
APPLICATIONS OF THE QUANTUM DRUDE

OSCILLATOR MODEL FOR DISPERSION

INTERACTIONS AND COMPUTATIONAL

VIBRATIONAL SPECTROSCOPY OF CHARGED

WATER CLUSTERS

by

Tuguldur T. Odbadrakh

B.S. in Chemistry, West Virginia University, 2012

Submitted to the Graduate Faculty of

the Kenneth P. Dietrich School of Arts and Sciences in partial

fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2018



UNIVERSITY OF PITTSBURGH

KENNETH P. DIETRICH SCHOOL OF ARTS AND SCIENCES

This dissertation was presented

by

Tuguldur T. Odbadrakh

It was defended on

April 10th, 2018

and approved by

Kenneth D. Jordan, Ph.D., Richard King Mellon Professor and Distinguished Professor of

Computational Chemistry

Daniel S. Lambrecht, Ph.D., Assistant Professor

Sean Garrett-Roe, Ph.D., Assistant Professor

John A. Keith, Ph.D., Assistant Professor

Dissertation Director: Kenneth D. Jordan, Ph.D., Richard King Mellon Professor and

Distinguished Professor of Computational Chemistry

ii



APPLICATIONS OF THE QUANTUM DRUDE OSCILLATOR MODEL FOR

DISPERSION INTERACTIONS AND COMPUTATIONAL VIBRATIONAL

SPECTROSCOPY OF CHARGED WATER CLUSTERS

Tuguldur T. Odbadrakh, PhD

University of Pittsburgh, 2018

The harmonic oscillator model is used as the basis for describing dispersion interactions and

as the basis for computation of the vibrational frequencies of the hydronium ion at vari-

ous levels of hydration. First, configuration interaction, Rayleigh-Schrödinger perturbation

theory, and the random-phase approximation are applied to two quantum Drude oscillators

coupled through the dipole-dipole interaction. It is found that the RPA gives the exact

C6 dispersion coefficient with only the first excited state included while the other methods

require infinite excited states. The dispersion-induced dipole moment is derived from the

dipole-dipole and dipole-quadrupole interactions between two Drude oscillators by computing

the dipole moment expectation value from the second-order wavefunction, and by an inte-

gral over the frequency-dependent polarizability and hyperpolarizability of the oscillators.

Finally, the correct C6 coefficient is recovered from the dispersion-induced dipole moment

from the electrostatic Hellmann-Feynman theorem. Then secondly, the harmonic oscillator

model is used as the basis for computing the vibrational frequencies of cryogenically-cooled,

gas-phase H+(H2O)n=1,4,10,21 clusters. The OH stretching frequencies are found to red shift

dramatically due to the cubic coupling between the OH stretching modes and due to an

inductive interaction from the electric field of the hydration environment. Finally, the role

of the electric field in the proton-transfer mechanism in water is discussed.
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1.0 INTRODUCTION

This document describes my work in two different but related areas of theoretical chemistry;

therefore, the document is broken into two broad sections: one on the Drude oscillator

model and one on the vibrational spectroscopy of protonated water clusters. These two

seemingly unrelated fields at the core are based on the same Hamiltonian (one which is

based on the harmonic oscillator model). The Drude oscillator model utilizes the harmonic

oscillator model by directly defining a quadratic electron-nucleus interaction, leading to

identical eigenfunctions and eigenvalues as the harmonic oscillator model. This model is

part of our research group’s efforts to coarse-grain the dispersion interaction between small

gas-phase clusters and an excess electron, such as the dipole-bound anion of HCN [2]. Later,

the Drude oscillator model was used to describe the bound anions of water clusters, where

the inclusion of the dispersion interaction in the model Hamiltonian resulted in binding

energies comparable to the CCSD(T) method [3]. When I joined the group, the application

of the quantum Drude oscillator model to fully quantum mechanical calculations was in its

beginning stages, and therefore no previous work on the application of electronic structure

methods to quantum Drude oscillators existed in the literature, except for its application in

the many-body polarization and dispersion interactions in diffusion Monte Carlo (DMC) and

path-integral molecular dynamics (PIMD) simulations by Jones, et al. [4], as well as its use

in correcting density-functional theory to accurately describe dispersion interactions [5, 6].

Due to the simple nature of the Hamiltonian, the Drude oscillator model is a good start for

learning the standard electronic structure methodsi, and it is for this reason that I began

my Ph.D. research with the treatment of quantum Drude oscillators.

The computational vibrational spectroscopy method used in Chapter 4 is also based

on the harmonic oscillator Hamiltonian. However, it is different from the Drude oscilla-
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tor Hamiltonian in that the vibrational Hamiltonian is expressed in terms of normal mode

displacements, which are themselves linear combinations of nuclear displacements. My con-

tributions to the study of the vibrational spectra of protonated water clusters is part of a

long-standing collaboration between the theory group of Dr. Kenneth Jordan and the exper-

imental group of Dr. Mark Johnson at the Yale University on the vibrational spectroscopy

of cryogenically-cooled, gas-phase clusters. Examples of previous publications resulting from

this collaboration can be found in References [7, 8, 9, 10]. The remainder of this chapter is

structured as follows: Section 1.1.1 describes the one-dimensional Drude oscillator and its

wavfunctions and energies. Then the ladder operator formalism is described in Section 1.1.2

and applied to the computation of the static dipole polarizability of the Drude oscillator

in Section 1.1.3. Then the theory of long-range intermolecular interactions is reviewed in

Section 1.1.4. Section 1.2 sets up the vibrational problem and describes the potential energy

function. Finally, the second-order vibrational perturbation-theory is described.

1.1 THE DRUDE OSCILLATOR MODEL

A Drude oscillator consists of a displaceable pseudo-electron coupled harmonically to a

pseudo-nucleus through a force constant k [11]. In general the nucleus is fixed and the

electron is free to displace around its equilibrium position. The pseudo-electron’s classical

equilibrium position is at its energy minimum, and an external electric field can shift the

position of this minimum, thereby polarizing the Drude pseudo-atom and producing a dipole

moment. The dipole-polarizable property of this simple model has recently seen widespread

utilization in classical molecular dynamics simulations, including many-body polarization

effects in the cell membrane dipole potential [12], DNA base pairs [13], long-timescale sim-

ulations of macromolecules and proteins [14], as well as in describing polarizable molecular

ionic liquids [15]. In addition to its adoption in classical force-fields the Drude oscillator

model has been generalized to treat coarse-grained polarization and dispersion interactions

in quantum systems such as the interaction between an excess electron and water clus-

ters [2, 3]. The fully quantum mechanical Drude oscillator models the dispersion interaction

2



between atoms and molecules and has been successfully used to correct density-functional

theory (DFT) for dispersion interactions [16]. It has also been used to describe many-body

polarization and dispersion interactions in path integral molecular dynamics (PIMD) and

diffusion Monte Carlo (DMC) simulations [17].

This section describes the theoretical foundations of the quantum Drude oscillator model

of long-range dispersion interactions. First, the one-dimensional quantum Drude oscillator

is described and connected to the harmonic oscillator model in Subsection 1.1.1. Subsec-

tion 1.1.2 describes the ladder operator formalism which greatly simplifies the evaluation

of integrals in the Drude oscillator model. Lastly, the theoretical formulation of long-range

intermolecular interactions is detailed in terms of the multipole expansion of the Coulomb op-

erator along with a perturbation theory interpretation of the various types of intermolecular

interactions.

1.1.1 The One-Dimensional Quantum Drude Oscillator

The Hamiltonian describing a one-dimensional Drude oscillator displacing along the z-axis

is

Ĥ =
1

2m
p̂2 +

1

2
kẑ2 (1.1)

where p̂ is the momentum operator for the displaceable negative charge, ẑ is the displacement

operator for the displaceable negative charge, m is the effective mass and k is the force

constant of the harmonic potential coupling the displaceable negative charge to its positive

pseudo-nucleus. The force constant is related to the effective mass m and frequency ω by

k = mω2. The solution to the time-independent Schrödinger equation

Eψ(z) = Ĥψ(z) (1.2)

is identical to the solution for the quantum harmonic oscillator, so the wavefunction for the

nth state is

ψn(z) =
1√
2nn!

(mω
π~

) 1
4
Hn

(√
mω

~
z

)
e−

mω
2~ z

2

(1.3)
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where n is the quantized energy level and can take any positive integer value including 0. Hn

is a Hermite polynomial of order n, ~ is the reduced Planck constant, and ω is the vibrational

frequency of the oscillator. Then the energy levels of the quantum Drude oscillator are

En = ~ω
(
n+

1

2

)
, (1.4)

resulting in evenly-spaced energy levels (En − En−1 = ~ω), as well as a zero-point energy

(ZPE)

EZPE =
1

2
~ω. (1.5)

Figure 1.1 shows the first four wavefunctions and their energies superimposed on the po-

z

E0

E1

E2

E3

ψ0

ψ1

ψ2

ψ3

Figure 1.1: The harmonic potential, and the first four eigenvalues (E0−3) and eigenfunctions

(ψ0−3) of the quantum Drude oscillator.

tential coupling the pseudo-electron to the pseudo-nucleus.

1.1.2 The Ladder Operator Formalism

The ladder operator formalism is an extremely useful method of treating the harmonic

oscillator Schrödinger equation and is akin to the second quantization method of many-body

4



systems and quantum field theory. The ladder operators are defined using complex linear

combinations of the momentum and position operators as

â =

√
mω

2~

(
ẑ +

i

mω
p̂

)
(1.6)

â† =

√
mω

2~

(
ẑ − i

mω
p̂

)
(1.7)

where â† is the ”ladder-up” operator and â is the ”ladder down” operator. The effects of

these operators on an eigenstate n of the Hamiltonian in Equation 1.1 are

â |n〉 =
√
n |n− 1〉 (1.8)

â† |n〉 =
√
n+ 1 |n+ 1〉 (1.9)

where |n〉 is the wavefunction of state n in ”braket” notation. Then the momentum and

position operators can be written as linear combinations of the ladder operators as

p̂ = i

√
~

2mω

(
â† − â

)
(1.10)

ẑ =

√
~

2mω

(
â† + â

)
. (1.11)

These definition can be used to simplify the evaluation of integrals to that of evaluating

overlap integrals of the orthogonal harmonic oscillator wavefunctions. For example, a simple

position expectation value can be written as

〈z〉 = 〈i|
√

~
2mω

(
â† + â

)
|j〉

=

√
~

2mω

(
〈i|â†|j〉+ 〈i|â|j〉

)

=

√
~

2mω

(√
j + 1 〈i|j + 1〉+

√
j 〈i|j − 1〉

)

=

√
~

2mω

(√
j + 1δi,j+1 +

√
jδi,j−1

)

(1.12)

where δ is the Kronecker delta function. We now demonstrate the use of these operators in

the calculation of the dipole-polarizability of the quantum Drude oscillator.
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1.1.3 Computation of the dipole polarizability

The second-order perturbation theory for the dipole-polarizability of the Drude oscillator

is derived from the multipole expansion of the interaction of an oscillator with an applied

electric field. The resulting expression is

ααβ =
∑

i

(
〈0|µ̂α|i〉 〈i|µ̂)β|0〉
E

(0)
i − E(0)

0

+
〈0|µ̂β|i〉 〈i|µ̂α|0〉
E

(0)
i − E(0)

0

)
(1.13)

where the Einstein summation notation was used. The dipole moment operator is defined in

three dimensions as µ̂ = qr̂ for the quantum Drude oscillator, where q is the negative charge

of the oscillator, and r is the displacement of the negative charge relative to the positive

charge. In one dimension (along the z-axis), the dipole moment operator becomes

µ̂z = qẑ = q

√
~

2mω

(
â† + â

)
. (1.14)

Substituting in this expression into Equation 1.13 in one dimension along the z-axis, and

evaluating the overlap integrals resulting from the ladder operators gives

αzz =
q2

k
=

q2

mω2
(1.15)

which is the zz component of the dipole polarizability. It is important to note that the dipole

moment operator brings in only one displacement operator, so the only nonzero contributions

in the sum-over-states are the |0〉 → |1〉 integrals. Thus for the quantum Drude oscillator,

only the first excited state is needed to compute its exact dipole polarizability.
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1.1.4 Long-Range Interactions Between Two Molecules

The theory of long-range intermolecular interactions began when van der Waals corrected

the ideal gas law PV = RT to include the effects of the incompressible volume of the

particles and the attractive interactions between the particles [1]. The volume occupied by

the particles themselves, b was subtracted from the volume term, V , to correct the available

volume for movement. The long-range interactions between the particles is accounted for by

modifying the pressure term, P , to include the decrease in magnitude from the attractive

interactions. Thus the ”van der Waals equation” was

(
P +

1

V 2

)
(V − b) = RT (1.16)

and its application as an empirical formula was successful in describing the gas-liquid phase

change of molecules. Since then, a variety of different long-range interactions have been

classified for atoms and molecules. These include the electrostatic interaction, the induc-

tion interaction, and the dispersion interaction. The electrostatic interaction is simply the

Coulomb interaction between the static charge densities of the interacting particles. The

induction interaction is the response of one particle to the static electric field of the other

particle and results in a polarization of the charge density. Finally, but not least, is the dis-

persion interaction which is described as the stabilizing interaction arising from the correlated

fluctuations of the charge densities of the particles. This section describes the important as-

pects of the theory of intermolecular forces at long range where there is no significant overlap

of electron densities.
Consider a system of two arbitrary molecules A and B at positions A and B with the

electrons at positions A + a and B + b as shown in Figure 1.2. The electric potential of

molecule A measured at B is given by

V A(B) =
∑

a

ea
4πε0|B−A− a| (1.17)
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Figure 1.2: Two arbitrary molecules centered at A and B, with the electrons at a and b [1].

where the sum goes over all electrons a. Defining the separation between the centers of the

two molecules as R = B−A and expanding the potential in a Taylor series around A gives

V A(B) =
∑

a

ea
4πε0

{
1

R
− aα∇α

1

R
+

1

2
aαaβ∇α∇β

1

R
− ...

