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HYDRAULIC FRACTURE INITIATION AND PROPAGATION UNDER

SUBCRITICAL CONDITIONS

Guanyi Lu, PhD

University of Pittsburgh, 2018

Multi-stage hydraulic fracturing (HF) is an essential technology for completion of horizontal

wells in unconventional hydrocarbon reservoirs. In engineering design for multi-stage HF

treatments of horizontal well stimulation, it is ideal to promote simultaneous growth of all

fractures in each stage in order to reduce the number of non-producing perforation clusters.

While increased attention has been given to studies of multiple HF growth, subcritical crack

growth is not typically considered as a factor affecting the HF process. However, laboratory

experiments have shown that subcritical crack growth plays a pivotal role in the initiation

of hydraulic fracture(s).

Inspired by laboratory observations, this research is aimed at the study of the behavior of

single/multiple hydraulic fracture(s) under subcritical growth conditions. This work consists

of three main parts. First, a numerical model accounting for the subcritical crack growth is

developed for simulating the initiation and propagation of single hydraulic fracture. It is seen

that subcritical crack growth leads to significant changes in both the evolution of crack length

and the wellbore peak pressure. Then, this model is extended to the case of simultaneous

growth of multiple hydraulic fractures. A parametric study is carried out to investigate the

competition between the effect of stress shadowing and subcritical crack growth. Finally,

laboratory HF experiments are performed to explore the occurrence of time-dependent HF

initiation in various rocks.

By showing the existence of time-dependent HF initiation and explaining that its un-

derlying mechanism is due to the stable growth of the hydraulic fracture under subcritical

iv



conditions, this research leads to new insights for promoting more evenly growth of multiple

hydraulic fractures in multi-stage HF treatments. Most importantly, this work shows that

reducing the subcritical index shortens the time delay associated with hydraulic fracture

initiation at wellbore pressures that are insufficient to induce instantaneous initiation. The

experiments show that choice of fluid can impact the effective subcritical index, thereby

leading to the practically-relevant outcome that fluid(s) can be chosen in order to promote

initiation and growth of multiple hydraulic fractures and/or single hydraulic fractures un-

der conditions where the required wellbore pressure for instantaneous initiation cannot be

reached.
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I. INTRODUCTION

Multi-stage hydraulic fracturing (HF) is a widely used technique in stimulation of oil and

gas production from horizontal wellbores. Typically, the well is stimulated in stages. In

each fracturing stage, fluid is continuously injected into an isolated section along the well

with goal of inducing the simultaneous initiation and propagation of multiple hydraulic

fractures. This technology has been proven to be both useful and far from optimal. Numerical

simulators therefore play a key role by allowing explanation of the impact on pumping

parameters, rock properties, and so forth on the effectiveness of a proposed stimulation.

However, predicting the propagation of multiple fractures is challenging since it depends on

the interplay among various factors such as the stress shadowing effect, the partitioning of the

influx to each fracture, and the coupled fluid flow with elastic deformation in the cracks. To

address these challenges, numerous research activities have been undertaken to address the

problem of the initiation and subsequent growth of single/multiple hydraulic fracture(s) and

to understand the physical mechanisms governing the HF process (Abbas and Lecampion,

2013; Abbas et al., 2013; Bunger, 2013; Bunger et al., 2014, 2010, 2012; Detournay and

Carbonell, 1997; Haimson and Fairhurst, 1967; Hubbert and Willis, 1957; Lakirouhani et al.,

2016; Lecampion and Desroches, 2015; Peirce and Bunger, 2015; Wu and Olson, 2016). In

these studies, the effect of various factors (e.g., compressibility of the injection system, in-situ

stresses, fluid viscosity, borehole radius, stress interference among multiple fractures, and the

perforation friction) on HF initiation and propagation has been investigated. Nevertheless,

a long recognized but often ignored characteristic of rock, namely, time-dependent breakage

and/or subcritical crack growth, has only recently been considered. Conventional approaches

to solve the HF problem assume no fracture initiation before some critical condition is met.

Such critical conditions include a requirement that the maximum induced tensile stress
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meets or exceeds the tensile strength of the rock (Haimson and Fairhurst, 1967; Hubbert

and Willis, 1957), that the Mode I stress intensity factor equals the fracture toughness

of the rock (Abbas and Lecampion, 2013; Bunger et al., 2010; Detournay and Carbonell,

1997; Lakirouhani et al., 2016; Lecampion and Desroches, 2015), and/or the crack is able to

propagate through satisfaction of a traction-separation failure condition applied to a cohesive

zone at the leading edge (Lecampion, 2012b). However, numerous studies show that rocks

can be caused to fail after a period of time when subjected to stresses that are insufficient

to satisfy a critical (instantaneous) failure criterion (Atkinson, 1984; Cruden, 1974; Fernau

et al., 2016; Kear and Bunger, 2014; Lu et al., 2015; Scholz, 1972). Furthermore, laboratory

HF experiments on granite (Lu et al., 2015) have shown that a wellbore pressure that is

lower than the critical value required for instantaneous HF initiation can lead to breakdown

in a delayed manner. This phenomenon, referred to as time-dependent HF initiation, is

argued by Bunger and Lu (2015) as one of the fundamental mechanisms for simultaneous

generation of multiple hydraulic fractures, and has a significant impact on the propagation

of the fractures, especially in an early stage of the HF growth (Lu et al., 2017a).

This work aims to demonstrate the occurrence of time-dependent initiation of HF by both

numerical simulation and laboratory experiments. Numerical models are firstly developed for

the initiation and propagation of single and multiple hydraulic fracture(s) under subcritical

conditions. Unlike conventional numerical models for hydraulic fracture growth that impose

a propagation condition based on Linear Elastic Fracture Mechanics, in which crack growth

only occurs when the stress intensity factor, KI, achieves a value euqal to the material

fracture toughness, KIC, we allow the fractures to propagate under subcritical conditions

(KI < KIC). Such crack growth is governed by an empirical power law, referred to as the

subcritical crack growth law (Atkinson, 1984; Charles, 1958), for describing the relation

between the fracture tip velocity, V , and the stress intensity factor, KI

V = A

(
KI

KIC

)n
(I.1)

where n is the subcritical crack growth index, and A is a constant characteristic velocity

typically taken as an upper bound on the crack propagation speed when KI → KIC. Using

the subcritical crack growth law (Eq. I.1), numerical simulation is carried out for solving
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the problems of single/multiple HF propagation. Furthermore, the influence of subcritical

crack growth, as well as other factors are studied.

Once this model has been developed and its implications for multiple HF growth are

shown, the approach is validated relative to laboratory experiments. Specifically, the exis-

tence of time-dependent HF initiation is examined by laboratory HF experiments on granite,

sandstone, and limestone specimens. The experiments show that by maintaining a subcriti-

cal wellbore pressure (lower than the pre-determined instantaneous breakdown pressure), HF

initiation can be achieved after some period of time. More importantly, this time duration

of HF breakdown is shown to be correlated with the wellbore pressure. By comparing the

experimental data with the numerical prediction obtained from the subcritical HF model,

good agreement is found in this lifetime versus wellbore pressure correlation. Thus, the

occurrence of time-dependent initiation is demonstrated and well explained by the theory of

subcritical crack growth. Moreover, key factors impacting the behavior of delayed initiation,

such as the fluid viscosity and the confining stresses are further investigated. The results

reveal a possible dependence of the value of subcritical index on the viscosity of the injected

fluid, as well as the applied confining stresses. This finding suggests that the choice of the

injection fluid, and in-situ stress condition can profoundly influence both the initiation and

growth of hydraulic fracture(s).
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II. MODELING INITIATION AND PROPAGATION OF A HYDRAULIC

FRACTURE UNDER SUBCRITICAL CONDITIONS

A. PREAMBLE

This chapter consists of a preprint of Lu et al. (2017a). Here, the goal is to develop a nu-

merical simulatior for solving the problem of initiation and propagation of a single hydraulic

fracture under subcritical conditions. The results are firstly verified against available ana-

lytical and numerical solutions. Then the numerical model is used to study the behavior of

time-dependent initiation and the impact of the main factors on growth of a single hydraulic

fracture.

B. ABSTRACT

A numerical model has been developed for simulating the initiation and propagation of a

plane strain or axisymmetric hydraulic fracture from an openhole wellbore in an imperme-

able homogeneous rock formation. The main novelty is inclusion of a subcritical growth

law, thereby allowing consideration of hydraulic fracture growth when the wellbore pressure

is otherwise considered insufficient to initiate fracturing. To enable tracking the moving

crack front in the simulations, we develop a new tip asymptotics based on a subcritical crack

growth law. The results are first validated against available analytical solutions for plane

strain and axisymmetric hydraulic fractures. A comparison is presented between the solu-

tions of the subcritical growth model and a conventional hydraulic fracture model in which

fracture growth is not allowed until the stress intensity factor equals the fracture toughness
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of the rock. This comparison, as well as a study of the influence of the relevant parameters

appearing in the subcritical growth law, indicates significant influence of subcritical growth

on the evolution of the crack length and the wellbore pressure. Notably, this model provides

the capability to simulate delayed growth of hydraulic fractures under pressures that are

insufficient to generate instantaneous growth, which is a behavior observed in experiments

but not considered by conventional hydraulic fracturing models.

C. INTRODUCTION

Hydraulic fracturing is a widely used technique for stimulation of oil and gas production from

subsurface reservoirs. Predicting the initiation of hydraulic fractures (HFs) is important for

a variety of reasons, including the interpretation of pressure records to estimate in situ

stresses (e.g. Haimson and Fairhurst, 1969; Haimson and Cornet, 2003), relating laboratory

experiments to field-scale applications (e.g. Lhomme et al., 2005), and predicting/promoting

conditions for initiation of multiple hydraulic fractures from different locations along a well

(Bunger and Lu, 2015). Simulating HF initiation is also challenging, involving interplay

among compressibility of the injection system, viscous fluid flow, and the stress field sur-

rounding a wellbore (Abbas and Lecampion, 2013; Bunger et al., 2010; Lhomme et al., 2005).

In the conventional approach, the HF is taken to initiate and propagate under the con-

dition that the mode I (opening) stress intensity factor, KI, reaches the value of the critical

stress intensity factor or the fracture toughness, KIC. Such a model predicts that no frac-

turing will occur until KI = KIC. However, there is evidence that fractures can propagate

under stresses that are insufficient to satisfy this condition, with velocities several orders of

magnitude smaller than the rupture velocity (Atkinson, 1984, 1987). This phenomenon is

known as subcritical crack growth, and it has long been considered an important aspect of

the failure of rocks, especially in geoscience applications such as prediction of the develop-

ment of natural fracture sets in rocks (Gale et al., 2007; Holder et al., 2001; Olson, 1993,

2004).
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Subcritical growth is also implied by laboratory experiments on HF initiation and growth.

Results from laboratory HF experiments with acoustic emission (AE) detection devices on

crystalline rock (Bunger et al., 2015) show that microseismic events take place prior to

peak pressure. Hydraulic fracturing experiments on granite (Lu et al., 2015) also show

that a wellbore pressure that is lower than the critical pressure required for instantaneous

initiation of hydraulic fractures can lead to hydraulic fracture growth in a delayed manner.

Furthermore, it has been argued on theoretical grounds that the occurrence of subcritical

initiation of HFs is vital for creating multiple hydraulic fractures that will grow ostensibly at

the same time (Bunger and Lu, 2015). In turn, the ability to initiate and propagate multiple,

simultaneous hydraulic fractures is one of the critical elements to the success of multistage

hydraulic fracturing of horizontal wells (e.g. Fisher et al., 2004; Soliman et al., 1990), which

is the technique widely credited with unlocking organic-rich shale gas and oil resources.

Hence, subcritical growth of HFs can be proposed as one of the processes at the core

of the success of the shale resource revolution in the past two decades. However, it is

rarely considered in relation to HF modeling in general and modeling of HF initiation in

particular. Fully coupled HF initiation models that include injection system compressibility

and near-wellbore stresses have not considered subcritical growth (Abbas and Lecampion,

2013; Abbas et al., 2013; Lakirouhani et al., 2016; Lhomme et al., 2005). When subcritical

growth is considered, it is in the context of partially coupled (although useful in their own

right) simulations wherein a temporally constant and spatially uniform pressure is imposed

within the HFs (Olson and Dahi-Taleghani, 2009).

Including subcritical growth within the context of a fully coupled HF simulator is not

only important, but it is also considerably challenging. The main challenge is associated

with the modification of the conventional propagation criterion. In subcritical growth, the

correspondence between the fracture tip velocity, V , and the stress intensity factor, KI, can

be described by an empirical power law (Charles, 1958)

V = A

(
KI

KIC

)n
(II.1)

where n is the subcritical crack growth index, and A is a constant. This equation has been

used to examine time-dependent failures of various brittle materials (Atkinson, 1984; Charles,
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1958; Evans, 1972; Swanson, 1984). In a purely fracture mechanics simulator (i.e., not related

to hydraulic fracture and therefore not considering fluid injection and flow), the subcritical

tip velocity V is the relevant characteristic velocity in the system. For HF simulation, the

situation is different because coupling with fluid flow means that the algorithm must deal with

a system that not only has a characteristic fracture velocity (V ), but also a characteristic fluid

velocity within the fracture that must, in turn, be compatible with fluid mass balance. In

addition to demonstrating the potential importance of subcritical growth for HF initiation,

overcoming this algorithmic challenge comprises one of the main contributions presented

here.

This paper, then, presents a numerical model for the initiation and subsequent propaga-

tion of a single hydraulic fracture that accounts for the subcritical fracture growth (SCRIF,

standing for “SubCRitical Initiation of hydraulic Fractures”). The fracture can be propa-

gated under either plane strain or axisymmetric conditions. The structure of this paper is

as follows. The problem formulation is described in Section II.D. In Section II.E, we present

the scaling of the governing equations. The numerical algorithm for solving the nonlinear

system and capturing the hydraulic fracture propagation is introduced in Section II.F. In

Section II.G, we verify and analyze the results. Finally, discussion and concluding remarks

are given in Section II.H.

D. PROBLEM FORMULATION

1. Model description

We consider the problem of the initiation and propagation of a single hydraulic fracture in an

impermeable linearly elastic rock characterized by a Young’s modulus E, a Poisson’s ratio ν,

and a fracture toughness KIC. A Newtonian fluid with viscosity µ is injected at a constant

rate Q0 into the system with a finite compressibility U . Two geometries are studied in this

problem, based on the orientation of the wellbore:
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I. A longitudinal bi-wing fracture under plane strain conditions (Fig. II.1) with an initial

length l0 emanating from a vertical wellbore with the radius a under the minimum

and maximum (or intermediate) in-situ stresses σh and σH (after Bunger et al., 2010;

Lakirouhani et al., 2008).

II. An axisymmetric transverse fracture (Fig. II.2) propagating from a horizontal well under

minimum in-situ stress σh, acting orthogonal to the fracture plane, with a non-negligible

influence of the wellbore of radius a (after Abbas and Lecampion, 2013; Lecampion and

Desroches, 2015).

In our model, the separation between the fracture tip and the fluid front is assumed to be

very small compared to the fracture length (i.e., the so-called “fluid lag” is negligible in this

problem). We also assume that the fracture remains planar. Fluid leak-off to the rock is

assumed to be negligible. The validity of this assumption at the early stage of HF treatment

is discussed in Appendix A.A. We thus seek a solution as a function of the coordinate x

and time t, namely: the fracture length l (t), the crack width w (x, t), the wellbore pressure

pw (t), and the net pressure pnet (x, t) = pf (x, t)−σn(x) acting on the fracture, where pf and

σn denote, correspondingly, the fluid pressure and the normal compressive stress induced by

the in-situ stresses. In these expressions, x is the coordinate along the direction of crack

propagation, and x = 0 corresponds to the center of the wellbore. Accordingly, we have

x ∈ (x0, xtip) along the crack, where x0 = a; xtip = l (t) + a.

2. Governing equations

a. Propagation condition The conventional model assumes that the fracture propa-

gates under quasi-static equilibrium, with KI = KIC, and that the asymptotic behavior of

the fracture opening at the fracture tip is given by the classical square-root (“k”) asymptote

(Irwin, 1957),

w ∼
√

32

π

KIC

E ′
(xtip − x)1/2 , x→ xtip (II.2)

where E ′ = E/ (1− ν2) is the plane strain elastic modulus. We refer to this behavior as the

toughness (k) asymptote.
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Figure II.1: A plane strain model of a longitudinal hydraulic fracture of length l(t) prop-

agating from a wellbore of radius a, drilled in the direction of intermediate (or maximum)

far-field stress (after Bunger et al., 2010; Lakirouhani et al., 2008).

Figure II.2: An axisymmetric transverse fracture propagating from a wellbore drilled in the

direction of minimum far-field stress (after Abbas and Lecampion, 2013; Lecampion and

Desroches, 2015).
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For the subcritical propagation criterion, KI < KIC, and the k asymptote (Eq. II.2) is

instead given by

w ∼
√

32

π

KI

E ′
(xtip − x)1/2 , x→ xtip

Further, the tip velocity V is controlled by Eq. (II.1), which allows expression of KI by

rearranging Eq. (II.1), namely

KI = KIC ·
(
V

A

)1/n

By substitution, the modified k asymptote can be written as

w ∼
√

32

π

KIC

E ′
(xtip − x)1/2 ·

(
V

A

)1/n

, x→ xtip (II.3)

Hence, the subcritical growth can be accounted for in the solution method via a modification

of the conventional k asymptote. In doing so, the propagation condition gains dependence

on laboratory-determined subcritical growth parameters A and n, as well as an additional

coupling with the global solution for the HF growth via the propagation velocity V . Put

another way, because V is a part of the solution and not a prescribed parameter, the tip

propagation condition is coupled to the global solution and so it is anticipated that an

iterative solution will be required (indeed, this will be detailed later).

It is also worthwhile to note that there exists a lower limit for the stress intensity factor,

K∗I , at which the subcritical growth stops. Fig. II.3 shows the evolution of the crack tip ve-

locity with the stress intensity factor (after Atkinson, 1987; Olson, 1993). Following Atkinson

(1987) and Olson (1993), we assume that the crack starts to grow when KI = K∗I = KIC/10,

and require that K∗I ≤ KI ≤ KIC for the subcritical fracture propagation. Consequently, the

velocity term in Eq. (II.3) has the range: 0.1n ≤ V
A
≤ 1, where the practical range of n for

rocks is 10 ≤ n ≤ 200 (Olson, 2004).

This modification of the propagation criterion is the main novelty of the model underlying

the HF simulator presented here. The additional components of the model follow various past

contributions, and are presented for the sake of completeness in the following subsections.

b. Linear elasticity For an axisymmetric fracture subject to a normal load and in the

absence of a shear (tangential) load, the relation between the fracture width w and the net

10



  

*
I

K  IC
K  

Slope = n 

Log Stress Intensity Factor 
L

o
g

 C
ra

ck
 G

ro
w

th
 V

el
o

ci
ty

 

Figure II.3: Log-log plot of the crack tip velocity and the stress intensity factor (after

Atkinson, 1987; Olson, 1993). Subcritical crack growth commences when KI becomes larger

than K∗I .

pressure acting on the fracture is represented by a boundary integral equation, following the

distributed dislocation formulation (Hills et al., 1996)

pf (x, t)− σn (x) =

ˆ
Σ

h (x, x′)
∂w

∂x′
dx′ (II.4)

where σn = σh is the normal stress, and the integration is carried over Σ, which represents

the crack (i.e.,
∑

= {x′ : x′ ∈ (x0, xtip)}). In Eq. (II.4), the elastic kernel h (x, x′) represents

the stress at x caused by an axisymmetric dislocation of radius x′ in an infinite domain with

the cylindrical cavity of radius a. The mathematical expression for this kernel was obtained

in Keer et al. (1977) and is given in Appendix A.B. This integral kernel includes the wellbore

effect directly.

For the plane strain model of a bi-wing fracture emanating from a circular wellbore, the

displacement discontinuity (DD) formulation is used (Crouch and Starfield, 1983)

pf (s, t)− σn (s) =
´

Σ
[Hnn (s, s′) [un] (s′, t) +Hns (s, s′) [us] (s′, t)] ds′

0 =
´

Σ
[Hsn (s, s′) [un] (s′, t) +Hss (s, s′) [us] (s′, t)] ds′

(II.5)
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where σn (s) is the normal compressive stress along the fracture resulting from the far-field

stress, and the involved kernels H represent the stresses (normal or tangential) at s caused

by a unit displacement discontinuity (normal or tangential) at point s′. In this case, the

tangential displacement jump [us] is included in addition to the normal displacement jump

[un] (equal to the crack width w along the crack), and the integration contour Σ is the union

of the crack and the circular wellbore wall.

For the plane strain model, we use the integral kernels that do not account for the

wellbore directly (Crouch and Starfield, 1983); therefore, the wellbore wall is included in the

integration contour and is discretized by the DD elements as well as the crack, similarly as

done in Zhang et al. (2011). We first decompose the total stress field in the plane strain

problem (Fig. II.1) into a superposition of (i) the stress around a traction-free circular hole

under biaxial far-field compression in an infinite plane without a fracture, and (ii) the stress

around the pressurized circular hole (wellbore) and the pressurized fracture with zero far-

field stress. The solution for the stress in problem (i) is given by the Kirsch solution (Kirsch,

1898). The solution for problem (ii) is then obtained by solving Eq. (II.5). According to such

superposition, available due to the linearity of the elasticity problem, the total loading on

the circular boundary of the wellbore in Eq. (II.5) is given by the fluid pressure pf (equal to

the wellbore pressure pw). The influence of the wellbore pressure onto the bi-wing fracture

is taken into account by the influence matrix according to the DD method, as shown in

Appendix A.B. The normal stress σn (s) acting on the plane of the HF growth, where s = x,

is given by the Kirsch solution (Kirsch, 1898),

σn(x) = σh

(
1 +

a2

x2

)
+
σH − σh

2

(
a2

x2
− 3

a4

x4

)
Further details of the integral kernels and the discretization of the boundary integral equa-

tions (II.4) and (II.5) for both geometries are given in Appendix A.B.

c. Lubrication The Poiseuille law for the fluid flux q (x, t) is given by (e.g. Batchelor,

1967)

q = −w
3

µ′
∂pf
∂x

for x ∈ (x0, xtip) (II.6)
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where µ′ = 12µ for dynamic viscosity µ. The local continuity equation is derived based on

the fluid mass balance

∂w

∂t
+

1

xd−1

∂

∂x

(
xd−1q

)
= 0 (II.7)

with d = 1 for plane strain and d = 2 for axisymmetry. The Reynolds’ lubrication equation

is then deduced by substituting Eq. (II.6) into Eq. (II.7):

∂w

∂t
=

1

µ′xd−1

∂

∂x

(
xd−1w3∂pf

∂x

)
(II.8)

d. Boundary and initial conditions The crack-tip boundary condition imposes van-

ishing fluid flux and fracture width at the fracture tip (Detournay and Peirce, 2014)

x = xtip : w (x, t) = 0, q (x, t) = 0 (II.9)

The inlet boundary condition for the fluid flux entering the fracture from the wellbore is

derived from the mass balance accounting for the injection rate and the compressibility

effect (Abbas and Lecampion, 2013; Lakirouhani et al., 2016; Lhomme et al., 2005)

x→ x0 : q (x, t) =
1

2 (πx)d−1

(
Q0 − U

dpw
dt

)
(II.10)

where q is the fluid influx to the crack and Q0 is the constant injection rate. U is the

system compressibility (volumetric compliance of the injection system), which is computed

by U ≈ cfV0 where cf is the fluid compressibility and V0 is the injection system volume. (In

practice, wellbore deformation may also contribute to the total system compressibility.) Note

that the dimensions of Q0 and U under the plane strain condition (Q0 ∼ m2/s; U ∼ m2/Pa)

are different from those of an axisymmetric fracture (Q0 ∼ m3/s; U ∼ m3/Pa), because in the

case of a plane strain crack, they represent the injection rate and the system compressibility

per unit height.

