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Massive Open Online Courses (MOOCs) provide high-quality learning materials at low cost to 

millions of learners. Current MOOC designs, however, have minimal learner-instructor 

communication channels. This limitation restricts MOOCs from addressing major challenges: 

low retention rates, frequent distractions, and little personalization in instruction. Previous work 

enriched learner-instructor communication with physiological signals but was not scalable 

because of the additional hardware requirement. Large MOOC providers, such as Coursera, have 

released mobile apps providing more flexibility with “on-the-go” learning environments.  This 

thesis reports an iterative process for the design of mobile intelligent interfaces that can run on 

unmodified smartphones, implicitly sense multiple modalities from learners, infer learner 

emotions and cognitive states, and intervene to provide gains in learning. 

The first part of this research explores the usage of photoplethysmogram (PPG) signals 

collected implicitly on the back-camera of unmodified smartphones. I explore different deep 

neural networks, DeepHeart, to improve the accuracy (+2.2%) and robustness of heart rate 

sensing from noisy PPG signals. The second project, AttentiveLearner, infers mind-wandering 

events via the collected PPG signals at a performance comparable to systems relying on 

dedicated physiological sensors (Kappa = 0.22).  By leveraging the fine-grained cognitive states, 

the third project, AttentiveReview, achieves significant (+17.4%) learning gains by providing 

personalized interventions based on learners’ perceived difficulty. 

IMPROVING AND SCALING MOBILE LEARNING VIA EMOTION AND 

COGNITIVE-STATE AWARE INTERFACES 

Phuong Ngoc Viet Pham, Ph.D. 

University of Pittsburgh, 2018 
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The latter part of this research adds real-time facial analysis from the front camera in 

addition to the PPG sensing from the back camera. AttentiveLearner2 achieves more robust 

emotion inference (average accuracy = 84.4%) in mobile MOOC learning. According to a 

longitudinal study with 28 subjects for three weeks, AttentiveReview2, with the multimodal 

sensing component, improves learning gain by 28.0% with high usability ratings (average 

System Usability Scale = 80.5). 

Finally, I show that technologies in this dissertation not only benefit MOOC learning, but 

also other emerging areas such as computational advertising and behavior targeting. 

AttentiveVideo, building on top of the sensing architecture in AttentiveLearner2, quantifies 

emotional responses to mobile video advertisements.  In a 24-participant study, AttentiveVideo 

achieved good accuracy on a wide range of emotional measures (best accuracy = 82.6% across 9 

measures). 
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1.0  INTRODUCTION 

Massive Open Online Courses (MOOCs) are a promising solution for supporting large-scale 

knowledge dissemination at low cost. MOOCs enable open access to high-quality educational 

programs from a growing number of universities to previously underrepresented non-traditional 

students: the unemployed, seniors, and returning veterans [95]. Because of the open access 

environment, MOOC students control what, when, how, and with whom they learn [66]. Pre-

recorded tutorial videos are the primary learning resource in MOOC platforms. Differing from 

traditional hour-long lectures, MOOC videos are usually brief--typically 6-9 minutes--for better 

engagement [45]. These short video clips are also ideal for consumption on mobile devices.  

Besides tutorial videos, MOOCs are also equipped with discussion forums, surveys, and quizzes, 

though these received little interest from learners [18, 95]. 

MOOCs have grown quickly, gain acceptance as an official learning environment, and 

offer clear career benefits to users.  From their beginnings in 2011 to 2016, more than 6,850 

MOOCs are offered from over 700 universities with 58 million registered users worldwide [30]. 

MOOCs are also becoming accepted as a primary environment for tertiary learning; the 

University of Illinois at Urbana-Champaign, for example, has deployed its Master’s in Data 

Science degree program (with tuition) on Coursera [81], a commercial MOOC platform.  A 

majority of surveyed students has reported both career benefits (72.0%) and educational benefits 

(61.0%) after finishing the MOOCs in which they enrolled [142]. To facilitate the learning 
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process, major MOOC providers, e.g. Coursera, edX, and Udacity, have launched mobile apps to 

enable learning on-the-go. 

Despite the popularity and rapid growth, MOOC platforms are challenged by low 

completion rates (7.7% in one study [17]), perhaps caused by low learning engagement.   The 

first of at least three reasons for the low learning engagement that may lead to this dismal 

completion rate is that pre-recorded tutorial videos provide only a uni-directional information 

flow from instructors to students. Other than activity logs [45] and surveys, MOOC instructors 

have no useful signals from students, in contrast to the many channels available in traditional 

classrooms, where hand-raising and furrowed brows communicate feedback in real time.  

Second, this one-way communication is consumed by individuals, rather than groups; the 

paradox is that the flexibility of MOOCs also contributes to low engagement because many 

learners don't sustain motivation when they are studying alone. As an example, the participation 

rates for most in-course activities, such as discussion forums [18] and quizzes [95], are extremely 

low making traditional learner modeling techniques less reliable. Finally, despite a large number 

of learners (7,902 participants per course [17]), current MOOCs have almost no personalization 

in their learning processes. Individual backgrounds and individual needs cannot be addressed 

using a single set of learning materials and schedule. 

Researchers have leveraged a large amount of data generated from thousands of learners 

to conduct data-driven analysis for better understanding the learning process, in hopes of 

mitigating this low engagement. On one hand, researchers have tried to improve the learning 

material and interactions by constructing and utilizing best practices of tutorial video productions 

[45, 120], enhancing video interaction [19, 67, 70] and navigation [62, 96], or introducing chat 

rooms [18] and gamification [68]. While these approaches require learners’ active participation, 
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MOOC learners have failed to participate in learning activities other than video watching [18, 

95]. On the other hand, researchers have also studied the individual needs of each learner in 

order to give personalized interventions based on browsing behavior [13] or assessment 

performance [90]. The Intelligent Tutoring System (ITS) research community has also explored 

the feasibility of learner modeling using learner’s affective states; e.g. boredom, confusion, 

frustration [21], attentional disengagement [26], and uncertainty [39]. While these affective 

approaches can model learners who don't actively participate, most of these approaches require 

additional sensors for learner-data collection. This additional sensor requirement implies extra 

cost, intrusiveness, and limited mobility for such approaches and will not scale well to large 

environments, such as MOOCs. 

1.1 SCALABLE MULTIMODAL INTELLIGENT MOBILE INTERFACES  

Inspired by the adoption of mobile apps in MOOCs and the success of affective computing 

approaches, this research explores the development and study of intelligent emotion-aware 

interfaces to better understand and improve mobile MOOC learning. Through an iterative design 

process, I have developed unimodal interfaces and multimodal interfaces for mobile devices 

(Figure 1). 

In this thesis, I focus on studying the proposed interfaces on unmodified smartphones, 

though the functionalities can be applied to other unmodified mobile devices, such as tablets.  

The proposed mobile interfaces collect multiple modalities from learners as they are watching 

MOOC tutorial videos on mobile devices, infer their cognitive-affective states and provide 

personalized interventions to improve learning outcomes. Unlike previous affective computing 
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approaches, the proposed interfaces run on unmodified mobile devices which are already 

available for mobile MOOC learning, without any hardware modification. 

 

Figure 1. The multimodal interface on unmodified smartphones. 

Also unlike previous video-consumption apps, the proposed interfaces use an innovative 

and easy-to-deploy on-lens finger gesture to control video playback. A learner needs only to 

cover and hold the back camera to play a tutorial video and to uncover the lens to pause the 

video. This video-control mechanism leverages the edge/bezel of the camera’s optical assembly 

to afford the learner’s covering and uncovering actions. Moreover, the cover-and-hold-to-play 

gesture is a natural one, allowing the learner to pause the lecture video during “unintentional” 

interruptions. The usability of this video control has been studied systematically in [130]. More 

importantly, while the learner covers the lens to watch a video, the sensing interfaces 

simultaneously monitor her photoplethysmography (PPG) signal. Thanks to this seamless 

integration, the PPG signals are implicitly collected from the video consumption process without 

asking the learner to undergo extra steps for PPG sensing. In other words, the physiological 

signal sensing is a byproduct of the video consumption on unmodified smartphones. Indeed, 

AttentiveLearner has been studied by Xiao and colleagues [130, 131, 134] to infer learner’s 
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cognitive-affective states and improve learning outcomes. This research, based on previous work 

[130, 131, 134], uses unmodified smartphones as both video player and implicit PPG sensor for 

mobile MOOC learning. 

In addition, this work’s exploration of AttentiveLearner has led to the study of an 

extension of complementary research questions [97, 98] and comparison to previous work [130, 

131, 134]. The development of AttentiveLearner2 [99, 101] and AttentiveReview2 achieves more 

robust emotion inference and effective personalized interventions. Last but not least, this 

exploration has led also to the possibility of applying these technologies to a new domain:  

mobile advertising. 

With the proposed interfaces, I try to address, at least in part, the 3 challenges in MOOCs. 

First, the interfaces introduce additional communication channels (learners’ cognitive and 

affective states via PPG signals, facial expressions, and clicks) in a scalable approach that does 

not require additional hardware. By analyzing multiple modalities, the systems can achieve more 

robust cognitive-affective state detection of the learners and their learning processes. Second, the 

inferred emotions and personalized interventions can help learners maintain a sustainable 

motivation as they consume MOOCs. Lastly, the collected information (PPG signals, facial 

expressions, and clicks) is rich and fine-grained, affording moment-to-moment analysis and 

more appropriate personalized intervention to improve learning outcomes [98]. 
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1.2 RESEARCH STATEMENT 

This dissertation explores the design, prototyping, and evaluation of multimodal learning 

analytics and intervention technologies to understand and improve mobile MOOC learning on 

unmodified devices. 

1.3 DISSERTATION OUTLINE 

 

Figure 2. Major components of the proposed framework: Sensing, Inference, and Intervention. 

The proposed unimodal and multimodal interfaces support an improvement of MOOC learning 

by implicitly sensing learner’s data (physiological signals, facial expressions, and clicks), 

inferring their cognitive and affective states using the sensed information, and providing adaptive 
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(personalized) interventions based on the inferred states. Figure 2 shows the proposed framework 

with the three major components: sensing, inferring, and intervention. The rest of this 

dissertation is organized as follows: 

Chapter 2 provides a background of related research domains including techniques to 

improve MOOC learning, affective computing in education, related work on on-lens finger 

gestures, and mobile advertising. 

Chapter 3 presents DeepHeart, a data-driven and end-to-end approach for detecting heart 

rates from noisy ambient PPG signals. DeepHeart outperforms current state-of-the-art systems, 

where recurrent neural networks show promising performance with human-engineered features, 

and convolutional neural networks achieve comparable results with raw input signals. 

Chapter 4 describes how to detect learners’ cognitive states, i.e. mind-wandering, with 

AttentiveLearner. This was the first study to show the feasibility of detecting MOOC learners’ 

cognitive and affective states. It laid the groundwork for further interventions as well as new 

domain applications in the following chapters. The content of this chapter can be found in the 

published paper [97]. 

Chapter 5 shows how to provide adaptive learning for MOOC learners based on the 

implicitly sensed PPG signals. I show that the proposed adaptive method can improve learning 

outcomes and that its benefit outweighs the false-positive effects. The content of this chapter can 

be found in the published paper [98]. 

Chapter 6 shows the feasibility of using the multimodal interface (PPG signals and facial 

expressions) to gain more robust and accurate cognitive-affective state detection. This chapter 

also initially analyzes the nature of each modality in mobile MOOC learning. The findings 

suggest that combining PPG signals and facial expressions achieve better emotion-detection 
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performance on unmodified smartphones without adding other sensors. The content of this 

chapter can be found in the published work [99, 101]. 

Chapter 7 evaluates the benefit of the multimodal interface by providing an adaptive 

review based on learners’ perceived difficulty inferred via their PPG signals and facial 

expressions. Moreover, this chapter shows the feasibility of having a triple-modality interface on 

unmodified smartphones; i.e., it adds tracking users’ clicks in addition to PPG and facial 

monitoring. The chapter also reports the usability and effectiveness of this triple-modality 

approach, which was evaluated in a longitudinal study (3 weeks) with 28 participants.  

Chapter 8 describes an application of AttentiveLearner in a new domain: mobile 

advertising. Here I will present the design and implementation of the multimodal interface to 

detect emotional responses to mobile advertisements. The results show that PPG signals have 

higher accuracy with subtle emotions while facial expressions have higher accuracies with strong 

emotions. The model fusion approach outperformed the feature fusion approach in our study. As 

a result, the multimodal system improves performance in emotional response detection. The 

content of this chapter can be found in the published paper [100]. 

I conclude in Chapter 9 with a summary of major contributions and future work 

directions. 
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2.0  RELATED WORK 

2.1 IMPROVING MOOC LEARNING 

Researchers have proposed different approaches to improve MOOC learning. Moreover, 

techniques developed from the Intelligent Tutoring System (ITS) community also have potential 

applications for MOOCs (Table 1). The approaches can be grouped into two categories: material-

centric and learner-centric. 

2.1.1 Material-centric 

Material-centric approaches focus on enhancing learning materials, especially lecture videos, to 

better engage MOOC learners. 

Researchers have used behavior analysis, i.e. click log analysis [45, 120], to understand 

how to make MOOC tutorials more engaging to learners. By analyzing click-log data of 6.9 

million video-watching sessions across four courses on the edX MOOC platform, Guo and 

colleagues [45] discovered that shorter videos and Khan-style videos are more engaging. The 

authors built a set of video-production recommendations that help to create more engaging 

tutorial MOOC videos. In another approach, Van der Sluis et al. [120] suggested that the video 

content’s difficulty should be personalized for each individual learner, as they found that the 

watching time decreases when a video is either too difficult or too easy. 
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Tutorial videos can also be improved by adding more interactions such as crowdsourcing 

annotations [19, 70] and navigation methods based on questions [67], short text summaries [96], 

and data-driven widgets [62]. Using crowdsourcing, Cross et al. [19] encouraged learners to 

overlay typeset content, e.g. text, shapes, and equations, while Kumar [70] introduced digital 

footnotes (micro-notes) to educational videos. These projects found that learners could annotate 

a large number of videos in a short time and still maintain the quality of annotations. In addition, 

video navigation has been improved for higher engagement; that is, learners can navigate tutorial 

videos based on the in-lesson questions [67], text summaries of video content [96], or data-

driven widgets [62], e.g. non-linear timelines, word clouds, and interaction peak highlights. 

Additionally, MOOCs can be enriched by additional activities such as chatrooms [18] 

and gamification [68]. Coetzee and colleagues [18] embedded a real-time chatroom 

supplementing the existing forum in a MOOC but found only 12.0% of learners actively 

participated. Krause et al. [68] introduced social gamification elements to MOOCs, leading to a 

25.0% increase in video-watching time and a 23% increase in average scores. 

Most of these proposed techniques, however, require learners’ active participation, e.g. 

joining discussions or writing reflections [64]. In reality, most MOOC learners only watch 

lecture videos and skip optional activities [18]. As a result, these approaches are helpful for 

understanding the aggregated trends of thousands of learners, but they still present challenges to 

the improvement of engagement and learning outcomes of MOOCs at the individual level. 
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2.1.2 Learner-centric 

Because personalization has been shown to improve learning outcomes [13, 65, 90, 91, 104], 

researchers have tried to model MOOC in order to understand the learning process and provide 

appropriate personalized intervention. 

Many personalization approaches rely on content mastery for learner modeling. 

Researchers have explored the use of MOOC-learners’ browsing behaviors [13], learning 

objectives [104], and assessment performance [90] in order to provide more relevant learning 

materials. Close in context to MOOCs, the Intelligent Tutoring System community also explored 

the content-mastery approach [65] and constraint-based approach [91]. However, behavioral data 

in MOOCs is sparse; that is, there might be only one mouse-click in a typical eight-minute 

video-watching session. As a result, multiple learning sessions from a large number of learners 

are necessary at the bootstrapping stage. At the same time, most personalization techniques rely 

on learners’ performance on assessment questions, which may not always be available if learners 

skip the quizzes or there are no assessment questions for a specific learning topic. 

Recently, researchers have studied the application of affective computing on education. 

This approach captures and reflects individual needs passively via their affective states and is 

very promising for an open-learning environment such as MOOCs. The next part will discuss 

affective computing in education. 
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2.2 AFFECTIVE COMPUTING AND EDUCATION 

2.2.1 The Correlation between Affective Computing and Education 

In learning, flow is an ideal state (Figure 3) in which a student’s skills are balanced with the 

challenges [20]. When the balance is met, the student can maintain focus and perform well [2]. 

Given that each student has individual learning interests and background [104], adapting or 

personalizing the learning material to match a student’s ability will increase her engagement and 

improve learning outcomes. As in Figure 3, when a student is not in the flow, she will encounter 

either anxiety or boredom. This model is aligned with the theory of cognitive dissonance [38] 

which indicates that a student will encounter negative states during learning. Moreover, 

according to Weiner’s attributional theory [126], cognitive and affective states will have direct 

and indirect influences on the learning outcomes. Researchers have studied various adaptive 

methods based on students’ cognitive states [2, 10, 97, 115, 134] and/or affective states [21, 27, 

39, 130]. An adaptive learning system infers students’ cognitive and affective states via various 

data sources and provides appropriate interventions. 

 

Figure 3. Flow-channel state in relation to anxiety and boredom. 
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A typical affective-based adaptive learning system has three main components: sensing, 

inference, and intervention. 

2.2.2 Sensing 

The sensing component collects data from the learning process. Learners can actively provide 

data through their ratings [104], surveys [64], and opinions in forum discussion [138]. In general, 

these approaches require learners’ active participation, which has limited application in the 

MOOC environment, where learners often skip optional activities [18]. On the other hand, 

learners’ data can be collected passively through various channels, physiological signals [2, 25, 

26, 52, 115], facial expressions [41] or a combination of multiple modalities [21, 56, 92], for 

learner modeling. Brain activities are collected by functional near-infrared spectroscopy (fNIRS) 

[2] or electroencephalography (EEG) [115]. Heartbeat features come from photoplethysmogram 

(PPG) [98, 130, 131, 134]. Eye gazes are tracked by the gaze coordinated from eye trackers [25, 

26]. Acoustic-prosody features are extracted in dialog tutoring systems [39]. 

2.2.3 Inference 

Different cognitive and affective states in learning can be inferred using heuristics and machine-

learning approaches based on the sensed data. Engagement and attention can be detected through 

eye gazes [25, 26], heartbeat features [92, 131], facial expression [41, 92] and brain activities 

[115]. The cognitive workload has been predicted from brain activities [2] and inter-beat 

intervals [52]. The perceived difficulty and divided attention were inferred from heartbeat 

features [98, 132]. Social identity threat was detected by self-reflection [64]. Certainty is 
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detected from acoustic-prosodic features [39]. Besides cognitive states, some adaptive learning 

systems detect student’s affective states. Frustration was detected from conversation cues, body 

postures, eye gazes [21], and facial expression [41]. Boredom and confusion are detected from 

conversation cues, body postures, eye gazes [21], and inter-beat intervals [130]. Valence and 

arousal are inferred from electrocardiogram (ECG), skin conductivity (SC), respiration, and 

facial expression [56]. Preference ratings are predicted from behavior analysis [104, 138]. 

Researchers have tried to combine these multiple modalities to improve the overall performance 

[21, 92]. D’Mello and Graesser [21] achieved at most 0.20 improvements in Kappa when 

combining the features (feature fusion) of facial expressions, posture data, and dialog cues to 

detect four emotions with AutoTutor. Monkaresi et al. [92] put together heart-rate and facial-

based models (model fusion) and improved the Area Under the Curve (AUC) by approximately 

0.10 when detecting engagement in essay writing. 

Most existing approaches, however, require dedicated sensors or PCs connected to high-

speed internet. Such requirements impose extra cost and reduce portability and usability, 

preventing the wide adoption of such technologies in real-world scenarios. Moreover, some 

systems require certain modalities: for example, dialog systems require a verbal conversation 

between learners and tutors and, thus, are not suitable for current MOOCs, where learners only 

watch tutorial videos. 

In this thesis, I explore the feasibility of detecting learners’ cognitive and affective states 

and implementing personalized interventions on unmodified smartphones without additional 

sensors. My findings are that today’s smartphones can become a powerful multimodal intelligent 

education system for understanding the learning process and supporting personalized 

interventions. 
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2.2.4 Intervention 

Learners’ cognitive and affective states give insights about the learning process and hints for 

personalized interventions. In this thesis, I categorize interventions into two groups: in-lesson 

and post-lesson. 

In-lesson interventions rely on real-time feedback signals, e.g. fNIRS [2], eye gazes [25, 

26], and PPG signal [131], but can be prohibitively intrusive. Afergan et al. [2] adjusted the 

difficulty of unmanned aerial-vehicle-path planning based on users’ cognitive workload inferred 

from fNIRS, i.e. decreasing the difficulty if the cognitive workload was high and vice versa. 

Another type of in-lesson intervention is pop-up messages. Xiao and Wang [131] proposed to 

pop up a re-engagement message reminding a learner to focus on the lesson whenever the system 

detected a learner disengaged from her PPG signal. In GazeTutor, D’Mello et al. [26] triggered a 

re-engagement message when they found a learner's mind wandered, based on data from the 

learners' eye-gaze patterns. Going beyond notification, D’Mello et al. [25] used the pop-up 

message as an opportunity to verify whether a learner's mind had indeed wandered when the 

system thinks it had. If the learner could not answer the pop-up quiz correctly, the system 

suggested the learner review the current content immediately. A major limitation of in-lesson 

interventions is the system’s intrusiveness given imperfect cognitive/affective detections. 

D’Mello et al.  [25] found negative effects when users had difficulty continuing the lessons after 

the pop-up quiz message was triggered. 

Unlike in-lesson interventions, post-lesson interventions give recommendations only after 

collecting and analysis of learner data throughout a lesson, but this method, too, has 

shortcomings. Szafir and Mutlu [115] suggested a learner review the least-engaged topic in a 

lesson, based on the learner’s EEG signal. To screen out false positives in quizzes, Forbes-Riley 
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and Litman [39] detected a learner’s uncertainty in her answers using acoustic-prosodic features 

and suggested the learner review the content if the learner was not confident about her answer. 

One of the main limitations of post-lesson intervention is the delay in response. In MOOCs, a 

learner can easily drop out of a lesson or even a course if supporting interventions were not 

provided in time. 

In this thesis, I evaluate a post-lesson intervention, i.e., suggesting the reviewed content 

based on learners’ perceived difficulty. As mentioned above, the post-lesson intervention can 

avoid intrusiveness when the cognitive/affective-state detection is still far from perfect. 

2.2.5 Improving Mobile MOOC Learning Without Additional Sensors 

The idea of using today’s smartphones without additional sensors to infer learners’ cognitive and 

affective states has also been explored in work. Xiao and Wang proposed AttentiveLearner to 

detected learners’ cognitive and affective states [130, 132, 134] and to give in-lesson 

intervention [131]. Besides detecting learners’ cognitive/affective states and giving in-lesson 

intervention, Xiao and Wang [130] systematically evaluated the usability of AttentiveLearner, 

i.e. implicitly sensing learners’ PPG signals from the back-camera lens while watching tutorial 

videos on unmodified smartphones. 

In this research, I present studies that complement Xiao and Wang’s AttentiveLearner. 

While Xiao and Wang detected boredom and confusion [130], disengagement [131], divided 

attention [132], and the dynamic of affective states [134], my work was the first study to propose 

evaluating the feasibility of using AttentiveLearner to detect learners’ cognitive states [97], i.e. 

mind wandering, and self-confidence [98, 99, 101]. Going beyond the unimodal interface of 

AttentiveLearner, I proposed AttentiveLearner2, a multimodal intelligent system running on 
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smartphones without additional hardware, for a more robust cognitive/affective state-detection. 

Moreover, I also evaluate the usability and effectiveness of AttentiveLearner2 in a longitudinal 

study (3 weeks), extending existing work that evaluates only within a single lab-based session. 

2.3 MOBILE ADVERTISING 

Besides MOOC learning, mobile advertising is a domain that can potentially benefit from 

scalable emotion-aware mobile interfaces such as AttentiveLearner and AttentiveLearner2. In 

2016, U.S. advertisers spent $72.5 billion in online advertising, of which digital-video 

advertising surged to a record $9.1 billion [117]. Mobile advertising has been the fastest growing 

segment during the past a few years (i.e., over 145.0% growth year-over-year to nearly $4.2 

billion [117]). Despite the huge revenues and rapid growth, it is still challenging to evaluate the 

quality of advertising. For example, the efficacy of direct response advertising [7], i.e. 

persuading a prospective customer to purchase specific merchandise, can be quantified through 

measures such as click-through-rate (CTR) [77, 137], conversion ratio (CVR) [73, 141], and cost 

per click (CPC) [63, 141]. It is much more challenging to measure the effectiveness of branding 

advertising [94]. Since branding advertising intends to increase customers’ awareness, trust, and 

sometimes loyalty towards a brand in the long-term because there are limited short-term user 

behaviors that can be observed and analyzed. 

Self-report data, focus group, and behavior analysis are commonly used to evaluate 

branding advertisements [1, 75, 112]. However, these methods are expensive, time-consuming, 

and potentially unreliable due to the inherent ambiguity in reporting viewers’ subjective feelings. 

Meanwhile, autonomic feedback techniques, such as facial expression analysis [49, 83] and 
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physiological signals [1, 71], could serve as orthogonal dimensions for understanding 

prospective customers’ emotional responses to advertisements (ads) [1]. Unfortunately, most 

autonomic feedback techniques require either dedicated sensors [1, 71] or PCs connected with a 

high-speed connection to the internet [49, 83] to run. These additional requirements make it hard 

to deploy such technology in large scale, especially in mobile environments. 

To address these challenges, I propose AttentiveVideo, an intelligent mobile interface 

that collects users’ emotional responses to mobile ads in real-time via two modalities on 

unmodified smartphones. AttentiveVideo utilizes a dual video control system. Compared to 

existing educational systems (e.g., AttentiveLearner and AttentiveLearner2), AttentiveVideo 

provides two major improvements in mobile advertising.   First, whereas AttentiveLearner 

focuses on watching lecture videos in MOOCs and flipped classrooms, AttentiveVideo is 

optimized specifically for monitoring mobile video advertisements. Compared with lecture 

videos, advertisements are much shorter (5 – 20 minutes vs. 30 seconds) and usually carry 

stronger stimuli to elicit emotional responses from the audience. Second, advertisers care about 

viewers’ emotions such as “like” elicited by an advertisement and its potential to “go viral” (i.e., 

assessing users' willingness to re-share [84]).  Instructors in MOOCs, however, pay more 

attention to learners’ engagement, confusion [130], mind wandering [97], divided attention [132] 

and perceived difficulty [98] in learning. 
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Table 1. Intelligent systems for education. 

Goal Approach Data/Signal Sensing 

Device 

Limitation 

Understanding 

the learning 

process 

Analyzing learner’s 

behaviors. 

Click logs (e.g. select, play 

or pause a tutorial video) 

[13, 45, 120], forum 

activities (e.g. posting or 

reply) [138] 

Log files Sparse and 

coarse-

grained data 

Analyzing learner’s 

cognitive states (e.g. 

engagement [25], 

divided attention 

[26], cognitive 

workload [2]) and 

affective states (e.g. 

frustration, boredom, 

curiosity [21, 41], 

valence and arousal 

[56]) 

Eye gaze [25, 26], EEG 

[115], facial expression 

[41], acoustic-prosodic 

features [39], PPG [131, 

132],  conversation cue and 

body posture [21] 

Eye tracker 

[25, 26], 

camera [41], 

microphone 

[21, 39], 

EEG sensor 

[115], 

pressure 

chair [21] 

Dedicated 

hardware 

requirement 

and cost 

issues. 

Improving the 

learning 

quality 

Enhancing 

interaction and 

communication 

Crowdsourcing annotation 

[19], navigation method 

[67, 96], chatroom [18], 

and gamification [68] 

Touchscreen, 

log file 

Learners do 

not always 

actively 

participate 
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Providing in-lesson 

intervention 

Difficulty adjustments 

based on cognitive 

workload [2]; pop-up 

messages based on 

disengagement [131] and 

mind wandering [25, 26]. 

fNIR headset 

[2] and eye 

trackers [25, 

26]. 

Imperfect 

detecting 

models 

make 

learners 

frustrated 

Providing post-

lesson intervention 

Adaptive review from 

engagement [115], 

certainty [39], and 

perceived difficulty [98]. 

EEG headset 

[115] and 

microphone 

[39] 

No real-time 

interventions 
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3.0  DEEPHEART: A DATA DRIVEN APPROACH FOR ROBUST HEART RATE 

SENSING FROM SMARTPHONES 

The technologies proposed in this dissertation rely on sensing learners’ physiological signals to 

infer their cognitive states in order to provide interventions accordingly. Sensing learners’ 

physiological signals in mobile MOOC learning, though, is highly sensitive to surrounding 

environments, such as illumination or body movement. While much of the previous work uses 

human-engineered features and models, I believe end-to-end data-driven approaches are a 

promising answer to various types of noisy and unseen signals. In this chapter, I study the 

effectiveness of data-driven deep neural networks using PPG signals to measure heart rate, which 

is a vital signal for both survival sign and cognitive/affective state inference [92, 130]. An 

improvement in this component would lead to better cognitive inference and, thus, more helpful 

interventions for mobile MOOC learning. 

3.1 BACKGROUND 

3.1.1 PPG-based Heart Rate Sensing 

Non-contact PPG tracking methods, e.g., using remote cameras, are sensitive to subject’s motion. 

The detectors need to identify the region of interest (ROI) to track PPG signals. The reliable 
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region of interest can be manually selected [114] based on face detection [102], or based on 

skin/non-skin classification [125]. PPG signals extracted from the ROI will be spatially averaged 

with an optimal window-size for signal-to-noise ratio or spatially concatenated to reduce the 

effect of motion-residual errors [122]. Researchers have studied different color-channel 

selections to increase the quality of PPG signals, such as green channel [122], RGB with noise 

reduction (static sum [37], ICA [102], or PCA [3]). Given the target subject is human, PPG 

signals containing heart rates outside a feasible range, e.g., from 40 to 200 beats per minute 

(bpm), can be discarded by thresholding [37, 48], a moving-average filter [102], a band-pass 

filter [122], or wavelet-denoising [60]. 

