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PRACTICAL AND EFFICIENT SYSTEM IDENTIFICATION OF

PRECISION GANTRY SYSTEMS

Eric T. Belski, M.S.

University of Pittsburgh, 2018

This research develops a procedure to efficiently measure the multi-input multi-output fre-

quency response of precision gantry systems. A precision gantry considered here is defined

as two axes moving a bridge in tandem with a third axis mounted to the bridge. An effi-

cient method of measuring the frequency response will decrease the total time required for

designing a controller, and higher volumes of gantries can be processed in a set amount of

time.

Sequential, random phase multisine signals are chosen as an excitation signal for the

system identification. A model-guided methodology based on system parameters determines

how many locations at which the frequency response should be measured, as the response

varies with axis location. Guidelines are developed and used to determine that the frequency

response of the gantry base and workpoint can be measured using accelerometers in order to

provide information about system behavior. The frequency response data is processed using

multi-input multi-output techniques to provide a meaningful, straightforward presentation.

The procedure is then structured into an automated program such that minimal user input is

necessary. The result is an automated process that can measure and present the multi-input

multi-output frequency response in a deterministic and repeatable manner. The automated

procedure is also tested and validated on a sample of industrial gantries.
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1.0 INTRODUCTION

The objective of this research is to develop a procedure to efficiently measure the multi-input

multi-output (MIMO) frequency response of gantry systems for use in an industrial setting.

Precision gantry systems will be considered in this research, which will be classified as two

axes that move a bridge in tandem in the x -direction with one axis on the bridge moving in

the y-direction, Figure 1. Frequency response measurements are used to design controllers

and with the multiple axes on a gantry, a MIMO frequency response should be measured to

effectively represent the system under control. The MIMO frequency response of a system

is a matrix of transfer functions that each describe how a given input affects some output,

in the frequency domain. Various transfer function matrices are used in the analysis and

design of MIMO control systems and it is necessary to properly determine these functions

to ensure good controller design.

There is a need for a more efficient MIMO frequency response measurement strategy with

the prevalence of precision gantry systems in the motion control industry. As applications

require faster, more precise motion, gantry systems are often used because of their high force

density and structural rigidity. This allows for high accelerations to be commanded without

the worry of excessive compliance in the system. With the increased demand for gantries, so

too is it is necessary for the industry to optimize the process of identifying system mechanics

and designing controllers.
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Figure 1: This schematic diagram of a typical gantry system shows two parallel axes (X and

XX) free to move in the x -direction, carrying a third axis, Y, that moves in the y-direction.

Attached to the Y axis is some payload or tool, commonly referred to as the workpoint.

1.1 STATE OF THE ART

After a gantry is assembled at the factory, a controller is applied to the system in order that

a test procedure can be carried out on the system. This test ensures that under normal

operating conditions, all system outputs are responding in a desirable and predictable man-

ner. In order to pass the test procedure, the controller is required to be robust such that

external disturbances and plant variations do not affect system stability but also maintain a

high bandwidth to achieve the throughput requirements of various applications. Achieving

a robust controller with the best performance possible necessitates a model of the plant with

well defined uncertainty bounds. These uncertainty bounds allow the controller to achieve

the highest bandwidth possible while providing the knowledge that robust conditions are

not being violated. This is time consuming and difficult with the identification practices

currently in use.
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In the example system in Figure 1, there are 3 axes, each of which is individually excited

at the motor. The output of the axis encoders are measured for each direction. Mea-

surements are typically performed over a 3 × 3 grid of locations, resulting in 27 individual

measurements that need to be conducted. To obtain a useful frequency resolution and range

for the frequency responses, typically 200 logarithmically spaced frequencies are excited with

a swept sine signal between 20 Hz and 2000 Hz. The measurement at each location takes

approximately 80 seconds, verified by actual measurements. This measurement is duplicated

27 times at different locations in travel, yielding a total measurement time of approximately

36 minutes (neglecting move times between locations). Additionally it is useful to input both

low- and high-amplitude excitations for each axis to identify nonlinear behavior. This will

double the number of responses that need to be collected, consequently doubling the collec-

tion time to 1 hour and 12 minutes. Once the data has been collected, a control engineer

or technician analyzes it using single-input single-output (SISO) methods and adjusts the

controller accordingly. Because the controller of the system has been altered, another grid

of responses must be collected to verify stability throughout travel [24]. This process may

need to be repeated several times.

When using SISO techniques to analyze a multi-axis control loop, inaccurate stability

margins can be reported because the coupling of the system is not properly accounted for [9].

Multiple inputs have an effect on each output, however SISO methods only consider the

influence one input at a time. To solve these problems MIMO analysis techniques should be

used. In [28], Stoev makes the observation that many industrial controllers are SISO based

because:

• they are easily understood and tuned manually

• they can be based on non-parametric frequency response functions, which are inexpensive

and accurate

• they require less expensive controller and amplifier hardware
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However MIMO controllers can be analyzed with specific tools such that they are easily

understood [5], designed with non-parametric frequency response functions [18], and im-

plemented with the same hardware as SISO controllers. An example of how to implement

MIMO analysis techniques is necessary to overcome the perception of increased design cost

as well as demonstrate the advantages over SISO techniques.

Another source of error when calculating stability margins is measurement error. With

the use of a swept sine excitation signal, it is not possible to determine the measurement

uncertainty due to the way it is processed to obtain other advantages. If uncertainty bounds

are desired, then more periods of each sine wave must be measured, further increasing

the process time. Swept sine excitations are used for their flexibility with frequency range

and spacing as well as having neither leakage nor harmonic distortion [14]. An improved

excitation signal would take less time, contain most of the advantages of swept sine, but also

lend itself to determining measurement uncertainty.

The frequency response of a gantry is understood to have dependency on the location

of the axes [4]. In order to gauge some estimate of the position dependency, the frequency

response function needs to be measured in multiple axis locations. Currently the operator

has discretion about how many locations in gantry travel to measure, which can lead to

under or over characterized systems. When the operator is determining how many locations

to measure, they take into account parameters of the system such as: moving mass, bridge

length, gantry axes’ length, etc. There is no standard procedure so the number of mea-

surement locations could be inaccurately determined if a system parameter is not properly

accounted for. If too few locations are measured, there could be unaccounted variations in

the dynamics that will affect the end process because they are not considered. Conversely if

the system is over characterized, extra time is spent characterizing more locations in travel

than is necessary. Either of these situations could be avoided if intrinsic knowledge of the

system is used to systematically determine at how many locations to measure the frequency

response. This deterministic process should help to optimize the amount of time needed for

a sufficiently characterized system response to be collected.

A frequency response matrix of the plant of a gantry is most often measured from the

motor inputs to the encoder (position) outputs. These encoders are normally located close
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Figure 2: Block diagram describing standard characterization setup where r is the refer-

ence signal, e is the error, K is the controller, v is the controller output, w is a generated

disturbance, u is the input to the plant, G is the plant, and y is the plant output.

to the motor inputs to create a desirable control loop. While this is convenient from a control

design perspective, the encoder is normally located some distance from the system point of

interest (workpoint) where the application process is occurring. The larger distance from the

system outputs can lead to undesired and unmeasurable behavior at the system workpoint

with little to no evidence of this at the system output measurements. A common problem is

optimizing performance of the system at the outputs (feedback) of the system while neglect-

ing that the performance is poor at the workpoint. A system will be largely ineffective if the

performance at the workpoint is dissimilar to the performance at the outputs. An example

of this is high throughput laser contouring applications where high gain is necessary to track

command inputs well. If the gain is large at a resonant frequency of the workpoint, but the

system outputs are insensitive to the mode shape of the resonance then the mode will be

excited without any observable effect. This will translate into good tracking of the profile at

the system outputs, however the actual laser path is oscillating about the desired trajectory.

Not only is the workpoint behavior important to the application of a gantry but also

the behavior of the base the system is mounted to. If the machine base is susceptible to

external disturbances that will affect the servo axes, it can have negative effects on the overall

process performance of the gantry. The base may also be prone to vibration from the motion
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of the gantry axes which then causes unwanted effects to couple back to the axes. A method

of instrumenting both the workpoint and base would aid in the identification of unwanted

behavior and also the possibility of generating control effort from these measurements to

reject undesired motion.

Inherent in these problems is the need of someone with extensive formal training or

experience to solve them and implement the solutions. This is acceptable in research or

low volume production, but not in industrial applications with higher production volumes.

Therefore some translation into an automated procedure is needed to allow non-experts to

utilize the proposed methods in this research.

1.2 OBJECTIVES

Individual objectives are identified and used to form a comprehensive approach to improve

the current art of MIMO system identification in industry. The objectives are:

1. Reduce the overall time required for the measurement process and quantify

the uncertainty in the frequency response.

Swept sine excitation signals are excellent for obtaining low uncertainty measure-

ments but are the slowest of the excitation signals in consideration for frequency

response measurements. White noise excitation is very fast but contains high un-

certainty in most multi-axis systems due to spectral leakage [8]. A compromise

between the two, which shows good speed improvement over swept sine but less

uncertainty than white noise, is multisines. Multisine excitation signals contain

the sum of different periodic signals to excite multiple frequencies simultaneously

[31]. The hypothesis is that the multisine signal will bridge the gap between mea-

surement uncertainty and speed improvements. Typical multisine measurements

for these types of systems take about 20 seconds where as swept sine measure-

ments of the same frequency resolution and range take about 80 seconds. Various

types of multisine signals are investigated to find the one with the best character-
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istics in the frequency ranges of interest as well as the fastest measurement time.

This step is critical to the robustness of the controller that will be designed using

these responses. Large uncertainty in the frequency response could require overly

conservative controller gains to properly satisfy robustness requirements.

2. Define and incorporate an approach for using a priori knowledge of the gantry

system to determine at how many locations the frequency response should

be measured.

There will be additional time savings and reduced uncertainty by using a priori

knowledge of the stage to define how many frequency response measurement loca-

tions are needed. The approach here will be to use parameters, such as the ratio of

moving mass on the bridge to total bridge mass, to determine how many locations

in travel should be measured. If the moving mass of the bridge is small relative to

the overall bridge mass, it may only be necessary to collect frequency responses at

one location in the travel of the bridge axis. Other parameters that will be taken

into account are: the length of the bridge axis, and the length of the gantry axes.

In current practice, an expert will take into account a combination of these param-

eters when determining how many locations to measure in a grid, but there is no

defined procedure. The core of this objective is to define a procedure to perform

the same task the controls expert does through experience. Through this process

there should be time savings in situations where fewer locations are needed than

normal and better characterized uncertainty in situations where more excitation

locations are required.

3. Recommend additional sensors for reducing uncertainty and measuring points

of interest during the frequency response measurement.

The current identification method measures only the encoders of each axis, but this

research will investigate how each axis input affects locations of interest, such as the

machine base or the workpoint. A sensor, most likely an accelerometer, will be used

to determine the response from each motor to the sensor location. This frequency

response data will have implications on how the controller is designed and provide

better tools for creating a controller that can improve performance for the system
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as a whole. With the addition of these sensors, information can be available to

help understand behavior at the workpoint, base or any other location of interest.

An important aspect of this objective is the ability to measure multiple sensors at

once. Measuring multiple sensors together enables a comparison of the phasing of

each response to determine a rough approximation of system behavior in different

system directions. Investigating which locations have merit to measure and how

they are affected by the system inputs are the primary goals of this objective.

4. Formalize a procedure for measuring the MIMO frequency response of pre-

cision gantry systems that does not rely on operator expertise.

Once the previous objectives are complete, there will be another iteration of in-

tegrating them into an automated program. The system frequency response will

need to be presented such that non-experts will be able to interpret the results and

make decisions from them. Displaying these items will be useful in making the

procedure usable by a broader audience as well as improving the user experience.

More relevant data that is readily available to the user will make the interaction

more efficient and less time will need to be spent attempting to understand each

system. A well-defined procedure will produce a standard set of results that can

be compared against other systems of the same design. Operator variability will

be removed from the process, and the procedure will eliminate the need for a con-

trols expert to perform the measurements. A large amount of data is produced in

collecting a MIMO frequency response and it can easily be overwhelming to even

those familiar with such responses. Therefore the presentation will require a se-

lection of key items that provide insight into the system behavior without being

overly complicated. This will draw on the theory of robust control and incorporate

principles from this field.

The success and effectiveness of this research project will be determined by how much

time can be saved in the data collection process and how well the uncertainty of the sys-

tem frequency response can be estimated to ensure a robust controller. There is ample

opportunity to test the robustness of this process due to the number of different industrial

gantries available for testing. There is no single system on which this procedure will be de-
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veloped. The systems available for use are customer gantries that were proceeding through

the standard testing procedure before shipment. There are a few duplicate systems of the

same design but there was not an opportunity to conduct multiple tests on the same unique

system. While this caused some difficulty during the development of the research objectives,

it ultimately benefits the research outcome. The variability demonstrates that the process

will work across multiple systems and not be optimized for one specific system, as might be

the case if a dedicated system were available for testing.

1.3 IMPACT

Technicians at the factory will experience a faster measurement process as well as a mean-

ingful presentation of the measured system response. No longer will a large portion of time

be spent gathering system responses and adjusting servo tuning, only to have to regather

system responses to repeat the process. Most users and technicians that work on these

systems use tools meant for single-input single-output systems, which leads to inefficient

methods of collecting data for multi-axis systems, especially if the method is not automated.

