// true for convergence test (output made in reverse order, from finer mesh to

bool converg = true;

// true for interface residual (output made in reverse order, from finer mesh to coarser)

bool intresid = false;
// true for time dependent Stokes
bool timedep = false;
// true if extra plots are needed
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bool extraplot = false;

// Mesh parameters

int m,n,1;

"

)

if (converg
m = 32
1 = 4;
else {
m= 16;
I = m;

}

int number = log(real(m/1))/log(2.0) + 1;
cout << ”"Number of refinement cycles:

int count

int nMeshes = number;

// initial
real [int]
real [int ]
real [int]
real [int ]
real [int]
real [int ]
real [int]
real [int]
real [int ]

errorl =
error2 =
error3 =
errord =
errorb =
error6 =
error7

real [int]
real [int ]
real [int]
real [int]
real [int]

absl =
abs4 =
abs6 =
abs7

)
)

I
cocoo

)
)

real [int]
real [int]
real [int ]
real [int]

error2tmp
error3tmp
errorbtmp
error82tmp

real [int]
real [int ]
real [int]

(=Nl

ize arrays for errors

errorl (nMeshes);
error2 (nMeshes);
error3 (nMeshes);
error4 (nMeshes);
errorb (nMeshes);
error6 (nMeshes);
error7 (nMeshes);
error81 (nMeshes );
error82 (nMeshes);

absl (nMeshes);
abs4 (nMeshes);
abs6 (nMeshes);
abs7 (nMeshes);
abs81 (nMeshes);

error2tmp (NN);
error3tmp (NN);
error5tmp (NN);
error82tmp (NN);

= ;
= )

(el

)
i

condl3left (nMeshes);
cond13right (nMeshes);
displright (nMeshes);

// h—TEST LOOP
for (int n=I;n<=m;n*x=2)

{

t=0;

? << number << endl;



107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

”

string namefluid = ”./paraview”’+string(

”»

7/ fluid”
string namesolidl = ”./paraview”+string ( /structurel_.”;
”

n)+
n)+
string nameql = ”./paraview”+string (n)+” /Darcyl.”;
n)+
n)+

”»

string namesolid2 = ”./paraview”+string ( ?/structure2._”;
” /Darcy2.”;

string nameq2 = ”./paraview”+string (

int[int] labelF [11,12,13,14];
int[int] labelS = [21,22,23,24];

// Fluid and structure regions

mesh ThF = square(n,n, flags=3,label=labelF );

mesh ThS = square(n,n, flags=3,label=labelS);

ThF = change (ThF, fregion=1);

ThS = change (movemesh (ThS, [x,y—1]),fregion=2);

// Global mesh for transport solution
mesh ThG = square(n,2xn, flags=3);
ThG = movemesh (ThG, [x,2xy —1]);

// Mesh for the Lagrange multiplier
mesh ThL = emptymesh (ThS);

// Finite FElement spaces

// Free fluid:

fespace VFh(ThF,[P2,P2,P1]);
// Porous media flow:
fespace VMh(ThS,[RT1,Pldc]);
// Mechanics

fespace VSh(ThS,[P2,P2]);
// Lagrange:

fespace LLh (ThL, Pldc);

VFh [uFx,uFy,pF], [vFx,vFy,wF], [uFoldx,uFoldy,pFold];

VMh [uPx,uPy,pP], [vPx,vPy,wP], [uPoldx,uPoldy,pPold], [dummyX, dummyY,

VSh [etax ,etay], [ksix,h ksiy], [etaoldx,etaoldy];
LLh LAMBDA, MU, LAMBDAoI;

// Physical parameters
// Mechanics
func rohS
func ES
func sigmaS
func lambdaS =
func muS

I
= e

// Stokes region
func rohF = 1.0;
real muF = 1.0

// Darcy region
real alfa =
real alfabjs =
real sO =
real Kxx =
real Kyy
real kappaxx = muF/Kxx
real kappayy = muF/Kyy;

el

// Interface BJS coefficient
real bjs = alfabjsxmuFxsqrt (2)/sqrt (Kxx+Kyy);

// Analytical solution and data
// Stokes wvelocity and its gradient

func ufx0 = pixcos(pi*xt)*x(—3*x+cos(y));
func ufy0 = pixcos(pi*xt)*x(y+1);

func dufll = pixcos(pi*t)*(—3);

func dufl2 = pixcos(pixt)*(—sin(y));
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175 func duf21 = 0;

176 func duf22 = pixcos(pi*t);

177

178 // Stokes pressure

179 func upx0 = —exp(t)*pi*cos(pi*x)*cos(pixy/2);

180 func upy0 = exp(t)*pi/2*sin(pixx)*sin(pixy/2);

181

182 // Darcy velocity divergence

183 func divup = 1.25%xpi*pikexp(t)*sin(pi*x)*xcos(pixy/2);
184

185 // Displacement and its gradient

186 func etax0 = sin(pi*xt)*x(—3xx+cos(y));

187 func etay0 = sin(pixt)*(y+1);

188 func detall = sin(pixt)*(—3);

189 func detal2 = sin(pi*xt)*x(—sin(y));

190 func deta2l = 0;

191 func deta22 = sin(pix*t);

192

193 // Darcy and Stokes pressures

194 func ppOsol = exp(t)*sin(pixx)*xcos(pixy/2);

195 func pfOsol = ppOsol + 2xpixcos(pix*t);