 

Figure 4. PPG signals captured by phone camera: (a) good quality signal; (b) noisy signal with motion 

artifacts; (c) noisy signal with intermittent artifacts. 

Heart rates can be extracted from preprocessed PPG-signal heuristic methods [3, 48, 86] 

or learning-based methods [37, 55]. McDuff et al. [86] proposed a peak thresholding heuristic 

based on the local maximum of a moving window. Balakrishnan et al. [3] used a temporal 

(a)

(b)

(c)
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filtering based on the assumption that human heart rate falls within 0.75-2.00 Hz. Han et al. [48] 

counted a peak based on local changes from the PPG signal. On the other hand, Hsu et al. [55] 

used a support-vector regression with frequency-time features in an effort to use learning-based 

methods. Fan and Wang [37] used an adaptive hidden Markov model and treated PPG signals as 

sequential data. Despite high accuracies, the above methods are based on expert knowledge to 

derive human-engineered features [37, 48] and/or incorporate expert knowledge into models 

[37]. PPG signals in everyday activities can be noisy and do not come in ideal shapes as in the 

resting state (Figure 4). DeepHeart is a data-driven approach, using deep neural networks, and 

can be easily scaled up to train with different contexts. 

3.1.2 Deep Learning Methods 

Recently, deep neural networks have received attention from research communities. Deep neural 

networks (DNNs) can achieve state-of-the-art performance in many research problems by 

automatically extracting learning features from data without expert knowledge. Convolutional 

neural network [36, 57, 69, 109] and long short term memory [42, 43, 112, 124] are two popular 

network architectures with successes in many research areas, e.g., computer vision and natural-

language processing. 

Convolutional neural networks (CNNs) have proven their strength in working with raw 

data since the 90s [72]. AlexNet, empowered by deep convolutional layers, won the ImageNet 

2012 by halving the error rate of state-of-the-art systems [69]. Simonyan and Zisserman [42] 

created a deeper CNN with nineteen layers and won the ImageNet 2014 challenge. In addition, 

CNNs have been used in other domains. Fan et al. [36] used CNNs for object tracking by 

extracting spatial and temporal features from consecutive frames. Besides these computer-vision 
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applications, Jaderberg et al. [57] have used CNNs for different text-spotting tasks, such as text 

detection, character case-sensitivity and -insensitivity classification. 

Long Short Term Memory (LSTM) networks have been proposed to address the 

vanishing-gradient problem of recurrent neural networks [54]. LSTMs have been successfully 

applied to sequential data problems such as handwriting recognition [42], speech recognition 

[43], question and answering [124], and image caption generation [136]. Only a few works have 

used DNNs for physiological signals. Martinez et al. [37] have used CNNs to train embedding 

representations from blood volume pulse and skin conductance to detect affective states, such as 

"fun" and "relaxing." Bashivan et al. [6] combined CNN and LSTM to detect stress from EEG 

signals. My approach, in contrast, explores CNNs and LSTMs to detect heart rates from PPG 

signals. Moreover, I explore an end-to-end neural network solution in a fine-grain context (each 

heartbeat can happen in less than a second) compared to a coarse-grain (several seconds) and 

abstract affective states as in previous work. 

This thesis addresses overfitting, a common problem with neural networks. Given a large 

number of parameters compared to the size of training datasets, the training process tends to 

remember the training data rather than learning the underlying logic [111]. A common way to 

avoid overfitting is to use regularization techniques, e.g., L1 and L2, that penalize models with 

large weights [8]. My recent approach to avoid overfitting in DNNs is to add noise to the 

network’s hidden units. The intuition is that by adding noise (or zeroing) a portion of the data, 

the network is forced to have a loose coupling between input data, hence making the network 

more robust even in the presence of noisy data. Vincent et al. [123] added noise to the input layer 

of an auto-encoder network. Srivastava et al. [111] extended the idea by proposing Dropout 
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which adds noise to the input layer as well as to hidden layers. In this paper, I apply both L2 

regularization and Dropout to DNNs. Dropout is discussed in the following section. 

3.1.3 Important Techniques in Deep Learning 

3.1.3.1 Rectified Linear Unit 

Rectified Linear Unit (ReLU) is a non-linear activate function used in deep neural networks. The 

formula of ReLU is as follow: 

𝑓𝑓(𝑥𝑥) = max (0, 𝑥𝑥) 

Compared to traditional activation functions in neural networks, e.g., sigmoid and tanh, 

ReLU has at least 3 advantages, though there are limitations.  First, ReLUs use a simple 

computation: the function simply thresholds a matrix of activations at 0.  Second, there is no 

gradient vanishing, because its gradient is a constant (i.e. 1).  Finally, they produce sparsity, 

because ReLUs produce 0 (sparsity) to all activation values less than 0. The limitations of 

ReLUs, however, are that they blow up activation values (compared to sigmoid and tanh, for 

which the activation upper bound is 1), and they easily produce “dying” units, i.e. with a very 

high learning rate and a large gradient value, the weights are updated in such a way that they will 

be 0 from that point on. 

Recently, though, ReLU’s limitations have been addressed, at least in part, when 

combining ReLU with Dropout, a new regularization method for neural networks. AlexNet [69] 

with convolutional layers, ReLU, and Dropout have set a new record for image classification in 

the ImageNet challenge 2011. 
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To address the “dying ReLU” problem, researchers have proposed new rectified units, 

e.g., leaky ReLU. Instead of hard-thresholding at 0 for all x < 0, leaky ReLU allows a small, non-

zero gradient for these values. 

𝑓𝑓(𝑥𝑥) = � 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑥𝑥 > 0
0.01𝑥𝑥 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒

 

In fact, the leaky constant 0.01 can be considered as another parameter, i.e. a, which can 

be learned from data [50]. This type of rectified unit is called Parametric ReLU (PReLU) 

𝑓𝑓(𝑥𝑥) = � 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑥𝑥 > 0
𝑎𝑎𝑥𝑥 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒

 

Note that when a ≤ 1, PReLU becomes maxout networks [40] 

𝑓𝑓(𝑥𝑥) = max (𝑥𝑥, 𝑎𝑎𝑥𝑥) 

One drawback of PReLU and maxout, compared to ReLU, is an increased number of 

parameters. 

This chapter's discussion is on the combination of ReLU and Dropout.  I chose Dropout 

for its simplicity and retain ReLU for its efficiency. 

3.1.3.2 Dropout 

Dropout is a regularization method, first proposed in [69]. Traditional neural networks usually 

encounter the overfitting problem as the number of parameters (network’s weights) are far 

greater than the data size. Instead of putting constraints on the network’s weight, as in L1 or L2, 

Dropout randomly turns off a portion of training data, e.g., 50.0%. This will help the hidden units 

not too dependent on any particular region of input data. In other words, Dropout is an ensemble 

method. When turning a portion of the training data off, dropout trains a “thinner” network that 

uses only the other portion of the training data. The process is done randomly and iterated over 

multiple epochs. As a result, dropout trained multiple networks. Each network has its own 
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mistakes and accuracy, but by assembling these networks, a better aggregated prediction 

performance is expectable. It is worth noting that Dropout can be used in multiple network 

layers; therefore, I can easily achieve a deep regularization throughout a network’s architecture. 

When doing backpropagation training, a network using dropout can employ stochastic 

gradient descent. Basically, in each training batch, I sample a thinned network by dropping out 

hidden units. 

3.2 DEEPHEART 

3.2.1 Problem Definition 

 

Figure 5. Calculating instant heart rate as the distance between two consecutive peaks. 

The instant beat per minute at time t (bpmt) can be computed based on the distance dt between 

two consecutive peaks of PPG signal (Figure 5) as follows: 

𝑏𝑏𝑏𝑏𝑏𝑏𝑜𝑜 = 60,000 (𝑏𝑏𝑒𝑒)
𝑑𝑑𝑜𝑜

 

The deep neural networks will try to detect if a PPG signal point is a peak. The following 

sections present two different approaches for this problem. First, I considered the peak detection 

dt dt+1 dt+2
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problem as a pattern recognition using convolutional neural networks. Second, recurrent neural 

networks take the PPG signals’ temporal dimension into account and treat them as sequential 

data for peak detection. 

3.2.2 Convolutional Neural Network 

Convolutional neural networks can detect patterns from raw data and have been used in many 

state-of-the-art object recognition systems. CNNs use locally connected layers (Figure 6). 

Compared to the traditional fully connected layer, the locally connected layer, i.e., filter, has 

fewer parameters and can capture repetitive patterns from the input features. Therefore, CNNs 

are transition invariant and stacking multiple convolutional layers can perform well on 

hierarchical problems, e.g., scene analysis or object detection. Max pooling layers are usually 

used by CNNs. A max pooling layer will output the maximum value of a local region and are 

helpful for transition variant as well as feature reduction. 

 

Figure 6. Two convolutional layers with a max pooling layer. 
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From Figure 6, the model’s forward pass can be computed as follow: 

𝑦𝑦𝑖𝑖 = 𝜎𝜎𝐴𝐴(𝑊𝑊𝐴𝐴𝑥𝑥𝑖𝑖 + 𝑊𝑊𝐴𝐴𝑥𝑥𝑖𝑖+1 + 𝑏𝑏𝐴𝐴), 𝑖𝑖 ∈ {0. .7} 

𝑧𝑧𝑗𝑗 = 𝑏𝑏𝑎𝑎𝑥𝑥�𝑦𝑦𝑗𝑗∗2,  𝑦𝑦𝑗𝑗∗2+1�, 𝑗𝑗 ∈ {0. .3} 

𝐵𝐵𝑘𝑘 = 𝜎𝜎𝐵𝐵(𝑊𝑊𝐵𝐵𝑧𝑧𝑘𝑘 + 𝑊𝑊𝐵𝐵𝑧𝑧𝑘𝑘+1 + 𝑏𝑏𝐵𝐵),𝑘𝑘 ∈ {0. .2} 

ℎ = 𝜎𝜎𝐹𝐹(𝑊𝑊𝐹𝐹𝐵𝐵0 + 𝑊𝑊𝐹𝐹𝐵𝐵1 + 𝑊𝑊𝐹𝐹𝐵𝐵2 + 𝑏𝑏𝐹𝐹) 

where 𝜎𝜎𝑛𝑛,𝑛𝑛 ∈ {𝐴𝐴,𝐵𝐵,𝐹𝐹} are non-linear activation functions. 

To make CNNs work with PPG signal, I have used a moving window approach to 

convert PPG time series data into discrete images (windows) as inputs for the CNNs (Figure 7). 

A signal window is considered as a peak if its middle point is a peak. With this problem 

definition, the original time series detection has become a binary classification problem for 

signal windows. 

 

Figure 7. From the PPG time series (above), multiple sliding signal windows were extracted (below). 

I built different CNNs using different input features (Figure 8). Because of the problem 

definition is sensitive to the center point of each signal window, I do not use max pooling layers 

in the CNNs. 

53 70

…
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Figure 8. Convolutional neural networks for heart rate detection with human-engineered features (left) and 

raw PPG signal values (right). 

3.2.2.1 CNNs with Human Engineered Features 

I use the human engineered features proposed in BayesHeart algorithm [37] because they can 

capture important information from PPG signals. In particular, the raw PPG signals were 

converted into human engineered features with four possible trending values: up, down, local 

max, and local min (Figure 8, left). However, CNNs have been used to capture patterns from raw 

image data, not categorical features. Natural language processing researchers have found two 

ways to make CNNs work with categorical features (words or characters). Santos et al. used 

word embedding features as input for CNNs [31]. Johnson and Zhang used one-hot 

representations of words as CNNs’ inputs [59]. A neural network needs an extra step to train 

embedding features before inputs the learned features into CNNs. Even though embedding 

features may be co-trained with the classification step, this is not efficient given a small dataset 

that I am working on in this project. Moreover, I explore an end-to-end neural network to detect 

heart rates from PPG signals. An extra pre-training step does not fit with the target. I have 
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trained CNNs using one-hot representations from the trending features. The preliminary results 

confirmed that one-hot representations give better performance than naïve ordinal feature values. 

With the good representation, CNN needs only one convolutional layer to gain a good 

performance. Signal windows with the length of 15 PPG points (750ms, almost a normal heart 

rate cycle) have been used to extract PPG signals. The convolutional receptive size connects to 3 

PPG points, which means 12 input points (one-hot representation with 4 possible values). 

3.2.2.2 CNNs with Raw PPG Values 

To explore the CNN’s powerful pattern recognition ability, I use raw PPG values as input for the 

neural network (Figure 8, right). The raw signal was preprocessed to reduce data variance. There 

are two typical types of noisy signals from raw PPG: shifting variance and trending. I define a 

sudden shift as any ratios difference of two consecutive PPG points that are larger than 5 times 

of the standard deviation (bold blue lines in Figure 9b). These PPG points will be adjusted so the 

ratio difference between them equal to two times of the mean ratio. Later, the locally weighted 

scatter-plot smoother (LOWESS) is used to identify the trend of the signal time series (the red 

line in Figure 9d) and the signal is detrended by subtracting the signal value with its 

corresponding LOWESS value. The detrended signal still has variances in different cycles. 

Therefore, I rescale each extracted signal window to the range [-1, 1] before feeding into CNNs. 

I have tried different numbers of layers and found 5 convolutional layers give the best 

performance. I did not try with deeper neural networks because of two reasons. First, deeper 

neural networks will suffer from the small size of this dataset (PPG signal from 2 minutes from 

20 subjects). Second, I plan to use the model to detect heart rates from smartphones. Deeper 

neural networks will pose more computation and energy burdens to the devices. All layers use 

rectified linear unit (ReLU) activations. Dahl et al. [28] have shown this activation function does 
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not saturate quickly as traditional activation functions, e.g., sigmoid or tanh. Moreover, I also use 

dropout technique (dropout rate = 50.0%) for the output of the last convolutional layer to 

improve the performance of CNNs when dealing with raw PPG values. I specific a longer 

receptive convolutional size for CNNs working with real signal values, i.e., 17 PPG points 

(850ms). 

 

Figure 9. Preprocessing steps include: a) the raw PPG signal, b) identifying sudden shifts (blue bold lines), 

c) signal after removing sudden shifts, d) identifying trending (red line), e) signal after detrending, and f) rescale 

signal windows to [-1, 1]. 

3.2.3 Long Short Term Memory Network 

Recurrent neural networks (RNNs) can carry contextual information in their internal states and 

can benefit sequential data. However, the traditional structure of RNNs has the vanishing 

gradient problem [30] which makes the networks’ weights vanishing or exploding through a long 

sequence of data. Long Short Term Memory (LSTM) is a modified RNN including multiple 

gates to address the vanishing gradient problem [53]. An LSTM at a timestamp t has one internal 

(a)

(b)

(c)

(d)

(e)

(f)
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memory (Ct) and four gates: input gate (it), transformation gate (gt), forget gate (ft), and output 

gate (ot) (Figure 10). The input gate, forget gate, and output gate are sigmoid functions which 

can be learned to block or bypass information from the previous state or to the next state, while 

the transformation gate is a tanh function. With this new structure, LSTM is able to capture 

information of a long sequence. 

 

Figure 10. The structure of an LSTM unit at time t, with cell memory Ct, and four gates: 0) forget gate, 1) 

input gate, 2) transformation gate, and 3) output gate. 

From Figure 10, the forward pass of the LSTM unit at time t can be calculated as follows: 

𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑓𝑓𝑓𝑓𝑥𝑥𝑡𝑡 + 𝑊𝑊𝑓𝑓ℎℎ𝑡𝑡−1 + 𝑏𝑏𝑓𝑓� 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖𝑓𝑓𝑥𝑥𝑡𝑡 + 𝑊𝑊𝑖𝑖ℎℎ𝑡𝑡−1 + 𝑏𝑏𝑖𝑖) 

 𝑔𝑔𝑡𝑡 = 𝜙𝜙�𝑊𝑊𝑔𝑔𝑓𝑓𝑥𝑥𝑡𝑡 + 𝑊𝑊𝑔𝑔ℎℎ𝑡𝑡−1 + 𝑏𝑏𝑔𝑔� 

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜𝑓𝑓𝑥𝑥𝑡𝑡 + 𝑊𝑊𝑜𝑜ℎℎ𝑡𝑡−1 + 𝑏𝑏𝑜𝑜) 

𝐶𝐶𝑡𝑡 = 𝑔𝑔𝑡𝑡⨀𝑖𝑖𝑡𝑡 + 𝑓𝑓𝑡𝑡⨀𝐶𝐶𝑡𝑡−1 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡⨀𝜙𝜙(𝐶𝐶𝑡𝑡) 

Xt

+ + + +
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where 𝜎𝜎 is the sigmoid function, 𝜙𝜙 is the tanh function, 𝑊𝑊𝑓𝑓𝑓𝑓,𝑊𝑊𝑖𝑖𝑓𝑓,𝑊𝑊𝑔𝑔𝑓𝑓,𝑊𝑊𝑜𝑜𝑓𝑓 are the weight 

matrices for signal input, and 𝑊𝑊𝑓𝑓ℎ,𝑊𝑊𝑖𝑖ℎ,𝑊𝑊𝑔𝑔ℎ,𝑊𝑊𝑜𝑜ℎ are the weight matrices connecting to hidden 

units of the previous time state. 

The PPG signal is a kind of sequential data. Therefore, it is natural to use LSTM for PPG 

signal. A sequence of 15 PPG points (750ms, which is the average heart rate cycle in the dataset) 

was used to train the LSTM. Only one LSTM layer with 8 hidden units was used to detect HRs 

from PPG signals. Normally, when training an LSTM with a sequence of k data points, a non-

overlapping moving window is used. With this approach, the LSTM is trained with the same 

extracted windows after every epoch. In this project, I move the training window in a random 

step from 1 to k to create variances of the input data. The preliminary results show this random 

moving window give better performance than the traditional non-overlapping one. 

 

Figure 11. Different PPG shapes with real peaks (red circles), pseudo peaks (green circles), and delayed 

LSTM detecting points (blue rectangles). 

Detecting whether the center point is a peak or not, CNNs were trained with context 

information from both past (left-hand side) and future (right-hand side) data points. On the other 

hand, LSTMs were trained only with previous context information (left-hand side). This may 

create confusion because some PPG cycle has pseudo peaks very close to the real peaks (Figure 

11). To accumulate more information from the future as in CNNs, I propose a new LSTM which 

delays its detection for a few more steps. Instead of detecting whether the current point is a peak 

pseudo before pseudo after no pseudo
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or not, the delayed-LSTM detects whether the current point is k steps ahead of a real peak or not. 

In this experiment, I fix k = 7 points (almost half of an average heart cycle). The delayed model 

also uses one LSTM layer with 8 hidden units. 

When handling real PPG signal, the current LSTMs cannot achieve a good detection 

performance. Therefore, I only report the results of LSTMs with human-engineered features: up, 

down, local max, and local min. 

3.3 EVALUATION 

3.3.1 Dataset 

I use a public dataset of PPG signal of 20 subjects recorded by smartphones [37]. Each user held 

the experimental smartphone steadily for 10 minutes (good signal dataset) and intermittently for 

10 minutes (intermittent signal dataset). From each user, 2 minutes of the good signal were 

annotated and used as the train set. The ground truth heart rate comes from a commercial grade 

oximeter attached on the other hand of the user. 

3.3.2 Performance Metrics and Baselines 

The mean error rate (MER) was used to evaluate models’ performance 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
�𝑏𝑏𝑒𝑒𝑒𝑒𝑑𝑑𝑖𝑖𝑝𝑝𝑜𝑜𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑜𝑜𝑎𝑎𝑒𝑒𝑔𝑔𝑒𝑒𝑜𝑜𝑏𝑏𝑏𝑏𝑏𝑏�

𝑜𝑜𝑎𝑎𝑒𝑒𝑔𝑔𝑒𝑒𝑜𝑜𝑏𝑏𝑏𝑏𝑏𝑏
 

where predictbpm and targetbpm are the predicted beat per minute and target beat per minute 

respectively. MER is evaluated for every second and the mean value is reported. 
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I used two baselines: a heuristic-based algorithm (LivePulse) [48] and a probabilistic 

model (BayesHeart) [37]. These two algorithms are state-of-the-art models and are available to 

download [103]. My DNNs use the same training data as BayesHeart did. 

3.3.3 Training DNNs 

In all experimental DNNs, the output layer has two outputs (a signal peak or not a signal peak) 

and a softmax activation. The objective function is to maximize the data likelihood with negative 

log likelihood. I use Nesterov accelerated gradient (learning rate = 0.01, decay rate = 0.90). 

Models will be trained for 50 epochs (using human engineered features) and 100 epochs (using 

raw signal values). The learning rate will be updated with the ratio of 0.9 after some epochs.  

LSTMs’ learning rates will be updated after every 5 epochs. While CNNs’ learning rates using 

human engineered values will be updated after every 15 epochs, CNNs’ learning rates using real 

signal values will be updated every 3 epochs. Because the center point of each signal window 

will determine whether the window is a peak or not, I set padding = 0 and stride = 1 for 

convolutional filters to discard information of 2 ends in each signal window and reduce the 

output feature map. 

3.3.4 Detection Performance 

Table 2 shows the performance of the DNNs and baselines. Besides the original output, I also 

evaluated the performance using a simple post-processing method, i.e., discarding heartbeats that 

are out of the range [40, 200] bpm. This post-processing method is simple and has been used in 

[37]. DNNs were named after the neural network type {CNN, LSTM}, feature type {real, trend}, 
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and the number of hidden units in each layer. For example, CNN_real_32_64_64_48_32 is a 

DNN with real signal input having five convolutional hidden layers (32, 64, 64, 48, and 32 

hidden units) and LSTM_trending_8 is a DNN with human-engineered features (trending 

features) having one LSTM hidden layer with 8 hidden units. 

Table 2. Mean error rates of experimental models in the good signal dataset (Good) and intermittent signal 

dataset (Intermittent). Results without post-processing and with post-processing method discarding heart rate outside 

the range [40, 200] were reported. 

 

Without post-processing, both CNNs and LSTMs using human engineered features 

(Table 2, the last 3 rows) outperformed all experimental baselines. While CNN_trending_8 had 

the best MER in the Good dataset with only one 8-hidden-unit layer, LSTM_trending_delay_8 

outperformed all models in the Intermittent dataset with promising results. Besides using the 

same human engineered features, BayesHeart integrated expert assumptions, i.e. there are two 

main shapes of PPG signal, in its probabilistic model. By comparing the same human engineered 

input features and eliminating expert assumptions, both CNNs and LSTMs showed that end-to-

end approaches can achieve better performance than traditional models with expert knowledge. 

On the other hand, CNN_real_32_64_64_48_32 (using real input features) and 

 No post-processing Post-processing [40, 200] 

Good Intermittent Good Intermittent 

LivePulse 12.2% 23.9% 8.6% 12.5% 

CNN_real_32_64_64_48_32 9.1% 10.7% 7.4% 8.9% 

BayesHeart 8.5% 11.9% 8.3% 10.8% 

CNN_trending_8 8.3% 11.2% 7.8% 10.3% 

LSTM_trending_8 9.7% 11.7% 7.1% 9.1% 

LSTM_trending_delay_8 8.4% 10.2% 6.8% 8.2% 
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LSTM_trending_8 (using human engineered features) could not outperform BayestHeart in the 

Good dataset. However, in the Intermittent dataset, LSTM_trending_8 outperformed baselines 

and CNN_real_32_64_64_48_32 achieved the second-best MER score. The result suggested that 

the end-to-end approaches are robust because it can capture important information from the data 

and generalize well with intermittent and noisy signals. The MER performance without post-

processing showed the accuracy and robustness of data-driven, end-to-end approaches using 

DNNs over a heuristic model (LivePulse) and a probabilistic model (BayesHeart) using expert 

knowledge and/or human engineered features. 

With the simple post-processing method, the DNNs had better performance than 

baselines in both Good and Intermittent datasets. This result has two implications. First, DNNs 

are robust as they could predict more valid heart rates (40-200 bpm) than baselines with good 

signals and intermittent, unseen signals. Second, human-engineered features and expert 

knowledge may not scale well with noisy signals. Working with the stable signal in the Good 

dataset, CNN_real_32_64_64_48_32 and LSTM_trending_8 predicted more invalid heart rates 

compared to BayesHeart using human engineered features and expert knowledge (the DNNs 

have better MERs with post-processing but worse MERs without post-processing). However, the 

prior assumptions in BayesHeart do not hold when working with intermittent and noisy PPG 

signal (Intermittent dataset) as CNN_real_32_64_64_48_32 and LSTM_trending_8 improved 

MERs compared to BayesHeart by 1.2% and 0.2%, respectively. 

Moreover, context information is important for heart rate sensing from PPG signals. With 

additional future information, LSTM_trending_delay_8 gained improvements of MERs over 

LSTM_trending_8 in the Good dataset (1.3%) and the Intermittent dataset (1.4%). It is worth to 
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note that the CNNs also employ context information as I predict whether the central point of 

each extracted signal window is a peak. 

3.3.5 Discussions 

 

Figure 12. Examples of a false negative (left) and a false positive (right) CNN_32_64_64_48_32. The 

original signal (upper row) and signal windows after preprocessing (lower row). 

I found that a false positive costs a lot more than a false negative in this problem. For example, 

when a DNN detects two consecutive signal points as peaks, given the sample rate at 50ms, the 

detected instant heart rate is 630 bpm (Eq. 1). A ground truth heart rate is usually 80 bpm, then 

the instant MER is 687.0% (Eq. 12). On the other hand, when a DNN misses a peak (a false 

negative), the instant bpm is relatively small because of the long distance between 2 predicted 

consecutive peaks. If the instant heart rate of a false negative is 30 bpm and the ground truth is 

80 bpm, then the instant MER is 62.5%. I observed that false negatives usually come from 

sudden shifts in real PPG input values and the data was not detrended completely (Figure 9 left).  

Figure 12 shows typical examples of false positive and false negative of 

CNN_32_64_64_48_32 as an illustration for DNNs’ errors. Figure 12 left shows a very strange 

shape, which is the result of the preprocessing method. This shape was not expected in the 

training set (Good), but only from the noisy signals. As a result, the model could not recognize 

the real peak (false negative). I think this false negative error can be addressed using data 

False negative False positive

Original signal

Pre-processed signal window
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augmentation. I can augment current data by varying the left branch of a peak in with different 

amplitudes. On the other hand, CNN_32_64_64_48_32 usually makes a false positive when the 

real peak was lost (due to the sensor’s sample rate or noisy artifacts), creating two local 

maximums next to each other (Figure 12 right). This kind of error appears more frequent than 

sudden shifts and is confusing because either of the local maxima can be annotated as the real 

peak. This problem can be solved by post-processing methods or integrating some prior 

knowledge into DNNs. I leave the later solution for future work. 

 

Figure 13. MER of different CNNs using real signal input with and without preprocessing methods in the 

good signal dataset (upper) and intermittent signal dataset (lower). 

While related to some false negatives, the preprocessing methods improved the CNNs’ 

performance. Figure 13 shows the performance of experimental CNNs, using real input values, 

with and without preprocessing. There are 3 interesting findings in Figure 13. First, there is a 

consistent trend that preprocessing improves performance CNNs with a different architecture 

(number of convolutional layers). Second, data-driven approaches can achieve good predicting 
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performance, especially on noisy, intermittent signals. Compared to LivePulse, which also uses 

real signal inputs, CNNs only performed better in the Intermittent dataset regardless of the 

preprocessing step. In the Good dataset, all CNNs outperformed LivePulse except the simple 2 

convolutional layers CNN_real_32_64. Compared to BayesHeart, integrating human engineered 

features and expert knowledge, CNNs only achieve better performance in the Intermittent dataset 

using more than 2 convolutional layers and preprocessing. Third, deeper CNNs can capture more 

important information from the real input data. By increasing number of convolutional layers, 

CNNs achieve better performance in both preprocessing and no-preprocessing versions. 

Moreover, in the Good dataset, CNN_real_32_64_64_48 with 4 convolutional layers and no 

preprocessing can perform better than the 2-layer CNN_real_32_64 with preprocessing. In the 

Intermittent dataset, the 5-layer CNN_real_32_64_64_48_32 without preprocessing can achieve 

MER (14.06%) close to the 2-layer CNN_32_64 with preprocessing methods. This result also 

implies that CNNs can learn how to process the raw data by themselves. 

 

Figure 14. Performance with and without regularization on the good signal and intermittent signal datasets. 
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Figure 15. MER of CNNs using real signal input (Real input) having 2 (CNN_real_32_64), 4 

(CNN_real_32_64_64_48), and 5 (CNN_real_32_64_64_48_32) layers compared to a CNN using human 

engineered features (Trend input) with one layer (CNN_trending_8) in good signal dataset (upper) and intermittent 

signal dataset (lower). 

Besides preprocessing, regularization using L2 and dropout have improved DNNs’ 

performance (Figure 14). Regularization using L2 and dropout consistently improve performance 

across different network architecture and input values, except CNN_trend. The improvements 

were more effective with noisy data (the Intermittent dataset) where the DNNs with 

regularization, except CNN_real_2layers, outperformed both baselines. On the other hand, in the 

Good dataset, only LSTM_trending_delay and CNN_trend using human engineered features 

with regularization could outperform the baselines. Note that because DNNs using human 

engineered features utilized only 8 hidden units in a single hidden layer, I only apply L2 

regularization but not dropout for these models. An interesting future work is applying dropout at 

multiple layers of CNNs using real signal input. 
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With CNNs, human-engineered features performed better than real signal input in the 

Good dataset but worse in the Intermittent dataset. This implied that real signal input is better 

with the unseen and noisy signal because the models were trained on 2 minutes of good signals. 

Interestingly, CNNs need several convolutional layers to gain comparable performance with the 

human engineered features. On the other hand, given human engineered features, CNNs only 

need one convolutional layer to gain accurate HR detection. I evaluated different numbers of 

convolutional layers with the real input signal and found that CNNs can achieve good 

performance with more than 4 convolutional layers (Figure 15). The result suggested that human 

engineered features are deep because it takes 4 additional convolutional layers for the CNN to 

gain comparable or better performance with 4 trending values: up, down, local max, and local 

min. 