The method proposed in this research will not only automate and expedite the system iden-

tification process but it will ensure that all relevant responses are collected. Automating

the collection process has the added benefit of removing user based variability on what is

collected. The presentation of the system response is another important variable for the

technicians. With a more intuitive display, better controllers can be designed because the

behavior of the system is more apparent. Ultimately a fully-automated tuning procedure

will be developed from the data gathered which will not require human design input apart

from the intended goal (contouring, pick and place, etc.).

As a trickle down effect from the factory, customers will receive a system that has robust

stability margins. Therefore the system should be less sensitive to changes that occur during

shipping or environmental effects at the customer facility. The intent currently is for the

customer to be able to initialize the system with little extra work other than plugging in all

relevant cables. If a new disturbance is present, then the performance margins of the system
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might not be the same as it was at the factory. Better identification processes enable the

design of a controller that contains lower uncertainty and therefore better defined stability

margins. Not only will it benefit the customer from the factory but also it may assist in

on-site controller design if the customer makes a change to the system at their facility.

The automated process can be run by a technician or the customer and the system can be

tuned on-site or the data sent back to the factory where a controller can then be designed if

necessary.

Design engineers will also find use from this procedure in identifying structural resonances

and cross-coupling from axes. Currently, full system identification through modal analysis

is a long process that requires extensive data interpretation to provide results to the design

engineer. With a faster frequency response procedure that presents the data in a meaningful

way, future mechanical development on systems can be aided by information on dynamic

performance of existing systems without the time requirement of a full modal analysis.

Especially beneficial to this process is the extra data collected by sensors at the workpoint

or base. This information will help the engineers refine designs to achieve the intended

dynamic behavior at points of interest.
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2.0 SYSTEM IDENTIFICATION BACKGROUND

The goal of system identification is to develop a mathematical model that approximates

the deterministic behavior of a system [22]. Critical to developing this model is minimizing

the influence of stochastic effects (noise) on the measurement of the deterministic portion.

Noise minimization can be achieved by carefully selecting the locations where the system will

be measured as well as what excitation signals are chosen as inputs. Included in all system

identification schemes is the design of a signal that is input to the system under consideration.

This input signal is compared to an output signal that is measured somewhere else on the

system. The correlation in the frequency domain between these two signals is the basic

theory behind the system identification considered here.

2.1 FREQUENCY DOMAIN IDENTIFICATION

A common method of describing a system’s input/output relationship is the frequency re-

sponse function or G(ω), where ω is frequency. The frequency response function is defined as

the Fourier transform of the system output divided by the Fourier transform of the system

input [19],

G(ω) =
Y (ω)

U(ω)
. (2.1)

The Fourier transform is defined as

U(ω) = F{u(t)} =
1

2π

∫ ∞
−∞

u(t)e−iωtdt (2.2)

where U(ω) is a complex quantity. The Fourier transform of the correlation function Ruu

will then be defined as Suu(ω) or the two-sided auto-spectral density of the signal u(t).
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This function ceases to be complex valued and instead only contains magnitude information.

Similarly the Fourier transform of the cross-correlation function Ruy can be defined as Suy(ω)

or the two-sided cross-spectral density of the signals u(t) and y(t). Both Suu(ω) and Suy(ω)

are two-sided or range in frequency from −∞ to∞. A common or more useful way to define

the auto-spectral density and the cross-spectral density is

Suu(ω) = F ∗{u(t)}F{u(t)} (2.3)

Suy(ω) = F ∗{u(t)}F{y(t)} (2.4)

It is more convenient to deal with functions that range in frequency from 0 to ∞, therefore

one-sided function are defined as

Ssingle
uu (ω) = 2Suu(ω) 0 ≤ ω <∞ (2.5)

Ssingle
uy (ω) = 2Suy(ω) 0 ≤ ω <∞ (2.6)

Thus the one-sided auto and cross spectral-density functions can be used to define the

frequency response of a system as

G(ω) =
Ssingle
uy (ω)

Ssingle
uu (ω)

(2.7)

which is more useful than Equation 2.1 because the effects of measurement noise are re-

duced [19]. Noise reduction is a rather important topic when performing system identification

as noise will add to the uncertainty of the measured frequency response function.
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Figure 3: Block diagram with input measurement noise n and output measurement noise

m. The frequency response function of G cannot be measured directly and instead Ĝ is

measured, which includes effects from the input and output noise.

2.2 UNCERTAINTY CONSIDERATIONS

When measuring a frequency response, there is always an uncertainty associated with it.

This is due to imperfect sensors, external disturbances and non-linearity in plant mechanics

(we assume linearity but this is never the case). Consider the simplified block diagram in

Figure 3 which represents a simple linear motion stage. There are sensors that measure the

motor current u and the position output y, each exhibiting some type of quantization error

and noise. The noise associated with the input and the output are represented as n and

m respectively. The noise from the sensors measuring the input and output translates into

an uncertain value for the quantity Ĝ, the approximate frequency response function, due

to the inability to separate the error and noise from the “true” frequency response. This

uncertainty can be visually represented as an error bound around the bode plot of Ĝ, as

in Figure 4. This indicates that the true plant G lies somewhere in this bound, but where

is exactly is unknown. When using a measurement that contains uncertainty, all possible

combinations must be considered in order to ensure a stable controller that satisfies given

design conditions. In SISO systems the controller can be designed with increased stability

margins in an attempt to account for the unknown uncertainty. This strategy can also be

applied to MIMO systems but is much less effective due to coupling between multiple inputs

and outputs. For example in a 3 axis system, 9 uncertainty values must be compensated for
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Figure 4: Example frequency response with uncertainty bounds. The true frequency response

function may exist anywhere within these bounds.

with increased stability margins. Without knowing the amount of uncertainty or degree of

coupling the axes have, the system can easily have an overly conservative controller design.

Therefore it becomes necessary to estimate the uncertainty of the frequency response to

create confidence in controller design choices.

To estimate the uncertainty bounds of the frequency response of a system, multiple mea-

surements of the system’s input and output must be obtained. In this way a variance of

the measurement at each frequency can be obtained and translated into uncertainty bounds

about a frequency response plot. One such method of analyzing the uncertainty of a fre-

quency response is to input a periodic signal to a system and measure both the input and

output for multiple periods. Subdivide the measured signal into distinct periods and then

calculate the frequency response of each period. At this point there will be N values of Ĝ,

where N is the number of signal periods analyzed. As found in [22] the sample mean and

sample variance can be determined for the collection of ĜN values
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Ĝs(ω) =
1

N

N∑
k=1

Ĝk(ω) (2.8)

σ̂2
s(ω) =

1

N(N − 1)

N∑
k=1

|Ĝk(ω)− Ĝs(ω)|2 (2.9)

where Ĝs(w) is the sample mean and σ̂2
s(ω) is the sample noise variance of the sample mean.

Now a sample mean over multiple periods of an excitation signal has been established with

uncertainty in the form of the sample noise variance. While this is helpful to measure and

average out noise in the measurements, there are still nonlinearities that can pervade through

a single realization of a periodic signal.

To properly account for nonlinearities, it is sometimes necessary to create another real-

ization of the periodic signal that is independent from the first periodic signal. For signals

with random phase, this implies unique random phase generated for subsequent realizations.

This signal is then applied independently from the first periodic signal in order that a differ-

ent set of nonlinear effects can be captured in the measurement. Using a separate realization

helps to reduce the variance of the frequency response due to nonlinearities by a factor of

the number of realizations used [23]. More accurate estimates of the noise distortion can be

obtained as well by using an increased number of realizations. The sample mean and sample

variance over multiple realizations are calculated in the same way as for multiple periods.

However if N periods and M realizations are used in conjunction, the sample mean

and sample variance over the periods should be calculated first for each realization as in

Equations 2.8 and 2.9. Then the sample mean and variances for M realizations are combined

to yield the total sample mean and variance

ĜT (ω) =
1

M

M∑
j=1

Ĝs,j(ω) (2.10)

σ̂2
T (ω) =

1

M(M − 1)

M∑
j=1

|Ĝs,j(ω)− ĜT (ω)|2 (2.11)

σ̂2
Tn

(ω) =
1

M2

M∑
j=1

σ̂2
s,j(ω) (2.12)
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where the subscript T denotes total sample mean and variance, σ̂2
Tn

(ω) is the sample noise

variance and σ̂2
T (ω) is the sample total variance. The overall uncertainty associated with

the measured frequency response is the primary concern therefore only the sample total

variance, Equation 2.11, will be considered. This type of uncertainty analysis regarding

system identification measurements is common and can also be found in [22], [23], [31],

and [33]. Representation of the uncertainty on the plot can take the form of Figure 4 with

a shaded uncertain region about the sample mean frequency response as see in [20] or the

form of the frequency response estimate ĜT (ω) plotted on the same plot as σ̂2
T (ω) to show

the difference in magnitude of the two quantities as in [33].
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3.0 EXCITATION SIGNAL DESIGN

Key in designing an excitation signal is to consider the end goal of the system identification.

In this research nonparametric system identification is the goal and therefore it is suggested

to use excitation signals that will maximize the accuracy obtained in a fixed measurement

time for a specified maximum peak value of the excitation signal [22]. In system identifi-

cation, commonly used excitation signals include swept sine, random noise and multisine

signals. Multisine excitation signals contain distinct advantages over the other signals when

examining speed and accuracy in tandem and are therefore adopted for the process being

developed in this research.

3.1 CANDIDATE SIGNALS

The signals considered have different characteristics that need to be described before the

strengths and weaknesses can be examined.

3.1.1 Swept Sine

An excitation signal that is commonly used in system identification is swept sine. A sinusoid

containing only one frequency is input for a few signal periods before stepping to a slightly

higher frequency sinusoid. This process is repeated until enough frequencies are measured

within the frequency range of interest. Multiple periods of each input frequency are necessary
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Figure 5: Examples of excitation signals that are considered for use in system identification.

The swept sine is a single frequency component of the many frequencies composing an

excitation. The random excitation contains all the frequencies of interest but needs to

be averaged many times. The multisine sequence is one of multiple sequences needed to

measure the entire frequency range.

to obtain a good representation of the signal as well as to let transients decay before signals

are measured. The swept sine excitation can be characterized by the sine wave

u(t) = A sin(ωt) (3.1)

where ω varies in some frequency range and is logarithmically spaced and A is the signal

amplitude. The amplitude and frequency spacing of the swept sine excitation can be adjusted

to better suit the system being identified. An example of one component of the swept sine

excitation is shown in Figure 5.

3.1.2 Random Excitation

Another type of excitation signal that is commonly used in system identification is random

noise or so called white noise. Wide band random noise is a signal that contains approx-

imately uniform spectral density from low frequencies up to half the sampling frequency.

When this signal is input to the system, the entire frequency spectrum contained in the
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random noise is excited. Thus the full power of the signal is not contained within the fre-

quency range of interest and other frequencies are present in the signal. In an attempt to

reconcile this, windowing functions can be applied to the measured data to limit the spectral

leakage, however there will always be some leakage present. The adjustable parameters in

a random noise excitation are the frequency range, the RMS amplitude of the signal (peak

values as well), and the amplitude distribution. In this work the RMS amplitude of the

random noise is controlled and a Gaussian amplitude distribution is used. An example of a

random excitation is seen in Figure 5.

3.1.3 Multisine Periodic Excitation

Multisine signals are a classification of signals that are the sum of multiple sine waves of

varying frequencies and phases. The formal definition of a multisine signal is

u(t) =
N∑
k=1

Am cos(ωkt+ φk) (3.2)

where Am is the amplitude of each signal being summed, ωk is the frequency content of the

kth sine component and φk is the phase of the kth sine component. There are multiple classi-

fications of multisine signals that specify different requirements for the amplitude, frequency

and phase of each component. A prominent class of this signal is the random phase mul-

tisine. This implies that the quantity φk from Equation 3.2 is randomly distributed across

the set of k summed signals. This type of signal is evaluated and used in [6], [7], [8], [31],

and [33].

Another subset of multisine signals that function well, while also maintaining compati-

bility with random phase, is the sequential multisine [14]. A sequential multisine is defined

by multiple multisine signals that are applied to the system in sequence. Each multisine

sequence contains a subset of the frequency range of interest and once all sequences have

been applied to the system, a full range of frequencies is measured. For example if 10-100 Hz

needes to be measured, the first sequence could contain a number of frequencies between 10-

19 Hz, the next sequence 20-39 Hz, then 40-79 Hz and lastly 80-100 Hz. In this manner the
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entire frequency range is covered but harmonics do not interfere with the frequencies mea-

sured in each sequence. Each sequence is applied one after another with time for transients

to decay between sequences. One sequence of a multisine excitation is found in Figure 5.

According to N. Duncan (personal communication, August 17, 2017) the design of a

random phase sequential multisine should begin by dividing the frequency range of interest

into non-overlapping sections where the largest frequency in each section is less than twice the

minimum frequency in the same section. This prevents harmonic interference in analyzing

the frequency spectrum of the signals. With the frequency range subdivided into sections,

these become the sequence of multisine signals. The frequencies in each section are chosen

such that all frequency components are exactly periodic within the sampling frequency to

prevent leakage. Then the sinusoids in each sequence are summed, with each sinusoid having

randomly generated phase. The amplitude of each sine wave component is also normalized

such that the root mean square (RMS) amplitude of each multisine sequence is equivalent to

a specified amplitude. These equations are as follows, using the notation from Equation 3.2

Am =
Aset√
Nf

(3.3)

φk ∈ [0, 2π) (3.4)

where Aset is the desired RMS amplitude, Nf is the number of frequencies in the multisine

sequence, and φk is a random phase between 0 and 2π. Using Equations 3.3 and 3.4,

and applying them to Equation 3.2, each multisine sequence can be calculated to contain

equivalent power per frequency, maintain a set RMS current, contain randomized phase, and

have non-overlapping, non-harmonic frequency content.