}

= TqA − Tαµ̂Aα +
1

3
TαβΘ̂A

αβ − ...+
(−1)n

(2n− 1)!!
T

(n)
αβ...ν ζ̂

A(n)
αβ...ν + ...

(1.18)

where the Einstein summation notation was used and the successive derivatives of the po-

tential have been defined as the coupling tensors

T =
1

4πε0

1

R
, (1.19)

Tα =
1

4πε0
∇α

1

R
, (1.20)

Tαβ =
1

4πε0
∇α∇β

1

R
, ... (1.21)

Tαβ...ν =
1

4πε0
∇α∇β...∇ν

1

R
. (1.22)

Equation 1.18 above is the multipole expansion of the electric potential of molecule A mea-

sured at B. The first term is the electric potential from a point charge q, the second term

is the electric potential from a dipole moment µ̂Aα = qAa, and the third term is the electric

potential from a quadrupole moment Θ̂A
αβ, and so on to infinite multipoles. Now the electric

potential of molecule A is written as a function of its multipole moments and the separation

8



between the centers of the two molecules, R. The operator for the interaction of an arbitrary

molecule with an arbitrary non-uniform electric potential V is

Ĥint = qV + µ̂αVα +
1

3
Θ̂αβVαβ + ... (1.23)

where

Vα = ∇αV, (1.24)

Vαβ = ∇α∇βV, ... (1.25)

Substituting in the multipole expansion of the the electric potential of molecule A gives the

interaction energy in terms of the interactions between the multipoles of the two molecules

through the coupling tensors, T . For two neutral molecules, dropping the monopole terms

involving q and using the appropriate expressions for the electric potential gradients gives

Ĥint = −µ̂AαTαβµ̂Bβ −
1

3

(
µ̂AαTαβγΘ̂

B
βγ − Θ̂A

αβTαβγµ̂
B
γ

)
+ ... (1.26)

Then it is clear that for a system of two neutral molecules, the interaction energy starts

with the stabilizing dipole-dipole interaction through the second derivative of the Coulomb

potential (Tαβ), followed by the dipole-quadrupole interactions through the third derivatives

of the Coulomb potential (Tαβγ), and so on to infinite multipole interactions.

It is instructive to discuss the perturbation-theory (PT) solution of the Schrödinger

equation for a system of two arbitrary molecules A and B with non-overlapping electron

densities. The Hamiltonian derived in Equation 1.26 is partitioned as

Ĥ = Ĥ
(0)
A + Ĥ

(0)
B + V̂ (1.27)

where Ĥ
(0)
A and Ĥ

(0)
B are the Hamiltonians for the isolated molecules A and B, and V̂ is the

interaction operator shown in Equation 1.26. The wavefunction is then taken as a product

wavefunction Ψij(a,b) = ψi(a)ψj(b) of the eigenfunctions of the unperturbed Hamiltonians,

as (
ˆ

H
(0)
A +

ˆ
H

(0)
B

)
|ij〉 =

(
E

(0)
Ai

+ E
(0)
Bj

)
(1.28)
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where i is the quantum number of molecule A and j is the quantum number of molecule

B, and the ground state denoted by |00〉 in the braket notation. The standard Rayleigh-

Schrödinger perturbation theory (RSPT) first- and second-order energy corrections are

E(1) = 〈00|V̂ |00〉 (1.29)

E(2) =
∑

i,j 6=0

〈00|V̂ |ij〉 〈ij|V̂ |00〉
E

(0)
|00〉 − E

(0)
|ij〉

(1.30)

where |ij〉 is an excited-state wavefunction in the product basis with molecule A in its ith

excited-state and with molecule B in its jth excited-state, and E
(0)
|ij〉 is the energy of the

unperturbed state |ij〉. The second-order energy correction requires a sum over all excited

states where j+i 6= 0, giving two types of integrals in the numerator. Based on the excitations

of the two molecules, the second-order energy correction can be decomposed into

E
(2)
ind =

∑

i 6=0

(
〈00|V̂ |i0〉 〈i0|V̂ |00〉

E
(0)
|00〉 − E

(0)
|i0〉

+
〈00|V̂ |0i〉 〈0i|V̂ |00〉

E
(0)
|00〉 − E

(0)
|0i〉

)
, (1.31)

E
(2)
disp =

∑

i,j 6=0

〈00|V̂ |ij〉 〈ij|V̂ |00〉
E

(0)
|00〉 − E

(0)
|ij〉

, (1.32)

where E
(2)
ind is the induction term and E

(2)
disp is the dispersion term. The induction term is

named as such because the integrals describing the change in energy require excitations of

one molecule while the other stays in its ground state, which can be interpreted as the

polarization of one molecule due to the electric field of the other. The dispersion term is

defined as such because the integrals involve both molecules in their excited states. The

first-order wavefunction correction which gives the second-order energy correction above can

also be partitioned as

|00〉(1)
ind =

∑

i 6=0

(
〈00|V̂ |i0〉
E

(0)
|00〉 − E

(0)
|i0〉
|i0〉+

〈00|V̂ |0i〉
E

(0)
|00〉 − E

(0)
|0i〉
|0i〉
)
, (1.33)

|00〉(1)
disp =

∑

i,j 6=0

〈00|V̂ |ij〉
E

(0)
|00〉 − E

(0)
|ij〉
|ij〉 . (1.34)

Here, it is even more clear that the induction interaction polarizes one molecule through exci-

tations while the dispersion interation arises from simultaneous excitations of both molecules.
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There is an alternate way to compute the dispersion interaction energy for arbitrary

dimers from the response properties of the molecules [18] as described below. The ap-

proximate second-order dispersion energy in Equation 1.31 can be written with just the

dipole-dipole operator as

E
(2)
disp = −

∑

i+j 6=0

〈00|µ̂AαTαβµ̂Bβ |ij〉 〈ij|µ̂Aγ Tγδµ̂Bδ |00〉
EA
i0 + EB

j0

(1.35)

where EA
i0 = E

(0)
i − E(0)

0 . The integrals are separable between the two molecules due to the

adoption of a product wavefunction, so the above dispersion energy can be written as

E
(2)
disp = −TαβTγδ

∑

i+j 6=0

〈0|µ̂Aα |i〉 〈i|µ̂Aγ |0〉 〈0|µ̂Bβ |j〉 〈j|µ̂Bδ |0〉
EA
i0 + EB

j0

. (1.36)

Subsituting the dipole polarizabilities of A and B and using the integral identity

1

A+B
=

2

π

∞∫

0

AB

(A2 + ν2) (B2 + ν2)
dν (1.37)

gives the Casimir-Polder expression for the dispersion interaction

E
(2)
disp =

~
2π
TαβTγδ

∞∫

0

αAαγ(iν)αBβδ(iν)dν. (1.38)

We see here that the dispersion energy can be expressed in terms of the frequency-dependent

dipole polarizabilities of the interacting Drude oscillators, when coupled through the dipole-

dipole coupling tensors Tαβ and Tγδ.
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1.2 THE VIBRATIONAL PROBLEM

1.2.1 The Vibrational Hamiltonian For an Arbitrary System

The energy and wavefunction of a molecule or a cluster of molecules are obtained through

solving the Schrödinger equation

ĤΨ(Ri, ri) = EΨ(Ri, ri) (1.39)

where Ψ(Ri, ri) is the wavefunction of the system as a function of the nuclear degrees of

freedom Ri and the electronic degrees of freedom ri for all i atoms, and Ĥ is the Hamiltonian

operator which is defined as

Ĥ =
∑

i

1

2
P 2
i +

∑

i

1

2
p2
i +

∑

i,j

ZiZj
Rij

−
∑

i,j

Zi
|Ri − rj|

+
∑

i,j

1

rij
(1.40)

where P is the momentum of nucleus i, p is the momentum of electron i, Zi is the nuclear

charge of atom i, Rij is the distance between nuclei i and j, and rij is the distance between

electrons i and j. The first two terms are the kinetic energy of the system and the remaining

terms are the nucleus-nucleus repulsion, the electron-nucleus attraction, and the electron-

electron repulsion energies of the system in that order. A full description of a quantum

system must account for all of the above, but due to the large difference in the masses of

the nucleus and the electron, the nuclear and electronic terms can be separated into two

Hamiltonians. The nuclear Hamiltonian can be written in terms of linear combinations of

the nuclear degrees of freedom as

H =
N∑

i=1

1

2
P 2
i + V (qi, qj, ..., qN) (1.41)

where qi is the ith linear combination of the nuclear degrees of freedom referred to as the ith

normal mode, and V (qi, qj, ..., qN) is the potential energy as a function of the displacements

along the normal modes.

Solving the Schrödinger equation for this vibrational Hamiltonian is made difficult by

the complexity of the potential energy function. There are various strategies to approximate

the potential energy, including quadrature methods and series expansions. One of the most

12



popular approximations is the Taylor series expansion of V centered at the minimum-energy

geometry written as

H =
1

2!

N∑

i=1

ωi
(
p2
i + q2

i

)
+

1

3!

N∑

ijk

φijkqiqjqk +
1

4!

N∑

ijkl

φijklqiqjqkql + ... (1.42)

where ωi is the vibrational frequency of mode i, pi is the momentum associated with vibra-

tional mode i, qi is the displacement along vibrational mode i and the force constants are

defined as

φijk =
1

√
ωiωjωk

∂3V

∂qi∂qj∂qk
(1.43)

φijkl =
1

√
ωiωjωkωl

∂4V

∂qi∂qj∂qk∂l
. (1.44)

The series expansion has no first-order potential energy term because the forces on all atoms,

the first derivative of the potential energy, are zero at the equilibrium geometry. So, the vi-

brational Hamiltonian’s potential energy operator starts with the second-order term, which

describes a system of non-interacting harmonic vibrations whose frequencies ω can be com-

puted from the eigenvalues of the second-derivative matrix[19, 20]. The third-derivatives are

related to the cubic force constants φijk and describe the coupling between vibrational modes

i, j, and k, while the quartic force constants φijkl describe the coupling between vibrational

modes i, j, k, and l. This potential energy surface is exact only when summed to all orders;

however, the effects of the coupling terms generally decrease as one progresses to higher-order

terms in the expansion, meaning that it may be safely truncated at an appropriate order

based on the desired accuracy. Generally, practical implementations of this series expansion

only takes into account up to the semidiagonal quartic force constants which have one re-

peating index, i.e. φiijk, in order to reduce the computational costs. In fact, in the Gaussian

09 implementation of VPT2 [21, 22, 23], the quartic force constants which contribute to the

anharmonic correction only includes up to φiijj.
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1.2.2 Solutions of the Vibrational Problem

There are a number of methods of solving for the vibrational frequencies of molecules beyond

the harmonic (quadratic) potential. Arguably the most accurate method is the vibrational-

self consistent field (VSCF)[24, 25, 26] method which is analogous to a mean-field variational

solution to the electronic Schrödinger equation, such as the Hartree-Fock method. The

VSCF method not only provides a variational wavefunction for the vibrational states of

a system, it allows for post-SCF ”correlation” methods which allows for coupling between

vibrational modes based on the VSCF reference. This is directly analogous to the electronic

structure post-SCF correlation methods, such as the vibrational second-order Möller-Plesset

perturbation theory (VMP2) [27], degenerate-vibrational perturbation theory[28], and the

vibrational configuration interaction methods [29]. An alternative method of special interest

for this work is the vibrational second-order perturbation theory (VPT2) [30] based on the

harmonic oscillator reference states. This method relies on the harmonic oscillator states as

the unperturbed reference state, and as such is subject to large errors for highly-anharmonic

potentials. Regardless of the method used for anharmonic corrections, the representation

of the potential energy of the system as a function of the vibrational modes has been the

primary challenge in obtaining accurate results within reasonable computational costs.