 

Figure 16. Visualization of CNN_32_64_64_48_32: a) the first layer with 32 filters, b) the second layer 

with 64 filters, c) the third layer with 64 filters, d) the fourth layer with 48 filters, and e) the fifth layer with 32 

filters. 

Previous work has shown that convolutional layers of CNNs can learn patterns from the 

raw input data [140]. Figure 16 visualizes activations of 5 convolutional layers (filters) of 

CNN_real_32_64_64_48_32. The vertical yellow line indicates the center point in each filter. 

There are 3 interesting observations from the visualization. First, CNN filters can learn 

(a) (b) (c) (d) (e)
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meaningful patterns from the input. The patterns learned by the first three layers are very 

intuitive and can be found from the dataset easily. The CNN learns wider and more complex 

combinations for the input signal in higher layers. It is worth to note that there are several similar 

filters in the same layer. For example, the first (1,1), the fifth (2,1), and ninth (3,1) filter in the 

first layer. These filters have the same shape but different amplitudes. This is because the CNN 

was trained from the real input signal having different scales. The CNN can be transition 

invariant but does not have scale invariant. Therefore, the network dedicates different filters to 

learn the same shape from different scales. Second, from layer 3 – 5, it seems that the CNN 

learned more non-peak shape than peak shape. This approach is somewhat counter-intuitive to 

human. Because a human would focus on characteristics that make a signal window a peak rather 

than the other way. However, this dataset is skewed (93.8% of data points are not peaks). Thus, 

the CNN was forced to learn more non-peak signal windows than peak signal windows. Third, in 

the last layer, there are several strange and noisy filters, e.g., the fourth (1,4), the fifth (2,1), and 

the eighth (2,4) filter. Because CNN is a data-driven model, the network was told whether a 

signal window is a peak. However, CNN was not told which shapes make a signal window 

become a peak. Therefore, the strange and noisy filters may come from the distribution of 

training data. The same observation can be found in other data-driven approaches in other 

domains. For example, the Latent Dirichlet Allocation (LDA) [11] is a data-driven algorithm 

extracting topic models from a document. The final output of an LDA is a set of unsupervised 

topic models that were learned from the training documents. In many cases, some topic models 

make sense for a human and other do not. 

Last but not least, the improvement of DNNs was not significant compared to baselines. 

The best DNN model (LSTM_trending_delay_8) only outperformed the best baseline 
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(BayesHeart) by 2.2% which would not create a significant improvement in cognitive state 

detection performance. The modest improvement could be due to three reasons. First, our 

training dataset (Good) is limited compared to other domains, e.g. ImageNet with millions of 

input images. The small dataset limits the predicting ability of DNNs. Second, the noisy 

condition was not collected in a challenging situation. In fact, the intermittent signal was 

collected in the sitting posture in a lab. I believe with signal collected in more challenging 

conditions DNN models would give more improvement compared to the human-engineered 

baselines. Third, the way we define the problem is not perfect. For example, in CNNs, I define a 

positive signal window when the window’s central point is a real peak. However, when moving 

the signal window just one step, the new signal window is considered as negative although the 

content is almost the same as the positive neighbor. This data annotation would create challenges 

for the CNNs. 

3.4 SUMMARY 

I present two different approaches using deep neural networks to detect heart rates from noisy 

and intermittent PPG signals. As a sequential-data algorithm, LSTMs reduced 2.2% MER with 

delayed detection but still requires human-engineered features. On the other hand, CNNs treated 

the heart-rate detection as a pattern-recognition problem and achieved 1.0% MER reduction with 

multiple convolutional layers. Although with modest improvements over the state-of-the-art 

baselines, the results show the feasibility of using end-to-end data-driven neural networks to 

detect heart rates from raw PPG signals, especially with intermittent and noisy signals. We hope 

with a better dataset, in terms of size and quality, DNNs would prove their data-driven 
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advantages over previous human-engineered systems. While CNN shows the promising 

performance when working with raw input data, LSTM achieves the best performance with a 

good input representation. A promising future task is to combine the strength of sequential 

models, e.g., LSTMs, and the powerful pattern recognition from raw data of CNNs for the task. 

Detecting heart rates is the first component of our proposed framework to create emotion-

aware mobile interfaces for online learning (large scale classrooms and MOOCs) video 

consumption. 
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4.0  ATTENTIVELEARNER: DETECTING MOOC LEARNER’S MIND 

WANDERING VIA IMPLICIT HEART RATE TRACKING 

The on-lens finger gestures of AttentiveLearner are a scalable solution to implicitly collect users’ 

PPG signals on unmodified smartphones. By using the back-camera lens as the play button 

(covering to play and uncovering to pause), AttentiveLearner can implicitly collect users’ PPG 

signals by monitoring the changes of the user’s skin transparency. However, no previous work 

has evaluated the feasibility of using the implicit PPG signals to infer learners’ cognitive and 

affective states in mobile MOOC learning. Due to the non-formal learning setting, MOOC 

learners experience more mind-wandering moments [106]. This chapter shows the feasibility of 

tracking learners’ mind-wandering moments using implicit PPG signals on unmodified 

smartphones. The content of this chapter can be found in the published paper [97]. 

4.1 BACKGROUND 

Mind-wandering (MW) or zone-out is a “ubiquitous phenomenon where attention involuntary 

shifts from task-related processing to task-unrelated thoughts” [9]. People's minds wander 

frequently in everyday activities, not just in learning ones (49.9%) [61], but MW has more 

negative effects on learning where conscious control is required because people cannot 

simultaneously focus on the learning task and the task-unrelated thoughts [9]. Previous work has 
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detected MW in learning using eye gazes [9], skin conductance [10], and acoustic-prosodic 

features [32]. However, these approaches require dedicated sensors, e.g. eye gaze tracker [9] and 

galvanic skin response sensor [10], and focus more on learning with intelligent agent systems 

(ITS) [9, 10, 32]. In this chapter, I explore the feasibility of using PPG signals from unmodified 

smartphones, via AttentiveLearner, to detect MW when learners watch MOOC tutorial videos. 

To the best of my knowledge, this is the first demonstration of detecting learner’s cognitive 

states (MW) in mobile MOOC learning from implicit PPG signals via unmodified smartphones. 

4.2 USER STUDY 

4.2.1 Participants and Apparatus 

There were 24 participants (5 females) between 22 and 31 years old (mean = 25.2, σ = 2.3) 

joining in this study. All the participants were graduate students at a local university. I used a 

within-subjects design and all the participants learned two MOOC lectures in the study. One was 

a 21-minute lecture on Hadoop (Khan-style1) with 24 quiz questions; the other was a 23-minute 

lecture on R programming (slide-style2) with 19 quiz questions. All subjects had little or no 

knowledge of the two topics used. The order of the two lectures was randomized. 

I used a Google Nexus Galaxy smartphone running Android 4.1 in this study. 

                                                 

1 Khan-style: instructors are facing front with handwriting notes as transparent overlays. 

2 Slide-style: slides are shown full screen and instructors’ voice is played in background. 
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4.2.2 Procedure 

I ran a tutorial session and collected a background questionnaire at the beginning of each session 

and then followed by presenting two MOOC lectures. Participants were required to complete 

corresponding quizzes after each lecture and there was a 5-minute break between lectures. 

Finally, the participants took an exit survey. 

During learning, I used auditory probes [9, 10] to figure out whether the participant was 

MW. After hearing an audio beep, the subjects report verbally “Yes” or “No” to indicate whether 

they were MW the moment before the probe. Auditory probes were triggered randomly at a 3-

minute mean interval, and at the end of each page. 

In total, I collected 991 responses to auditory probes and 227 (22.9%) responses were 

MW. This ratio is similar to a previous study (24.4%) in comprehensive reading [10]. The 

average accuracy of quiz questions was 78.3%. The average sampling rate 16.1 Hz (Table 3) was 

lower than the 30Hz normal camera frame rate, I attribute this to the extra CPU cycles used for 

video decoding and playback. Participants covered the lens of the camera 99.2% of the time 

during MOOC learning (min = 94.1%, max = 100.0%, std = 1.4%). 

Table 3. Number of PPG sampling and frames/second of each subject 

Signal Average Std Max Min 
# of PPG samples 21,267.4 1,916.5 23,845 17,840  
Sampling rate (fps) 16.1 0.5 16.6 14.7 

4.2.3 Experimental Features and Models 

4.2.3.1 Features 

I extracted two types of features: PPG features and lecture content features. 
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PPG features were extracted from multiple, overlapping context windows imposed on 

real-time PPG readings (Figure 17 left) before the time of prediction (Figure 17 right). I 

extracted 12 dimensions of PPG feature from each context window: 1) AVNN (average NN 

intervals); 2) SDNN (temporal standard deviations of heartbeats); 3) pNN50 (percentage of 

adjacent NN intervals with a difference longer than 50ms); 4) rMSSD (root mean square of 

successive differences); 5) SDANN (standard deviation of the averages of NN interval within an 

m-second segment); 6) SDNNIDX (mean of the standard deviations of NN interval within an m-

second segment); 7) SDNNIDX / rMSSD (ratio of SDNNIDX and rMSSD); 8) LF: low 

frequency (0.04 – 0.15 Hz); 9) HF: high frequency (0.15 – 0.40 Hz); 10) LF / HF; 11) totalPSD 

(total power spectral density); 12) MAD (median absolute deviation). All of these features 

(except MAD) are based on heart rate variability (HRV) features which are used by previous 

researchers in heart rate signal related studies [85, 113]. The number of context windows, sizes, 

overlapping time, and preceding time offsets were considered as hyperparameters and will be 

discussed in the following section. 

 
Figure 17. Feature extraction in PPG signals (left: 20 seconds of PPG signal captured from the mobile 

camera during video watching; right: using multiple moving windows for feature extraction) 

Lecture content features were created by splitting lecture videos into equal-length, non-

overlapping content windows. I extracted 7 dimensions of lecture content features from each 

content window. The 7 features are: 1) Lecture style (slide-style or Khan-style); 2) Duration of 

the current page; 3) Duration of the previous page; 4) Speech rate (words/min); 5) speech rate 
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(words/min) of the previous page; 6) Cosine similarity between current and the previous page 

(Bag-of-words representation of the transcribed lecture text); 7) Cosine similarity previous two 

pages. A page is a slide (slide-style) or a small clip (Khan-style). 

Feature selection was performed to remove correlated features and those did not have 

sufficient discrimination power. This technique can restrict the model complexity and ensure 

sufficient speed when running on mobile devices. 

In total, I extracted 7 + 12 (k + 1) dimensions of features where k is the number of 

context windows. Information gain feature selection was used to select the top 5 features. 

4.2.3.2 Models 

I evaluated five supervised machine learning algorithms: K nearest neighbors (KNN), Gaussian 

mixture model (GMM), support vector machine with linear kernel (SVM), logistic regression 

with lasso regularization (LogReg), and local outlier factor (LOF). LogReg was trained by 

LibLinear and all other models were trained by WEKA. I also tested SVM with nonlinear 

kernels, but preliminary results showed their performances were worse than the linear kernel. 

I used the leave-one-participant-out method to ensure that data from each participant was 

exclusive to either the training or testing set. As a result, all the results reported were user-

independent. 

I tried to use different parameter combinations for both feature extraction and classifiers. 

The optimal combination was the one giving the best average Kappa over all subjects. To be 

specific, I have tried 3 different context window numbers (1, 3, 5) × 4 context window widths 

(30s, 60s, 90s, 120s) × 4 context window overlaps (5s, 10s, 30s, 60s) × 3 preceding time values 

(1s, 2s, 5s) × model specific parameters. The model specific parameters are: KNN (number of 

nearest neighbors: 1, 3, 5), GMM (number of clusters: 2), SVM (feature weight for the MW 
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class: 1, 3, 5), LogReg (feature weights for the MW class: 3, 5, 10), and LOF (number of 

neighbors: 7, 10, 20). 

4.3 RESULTS 

In this section, I will present the results of MW detection. Moreover, I also used the PPG features 

and content related features to predict a learner’s performance in the follow-up quiz in the study. 

Lastly, I show that despite the imperfect performance on each learner, the aggregated MW 

predictions from all learners can be used as an implicit additional feedback channel which 

reveals trends of the learning process and can be helpful for MOOC instructors. 

Table 4. Mind Wandering detection performance. The standard deviation showed in parenthesis 

Model Precision Recall Accuracy Kappa 
LOF 30.1% (24.8%) 23.5% (21.1%) 70.5% (18.6%) 0.08 (0.18) 
GMM 33.5% (13.4%) 65.0% (21.7%) 60.2% (12.9%) 0.18 (0.15) 
KNN 40.0% (24.3%) 40.9% (22.0%) 71.2% (10.8%) 0.22 (0.22) 
LogReg 28.8% (15.3%) 42.2% (13.4%) 64.1% (09.4%) 0.11 (0.13) 
SVM 29.6% (12.9%) 47.1% (18.6%) 62.7% (09.5%) 0.12 (0.13) 

4.3.1 Mind Wandering Detection 

Table 4 shows the MW prediction performance, i.e. predicting whether a participant was MW at 

a moment or not. The KNN classifier (K=5) led to the best overall accuracy (71.2%) and kappa 

(0.22). This performance is comparable with existing systems that rely on acoustic-prosodic 

features [32] (learner de-pendent model, accuracy = 64.3%), eye gaze fixation features [9] 

(learner independent model, accuracy=72.0%, kappa =0.28), and skin conductance and skin 
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temperature features [10] (learner dependent model, kappa=0.22). It is worth noting that this 

performance was achieved on today’s mobile phones without any hardware modifications. 

Table 5. Quiz error prediction performance. The standard deviation showed in parenthesis 

Model Precision Recall Accuracy Kappa 
LOF 37.3% (29.1%) 20.8% (16.6%) 66.0% (14.0%) 0.07 (0.20) 
GMM 44.4% (20.2%) 52.9% (22.3%) 65.1% (10.0%) 0.22 (0.16) 
KNN 44.8% (31.0%) 32.8% (18.3%) 68.1% (9.6%) 0.17 (0.13) 
LogReg 36.5% (18.3%) 74.7% (16.0%) 55.1% (14.6%) 0.17 (0.16) 
SVM 37.1% (18.7%) 74.3% (18.7%) 54.8% (16.7%) 0.16 (0.17) 

4.3.2 Quiz Performance Prediction 

I also explored the feasibility of predicting learners’ question-answering performance, i.e.  

determining whether a participant will make an error in the follow-up quiz based on heart rate 

signals when the topic was first mentioned in the lecture video (Table 5). The GMM classifier 

achieved the best kappa (0.22) with an accuracy of 65.1%. Although such accuracy can be 

considered to be moderate at best, it can be used to provide adaptive reviewing exercises to 

encourage learners to practice on topics they did not pay enough attention to during learning 

[115]. For example, when using the LogReg model (highest recall = 74.7% in Table 5), 

AttentiveLearner can recommend learners to review around 58.6% of the lesson (rather than the 

whole lecture) in order to cover all topics learners may make mistakes. 

4.3.3 Aggregating Predicted MWs 

Figure 18 shows aggregated MW predictions (orange line) of 24 subjects and their actual 

annotations (green line) over two lectures. The MW prediction of each subject was plotted as 
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thinner lines. Despite the prediction of subjects are different, the aggregated prediction and the 

aggregated annotation share the same trend. In the Hadoop lecture, the MW events peaked at 

around the 5th minute when discussing several open questions. The second peak was around the 

13th minute when the instructor was teaching the 2nd longest page (3.2 min) in this lecture. The 

three most frequent MW moments in R programming (the 6th, 16th and 21st minute) were the 

three longest pages of the lecture, discussing Input (2.4 min), Matrices (2.7 min) and Factors (4.6 

min) respectively. Based on the aggregated MW predictions alone, MOOC tutors can identify the 

“critical” moments in each video which are only available if all learners voluntarily answer MW 

sampling when using traditional methods. This observation supports that besides giving 

predictions for individual learners, AttentiveLearner can also give coarse-grained information 

that benefits MOOC tutors by aggregating information from all learners. 

 

Figure 18. MW histogram of the Hadoop lecture (left) and the R lecture (right) 

4.4 SUMMARY 

I presented the feasibility of AttentiveLearner to detect learner’s cognitive states, e.g. MW, via 

physiological signals from the back camera of unmodified smartphones. In a 24-participant 

study, I found that AttentiveLearner can extract heart rates reliably from PPG signals captured by 
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mobile cameras and that it can be used to predict both learners' MW events (accuracy = 71.2%, 

Kappa = 0.22) in MOOC sessions and their performance in follow-up quizzes (accuracy = 

68.1%, Kappa = 0.17). 

Given the scale and scope of the current study, these current efforts should be treated as a 

“proof-of-concept” towards follow-up research work in the future. There are unanswered 

questions about the usability and capability of the approach. In fact, Xiao and Wang [130] have 

done such follow-up work: systematically evaluating the usability and capability of 

AttentiveLearner. The authors found AttentiveLearner has a good usability. AttentiveLearner can 

predict other affective states, i.e. boredom (Kappa = 0.29) and confusion (Kappa = 0.27) using 

content-agnostic features. More importantly, the system’s performance can be improved when 

we focus on extreme cases only. 

The next important questions are: given the inferred cognitive/affective states from PPG 

signals, can we give personalized interventions on unmodified smartphones to improve MOOC 

learning? Even though our current system’s performance is comparable to previous work using 

physiological signals in education, the performance is still far from perfect (Kappa = 0.22 for 

MW detection). Can we improve learning outcomes based on the sensing component with a 

modest performance? How bad will the imperfect detections impact the personalized 

interventions? In the next chapter, I will introduce a novel personalized intervention technique on 

unmodified smartphones based on the implicit PPG signals. 
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5.0  ATTENTIVEREVIEW: AN ADAPTIVE REVIEW FOR MOBILE MOOC 

LEARNING VIA IMPLICIT PHYSIOLOGICAL SIGNAL SENSING 

The implicit PPG sensing and cognitive-state inference components of AttentiveLearner show a 

promising scalable approach to understanding MOOC learning processes. Indeed, based on 

learners’ cognitive and affective states, an intelligent system can directly benefit learners by 

providing personalized interventions to improve learning outcomes. In this chapter, I present and 

evaluate a novel intervention technology for mobile MOOC learning on unmodified 

smartphones, named AttentiveReview (Figure 19). AttentiveReview suggests the reviewed 

content based on individual’s perceived difficulty. I also evaluate the negative impacts of 

imperfect cognitive-state predictions on learners’ outcomes as the current affective computing 

technologies are still far from perfect. The content of this chapter can be found in the published 

paper [98]. 

5.1 BACKGROUND 

Each student has individual learning interests and background [104]; it can be challenging for 

tutors to reconcile these differences. Indeed, it is more challenging in MOOCs as there are 

thousands of learners per course. Adaptive learning has been used in many intelligent tutoring 

systems to personalize learning materials and improve learning outcomes [29]. Besides 
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personalizing the learning material based on students’ content mastery [29], it is possible to 

deliver adaptive learning based on students’ cognitive and affective states via physiological 

signals. Affective AutoTutor [27] used conversational cues, gross body language, and facial 

features to detect learner’s boredom, confusion, and frustration. GazeTutor by D’Mello et al. 

[26] explored the use of eye-gaze to detect attentional disengagement. ARTFul [115] leveraged 

EEG to infer learners’ attention. Wayang Tutor [128] successfully used a combination of GSR, 

facial expression, mouse pressure, and learning posture to infer learners’ affective states, e.g. 

motivation, frustration, and engagement, in learning. 

 

Figure 19. AttentiveReview includes two main phases: 1) Learning: a learner watches a lecture video on an 

unmodified smartphone. PPG signals are implicitly extracted from the back camera; 2) Review: AttentiveReview 

analyzes the PPG signals collected and recommends review contents that improve learning. 

Task difficulty can affect learners’ engagement [2] and performance [26]. A difficult task 

can overload learners’ cognitive capacity. This overload can further induce negative emotions, 

e.g., anxiety and anger. Afergan et al. [2] were able to differentiate perceived difficulty levels 

from fNIRS signals. Lyu et al. [79] discovered a decrease in some heart rate variability 

components of ECG signals, such as high frequency and mean inter-beat, when increasing task 
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difficulties. McDuff et al. [86] found that the high frequency component of heart rate variability 

in PPG signals was significantly reduced in the high difficulty condition. 

A common limitation with most of current affective/cognitive state aware tutoring 

systems [2, 26, 115, 128] is the requirement of dedicated sensors, such as wristbands, gaze 

trackers, and EEG headsets. The cost, availability, and portability of such sensors have become a 

major obstacle preventing the wide adoption of such technologies in real-world scenarios, 

especially in MOOCs. In contrast, AttentiveReview runs on unmodified smartphones and uses 

the built-in camera as an implicit PPG sensor, hence eliminating the need for dedicated 

physiological signal sensors. 

5.2 ADAPTIVE REVIEW ALGORITHM 

AttentiveReview extracts temporal domain features from a learner’s PPG waveforms collected 

from the learning process. AttentiveReview then uses a ranking SVM algorithm to determine 

learners’ perceived difficulty in each learning topic and suggests the learner review the most 

difficult topic. 

 

Figure 20. Extracting features for each topic in a lecture video 
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Similar to AttentiveLearner (Chapter 4), AttentiveReview uses LivePulse [48], a heuristic 

peak counting algorithm, to identify normal-to-normal (NN) inter-beat intervals from PPG 

signals. The NN interval signal is smoothed and then resampled to 20Hz. To rank perceived 

difficulties of topics in a lesson, AttentiveReview uses new feature extraction methods and 

machine learning models. 

As shown in Figure 20, for each topic in a tutorial video, AttentiveReview skips the first 

and the last 30 seconds of PPG waveforms to minimize noise and carry-over effects. I extract 8 

time domain dimensions of heart rate variability (HRV) from both the truncated topic window 

(i.e. global features) and a 15-second non-overlapping sliding window within a topic (i.e. local 

features). The extracted features are: AVNN, SDNN, pNN10, rMSSD, SDANN, SDNNIDX, 

SDNNIDX / rMSSD, and 8) MAD. Then I apply a median pooling algorithm to reduce the 

number of local features to eight for each topic. In addition, I apply a Logistic Regression based 

classifier to predict whether a user was mind wandering (MW) within the 15-second moving 

window trained on the dataset in [97]. The sum of mind wandering counts over an entire topic is 

used as the MW feature. In summary, for each topic, the algorithm uses 8 global features + 8 

local features + 1 MW = 17 dimensions of HRV feature. For each participant, all features are 

rescaled to [0, 1] to eliminate individual and dimensional variance. 

For each learning topic, I use a linear kernel ranking SVM to find the most difficult topic 

perceived by a learner. While a traditional soft-margin SVM identifies and uses supporting 

vectors from training samples to maximize between-class margin, a ranking SVM tries to find a 

soft boundary satisfying all partial pair-wised orders in the training set [58]. The pair-wised 

orders are partial because the algorithm does not require ranking from all pairs in the train set.  
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I trained the ranking SVM with data collected from an 8-participant pilot study using the 

same learning materials and procedure reported in the follow-up section. I intentionally chose 

this user-independent model to get an estimation of the efficacy of providing adaptive 

interventions to MOOC learners at the bootstrapping stage. The model can rank perceived 

difficulty with an accuracy of 62.5%. This accuracy is comparable with other binary classifiers 

using physiological features in education, e.g. 64.3% from D’Mello et al. [24] and 71.2% from 

Xiao and Wang [130]. 

5.3 USER STUDY 

I conducted a user study to further understand AttentiveReview. I had two major goals for this 

study. First, I would like to evaluate the usability of AttentiveReview in actual mobile MOOC 

learning sessions. Second, I would like to investigate the feasibility and efficacy of improving 

the learning outcome of MOOCs through personalized review recommendations via implicit 

physiological signal sensing. 

5.3.1 Experimental Design 

The study consisted of four main phases: 1) background survey and pre-test; 2) MOOC learning; 

3) MOOC reviewing; 4) post-test and closing survey (Figure 22). To simulate the fact that 

reviews in the real world do not immediately follow the learning sessions, I scheduled a two-

minute relaxation session between the learning session and the review session, and between the 
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review session and the post-test session. Learners played Candy Crush Saga, a popular mobile 

game on major mobile platforms, during relaxation sessions. 

 

Figure 21. Experimental reviewing conditions: No Review, Full Review, Adaptive Review, and Counter 

Adaptive Review. 

I designed four different interventions for the MOOC reviewing phase (Figure 21). First, 

no review. Learners do not complete any review; Second, full review. Learners go through all 

topics of a lecture video in this condition; Third, adaptive review. Learners review the most 

difficult topic inferred by the algorithm. Fourth, counter adaptive review. Learners review the 

easiest topic inferred by the algorithm. I included the counter adaptive condition to differentiate 

whether the reviewing action or the reviewing content could have an impact on learning 

outcomes. In the no review condition, the participants listened to the song Twelve Variations on 

“Ah vous diraije, Maman” by Wolfgang Amadeus Mozart for the duration of the review session. 

Otherwise, the participants watched the corresponding review video generated by the algorithm. 

To illustrate the fact that majority of MOOCs today are offered in English, but learners 

include both native English speakers (EL1) and English as Second language speakers (EL2), I 
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recruited both native participants (EL1) and non-native participants (EL2) to evaluate the impact 

of native language on the outcomes of reviewing. 

 

Figure 22. The experimental procedure of the user study 

In summary, the study used a 4x2 between-subjects design (Figure 22). The independent 

variables were review condition (no review, full review, adaptive, and counter adaptive) and 

participant’s native language (EL1 and EL2). The type and order of the independent variables 

have been counter-balanced via Latin-square patterns. The dependent variables were 

participant’s performance on information recall (Recall) and learning gain (Learning). Recall 

was measured by the accuracy (# correct answers / # questions) of a learner in the post-test. 

Learning gain was measured as the percentage accuracy difference between the post-test and the 

pre-test. In the end, each participant completed a closing survey including 1) subjective ratings 

about AttentiveReview’s usability, and 2) perceived difficulty ranking of each topic in 

descending order (most perceived difficult = Rank 1; least perceived difficult = Rank 3). The 

perceived difficulty rankings would be used as the ground truth for AttentiveReview in the 

following evaluation sections. 

5.3.2 Learning Material 

To avoid the interference with participants’ background knowledge, I chose law, an area that was 

unfamiliar to all the participants, as the learning topic. In the study, participants watched a 
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lecture on law consisting three topics: criminal laws, human rights, and surveillance laws. The 

corresponding tutorial videos were from Coursera. The criminal law was taught by Professor 

Stephen Morse from the University of Pennsylvania. The topic of human rights was taught by 

Professor Laurence R. Helfer of Duke University. The surveillance laws’ topic was taught by 

lawyer Jonathan Mayer at Stanford University. Each topic lasted for 8 minutes, leading to a 24-

minute lecture video. 

I created 9 multiple-choice questions for the pre-test (3 questions per topic) and 24 

multiple-choice questions for the post-test (8 questions per topic). Sample questions include, 

“What kind of disputes does Tort law deal with?”  (criminal laws) and “When did the bulk 

domestic email surveillance program end?” (surveillance laws). 

5.3.3 Participants and Apparatus 

There were 32 subjects (9 females; 16 native English speakers and 16 non-native English 

speakers) from a local university participating in the study. Each of the four review conditions 

was balanced with four EL1 participants and four EL2 participants. The average age was 23.6 (σ 

= 4.2). No participant reported any exposure to any of the three law topics prior to the study. 

The experiment was conducted using a Nexus 5 smartphone with a 4.95 inch, 1920 x 

1080 pixel display, 2.26 GHz quad-core processor, running Android 5.0. 
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5.4 RESULTS 

5.4.1 Subjective Feedback 

Participants reported positive experiences with AttentiveReview in general (Figure 23). To be 

specific, participants found AttentiveReview was easy to use 4.3 (σ = 0.8) and responsive 4.4 (σ 

= 0.5) on a five-point Likert scale. Detailed comments include ‘[AttentiveReview was] Easy to 

play and pause’, ‘I like that I can control the app without touching the screen’, ‘Using the 

covering back camera strategy is very natural’. 

 

Figure 23. Subject feedback on a five-point Likert scale. 

Although participants were positive about using AttentiveReview for their future learning 

activities 3.8 (σ =1.0), they also reported usability problems on Comfort 3.7 (σ =1.1), primarily 

caused by the heat emitted by the camera flash: ‘Sometimes my finger got hot’, ‘Light got hot 

after a while which was slightly uncomfortable’. It was worth noticing that participants watched 

a 24-minute tutorial video, which was longer than lecture clips used in AttentiveLearner [130] 

and most MOOC platforms. I hope smartphone manufacturers could take the heat emission ratio 

of the flashlight into account when choosing camera optical assemblies in the future. It was also 

possible to capture PPG signals without turning on the flashlight or only turning it on 
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intermittently at a higher signal-noise-ratio (SNR). I plan to investigate such alternative settings 

in follow-up studies. 

5.4.2 Signal Quality 

Figure 24 illustrates the PPG signal quality captured by AttentiveReview from eight participants 

during the study. I adopted the same signal quality metric as Xiao and Wang [130]. That is, in a 

5-second normal-to-normal (NN) inter-beat signal window, the signal in the window was rated 

high quality if at least 80.0% of the NN intervals were within the ± 25.0% range of the window’s 

median. On average, 93.8% (σ = 4.4%) of the PPG signals from this study were in high quality. 

This finding confirmed the reliability of PPG signals captured by AttentiveReview. 

 

Figure 24. Sample PPG signal quality of eight participants 

Figure 25 shows the HRV spectrograms (normalized amplitude) from the perceived least 

difficult topic (top row) and the perceived most difficult topic (second row) of six participants. 

The HRV spectrograms were plotted by calculating the power spectral density from NN intervals 

[86]. Each topic used a one-minute sliding window with a one-second increment to calculate 
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power spectral density. The high frequency (HF) power was reduced under the stress condition 

[79, 86]. The spectrograms show similar observations for those learning difficult topics.  The low 

HF power in the bottom row indicated corresponding learners were under higher cognitive 

workload than those learning least difficult topics. 