Note also that although the injection system is compressible, we consider that the com-

pressibility of the fluid has a negligible effect on the continuity equation (II.7). This assump-

tion can be readily proven valid as long as the product of the fluid compressibility cf with
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the fluid net pressure, defined as pnet = pf − σh, is small relative to one. (This definition of

the net pressure is valid for the axisymmetric geometry; for plane strain, a similar argument

would hold with the net pressure defined by pnet = pf −σn.) To illustrate, consider the fluid

density within the fracture to be given by

ρ(x, t) =
ρ0

1− cfpnet(x, t)
,

where ρ0 is the density of the fluid when pf = σh (pnet = 0). Hence, it is clearly seen that

the fluid density can be taken as a constant (ρ0) throughout the domain of the HF and

throughout time as long as cfpnet � 1. For example, if we consider a typical upper bound

on pnet in the order of tens of MPa, then neglecting compressibility of the fluid within the

fracture is justified for most fluids including water (taking cf ≈ 0.0002 MPa−1) and even

supercritical CO2 (taking cf ≈ 0.005 MPa−1 at typical reservoir temperature and pressure).

The initial condition at t = 0 is given by a small opening along the initial defect. As

long as the opening is small enough, its details will not impact the final solution. Hence,

for convenience, the initial condition is chosen as the pressure distribution pf generating a

small, uniform, positive net pressure acting along the interior faces of the initial crack, that

is

t = 0 : pf (x, t) = σn (x) + pi, l = l0 (x0 < x < x0 + l0) (II.11)

where pi is a small initial net pressure assumed to exist in the crack, and l0 is the initial

fracture length. Finally, taking into account the boundary conditions (II.9)and (II.10), a

global volume balance equation can be derived by integrating the continuity equation (II.7)

over time and space

2

ˆ xtip

x0

(πx)d−1 (w (x, t)− w (x, 0)) dx = Q0t− U (pw (t)− pw (0)) (II.12)
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E. SCALING

Here we introduce the dimensionless variables

γ = l
l∗
, A = a

l∗
, ξ = x

l∗
, Ω = w

w∗
, Ψ = q

q∗
, τ = t

t∗
;

ΦH = σH
p∗
, Φh = σh

p∗
, ΦD = σH−σh

p∗
;

Πw = pw
p∗
, Πf =

pf
p∗
, Πnet = pnet

p∗
.

(II.13)

where t∗, l∗, w∗, p∗, and q∗ are the characteristic scales for time, length, crack width, net

pressure, and fluid flux. Then we introduce the so-called compressibility-toughness (UK)

scaling given by Bunger et al. (2010); Lakirouhani et al. (2008, 2016) for plane strain, and

by Abbas and Lecampion (2013); Lhomme et al. (2005) for axisymmetric fractures. This

scaling is based on the characteristic time and length scales associated with the release of

the volume compressed in the injection system prior to fracture initiation. Therefore, when

the fracture attains a length much greater than the characteristic length describe below,

the impact of the compressed volume in the injection system vanishes. Similarly, when the

injection time greatly exceeds the characteristic time described below, the impact of the

compressed volume in the injection system vanishes. To find these characteristic quantities,

the governing equations are rewritten in terms of the dimensionless variables (Eq. II.13)

and the dimensionless groups that are combinations of the parameters KIC, E ′, µ′, Q0 and

U (Abbas and Lecampion, 2013). The dimensionless groups associated with injection rate,

compressibility, and fracture toughness are set to be 1, and the characteristic scales can be

obtained as follows

l∗ = (E ′U)
1
d+1 , t∗ =

√
32
π
KICU

2d+1
2d+2

Q0E
′ 1
2d+2

, p∗ =
√

32
π

KIC

(E′U)
1

2d+2
,

w∗ =
√

32
π
KICU

1
2d+2

E
′ 2d+1
2d+2

, q∗ = Q0

(E′U)
d−1
d+1

.

(II.14)

The corresponding dimensionless viscosity is

M =
( π

32

)2µ′Q0E
′ 2d+4
d+1

KIC
4U

d−1
d+1

(II.15)
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and the dimensionless subcritical constant is given by

α =

√
32

π

U
2d−1
2d+2KIC

E ′
3

2d+2Q0

A (II.16)

Typical orders of magnitudes of the characteristic scales can be estimated by substi-

tution of the actual ranges of the parameters based on typical field data into the above

expressions: taking A = O(103) m/s (using the O notation to indicate order of magnitude),

E = O(1010) Pa, σH = O(107) Pa, σh = O(107) Pa, ν ∼ 0.3, KIC = O(106) Pa ·m1/2,

U = O(10−11) m2/Pa (m3/Pa), µ = O(10−3) Pa · s, a = O(10−2) m, and Q0 = O(10−3) m2/s

(plane strain) or Q0 = O(10−2) m3/s (axisymmetry), the ranges of the characteristic scales

and the dimensionless parameters are approximated as

l∗ = O(1) m, t∗ = O(0.1) second, p∗ = O(107) Pa, w∗ = O(10−4) m,

q∗ = O(10−3) m2/s, M = O(0.1), A = O(10−2),

α = O(100), ΦH = O(1), Φh = O(1),

for plane strain, and

l∗ = O(1) m, t∗ = O(10−2) second, p∗ = O(107) Pa, w∗ = O(10−4) m,

q∗ = O(10−2) m3/s, M = O(1), A = O(10−2),

α = O(10), Φh = O(1),

for axisymmetry. Based on the scaling method, we can rewrite the governing equations and

boundary and initial conditions in the following dimensionless form.

a. Elasticity For the axi-symmetric dislocation formulation, we get

Πnet =

ˆ
Σ

ĥ (ξ, ζ)
∂Ω

∂ζ
dζ (II.17)

where ξ = x
l∗

and ζ = x′

l∗
. The integral equation for the plane strain model with the DD

kernels can be similarly formulated in the scaled form.
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b. Poiseuille law The scaled Poiseuille law is given by

Ψ = − 1

M
Ω3∂Πf

∂ξ
for ξ ∈ (ξ0, ξtip) (II.18)

where ξ0 = x0
l∗

and ξtip =
xtip
l∗

.

c. Continuity
∂Ω

∂τ
+

1

ξd−1

∂Ψ̄

∂ξ
= 0 (II.19)

in which the modified fluid flux is introduced as Ψ̄ = ξd−1Ψ.

d. Lubrication Scaling the lubrication equation results in

∂Ω

∂τ
=

1

Mξd−1

∂

∂ξ

(
ξd−1Ω3∂Πf

∂ξ

)
(II.20)

e. Propagation condition The propagation condition is given by

Ω ∼ (ξtip − ξ)1/2
(υ
α

)1/n

, ξ → ξtip, υ ≤ α (II.21)

where υ = dγ
dτ

is the dimensionless fracture tip velocity. Recall that the subcritical model is

used when the fracture is propagating under the condition that KI < KIC, which is expressed

equivalently as the condition υ < α after Eq. (II.21). Note, then, that in the algorithm, once

the critical condition is reached, the tip asymptotics under the subcritical velocity criterion

will immediately reduce to the classical propagation criterion using the k asymptote.

f. Fracture tip boundary condition The boundary condition at the tip is given by

ξ = ξtip : Ω (ξ, τ) = 0, Ψ̄ (ξ, τ) = 0 (II.22)

g. Inlet boundary condition The inlet boundary condition is

ξ → ξ0 : Ψ̄ (ξ, τ) =
1

2πd−1

(
1− dΠw

dτ

)
(II.23)
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h. Initial condition The initial condition is

τ = 0 : Πnet (ξ, τ) = Πi, γ = γ0 (ξ0 < ξ < ξ0 + γ0) (II.24)

where Πi = pi
p∗

is a small initial net pressure sufficient to slightly open the initial crack.

i. Global volume balance equation The scaled global volume balance is expressed as

2

ˆ ξtip

ξ0

(πξ)d−1 (Ω (ξ, τ)− Ω (ξ, 0)) dξ = τ − (Πw (τ)− Πw (0)) (II.25)

In summary, by applying the UK scaling, we are able to reduce the parametric space

of this problem to a group of independent dimensionless parameters, which consists of the

dimensionless viscosity M, wellbore radius A, minimum in-situ stress Φh (and deviatoric

stress ΦD for the plane strain case), initial crack length γ0, subcritical index n, and the

subcritical constant α. Thus, our solution (γ,Ω,Π,Ψ), considered as a function of spatial

(ξ) and time (τ) variables, will depend on the values of these dimensionless parameters.

F. NUMERICAL ALGORITHM

1. Overview

The numerical solution for the problem described in Section II.E is obtained from an algo-

rithm based on the DD method (Crouch and Starfield, 1983). The elastic equation (II.17)

is discretized using a fixed grid of DD elements with a constant element size, 4ξ, and a 1D

finite difference scheme is applied for discretizing the lubrication equation (II.20). Then the

combined nonlinear system, resulting from the solid-fluid coupling, is solved by an iterative

scheme following the spirit of Bunger (2005). For the initiation phase, we fix the initial crack

length γ0 and increase time by a fixed time increment ∆τi for every time step, to find the

time at which the fracture satisfies the initiation criterion (KI = K∗I = KIC/10) and starts to

grow. As the fracture propagates, the fracture length is increased by a constant value, 4ξ,

and the corresponding time step 4τ , required to increase the crack length by this increment,
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is found as a part of the numerical solution. Such a length-controlled algorithm is discussed

in detail in Section II.F.4. At each time step, N denotes the number of the time step, m

denotes the number of elements along the crack, k is the iteration counter in the solution

of the coupled nonlinear system, and K is the iteration counter in the solution for the time

step. This type of numerical algorithm, based on a fixed crack length increment at every time

step, has been used in the past (Abbas and Lecampion, 2013; Bunger et al., 2010; Gordeliy

and Detournay, 2011b; Lakirouhani et al., 2016). It is worthwhile to note that an alternative

time-controlled algorithm has been developed in Peirce and Detournay (2008) and used, for

example, in Gordeliy and Peirce (2013); Lecampion and Desroches (2015); Peirce and De-

tournay (2008) for modeling propagation of single and multiple hydraulic fractures, in which

a given time increment is specified and the corresponding crack length is found using an

implicit level-set algorithm. In our particular case, where there are neither stress jumps nor

material interfaces, the length-controlled algorithm is favored because it can capture sudden

changes in the crack length associated with release of compressed volume. A time-controlled

algorithm can be inaccurate when the length suddenly changes in a very short time period.

2. Elasticity

We discretize the elasticity equation into a linear system using the DD method. The crack

is discretized into a mesh of m piece-wise constant-strength DD elements, and additional

elements are used to discretize the circular wellbore wall in the plane strain model. Each

element i in the crack region with the midpoint coordinate ξi = ξ0 + (i− 1/2)4ξ and

i = 1, ...,m is thus characterized by a constant width Ωi. Assuming no leakoff and no fluid

lag in the crack, the following correspondance between the vectors of the fluid pressure, Πf ,

and the fracture opening, Ωf , corresponding to the midpoints of all crack elements, can be

derived for both geometries

Πf = CΩf − S (II.26)
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where C is the coefficient matrix with the values that depend on the problem geometry,

and the vector S accounts for the normal stress acting on the fracture (see more details in

Appendix A.B).

3. Lubrication

Reynolds’ lubrication equation (II.20) is solved using a finite difference scheme. According to

the Poiseuille law (II.18), the inlet boundary condition (II.23), and the zero-flux tip condition

(II.22), the fluid flux Ψ̄i+1/2 at the boundary between the elements i and i+1 can be written

as

Ψ̄1/2 = 1
2πd−1

(
1− 4Πw

4τ

)
,

Ψ̄i+1/2 = −Ki (Πi+1 − Πi) , for i = 1, . . . ,m− 1

Ψ̄m+1/2 = 0

(II.27)

where Ki = ξd−1
i+1/2

1
M4ξ

(
Ωi+Ωi+1

2

)3

and ξi+1/2 = ξi+ξi+1

2
. Using a backward difference ap-

proximation for the time derivatives and a central difference approximation for the spatial

derivatives, the continuity equation (II.19) is discretized by

Ωi − Ω0
i

4τ
+

Ψ̄i+1/2 − Ψ̄i−1/2

ξd−1
i 4ξ

= 0 (II.28)

where Ω0 denotes the known width at the previous time step τN−1. Hence the increment of

the opening at ξi between the two consecutive time steps can be written as 4Ωi = Ωi −Ω0
i .

4. Coupled nonlinear system

Substitution of the discretized Poiseuille law (II.27) and the discretized elasticity equation

(II.26) into the discretized continuity equation (II.28) yields the final form of the lubrication

equation,

Ξ4Ω = Γ (II.29)
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in which the matrix Ξ is given in the component form by Ξij = δij + 4τ
∆ξ

1

ξd−1
i

Zij, and

Z1j = K1 (−C2j + C1j) +
1

2πd−14τ
C1j, for j = 1, . . . ,m (II.30)

Zij = Ki (−Ci+1j + Cij)−Ki−1 (−Cij + Ci−1j) ,

for i = 2, . . . ,m− 1; j = 1, . . . ,m (II.31)

Zmj = −Km−1 (−Cmj + Cm−1j) , for j = 1, . . . ,m (II.32)

and the vector Γ is expressed by

Γ1 = − 4τ
ξd−1

1 4ξ

[
m∑
j=1

(
Z1j −

1

2πd−14τ
C1j

)
Ω0
j −K1 (ϕ1 − ϕ2)

]
+ . . .

+
4τ

2 (ξ1π)d−14ξ
, j = 1, . . . ,m (II.33)

Γi = − 4τ
ξd−1
i 4ξ

[
m∑
j=1

ZijΩ
0
j −Ki (ϕi − ϕi+1)−Ki−1 (ϕi − ϕi−1)

]
,

i = 2, . . . ,m− 1; j = 1, . . . ,m (II.34)

Γm = − 4τ
ξd−1
m 4ξ

[
m∑
j=1

ZmjΩ
0
j −Km−1 (ϕm − ϕm−1)

]
, j = 1, . . . ,m (II.35)

where we recall that Cij are the components of the matrix C from Eq. (II.26), and ϕi is

given in Appendix A.B.

To simulate the whole process of initiation and propagation of a hydraulic fracture under

subcritical conditions, the algorithm consists of two phases. At the initiation phase, for a

given defect with fixed length and initial condition (II.24), we increase the time by ∆τi at

every step and solve the corresponding nonlinear system (II.29) using fixed-point iteration.

In this approach, at iteration k, the increment of the opening is found from the solution of

the following linear system,

Ξ
(
4Ωk

)
4Ωk+1 = Γ

(
4Ωk

)
(II.36)

Recall that, via the construction of the discretized Poiseuille law (II.27), the solution of

Eq. (II.36) satisfies the inlet flux and tip boundary conditions (II.23) and (II.22).
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Once the initiation criterion is satisfied (i.e., KI = K∗I = KIC/10), the algorithm switches

to the propagation phase, in which we use a length control algorithm to solve the coupled

problem. Based on the algorithm, a fixed length increment (chosen to be small enough that

the solution is independent of its value) is applied in every step. Again, the increment of

crack width can be obtained by the iterative scheme (II.36). However, the time increment

∆τ remains unknown. Hence, the algorithm sets a value of ∆τ in an outer iteration loop,

uses that value in an inner loop to iteratively solve lubrication equation (II.36), and then

adjusts the value of ∆τ in the outer loop to satisfy the still-unused tip asymptotic condition

(II.21). This outer-loop algorithm is different for the two models (subcritical growth model

when KI < KIc and conventional model when KI = KIc). For subcritical growth, upon the

discretization dγ
dτ
≈ ∆γ

∆τ
, the time step appears directly in the tip asymptotic condition and

so, at current time step N , approximating ∆γ
∆τN

= ∆ξ
∆τN

≈ 1
2

(
υN−1 + υN

)
and rearranging

Eq. (II.21), the outer loop is aimed at finding ∆τ that provides a zero to the function

f
(
4τN

)
= 4τN − 24ξ

α [(κN−1)n + (κ (4τN))n]
(II.37)

where κ = KI/KIC, and κ
(
4τN

)
denotes the value of κ computed as a function of the time

increment 4τN at step N . In this case, KI is computed by Eq. (A.21) or (A.22) given in

Appendix A.C.

For the case of KI = KIc, the time increment ∆τ does not appear explicitly in the

tip asymptotic condition (II.21). Therefore, in this case, the outer loop involves checking

whether this condition is satisfied, and if not, adjusting ∆τ in accordance with global volume

balance (II.25), which in discretized form is

4τK = 4ΠK−1
w + 2∆ξ

m∑
j=1

(πξj)
d−1 ∆ΩK−1

j (II.38)

recalling that K is the iteration counter for the outer loop. In Eq. (II.38), the values of

∆ΩK−1
j are adjusted so that ∆ΩK−1

m satisfies the tip asymptotic condition (II.21). In essence,

then, adjusting ∆τ adjusts the volume of the fracture until the propagation condition is

satisfied.
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The components of the algorithm are briefly summarized as follows:

Given initial condition at τ = 0 (Ω0, γ0, κ0)

Initiation loop N = 1 : Nmax

Advance time step: τN ← τN−1 +4τi

Inner loop (k + +) to solve (II.36) for 4ΩN

Update ΩN , κN

Check for initiation criterion: κ ≥ 0.1, set Nini = N , break

end initiation loop

Propagation loop N = (Nini + 1) : Nf

Advance fracture front: γN ← γN−1 +4ξ

Outer loop (K + +) to find solution for time step 4τN based on the

propagation model (subcritical if κ < 1, or conventional when κ = 1)

Inner loop (k + +) to solve (II.36) for 4ΩK

Update ΩN , κN , τN

end propagation loop

Details of the outer and inner iteration loops are presented in Appendix A.C.

G. NUMERICAL RESULTS

1. Validation

In our plane strain model, we discretize the wellbore wall using DD elements in a two-

dimensional homogeneous elastic material such that the circular boundary is included in the

integration contour in the elasticity equations (II.5). An alternative treatment of the plane

strain problem of a circular wellbore with a symmetric bi-wing crack has been employed, for

example, by Bunger et al. (2010); Lakirouhani et al. (2016); Lecampion (2012a,b), where the

elastic integral equation for the crack involves the integral kernel corresponding to an edge

dislocation interacting with a circular hole (Dundurs and Mura, 1964). The DD represen-
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tation of the wellbore with a crack adopted in the present paper has been previously used

by Zhang et al. (2011) for HF modeling, and it has its own advantages, such as allowing for

modeling the deformation of the wellbore wall, and potentially extending the model to con-

sider multiple fractures and fracture curving by introducing minor changes to the DD model.

Validation of the DD representation of the wellbore against available reference solutions is

provided in Appendix A.D.

Next, we verify our subcritical growth model by comparing the results with available

analytical solutions for hydraulic fractures under toughness-dominated (M� 1, Eq. II.15)

and viscosity-dominated (M≥ 1) conditions (Adachi, 2001; Savitski and Detournay, 2002).

Although these analytical solutions do not consider wellbore compressibility, near-wellbore

stresses, or subcritical growth, we know that the wellbore compressibility and near-wellbore

stress effect will vanish as the fracture grows relative to both the wellbore radius and com-

pressibility lengthscale. Hence, they comprise the large time solution provided the effect of

subcritical growth vanishes. To this point, if the subcritical index, n, tends to infinity, then

the term that involves crack tip velocity in Eq. (II.3), (V/A)1/n, tends to 1. Consequently,

the subcritical asymptote, Eq. (II.3), reduces to the classical k asymptote, and our model

recovers the same results as given by the conventional model. In this spirit, we show the

evolution of fracture length for both plane strain and axisymmetric hydraulic fractures, with

a value of n that is large enough (n = 1000), in Fig. II.4. In the case of a hydraulic fracture

induced by a fluid with very small viscosity, i.e.,M = 0.001, the fracture propagation is gov-

erned by the toughness-dominated (k) regime. Conversely, solutions for viscosity-dominated

(m) regime can be obtained by imposing a large viscosity, i.e., M = 10. As can be seen

in Fig. II.4, our results are validated as they converge to k and m asymptotic solutions for

long term propagation under the plane strain (Adachi, 2001) and axisymmetric conditions

(Savitski and Detournay, 2002).

A study on the convergence of the numerical results with the mesh size of the DD

elements along the crack, 4ξ, is then performed by conducting a series of simulations for

an HF problem (take plane strain for example) using different element sizes 4ξ along the

initial crack of an intermediate length. Parameters are taken as typical for an HF treatment:

n = 40, A = 2175 m/s, E = 27.3 GPa, ν = 0.3, KIC = 2 MPa ·m1/2, U = 5 × 10−11 m2/Pa,
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Figure II.4: Evolution of crack length for a plane strain (left) and radially symmetric (right)

fracture. The confining stresses are set to be zero. Analytical solutions for toughness-(k),

and viscosity-(m) dominated regimes are obtained from Adachi (2001) and Savitski and

Detournay (2002).