The accuracy of the potential energy term in Equation 1.41 determines the accuracy

of the obtained vibrational frequencies, and has been the subject of many studies. One

popular representation is the grid-based potential written as a function of the normal mode

displacements as

V (qi, qj, ..., qN) =
∑

i

V (qi) +
∑

i<j

V (qi, qj) +
∑

i<j<k

V (qi, qj, qk) + ... (1.45)

where the potential has been decomposed into the single-mode potential V (qi), two-mode

coupling potential V (qi, qj), the three-mode coupling potential V (qi, qj, qk), and so on up to

the total number of normal modes. This representation, although accurate, requires elec-

tronic structure calculations at each grid point along displacements of all normal modes,

then all pairs of normal modes, then all triples and so on up to an impractically large num-

ber of calculations. For example, in the GAMESS [31, 32] implementation of the grid-based
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VSCF and its correlation corrections, a potential including only up to the two-mode coupling

potential requires Mn+M(M−1)n2/2 number of electronic structure calculations for a sys-

tem with M number of normal modes and n number of grid points along each normal mode.

An alternative to this grid representation is the quartic force-field (QFF)[33] representation,

where the Taylor series expansion in Equation 1.42 is truncated at the semidiagonal quartic

coupling terms to give

V (qi, qj, ..., qN) =
N∑

ijk

(
1

3!
φijkqiqjqk +

1

4!
φiijkq

2
i qjqk

)
. (1.46)

The third and fourth derivatives of the energy with respect to the normal mode displace-

ments can be obtained from analytically or numerically differentiating the Hessian (second

derivative) matrix, resulting in 6(M + M(M − 1)) electronic structure calculations for a

system of M normal modes. For systems with large cubic couplings and small semidiagonal

quartic couplings, this representation dramatically reduces the number of electronic structure

calculations with minor reduction in accuracy. It is for this reason that the VPT2 method

uses the QFF potential.

In second-order vibrational perturbation theory, the Hamiltonian in Equation 1.41 is

truncated at the fourth-order terms with one repeating index as

H =
1

2!

N∑

i=1

ωi
(
p2
i + q2

i

)
+

N∑

ijk

(
1

3!
φijkqiqjqk +

1

4!
φiijkq

2
i qkql

)
. (1.47)

The harmonic part of the Hamiltonian is taken as the unperturbed Hamiltonian H(0) while

the cubic and quartic coupling terms are taken as the perturbation to the harmonic sys-

tem. The standard Rayleigh-Schrödinger perturbation theory (RSPT) can be applied to the

resulting nuclear Schrödinger equation in the space of products of the normal mode wave-

functions. The first-order wavefunction which gives the second-order vibrational frequencies

can be written as

|i〉 = |i(0)〉+ |i(1)〉 (1.48)
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for arbitrary state i and an arbitrary number of vibrational modes. Then an effective vibra-

tional Hamiltonian can be written as

〈i|Heff|i〉 = 〈i(0)|
N∑

iijk

1

3!
φiijkq

2
i qjqk|i(0)〉+ 〈i(0)|

N∑

ijk

1

4!
φijkqiqjqk|i(1)〉+ 〈i(1)|

N∑

ijk

1

4!
φijkqiqjqk|i(0)〉

(1.49)

whose energies are

〈i|Heff|i〉 = χ0 +
N∑

i

ωi

(
i+

1

2

)
+
∑

i≥j
χij

(
i+

1

2

)(
j +

1

2

)
. (1.50)

Then the transition frequencies of the fundamentals νi, overtones ν2i, and combination bands

νij can be computed as

νi = ωi + 2χii +
1

2

∑

j 6=i
χij, (1.51)

ν2i = 2νi + 2χii, (1.52)

νij = νi + νj + χij, (1.53)

where χii and χij are the diagonal and off-diagonal anharmonicity constants defined as

χii =
1

16

[
φiiii −

N∑

j

φ2
iij

8ω2
k − 3ω2

j

ωj
(
4ω2

i − ω2
j

)
]

χij =
1

4

{
φiijj −

N∑

k

φiikφkjj
1

ω2
k

+

+
N∑

k

φ2
ijk

2ωk(ω
2
i + ω2

j − ω2
k)

(ωi + ωj + ωk)(ωi − ωj + ωk)(ωi + ωj − ωk)(ωi − ωj − ωk)

}
.

(1.54)

The analytical anharmonic constants are derived from the second-order RSPT sum over

states with the integrals evaluated using the ladder operator formalism. The force constants

are calculated by numerically differentiating the Hessian once for the cubic force constants

and twice for the quartic force constants. For a system of N atoms, the VPT2 method

requires 6N −11 Hessian matrix calculations in order to obtain the required force constants.

Due to this favorable scaling relative to the variational methods, the VPT2 method will be

the primary computational tool for the work described in Chapter 4.
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2.0 APPLICATION OF ELECTRONIC STRUCTURE METHODS TO

COUPLED DRUDE OSCILLATORS

The work described in this chapter was adapted from Reference [34] and draws from the theo-

retical foundations of the quantum Drude oscillator model described in Chapter 1, Section 1.1

and the intermolecular interactions described in Section 1.1.4. I would like to acknowledge

the support and guidance of Dr. Vamsee Voora, and discussions with Dr. Filipp Furche and

Dr. Andreas Hesselmann on the matter of the random-phase approximation. This work was

supported by the National Science Foundation’s CHE1362334 grant, and the computational

resources at the University of Pittsburgh’s Center for Simulation and Modeling.

2.1 INTRODUCTION

The system of two Drude oscillators, separated by a distance R, interacting via a dipole-

dipole coupling is a textbook model for explaining the origin of the C6R
6 dispersion in-

teraction between two atoms or molecules[35]. The dispersion interaction between the two

oscillators can be solved analytically by a change of variables. Here, we find it instructive

to apply standard electronic structure methods including RayleighSchrodinger perturbation

theory[36], configuration interaction (CI), coupled cluster doubles (CCD) theory[37, 38], and

the random phase approximation (RPA)[39, 40, 41] to calculate the interaction energy be-

tween two Drude oscillators. The configurations used in the calculations are represented in

terms of products of harmonic oscillator functions. Our analysis shows that while the CI

and CCD methods require including excitations into all excited levels to obtain the exact

interaction energy, the RPA method gives the exact answer, allowing only excitations into
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the first excited state of each oscillator. The insensitivity of the RPA result to the basis set

is explained in terms of the Hamiltonian being quadratic in nature.

2.2 METHODOLOGY

The Hamiltonian for the model system is given by

H = −1

2

d2

dx2
1

− 1

2

d2

dx2
2

+
1

2
kx2

1 +
1

2
kx2

2 −
2q2x1x2

R3
(2.1)

where for simplicity, we assume one-dimensional oscillators and employ atomic units. We

have further assumed the mass associated with the oscillator is equal to that of the electron,

which is one in atomic units. We recast H as:

H = H0 + V (2.2)

where H0 is the Hamiltonian for the non-interacting oscillators and the perturbation V is

defined as

V = −2q2x1x2

R3
= γx1x2. (2.3)

With the change of variables

µ =
1√
2

(x1 + x2) (2.4)

and

ν =
1√
2

(x1 − x2) (2.5)

H separates to give two non-interacting harmonic oscillators with frequencies

ω1 = ω

√
1− γ

k
(2.6)

and

ω2 = ω

√
1 +

γ

k
, (2.7)
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where ω is the frequency of an unperturbed oscillator. The change in zero-point energy of

the system due to the interaction between the oscillators is

Eint =
ω

2

(
−2 +

√
1− γ

k
+ ω

√
1 +

γ

k

)
. (2.8)

Taylor series expansion of the square roots gives

Eint = −ωγ
2

8k2
− 5ωγ4

128k4
− ... (2.9)

through the first two non-zero terms. This can be rewritten as

Eint = −1

2
α2 ω

R6
− 5

8
α4 ω

R12
(2.10)

where use was made of the fact that the polarizability, α, of a Drude oscillator is q2/k. The

first term is the well-known London expression for the leading dispersion interaction between

two atoms or molecules[42].

2.3 APPLICATIONS OF ELECTRONIC STRUCTURE METHODS TO

THE DRUDE OSCILLATOR PROBLEM

We now apply various electronic structure methods to the Hamiltonian given by Equation 2.1.

The basis set is taken to be products of harmonic oscillator functions |ij〉, where i and j

specify the quantum numbers of the oscillators 1 and 2, respectively.
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and

! = 1
√

2
(x1 − x2), (5)

H separates to give two non-interacting harmonic oscillators with
frequencies

ω1 = ω
√

1 − #
k

(6)

and

ω2 = ω
√

1 + #
k

, (7)

where ω is the frequency of an unperturbed oscillator. The change
in zero-point energy of the system due to the interaction between
the oscillators is

Eint = ω
2

[
−2  +

√
1 + #

k
+

√
1 − #

k

]
. (8)

Taylor series expansion of the square roots gives

Eint = −ω#2

8k2 − 5ω#4

128k4 − · · · (9)

through the first two non-zero terms. This can be rewritten as

Eint = −1
2

˛2 ω
R6 − 5

8
˛4 ω

R12 − · · · (10)

where use was made of the fact that the polarizability, ˛, of a Drude
oscillator is q2/k. The first term is the well-known London expres-
sion for the leading dispersion interaction between two atoms or
molecules [16].

3. Application of electronic structure methods to the Drude
oscillator problem

We  now apply various electronic structure methods to the
Hamiltonian given by Eq. (1). The basis set is taken to be prod-
ucts of harmonic oscillator functions |ij⟩, where i and j specify the
quantum numbers of the oscillators 1 and 2, respectively.

3.1. Configuration interaction, Rayleigh–Schrodinger
perturbation theory, and CCD

The CI matrix for the ground state of the coupled oscillator prob-
lem assumes the form

〈
00

∣∣〈
11

∣∣〈
20

∣∣〈
02

∣∣〈
22

∣∣
...

∣∣00
〉 ∣∣11

〉 ∣∣20
〉 ∣∣02

〉 ∣∣22
〉

· · ·⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ω ı 0 0 0 · · ·
ı 3ω

√
2ı

√
2ı 2ı · · ·

0
√

2ı 3ω 0 0 · · ·
0

√
2ı 0 3ω 0 · · ·

0 2ı 0 0 5ω · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where ı = #/(2ω). As seen from the CI matrix the configurations that
contribute to the ground state wave function are |00⟩, |11⟩, |20⟩, |02⟩,
|22⟩, etc. Note that the |00⟩ configuration mixes directly only with
|11⟩. If only the |00⟩ and |11⟩ configurations are retained, the energy
is

2ω − ω

√
1 + ı2

ω2 = ω − ı2

2ω
+ ı4

8ω3 − · · · = ω − ω#2

8k2 + ω#4

128k4 − · · ·

(11)

which is correct only through the leading correction, i.e., the
second-order perturbation theory result. In fact, the O(#4) term

Figure 1. Interaction energy of two Drude oscillators with dipole–dipole coupling
calculated with configuration interaction with basis (A) |00⟩, |11⟩; (B) |00⟩, |11⟩, |20⟩,
|02⟩,  |22⟩; and (C) |00⟩, |11⟩, |20⟩, |02⟩, |22⟩, |13⟩, |31⟩, |33⟩, and compared to (D) the
exact interaction energy.

enters with the wrong sign. As is clear from the structure of the CI
matrix, the |20⟩, |02⟩, and |22⟩ configurations must also be included
to obtain the energy correct through fourth-order perturbation the-
ory. There are four contributions to the fourth-order energy:
〈

00
∣∣V

∣∣11
〉〈

11
∣∣V

∣∣22
〉  〈

22
∣∣V

∣∣11
〉  〈

11
∣∣V

∣∣00
〉

(E00 − E11)2(E00 − E22)〈
00

∣∣V
∣∣11

〉  〈
11

∣∣V
∣∣20

〉  〈
20

∣∣V
∣∣11

〉  〈
11

∣∣V
∣∣00

〉

(E00 − E11)2(E00 − E20)〈
00

∣∣V
∣∣11

〉  〈
11

∣∣V
∣∣02

〉  〈
02

∣∣V
∣∣11

〉  〈
11

∣∣V
∣∣00

〉

(E00 − E11)2(E00 − E02)

−

〈
00

∣∣V
∣∣11

〉  〈
11

∣∣V
∣∣00

〉  〈
00

∣∣V
∣∣11

〉  〈
11

∣∣V
∣∣00

〉

(E00 − E11)3 .