 

Figure 25. Heart rate variability spectrogram (LF and HF) of six participants (P3, P9, P14, P19, P25, P27) 

in their least perceived difficult topic (top row) and most perceived difficult topic (second row) 

5.4.3 Learning Outcome 

 

Figure 26. Learning outcomes (Left: learning recall; Right: learning gain) by review conditions (None: no 

review; Counter: counter adaptive review; Adapt: adaptive review; and Full: full review) on information recall 

(Recall) and learning gain (Learning). Only significant p values are reported. 
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Using a two-way ANOVA analysis, I found significant main effects on both Recall (F(3,24) = 

7.91, p < .01) and Learning (F(3,24) = 4.04, p < .01) among the four review conditions. The 

average Recall scores were 54.2% (σ = 5.9%), 55.7% (σ = 10.9%), 68.8% (σ = 9.2%), and 72.4% 

(σ = 8.0%) in the no review, counter adaptive review, adaptive review and full review conditions 

respectively. Learning scores were 19.4% (σ = 16.9%), 26.6% (σ = 11.3%), 36.8% (σ = 17.2%), 

and 43.2% (σ = 19.9%) in the no review, counter adaptive review, adaptive review, and full 

review conditions. 

I also used pair-wised mean comparisons (t-tests) with Bonferroni correction to better 

understand the relative performances (Figure 26). There were two major findings from Figure 

26. 

First, participants taking any review performed better or at least equally well in both 

Recall and Learning than participants having no review. In particular, participants taking full 

review performed significantly better than participants taking no review in both Recall (t(14) = 

15.64, p < .01) and Learning (t(14) = 10.22, p < .01). Similarly, adaptive review had significantly 

better performances in both Recall (t(14) = 10.01, p < .01) and Learning (t(14)= 5.45, p < .01) 

than no review. In the case of counter adaptive review, even watching easy learning materials for 

one extra time did not hurt performances in Recall (t(14) = 0.11, p = .74) or Learning (t(14) = 

0.92, p = .35) when compared with no review. This result confirmed that reviewing in general 

and AttentiveReview, in particular, can improve learning outcome. At the same time, this result 

showed that adaptive review was a low-risk intervention even if the prediction was imperfect. 

Second, the adaptive review was more efficient in time than full review under 

comparable performance. There were no significant differences between the adaptive condition 

and the full review condition in both Recall (t(14) = 0.63, p = .44) and Learning (t(14) = 0.75, p 
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= .34). In other words, AttentiveReview was able to achieve equivalent cognitive learning 

performance as a full review, with 66.7% less reviewing time. These results show the efficacy of 

the adaptation algorithm in AttentiveReview. 

There was a significant main effect on Learning (t(30)= 5.04, p = .03) between learners’ 

native language. EL1 scored significantly higher on Learning 37.4% (σ = 20.8%) than EL2 

25.6% (σ = 13.7%). The different on Recall between EL1 and EL2 was not significant (p = .53). 

5.4.4 Detecting Perceived Difficulty 

5.4.4.1 Perceived Difficulty vs. Learning Recall 

I also investigated the relationship of the four review conditions and self-reported difficulty 

levels on learning recall. Two-way ANOVA analysis confirmed a significant main effect on 

Recall (F(2,84) = 0.59, p < .01) among different perceived difficulty levels. However, there was 

no significant main effect of review conditions on Recall (F(3,84) = 0.79, p = .49). I found that 

conducting perceived difficulty ratings after the review and the post-test session was responsible 

for this outcome. A participant’s perceived difficulty levels of three topics would have been 

changed after the participant reviewed one (adaptive or counter adaptive) or three (full review) 

topics and/or took the post-test. Thus, the reported perceived difficulty levels of each topic may 

not match the initial perceived difficulty levels when watching the lesson. 

Among all the four review conditions, no review was not affected by this confounder 

because participants in the no review condition did not watch any review content. One-way 

ANOVA analysis in no review showed a significant main effect of perceived difficulty on Recall 

(F(2,21) = 3.96, p < .05). Further pair-wised mean comparisons (t-tests) with Bonferroni 

correction on perceived difficulty levels show a significant difference in Recall between the 
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easiest topic (Rank 1) and other ranks, i.e. Rank 2 (t(21) = 5.55, p < .05), and Rank 3 

(t(21)=6.31, p < .05). However, there was no significant difference in Recall between the most 

difficult topic (Rank 3) and the second most difficult topic (Rank 2) (t(21) = 0.03, p = .88). There 

were two implications of these findings. First, the perceived difficulty levels were highly 

correlated with Recall and can be a good indicator of review content. Second, both the most 

difficult topic and the second most difficult topic were beneficial for review. 

5.4.4.2 Model Performance 

The confounding factor in 5.4.4.1 has minimum influence on the ranking algorithm for three 

reasons: 1) the model is user-independent and was trained on 8 participants from a pilot study; 2) 

none of the participants knew their performance in the pre- and post-test; and 3) both learning 

topic and post-test questions focused on understanding and recall rather than deep inference. I 

quantified the algorithm’s ranking performance on perceived difficulty levels (i.e. whether the 

model’s ranking outputs match participants’ subjective ratings) in 2 settings: all four review 

conditions (All-conditions) and no review only (No-Review). In addition to the strict ranking 

criterion (Strict-Ranking), I also evaluated AttentiveReview in a relaxed ranking condition 

(Relaxed-Ranking). Since the results in section 5.4.4.1 showed that both the most difficulty and 

the second most difficult topic can benefit learners, the relaxed ranking criterion only marks the 

model prediction incorrect when the recommended topic was neither the most difficult nor the 

second most difficult topic. This criterion can be considered a variant of Precision@N, which is 

widely used in information retrieval community. I used random guessing and participants’ 

agreement (Fleiss’ kappa) as baselines. Table 6 shows the performance of AttentiveReview on 

the ranking of perceived difficulty levels. In the Strict-Ranking criterion, AttentiveReview only 

performed better than baselines in the No-Review condition, where no confounding affects 
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participants’ subjective ratings. However, in the Relaxed-Ranking condition, AttentiveReview 

outperformed all baselines in both All-conditions and No-Review. 

Table 6. Perceived difficulty ranking performance 

 
Strict-Ranking Relaxed-Ranking 

All-conditions No-Review All-conditions No-Review 
AttentiveReview 

Accuracy 38.5% 45.8% 92.7% 95.8% 
Kappa 0.08 0.18 0.83 0.90 

Random predictor 
Accuracy 33.3% 33.3% 66.7% 66.7% 

Human agreement 
Kappa 0.27 0.12 0.27 0.12 

5.4.4.3 Benefits of Review 

Although I found that adaptive review could improve both information recall and learning gain 

in section 5.4.3, is it really from the adaptive presentation of confusing topics to learners? I 

defined and used a fine-grained measurement metric, called Review Efficacy Index (REI), to 

study the impact of review recommendations on learning outcomes. REI is defined as the 

percentage of learners having Recall scores from the easiest topic higher than Recall scores from 

the most difficult topic. Let ei and di be the total Recall score of the easiest topic’s questions and 

the total Recall score of most difficult topic’s questions perceived by the ith participant, I define Ii 

as follow: 

𝐼𝐼𝑖𝑖(𝑒𝑒𝑖𝑖,𝑑𝑑𝑖𝑖) = � 1, 𝑖𝑖𝑓𝑓 𝑒𝑒𝑖𝑖 > 𝑑𝑑𝑖𝑖
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒 

Then, the REI of a review condition r can be computed as: 

𝑀𝑀𝑀𝑀𝐼𝐼𝑟𝑟 = �
𝐼𝐼𝑖𝑖(𝑒𝑒𝑖𝑖,𝑑𝑑𝑖𝑖)

#𝑏𝑏𝑎𝑎𝑒𝑒𝑜𝑜𝑖𝑖𝑝𝑝𝑖𝑖𝑏𝑏𝑎𝑎𝑛𝑛𝑜𝑜 𝑖𝑖𝑛𝑛 𝑒𝑒
𝑖𝑖∈𝑟𝑟

 

where 𝑒𝑒 ∈ {𝑁𝑁𝑜𝑜,𝐴𝐴𝑑𝑑𝑎𝑎𝑏𝑏𝑜𝑜,𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹} 



 71 

 

Figure 27. The REI metric by review conditions 

A large value of REI means most of the learners do better in the easiest topic’s questions 

compared to the most difficult topic’s question when receiving a particular review condition, and 

vice versa. Note that by modifying Ii, REI can be extended to estimate other types of 

effectiveness, such as comparing one learning topic versus top k topics. Figure 27 shows the REI 

of 3 review conditions. Adaptive review indeed increased learners’ performance on difficult 

topics when compared with no review. To be specific, the REI of the no review condition, where 

participants did not watch any review material, was the highest (88.0%) because learners are 

likely to score higher in the easiest topic than in the most difficult topic. In the adaptive review 

condition, the REI decreased to 63.0%. This means the performance of the most difficult topic 

was improved when learners got exposed to difficult topics in the review sessions. I attribute the 

lowest REI (38.0%) in full review to two reasons. First, the predicted perceived difficulty levels 

from AttentiveReview was not perfect. Therefore, a full review was more beneficial to capture 

all the difficult topics. Second, there was a ceiling effect for reviewing easy topics, so the 

benefits in terms of the number of correct answers from difficult topics were higher when 

compared with those from easy topics. 
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5.5 DISCUSSIONS 

Not surprisingly, I found the mastery of the English language did have a significant impact on 

the learning outcomes. In particular, EL1 (with average scores = 37.4%, σ = 20.8%) performed 

significantly better than EL2 (25.6%, σ = 13.7%) overall. Additional contrast tests on Learning 

showed a significant difference between EL1 and EL2 under full review (p < .05). There was 

also a marginal difference between EL1 and EL2 under adaptive review (p = .08). However, 

there was no significant difference between EL1 and EL2 under the counter adaptive (p = .32) or 

no review condition (p = .44). These results suggest that EL2 may encounter higher challenges in 

reviewing activities when compared with native English speakers. It would be beneficial to go 

through the review session at a slower speed, shorter duration, together with highlighted screen 

captions for learners whose first language were not English. 

I also ran a regression analysis to evaluate the importance of features used in 

AttentiveReview. Despite the fact that AttentiveReview used a ranking SVM, regression analysis 

could also predict the regression score of each topic based on the perceived difficulty ranking 

from participants. To avoid confounding factors from reviewing activities and post-tests, I only 

analyzed data from the no review condition. The mean normal-to-normal (AVNN) feature played 

an important role in predicting the perceived difficulty levels where its global feature had a 

significant impact (p = .05) and its local feature had a marginal impact (p = .08). This finding is 

consistent with findings in [130], where the authors also found significant changes in AVNN 

were good indicators of confusion. In addition, the global median absolute deviation (MAD) 

feature and the local standard deviation of normal-to-normal (SDNN) feature had a significant 

impact with p = .04 and p = .05, respectively. However, the MW feature did not have a 
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significant impact (p=.39) on the model’s performance. The combination of all experimental 

features accounted for 84.9% of the variability in perceived difficulty levels.  

In addition to using a supervised machine learning algorithm to predict perceived 

difficulty from PPG signals, it is also possible to derive review recommendations from 

deterministic metrics such as the attention index feature [115] from EEG signals directly. It 

would be interesting to explore whether two such drastically different strategies can complement 

each other to achieve better learning outcome. Further, for which kinds of situations/students is 

one strategy more effective than the others? 

Despite the encouraging results of AttentiveReview, the result still has at least three 

major limitations. First, although the model is user-independent, it was trained with data from an 

8-participant pilot study on the same learning topics. While this is already a major improvement 

when compared with user-dependent models, AttentiveReview still requires course-dependent 

training and is not completely plug-and-play. I plan to study the feasibility of course-independent 

adaptive review in the near future. Second, the current algorithm only supports review 

recommendations at the learning topic level. Although most of today’s MOOCs have already 

organized tutorial videos per learning topics, it may not always be the case. Since a learning 

topic typically lasts 3 – 15 minutes, the algorithm is not capable of providing ultra fine-grained 

predictions at sub-minute levels. Third, the intervention in AttentiveReview, i.e. recommending 

appropriate review materials, happens after finishing multiple learning topics due to the ranking 

SVM algorithm I chose.  It will be necessary to explore complementary interventions that can be 

activated during the learning process. In fact, Xiao and Wang [131] showed it is possible to 

improve the learning outcome without increasing the total time spent in learning and reviewing 

by giving in-lesson interventions. 
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5.6 SUMMARY 

I presented AttentiveReview, a novel intelligent tutoring system and algorithm for mobile 

MOOC learning. Built upon AttentiveLearner, AttentiveReview collected and used PPG signals 

implicitly to infer learners’ perceived difficulty and provide adaptive review recommendations 

accordingly. Through a 32-participant user study and follow-up analyses, I found 

AttentiveReview was intuitive and responsive in use. I also found that AttentiveReview captures 

learner’s PPG signals reliably, and effectively recommends review materials that improved 

learners’ information recall (+14.6) and learning gain (+17.4). The proposed adaptive approach 

is simple to implement and can easily be integrated into today’s major MOOC platforms. 

Overall, AttentiveReview demonstrated the feasibility and efficacy of building an end-to-end, 

affect-aware intelligent tutoring system on today’s unmodified smartphones. 

However, Attentive Review only explores a simple solution of adaptive interventions, 

i.e., giving recommendations after learning. There are other possible adaptive interventions 

based on learners’ physiological states that can be done on unmodified smartphones. For 

example, Xiao and Wang [131] proposed C2F2, a complement-adaptive approach to 

AttentiveReview. Like AttentiveReview, C2F2 relies on the sensing component of 

AttentiveLearner to implicitly collect learners’ PPG signals. However, C2F2 give real-time 

boredom detections and pop-up reminder messages whenever a learner was disengaged. 

Together with AttentiveReview, C2F2 shows the feasibility of using implicitly sensed 

physiological signal on unmodified smartphones to improve MOOC learning. 

So far, I only leveraged the back camera of a smartphone to collect learners’ PPG signals 

and give personalized interventions. Indeed, many sensors are available on an unmodified 

smartphone, such as the front camera and the touchscreen. In the following chapters, I propose 
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new intelligent interfaces that collect multiple modalities from learners on unmodified 

smartphones without additional hardware. Through an iterative design process, I develop 

AttentiveLearner2 (Chapter 6), which collects PPG signals from the back camera and facial 

expression from the front camera. Chapter 7 introduces AttentiveReview2 as the first intelligent 

interface that collects PPG signals, facial expressions, and clicks for mobile MOOC learning. 
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6.0  ATTENTIVELEARNER2: SUPPORTING MOOC LEARNING VIA A 

MULTIMODAL INTELLIGENT INTERFACE ON MOBILE DEVICES 

In this chapter, I present AttentiveLearner2, a multimodal intelligent mobile interface. In addition 

to the implicit PPG sensing of AttentiveLearner, AttentiveLearner2 collects learners’ facial 

expressions via the front camera of a smartphone to infer learners’ emotions. By combining both 

PPG signals and facial expressions, AttentiveLearner2 can achieve more robust emotion 

inferences on today’s smartphones without additional hardware. The content of this chapter can 

be found in the published work [99, 101]. 

 

6.1 BACKGROUND 

Researchers have explored to model learners’ affective and cognitive states [21, 41, 56, 92] 

automatically via physiological signals [52], facial expressions [41] or a combination of multiple 

modalities [21, 56, 92]. For example, by combining features (i.e., feature fusion) from facial 

expressions, posture data, and dialog cues, D’Mello and Graesser [21] achieved approximately 

0.2 improvements in Kappa for detecting four emotions in learning. Monkaresi et al. [92] 

combined heart-rate and facial-based models (model fusion) and improved the Area Under the 

Curve (AUC) by approximately 0.1 when detecting engagement in essay writing. However, most 
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existing approaches require dedicated sensors and PCs connected to high-speed Internet. Such 

requirements can prevent the wide adoption of affective technologies in real-world scenarios. 

AttentiveLearner2 builds on top of and extends AttentiveLearner [97, 98, 130, 131]. 

AttentiveLearner collects learners’ PPG signals implicitly via the back camera during mobile 

MOOC learning, infers their affective and cognitive states [97, 130], and provides personalized 

interventions to improve learning outcomes [98, 131]. In comparison, AttentiveLearner2 extends 

AttentiveLearner by adding a real-time facial-expression channel via the front camera. As 

illustrated in the following sections, PPG signals from the back camera and facial expression 

signals from the front camera are complementary in terms of predicting learners’ affective states 

in MOOC learning. 

It is worth noticing that activating two cameras in a smartphone in preview mode imposes 

major challenges in both hardware architecture and software design. First, not all smartphones 

today allow the concurrent video streaming from both the front camera and back camera at the 

same time, due to restrictions in camera firmware and memory access architecture. Based on our 

experiments, only the Google Nexus 6/6P, Samsung Galaxy S4, and Amazon Fire Phone are 

capable of turning on two cameras in preview mode at the same time. We hope that by 

demonstrating the potential for collecting PPG signals and facial expressions in parallel, more 

smartphone manufacturers will start supporting such capabilities in the future; Second, it is 

critical to write efficient multi-thread functions to handle the video playback, PPG sensing from 

the back camera, and FEA from the front camera running on different physical processor cores to 

achieve real-time signal processing; Third, the write bandwidth for external storage (i.e. the flash 

memory) in today’s smartphones is insufficient for saving two video streams in real time. We 
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have successfully implemented the real-time parallel video processing algorithms of 

AttentiveLearner2 on a Google Nexus 6. 

6.2 THE ATTENTIVELEARNER2 SYSTEM 

In addition to the tangible on-lens video control interface, AttentiveLearner2 includes a dual-

camera sensing system and multimodal affect-inference algorithms (Figure 28). 

 

Figure 28. AttentiveLearner2 uses two complementary and fine-grained feedback channels (back camera 

for sensing PPG signals and front camera for tracking facial expressions) and infers learners’ affective and cognitive 

states during learning. 

6.2.1 Dual-Camera Sensing System 

AttentiveLearner2 uses both the front and the back cameras of a smartphone as two 

complementary and fine-grained sensing channels. The back camera monitors a learner’s PPG 

signals while she is watching a tutorial video as in AttentiveLearner (Chapter 4) and 

AttentiveReview (Chapter 5). 
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At the same time, the front camera tracks the learner’s facial expressions in real-time. I 

use Affdex SDK [87] to extract 30 facial values from each video frame. Whenever the learner’s 

face is detected, AttentiveLearner2 visualizes detected facial landmarks on the front camera 

preview widget (Figure 28) as a feedback mechanism. 

6.2.2 Affect-Inference Algorithms 

AttentiveLearner2 infers learners’ affective and cognitive states using machine learning models. 

The system can use PPG features, FEA features, or a combination of both PPG signals and facial 

expressions (feature fusion). 

 

Figure 29. PPG features and FEA features are extracted from each tutorial video. 

6.2.2.1 Feature Extraction 

PPG features 

As in AttentiveReview (Chapter 5), I extract 8 dimensions of heart rate variability 

(HRV): AVNN, SDNN, pNN60, rMSSD, SDANN, SDNNIDX, SDNNIDX / rMSSD, and MAD. 

After discarding the first and the last 10 seconds of a video, I use a k-second non-overlapping 

sliding window (local) and the video window (global) to extract HRV features (Figure 29). In 

total, 16 features (PPG features) were extracted from each tutorial video. 
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FEA features 

Inspired by the HRV feature set for PPG signals, I propose a new feature set, called 

Action Unit Variability (AUV), to capture the dynamic of facial features while a learner is 

watching a tutorial video. AUV has 8 dimensions: 1) AVAU (average action unit value); 2) 

SDAU (temporal standard deviations of action unit value); 3) MAXAU (the maximum value of 

action unit value); 4) rMSSD; 5) SDAAU (standard deviation of the averages of action unit value 

within an m-second segment); 6) SDAUIDX (mean of the standard deviations of action unit 

within an m-second segment); 7) SDAUIDX / rMSSD; 8) MAD. In each video, I extract 30 

(Affdex outputs) × 8 (AUVs) × 2 (global/local window) = 480 features (FEA features) and select 

the top 16 features using univariate ANOVA as in [21]. 

It is worth noticing that I replace pNN60 with a max pooling feature (MAXAU) in AUV.  

pNN60 is designed for NN intervals because it tracks the value changes every 60 units 

(milliseconds). On the other hand, facial expressions do not change that frequently. For example, 

a learner would smile a few seconds creating a sudden peak in the signal during a 6-minute 

video. Hence, a max pooling feature, monitoring signal peaks, is a better choice for FEA. 

Feature fusion 

To balance the contribution of each modality, the feature fusion set uses 16 features: the 

top 8 PPG features and the top 8 FEA features (selected by univariate ANOVA). 

PPG features and FEA features use 2 temporal parameters: the sliding window size (k 

seconds) and the segment length (m seconds). I treat k and m as hyper-parameters and tune for 

an optimal performance with k in {60s, 90s, 120s} and m in {3s, 5s, 10s, 20s, 30s, 50s, 60s}. The 

feature fusion set allows PPG features to use different temporal parameters from FEA features by 
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evaluating the Cartesian product of the top 5 temporal parameters from PPG features and the top 

5 temporal parameters from FEA features. 

In this study, I follow the experimental setting in [21] to balance the number of features 

from each modality: PPG features (16), FEA features (16), and feature fusion (8 PPG features + 

8 FEA features). This experimental setting gives a better insight on how each modality 

contributes to the final prediction. Features of each participant are normalized to the standard 

score (0 mean and 1 standard deviation).  

6.2.2.2 Model Building 

I built SVMs with RBF-kernels to detect learners’ affective and cognitive states while they are 

studying. The models were trained and evaluated using leave-one-participant-out cross-

validation. Therefore, the reported results are from user-independent models. I performed 

parameter tuning for the gamma of RBF kernels, the tradeoff margins and the class-specific 

weights of SVMs. 

6.3 EVALUATION 

6.3.1 Participants and Procedure 

There were 29 participants (8 females) from a local university participating in this study. The 

average age was 25.2 (σ = 4.5). Follow existing practices in handling outliers [22], I removed 

data of 3 participants because their reported ratings were almost identical across all experimental 

sessions which implied they had the same feeling throughout the study. 
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Figure 30. The experimental procedure (top) and some participants in the experiment (bottom). 

I used a within-subjects design in which participants watched three 6-minute tutorial 

videos. The video topics were Astronomy (GammaRay), Learning Science (Learn2Learn), and 

Programming (Figure 30). The video order was randomized for each participant. After each 

video, participants had a quiz and reported 6 emotions (boredom, confusion, curiosity, 

frustration, happiness, and self-efficacy) that they had while watching the video. These emotions 

are important in learning and have been studied by previous researchers [21,  78]. The quiz 

contained 7 multiple choice questions and the emotional survey used 7-point Likert scale 

questions.  

The experiment was completed on a Nexus 6 smartphone with a 5.96 inch and 2560 x 

1440 pixel display, 2.7 GHz quad-core processor, and running Android 7.0. The phone has a 13-

megapixel back camera with a LED flash and a 2-megapixel front camera. 

6.3.2 Results 

6.3.2.1 Subjective Feedback 

Overall, participants reported positive experiences with AttentiveLearner2. Sample comments 

include: “It’s pretty easy to start using it”, “The facial expression and pulse reader is cool”, and 

“Keep attention of viewer”. On the other hand, participants also raised concerns about the 
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proposed system. Some participants worried about the battery life (“[AttentiveLearner2] drains 

battery more quickly”) while others felt that the front camera preview widget is distractive (“The 

picture from camera are distractive, especially when it changes because the face is not detected” 

and “sometimes the face monitor hid the slides out, which could be quite annoying”). In fact, 

AttentiveLearner2 lasted 2 hours and 2 minutes after a full charge in my battery stress test (Table 

7). I believe this duration is sufficient for mobile MOOC learning given the average learning 

time of a certificate earner in MOOC is 2-3 hours per week [100]. I will work on the front 

camera widget issues in the future work. 

Table 7. Battery stress test results for video playback on a Google Nexus 6. 

Condition Duration 

Playback only 6 hours 24 minutes 

Ambidexter (no flash) 2 hours 23 minutes 

Ambidexter (flash) 2 hours 02 minutes 

6.3.2.2 Emotional Detection Performance 

I included Cohen’s Kappa, a statistic metric measuring inter-rater agreement (between the golden 

standard and model’s predictions), in addition to the Accuracy metric. Kappa is better than the 

Accuracy metric for skewed class labels because it considers both the positive and the negative 

classes [21].  Table 8 shows the performance of predicting emotions via PPG-based model, FEA-

based model, and models that combine these two modalities. All experimental models 

outperformed the majority vote baseline. The best model (using feature fusion) achieved Kappa 

= 0.71, accuracy = 91.0% while the worst model (using PPG features only) had Kappa = 0.22, 

accuracy = 80.8% when detecting Frustration. The overall performance is very promising, 

considering that I did not use any additional sensors in AttentiveLearner2. In general, FEA 

features gained better performance than PPG features in this study. The FEA-based model had 
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higher Kappa when detecting Boredom, Confusion, Frustration, Happiness, and Self-efficacy. 

The PPG-based model slightly outperformed FEA-based models when detecting Curiosity. 

Combining PPG features and FEA features improved the Kappa of Boredom detection by 

0.01 and Frustration detection by 0.02. The improvements (although very modest) of feature 

fusion models imply that both PPG features and FEA features are potential informative to each 

other. Chapter 8 will show a significant improvement when these two modalities are fused better. 

For example, Monkaresi et al. [92] also found an improvement when combining heart rate 

signals and facial expressions in learning. However, they only studied predicting learners’ 

engagement via dedicated sensors in desktop environments. 

Table 8. Emotion detection performance. 

Emotion Majority PPG FEA Feature fusion 

Accuracy Kappa Accuracy Kappa Accuracy Kappa Accuracy 

Boredom 70.5% 0.35 78.2% 0.56 84.6% 0.57 83.3% 

Confusion 74.4% 0.30 78.2% 0.65 88.5% 0.54 84.6% 

Curiosity 56.4% 0.46 74.4% 0.41 71.8% 0.43 73.1% 

Frustration 78.2% 0.22 80.8% 0.69 91.0% 0.71 91.0% 

Happiness 52.6% 0.41 70.5% 0.61 80.8% 0.61 80.8% 

Self-efficacy 70.5% 0.38 79.5% 0.70 88.5% 0.67 87.2% 

Average 67.1% 0.35 76.9% 0.60 84.2% 0.59 83.3% 
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6.4 DISCUSSIONS 

6.4.1 Facial Features and Detection Performance 

 

Figure 31. The performance of different facial feature sets: FEA5 (5 AUs), FEA20 (20 AUs), and 

FEA20+10 (20 AUs + 10 high level emotions). 

I systemically explored the impact of different dimensions of AU features and facial emotion 

features (emotional features derived from the facial expression, such as anger, contempt, and 

disgust) on prediction performance. This is first work exploring most of the combinations via 

unmodified mobile devices. I investigated 20 dimensions of AU features and 10 dimensions of 

facial emotion features (FEA20+10) versus two settings in previous studies, i.e. 5 dimensions of 

AU features (FEA5) [41] and 20 dimensions of AU features (FEA20) [21]. All models were 

trained with the same setting: using the top 16 AUV global and local features selected by 

univariate ANOVA. Figure 31 shows that including more AU features and facial emotion 

features can improve the system performance in 5 out of 6 emotions investigated. The only 
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exception was Confusion where FEA20 (Kappa = 0.66) outperformed FEA20+10 (Kappa = 

0.65).  

I found that AU1 (inner brow raise) and AU14 (dimpler) were the most discriminative 

features. In addition, two previously unexplored AUs contributed to the performance 

improvement of our FEA20+10 model, i.e. AU10 (upper lip raise), and AU18 (lip pucker). 

At the same time, I found that certain AU features were not informative and can be 

skipped e.g. AU12 (lip stretch), AU9 (nose wrinkle), and facial emotion features such as anger 

and fear. 

6.4.2 Failure Cases of the FEA Channel 

The FEA algorithm can detect faces with glasses or covered by scarves without any problem 

(Figure 28 bottom). However, I identified 6 situations where the front camera cannot capture 

facial data in this study (Figure 32). These situations belong to two categories: 1) challenging 

cases for facial alignment algorithm (a: multiple faces; b: occluded faces; and c: distorted face) 

and 2) less than ideal viewport of the front camera (d: out of viewport; e: face too close; and f: 

covered camera). I believe bad cases in the first category can be fixed by improving the face 

detection and facial landmark alignment algorithm. At the same time, bad cases in the second 

category are unique to using the front camera of a smartphone for real-time FEA and can be 

improved via better interaction design and proper feedback. For example, different from a 

webcam attached to a desktop monitor, the front camera on a smartphone is closer to a learner’s 

face. It would be beneficial to provide visual, tactile, or audio feedback when 1) a learner’s face 

is too close to the camera (e) or 2) a learner accidentally covers the front camera with his 

fingertip (f). 
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Figure 32. Situations when the facial expression module failed: a) multiple faces; b) occluded face; c) too-

intensive yawn; d) face out of viewport; e) face too close; and f) occluded camera. 

In comparison, the PPG channel is more robust than the FEA channel in this study. 

Figure 33 shows the aggregated duration of missing signals in every 30-sec bin in three learning 

topics. Here I define there is one missing signal at time t if there has been no signal for 3 seconds 

after time t. In general, AttentiveLearner2 collected significantly fewer FEA data than PPG data 

(p < 0.05). Interestingly, the number of missing signals for both FEA and PPG are positively 

correlated with the average Self-efficacy ratings (GammaRay: 2.9, Learn2Learn: 5.6, and 

Programming: 6.5). This result suggests that a learner is more likely to get distracted from 

lessons and generating more missing signals when she feels confident about a lesson. This 

finding confirms findings by Van der Sluis and colleagues [120] via clickstream analysis, where 

the authors found learners are less engaged in a lesson when the topic is either too easy or too 

hard. I also found that participants move their heads more often in the second half of a lesson 

(the last 3 minutes), leading to more missing signals in FEA. 

The aggregating signal from all participants and lessons, I found 1,539s missing data 

from either FEA, PPG, or both signals (5.5% total of time). Among these 1,539s, the distribution 
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of missing data is: 655s missing FEA (42.6%), 460s missing PPG (29.9%), and 424s missing 

both signals (27.6%) as shown in Figure 34. 