µ = 0.001 Pa · s, Q0 = 0.00512 m2/s, σH = σh = 0 MPa, and a = 0.1 m. The length of the

initial crack is chosen to be the same as the wellbore radius (l0 = 0.1 m). Therefore, the

values of the dimensionless parameters are computed as follows: M = 1, A = γ0 = 0.08,

Φh = ΦD = 0, α = 100. Since 4ξ = γ0/m0, where m0 is the number of elements along the

initial crack, the numerical test is carried out by changing the number of elements along the

starter crack: m0 = 10 (very coarse mesh), m0 = 20 (coarse mesh), m0 = 40 (intermediate

mesh), m0 = 80 (fine mesh), and m0 = 160 (very fine mesh). For each case, the element size

along the wellbore and the crack is the same.

The evolution of the crack length and the wellbore pressure is shown in Fig. II.5 (a, b).

Convergence in the solution is observed as the mesh size gets finer, and the difference between

the solutions with mesh refinement finally becomes practically negligible when refining the

mesh to 160 elements in the initial crack. Here the relative differences for crack length γ

and pressure Πw with respect to the reference solution (the solution obtained with the finest

mesh size, 4ξ = γ0/160) are defined as
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Dγ
r (τ) =

| γ (τ)− γref (τ) |
γref (τ)

DΠ
r (τ) =

| Πw (τ)− Πref
w (τ) |

Πref
w (τ)

where the superscript “ref” denotes the reference solution. Fig. II.5 (c, d) shows the evolution

of the relative differences with time. It can be seen that the solution obtained using 80 initial

elements has the relative difference less than 2% for the wellbore pressure and within 10%

for the crack length, except for the time interval close to crack initiation. Past the fracture

initiation, the relative difference for the crack length, for 80 initial elements is within a few

percent. For this test, consistency in the numerical solution is observed once the element

size is reduced to 4ξ = γ0/80, indicating that the solution becomes sufficiently independent

of the crack length increment (equal to the element size 4ξ along the crack). Similarly,

the values of 4ξ for other initial crack lengths can be determined by conducting the same

numerical experiment.

Another test has been carried out for the case with a decreased viscosity M = 0.001

(while every other dimensionless parameter remains the same). The results obtained with

different initial numbers of elements in starter crack (m0 = 10, 20, 40, and 80) are shown

in Fig. II.6. Taking the finest mesh size 4ξ = γ0/80 (or equivalently, m0 = 80) as the

reference solution, the relative difference is computed for m0 = 10, 20, and 40. This time,

more rapid convergence is observed; consistent results are obtained as soon as the mesh size

is refined to 4ξ = γ0/20. These results indicate that the dimensionless viscosity M has a

strong influence on the rate of convergence in the numerical solution when refining the mesh

size. A bigger value of M requires a finer mesh size in order to get accurate results. This

characteristic has been observed with other HF simulators (Lecampion et al., 2013) and can

be explained by the nature of the tip asymptotic solution. In the numerical algorithm, we use

the subcritical toughness k asymptote, and thus under the viscosity-dominated (m) regime

(large M) the accuracy of the subcritical toughness k asymptote is limited to a relatively

small region near the tip.

Another notable observation is that the time of initiation also varies in different cases

due to the change in mesh size. It is shown in Figs. II.5 and II.6 that a coarser mesh size
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Figure II.5: Mesh convergence study forM = 1. Evolution of crack length (a) and wellbore

pressure (b) for all cases, together with relative difference (c, d) with respect to results from

m0 = 160.
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Figure II.6: Mesh convergence study for M = 0.001. Evolution of crack length (a) and

wellbore pressure (b) for all cases, together with relative difference (c, d) with respect to

results from m0 = 80.
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will lead to an earlier initiation. As a result, when comparing solutions from various mesh

sizes, the value of the relative difference is somewhat magnified. For example, during the

time period close to fracture initiation, sudden changes in both crack length and wellbore

pressure evolution have already taken place in a case with a coarser mesh size, whereas the

initiation point has yet to be reached for the case using a finer mesh size. The relative

difference, Dr, increases significantly at this moment (see relative difference at τ ≈ 0.9 in

Fig. II.5 (c,d) and τ ≈ 0.45 in Fig. II.6 (c,d)).

2. Solution for subcritical fracture initiation and propagation

We first show a comparison between results from plane strain and axisymmetric fractures

subjected to the same condition (α = 2000, A = 0.08, γ0 = A/4, M = 0.001) in Fig. II.7.

The LEFM curves are obtained from numerical simulations that impose the critical condition

KI = KIC, which is equivalent to n → ∞ in the subcritical growth model. The comparison

between the two geometries shows some differences in the numerical values of the solutions,

but there is a qualitative similarity between the two geometries in terms of the evolution

of crack length and the wellbore pressure. To illustrate the overall behavior of the system

without unnecessary repetition, our further discussion will be focused on the initiation and

subsequent growth of plane strain hydraulic fractures.

Besides establishing the qualitative similarity between plane strain and radial cases,

Fig. II.7 shows the overall variation of the solution with the subcritical index n. As expected,

for large n, in this case n = 200, the solution tends towards the LEFM solution. However,

for smaller values of n, with the practical range going down to n = 10, the HF initiates at a

lower pressure. As a result, the peak (maximum) net wellbore pressure is reduced by a factor

of 3 from the LEFM solution. This lower initiation pressure leads to an earlier initiation time

because the pressure, prior to initiation, increases as fluid is injected into the compressible

wellbore system. We also observe that the HF length for the LEFM (and n = 200) cases

jumps very rapidly upon initiation, evidencing an instability associated with sudden release

of compressed fluid volume in the injection system (Lhomme et al., 2005). For the n = 10

case the early time growth is more gradual.
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Figure II.7: Evolution of crack length and wellbore pressure for a plane strain (a, b) and

an axisymmetric (c, d) fracture under the subcritical conditions with different values of n

(α = 2000, A = 0.08, γ0 = A/4, M = 0.001). Results are compared to the classical LEFM

solutions.
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Fig. II.7 shows that the impact of subcritical growth is substantial, especially for smaller

values of n. The impact of subcritical growth, and its dependency on n, is also influenced

by the initial crack length γ0 and the dimensionless viscosity M. To illustrate, Figs. II.8

and II.9 present results again with different values of the subcritical index, n, but this time

for an initially shorter crack (γ0 = A/4, as in Fig. II.7), and a longer crack (γ0 = 4A).

Physically, these correspond to the initial crack, which can be thought of as a material flaw,

that is one-fourth of the wellbore radius compared with one that is four times the wellbore

radius. Alternately, because γ0 = 0.02 and γ0 = 0.32 for these two cases, they correspond to

the initial crack being 2% and 32% of the characteristic length associated with the injection

system compressibility, respectively. (Recall in this scaling, compressibility effects vanish as

γ0 greatly exceeds 1.) For both the long and short initial crack length, we also compare

two values of the dimensionless viscosity (M = 0.001 and 0.1). To isolate the role of these

three parameters, for now, no confinement is applied in our simulation (ΦH = Φh = 0 in

Eq. II.13). However, the impact of confinement will be explored later in this paper. Once

again, notable changes in evolution of length and wellbore pressure are observed due to the

influence of subcritical crack growth.

The effect of subcritical growth on the wellbore peak presure is further demonstrated in

Fig. II.10 for both plane strain and axisymmetric fractures. As in Figs. II.8 and II.9, a total

of four cases are simulated in each geometry. These correspond to the four combinations

that represent high/low viscosity and long/short initial crack. The influence of subcritical

growth is shown to be very strong, again, leading to reductions of the peak pressure by a

factor of two to three in cases with short initial crack and low viscosity.

Hence, the importance of subcritical growth is demonstrated, on the one hand. However,

the impact of subcritical growth on both crack length and the wellbore pressure is diminished

for larger dimensionless viscosity M and for larger initial crack length γ0.

Considering first the role of the flaw size, if we take the physical flaw size in most rocks

to be O(0.01) m, that is to say, larger than 1 mm and smaller than 100 mm, the major

variation in γ0 is expected to be attributable to the compressibility of the injection system

owing to its impact on the characteristic length `∗ (Eq. II.13). For example, taking water

with compressibility cf = O(10−4) MPa−1 and rock with E ′ = O(104) MPa, the characteristic

31



(a) (b)

(c) (d)

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

τ

γ

M = 0.001; γ0 = 0.02

 

 

n = 10
n = 40
n = 200

LEFM Solution

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

τ

γ

M = 0.001; γ0 = 0.32

 

 

n = 10
n = 40
n = 200

LEFM Solution

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

τ

γ

M = 0.1; γ0 = 0.02

 

 

n = 10
n = 40
n = 200

LEFM Solution

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

τ

γ

M = 0.1; γ0 = 0.32

 

 

n = 10
n = 40
n = 200

LEFM Solution

Figure II.8: Evolution of crack length for a plane strain fracture with (a) α = 2000, A =

0.08, γ0 = 1
4
A, M = 0.001; (b) α = 2000, A = 0.08, γ0 = 4A, M = 0.001; (c) α =

2000, A = 0.08, γ0 = 1
4
A, M = 0.1; (d) α = 2000, A = 0.08, γ0 = 4A, M = 0.1. Results

are compared to the classical LEFM solutions.
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Figure II.9: Evolution of wellbore pressure for a plane strain fracture with (a) α = 2000, A =

0.08, γ0 = 1
4
A, M = 0.001; (b) α = 2000, A = 0.08, γ0 = 4A, M = 0.001; (c) α =

2000, A = 0.08, γ0 = 1
4
A, M = 0.1; (d) α = 2000, A = 0.08, γ0 = 4A, M = 0.1. Results

are compared to the classical LEFM solutions.
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P lane strain Axi−symmetry

Figure II.10: Correlation between peak pressure, Πpeak
w , and subcritical index, n, for a plane

strain (left) and an axisymmetric (right) fracture with various initial crack lengths (γ0 =

1
4
A/4A), and fluid viscosities (M = 0.1/0.001).

length `∗ = O(V
1/3

0 ) (for axisymmetric cases), recalling that V0 is the volume of the injection

system. In the laboratory, V0 = O(10−3) m3 and so `∗ = O(0.1) m. In constrast, in the

field, V0 = O(10) m3, and so `∗ = O(1) m. Hence, γ0 = O(0.1) is expected to correspond

to laboratory cases, indicating a tendency for lesser importance of subcritical growth at

laboratory scale compared to field scale, where we expect γ0 = O(0.01).

Now we turn the attention to the role of the viscosity. In the case γ0 = 0.32 andM = 0.1

(case d), the effect of subcritical growth is relatively insignificant, in stark contrast to the

factor of two to three reduction in peak pressure obtained for n = 10, γ0 = 0.02, and

M = 0.001 (case a). Furthermore, as the dimensionless viscosity M gets large enough, this

effect becomes negligible even for small initial cracks. Fig. II.11 gives both the change of

crack length and wellbore pressure with time for a short initial crack γ0 = 0.02 injected by

a fluid with M = 1. As shown in both crack length and wellbore pressure evolution, the

difference is almost indistinguishable between the solutions from various subcritical index

values (n = 10, 40, 200) and the classical HF solution. Based on these results, it is implied

that, in this particular situation, the energy dissipation associated with viscous flow along

the crack is dominating the HF process.
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Figure II.11: Evolution of crack length (left) and wellbore pressure (right) for a plane strain

fracture with γ0 = 0.02, M = 1.

Additionally, it is worth noting that in results from the small viscosity and large initial

cracks (case b), the evolutions of wellbore pressure all experience a drop in the early stage

(around τ = 0.13). This corresponds to the time when the fluid firstly flows into the initial

defect. In fact, before this point, the slope of the pressure curve is equal to 1, which implies

that all the injected fluid has been accomodated by the compressibility of the injection

system and there is no fluid influx to the initial crack during this period of time (set dΠw
dτ

= 1

in Eq. II.23, then the fluid influx Ψ̄ goes to zero). Once the fluid enters into the crack,

an almost uniform pressure (since M = 0.001) is generated and the whole crack is opened

instantly. Consequently, a change of compliance is expected for the case of a long initial

crack, associated with a release of certain amount of fluid volume from the compressible

system into the crack, which causes the drop in wellbore pressure.

Further insight is gained by examining the evolution of the stress intensity factor, KI.

It is reasonable to expect that KI will increase with time until KI = KIC, after which

propagation continues according to LEFM. However, this is not what is observed in these

simulations. An example of evolution of stress intensity factors for the case of a short

initial crack (γ0 = 0.02) is shown in Fig. II.12. Here we see that the stress intensity factor
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converges to an apparant steady-state value after a transient period around the time of

fracture initiation. This apparant steady-state value is strongly impacted by the subcritical

index n, and the fluid viscosity also has an effect on it. Strikingly, these simulations predict

that, for a rock with n = 10, a hydraulic fracture will propagate with a nearly steady-state

value of the stress intensity factor that is roughly half of the fracture toughness of the rock.

To model the dependence of the stress intensity factor on the value of n, we reduce our

problem to the propagation of a Griffith’s crack (i.e., line crack with vanishing wellbore and

compressibility effect) injected by an inviscid fluid. Accordingly, the governing equations

for this problem are equivalent to the subcritical growth of a line crack under uniform fluid

pressure, which are given explicitly by

w = 4 p
E′

√
l2 − x2

KI = p
√
πl

Q0t = 2
´ l

0
wdx

(II.39)

together with the subcritical crack growth law (II.1). By substitution of Eq. (II.39) into

Eq. (II.1) and solving the ordinary differential equation, the dimensionless stress intensity

factor, κ, can be expressed as

κ =
KI

KIC

=
(

16
√

2π
) −1

3n+2

(
2n+ 2

3n+ 2

) 3
3n+2

(
Q4

0E
′3

A4KIC
4U

) 3
12n+8

τ
−1

3n+2 (II.40)

In Eq. (II.40), the term τ
−1

3n+2 gets close to 1 as n goes to infinity. For a practical value

of n (n = O(10)), it is implied that κ stays nearly constant for long-term propagation of a

hydraulic fracture under subcritical conditions. The evolution of κ for the simplified problem,

obtained from Eq. (II.40), are also shown in Fig. II.12 (dashed lines). As can be seen in

the figure, the κ curves from our simulations quickly converge to the dashed lines for cases

with large n and small viscosities, and the prediction given by Eq. (II.40) provides a good

estimate of the value of KI associated with propagation. However, as previously discussed,

for M = 1 the pressure associated with initiation and propagation is nearly independent of

subcritical index n, indicating that the main mechanical factor controlling the fluid pressure

required for crack growth is the dissipation of viscous energy, not rock fracturing (which

would be dependent on subcritical index n).
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Figure II.12: Stress intensity factor for a plane strain fracture with initial length γ0 = 0.02

using the injection fluid with M = 0.001 (top), M = 0.1 (middle), and M = 1 (bottom).

The dashed lines are obtained from Eq. (II.40).
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Further expanding the exploration of the various parameters on the behavior of the

system, the effect of wellbore radius is shown in Fig. II.13 for the case of an intermediate

value of subcritical index n = 40. Notable differences can be observed in the evolution

of wellbore pressures when comparing cases with different initial crack lengths and fluid

viscosities. In particular, the results indicate that a larger wellbore radius can lead to an

earlier initiation and reduced peak pressure. This well known size effect has also been shown

by Lecampion (2012b) using the mixed strength and energy fracture initiation criteria.

Next, we examine the influence of the in-situ stresses. Comparisons are carried out

for the four combinations of high/low viscosity, and long/short initial crack with different

deviatoric stresses. The particular cases considered are the following:

I. σH = σh = 30 MPa; corresponding to the dimensionless in-situ stresses ΦH = Φh = 5.2

and ΦD = 0;

II. σH = 35.8 MPa; σh = 30 MPa; corresponding to dimensionless in-situ stresses ΦH =

6.2, Φh = 5.2, and ΦD = 1.

The evolution of wellbore pressure for each case is given in Fig. II.14. The results suggest a

reduction in peak wellbore pressure by increasing the deviatoric stress, ΦD. This correlation

is also expected from the classical theory by Hubbert and Willis (1957), which is known as

a strength criterion for hydraulic fracture breakdown derived from the Kirsch stress concen-

tration at the borehole. We also observe that when the initial crack length, fluid viscosity,

and deviatoric stress are large, no obvious sign of “peak” in wellbore pressure can be found.

Instead, it increases smoothly from the beginning of injection and ultimately converges to a

constant value (see the case of γ0 = 0.32, M = 0.1, ΦD = 1).

H. CONCLUSIONS

We have described a numerical model for predicting hydraulic fracture initiation and prop-

agation from a circular wellbore for plane strain and axisymmetric geometries. The fracture

behavior under the subcritical propagation condition was studied using this model and re-
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Figure II.13: Evolution of crack length and wellbore pressure of hydraulic fractures under

subcritical conditions (n = 40, α = 2000), using various wellbore radii A = 0.08 or A = 0.32,

and fluid viscosities M = 0.1 or M = 0.001, for two initial crack lengths γ0 = 0.02 (a, b)

and γ0 = 0.32 (c, d).
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Figure II.14: Wellbore pressure for a short (left) and a long (right) initial crack with various

deviatoric stresses and viscosities of injected fluid (n = 40, α = 2000, γ0 = 0.02/0.32, M =

0.1/0.001, ΦD = 1/0). The scaled value of the minimum in-situ stress, Φh, is indicated by

the red line as a reference.

sults were compared to those from a conventional model that uses the LEFM propagation

criterion. The results have provided an alternative interpretation for the pre-peak pressure

microseismic events observed in hydraulic fracture experiments, as well as for the delayed

breakdown under subcritical wellbore conditions.

Several conclusions can be made from our study. First, our convergence test implies that

the accuracy of the numerical solution is dependent on the element size. This mesh size

dependence is less when dimensionless viscosity M is smaller.

Second, our simulation results indicate a significant impact from subcritical propagation

on the hydraulic fracture initiation and growth process. Smaller values of n have larger effect

on the evolution of both crack length and wellbore pressure, which leads to earlier initiation

and reduced wellbore peak pressure. As n goes to infinity, the solutions converge to those

obtained by the classical LEFM model. Therefore, knowing the correct values of subcritical

parameters is crucial to better understand and simulate the behavior of hydraulic fracture,

especially during the initial stage.
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Moreover, the influence of subcritical crack growth vanishes with the increase of the

initial crack length γ0, and the viscosity M.

In addition, earlier initiation and reduced peak wellbore pressure can be achieved by

enlarging the wellbore radius.

Finally, deviatoric stress plays an important role in the subcritical crack growth model,

as it is also expected in the classical breakdown theory by Hubbert and Willis (1957). A

large deviatoric stress can lead to lower peak wellbore pressure.

41



III. MODELING SIMULTANEOUS INITIATION AND PROPAGATION

OF MULTIPLE HYDRAULIC FRACTURES UNDER SUBCRITICAL

CONDITIONS

A. PREAMBLE

This chapter comprises a preprint of Lu et al. (Submitted). In this chapter, the numerical

model presented in Chapter II is extended to the case of simultaneous growth of multiple hy-

draulic fractures from horizontal wellbore. Therefore, the impact of subcritical crack growth

is studied in the presence of stress interaction among different fractures. This subcritical

growth model is validated against available LEFM solutions in limiting cases. Then, com-

parison is carried out between the solutions obtained from subcritical and LEFM models. It

is shown that subcritical crack growth has a profound effect on the growth path of all cracks,

with the potential to neutralize the stress shadowing effect. Strikingly, and in contrast to

classical HF models, the subcritical HF model predicts initial suppression of and then even-

tual domination by the middle fracture(s), which is/are predicted to be suppressed due to

interaction stress.

B. ABSTRACT

Understanding the mechanisms that govern the simultaneous propagation of multiple hy-

draulic fractures is challenging since it depends on a variety of factors, such as the stress

shadowing effect and coupled elastic behavior of the rock with the fluid flow. In this paper,

we develop a numerical model for the initiation and subsequent propagation of an array of
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parallel, planar, axisymmetric hydraulic fractures. Unlike conventional numerical models

for hydraulic fracture growth, which impose a propagation condition wherein growth occurs

only if the stress intensity factor (KI) achieves a value equal to the material fracture tough-

ness (KIC), we allow the fractures to propagate under subcritical conditions (KI < KIC).

With this propagation condition, our numerical model can be used to study time-dependent

hydraulic fracture initiation and its impact on the subsequent growth of multiple hydraulic

fractures. Our results show that subcritical growth can drastically alter the behavior of the

system, in many cases leading to growth of hydraulic fractures which otherwise would be

suppressed due to stress shadowing effects.

C. INTRODUCTION

Multi-stage hydraulic fracturing (HF) is an essential technology for completion of horizontal

wells in unconventional hydrocarbon reservoirs. In engineering design for multi-stage HF

treatments of horizontal well stimulation, it is ideal to promote simultaneous growth of the

fractures in all clusters per stage in order to reduce the number of non-producing perforation

clusters (Lim et al., 2014; Slocombe et al., 2013). In contrast to the ideal outcome of

uniform fracture growth, laboratory experiments with multiple hydraulic fractures indicate

that interaction among the hydraulic fractures results in nonuniform growth with one fracture

growing longer than the others and eventually dominating and taking all the fluid (El Rabaa,

1989). These so-called “stress shadow” effects have also been evidenced in field data (Bunger

and Cardella, 2015) and predicted by numerical simulators (Desroches et al., 2014; Fisher

et al., 2004; Germanovich et al., 1997; Meyer and Bazan, 2011).

Predicting the propagation of multiple fractures is a complex task since it hinges on

the interplay among various factors, including the stress interaction among the fractures

(the stress shadowing), the partitioning of the influx to each fracture, and the coupled fluid

flow with elastic deformation in the cracks. Motivated by this challenging and important

phenomenon, in recent years, efforts have been made to study the physical mechanisms gov-

erning the multiple HF growth, including the interaction among multiple fractures (Bunger
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et al., 2012), the energetically advantageous partitioning of fluid among multiple hydraulic

fractures (Bunger, 2013; Bunger et al., 2014), and the influence of the viscosity of the injec-

tion fluid and the pumping rate (Shin and Sharma, 2014). Furthermore, numerical models

have been developed for solving the fully coupled problem of simultaneous growth of multiple

fractures (Lecampion and Desroches, 2015; Peirce and Bunger, 2015; Wu and Olson, 2016).

