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ABSTRACT 
 
Retention of a functional dentition of twenty or more permanent teeth is an important World 

Health Organization (WHO) goal, as missing teeth adversely affects oral health quality of life, 

especially masticatory function and aesthetic appearance and satisfaction.  Previous studies show 

that tooth loss is moderately heritable, and genome-wide association studies (GWAS) of 

periodontitis and dental caries, the two main causes of tooth loss, have successfully identified 

genetic variants associated with these oral diseases.  Thus, this work aimed to identify genetic 

variants associated with missing teeth by performing genome-wide association scans in five 

cohorts and a subsequent meta-analyses.  Genome-wide association scans using linear and 

logistic regression for a quantitative trait and functional dentition, respectively, were performed 

in five cohorts: The Center for Oral Health Research in Appalachia cohort 1 (COHRA; N = 955), 

Dental Registry and DNA Repository of the University of Pittsburgh School of Dental Medicine 

(DRDR; N = 227), and cohorts from The Pittsburgh Orofacial Clefts Studies (POFC) project 

recruited from the United States (POFC-USA; N = 192), Guatemala (POFC-G; N = 272), and the 

Patagonia region of Argentina (POFC-PA; N = 182).  Three p-value based meta-analyses were 

performed: a white-only meta-analysis (COHRA and DRDR; N = 1182), a Hispanics-only meta-

analysis (POFC-G and POFC-PA; N = 454), and a trans-ethnic meta-analysis (COHRA, DRDR, 

POFC-G, and POFC-PA; N = 1636).  Two regions of the genome were associated with missing 
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teeth at genome-wide significance (p < 5 x 10-8) and were located near genes relevant to dental 

and oral health (POSTN, a critical regulator of periodontal homeostasis, and MTRR, which 

functions in methionine synthesis, a process previously implicated by GWAS of dental caries.)  

Furthermore, many regions of the genome showed suggestive significance (p < 1 x 10-5) and 

were located near genes biologically relevant to tooth loss.  These discoveries corroborate 

existing evidence for a genetic contribution to tooth loss, and supports the hypothesis that 

common genetic variants influence tooth loss.  The public health significance of this work is that 

such findings may ultimately lead to the identification of individuals at risk for tooth loss and the 

development of novel treatments. 
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1.0  INTRODUCTION 

1.1 SPECIFIC AIMS 

Tooth loss negatively impacts oral health quality of life, since it affects aesthetic appearance, 

satisfaction, and function.  It is also a known marker for subsequent cognitive decline and 

decline in overall health.  Loss of a tooth is a failure of oral health, and complete edentulism, the 

loss of all teeth, is the ultimate endpoint of poor oral health. Missing teeth are known to be 

associated with environmental and other risk factors, such as age, socioeconomic status, 

education, and smoking status.  Missing teeth are primarily caused by periodontal disease and 

dental caries, and known genetic factors are involved in the etiology of both of these oral 

diseases.  Furthermore, heritability studies have shown that tooth loss itself is moderately 

heritable.  While some genetic variants influencing loss or retention of teeth have been described 

previously via candidate gene studies, such approaches are limited and biased in that they rely on 

assumptions regarding disease pathology to nominate potential genes, and comprehensive 

knowledge of the functions of all genes is far from complete.  Additionally, no published study 

to date has used a whole-genome approach to systematically identify regions of the genome that 

are associated with tooth loss.  Application of hypothesis-free, genome-wide approaches may 

lead to the identification of novel genes and biochemical processes relevant to tooth loss. 
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Since understanding the genetic basis of tooth loss is expected to lead to improvements in 

oral health and decrease oral health disparities across populations, we will perform genome-wide 

association analyses of missing teeth and functional dentition, a binary trait defined as retention 

of at least 20 teeth, in five independent study samples and carry out a subsequent meta-analysis 

to identify common variants associated with these phenotypes.  Given that dental caries and 

periodontal disease have genetic components, and that tooth loss itself is moderately heritable, 

we expect that genetic variants may influence tooth loss.  Thus, a genome-wide association 

study, which can successfully identify common variants of modest effect size influencing traits 

and diseases, is an appropriate methodology for scanning the genome for regions associated with 

missing teeth and functional dentition. 

In order to pursue the following Specific Aims, this project will bring together five 

existing data sets: the Center for Oral Health Research in Appalachia cohort 1 (COHRA1) 

recruited from West Virginia and Pennsylvania, samples from the Dental Registry and DNA 

Repository (DRDR) of the University of Pittsburgh School of Dental Medicine, and unaffected 

participants from The Pittsburgh Orofacial Clefts Studies (POFC) project recruited from United 

States (POFC-USA), Guatemala (POFC-G), and Patagonia region of Argentina (POFC-PA.)   

Aim 1 is to perform initial genome-wide association analyses in these five independent 

study samples (COHRA, DRDR, POFC-USA, POFC-G, and POFC-PA) to identify common 

variants associated with missing teeth and functional dentition and estimate their effect sizes.   

Aim 2 is to perform meta-analyses stratified by ethnicity and a subsequent trans-ethnic 

meta-analysis.  To perform replication analyses of top hits identified in the meta-analyses, 

POFC-USA will be used as a replication sample.  
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Aim 3 is to perform bioinformatic analyses of significant SNPs and search the literature 

for nearby genes with biological roles in dental and oral health.  The most significantly 

associated variants identified in individual cohorts and the meta-analyses across cohorts will be 

interrogated for evidence of functionality and putative roles affecting dental and oral health.   

The hypothesis-generating, genome-wide approach that will be utilized in our study will 

further characterize the genetic factors influencing tooth loss, which may lead to the 

identification of novel genes and biochemical processes relevant to tooth loss. Associations 

between common variants and tooth loss will be identified at both the statistical and biological 

level.  Ultimately, understanding the genetic basis of tooth loss may lead to the identification of 

at-risk individuals as well as the development of novel treatments. 

1.2 THE PUBLIC HEALTH IMPORTANCE OF ORAL HEALTH, TOOTH LOSS, 

AND FUNCTIONAL DENTITION 

1.2.1 Social and Individual Impact of Tooth Loss 

Poor oral health is a tremendous public health problem worldwide.  As of 2010, the global 

estimate of severe tooth loss, here defined as the retention of 9 or fewer teeth, was 2.3% or 158 

million people, with an incidence rate of 205 cases per 100,000 person-years [1].  Economically, 

the direct and indirect costs of dental diseases are estimated to be $298 billion and $144 billion 

per year, respectively, amounting to an estimated $442 billion annually.  This cost is in line with 

the economic losses for the most common global causes of death [2].  From the Global Burden of 

Diseases, Injuries, and Risk Factors (GBD) Study, in 2010, oral diseases (severe tooth loss, 
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untreated dental caries, and severe periodontitis) were estimated to account for 15 million 

disability-adjusted life-years (DALYs) globally; in individuals over age 60, the leading cause of 

DALYs was severe tooth loss.  Furthermore, because of population growth, increases in lifespan, 

and the cumulative nature of oral diseases, the global burden for oral diseases increased from 

1990-2010.  This is contrary to the overall trend of a decrease in the global burden of other 

diseases, indicating that oral health is becoming increasingly important from a global health 

perspective [3].  Due to the costly nature of oral diseases, it is important to study tooth loss, in 

part, to alleviate the economic burden that it poses on society. 

Oral diseases are not only costly at the economic and societal level, but they also have a 

severe impact on an individual’s quality of life, including oral health quality of life.  Oral health 

quality of life is conceptualized as the effect of dental health on an individual’s functional 

capacity, emotional well-being, satisfaction, and sense of self-worth [4].  Because of the serious 

burden tooth loss has on oral health quality of life, in 1992, the World Health Organization 

(WHO) made it a goal to retain a functional dentition of 20 or more permanent teeth through life 

[5].  Tooth loss affects aesthetic appearance and satisfaction [6] and loss of more than 8 teeth 

impairs mastication and the ability to eat certain foods [7, 8].  Indeed, completely edentate 

individuals have been found to consume fewer healthy, nutrient-rich foods, like carrots and 

salads, than individuals with a functional dentition [9].  Accordingly, denture-wearers consume 

approximately 2-1.5 times less nutrients, and edentate individuals have a poorer, less balanced 

diet and worse nutritional intake than dentate individuals, particularly in dietary fiber (1.2 times 

lower), folate (1.3 times lower), and beta-carotene intake (1.7 times lower) [9, 10].  Zhu and 

Hollis (2014) also found that individuals without a functional dentition had a 20% lower overall 

energy intake, and consumed 5% less protein, 25% less dietary fiber, 12% less vitamin A, 14% 
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less vitamin C, and  4% more carbohydrates [11].  The nutritional deficits associated with tooth 

loss support the WHO goal of retaining a functional dentition through life in addition to the 

economic losses of tooth loss. 

1.2.2 Epidemiologic Correlates of Tooth Loss, Functional Dentition, and Edentulism  

Several well-established environmental risk factors have been associated with tooth loss.  

Perhaps the biggest predictor of tooth loss is age, since tooth loss is the culmination of oral 

diseases throughout the life course.  Multiple studies of different designs that have sampled 

varying populations have established the association between older age and tooth loss [1, 12-22].  

Furthermore, using data from several versions of the National Health and Nutrition Examination 

Survey (NHANES), Slade et al. (2014) observed a cohort effect on edentulism in U.S. adults, 

whereby edentulism was higher in individuals over 60 years of age and born before 1934 

compared to individuals over 60 years old born after 1934.  They also found a significant 

interaction between age and birth year on the prevalence of edentulism; individuals born before 

1934 experienced higher rates of edentulism as they aged compared to other cohorts.  Such 

findings may be due to improvements in dental health care services [12].  Other demographic 

factors associated with tooth loss include race and a rural location, and there are global patterns 

of tooth loss, with some nations experiencing high rates and some markedly less.  African-

Americans experience greater tooth loss and higher rates of edentulism than non-Hispanic whites 

[12-14], but tooth loss is lowest among Asians [12].  Residents of high-poverty rural areas are 

1.66 times more likely to be completely edentulous [13]; areas such as Appalachia and the 

Mississippi Delta have the highest rates of edentulism (8% or more, compared to 4.9% nation-

wide) across the United States (U.S.).  This is likely explained by high poverty levels and lack of 
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dental health care services [12, 13].  Globally, the highest rates of edentulism have been reported 

in North, South, and Central America, Eurasia, and Australia, and edentulism is lowest in sub-

Saharan Africa, China, and Oceania [1].   