 

Figure 33. Accumulated missing facial data at every 30s in 3 videos. 

Only 27.6% of the missing time is missing both data. In these moments, FEA signals and 

PPG signals could not cover each other. However, from a qualitative analysis, I found 

participants did not watch tutorials in most of these times. For example, participants put the 

smartphone down to take a break and that behavior caused missing data from both channels. 

0%

5%

10%

15%

20%

0 50 100 150 200 250 300 350 400

M
is

si
n

g
 %

Time (s)

GammaRay

0%

5%

10%

15%

20%

0 50 100 150 200 250 300 350 400

M
is

si
n

g
 %

Time (s)

Learn2Learn

0%

5%

10%

15%

20%

0 50 100 150 200 250 300 350 400

M
is

si
n

g
 %

Time (s)

Programming

FEA PPG



 89 

On the other hand, the other 72.5% of missing data still collected one channel. As a 

result, the FEA channel can be used to cover the PPG channel and vice versa in most of the 

missing data moments. In other words, the signals from the FEA and the PPG channels were 

complementary and could save up to 72.5% of missing data time. 

 

Figure 34. Missing data distribution from all participants in all lessons. 

6.4.3 Coarse-grained and Fine-grained Feedback 

The learners’ emotions detected by AttentiveLearner2 can be beneficial to both instructors and 

learners. For example, predicted emotions from a group of learners can be aligned and 

aggregated to a marker to indicate the quality of the learning video. The instructors can use such 

aggregated feedback to pinpoint learning topics that need revising next time. The inferred 

affective and cognitive states can be used to support individual learners by providing 

personalized interventions such as adaptive review [98]. 

For example, here I should how AU signals collected in Ambidexter can provide a fine-

grained understanding of each learner throughout the learning process. I first quantize learners’ 
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emotions into four discrete states, i.e. positive, neutral, negative, and missing (Table 9). I define 

an emotion at a given moment to be positive if 1) it is good for learning and 2) the amplitude is 

higher than a given threshold. For example, paying attention to the learning video is a positive 

expression. A positive expression does not need to be a positive valence, e.g. smiling. I choose a 

high threshold (75/100) to keep only strong expressions because expressions having low output 

scores may be noise. 

Table 9. Facial expression categorization. 

Expression Value Range Category 

 Anger [0, 100] (-) if > threshold 

 Contempt [0, 100] (-) if > threshold 

 Disgust [0, 100] (-) if > threshold 

 Engagement [0, 100] (+) if > threshold 

 Fear [0, 100] (-) if > threshold 

 Joy [0, 100] (+) if > threshold 

 Sadness [0, 100] (-) if > threshold 

 Surprise [0, 100] (+) if > threshold 

Valence [-100, 100] 
(+) if > threshold; 

(-) if < -threshold 

 Attention [0, 100] (+) if > threshold 

 

Facial expressions are accumulated into 1-second windows. A window is classified as 

positive if it only contains strong positive expressions. A window is classified as negative if it 
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contains at least one negative expression. Otherwise, if the window only contains weak 

expressions, it is classified as neutral. 

Figure 35 shows the facial expression distributions in 3 videos from 26 participants. In 

general, positive expressions dominated the whole learning process. The result is confirmed by 

our usability evaluation results, where participants reported that they have a good experience 

when using Ambidexter. On average, I collected 90.1% positive, 4.9% negative, and 1.5% 

neutral facial expressions. Using the aggregated data from all learners, Ambidexter can provide 

coarse-grained feedback over each lesson or the entire course. 

 

Figure 35. Aggregated facial expression distributions in 3 videos. 

I can also obtain multiple types of fine-grained feedback from Figure 35. First, by 

aggregating negative expressions from all participants, I can identify the exact moment of each 

lecture that most of the learners show negative expressions. In our study, such moments were the 
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1st, 8th, 17th, 96th, 133th, 135th, 202nd, and 346th second of GammaRay (4 learners); the 1st second 

of Learn2Learn (4 learners); and the 5th second of Programming (8 learners). Second, it is easy to 

discover that the distribution of negative expressions was not uniform. Some participants showed 

more negative expressions than others. For example, P8 showed most negative expressions 

among all participants (GammaRay: 216s, Learn2Learn: 58s, and Programming: 107s). Given 

this information, instructors and automatic algorithms running on MOOC platforms can adopt 

appropriate interventions to scaffold struggling learners. 

By including facial expressions as an additional modality, AttentiveLearner2 has at least 

two advantages when compared with AttentiveLearner [97, 130]. First, combining both the PPG 

channel and the FEA channel leads to higher accuracies for emotional detection. Second, in 

addition to the PPG’s feedback channel, AttentiveLearner2 enables supplemental coarse-grained 

and fine-grained feedback from the facial expressions modality.  

However, enabling the FEA modality also brings new challenges when compared with a 

uni-modal system. First, a multimodal system requires significantly more computing power. 

Second, the high missing signal rate in the FEA data may pose additional challenges for machine 

learning algorithms expecting continual temporal data, e.g. Hidden Markov Models. Last but not 

least, detecting and analyzing facial expressions also brings new security and privacy concerns. 

For example, two participants in our study thought FEA data collection is too invasive. They felt 

more comfortable to provide PPG data (heart rates) rather than their facial expressions. 
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6.5 SUMMARY 

Extending the unimodal AttentiveLearner, AttentiveLearner2 is the first multimodal intelligent 

educational system for MOOCs using both PPG signals and facial expressions. Inspired by the 

HRV feature set, the new AUV feature set was proposed to capture dynamics of facial data while 

learning. My findings are that using facial expressions have better performance than PPG signals 

in 5 out of 9 emotions. However, using PPG signals in addition to facial expressions showed the 

potential of improving the overall performance. In this chapter, PPG signals had the best 

performance in detecting Curiosity. On the other hand, combining PPG signals and facial 

expressions together can lead to some modest improvements, which is a potential future study. 

Even though the improvements were not significant compared to facial expressions’ 

performance, they showed the promising of a more robust emotion detection with multimodal 

interfaces. Note that in this chapter, I only explored feature fusion approaches. Model fusion 

approaches are other alternatives that worth to try (Chapter 8). In short, AttentiveLearner2 can 

detect emotions in mobile MOOC learning with high accuracy (average accuracy = 84.4% across 

6 emotions). 

Though the inferred emotions can help us better understand the learning process in 

MOOC, it is not sure if this multimodal interface has direct benefits to learners, such as 

improving learning outcomes. In the next chapter, I will explore how the multimodal interface 

can provide adaptive interventions to improve MOOC learning. 
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7.0  ATTENTIVEREVIEW2: IMPROVING MOOC LEARNING VIA A 

MULTIMODAL INTERFACE ON UNMODIFIED SMARTPHONES 

From the inspiring results of AttentiveLearner2 [98], I study the ability of the multimodal 

interface on unmodified smartphones providing adaptive learning and improving learning 

outcomes in mobile MOOC learning.  Different from previous chapters in which systems were 

evaluated in a single session, in this chapter, I evaluate the multimodal interface, called 

AttentiveReview2, in a 3-week longitudinal user study. 

 

7.1 BACKGROUND 

Much of the previous work on personalization in MOOCs relies on learners’ content mastery. 

Brinton et al. [13] achieved a significantly higher percentage of lessons viewed (70.0%) when 

personalized learning schedules were created based on learners’ browsing history. Miranda and 

colleagues [90] generated customized assessment questions based on students’ assessment 

performance. In another approach, Raghuveer et al. [104] used students’ learning objectives to 

customize their learning paths. These approaches depend on learners’ active participation. 

However, MOOC learners participate in few MOOC activities besides video watching [18, 138].  
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Weiner’s attributional theory [127] stated that cognitive and affective states will have 

direct and indirect influences on the learning outcomes. Researchers from intelligent tutoring 

systems (ITS) have used various data sources, e.g. physiological signals [2, 25, 115] and facial 

expressions [41], as input channels to infer learners’ cognitive and affective states without the 

learners’ explicit participation. Szafir and Mutlu [115] collected electroencephalogram (EEG) 

signal to detect learners’ attention in each lesson’s topic. Afergan et al. [2] inferred learners’ 

perceived difficulties by analyzing their brain signals from functional Near Infrared 

Spectroscopy (fNIR). D’Mello and colleagues [25] captured students’ mind-wandering moments 

through their eye gazes. Grafsgaard et al. [41] analyzed learners’ facial expressions to classify 

learners as, for instance, engaged or frustrated. With PPG signals, Pham and Wang [98] inferred 

learners’ perceived difficulties, while Xiao and Wang [131] detected learners’ engagement. 

Different adaptive interventions have been proposed based on the inferred cognitive/affective 

states to improve learning. The most popular intervention is rereading (review) which has been 

considered one of the most effective learning techniques [33]. Adaptive review content could be 

chosen based on learners’ attention [115], perceived difficulty [2], or mind-wandering [25]. The 

spaced rereading approach (in which some amount of time passes or intervening material is 

presented between initial study and restudy) was more effective than massed rereading 

(immediate review) in the reading context [33]. 

Previous work [21, 92] has shown that by combining multiple signals (multimodal), the 

system’s performance can be improved. D’Mello and Graesser [21] got about 0.20 improvements 

in Kappa when combining facial expressions, posture data, and dialog cues to classify 4 

emotions with AutoTutor. Monkaresi et al. [92] ensembled models of heart rate and models of 
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facial expressions and improved Area Under Curve approximately 0.10 when detecting 

engagement. 

However, much of the previous work, especially multimodal approaches, requires 

additional sensors to collect learners’ data. The additional hardware requirement implies extra 

cost, usage obtrusiveness, and availability when learning. Those obstacles make it more 

challenging to have a robust multimodal affect-aware intelligent adaptive learning system for 

MOOCs. 

7.2 ATTENTIVEREVIEW2 

 

Figure 36. AttentiveReview2’s interface with three input channels: PPG signals, facial expressions, and 

clicks. 

AttentiveReview2 uses both the back and the front camera for video control and collecting PPG 

signals and facial expressions from learners as AttentiveLearner2 (Figure 36). In this chapter, I 

integrate click logging to the existing AttentiveReview2. With this modification, the system can 

collect three different data channels, i.e. PPG signals, facial expressions, and clicking, on 

unmodified smartphones. From my analysis, click data gives valuable information benefiting 
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MOOC instructors. However, different from AttentiveLearner2, AttentiveReview2 has a 

personalized component suggesting which topic in a lesson the learner should review. 

7.2.1 Adaptive Learning Interaction 

AttentiveReview2 suggests a learner reviewing the most perceived difficult topic in a lesson. The 

perceived difficulty ranking model was built using data from Pham and Wang [101]. Because the 

previous version of AttentiveReview2, i.e. AttentiveLearner2 [99, 101], only used PPG signals 

and facial expressions for perceived difficulty ranking, the model built for this study does not use 

clicking data. I use the feature fusion method in Chapter 6 for AttentiveReview2. 

7.2.1.1 Perceived Difficulty Ranking Model 

The top 8 HRV features and top 8 AUV features are fed into an SVM ranking model to rank a 

learners’ perceived difficulty of each topic in a lesson. The SVM ranking model was trained 

using collected data from Chapter 6. 

7.3 USER STUDY 

7.3.1 Experimental Design 

Gütl et al. [46] found that most of the dropout changes in MOOCs occurring in the first 3 weeks. 

I design a 3-week user study (2 lessons/week) for this longitudinal study. 
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7.3.1.1 Learning Material 

Follow previous work on adaptive learning in mobile MOOC learning [98], I composed 3 topics 

in each experimental lesson (3 × 6 = 18 topics in total). Each topic was a lesson selected from a 

real course in Coursera, i.e. Model Thinking (teaching statistical models), offered by Professor 

Scott E. Page from University of Michigan. Each experimental lesson was composed of 3 lessons 

of the same week of the course. Each topic was modified to fit within 6 minutes (18 

minutes/lesson). There are 6 multiple choice questions for each topic (3 for pretest and 3 for 

weekly test). 

7.3.1.2 Reviewing Methods 

Chapter 5 showed the effectiveness of suggesting review the most difficult topic. However, 

given different difficulty levels, I hypothesize that review the easiest topic would be effective in 

certain situations. For example, if a learner does not understand any topics in a lesson, reviewing 

the easiest topic would be more effective than reviewing the most difficult topic. I evaluated 2 

reviewing conditions: reviewing the most difficult topic (Hard-Review) and reviewing the least 

difficult topic (Easy-Review). Previous work [98] found the Easy-Review condition had a 

significantly worse performance than reviewing all topics of a lesson. It is possible that the low 

effective results would negatively affect their tests’ performance. I made two design decisions to 

reduce the negative effects (if any) from Easy-Review. First, I reduced the number of Easy-

Review compared to Hard-Review by using a single-subject design which assigns 2 Easy-

Reviews and 4 Hard-Reviews to each participant. Second, I interleaved an Hard-Review between 

2 Easy-Reviews. The locations of Easy-Review were distributed across 6 lessons. As a result, I 

had 4 groups of participant: HHHEHE, HHEHEH, HEHEHH, and EHEHHH; given H is Hard-

Review and E is Easy-Review (Figure 37). 
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7.3.2 Procedure 

 

Figure 37. The experimental procedure of the user study. 

Figure 37 showed the study procedure. Each participant came to our lab 6 times for 

MOOC learning and another time for the final test. To offer the flexibility in learning schedule, 

which is a common theme in MOOCs, I let participants select the schedule by themselves. There 

were 2 constraints for the scheduling: each week has two sessions (lessons) and the two lessons 

cannot be learned in the same day. 

In the first day, participants were introduced to the study, signed the consent form, and 

took a quick demonstration on how to use AttentiveReview2. 

Before starting a new lesson, participants review a topic (suggested by AttentiveReview2) 

of the previous lesson. This spaced reviewing approach has shown better effects than an instant 

reviewing in reading comprehension [121]. Participants took a weekly test after taking 2 lessons 

of a week. The weekly test was conducted before the starting of the next lesson, except the last 

weekly test was done in week 4. I also collected weekly usability surveys to evaluate the changes 

(if any) in participants’ perspective over time. The usability survey includes 10 questions of the 
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Review group

Hard-Review Easy-Review Hard-Review Easy-Review Hard-Review Hard-Review

Easy-Review Hard-Review Easy-Review Hard-Review Hard-Review Hard-Review
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System Usability Scale (SUS) [15]. The usability survey was collected at the end of each week 

allowing participants having more time to experience the system, especially in the first week. A 

pretest was conducted before lesson 1 of the study. 

After each lesson, I collected participants’ self-report about their emotions, e.g. curiosity, 

boredom, and confusion, towards each topic in the lesson using 7-point Likert scale questions. 

7.3.3 Participant and Apparatus 

There were 28 participants from a local university (12 females), of whom average age was 26.3 

(σ = 3.9), joining the user study. Many of the participants have experience with MOOC learning 

(20/28 have taken at least one MOOC), in which 18 participants have experience of watching 

tutorial videos on smartphones. 

The user study was conducted on a Nexus 6 smartphone (Android 7.0) having a 5.96 

inch, 2560 x 1440 pixel display and a 2.7 GHz quad-core processor. The phone was equipped 

with a 13-megapixel back camera and a 2-megapixel front camera. 

7.4 RESULTS 

7.4.1 Subjective Feedback 

The average SUS over 3 weeks of this study was 80.5 (σ = 11.8), in which week 1 was 79.2 (σ = 

10.6), week 2 was 80.5 (σ = 12.4), and week 3 was 81.6 (σ = 12.4). Previous work found the 

average SUS from 500 products is 68 [108] and an 80-ish SUS indicates a good product [4]. 
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Even though there was a small increase of SUS after every week, I did not find any significant 

differences between SUS of 3 weeks. 

Besides the SUS, I also collected weekly usability surveys about AttentiveReview2. At 

first, participants were impressed by system’s ability to collect multimodal signals via two 

cameras (week 1). However, it is AttentiveReview2’s usability and adaptive intervention that 

made participants like the system after using it (week 2 and 3). For example, some typical Liked 

feedback for multimodal via two cameras are: “I like the auto pause feature [on-lens finger 

gesture]” and “A lot of functions but video plays very smoothly”. On the other hand, some Liked 

feedback about usability in week 2 and 3 are: “very easy to use and learn, very responsive” and 

“personalized review recommendations”. 

Similarly, participants gave different disliked feedback in different weekly surveys. In 

week 1, participants raised concerns about the watching posture with facial tracking and on-lens 

finger gestures, e.g. “The face reader seems to turn off frequently”, “The face camera can be 

distracting with the flashing”, and “can't move finger/hand”. However, after some learning 

sessions (week 2 and 3), participants did not worry about the posture but the front camera widget 

and learning materials, e.g. “A video is long” or “can only review 1 subsession among 3. There 

is a possibility that I didn't learn well for 2 or 3 of them”. Even though participants had used 

AttentiveReview2 in 6 lessons of this study, they still had some issues with the front camera, e.g. 

“sometimes, you can cover the front camera”. Detecting facial expressions directly from a 

smartphone is more challenging than from PC/laptop. Pham and Wang [101] found 3 challenging 

use cases of detecting learners’ faces from the smartphone’s front camera, i.e. covered front 

camera, face too close, and face out of the viewport. However, I also found participants getting 

used to the front camera control over time. First, the comments about front camera widgets were 
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less confirmative than in the last two weeks, as I saw the word “sometimes” frequently. Second, 

there were several comments like “Facial recognition seems to have improved this week even 

when I was wearing my glasses”. In fact, I did not modify AttentiveReview2 throughout the 

study. The more responsive from facial expressions means better skills acquired by participants. 

7.4.2 Review Effectiveness 

The Hard-Review (or the Easy-Review) review method suggests the least (or the most) difficult 

topic out of 3 topics in each lesson. The different recommending strategies would lead to 

different effectiveness when applying on difficult topics and easy topics. To evaluate the 

reviewing effectiveness in difficult and easy topics, I categorize the top 50.0% as easy lessons (4, 

2, 1) and the bottom 50.0% as hard lessons (6, 3, 5). Figure 38 showed the average weekly test 

scores of two review methods in easy lessons and hard lessons. The average score of Hard-

Review on easy lessons is 53.8% (σ = 0.2) and on hard lessons is 36.7% (σ = 0.2). While the 

mean score of Easy-Review on easy lessons is 65.5% (σ = 0.2) and on hard lessons is 45.2% (σ = 

0.2). Applying Hard-Review on easy lessons was significantly worse than applying Easy-Review 

(t(64)=-2.38, p < 0.05). However, the performance of the Hard-Review is comparable with the 

Easy-Review in hard lessons as there were no significant differences between them (t(64)=-1.88, 

p = 0.06). This result suggested that, in this study, Hard-Review was not as effective as Easy-

Review. 
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Figure 38. Average weekly test scores of the Adaptive and Counter-Adaptive methods in 2 groups: easy 

lessons and hard lessons. 

7.5 SIGNAL ANALYSIS 

7.5.1 Facial Expression 

Affdex outputs both basic AUs and emotional features. Counting number of video frames 

containing a specific emotional output from Affdex, I found a skewed distribution among 9 

emotions: anger (174), fear (247), sadness (794), surprise (9,999), joy (18,371), disgust (20,621), 

contempt (71,833), engagement (105,438), attention (1,800,630). The output range of these 9 

emotions in Affdex is [0, 100] which implies the detection confidence. I discarded all outputs 

less than 50 to avoid noisy predictions. Most of the time, participants did not show many 

emotions, except the ones related to video watching process, i.e. attention and engagement. Other 

emotions, especially negative emotions (anger, fear, and sadness), did not appear frequently 

learning (ratios of anger, fear, and sadness to attention are 9×10-5, 13×10-5, and 44×10-5, 
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respectively). This skewness distribution was also observed in previous studies for intelligent 

tutoring systems [23] and mobile MOOC learning [134]. An explanation for this phenomenon 

would be participants tend to hide their negative facial expressions during the study [21, 82]. 

 

Figure 39. Facial emotions expressed by participants. Each 3x3 square indicates which emotion types 

expressed by a participant. 

Figure 39 showed which emotions were expressed by whom across six lessons in this 

study. Each row is a lesson and each column represents a participant. A 3x3 square indicated 

which emotion type a participant expressed in a lesson. An empty color cell in the square means 

the participant did not express that emotion anytime during the lesson. Emotion types are (from 

left to right, top to bottom): anger, fear, sadness, surprise, joy, disgust, contempt, engagement, 

and attention. As expected, the three most frequent emotions (contempt, engagement, and 

attention) were expressed by all participants in every lesson. Beside contempt, another negative 

emotion (disgust) was also expressed by many participants. In fact, AttentiveLearner2 [99, 101] 

found that both contempt and disgust expressions are helpful to detect learners’ confusion, which 

frequently appears in learning [21]. Indeed, some negative emotions, e.g. confusion, has a 

positive relationship with learning [74]. Therefore, when a learner expresses some negative 

expressions related to confusion (disgust or contempt), it would not be a bad sign. 

Furthermore, the aggregated values of each emotion type can give implicit fine-grained 

feedback to instructors. Figure 40 showed the percentage of participants expressing engagement 
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in every 30s of each lesson. There was a sudden drop in participants expressing engagement 

(only within the first 30s) at the beginning of all lessons. The high engagement expression at the 

beginning of each lesson can be explained as I suggested all participants adjusting their postures 

to make sure the facial recognition works before learning. On the other hand, each lesson has 

different interesting points where most participants stay engaged, e.g. lesson 1: the 9.5th minute 

with 18 participants or lesson 3: the 11th minute with 20 participants. These high peaks in Figure 

40 could serve as good examples for next deployments of the course. By contrast, not many 

participants feel engaged throughout lesson 4, which could raise an immediate alert to the course 

instructors implicitly.  

 

Figure 40. Number of participants showed Engagement expressions in every 10s across six lessons. 
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One limitation of facial expression analysis in our study is missing data. Compared to 

PPG signal, facial data experience significantly more missing data. Using pairwise t-tests, I 

found the average missing data of all participants across the user study of facial expression 

(223.6s, σ=281.1) is significantly longer than of PPG signal (5.69s, σ=6.33) with t(54)=4.03, p < 

0.01. I defined a time t as a missing moment of a modality (facial data or PPG) when t lasts 

longer than 2s and AttentiveReview2 did not receive any data from the modality during t. This 2-

second threshold is quite conservative given the framerate of the back and the front cameras is 

around 30 frames per second. 

7.5.2 Touching Data 

 

Figure 41. On-screen click locations and timestamps of all participants in all lessons. 

As AttentiveReview2 using on-lens finger gestures for video controlling, clicking the touch 

screen is not necessary. Unexpectedly, participants clicked a lot in the user study (on average, 

there were 10.25 clicks per participant per lesson). As I disabled the auto-dim function in 

AttentiveReview2, participants did not need to touch the screen to make it brighter after some 

idle times. Figure 41 showed the locations and timestamps of clicks in this study. The darker a 
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click is plotted, the later the click was done in a lesson (normalized as the percentage of each 

lesson’s length). Participants clicked at different locations of the screen but most of the clicks 

were not directly on the interface’s widgets but located on two sides of the video screen. 

The touching data was not equally distributed among different participants. Figure 42 

showed touching data moments of 28 participants. The figure was sorted by the total number of 

clicking moments of each participant. More clicks were done in the later lessons, e.g. lesson 5 

and lesson 6, than at the first lessons. I also saw more clicks at the end of a lesson than at the 

beginning. From observations during the study and follow-up interviews, participants clicked the 

touch screen to check the tutorial’s remaining time from the pop-up progress bar. 

 

Figure 42. Touching data of 28 participants across 6 lessons. In each subplot, the horizontal axis is the 

lesson length and vertical axis is lesson number. Subplots were sorted by the number of click moments. 

Selecting the extreme groups of clicking participants, i.e. top 25.0% clicking participants 

(Figure 42, top row) and bottom 25.0% clicking participants (Figure 42, bottom row), I found a 

correlation between their curiosity ratings and number of clicks using Spearman correlation (rho 

= 0.17, p < 0.01). The result suggested that when a participant clicking a lot while watching a 

tutorial video, she would lose curiosity about the lesson and only wait until the end of the lesson. 
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To further evaluate the predicting ability of clicks, I build machine learning models 

predicting curiosity ratings and weekly test scores using: PPG signals, facial data, clicks, and the 

fusion of these channels. The PPG models use 16 HRV features as in the perceived difficult 

ranking model. Similarly, the facial data models use 16 AUV features of the perceived difficult 

ranking model. I extract click features using the same global and local sliding windows as for 

PPG signals and facial data. In particular, I extract the following features: total clicks, mean of 

click moment, the standard deviation of click moments, min of click moments, max of click 

moments, mean of latency between clicks, the standard deviation of latency between clicks, min 

of latency between clicks, and max of latency between clicks. Only top 16 click features were 

selected for click models. The feature fusion model uses 16 HRV features, 16 AUV features, and 

16 click features. I used linear regression to predict curiosity ratings and weekly test scores. 

 

Figure 43. Curiosity ratings and weekly test scores prediction with three input channels. 

Figure 43 showed the performance of three input channels in predicting curiosity ratings 

and weekly test scores. Click features did not give significant advantages over PPG signals and 

facial data. When predicting curiosity ratings, PPG signals were significantly or marginally 

better than both facial data (t(167) = -1.98, p < 0.05) and click (t(167) = -1.75, p < 0.10). When 

adding all channels, the feature fusion model was significantly better than click models (t(167) = 

Curiosity ratings Weekly test scores



 109 

-2.08, p < 0.05). However, when predicting weekly test scores, while click features had higher 

mean square error (MSE) than other channels but I did not find any significant difference 

between them. These results showed that information collected from unmodified smartphones 

using the multimodal interface AttentiveReview2 achieved more robust performance than the 

traditional clickstream analysis of current MOOC technology. 

7.6 DISCUSSIONS 

The experiment design reduced the effect of Easy-Review (if any) using 4 participant groups and 

balancing across 6 lessons (Figure 37). However, this design assigned more Easy-Review in 

week 2 (lesson 3 and lesson 4) than week 1 and week 3. Even though this unbalanced assignment 

would affect the test results in week 2, I think its effects were minimal because participants did 

not know there were 2 types of review recommendation and when which review method was 

used. 

Figure 38 showed Easy-Review leading to better scores than Hard-Review. This result 

conflicted with the findings in AttentiveReview [98] (Chapter 5) where I found Hard-Review has 

comparable performance with Easy-Review. I think the differences in effectiveness between this 

study and chapter 5 could come from the gap between learners’ capability and lessons’ difficulty. 

According to the zone of proximal development (ZPD) [16], a learner can only benefit from 

scaffolding if the lesson is not too difficult. As the topics used in this study contain many 

mathematical equations and models, it would be challenging for our participants. In particular, I 

hypothesize that all topics in the hard lesson (Figure 38) were out of the range where our 

participants can benefit from any adaptive reviewing methods. On the other hand, the easy 
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lessons may contain both topics that are in the zone of proximal development and the topics that 

are more difficult. Consequently, Hard-Review recommended topics outside the zone, thus, 

having no positive impacts. This hypothesis also explains the different findings between this 

study and the AttentiveReview’s study. In fact, I used simple introductions of law in chapter 5 

[98]. The content would require verbal memorizing rather than equation interpretation compared 

to this study. In other words, lessons in chapter 5 contain some topics in the zone of proximal 

development and the other topics are not difficult. Therefore, Easy-Review method encountered 

the ceiling effects when suggested reviewing the easiest topic. Hard-Review method gained 

benefits because of recommending topics in the zone of proximal development. However, 

follow-up studies need to be conducted to validate this hypothesis. 

From the results of this study, I have 3 future work. First, even though the user study was 

deployed for 3 weeks (longitudinal), it was conducted in a lab-based setting. All participants 

must come to our office for the user study. The findings in this project may be biased to the 

environment in our office. I plan to deploy AttentiveReview2 in the wild for a MOOC course to 

get a more generalized result of the system. 

Second, Verkoeijen et al. [196] found the rereading performance depends on the 

rereading time compared to the learning time. In particular, the authors found reviewing the 

material after a long period, e.g. 3.5 weeks, did not give advantage compared to reviewing after a 

short period, e.g. 4 days. However, the finding was based on reviewing the entire lesson which is 

different from adaptive, topic-based reviewing in this study. I found another factor affecting the 

reviewing performance, i.e. material’s difficulty. In particular, reviewing a topic can only benefit 

if the topic is in the ZPD. The selection of reviewing the most difficult or the easiest topic has to 



 111 

take each learner’s ZPD into account. Another possibility is creating better reviewing material 

rather than simply repeat the original topic, hence, a learner can digest the difficult topic better. 

Last but not least, the front camera widget was originally designed as a feedback channel 

assisting users to know if AttentiveReview2 can collect their facial data properly. As there were 

many missing facial data moments from the user study, it is possible that the front camera widget 

showed and hid the yellow indicator multiple times. Consequently, many participants found the 

widget was distractive, e.g. “Face detection was not stable which consistently made me 

distracted”, “Sometimes it can't detect my face. So it's a little bit distracting”, and “The face 

tracking window is sometime distractive. The yellow face blink sometime”. Previous work using 

facial data [7, 12, 16] did not use data collection indicators.  However, previous work studied 

with PCs and webcams, while facial detection in mobile learning has its own challenges [195]. In 

fact, the front camera widget helped reducing missing facial data. Because missing facial data 

was distributed as segments in this study, which means participants used the widget to adjust 

their postures along the lesson to improve the data collection task. Designing an indicator of 

facial data collection without distracting users is an interesting future work. 

7.7 SUMMARY 

I presented AttentiveReview2, an intelligent tutoring system running on unmodified smartphones, 

which can collect three different data sources: PPG signals, facial expressions, and clicks. 