3.2 EXCITATION ACCURACY AND UNCERTAINTY

The swept sine excitation is an accurate method of measuring the frequency response of a

system. Each segment of the excitation only contains a single frequency to analyze. This

makes determining the relationship between the excitation input and system output straight-

forward with a discrete Fourier transform (DFT). The frequency bin of the excited signal is
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the only bin of importance, while all other frequency bins contain effects from nonlinearities,

noise or harmonics. By comparing the power of the excited frequencies in the output to the

power contained in the rest of the frequency bins, a measure of the linearity and signal to

noise ratio can be obtained. If the power of the excited frequency dominates the spectrum,

then a good measurement is assumed to have been made. The uncertainty can be calculated

by repeating multiple measurements and calculating the variance. With the systems studied

here, the standard deviation (square root of the variance) is shown to be low, as in Figure 6.

Also shown in Figure 6 are the magnitudes and standard deviations of random excitation

and multisine excitations. The random excitation contains more measurement uncertainty

than either the swept sine or multisine up until about 300 Hz. The random excitation exhibits

larger uncertainty due to spectral leakage and higher crest factors. The spectral leakage

allows higher frequencies to alias into the frequency range of interest and contribute energy

to the measured frequencies. In addition harmonics can be excited within the frequency range

and create further distortion of the measured response. The higher crest factors distort the

amplitude spectrum of the signal, leading to uneven power distribution across the excited

frequencies [22]. Because the excitations are random, the power of each frequency varies

between measurements, leading to an average response that might be close to the actual

linear response but has a large standard deviation.

The multisine measurement in Figure 6 contains comparable uncertainty to the swept

sine. This is partially due to the elimination of spectral leakage by making all of the excited

frequencies exactly periodic with the measurement. Each multisine sequence also contains

multiple periods of the frequencies that compose it. So although one period of the multisine

is excited, multiple periods of each frequency are being excited. This enables a more accurate

measurement to be obtained as more signal periods are included.

Additionally the random phase of each multisine component creates a multisine sequence

that has a Gaussian distribution of signal amplitude [23]. In a Gaussian distribution most of

the probability mass is centered about zero. A sine wave’s amplitude distribution is heavily

distributed towards the max and min amplitude, both positive and negative, and random

noise has a roughly Gaussian amplitude distribution over the range of signal amplitudes.

Similarly with a random phase multisine, the amplitude distribution is centered about the
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Figure 6: The average frequency response magnitude using various excitation signals and

the standard deviation of the measurements. Three measurements of each were averaged to

determine an estimate of the sample standard deviation and mean. Swept sine and multisine

have a smaller standard deviation than random noise until approximately 300 Hz where noise

and external disturbances seem to dominate the response for all excitation signals.

lower amplitudes and therefore better approximates the response at lower, more linear ampli-

tudes. This becomes necessary because non-linearities in a response can occur and often vary

with input amplitude. By distributing the signal density in a Gaussian distribution about

zero, the linear portion of the response is better approximated rather than being skewed by

high amplitude non-linearities [23].

3.3 EXCITATION DURATION

In order to excite a full range of frequencies with swept sine, the total measurement time can

be approximated by the amount of time required to excite each frequency for a minimum of

one full period and the amount of time required to wait between each frequency excitation
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to allow transients to decay. The total measurement time can be approximated by

Tss =
F∑

k=1

N +M

fk
(3.5)

where 1
fk

is the signal period of the excitation frequency, N is the number of excited periods,

and M is the number of periods to wait for transients to decay, as in [22]. This measurement

time is clearly increased if the signal to noise ratio is not large enough and multiple peri-

ods of measurement are required. Tss typically averages around 80-90 seconds for a single

measurement.

The issue of measurement time is exacerbated when measuring the frequency response of

a MIMO system. There are not only multiple axes to excite and measure but also position

dependencies to consider for the system frequency response. Certain position configurations

of the axes alter the frequency response of the system, thus multiple measurement locations

are often needed. In the gantry systems under consideration, there are often 9 locations in

travel where the frequency response is measured, the center and ends of travel of each axis. At

each location, each of the three axes needs to be measured individually, totaling to 27 swept

sine measurements. Adding to this time is the movement time between locations, however

this should be constant regardless of the excitation signal used. In experiments performed

during this research, the time for a complete swept sine measurement totaled 36 minutes,

which contained 200 frequencies from 20 Hz to 2000 Hz. The behavior of the system at low

signal amplitudes should also be measured, which doubles the measurement time. The low

amplitude excitation is useful to understand amplifier and friction nonlinearities and their

effects on the gantry. Two complete location grids are measured, one with high amplitude

and one with low amplitude for a total measurement time of 72 minutes, which is quite a

long time for an industrial system. Due to this long excitation time, the minimum number of

signal periods possible is collected at each frequency which does not lend itself to calculating

uncertainty because multiple periods are required to obtain a good result for a single DFT.

Therefore the number of signal periods would need to be doubled to obtain an uncertainty

with respect to two measurements. This has previously not been considered due to the extra

measurement time required. Without including some type of uncertainty of the frequency
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response, some interpretation is left to the user on the validity of the frequency response

measured.

A random noise excitation signal contains the entire frequency spectrum of interest so

measurement times of random noise can be fast. In order to obtain data with acceptable

levels of accuracy, about 8 to 12 averages over the signal are necessary. This however only

takes about 10 seconds per individual frequency response measurement. For a grid with the

same size as swept sine and containing a high and low amplitude, the total measurement

time is about 9 minutes.

A multisine excitation is a compromise between the quick response of the random noise

excitation and the sluggish swept sine. Using the predetermined signal characteristics of the

multisine signal (sequential, random phase) the measurement time can be approximated as

Tms =
P∑
i=1

TP (N +M) (3.6)

where TP is the period of each multisine sequence, P is the number of multisine sequences,

N is the number of executed periods, and M is the number of periods to wait for tran-

sients to decay. Measuring a full grid of responses as with swept sine and random excitation

takes 9 minutes or 18 minutes if two full grids of measurements are taken with high and

low amplitudes. The second grid of responses is no longer necessary for multisines because

the nonlinearities of the system can be examined with just one excitation amplitude. The

harmonics and nonlinear effects can be studied by examining the other frequency bins in the

DFT [23]. The ratio of power in the excited frequency bins to the power in all other bins will

determine how linear the system is, with a high ratio signifying greater linearity. Without

this second grid of excitations, the measurement time is again reduced to 9 minutes. To fur-

ther reduce the measurement time, simultaneous axis excitations can be performed at each

location in travel. Instead of needing to excite each axis individually, now all axes can be

simultaneously excited so that only one measurement per location is necessary. This again

reduces the measurement time by 66%. However in order to measure all axes simultane-

ously, no frequencies can overlap between axes. This results in a so called zippered multisine

where the frequencies of a sequential multisine are divided between each axis [23]. Figure 7

is an example of how a zippered multisine is composed. Following this composition, the
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frequency resolution of the response of each axis is reduced. In order to maintain a suitable

frequency resolution, the excitation time must increase to measure more frequencies. In

order to measure more frequencies, the period length of each sequence must increase. The

increased sequence period length allows more frequencies to have exact periodicity within a

sequence period, thus satisfying previous multisine design criteria. Increasing the number

of frequencies to a suitable level effectively doubles the excitation time. This is done by

doubling the frequency resolution, however the zippered resolution is two-thirds of the orig-

inal frequency resolution. From an original measurement time of 9 minutes, simultaneous

excitation reduces this to 3 minutes upon which an increased frequency resolution increases

this again to 6 minutes. This proves that indeed multisine is faster than swept sine and

comparable to the measurement duration of a random noise excitation.

3.4 AVERAGING METHODS

For certain systems that exhibit large nonlinearities it is sometimes deemed necessary to col-

lect multiple repeated periods of an input signal and the response or to conduct independent

experiments. The need to average over multiple periods or independent experiments arises

when systems are exhibiting non-linearities as mentioned in Section 2.2. Figure 8 shows the

different variances associated with each method. The system measured here is a good repre-

sentation of the gantry style this procedure will mainly be used on, mechanical bearing linear

stages. The slight differences in uncertainty are not significant enough to justify doubling

the excitation time by averaging over independent realizations. Averaging over periods is

necessary to obtain an estimate of the uncertainty value and for this reason, averaging over

at least two multisine periods is recommended. However the ability to increase the number

of periods or realizations averaged will be built into the measurement procedure.
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Figure 7: An illustration of how a zippered multisine excitation is composed. If a multisine

sequence originally contains 9 frequency components, the frequencies are alternated between

each axis until the excitation signal for each axis contain 3 unique frequencies. In this way

all excitations can be conducted and measured simultaneously without interfering with one

another.
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Table 1: Comparison of the necessary measurement duration with different excitation signals.

All are compared to the current practice of swept sine. Multisine out performs the other two

signals when considering time reduction and measurement uncertainty.

Excitation Signal Measurement Duration Time Reduction Uncertainty

Swept Sine 86 minutes - Low

Random Excitation 9 minutes 90% High

Multisine 6 minutes 93% Low

3.5 SIGNAL COMPARISON

Here it is shown that the multisine excitation signal has appealing characteristics when

compared to swept sine and random noise excitations. The multisine excitation produces

a measurement with less uncertainty than random noise and comparable uncertainty to

swept sine, as in Figure 6. The measurement with multisines is also faster than swept

sine and comparable to random noise, even slightly faster depending on frequency spacing.

Table 1 compares the measurement duration and uncertainty of the three excitation signals.

It is apparent that the multisine signal outperforms the other two signals with regards to

measurement duration and uncertainty and therefore is used in the identification process

being developed.
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4.0 DATA PROCESSING AND PRESENTATION

For a MIMO system, system identification and analysis generates a large amount of data.

Wrapped within this data is information about system stability and performance but various

forms of processing are required to transform the data into something meaningful. As in

a SISO system, identifying the plant, loop gain, and sensitivity transfer functions provides

an array of information with which to understand the MIMO gantry system. This chap-

ter discusses the considerations for accurate plant identification, decoupling techniques, and

closed loop analysis methods. These topics are all useful when creating a presentation of

measurements that are readily understood and useful to an operator.

4.1 PLANT IDENTIFICATION

Plant identification is fundamental when controlling and analyzing the performance of a

system. Ideally when identifying a system’s plant, the identification is done in open loop, a

condition where there is no feedback from the system outputs. Sometimes it is not possible

to identify a system in open loop because the system will incrementally drift away from the

reference position towards an unsafe operating position [3]. This could be an end of travel

or potential crash condition. Therefore the control loop must stay closed and use feedback

to maintain safe operating conditions.

In SISO systems, measuring a frequency response of the system in closed loop is simple

to perform. Apart from external disturbances, there is a single, well defined loop that the
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system operates within, Figure 3. If access to each of these signals is available, identification

is as straightforward as computing the cross spectral density of the input with the output

and dividing by the auto spectral density of the input as in Equation 2.7.

In MIMO systems measuring the frequency response of the system in closed loop is much

more complicated. It becomes difficult to isolate an input signal’s influence on an output due

to multiple signals affecting each output. Take for example a 3-input 3-output system where

the plant frequency response function is being measured. If the notation from Figure 3 is

used and noise is neglected, the equation

y = Gu (4.1)

represents the relationship between the input signals [u] and the output signals [y] for axes

X, XX and Y respectively. Expanding this and solving for y yields the linear system of

equations

y1 = G11u1 +G12u2 +G13u3

y2 = G21u1 +G22u2 +G23u3 (4.2)

y3 = G31u1 +G32u2 +G33u3

where Gij denotes the transfer function of input j to output i. The dependency of the

outputs y on all inputs u makes it difficult to isolate one output with respect to just one

input. The normal method of measuring the outputs with respect to one input is operating

open loop and only input one excitation while keeping the other inputs zero. In this manner

the outputs y1, y2, or y3 can be measured with influence from only one input, u1, u2, or u3.

In open loop it is straightforward to calculate each element of the plant transfer function

matrix G.

However as mentioned before, it is necessary to operate the system in closed loop so

that safe operating conditions are maintained. Now it is not so simple to separate individual

input effects from the outputs. In an attempt to populate the plant transfer matrix G, an

excitation can first be applied to input 1 and the outputs are measured. The excitation is

applied to the input of the plant through signal w, as in Figure 3, which allows direct access

to alter the input to the plant. Although inputs 2 and 3 do not have an applied disturbance,

29



the controller applies current to hold the axes in place and reject disturbances which is the

cause of the interference. This is repeated in the same manner with input 2 and 3 until a

total of 9 measurement pairs are generated. By calculating the frequency response of each

measurement pair, the corresponding transfer function elements can be calculated for the

plant transfer matrix G. The resulting 3x3 matrix is the estimated plant transfer matrix Ĝ,

where

Ĝ = G±∆g (4.3)

G is the “true” plant transfer matrix and ∆g is the uncertainty matrix associated with the

plant. ∆g can have both positive and negative values for which G+ ∆g is the upper bound

of the frequency response function and G−∆g is the lower bound of the frequency response

function. For example the element in the first row and column

Ĝ11 = G11 ±∆11
g

includes uncertainty, and lumped into this uncertainty term are noise, nonlinearities and

coupling from other axes. Element Ĝ11 is measured by correlating input u1 with output y1,

however as shown in Equation 4.1, output y1 contains influence from the inputs u2 and u3

due to plant coupling dynamics Ĝ12 and Ĝ13. Inputs u2 and u3 are non-zero because the

system is operating in closed loop. Therefore when the disturbance is input to the system

through input 1, not only does the controller reject the disturbance through input 1 but also

through inputs 2 and 3.