 Socioeconomic factors are also highly correlated with tooth loss across populations and 

age groups.  Income is extremely predictive of missing teeth, as loss of functional dentition, 

edentulism, and any amount of tooth loss is highest in low income individuals[11-14, 18, 20, 21, 

23].  Slade et al. (2014) found the difference between the prevalence of edentulism to be as much 

as 12.6% vs. 0.6% between highest and lowest income quartiles [12].  Education, which is 

correlated with income, is likewise negatively correlated with missing teeth [12-16, 18-21, 23].  

Marital status (being divorced/separated or unmarried vs. married) has been found to be 

associated with tooth loss as well [13, 20, 23].  Unemployment and being uninsured have been 

associated with tooth loss [13], though the body of literature supporting these associations is not 

as substantial as those supporting income and education.  Ultimately, these socioeconomic 

predictors are not independent of each other, and low socioeconomic status is what predisposes 

to tooth loss more than any one predictor by itself.  

 In addition to the demographic and socioeconomic environmental factors that predispose 

to tooth loss, several behavioral risk factors have been associated with edentulism and missing 

teeth.  Unsurprisingly, smoking is strongly predictive of missing teeth, and current and former 

smokers are approximately 2.3 times more likely to experience tooth loss than never smokers 

[11, 13, 18, 20-24].  Similarly, high levels of alcohol consumption are associated with tooth loss 

[20, 23], though some studies have not identified such an association [21].  While body mass 

index (BMI) has not been associated with tooth loss and/or edentulism, studies have found that 

physical activity and sedentary time are associated with tooth loss [11, 20, 23].  Oral hygiene 
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behaviors, such as infrequent flossing [25], dental maintenance visits, tooth brushing, and poor 

personal oral hygiene behaviors [22] are all associated with tooth loss.  Taken together, these 

data suggest that those who do not practice good oral and general health behaviors are more 

likely to also have oral diseases and thus tooth loss.  These results may explain why associations 

with traits lacking a clear biological link to tooth loss, such as sedentary time, are observed.  

Undeniably, environmental and behavioral risk factors play an important role in the 

etiology of tooth loss across populations, but chronic diseases, including asthma, diabetes, and 

cardiovascular disease have also been associated with tooth loss and edentulism.  Chronic 

diseases including asthma, diabetes, and cardiovascular disease have been associated with tooth 

loss [13, 26].  More specifically, cardiovascular comorbidities, such as coronary heart disease, 

hypertension, angina pectoris, and heart attack [13, 20, 21, 23, 27], and noncardiovascular 

comorbidities such as lung disease, asthma, and arthritis have all been linked to missing teeth 

[20].  Irritable bowel syndrome and measures of psychological well-being, such as depressive 

symptoms and self-reported psychosocial well-being, have also been associated with missing 

teeth [20, 23, 28].  Medications that alter the oral environment and cause changes to microbial 

communities, such as asthma inhalers, may explain an association between chronic diseases like 

asthma and tooth loss.  Additionally, researchers have hypothesized that chronic inflammation 

and/or nutrient deficiencies may explain the association between cardiovascular disease and 

tooth loss [26].        

The role of biological sex in tooth loss is not yet clear; the potential association between 

sex and tooth loss has not been consistent across several studies.  In cross-sectional data, studies 

of U.S. populations  including only individuals over the age of 60 and studies including all adults 

reported that females were more likely to be fully edentate [13, 20].  Investigators reported that 



8 

female adults of all ages and between 20-64 years experience significantly greater tooth loss (p < 

0.001) as 53.6% of the poor dentition (<=20 teeth) group was female and 53.1% of the full 

dentition (>=28 teeth) group was male [11].  However, Ylostalo et al. (2006) reported that within 

a cross-sectional cohort of Finnish adults in their mid-30s, males experienced greater tooth loss 

[23].  Among individuals having a tooth extracted, not restricting age, males and females were 

equally likely to have a tooth extracted due to caries and periodontitis, though females were more 

likely to have a tooth removed due to orthodontics, and males due to trauma [29].  Among 

Brazilian adults ages 20-59, no association was found between tooth loss and sex when tooth loss 

was categorized as 10 or more teeth in both arches, less than 10 teeth in one arch, or fully 

edentulous [21].  In rural Ecuadorians over 60 years, no association between sex and tooth loss 

was found when using a cutoff of 10 or more teeth [16].  Across five cohorts, Slade et al. (2014) 

found no sex differences in the prevalence of edentulism in U.S. adults [12], and sex has not 

been associated with edentulism in other cross-sectional studies [15].  Total number of missing 

teeth has also been found to show no sex differences [30].  Furthermore, in our data from 

COHRA, with ages restricted to 18-60 years, sex was not associated with either total missing 

teeth or functional dentition.  Inconsistencies in defining tooth loss, such as arbitrary cutoffs for 

severe tooth loss or using complete edentulism only, and inconsistencies in defining study 

populations based on age groups, likely contribute to the lack of consensus across studies on the 

effect of sex on tooth loss.  It is not yet clear whether observed sex differences in tooth loss are 

biological in nature or due to differences in exposures to environmental risk factors such as 

smoking. 
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1.2.3 Tooth Loss as a Risk Factor for Cognitive and Physical Decline  

Not only is loss of permanent teeth a marker of poor oral health, but tooth loss is associated with 

poor cognitive performance and it is a significant risk factor for dementia.  In cross-sectional 

studies of Swedish and Brazilian populations, loss of natural teeth and edentulism were 

associated with poorer cognitive performance (OR = 3.3, 95% CI: [1.2-9.3] in the Brazilian 

population) even after controlling for other factors associated with cognition, such as 

socioeconomic status (SES), age, social connectivity, education, and smoking [18, 31].  Among 

identical twins discordant for dementia, the twin with dementia was approximately 4 times more 

likely to have a history of tooth loss and poor oral health [32].  The association between different 

measurements of tooth loss and cognition, memory, and dementia has been found in multiple 

diverse study samples, from rural Ecuadorians and Mexican Americans to urban Chinese 

populations (OR = 1.56, 95% CI: [1.12-2.18] in Chinese) [16, 30, 33-37].  While cross-sectional 

studies cannot infer causality from association, the consistency of this result across many distinct 

populations indicates that tooth loss and poor dentition may be a strong marker of cognition.   

Prospective studies have established the temporal relationship between tooth loss and 

cognition, showing that tooth loss precedes cognitive decline.  In a longitudinal study of British 

adults age 60 and older, edentate individuals had a poorer cognitive (0.88 fewer words recalled) 

and physical performance (0.09 m/s slower gait speed) than dentate individuals at baseline, and 

edentulism was additionally associated with subsequent physical and cognitive decline especially 

in adults age 60-74.  This association held even after controlling for multiple covariates such as 

age, sex, marital status, etc. [20].  Stein et al. (2007) found that retention of fewer than 9 teeth 

was positively associated with both the prevalence at baseline (OR = 4.3, 95% CI[1.16, 15.60]) 

and subsequent development of dementia (Hazard Ratio =  2.2, 95% CI: [1.1, 4.5]) in a U.S. 
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population  [19].  Other prospective studies have corroborated this evidence that tooth loss 

precedes and predicts cognitive decline and development of dementia in elderly and middle aged 

adults representative of both U.S. and global populations [35, 38-40].  Moreover, these 

associations, in both cross-sectional and longitudinal studies, are robust to the measurement of 

cognitive function, as some studies have used the Mini–Mental State Examination (MMSE) or 

the Delayed Word Recall Test, and some have used a binary outcome of dementia cases and 

controls, and these measurements of cognition and cognitive decline have all been associated 

with tooth loss. 

Tooth loss is not a simple harbinger of cognitive decline, as experimental studies in 

animal models have demonstrated that the direct loss of teeth leads to cognitive impairment.  

Rats and mice with bilateral extraction of the maxillary molar teeth have more errors in 

completing a maze task (average of 3 errors in mice with all molars extracted vs. 0 errors in the 

control group) [41] and perform worse on passive-avoidance experiments (6 mice with teeth 

extracted showed impairment vs. 0 mice in the control group showed impairment) [42].  These 

studies further showed that both experimental and control animals did not show differences in 

markers of psychological stress [42], eating habits, and motivation several weeks after extraction 

[41], indicating that the pain and stress of tooth extraction did not confound the results.  Upon 

histological examination, studies also observed that tooth loss affects the structure and function 

of neurons [43] and results in neuronal cell loss [42].  Additionally, a decrease in levels of 

tyrosine kinase receptor B mRNA, which enhances nerve transmission and is a marker for 

elevated synaptic transmission levels, is decreased in the brain tissues of these rats [41].  

Together with the data from human epidemiological studies, there is a clear association and 

plausible causal relationship between tooth loss and cognitive function. 
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The exact mechanism by which tooth loss leads to cognitive decline is not yet clear, 

though several theories have been proposed.  Inflammation is thought to be involved in 

Alzheimer’s Disease (AD) pathogenesis, and inflammatory molecules such as proinflammatory 

cytokines may promote the development of AD and cognitive decline [44].  The peripheral 

inflammation seen in periodontitis may cause an increase in the systemic load of 

proinflammatory molecules, which may migrate to the central nervous system (CNS), cause 

inflammation in the brain, and, subsequently, cognitive decline.  Additionally, gram-negative 

bacteria, such as A. actinomycetemcomitans, that cause periodontitis may invade tissues other 

than the gingiva and cause damage, so pathogen damage to brain tissue may contribute to the 

cognitive decline seen in tooth loss.   Hence, the association between tooth loss and cognitive 

decline may reflect the causal role of periodontitis in both conditions.  Indeed, gingival bleeding 

and attachment loss, both symptoms of periodontitis, are associated with cognitive outcomes 

independent of tooth loss [37].  Alternatively, because inflammation, particularly inflammatory 

interleukin molecules, plays a role in the pathogenesis of both cognitive impairment and 

periodontal disease, this association may reflect a shared genetic predisposition to inflammation-

related diseases [45].  Independent of periodontal disease, chewing results in a considerable 

amount of sensory input to the CNS because periodontal ligament cells are richly innervated, and 

chewing also increases blood flow to the brain, so tooth loss may decrease CNS activity to some 

degree via impaired masticatory function [46].  Lastly, low levels of B-vitamins predict cognitive 

decline [47]; since tooth loss results in poor diet quality [9], deficiencies in essential nutrients in 

these individuals may be driving the relationship.  Altogether, none of these mechanisms are 

mutually exclusive and several may be acting in concert, contributing to cognitive decline in 

individuals experiencing tooth loss.  Whatever the causal mechanism may be, this robust 
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association reinforces the WHO goal to retain a functional dentition of 20 or more teeth through 

life.  Only by identifying and characterizing the causes of missing teeth, especially the heretofore 

understudied genetic component, can this goal be met. 