Through a 3-week longitudinal study with 28 participants, I found AttentiveReview2 can 

improve learning outcomes. The two experimental adaptive reviewing methods improve learning 

outcomes with different effects. These findings can be helpful to build a topic-wise adaptive 
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reviewing method strategy. The interface is easy to use and responsive. I showed that facial 

expressions can provide rich and fine-grained insights about the learning process but this channel 

has a problem with missing data. On the other hand, click data from extreme groups was related 

with learners’ curiosity. In short, AttentiveReview2 showed the feasibility of having a powerful 

and effective affect-aware intelligent tutoring system on today’s smartphones without additional 

hardware modifications. 
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8.0  ATTENTIVEVIDEO: QUANTIFYING EMOTIONAL RESPONSES TO MOBILE 

VIDEO ADVERTISEMENTS 

In previous chapters, I introduced unimodal and multimodal interfaces in mobile MOOC 

learning. The scalable approach, running on unmodified smartphones, however, is applicable for 

other domains using video consumption on smartphones. In this chapter, I present 

AttentiveVideo, an extension of AttentiveLearner2, for detecting viewers’ emotional responses to 

mobile advertising. The content of this chapter can be found in the published paper [100]. 

 

8.1 BACKGROUND 

During the past 20 years, researchers have improved the effectiveness of direct response 

advertising [7] by identifying crucial factors and empirical techniques, such as item-based 

collaborative filtering [76], named entities recognition [14], relevant embedded positions [88], 

and animation in ad banners [77]. Large scale, data-driven approaches optimize short-term 

behavior metrics, such as CTR [77, 137], CVR [73, 141] and viewing duration [75], are 

becoming the de-facto standard for evaluating the efficacy of direct response advertising. 

Meanwhile, the evaluation and improvement of branding advertising is still an open 

problem. Self-report and polling [1, 89, 112] are the most popular techniques to date. These 
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technologies, though, require additional cognitive workload in reporting one’s emotional 

responses to ads. Meanwhile, researchers have explored the use of autonomic feedback channels, 

e.g. skin conductance [89], heart rate [71, 89], and facial expressions [83], to measure 

participants’ subjective feelings towards an advertisement. However, most of the existing 

research efforts have focused on the feasibility of dedicated sensors and PC environments. The 

requirements on dedicated sensors and a high-speed network prevent the wide adoption of these 

approaches in everyday settings, especially in mobile environments. In comparison, I show that it 

is possible to leverage the front camera and the back camera on smartphones to capture and infer 

a rich set of viewer’s emotional responses to video advertisements without any hardware 

modifications. 

AttentiveVideo can detect emotional responses to ads on unmodified smartphones and 

has the potential to be deployed on a large scale. 

8.2 DESIGN OF ATTENTIVEVIDEO 

AttentiveVideo is designed as a video player for mobile devices. I expect end-users will use 

AttentiveVideo to watch copyrighted yet ad-subsidized movies or TV shows on their 

smartphones. AttentiveVideo has three unique features when compared to existing mobile video 

players: 1) the dual video control interface, i.e. on-screen UI widgets for controlling regular 

videos and on-lens finger gestures for controlling ads, 2) an autonomic feedback collection 

interface (similar to AttentiveLearner2 [99, 101]), and 3) affect inference algorithms. 
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8.2.1 Dual Video Control Interface 

 

Figure 44. AttentiveVideo with dual video controls (top: touch widgets for non-ad video watching; bottom: 

on-lens finger gestures from the back camera and facial tracking from the front camera for advertisement watching). 

In AttentiveVideo, the on-screen UI widgets for controlling the playback of regular videos are 

similar to existing mobile video players (Figure 44, top). 

When it is time to show a sponsored advertisement video, AttentiveVideo uses the on-

lens finger gesture video control (Figure 44, bottom). 

This seemingly “awkward” video control mechanism has at least three advantages in the 

context of subsidized mobile advertising: 1) this mechanism intentionally makes it harder for a 

viewer to skip the sponsored advertisement. Only live body parts (e.g. finger or earlobe) 

supporting PPG sensing can be used for lens-covering to enable ad playback. Paradoxically, 

making the ad hard to skip is beneficial to both advertisers and viewers. Advertisers can get 

increased reception and richer feedback. Consequently, viewers can enjoy more and higher 

quality video resources sponsored by advertisers. Meanwhile, viewers always have the freedom 

to switch to a "pay-per-view" option if they are not interested in ad watching; 2) it provides 

Tap to play/pause

Swipe to adjust seekbar

Cover the lens   =

Uncover the lens =
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natural tactile feedback from the bezel of the back camera when a user is holding the phone in 

landscape mode; and 3) the cover-and-hold gesture allows AttentiveVideo to implicitly capture 

the user’s physiological signals and facial expressions during ad watching. As detailed in follow-

up sections, such PPG signals and facial expressions can be used to infer users’ emotions during 

the advertisement and are valuable to advertisers. Xiao and Wang [130] have also found this on-

lens finger gesture intuitive and comfortable to use in a series of disciplined usability studies. In 

this chapter, I explore the feasibility of further reducing user effort by minimizing the covering 

time in a video while keeping the system’s accuracy high. 

8.2.2 Feedback Collection 

8.2.2.1 PPG Signal 

I extract 10 dimensions of HRV-related features from the NN intervals: AVNN, SDNN, rMSSD, 

pNN5, pNN10, pNN20, SDANN, SDNNIDX, SDNNIDX/ rMSSD, and MAD. Since the 

duration of an ad is relatively brief when compared with a MOOC tutorial video, I replaced the 

common pNN50 feature with pNN5, pNN10, and pNN20. For each participant, all features were 

rescaled to [0, 1]. 

For each advertisement, the 10 dimensions of PPG features above were extracted in two 

different settings, i.e. the session feature set (SessionPPG) and the local difference feature set 

(LocalDiff). SessionPPG includes 10 dimensions of HRV features from an entire ad. LocalDiff 

extracted 10 dimensions of HRV features from both the first and the second half of the ad and 

then calculated their relative differences. Figure 45 illustrates how SessionPPG and LocalDiff 

were extracted from an ad. While SessionPPG had been successfully used in previous research 
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[130], to the best of our knowledge, this work is the first to define and use LocalDiff features on 

PPG signals.  

 

Figure 45. Extracting SessionPPG and LocalDiff features. 

8.2.2.2 Facial Expression 

 

Figure 46. Example faces showing 26 landmarks detected. 

AttentiveVideo used Affdex SDK [87] to analyze facial expressions from the recorded clips. The 

means and standard deviations of 24 output features (15 action units and 9 emotions) were 

extracted for each advertisement in its entirety. In a preliminary analysis, using the top 10 

features, chosen by Weka’s InfoGain feature selection, led to a 2.0%-15.0% accuracy 

improvement in detecting emotional states when compared to using all 48 features. Therefore, I 

used the top 10 features of the experiment analysis. From now on, the facial expression features 
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are referred as FEA features. Figure 46 shows four examples of faces detected by Affdex SDK 

with 26 feature points (landmarks). 

8.2.2.3 Combining PPG and Facial Features (Feature Fusion) 

To build multimodal systems, I used the feature fusion [21] approach to combine PPG signal 

features and FEA features. I only used the top 10 multimodal features selected by Weka’s 

InfoGain to minimize the curse of dimensionality, i.e., the multimodal systems used the top 10 

features of SessionPPG + FEA feature or the top 10 features of LocalDiff + FEA features. 

8.2.3 Affect Inference Algorithms 

8.2.3.1 Super Vector Machines 

Similar to AttentiveLearner2 [99, 101], I built RBF-kernel SVMs using the implicitly captured 

PPG signals and facial expressions to infer viewers’ emotional responses to advertising videos. 

Different from previous approaches in MOOC learning on unmodified smartphones [97, 98, 130, 

131, 132], there are at least two unique challenges when inferring emotional responses to mobile 

advertising. First, a video ad is much shorter (e.g. 15 - 60 seconds) than a tutorial video clip in 

MOOCs (e.g. 3 - 30 minutes), demanding higher sensitivity; Second, advertisers care about 

viewers’ emotions such as “like” elicited by an advertisement and its potential to go “viral” (i.e. 

willingness to reshare [84]), while instructors in MOOCs pay more attention to learners’ 

engagement, confusion [130, 131], mind wandering [97], divided attention [132] and perceived 

difficulty [98] in learning. 
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8.2.3.2 Combining PPG and Facial Models (Model Fusion) 

Hussain et al. [56] found that emotion detection accuracy can be improved not only by 

combining different modalities but also by combining different machine learning algorithms. I 

evaluate the model fusion approach by comparing SVMs with the combination of SVMs, 

decision trees, and K nearest neighbor models (KNN) using PPG signal, facial expression, or 

fusion features. When using PPG signal, I combine both models using SessionPPG features and 

models using LocalDiff features. 

The final output of a model fusion system is calculated by aggregating outputs from its 

member models. I evaluated two voting methods: weighted average voting and majority voting. 

The weighted average voting method’s output is the weighted average probabilities of all 

member models where each member model has a different weight. I use a grid search of weight 

from [1, 5] for each member model. Different from weighted average voting, the majority voting 

does not directly use the output probabilities but the final classifications. The majority voting 

method chooses the output class which is chosen by most of the member models. 

8.3 USER STUDY 

8.3.1 Experimental Design 

Previous work [49, 83, 84] annotated experimental advertisements separately, i.e. users were 

required to watch an ad directly and annotate it before watching the next one. However, in real-

world scenarios, ads are usually grouped together and embedded into host video contents, e.g. 

movies and TV shows. In this study, I use video advertisements embedded in a real-world 
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setting, i.e. an episode of a popular TV series (The Big Bang Theory). The episode has 3 

embedded advertising slots and can be accessed freely on the official website3. I only replace the 

original ads with the experimental ads while keeping the advertising positions unchanged. 

I selected 12 video ads for the following brands: Ameriquest, Coca Cola, Doritos, Extra 

Gum, Guinness, Johnson & Johnson, One Main, Pepsi, Straight Talk, Township, Verizon, and 

Volkswagen. The mean length of the ads was 30.2s (σ = 0.7). The ads were chosen because they 

presented a range of affective states (i.e. humor, warmth, and neutral). It is worth noting that 

humor and warmth are important indicators of advertisement’s effectiveness [1, 83].  

8.3.2 Participants and Apparatus 

There were 24 participants (13 females) from a local university joining this study. The average 

age was 25.6 (σ = 3.0). Participants watched movies and TV shows on a regular basis (21 

watched weekly and 3 watched monthly). Only one participant had not used mobile devices for 

video consumption. 

This experiment was completed on a Nexus 5 smartphone with a 4.95-inch, 1920 x 1080 

pixel display, 2.26 GHz quad-core Krait 400 processor, running Android 5.0. It has an 8 

megapixel back camera with a LED flash. 

Facial expression data from five participants were excluded from the follow-up analysis 

because the algorithm could not locate facial landmark points reliably from these participants. To 

directly compare multiple algorithms offline, I use a separate camcorder as the front camera to 

                                                 

3 http://www.cbs.com/shows/big_bang_theory 
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save the original video stream for post-hoc analysis. I have successfully implemented the real-

time parallel video processing algorithms of AttentiveVideo on a Nexus 6. 

8.3.3 Procedures 

 

Figure 47. Experimental procedure (the top row) and sample facial images captured during the user study. 

Figure 47 illustrates the procedure of this study. A participant signed a consent form and 

answered a demographic survey. Then, the participant took a training session by watching a 

video consisting of two movie trailers and two embedded advertising slots with two ads in each 

slot. During this training session, the camcorder was adjusted to capture the participant’s face. 

While watching non-advertised content (the movie trailers), the participant used normal on-

screen gestures to play the video and the camcorder was turned off. While watching the ads, the 

participant needed to cover the back camera lens to play and the camcorder was turned on to 

record the participant’s facial expressions. After watching an advertising slot, containing two 

ads, the participant answered a subjective survey for each of the two ads before continuing to the 

non-advertised content. The participant took a short break before proceeding to the formal study 

session which has the same format as the training session. In the formal study, the participant 

watched an episode of The Big Bang Theory with three embedded advertising slots, each slot 

Mov Ads Ads AdsMov Mov MovEntry 
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contained four ads. At the end of the study, the participant rated the usability of AttentiveVideo 

and ranked the six most liked ads. Each participant received a $10 gift card after completing the 

study. 

8.3.4 Data Collection and Processing 

8.3.4.1 Evaluation Metrics 

Table 10. Nine dimensions of emotional response measure. 

Category Metric Question 

Attention Attention I paid sufficient attention to the entire ad 
Recall I can recall major details in this ad 

Engagement 

Like Please choose the 6 ads in this study that you liked best 
and rank them accordingly (1: most liked; 6: least liked) 

Rewatch I’m interested in watching the ad again in the future 

Share I found something special in the ad and want to share it 
with my friends 

Sentiment 

Touching I found the ad touching 
Amusing I found the ad amusing 
Valence Self-Assessment Manikin 
Arousal Self-Assessment Manikin 

 

In this study, I used two types of self-reporting: verbal self-reporting for discrete emotions and 

visual self-reporting for dimensional emotions. Participants responded to six discrete emotions 

related questions on the effectiveness of each advertisement, i.e. Attention, Share, Touching, 

Rewatch, Recall, and Amusing. I used Touching as a warmth emotion in advertising, i.e. the 

viewer feels moved by the ad. I also used the Self-Assessment Manikin (SAM) [37] to collect 

responses for two-dimensional emotions, Valence and Arousal. These ratings are in a 7-point 

Likert scale format (1: highly disagree; 7: highly agree). In addition, participants rated the Like 

measure by ranking the 6 most liked ads at the end of the study. In total, I collected measures of 

9 emotional states which can be grouped into three categories: attention, engagement, and 
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sentiment (Table 10). Some measures are from the advertising industry: Like and Share 

(Youtube [139] and Facebook [35]) and Attention and Valence (Emotient [119]). Although 

discrete emotions can be inferred from the dimensional emotions, Barrett [5] recommended 

using both types of measures to avoid the inter-person variance in the subjective annotation. 

Rozgić et al. [107] also studied both discrete and dimensional emotions at the same time. 

Moreover, by collecting discrete emotion annotations, I can avoid the cascaded errors when 

inferring the discrete emotions from dimensional emotions.  While some of these emotional 

measures have been studied by researchers in affective computing in the past, e.g. Teixeira et al. 

[116] (Amusing), McDuff et al. [84] (Like and Rewatch), Aaker et al. [1] (Touching), and 

Hazlett and Hazlett [49] (Valence and Arousal), this work is the first conducting a systemic 

investigation of such measures in the context of mobile advertising. 

 

Figure 48. Average scores of each ad across 8 metrics on a 7-point Likert scale or Self-Assessment 

Manikin. 

Similar to previous work [1, 49, 84], I did not use additional controlling measures, e.g. 

eye gaze tracking, to validate if the rated emotions come from the experimental ads. However, by 
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looking at participants’ ratings, I found the rated emotions of each ad were well aligned. Figure 

48 shows the average rating of each item for the 12 ads. On average, the emotional responses to 

experimental stimuli (ads) were diverse, which implied that the selected ads cover a wide range 

of advertisement’s effectiveness dimensions. Some were highly rated for a single measure while 

receiving low ratings on other measures, e.g. ExtraGum received high ratings on the Touching 

measure but low ratings on others.  

8.3.4.2 Datasets 

From participants’ ratings (self-reports), the emotional response detection task can be considered 

a regression or ranking problem where machine learning models predict a participant’s rating 

values. However, to evaluate the feasibility of AttentiveVideo in this pilot study, I started with 

binary classifiers that detect whether a participant had a specific emotion for an ad. In other 

words, I built a binary classifier for each emotional state, e.g. Like or not Like and Amusing or 

not Amusing. To keep a unified pipeline for performance evaluation, I also binarized ratings of 

dimensional emotions, i.e. Valence (pleasant vs. unpleasant) and Arousal (high vs. neutral). A 

similar approach has been used in previous work [83, 84, 107], where discrete and/or 

dimensional emotions were binarized for pilot evaluations. 

To evaluate the binary classifiers’ performance when working with strongly expressed 

emotions and with subtly expressed emotions, I re-annotated the collected data using 

participants’ ratings. Following Greenwald et al. [44], for each emotional measure, I sorted 

participants’ ratings and used the average rating of each ad in the dataset as a tiebreaker. For 

example, let participant S1 watch 8 ads (a, b, c, d, e, f, g, h) and her “Like” ratings of these ads 

are (a, 1) (b, 2) (c, 6) (d, 7) (e, 3) (f, 6) (g, 7) (h, 3). Note that in this example, there are three ties 

(e = h, c = f, d = g). Given that the average ratings of tied videos in the dataset satisfy e > h, f > 
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c, and g > d then S1’s ratings will be sorted as (a, 1) (b, 2) (h, 3) (e, 4) (c, 5) (f, 6) (d, 7) (g, 8). 

From this re-annotated dataset, I selected the top 50.0% of the ads as positives (a, b, h, e) and the 

other 50.0% as negatives (c, f, d, g). I called this balanced dataset FullDS because it used all the 

data. I also created another dataset, named ExtremeDS, by selecting the top 25.0% of the ads as 

positives (a, b) and the bottom 25.0% as negatives (d, g). The ExtremeDS discarded weak (mid-

ranked) emotional responses and only kept strong emotional responses while the FullDS kept 

both strong and weak (subtle) responses. A similar approach was used in [84], where the authors 

reported performance only on a dataset having neutral and mild (weak) responses to ads 

removed. In this chapter, I showed that comparing performance on both FullDS and ExtremeDS 

can reveal interesting insights of PPG signals and facial expressions. 

8.3.4.3 Hyperparameter Tuning 

I used grid searching to optimize hyperparameters for features and machine learning models. The 

best hyperparameter set was chosen as having the best average performance in the leave-one-

participant-out cross-validation. 

For all types of feature (PPG features, facial features, and fusion features), I tuned the 

starting offset value (how long much data of an ad I can discard). For two reasons, I chose to 

discard a portion of data at the beginning of an ad. First, carry-over effects can occur when 

participants watched four ads back to back in an advertising slot. Discarding a portion of the 

signal from the beginning of each ad would prevent emotions from the previous ad propagating 

to the current ad. Second, I assumed that the key information would not be shown at the 

beginning but in the middle or at the end of each ad (when the viewer is ready to receive the 

information). The starting offsets were tuned from 2s to 18s, at the stride of 2s. With PPG 
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features, I also optimized the window size for HRV features with the possible range [1s, 5s] and 

the stride of 1s. 

Each type of machine learning model has a different hyperparameter set. With SVMs, the 

gamma and trade-off margin size hyper-parameters were optimized using grid search in the 

range of [0.5, 1.7] with the step size equals to 0.2. With KNNs, possible values of neighbors 

were {1, 2, 3, 5, 7, 10, 15}. With decision trees, the pruning confidence was optimized from 

seven possible values: 0.01, 0.1, 0.25, 0.3, 0.4, 0.5, and 0.75. 

8.4 RESULTS AND ANALYSIS 

8.4.1 Subjective Feedback 

Overall, AttentiveVideo received good feedback from participants. On a 7-point Likert scale 

(Figure 49), participants thought AttentiveVideo is easy to use (μ = 6.6, σ = 0.7), responsive (μ = 

6.5, σ = 0.8), and intuitive (μ = 5.7, σ = 1.2). Although the on-lens finger gesture has not been 

used for mobile ad watching before, AttentiveVideo still received a high “Comfortable to use” 

rating (μ = 5.6, σ = 1.2). Some positive comments were: “Very responsive, easy to use”, 

“Covering the lens of the back camera is natural when I hold the phone”, and “I don’t need to 

touch the screen to pull the menu icon to control”. 

Interestingly, participants were optimistic about the future deployment of AttentiveVideo 

for ad watching. Most participants preferred subsidized video watching via AttentiveVideo rather 

than the ad-free, pay-per-view alternative (μ = 5.9, σ = 1.2). More importantly, many participants 

reported that the tangible video control method in AttentiveVideo made them focus more on the 
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ads (e.g. “Easy to use, pay attention to ads more closely” and “I like that it makes me pay closer 

attention to the ads because if I move my finger it will stop playing.”). 

Besides the positive feedback, I also received suggestions for improvement and concerns 

about AttentiveVideo. For example, some participants suggested additional video controls in 

addition to the basic play/pause operation (“can adjust brightness and audio volume at the same 

time”) or raised concerns about the flashlight usage (“turning on the flashlight all the time may 

use the battery faster”, “if the video is long, it may be hot to fingers”). Richer video control 

mechanisms (seeking, volume change) can be integrated by adopting various on-lens gestures of 

the Dynamic LenGestures algorithm [60]. I also conducted a battery stress test for 

AttentiveVideo and found the interface can run more than 2 hours on a smartphone with two 

cameras operating at that same time. This duration would be sufficient for ad consumption where 

viewers only watch a few minutes of ads per session, e.g. a movie. 

 

Figure 49. Subjective feedback on AttentiveVideo’s usability. 

8.4.2 Signal Quality Analysis 

I will analyze the collected PPG signals and facial expressions from the user study. 
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8.4.2.1 PPG Channel 

Signal Quality 

I used Xiao and Wang’s evaluation method [197], with a 5-second NN interval signal 

window, to analyze the quality of PPG signal obtained by AttentiveVideo. A signal window is 

classified as good if at least 80.0% of the NN intervals are within ± 25.0% of the window’s 

median. In 82.5% of 57 advertising slots (19 participants × 3 slots), more than 89.0% of the 

windows were of good quality. This suggests that AttentiveVideo can collect high quality signals 

from unmodified smartphones. Figure 50 illustrates the PPG signals captured by AttentiveVideo 

in the first advertising slot (the first 3 ads) of six participants. 

 

Figure 50. PPG signal quality of six participants while watching the first advertising slot. 

HRV Spectrograms 

From an initial analysis, I found PPG signals are a potential channel for emotional 

responses because they have different characteristics under different affect conditions. I 

computed the HRV spectrograms by calculating the power spectral density from NN intervals. 

For each ad, because of its short duration, I used a 20-second sliding window with half-second 
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increments. Figure 51 shows HRV spectrograms (normalized amplitude) for the least touching 

(top row) and most touching (second row) ads of five participants. The HF values of the least 

touching ads are relatively lower than the HF values of the most touching ads in some 

participants. Previously, McDuff [82] found that the high frequency (HF) power decreased under 

a stress condition. This suggests those participants felt less stressed (or more relaxed) when 

watching the most touching ad than watching the least touching ad. 

 

Figure 51. HRV spectrograms of the least touching ads (top row) and the most touching ads (second row) 

from five participants: P3, P10, P12, P15, and P19. 

Starting Offsets 

I also found that a significant portion of signals at the beginning of each ad can be safely 

ignored without reducing the system performance. Figure 52 shows the required covering time of 

the best SVM model in each emotional measure. Most emotional measures allow a starting offset 

of up to 10s, the exceptions being Amusing (4s), Arousal (4s), Attention (4s), and Valence (2s) 

in ExtremeDS. In FullDS, Valence also has a starting offset of 2s. These large starting offsets 

suggest that AttentiveVideo can further reduce user’s effort by allowing ad watching freely for 

the first 10s and then requiring that users cover the lens to play. Although participants reported 
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that using the on-lens finger gestures was comfortable in this study, I believe participants will 

also benefit from the reduced covering time as it reduced their efforts. 

 

Figure 52. Starting offsets of nine metrics in FullDS (orange) and ExtremeDS (green). 

8.4.2.2 Facial Channel 

Missing Data 

I found the facial channel suffered from missing data. The face of a participant may be 

out of the viewport (OOV) of the front camera during ad watching. Such OOV events are caused 

by head movements, device movements, or face detector originated detection failures. 

To get a better understanding of OOV events in mobile ad watching, I quantified OOV 

events and used them as an indicator of the quality of the facial expression channel. If the face 

detector could not detect the existence of a face over a two-second duration, I defined the 

duration as an OOV event. I choose the two-second threshold to achieve a good balance between 

sensitivity and robustness to minor head movements. Since the frame rate of the front camera is 

between 10 fps and 30 fps, an OOV event implies that there was no viewer’s face detected for 20 
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- 60 continuous frames.  I counted the number of OOV events in a video ad session by using a 

moving window of two seconds, with a stride of 50ms.  

 

Figure 53. Distribution of out of the viewport (OOV) events by participant and advertisement. The X-axis 

is advertisement order; The Y-axis represents participant number.  There are 3 advertising slots, each contains 4 

advertisements. The heat map in each cell represents the number of OOV events. 

Figure 53 shows the OOV distribution in each ad by participants. Six participants 

(31.6%) who experienced OOV events in at least one ad slot. In comparison, Bosch et al. [12] 

observed a 65.0% missing facial data from an in-the-wild user study. According to Figure 53, 

most of the OOV events appeared in the last (fourth) ad of an advertising slot, except participant 

8, 13, and 19. The distribution of OOV events implies that the quality of the facial channel drops 

after extended ad watching (90+ seconds in each advertising slot). Such quality drop is primarily 

caused by fatigue induced head movements. In comparison, there is no noticeable quality drop in 

the same slot for the PPG channel (Figure 50). The finding also implies that the beginning or 

middle ads in each advertising slot are more valuable for collecting high quality facial expression 

data. 
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Moment-to-Moment Feedback 

Despite the high missing data ratio compared to PPG signals, facial expressions can give 

moment-to-moment feedback that would benefit marketers or advertising researchers [76]. I 

found participants had various facial expression patterns while watching an ad. 

 

Figure 54. Counts of strong facial expressions (Affdex’s scores > 90%) in 12 ads. Ads were sorted 

descending by Amusing ratings (Pepsi ads had the highest average Amusing rating while Township had the lowest 

rating). 

Because Affdex could be sensitive to the surrounding environment, low output scores 

could come from noisy input rather than real expressions of participants. I started the facial 

channel analysis by looking at strong expressions only to avoid noisy data. A strong facial 

expression is defined as the moment where Affdex’s output is larger than 90.0%, regardless of 

the output type. Figure 54 shows the accumulated counts of strong facial expressions from all 

participants, males, and females in our study. In general, the frequency of strong facial 

expressions was higher with highly Amusing rated ads, e.g. Pepsi and Ameriquest, while low 

Time (s)

A
g

g
re

g
at

e
d

st
ro

n
g

 e
xp

re
ss

io
n

 c
o

u
n

ts

0 30

250

0 30

250

0 30

250

0 30

250

0 30

250

0 30

250

0 30

250

0 30

250

0 30

250

0 30

250

0 30

250

0 30

250

All participants Female participants Male participants

Pepsi Ameriquest Doritos Volkswagen

StraightTalk Coca Cola Johnson & Johnson Extra Gum

Guinness Verizon OneMain Township



 133 

Amusing rated ads, e.g. OneMain and Township, had fewer strong facial expressions. Moreover, 

the peaks of strong facial expressions are also different across ads. While Pepsi and 

Ameriquest’s peaks are near the end of the clips, Doritos has earlier peaks (around 15s). This 

information is valuable for advertisers to understand why an ad is effective and what the best 

practices are [76]. 

 

Figure 55. Means and standard deviations of Affdex’s Attention and Smile outputs in 12 ads. Ads were 

sorted descending by Amusing ratings (Pepsi has the highest average Amusing rating while Township has the lowest 

rating). 

While the previous finding integrated all types of facial output, analyzing the individual 

type of Affdex output gives more insights about the ads’ effectiveness. Figure 56 shows means 

and standard deviations of Affdex’s Attention and Smile outputs in 12 ads. Despite the fact that 

each ad had different Amusing ratings, the Attention means were fairly stable across all ads. This 

result partially supports our participants’ feedback that AttentiveVideo helped users focus more 

on the ads. On the other hand, Smile outputs showed different trends across different ads. With 
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highly Amusing rated ads, e.g. Pepsi and Ameriquest, the average Smile outputs reached more 

than 40 at the end of the ads, while ads with low Amusing ratings, e.g. OneMain and Township, 

the Smile outputs will be off (0) at the end of the ads. This observation suggests that viewers 

have stronger smiles with the Amusing ads compared to neutral ads. 

 

Figure 56. Means and standard deviations of Affdex’s Smile outputs of male and female in 12 ads. Ads 

were sorted descending by Amusing ratings (Pepsi has the highest average Amusing rating while Township has the 

lowest rating). 

Further investigations show that there were differences between subgroups of 

participants. In Figure 54, it is shown that female participants showed more facial expressions 

than male participants. Moreover, Figure 56 shows the means and standard deviations of Smile 

outputs between male and female participants across 12 ads. On one hand, with ads rated high 

(or low) Amusing, e.g. Pepsi (or Township), both female and male participants had strong (or 

flat) smiles. On the other hand, female participants had stronger smile expressions than male 

participants for the Johnson & Johnson ad. This video clip promotes baby products by showing 
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mothers taking care of their babies. Female participants seemed to have more positive feelings in 

this ad compared to their male counterparts. Moreover, female participants tended to smile 

“sooner” than male participants. By looking at the temporal Smile data, male participants only 

smile more strongly than female participants near the end of an ad and there were usually Smile 

peaks of female participants before that. These findings suggest that males and females have 

different preferences for certain products and male audiences might be better at withholding their 

feelings than female audiences. As a result, a system could use different emotional detectors for 

different genders. 

8.4.3 Quantifying Emotional Responses 

8.4.3.1 PPG Channel 

Table 11 shows the performance of SVMs using two PPG feature sets (SessionPPG and 

LocalDiff) across nine emotional response measures. All experimental models outperformed the 

random classifier (Accuracy = 50.0%, Kappa = 0.00). In general, SessionPPG and LocalDiff 

feature sets have comparable performance, but LocalDiff was slightly better than SessionPPG in 

ExtremeDS. There were marginal differences in FullDS (Share: t(18) = 1.60, p < 0.10) and in 

ExtremeDS (Amusing: t(18) = -1.37, p < 0.10 and Arousal: t(18) = -1.43, p < 0.10). The 

differences also suggest that, under different emotion types, users will have different PPG signal 

patterns. For example, the Amusing (or Arousal) emotion would create sudden changes in PPG 

signals, which creates differences between the moment when the emotion happens versus the 

other moments. Consequently, the LocalDiff feature set, capturing the intra-differences within an 

ad, outperformed the SessionsPPG feature set in Amusing or Arousal (ExtremeDS). On the other 

hand, emotions, such as Share, did not have such peaks, but had longer impacts, creating 
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meaningful inter-differences between ads. As a result, the SessionPPG feature set performed 

better than the LocalDiff feature set in Share (FullDS). To evaluate PPG-based models with 

FEA-based models and multimodal models, henceforth, I use only the best PPG feature type 

(either SessionPPG or LocalDiff) in each emotional measure. 