The terms involving |20⟩, |02⟩, and |22⟩ each contribute −ı4/4ω3,
and the last term corresponding to the disconnected diagram con-
tributes ı4/8ω3.

Figure 1 reports the interaction energy vs. distance for the cou-
pled Drude oscillator problem in the case k = 0.04 a.u., q = 1 a.u., and
m = 1 a.u. (This corresponds to an oscillator excitation energy of
about 5.4 eV.) Results are reported for three different CI calcula-
tions: the smallest including only the |00⟩ and |11⟩ configurations,
the intermediate including the |00⟩, |11⟩, |20⟩, |02⟩, and |22⟩ con-
figurations, and the largest including the |00⟩, |11⟩, |20⟩, |02⟩, |22⟩,
|13⟩, |31⟩, and |33⟩ configurations. Over the range of R values con-
sidered (4 ≤ R ≤ 6 a.u.) the largest CI calculation gives interaction
energies essentially indistinguishable from the exact values, while
the results from the intermediate size CI calculations differ slightly
from the exact result for R ≤ 4.5 a.u. On the other hand, the ener-
gies from the small CI calculations differ appreciably from the exact
result for R values less than about 5 a.u. For the two-Drude oscilla-
tor model system, the CCD method [10,11] gives the same result as
the CI calculations, when using the same configuration space. For
this reason, the CCD method is not pursued further.

3.2. RPA

As is well known the RPA equations can be written as
(

A B

−B −A

)  (
x

y

)
= E

(
1 0
0 1

)  (
x

y

)
(12)

where the A matrix includes interactions between various single
excitations and the B matrix accounts for the mixing of double exci-
tations with the reference configuration [13–15]. Due to the nature

2.3.1 Configuration interaction, Rayleigh-Schrödinger perturbation theory, and

CCD

The CI matrix for the ground state of the coupled oscillator problem assumes the form where

δ = γ/(2ω). As seen from the CI matrix the configurations that contribute to the ground

state wave function are |00〉, |11〉, |20〉, |02〉, |22〉, etc. Note that the |00〉 configuration mixes

directly only with |11〉. If only the |00〉 and |11〉 configurations are retained, the energy is

2ω − ω
√

1 +
δ2

ω2
= ω − δ2

8ω3
+

δ4

8ω3
− ... = ω − ωγ2

8k2
+

ωγ4

128k4
− ... (2.11)

which is correct only through the leading correction, i.e., the second-order perturbation the-

ory result. In fact, the O(γ4) term enters with the wrong sign. As is clear from the structure

of the CI matrix, the |20〉, |02〉, and |22〉 configurations must also be included to obtain the

energy correct through fourth-order perturbation theory. There are four contributions to the

fourth-order energy:

E(4) =
〈00|V |11〉 〈11|V |22〉 〈22|V |11〉 〈11|V |00〉

(
E

(0)
|00〉 − E

(0)
|11〉

)2 (
E

(0)
|00〉 − E

(0)
|22〉

) +

+
〈00|V |11〉 〈11|V |20〉 〈20|V |11〉 〈11|V |00〉

(
E

(0)
|00〉 − E

(0)
|11〉

)2 (
E

(0)
|00〉 − E

(0)
|20〉

) +

+
〈00|V |11〉 〈11|V |02〉 〈02|V |11〉 〈11|V |00〉

(
E

(0)
|00〉 − E

(0)
|11〉

)2 (
E

(0)
|00〉 − E

(0)
|02〉

) −

−〈00|V |11〉 〈11|V |00〉 〈00|V |11〉 〈11|V |00〉
(
E

(0)
|00〉 − E

(0)
|11〉

)3

(2.12)
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The terms involving |20〉, |02〉, and |22〉 each contribute −δ4/4ω3, and the last term corre-

sponding to the disconnected diagram contributes δ4/8ω3. Figure 2.1 reports the interaction

energy vs. distance for the coupled Drude oscillator problem in the case k = 0.04 a.u.,

q = 1 a.u., and m = 1 a.u. (This corresponds to an oscillator excitation energy of about

5.4 eV.) Results are reported for three different CI calculations: the smallest including only

the |00〉 and |11〉 configurations, the intermediate including the |00〉, |11〉, |20〉, |02〉, |22〉
configurations, and the largest including the |00〉, |11〉, |20〉, |02〉, |22〉, |13〉, |31〉, and |33〉
configurations. Over the range of R values considered (4 ≤ R ≤ 6 a.u.) the largest CI cal-

culation gives interaction energies essentially indistinguishable from the exact values, while

the results from the intermediate size CI calculations differ slightly from the exact result for

R ≤ 4.5 a.u. On the other hand, the energies from the small CI calculations differ apprecia-

bly from the exact result for R values less than about 5 a.u. For the two-Drude oscillator

model system, the CCD method[36, 37] gives the same result as the CI calculations, when

using the same configuration space. For this reason, the CCD method is not pursued further.

Figure 2.1: Interaction energy of two Drude oscillators coupled through the dipole-dipole

interaction calculated with the basis (A) |00〉 , |11〉; (B) |00〉 , |11〉 , |20〉 , |02〉 , |22〉; (C)

|00〉 , |11〉 , |20〉 , |02〉 , |22〉 , |13〉 , |31〉 , |33〉, compared to (D) the exact interaction energy.
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2.3.2 The Random-Phase Approximation

As is well known the random-phase approximation (RPA) equations can be written as


 A B

−B −A




x

y


 = E


I 0

0 I




x

y


 (2.13)

where the A matrix includes interactions between various single excitations and the B matrix

accounts for the mixing of double excitations with the reference configuration[39, 40, 41].

Due to the nature of the RPA equations, the only configurations that are important for the

correlation energy for the model considered here are |10〉 and |01〉.
The entries in the A matrix are 〈10|H − E0|10〉 = 〈01|H − E0|01〉 = ω and 〈10|H − E0|01〉 =

δ, while the non-zero entries in the B matrix are 〈11|H|00〉 = 〈00|H|11〉 = δ. Thus, the A

and B matrices are

A =


ω δ

δ ω


 ,B =


0 δ

δ 0


 , (2.14)

and the relevant excitation energies are

E1 = ω

√
1 +

2δ

ω
(2.15)

and

E2 = ω

√
1− 2δ

ω
. (2.16)

Several different strategies have been developed for extracting ground state correlation

energies of systems where the electrons are treated explicitly[40, 43, 44, 45, 46]. For the

Drude oscillator problem, the logical choice is to use

Eint =
1

2

∑

i=1

(
ωRPA
i − ωTDA

i

)
, (2.17)

where TDA refers to the Tamm-Dancoff approximation which retains only the A matrix in

Equation 2.13. For the coupled Drude oscillator problem with only |0〉 → |1〉 excitations of

the individual oscillators, this gives

Eint =
ω

2

(
−2 +

√
1 +

2δ

ω
+

√
1− 2δ

ω

)
, (2.18)
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which is identical to the exact solution given by Equation 2.8. At first sight, this is a

surprising result, since obtaining the exact correlation energy with the CI or CCD methods

requires inclusion of all configurations |ij〉, where |i+j| is an even integer. It is also interesting

in light of the fact that it has been shown that the direct RPA method is equivalent to the ring

CCD method (without exchange) for estimating the correlation energy of a many-electron

system[47, 48, 49].

Comparison of Equations 2.15 and 2.16 with Equations 2.6 and 2.7 reveals that the

RPA method allowing only |0〉 → |1〉 excitations of the oscillators gives the exact excitation

energies of the coupled Drude oscillator problem. It is for this reason that Equation 2.17 gives

the exact value for the ground state correlation energy when using the restricted excitation

space. This raises the question as to the structure of the A and B matrices when excitations

into levels |2〉, |3〉, etc., are allowed. In this case, the eigenvalues of the A matrix become nω

where n is the quantum number of the excitation. Moreover, the fact that the RPA excitation

energies are exact when allowing only |0〉 → |1〉 excitations of the oscillators follows from the

quadratic form of the Hamiltonian as can be seen from the derivation of the RPA equations

by Rowe[50]. Additionally, we note that the fact that the RPA method gives the exact

correlation energy for harmonic oscillators coupled through the dipole-dipole interaction,

has been demonstrated by Tkatchenko and co-workers[5] by use of the adiabatic connection

fluctuation-dissipation theorem (AC-FDT)[6]. Athough Tkatchenko et al. did not explicitly

introduce a basis set in their treatment, they did employ the fact that the functional form

of the frequency-dependent dipole polarizability of a Drude oscillator has a single pole,

consistent with the contribution of only the |0〉 → |1〉 transition. If the Hamiltonian were

extended to include also dipole-quadrupole and quadrupole-quadrupole coupling, |0〉 → |2〉
excitations would also enter into the RPA equations, and the method would no longer give the

exact excitation energies nor the exact ground state energy. Examination of the Goldstone

diagrams for the RPA correlation energy reveals that at all orders other than second all

diagrams contributing to the energy are exclusion principle violating (EPV) in nature. This

is illustrated in Figure 2.2, which displays one of the fourth-order contributions to the energy.

This is in contrast to the RSPT result for which the negative contributions to the correlation

energy are non-EPV in nature and include excitations into |20〉, |02〉, and |22〉.
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Figure 2.2: (A) Fourth-order exclusion principle violating interaction diagram appearing in

the RPA. |0〉 and |1〉 correspond to oscillator 1, while |0′〉 and |1′〉 correspond to oscillator 2.

(B) Shows a fourth-order contribution to the RSPT involving excitation into the |22〉 level.

2.4 CONCLUSION

Quantum Drude oscillators have proven to be a valuable approach for describing dispersion

interactions in molecules, clusters, and solids as well as at interfaces. In this work the

interaction energies for a pair of interacting quantum Drude oscillators with dipole-dipole

coupling is calculated using the perturbation theory, CI, CCD, and RPA methods. The RPA

method is shown to give the exact excitation energies and the exact correlation energy of the

ground state of the coupled Drude oscillator problem when allowing only |0〉 → |1〉 excitations

of the oscillators. This lack of sensitivity to the basis set (and, hence, excitation level) is a

consequence of the Hamiltonian including only dipoledipole coupling of the oscillators. It

also follows from the result of Tkatchenko and coworkers who showed using the AC-FDT that

the RPA gives the exact interaction energy for a system of oscillators interacting through

dipoledipole coupling.
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3.0 DISPERSION DIPOLES FOR COUPLED DRUDE OSCILLATORS

This work was adapted from Reference [51] and builds on the Drude oscillator description of

the dispersion interaction described in Chapter 2. As with the previous chapter, Dr. Vamsee

Voora contributed to this work through valuable discussions. This work was funded by the

National Science Foundation’s CHE1362334 grant and the Pittsburgh Quantum Institute’s

Graduate Student Grant, and computational resources were provided by the University of

Pittsburgh’s Center for Simulation and Modeling.

3.1 INTRODUCTION

Long-range dispersion interactions between atoms or molecules are generally explained in

terms of correlated charge fluctuations of the two atoms (or molecules)[18]. The simplest

wave-function approach that accounts for dispersion is second-order Mller-Plesset perturba-

tion theory (MP2)[52]. In this picture, the dispersion interaction results from the interaction

of fluctuating dipoles of the two atoms or molecules. In contrast, in the last paragraph of

Feynman’s classic 1939 paper, he observed that the long-range dispersion interaction be-

tween two spherical atoms causes each atom to acquire a permanent dipole moment with

the negative ends of the two dipoles pointed toward each other[53]. Feynman stated:

Van der Waal’s forces can also [sic] be interpreted as arising from charge distributions
with higher concentration between the nuclei. The Schrödinger perturbation theory for
two interacting atoms at a separation R, large compared to the radii of the atoms, leads to
the results that the charge distribution of each is distorted from central symmetry, a dipole
moment of order 1/R7 being induced in each atom. The negative charge distribution of each
atom has its center of gravity moved slightly toward the other. It is not the interaction of
these dipoles which leads to van der Waals’ force, but rather the attraction of each nucleus
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for the distroted charge distribution of its own electrons that gives the attractive 1/R7

force.