1.3 THE CURRENT STATE OF THE GENETICS OF TOOTH LOSS 

1.3.1 Biologic Causes of Tooth Loss 

Tooth loss, as assessed by total missing teeth, is a combined phenotype representing teeth 

missing due to dental caries, periodontal disease, tooth agenesis, and/or dental avulsion [22, 24].  

Dental caries occurs when acid-producing bacteria of the oral microbiome cause 

demineralization of tooth enamel and subsequent tooth decay.  Left untreated, carious lesions can 

result in a tooth falling out or being extracted and thus, missing teeth.  Periodontal disease is 

caused by a dysbiotic shift of the oral microbiome and aberrant growth of pathogenic bacteria, as 

well as an excessively aggressive immune response to these bacteria.  This process leads to 

inflammation of gum tissues, loss of alveolar bone connecting teeth to the gums, loosening of 

teeth, and finally tooth loss.  Lastly, tooth agenesis is the congenital absence of a tooth resulting 

from developmental failure, and dental avulsion is the trauma-induced loss of a tooth.  The main 

dentist-reported reasons for extraction are periodontitis and dental caries; whereas caries is more 

important in younger patients, periodontitis predominates after 50 years of age [29].  To a lesser 

extent, orthodontics and trauma that did not immediately cause tooth loss are also reasons for 

extraction, as well as patient preference over other treatment options.  It is important to 
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acknowledge the causes of missing teeth since genetic factors influencing these biological 

reasons for tooth loss are also likely to contribute to the genetic basis of missing teeth. 

1.3.2 Gene Mapping and Heritability Studies for Dental Caries and Periodontitis 

At the genome-wide scale, the genetics of dental caries and periodontitis have been studied.  As 

dental caries and periodontitis are the two leading causes of tooth loss, whole-genome gene 

mapping efforts for these diseases should be informative for tooth loss.  Variants associated with 

dental caries and periodontitis may also be associated with missing teeth.  Studies demonstrating 

the heritability of dental caries and periodontitis are summarized in Tables 1 and 2, and whole-

genome gene mapping studies (i.e., genome- wide association studies [GWAS]) of these diseases 

are summarized in Tables 3 and 4.   
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Table 1. Heritability studies for dental caries 

Author Year Sample N Phenotype Heritability 
Estimate 

Reference 

Boraas et al. 1988 Twins 44 twin pairs and 3 
triplets, reared apart 

Dental caries 90% [48] 

Bretz et al. 2004 Brazilian 
twins 

388 twin pairs SBCPR* 76.3% [49] 

LSI† 70.6% 

Bretz et al. 2005 Brazilian 
twins 

314 twin pairs SBCPR 30% [50] 

LSI 63% 

Bretz et al. 2006 Brazilian 
twins 

115 pairs SBCPR 65% [51] 

LSI 62% 

Wang et al. 2010 Whites 2,600 primary tooth 
caries 

54-70% [52] 

permanent 
tooth caries 

35-55%

total caries 29-40%

Shaffer et al. 2012 Whites 2,600 Smooth surface 
caries 

17-42% [53] 

Pit and fissure 
caries 

19-53%

Abbreviations: *lesion severity index (LSI); †surface-based caries prevalence rate (SBCPR) 
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Table 2. Heritability studies for periodontitis 

Author Year Sample N Phenotype Heritability 
Estimate 

Reference 

Michalowicz 
et al. 

1991 American 
twins 

110 twin pairs Periodontal 
disease traits 

38% - 82% [54] 

Corey et al 1993 American 
twins 

349 twin pairs Periodontal 
disease 

MZ pairwise 
concordance = 0.23 
DZ pairwise 
concordance = 0.08 

[55] 

Michalowicz 
et al. 

2000 American 
twins 

117 twin pairs Periodontal 
disease traits 

43-50% [56] 

Mucci et al. 2005 Swedish 
twins 

10,578 twin pairs Periodontal 
disease 

39% in women 
33%  in men 

[57] 

Diehl et al. 2005 White and 
black 
Americans 

610 related individuals Periodontal 
disease traits 

14%-30% [58] 

 

Table 3. Whole-genome gene mapping studies for dental caries 

Author Year Sample N Phenotype Gene(s) Nominated  Reference 

Shaffer et al. 2011 American 
whites 
(children) 

1,305 Primary 
dental caries 
affection 
status 

ACTN2, MTR, EDARADD, 
MPPED2, LPO 

[59] 

Wang et al. 2012 American 
whites 

7,443 Permanent 
DMFS* 

RPS6KA2, PTK2B, RHOU, FZD1, 
ADMTS3, ISL1, TLR2 

[60] 

Shaffer et al. 2013 American 
whites 

920 Permanent 
clustered 
caries partial 
DMFS 

LYZL2, AJAP1, ABCG2, PKD2, the 
dentin/bone SCPP sub-family, 
TWSG1, EDNRA, NKX2-3, IFT88, 
TJFBR1,  SMAD7, IL17D 

[61] 

Zeng et al. 2013 American 
whites 

1,017 Permanent 
DMFS 
stratified by 
PF† and 
SM‡ 
surfaces 

BCOR, INHBA, BCORL1, CXCR1/2 [62] 

Zeng et al. 2014 American 
whites 
(children) 

1,006 Primary 
DMFS 
stratified by 
PF and SM 
surfaces 

KPNA4, ITGAL, PLUNC [63] 

Morrison et 
al. 

2016 American 
Hispanics 

11,754  DMFT§ and 
DMFS 

NAMPT, BMP7,  IGSF10, 
MIR5186, MIR548H2, AADACL2, 
ANK3, CACNA1G 

[64] 

Bolded text denotes genes implicated at genome-wide significance; Abbreviations: *decayed, missing, filled 
surfaces index (DMFS); † pit-and-fissure surfaces (PF); ‡smooth surfaces (SM); §decayed, missing, filled teeth 
index (DMFT) 
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Table 4. Whole-genome gene mapping studies for periodontitis 

Author Year Sample N Phenotype Gene(s) Nominated  Reference 

Schaefer et 
al. 

2010 European 1,758 AgP* 
case/control 

GLT6D1 [65] 

Divaris et al. 2012 European 1,020 Periodontal 
pathogen 
colonization 

KCNK1, UHRF2, FBXO38, IL33, 
TRPS1, RUNX2, CAMTA1, and 
VAMP3 

[66] 

Teumer et al. 2013 European 4,032 Periodontal 
disease traits 

Nothing genome-wide significant [67] 

Divaris et al. 2014 European 4,504 CP† 
cases/controls 

NPY,  NCR2, EMR1, NUAK1 
(smoking interaction), NIN,  
WNT5A, 10p15 

[68] 

Feng et al. 2014 All 
ethnicities 
and 
whites 
only 

866 CP 
case/control 

16q22.3 [69] 

Freitag-Wolf 
et al. 

2014 European, 
stratified 
by sex 

2,183 AgP 
case/control 

NPY (increases risk in males only) [70] 

Shaffer et al. 2014 European 
adults 
<50 yrs 

673 Periodontal 
pocket 
probing depth 

LAMA2, HAS2, CDH2, ESR1, SOS2 
and NIN, OSBPL10, HSP90AB2P, 
GVINP1, SEL1L, FHOD3 

[71] 

Shimizu et al. 2015 Japanese 17,918 Periodontitis 
cases/controls 

KCNQ5, GPR141-NME8 (smoking 
interaction) 

[72] 

Offenbacher 
et al. 

2016 European 978 Novel 
derived 
periodontal 
traits 

CLEC19A, RBMS3, GGTA2P, 
TM9SF2, IFI16, TRA, HPVC1, 
SLC15A4, PKP2, SNRPN 

[73] 

Munz et al. 2017 European 7,980 AgP 
cases/controls 

SIGLEC5, DEFA1A3, FCER1G 
and SLC1A3 

[74] 

Sanders et al. 2017 Hispanic 10,935 Interproximal 
clinical 
attachment 
level 

TSNAX-DISC1 [75] 

Abbreviations: *aggressive periodontitis (AgP); † chronic periodontitis (CP) 

 

From heritability studies, genetic factors are clearly contributing to the etiology of 

periodontal disease and dental caries; thus, genetic factors are also contributing to tooth loss and 

missing teeth.  At the same time, these estimates show a wide range, with heritability of dental 

caries reported to be as high as 90% and as low as 17%.  This may be due to differences in the 
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measurement of dental caries (dental caries cases/controls vs. LSI/SBCPR), calculation of 

heritability (twin pairs vs. variance component modeling), or study population (Brazilians vs. 

U.S. whites).  The same is true for heritability estimates for periodontitis.  Accordingly, GWAS 

have successfully identified several loci and genes putatively associated with dental caries and 

periodontitis, and several of these loci have been replicated.  For dental caries, MPPED2 has 

been associated with different dental caries phenotypes within the same sample [59, 63], and 

associations for AJAP1 and RPS6KA2 have been replicated across GWAS for different dental 

caries phenotypes in non-overlapping study samples of the primary and permanent dentitions 

[61, 63].  For periodontal disease, replication of association signals has been problematic.  With 

the exception of NPY, associations seen for aggressive periodontitis (AgP) have not generalized 

to chronic periodontitis (CP), indicating that genetic mechanisms influencing CP are generally 

not the same as those that influence aggressive periodontitis.  This result is consistent with the 

consensus view that the aggressive and chronic forms of periodontal disease are biologically 

distinct, which is similar to other complex diseases where the early onset, familial forms are 

genetically distinct from sporadic, late-onset forms, such as Alzheimer’s Disease and breast 

cancer.  Additionally, difficulties in replicating association signals across study populations may 

be rooted in the differential influence of various environmental factors that are more or less 

important in different populations [59].  Differences in dental care access, disease prevalence, 

SES, and drinking water fluoridation, for example, may be driving unmeasured gene-by-

environment interactions for both dental caries and periodontitis that are population-specific and 

thus unable to be replicated across populations.  Altogether, GWAS for dental caries and 

periodontal disease have nominated many genes of potential interest, but there has been limited 

success in replicating GWAS signals across study populations.  
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1.3.3 Heritability and Candidate Gene Studies for Missing Teeth 

While the heritability of dental caries and periodontal disease has been established, few studies 

have investigated the heritability of tooth loss.  Using the Swedish Twin Registry, Mucci et al. 