Table 11. Accuracy and Kappa of PPG signals (SessionPPG and LocalDiff) across 9 metrics. ** indicates 

marginal differences (p < 0.1) between SessionPPG and LocalDiff models. 

Metric 

FullDS ExtremeDS 

SessionPPG LocalDiff SessionPPG LocalDiff 

Accuracy Kappa Accuracy Kappa Accuracy Kappa Accuracy Kappa 

Like 66.5% 0.31 66.0% 0.32 74.4% 0.47 72.6% 0.43 

Attention 67.5% 0.33 64.6% 0.28 68.6% 0.35 73.3% 0.47 

Share  66.9%** 0.32 62.2% 0.21 73.9% 0.45 73.5% 0.40 

Touching 64.6% 0.26 66.9% 0.33 74.0% 0.45 70.7% 0.42 

Rewatch 64.6% 0.27 63.6% 0.25 68.4% 0.36 70.2% 0.39 

Recall 65.1% 0.29 64.1% 0.27 78.3% 0.54 73.2% 0.47 

Amusing 64.6% 0.29 66.5% 0.32 68.4% 0.38 74.2%** 0.48 

Valence 64.6% 0.28 66.0% 0.32 65.9% 0.32 70.7% 0.42 

Arousal  62.2% 0.21 63.6% 0.25 66.8% 0.33 73.3%** 0.46 

8.4.3.2 Facial Channel 

I found that some emotional measures are sensitive to expression intensity. In other words, some 

emotional measures were less discriminative with more ambiguous expressions.  Table 12 

reports the performance of facial-based models in both FullDS and ExtremeDS. The Rewatch 
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and Arousal measures had the 2nd and 3rd top performance in the FullDS. However, in the 

ExtremeDS, the performance of Rewatch and Arousal are only the 6th and 5th, respectively. Even 

though there were significant differences in performance between the FullDS and ExtremeDS, 

Rewatch (or Arousal) only gained +7.7% (or +7.4%) in Accuracy compared to other measures, 

e.g. Recall gained 15.1% and Amusing gained +13.3%. A possible explanation for this trend is 

the strong facial expressions for Rewatch (or Arousal) were not significantly different from the 

weak facial expressions. On the other hand, a strong facial expression of Amusing (e.g. laughing 

out loud) would be significantly different from a weak facial expression (e.g. smirk). 

Interestingly, I found no significant differences between FullDS and ExtremeDS for the 

Touching measure (t(18) = -0.19, p = 0.43). This lack of difference indicates that Touching 

would be hard to detect with our current facial expression features. 

Table 12. Accuracies and Kappas of facial-based SVM models across 9 emotional measures. * indicates 

significant differences (p < 0.05) and ** indicates marginal differences (p < 0.10) between the FullDS and the 

ExtremeDS. 

 
FullDS ExtremeDS 

Accuracy Kappa Accuracy Kappa 
Like 57.4% 0.13 68.2%* 0.33 
Attention 59.3% 0.18 70.2%* 0.39 
Share  60.8% 0.20 72.6%* 0.46 
Touching 57.9% 0.12 56.8% 0.14 
Rewatch 63.2% 0.25 70.9%* 0.39 
Recall 59.3% 0.18 74.4%* 0.48 
Amusing 61.7% 0.25 75.1%* 0.51 
Valence 70.3% 0.40 75.3%** 0.51 
Arousal  63.6% 0.25 71.1%** 0.41 
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8.4.3.3 Comparing PPG Signals and Facial Expressions 

I did additional comparisons between PPG-based and facial-based features to get a better 

understanding of these channels while working on an unmodified smartphone. To avoid the 

holistic effect of aggregating multiple models, I only consider single-model systems (using one 

type of machine learning algorithm) in these comparisons. Table 13 summarizes the strengths of 

each channel in detecting emotional responses to ads on smartphones. 

Table 13. Strengths of PPG and facial channels. 

Channel Strengths 

PPG 
• Low illumination environments 
• High quality collected data 
• Subtly expressed emotions 

Facial • Low latency, capturing quick changes 
• Strong expressed emotions 

 

The PPG-based features and facial-based features are complementary in detection 

emotional responses to mobile ads. PPG-based features were good at detecting the Touching 

measure. Using SVMs for the Touching measure, PPG-based features (FullDS: 66.9%, 

ExtremeDS: 74.0%) were significantly better than facial-based features (FullDS: 57.9%, 

ExtremeDS: 56.8%) in both FullDS (t(18) = 2.92, p < 0.01) and ExtremeDS (t(18) = 2.93, p < 

0.01). 

Not only did PPG-based models have advantages over the Touching measure, PPG-based 

models and facial-based models also have different preferences towards the emotions’ intensity. 

I found that PPG-based models could detect subtle emotional responses well, while FEA-based 

models work better with strong emotional responses. In all experimental machine learning 

models, PPG-based features significantly outperformed facial-based features in 8 out of 9 

emotional measures (except Valence) in the FullDS. However, in the ExtremeDS, where all 
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ambiguous expressions were discarded, PPG-based features significantly outperformed facial-

based features only in 5 out of 9 emotional measures (i.e. not in except Rewatch, Recall, 

Valence, and Arousal). In other words, FEA-based models gained better performance, relative to 

PPG-based models, after discarding weak emotional responses (ExtremeDS). On the other hand, 

PPG-based models still maintained good performance with weak emotional responses in FullDS. 

Moreover, using PPG signals with shorter ads (5 - 15 seconds) is still a problem, 

considering that the temporal resolution of our PPG-based models is bounded by the window 

size for extracting HRV features. In fact, time-domain HRV features aim to track the dynamics 

in NN intervals within a signal window. Analyzing a single NN interval value would not yield 

any interesting findings. For example, Lang [71] found it takes 10s for a changing pattern of 

arousal and attention when watching TV ads. In comparison, facial-based algorithms can make 

instant predictions based on a single video frame of the viewer’s face. Teixeira et al. [116] used 

facial data from recorded video to analyze joy and surprise towards an ad frame-by-frame. I 

hypothesize that facial-based models will have more accurate detection than PPG-based models 

for shorter video clips. 

8.4.3.4 Combining PPG Signals and Facial Expressions 

Figure 57 and Figure 58 show the performance of the model fusion approach and single-model 

approach in FullDS and ExtremeDS, respectively. Because of limited space, I have plotted only 

the performance of SVM models compared to the majority voting and weighted average voting 

models (using PPG-based features, facial-based features, and fusion features). Compared to 

KNNs and decision trees, SVMs achieved better performance in 13 out of 18 (72.2%) of 

emotional measures, except in FullDS (Arousal) and ExtremeDS (Like, Attention, Rewatch, and 

Amusing). However, the comparison reported in this section takes all approaches into account. 
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All experimental results are reported in Appendix C. Henceforth, I refer to models using a single 

machine learning algorithm (SVM, KNN, or decision tree) as single-model systems. 

 

Figure 57. Accuracies of SVM, majority voting (Majority), and weighted voting (Weighted) using PPG, 

facial expressions (FEA), and feature fusion (Fusion) across 9 emotional measures in ExtremeDS. 

Aggregating multiple algorithms and combining features from different modalities yield 

significant improvements compared to using a single unimodal algorithm. 

The best models of all emotional measures are fusion models. On average, the accuracy 

of majority voting is 69.4% (FullDS) and 79.7% (ExtremeDS). The averaged accuracy of 

weighted average voting is 71.8% (FullDS) and 82.4% (ExtremeDS). While the accuracy of each 

single-model system is: decision tree (63.8%-FullDS and 74.8%-ExtremeDS), KNN (64.2%-

FullDS and 73.6%-ExtremeDS), and SVM (66.5%-FullDS and 75.2%-ExtremeDS). Although 

the majority voting method achieved the best performance in 2 out of 18 emotional measures 

(Rewatch-FullDS and Attention-ExtremeDS), the weighted average voting method had the best 

performance in the other 16 measures. Among the 16 best-performing emotional measures, the 

weighted average voting models significantly or marginally outperformed other single-model 

systems in 8 measures: FullDS (Touching, Recall, Amusing, and Arousal) and ExtremeDS 

(Share, Rewatch, Amusing, and Arousal). In the other 8 best-performing measures, weighted 
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average models were comparable with SVMs (Like-FullDS: t(18)=0.66, p=0.26; Attention-

FullDS: t(18)=0.60, p=0.28; Share-FullDS: t(18)=1.19, p=0.12; Rewatch-FullDS: t(18)=1.19, 

p=0.12; Valence-FullDS: t(18)=0.36, p=0.36; Like-ExtremeDS: t(18)=0.95, p=0.18; Touching-

ExtremeDS: t(18)=1.04, p=0.16; Recall-ExtremeDS: t(18)=1.06, p=0.15; and Valence-

ExtremeDS: t(18)=0.69, p=0.25) and decision trees (Like-ExtremeDS: t(18)=0.84, p=0.21; 

Recall-ExtremeDS: t(18)=1.12, p=0.14; and Valence-ExtremeDS: t(18)=1.16, p=0.13). On the 

other hand, the majority voting method was significantly better than other single-model systems 

in Attention of ExtremeDS. In Rewatch of FullDS, majority voting models were comparable 

with SVMs (t(18)=1.19, p=0.12) and decision trees (t(18)=1.13, p=0.11). I did not find any 

KNNs that had performance comparable to the best model in each emotional measure. 

Moreover, combining features of PPG signal and facial expression (feature fusion) did 

not significantly improve single-model systems but did with fusion models. Fusion features were 

used in 12 out of 18 best-performing models, while the other 6 best-performing models used 

PPG-based features. There were no facial-based models that achieved the best performance in all 

emotional measures. With pair-wise t-tests, I found fusion features helped fusion models 

significantly or marginally outperform all other models in 5 emotional measures of ExtremeDS 

(Attention, Share, Rewatch, Amusing, and Arousal) but only 2 emotional measures of FullDS 

(Touching and Arousal). However, when combining with single-model systems, fusion features 

only gained comparable performance with the best models in Valence (both FullDS and 

ExtremeDS) and Like (ExtremeDS). Besides fusion features, PPG-based features also had good 

performance. Among the 6 best models, PPG-based features supported fusion models 

significantly or marginally outperforming all other models in FullDS (Recall and Amusing). 

PPG-based features worked well with single-model systems because the combinations achieved 
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performance comparable to the best fusion models in FullDS (Like, Attention, Share, and 

Rewatch) and ExtremeDS (Like, Touching, Rewatch, and Recall). On the other hand, facial-

based features did not achieve the best performance in any emotional measure. However, when 

applying facial-based features on single-model systems, I can achieve performance comparable 

to the best models in Valence (both FullDS and ExtremeDS). 

 

Figure 58. Accuracies of SVM, majority voting (Majority), and weighted voting (Weighted) using PPG, 

facial expressions (FEA), and feature fusion (Fusion) across 9 emotional measures in FullDS. 

These results show the advantages of combining not only multiple machine learning 

algorithms but also different data sources; these advantages are achievable in AttentiveVideo 

without dedicated sensors. The weighted average voting method performs better than the 

majority voting method in many emotional measures. While fusion features did not achieve 

significant performance when used in single-model systems, these features boost the 

performance of fusion models significantly. In single-model, systems I set hyperparameters of 

both PPG-based and facial-based features the same, while the fusion model approach allows 

different models using different hyperparameters. This flexibility would take the best of all 

models into account in the final decision. Besides fusion models using fusion features, I found 

SVMs using PPG-based features were also good solutions. These single-model systems were 
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comparable with the best models in 6 out of 18 emotional measures. KNNs and facial-based 

features did not give the best results in most of the measures. The caveat, though, is that the 

accuracy of combining models and modalities comes at the cost of computation. The 

computational complexity grows with the number of algorithms and modalities used. I think this 

approach works best on the server-side, while the client-side (running on smartphones) benefits 

from a single-model approach. 

8.5 DISCUSSIONS AND FUTURE WORK 

The better performance of PPG signals compared to facial expressions can come from two 

reasons. First, an emotion can be suppressed or expressed without significant facial expressions. 

In fact, this observation has been found in previous work detecting frustration [21] and mental 

stress [82]. D’Mello and Graesser explained this phenomenon as the user was trying to “disguise 

an emotion associated with negative connotations in society” [34]. Interestingly, while not 

expressed strongly from facial cues, such negative emotions were correlated with significant 

changes in physiological signals, e.g. dialog cues and posture [21] or blood volume pulse, 

respiration, and electrodermal activity [82]. Therefore, a system should not rely on facial 

expressions alone to detect user’s emotions, especially negative emotions. Another possible 

reason is that the means and standard deviations do not effectively capture the dynamics of facial 

expressions. In future work, I can use better facial-expression-dynamics capture methods, such 

as dynamic facial features (Action Unit Variability [99, 101]) or sequential models (Hidden 

Markov Model [37]). 
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With the intention of reducing users’ efforts as they use AttentiveVideo, I found that 

users can skip covering the back-camera lens for short periods without sacrificing the detection 

accuracy. Investigating performance of the SessionPPG and LocalDiff feature sets reveals an 

interesting observation about the location of important information. When detecting Rewatch in 

the ExtremeDS, the LocalDiff feature set allowed 12s offset which implied that the key PPG 

signal features located in either the first half (13s-21s) or the second half (22s-30s). Particularly, 

the SessionPPG feature set confirmed that the important information is in the first half as the 

optimal starting offset value is 12s (instead of 18s, which is closer the second half). I hypothesize 

that the optimal skipping duration does not need to be the first portion of an ad. For example, if I 

skip the first 12s and the last 9s, the PPG-based model detecting Rewatch would perform better 

as it can discard less important information. This implication suggests I can improve the 

detection performance and reduce the covering duration further by selecting only the important 

portion. Indeed, I can incorporate the current state-of-the-art results of video key-frame 

extraction [105] or video abstracting [118] to automatically extract the important portion of an 

ad. 

In this study, I only infer emotional responses via collected multimodalities from 

AttentiveVideo. However, the collected information can provide personalized advertising to 

viewers. Brand personality is a set of human traits describing a brand’s customers, e.g. Apple is 

perceived to be younger than IBM [135]. Understanding a brand’s personality can guide 

advertisers to provide more relevant advertisements to the right audience. Furthermore, it will be 

interesting to treat emotional responses collected by AttentiveVideo as purchasing data and apply 

existing recommendation algorithms [110] to suggest (or deliver) relevant ads. The ads do not 

need to be watched by a user in advance to be considered relevant but can also come from 
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relevant users who experience the same emotions across previous ads also watched by the user. 

In this way, advertisers can address the cold start problem where a new user does not have 

sufficient data to generate recommendations. Indeed, there were several suggestions about 

personalized advertising from our user study, e.g. “maybe quickly show me the menu of ads I can 

select from according to my preference” or “Ads based on user preference”. As the user receives 

relevant ads, the effectiveness of the delivered ads would increase. More importantly, the user 

would not have negative attitudes towards the ads that pop up. 

Last but not least, this user study was conducted in a lab-based setting and still had 

certain limitations. First, our study was conducted in an indoor, seated environment. Second, I 

focused on video advertisements around 30 seconds long. Although this is a representative 

setting to consuming video on mobile devices, it will be interesting to explore other mobile 

contexts in the future (e.g. walking, outdoors, public transit).  Additional signals such as the 

location of the user, time of the day, ambient light, device motion, and nearby users may be 

included to further improve the prediction accuracy in such scenarios. Third, opportunities and 

security/privacy risks will arise when viewers' physiological signals are transmitted, stored, and 

visualized on the server-side. A large-scale in the wild user study will address these limitations 

and would reveal new interesting problems. 

8.6 SUMMARY 

I presented AttentiveVideo, a scalable intelligent mobile interface collecting two rich sets of 

signals and infers viewers’ emotional responses towards video advertisements on unmodified 

smartphones. AttentiveVideo can predict viewers’ attention, engagement, and sentiment towards 
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advertisements via a combination of implicit PPG sensing and FEA on today’s smartphones. 

With the predictions, AttentiveVideo can help advertisers gain a richer and more fine-grained 

understanding of users’ emotional responses towards video advertisements. AttentiveVideo can 

also help viewers to enjoy more high quality video materials for free via subsidized video ads. 

Using state-of-the-art techniques, I found that AttentiveVideo achieved good accuracy on a wide 

range of emotional states (best average accuracy = 82.6% across 9 emotional measures) in a 24-

participant user study. Combining the multiple modalities from AttentiveVideo with the model 

fusion approach yielded significant improvements in emotion detection. The participants thought 

AttentiveVideo was easy to use and was a sustainable method for collecting implicit emotional 

responses to mobile ads. I also found that the PPG sensing channel and the FEA technique are 

complementary in multiple aspects. While FEA works better for strong emotions (e.g., joy and 

anger) and is able to give instant predictions, the PPG channel is more informative for subtle 

responses or emotions but requires more time (several seconds) to make predictions. While it is 

common to lose facial data sometimes, the PPG channel can effectively cover those moments. 

AttentiveVideo can additionally be applied to personalized advertising. 
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9.0  CONCLUSIONS 

9.1 SUMMARY OF CONTRIBUTIONS 

This thesis explores unimodal and multimodal affective/cognitive-aware interfaces running on 

unmodified smartphones. The proposed interfaces are innovative and scalable because they can 

understand users’ affective and cognitive states via unmodified smartphones without additional 

sensors. In particular, I explore the on-lens finger gestures to infer a user’s affective and 

cognitive states via PPG signals collected from the back-camera while the user is watching 

videos on the smartphone. The interaction requires the user covering the back-camera lens to 

play the video and pauses the video if the lens is uncovered. Consequently, the user’s PPG 

signals can be tracked and used to infer her emotions while watching videos. Later, I propose to 

use the front-camera to track the user’s facial expressions in addition to the PPG sensing from 

the back-camera in order to achieve a more robust affective and cognitive state detection. These 

interfaces leverage existing sensors, i.e. embedded cameras, on commodity smartphones and 

employ new human machine interaction, i.e. on-lens finger gesture, to seamlessly collecting 

users’ physiological signals and facial expressions while they are consuming videos on the 

smartphones.  The usability and effectiveness of this new interaction were evaluated in various 

user studies in this thesis, including single sessions and a longitudinal session. 
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I design, prototype, and evaluate the effectiveness of the interfaces in the context of 

MOOCs. In particular, I study three aspects of the proposed interfaces to make them address 

current MOOC’s limitations and improve learning outcomes: sensing physiological signals, 

inferring affective and cognitive states, and providing personalized interventions. Furthermore, I 

explore the generalizability of the proposed interfaces by detecting emotional responses to 

advertisements in mobile advertising. 

To improve the robustness of sensing noisy physiological signals from various 

environmental conditions, I propose two data-driven neural networks: CNN and LSTM. The 

experimental results with intermittent data show a little accuracy improvement over human 

engineering models and features (+2.2%). This result would not lead to a significant 

improvement for the next stages (emotion inference and personalize intervention). The modest 

performance would be caused by the ambiguous problem definitions and the limited training 

dataset. However, I find the CNNs are very good at recognizing patterns from the raw data while 

LSTMs are excellent in working with temporal data. A combination of CNNs and LSTMs would 

be a promising approach. 

The main focus of this thesis is inferring learners’ affective and cognitive states via 

physiological signals and facial expressions collected on unmodified smartphones. I study the 

effectiveness of the interfaces in detecting different affective states (boredom, curiosity, …) and 

cognitive states (mind wandering and perceived difficulty) using unimodal and multimodal 

interfaces. I propose a content-agnostic inference pipeline through analyzing different feature 

combinations, e.g. HRV and content related, and different machine learning models, e.g. Naïve 

Bayes, KNN, and SVM. In this thesis, I propose a new feature set (AUV) capturing the dynamics 

of facial expression in a video viewing session. By adding facial expression analysis to the PPG 
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monitoring, the proposed interfaces gain significant improvements when using model fusion 

approaches. The improvements were not significant with feature fusion approaches. However, 

the current performance is still far from perfect. I think one of the main reasons is the annotation 

quality. Capturing a user’s affective and cognitive states is not a trivial task, especially when the 

user tends to suppress those states [21, 82]. Moreover, using self-report or experience sampling 

as in my user studies has a limitation that the user would not fully understand and acknowledge 

their own emotions within a limited time. Last but not least, identifying the start and end times of 

an affective or cognitive state is also a challenging task which makes fine-grain annotation more 

difficult. 

To study how such imperfect emotion detections can benefit MOOC learners with 

personalized interventions, I propose an error-safe intervention method, i.e. adaptive reviewing. 

The interface will suggest a learner reviewing a topic that most benefit her among several topics 

in a lesson. I hypothesize that even if the model is incorrect, it only takes a learner a little 

reviewing time (compared to reviewing all topics in a lesson). On the other hand, a correct 

suggestion would have a positive impact on the learning outcome. I evaluate the proposed 

method in two user studies: a single session and a 3-week longitudinal session. The experimental 

results indicate that if the lessons are reasonably difficult (within the learner’s ZPD), reviewing 

the most difficult topic in a lesson gains a significant improvement. Moreover, in the case where 

the model works incorrectly, the learning outcome is comparable to a no review option. 

However, reviewing the most difficult topic is not as effective when the lessons are too difficult 

(beyond the learner’s ZPD). In such lessons, reviewing the easiest topic shows a better learning 

outcome. The current finding has two implications. First, by designing personalized intervention 

methods that minimize the effects of incorrect emotion detections, MOOC learners can benefit 
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from the proposed technologies, i.e. the advantage can outweigh the disadvantage. Second, 

personalized interventions not only need affect-aware information but also need a good 

scaffolding strategy. 

By proposing the affect-aware pipeline on unmodified smartphones, the proposed 

interfaces can be extended to other domains but online education. I evaluate a multimodal 

interface detecting emotional responses to advertisements in mobile advertising. Even though the 

target emotions in advertising are different from MOOC learning and the video lengths are 

different, the pipeline achieves an average accuracy = 82.6% across nine emotional measures. 

Furthermore, I show the possibility of reducing user’s effort by allowing a user skipping 

covering the back-camera lens for a certain amount of time.  

In summary, the experimental results show that the interfaces can collect learners’ 

physiological signals, infer their emotions, and provide personalized interventions to improve 

their learning outcomes in MOOC learning. With the proposed pipeline, the interfaces can be 

extended in other video consuming tasks on an unmodified smartphone, e.g. mobile advertising. 

9.2 LIMITATIONS AND FUTURE WORK 

Better inference and intervention algorithms: experimental results from AttentiveReview2 

showed that an effective review intervention depends not only on individual learners’ perception 

of the difficulty of each topic but also on the actual background knowledge of each learner; for 

instance, if a lesson is too hard for a learner, reviewing the easiest topic would be less confusing 

than reviewing the most difficult topic. Moreover, the adaptive intervention can suggest that a 

learner review a topic multiple times at different reviewing intervals instead of only once, as is 
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the current setting. To gain a deeper understanding of adaptive review methods, I need future 

follow-up user studies. 

Larger and in-the-wild deployments: Even though I have evaluated the effectiveness of 

the proposed work in a longitudinal study (Chapter 8), the setting was still lab-based. A real 

MOOC deployment will validate unanswered questions (Can the system collect and handle 

information from thousands of learners? Can the system work perfectly in various environments? 

Will learners use adaptive interventions from our system?). Currently, I have successfully 

integrated the interface with a MOOC platform, i.e. openEdx. However, deploying the interface 

will still present challenges: not all smartphones allow operation of both the front and the back 

cameras at the same time. Another challenge is that I have only the Android implementation at 

this moment; other phones will need different camera calibration parameters for sensing PPG 

correctly. Deploying the interface in a real-world setting will provide interesting insights of the 

learning process and the interface’s abilities and shortcomings. 

Learning analytics and interfaces that can directly benefit instructors: Future 

interesting projects include studying how the rich and fine-grained data collected from multiple 

modalities can yield actionable suggestions for helping MOOC tutors improve their courses. For 

example, directly pointing out precisely which parts of lessons most bore students, allowing 

prediction of a student’s performance on a quiz, even before the student takes the quiz. I hope to 

synthesize the collected data from our technologies with feedback from MOOC tutors through 

several studies, to benefit both MOOC learners and tutors. 

Improving the robustness, privacy, and security of sensing modalities: The 

surrounding environment limits the usability of the multimodal interfaces. For example, in low-

illumination environments, facial-expression analysis from the camera will not work correctly 



 152 

and will provide erroneous inferences in the intervention component. Can we have an intelligent 

system that checks the quality of each input channel and automatically switches functions when 

necessary for more robust emotion detection and intervention? Another problem with the sensing 

component is security. In fact, some of our participants were not comfortable knowing that their 

faces were recorded and analyzed while they were learning. Moreover, the collected data can 

extraneously infer learner information that must remain confidential; PPG heart-rate signals have 

the potential to reveal health conditions, for example. How can we guarantee learners that their 

collected data will be used properly and no potential threats will be exploited? 
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APPENDIX A 

THE QUESTIONNAIRES EVALUATING THE USABILITY AND EMOTIONAL 

RESPONSES 

This appendix includes questionnaires evaluating the usability and emotional responses of 

AttentiveVideo and AttentiveReview. 

A.1 ATTENTIVEREVIEW 

The AttentiveLearner app 
 

1. I found the video control (cover to play, uncover to pause) is intuitive and easy to use: 
1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 – Agree 5 – Strongly Agree 

 
2. I found the video control (cover to play, uncover to pause) is responsive: 

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 – Agree 5 – Strongly Agree 
 
3. While watching the lesson video, the way I hold the mobile phone don’t make me feel uncomfortable: 

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 – Agree 5 – Strongly Agree 
 
4. I think AttentiveLearner is not difficult to use compared to other mobile video players: 

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 – Agree 5 – Strongly Agree 
 
5. If my courses are deployed through AttentiveLearner, I am happy to download the app and use 
it to take lessons on my mobile phone: 

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 – Agree 5 – Strongly Agree 
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6. Please give some comments about what you like about AttentiveLearner 
 
 
 
 
 
 
 
 
 
 
7. Please give some comments about what you do not like about AttentiveLearner 
 
 
 
 
 
 
 
 
 
 

The lesson and review session 
 

1. Rank the interestingness of 3 sections you have studied (1: least interesting, 3: most 
interesting): 
Criminal law Human rights Surveillance law 
 
2. Rank the difficulty level (perceived difficulty) of 3 sections you have studied (1: easy to 
understand, 3: most difficult to understand): 
Criminal law Human rights Surveillance law 
 
3. If you could choose one of 3 topics to review before the post-test, rank each topic below 
based on your priorities (1: least wanted, 3: most wanted): 
Criminal law Human rights Surveillance law 
 
If you have not watched a review video, please skip the following questions 
 
4. On a scale of 1 – 5, do you think the suggested review video is relevant (e.g., you also wanted 
to review the same section): 

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 – Agree 5 – Strongly Agree 
 
5. On a scale of 1 – 5, do you think the review session is too short (i.e., it should cover other 
sections that you want to review): 

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 – Agree 5 – Strongly Agree 
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6. On a scale of 1 – 5, do you think the review session is too long (i.e., it should not cover 
irrelevant or easy sections that you do not need to review): 

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 – Agree 5 – Strongly Agree 
 
7. Please give some suggestions/comments you have for the study setting 

 

 

 

 

A.2 ATTENTIVEVIDEO 

A.2.1 In-study (after viewing 4 ads) 

The same questionnaire was used for all advertisements but the thumbnails will be modified 

according to each advertisement. For example, the thumbnails below were used for Coca Cola. 

 

1. I paid sufficient ATTENTION to the entire advertisement 

1 – Strongly Disagree 2 3 4 5 6 7 – Strongly Agree 

2. I found something special in the advertisement and want to SHARE it with my friends 

1 – Strongly Disagree 2 3 4 5 6 7 – Strongly Agree 

3. I found the advertisement TOUCHING 

1 – Strongly Disagree 2 3 4 5 6 7 – Strongly Agree 
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4. I’m interested in WATCHING the advertisement AGAIN in the future 

1 – Strongly Disagree 2 3 4 5 6 7 – Strongly Agree 

5. I can RECALL major details in this advertisement 

1 – Strongly Disagree 2 3 4 5 6 7 – Strongly Agree 

6. I found the advertisement AMUSING 

1 – Strongly Disagree 2 3 4 5 6 7 – Strongly Agree 

7. Rate your overall TENDENCY of EMOTION after watching this advertisement 

 
 Very unpleasant Very pleasant 

8. Rate the INTENSITY of your EMOTION after watching this advertisement 

 
 Very calm Very excited 

A.2.2 Exit Questionnaire 

1. I found the video control (cover to play, uncover to pause) easy to learn: 
1 – Strongly Disagree 2 3 4 5 6 7 – Strongly Agree 

 
2. I think AttentiveVideo is intuitive to use when compared with other mobile video players: 

1 – Strongly Disagree 2 3 4 5 6 7 – Strongly Agree 
 
3. I found the video control (cover to play, uncover to pause) responsive: 

1 – Strongly Disagree 2 3 4 5 6 7 – Strongly Agree 
 
4. While watching the embedded ads, it was comfortable to hold the mobile phone as instructed: 
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1 – Strongly Disagree 2 3 4 5 6 7 – Strongly Agree 
 
5. Given some rewards (e.g. getting discount, free access to premium services or gift cards), I would be 
happy to use AttentiveVideo to watch movies, or TV series with embedded advertisements: 

1 – Strongly Disagree 2 3 4 5 6 7 – Strongly Agree 
 
6. Covering the back camera lens makes me more focused on watching the video 

1 – Strongly Disagree 2 3 4 5 6 7 – Strongly Agree 
 
7. What do you like about AttentiveVideo? 
 
 
 
 
 
8. What would you like to change about AttentiveVideo? 
 
 
 
 
 
9. Please choose the 6 advertisements in this study that you liked best and rank them accordingly 
(1: most liked; 6: least liked). Note that 6 means the 6th most liked advertisement, not the most 
disliked advertisement. 