These invariably show a tendency for some hydraulic fractures to be suppressed due to stress

interaction with other fractures. More insights regarding to the importance of perforation

friction and separation between different fractures are given in these studies.

While increased attention has been given to studies of multiple HF growth, subcritical

crack growth (Atkinson, 1984; Charles, 1958) is not typically considered as a factor affecting

multiple HF growth. However, subcritical crack growth is shown to play a pivotal role in the

initiation of hydraulic fracture(s) (Bunger and Lu, 2015; Lu et al., 2017a, 2015). Laboratory

experiments on granite (Lu et al., 2015), sandstone and limestone (Lu et al., In review) show

that by maintaining a constant subcritical fluid pressure, which is smaller than its critical

value required to induce an instantaneous fracture initiation, HF growth can be achieved

after a certain period of time. These experimental results indicate a correlation between

this time to breakdown and the wellbore pressure. Furthermore, it is suggested that the

underlying mechanism that governs the HF breakdown in such a delayed manner is due

to the stable crack propagation under subcritical wellbore conditions, i.e., subcritical crack

growth. The classical theory of Linear Elastic Fracture Mechanics (LEFM) does not allow

fracture initiation when the mode I (opening) stress intensity factor, KI, is less than the

fracture toughness (or critical stress intensity factor), KIC. However, according to Atkinson

(1984, 1987), fractures can propagate stably under stresses that are insufficient to satisfy

such a condition (i.e., when KI < KIC), with velocities several orders of magnitude smaller

than the LEFM propagation velocity. Such crack growth is governed by an empirical power

law, referred to as the subcritical crack growth law (Atkinson, 1984; Charles, 1958), for

describing the relation between the fracture tip velocity, V , and the stress intensity factor,

KI, that is

V = A

(
KI

KIC

)n
(III.1)

where n is the subcritical crack growth index, and A is a constant characteristic velocity
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typically taken as an upper bound on the crack propagation speed when KI → KIC. Using

the subcritical crack growth law (Eq. III.1), numerical simulations have previously been

carried out on the initiation and following propagation of a single hydraulic fracture by Lu

et al. (2017a). The results show that subcritical growth can lead to a reduced wellbore

pressure and increased fracture length compared with the classical model.

Although it is seen that subcritical crack growth can have substantial effect on the single

HF growth, its influence on the case of multiple fractures remains unknown. Bunger and

Lu (2015) proposed that the time-dependent HF initiation may be one of the fundamental

phenomena for generating and growing multiple fractures simultaneously. Thus motivated,

in this paper a fully coupled numerical model is presented for solving the initiation and

subsequent propagation of an array of N axisymmetric hydraulic fractures that accounts

for subcritical fracture growth. This model stems from the classical LEFM model and is

integrated with the subcritical crack growth law (Eq. III.1). The problem formulation is

given in Section III.D. Section III.E presents the scaling of the governing equations, and

details of the numerical algorithm are described in Section III.F. Our numerical solution is

validated in Section III.G, and this model is further utilized to study the impact of the key

factors. Finally, we draw the conclusions from this work in Section III.H.

D. PROBLEM FORMULATION

1. Model description

We consider the problem of simultaneous initiation and propagation of N axisymmetric,

transverse hydraulic fractures growing from a horizontal well with radius a (see Fig. III.1) in

an impermeable linearly elastic rock characterized by Young’s modulus E, Poisson’s ratio ν,

and fracture toughness KIC. An incompressible Newtonian fluid with viscosity µ is injected

at a constant volumetric rate Q0 into the wellbore system with a finite compressibility U .

For each fracture I = 1, . . . , N , an initial defect of radius RI
0 is assigned for modeling the

initiation of the fractures. The spacing, ∆Z, between the fractures in the array is held
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constant, and we assume all fractures remain planar while they propagate from a horizontal

well under the minimum in-situ stress, σn, acting orthogonal to the fracture plane. The

interference between fractures can suppress propagation of some fractures, and also cause

their propagation paths to curve, but prior studies (Bunger et al., 2012; Xu and Wong,

2013) indicate that the magnitude of curving decreases with increasing in-situ deviatoric

stress (i.e., the difference between the maximum and minimum horizontal in-situ stresses).

Under a large enough deviatoric stress, which applies to most unconventional hydrocarbon

reservoirs, the out-of-plane deflection may be negligible (Xu and Wong, 2013). Of course

curving may sometimes be important, but such complexity is beyond the scope of the present

work. Furthermore, fluid leak-off to the rock, and the fluid lag (i.e., separation between the

fracture tip and the fluid front) is assumed to be negligible.

As depicted in Fig. III.1 , the wellbore is drilled along the direction of minimum in-situ

stress σn (z direction), and r is the radial coordinate along the direction of crack propagation,

with r = 0 corresponding to the center of the wellbore. Consequently, we have r ∈
(
a,RI

)
for the Ith crack. The fractures are placed uniformly along the wellbore such that zI =

(I − 1) ∆Z for I = 1, . . . , N . Finally, the solution for this problem consists of the fracture

radius RI (t), the crack width wI (r, t), the wellbore pressure pw (t), and the fluid pressure

pIf (r, t) in each fracture I.

2. Governing equations

a. Elasticity Following Lecampion and Desroches (2015), the distributed dislocation

theory (Hills et al., 1996) is used to describe the relation of the normal (Dzz) and shear

(Drz) ring dislocation dipoles with the net stress acting on each of the fractures. For the Ith

fracture, the elasticity equation is given in the form of two boundary integral equations for

normal and shear net loading along the crack, which are dependent on the fluid pressure pf ,

the in-situ stress σn, the normal and shear interaction stresses between fractures σIint and

τ Iint, as well as the near wellbore effect.
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Figure III.1: Sketch of a single stage of multi-stage HF treatment for an array of N axisym-

metric hydraulic fractures growing simultaneously from a horizontal wellbore injected by a

constant rate Q0. The fractures are placed along the direction of the well with a constant

spacing, ∆Z.
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The boundary integral equations are given by

pf
(
r, zI

)
− σn

(
r, zI

)
− σIint

(
r, zI

)
=´ RI

a

[
σzzzz

(
r, zI ; r′, zI

)
w
(
r′, zI

)
+ σzzrz

(
r, zI ; r′, zI

)
v
(
r′, zI

)]
dr′

τ
(
r, zI

)
= −τ Iint

(
r, zI

)
=´ RI

a

[
σrzzz

(
r, zI ; r′, zI

)
w
(
r′, zI

)
+ σrzrz

(
r, zI ; r′, zI

)
v
(
r′, zI

)]
dr′

(III.2)

where w = −Dzz is the fracture width, and v represents the shear displacement jump,

v = −Drz, defined by v(r′, zI) = limε→0

(
ur(r

′, zI + ε)− ur(r′, zI − ε)
)
. The elastic kernels

σijkl(r, z; r′, z′) denote the ij component of stress at (r, z) induced by a ring dislocation dipole

at (r′, z′). These elastic kernels are discussed below (see also Lecampion and Desroches,

2015). Note that for these kernels, in case of a planar fracture, the value of zI remains

constant along the whole crack and σzzrz(r, z
I ; r′, zI) = σrzzz(r, z

I ; r′, zI) = 0, i.e. there is no

coupling between normal and shear displacement jumps for a single fracture.

Initially, the radius of fracture I is short in comparison both to the wellbore radius and to

the spacing between the fractures. In this case, the influence of the wellbore onto the fracture

I is substantial, while the influence of the fracture I onto the other fractures is negligible.

The elastic kernel for Eq. (III.2) in this case can be obtained from the integral kernel for

a ring dislocation in an infinite domain with the cylindrical wellbore, found in Keer et al.

(1977). As the fractures grow longer, the wellbore effect vanishes and the interaction stress

among the fractures becomes important. According to Lecampion and Desroches (2015),

for fractures larger than five to ten times the wellbore radius, the impact of the wellbore

becomes negligible, and one can use the elastic kernels Gordeliy and Detournay (2011a) for

ring dislocation dipoles in an infinite homogeneous medium (see a detailed discussion in

Lecampion and Desroches, 2015).

Therefore in our model, when the crack radius is less than five times the wellbore radius

(RI ≤ 5a), the elastic kernel for Eq. (III.2) is obtained from the integral kernel for a ring

dislocation in an infinite domain with the cylindrical cavity of radius a, found in Eqs. (24) -

(29) of Keer et al. (1977). Its mathematical expression is detailed in Abbas and Lecampion

(2013) and in Lu et al. (2017a). By using this kernel, the shear displacement jump on the

fracture I and the influence of the fracture I onto the other fractures are neglected. For
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cracks that are long enough (RI > 5a), the elastic kernels for ring dislocation dipoles in

an infinite homogeneous medium Gordeliy and Detournay (2011a) are used, that make it

possible to account for the normal and shear displacement jumps on fracture I and for their

influence onto the other fractures.

With these considerations, in Eq. (III.2), the interaction stresses are given as

σIint
(
r, zI

)
=∑

J 6=I
RJ>5a

´ RJ
a

[
σzzzz

(
r, zI ; r′, zJ

)
w
(
r′, zJ

)
+ σzzrz

(
r, zI ; r′, zJ

)
v
(
r′, zJ

)]
dr′

τ Iint
(
r, zI

)
=∑

J 6=I
RJ>5a

´ RJ
a

[
σrzzz

(
r, zI ; r′, zJ

)
w
(
r′, zJ

)
+ σrzrz

(
r, zI ; r′, zJ

)
v
(
r′, zJ

)]
dr′

(III.3)

Further details of the integral kernels and the discretization of the boundary integral

equations (III.2) are given in Appendix B.A.

b. Fracture initiation and propagation The conventional LEFM model assumes that

the fracture propagates under quasi-static equilibrium, with KI = KIC at any time for a

growing hydraulic fracture. The asymptotic behavior of the opening at the fracture tip is

given by the classical square-root asymptote (Rice, 1968)

w ∼ K ′

E ′
x̂1/2, x̂→ 0 (III.4)

where x̂ = RI − r denotes the distance to the crack tip, E ′ = E/ (1− ν2) is the plane strain

elastic modulus, and K ′ =
√

32/πKIC. We refer to this behavior as the toughness (“k”)

asymptote.

Since the subcritical propagation criterion (Eq. III.1) is introduced in our model, which

allows crack growth when KI < KIC, the LEFM propagation condition needs an appropriate

modification. By rewriting the k asymptote (Eq. III.4) as

w ∼
√

32

π

KI

E ′
x̂1/2, x̂→ 0
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Figure III.2: Log-log plot of the crack tip velocity and the stress intensity factor (after

Atkinson, 1987; Olson, 1993). Subcritical crack growth commences when KI becomes larger

than K∗I .

and using Eq. (III.1), the modified k asymptote is expressed as

w ∼ K ′

E ′
x̂1/2 ·

(
V

A

)1/n

, x̂→ 0 (III.5)

Such a subcritical tip asymptotic solution is also used in Lu et al. (2017a) for solving the

problem of initiation and propagation for a single hydraulic fracture. It is worth noting

that, although the fractures can grow subcriticallly (KI < KIC) following the subcritical

propagation criterion (Eq. III.5), it is assumed that there is a lower limit for the stress

intensity factor, K∗I , under which value the subcritical growth stops. Fig. III.2 shows the

crack tip velocity dependence upon the stress intensity factor (after Atkinson, 1987; Olson,

1993). Following Atkinson (1987) and Olson (1993), we assume that the crack is initiated

when KI = K∗I = KIC/10, and require that K∗I ≤ KI ≤ KIC for the subcritical fracture

propagation.
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c. Fluid flow The fluid flux q (r, t) in the Ith fracture is governed by the Poiseuille law

(Batchelor, 1967). For an incompressible Newtonian fluid with a dynamic viscosity of µ, we

have

q = −w
3

µ′
∂pf
∂r

for r ∈
(
a,RI

)
(III.6)

where µ′ = 12µ. The local continuity equation is derived based on the fluid mass balance

∂w

∂t
+

1

r

∂

∂r
(rq) = 0 (III.7)

The Reynolds’ lubrication equation is then deduced by substituting Eq. (III.6) into Eq.

(IV.6)

∂w

∂t
=

1

µ′r

∂

∂r

(
rw3∂pf

∂r

)
(III.8)

d. Boundary and initial conditions The pressure in the wellbore is set to be equal to

the fluid pressure at the entry of all fractures by assuming no friction loss along the wellbore

and at the entry points. Thus, we impose this pressure continuity along the wellbore as

pw (t) = p1
f (r, t) = p2

f (r, t) = · · · = pNf (r, t) r → a (III.9)

Such pressure continuity condition is achieved by dynamically partitioning the total fluid

volume into fluid volumes injected at the inlet point of each fracture per unit time, QI (t).

At the well head, the fluid is injected to the wellbore at constant rate, Q0. Taking into

account the compressibility of the injection system, the sum of the fluid influx rates is equal

to the total injected volume minus the volume that has been stored due to compressibility

effect, which is given by

N∑
I=1

QI (t) = Q0 − U
dpw
dt

(III.10)

where U is the system compressibility (volumetric compliance of the injection system).

Therefore, QI (t) is to be solved for as part of the solution to the problem. Since we make
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use of the radially symmetric geometry imposed on all fractures, the inflow rate QI is related

to the fluid flux inside the axisymmetric crack, qI (a, t), by

QI (t) = 2πaqI (a, t) (III.11)

Next, for each fracture I = 1, . . . , N , the crack-tip boundary condition imposes vanishing

fluid flux and fracture width at the fracture tip (Detournay and Peirce, 2014)

r = RI : w (r, t) = 0, q (r, t) = 0 (III.12)

The initial condition at t = 0 is given by a uniform fluid pressure distribution pf along all

initial defects, which is slightly larger than the in-situ stress σn, such that very little opening

in the cracks is generated, that is

t = 0 : pIf (r, t) = σn (r) + pi, RI = RI
0

(
a < r < RI

0

)
(III.13)

where pi is a small initial net pressure assumed to exist in the crack, and RI
0 is the initial

fracture radius.

E. SCALING

The system of governing equations and boundary/initial conditions given in Section 2.

presents a complex problem which involves a cumbersome number of governing parame-

ters. Here we use a scaling method (after Abbas and Lecampion, 2013; Lu et al., 2017a) to

reduce the dimensionality of the parametric space by introducing the following dimensionless

variables

γI = RI

R∗
, A = a

R∗
, ρ = r

R∗
, ζ = z

R∗
, Ω = w

w∗
, Ψ = qR∗

Q∗
;

T = t
t∗
, σ̂ = σ

p∗
, τ̂ = τ

p∗
, Πw = pw

p∗
, Πf =

pf
p∗
.

(III.14)

52



where t∗, R∗, w∗, p∗, and Q∗ are the 5 characteristic scales for time, radius, crack width, pres-

sure, and fluid flux. As in Lu et al. (2017a), we use a so-called “compressibility-toughness”

(UK) scaling to compute the values of these characteristic scales as

R∗ = (E ′U)1/3 , t∗ = K′U5/6

Q0E′1/6
, p∗ = K′

(E′U)1/6
,

w∗ = K′U1/6

E′5/6
, Q∗ = Q0.

(III.15)

This scaling is based on the characteristic time and radius scales associated with the

release of the volume compressed in the injection system prior to fracture initiation. There-

fore, when the fracture attains a radius much greater than the characteristic radius, R∗,

the impact of the compressed volume in the injection system vanishes. Similarly, when the

injection time greatly exceeds the characteristic time, t∗, the impact of the compressed vol-

ume in the injection system vanishes. These characteristic quantities are found by rewriting

the governing equations in terms of the dimensionless variables (Eq. III.14) and the di-

mensionless groups that are combinations of the parameters K ′, E ′, µ′, Q0 and U (Abbas

and Lecampion, 2013). In doing so, the dimensionless groups associated with injection rate,

compressibility, and fracture toughness are all set to be 1, and the characteristic scales (Eq.

III.15) result. Consequently, the only characteristic parameters that appear in the scaled

governing equations are the subcritical index, n, the dimensionless viscosity, given by

M =
µ′Q0E

′8/3

K ′4U1/3
, (III.16)

and the scaled subcritical constant, wellbore radius, initial HF radii, and the scaled location

of each fracture along the wellbore given, respectively, by

α = K′U1/2

Q0E′1/2
A; A = a

R∗
; γI0 =

RI0
R∗

; ζI = ZI

R∗
. (III.17)

It is worthwhile to note that the scaling is derived based on the surface injection rate,

Q0, and the influx rate for each of the N fractures, QI , would certainly be smaller than

the total rate. During the propagation of multiple fractures, it is possible that fractures are

growing under different dominating regimes.

Based on the scaling method, we can rewrite the governing equations and boundary and

initial conditions in the following dimensionless forms:
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a. Elasticity For the axisymmetric DD formulation, we obtain

Πf

(
ρ, ζI

)
− σ̂n

(
ρ, ζI

)
− σ̂Iint

(
ρ, ζI

)
=´ γI

A

[
σ̄zzzz

(
ρ, ζI ; ρ′, ζI

)
Ω
(
ρ′, ζI

)
+ σ̄zzrz

(
ρ, ζI ; ρ′, ζI

)
v̂
(
ρ′, ζI

)]
dρ′

τ̂
(
ρ, ζI

)
= −τ̂ Iint

(
ρ, ζI

)
=´ γI

A

[
σ̄rzzz

(
ρ, ζI ; ρ′, ζI

)
Ω
(
ρ′, ζI

)
+ σ̄rzrz

(
ρ, ζI ; ρ′, ζI

)
v̂
(
ρ′, ζI

)]
dρ′

(III.18)

where ρ′ = r′

R∗
, σ̄ijkl denote the scaled elastic kernels, and v̂ is the scaled shear displacement

discontinuity written as v̂ = v/w∗. The interaction stresses are given by

σ̂Iint
(
ρ, ζI

)
=∑

J 6=I
γJ>5A

´ γJ
A

[
σ̄zzzz

(
ρ, ζI ; ρ′, ζJ

)
Ω
(
ρ′, ζJ

)
+ σ̄zzrz

(
ρ, ζI ; ρ′, ζJ

)
v̂
(
ρ′, ζJ

)]
dρ′

τ̂ Iint
(
ρ, ζI

)
=∑

J 6=I
γJ>5A

´ γJ
A

[
σ̄rzzz

(
ρ, ζI ; ρ′, ζJ

)
Ω
(
ρ′, ζJ

)
+ σ̄rzrz

(
ρ, ζI ; ρ′, ζJ

)
v̂
(
ρ′, ζJ

)]
dρ′

(III.19)

b. Poiseuille law The scaled Poiseuille law for Ith crack is written as

Ψ = − 1

M
Ω3∂Πf

∂ρ
for ρ ∈

(
A, γI

)
(III.20)

c. Continuity The fluid continuity equation is given by

∂Ω

∂T
+

1

ρ

∂Ψ̄

∂ρ
= 0 (III.21)

in which the modified fluid flux inside every crack is Ψ̄ = ρΨ.

d. Lubrication Upon substitution of Eq. (III.20) into Eq. (III.21) the scaled lubrication

equation is given by

∂Ω

∂T
=

1

Mρ

∂

∂ρ

(
ρΩ3∂Πf

∂ρ

)
(III.22)
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e. Propagation condition After scaling, the propagation condition is given by

Ω ∼ ξ̂1/2
(υ
α

)1/n

, ξ̂ → 0, υ ≤ α (III.23)

where υ = dγ/dT is the dimensionless fracture tip velocity, and ξ̂ = γ − ρ.

f. Boundary conditions The pressure continuity is scaled as

Πw (T ) = Π1
f (ρ, T ) = Π2

f (ρ, T ) = · · · = ΠN
f (ρ, T ) , ρ = A (III.24)

The global volume balance is given by

N∑
I=1

ψI (T ) = 1− dΠw

dT
(III.25)

in which the inflow rate is non-dimensionalized by ψI = QI/q∗, and is related to the fluid

flow rate inside the crack via the inlet boundary condition, which is expressed as

ψI (T ) = 2πΨ̄I (A, T ) , I = 1, . . . , N (III.26)

Then, the boundary condition at the tip is

ρ = γI : Ω (ρ, T ) = 0, Ψ̄ (ρ, T ) = 0 (III.27)

g. Initial condition The initial condition is written as

T = 0 : Πnet (ρ, T ) = Πi, γI = γI0
(
A < ρ < γI0

)
(III.28)

where Πi = pi/p∗ is a small initial net pressure sufficient to slightly open the initial crack.

In summary, by solving the system of scaled governing equations and boundary/initial

conditions, we seek the solution {γ,Ω,Π,Ψ} as a function of spatial
{
ρ, ζI

}
and time (T )

variables using the numerical method described in the following section.
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F. NUMERICAL ALGORITHM

1. Overview

The numerical algorithm follows in the spirit of previous contributions for simulations of

multiple hydraulic fractures (Lecampion and Desroches, 2015; Peirce and Bunger, 2015),

and is based on a time-controlled, implicit level set algorithm (ILSA) developed by Peirce

and Detournay (2008). We discretize every fracture with a fixed grid of elements with the

element size 4ρI . The elastic equation (III.18) is discretized by assuming a piece-wise

constant crack width, and a 1D finite difference scheme is used for discretization of the

lubrication equation (III.22).

For every step with a fixed time increment of 4T , the algorithm first checks for each

crack whether the mobility condition is satisfied (i.e., KI > K∗I ), and the crack radius γI is

fixed if this condition is not met. Two loops are constructed to solve the coupled non-linear

problem for every time step. The outer loop in the algorithm solves the new crack radius γI

for all growing cracks. The inner loop uses Newton’s method to iterate on the inflow rate ψI

for all cracks (mobile or not) based on trial values of crack radii obtained in the outer loop.

An additional iterative scheme is required in the inner loop to solve the non-linear system of

the solid-fluid coupling, including the stress interference among the fractures. In the outer

loop, the ILSA algorithm is used for computing the new fracture radius via inversion of the

subcritical tip asymptote. According to ILSA, the position of fracture front is allowed to be

located inside an element (i.e., the crack front does not have to lie at boundaries between

two elements, and the element that contains the fracture tip is treated as partly opened),

which makes it possible to advance multiple cracks with different propagation velocities

simultaneously. At the current time step, each growing hydraulic fracture is divided into

two regions (see Fig. III.3):

I. The “channel” region includes all elements that were completely open in the previous

time step, and the last element of the channel is defined as the “ribbon element”;

II. The “tip” region consists of the rest of the elements along the crack, from the previous

tip element to the new fracture front estimated by ILSA.
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Note that in our notation, we use the subscript t for “tip” and c represents “channel”.