(2005) estimated edentulism to be 39% heritable in men and 14% heritable in women, though the 

95% confidence intervals of these estimates overlap [57].  Similarly, Kurushima et al. (2017) 

used the Danish Twin Registry to estimate that additive genetic factors explained 36% of the 

variance in number of teeth (none, 1-9, 10-19, 20-27, all), indicating that tooth loss is moderately 

heritable.  When stratified by sex, tooth loss was 47% and 22% heritable in women and men, 

respectively, though again, the 95% confidence intervals overlap [76]; interestingly, this result is 

opposite of that of Mucci et al. (2005), where heritability was higher in men than women.  

Additionally, Kurushima et al. estimated heritability of having 20 or more teeth to be 37% and 

edentulism to be 38%.  Heritability estimates from these two studies are harmonious, though that 

is unsurprising given that both study samples come from Northern European countries with 

similar environmental factors.  To more fully assess the heritability of tooth loss, studies should 

be undertaken in populations which experience different environmental factors contributing to 

tooth loss, such as U.S. populations, which differ from European nations in factors like access to 

dental care.  Furthermore, studies should not be limited to whites, since tooth loss is greater in 

minority populations.   

Despite the body of literature supporting the genetic basis of susceptibility to dental 

caries and periodontitis, the genetic determinants of missing teeth and functional dentition are 

still emerging areas of research.  Various polymorphisms in several genes have already been 

associated with missing teeth, tooth loss, and edentulism in candidate gene studies.  The OGG1 

Ser326Cys polymorphism, a nonsynonymous substitution which results in impaired DNA base 
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excision repair, has been shown to be associated with tooth loss in the elderly even after 

adjusting for age, sex, BMI, and heart disease [17].  A repeat polymorphism in the MPG gene, 

which is involved in bone and tooth formation, is associated with retention of a higher number of 

teeth [77].  In a study of the effect of the APOE alleles and edentulism, edentate individuals had 

a higher frequency of the APOE ε4 allele than their dentate counterparts, even when matched on 

other contributing factors such as age and education, though it is unclear whether this association 

is attributable to dementia associated with the APOE ε4 allele and a subsequent neglect of oral 

hygiene, or other biologic mechanisms [15].  Variation within the vitamin D receptor gene, VDR, 

is associated with periodontal disease progression and subsequent tooth loss [78], and estrogen-

receptor gene polymorphisms are associated with tooth loss in post-menopausal women [79, 80].  

While these candidate genes have been reported and studied for over a decade, to date, no 

published studies have applied unbiased, genome-wide methods to investigate the genetic 

susceptibility of tooth loss. 

A common theme among complex diseases is that genes which cause Mendelian 

syndromes when disrupted often have regulatory variants that influence common variation in the 

same traits affected by the syndrome.  Therefore, considering syndromes with a missing teeth 

component may point to more candidates for common variation in missing teeth.  Papillon-

Lefèvre syndrome, an autosomal recessive Mendelian disorder that results in severe periodontal 

disease, has been mapped to 11q14–q21 by linkage analysis methods [81].  Altogether, there are 

several Mendelian diseases that result in periodontal phenotypes relevant to tooth loss, such as 

inherited neutropenias, which result in a decrease in white blood cells, predisposing to bacterial 

infections [82].  Amelogenesis imperfecta is a Mendelian disease caused by mutations in one of 

several genes critical for enamel formation, including AMELX, ENAM, KLK4, and MMP40, and 
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this condition results in excess wear and breakage of teeth [83].  The variety of Mendelian 

diseases with relevant periodontal manifestations and dental anomalies indicates that genetic 

factors, including coding variation, may result in generalized or nonsyndromic periodontal 

disease and tooth loss.    

Aside from periodontal disease and dental caries, teeth may also be missing due to tooth 

agenesis and trauma, and the genetic basis of tooth agenesis is relatively well understood 

compared to dental caries and periodontitis.  Sequencing studies of WNT10A have shown that 

nonsynonymous, nonsense, and missense mutations in WNT10A are strongly associated with 

both agenesis of 1-3 teeth and agenesis of 4 or more teeth, a much rarer outcome [84]. Other 

genes implicated in the pathogenesis of tooth agenesis include MSX1, PAX9, AXIN2, and EDA 

[85].  While there is a clear genetic component to tooth agenesis, teeth missing due to agenesis 

only make up a small percentage of total missing teeth; periodontitis and dental caries are the 

predominant causes of tooth loss.  Thus, gene mapping efforts to identify genetic contributors to 

total missing teeth are unlikely to yield variants implicated in tooth agenesis. 

1.4 GENOME-WIDE ASSOCIATION STUDY OF MISSING TEETH AND 

FUNCTIONAL DENTITION: THE RATIONALE 

GWAS is a hypothesis-free, agnostic approach to studying complex traits and diseases.  The 

rationale behind GWAS is the common disease-common variant hypothesis, which proposes that 

genetic susceptibility to common diseases is largely attributable to common variants, most often 

single nucleotide polymorphisms (SNPs) or small insertion/deletions (indels), that have moderate 

effects on disease susceptibility [86].  The assumption behind GWAS is that a systematic scan of 
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the genome for common variants associated with disease will identify those involved in disease 

pathogenesis, hence they are ideally suited to studying complex traits with a suspected genetic 

basis that is not yet fully characterized.  GWAS is used for both quantitative traits and binary 

disease case-control studies.  Commonly used statistical tests include linear and logistic 

regression for quantitative and binary phenotypes, respectively, since the regression framework 

allows for controlling for covariates (usually age and sex).  As discussed previously, GWAS for 

oral health outcomes have successfully identified associations between SNPs in proximity to 

biologically relevant genes and replicated these associations across study populations (AJAP1, 

RPS6KA2).   

There are several advantages to using GWAS to identify genetic associations for complex 

disease.  First and foremost, GWAS are easy to conduct.  Many large-scale epidemiologic 

studies include genotyping as part of their protocol, so well characterized, ready-to-analyze 

samples of thousands of individuals with genetic and phenotypic information are readily 

available.  The cost of genotyping using SNP microarrays is inexpensive compared to 

sequencing, which makes GWAS a practical alternative.  SNPs not directly genotyped may still 

be included in GWAS, as well – imputation, a probability-based approach to capture information 

on un-genotyped variants based on observed genotypes, drastically increases the number of 

SNPs available for association testing from a million or less to over ten million SNPs.  Not only 

does imputation improve coverage of the genome, but after imputation, it is easy to harmonize 

genotyping results across SNP microarray platforms, so if different studies have used different 

microarrays, what was genotyped in one sample is likely to be imputed in the other.  While the 

quality of the data from SNP microarrays is not outstanding for all genotyped (and imputed) 
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SNPs, enough SNPs are genotyped so that thousands of poor performing SNPs may be excluded 

from analysis while retaining high quality, extensive coverage of the genome.   

Additionally, since GWAS mark all regions of the genome, they are unbiased.  This 

feature is a notable advantage over candidate gene studies, which look for associations in a 

handful of previously identified or biologically relevant genes and thus can miss the strongest 

associations,  as well as generate false positives [87].  Lastly, GWAS is hypothesis generating.  

No knowledge of specific genes involved in disease is required to perform a GWAS, though it is 

advisable that some knowledge of the genetic basis of the disease is known beforehand, such as 

its heritability or segregation pattern in families.  Thus, GWAS is a useful first step for 

identifying genetic associations for diseases that have not been well characterized but are known 

to be heritable. 

Despite the many advantages of GWAS, this approach has several limitations.  Most 

importantly, GWAS only tests for association with disease, not causation.  Most of the top 

variants in GWAS are typically not causal, and are only highly statistically significant because 

they are in linkage disequilibrium (LD) with a causal variant, which may or may not be 

genotyped or imputed.  This makes it difficult to disentangle an association signal for a causal 

variant when ten to a hundred SNPs are all associated with disease because of LD.  As GWAS 

test millions of SNPs, multiple test correction is essential, and a conservative genome-wide 

significance threshold of p < 5 x 10-8 (the Bonferroni correction for a million tests) has become 

conventional [87].  Also, GWAS must carefully control for population stratification or risk false 

positive associations, since variants at a higher frequency in populations with higher disease 

prevalence will appear to be associated with disease.  GWAS do not work well for variants with 

a low minor allele frequency (MAF) or variants with a small effect size, since the power to detect 
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these variants is too low [88].  Samples sizes need to be prohibitively large in order to achieve 

80% power when testing variants with MAF < ~1% in the population, or with low odds ratios 

(<1.05).  Rare SNPs are also difficult to impute [87].  This means that rare variants and/or those 

with small effect sizes are not likely to be identified by GWAS despite their contribution to 

genetic susceptibility to disease.   

In addition to these statistical issues raised by GWAS, as the vast majority of SNPs are in 

noncoding regions, characterization and interpretation of noncoding SNPs remains a challenge 

since a lot less is known about regulatory elements than coding regions.  GWAS does not test 

structural variants, either.  Finally, as GWAS is hypothesis generating, replication of discovery 

results in an independent study population is ideal, but this becomes challenging when 

comparable populations with similar phenotypic characterization are not available [61, 89].    