The dipole on each atom and the force on the nuclei resulting from the charge distortion dis-

play a R−7 dependence on the separation of the atoms[53, 54, 55]. Feynman further observed

that one can obtain the dispersion energy from a classical electrostatic calculation involving

the altered charge distributions of the atoms. Eliason and Hirschfelder[56] confirmed numer-

ically the existence of the R−7 dispersion force for two interacting H atoms in their S ground

states, while Byers Brown and Whisnant[57] confirmed the existence of dispersion dipoles.

Hunt showed, through a non-linear response approach, that the dispersion-induced dipole

on one atom (or molecule) results from the interaction of its dipole-dipole-quadrupole polar-

izability with the instantaneous dipole on the other atom (or molecule)[58]. This approach

was exploited in references[59, 60, 61]. Hunt also presented an analytical proof of Feynmans

conjecture about the dispersion force for interacting atoms in S states, and generalized it to

molecules of arbitrary symmetry[62]. She has also been able to reconcile the two seemingly

different views of dispersion[62]

In the present article, we analyze the dispersion-induced dipole for the case of two in-

teracting quantum Drude oscillators[63]. In doing so, we draw on the work of Linder and

Kromhout[60] and Galatry and Gharbi[61]. The latter authors have already published the

expression for the dispersion dipole for two interacting 3D Drude oscillators, which they ob-

tained using a response-function approach. In the present study, we report the second-order

wavefunction that gives the dispersion dipoles of the interacting oscillators and use it to

obtain the dispersion-induced changes in the charge distribution. We also confirm that one

can obtain the C6 coefficient for the interacting Drude oscillators from the electrostatic force

resulting from the altered charge distributions.

3.2 THEORY

The problem of two quantum Drude oscillators with dipole-dipole coupling is a textbook

model for illustrating the origin of the long-range C6/R
6 dispersion interaction[64]. Here,
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R is the distance between the two oscillators, and C6 is the dispersion coefficient associated

with the R−6 contribution. However, when only dipole-dipole coupling is allowed, this model

does not give rise to the permanent dipoles predicted by Feynman. To recover the permanent

dipoles induced by dispersion it is necessary to include dipole-quadrupole coupling.

In this work, we assume that the two oscillators lie on the z-axis, and, for simplicity,

we initially assume that oscillator A only has charge fluctuations in the z-direction and that

the coupling with oscillator B is through the −2q2z1z2/R
3 and 2q2z1θ

zz
2 /R

4 terms, where

θzz = (3z2r2)/2. In this case, the relevant wave function through second-order (in atomic

units) becomes

ψ = |00〉+2q2

R3

〈00|z1z2|11〉
2ω0

|11〉 − 2q2

R4

〈00|(3z2r2)/2|12〉
2ω0

|12〉−

−4q4

R7

〈00|z1z2|11〉 〈11|(3z2r2)/2|01〉
2ω2

0

|01〉 − 4q4

R7

〈00|(3z2r2)/2|12〉 〈12|z1z2|01〉
2ω2

0

|01〉 ,

(3.1)

where in configuration |ij〉, i and j specify the states of oscillators A and B, respectively, and

ω0 is the frequency of the Drude oscillator. |0〉, |1〉, and |2〉 denote the ground and first two

excited states of the one-dimensional Drude oscillator. In Equation 3.1 we have left out the

terms that do not contribute to the dipole on oscillator B. Figure 3.1 shows the dispersion-

induced change in the charge density for the wavefunction in Equation 3.1 extended to also

include the distortion on oscillator A caused by the fluctuation in the z-direction of the

charge distribution on oscillator B. The oscillators are separated by R = 12 a0, and the

parameters are chosen to be q = 0.5 a.u., m = 1 a.u., and k = 0.16 a.u., resulting in

α = 1.56 a.u.3 = 0.23 Å
3

and ω0 = 0.40 a.u., values roughly appropriate for He. As seen

from this figure each oscillator acquires a permanent dipole with the negative ends of the

dipoles pointing towards each other just as Feynman predicted for interacting atoms. Using

the wave function in Equation 3.1, the dipole moment of oscillator B is calculated to be

(retaining terms through R−7)

µB = − 2q5

km2ω3
0R

7
= −αA B

zzzz
B ω0

R7
= −2αA αB

mω0R7
(3.2)
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Figure 3.1: Dispersion-induced change in the charge densities of two interacting one-

dimensional Drude oscillators at a distance of 12 a0 and with k = 0.16 a.u., q = 0.5 a.u.,

and m = 1 a.u.

where αA and αB are the static dipole polarizabilities of A and B, which are equal to q2/k, m

is the mass associated with an oscillator, and Bzzzz
B is the zzzz component of the static dipole-

dipole-quadrupole hyperpolarizability ofB, which is equal to 2q3/m2ω4
0 for a Drude oscillator.

This latter result was derived from Eq. A4 of reference [60]. The charge displacements in

Figure 3.1 have both dipolar and quadrupolar contributions, the latter of which results from

the R−6 dipole-dipole coupling. The distortion due to dipole-dipole coupling alone is shown

in Figure 3.2. The induced dipole on B due to the fluctuation on A can also be expressed

in terms of the integral of the product of the frequency-dependent dipole polarizability of

A and the frequency-dependent dipole-dipole-quadrupole hyperpolarizability evaluated at

imaginary frequency [59, 60, 61, 62].

µzB =
1

3π

∫ inf

0

Bzαβγ(−iω, iω)αδεA (−iω)TαδTεβγdω (3.3)

where Tαδ and Tεβγ are the standard dipole-dipole and dipole-quadrupole coupling tensors,

respectively. Bishop and Pipan have reported accurate values of α(iω) and B(−iω, iω) for
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Figure 3.2: The quadrupolar charge distortion due to dipole-dipole coupling of two one-

dimensional Drude oscillators at a separation of 12 a0 and with the parameters as used in

Figure 3.1.

H, He, and H2 as a function of ω [65]. For the simplified 1D model described above, one

need only to consider αzz(iω) and Bzzzz(−iω, iω) which are given by

αzz(iω) = αzz(0)
ω2

0

ω2 + ω2
0

(3.4)

and

Bzzzz(−iω, iω) = Bzzzz(0)
ω0

ω2 + ω2
0

(3.5)

where the latter result was obtained from Eq. A4 of Linder and Kromhaut [60]. Interestingly,

the frequency dependence ofBzzzz is even simpler for the Drude oscillator than obtained using

closure relations as used by these authors. Using these expressions to evaluate the integral

in Equation 3.3 gives the same expression for the dipole moment as was obtained from the

perturbation theory wave function (Equation 3.2). For the simplified 1D model considered

above, the force on the fixed charge of oscillator B, obtained by use of the electrostatic

Hellmann-Feynman theorem, is

FB = −k 〈z2〉 = −k
q

αzzA (0)Bzzzz
B (0)

R7
(3.6)
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which is also equal to −6C6/R
7. This gives the result C6 = α2ω0/3, compared to the exact

result of α2ω0/2 for the C6 value for 1D Drude oscillators [61]. This discrepancy is simply

a consequence of our neglect in the simplified treatment of contributions of Bzzxx
B and Bzzyy

B

in response to the fluctuation of the charge density of A in the z direction. When these are

included, the correct value of C6 is obtained for the 1D case.

In three dimensions, the Hamiltonian for two interacting Drude oscillators has the form

Ĥ = H
(0)
A +H

(0)
B − TαβµAαµBβ −

1

3

(
Tαβγµ

A
αθ

B
βγ − TαβγθAαβµBγ

)
(3.7)

where H
(0)
A and H

(0)
B are the Hamiltonians for the non-interacting oscillators, and the stan-

dard Einstein summation notation is used. µIα and θIαβ are the dipole and quadrupole moment

operators for oscillator I. The resulting wave function through second-order contains three

R−3, 10 R−4, and 34 R−7 terms. Using this to evaluate gives

µzB = − 9q5

2m3ω5
0R

7
= −9

2
αAαB

1

mω0R7
= −9

4
αAB

zzzz
B

ω0

R7
(3.8)

In the evaluation of Equation 3.8 the product of the R−3 and R−4 terms contributes 1/6

of the dipole moment while the R−7 terms contribute 5/6. In comparison, Hirschfelder and

Eliason found that 93% of the contributions to the dipole moment arise from the R−7 terms

for the case of two hydrogen atoms[56]. We note that Levine also considered the dispersion

dipole for interacting Drude oscillators[66]. However, due to the approximations that he

made in averaging the interactions, the resulting dispersion dipole is 10/3 times larger than

that reported in Equation 3.8. In treating the interacting 3D Drude oscillators, using the

response function approach, it is necessary to consider seven components of B, Bzzzz, Bzzxx,

Bzzyy, Bzxxz, Bzyyz, Bzxzx, and Bzyzy, which are related as follows[58, 60]:

Bzzxx = Bzzyy = −1

2
Bzzzz,

Bzxxz = Bzyyz =
3

4
Bzzzz,

Bzxzx = Bzyzy =
3

4
Bzzzz.

(3.9)

Allowing for these relations, the net dispersion dipole on oscillator B can be expressed as

µzB = − 9

πR6

∫ inf

0

αzzA (iω)Bzzzz
B (−iω, iω), (3.10)
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where αzzA and (iω)Bzzzz
B (−iω, iω) are defined above in Equations 3.4 and 3.5. Evaluation of

the integral gives the same result for the dipole induced on oscillator B as obtained from the

perturbation theory approach (Equation 3.8). Moreover, for the 3D Drude oscillator case

the value of C6 evaluated using the electrostatic Hellmann-Feynman theorem is which is the

exact value of the C6 coefficient for two interacting 3D Drude oscillators as evaluated using

second-order perturbation theory. In Figure 3.3, we display a contour plot of the dispersion-

induced changes in the charge distribution of two interacting 3D Drude oscillators separated

by R = 12 a0, and with the same parameters as used in the 1D case above.
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Figure 3.3: Dispersion-induced change in the charge densities of two interacting 3D Drude

oscillators separated by a distance of 12 a0 and with the parameters specified in the text.

3.3 CONCLUSIONS

In this work we derive, using both perturbation theory and a response function approach, the

expression for the dispersion-induced dipoles of interacting Drude oscillators. We also derive

the C6 dispersion coefficient from the electrostatic Hellmann-Feynman theorem. As noted in

previous studies of H2 and He2 at interatomic distances beyond the overlap region[67, 68, 69],

the permanent dipoles resulting from the dispersion interactions are very small. Due to
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the small values of these dipoles, it has been concluded by some researchers, that it is

essential to use variational (or, at least coupled-cluster) approaches to accurately predict

the dipoles when dealing with atomic or molecule systems. Although, one has to be careful

in extrapolating from the Drude model to real atoms or molecules, our results suggest that

even the second-order Rayleigh-Schrodinger perturbation theory wavefunction should suffice

for calculating the dispersion-induced dipoles.

In recent years, several methods of correcting density-functional theory for dispersion

that involve distortions of the atomic charges have been introduced. These include the

dispersion-corrected atom-centered potential approach (DCACP)[70, 71] the density dis-

placement model of Hesselmann[72], and the self-consistent Tkatchenko-Scheffler[73] model

of Ferri and co-workers[74]. However, the success of these models at describing dispersion

interactions appears to be unrelated to the electrostatic Hellmann-Feynman approach for

obtaining the C6 coefficient from the charge distortion. This concludes the Drude oscillator

portion of this thesis.
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4.0 FIELD-EFFECT ORIGINS OF THE HYDRATION-INDUCED SHIFTS

OF THE VIBRATIONAL SPECTRAL SIGNATURES OF THE

HYDRONIUM ION IN GAS-PHASE PROTONATED WATER CLUSTERS

This work was adapted from References [75] and [76], and details my contributions to the

study of proton accomodation in gas-phase water clusters H+(H2O)n=2−28, with the neces-

sary theoretical background described in Section 1.1. The experimental vibrational spectra

were collected by Joseph A. Fournier, Conrad T. Wolke, and Mark A. Johnson at the Ster-

ling Chemistry Laboratory, Yale University. Shawn M. Kathmann and Sotiris S. Xantheas

contributed to this work through the calculation of the electric field lines in the clathrate

cage cluster H+(H2O)21. My contributions were supported by the U.S. Department of En-

ergy under Grant No. DE-FG02-06ER15066, and utilized the computational resources at the

University of Pittsburgh’s Center for Simulation and Modeling. Calculations were performed

using the Gaussian 09 suite of programs [21]. Harmonic calculations were performed at both

the B3LYP/6-31+G(d) and B3LYP/aug-cc-pVTZ level of theory. Anharmonic VPT2 cal-

culations [22, 23] were performed at the B3LYP/6-31+G(d) level for the n = 1, 3, 4, 5, 10,

and 21 clusters. The decomposition of the intermolecular interaction energies was performed

using symmetry-adapted perturbation theory [77, 78] in the SAPT2 approximation [79, 80]

using the PSI4 code [81]. The 1D potential energy curves of the hydronium OH stretching

coordinate were done at the B3LYP/6-31+G(d) level of theory.
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4.1 INTRODUCTION

In spite of the fact that acid-base behavior lies at the foundation of aqueous chemistry, the

fundamental cationic species created when an Arrhenius acid releases a proton into water

has proven remarkably difficult to capture at the molecular level[82, 83, 84, 85, 86, 87, 88].