For some systems the cross-coupling components Ĝ12 and Ĝ13 are small enough that

no matter the values of u2 and u3, the primary influence on y1 is Ĝ11u1 and the system

is effectively three independent SISO systems. For the gantry systems considered here, the

cross coupling components are not negligible, especially between the two gantry axes, X (axis

1) and XX (axis 2). Although the coupling terms Ĝ12 and Ĝ13 may not be as large as the

component Ĝ11, if the controller for each axis has high gain, this can cause all inputs to be

large in an effort to reject the disturbance. This would yield an output y1 that is affected

by all of the terms in Equation 4.1. Large inputs multiplied by non-negligible cross-coupling
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components yields an effect on the output that cannot be ignored. Thus when correlating

the input u1 with y1, a large influence from other axes is associated with frequencies at which

the controller has high gain. This follows for the other outputs y2 and y3.

Figure 9 plots the diagonal terms of a gantry plant frequency response matrix or Ĝ11,

Ĝ22, and Ĝ33 respectively. At low frequencies for the plot of the gantry axes Ĝ11 and Ĝ22

(green and blue) the magnitude is flat before assuming the expected slope of -40 dB/decade.

This spring like response at low frequencies for Ĝ11 and Ĝ22 is due to high controller gain

at low frequencies on axis 1 and 2 (X and XX respectively) and the coupled nature of the

gantry axes (large Ĝ12 and Ĝ21 terms). Therefore the influence from the opposing gantry

axis on each of the gantry axes plant responses is large until the frequency at which the cross

coupling terms become small with respect to the diagonal term Ĝiiui, where i = 1,2,3. In

Figure 9 this can be considered to be about 40 Hz. Ĝ13 represents the effect of the bridge

input on the output of one gantry axis and is assumed to be small relative to Ĝ12 and

Ĝ11. This is assumed due to the bridge being orthogonal to the gantry axes as well as from

analyzing the plot of Ĝ33 in Figure 9. There is little to no interference in the bridge plant

response from the gantry axes at frequencies where the controller is known to have large

gain. This implies that for the response of u3 to y3 the values of Ĝ31 and Ĝ32 are small. Ĝ13

and Ĝ23 can be assumed to be small as well due to reciprocity. Thus the majority of the

influence on each gantry axis (X and XX) plant measurement in closed loop originates from

the opposing gantry axis.

A useful strategy to minimize the contributions from axis coupling is to minimize the

values of u2 and u3. This can be done by designing a controller that is able to maintain safe

operating conditions but has low gain, relatively. The controller is able to maintain stability

and hold the system to a set point, however the frequency range of the system where the

controller gain is large is minimal. This technique was adopted and yielded an improvement

in minimizing the controller influence on the measured plant frequency response however

some influence is still present, just at lower frequencies.
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Figure 9: Diagonal responses showing the influence of axis coupling on the identified plant.

Large coupling terms influence the output of axes 1 and 2 (X and XX respectively) from low

frequencies until about 40 Hz. The phase roll off seen here is due to the sampling delay of

the system.

4.2 AXIS DECOUPLING

Coupling between axes is present in most gantry systems and complicates system identifica-

tion and performance analysis. The primary coupling occurs between the two gantry axes

because they move along the same axis of motion and are rigidly linked. The rigid coupling

of these two axes is intentional as it reduces yaw errors at the workpoint. With these bene-

fits though, the control of the two gantry axes X and XX is also affected. Each gantry axis

experiences influence not only from its own input but from the other gantry axis input. This

influence causes uncertainty in stability and performance measurements of each axis when

measured in closed loop. The uncertainty in the measurements necessitates a conservative

controller to meet required metrics, otherwise an iterative identification approach is required

to search for an optimal controller to meet these requirements [24].

Another approach that improves controller synthesis is the design of a coordinate trans-

form to diagonalize the MIMO plant matrix [26]. A diagonalized plant matrix ideally contains

negligible off diagonal or coupling terms. The plant matrix then signifies that each output
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is only affected by a single input, which is referred to as a decoupled system. Decoupling

via kinematic transformation [13], [15], [11], singular value decoupling of symmetric subsys-

tems [26], and tensor decoupling methods [28] are the methods of decoupling considered in

this research. To examine the effects of the various decoupling methods, first a simplified

gantry model will be studied. This is emulated by connecting two motors with a flexible

coupling and driving the motors in the same manner as linear gantry axes (X and XX).The

dynamics are greatly simplified and only exhibit a torsional resonance to recreate the effect

of a yaw resonance on a linear gantry system. Figure 10 shows a model of the setup used to

demonstrate the decoupling methods.

In the kinematic decoupling of a gantry system, a simple kinematic gantry model is

needed to create the decoupling matrices. A 2 × 2 subset of the plant matrix containing

elements G11, G12, G21, and G22 is considered because as discussed before, the coupling with

the bridge axis is negligible for the gantry systems being considered, at least in the frequency

range of interest. This assumption is also made at this moment to demonstrate the effect

of decoupling on highly coupled axes. In Figure 11 the simple model of the two gantry

axes X and XX driving the bridge is shown. It is desirable to find matrices that transform

the standard coordinate system into a different physical coordinate system that attempts to

diagonalize the plant matrix. As in [15] an R, Θ, Y transformation will be used to attempt

to achieve minimal coupling of the axes. The new coordinates R and Θ are also shown in

Figure 11, while the Y axis maintains the same coordinates. The original plant matrix

Ĝ =


ĜX/X ĜX/XX ĜX/Y

ĜXX/X ĜXX/XX ĜXX/Y

ĜY/X ĜY/XX ĜY/Y

 (4.4)

can be transformed by generalizing that the bridge axis is always midway between the gantry

axes as well as assuming that the bridge axis motor applies a force at the center of mass of

the bridge axis. From these assumptions the transformation matrices are generated to be

Ty =


0.5 0.5 0

1 −1 0

0 0 1

 Tu =


0.5 0.5 0

0.5 −0.5 0

0 0 1

 (4.5)
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Figure 10: Gantry axes X and XX simulated with two rotary motors connected by a flexible

coupling. This generates ideal dynamics with a torsional mode simulating the yaw mode of

linear gantries.

X XX

uX , yX uXX , yXX

R

Θ

Figure 11: Schematic model depicting the gantry axes X and XX and the kinematically

transformed coordinates R and Θ
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where Ty is the output transformation matrix and Tu is the input transformation matrix.

These two matrices are formed from the relationship of the existing coordinate system to

the new coordinate system, as presented in [15]. The equations below demonstrate how the

matrices transform the existing coordinates into a new coordinate system,
yR

yΘ

yY

 = Ty


yX

yXX

yY



uR

uΘ

uY

 = Tu


uX

uXX

uY

 . (4.6)

Multiplying these two matrices with the original plant matrix yields the transformed plant

matrix

Ĝdecoupled =


ĜR/R ĜR/Θ ĜR/Y

ĜΘ/R ĜΘ/Θ ĜΘ/Y

ĜY/R ĜY/Θ ĜY/Y

 = TyĜTu. (4.7)

Applying this transformation yields a coordinate system where R is the motion in the di-

rection of the X and XX axes, Θ is now the rotation about the center of the bridge axis

(in linear units) [15] and Y is still the bridge axis. More complicated decoupling schemes

can account for the location of the bridge axis but in the operational frequency range of this

system, the coupling between the bridge and other axes can be assumed to be acceptable for

now.

Another transformation that can be used to decouple the highly coupled gantry axes is

based on singular value decomposition. Singular value decomposition is a process by which a

matrix can be diagonalized [18]. These diagonalized matrix elements are known as singular

values and are very useful in MIMO system analysis. The transformation is done much the

same way as the previous method however the plant decoupling matrices are generated using

singular value decomposition at a specific frequency. This frequency is normally chosen to

be within the expected bandwidth of the system to maximize the decoupling within the

frequency range of interest [26]. The singular value decomposition is defined as

Ĝo = UoΣoV
T
o (4.8)
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where Ĝo is the value of the plant matrix Ĝ at the chosen frequency within the bandwidth,

and Uo and Vo are the left and right singular vector matrices of the singular value matrix

Σo. For this particular example Ĝo is the plant transfer matrix at 48 Hz, which is within the

operational bandwidth of this system and should generate a useful decoupling. So Σo ends

up being the diagonalized plant matrix at 48 Hz. The matrices Uo and Vo are multiplied

with the plant matrix Ĝ to yield the decoupled matrix

Ĝdecoupled = U−1
o ĜV −To (4.9)

Ĝdecoupled is now the decoupled frequency response which was transformed with the left and

right singular value matrices generated at 48 Hz which are

U−1
o =

−0.6133 + 0.3511i −0.6144 + 0.351i

0.388 + 0.5918i −0.3869− 0.5914i

 V −To =

0.7091 0.7051− 0.0025i

0.7051 −0.7091 + 0.0026i

 .
The tensor decoupling method proposed by Stoev, Oomen and Schoukens is useful in

that neither a kinematic model of the system nor a chosen frequency are needed. Tensor

decoupling is performed with canonical polyadic decomposition which can be considered a

generalization of singular value decomposition, further detail is found in [28]. The 2×2 plant

matrix, along with a randomized first attempt at a factor matrix is input to the function

cpd3 sd from the TensorLab toolbox [32]. This results in a decoupling of the plant as in

Ĝdecoupled = TyĜcoupledTu (4.10)

where Ĝdecoupled, Ty and Tu are produced from the function cpd3 sd in the TensorLab toolbox.

The two decoupling matrices are defined as

Ty =

−0.7067 −0.7203

−0.7075 0.6937

 Tu =

−0.6963 −0.7057

−0.7177 0.7085

 . (4.11)

It is interesting to compare the matrices produced from the tensor decoupling method to

those produced from a singular value decomposition. There is similarity especially between

V −To and Tu but further study is needed to understand the exact mechanism for similar
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transformation matrices. This method has proved to be comparable to the decoupling based

on a kinematic model for gantry systems. One major difference from kinematic decoupling

though is that the tensor method does not necessarily decouple the system into axes that

have a physical representation.

The tensor decoupling method, kinematic decoupling method, and singular value decom-

position method all yield similar results as shown in Figure 12. The plot is a comparison of

each decoupling method to the original 2x2 subset of the gantry plant. The response from

input 1 and output 1 and from input 2 to output 2 are all very similar, so much so that

the lines for the singular value response and kinematic response are covered by the response

from the tensor method. This suggests that the kinematic decoupling model for R and Θ

is the closest physical model configuration to achieving a diagonalized plant matrix. All

decoupling methods yield a minimum of 25 dB more decoupling on the off diagonal terms

until the torsional resonance of the system. At this point the axes become coupled and the

decoupling methods lose effectiveness. This is not an issue as the bandwidth of the system

lies below this resonance. Therefore all methods are proven effective on an ideal system.

With the methods proven in theory, it is now important to test them on actual gantry

systems. Figure 13 is the result of testing the methods on an actual gantry. The kinematic

transformation matrices are the same as testing on the ideal system, however the singular

value and tensor matrices are recalculated for this new system. All methods successfully

decouple the response from input 1 to output 2 and achieve roughly 30 dB more decou-

pling. The main differences in the system occur from input 2 to output 1 where the tensor

decoupling method is not as successful as the kinematic or singular value method. This

comparison of systems is performed on multiple other gantry systems and similar results

were obtained. The singular value method is useful if there is not model knowledge of the

system and similar results to kinematic decoupling are desired. However a frequency within

the bandwidth of the system must be chosen at which to calculate the decoupling matrices,

which requires some knowledge of the system. If no knowledge of the system is available,

the tensor method can generate decoupling matrices that decouple the system but are not

guaranteed to function as well as singular value or kinematic model methods. The gantries

that will be identified by this procedure are all of a similar type and can be described by the
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Figure 12: 2× 2 plant decoupling method comparison as tested on the ideal setup shown in

Figure 10. All methods yield similar decoupling results.

kinematic model considered here. Therefore the kinematic transformation is preferred as it

is grounded in a physical model and creates a new coordinate system with which the system

can still be readily understood.

If the gantry axes X and XX are sufficiently coupled within the frequency range of

interest then a kinematic transformation can be used to simplify the controller design for the

system. In all gantry systems tested in this research, there is significant coupling inherent in

the mechanical design of the system. So it becomes assumed that X and XX are sufficiently

coupled but what is unknown is the effectiveness of the decoupling scheme. Therefore a

metric is needed to signify the effective decoupling by kinematic transformation. This can

take the form of a plot of the ratio of magnitudes of the diagonal terms to the non-diagonal

terms before and after the decoupling transformation. Figure 14 is a comparison on the

ideal setup which shows that after the decoupling the response of the diagonal terms is

30 dB greater than the response of the non-diagonal terms in the operational frequency

range, where as the diagonal and non-diagonal terms were equivalent in magnitude before

decoupling. This again should be demonstrated on an actual gantry system, which is seen in

Figure 15. Here the response is more complicated but it can be seen that the non-diagonal

38



Figure 13: 2×2 plant decoupling method comparison as tested on an industrial gantry. The

kinematic and singular value based methods out perform the tensor based method.

terms of the gantry system are 20 dB lower or about 10 times smaller than the diagonal terms.