Therefore, in the fracture front loop, mt denotes the total number of elements along the

crack (this value is updated in every ILSA iteration), and mc gives the number of elements

in the “channel” region (which remains constant during one time step). Such a time-stepping

algorithm is described in detail in Section III.F.5.

2. Elasticity

The displacement discontinuity (DD) method (Crouch and Starfield, 1983) is used for dis-

cretizing the elasticity equation (III.2) into a linear system of equations. Each crack is

discretized into a mesh of mI DD elements with the element size 4ρI . The midpoint of each

element i in the Ith crack is assigned the coordinate: ρIi = A + (i− 1/2)4ρI , i = 1, ...,mI ,

and this element i is characterized by a constant width ΩI
i . By evaluating the integrals of

the stress kernels over each element, and by eliminating the shear displacement jump via

static condensation, the vectors of nodal fluid pressure, Π, and the nodal fracture opening,

Ω can be related by

Πf = CΩ− S (III.29)

where C is the elasticity influence matrix, and the vector S accounts for the normal stress

acting on the fracture induced by the in-situ stress and the interaction stress. Further details

of the components of C and S are given in Appendix B.A.

3. Lubrication

We discretize the Reynolds’ lubrication equation (III.22) using a finite difference scheme.

Combining the Poiseuille law (III.20) and the continuity equation (III.21), together with the
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Figure III.3: Geometrical interpretation of the one-dimensional hydraulic fracturing propa-

gation problem solved by a time-controlled algorithm (after Lecampion and Desroches, 2015;

Peirce and Detournay, 2008). At the current time step, the fracture is discretized by a fixed

grid, in which the channel region contains all completely opened elements from the previous

step and the rest of the elements along the crack (including the partly opened element at

current crack tip) belong to the tip region.
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boundary conditions at inlet points, Eq. (III.26), and at the tips, Eq. (III.27), the discretized

lubrication equation for fracture I is

4Ω1 = ∆T
ρ1∆ρ

[
K1 (Π2 − Π1) + ψI

2π

]
,

4Ωi = ∆T
ρi∆ρ

[KiΠi+1 +Ki−1Πi−1 − (Ki +Ki−1) Πi] , i = 1, . . . ,m− 1

4Ωm = ∆T
ρm∆ρ

[−Km−1Πm +Km−1Πm−1]

(III.30)

where Ki =
ρi+1/2

M4ρ

(
Ωi+Ωi+1

2

)3

, ρi+1/2 = ρi+ρi+1

2
, 4Ωi = Ωi (T )− Ωi (T0), and Ωi (T0) denotes

the width from the previous time step T0. Note that in Eq. (III.30), m = mt = mI , and

we drop the superscript âI â from Π, Ω, ρ, and ∆ρ for brevity. Eq. (III.30) can also be

expressed in matrix form as

∆Ω = 4TD ·Π + Λ (III.31)

in which D is a tridiagonal matrix, and the vector Λ =
[
4T ψI

2πρ1∆ρ
0 · · · 0

]T

accounts for

the influx boundary condition for each hydraulic fracture.

4. Mixed-variable coupled system

We recall that every crack is divided into channel (c) and tip (t) regions. Hence, Eq. (III.31)

can also be decomposed into two parts:

∆Ωc = 4T
(
Dcc ·Πc + Dct ·Πt

)
+ Λc

∆Ωt = 4T
(
Dtc ·Πc + Dtt ·Πt

) (III.32)

By substituting Eq. (III.32) into the elasticity equation (III.29), we obtain the non-linear

equation

 I−4TDccCcc −4TDct

−4TDtcCcc −4TDtt

 ∆Ωc

Πt


=

 4TDcc (CccΩc (T0) + CctΩt − Sc) + Λc

−∆Ωt +4TDtc (CccΩc (T0) + CctΩt − Sc)

 (III.33)
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where I is the mc ×mc identity matrix. For a given crack opening in the tip region Ωt (its

value will be discussed in the following section), Eq. (III.33) is solved using a fixed-point

iteration method. At iteration j, the solution for the unknown vector, [∆Ωc; Πt], is found

from the following linear system

Ξ
(
Uj
)
Uj+1 = Γ

(
Uj
)

(III.34)

in which U = [∆Ωc; Πt], and the matrix Ξ and the vector Γ are found according to Eq.

(III.33). Note that, for the case of multiple fractures, the vector S accounts for the interaction

stress acting on the Ith fracture due to opening of other cracks, and its value depends on the

width of all cracks that are longer than 5a, i.e., J = 1, . . . , N ; J 6= I; γJ > 5a (see details

in Appendix B.A). Therefore, an iterative method is necessary for computing the increment

of opening, ∆Ωc, for all cracks which includes the coupling of the interference among the

fractures. We construct a loop to update S after obtaining the values of ∆Ωc (via Eq. III.34)

for all cracks, until convergence in the solution is achieved.

5. The implicit level set algorithm

The ILSA developed by Peirce and Detournay (2008) is adopted here to update the position

of the fracture front, given the estimate of fracture width at the ribbon element. This

method hinges on the dominance of the tip region as well as the last element in channel

region (ribbon element) by the asymptotic behavior. Therefore, the opening of the ribbon

element, Ωr, has the subcritical asymptotic correlation (Eq. III.23) with the distance to crack

tip, ξ̂r. According to Peirce and Detournay (2008), the crossing-time map, T , is defined as

the inversion of the tip asymptote (Eq. III.23), which is given by

T ≡ −ξ̂r ∼ −Ω2
r

(α
υ

)2/n

(III.35)

By expressing the crack propagation velocity as

υ = −T −T0

4T
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where T0 is the crossing-time map associated with previous time step T0, then we obtain the

following equation for T

T + Ω2
r

(4T α)2/n

(T0 −T )2/n
= 0 (III.36)

In this way, knowing the opening at the ribbon element, Ωr, we compute the value of T

by solving Eq. (III.36), and obtain the new estimated fracture radius

γ = γ (T0) + T0 −T (III.37)

Since the fracture width in the crack tip region follows the subcritical asymptotic be-

havior, the fluid volumes in all elements in the tip region can be expressed using the tip

asymptote, i.e. ∆ρ · Ωi =
´ γ−ρi−1/2

γ−ρi+1/2
ξ̂1/2κdξ̂ for i = mc + 1, . . . , mt, in which κ =

(
υ
α

)1/n

denotes the dimensionless stress intensity factor. Thus, by knowing the estimated fracture

radius, the crack opening, Ωi, in the tip region can be computed.

To set an initial value for Ωr, we impose the crack to remain static in the first iteration of

the fracture front loop (i.e., no fracture propagation from the previous time step at the first

iteration on the fracture front) and Eq. (III.33) is solved to obtain the increment in crack

width along the whole crack (including both channel and tip regions). For the following

iterations, the ILSA algorithm updates the fracture radius, until convergence is reached. For

each trial value of the fracture radius, Eq. (III.33) is solved, and the obtained opening in

the ribbon element, Ωr, is used to solve Eq. (III.36) and update the fracture radius via

Eq. (III.35). Such a numerical scheme was first developed for solving the problem of a

single hydraulic fracture Peirce and Detournay (2008), and was used for modeling multiple

fractures in Peirce and Bunger (2015) as well as Lecampion and Desroches (2015). For

multiple fractures, it can be conducted on each fracture: at each ILSA iteration, all fracture

widths are updated simultaneously (taking into account the elastic interference between the

fractures), and then the fracture radii are updated using the crack widths in ribbon element

until achieving an overall convergence.
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6. Solution for fluid partitioning

The fluid influx rate into different fractures ψ = (ψ1, . . . , ψN) is adjusted dynamically based

on the effect of solid-fluid coupling in each fracture and elastic interference among different

fractures. As a result of the fluid partitioning, pressure continuity condition (III.24) should

be satisfied at any time step. In our model, we solve for the inlet flow rate ψ numerically

using the Newton’s method by finding the zeros of the residual vector r = (r1, . . . , rN), with

rI =
Πw (ψ)− ΠI1

f (ψ)

Πw (ψ)
I = 1, . . . , N (III.38)

where ΠI1
f denotes the fluid pressure at the midpoint of the first element (inlet point) in

fracture I. In Eq. (III.38), Πw (ψ) is computed by the global volume balance, given by

Πw (ψ, T ) = Πw (ψ, T0) + ∆T −
N∑
I=1

ψI ·∆T (III.39)

7. Numerical scheme

The components of the algorithm in a single time step are briefly summarized as follows (K

and k denote the iteration counters in the outer and the inner loop, respectively, and ε is

the tolerance):

1. Given solution at T = T0 (Ω (T0) , γ (T0) , κ (T0));

2. Advance time step: T ← T0 + ∆T ;

3. Fracture front (outer) loop to find new front positions γ (T );

(1). Inner loop to find fluid partitioning ψ;

Solve unknown vector U in the mixed-variable coupled system

described in Section III.F.4 for all cracks, including an extra

loop that accounts for the interaction stress;

Compute Πw using Eq. (III.39), update ψk+1 via Newton’s method for

solving residual function r = 0 (Eq. III.38) until ‖ψk+1 −ψk‖ < ε‖ψk‖;

(2). Update γK+1, ΩK+1 for all cracks via ILSA (Section III.F.5);

(3). Check for convergence ‖γK+1 − γK‖ < ε‖γK‖;

4. Update Ω (T ), κ (T ) , γ (T ), go to next time step.
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G. NUMERICAL RESULTS

1. Validation

a. Initiation and subsequent growth of a single hydraulic fracture under subcrit-

ical conditions We first test our model on a single radially symmetric hydraulic fracture

propagating from a horizontal wellbore driven by a constant injection rate. Our numerical

results for an axisymmetric fracture’s growth under the subcritical propagation condition

(with an intermediate subcritical index n = 40) injected by a fluid with either small or large

viscosity (M = 0.001 andM = 1) are compared with those from previously developed single

subcritical HF model “SCRIF” (Lu et al., 2017a) (which implements a length-controlled al-

gorithm in contrast to the time-controlled algorithm used here). The values ofM are chosen

such that each of the case represents a hydraulic fracture growth under a specific propagation

regime (Savitski and Detournay, 2002), i.e., toughness-dominated regime when M = 0.001,

and viscosity-dominated regime when M = 1. For both cases, the in-situ stress is set to be

zero and except for the viscosity M, the values for all other dimensionless parameters are

taken to be the same. Fig. III.4 gives the relation of crack radius and wellbore pressure with

time. An overall convergence between the two numerical solutions is observed for all cases.

The largest difference occurs when the wellbore pressure reaches its peak value in the larger

viscosity case (M = 1), which has a relative difference of 7%.

b. Comparison with solution obtained from classical HF model for multiple

hydraulic fractures Here we consider an array of three hydraulic fractures initiating

and propagating from a horizontal wellbore in an infinite domain, following the example

previously considered under the LEFM assumption by Lecampion and Desroches (2015).

The numerical model developed by Lecampion and Desroches (2015) uses the classical tip

asymptotics as the propagation criterion for fracture growth (i.e., KI = KIC is required for

propagation). The code was made available to the authors and we were able to use the same

values for all parameters and compare the numerical solution from both models. Initially,

three fractures (N = 3) are placed along the wellbore with fractures 1 and 3 on the outside
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Figure III.4: Evolution of fracture radius (left) and wellbore pressure (right) for the propa-

gation of a radially symmetric fracture under subcritical condition with the subcritical index

n = 40 and varying fluid viscosity (M = 0.001 or M = 1). The confining stress σ̂n is set to

be zero for all cases.

and fracture 2 placed in the middle (spacing ∆Z = 25 m). The initial radii for all cracks are

set to be same as the wellbore radius. The values of the simulation parameters are given as:

σn = 37.2 MPa; E ′ = 26 GPa; KIC = 1.2 MPa
√

m; µ = 0.005 Pa · s; Q0 = 0.159 m3/s; U =

1.84 × 10−8 m3/Pa; ∆Z = 25 m; a = 6.9 cm; RI
0/a = 1. Note that in Lecampion and

Desroches (2015) the volumetric compressibility U is taken into account by modeling the fluid

flow in the wellbore (see detailed discussion in Lecampion and Desroches (2015)). Therefore

the values of relevant parameters in the model of Lecampion and Desroches (2015) (the

cross-sectional area of the flow A, fluid compressibility c, and total length of pressurized well

L) are assigned such that the same effect of the injection system compressibility, equivalent

to U (Ac×L = U), is recovered in the simulation. Additionally, since we impose the pressure

continuity condition throughout the entire wellbore, the perforation friction in Lecampion

and Desroches (2015) is also set to be zero. Finally, it is shown in Lu et al. (2017a) that the

subcritical tip asymptote reduces to the classical k asymptote when the subcritical index n

is large enough. Therefore, for the purpose of verification, we set n = 200 and A = 1000 m/s
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in our subcritical growth model, which has previously been shown to generate consistent

results with those obtained from the classical LEFM model (Lu et al., 2017a).

Fig. III.5 shows the evolution of crack radius R and influx QI for all hydraulic fractures.

By comparing the two solutions, consistent results are observed in the evolution of inflow rate

of all cracks. As for the fracture radius, the trend of fracture #2 being squeezed by the two

outer fractures 1 and 3 is seen in both results when the hydraulic fractures grow long enough

and the stress interference among fractures becomes appreciable. An overall agreement of

the two models can be seen, with slightly larger crack radius obtained from the subcritical

crack growth model in long term propagation, compared to the classical HF solution. To this

point, it is found by Lu et al. (2017a), in the case of single hydraulic fracture growth, that

subcritical crack growth results in a greater crack length compared to the classical LEFM

solution. Furthermore, as n increases, the effect of subcritical growth vanishes and an overall

tendency of the prediction for crack growth converging to the classical solution can be found

(see detailed numerical results for n=10, 40 and 200 in Lu et al., 2017a). An even larger

value of n (n=1000) was used in Lu et al. (2017a) for simulating the case that n goes to

infinity, and the numerical prediction for crack growth shows consistency with the LEFM

solution in long term propagation. Therefore, it is reasonable to conclude that, by comparing

the results with the numerical model of Lecampion and Desroches (2015), we have verified

our model for the initiation and propagation of multiple fractures. The slight difference in

the crack radius is due to the impact of the subcritical crack growth.

2. Solution for multiple HF initiation and propagation under subcritical con-

ditions

As shown in detail by Lu et al. (2017a), for the case of a single hydraulic fracture, subcritical

crack growth has a significant impact on both the initiation and the subsequent propagation.

The change in subcritical index, n, also has a prominent effect on the evolution of crack radius

and wellbore pressure, with smaller n resulting in earlier initiation, longer crack radius, and

reduced wellbore peak pressure. We now investigate the influence of varying n for the case

of more than one hydraulic fractures growing simultaneously. An array of three fractures
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Figure III.5: Evolution of fracture radius (left) and influx (right) for an array of three

evenly spaced fractures emanating from a horizontal wellbore with the subcritical index

n = 200. Our solution is compared with those obtained from the numerical model developed

by Lecampion and Desroches (2015), which imposes classical LEFM propagation criterion

(KI = KIC).
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is used for this illustration (N = 3). The values for the other parameters are given as:

σn = 30 MPa; E ′ = 16.5 GPa; KIC = 1.8 MPa
√

m; µ = 0.001 Pa · s; Q0 = 0.05 m3/s; U =

1.84×10−8 m3/Pa; ∆Z = 15 m; a = 6.9 cm; RI
0/a = 1/3. The resulting global dimensionless

viscosity is M = 0.368, and the compressibility lengthscale R∗ that is associated with the

vanishing effect of the wellbore is given as R∗ = 6.7 m. Two cases of large and small

subcritical index n = 200 and n = 20 are used to explore the role of subcritical index on

the overall behavior of every fracture. Fig. III.6a gives the relation of crack radius RI versus

injection time t for all three cracks. As expected, an earlier initiation is observed in the case

of n = 20, compared to the case with a larger n = 200. Again, for both cases, we see that

the growth of the middle fracture (#2) is suppressed by the two outer fractures (#1 and #3)

as they start to interact with each other, and eventually it stops growing completely due to

the strong elastic interference. It is also implied that as n decreases, all cracks (including

the middle crack that is being squeezed by the other two cracks on the edges) tend to grow

longer.

It is also of interest to explore the impact of fluid viscosity and injection rate. Assuming

that the flow rate is evenly split into all three cracks, i.e., QI = Q0/3 for I = 1, . . . , N . Note

that the fluid partitioning into each crack is dependent on various factors such as the solid-

fluid coupling in every fracture and the elastic interaction among different fractures. Thus,

the amount of fluid flows into all cracks is certainly not evenly split and it evolves with time.

The exact values of the inflow rates are obtained by using the Newton’s method detailed in

Section III.F.6. Here we only use this rate for the sake of estimating a global propagation

regime. With this value, the scaled viscosity M = 0.368, suggesting the hydraulic fractures

are likely to grow in an intermediate regime (compared to the limiting regimes of toughness-

dominated or viscosity-dominated). To illustrate the effect of fluid viscosity, we also run

another simulation with the fluid viscosity µ = 0.1 Pa · s while keeping the same values for

all other parameters. Thus, in the second case, the scaled viscosity now becomesM = 36.8,

which is expected to lead to HF growth of all cracks in the viscosity-dominated regime. As

in the previous case, two values for n are used in the simulation, and the evolution of crack

radius is plotted in Fig. III.6b. It is shown that for both inner and outer fractures, the radius

evolution almost overlaps each other between the two cases of different n, indicating that
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effect of subcritical growth vanishes and our results merge to the classical HF solution. Note

that a similar observation has been made for a single hydraulic fracture, specifically, that

the subcritical crack growth becomes less important as the fluid viscosity increases Lu et al.

(2017a).

Now we turn to the evolution of wellbore pressure with time (see Fig. III.7). Similar

to what has been seen in the numerical simulation for a single hydraulic fracture, the peak

(maximum) net wellbore pressure (pw − σn) is reduced as n drops from 200 to 20, especially

when the fluid viscosity is smaller. However, this effect is diminished with increasing fluid

viscosity.

So far all results have been essentially as expected. However, the behavior becomes

more surprising when we reduce the spacing between the initial cracks to ∆Z = 5 m

and keep every other parameter to be the same: σn = 30 MPa; E ′ = 16.5 GPa; KIC =

1.8 MPa
√

m; µ = 0.001 Pa · s; Q0 = 0.05 m3/s; U = 1.84× 10−8 m3/Pa; a = 6.9 cm; RI
0/a =

1/3. Fig. III.8 shows the evolution of crack radius and influx with time. Strikingly, the two

values of subcritical index lead to prediction of totally different behaviors. First, the n = 200

case follows the conventional HF model in that the middle fracture (#2) is suppressed by

outer fractures and ceases propagation as soon as the radii R of all fractures gain the same

order of magnitude as the spacing ∆Z. In contrast, for the results for n = 20, although we

see the squeezing effect on the growth of fracture 2 early on, after some time period it starts

to take more fluid and catch up with the two outer cracks. Finally it takes all fluid injected

into the system and outgrows fractures 1 and 3.

More insights can be drawn from Fig. III.9, which plots the ratio of stress intensity

factor, KI/KIC, versus injection time t. It is shown that for the case of a large n, KI/KIC

converges to a constant value shortly after the fractures start to grow. Note that the same

phenomenon was found in the solution for a single hydraulic fracture propagation under

subcritical conditions (Lu et al., 2017a). What is striking is that for the three fractures case,

a competition in the ratio KI/KIC appears to take place between the outer and inner fractures

as the fluid influx rate is dynamically partitioned among the hydraulic fractures. It finally

leads to the domination of fracture propagation by fracture 2 as the value of KI/KIC drops

in fracture 1 and 3. Therefore, it is implied by the numerical results that reducing fracture
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Figure III.6: Evolution of crack radius RI with injection time t for three evenly placed

hydraulic fractures emanating from a horizontal wellbore with n = 200 and n = 20 injected

by fluid with the viscosity of (a) µ = 0.001 Pa · s (M = 0.368) and (b) µ = 0.1 Pa · s

(M = 36.8).
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Figure III.8: Evolution of (a) crack radius RI with injection time t, and (b) fluid influx

rate QI with injection time t for three evenly placed hydraulic fractures emanating from a

horizontal wellbore with ∆Z = 5 m (n = 200/20).

seperation, ∆Z, for the case of smaller n, a redistribution of the injected fluid volume into

each fracture takes place over time which offsets the effect of stress shadowing.

H. CONCLUSIONS

In multi-stage HF stimulation of horizontal wells, promoting simultaneous growth of all frac-

tures in each stage is important in order to reduce the number of non-producing perforation

clusters. Understanding and modeling the basic physical processes of multiple hydraulic frac-

tures is therefore vital to accurate predictions and development of new approaches. The main

contribution of this paper is to show that subcritical crack growth plays an important role in

the growth of multiple hydraulic fractures. This main conclusion is drawn based on results

from a newly presented HF model accounting for simultaneous initiation and propagation

of multiple hydraulic fractures from a horizontal wellbore with a subcritical growth prop-
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Figure III.9: Dimensionless stress intensity factor κ versus injection time t for the numerical

simulation presented in Fig. III.8.

agation condition. Simulation results indicate a substantial influence from the subcritical

propagation on both initiation and following growth of multiple hydraulic fractures. Con-

sistent with previous observations, this impact is dependent on the value of the subcritical

index n. Specifically, we find that smaller values of n have larger effects on the evolution of

both crack radius and wellbore pressure, resulting in earlier initiation, longer fractures, and

reduced wellbore peak pressure. As n increases, the results merge to those obtained by the

classical LEFM model. Therefore, knowing the correct values of subcritical parameters is

crucial to predicting the behavior of multiple hydraulic fractures. Furthermore, the influence

of subcritical crack growth vanishes with the increase of the fluid viscosity.