The complexity arises from the fact that the excess proton can be associated with a single

water molecule, thereby becoming indistinguishable from the original OH bonds of that water

molecule, or it may be delocalized between two water molecules. When this process occurs

in bulk water, it results in a charge defect that is manifested through distortions in the

proximal hydrogen bonding network. The spectroscopic characterization of the molecular

entity that carries the excess charge in water is hampered by the fact that the vibrational

spectrum corresponding to the OH stretching motions in pure water extends over hundreds of

wavenumbers[86, 89, 90, 91]. Attempts to isolate the absorptions due to the excess proton in

dilute acids (e.g., by subtraction of the counterion spectral features, etc.[86, 92]) have yielded

similarly diffuse absorptions, which provide little structural information about the local

molecular environment of the embedded proton. Indeed, the diffuse background absorption

attributed to the positive charge is often referred to as the Zundel continuum[93, 94, 95] in

honor of Georg Zundel, who introduced a polarizable H2O· · ·H+ · · ·H2O model (hereafter

called the H5O+
4 Zundel ion), in which a proton is trapped between two water molecules, to

conceptually understand the origin of the broadening[88]. The nature of the aqueous proton

defect has more recently been treated in several theoretical studies[83, 92, 96, 97, 98, 99,

100, 101] which support a variation of Zundel’s model in the context of the importance of

a transient special pair between a hydronium ion and one of the three water molecules in

its first hydration shell, the H3O+(H2O) Eigen motif[102, 103]. The special pair formed in

this distorted Eigen model is evidenced by their shorter OO distances (≤ 2.4 Å) compared

to typical values (2.8 Å) found in neutral water[92, 96].

Because of the inherent spectral complexity of bulk water, gas-phase clusters with pre-

cisely determined compositions, H+(H2O)n, provide attractive model systems that aid in the

isolation of the vibrational spectral signatures associated with the excess proton surrounded

by a well-defined number of water molecules. The advantages of the clusters, especially
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when they can be frozen into well-defined geometries, are that they yield highly structured

vibrational spectra that allow one to follow the evolution of the OH stretches associated

with the excess charge as water molecules are sequentially added to the assembly. From the

theoretical perspective, the entire cluster can then be treated in an electronic structure cal-

culation as a supermolecule, where vibrational spectra of the 3N−6 normal modes (where N

is the number of atoms) can be obtained for candidate minimum energy structures. We then

analyze these trends in the context of the cluster structures as well as the deformations of

the electron distributions on the nearby water molecules to understand the factors that drive

the large, size-dependent frequency shifts of these spectroscopic signatures. Although the

properties of isolated low-temperature clusters are much simpler than that of the bulk liquid,

their spectroscopic behavior is nonetheless complex, reflecting the cooperative response of

an extended H-bonded network. Our goal here is to isolate the key mechanics that underlie

the spectroscopic signatures of the size and temperature controlled clusters featuring the

embedded hydronium ion to gain insight and motivate reduced dimensionality models that

may be helpful for the larger community studying the nature of the excess proton in water.

4.2 THE ELEMENTARY AQUEOUS CATIONS

We now describe the structural features of the hydronium (H3O+) and Zundel H5O+
2 ions,

as they represent limiting forms of proton accommodation where the excess charge can be

qualitatively regarded as either delocalized over the three hydrogen atoms in hydronium

or primarily localized on one of them in the Zundel ion. The rotationally resolved vibra-

tional spectrum of the isolated H3O+ ion was obtained by Saykally and co-workers in the

1980s[104, 105, 106]. The structure was unambiguously determined to have C3v symmetry

with an OH bond length of 0.979 Å and a band origin near 3520 cm−1 for the (IR active) dou-

bly degenerate asymmetric OH stretch[104, 107, 108]. The broadband vibrational spectrum

of the n = 4, H9O+
4 ion was first reported by Schwarz in 1977[109] and later refined using

the messenger-tagging technique by Okumura and co-workers[110, 111, 112]. The spectra

were interpreted in the context of the H3O+(H2O)3 Eigen motif, where the hydronium ion
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is sequestered within its first solvation shell. The intense, broad band centered near 2650

cm−1 is, therefore, traditionally assigned to the asymmetric OH stretches of the embedded

hydronium ion[113]. Note that, although the hydronium ion in the Eigen structure retains

C3 symmetry, its asymmetric OH stretching frequency is dramatically reduced by nearly 900

cm−1 upon formation of the first hydration shell. The asymmetric OH stretching fundamen-

tals of the embedded H3O+ ions systematically red shift with increasing proton affinity of

the ligand (between 370 kJ/mol for Ar and 700 kJ/mol for H2O)[114].

The situation involving the H5O+
2 Zundel ion is more complex. It is clear that it features

a proton that is equidistant between two oxygen atoms whose pyramidal OH2 groups are

oriented at roughly 90 degrees relative to one another[115, 116, 117, 118, 119] as evidenced

by the rotationally resolved spectra of the asymmetric OH stretching vibrations of the flank-

ing water molecules reported by the Lee group in 1989[111]. The lower energy region of

this spectrum, where the bands associated with the bridging proton are found, was first

identified in several reports about 10 years ago using either Ar-messenger tagging or infrared

multiphoton dissociation (IRMPD)[113, 120, 121, 122, 123, 124, 125, 126]. Although both

the IRMPD spectra of the warm ions and the Ar-tagged spectra were somewhat compro-

mised, the Ne-tagged spectrum reported by Hammer et al.[124] finally established the basic

pattern in 2005. The pattern of the low-energy bands has been accurately reproduced by

full 15-dimensional vibrational calculations [127] using ab initio potential energy and dipole

moment surfaces[128] where the transitions near 1000 cm−1 can be traced to a Fermi reso-

nance between the parallel displacement of the shared proton and a combination band arising

from the OO stretch together with two quanta of a wagging mode involving the flanking wa-

ter molecules[129]. We now turn our attention to the vibrational structure of the n = 1

hydronium ion.

4.2.1 The Hydronium Ion and Its OH Stretching Vibrations

The hydronium ion’s vibrational spectrum was first measured by Saykally with the doubly-

degenerate asymmetric OH stretching frequency at ωa1 = ωa2 = 3520 cm−1 [104]. Figure 4.1

shows the two asymmetric and one symmetric OH stretching modes obtained from a har-
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monic frequency calculation. The two asymmetric stretching modes are labeled a1 and a2

a1 a2s

Figure 4.1: The normal modes of an isolated hydronium ion computed at the B3LYP/6-

31+G(d) level of theory.

with the frequencies 3606 cm−1, while the symmetric stretching mode is labeled s with a fre-

quency of 3510 cm−1. Drawing from Section 1.1 and Equation 1.42, the simplest anharmonic

potential in this case only includes the cubic couplings between the three normal modes and

can be written as

H3-mode =
1

2

∑

i=a1,a2,s

ωi
(
p2
i + q2

i

)
+

1

6

∑

i,j,k=a1,a2,s

φijkqiqjqk. (4.1)

This shall be refered to as the ”3-mode model” in the remaining text. There are 7 relevant

cubic coupling constants which contribute to the anharmonicity constants χij, which ulti-

mately correct the harmonic frequencies through second-order perturbation theory. These

corrected frequencies can be written as

νa1 = ωa1 + 2χa1a1 +
1

2
(χa1a2 + χa1s) (4.2)

νa2 = ωa2 + 2χa2a2 +
1

2
(χa2a1 + χa2s) (4.3)

νs = ωs + 2χss +
1

2
(χsa1 + χsa2) . (4.4)

with the relevant cubic coupling constants listed in Table 4.1. Using Equation 1.54 for the

anharmonicity constants χii and χij gives the 3-mode model frequencies listed in Table 4.2.

It must be noted that the Hamiltonian in Equation 4.1 only accounts for the OH stretching

modes, neglecting the three bending modes. Accounting for the bending modes and including

the quartic couplings gives the full VPT2 Hamiltonian in the space of all normal modes of the

hydronium ion, with the resulting anharmonicity constants for the stretching modes shown
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modes φijk(cm−1)

a1a1a1 285

a2a2a2 -1028

sss -1374

sa1a1 -1437

sa2a2 -1437

a1a2a2 -279

a2a1a1 1028

Table 4.1: Cubic coupling constants involving the three OH stretching vibrations of the

hydronium ion (cm−1).

3-mode model (cm−1) VPT2 (cm−1)

χa1a1 -46 -49

χa2a2 -47 -49

χss -27 -28

χa1s -111 -114

χa2s -111 -114

χa1a2 - 56 -62

Table 4.2: The anharmonicity constants χij contributing to the 3-mode model frequencies

and VPT2 frequencies.

in Table 4.2. As shown in Table 4.3, the 3-mode model reproduces the full VPT2 frequencies

within ±10 cm−1, showing that the couplings involving the three bending modes do not

contribute significantly to the anharmonicity in the gas-phase hydronium ion. Furthermore,

this shows that the quartic couplings also contribute very little to the anharmonicity. For
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mode harmonic (cm−1) 3-mode model (cm−1) VPT2 (cm−1)

a1 3606 3430 3417

a2 3606 3431 3422

s 3510 3344 3348

Table 4.3: Harmonic, 3-mode model, and VPT2 vibrational frequencies for the asymmetric

OH stretching modes a1 and a2, and the symmetric OH stretching mode s of the bare gas-

phase hydronium ion.

capturing only the important interactions between the stretching modes, the 3-mode model

is valuable in determining the effects of hydration on the hydronium ion’s OH bonds and

shall prove instructive in the remaining text.

4.3 HYDRATION-INDUCED SHIFTS IN THE HYDRONIUM ION’S OH

STRETCHING FREQUENCIES

An interesting aspect of the initial spectroscopic survey is that both the n = 10 and 21 clusters

feature a tri-coordinated, Eigen motif as the charge carrier, but the associated OH stretching

vibrations of the embedded hydronium ion are much lower for the n = 21 cluster. This raises

the important issue that it is not only the local H-bonding environment that governs the

vibrational signature but that, somehow, the more distant water molecules dramatically

affect the spectroscopic behavior of the charge defect. For this purpose, we first examine the

calculated [B3LYP/6-31+G(d)] OH stretch frequencies of H3O+, H9O+
4 , and an arrangement

of H21O+
10 that was chosen to sample the environment of the first and second hydration shells

around the hydronium ion as they appear in the minimum energy H+(H2O)21 dodecahedral

structure. In the following discussion, we will refer to the optimized n = 4 Eigen and

n = 21 cations as n4 and 21, respectively, while frozen structures cut-out from n21 will
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be denoted n4c and n10c. We now explore the effects of hydration on the OH stretching

800 1200 1600 2000 2400 2800 3200 3600 4000 
Photon Energy (cm-1) 

H+(H2O)n n = 1

n = 4

n = 21

Figure 4.2: The vibrational spectra of the n1, n4, and n21 clusters

,

vibrations of the hydronium ion as shown in Figure 4.2. We first examine the potential

energy profile of a hydronium OH bond as it stretches under different hydration conditions.

Figure 4.3 shows the geometries considered in the potential energy scan along with their

respective labels (with the central hydronium ion colored green for clarity), and Figure 4.4

shows the resulting potential energy curves. Here, the bare hydronium ion (n1) is shown in

red, the gas-phase Eigen ion (n4) in cyan, and the n = 21 magic number cluster (n21) in

black. In order to investigate the effects of geometric distortions resulting from hydration,

the OH bond was also scanned for the n = 4 (n4c) and n = 10 (n10c) structures shown in

Figure 4.3, which are frozen geometries extracted from n21. To obtain the n = 21 geometry

at a reasonably cost-effective level of theory, the second-order Möller-Plesset perturbation

theory (MP2) geometry was reoptimized with B3LYP/6-31+G(d), and thus the n4c and

n10c retain the same geometric configuration as in the B3LYP/6-31+G(d) n = 21 cluster.