196

197 // Elasticity RHS

198 func ffx = pixcos(pi*t)*xcos(y) + pikexp(t)*cos(pi*x)*cos((pi*xy)/2);
199 func ffy = —(pixexp(t)*sin (pi*x)xsin ((pixy)/2))/2;
200

201 // Stokes RHS

202 func qf = —2xpixcos(pixt);

203 func fpx = sin(pixt)xcos(y) + pixexp(t)*cos(pi*x)*cos((pixy)/2);
204 func fpy = —(pixexp(t)*sin(pi*x)xsin ((pixy)/2))/2;
205

206 // Darcy RHS

207 func qp = exp(t)*cos((pi*xy)/2)*sin(pixx) — 2xpixcos(pix*t)
208 + (5*pi“2%xexp(t)*cos ((pixy)/2)*sin(pixx))/4;
209

210 // Functions to switch between solutions for transport
211 func real divug(real x, real y){

212 if (y > 0)

213 return (pixcos(pi*t)*(—3) 4+ pixcos(pixt));

214 else

215 return 1.25xpixpixexp(t)*sin(pixx)*cos(pixy/2);
216 }

217

218 func real ugx(real x, real y){

219 if (y > 0)

220 return pixcos(pixt)x(—3*x+cos(y));

221 else

222 return —exp(t)*pixcos(pi*x)xcos(pixy/2);

223 }

224

225 func real ugy(real x, real y){

226 if (y > 0)

227 return pixcos(pixt)*(y+1);

228 else

229 return exp (t)*pi/2%sin (pixx)*sin(pixy/2);

230 }

231

232 // Diffusivity coefficient

233 real diffc = le—4;

234

235 // Transport solution and RHS

236 func cf0 = tx*(cos(pixx)+cos(pi*xy))/pi;

237 func rcO = (1/pi)*(1+txdivug(x,y)+t*pixpixdiffc)x(cos(pi*x)+cos(pix*xy))
238 — tx(ugx(x,y)*sin(pi*x) + ugy(x,y)*sin(pi*y));
239

240 // Concentration gradient

241 func gcfOx = —t*sin (pixx);

242 func gcfO0y = —t*sin (pixy);
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243

244 ya

245 * Matriz assembly, Stokes region

246 x/

247 varf BCin ([uFx,uFy,pF],[vFx,vFy,wF],init=1)

248 = int2d (ThF) ( ffx*vFx + ffy*vFy) + int2d (ThF)(qf*wF)

249 + on(12,13,14 ,uFx=ufx0, uFy=ufy0);

250

251 varf MASSFsum ([uFx,uFy,pF]|,[vFx,vFy,wF],init=1)

252 = int2d (ThF) ((timedep*rohF /delt )*cdot (uFx,uFy,vFx,vFy))
253 + on(12,13,14 ,uFx=ufx0, uFy=ufy0);

254 matrix MASSF = MASSFsum(VFh,VFh);

255

256 varf AFsum ([uFx,uFy,pF]|,[vFx,vFy,wF], init=1)

257 = int2d (ThF) (2.0*muFx(dx (uFx)*dx(vFx) + dy(uFy)*dy(vFy)))
258 + int2d (ThF) (muF*((dy (uFx)+dx (uFy))*dy(vFx) + (dy(uFx)+dx(uFy))*dx(vFy)));
259 matrix AF = AFsum(VFh,VFh);

260

261 varf ABJSlsum ([uFx,uFy,pF],[vFx,vFy,wF],init=1)

262 = intld (ThF,11)(bjs*(cdot( uFx,uFy,Ttx,Tty)*cdot (vFx,vFy,Ttx,Tty)));
263 matrix ABJS1 = ABJSlsum(VFh,VFh);

264

265 varf BPFTsum([uFx,uFy,pF]|,[vFx,vFy,wF],init=1)

266 = — int2d (ThF) (pFxdiv (vFx,vFy));

267 matrix BPFT = BPFTsum(VFh,VFh);

268

269 varf BPFsum([uFx,uFy,pF]|,[vFx,vFy,wF],init=1)

270 = int2d (ThF) (wFxdiv (uFx,uFy));

271 matrix BPF = BPFsum(VFh, VFh);

272

273 matrix FF = ABJSIHAF{BPF{BPFT+MASSF;

274

275 /%

276 * Matriz assembly, Stokes—Biot communication

277 )/

278 varf ABJS2Tsum ([etax ,etay],[vFx,vFy,wF],init=1)

279 = — intld (ThF,11)(bjs*(1.0/delt)*cdot (etax ,etay ,Ttx,Tty) * cdot(vFx,vFy, Ttx,Tty));
280 matrix ABJS2T = ABJS2Tsum(VSh,VFh);

281

282 varf BGITsum ([LAMBDA] , [vFx,vFy,wF],init=1)

283 = —int1d (ThL,23) (LAMBDAxcdot (vFx,vFy ,N.x,N.y));

284 matrix BGIT = BG1Tsum(LLh,VFh);

285

286 matrix FS = [[ABJS2T, BGIT]];

287

288 ya

289 * Matriz assembly, Darcy terms

290 x/

291 varf BCinM ([uPx,uPy,pP],[vPx,vPy,wP], solver=UMFPACK, init=1)
292 = int2d (ThS) (gp*wP)

293 — intl1d (ThS,21,22,24)(cdot (ppOsol ,pp0Osol ,vPx*N.x,vPy*N.y));
294

295 varf AQsum ([uPx,uPy,pP],[vPx,vPy,wP],init=1)