This is an improvement over the 1 to 1 ratio of the original system. A suggested metric for

determining if a decoupled transformation is effective is to verify that within the operational

bandwidth of the system, the ratio of non-diagonal terms to diagonal terms are 20 dB lower

for the decoupled system than the original system. If the decoupled transformation is useful,

then all other procedures may be carried out using the new decoupled coordinates. The only

consideration that must be made is to apply the transformations to the inputs and outputs

of the gantry once a controller has been designed. This is outside the scope of this research

but is left as a relevant note for future work.

Identifying the plant transfer matrix is fundamental in the system identification of a

MIMO system. The dynamics of the system with regards to the inputs and outputs are

contained within this matrix. The plant transfer matrix is also useful in forming other

transfer functions that describe the system. The controller matrix is also assumed to be
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Figure 14: Amount of decoupling achieved with a kinematic transformation on the ideal

setup in Figure 10. The ratio of the diagonal terms and non-diagonal terms shows the

reduced influence of coupling on the diagonal terms of the plant matrix. The ratio being

small shows that a more decoupled system has been achieved.

Figure 15: Amount of decoupling achieved with a kinematic transformation on the same

system as Figure 13. The ratio of the diagonal terms and non-diagonal terms shows the

reduced influence of coupling on the diagonal terms of the plant matrix. The responses are

not as decoupled as the ideal setup however significant decoupling is achieved through the

use of a kinematic transformation.
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known and between these two matrices many functions can be calculated that describe the

robustness and performance of the system. However if either of the two matrices have

associated uncertainty, this gets carried through the calculations into the robustness and

performance measurements. As discussed previously in this section, the plant measurement

is influenced at frequencies where the controller has large gain. Apart from operating open

loop, which was eliminated as a possibility, one solution is to reduce the controller bandwidth

as low as safety constraints will allow in order to minimize the frequency range where the

controller has large gain and thus exerts influence on the plant frequency response matrix

through coupling terms. However there are still other sources of uncertainty that need to be

characterized before analysis can begin.

4.3 UNCERTAINTY ANALYSIS

Measurement uncertainty was the primary consideration for sources of uncertainty in this

research. It was expected that a large portion of the uncertainty in the frequency response

measurements would be due to sensor noise, external disturbances and amplifier nonlineari-

ties. However the measurement uncertainty yields negligible contributions to the frequency

response, except for high frequencies. Analyzing the response collected in Figure 8, the stan-

dard deviation of the response is 0.5% of the magnitude up until about 500 Hz. This is a

difference of 46 dB which proves that measurement uncertainty is clearly a minimal influence

on the variability of frequency response measurements for these systems. At higher frequen-

cies the standard deviation begins to approach the magnitude of the response but this is to

be expected [9]. As frequencies increase, the amplitude of induced motion decreases resulting

in a lower signal to noise ratio. These frequencies are much higher than the bandwidth of the

systems though and as a result can be filtered to minimize their influence without affecting

system performance significantly.

The primary source of uncertainty for gantry systems is the variability in the frequency

response throughout travel. The frequency of resonances shift slightly as the axes move

throughout travel and the inertia experienced by the two gantry axes X and XX changes as
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Figure 16: The uncertainty of the plant frequency response due to variations in gantry

travel. Resonant frequencies shift and inertias change which create a band of possible plant

responses for the system.

the location of the bridge axis Y changes. If all of the various responses are overlain, a band

of responses, as in Figure 16 is created. This band of responses represents an estimation of

all possible frequency responses for the plant of the gantry. This is useful in that a controller

can be designed with a multitude of plant responses in order to study the performance of the

entire system. If SISO methods were to be used here, this would entail designing a controller

and applying it to the measured plant responses. Whether the loop gain, sensitivity, or other

responses were analyzed, a total of 9 plots with uncertainty bounds would need to be studied.

This is a large amount of data to consume which will make controller design tedious and as

will be seen in the next section is not always accurate. Therefore other methods need to be

adopted to simplify the analysis of the performance and robustness of a precision gantry.
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4.4 PERFORMANCE AND ROBUSTNESS ANALYSIS

The end goal of system identification is to be able to make a statement with a certain level

of confidence about system performance. In MIMO system identification a few metrics can

be used to ensure the desired performance is being achieved. The sensitivity function and

the complementary sensitivity, defined in Equations 4.12 and 4.13 [12], become useful in

evaluating performance.

Sensitivity = S = (I +GK)−1 (4.12)

Complementary Sensitivity = T = GK(I +GK)−1 (4.13)

First begin with Figure 17 where the signals d and n are disturbances and sensor noise

respectively. In order to make sure there is sufficient rejection of the disturbance d, the

sensitivity (I +GK)−1 must be small. If the sensitivity is small this implies that the return

difference or I + GK is large. With I being the identity matrix, GK can be considered to

be large which leads to high loop gain and disturbance rejection. A supplemental method of

considering the need for low sensitivity in the frequency range of interest is to consider the

system output[26].

y = Tr + Sd− Tn (4.14)

The output y depends on the complementary sensitivity with respect to the reference input

and sensor noise, as well as the sensitivity with respect to disturbances. It is desirable for

the output to be dominated by the Tr term which requires the Sd and Tn term to be small.

Therefore for good disturbance rejection in the system loop, S must be small within the oper-

ational frequency range. This same output equation is useful in motivating the requirements

for noise attenuation as well as reference tracking. In order for the contribution from n to be

negligible at the higher frequencies noise usually contains, the complementary sensitivity at

these frequencies should be nominally zero. This normally translates to frequencies higher

than the system bandwidth and reduces the effect of high frequency noise on the system

output. In the frequency range of operation, from DC to the system bandwidth, T should

be approximately 1 in order track the reference input r.
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Figure 17: Simplified block diagram to illustrate sensitivity usefulness.

The values of of the sensitivity functions not only range over frequencies but also are

dependent on multiple inputs. For the gantry system, there are 9 unique sensitivity functions

that relate each input to each output. To examine both the sensitivity and complementary

sensitivity completely would require the analysis of 18 different transfer functions. Not only

is this time consuming, the analysis can lead to false stability margins. As mentioned in [9]

what is considered stable from a SISO analysis can be unstable if considered in MIMO

context, similar to the actual operating conditions of the system. One tool which enables a

MIMO analysis is the concept of singular values.

Singular values are the diagonals of the matrix Σo in Equation 4.8 where Uo and V T
o are

the left and right singular vectors of the matrix Ĝo. The singular values of Ĝo provide a very

detailed description of how Ĝo acts on a vector [1]. This property makes singular values very

useful in analyzing the effect of a matrix on input vectors and can be generalized for any

matrix. The benefit for MIMO systems is that the singular value decomposition can identify

system behavior that is not apparent using SISO methodology [26]. An example of this is

the sensitivity function for a gantry. The sensitivity when viewed from a SISO perspective

appears as in Figure 18a. It’s clear that from the SISO perspective the sensitivity appears

acceptable for the system, although it peaks near 200 Hz. However when the singular value

decomposition of the sensitivity matrix is taken, Figure 18b is the result. Here the maximum
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Figure 18: (a) Sensitivity when viewed from a SISO perspective (b) Sensitivity when viewed

from a MIMO perspective, maximum and minimum singular values
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Table 2: MIMO functions of system performance

Performance Metrics Criteria Frequency Range

Disturbance Rejection σmax(S) ≈ 0 0 ≤ ω ≤ ωbw

Noise Attenuation σmax(T ) ≈ 0 ω > ωbw

Trajectory Tracking σmax(T ) ≈ 1

σmin(T ) ≈ 1

0 ≤ ω ≤ ωr

Low Control Energy σmax((I +KG)−1K) ≈ 0 ω(d) & ω(n)

sensitivity magnitude is even larger and represents a configuration where the system perfor-

mance could be affected by disturbances near 200 Hz. Individually the inputs and outputs of

a system might satisfy the sensitivity requirements, but the inputs and outputs never occur

individually during gantry operation. In addition to occurring simultaneously, the system

responses do not naturally occur orthogonal to one another. This means that each system

output can be larger in magnitude when multiple inputs are excited simultaneously, than

any single output response to an individual input. The singular values of the response are

the magnitude of these resultant responses. The maximum singular value can be considered

as the worst case of the system inputs aligning to form the system response of the greatest

magnitude. Conversely the minimum singular value is the condition of the system with the

least amount of combination between the various input vectors to the system. Together

the minimum and maximum singular values describe the maximum and minimum response

possible from a given system. A caveat of the singular value is that it might not be phys-

ically possible for the maximum singular value to be realized and can create conservative

estimates of system robustness and performance. Which is advantageous when viewed from

the perspective that the system will perform within the expected bounds. However the con-

troller design can only be made using the measurements and information available which are

conservative by nature. In some cases a conservative controller design is the penalty of using

the convenience of the singular value decomposition as an analysis tool.
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Consulting Table 2, [5] and [26], the metrics listed are useful in analyzing the robustness

and performance of a MIMO system. The first 3 rows are useful as described previously

however the singular value is now used in the analysis. For disturbance rejection, the max-

imum singular value of the sensitivity must be small in the operational bandwidth of the

system, or up to ωbw. At frequencies larger than this, the maximum singular value of the

complementary sensitivity should be small to minimize the influence of noise on the system

output. And lastly for good tracking, the maximum and minimum singular of the comple-

mentary sensitivity should be approximately 1 so that the reference is followed one to one.

The fourth row σmax((I + KG)−1K) ≈ 0 is desirable to minimize at the frequencies where

disturbances and sensor noise dominate. This relationship is used in minimizing the input

energy required for a system, which is not considered in the design of gantry systems. The

amplifiers that drive the motors on a gantry are suitably sized for the current demands of

the motors as well as the process application. Therefore if input energy becomes an issue, a

redesign of the amplifiers, motors, or application is normally required.

In addition to satisfying the requirements list in Table 2 it can be useful to draw analogies

between MIMO and SISO system analysis due to the intuitive nature of SISO controller

design. In [10] there are guaranteed gain and phase margin criteria that can be analyzed

using the return difference of the MIMO system or (I + GK). The minimum value of the

minimum singular value of the return difference, α, is used to calculate these margins

GM =
1

1± α (4.15)

PM = ±2 sin−1(
α

2
) (4.16)

As with other analysis tools related to the SVD, this is a conservative estimate of the

gain and phase margins but these values are guaranteed. In supplement to the sensitivity

value analysis, the phase and gain margins are useful in providing a familiar relationship to

stability. Figure 19 is a plot of the maximum and minimum singular values of the return

difference of a gantry system, where the minimum value is -6.21 dB. The guaranteed gain

margin of this system is in the range of -3.43 dB to 5.8 dB from Equation 4.15, which
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Figure 19: Return difference of a gantry system, maximum and minimum singular values.

shows that the system is stable but is not very robust near 200 Hz. The phase margin

comparatively is guaranteed to be 28.3 degrees, which is an acceptable phase margin. While

these are conservative estimates, it is useful to determine if the stability margins meet the

rule of thumb of 6 dB of gain margin and 30 degrees of phase margin.
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5.0 MODEL GUIDED MEASUREMENTS

The variability of a gantry system’s plant frequency response is partially due to uncertainty

in the measurement but is mainly due to position dependency [4]. It becomes necessary

to measure the frequency responses in multiple locations to ensure robustness and adequate

performance by defining the uncertainty bounds. When designing a controller for a gantry, it

is easy to design the controls in one location of xy travel only to move to a different location

and have the system go unstable. Thus system frequency responses from multiple locations

in xy travel should be collected and tested with a proposed controller to determine system

robustness. The level of variability would also guide a designer towards position-dependent

gain scheduling if necessary. Currently it is not established how to determine the number of

locations at which to measure the system frequency response. It is left up to the operator

to determine this, and normally defaults to 9 measurement locations, varying between 3

different positions in x travel and 3 different positions in y travel. Through the number

of gantries analyzed, this is enough data to create a robust controller, however there are

systems where the frequency response does not vary significantly with travel. Conversely

there are also systems where the response varies greatly with travel and requires the numerous

measurement locations.

Different models will be considered to examine if a defined number of measurement

locations can be determined from a discrete number of parameters. The cost (in time and

complexity) of the models studied outweighs the insights that can be gained. Instead a

simplified method is proposed that uses only the length of travel of the axes and the change

in inertia experienced by the gantry axes as the bridge axis moves through travel.
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5.1 MODEL CONSIDERATIONS

A lumped parameter model gives a designer insight into possible frequency response vari-

ations. As in [30] the model can be a 3 degree of freedom model where the dynamics are

modeled as a rigid bridge with a variably located moving mass representing the bridge car-

riage. Using Lagrangian based modeling, the equations of motion can be derived to represent

a precision gantry system. Another model, as in [11], can be used to develop similar equations

of motion by including bridge stiffness and damping in a different model formulation.