We first consider the potential energy curves of the hydronium ion’s OH bond in the relaxed
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n1 n4 n4c n10c n21

Figure 4.3: Gas-phase geometries used in the potential energy scan of the hydronium ion’s

OH bond. The structures were fully optimized at the B3LYP/6-31+G(d) level of theory for

n1, n4, and n21. For n4c and n10c, the geometries were extracted from the fully relaxed

n21 geometry followed by optimization of the hydronium ion’s OH bonds while freezing all

other degrees of freedom.
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Figure 4.4: The B3LYP/6-31+G(d) potential energy curve of the OH bond of H3O+ under

the various hydration environments stated in the text.

n1, n4, n21 clusters. The hydronium ion with its ”first hydration shell” forms the familiar

Eigen ion with C3 symmetry. Comparing the potential energy curves of n1 and n4, it is
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clear that the first hydration shell introduces significant anharmonicity into the hydronium

ion’s OH bond and a slight shoulder develops around R = 0.4 Å. Upon further hydration to

form n21, the hydronium ion’s OH bond acquires additional anharmonicity comparable in

magnitude to the anharmonicity acquired from the first hydration shell in n4. In contrast,

the geometric distortions involved in building the n21 cluster have little influence on the

OH bond as evident in the similarities between the n4c and n4 curves, as well as the n10c

and n21 curves in Figure 4.4. Therefore, the effects of the electronic interactions between

the hydronium ion and its hydration environment plays the dominant role in modifying the

OH bonds. Last but not least, the similarities between the n10c and n21 curves indicate

that the influence of water molecules beyond the ”second solvation shell” are negligible and

therefore the analysis of the intermolecular interactions only considers hydration up to n10c.

The intermolecular interactions between the hydronium ion and its hydration shell were

analyzed by decomposing the interaction energy using the Symmetry-Adapted Perturbation

Theory (SAPT) formalism [77, 78]. SAPT computes the interaction energy decomposed into

electrostatic, exchange, polarization, dispersion, and charge-transfer contributions. First, the

interaction between the hydronium ion and its first hydration shell, composed of three water

molecules, was decomposed within the SAPT2 approximation [79, 80]. Then, the interaction

between the hydronium ion and its first two hydration shells were decomposed, with the

hydration shell consisting of the water molecules in n10c. The interaction energy components

are listed in Table 4.4 for n4 and n10c. The interaction between the hydronium ion and

its first hydration shell is dominated by electrostatics and polarization. The electrostatic

contribution can be interpreted as the Coulomb interaction between the frozen electron

densities of the hydronium ion and the first hydration shell in n4 and the first two hydration

shells in n10c. This interaction is stabilizing due to the interactions between the partial

positive charges on the hydronium ion’s H atoms and the partial negative charges of the

hydration shell’s O atoms. The polarization energy is the next major contribution to the

total interaction between the hydronium ion and its hydration environment and are listed

in Table 4.4. This stabilizing interaction can be interpreted as arising from the induced

change in the electron density of the hydronium ion due to the frozen electron density of

the hydration shell, and vice versa. The charge transfer interaction contributes only a minor
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SAPT2 contribution n4 (kcal/mol) n10c kcal/mol

electrostatics -80.84 -117.50

exchange 71.14 74.34

dispersion -8.84 -9.56

polarization -40.10 -47.01

charge-transfer -8.10 -8.36

Table 4.4: The SAPT2 decomposition of the interactions between the hydronium ion and its

first hydration shell (n4) and its first two hydration shells (n10c) in units of kcal/mol.

amount to the stabilization energy. The SAPT interaction energy components along the OH

bond show an increase in stabilizing interactions at longer OH bond lengths, as shown in

Figure 4.5. Indeed, the polarization of the OH bond increases dramatically with OH bond

stretching as shown in purple. The charge-transfer interaction also increases in stabilizing

strength with increasing OH bond length. This can be attributed to an increase in the

overlap of the hydronium ion and hydration shell’s wavefunctions as the proton displaces

closer to the hydrogen-bonded water molecule.

Due to the importance of the polarization term, it is instructive to examine the change

in the electron densities of n4 and n10c due to the intermolecular interactions. Figure 4.6

shows the electron density change for n4 and n10c arising from the polarization-dominated

intermolecular interactions between the hydronium ion and its hydration shells. The n4

density change shows an increase of electron density in the hydrogen bond region of the first

hydration shell, both accompanied by corresponding decreases in the electron density around

regions separated from the hydrogen bonds by one atom. This suggests that the formation

of the first hydration shell around the hydronium ion is indeed dominated by polarization

interactions, resulting in the electron density changes shown in Figure 4.6 labeled n4 and

n10c. The figure also shows that the formation of the second hydration shell reinforces

this polarization interaction with more electron density due to the added water molecules.
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Figure 4.5: The interaction energy contributions as a function of the proton displacement.

Finally, n10c-2 in Figure 4.6 shows the density changes of the second hydration shell due

to the intermolecular interactions between the hydronium ion and its first hydration shell,

showing that the hydronium ion does not polarize significantly due to the second hydration

shell. In fact, the density changes suggest that the majority of the stabilization energy upon

forming the second hydration shell is due to the polarization of the second hydration shell.

The strong polarization interaction of the system results in the hydronium ion’s OH bonds

stretching with successive hydration shells from 0.980 Å to 1.014 Å in n4 and to 1.030 Å in

n10c. This bond stretching coupled with the fact that the largest change in the interaction

energies when going from n4 to n10c is the stabilizing electrostatic interaction suggests that

the increase in the electric field strength of the hydration shell upon the addition of more

water molecules is responsible for the dramatic red shift going from the hydronium ion, to the

Eigen ion, and to the n21 cluster. It must be noted that, although several low-lying isomers
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(a) n4. (b) n10c. (c) n10c.

Figure 4.6: Interaction-induced electron density changes calculated at the B3LYP/6-

31+G(d) level of theory, with the positive change in electron density colored blue and neg-

ative change in electron density colored red.

of the n = 21 cluster may be present experimentally, such isomers [130] would have identical

arrangements in the first and second solvation shells of the hydronium cation (i.e., similar

skeletons of the n4 and n10c isomers), and as such, we would expect very minor variations

in the analysis of the important long-range intermolecular interations. Moreover, although

more sophisticated and quantitative models are clearly warranted, most of the underlying

physics accounting for the change in the hydroniums OH stretching frequency as a function

of the local environment can indeed be described using the simple one-dimensional potentials

displayed in Figure 4.4.

Now we examine the three OH stretching vibrational modes of the hydronium ion as a

function of hydration using the n4 and n10c clusters. The potential energy scan along the

hydronium ion’s OH bond showed that the potentials of n10c and n21 were very similar,

thus the n10c cluster can be used to model the n21 cluster at a lower computational cost due

to the decrease in the number of degrees of freedom. The hydronium ion’s OH stretching
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frequencies were computed at three different levels of theory (harmonic, 3-mode, and full

VPT2) for the n1, n4, and n10c clusters, and the results are listed in Table 4.5. In the

method mode n1 (cm−1) n4 (cm−1) n10c (cm−1)

s 3510 2990 2822

harmonic a1 3606 2869 2604

a2 3606 2868 2590

s 3344 2718 2664

3-mode a1 3430 2547 2242

a2 3431 2551 2229

s 3348 2664 2617

VPT2 a1 3417 2599 2100

a2 3422 2620 2073

Table 4.5: Vibrational frequencies of the hydronium ion’s three OH stretching modes in the

bare ion (n1), with its first hydration shell (n4), and with its first and second hydration

shells (n10c). The symmetric stretch mode is s while the doubly degenerate asymmetric

stretch modes are a1 and a2.

harmonic regime, the a1 mode’s frequency shifts from 3606 cm−1 in the hydronium ion to 2869

cm−1 upon addition of the first hydration shell, and to 2604 cm−1 upon further hydration

with the second hydration shell. The anharmonicity induced by the first hydration shell

results in a broadening of the approximate harmonic potential, bringing the energy levels

closer resulting in the large 737 cm−1 red shift. The harmonic approximation does not

include couplings between the normal modes, therefore the anharmonicity in the n4 cluster

originates mostly from the polarization of the OH bonds by the hydration shell. This is in

contrast to the addition of the second hydration shell, which shows only modest changes

in the harmonic frequencies, suggesting that the additional anharmonicity induced by the

second hydration shell is due mostly to the couplings between the normal modes. In fact

the anharmonicity constants show a clear dependence on the hydration environment, as

shown in Table 4.6. Here, the antisymmetric stretch modes show large changes in their
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diagonal anharmonic constants when going from n1 to n4 while the symmetric stretch

mode shows very little change, supporting the idea that the first hydration shell introduces

anharmonicity through the intermolecular interactions between the hydronium ion and the

surrounding water molecules, while the second hydration shell induces anharmonicity from

stronger couplings between the modes.

χij n1 (cm−1) n4 (cm−1) n10c (cm−1)

ss -28 -40 -41

a1a1 -49 -118 -152

a2a2 -49 -118 -164

sa1 -114 -246 -327

sa2 -114 -239 -260

a1a2 -62 -109 -80

Table 4.6: The full VPT2 anharmonicity constants involving the hydronium ion’s three OH

stretching modes in the bare ion (n1), with its first hydration shell (n4), and with its first

and second hydration shells (n10c).

The anharmonicity constants χij are themselves functions of the force constants φijk and

φiijk. The dominant terms are the cubic force constants involving the three OH stretch modes

of the hydronium ion, and the important ones are listed in Table 4.7. The force constants

involving the symmetric stretch mode s change significantly when going from n1 to n4, while

the change induced by the second hydration shell is three times smaller. In contrast the force

constants involving the asymmetric stretch modes show the greater change when going from

n4 to n10c, especially in the terms coupling the two degenerate modes. This is due to the

loss of the C3 symmetry of the Eigen ion upon the addition of the second hydration shell

breaking the degeneracy of the two asymmetric stretch modes, resulting in larger off-diagonal

anharmonic constants, and larger force constants coupling the two. It must be noted that

the force constants listed in Table 4.7 are the only force constants in the 3-mode model

vibrational Hamiltonian, while the full VPT2 Hamiltonian includes up to the semi-quartic

force constants, as shown in Section 1.2.2. For the addition of the first hydration shell, the
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3-mode model and full VPT2 frequencies agree within 100 cm−1 which indicates that the

anharmonicity in n4 is not due to the strong couplings of the three hydronium OH stretching

modes to the other modes of the cluster. The addition of the second hydration shell shows

a larger difference between the 3-mode model and full VPT2 frequencies compared to the

first hydration shell. This discrepancy can be attributed to the inclusion of the coupling of

the three OH stretch modes to the other modes of the clusters, and to the breaking of the

C3 symmetry which induces a change in the couplings strengths.

φijk n1 (cm−1) n4 (cm−1) n10c(cm−1)

sss -1374 -1428 -1424

a1a1a1 285 922 -286

a2a2a2 -1028 928 -1500

asa1a1 -1437 -1656 -1744

asa2a2 -1437 -1648 -1636

a1a2a2 1028 -934 1271

a2a1a1 -279 -912 357

Table 4.7: The cubic force constants of the symmetric and doubly-degenerate asymmetric

mode of hydronium in the bare ion (1), with its first hydration shell (n4), and with its first

and second hydration shells (n10c).

4.3.1 The field effect in the proton-transfer mechanism in water

Perhaps the most interesting aspect of connecting cluster behavior to that of the bulk is the

extrapolation of the potential curves in Figure 7 to the bulk limit. It is evident that the

shelf-like potential calculated for the Eigen cation evolves toward a second minimum upon

addition of the next solvation shell. Indeed, were all the atoms allowed to relax as the proton

is displaced, this curve would converge to a double-well potential in the bulk limit, with the

two minima separated by the proton-transfer barrier. We now turn our attention to the

implications of the field effect described above in the proton-transfer mechanism proposed
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by Grotthuss [131].

Proton-transfer in aqueous solutions occurs through hopping of the proton from one

molecule to another, or rather the exchange of protons between adjacent of water molecules [131].

This process occurs through thermal fluctuations in the hydration environment of the proton

passing through transient metastable states, the two extremes of which are the Eigen and

Zundel ions [132]. The fluctuation of the proton’s hydration environment between these two

forms is the reason for the extremely diffuse OH stretching signature of the hydrated pro-

ton. Thus the experimental probing of the proton transfer mechanism through vibrational

spectroscopy is hampered by the unresolved proton band. In this work, size-selected frozen

clusters were constructed so as to capture snapshots along the proton-transfer coordinate.