296 = int2d (ThS) (cdot (kappaxx*uPx, kappayy*uPy,vPx,vPy))

297 + int2d (ThS) (1.e—8%pP*wP);

298 matrix AQ = AQsum(VMh,VMh);

299

300 varf BPQTsum ([uPx,uPy,pP],[vPx,vPy,wP],init=1)

301 = —int2d (ThS) (1*pPxdiv (vPx,vPy));

302 matrix BPQT = BPQTsum(VMh,VMh);

303

304 varf BPQsum ([uPx,uPy,pP]|,[vPx,vPy,wP],init=1)

305 = int2d (ThS) (1*wPxdiv (uPx,uPy));

306 matrix BPQ = BPQsum(VMh,VMh);

307

308 varf MASSPsum ([uPx,uPy,pP] ,[vPx,vPy,wP],init=1)

309 = int2d (ThS)((s0/delt )*(wP*pP));

310 matrix MASSP = MASSPsum(VMh,VMh) ;
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311

312 matrix MM = AQ + BPQT + BPQ + MASSP;

313

314 /%

315 * Matriz assembly, Darcy—Biot communication

316 %/

317 varf BSPTsum([etax ,etay]|,[vPx,vPy,wP],init=1)

318 = int2d (ThS)(( alfa/delt)*wPxdiv (etax ,etay));

319 matrix BSPT = BSPTsum(VSh,VMh);

320

321 varf BG2Tsum ([LAMBDA] , [vPx,vPy,wP],init=1)

322 = intld (ThL,23) (LAMBDAx*cdot (vPx,vPy ,N.x,N.y));

323 matrix BG2T = BG2Tsum(LLh,VMh);

324

325 matrix MS = [[BSPT, BG2T]];

326

327 /*

328 * Matriz assembly, Biot—Stokes communication

329 /

330 varf ABJS2sum ([uFx,uFy,pF],[ksix, 6 ksiy],init=1)

331 = —int1d (ThS,23)( bjs*cdot (uFx,uFy, Ttx, Tty)*cdot (ksix , ksiy ,Ttx, Tty ));
332 matrix ABJS2 = ABJS2sum (VFh,VSh);

333

334 varf BGlsum ([uFx,uFy,pF],[MU], init=1)

335 = —int1d (ThL,23) (MUxcdot (uFx,uFy ,N.x,N.y));

336 matrix BGl = BGlsum(VFh,LLh);

337

338 matrix SF = [[ABJS2],[BG1]];

339

340 ya

341 * Matriz assembly, Biot—Darcy communication

342 x/

343 varf BSPsum ([uPx,uPy,pP],[ksix, ksiy],init=1)

344 = —int2d (ThS) ( alfa*pPxdiv (ksix , ksiy ));

345 matrix BSP = BSPsum(VMh, VSh);

346

347 varf BG2sum ([uPx,uPy,pP] ,[MU],init=1)

348 = int1ld (ThL,23) (MUxcdot (uPx,uPy ,N.x,N.y));

349 matrix BG2 = BG2sum(VMh,LLh);

350

351 matrix SM = [[BSP],[BG2]];

352

353 /x

354 * Matrixz assembly, Biot terms

355 */

356 varf BCinS ([etax ,etay],[ksix , ksiy],solver=UMFPACK, init=1)
357 = int2d (ThS) (fpx*ksix + fpyxksiy) + on(21,22,24 etax=etax0, etay=etay0);
358

359 varf ASsum ([etax ,etay],[ksix,6 ksiy],init=1)

360 = int2d (ThS)(2.0*muSx(dx(etax)*dx(ksix) + dy(etay)xdy(ksiy)))
361 4+ int2d (ThS) (muSx*((dy(etax) + dx(etay))*dy(ksix)

362 + (dy(etax) + dx(etay))*dx(ksiy) ))

363 + int2d (ThS) ((lambdaS)*(dx(ksix )*dx(etax)+dy(ksiy )*dx(etax)
364 + dx(ksix)xdy(etay)+dy(ksiy)*dy(etay))) + on(21,22,24,etax=etax0, etay=etay0);
365 matrix AS = ASsum(VSh,VSh);

366

367 varf ABJS3sum ([etax ,etay],[ksix,6 ksiy],init=1)

368 = int1d (ThS,23)(bjs*(1.0/delt )*xcdot (etax ,etay ,Ttx, Tty)*cdot (ksix , ksiy ,Ttx,Tty));
369 matrix ABJS3 = ABJS3sum(VSh,VSh);

370

371 varf BG3Tsum ([LAMBDA] , [ ksix , ksiy], init=1)

372 = intld (ThL,23) (LAMBDAxcdot (ksix , ksiy ,N.x,N.y));

373 matrix BG3T = BG3Tsum(LLh,VSh);

374

375 varf BG3sum([etax,etay],[MU], init=1)

376 = int1d (ThL,23)(MUx(1/delt)*cdot (etax ,etay ,N.x,N.y));
377 matrix BG3 = BG3sum(VSh,LLh);

378
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379 // Technical stabilization term due to implementation of ThL
380 varf TECHsum ([LAMBDA] ,[MU] , init=1)

381 = int2d (ThL) (1.e—13+LAMBDA*MU) + int1d (ThL,22,21,24)(1.e—13+LAMBDA*MU);
382 matrix TECH = TECHsum(LLh,LLh);

383 matrix tmpl0 = AS + ABJS3;