While this previous result is useful for accurate simulation, the impact of subcritical

crack growth is shown to be more than just to modify the details of the solution. Rather,

in some cases, the behavior associated with multiple hydraulic fracture growth is completely

changed. Most notably, for cases with smaller values of subcritical index n, we observe for

the first time the existence of a regime in which the central fracture(s) in the array, while

initially suppressed, eventually dominate(s) growth thus leading to more uniformity among

the fracture sizes. This behavior is observed for smaller values of the subcritical index n
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when the separation among the fractures is relatively small, but not in the LEFM cases

regardless of separation among the fractures. Hence, our results suggest that reducing the

subcritical index can promote multiple hydraulic fracture growth, so that future research

aimed at choice of fluid that reduces the subcritical index through chemo-mechanical fluid-

rock interaction could lead to more uniform initiation and growth of multiple hydraulic

fractures in multi-stage hydraulic fracturing treatment.
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IV. TIME-DEPENDENT HYDRAULIC FRACTURE INITIATION:

LABORATORY EXPERIMENTS AND NUMERICAL MODELING

A. PREAMBLE

A preprint of Lu et al. (In review) is given in this chapter. Laboratory HF experiments are

performed to explore the occurrence of time-dependent HF initiation in three types of rocks.

The experimental data shows that delayed HF initiation can be achieved under sustained

subcritical wellbore pressures. The results are compared with solutions obtained from the

numerical model presented in Chapter II. The importance of the relevant parameters are

also examined.

B. ABSTRACT

Time-dependent failure has been proven to occur in various brittle rocks and has a wide

range of applications. However, this phenomenon has only recently been considered in stud-

ies on hydraulic fracture initiation. Laboratory delayed hydraulic fracturing breakdown

experiments have been carried out on three rocks (granite, sandstone, and limestone) under

sustained subcritical wellbore pressures to study the occurrence of time-dependent initia-

tion. Test results were then used to benchmark a numerical model that takes into account a

subcritical crack growth law to predict the time duration to breakdown. We show that this

numerical model is useful in various aspects, such as estimating the value of the subcritical

index n based on characterization experiments, and given characterization data, predict-

ing the time duration to breakdown under certain pressurization and loading conditions.
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The comparisons between predictions and experimental results highlight both the ability of

the model to predict the delay time and also the difficulties associated with the apparent

dependence of the subcritical index n on the fluid-rock system and the confining stress state.

C. INTRODUCTION

Multi-stage hydraulic fracturing (HF) is one of the most important techniques for stimula-

tion of oil and gas production from unconventional hydrocarbon reservoirs. The goal is to

maximize the oil/gas production and to reduce developing costs compared to other stimula-

tion options. With this technology, as the name implies, the well is stimulated in stages. In

each stage, multiple hydraulic fractures (typically 3 to 8) are initiated and propagated simul-

taneously by a continuous pumping operation into an isolated section of the well. Although

it has been proven to be a successful technology that can boost the effectiveness of the well

stimulation, production logs from more than 100 shale wells show that up to 30% of the

perforation clusters - the entry points intended to be stimulated by each growing hydraulic

fracture - do not contribute to production (Miller et al., 2011), and one of the main reasons

for the non-productive clusters is that a certain portion of the clusters fail to be stimulated.

Thus, models that enable prediction and lead to new approaches to increase the number of

stimulated perforation clusters can play an important role in the design of multi-stage HF

treatments.

To address the problem of multiple HF growth, it is crucial to accurately predict the

initiation of each fracture because initiation is the pre-requisite of multiple fracture growth.

Over the past few decades, efforts have been made to study the parameters that influence

the initiation and early growth of single/multiple hydraulic fracture(s) (Abbas and Lecam-

pion, 2013; Abbas et al., 2013; Bunger et al., 2010; Detournay and Carbonell, 1997; Haimson

and Fairhurst, 1967; Hubbert and Willis, 1957; Lakirouhani et al., 2016; Lecampion and

Desroches, 2015). While the effect of various factors (e.g., borehole radius, compressibility,

in-situ stresses, and fluid viscosity) on HF initiation has been investigated in several prior

studies, a long recognized but often ignored characteristic of rock, namely, time-dependent
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breakage and/or subcritical crack growth, has only recently been considered. Conventional

approaches to solve the HF problem assume no fracture initiation before some critical con-

dition is met. Such critical conditions include a requirement that the maximum induced

tensile stress meets or exceeds the tensile strength of the rock (Haimson and Fairhurst,

1967; Hubbert and Willis, 1957), that the Mode I stress intensity factor equals the fracture

toughness of the rock (Abbas and Lecampion, 2013; Bunger et al., 2010; Detournay and

Carbonell, 1997; Lakirouhani et al., 2016; Lecampion and Desroches, 2015), or the crack is

able to propagate through satisfaction of a traction-separation failure condition applied to

a cohesive zone at the leading edge (Lecampion, 2012b). However, numerous studies show

that rocks can be caused to fail after a period of time when subjected to stresses that are

insufficient to satisfy a critical instantaneous failure criterion (Atkinson, 1984; Fernau et al.,

2016; Kear and Bunger, 2014; Lu et al., 2015; Scholz, 1972). Furthermore, laboratory HF

experiments on granite (Lu et al., 2015) have shown that a wellbore pressure that is lower

than the critical value required for instantaneous HF initiation can lead to breakdown in a

delayed manner. This phenomenon, referred to as time-dependent HF initiation, is argued

by Bunger and Lu (2015) as one of the fundamental mechanisms for simultaneous generation

of multiple hydraulic fractures, with the potential to significantly impact the propagation of

the fractures, especially in an early stage of the HF growth (Lu et al., 2017a).

Lu et al. (2017a) propose that time-dependent HF initiation can be attributed to growth

of the fracture under subcritical hydraulic pressures that induce a smaller Mode I (opening

mode) stress intensity factor, KI, compared to the fracture toughness, KIC. Under such

subcritical conditions, the fracture tip velocity, V , is related to the ratio of KI/KIC by

a power law correlation called the subcritical crack growth law (Atkinson, 1984; Charles,

1958)

V = A

(
KI

KIC

)n
(IV.1)

where the empirical parameter n is the subcritical crack growth index and A is a constant

characteristic velocity typically taken on the order of the Rayleigh wave speed, i.e., an upper

bound on the growth velocity when KI → KIC. Unlike the classical theory of Linear Elastic

Fracture Mechanics (LEFM), which imposes that the fractures do not initiate before the
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Figure IV.1: Log-log plot of the crack tip velocity and the stress intensity factor (after

Atkinson, 1984; Olson, 1993).

propagation criterion is reached (i.e., KI=KIC), the subcritical crack growth law states that

a crack in a stressed material under subcritical loading conditions can grow with a finite

velocity that is strongly dependent on the subcritical index. This parameter, n, can be

measured in a laboratory using the Double Torsion (DT) experiments (Evans, 1972; Holder

et al., 2001; Williams and Evans, 1973). After the crack reaches a critical size such that the

failure criterion is satisfied (KI=KIC), the growth rate of the crack tip attains the rupture

velocity of the material, which leads to a rapid (essentially instantaneous) failure. Fig. IV.1

shows the typical evolution of the crack tip velocity with the stress intensity factor (after

Atkinson, 1984; Olson, 1993). The subcritical crack growth law has been proven to be well

defined for a wide range of natural rock formations and to have a profound effect on the

development of natural fracture sets (Gale et al., 2007; Olson, 1993, 2004).

Our recent work demonstrated delayed initiation of HF in granite (Lu et al., 2015) and

limestone (Lu et al., 2017b), as well as developed a new HF simulator accounting for sub-

critical growth (Lu et al., 2017a). This paper brings together new experimental results with
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our prior data, and uses this data to benchmark and guide refinement of the simulator.

Hence, this work explores the occurrence of time-dependent HF initiation under laboratory

conditions and, via coupled simulations, ties this phenomenon to subcritical crack growth.

We first present our experimental results from the laboratory time-dependent HF initia-

tion experiments on granite, sandstone, and limestone specimens. Then, by comparing the

experimental data with numerical predictions obtained from the subcritical crack growth

model modified from Lu et al. (2017a), the underlying mechanisms of delayed initiation are

investigated, including the influence of fluid viscosity and the confining stresses.

D. LABORATORY DELAYED HF BREAKDOWN EXPERIMENTS

Inspired by the evidence of the time-dependent failure exhibited by rocks, laboratory HF

experiments were conducted under sustained subcritical wellbore pressures lower than the

pre-determined instantaneous breakdown pressure. Three types of rocks were tested: Cold-

spring Charcoal Granite, Agra Red Sandstone, and Kasota Valley Limestone. For each rock,

two sets of experiments were performed under different test conditions in order to explore

the impact of fluid viscosity and the applied confining stresses on the relationship between

the wellbore pressure and the time to breakdown. The testing program is summarized in

Fig. IV.2, and the testing conditions are detailed in Section IV.D.2 (see also Table IV.2). The

experimental data presented in this paper includes results from previous HF experiments on

granite using glycerin (Lu et al., 2015), and on sandstone specimens using water and varying

confining stresses (Uwaifo, 2016), as well as recent HF tests on granite and limestone under

various fluid and stress conditions.

1. Sample preparation

The experiments are carried out by pressurizing a 50-mm-long open section in a 12.5-mm-

diameter wellbore in the center of a 150-mm cubic specimen. Fig. IV.2 contains a sketch

of the experimental setup and a photograph of a specimen after a hydraulic fracture has
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Figure IV.2: Sketch of the experimental setup (left) and a photograph showing the cross

section of a limestone specimen after failure (right).

occurred. The rocks are supplied by the quarry and pre-cut into 150 × 150 × 150 mm

blocks. A 12.5-mm-diameter hole was drilled throughout the center of each sample. Then

the injection tube, a 150-mm stainless steel tube with two pairs of perforation holes was

placed inside the borehole. Finally, a 50-mm-long open-hole region was made by sealing

both sides of the central section in the borehole using O-rings and strong epoxy adhesive, as

detailed in Fig. IV.2.

Mechanical properties for each type of rock were measured using standard laboratory

methods. These are listed in Table IV.1. Besides these properties, the subcritical crack

growth index, n, is also measured for granite in the double torsion experiments. These tests

indicate a range: 9 6 n 6 27.

2. Experimental method

In all experiments, the open-hole section was filled with fluid and subjected to a constant

pressure using a syringe pump. The wellbore pressure was thus generated and maintained

as a constant by adjusting the rate of injecting fluid into the sample with a feedback loop

control. Of course this is not the typical boundary condition for HF in the field; typically
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Table IV.1: Material properties of the rocks.

Material property Granite Sandstone Limestone Test Method

Young’s Modulus

(GPa)
37 22 45

Uniaxial compression

on cylindrical

specimens (ASTM, 2010a)

Poisson’s Ratio 0.27 0.38 0.3

Uniaxial compression

on cylindrical

specimens (ASTM, 2010b)

Fracture toughness

(MPa
√

m)
1.5 0.48 0.77

Three-point loading on

semicircular bend

(SCB) specimens

(Kuruppu et al., 2014)

fluid is injected at a fixed rate, not pressure. However, for the purpose of investigating the

relationship between subcritical wellbore pressure and time to failure, constant pressure is

ideal. Additionally, confining stresses (σv, σH and σh, see Fig. IV.2) were applied using

a custom-built ENERPAC true tri-axial load frame. Flat loading plates are placed on all

surfaces of the specimen to ensure evenly distributed confining stresses in all three directions.

The first tests in each rock type were carried out to determine the wellbore pressure that

causes instantaneous breakdown. Then the delayed HF breakdown tests were run under

sustained subcritical wellbore pressures, smaller than the instantaneous breakdown pressure.

For each test, the specimen lifetime, defined as the duration from when the target pressure

is achieved to the moment of failure, was recorded. Finally, the relation of lifetime (time of

breakdown) versus wellbore pressure was determined by completing a series of experiments

under different wellbore pressures. Table IV.2 summarizes the experimental conditions for

all series of tests. To study the impact of the fluid viscosity, we selected water and glycerin

as the two types of injection fluids to be used on granite under zero confining stresses. For
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the sandstone and limestone experiments, our interests were to examine the influence of

different stress conditions; hence, water was used as the fracturing fluid in all sandstone and

limestone cases.

3. Experimental results

The experimental results are shown in Fig. IV.3. Two sets of data points are plotted in

each figure, representing tests under different experimental (fluid or stress) conditions. The

test data leads to several observations. Firstly, our results confirm the occurrence of de-

layed HF breakdown in granite, sandstone, and limestone. In all cases, we find consistent

correlations between the time of breakdown and the wellbore pressure, indicating an under-

lying mechanism that governs the initiation and subsequent growth of hydraulic fractures

under subcritical wellbore pressures. Secondly, the presence of time-dependent HF break-

down under various conditions, such as different fluid viscosities (see the two cases in granite

tests) and confining stresses (sandstone and limestone experiments), is also confirmed by the

experiments. Specifically, these results indicate that the time delay is increased for cases

with higher viscosity. The effect is substantial. For example, in granite, 16 MPa wellbore

pressure with water leads to nearly instantaneous breakdown, while the same pressurization

with glycerin leads to a delay time of more than 1000 seconds.

The impact of the applied confining stresses is also strong, exhibiting an overall shift of

the lifetime versus pressure relation in both the sandstone and limestone results. Here the

shift in pressure associated with a given delay time is expected based on the impact of the

applied stresses on the near wellbore stress concentration. That is to say, for a given delay

time, the shift in wellbore pressure required for that delay time is predictable based on the

contribution of the confining stresses on the near wellbore tangential stress. According to

the well-known Kirsch solution (Kirsch, 1898), which is the basis of past breakdown models

(Bunger and Lu, 2015; Haimson and Fairhurst, 1967; Hubbert and Willis, 1957), the shift in

pressure associated with a given delay time, ∆p, is predicted to be

∆p = 3σh − σH (IV.2)
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Table IV.2: Fluid and stress conditions for the experiments. The confining stresses in all

three directions for cases of unconfined tests are taken as the value of the atmospheric

pressure.

Experimental condition Injection fluid Confining stresses

Granite

Case I
Water

(µ = 0.001 Pa · s)

Atmospheric pressure:

σv = 0.1 MPa

σH = 0.1 MPa

σh = 0.1 MPa

Case II
Glycerin

(µ = 1.08 Pa · s)

Atmospheric pressure:

σv = 0.1 MPa

σH = 0.1 MPa

σh = 0.1 MPa

Sandstone

Case I
Water

(µ = 0.001 Pa · s)

Atmospheric pressure:

σv = 0.1 MPa

σH = 0.1 MPa

σh = 0.1 MPa

Case II
Water

(µ = 0.001 Pa · s)

Tri-axial stresses:

σv = 3 MPa

σH = 2 MPa

σh = 1 MPa

Limestone

Case I
Water

(µ = 0.001 Pa · s)

Atmospheric pressure:

σv = 0.1 MPa

σH = 0.1 MPa

σh = 0.1 MPa

Case II
Water

(µ = 0.001 Pa · s)

Tri-axial stresses:

σv = 6 MPa

σH = 6 MPa

σh = 4 MPa
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Hence, for the sandstone cases, the predicted ∆p = 1 MPa, while we observe a shift that

is somewhat larger (1.5 - 2 MPa). The predicted shift for the limestone cases is ∆p = 6

MPa, which is reasonably consistent with the experimental data (5 - 5.5 MPa).

In spite of this consistency for the limestone case, it remains to determine the reason

for the dependence on viscosity as well as the larger than expected shift in pressure with

applied stresses for sandstone. Note that, we keep the same wellbore radius throughout all

experiments to eliminate the size effect that can cause the discrepancy in the strength. It

is possible to speculate that reasons could be tied to a transition from fully penetrating

fluid for water to fully non-penetrating fluid for glycerin. As pointed out by Detournay and

Carbonell (1997), this transition reconciles the models of Hubbert and Willis (1957) and

Haimson and Fairhurst (1967), corresponding to limits wherein the fluid does not penetrate

and fully penetrates the flaw(s) that comprise the initiation points for fracture growth,

respectively. But to move beyond speculation requires a model. Similar to Detournay and

Carbonell (1997), it is desirable to introduce a finite initial crack that will enable modeling of

fluid penetration. However, the time-dependent behavior exhibited in the experiments can

hardly be explained by the conventional LEFM theory, since the insufficient induced KI (i.e.,

KI < KIC) would not lead to the HF initiation. We propose that, under these circumstances,

the crack can still initiate and grow with a velocity following the subcritical crack growth

theory expressed in Eq. (IV.1). A numerical model based on this proposition is developed

in ?, and the experimental results presented here will be used to examine the validity of this

model and guide its further refinement.

E. MATHEMATICAL MODEL

1. Problem formulation

The numerical results presented in this paper are calculated using the subcritical crack

growth HF model developed by Lu et al. (2017a), with a few alterations that are detailed

here. We consider the problem of time-dependent initiation and propagation of a single hy-
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Figure IV.3: Experimental results for (a) granite, (b) sandstone, and (c) limestone.

83



draulic fracture in an impermeable, linearly elastic rock characterized by Young’s modulus

E, Poisson’s ratio ν, and fracture toughness KIC. A Newtonian fluid with viscosity µ is

injected into the wellbore under a constant wellbore pressure pw. This is the first variation

from ?, which imposes constant rate injection to a compressible wellbore system. The hy-

draulic fracture is assumed to be a longitudinal bi-wing planar fracture under plane strain

conditions with an initial length l0 emanating from a vertical wellbore with the radius a

under the minimum and maximum (or intermediate) in-situ stresses (see Fig. IV.4). The

fluid lag and the fluid leak-off are both assumed to be negligible. Although this numeri-

cal model is built on prior works related to the numerical simulations of single HF process

(Bunger et al., 2010; Detournay and Carbonell, 1997; Lakirouhani et al., 2016), the main

novelty in our model is that the propagation of the hydraulic fracture is now governed by

the subcritical crack growth law, Eq. (IV.1). Thus, stable HF growth is allowed at wellbore

pressures that are insufficient to satisfy KI = KIC, the critical LEFM criterion. Hence, HF

growth is expected to proceed in a stable manner for a while but, after a certain time, the

crack propagation will attain a critical condition leading to overall failure of the specimen. It

is worthwhile to note that, the initially subcritical stress intensity factor KI increases as the

crack grows, and it is physically reasonable to consider HF breakdown as the time it takes to

attain KI = KIC. However, due to the limitation of the specimen size, we impose a second

criterion for breakdown of the laboratory specimens. This criterion is that as soon as the

crack grows to the boundary of the block, the specimen is assumed to lose its integrity and

fail. Hence, HF breakdown is alternatively defined as the moment when the fracture length

l(t) gains the value of half of the specimen size (i.e., the distance to the edge of the specimen

from the central wellbore). In summary, for the specimen pressurized at a constant wellbore

pressure, pw, we seek the solution for the time of breakdown, tf , which is the smaller of

the two values of time required to achieve: a) KI = KIC, or b) a hydraulic fracture length

corresponding to half of the specimen size.
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Figure IV.4: Plane strain model of a longitudinal hydraulic fracture from a wellbore drilled

in the direction of intermediate (or maximum) in-situ stress (after Bunger et al., 2010;

Lakirouhani et al., 2016).

2. Governing equations

For the bi-wing fracture emanating from a circular wellbore under plane strain conditions,

the displacement discontinuity (DD) formulation, given by Crouch (1976) and Crouch and

Starfield (1983), is used. The wellbore contour and the fracture are discretized into a total of

N straight line segments (elements) with mid-points denoted si, i = 1, ..., N. The relation-

ships between the fluid pressure, the displacement jump in the fracture and the (fictitious)

displacement jump on the wellbore are given by

σn (si)− pf (si) =
∑N

j=1 (Ans)ij [ujs] +
∑N

j=1 (Ann)ij [ujn]

0 =
∑N

j=1 (Ass)ij [ujs] +
∑N

j=1 (Asn)ij [ujn]
(IV.3)

where the influence coefficients (A)ij represent the stresses (normal or tangential) at si caused

by a unit uniform displacement jump (normal or tangential) across the element j, and their

expressions can be found from Eqs. (28) - (30) of Crouch (1976). Here [ujn] is defined as the

normal displacement jump across the element j (equal to the crack width w along the crack),
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and [ujs] denotes the tangential displacement jump across the element j. In Eq. (IV.3), for

points si on the fracture, σn is the normal compressive stress along the direction of fracture

propagation, the x-axis, due to the in-situ stresses, given by (Kirsch, 1898)

σn(x) = σh

(
1 +

a2

x2

)
+
σH − σh

2

(
a2

x2
− 3

a4

x4

)
(IV.4)

For points si on the wellbore, σn(si) = 0, and the fluid pressure pf (si) is equal to the

wellbore pressure (pf (si) = pw). Moving on to the fluid flow model, the Poiseuille law governs

the fluid flux q(x, t) in the fracture, defined as q = w < v >, where < v > is the mean fluid

velocity across the fracture opening, as

q = −w
3

µ′
∂pf
∂x

for x ∈ (x0, xtip) (IV.5)

Here µ′ = 12µ for the dynamic viscosity µ, and x0 = a and xtip = a+ l denote the locations

of the wellbore wall and the fracture tip, respectively. This flow law combines with the local

continuity equation which is derived based on mass balance for an incompressible fluid, given

by

∂w

∂t
+
∂q

∂x
= 0 (IV.6)

To solve the solid-fluid coupled problem, additional boundary and initial conditions are

needed. The initial condition is chosen as the pressure distribution pf generating a small,

uniform, positive net pressure acting along the interior faces of the initial crack, that is

t = 0 : pf (x, t) = σn (x) + pi, l = l0 (x0 < x < x0 + l0) (IV.7)

where pi is a small initial net pressure assumed to exist in the crack, and l0 is the initial

fracture length. In the experiment, a sustained wellbore pressure, P , is distributed uniformly

on the wellbore wall, which gives the inlet boundary condition

pw = P ·H (t) (IV.8)
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where H(t) is the Heaviside unit step function. The crack-tip boundary condition imposes

vanishing fluid flux and fracture width at the fracture tip

x = xtip : w (x, t) = 0, q (x, t) = 0 (IV.9)

Finally, the subcritical tip asymptote, derived from the LEFM tip asymptote (Irwin,

1957) and the subcritical crack growth law Eq. (IV.1), defines the growth rate for KI < KIC

(Lu et al., 2017a)

w ∼
√

32

π

KIC

E ′
(xtip − x)1/2 ·

(
V

A

)1/n

, x→ xtip (IV.10)

where E ′ = E/(1 − ν2) is the plane strain elastic modulus. Consequently, the propagation

condition gains dependence on a laboratory-determined parameter n, as well as an additional

coupling with the global solution for the HF growth via the propagation velocity V .