Since GWAS works well for common disease and is a good starting point for diseases 

known to be heritable, missing teeth is an appropriate phenotype for GWAS, since little is known 

about the genetic mechanisms behind tooth loss.  Although associations between periodontitis 

and dental caries should also generalize to missing teeth, studying only these two oral diseases 

would not identify genetic mechanisms governing retention of teeth in individuals with 

periodontitis or extensive dental caries.  Furthermore, they do not allow for the identification of 

heretofore unknown genetic mechanisms behind tooth loss such as wound healing or structural 

fracture.  Altogether, GWAS of missing teeth may identify variants not associated with either 

periodontitis or dental caries but which still contribute to determining loss or retention of teeth. 

In the next chapter (Chapter 2), I will describe the methods used in this project, including 

descriptions of the datasets and the statistical analyses that were used.  In Chapter 3, I will 

describe the results of the genome-wide association scans, including results from the meta-
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analysis and those in the replication sample. In Chapter 4, I will discuss the results further by 

placing them in the context of current work on oral health and genetics as well as suggest future 

directions. 
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2.0  METHODS 

2.1 SAMPLE DESCRIPTION AND DATA COLLECTION 

2.1.1 COHRA and DRDR 

The Center for Oral Health Research in Appalachia (COHRA) cohort was ascertained for the 

purpose of studying oral health disparities in Appalachia and has been described previously [59].  

Participants were recruited from rural Appalachia in West Virginia and Western Pennsylvania 

using a household based recruitment protocol, which required a minimum of one biological 

parent-child pair. Oral health status was not considered during recruitment, and all household 

members were invited to participate regardless of biological/legal relationships.  Although 

COHRA is a larger family-based sample, only unrelated, adult participants of COHRA with 

missing teeth data (N = 1287) were included in this project.  All adults gave written informed 

consent.  A total of 732 households and 740 biological families were ascertained.  DNA was 

collected from blood, mouthwash, buccal swab, or saliva sample.  Number of missing permanent 

teeth was determined by intra-oral examination by licensed dentists and/or dental hygienists.  All 

procedures were approved by the COHRA research committee and both the University of 

Pittsburgh and West Virginia University Institutional Review Boards.   
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The Dental Registry and DNA Repository (DRDR) cohort was recruited as a research 

initiative of the University of Pittsburgh School of Dental Medicine.  Description of this cohort 

has been described previously [60].  DRDR is an ongoing project in which individuals who come 

to the dental school for treatment are given the opportunity to participate in the registry.  DNA 

was collected from blood, mouthwash, buccal swab, or saliva sample.  Number of missing 

permanent teeth was determined by intra-oral examination by licensed dentists and/or dental 

hygienists.  All procedures were approved by the University of Pittsburgh Institutional Review 

Board.  A subset of the DRDR cohort was included along with COHRA in the Gene, 

Environment Association Studies (GENEVA) consortium.  Missing teeth information was 

available for 303 adult participants of DRDR. 

Genotyping for COHRA and DRDR was performed as part of the GENEVA consortium 

by the Johns Hopkins University Center for Inherited Disease Research (CIDR) through a 

National Institutes of Health contract [90]. Genotyping was done using the Illumina Human610-

Quadv1_B BeadChip (Illumina, San Diego, CA, USA) and the Illumina Infinium II assay 

protocol [91].  Genotyping data were released for 99.4% of attempted samples as well as 91 

duplicates and 188 HapMap genotyping controls (62 CEU, 78 YRI, 24 JPT, 24 CHB).  For each 

SNP, allele cluster definitions were established using Illumina BeadStudio Genotyping Module 

version 3.3.7 and the combined intensity data from 98.6% of samples; allele cluster definitions 

were then used for all samples.  Genotypes were not called if quality threshold (Gencall score) 

was less than 0.15.  Genotypes were released by CIDR for 589,735 SNPs (99.53% of attempts).  

SNPs that did not pass the following filters were excluded: SNP call rate less than 85%, more 

than 1 HapMap replicate error, call rates with a more than 2% (autosomal) or 10% (X) difference 

between gender, more than 1.8% male AB frequency (X), or more than a 7% (autosomal) or 5% 
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(XY) difference in AB frequency.  Mitochondrial and Y chromosome SNPs were reviewed 

manually, and clusters were adjusted and genotypes dropped as appropriate.  Mean non-Y SNP 

call rate and mean sample call rate were each 99.8%, and duplicate reproducibility was 99.99%.   

 Genotype data cleaning and quality assurance was performed by the GENEVA 

Consortium Coordinating Center at the University of Washington [90, 92].  Missing call rate and 

allele frequencies were examined for each 96-well plate of samples.  While plates differed 

significantly in missing call rate, no plates were outliers for either missing call rate or allele 

frequencies.  BeadStudio metrics “BAlleleFreq” and “LogRRatio” [92] were used to identify 

contamination and large chromosomal aberrations.  Two contaminated samples were removed.  

Biological sex was confirmed by comparing X and Y chromosome SNP intensities.  Biological 

relationship checking was done using identity-by-descent coefficient estimates.  Fifty-two 

samples were removed as sample identity could not be resolved.           

 Imputation was performed by the GENEVA Coordinating Center with the HapMap Phase 

III reference panel for 1,387,464 autosomal SNPs using BEAGLE software [93].  Sporadic 

missing data for 503,167 genotyped SNPs was also imputed (SNP passing pre-imputation 

filtering of 589,735 genotyped SNPs).  Masked SNP analysis (imputation of genotyped SNPs) 

and Mendelian error checking for imputed SNPs among relatives determined imputation quality 

to be high.  A total of 1,450,678 SNPs were available for analysis, representing 884,297 fully 

imputed autosomal SNPs, 503,167 genotyped SNPs that were partly imputed to fill in sporadic 

missingness, 50,154 fully genotyped autosomal SNPs, and 13,060 fully genotyped X-linked 

SNPs.    
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2.1.2 POFC 

The Pittsburgh Orofacial Clefting Study cohorts from Patagonia (POFC-PA), Guatemala (POFC-

G), and the United States (POFC-USA) are part of a larger cohort originally ascertained for the 

purpose of studying orofacial clefting  [94, 95].  Participants in POFC included affected cleft 

cases, unaffected relatives of cases, and controls.  Only unaffected adult ( >18 years old) 

participants were included in this GWAS.  POFC comprises a total of 11,727 participants 

ascertained from 18 sites in 13 countries from North America, Central/South America, Asia, 

Europe, and Africa.  Many sites were part of continuing genetic association studies of the 

University of Pittsburgh Center for Craniofacial and Dental Genetics and the University of Iowa.  

Number of missing permanent teeth was assessed by intra-oral examination.  Informed consent 

was obtained from all participants, and Institutional Review Board approval was obtained locally 

and by the University of Pittsburgh and University of Iowa. 

Samples were genotyped for approximately 580,000 SNPs using an Illumina 

HumanCoreExome array by the CIDR at Johns Hopkins University.  Data quality assurance and 

data cleaning were implemented cooperatively with the CIDR Genetics Coordinating Center 

(GCC) at the University of Washington [96].  In total, 539,473 genotyped SNPs (96.74% of 

attempts) passed the GCC recommended quality filters.  SNPs with missing call rate >2%, 2 or 

more discordant calls in 264 study duplicates, 20 or more Mendelian errors in 5,288 parent-

offspring trios or dyads, Hardy-Weinberg Equilibrium (HWE) p-value < 0.0001 in participants of 

genetically confirmed European ancestry, sex differences in allele frequency of 0.2 or greater for 

autosomes or XY pseudoautosomal region, or sex differences in heterozygosity of 0.3 or greater 

for autosomes or XY pseudoautosomal region were removed.   Samples sizes in each POFC  
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cohort included in this project before excluding those missing covariate and/or genotype 

information was as follows: 353 for POFC-G, 245 for POFC-PA, and 227 for POFC-USA.     

Prior to imputation, pre-phasing of SNPs passing quality control filters was done using 

SHAPEIT2 [97].  Imputation was performed using IMPUTE2 [98] and phase 3 of the 1000 

Genomes Project (comprising 2504 individuals from 26 populations worldwide) as the reference 

panel.  After imputation, genotype data for 34,985,077 SNPs was available, including fully 

imputed SNPs and SNPs imputed due to sporadic missingness.  Accuracy of imputation was 

determined by masked variant analysis, which revealed high-quality imputation; mean 

concordance was 0.960 for SNPs with MAF ≥ 0.05 and 0.995 for SNPs with MAF < 0.05.  Only 

SNPs whose “most-likely” genotype probability was > 0.5 were included in statistical analysis.  

Imputed SNPs out of HWE in European controls were excluded from subsequent analyses. 

2.2 GENOME-WIDE ASSOCIATION ANALYSES 

2.2.1 COHRA 

To describe the distribution of missing teeth and functional dentition and determine which 

variables to control for in the GWAS, the demographic predictors of missing teeth and functional 

dentition were explored using the R statistical analysis environment (R Foundation for Statistical 

Computing, Vienna, Austria).  The quantitative trait was defined as a natural log transformation 

of the total number of missing teeth (ln[Total Missing + 1]).  The transformation was used to 

help normalize the distribution of the data and stabilize the variance.  This trait encompasses 

permanent teeth missing due to decay, missing not due to decay (trauma, orthodontics), and 
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permanent unerupted teeth.  Third molars (wisdom teeth) were not included.  Functional 

dentition was defined as the presence of at least 20 teeth (i.e., missing 8 or fewer teeth.)   

Linear regression was used to determine the association between both missing teeth traits 

and age, participant recruitment site, income, education, race, and ethnicity.  Education was 

defined as 1) none or high school diploma/GED, 2) technical school, associate degree, or some 

college with no degree, or 3) undergraduate degree or higher.  The Pennsylvania participant 

recruitment sites of Bradford, Burgettstown, and Braddock were combined into one variable 

denoting Pennsylvania or West Virginia residency.  Principal components (PCs) of genetic 

ancestry were used to control for ancestry and were calculated using PLINK and R software.  To 

further control for population stratification, GWAS was limited to self-identified, non-Hispanic 

whites; 147 individuals were excluded based these criteria.  GWAS analysis was also limited to 

adults over age 18 and under age 60, as there were too few individuals over age 60 (N = 12) to 

accurately model an age effect. 