384

385 matrix SS=|

386 [tmpl10, BG3T],

387 [BG3 , TECH]];

388

389 /¥

390 * ”0ld” matrices, to speedup the time loop

391 */

392 L1111 1111010 00710107 007107107 00070700 000 101010070100 000700000 100000001007000101000001717007
393 varf MASSFsumold ([ uFoldx ,uFoldy ,pFold] ,[vFx,vFy ,wF],init=1)
394 = int2d (ThF) ((timedep*rohF /delt )xcdot (uFoldx ,uFoldy ,vFx,vFy));
395 matrix MASSFold = MASSFsumold (VFh, VFh);

396 matrix FFold = MASSFold;

397

398 varf ABJS2Tsumold ([etaoldx , etaoldy ] ,[vFx,vFy,wF], init=1)

399 = —int1ld (ThF,11)(bjs*(1.0/delt )*cdot (etaoldx ,etaoldy ,Ttx,Tty)*cdot (vFx,vFy, Ttx,Tty));
400 matrix ABJS2Told = ABJS2Tsumold (VSh,VFh);

401 matrix tmp2 = 0xBGIT;

402 matrix FSold = [[ABJS2Told, tmp2]];

403

404 varf MASSPsumold ([ uPoldx ,uPoldy ,pPold] ,[vPx,vPy,wP], init=1)
405 = int2d (ThS) ((s0/delt )*(wPxpPold));

406 matrix MASSPold = MASSPsumold (VMh,VMh) ;

407

408 matrix MMold = MASSPold;

409

410 varf BSPTsumold ([etaoldx ,etaoldy ] ,[vPx,vPy,wP],init=1)

411 = int2d (ThS) (( alfa/delt )*xwPxdiv (etaoldx ,etaoldy));

412 matrix BSPTold = BSPTsumold (VSh,VMh);

413

414 matrix tmp3 = 0xBG2T;

415

416 matrix MSold = [[BSPTold, tmp3]];

417 matrix MSmonoold = [[BSPTold, tmp3]];

418

419 varf ABJS3sumold ([etaoldx ,etaoldy ] ,[ksix ,ksiy],init=1)

420 = int1d (ThS,23)(bjs*(1.0/delt )xcdot (etaoldx ,etaoldy ,Ttx,Tty)*cdot (ksix , ksiy ,Ttx,Tty));
421 matrix ABJS30ld = ABJS3sumold (VSh,VSh);

422

423 varf BG3sumold ([etaoldx ,etaoldy],[MU],init=1)

424 = intld (ThL,23) (MUx(1/delt)*cdot (etaoldx ,etaoldy ,N.x,N.y));
425 matrix BG3old = BG3sumold (VSh,LLh);

426 matrix tmp4 = 0xBG3T;

427

428 matrix SSold=[[ABJS30ld, tmp4],

429 [BG3old , 0 ]];

430

431 ya

432 * System matrices

433 x/

434 matrix mono=|

435 [ SS, SM, SF],

436 [ MS, MM, 0 ],

437 [ FS, 0 , FF |

438 B

439

440 matrix monoold=]

441 [ SSold, 0O , 0 ],

442 [ MSold, MMold, 0 ],

443 [ FSold, 0 , FFold]

444 I

445

446 /x
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447 * Initialize solution and RHS vectors

448 %/

449 real [int] xxf(FF.n),xxfold (FF.n);

450 real [int] xxml(MM.n),xxmlold(MMold.n);

451 real [int] xxsl1(AS.n),xxslold(AS.n);

452 real [int] xx11(TECH.n),xxllold (TECH.n),xxllmono(TECH.n);
453 real [int] pfakel (TECH.n);

454 pfakel = 0;

455

456 /*

457 *x Assemble RHS

458 %/

459 varf 1 (unused,VFh) = BCin;

460 varf IM(unused,VMh) = BCinM;

461 varf 1S (unused,VSh) = BCinS;

462

463 // Counter to plot each br—th time step

464 int br = 1;

465

466 [uFx,uFy,pF] = [ufx0,ufy0,pfOsol];

467 [uPx,uPy,pP] = [upx0,upy0,ppOsol];

468 [etax ,etay] = [etax0,etay0];

469 LAMBDA = ppOsol;

470

471 // Plot parameters (vector/scalar)

472 int [int] fforderl = [1,0];

473 int [int] fforder2 = [1,0,1];

474

475 // Initialization and initial conditions

476 xxf = 0;

477 xxm1l = 0;

478 xxs1 = 0;

479 xxfold = uFx[];

480 xxmlold = uPx|[];

481 xxslold = etax [];

482 xx1lold = LAMBDA[];

483

484 // The solution is a block vector (Elasticity—Lambda—Darcy—Stokes)
485 real [int] xx = [xxsl,xx1l ,xxml, xxf];

486 real [int] xxold = [xxslold,xxllold ,xxmlold, xxfold ];
487 xx = 0.0;

488

489 // Initialize error vectors

490 error4 [count] = 0;

491 errorl [count] = 0;

492 errorb [count] = 0;

493 error81 [count]| = 0;

494 error82[count| = 0;

495

496

497 ya

498 * Transport problem setup and assembly

499 *

500 // Global space for welocities and concentration
501 mesh inTh = ThF + ThS;

502 mesh Th = ThG;

503

504 fespace VGh (Th, [P2dc, P2dc]);

505 fespace inVGh (inTh, [P2dc, P2dc]);