Ameriquest Coca Cola Doritos Extra gum 

Guinness Johnson&Johnson One Main Pepsi 

Straight Talk Township Verizon Volkswagen 
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APPENDIX B 

THE QUIZZES (QUESTIONS) FOR EVALUATING THE ADAPTIVE 

INTERVENTIONS’ EFFECTIVENESS 

This appendix includes quizzes used to evaluate the effectiveness of AttentiveReview and 

AttentiveReview2. 

B.1 ATTENTIVEREVIEW 

AttentiveReview uses a pretest and a posttest. 

B.1.1 Pretest 

Human rights 

1. The human rights is universal 
a. True b. False 
 

2. When were treaties guaranteeing freedom of religious worship for Catholics & Protestants 
signed? 
a. 16th century b. 17th century 
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c. 18th century d. 19th century 
 

3. Is sovereignty a principle of international legal system that enables a country to protect its 
citizens? 
a. True. b. False 
 

Criminal laws 

1. The criminal law of US is very different from most of other developed, postindustrial countries’? 
a. True b. False 
 

2. What kind of disputes does Tort law deal with?  
a. Property b. Contract 
c. Civil d. Criminal 
 

3. What are the touchstones of criminal law? Multiple answers are OK 
a. Courts b. Punishment 
c. Sentencing d. State blame 
 

Surveillance 

1. Who are the main targets of NSA’s bulk domestic email surveillance? 
a. Fraudulence b. Terrorism 
c. Commercial Spy c. All of above 
 

2. When was the bulk domestic email surveillance program ended? 
a. 2015 b. 2013 
c. 2011 d. 2009 
 

3. How many years does NSA keep an email metadata in their database? 
a. 5 b. 6 
c. 7 d. 8 
 

B.1.2 Posttest 

Criminal law 
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1. What makes human different from other social creatures, e.g. ants and chimps?  
a. Linguistic abilities b. Guided by reasons 
c. Both are correct d. Both are incorrect 
 

2. How many sets of criminal laws are there in the US? 
a. 1 b. 50 
c. 51 d. 100 
 

3. Aristotle has observed that we are social creatures 
a. True b. False 
 

4. What principles mainly guide the definition of criminal law? Multiple answers are OK 
a. Harm b. Punishment 
c. State blame d. Fault 
 

5. What is the standard used for civil law that was mentioned: 
a. Prosecution b. Preponderance 
c. Compensation d. None of above 
 

6. Compared to civil law, criminal law favors? 
a. Defendant b. Plaintiff 
c. Both are correct d. Both are incorrect 
 

7. What is the point of civil damages? 
a. not morally wrong all members of society b. try and make the victims as whole as 
possible  
c. using money as a perfect remedy c. All of above 
 

8. Why did the man causing accident behave dangerously? 
a. He like it b. He was drunk 
c. Both are correct c. Both are incorrect 
 

9. What kind of road where the car accident happened? 
a. 4 lanes b. one-way 
c. undivided d. None of above 
 

10. What is the 2nd topic mentioned in the lecture?  
a. 4 lanes b. one-way 
c. undivided d. None of above 
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11. In the lecture, what you might be when you want to fart in some social gatherings? (multiple 
choices are possible)  
a. ashamed b. criticized 
c. ridiculed d. boorish 
 

12. Is the state monopoly on lawful force? 
a. True b. False 
 

13. How old is the man causing the car accident? 
a. 18 b. 19 
c. 20 d. 21 
 

Human rights 

1. During Second War World, who did organize mass detention and extermination of Jews? 
a. Gypsies b. Communists 
c. Nazi d. Gay men 
 

2. Human rights is international 
a. True b. False 
 

3. According to the lecture, what would give each of the nations involved an interest in 
surrendering or limiting some of its sovereignty? 
a. Cross-border spread of minorities b. Military power 
c. Nations do not want to keep their sovereignty d. All of above 
 

4. When was the book “The Age of Rights” published? 
a. 1995 b. 1918 
c. 1945 d. 1990 
 

5. Who is the author of “The Age of Rights”? 
a. Louis Henkin b. Laurence Cleveland 
c. Sarah Helfer d. Diane Neuman 
 

6. What is the difference in the lowest acceptance level between universalization and 
internationalization of human rights? 
a. Principle b. Rhetoric 
c. Law d. Political-legal 
 

7. Why do domestic institutions cannot protect human rights? 
a. Legislatures or parliaments could be shut down b. Parliaments go against human rights 
c. Lack of support from police or military d. Parliaments or parties could be 
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disbanded 
 

8. Which of the universalization or internationalization of human rights appears after the Second 
World War? 
a. Universalization b. Internationalization 
c. Both of them d. None of them 
 

9. When was the “minimum international standards of treatment of foreigners residing in other 
countries” established? 
a. 17th century b. 18th century 
c. 19th century d. 20th century 
 

10. In the example, countries, who abolished slavery, want to extend the abolition to those countries 
who did not because of: 
a. Human protections b. Economic disadvantages 
c. Horror of atrocities c. None of the above 
 

Surveillance law 

1. What is the name of the final database that NSA uses to store email metadata? 
a. Station b. Raw 
c. Corporate d. None of above 
 

2. What protocols are used to retrieve emails? 
a. HTTP b. POP 
c. IMAP d. All of above 
 

3. What protocols are used to send emails? 
a. HTTP and POP b. HTTP and SMTP 
c. HTTP and IMAP d. All of above 
 

4. By 2014, most connections between email providers were encrypted 
a. True b. False 
 

5. In the lesson, NSA is able to read encrypted emails: 
a. True b. False 
 

6. What is the biggest concerned about the bulk domestic email surveillance program? 
a. The final database contains unrestricted data b. It was not authorized by FISC 
c. NSA does not have counter terrorism investigations d. Data analyst can access to email data 
 



 163 

7. According to the instructor, what are the maximum of hops NSA used to collect contact 
chaining? 
a. 1 b. 2 
c. 3 d. 5 
 

8. FISC prohibited NSA from scanning popular email addresses like Amazon.com shipping 
notifications? 
a. True b. False 
 

11. Data stored in the corporate store need to satisfy reasonable articulalable suspicion? 
a. True b. False 
 

12. When did the bulk domestic email metadata program first start? 
a. 2001 b. 2002 
c. 2003 d. 2004 
 
 

B.2 ATTENTIVEREVIEW2 

AttentiveReview2 has a pretest, 3 weekly tests, and a final test. 

B.2.1 Pretest 

1. Which is one of the reasons why we can’t have the team innovation effect in real life? 
a. Communication b. Trust 
c. Creativity d. Religion  

2. The bias that weights a loss larger than a gain is the idea of:  

a. Hyperbolic Discounting b. Base Rate Bias 
c. Prospect Theory d. Status Quo Bias 

3. When using the first method of applying lines for non-linear data, we need to know the shape of 
the non-linear function in advanced: 
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a. True b. False 

4. Which of the following is not the purpose of using categorical model? 

a. Decide b. Strategize 
c. Design d. Categorize 

5. Which is not a fixed strategy of rule based model? 

a. Divide evenly  b. Mimicry  
c. Tit for tat d. None of above 

6. Who is the writer of the book Connected: 

a. Nicolas Christakis b. Scott Fowler  
c. Bill Bishop  d. Thomas Granovettor 

7. When evaluating a linear model using R2, we need to know the mean of the input data: 

a. True b. False 

8. The Polya process is path-dependent: 

a. True b. False 

9. When you have no ideas about a problem, you better try “big rocks first” rather than “small rocks 
first” heuristic: 

a. True b. False 

10. Who did prove the “no free lunch” theorem? 

a. John Wheeler  b. Von Neuman and Ulman  
c. Wolpert and McCready  d. Stephen Covey 

11. How was the Schelling Segregation Model studied? 

a. Using dynamic data  b. Using an agent based model  
c. Using a survival model d. Using worldwide politic events  

12. If we can’t come up with a Lyaponuv function for a model, the model is: 

a. Not equilibrium b. Not cycle 
c. Not random d. None of above 

13. In the Game of Life, an on cell is still on if it has: 
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a. 2 neighbors are on b. 3 neighbors are on 
c. All of above d. None of above 

14. Paradox Of Skill is observed in: 

a. Highly skilled people b. Low skilled people 
c. Lucky people d. Unlucky people 

15. The spine method for non-linear data tries to: 

a. Find the best non-linear function  b. Approximate the non-linear function 
c. Split data into quadrants d. Transform data into a linear dimension 

16. The Status Quo Bias states that: 

a. You prefer people who acknowledge 
your status 

b. You prefer to gambling rather than a 
loss  

c. You prefer gain than loss d. None of above 

17. What is the Game of Life about?  

a. Subtleties of aggregation  b. Financial system  
c. Eradicating poverty d. Climate change 

18. To find the best line that fits into input data, we need to know the variation of the input data: 

a. True b. False 

19. How many assumptions does the Lyaponuv function have?  

a. 1 b. 2 
c. 3 d. 4 

20. Condorcet paradox is: 

a. Paradox of aggregation b. Paradox of preference  
c. Paradox of sorting d. Paradox of segregation 

21. Which property is implied in preference aggregation? 

a. Additive  b. Reflexive 
c. Transitive d. Symmetric 

22. In categorical model, the items should be grouped by:  

a. Their variations  b. Intuition 
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c. Their absolute values  d. Their mean values  

23. When using linear models for non-linear data by converting non-linear terms into linear terms, 
how can we define the non-linear terms: 

a. Square of X  b. Look up table 
c. Log of X d. None of above 

24. When studied peer effects, Granovettor was working at: 

a. Yale University  b. University of Pennsylvania  
c. Harvard University d. Stanford University 

25. What is not the possible output class of cellular automata model? 

a. Beacon b. Complexity  
c. Alternation  d. Randomness 

26. While fitting data on a line, error is referred as: 

a. Difference between the data and the 
line  

b. Distance between the mean and the line 

c. R2 d. Variation between the data and the line 

27. According to Mauboussin, which of the following is not the reason why we care about luck and 
skill:  

a. Give good feedback b. Anticipate reversion to the mean 
c. Predict outcomes  d. Fair allocation of resource 

28. Which of the following was not developed by John Von Neuman? 

a. Growth theory  b. The New Kind of Science  
c. Game theory  d. ENIAC 

29. According to the rational model, which of the following situation that we wouldn’t see 
rationality? 

a. Repeated  b. Group decision 
c. People learn d. Large stakes 

30. The variations in categorical models are squared because of: 

a. 1 reason b. 2 reasons 
c. 3 reasons d. statistics tradition 
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31. Schelling Segregation Model was developed by Thomas Schelling at:  

a. Harvard University  b. University of Pennsylvania 
c. Stanford University d. University of Maryland 

32. Using peer effects, experts correctly predicted the political events in Egypt, Libya, and Berlin: 

a. True b. False  

33. Polya process requires to put another ball with the same color after picking a ball: 

a. True b. False 

34. How many important results does Polya process have? 

a. 1 b. 2 
c. 3 d. 4 

35. In order to find better solutions than individuals do, a team must:  

a. Work together b. Be in some unit 
c. All of above d. None of above 

36. Which of the following is a theorem for perspective? 

a. Optimal Existence  b. Multiple optima  
c. Savant Existence d. Unique Existence 

37. Which does component in the Lyaponuv function address the Zeno’s paradox? 

a. k b. max  
c. t d. x 

38. The preference aggregation and cellular automaton can model real things: 

a. True b. False 

39. Who is the writer of the book Big Sort:  

a. Thomas Granovettor  b. Nicolas Christakis  
c. Bill Bishop d. James Fowler 

40. According to the rational model, which of the following statements is TRUE?  

a. In decision, my payoff depends on what 
other people do  

b. In a decision, others’ payoff depends on 
what I do  

c. In a decision, my payoff depends on d. None of above 
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what I do 

41. When studied peer effects, Granovettor was a: 

a. Economist  b. Physicist 
c. Mathematician d. Sociologist 

42. For any problem, there exists a perspective that creates a Mt Fuji landscape: 

a. True b. False 

43. Team innovation relies on: 

a. Diverse team members  b. Diverse errors 
c. The same heuristics d. Diverse heuristics 

44. Game of Life was developed by: 

a. John Conroy b. Bill Bishop  
c. James Fowler d. Scott Pager 

45. Which component does not belong to an agent based model? 

a. Agent b. Aggregation  
c. Behavior d. Computing  

46. Why do we assume rationality when modeling people? 

a. Group decision b. Mistake cancel  
c. All of above d. None of above 

47. Which author mentioned “big rocks first” heuristic in his book? 

a. Stephen Covey b. Bill Bishop  
c. Thomas Granovettor d. Stephen Wolfram 

48. Soft drinks are called “Coke” in: 

a. North East of US b. South of US  
c. West of US  d. Mid-West of US 

49. The Game of Life is simpler than the cellular automata model: 

a. True b. False  

50. Which company does Michael Mauboussin work for? 
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a. Mathematica  b. Legmason 
c. IBM d. None of above 

51. Which of the following is a bad landscape? (Select all valid answers) 

a. Rugged landscape b. Caloric landscape  
c. Masticity landscape  d. Mt Fuji landscape 

52. Which are types of rule based behavior model? (Select all valid answers) 

a. Adaptive  b. Mixture 
c. Exponential d. Fixed 

53. In the rule based model lecture, how many types of rule based behavior are there? 

a. 1 b. 2 
c. 4 d. 8 

54. When you generate a number, it is affected by the previous generated number, it is the idea of: 

a. Base Rate Bias  b. Hyperbolic Discounting 
c. Prospect Theory  d. Status Quo Bias 

 

 

B.2.2 Week 1 test 

1. What is the key idea of the Game of Life? 
a. The life and death of a cell follows a 
predictable pattern  

b. More life cells will create even more life 
cells 

c. All patterns will be stabilized and death 
eventually 

d. Simple things follow simple rules can 
create incredibly elaborate patterns 

2. Condorcet paradox is preferred in: 

a. Final exam  b. Social sciences 
c. Politic  d. All of above 

3. It is possible that collective preferences can violate the transitive rule: 

a. True b. False 
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4. In the Game of Life, an off cell is turned on if it has: 

a. 1 neighbor is on b. 2 neighbors are on 
c. 3 neighbors are on d. 4 neighbors are on 

5. What did Fowler and Christakis consider as evidence of sorting? 

a. People changed their language 
accordingly to the living place 

b. People moved out of a neighborhood 
when most of the people there are not like 
them  

c. People changed their political ideology 
because of their neighbors 

d. None of the above 

6. According to the Schelling Segregation Model, what if people incredibly racist with their 
neighbors? 

a. They will form a low segregated area  b. They will form a high segregated area   
c. They can live anywhere  d. They cannot find a place to live   

7. The interesting finding of peer effects is: 

a. A low average activation threshold will 
expedite the peer effects  

b. The tail wags the dog  

c. People are affected by their 
surroundings 

d. We need a massive number of people to 
have peer effects 

8. What is the meaning of “it from bit”: 

a. Everything may be explained from the 
information theory perspective  

b. Everything can be digitalized into bits 
and bytes 

c. The cellular automata model is too 
simple and naïve 

d. Everything may come from simple rules 

9. To increase the likelihood of a collective action caused by peer effects, we need to: 

a. Increase threshold b. More variation in thresholds 
c. Add more people d. Find the tipping point 

10. Who developed the cellular automata?  

a. Stanislaw Ulam  b. John Von Neuman 
c. Stephen Wolfram d. John Wheeler 

11. Which fruit has not been used in the examples of aggregating preferences? 

a. Coconut  b. Apple 
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c. Orange d. Banana 

12. How many possibilities that a rule in cellular automata model has? 

a. 4 b. 8 
c. 256 d. Unlimited 

13. What do the Mid-West people call soft drinks? 

a. Pop b. Coke 
c. Soda d. All of above 

14. Sorting and peer effects are explaining the same phenomenon:  

a. True b. False 

15. What is the criteria used to study peer effects?  

a. Ratio between pioneers and followers  b. Joining threshold  
c. The event’s duration d. Number of participants 

16. John Conroy developed Game of Life at:  

a. Stanford University b. Harvard University 
c. Yale University  d. Cambridge University 

17. What is the big lesson of Schelling Model? 

a. Micro motives equal to macro behavior  b. Micro motives need not be equal to 
macro behavior 

c. People prefer to be around with anyone 
like them 

d. People have a high tolerance with their 
neighbors 

18. According to the Schelling Segregation Model, what if people are highly tolerant with 
their neighbors?  

a. They cannot find a place to live  b. They can live anywhere  
c. They will form a low segregated area d. They will form a high segregated area  
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B.2.3 Week 2 test 

1. Schelling Segregation Model is a:  

a. Behavioral model  b. Rule based model  
c. Rational model d. Cellular automaton model 

2. When using the third method of applying lines for non-linear data, we need to know the 
shape of the non-linear function in advanced: 

a. True b. False 

3. When fitting data on a line, the total distance is:  

a. Total variance b. Total length of the line 
c. Total length of the real values d. None of above 

4. According to the rational model, which of the following situation that we wouldn’t see 
rationality? 

a. Easy problems b. Large stakes 
c. Group decision d. None of above 

5. What is the range of R2 measure? 

a. [-∞ ,+∞]  b. [0,100] 
c. [0,1] d. [0, +∞] 

6. The outcomes of behavioral model and rational model agree with each other: 

a. True b. False 

7. Which is a fixed decision rule? 

a. Random choice b. Rational choice 
c. All of above d. None of above 

8. In a rational model, my decision depends on: 

a. What other people ask me to do b. What other people will do 
c. What I did d. What other people did 

9. In this course, how many methods we can use to use linear method for non-linear data? 

a. 1 b. 2 
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c. 3 d. 4 

10. A model with R2 = 5% is not a good model: 

a. True b. False 

11. The range of error in linear model is: 

a. [-∞, +∞]  b. [0, +∞]  
c. [-∞, 0] d. [0, 1]  

12. The Hyperbolic Discounting states that: 

a. Your generated numbers are not 
completely independent  

b. You prefer not to gamble 

c. You weight the far future more than the 
near future  

d. None of above 

13. When evaluating a linear model using R2, we need to know the variation of the input 
data: 

a. True b. False 

14. The bias that you keep your choice unchanged even though the description changed is the 
idea of: 

a. Base Rate Bias  b. Status Quo Bias  
c. Prospect Theory d. Hyperbolic Discounting 

15. The spine method for non-linear data tries to fit line as close as possible to local data:  

a. True b. False 

16. Which model can encode the “tit for tat” strategy of fixed rule based model? 

a. Automaton model  b. Moore machine  
c. Turing machine  d. Payoff matrix 

17. What is the meaning of R2 measure? 

a. The grouping accuracy  b. The category purity 
c. The % of variation the model can explain  d. None of above 

18. Why do we assume rationality when modeling people?  

a. Unique b. People learn 
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c. All of above d. None of above 
 

 

B.2.4 Week 3 test 

1. Paradox of skill is usually seen at: 
a. Dart competition b. High skilled competition  
c. Paper scissor rock game d. All of above 

2. Result 2 of Polya process states that:  

a. Any probability of red balls is an 
equilibrium and equally likely 

b. Any history of blue and red balls is 
equally likely 

c. Any history of blue and red balls 
converges to equal % of the 2 colors 

d. The probability outcomes are 
independent 

3. According to Mauboussin, which of the following is not the reason why we care about luck and 
skill: 

a. Assess the difficulty of a winning  b. Anticipate reversion to the mean 
c. Fair allocation of resource d. Assess outcomes  

4. In the perspective lesson, a landscape has: 

a. Values in the horizontal axis & solutions 
in the vertical axis 

b. Solutions in the horizontal axis & values 
in the vertical axis  

c. Values in one dimension and multiple 
axes for solutions 

d. Solutions in one dimension and multiple 
axes for values 

5. Polya process requires to put another ball with the same color after picking a ball: 

a. True b. False 

6. Result Balancing process states that: 

a. The probability outcomes are 
independent  

b. Any probability of red balls is an 
equilibrium and equally likely  

c. Any history of blue and red balls 
converges to equal % of the 2 colors 

d. Any history of blue and red balls is 
equally likely 
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7. From our lecture, a Lyaponuv function: 

a. Only increases b. Only decreases 
c. Never increase d. Never decrease 

8. How many heuristics we learned in the heuristic lecture: 

a. 3 b. 4 
c. 5 d. 6 

9. Diverse perspectives will give: 

a. Diverse heuristics  b. Disagreements within the team 
c. Diverse optima  d. All of above 

10. With N alternatives, number of one dimensional landscapes we can create are: 

a. N  b. N! 
c. N2 d. log N 

11. Mt Fuji is the best landscape because: 

a. At any point, you know where to go  b. It is easy to create 
c. It has snow on the top  d. All of above 

12. Which is one of the reasons why we can’t have the team innovation effect in real life? 

a. Implementation, interpretation error b. Lack of funding 
c. Human management is really hard d. None of above 

13. What is the example used to describe Zeno’s paradox in the Lyaponuv lesson? 

a. Arrow paradox  b. Achilles and the tortoise 
c. Walk to the door d. Stade paradox 

14. What elements can hurt a team’s performance? (Select all valid answers) 

a. Communication error b. Error evaluation 
c. Diverse cultures  d. Conflict of interests 

15. Which problem did Stephen Covey think a good application for “big rocks first”? 

a. Digging holes for fence installment  b. Computer Science 
c. Putting rocks into a bucket d. Time management 

16. According to the heuristic lecture, which company used the “do the opposite” heuristic? 
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a. Nike  b. IBM 
c. Priceline  d. All of above 

17. Lyaponuv function can tell: 

a. If a model is not equilibrium b. How fast a model is going to equilibrium 
c. All of above d. None of above 

18. In the Skill Luck model, when you see the same person performs well overtime, then the 
parameter a is: 

a. Undetermined  b. A constant  
c. Pretty small d. Pretty big 

 

 

B.2.5 Final test 

1. In the Skill Luck model, when you see huge jumps of outcome from periods to periods, then the 
parameter a is:  

a. A constant  b. Pretty small 
c. Undetermined d. Pretty big 

2. The Base Rate Bias states that: 

a. You prefer to gambling rather than a loss  b. Your answer is affected by a previous 
question rather than the current question  

c. You is based on the future rather than 
the present 

d. None of above 

3. Which is a fixed strategy of rule based model? 

a. Mimicry  b. Best response 
c. Bargaining rule d. Tit for tat 

4. What is not an attribute of the Game of Life: 

a. Logic Right  b. Predictable  
c. Emergence d. Self-organization 

5. Who coined the phrase “It from bit”? 
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a. John Von Neuman b. John Wheeler  
c. Stanislaw Ulam  d. Stephen Wolfram 

6. Bernoulli model is path-dependent:  

a. True b. False 

7. Which tool was used to demonstrate rational model? 

a. Payoff matrix b. Payoff tree 
c. One-dimension grid d. Temporal state chart  

8. According to the rational model, which of the following statements is TRUE? 

a. In a game, others’ payoff depends on 
what I do 

b. In a game, my payoff depends on what 
other people do 

c. In a game, my payoff depends on what I 
do  

d. None of above 

9. What are “big rocks” in the “big rocks first” heuristic?  

a. Important things b. Large things 
c. Important people d. Large products 

10. After a long run, the probability of picking a ball of the Polya process will be: 

a. 4% b. 60% 
c. Equal to the Balancing process’s d. None of above 

11. From our lecture, a Lyaponuv function has a:  

a. Maximum value b. Minimum value 
c. All of above d. None of above 

12. Who is the inventor of the Segregation Model? 

a. A mathematician  b. A sociologist  
c. A psychologist d. An economist 

13. To distinguish between sorting and peer effects, we need: 

a. Behavior data b. Joining threshold data 
c. Dynamic data  d. None of above  

14. Both Schelling Segregation model and Behavioral model are rule based models: 
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a. True b. False 

15. According to Mauboussin, which of the following is not the reason why we care about 
luck and skill: 

a. Assess outcomes b. Give good feedback  
c. Anticipate the mean outcome d. Fair allocation of resource 

16. Result 1 of Polya process states that: 

a. The probability outcomes are 
independent  

b. Any probability of red balls is an 
equilibrium and equally likely  

c. Any history of blue and red balls 
converges to equal % of the 2 colors 

d. Any history of blue and red balls is 
equally likely 

17. In the peer effects lesson, to predict there’s going to be some sort of uprising, we need to 
know: 

a. The standard deviation of the thresholds b. People’s connections 
c. All of the above d. None of the above 

18. The third method of using linear models for non-linear data: 

a. Finds the best non-linear function  b. Treats non-linear terms as linear terms  
c. Approximates the non-linear function d. Needs to know the non-linear function 

in advanced 

19. To find the best line that fits into input data, we need to know the mean of the input data: 

a. True b. False 

20. What makes it so hard to infer by looking at the macro level what’s going on at the micro 
level of a phenomenon? 

a. Macro and micro can’t happen at the 
same time  

b. Subtleties of aggregation  

c. Can’t see details d. None of above 

21. Rational models can handle the cases when people make mistakes: 

a. True b. False 

22. Heuristic is about: 

a. Finding solutions to the problem b. Represent the problem 
c. All of above d. None of above 
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23. The bias that the near future is weighted less than the far future is the idea of: 

a. Hyperbolic Discounting  b. Base Rate Bias 
c. Status Quo Bias d. Prospect Theory 

24. The peer effects were studied by:  

a. Fowler  b. Granovettor  
c. Schelling d. Christakis 

25. Categorical models can’t be applied on all reality data:  

a. True b. False 

26. According to the peer effects, what if all joining thresholds are larger than 0: 

a. People can attract more participants  b. People join faster 
c. Nothing happens  d. None of the above 

27. Condorcet paradox says that: 

a. The macro behavior is opposite to the 
micro motive  

b. People with less discriminative usually 
live in highly segregated neighborhood 

c. Each person is rational but the collective 
aggregation is irrational 

d. None of above 

28. Lyaponuv function tells whether a model can go to: 

a. Complex  b. Equilibrium  
c. Random d. Cycle 

29. Team innovation relies on:  

a. The same errors  b. The same heuristics 
c. Diverse perspectives d. Diverse problems  

30. The mean value is the best linear line to fit your data: 

a. True b. False 

31. A better perspective has:  

a. More local optima b. Fewer solutions 
c. Fewer local optima  d. More solutions  

32. Which rule was used for decision making in the Schelling Segregation Model? 
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a. Housing locating rule  b. Peer effect rule  
c. Moving rule d. Threshold based rule 

33. What did Bishop consider as evidence of sorting? 

a. People voted similar to their neighbor 
states  

b. People moved to where people are like 
them politically 

c. People moved to where people use the 
same language 

d. None of the above 

34. No heuristic is better than the others in all problems:  

a. True b. False 

35. What is one of the way to aggregate preferences?  

a. Transformation  b. Averaging 
c. Voting d. None of above 

36. In fixed behavior rule, the Grim trigger has: 

a. 1 direction b. 2 directions 
c. 3 directions d. 4 directions 

37. What is the academic name of Standing Ovation? 

a. Homophily  b. Segregation Model 
c. Sorting d. Peer effects 

38. Which types of segregation were studied in Schelling Segregation Model (choose all 
correct answers): 

a. politic  b. racial  
c. income d. housing 

39. In categorical model, a good categorization will: 

a. Reduce the variation in each group b. Reduce the mean in each group 
c. Increase the variation in each group d. Increase the mean in each group 

40. Aggregation paradox comes from inappropriate data handling:  

a. True b. False 

41. In a perspective, the more local optima, the easier we: 
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a. Get stuck b. Get tired  
c. Get bored d. Find the optimal solution 

42. The R2 metric is used for:  

a. Categorical model b. Linear model 
c. All of above d. None of above 

43. Categorical models make sense of the data by: 

a. Explaining some of the variation in the 
data 

b. Classifying the data 

c. Predicting the data d. All of above 

44. According to Michael Mauboussin the paper scissor rock game requires high skill to win: 

a. True b. False 

45. The Prospect Theory states that:  

a. You tend to avoid checking any choices  b. You weight the far future more than the 
near future 

c. You weight a gain less than a loss d. None of above 

46. What was the example used to illustrate the first method of using lines to deal with non-
linear data? 

a. The lines in a curvy wall b. A function transformation  
c. The quadrants of a data set d. None of above 

47. When developed Game of Life, John Conroy was a: 

a. Mathematician  b. Sociologist  
c. Economist d. Physicist 

48. What is the purpose of the value k in the Lyaponuv’s second assumption? 

a. Help the function move to the minimum 
value 

b. Help the function move in a constant 
speed  

c. Indicate how fast the function become 
equilibrium  

d. Keep the function stable 

49. When it comes to team’s innovation, to ensure the team’s performance, it is important to 
make everyone look at the same direction: 

a. True b. False 
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50. John Von Neuman developed cellular automata based on the vision of Stephen Wolfram: 

a. True b. False 

51. Perspective of a problem is:  

a. Hill climbing process b. A set of all possible solutions  
c. The best solution of the problem d. Your opinion about the feasibility of the 

problem 

52. What is not the possible output class of cellular automata model?  

a. Randomness  b. Fixed point  
c. Alternation d. Looper 

53. When using the spine method of applying lines for non-linear data, we need to know the 
shape of the non-linear function in advanced: 

a. True b. False 

54. Team only gets stuck on a local optimum for the worst member of the team: 

a. True b. False 
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APPENDIX C 

MODEL FUSION PERFORMANCE OF ATTENTIVEVIDEO 

C.1.1 Amusing 

 

Figure 59. Performance of single-models and model fusion approaches on Amusing. 

C.1.2 Arousal 

 

Figure 60. Performance of single-models and model fusion approaches on Arousal. 
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C.1.3 Attention 

 

Figure 61. Performance of single-models and model fusion approaches on Attention. 

C.1.4 Like 

 

Figure 62. Performance of single-models and model fusion approaches on Like. 

C.1.5 Recall 

 

Figure 63. Performance of single-models and model fusion approaches on Recall. 
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C.1.6 Rewatch 

 

Figure 64. Performance of single-models and model fusion approaches on Rewatch. 

C.1.7 Share 

 
Figure 65. Performance of single-models and model fusion approaches on Share. 

C.1.8 Touching 

 

Figure 66. Performance of single-models and model fusion approaches on Touching. 
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C.1.9 Valence 

 

Figure 67. Performance of single-models and model fusion approaches on Valence. 
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