[M ]q̈ + [H]q̇ + [C]q̇ + [K]q = f (5.1)

Where M , H, C, and K are the inertia, Coriolis and centripetal, viscous damping and

stiffness matrices respectively, f is the force vector and q is the coordinate vector. Both

models produce roughly equivalent dynamic equations by which the system response to

an input vector could be estimated. By including an uncertainty value with the various

parameters included in the dynamic equation, the maximum and minimum responses from

the model could be estimated. If a large enough variability in responses was expected, then

more measurement locations could be added.

While this model-based method has some appealing characteristics, there are a few issues

with how the model could be developed for each gantry system. Firstly it is time-consuming

(i.e. expensive) to develop a unique dynamic model to describe every gantry that is produced

in industry. For example, Aerotech, Inc. develops many custom gantry solutions, each of

which would require an independent model to accurately model dynamics. Time is required

to develop each of these models. Assuming each of these models could be created economi-

cally, the next challenge would be to determine uncertainty values for the parameters used

in the dynamic equations. Testing of various components and multiple gantry systems of the

same design would be necessary to determine the uncertainty values. Parametric uncertainty

in gantry models is due to both component tolerances and variations in assembly procedure.

Small batch sizes of components and gantries limit the confidence on uncertainty values.

Although there are challenges to develop a model, one can be developed with enough

time [30]. Once the model is developed and used, the information that describes where to
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add extra measurement locations reduces to inertial, stiffness, and damping changes over

travel. This can be considered in terms of a frequency response plot of the plant. The

overall magnitude of the plot is determined by the effective inertia of the axis, the frequency

of the system resonant modes depends on the stiffness and inertia, and the magnitude of

the resonant mode peaks depend on the damping at each resonance. In order to further

examine the model parameters, the bridge axis should be considered first and then the

analysis broadened to include the gantry axes.

With regard to the bridge axis, the mass of the payload on the bridge carriage does not

change with bridge or gantry travel. The stiffness or damping of the bearings and carriage

structure do not change over travel either for single axis configurations, apart from small

variations in the bearing rail surface and alignment. Therefore the bridge frequency response

is largely the same over the full travel. The only variations throughout bridge travel are those

that couple through from the gantry axes to the bridge axis. Figure 20 shows the variation

of the MIMO plant frequency response over multiple locations in gantry and bridge travel.

The uncertainty of the bridge frequency response is largely due to the coupling with the

gantry axes as well as the decreased signal to noise ratio at high frequencies. The coupling is

apparent by examining the magnitude of the solid red line (bridge response) and comparing

it to the dashed blue and green lines (gantry coupling to the bridge) on the right most plot

in Figure 20. The locations where all responses nearly meet, around 80 Hz, is the frequency

at which the bridge frequency response contains the most uncertainty. Here the dynamics

from the gantry axes are coupling to the bridge axis in a location dependent manner.

The gantry axes however have uncertainty in the frequency response that is dependent

on the location of the bridge carriage. As the bridge carriage moves closer to one of the

gantry axes, X for example, the inertia experienced by the X axis increases while the inertia

experienced by the XX axis decreases. The effect of this shift in inertia is two fold in that not

only does the overall magnitude of the frequency response change but so too do the system

natural frequencies.

Another factor that can alter the frequency response of the gantry axes is alignment

throughout gantry travel. The precision gantries in this study all have very high stiffness

bearings used to connect the bridge to the gantry axes. The resulting connection between the
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Figure 20: Gantry plant frequency response showing variation over travel

gantry axes is very stiff and therefore the alignment of the two gantry axes needs to be of good

quality. Any small misalignment can result in a large lateral force on the gantry axes. For

example, most bearings used on precision gantries have lateral stiffnesses of approximately

300 N
µm

which would result in a lateral force of 150 N if the axes are misaligned even 500 nm.

Therefore when dealing with gantry systems, small changes in alignment over travel can

cause significant changes in the frequency response of the gantry axes. Figure 20 shows the

variation in the gantry axes plant gain and natural frequencies over bridge travel and gantry

travel. The frequency responses in this figure were collected in an equally spaced 3x3 grid

of xy travel. The plots are sorted by the input of the measurement where X and XX are

gantry axes and Y is the bridge axis. The solid lines correspond to the diagonal terms of

the plant matrix and the dashed lines are the off-diagonal terms; the off-diagonal terms are

the coupling in the system. The shaded area about each response is the uncertainty due to

travel and the line in the middle of the shade is the average response. Resulting from this

model analysis are two parameters that are important for determining how many locations

in gantry travel to measure the frequency response. The difference in inertia experienced by

the gantry axes from one bridge carriage end of travel to the other and the length of travel

of the gantry axes. Together these two parameters should contain the information needed

to determine the number of measurement locations. The length of gantry travel is known

by the operator and the gantry axes inertial difference is something that can be calculated.
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5.2 BRIDGE AXIS MEASUREMENT LOCATIONS

A method for determining the number of locations to measure along the bridge axis is

proposed and uses the effective inertia driven by each of gantry axis. Determining the

experienced inertia of each of the two gantry axes can be done with one of two methods.

CAD software makes it simple to estimate the center of mass of the gantry and calculate

the division of mass to each of the individual gantry motors. This determines the machined

component inertia but there is also influence due to the system cables and cable carrier. The

more cables that are routed to the upper axes of the gantry and the longer the travel of

the gantry axes, the higher the mass of the cables and carrier that are often not known or

not generally included in sufficient detail in a typical assembly model. On some gantries the

routed cables are distributed evenly between each of the gantry axes, creating approximately

the same added mass on either side of the gantry. However on most gantries, the cable

carrier is only attached to one side of the gantry which creates a differential in the inertia

each individual gantry axis experiences. The difference in inertia between gantry axes is not

static from system to system due to the variability in the size and number of cables that

need to be transported in the cable carrier. It might seem that the cables and carrier are a

small percentage of the gantry moving mass, but in most systems the carrier accounts for

5% of the moving mass. Figure 21 is a gantry with a cable carrier located only on one side

and is a typical representation of a precision gantry.

Due to all of the variables involved in estimating the moving mass of the system, mea-

suring the inertia of each gantry axis is more economical and accurate. In order to measure

the inertia of each gantry axis, a stable controller is created for the gantry so that closed

loop motion can occur. First the bridge carriage is moved closest to the gantry axis X where

incremental harmonic motion is applied to each gantry axis simultaneously as in Figures 22

and 23. During the harmonic motion, the current and velocity signal are measured on both

the X and XX axes so that the inertia can be fit using a least squares algorithm. These

calculations are done separately for each gantry axis. The process is then repeated with the

bridge carriage at the other end of bridge travel. The inertial terms from either end of bridge

travel are then compared for each axis. A ratio of the inertia terms is calculated for each
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Figure 21: Example of a common precision gantry with a cable carrier on one side of the

gantry. (AGS15000 gantry Aerotech, Inc.)

Figure 22: X axis data collected to calculate inertial difference
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Figure 23: XX axis data collected to calculate inertial difference

axis in the form of J1
J2

. Even before the ratio of inertias is calculated, it is apparent that

each gantry axis experiences a change in inertia as the bridge carriage moves from one end

of travel to the other. Figures 22 and 23 not only show a significant difference in current due

to bridge carriage location but also have different peak to peak currents for each gantry axis.

This indicates that the inertia of the X axis does indeed differ from the XX axis. The cable

carrier for this system was attached to the X axis which explains why the X axis measured

inertia is larger.

The step from measuring an inertial difference to calculating how many frequency re-

sponse measurement points are needed is not readily apparent. Therefore an empirical

method for determination is taken. This process was tested on 12 different gantry systems

and the resulting inertial differences were measured. Initially it was presumed that the larger

the travel the bridge axis, the larger the inertial difference would be on the gantry axes. This

turned out not to be the case because as the bridge travel increases, the mass of the bridge

carriage does not increase but the mass of the bridge itself does. Therefore the bridge car-
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riage becomes a smaller percentage of the gantry axes’ moving mass and therefore does not

affect the frequency response as significantly. Additionally the payload on the bridge carriage

has a large effect on inertial differences and customer applications require different payloads

the vary in mass. Figure 24 shows the inertial ratio plotted against the bridge length and

there is a slight upward trend. However larger bridge travels do not trend with the rest of

the data. This is due to the large mass of the bridge required to achieve the stiffness to span

such a large distance.

Using this test set, a threshold inertial ratio was established from which the number

of frequency response measurement locations can be determined. Nominally 2 locations at

either end of the bridge should always be measured to account for any small changes in

inertial differences as well as any small mechanical variations over bridge travel. From the

measured data, it was found that if the inertial ratio exceeded 1.2 on either gantry axis then

the natural frequency variation over travel is large enough to warrant a third equally spaced

measurement location along the bridge axis. More than three measurement locations along

the bridge axis was found to provide little value except in the situation of an extremely large

travel bridge, approximately 2 m, which is not a common gantry style in the scope of this

research.

5.3 GANTRY AXIS MEASUREMENT LOCATIONS

The number of locations to measure the frequency response along the two gantry axes also

needs to be determined. Throughout gantry axis travel there are no inertial changes, but

there are still frequency response variations that occur throughout travel due to the stiffness

of the gantry bearings and bridge connection. These variations are large enough that in order

to guarantee a robust controller, more than one location in gantry travel must be measured.

As with the bridge, 2 locations in gantry travel will be measured, one at either end of gantry

travel. In the 12 unique gantries measured with this process, it was found that for gantries

with travel under 600 mm, 2 locations will suffice. For gantries greater than 600 mm in

travel, an extra measurement location is needed. The use of gantry travel for determining
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Figure 24: Plot of the various inertial ratios against the bridge length of gantries. There is

a slight trend upwards as length increase, however the dependency on payload mass cannot

be ignored. Very large bridge travels do not follow this trend.

the number of measurement locations needed is a valid method due to bearing consistency

and alignment criteria. The linear bearings used on the gantry axes have specific preloads to

ensure consistent stiffness of the bearing trucks. The alignment of the gantry axes follows a

specific procedure to ensure the axes X and XX are aligned within a certain tolerance. This

establishes a threshold for which the variation in bearings and alignment will not exceed and

ensures this threshold is accurate at all gantry travel locations.

The methodology for determining the number of locations to measure along the bridge

and gantry axes has diverged from a complex model guided method in favor of a parameter

based strategy. The bridge axis defaults to two measurement locations unless the inertial

ratio experienced by the gantry axes is greater than 1.2, in which case a third measurement

location along the bridge axis is added. Similarly the number of measurements along the

gantry axis defaults to two locations unless the travel exceeds 600 mm, upon which a third

measurement location will be added. This methodology has proven successful on the small

sample of gantries evaluated in this research.
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6.0 MEASURING ADDITIONAL POINTS OF INTEREST

In gantry systems the axis encoders, which are located near the system inputs or axis motors,

provide the position measurements. This is convenient for control and a good design choice

because few dynamic effects can occur between the input and output. In other words, the

input is always directly affecting the output and there is little compliance between the two.

This configuration leaves out important information about the gantry workpoint or other

points of interest. If the payload of the the gantry is rigid, this is probably not a concern be-

cause the assembly can be treated like a rigid body in the operational frequency range. There

are however gantry payloads that are not rigid or are mounted in cantilever orientations that

create resonant modes at frequencies lower than the first natural frequency of the unloaded

gantry. In these situations, the behavior at the payload is not always apparent from taking

a frequency response measurement or collecting time data on the axis in question. Figure 25

is a frequency response of the loop gain of one gantry axis. There is a co-located resonance

around 25-28 Hz that seems to have high damping and is not destabilizing. Most technicians

would observe this resonance and not consider it to be a problem. Looking at Figure 26 this

is not the case because the workpoint or tool is oscillating even after the input reports no

motion. This is a situation where there is a payload resonance that is not observable by the

system outputs but can affect the process of the system. If this resonance becomes known,

the input can be designed such that the frequency content of the system mode is avoided.

Along with workpoint vibration, base vibration can have a negative impact on system

performance. There are scenarios where the base rocks in reaction to high accelerations

of axes on the gantry. This rocking creates disturbances that the control loop must reject
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Figure 25: Loop gain of one gantry axis showing low frequency resonance around 25 Hz, a

workpoint oscillation. A resonant peak on the frequency response indicates only that some

element on the structure is vibrating. It does not indicate whether that vibration will be

detrimental to the process in some way.

Figure 26: Time trace showing low frequency resonance around 25 Hz observable only at

workpoint sensor, not at axis encoder
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while following the commanded profile. This motion is normally unobservable in a frequency

response because there is not enough energy input into the system to have a noticeable effect

at the axis encoders.

In order to detect this undesired motion, there needs to be a sensor or method of inferring

the workpoint or base behavior from known inputs [21]. Modeling issues can arise from

inferring the behavior of the base or workpoint from just the 3 axis encoders. Due to

the accessibility of these locations in most situations, especially at the factory, it makes

more sense to directly instrument them to measure motion. A direct measurement has the

advantage of not containing any modeling errors but is only as accurate as the sensors used.

The frequency response of the point of interest will be calculated from these measurements

and used to identify resonances that will impact system performance.

6.1 TYPE OF SENSOR

To measure the motion of points of interest (e.g. the workpoint or base) a sensor must be

placed there. It is desirable for the sensor to minimally influence the behavior of the location

(e.g. minimal mass loading). The time required to setup the sensor and the sensor accuracy

should also be considered. These metrics facilitate the selection of a preferred sensor.