Individuals meeting inclusion criteria and for whom genetic data was available were 

included in the genome-wide association analyses using PLINK software [99].  Linear and 

logistic regression (--assoc-linear and --assoc-logistic) were used for the quantitative trait and 

functional dentition, respectively, while including age, sex, site, and the first PC of ancestry as 

covariates.  Education and income, while strongly associated with missing teeth, were not 

controlled for as 1) this would exclude discovering SNPs possibly influencing both education 

and missing teeth, and 2) covariate information was not available for all participants.  Manhattan 

and QQ plots were generated using R software.  Genomic inflation factor, λ, was calculated for 

all GWAS as implemented in the GenAbel package [100] for R.   
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2.2.2 DRDR 

Information on covariates such as income and education were unavailable to test for associations 

between these predictors and the same missing teeth traits as in COHRA.  To control for 

population stratification, principal component analysis was performed on SNPs in low LD using 

PLINK.  Only individuals with self-reported European ancestry and who were confirmed to be of 

European ancestry by PCA were included in the GWA analyses.  That is, individuals who self-

reported a race other than white (African-American, Asian, other) or who were outside 2 

standard deviations of PC1 or PC2 on the European ancestry region of the PC plots were 

excluded.  PCA was then rerun in this whites-only subset of DRDR  

As in COHRA, individuals meeting inclusion criteria and for whom genetic data was 

available were included in the genome-wide association analyses using PLINK software as 

previously described.  Age, sex, and the first PC of ancestry were included as covariates.  

Manhattan and QQ plots and genomic inflation factor, λ, were generated as previously described. 

2.2.3 POFC-G and POFC-PA 

GWA scans for the quantitative (ln[Total Missing + 1]) and binary (missing teeth ≥ 9) traits were 

performed using variance-component modeling as implemented by EMMAX [101] while 

adjusting for age, sex, and genetic sharing due to common ancestry and familial relatedness as 

estimated via identify-by-descent (IBD).  Manhattan and QQ plots and genomic inflation factor, 

λ, were generated as previously described. 
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2.2.4 POFC-USA 

Demographic predictors (recruitment site, sex, age, education, race, ethnicity) were examined for 

any association with missing teeth and functional dentition.  This dataset contained a handful of 

pairs of related individuals.  To control for spurious findings due to genetic relatedness, one 

individual from a related pair was randomly removed, unless one of the pair did not have a 

functional dentition, in which case that individual was retained and the other removed.  To 

control for population stratification, principal component analysis was performed on SNPs in 

low LD using PLINK.  As POFC-USA included individuals of both European and Hispanic 

ancestry, the first 3 PC’s were included as covariates in the GWA scan.  Both ancestry groups 

were included in this GWA scan to avoid reducing sample size. 

As in COHRA and DRDR, 192 individuals meeting inclusion criteria and for whom 

genetic data were available were included in the genome-wide association analyses using PLINK 

software as previously described.  Age, sex, and the first three PCs of ancestry were included as 

covariates.  Manhattan and QQ plots and genomic inflation factor, λ, were generated as 

previously described. 

2.3 META-ANALYSIS 

Meta-analysis was performed using Stouffer’s p-value-based meta-analysis as implemented in 

METAL software [102].  Six meta-analyses were performed: a whites-only meta-analysis 

combining COHRA and DRDR for the quantitative trait and functional dentition, respectively, a 

Hispanics-only meta-analysis combining POFC-G and POFC-PA for the quantitative trait and 
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functional dentition, respectively, and a trans-ethnic meta-analysis combining COHRA, DRDR, 

POFC-G, and POFC-PA for the quantitative trait and functional dentition, respectively.  POFC-

USA was not included in meta-analyses because both ethnicity-stratified GWA scans and GWA 

scans including both Hispanics and non-Hispanic whites while adjusting for 3 PCs showed over- 

or under-inflation, thus we were not confident with these results at the genome-wide level.  

POFC-USA was reserved for replication of specific SNPs only.  Results of the trans-ethnic 

analysis were filtered to include only SNPs that were tested in all four studies.  For each meta-

analysis, Manhattan and QQ plots and genomic inflation factor, λ, were generated as previously 

described.   

2.4 BIOINFORMATICS 

To investigate the functionality of genomic regions showing strong associations with missing 

teeth traits, regions showing genome-wide significance, that is, SNPs with p < 5 x 10-8, and 

regions showing suggestive significance (p < 5 x 10-6) were visualized using Regional 

Association (LocusZoom) plots [103].  The function of nearby genes was investigated using the 

resources at the National Center for Biotechnology Information (NCBI), specifically the Gene 

and PubMed databases.  PubMed search terms included the name of the gene or corresponding 

protein, plus terms relevant to dental and oral health, including tooth, dental, oral, periodont*, 

and inflamm*.  Information on gene regulation and LD was obtained from HaploReg [104], and 

information on functional variants (missense mutations, loss of function mutations, etc.) was 

obtained from HaploReg and the Exome Aggregation Consortium (ExAC) database [105]. 
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3.0  RESULTS 

The analysis plan for all five cohorts is depicted in Figure 1.  GWA scans were performed for 

both the quantitative trait and functional dentition in COHRA, DRDR, POFC-G, POFC-PA, and 

POFC-USA.  Extensive annotation was carried out for GWA scans in COHRA as well as all 

meta-analyses.  Some annotation of suggestively significant results in POFC-G was also 

performed (checking for nearby genes that were obviously relevant to dental/oral health.)  Due to 

low sample size in DRDR, POFC-PA, and POFC-USA, these GWA scans were not annotated. 

Results in COHRA are described first, then POFC-G, followed by the white-only meta-analysis 

(COHRA and DRDR), the Hispanics-only meta-analysis (POFC-G and POFC-PA), and lastly 

the trans-ethnic meta-analysis (COHRA, DRDR, POFC-G, and POFC-PA).  POFC-USA was 

only used for checking associations of the most significant SNPs in the whites-only and trans-

ethnic meta-analyses, and all results regarding POFC-USA are included in the appendix.  

Descriptions of each GWA scans include results of preliminary data analysis, association testing 

results, and functional annotation as appropriate.  Results of meta-analyses include results of the 

p-value based meta-analysis and functional annotation of the top hits.  Findings in discovery

GWA scans and the meta-analyses that were not obviously relevant to dental and oral health are 

described in the appendix. 
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Figure 1. Analysis plan for all five cohorts 

Blue coloring signifies whites-only samples, green Hispanics-only samples, and orange mixed samples.  
Ovals represent cohorts with GWA scans, and diamonds the different combinations of cohorts into meta-analyses.  

COHRA and DRDR make up the whites-only meta-analysis, and POFC-G and POFC-PA the Hispanics-only meta-
analysis.  All four of these cohorts were meta-analyzed into a trans-ethnic meta-analysis.  POFC-USA was only used 

for spot-checking significant associations seen in single GWAS scans and meta-analyses. 

3.1 COHRA 

3.1.1 Trait Development and Covariate Modeling 

Distribution of missing teeth was examined in order to define the traits used in the GWAS.  

Note: the sample size in these results is greater than that of the GWAS, as some individuals did 

not have genotype information available but were included in initial trait development and 
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covariate modeling.  Figure 2 shows the distribution of the quantitative trait, both before 

performing a transformation (ln[Total Missing + 1]) and after.  Although the distribution is still 

not normally distributed after the transformation, the transformation helps to stabilize the 

variance.  37.7% of individuals were not missing any teeth, and 62.2% were missing at least one 

tooth.  Figure 3 shows the distribution of functional dentition (functional dentition status.)  Few 

individuals (11.1%) did not have a functional dentition.  Distribution of both traits did not 

change after removal of individuals not included in the GWAS due to race, ethnicity, or missing 

genotype information.    

 

Figure 2. Distribution of the quantitative trait 

Distributions of the quantitative trait before (left) and after (right) the transformation 
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Figure 3. Distribution of functional dentition 

 

For the dataset used in the GWAS, sample characteristics and trait distributions are 

shown in Table 5, and p-values for the test of association between demographic variables and 

both missing teeth traits are shown in Table 6.  Age, income, education, and site were all 

associated with missing teeth and functional dentition (p < 0.005.)  Sex was not associated with 

either phenotype (p = 0.43-0.78.)  For functional dentition, 126 individuals (11.2%) of COHRA 

participants did not have a functional dentition.  Mean number of teeth missing was 3.70 (sd = 

6.13) before performing the transformation.  Figure 4 shows the first two PCs of ancestry.  Only 

the first PC was used as it was sufficient to control for ancestry.  
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Table 5. Study characteristics and trait distribution in COHRA 

Variable Value Count (%) or 

Mean (SD) 

Functional 

Dentition 

Yes 1003 (88.8%) 

No 126  (11.2%) 

Total Missing  3.70 (6.13) 

Age  34.38 (8.90) 

Sex Male  421 (37.3%) 

Female 708 (62.7%) 

Income Less than 10,000 316 (36.5%) 

10,000 to 14,999 124 (14.3%) 

15,000 to 24,999 140 (16.2%) 

25,000 to 34,999 104 (12%) 

35,000 to 49,999 94 (10.9%) 

50,000 to 74,999 57 (6.6%) 

75,000 to 99,999 21 (2.4%) 

100,000 to 149,999 5 (0.6%) 

150,000 to 199,999 2 (0.2%) 

200,000 or more 2 (0.2%) 

Education High School/GED or  none 649 (58.9%) 

Tech School, associate degree, 

some college 
286 (26%) 

Undergrad or higher 167 (15.2%) 

Site PA 313 (27.7%) 

WV 816 (72.3%) 
Categorical covariates show counts and percents, and continuous variables show means and standard deviations. 
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Table 6. Association of Covariates with Missing Teeth Traits in COHRA 

Variable Quantitative Trait Functional Dentition 

P Beta (SE)  P Beta (SE) 

Age 8.61E-27 0.034 (0.003) 1.90E-16 0.09 (0.01) 

Sex 0.78 0.02 (0.06) 0.43 -0.15 (0.19)

Income 6.90E-6 -0.08 (0.02) 8.19E-3 -0.17 (0.06)

Education 3.82E-12 -0.27 (0.04) 1.09E-7 -1.05 (0.20)

Site 2.22E-5 0.28 (0.06) 3.85E-3 0.72 (0.25) 

Figure 4. PC1 and PC2 in COHRA 
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3.1.2 GWAS Results – Quantitative Trait 