506 VGh [uTx,uTy], [vTx, vTy];

507 inVGh [inuTx,inuTy], [invTx, invTy];

508

509 // Project the sum of Stokes and Darcy velocities onto the global space VGh
510 problem proj ([inuTx,inuTy], [invTx,invTy], solver=CQ)
511 = int2d (inTh)(cdot (inuTx,inuTy,invTx,invTy))
512 — int2d (inTh,2)( cdot (uPx,uPy,invTx,invTy))
513 — int2d (inTh,1) (cdot (uFx,uFy,invTx ,invTy))
514 4+ on(21,22,24, inuTx=uPx, inuTy=uPy)
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553
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4+ on(12,13,14, inuTx=uFx, inuTy=uFy);

// Transport FE spaces
fespace CFh(ThF, P2dc);
fespace CSh(ThS, P2dc);
CFh cF ,wFF, cFold;
CSh ¢S ,wS, cSold;

// Physical parameters for transport

func s = 0.0;
func sigmae = 10000.0;
real beta = 1.0;
real tau = 1.0;
real Dm = 1.0;

real alphal
real alphat =
real qq =

°g¥

)

)

func real Cin(real x, real y){
return cf0;
}

func real phi(real x, real y){
return 1;
}

func real CO(real x, real y){
return cf0;
}

cFold = CO(x,y);
cSold = CO(x,y);
real magnitude = sqrt (uTx"2 + uTy"2);

/*
* Transport problem
*/
problem concentrationDGFluid (cF,wFF,solver=sparsesolver) =
int2d (ThF) ((1/delt)*phi(x,y)*cF*wFF ) — int2d (ThF)((1/delt)*phi(x,y)*cFold*wFF)
— int2d (ThF) (rcO*wFF) + int2d (ThF) (((Dxx(uFx,uFy)*dx(cF) 4+ Dxy(uFx,uFy)xdy(cF)
—cFxuFx)*dx (wFF) + (Dyx(uFx,uFy)+dx(cF) + Dyy(uFx,uFy)*xdy(cF) — cF*xuFy)xdy(wFF)))
— intalledges (ThF)(((1 — nTonEdge)*mean ((Dxx(uFx,uFy)*dx(cF)
+ Dxy(uFx,uFy)*dy(cF))*«N.x 4+ (Dyx(uFx,uFy)=*dx(cF)
+ Dyy (uFx,uFy)«dy(cF))*N.y)+*jump (wFF)))
+ intalledges (ThF) (((1 — nTonEdge)*mean ((Dxx(uFx,uFy)x*dx (wFF)
+ Dxy(uFx,uFy)*dy (wFF))=*N.x
+ (Dyx(uFx,uFy)*dx (wFF) + Dyy(uFx,uFy)*dy (wFF))*N.y)*jump(cF)))
intalledges (ThF)((1 — nTonEdge)*(uFx*N.x + uFy=«N.y)*jump (wFF)
*((0 < (uFx#N.x + uFy#N.y))#*(mean(cF) — 0.5%xjump(cF))))
intalledges (ThF)((1 — nTonEdge)* (uFx*N.x+uFy=«N.y)*jump (wFF)
*((0 > (uFx*N.x + uFy*N.y))#*(mean(cF) 4+ 0.5%xjump(cF))))
intalledges (ThF)((1 — nTonEdge)*(sigmae/hTriangle " beta)*jump (cF)*jump (wFF))
intld (ThF) (((N.x*uFx 4+ N.y*uFy) < 0)*Cin(x,y)*(uFx*N.x + uFy*N.y)*wFF)
intld (ThF) (( (N.x*uFx 4+ N.y*uFy) > 0)*(uFx*N.x + uFy*N.y)*cF+«wFF);

+++ o+ o+

problem concentrationDGStruct (cS,wS,solver=sparsesolver) =
int2d (ThS)((1/delt )*phi(x,y)*cS*wS) — int2d (ThS)((1/delt)*phi(x,y)*xcSold*wS)
— int2d (ThS) (rc0 * wS) + int2d (ThS) (((Dxx(uPx,uPy)*dx(cS) + Dxy(uPx,uPy)*dy(cS)
— cS*uPx)*dx(wS) + (Dyx(uPx,uPy)*dx(cS) + Dyy(uPx,uPy)*dy(cS) — cS*uPy)*dy(wS)))
— intalledges (ThS)(((1 — nTonEdge)s*mean ((Dxx(uPx,uPy)*dx(cS)
+ Dxy(uPx, uPy)xdy (cS))#N.x + (Dyx(uPx,uPy)xdx(cS)
+ Dyy(uPx,uPy)*dy(cS))*N.y)*jump(wS)))
+ intalledges (ThS)(((1 — nTonEdge)*mean ((Dxx(uPx,uPy)*dx(wS)
+ Dxy(uPx,uPy)*dy(wS))=*N.x
+ (Dyx(uPx,uPy)*dx(wS) + Dyy(uPx,uPy)*dy(wS))*N.y)*jump(cS)))
+ intalledges (ThS)((1 — nTonEdge)*(uPx«N.x + uPy*N.y)=jump (wS)
*((0 < (uPx*N.x + uPy*N.y))*(mean(cS) — 0.5%jump(cS))))
+ intalledges (ThS)((1 — nTonEdge)*(uPx*N.x + uPy*N.y)*jump (wS)
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583 *((0 > (uPx*N.x + uPy#N.y))#*(mean(cS) + 0.5%xjump(cS))))