When high precision feedback from a point of interest is required, laser interferometers

are often chosen for their accuracy and utility [17]. There are environmental considerations

and measurement lengths that need to be considered in the setup of the instrument but

interferometer measurements are useful for verification and feedback. The downside of using

an interferometer is the stringent environmental constraints that are needed to minimize

measurement noise. The wavelength of the interferometer light varies with temperature,

pressure, humidity, and local air composition [17] which necessitates minimizing the fluctu-

ations of these variables as well as the path length of the laser to minimize noise. Suitably

sized mirrors also need to be located at the point of interest and can cause significant mass

to be added. This additional mass, if located at the workpoint, will change the dynamics of

the system. The cost of an interferometer is rather high as well which makes it unappealing

60



for companies purchasing the system, unless the interferometer is absolutely necessary. As a

temporary setup for verification it is time consuming to align the interferometer mirrors to

minimize the measurement error. This adds extra time to the overall measurement process

because of the need to reposition devices between measurement locations, as well as needing

to capture 3 axes of motion at each location. Normal interferometer setups usually capture 1

to 2 degrees of freedom at a time. Through all of the steps required to obtain measurements

with an interferometer, the only real metric to consider is if the point of interest is still

rigidly coupled to the measurement locations. In other words, it is the dynamic errors that

are of importance.

Accelerometers are convenient for conducting dynamic measurements and have been used

in multiple applications for performance improvements and position verification [16], [2],

and [25]. Even the highest end accelerometers are significantly less expensive than a laser

interferometer but are well suited for measuring vibration. The response of an accelerometer

is an absolute measurement and can be very accurate with a low noise level. To counteract

measurement noise, a low pass filter is normally applied to reduce high frequency noise,

although if the signal is integrated to a position measurement the integration also acts as

a low pass filter. An issue with integrating measured acceleration to position is the low

frequency drift that appears in the signal, which can be minimized by a high pass filter.

This results in a band pass filter over the frequency range of interest to the accelerometer

measurement to ensure a position measurement with minimal drift and noise. Accelerometers

normally come in a small package size (about 25 mm x 25 mm x 25 mm) and are a fraction of

the mass of most components on a gantry (50 grams). This means that mass loading effects

can largely be ignored and by using modal wax the accelerometer can be applied to most

surfaces. This creates versatility in attaching an accelerometer directly where a measurement

is desired.
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6.2 SENSOR LOCATION

Two important locations on a gantry are the workpoint, where the tool or sensor is located,

and the surface the workpoint interacts with, the base. The workpoint is important for the

obvious reason that the application originates from this point and the base or medium the

workpoint interacts with is important relative to the workpoint. That is to say the base

should not be moving with respect to the workpoint, but it might be moving with respect

to some external coordinate system, for example the factory floor.

Modal wax works well enough to attach accelerometers for temporary applications and

provides good transfer of energy up to 7500 Hz [29], which is well above the gantry operational

frequency range. Once the appropriate number of accelerometers are mounted to the gantry,

care needs to be taken to make sure the cables are properly managed. This entails strain

relieving the cords so that there is a short, low tension distance between the accelerometer and

the first place the cable is secured. This is important to prevent any excessive cable movement

from interfering with the normal motion of the stage. The data from the accelerometers

should be collected with the same sample rate and under the same clock as the input and

other outputs to ensure the measurements are aligned in time. With the equipment used

in this research, there are analog input ports that can read an accelerometer signal in time

with the other measured signals.

The workpoint should ideally have an accelerometer oriented in all three axes to measure

all planes of movement during the frequency response measurements, as on the diagram in

Figure 27. If the application the gantry is intended for has an insensitive direction, it is not

necessary to measure that direction although it might be useful for further characterizing

the system frequency response. Many times this insensitive direction is the z direction or the

direction perpendicular to the plane of the gantry base. The frequency response function from

the input to the accelerometers is then calculated to compare against the system response in

the same axis of motion. Figure 28 is an example of a frequency response measured at the

workpoint. There is a resonance present at the workpoint that is not visible at the encoder.

This is a worst case scenario because most times there is some indication of the resonance in

the encoder response, however even if it appears in the encoder response there is no indication
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Figure 27: Diagram showing accelerometer mounting locations for gantry

if the resonance affects the workpoint. Figure 28 shows that this resonance clearly would

have an effect. An example using actual data shows amplified motion in Figure 29 at 19

Hz in the x and y direction and can be used to inform the operator of amplified motion at

the workpoint. This can be compared to the response at the encoders, Figure 20, where the

motion is also observable. It now becomes known that resonance observed at the encoders

will affect the workpoint performance. The stage in Figure 29 has a very tall, massive

payload that creates this amplified, low frequency motion. It is flexible, as seen from the

response, in the x and y direction and relatively stiff in the z direction. In other works,

the accelerometer signal can be used to improve the performance of the stage as well as

reject undesirable frequency content [2]. Here it is useful as a diagnostic tool and might be

considered for other roles in future work.

A gantry base can almost always be considered as a rigid body for the purposes of

determining base motion. This is a safe assumption for the gantries considered in this work.

The bases these gantries are mounted to are normally 150 mm thick and at least as wide and

long as gantry travel. The base then is a massive body that does have flexible modes but are

of no consequence to the frequency ranges considered here. This implies that if the base is
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Figure 28: Frequency response magnitude showing the measurement of an accelerometer

integrated to position. It is compared to the magnitude response as measured from the

encoder. A resonance is present at the workpoint that is not visible at the encoder.
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Figure 29: Frequency response showing acceleration integrated to position from the gantry

workpoint. Units are in mm
A

before the dB conversion. Sensors 1, 2, and 3 measure the x, y,

and z directions, respectively. The phase roll off is due to a 250 Hz low pass filter that was

enabled on the accelerometer inputs as well as a 1000 Hz low pass enabled on the control

loop.
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moving, the entire base as a single mass. Taking this into consideration, three accelerometers

are needed for a base measurement as well. There are the two directions of translation, the x

and y direction, as well as the pitch, yaw, and roll of the gantry. Where pitching is rotation

about the y axis of motion, yaw is rotation about the z axis, and roll is rotation about

the x axis. Because the base is treated as a rigid body, if pitching or rolling is occurring

translation will occur in either the x or y direction, respectively. The yaw mode can be

measured by spacing two accelerometers apart along the same axis, one along the centerline

of mass and the other offset some distance. This will enable translation in this axis as well

as base yaw to be detected. The third accelerometer should be mounted approximately at

the center of mass in a perpendicular direction to measure primarily translation. Therefore

all degrees of freedom except for motion in the z direction can be measured and due to the

massiveness of the base this is acceptable for most gantries. Figure 27 is an example of where

to mount accelerometers on a gantry base. The two sensors on opposing sides of the same

axis should be compared. If both signals are in phase, this means the base is translating

without rotating. The more interesting dynamics occur if the sensors are 180 degrees out

of phase which implies the base is rotating about the center of mass. This can occur at

resonant frequencies if enough energy is input into the system. Figure 30 shows the base

of a gantry not only translating at 50 Hz, the natural frequency of the Z stage mounted

to this gantry, but also rotating at the primary yaw mode of the gantry, at 400 Hz. Only

two sensors are considered here to illustrate sensing yaw motion and translation and the

placement is depicted in Figure 31. The two sensors were both mounted along the same axis

of motion. Sensor Y1 was mounted off to one side and sensor Y2 was mounted along the

centerline of the same axis. The translation at 50 Hz is evident as both sensors show equal

magnitude and aligned phase. The rotation at 400 Hz can be seen because the magnitude

of the off center accelerometer peaks while the centered accelerometer shows no change in

acceleration. The phase of the two accelerometers at this frequency also is indicative of the

two sensors moving out of phase of one another. In this scenario the yaw mode of the gantry

is well removed from the operational bandwidth of the gantry, however the 50 Hz translation

could possibly pose an issue. Further analysis of this mode is necessary but the operator is

now aware of its effect on certain parts of the system.
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Figure 30: Plot showing accelerometer frequency response from the gantry base, using two

sensors aligned along the same axis. A translational base mode at 50 Hz and system yaw

mode at 400 Hz are present. Phase roll off is from low pass filters on the accelerometer

signals and control loop.

Figure 31: Diagram depicting sensor locations from Figure 30
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Adding sensors to a gantry system enables the measurement of additional frequency

response functions at locations that are not currently instrumented. Accelerometers are

temporarily attached during the frequency response measurements to provide information

about the behavior of points of interest. The base and workpoint of gantries are both

locations of interest that benefit from being measured. The base measurement determines if

the base is translating or rotating and potentially affecting the performance of the system.

The workpoint measurement is important to verify that there is similarity between the

encoder measurements and the workpoint. If there is amplified motion at the workpoint

that is not apparent from the encoder response, care must be taken to not excite that

frequency. It requires little effort to attach accelerometers to the base and workpoint of the

gantry and therefore should be done every time a series of measurements is done. In this

way there will be beneficial data to diagnose issues and support conclusions about system

performance.
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7.0 PROCEDURE DEVELOPMENT

The primary objective of this research has been to create a procedure that can be used by

non-experts to measure the MIMO frequency response of precision gantry systems. The

procedure should only require minimal input from the operator and handle most of the

decision making based on predefined logic. This makes the operators job easier as well as

removing variability from operator to operator. The process will always be carried out in the

same way and the same data always collected. This is rather important because the current

procedure is more or less dependent on the operator and what data they wish to collect.

A prototype program written in the programming language AeroBasic was used to test

different excitation signals and the various parameters associated with those. AeroBasic is

a programming language developed and maintained by Aerotech, Inc for interacting with

and controlling precision motion systems. It allows for direct command of motion stages

as well as collecting data from the motion system sensors. Specifically this was used for

testing multisine variations and comparing test times as well as the signal uncertainty. From

this testing and the research done in Section 2, it was decided that sequential random

phase multisine signals provided the most benefit for the excitation time required. As the

excitation on each axis is started, the disturbance signal is slowly scaled up to the desired

amplitude and allowed to oscillate for one signal period to let transients decay. Then the

multisine disturbance is input for the desired number of periods, where the measurement

takes place, before it is again ramped down to prevent large steps in current that can act like

an impulse to the system. Two periods minimum of each multisine sequence are repeated in

the measurement phase to enable averaging between the two. In testing it was found that

averaging over more than two periods provided little to no improvement in the measured

frequency response. This is most likely due to the multiple complete periods of each frequency
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component contained in each period of the multisine. So when an average is taken over two

multisine periods, each frequency is averaged over many periods of itself. The ability to

change this parameter easily is desired in the event a system can benefit from more averaging

over signal periods.

Similarly, using multiple independent realizations of a multisine signal did not produce

a significant improvement in the measured frequency response of gantries. Independent

realizations are useful for calculating the uncertainty from nonlinearities [23], whereas many

of the gantries only exhibit nonlinearities at low frequencies from friction [34] and high

frequencies from amplifier characteristics [27]. Conveniently the frequency range of interest

is primarily in the linear behavior range and therefore does not require techniques to detect

uncertainty from nonlinearities. As with the signal periods, this is a parameter that should

be easily adjustable in the event a system exhibits nonlinear behavior.

With the type of excitation signal determined and a nominal number of signal periods

to excite, the next piece to establish is the measurement of multiple inputs and outputs.

Again AeroBasic was used to create a program that moves the gantry to multiple locations

in travel and collects time data from an excitation at each input to the gantry system. The

signals from all outputs are collected along with the generated disturbance and system in-

puts. This totals three independent measurements at each axis location with data collection

of all relevant control loop signals.

After the excitation signal prototype program was complete, the measurement locations

in gantry travel need to be determined. Two locations along the gantry axis and two locations

along the bridge axis are measured at minimum, for a total of four measurements. This was

found to be optimal in time savings as well as still capturing uncertainty due to travel. The

length of travel of the gantry axis is the determining metric for adding locations along the

gantry axis. If the gantry axis travel is greater than 600 mm, an extra measurement location

is added. For adding measurement locations to the bridge axis, the maximum and minimum

inertia experienced by each gantry axis due to the bridge carriage location is measured. If

the ratio of maximum to minimum is greater than 1.2, an extra measurement location is

added along the bridge travel. It is worth noting that each extra measurement location adds
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3 extra frequency responses to be measured, one for each axis. The inertia determination

and gantry travel length are used to add more measurement locations before the excitation

program would begin execution.

Next the number of accelerometers and their location on the gantry are determined. As

mentioned in Chapter 6, the workpoint and the base are normally the most useful locations

to gather extra information. Having the extra frequency response data from these outputs is

useful currently in diagnosing structural resonances that can affect the end process. Some-

times excessive base motion or workpoint error is the cause of robustness or performance

issues but having sensors located at either point is a convenient way to determine these

influences.

The final consideration is the presentation of the different responses that have been

gathered and how to effectively display the most important information. After the data

collection is complete, the data is processed to calculate the transfer matrices of interest to

the user. In the interest of improving robustness and performance, the sensitivity criteria

from Table 2 in Chapter 4 is useful for an operator to determine robustness and performance

from sensitivity plots. Due to the high number of responses collected and the MIMO nature

of the system, the singular values of the sensitivity functions are displayed to show the

maximum and minimum possible responses from the system. While this may result in some

conservative design choices, it will guarantee stability and a certain level of performance,

which may or may not be adequate for the application at hand. The amount of decoupling

possible from a kinematic decoupling matrix will also be displayed to inform the operator if

a decoupled control scheme would be advantageous to implement.