GWAS was performed using 955 individuals for whom genotype and covariate information was 

available.  Manhattan and QQ-plots for the quantitative trait are shown in Figure 5.  Genomic 

inflation factor was λ = 1.05 for the quantitative trait, indicating slight inflation. No SNPs 

reached genome-wide significance (p < 5 x 10-8); however, there were several regions of the 

genome that showed suggestive significance (p < 10-5).  Association results for index SNPs are 

shown in Table 6.   
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Figure 5. Manhattan and QQ plots for the quantitative trait in COHRA 
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Table 7. Top GWAS hits for the quantitative trait in COHRA 

SNP CHR BP Effect 
Allele 

MAF N P Beta  
(95% CI) 

Type 

rs11581023 1 5036549 A 0.14 908 1.37E-06 
-0.30 
(-0.42, -0.18) imputed 

rs28651854 2 76800193 A 0.14 935 6.84E-06 
-0.29  
(-0.41, -0.16) imputed 

rs73104494 3 77020811 G 0.23 940 5.98E-06 
0.23 
(0.13, 0.33) imputed 

rs67374207 4 96181016 G 0.05 950 2.63E-06 
0.46 
(0.27, 0.66) imputed 

rs2964805 5 10831221 T 0.29 932 2.86E-06 
-0.22  
(-0.32, -0.13) imputed 

rs77475896 5 29644220 G 0.05 955 2.80E-06 
0.43  
(0.25, 0.61) imputed 

rs9918187 5 96531684 G 0.35 923 7.26E-06 
0.20 
(0.11, 0.28) imputed 

rs2860805 5 163265408 C 0.24 953 5.60E-06 
-0.22  
(-0.32, -0.13) imputed 

rs76362984 7 48491060 A 0.04 864 8.63E-06 
0.50 
(0.28, 0.72) imputed 

rs10812719 9 2809260 C 0.49 949 8.48E-06 
-0.19  
(-0.28, -0.11) imputed 

rs75195099 10 129944252 C 0.04 919 2.46E-06 
0.54  
(0.32, 0.76) imputed 

rs75040946 10 131470783 C 0.10 922 2.01E-06 
-0.34  
(-0.48, -0.2) imputed 

rs3365 11 8704711 C 0.14 955 6.00E-06 
0.29  
(0.16, 0.41) genotyped 

rs12297548 12 131431379 T 0.07 954 4.68E-06 
0.36  
(0.21, 0.51) genotyped 

rs4444411 18 27622307 G 0.09 954 3.19E-06 
0.34  
(0.2, 0.48) imputed 

rs2825184 21 20202646 A 0.43 876 5.69E-06 
0.20 
(0.11, 0.28) imputed 

rs73199539 21 32938208 T 0.06 940 3.18E-06 
-0.42  
(-0.6, -0.25) imputed 

rs4823141 22 44188796 G 0.40 954 2.22E-06 
0.21  
(0.12, 0.29) imputed 

rs7061889 X 22719993 C 0.15 951 3.03E-07 
0.26 (0.16, 
0.36) imputed 

rs5966776 X 97002058 T 0.14 892 7.43E-06 
0.24 
(0.14, 0.35) imputed 
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Regions of the genome showing the suggestive or genome wide significance with total 

missing teeth were further visualized using Regional Association (LocusZoom) plots in order to 

assess whether the region may have a possible role in dental and oral health.   

rs7061889, the top SNP (p = 3.0E-7, β = 0.26 [0.16, 0.36]), located on the X 

chromosome, lies within PTCHD1 antisense RNA (Figure 6).  PTCHD1, patched domain 

containing 1, encodes a membrane protein with a patched domain; genomic deletions and loss of 

function mutations of PTCHD1 are associated with intellectual disability and autism spectrum 

disorder, as well as dysmorphic facial features [106, 107], indicating a role of this protein in 

neurological function and possibly craniofacial development.  Functional analyses show that 

PTCHD1 protein localizes to the cell membrane, is expressed in the brain [106], and plays a role 

in the developing mouse brain [108].  It also may function in the sonic hedgehog (Shh) signaling 

pathway as it shows protein homology to known Shh receptors [106], though this is controversial 

as experimental knockouts of PTCHD1 in cells derived from brain tissue showed no change in 

Shh signaling-dependent cell proliferation [108].  Regardless, PTCHD1 does not appear to have 

any known relevant function in dental and oral health.  However, if an association between Shh 

signaling and PTCHD1 does exist outside of brain tissue, it is plausible that PTCHD1-AS and 

PTCHD1 may influence oral health and tooth loss as a receptor in Shh signaling.  Shh signaling 

plays a regulatory role in several processes during odontogenesis (tooth development), including 

periodontal ligament (PDL) stem cell proliferation [109] and tooth root development [110], and 

the differentiation of cementoblasts [111], the cells that form cementum, which protects the tooth 

root and anchors PDL attachment.  Furthermore, expression of SHH is tightly regulated and 

exhibits specific temporospatial patterns of expression throughout the stages of tooth 

development in both humans and mice [112].  In addition to this signal’s potential effect on 
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PTCHD1, this broad signal is also located approximately 450kb downstream of PHEX, loss of 

which causes X-linked familial hypophosphatemic rickets, a disorder which includes dental 

defects such as premature tooth loss, periodontitis, enamel hypoplasia, hypodontia, dental caries, 

and abscesses [113, 114]. 

 

Figure 6. Regional Association Plot of rs7061889 

Locations of genes are indicated. The blue overlay represents recombination rate.  Squares and circles indicate 
imputed and genotyped variants, respectively. 

 

 rs11581023, the second most significant hit (p = 1.4E-6, β = -0.30 [-0.42, -0.18]), is 

located approximately 200 kb downstream of AJAP1 (Figure 7), which was implicated in  

GWAS of dental caries patterns in the permanent dentition (p = 2.4E-8) [61] and smooth surface 

caries in the primary dentition (p = 1.6E-6) [63].  The data used in this project is an overlapping 

sample of adult participants of COHRA, though the region of significance around AJAP1 differs 

between the samples (upstream of AJAP1 for dental caries, downstream of AJAP1 in this 
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project); in other words, the association seen here not the same as that for dental caries.  AJAP1 

encodes SHREW1, a protein which may mediate matrix metalloproteinase (MMP) activity 

through an interaction with basigin [61, 115].  Basigin, in turn, is differentially expressed 

throughout the different stages of tooth development and is involved in its regulation via an 

interaction with MMPs [116, 117].  Thus, it is plausible that AJAP1 may play a role in dental 

health and tooth loss by controlling MMP activity.  

Figure 7. Regional Association Plot of rs11581023 

Each point represents a genetic variant and is colored based on its correlation with the top variant. Locations of 
genes are indicated. The blue overlay represents recombination rate.  Circles and squares indicate imputed and 

genotyped variants, respectively, on all plots unless otherwise indicated. 

rs67374207 (p = 2.6E-6, β = 0.46 [0.27, 0.66]) is intronic to UNC5C and approximately 

100 kb downstream of BMPR1B (Figure 8). UNCSC is a transmembrane netrin receptor that 

functions in axon migration during neural development [118] with no known role in dental or 
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oral health.  BMPR1B encodes BMP receptor 1B.  BMP signaling plays a critical role in proper 

tooth development and the formation of supporting structures – BMPs are expressed throughout 

tooth morphogenesis, help form mineralized tooth structures like dentin and enamel as well as 

the tooth root, and they have distinct expression patterns in periodontal structures [119].  

BMPR1B may play a role in tooth development as a target of RNA interference mediated 

regulation, as knockdown of Bmpr-Ib with miR-135a inhibits tooth formation in mice [120]. 

BMPRIB is also part of a signaling cascade involved in ameloblast differentiation and enamel 

formation [121].  It is plausible that BMPR1B expression may influence tooth loss because of its 

role in proper tooth development, and alterations in its function may lead to defects in enamel or 

tooth morphology and structure.  

Figure 8. Regional Association Plot of rs67374207 
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 Other SNPs reaching suggestive significance near less interesting genes as well as those 

not located near genes relevant to dental or oral health are described in the appendix, along with 

their Regional Association plots. 

3.1.3 GWAS Results – Functional Dentition 

Manhattan plot and QQ-plots for functional dentition are shown in Figure 9.  Genomic inflation 

factor was λ = 1.00.  One region of the genome reached genome-wide significance (index SNP 

chr18:8576699, p = 2.65E-8, OR = 5.00, 95% CI: [2.84, 8.82]) and several regions of the 

genome showed suggestive significance (p < 10-5, Table 8.) 
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Figure 9. Manhattan and QQ plots for functional dentition in COHRA 
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Table 8. Top GWAS hits for functional dentition in COHRA 

SNP CHR BP Effect 
Allele 

MAF N P OR 
(95% CI) 

Type 

rs1487025 2 78001749 A 0.03 947 2.92E-06 5.32 
(2.64, 10.71) 

imputed 

rs7624909 3 64461632 A 0.03 940 2.47E-06 5.29 
(2.64, 10.57) 

imputed 

rs13060599 3 79738599 C 0.44 953 3.97E-06 0.45 
(0.32, 0.63) 

imputed 

rs72673432 4 114066021 A 0.05 914 8.61E-07 4.09 
(2.34, 7.18) 

imputed 

rs10055463 5 7973236 G 0.12 954 5.45E-06 2.56 
(1.71, 3.85) 

imputed 

rs7717485 5 19762485 A 0.02 951 1.58E-06 8.19 
(3.47, 19.31) 

imputed 

rs1349926 6 68983548 G 0.39 954 6.26E-06 0.43 
(0.3, 0.62) 

imputed 

rs629476 6 150673394 T 0.03 948 4.27E-06 5.28 
(2.6, 10.73) 

imputed 

rs1154819 8 120226259 A 0.02 948 8.79E-06 5.85 
(2.68, 12.74) 

imputed 

rs76944100 8 132662517 T 0.04 938 9.11E-06 3.78 
(2.10, 6.81) 

imputed 

rs76798443 10 129951990 T 0.04 938 2.51E-06 4.49 
(2.4, 8.38) 

imputed 

chr14:74029866 14 74029866 C 0.04 912 3.20E-06 4.28 
(2.32, 7.88) 

imputed 

chr18:8576699 18 8576699 A 0.04 903 2.65E-08 5.00 
(2.84, 8.82) 

imputed 

Bolded text denoted genome-wide significance. 