584 + intalledges (ThS)((1 — nTonEdge)*(sigmae/hTriangle beta)*jump (cS)*jump(wS))
585 + intld (ThS) (((N.x*uPx + N.y*uPy) < 0)*Cin(x,y)*(uPx*N.x + uPy*N.y)*wS)
586 + int1d (ThS) (((N.x*uPx + N.y*uPy) > 0)*(uPx*N.x + uPy*N.y)*cS*wS);
587

588 /x

589 * Time loop

590 x/

591 for (int k=1;k<=NN;++k){

592 t=t+delt ;

593

594 // Initial values

595 real [int] Pinvec = 1(0,VFh);

596 real [int] PinvecM = IM(0,VMh);

597 real [int] PinvecS = 1S (0,VSh);

598

599 // Right—hand side

600 real[int] b = [PinvecS, pfakel ,PinvecM, Pinvec];

601 b 4= (monoold*xxold);

602 [dummyX,dummyY ,dummyP] = [uFx,uFy,pF];

603

604 etaoldx [] = etax[];

605

606 // Solve flow problem

607 set (mono, solver=sparsesolver );

608 xx = mono —1 % b;

609

610 xxold = xx;

611 [xxs1,xx11 ,xxml, xxf] = xx;

612

613

614 uFx [] = xxf;

615 uPx[] = xxml;

616 etax [] = xxsl;

617 LAMBDA[] = xxI1;

618

619 // Solve transport problem

620 concentrationDGFluid;

621 concentrationDGStruct;

622

623 cFold [] = c¢F[];

624 cSold [] = ¢S |[];

625

626 // Continuity of fluz (residual)

627 if (k = NN){

628 cond13left [count] = intld (ThF,1)((1/delt)*cdot(etax ,etay ,N.x,N.y)
629 —(1/delt )xcdot (etaoldx , etaoldy ,N.x,N.y));
630 }

631

632

633 fespace Vh1(ThF,P1);

634 fespace VhS(ThS,P1);

635

636 Vhl pf;

637 pf = pF;

638 VhS ppl;

639 ppl = pP;

640

641 if (k % 10 = 0)

642 cout << k << 7 iterations out of ” << NN << endl;

643

644 // Output .vtk files

645 if (k%pr = 0&&plotflag){

646 br=br+1;

647

648 savevtk (" paraview/fracture”+string (n)+” -”+string (br)+” . vtk”,
649 ThF, [uFx,uFy,0],pF,order=fforderl ,dataname=" Velocity Pressure”);
650 savevtk (" paraview/TrueTransport”’+string (n)+” _"+string (br)+” . vtk”,
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651 Th, [uTx,uTy,0],cf0,order=fforderl ,dataname=" Velocity Concentration”);
652 savevtk (" paraview/structure”+string (n)+” -”+string (br)+” . vtk”,

653 ThS, [uPx,uPy,0],pP,[etax,etay 0], order=fforder2,

654 dataname=" Velocity Pressure Displacement” );

655 }

656

657 // Error functions

658 VFh [ttx ,tty,ttp] = [ufx0,ufy0,pfOsol];

659

660 VFh [eufx ,eufy,epf] = [ufx0 — uFx, ufy0 — uFy, pfOsol — pF]J;

661 VFh [rufx ,rufy,rpf] = [ufx0, ufy0, pfOsol];

662

663 VMh [euplx,euply,epl] = [upx0 — uPx, upy0 — uPy, ppOsol — pP];

664 VMh [ruplx,ruply,rpl] = [upx0, upyO, ppOsol];

665

666 VSh [detallx , detal2y] = [dx(etax) ,dy(etax)];

667 VSh [deta2lx ,deta22y] = [dy(etax),dy(etay)];

668

669 VSh [eetax ,eetay] = [etax0 — etax, etay0 — etay];

670 VSh [retax ,retay] = [etax0, etayO];

671

672 // Output .vtk files with errors

673 if (extraplot){

674 savevtk (" GradDispl”+string (n)+” -"+string (br)+”.vtk” , ThS,

675 [detallx ,detal2y ,0] ,pP,[deta2lx,deta22y ,0],order=fforder2 ,

676 dataname="Gradl P Grad2”);

677 savevtk (” GradDisplTrue”+string (n)+” -”+string (br)+” . vtk”, ThS,

678 [detall ,detal2,0],pP,[deta2l,deta22,0],

679 order=fforder2 ,dataname="Gradl P Grad2”);

680 savevtk (” ErrorDispl”’+4string (n)+” -”+string (br)+” . vtk” , ThS,

681 [eetax ,eetay ,0] ,pP,

682 order=fforderl ,dataname="Error P ”);

683 savevtk (” ErrorStokes”+string (n)+” -”+string (br)+” . vtk” , ThF,

684 [eufx ,eufy ,0], epf,order=fforderl ,dataname="ErrorVel ErrorPres 7);
685 savevtk (? ErrorDarcy”+string (n)4+” -”+string (br)+” . vtk” , ThS,

686 [euplx ,euply,0] ,epl,order=fforderl ,dataname="ErrorVel ErrorPres ”);
687 }

688

689 LLh elambda = 1.0;

690 LLh rlambda = 1.0;

691

692

693 // Compute L2 in time errors and absolute values

694 errorl [count] += int2d (ThF)( (dx(uFx) — dufll)"2 4+ (dy(uFy) — duf22)°2
695 + (dx(uFy) — duf21)"2 + (dy(uFx) — dufl2)"2 );