3. Numerical algorithm

The numerical solution for the problem is obtained based on the DD method for solving the

elasticity eqyatuibs coupled with a finite volume solution for fluid flow, and an implicit length

stepping algorithm. The discretized elasticity equation (IV.3) is formulated for a fixed grid

of DD elements with a constant element size, and a 1D finite volume scheme is applied for

discretizing Eq. (IV.6). Then the combined nonlinear system, resulting from the solid-fluid

coupling, is solved by an iterative scheme. As the fracture propagates, the fracture length is

increased by a constant value and the corresponding time step required to increase the crack

length by this increment is found as a part of the numerical solution. This length-controlled

implicit algorithm is discussed in detail in Lu et al. (2017a).

4. Roughness correction for the fracture toughness

The model presented up to this point is complete and able to provide prediction of time

to breakdown as a function of wellbore pressure, far-field stress, fluid viscosity, injection

rate, and rock properties. However, as is shown in Appendix C.B, the model is insufficient
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to explain the impact of the viscosity on the time to breakdown, underestimating time to

breakdown for higher viscosity fluid by several orders of magnitude. Also, the predicted

impact of the stresses will be shown to be weaker than observed in the experiments. We

find, through the comparisons detailed in Appendix C.B, that matching the large viscosity

and large pressure cases entails essentially using a larger value of the rock fracture toughness.

Driven by these observations, we introduce another refinement to the model. According

to Garagash (2015), in the vicinity of the fracture tip, the aperture roughness may have a

significant influence on the energy dissipation during fluid-driven fracturing in comparison

to that predicted by the conventional LEFM-based model. To take into account the effect of

viscous fluid flow in the rough fracture tip, the additional energy dissipation will be included

in the context of the classical LEFM as an âeffective fracture toughnessâ. Here we make use

of the energy release rate associated with viscous flow in a rough process zone ahead of the

crack tip (“roughness correction”), that is (Garagash, 2015)

Grough = 0.778
(
|σ0|E ′µ′V w2

c

)1/3
(IV.11)

Here σ0 = σn(xtip) denotes the net stress induced by the surrounding rock formation (i.e.,

in-situ stresses) at the crack tip and wc denotes the characteristic scale of the rough aperture,

which is taken with an order of magnitude of 10−3 m. Note that for the case of zero confining

stress in the laboratory, σ0 is taken to be the atmospheric pressure due to the existence of

vacuum at the region very close to the crack tip. Next, the total energy release rate is given

by

Gtotal = Gclassical +Grough (IV.12)

where Gclassical = K2
IC/E

′ represents the energy release rate in the classical LEFM (Irwin,

1957). Finally, the effective fracture toughness can be written as

Keff
IC =

√
Gtotal · E ′ (IV.13)

Following the spirit of Garagash (2015), the fracture toughness acquired in laboratory ex-

periments, KIC, is now replaced by the effective fracture toughness, Keff
IC , to account for the
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roughness effect on the HF growth. Substituting Eqs. (IV.11) − (IV.13) into Eq. (IV.10),

the subcritical tip asymptotic solution is rewritten as

w ∼
√

32

π

1

E ′

√[
K2

IC + 0.778 (|σ0|E ′4µ′V w2
c )

1/3
]

(xtip − x) ·
(
V

A

)1/n

, x→ xtip (IV.14)

F. NUMERICAL RESULTS

To run the numerical simulation, the first step is to determine the values of all relevant

parameters in the model. The material properties of the rocks, i.e., the fracture toughness,

Young’s modulus, and Poisson’s ratio are provided in Table IV.1. Table IV.2 gives the applied

horizontal in-situ stresses (σH and σh) and the fluid viscosities, and the wellbore radius is

taken to be the same as in the experiments (a = 6.25 mm). These are all independently

measured. The roughness aperture, wc, cannot be definitively measured in laboratory tests.

We set it to be 1 mm according to observation of the order of magnitude of the largest scale

of roughness in the fractures created in these rocks. Moreover, it is implied by Eq. (IV.1)

that as the value of KI approaches KIC, the crack tip velocity should in principal recover

the rupture velocity of the material. Therefore, A is set to be 1000 m/s as the constant

in Eq. (IV.1), thus capturing the order of the expected rupture velocity in rocks (Rosakis

et al., 1999). Then, the remaining unknowns include the subcritical growth parameter n

and the initial crack length l0. In these experiments, no artificial flaw/notch was created on

the wellbore to serve as an initial crack. Hence, without knowing the exact value of l0, it

is reasonable to assume that the initial crack is on the order of the pore size of the rocks,

which is around 0.1 mm. In what follows, we will show how we determine the value of the

subcritical index n using the experimental results for tests using water injection under zero

confinement. With this in mind, the values of l0 and subcritical index n are chosen to match

the slope of the time delay versus wellbore pressure for the unconfined, water injection cases

for each rock type.

After these characterization experiments, we employ the model to predict the delay time

with larger values of viscosity and/or confining stresses, showing both the ability of the model
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to predict the delay time and also the difficulties associated with apparent dependence of

the subcritical index n on the fluid-rock system and the confining stress state.

1. Determination of the subcritical crack growth index

The tests with water injection and zero confining stresses are carried out as characterization

experiments to obtain the value of subcritical index n and initial flaw length l0 for all three

rocks. Taking granite as an example, by implementing a few simulations with different n

and l0 values, we found that the case of l0 = 110µm, and n = 25 generates a pressure

versus lifetime correlation that is most consistent with the experimental data (Fig. IV.5a,

blue dashed curve). By comparing the solution with those from n = 23 and n = 27, we also

show that the numerical solution strongly depends on the value of n that a small change in

n would lead to a totally different pressure-lifetime relation. Thus, it is concluded that a

suitable value of the subcritical index can be determined by comparing the results from our

numerical model with the experimental data. As another verification, this value of subcritical

index, n = 25, falls into the range of the laboratory measurement for n in granite by DT

experiments (9 6 n 6 27, see Appendix C.A).

Similarly, the values of n for sandstone and limestone are obtained from unconfined water

injection experiments. In this way, we find n = 16 for sandstone and n = 45 for limestone,

with l0 = 80µm for both rocks. It is worth noting that, although l0 is used as a fitting

parameter in the simulation, its value varies little from one rock to another (from 110 µm

for granite to 80 µm for sandstone and limestone).

2. Predicting the time-dependent behavior under various test conditions

Subcritical index is challenging to characterize, and so one useful outcome of the experiment-

model comparisons is a new approach to estimate its value. Besides estimation of the sub-

critical index n and flaw size l0, we will further show that given these values, the numerical

model is able to predict time to breakdown versus pressure including its dependence upon

the fluid viscosity and the applied stresses.
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Figure IV.5: Comparison of the experimental data from (a) granite, (b) sandstone, and (c)

limestone (under the water injection and zero confinement condition) with the numerical

solution calculated for cases with different values of n. In the simulations, l0 is 110 µm for

granite, and 80 µm for sandstone and limestone.
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Figure IV.6: Numerical prediction of time-dependent breakdown for granite injected by

glycerin (n = 25, l0 = 110µm). Results are compared with the test data, together with

experimental and numerical results of the water injection case.

Using the values of n and l0 acquired in Section IV.F.1 for granite, we now simulate

the tests using glycerin as the fluid by changing the fluid viscosity to µ = 1.08 Pa · s.

The numerical prediction is plotted with the test results in Fig. IV.6. As shown in the

figure, an overall delayed effect of HF breakdown is captured by the model (green curve).

The prediction is particularly good for smaller delay times (<100 s), while the prediction

underestimates the time of breakdown for larger delay times. We note that the slope is not

matched, and simulations show that the slope is almost exclusively controlled by subcritical

index n. Hence, the mismatch could indicate that penetration of water in the tip region

impacts the value of n. This brings us to a caveat that characterization experiments are likely

specific to certain rock-fluid combinations. As such, application of the model to field cases

should rely on laboratory characterization of n carried out at comparable confining stress

and fluid injection conditions. That said, even in the absence of such ideal characterization,

the prediction are suitable for shorter delay times and within a factor of 2 or so for larger

delay times. Considering the variation of delay times that spans orders of magnitude, this

factor of 2 accuracy may be sufficient for some practical purposes.
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Figure IV.7: Numerical prediction for time of breakdown for sandstone (left) and limestone

(right) subjected to confining stresses given in Table IV.2 (n = 16, l0 = 80µm for sandstone

and n = 45, l0 = 80µm for limestone). Results are plotted with the test data, and the

experimental and numerical results under zero confinement.

We now turn our attention to the effect of confining stresses. Fig. IV.7 presents nu-

merical predictions based on values of n and l0 determined for sandstone and limestone in

Section IV.F.1. The numerical solution is again compared with the experimental data and

yields estimated lifetime for the specimen under certain wellbore pressures in the presence

of horizontal confining stresses σH and σh.

The comparison shows that the shift in pressure associated with a given lifetime is rea-

sonably captured, although again the slopes are somewhat different between the numerical

and experimental results. These observations, taken together with those for the fluid viscos-

ity effects, point to the possibility that n is impacted not only by the presence of fluid, but

also by the ambient stress.

To explore the magnitude of variation of n, we let n to be a fitting parameter. By doing

this, we find very good agreement in all cases for granite and sandstone, as shown in Fig. IV.8.

For limestone tests, good matches between the experimental data and numerical predictions

for the confined tests are found with the same value of n obtained from the unconfined cases

(n = 45, see Fig. IV.7). Notably, the value of subcritical index n determined using our
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Figure IV.8: Fitting values of subcritical index n to match the numerical solution to test

data. For granite experiments (left), best match between the numerical and experiment

results for the glycerin case is found using n = 29. For sandstone tests (right), solutions of

n = 18 show good agreement with the data from confined tests.

model for limestone is much larger compared to the other two rocks (n = 45 for limestone,

compared to n = 16 for sandstone and n = 25 for granite). Thus, it is implied that the effect

of ambient stresses on the subcritical index n is reduced for rocks that have relatively large

n.

G. CONCLUSIONS

In this paper, we have shown both the existence and simulation of time-dependent HF

breakdown in granite, sandstone and limestone. Our test results and numerical predictions

show the wellbore pressure, fluid viscosity, and confining stress substantially affect the time

delay associated with subcritical HF initiation. Classical HF models are fundamentally

incapable of predicting this delay time. The model presented here brings delay time into the

solution by including a subcritical crack growth law enabling HF extension at finite velocities

even when the stress intensity factor is much smaller than the fracture toughness of the rock.
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While making the model capable of predicting delay time, we observe that this mod-

ification is insufficient to explain the magnitude of the impact of changing fluid viscosity.

Indeed, through these fully-coupled simulations we find that both our large and small vis-

cosity cases in the laboratory are characterized by the fluid fully penetrating near wellbore

flaws. This observation drove a need to consider the role of viscous fluid on resistance to

crack growth via its penetration into the tip region. By introducing a previously-proposed

roughness-viscosity correction into our model we are able to predict the impact of the viscos-

ity accurately for smaller delay times and within a factor of 2−3 for larger delay times. The

roughness-viscosity correction also provides more accurate prediction of the shift in delay

time due to increasing confining stress, which is larger than predicted solely based on the

subcritical HF simulator (or on Kirsch’s solution).

While the accuracy of the predictions may be sufficient for some cases, the comparisons

also point to a potentially important property of the rocks, namely, that the subcritical

index apparently depends upon both the fluid being injected and the confining stress state.

Hence, if the model is to be used for predictions associated with HF design or interpretation

in the field, ideally the subcritical index ought to be characterized through experiments such

as the ones presented in this paper using the same rock, fluid, and confining stresses as are

expected in the targeted application.
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V. CONCLUDING REMARKS

In engineering design for multi-stage HF treatments of horizontal well stimulation, it is ideal

to promote simultaneous growth of all fractures in each stage in order to reduce the num-

ber of non-producing perforation clusters. Understanding and modeling the basic physical

processes governing initiation and growth of multiple hydraulic fractures is therefore vital to

effective stimulation of horizontal wells. The main contribution of this thesis is to show that

subcritical crack growth plays an important role in hydraulic fracture initiation, growth of

single hydraulic fractures, and the complex interaction among multiple hydraulic fractures.

This role of subcritical crack growth is firstly demonstrated by developing a numerical model

for predicting the initiation and propagation of a single hydraulic fracture from a circular

wellbore under the subcritical conditions. The comparison between the results and those

obtained from classical LEFM models indicates a significant difference due to the subcritical

growth of the hydraulic fracture. In particular, the subcritical index, n has a strong impact

on the behavior of the fracture, especially for early time. More specifically, it is shown that

smaller values of subcritical index n has larger effect on the evolution of both crack length

and wellbore pressure, resulting in an earlier initiation and dropped wellbore peak pressure

compared to the LEFM prediction.

Inspired by the striking fact that the growth of a single hydraulic fracture would be totally

different once the subcritical crack growth is introduced into the conventional HF model, the

numerical model is further extended to the more complicated case of simultaneous initiation

and growth of N hydraulic fractures. To achieve this, the numerical algorithm is constructed

to account for the stress interference coupled with fluid partitioning into different fractures.

Again, substantial difference is found between the subcritical and LEFM solutions in the

case of a smaller n, most notably the existence of a regime in which the central fracture(s)
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in the array, while initially suppressed, eventually dominates growth thus leading to more

uniformity among the fracture sizes. This behavior is observed for smaller values of the

subcritical index n when the separation among the fractures is relatively small, but not in

the LEFM cases regardless of separation among the fractures.

Finally, the existence of time-dependent HF breakdown in various rocks is shown by

laboratory experiments. The delay time of breakdown due to subcritical crack growth is

significantly affected by the wellbore pressure, fluid viscosity, and confining stresses. By

introducing a roughness-viscosity correction into the numerical model, accurate predictions

for lifetime versus wellbore pressure correlation are provided for all cases. Interestingly, a

dependence of the subcritical index n on the injected fluid viscosity, as well as the applied

confining stresses is implied by the discrepancy between the numerical solutions and the

experimental results.

In summary, laboratory experiments show that it is possible to initiate hydraulic fractures

with certain time delay by maintaining the subcritical wellbore pressures that are insufficient

to induce the instantaneous breakdown. By comparing the experimental results with the

numerical predictions, this phenomenon is shown to be tied to the theory of subcritical crack

growth. Therefore, this research highlights the importance of the subcritical crack growth in

the HF process. It is also implied that the subcritical index n plays an important role, with

the potential to significantly influence the growth of one or more hydraulic fracture(s). Hence,

by showing the existence of time-dependent HF initiation and explaining that its underlying

mechanism is due to the stable growth of the hydraulic fracture under subcritical conditions,

this research leads to new insights for promoting more evenly growth of multiple hydraulic

fractures in multi-stage HF treatments. Most importantly, this work shows that reducing

the subcritical index shortens the time delay associated with hydraulic fracture initiation

at wellbore pressures that are insufficient to induce instantaneous initiation. Reducing the

subcritical index also promotes multiple hydraulic fracture growth, in some cases leading to

growth of fractures that would be completely suppressed under classical conditions governed

by Linear Elastic Fracture Mechanics. In turn, the experiments show that choice of fluid can

impact the effective subcritical index, thereby leading to the practically-relevant outcome

that fluid(s) can be chosen in order to promote initiation and growth of multiple hydraulic
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fractures and/or single hydraulic fractures under conditions where the required wellbore

pressure for instantaneous initiation cannot be reached.
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A APPENDICES FOR “MODELING INITIATION AND PROPAGATION

OF A HYDRAULIC FRACTURE UNDER SUBCRITICAL CONDITIONS”

A. FLUID LOSS AT EARLY TIME OF HF TREATMENT

During the HF process, it is common that a fraction of the fracturing fluid is lost by in-

filtrating into the rock formation. Since our research focuses on the early time of the HF

initiation and subsequent growth, an estimation of the rate of the fluid loss is necessary for

determining the importance of fluid leak-off within this particular time duration. Here we

consider the plane strain case as an example.

Before the fracture is initiated, the loss of the fluid stored in the system is mainly

attributed to fluid infiltration to the surrounding rock from the wellbore. This process is

approximated below by a one-dimensional (1D) fluid flow through a porous medium in a

half-plane. This 1D assumption is valid at very early time, when the infiltrated zone is much

smaller than the wellbore radius. At large time, the infiltration follows radial flow. Here

we consider the early time, 1D solution because early time behavior of the system is our

main interest for hydraulic fracture initiation. Thus the reservoir pore pressure distribution

is governed by the diffusion equation,

dpr
dt

= D
d2pr
dx2

(A.1)
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where x is the distance from the center of the wellbore, D is the hydraulic diffusivity defined

as D = k
φcfµ

, and k, φ, and cf are, correspondingly, the rock’s permeability, porosity, and

the fluid compressibility. The initial and boundary conditions for Eq. (A.1) are

pr (x, t) = pw x = a

pr(x, 0) = p0 x > a

pr(x, t) = p0 x→∞

(A.2)

where p0 is the initial reservoir pore pressure in the rock. The solution of Eq. (A.1) can be

readily found as

pr (x, t) = p0 + (pw − p0) erfc

(
x − a

2
√

Dt

)
(A.3)

in which erfc (·) is the complementary error function. Eq. (A.3) shows that the induced

reservoir pore pressure in the rock dissipates rapidly with the distance from the wellbore.

(For example, for an HF treatment with a = 0.1 m, k = 10−15 m2, µ = 0.001 Pa · s,

φ = 0.1, and cf = 2 × 10−10 Pa−1, within a practical time duration for initiating the HF,

t = O(10) second, the change in the reservoir pore pressure, 4p = pr − p0, is computed:

4p = 0.37 (pw − p0) at x = 1 m, and 4p = 0.06 (pw − p0) at x = 2 m). Once the pressure

gradient is obtained, the rate of fluid loss into the rock can be determined using Darcy’s law

for the radial flow:

q = 2π
k

µ

pw − pr (x)

ln (x/a)
(A.4)

Taking x = 2 m, and pw − p0 = O(107) Pa, the estimated leak-off rate before fracture

initiation is obtained from Eq. (A.4) as q = O(10−5) m2/s. Hence, we obtain q � Q0

(Q0 = O(10−3) m2/s).

Once the crack starts to propagate, the fluid loss is assumed to be governed by the

Carter’s leak-off model (Carter, 1957), which comes into play through the continuity equa-

tion,

∂w

∂t
+
∂q

∂x
+ g (x, t) = 0 (A.5)

100



In Eq. (A.5), the sink term g denotes the velocity of the fluid infiltration into the surrounding

medium at point x, which, according to Carter’s model, can be expressed as

g (x, t) =
2CL√
t− t0 (x)

t > t0 (x) (A.6)

in which CL =
√

kcfφ

πµ
4pc, and 4pc is defined as the difference between the fluid pressure

in the fracture and the reservoir pressure, and t0(x) represents the time when the fracture

arrives at point x. Assuming 4pc = O(106) Pa, then for a fracture that propagates within

100 seconds, g = O(10−6) m/s. For a certain point, x, if we take dw
dt

= O(10−4) m/s (it is

physical to assume that a crack opens at a velocity of 10 mm per 100 seconds), then we

obtain g � dw
dt

. Thus, the rate of fluid loss, g, in Eq. (A.5) is negligible, and the continuity

equation is reduced to

∂w

∂t
+
∂q

∂x
= 0 (A.7)

From the above analysis, it follows that the fluid loss during early time of an HF treatment

is often negligible, and hence we have verified the assumption that the rock can be treated

as an impermeable medium in this particular problem.

B. DISCRETIZATION OF ELASTICITY EQUATIONS

1. Plane strain

For plane strain, the bi-wing fracture originating from a circular wellbore is modeled using

the displacement discontinuity method (Crouch and Starfield, 1983). Only one half of the

circular wellbore boundary and one wing of the bi-wing fracture, defined by x > 0, are

discretized due to the symmetry of the problem. The crack wing and the half-circular

boundary of the wellbore wall are discretized by using the constant-strength DD elements of

a uniform size. A total of m elements along the fracture and h elements along the wellbore

wall are obtained from the discretization of the boundary. The influence of a DD element

onto the stress at the midpoint of another element is given in Crouch and Starfield (1983).
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Thus, the elastic boundary integral equation (II.5) can be written in the matrix form (after

scaling) as

AnnΩn + AnsΩs = Φn

AsnΩn + AssΩs = 0
(A.8)

where Ωn and Ωs are the vectors of scaled normal and shear displacement jumps along both

the wellbore and the fracture, Φn denotes the vector of normal stress acting at the midpoints

of the DD elements, and the expressions for the components of the influence coefficient matrix

A can be found in Crouch and Starfield (1983). By rearranging the system, we obtain

BΩn = Φn (A.9)

where B = Ann −AnsA
−1
ss Asn. The system of equations can be partitioned to account for

the fracture and the wellbore elements. Therefore, we have

 Bff Bfw

Bwf Bww

 Ωf

Ωw

 =

 Φf

Πw

 (A.10)

where the subscripts “f” and “w” correspond, respectively, to the fracture and the wellbore.

In Eq. (A.10), Φf includes the fluid pressure and the normal stress induced by the in-situ

stresses, computed at the midpoints of the DD elements, i.e., Φf = Πf + Φθθ, where the

components of the vector Φθθ are Φθθj = −Φhj

(
1 + A2

ξ2j

)
− ΦDj

2

(
A2

ξ2j
− 3A

4

ξ4j

)
. Πw denotes the

vector of the scaled wellbore pressure applied at the midpoints of the DD elements along the

wellbore. After some algebra, the following relationship is derived

Φf = M1Ωf + M2Πw (A.11)

in which M1 = Bff −BfwB−1
wwBwf and M2 = BfwB−1

ww. Because of the continuity of the

fluid pressure between the wellbore and the fracture, we impose Πw = Πf1 . Therefore, Eq.

(A.11) can be written as

Πf = CΩf − S (A.12)
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where C = M1 +diag(V1) ·M3, (V1)i =
∑h
j=1(M2)ij

1−
∑h
j=1(M2)1j

, (M3)ij = (M1)1j, and diag(V1) gives a

square diagonal matrix with the elements in vector V1 on the main diagonal. In Eq. (A.12),

S accounts for the normal stresses acting on the fracture due to both the in-situ stresses and

wellbore pressure. It is given by S = (ϕ1, . . . , ϕm)T, and ϕi =
∑h
j=1(M2)ij

1−
∑h
j=1(M2)1j

Φθθ1 + Φθθi . Note

that, m and h are the numbers of elements along the fracture and the wellbore wall.