The steps of the research process can now be arranged into a process flow for the develop-

ment of an automated procedure. Figure 32 shows a top level organization of the procedure

and the order of each step. This flow chart is the structure upon which the automated

procedure will be built.
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Figure 32: Flowchart of system identification process
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7.1 PROGRAM APPLICATION

The procedure is now defined and in order to automate it, a program that interfaces with

industrial software is necessary. This is achieved with the Python programming language. A

small Python application with a graphical user interface is developed to create an interface

for the operator to interact with. Figure 33 is a screenshot of the user interface for both

generating the machine code as well as processing the collected data. All data fields to

the left of the vertical dashed line are variables for the data collection of the frequency

response. The start and stop frequency can be controlled, along with the frequency spacing

of the frequency response which is controlled by the field “Spacing Weight”. This field also

controls how many periods of each frequency are contained in one period of a multisine

sequence [14]. The maximum current percentage is based on the gantry amplifier maximum

current and controls the RMS current of the multisine disturbance. And as mentioned before

there are fields to control the number of independent experiments or realizations and the

number of multisine periods. The names of the gantry and bridge axes are required as well

as the length of travel. The data fields at the bottom of the window are used for entering

information about the accelerometers attached to the gantry. It is important for the fields

to be fully populated for the accelerometers so the signal can be converted from voltage to

acceleration as well as properly associated to the axis each is measuring. Once all of the

fields are defined, clicking the “Generate PGM” button will generate an AeroBasic file that

can be run on the gantry system. The file runs, determines how many locations in travel to

measure and begins performing the frequency response measurements on the gantry. When

the program is finished, all data files are saved and processed by the same Python program.

The Python program can automatically process the files once the data collection is complete

or processing can be performed at a later time.

When the processing begins, the raw time data is gathered by the program and the

appropriate frequency response matrices are calculated. The program currently shows the

maximum and minimum singular values of the sensitivity and complementary sensitivity

matrices, Figure 34a and 34b respectively. From the criteria presented in Table 2, it is

guaranteed that the system will have good disturbance rejection up to 65 Hz and good
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Figure 33: Screenshot of gantry program user interface
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trajectory tracking up to about about 40 Hz. This does not mean the system will not

function above these frequencies nor does it imply poor performance above these frequencies.

What this guarantees is good performance and robustness where the responses satisfy the

sensitivity and complementary sensitivity requirements.

In addition, the amount of gantry axis decoupling that can be achieved with kinematic

decoupling is shown in a plot, Figure 35. By showing this plot, the operator can decide if

it would useful to transform the axes in order to obtain a simplified controls configuration.

The difference in magnitude between the diagonal and off diagonal terms represents the ratio

of influence each input exerts on an output. The goal is for the diagonal terms to be much

larger than the off diagonal terms which would yield negative dB ratios for the plot. This

would indicate that the primary influence on each axis output is from only one input (e.g.

a diagonalized plant transfer matrix). The threshold for good decoupling is set at a -20 dB

difference or a 10 times decrease in the coupling of the two gantry axes, X and XX. Figure 35

is an example of a system where kinematic decoupling does not achieve any improvement in

the frequency range of interest, 0-80 Hz, but actually increases the degree of coupling.

As a final plot to assist the operator, the frequency response of the accelerometers, either

on the base or the workpoint, is shown. This plot is useful in identifying the behavior of a

previously unmeasured point and relating it to the system behavior. Figure 36 shows the

base and workpoint frequency responses of the same gantry considered thus far. Only two

accelerometers were available for this testing when ideally a third accelerometer would be

used to measure yaw of the base and the z direction of the workpoint. The base response,

Figure 36a, shows in the Y direction (the direction of the gantry axes) there is a resonant

mode at 20 Hz that does not appear in the plant or open loop response from the gantry

axis Y and YY encoders. This implies the base is resonating in the frequency range of in-

terest and might be affecting the process. It was discovered when testing this system with

a customer supplied program, that indeed something was hindering the performance of the

system. After running this program, the base was isolated as the limiting factor. With

confirmation from this program, the design of the base was altered and the performance was

improved to meet the customer specifications.
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Figure 34: (a) Maximum and minimum singular value bounds of gantry sensitivity func-

tion for the full 3 × 3 system(b) Maximum and minimum singular value bounds of gantry

complementary sensitivity function for the full 3× 3 system
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Figure 35: Amount of decoupling achieved with a kinematic transformation on the same

gantry shown in Figure 34. It is not decoupled in the frequency range of interest therefore

this decoupling scheme is not beneficial and should not be adopted for this particular system.

The workpoint response in Figure 36b of the same system, shows what is to be expected

from the system. The yaw mode of the gantry, around 120 Hz, appears on the Y accelerom-

eter response. Lower in frequency there is a flat region that indicates a constant transfer

of force from the motor to the workpoint. At 40 Hz and lower however, the magnitude

of the response at the workpoint decreases due to aforementioned coupling of gantry axes

and friction. The X axis acceleration follows a similar trend with low frequency attenuation

due to friction with good force transfer up to the first system resonance. This would be an

example of a workpoint that is behaving as predicted by the encoder responses.

7.2 SYSTEMS TESTED

An important aspect of this research is the ability to test and develop the automated pro-

cedure on multiple different gantry systems. The systems that were available for testing
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Figure 36: (a) Gantry base accelerometer response from Gantry in Figure 34, Sensor 1

measures X direction, Sensor 2 measures Y direction. Comparison with diagonal responses

at encoder. (b) Gantry workpoint accelerometer response from Gantry in Figure 34. Sensor

1 measures X direction, Sensor 2 measures Y direction. Comparison with diagonal responses

at encoder. Phase roll off is from filtering on accelerometers and control loop.
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were actual customer systems that were tested before being shipped to the customer. This

is useful in that a representative sample of systems is tested but also has the difficulty of

not being able to retest a system after it has shipped. Enough gantry systems were pro-

duced during this research that availability was never a problem and any changes made to

the process were tested out on subsequent systems. Throughout this research the following

gantry systems were tested, Table 3. The gantry styles are the closest approximation to a

standard Aerotech gantry system because many of these systems are customized to specific

applications. The inertia ratio is the value calculated in Section 5.1 which is the ratio of

maximum inertia to minimum inertia experienced by an individual axis of the gantry.
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Table 3: Gantry testing sample

Gantry Style Gantry Travel Bridge Travel Inertia Ratio

AGS15000 605 mm 605 mm 1.21

AGS10000 1250 mm 1250 mm 1.12

AGS15000 605 mm 455 mm 1.38

AGS15000 500 mm 500 mm -

AGS15000 500 mm 600 mm 1.288

Custom 1800 mm 1500 mm 1.248

AGS1500 620 mm 150 mm 1.1

AGS1500 620 mm 150 mm 1.03

AGS1500 500 mm 400 mm 1.18

AGS1500 620 mm 150 mm 1.16

AGS15000 500 mm 600 mm 1.28

AGS15000 500 mm 600 mm 1.3

AGS1500 620 mm 150 mm 1.05
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8.0 SUMMARY

The identification of precision gantry systems for industry requires the use of MIMO iden-

tification techniques, specifically frequency response measurement and analysis tools. The

current identification methods take a long time, neglect the cross coupling of axes and do not

characterize uncertainty. These are problems when needing to identify many unique systems

to ensure robustness and performance. In an attempt to solve these issues, objectives were

established to create a better method for performing MIMO system identification on gantry

systems. In this research the following objectives were accomplished:

1. Reduce the overall time required for the measurement process and quantify

the uncertainty in the new measurement of the frequency response.

The time needed to fully identify the MIMO frequency response of a gantry has

decreased by 90 % in typical test cases. The original method required 72 minutes

to complete a full measurement, while the new method takes 11 minutes to accom-

plish the same measurements. This is not accounting for the decreased number

of locations that need to be measured when using a priori knowledge of a gantry

system. If this was taken into account only 6 locations would need to be measured

and the time would be decreased to only 7 minutes and 20 seconds. In addition to

improving the speed, the uncertainty of the measurements are now also included.

The uncertainty includes the variation based on location as well as the measure-

ment uncertainty. This creates a band of possible gantry responses and enables the

uncertainty to be considered when designing a controller for a gantry.
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2. Define and incorporate an approach for using a priori knowledge of the gantry

system to determine at how many locations the frequency response should

be measured.

In order to optimize the number of locations measured, a priori knowledge of the

gantry, inertia ratios and length of travel, is used to determine the number of

locations to measure the frequency response. Along the direction of the gantry axis,

the number of measurement locations is determined by the length of travel of the

gantry axis. If the length of travel is greater than 600 mm, an extra, equally spaced

measurement location is added. Along the direction of the bridge axis, the number

of measurement locations is determined by the ratio of maximum and minimum

inertia experienced by each gantry axis based on the bridge carriage location. If

the maximum inertia measured is greater than 1.2 times the minimum inertia, an

extra equally spaced measurement location is added. In both the directions of the

gantry and bridge axes, the minimum number of measurements is limited to 2x2

grid or 4 locations total. This will account for any variations over travel as well

as provide a minimum number of measurements with which to average over. The

maximum number of locations is a 3x3 grid or 9 total measurement locations.

3. Define the number and type of sensors necessary for gathering additional

information about the system during the frequency response.

By placing accelerometers at the workpoint and on the base, a measurement is now

available to verify dynamic behavior at previously unmeasured locations. Three

axes of acceleration should be used at the workpoint, unless the end process is

insensitive to one axis of motion. In this way the behavior of the workpoint can

be correlated to the measurements from the system outputs. The base can also be

characterized by placing three accelerometers on the XY plane. Two accelerometers

should be oriented in one axis, spaced apart to be able to measure translation as

well as rotation of the base and the third accelerometer should be placed along the

perpendicular axis on the center of rotation to only measure translation in that

axis of motion. From these three measurements the dynamic behavior of the base

can be characterized.
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4. Create a procedure that can be used by non-experts for measuring the MIMO

frequency response of precision gantry systems.

An automated procedure has been developed to measure the MIMO frequency

response of gantry, process the data and present the results. A program that allows

the operator to adjust frequency response measurement variables has been created

that suggests default values but also allows user input. Upon running this program,

a complete system identification is performed on the gantry in the form of a series

of frequency responses. Once the data collection is finished, the data is processed

to calculate various transfer matrices. The singular values of the sensitivity and

complementary sensitivity are determined and plotted to make observations about

the robustness and performance of a gantry. Along with the sensitivities a plot of

the ability to decouple the two gantry axes with a kinematic transformation is shown

to help in determining if decoupling will simplify the control design. Lastly the

frequency response from any attached sensors is plotted to show if the instrumented

point is exhibiting the predicted dynamic behavior. This program combines all the

steps of nonparametric MIMO system identification into an automated procedure

that enables use by non-experts.

8.1 FUTURE WORK

The work presented here is the first step in a process for automating MIMO system identi-

fication and analysis. From this point there are several ways to build upon this research:

1. Further explore simultaneous axis excitations.

2. Design controller based on system identification data collected.

3. Generalize the system identification method to function on any MIMO system.
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8.1.1 Multi-axis Excitation

One of the large time commitments of this system identification process is the need to

perform 3 individual excitations at each location in system travel. Simultaneous excitation

was briefly explored in this work but there is more that can be done to optimize the process.

In order to improve this, the effects on uncertainty and spectral characteristics should be

further studied. Different techniques to design orthogonal signals should also be included.

8.1.2 Controller Design

The next logical step from this research is studying a method to design a controller using

the non-parametric models obtained from this research. There are multiple control methods

that use non-parametric data but it would be useful to study and choose a preferred method

as well as working towards automating the controller design. This would not only allow non-

experts to implement procedures to design MIMO controllers but also create a systematic

method for controller design. In this manner, controller design would follow a set process

and produce similar controller structures for similar systems, unlike the current methods.

8.1.3 Method Generalization

This research could also be expanded by generalizing the procedure created here to study

a larger subset of MIMO systems. More inputs and outputs could be considered as well

as different methods of decoupling complex systems. It would be useful to consider other

MIMO transfer matrices to consider control energy or input sensitivities. Although these

quantities are not as functional for the gantries considered in this research, that is not the

case for all MIMO systems. In some circumstances the control energy could be the primary

concern if energy is a limited quantity. Conversely the process could also be altered to

consider a different subset of MIMO systems in more detail. In either case, the application

of the process could be altered to consider different types of MIMO systems.
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APPENDIX

NOMENCLATURE

1
fk

signal period

σ̂2
s sample noise variance

σ̂2
T total sample variance

σ̂2
Tn

total sample noise variance

Ĝ approximate frequency response function

Ĝs average frequency response function

ĜT total average frequency response function

ω frequency

φ phase

Σ singular value matrix

A amplitude

d output disturbance

e error

F number of frequencies

G plant

G(ω) frequency response function

K controller

M number of realizations

N number of periods

Nf number of frequencies in multisine signal
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r reference

S sensitivity

Suu(ω) input auto-spectral density

Ssingle
uu (ω) single sided input auto-spectral density

Suy(ω) cross-spectral density

Ssingle
uy (ω) single sided cross-spectral density

T complementary sensitivity

Tu input transformation matrix

Tw waiting time for transient decay

Ty output transformation matrix

Tss total measurement time

U left singular vector matrix

u system input

U(ω) input Fourier transform

V right singular vector matrix

v control output

w disturbance

y system output

Y (ω) output Fourier transform
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