696 absl[count ] += int2d (ThF)( dufll”"2 4+ dufl2"2 + duf21°2 + duf22°2 );
697

698 errord [count | += int2d (ThS)( (uPx — upx0)"2 + (uPy — upy0)°"2 );

699 abs4 [count ] += int2d (ThS)( upx0"2 + upy0~2 );

700

701 error6 [count] += int2d (ThL)( 1.0 );

702 abs6 [ count ] += int2d (ThL)( 1.0 );

703

704 error7 [count | += int2d (ThF)( (pF — pfOsol)"2 );

705 abs7 [count ] += int2d (ThF)( pf0sol”2 );

706

707 error81 [count]| 4= int2d (ThF)( (dx(cF)—gcf0x) "2 + (dy(cF)—gcfly) 2 )
708 + int2d (ThS)( (dx(cS)—gcfOx)"2 + (dy(cS)—gcfly) "2 );
709 abs81 [count ] += int2d (ThF)( gcf0x"2 + gcfOy "2 )

710 + int2d (ThS)( gcf0x"2 + gcfly "2);

711

712 error2tmp [k—1] = (int2d (ThS)( (ppOsol — pP)"2 )) / (int2d(ThS)( ppOsol”2 ));
713 error5tmp [k—1] = (int2d (ThF)( (ufx0 — uFx)"2 + (ufy0 — uFy)"2 ))

714 / (int2d (ThF)( ufx0°2 + ufy0°2 ));

715

716 error3tmp [k—1] = (int2d (ThS)( (dx(etax) — detall)"2 + (dy(etay) — deta22)"2
717 + (dx(etay) — deta21)"2 + (dy(etax) — detal2)"2 )) /
718 (int2d (ThS)( detall”"2 4+ deta22°2 + detal2"2 + deta2172 ));
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error82tmp [k—1] (int2d (ThF) ( (cf0 — cF)"2 ) + int2d(ThS) ( (cf0 — ¢S) 2 ))

7 (int2d (ThF)( cf0"2 ) + int2d (ThS)( cf0"2 ));

}

error2 [count] = error2tmp .max;
error3 [count| = error3tmp .max;
errorb [count] = error5tmp .max;
error82 [count] = error82tmp .max;

count += 1;

}

// Errors to output
real [int] errl(nMeshes)
real [int] err2(nMeshes);
real [int] err3(nMeshes);
)
)
)

)

)

real [int] err4 (nMeshes
real [int] err5(nMeshes
real [int] err6 (nMeshes
real [int] err7(nMeshes);
real [int] err81 (nMeshes);
real [int] err82(nMeshes);
// initialize rate arrays
real [int] ratel (nMeshes);
real [int] rate2(nMeshes);
real [int] rate3(nMeshes);
real [int] rated4 (nMeshes);

(

(

)
)

real [int] rate5(nMeshes);
real [int] rate6(nMeshes);
real [int] rate7(nMeshes);
real [int] rate81 (nMeshes);
real [int] rate82(nMeshes);

for (int k=0; k<errorl.n; 4++k){
cout.precision (8);
cout.scientific << errorl(k) << 7 7 << error4(k) << 7 ” << error7(k) << endl;

cout << nMeshes << 7 7 << errorl.n << endl;

for (int k=0; k<errorl.n; 4++k){
// Fluid velocity HI in space L2 in time
errl (k) = sqrt(errorl(k)/absl(k));
// Fluid pressure L2 is space L2 in time
err7(k) = sqrt(error7(k)/abs7(k));
// Darcy velocity L2 in space L2 in time
errd (k) = sqrt(errord(k)/abs4(k));
// Darcy pressure L2 in space l—infinity in time
err2 (k) = sqrt(error2(k));
// Displacement HI in space l—infinity
err3 (k) = sqrt(error3(k));
// Fluid wvelocity L2 in space l—infinity in time
err5(k) = sqrt(error5(k));
// Transport errors
err81 (k) = sqrt(error81(k)/abs81(k));
err82 (k) = sqrt(error82(k));

// If non—relative errors are needed
// errl(k) = sqrit(errorli(k)/1.0);
// Darcy pressure L2 in space l—infinity in time

// err2(k) = sqrt(error2(k));
// Displacement HI in space l—infinity

// err8(k) = sqrt(error3(k)/1.0);
// Darcy wvelocity L2 in space L2 in time

// err4 (k) = sqrt(error4(k)/1.0);
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//

Fluid pressure L2 is space L2 in time

// err7(k) = sqrt(error?7(k)/1.0);
// Fluid wvelocity L2 in space l—infinity in time
// err5(k) = sqrt(error5(k));
// Lagrange mult
// err6(k) = sqrt(error6(nMeshes—k—1));
if (k= 0){
ratel (k) = 0.0;
rate2(k) = 0.0;
rate3 (k) = 0.0;
rated (k) = 0.0;
rate5 (k) = 0.0;
rate7 (k) = 0.0;
rate81(k) = 0.0;
rate82(k) = 0.0;
else{
ratel (k) = log(errl(k—1)/errl(k))/log(2.0);
rate2 (k) = log(err2(k—1)/err2(k))/log(2.0);
rate3 (k) = log(err3(k—1)/err3(k))/log(2.0);
rate4 (k) = log(errd (k—1)/errd(k))/log(2.0);
rate5 (k) = log(err5(k—1)/err5(k))/log (2.0);
rate7 (k) = log(err7(k—1)/err7(k))/log(2.0);
rate81(k) = log(err81(k—1)/err81(k))/log (2.0);
rate82 (k) = log(err82(k—1)/err82(k))/log(2.0);
}