Whereas the previous section focused on the Eigen form of the hydrated proton (as it is

the stable structure in the three-dimensional cage configurations), this section will focus on

the Zundel form where the proton is equidistant from the oxygen atoms of two adjacent

water molecules. If one assumes that the proton-transfer mechanism goes from the Eigen

ion to the Zundel ion, followed by another Eigen ion displaced from the original Eigen ion,

the Zundel structure represents the halfway point between the initial and final states. It

was found that this configuration has an anomalously large polarizability due to the bridg-

ing proton’s mobility under applied electric fields and contributes to the diffuseness of its

spectral signature.

In the previous section, the influence of the hydration environment’s electric field on the 

hydronium ion’s OH bonds was shown to result in the observed shelf in the bond potential 

energy curve of the Eigen ion. This shelf is reinforced when the second hydration shell is 

added. The second hydration shell of the hydronium ion is an important part of proton 

transfer as its configuration determines the proton transfer path. In the cryogenically-cooled 

cluster regime, it is possible to solvate only one of the three water molecules of the first 

hydration shell with entities possessing increasingly stronger proton affinities. As the proton 

affinities increase, the hydronium ion’s excess proton is pulled towards the solvated water 

molecule until it is at the midway point, and thus inducing the formation of the Zundel ion. 

Alternatively, one may asymmetrically solvate the Zundel ion to displace its proton towards 

forming a hydronium ion with the solvated water molecule. The research group of Prof.
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Mark Johnson at Yale university collected these spectral snapshots by first eliminating the

crowding of the spectra due to overtones by isotopic substitutions, and then constructing

the Eigen cluster solvated on one water molecule by proton acceptors of increasing strength.

Figure 4.7 shows a diagram of the Zundel configuration solvated by two proton acceptors on

one side and two water molecules on the other side. The figure depicts an Eigen ion under

asymmetric solvation by proton acceptors distorting towards the Zundel configuration.

been invoked since the earliest reports of the
H+(H2O)4 vibrational spectrum by Okumura
et al. (25). The D2-tagged spectrum, H+(H2O)4-D2,
is presented in Fig. 2C. (19) This assignment has
recently been challenged by Kulig and Agmon (24),
however, on the basis of cluster spectra calculated
using classical molecular dynamics methods. The
role of isomers in the n = 4 spectra was clarified
by the recent determination [using an isomer-
selective, IR-IR hole-burning technique] (19) that
the H+(H2O)4 spectrum (Fig. 2C), reproduced in
many laboratories (17, 18, 23, 25), is homogeneous.
Application of vibrational perturbation theory
(VPT2) (27), using the harmonic approximation
for the unperturbed normal modes and frequen-
cies to the E4 structure, provides compelling
assignments for several of the key features in
question (Fig. 2A), but it does not account for
the doubling of the peaks a8,9 and a10,11. As a
result, it is presently unclear whether the diffuse
features (a10 and a11) above the intramolecular
HOH bend are due to fundamentals of the H3O

+

bend (22) or combination bands involving lower-
frequency modes (19), and their assignments are
still uncertain. Of most concern for our study,
however, is the observation of the predicted split-
ting in OH stretching features [ionic H-bonded
OHs labeled IHB1 (blue) and IHB2 (red) in Fig.
2A], calculated (at both the harmonic and VPT2
levels) to signal the initial distortion of the em-
bedded H3O

+ ion in the E4 structure by the
action of the weakly bound D2 molecule. The
three OH stretches in the hydronium are cal-

culated to evolve into two distinct features that
split apart as a proton is transferred; therefore,
these features are denoted IHB1 and IHB2. This
predicted splitting is completely obscured in the
experimental H+(H2O)4-D2 spectrum, however,
by broadening that is not anticipated at these
levels of theory, the origin of which is not pre-
sently known.
A useful empirical tool in the assignment of

anharmonic spectra involving hydrogen bonds is
to follow the evolution of the band pattern with
H/D substitution (18, 28). Fundamentals primar-
ily involving displacements of the hydrogen atoms
are expected (at the harmonic level) to appear
lower in energy by a factor of ~1.36 derived from
the reducedmass change of the OH(D) system, and
this scaling relation is closely followed by non-

bonded OH stretching and HOH intramolecular
bending fundamentals in many systems (29).
Figure 2Dpresents the D2-tagged n = 4 spectrum
[D+(D2O)4-D2] with the energy axis scaled by
1.36. An unexpected dividend of this scheme is
that some of the bands in the H+(H2O)4-D2 spec-
trum, whose assignments have been in question
(a8-11 in Fig. 2C), are suppressed relative to bend
fundamentals (a12 and b12) in the D+(D2O)4-D2

spectrum. Such selective suppression is antici-
pated for features that arise fromcoupling between
the high-frequency OH stretches and soft modes
of the scaffold (23). The persistent bands in the
D+(D2O)4-D2 spectrum are close to features in
the scaled H+(H2O)4-D2 spectrum, thus revealing
that these transitions primarily involve displace-
ments of the hydrons. Moreover, the pattern of

1132 2 DECEMBER 2016 • VOL 354 ISSUE 6316 sciencemag.org SCIENCE

Fig. 1. Schematic of the proton-relaymechanism.
The symmetricH9O4

+ Eigen ion is distorted upon the
addition of proton acceptors A and A′ (A = H2, N2,
CO, H2O; A′ = H2O) to one of the water molecules.
Formation of these complexes induces the attraction
of a proton in theH3O

+ core toward the solvatedH2O
molecule and reduces the corresponding O-O dis-
tance, ROO.

Fig. 2. Comparison of the experimental and calculated vibrational spectra of the H+(H2O)4-D2

and D+(D2O)4-D2 clusters. (A) Calculated anharmonic (VPT2) and (B) harmonic spectra of H+(H2O)4-D2,
compared with the experimental vibrational predissociation spectrum in (C). (D) Experimental spectrum of
D+(D2O)4-D2 compared with (E) its calculated anharmonic (VPT2) and (F) harmonic spectra. Calculations
were performed at the MP2/aug-cc-pVDZ level, with the harmonic frequencies scaled by 0.9538 and the
VPT2 frequencies left unscaled. Bands indicated by IH(D)B1 (blue) and IH(D)B2 (red) refer to symmetric
and antisymmetric OH(D) stretches of the core D3O

+ ion,which are slightly perturbed by complexationwith
D2. Band labels (a1 to a12, b1 to b12) aid referencing in the text and in table S1. a.u., arbitrary units.
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Figure 4.7: Schematic of the Zundel ion under the influence of proton acceptors.

The polarization of the Zundel configuration towards the Eigen configuration is the re-

sult of the shift in the proton’s position between the two water molecules as stated before.

Therefore, the effects of the proton acceptors responsible for the polarization can be modeled

by applying an external electric field to the Zundel ion. We first show the potential energy

scan of the central proton as it displaces along the axis connecting the two oxygen atoms

in Figure 4.8. In Zundels model for the breadth of the hydrated proton spectrum (13),

the potential that governs the parallel vibration of the excess proton is strongly perturbed

by the electric field of the solvent surrounding the H5O+
2 moiety. This effect arises because

of the very large mechanical contribution to the polarizability due to field-induced displace-

ment of the central proton The calculations for the potential scan were carried out for O-O

separations of 2.40, 2.48, and 2.57 Å, with the corresponding fields being 0.00, 51.4, and

103 MV/cm. These O-O distances span the range experienced by the untagged and tagged

Eigen complexes, and the fields of 51.4 and 103 MV/cm correspond roughly to those experi-
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Figure 4.8: Solid lines: scans for the potential energy for displacement of the central proton

between the special pair of O atoms for H9O+
4 ion (blue), H11O+

5 (green), and the Zundel-

based isomer of H13O+
6 (red) evaluated at the MP2/aug-cc-pVDZ level of theory; dotted

lines: potentials for proton displacement in the isolated H5O+
2 Zundel ion placed in uniform

electric fields with magnitudes simulating those of the hydration shell.

enced by the proton in the Zundel structure when tagged with one or two water molecules,

respectively. The close agreement between the two sets of potentials strongly supports the

interpretation that the main effect of one or more tags is the modification of the electric field

on the shared proton. Figure 4.9 shows the change in the electron density of the Zundel ion

under the influence of electric fields of increasing strength. The z-coordinates of the atoms

are marked by the vertical dashed lines, while the OO axis is marked by the horizontal

dashed line. It is clear that the modified electric field experienced by the central proton

upon asymmetric solvation with a proton acceptor results in the polarization of the electron

density of the central proton towards the solvated water molecule, creating a displaced po-

51



H H O H+ H HO

�4 �2 0 2 4

z (a0)

�0.08

�0.06

�0.04

�0.02

0.00

0.02

0.04

0.06

0.08
V

or
�⇢

(a
.u

.)

V (Ez = 0.00 a.u.)

V (Ez = 0.01 a.u.)

V (Ez = 0.02 a.u.)

�⇢ (Ez = 0.01 a.u.)

�⇢ (Ez = 0.02 a.u.)

Figure 4.9: A one-dimensional cut through the charge density difference of the Zundel ion

under different external electric fields computed at the B3LYP/aug-cc-pVTZ level of theory,

overlaid with the central proton’s potential energy curve, as well as the three-dimensional

density difference isosurface.

tential energy minimum which gets closer to the Eigen motif with increasing field strength.

Therefore, the field effect is involved in the Grotthuss proton-transfer mechanism via the

rearrangement of the second hydration shell around the excess proton, with the hydronium

ion and the Zundel ion as the two limiting structures.

4.4 EXTRAPOLATING THE CLUSTER MODEL TO BULK WATER

The gas-phase cluster approach to disentangling the vibrational spectrum of protonated

water provides deep insight into the underlying physics of proton hydration at very low

temperatures. However, the ultimate system to study would be bulk water (at room tem-
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perature), hence the validity of extrapolating cluster model properties and mechanisms to

bulk water must be discussed. To this end, we consider the n = 21, 24, and 28 clusters, whose

vibrational spectra are shown in Figure 4.10. The vibrational features associated with the

surface-embedded H3O+ that were identified earlier in the n = 21 spectrum [133] remain in

the same vicinity in the n = 24 and 28 clusters but broaden and become less pronounced

relative to the increasing contribution from the additional water molecules, both in the re-

gion of the diffuse OH stretching vibrations and in the region of the sharper OH bending

transitions. By n = 28, the entire vibrational spectrum resembles that of bulk dilute acid,

800 1200 1600 2000 2400 2800 3200 3600 4000 

21 

24 

28 

H2O(ℓ) 
H+

(aq) 

Figure 4.10: The vibrational spectra of H+(H2O)n=21,24,28 clusters compared to the spectra

of bulk water and bulk dilute acid.

with the exception of the free OH transition highest in energy at 3700 cm−1, which clearly is

not available when the H-bonding becomes saturated with four-coordinated sites in a bulk

environment. Recent molecular dynamics simulations by Voth and co-workers [92, 97] ex-

plain the observed absorption continuum in the liquid in terms of a dynamically distorted

Eigen structure, where Zundel-type motifs exist only as transient proton hopping interme-

diates. However, it is clear that the hydronium ion remains nearly three-fold symmetric in
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both the cryogenically frozen magic n = 21 and 28 clusters. The fact that both the position

and breadth of the hydronium vibrational signatures the stretches and the umbrella bending

mode) in the n = 21 − 28 clusters are close to those in H+(aq) suggests that these moder-

ately sized clusters explore many of the local interactions exhibited by the charge defect in

liquid water. Interestingly, simulations in both liquid water [134] and ice [135] show that the

formation of a four coordinated H3O+ by addition of a hydrogen bond donor is unfavorable

due to the low charge density around the hydronium oxygen. This is likely why the hydro-

nium resides on the surface of the clathrate-like cages, as opposed to being sequestered in

the interior of the cluster [136]. The importance of this fourth water molecule donating an

H-bond to the hydronium in the bulk, however, has recently been revisited [100]. Of course,

the dynamical behavior exhibited in the bulk will undoubtedly play an important role in

the observed spectrum, including nuclear quantum effects [101, 137, 138], where the proton

delocalization is almost certainly due to the 300 K temperature. The clusters prepared by

the Johnson group are at 10 K, and as a result, they are solid-like and proton delocalization

will be much less important. At the low temperatures relevant for the present experiments,

the dominant quantum effect is zero-point motion, which is known to couple soft modes to

strongly H-bonded stretches [139, 140]. We believe that this is a major factor responsible for

the large widths of the features associated with the hydronium OH stretch vibrations in the

cold clusters. Important future directions will involve a more quantitative explanation for

the spectral breadth as well as determination of the temperature dependence of the spectral

patterns.
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