2. Axisymmetry

For a transverse axisymmetric fracture propagating from a wellbore, the elasticity equation is

formulated using the dislocation kernel as follows (Abbas and Lecampion, 2013; Keer et al.,

1977; Lecampion and Desroches, 2015)

p (ρ, t) =
E ′

a

ˆ 1+l/a

1

gwb (ρ, s)
∂w (s, t)

∂s
ds (A.13)

Integrating by parts and accounting for the tip boundary condition, we have

p (ρ, t) =
E ′

a

(
−
ˆ 1+l/a

1

∂gwb (ρ, s)

∂s
w (s, t) ds− gwb (ρ, 1)w (1, t)

)
(A.14)

which has the scaled form

−ΠA =

ˆ 1+γ/A

1

∂gwb (ρ, s)

∂s
Ω (s, τ) ds+ gwb (ρ, 1) Ω (1, τ) (A.15)

The axisymmetric dislocation kernel gwb is defined as

gwb (ρ, s) =
1

2π
s [R (ρ, s) + S (ρ, s)] (A.16)

where

R (ρ, s) =


1

ρ2−s2 E
(
ρ
s

)
, ρ < s

ρ
s

1
ρ2−s2 E

(
s
ρ

)
− 1

ρs
K
(
s
ρ

)
, ρ > s

(A.17)
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in which K and E denote the complete elliptic integrals of the first and second kind, defined

by K (k) = F
(
π
2
, k
)

and E (k) = E
(
π
2
, k
)

(Gradshteyn and Ryzhik, 2007), and

F (ϕ, k) =

ˆ ϕ

0

dα√
1− k2 sin2 α

=

ˆ sinϕ

0

dx√
(1− x2) (1− k2x2)

(A.18)

E (ϕ, k) =

ˆ ϕ

0

√
1− k2 sin2 αdα =

ˆ sinϕ

0

√
1− k2x2

√
1− x2

dx (A.19)

and S is given by Abbas and Lecampion (2013); Keer et al. (1977); Lecampion and Desroches

(2015). Again, by applying the DD method, the integral is approximated as a linear system

M1Ω+M2Ω = −AΠ (A.20)

where

M1ij = gwb (ρi, ρj +4ρ/2)− gwb (ρi, ρj −4ρ/2)

M2ij =

 gwb (ρi, ρ1 −4ρ/2) j = 1

0 j 6= 1

The same elasticity matrix as (A.12) is then deduced from (A.20) with C = −(M1 + M2)/A,

and ϕi = −σh, for i = 1, . . . ,m.

C. SOLUTION FOR THE TIME STEP (FRACTURE PROPAGATION

PHASE)

For the given crack length γN at step N , the algorithm finds the corresponding time step

4τ. For both the conventional HF and the subcritical propagation models, we construct two

loops in our algorithm, which are referred to as the outer and the inner loop, respectively.

In the inner loop, we obtain 4Ω for a given 4τ. The outer loop finds the solution for the

time step 4τ . The algorithm for the subcritical growth problem is based on the bisection

method for the outer loop, and the fixed-point iteration for the inner loop:
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I. Start the outer loop. Obtain the values of ΩN−1 , γN−1 and κN−1 from the previous step,

where κ = KI/KIC, and for plane strain (Thomas and Pollard, 1993)

KI = 0.806
E ′wtip

4
√

∆/π
(A.21)

where wtip and ∆ are the opening and the length of DD element at crack tip, and for

axisymmetry (Gordeliy and Detournay, 2011a)

KI =
3

8

E ′wtip√
2∆/π

(A.22)

Then choose two initial guesses for the time step, 4τ 0 and 4τ 1, for the lower and the

upper bounds for the root of the function (II.37) (i.e., such that f (4τ 0) · f (4τ 1) < 0).

Set K = 1.

II. While K ≤ max iteration number, set the time step to the midpoint value 4τK+1 =

4τK+4τK−1

2
.

III. Start the inner loop. Set k = 0. Impose initial values of 4Ω0 to be zero.

A. Solve the system (Eq. II.36) for given values of 4τK+1, ΩN−1, and γN−1.

B. Compare 4Ωk+1 and 4Ωk. If the solution converges within a given tolerance, con-

tinue. Else, let k = k + 1, go to (a).

IV. If |4τK+1 − 4τK | is less than a given tolerance, write results and go to 1. Else if

sign
(
f
(
4τK+1

))
= sign

(
f
(
4τK

))
, then replace 4τK by 4τK−1. Set K = K + 1, go

to step 2.

Once the critical condition is reached (i.e., KI = KIC), the simulation switches to the

algorithm for the classical HF model:

I. Start the outer loop. Obtain the values of ΩN−1 and γN−1 from the previous step. Choose

an initial guess 4τ 0, let K = 0.

II. While K ≤ max iteration number, set the time step to 4τK .

III. Start the inner loop. Set k = 0. Impose initial values of 4Ω0 to be zero.

A. Solve the system of Eq. (II.36) for 4Ωk+1 using given values of 4τK , ΩN−1, and

γN−1.
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B. Compare 4Ωk+1 and 4Ωk. If the solution converges within a given tolerance, con-

tinue to 4. Else, let k = k + 1, go to (a).

IV. Check if the new crack tip opening, obtained from the inner loop, Ωm, satisfies the tip

asymptote (Eq. II.21 with υ/α = 1). If the relative error is within a given tolerance,

write results and go to 1. Else, K = K + 1, adjust the solution for the crack opening so

that Ωm satisfies the tip asymptote (II.21), update 4τK from the global volume balance

(Eq. II.38) and go to 2.

D. VALIDATION OF THE DISCRETIZED ELASTIC EQUATION (PLANE

STRAIN)

Verification for the discretization of elastic equation (II.5) in the plane strain case is carried

out by comparing our results for the crack width and the stress intensity factor with available

numerical solutions (Lecampion, 2012a; Nilson and Proffer, 1984; Tada et al., 2000) for

the following problem: a bi-wing crack emanating from a circular borehole with evenly

distributed fluid pressure pw = pf = 31 MPa along the wellbore and the crack, in the

presence of far-field stresses σh = 30 MPa, σH = 35.77 MPa (see problem geometry in

Fig. II.1). In these simulations, the plane strain Young’s modulus and the Poisson’s ratio of

the rock are set to E ′ = 30 GPa and ν = 0.3; and the wellbore radius is a = 0.1 m. Three

values of the crack length are considered: l = 0.005 m (short), l = 0.105 m (intermediate),

and l = 10 m (long). First, fine mesh sizes are used in Subsection A.D.1 for all three cases,

to confirm the validity of the DD discretization of the wellbore and the fracture employed

in Eq. (II.5) by comparing our results to available numerical solutions. Next, a study on

accuracy of the results with different mesh sizes is carried out in Subsection A.D.2 to verify

the accuracy of this DD discretization for a practical mesh size.
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1. Comparison with reference solutions

In this section, the three cases with short, intermediate and long cracks are modeled with

fine mesh sizes in order to obtain the solutions independent of the element size. We used

6000 elements along the wellbore for the cases of the short and the intermediate cracks, and

60 elements along the wellbore for the case of the long crack. For each case, the element

size along the wellbore and the crack was the same. Our simulation results for the normal

displacement jump [un] along the crack (i.e., the crack opening w) are compared to the fol-

lowing reference numerical solutions: (i) solutions from the model 1DPlanarHF (Lecampion,

2012a,b; Lecampion et al., 2013), based on the DD discretization of the fracture and an

integral formulation with the elastic kernel that accounts for the interaction of an edge dislo-

cation on the crack with the circular borehole (Dundurs and Mura, 1964); and (ii) solutions

computed using the approximate generalized integral formulas of Nilson and Proffer (1984)

based on the weight-function technique. In all three cases, the results from 1DPlanarHF

were computed using a very fine mesh (2000 elements along the crack) in order to obtain

the solution independent of the element size. It should be noted that the approximate for-

mula of Nilson and Proffer (1984) is accurate for short and long cracks, while its error for

the intermediate crack length can be in the order of 5%, as follows from Fig. 1 in Nilson

and Proffer (1984). (A similar range of accuracy from using a modification of formulas of

Nilson and Proffer (1984) has been reported by Garagash and Sarvaramini (2012) as ˜0.5%

for a short crack, ˜1-10% for an intermediate crack, and 0% for a long crack.) Hence, it is

important for this interpretation to realize that Nilson and Proffer’s solution (Nilson and

Proffer, 1984) captures the short and long crack limits accurately, but relies on an approxi-

mate interpolation between these limits, and the numerical solutions from 1DPlanarHF are

more reliable in the transition. The results are shown in Fig. A1.

The comparison shows that the crack width is in good agreement with the numerical

results from 1DPlanarHF (Lecampion, 2012a) for all three cases. Furthermore, our results

match well to the solution of Nilson and Proffer (1984) for the two limiting cases (short and

long cracks), and exhibit a 0˜10% difference for the intermediate crack length.
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Figure A1: Comparison of crack opening of a plane strain bi-wing fracture from wellbore with

a = 0.1 m, l = 0.005 m (top), a = 0.1 m, l = 0.105 m (middle), and a = 0.1 m, l = 10 m

(bottom).
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The stress intensity factor KI for all simulations is compared with the reference solutions

from 1DPlanarHF and from the approximate formula of Nilson and Proffer (1984) in Table

A1. Additionally, in Table A1, the stress intensity factor from our model was compared with

the results obtained using formulas given by Tada et al. (2000) with the expected accuracy

of 1%. For each reference solution, we define the relative difference in the stress intensity

factor as follows

Dr =
| KI −Kref

I |
KI

where KI and Kref
I refer, correspondingly, to the values obtained from our model and from

the reference solution.

As shown in Table A1, the relative difference with respect to the solution from 1DPla-

narHF is within 1.5% for all three cases, and around 1% when comparing with the solutions

from Tada et al. (2000) and Nilson and Proffer (1984) for the two limiting geometries (short

and long cracks). The largest difference is observed in the case of an intermediate crack:

3.33% difference with the solution from Tada et al. (2000) and 5.97% difference with the

solution from Nilson and Proffer (1984), which are both within the acceptable range given

the expected accuracy of each of this reference solutions described above.

The above comparison confirms the validity of the DD discretization of the wellbore and

the fracture employed in the present model in Eq. (II.5).

2. Accuracy for a practical mesh size

In the above comparisons, very fine mesh sizes are used in all three cases, which all require a

large number of elements along the circular hole as well as the crack. Hence, it is necessary to

investigate the accuracy of this wellbore elasticity representation when a reasonable number

of elements is used to discretize the wellbore. As an illustration, we take the intermediate

crack with three different mesh sizes, containing 24, 60, and 240 elements along the half-

circular boundary of the wellbore. (Only one half of the circular wellbore boundary is

discretized due to the symmetry of the problem.) For each case, the element size along

the wellbore and the crack was the same. In each case, the crack width and the stress
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Table A1: Stress intensity factor KI for different crack lengths, compared with reference

solutions.

Crack length Short Intermediate Long

SCRIF
KI

0.9475 1.1098 5.6973
(MPa ·

√
m)

1DPlanarHF

Kref
I

0.9365 1.0948 5.6152
(MPa ·

√
m)

Dr 1.17% 1.35% 1.44%

Nilson and Proffer (1984)

Kref
I

0.9433 1.1760 5.6407
(MPa ·

√
m)

Dr 0.45% 5.97% 0.99%

Tada et al. (2000)

Kref
I

0.9472 1.0727 5.6328
(MPa ·

√
m)

Dr 0.04% 3.33% 1.13%
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Figure A2: Crack opening for the intermediate crack using different numbers of elements

along the wellbore: nw = 24, 60, and 240. Results are compared with the numerical solutions

from 1DPlanarHF (Lecampion, 2012a,b; Lecampion et al., 2013).

intensity factor are compared with the numerical solution from 1DPlanarHF (Lecampion,

2012a,b; Lecampion et al., 2013), obtained using a very fine mesh size (2000 elements along

the crack). The comparison is presented in Fig. A2 and Table A2.

From Fig. A2 and Table A2, we see rapid convergence to the numerical solution from

1DPlanarHF (Lecampion, 2012a,b; Lecampion et al., 2013) in both crack width and stress

intensity factor as the number of elements along the wellbore increases. Discretizing the

wellbore with 240 elements gives accurate crack width, and 2.3% error in the stress intensity

factor. In all simulations in Section II.G.2 in this paper we used 200 elements to discretize

the wellbore.
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Table A2: Stress intensity factor KI for an intermediate crack using different numbers of

elements along the wellbore: nw = 24, 60, and 240, compared to numerical solutions by

Lecampion (2012a,b).

1DPlanarHF
SCRIF SCRIF SCRIF

(nw = 24) (nw = 60) (nw = 240)

KI (MPa ·
√

m) 1.0948 1.2056 1.1520 1.1205

Dr - 9.19% 4.97% 2.30%
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B APPENDICES FOR “MODELING SIMULTANEOUS INITIATION AND

PROPAGATION OF MULTIPLE HYDRAULIC FRACTURES UNDER

SUBCRITICAL CONDITIONS”

A. DISCRETIZATION OF ELASTICITY EQUATIONS

For the Ith fracture, using a piece-wise constant approximation for the crack width (i.e.

w is constant in each DD element) and a piece-wise linear approximation for the shear

displacement jump (i.e. v = r′ ˆ̂v, where ˆ̂v is constant in each DD element) the elasticity

equations (III.2) and (III.3) can be written in the matrix form as

AII
nnwI + AII

ns
ˆ̂v
I

= PI
f − σI

n −
∑
J 6=I
γJ>5A

(
AIJ

nnwJ + AIJ
ns

ˆ̂v
J
)

AII
snwI + AII

ss
ˆ̂v
I

= −
∑
J 6=I
γJ>5A

(
AIJ

snwJ + AIJ
ss

ˆ̂v
J
) (B.1)

in which wI =
[
wI1 · · · wIm

]T

, ˆ̂v
I

=
[

ˆ̂vI1 · · · ˆ̂vIm

]T

,Pf
I =

[
pIf1 · · · pIfm

]T

, and

the components of the influence coefficient matrix A are given by

[
AIJ

nn

]
ij

=
´ rJj +4rJ/2
rJj −4rJ/2

σzzzz
(
rIi , z

I ; r′, zJ
)
dr′[

AIJ
ns

]
ij

=
´ rJj +4rJ/2
rJj −4rJ/2

σzzrz
(
rIi , z

I ; r′, zJ
)
r′dr′[

AIJ
sn

]
ij

=
´ rJj +4rJ/2
rJj −4rJ/2

σrzzz
(
rIi , z

I ; r′, zJ
)
dr′[

AIJ
ss

]
ij

=
´ rJj +4rJ/2
rJj −4rJ/2

σrzrz
(
rIi , z

I ; r′, zJ
)
r′dr′

(B.2)
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The integrals in Eq. (B.2) are evaluated analytically by expressing the kernels for the ring

dislocation dipoles (σijkl) via derivatives of the ring dislocation kernels, given in Appendix

B of Gordeliy and Detournay (2011a). Eq. (B.1) can be rewritten as the following linear

system

Annw + Ans
ˆ̂v = Pnet

Asnw + Ass
ˆ̂v = 0

(B.3)

where Pnet is defined as Pnet = Pf − σn, and w, ˆ̂v, Pf , and σn are taken as the union of

all cracks. By rearranging Eq. (B.3), we get

Hw = Pnet (B.4)

in which H is given by H= Ann −AnsA
−1
ss Asn. Eq. (B.4) is scaled as

H̄Ω = Πnet (B.5)

where H̄ = Hw∗
p∗

. Finally, the elastic matrix for each crack I = 1, . . . , N is given by

ΠI = CΩI − S (B.6)

In Eq. (B.6), C = H̄II and S = −σ̂I
n −

∑
I 6=J
γJ>5A

(
HIJ ·ΩJ

)
. Note that, if the crack radius is

less than five times the wellbore radius, then the elastic kernel given in Eqs. (24) - (29) of

Keer et al. (1977) is used to compute matrix C for including the effect of the wellbore.
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C APPENDICES FOR “TIME-DEPENDENT HYDRAULIC FRACTURE

INITIATION: LABORATORY EXPERIMENTS AND NUMERICAL

MODELING”

A. DOUBLE TORSION (DT) EXPERIMENTS ON GRANITE

Double Torsion (DT) experiments have been used in past studies to measure parameters

associated with subcritical crack growth for various materials. In this experiment, our goal

is to obtain the subcritical crack growth index n for Coldspring Charcoal Granite. Specimens

have dimensions of 60 mm × 150 mm × 6 mm, and are notched and grooved along the central

line (see Fig. C1). Four experiments have been performed using the following procedures

(adopted from the original method for DT experiments developed by Evans (1972), and

revised by Holder et al. (2001)):

I. Pre-load the specimen by constant displacement steps with certain time interval until

the sign of initial crack (see typical evolution of the induced stress intensity factor with

time for a tested specimen in Fig. C2);

II. Measure the crack length ai and load Pi induced by the displacement as soon as the last

displacement is applied;

III. Arrest by keeping the constant displacement, and record load relaxation P during the

period of stable crack growth;

IV. Examine the test data and compute the subcritical index n.

Hence, in each test, the specimen is loaded by incremental constant displacement steps

until an initial crack is generated. Then the loading relaxation takes place in the following
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Figure C1: Experimental setup for DT tests (left) and photographs showing the specimen

under loading (right).
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step due to stable growth of the crack. During loading relaxation, the crack velocity is given

by Evans (1972)

V = −aiPi
P 2

(
dP

dt

)
(C.1)

and the stress intensity factor is calculated by

KI = P ·Wm

√
1 + ν

Wd3dn
(C.2)

where Wm is the moment arm for the applied load, W is the width, ν is Poisson’s ratio, d is

the thickness, and dn is the thickness along the central groove (dn = d− dg). Rewriting Eq.

(IV.1) and substituting it into Eq. (C.1), we have

V

ai
= − Pi

P 2

(
dP

dt

)
= C ·Kn

I (C.3)

where C is a constant. Fig. C2 plots the correlation of V/ai and KI for the four tests.

According to Eq. (C.3), we use a power law correlation to fit the data sets, then the value of

the subcritical index, n, is obtained as the power for each fitting curve. Although the value

of n varies among the experiments (n = 15, 27, 8.6, 15.5), the range of subcritical index is

narrowed down to an average value of 16.5 with a standard deviation of 7.7, compared to

10∼200 for its typical range in rocks.

B. ROLE OF ROUGHNESS CORRECTION

Here we show that the numerical model without the roughness correction is not capable

of capturing the impact of the viscosity or confining stresses on the time to breakdown.

Assuming there is no tip-roughness/viscosity effect in the tip region, then the tip asymptotic

solution, Eq. (IV.10) is used in the model, together with all other components introduced

in Sections IV.E.1 and IV.E.2. Using the same approach as in Section IV.F.1 to determine

the value for n and l0, we found that the case of n = 25, and l0 = 110µm leads to a pressure

versus lifetime correlation that matches the experimental data (see Case I in Fig. C3.a).
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Figure C2: Evolution of the induced stress intensity factor KI with time for a specimen

(left), and correlation between V/ai and KI for all experiments (right). Power law curve

fitting is used to derive the value of subcritical index n

These values are then used in simulations for the case of glycerin tests. In the absence of a

tip-roughness/viscosity correction, the time to breakdown predicted by the numerical model

is smaller by several orders of magnitude compared to the test results. Thus it is observed

that the impact of fluid viscosity is vastly underestimated by the model without taking into

account the roughness correction. In fact, these simulations show that the small and large

viscosity cases in the laboratory are both associated with the fluid fully penetrating into the

flaw and attaining a uniform pressure within the flaw because the propagation velocity of

the crack is much smaller compared to the rupture velocity, which causes the fluid flow to

slow down and tends to maintain a uniform fluid pressure along the whole crack regardless

of the fluid viscosity. Hence, there is essentially no mechanism for generating appreciable

difference between the cases.

If, on the other hand, we use l0 and n as fitting parameters to match the glycerin tests

(l0 = 30µm, and n = 18, see Case II in Fig. C3.a), the value of l0 is much smaller than our

expectation (note that the scale of l0 is interpreted as having the same order of magnitude

as the pore size of the rock, which should be in the order of 100 µm), and this combination

of the two parameters again causes inconsistency when substituted back into the simulations
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(a) 

(b) 

Figure C3: Numerical prediction of time to breakdown by the model without roughness

correction for (a) granite and (b) sandstone. For each rock, two cases of l0 and n values are

used, and each combination of the values is derived by the best fit to the experimental data.
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Figure C4: Distribution of fluid pressure obtained from the numerical model for granite

tests injected by water and glycerin under the wellbore pressure of 18 MPa. For both fluids,

l0 = 30µm, and n = 18 as in Case II of Fig. C3.a

for the water case. Furthermore, for Case II, the difference between the predictions for

water and glycerin becomes negligible (as indicated in the figure that the two curves almost

overlap with each other). The fluid pressure distribution in the initial flaws for both water

and glycerin cases under the wellbore pressure of 18 MPa is plotted in Fig. C4. As can be

seen the fluid pressure is uniformly distributed along the initial crack in the case of water,

and the pressure change along the crack in the glycerin case is almost zero - with variation

occuring in the fifth digit. Therefore, it is implied by Fig. C4 that both water and glycerin

cases are both characterized by fully penetrating fluid in the toughness-dominated regime.

Hence, the difference in the time to breakdown must somehow be accounted for via the

fluid’s influence on resistance to crack propagation. For this reason we propose to adopt the

roughness-viscosity correction described in Section IV.E.4.

Similar comparison has been carried out on the sandstone tests in Fig. C3.b. Case I gives

the numerical prediction based on values of l0 = 30µm, and n = 13 that fit the unconfined

data set, and predictions in Case II use l0 = 10µm, and n = 12. For both cases, we see a shift
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in pressure, ∆p, from unconfined to confined solutions. However, the shift is not sufficient

in either of the two cases to enable simulation of both by choosing one combination of l0

and n. Additionally, it is useful to note that fitting the data by making l0 smaller for larger

viscosity and/or larger confining stress cases, as we have done here, is similar to increasing

the fracture toughness of the rock for these cases.

Based on these observations, we conclude that the numerical model without any cor-

rection term underestimates both the viscosity and the stress effect on the lifetime versus

pressure relation, and it is necessary to adopt a correction. One possible route is to choose

a correction bringing in a larger apparent fracture toughness for higher viscosity and higher

confining stress. Hence, we are driven to adopt the roughness correction described in Section

IV.E.4.
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