}

// Output errors
if (converg){

matrix errors=[[(errl), (ratel), (err2), (rate2), (err3), (rate3),
(err5), (rateb5), (err7), (rate7)]];
{
ofstream errOut(” errorsrates.txt”);
errOut<<errors;
}
matrix errorsl=[[(errorl), (error2), (error3), (error4d), (errorb),
ofstream errout (”errors.txt”);
errout << errorsl;
}

}

// Output interface residuals:
if (intresid){
matrix flux=[[cond13left]];

{

}

ofstream fluxOut (” flux.txt”);
fluxOut <<flux ;

// Print results

cout <<

”

(errd), (rated),

(error7)]];

cout << ”"Errors and rates” << endl;
cout << " |u_f(H1)|” << 7 rate 7
<< 7| p-f(L2)|” << 7 rate ”

<< 7 |u-p(L2

? << 7 rate ”

)|
<< ”|p,p(L2)|” << " rate »
)|

<< 7 |eta(H1

7 <<V rate ?

<< endl;
for (int i=0; i<errl.n; i4++){

//

Stokes wvelocity

cout. precision (3);
cout.scientific << errl[i] << 7 7;
cout.precision (1);
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cout. fixed << ratel[i] << 7 7

// Stokes pressure
cout.precision (3);

cout.scientific << err7[i] << ” 7;
cout.precision (1);

cout. fixed << rate7[i] << 7 7

// Darcy velocity

cout. precision (3);

cout.scientific << errd[i] << 7 7;
cout.precision (1);

cout . fixed << rated[i] << 7 7;

// Darcy pressure

cout. precision (3);

cout.scientific << err2[i] << ” 7;
cout.precision (1);

cout . fixed << rate2[i] << 7 7;

// Displacement
cout.precision (3);

cout.scientific << err3[i] << 7 7;
cout.precision (1);

cout. fixed << rate3[i] << 7 7

// Transport L2—L2
cout.precision (3);

cout.scientific << err81[i] << 7 7
cout.precision (1);

cout . fixed << rate81[i] << ” 7
// Transport L8—L2
cout.precision (3);

cout.scientific << err82[i] << 7 7
cout.precision (1);

cout . fixed << rate82[i] << ” 7
cout << endl;

We also briefly discuss how to modify the code to model non-Newtonian flow. To avoid
duplication, we only focus on the part of the code corresponding to the time loop, where
we now assemble the nonlinear terms and use Picard iterations. The setup is as in the
convergence studies for the non-Newtonian model.

Listing A.0.2: Part of FreeFem++ code to account for nonlinear viscosity

//Macro for Cross model in both regions
macro nuF(ax,ay) (nuFinf 4+ (nuFO—nuFinf)/(14+Kfsxsqrt(dx(ax)"2 + dy(ay)" 2

+0.5%(dy (ax)+dx(ay))"2))) //
macro nuP(ax,ay) (nuPinf + (nuPO—nuPinf)/(1+Kp*sqrt(ax"2 + ay~2))) //

// Viscosity parameters

func nuF0 = 10.0;
func nuFinf = 1.0;
func Kf = 1.0;

func nuPO =1
func nuPinf = 1.
func Kp =1
func mc =1

/*
* Time loop
*

for (int k=1;k<=NN;++k){

// Parameters for Picard iterations
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real tol = le—6;

int maxiter = 50;
int iter = 0;
real epsln = 10;

// Picard iterations
while(epsln > tol && iter < maxiter){
// Assemble nonlinear Stokes term
varf AFsum ([uFx,uFy,pF],[vFx,vFy,wF])
= int2d (ThF) (nuF (uFprevx ,uFprevy ) * (dx (uFx)*dx (vFx)
+ dx(uFy)*dx(vFy)+dy (uFx)*dy (vFx)+dy (uFy)*dy (vFy)));
matrix AF = AFsum(VFh,VFh);
matrix FF = ABJS1 + AF + BPF + BPFT + MASSF;

// Assemble monlinear Darcy term

varf AQsum([uPx,uPy,pP],[vPx,vPy,wP]) = int2d (ThS)(nuP (uPprevx ,uPprevy)
xcdot (kappaxx*uPx, kappayy*uPy,vPx,vPy))
+ on(21,23,uPy=0,uPx=0) + on(22,uPx=1,uPy=0);

matrix AQ = AQsum(VMh,VMh);
matrix MM = AQ + BPQT + BPQ + MASSP;

// Assemble final matriz

matrix mono = [[SS, SM , SF],
[ MS, MM , 0 ],
[ FS, 0 , FF ]|;

// Solve flow problem

set (mono, solver=sparsesolver );
xx = mono —1 *x b;

[xxslmono ,xxmlmono, xxfmono| = xx;

uFx[] = xxfmono;
uPx[] = xxmlmono;
etax [] = xxslmono;

// Compute residual
epsln = int2d (ThF) ((uFx —uFprevx)"2
+ int2d (ThS) ((uPx —uPprevx)"2

+ (uFy — uFprevy)~2)
+ (uPy — uPprevy) 2);

xxold = XX;
uFprevx [] = uFx[];
uPprevx [] = uPx|[];

// Print residual
cout << 7 Epsilon: 7 << epsln << endl;
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