 

The genome-wide significant hit at chr18:8576699 contains only two SNPs (Figure 10), 

both of which are imputed, and lacks a characteristic tower of other SNPs in LD with the index 

SNP.  Furthermore, there are no genes in this region likely to play a role in dental and oral 

health.  Therefore, this finding should be viewed with skepticism.  This signal is just upstream of 

RAB12, a GTP binding protein/GTPase involved in vesicle trafficking and regulating autophagy 

[122, 123] but with no known role in dental health. 
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Figure 10. Regional Association Plot of chr18:8576699 

 

rs10055463 (p = 5.45E-6, OR = 2.56, 95% CI: [1.71, 3.85]) is located just downstream of 

MTRR (Figure 11).  MTRR encodes methionine synthase reductase, an enzyme that restores 

methionine synthase to its functional state, and is important in folate metabolism [124].  An 

MTRR polymorphism has been associated with dental caries [125], and MTR, methionine 

synthase, was previously implicated in a GWAS of dental caries in the primary dentition [59], 

and a follow-up study found SNPs within MTR to be suggestively associated with dental caries 

[126].   

In addition to MTRR, this signal is also approximately 150 kb downstream of ADCY2.  

This gene encodes an adenylyl cyclase that catalyzes the formation of cyclic adenosine 

monophosphate (cAMP), and the cAMP signaling pathway is an important mediator in cellular 
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response to mechanical stress [127].  Indeed, cAMP signaling has also been shown to be induced 

by mechanical force on PDL cells [128, 129], indicating an role of cAMP signaling in 

maintaining homeostasis analogous to CTNND2, as previously discussed.  A coding 

polymorphism in GPR126, a G-protein receptor that activates the cAMP/PKA signaling 

pathway, resulting in decreased cAMP signaling in human PDL cells, has been associated with 

aggressive periodontitis [130].  Lastly, Du et al. (2016) studied miRNA expression in PDL cells 

exposed to P. gingivalis lipopolysaccharides and found enrichment for miRNAs involved in 

cAMP signaling among the differentially expressed miRNAs [131], indicating that not only does 

cAMP signaling play a role in maintaining periodontal homeostasis, but is also potentially 

involved in the aberrant immune response to oral microbes characteristic of periodontitis.         

 

 

Figure 11. Regional Association Plot of rs10055463 
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rs1154819 (p = 8.79E-6, OR = 5.85, 95% CI: [2.68, 12.74])  is located approximately 250 

kb upstream of TNFRSF11B (Figure 12), is also known as OPG, which codes for the protein 

osteoprotegerin.  This gene was found to be downregulated in PDL cells in response to 

mechanical stress [132].  Furthermore, OPG regulates the production of osteoclasts, the cells 

responsible for bone resorption [133].  Indeed, Opg knockout mice have severe alveolar bone 

loss, which is characteristic of periodontitis and periodontal tooth loss [134], and levels of OPG 

are negatively correlated with severity of periodontal disease [135].  Increasing OPG levels via 

gene therapy in rats with experimentally induced periodontitis reduced alveolar bone loss [136].  

Also in this region is NOV, also known as CCN3, which is located approximately 200 kb 

downstream of the lead SNP.  CCN3 is expressed in the PDL and has been shown to associate 

with periostin [137], a critical regulator of periodontal homeostasis [138].  CCN3 is also 

upregulated in dental pulp stem cells during the dental repair process and promotes dentin 

formation by regulating Notch and BMP2 signaling [139].           
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Figure 12. Regional Association Plot of rs1154819 

 

Other SNPs reaching suggestive significance near less interesting genes as well as those 

not located near genes relevant to dental or oral health are described in the appendix, along with 

their Regional Association plots. 

3.2 DRDR 

3.2.1 Principal Components of Ancestry 

Figures 13 show PCA plots for the whites-only subset of DRDR.  As stated in the methods 

section, only self-reported and genetically confirmed whites were included in the analysis.  As 

shown in Figure 13, one principal component was sufficient to control for ancestry. 
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Figure 13. PCA plots of PC1-2 in DRDR 
 

Blue, red, and green boxes indicate one, two, and three standard deviations from the mean on each axis, 
respectively. 
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3.2.2 GWAS Results 

GWAS was performed using 227 individuals for whom genotype and covariate information was 

available.  Manhattan plot and QQ-plots for the quantitative trait and functional dentition are 

shown in Figures 14-15.  Genomic inflation factor was λ = 1.00 and λ = 0.97 for the quantitative 

trait and functional dentition, respectively, indicating no genomic inflation.  Due to the small 

sample size and lack of genome-wide significant signals, no genomic regions were followed up 

to see if they contained genes with potential roles in dental or oral health. 
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Figure 14. Manhattan and QQ plots for the quantitative trait in DRDR 
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Figure 15. Manhattan and QQ plots for functional dentition in DRDR 
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3.3 POFC-G AND POFC-PA 

3.3.1 Covariate Modeling 

Distribution of missing teeth traits, as well as covariates included in the GWA scan, are shown in 

Table 9. Association between covariates (sex and age) with missing teeth traits are shown in 

Table 10.  As with COHRA, the sample size in these results is greater than that of the GWAS, as 

some individuals did not have genotype information available but were included in initial trait 

development and covariate modeling.   

Table 9. Study characteristics in POFC-G and POFC-PA 

Study Variable Value Count (%)/ 
Mean (SD) 

POFC-G Sex Male 109 (31) 
Female 243 (69) 

Age 31.38 (11.32) 
Quantitative 
Trait 

1.14 (1.00) 

Functional 
Dentition 

No 52 (15) 
Yes 301 (85) 

POFC-PA Sex Male 70 (30) 
Female 170 (70) 

Age 36.11 (12.1) 
Quantitative 
Trait 

1.40 (0.92) 

Functional 
Dentition 

No 46 (19) 
Yes 199 (81) 

Categorical covariates show counts and percents, and continuous variables show means and standard deviations. 
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Table 10. Association of covariates with missing teeth traits in POFC-G and POFC-PA 

Study Variable Quantitative Trait Binary Trait 
P Beta (SE) P Beta (SE) 

POFC-G Sex 0.027 0.27 (0.12) 0.19 -0.47 (0.35) 
Age 9.30E-24 0.044 (0.004) 6.73E-10 -0.083 

(0.013) 
POFC-PA Sex 0.74 0.043 (0.13) 0.55 -0.22 (0.37) 

Age 1.17E-21 0.043 (0.004) 1.06E-10 -0.17 (0.018) 

3.3.2 GWAS Results 

For POFC-G, GWAS was performed in 272 individuals for whom genotype information was 

available.  Manhattan and QQ-plots for the quantitative trait and functional dentition are shown 

in Figures 16 and 17.  Genomic inflation factor was λ = 1.01 and λ = 0.99 for the quantitative 

trait and functional dentition, indicating no inflation due to population stratification.  

Suggestively significant results for both traits are described in the appendix.   

For the quantitative trait, one region of the genome reached genome-wide significance 

(rs12430287, p = 4.1E-8).  This SNP is located approximately 150 kb downstream of POSTN 

(Figure 18), which encodes the protein periostin.  Periostin, a matricellular protein expressed in 

collagenous connective tissues, is critically important in the formation, maintenance, and 

function of dental tissues [140].  During tooth development, it is widely expressed in dental 

tissues and regulates tooth development by controlling the composition of the ECM.  After 

development, periostin is expressed in the PDL and alveolar bone, where it is critical in 

maintaining these structures by ensuring proper formation of the fibers of the ECM.  

Additionally, periostin mitigates the PDL response to mechanical force and orthodontic tooth 

movement, likely because of its role in ECM remodeling.  Lastly, periostin also functions in 
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wound healing through pro-fibrogenic processes such as the production of collagen fibers and 

ECM formation [141].  Periostin null mice present with severe dental defects together with an 

early-onset periodontal phenotype that recapitulates the destructive tissue loss characteristic of 

periodontitis [142, 143].  More specifically, enamel defects, malformed teeth, abnormal alveolar 

bone remodeling, tooth root resorption, widening of the PDL, alveolar bone loss, attachment 

loss, gingival enlargement, and inflammation were all observed in null mice, indicating that 

periostin is required for proper functioning of the PDL.  Reduction of mechanical force on the 

periodontium in null mice ameliorated the symptoms of periodontal disease, and mRNA 

expression of periostin increases in PDL cells in response to mechanical strain [143].  Periostin 

expression levels are correlated with measures of periodontal disease such as bleeding on 

probing, and expression patterns in periodontal samples differ between patients with chronic 

(CP) and aggressive (AgP) periodontitis and normal controls [144].  There is a clear mechanism 

through which genetic variation around POSTN leading to irregular periostin expression may 

contribute to susceptibility to periodontal disease and tooth loss.  In addition to POSTN, this 

signal is also approximately 500 kb upstream of SMAD9, which is a transcriptional regulator of 

BMP proteins and signaling [145], which, as previously discussed, are critical processes in tooth 

development.          
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Figure 16. Manhattan and QQ plots for the quantitative trait in POFC-G 
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Figure 17. Manhattan and QQ plots for functional dentition in POFC-G 
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Figure 18. Regional Association Plot of rs12430287 

Annotation of imputed vs. genotypes variants was unavailable in POFC-G and POFC-PA. 

For POFC-PA, GWAS was performed in 182 individuals for whom genotype information 

was available.  Manhattan plot and QQ-plots for the quantitative trait and functional dentition are 

shown in Figures 19-20.  Genomic inflation factor was λ = 0.92 and λ = 0.90 for the quantitative 

trait and functional dentition, both of which are indicative of deflation.  As with DRDR, the 

results of this GWA scan were not followed up due to the small sample size and lack of genome-

wide significant hits. 
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Figure 19. Manhattan and QQ plots for the quantitative trait in POFC-PA 
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Figure 20. Manhattan and QQ plots for functional dentition in POFC-PA 
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3.4 META-ANALYSES 

3.4.1 Whites-Only Meta-Analysis – Quantitative trait 

A p-value based meta-analysis was performed for the quantitative trait to combine GWAS results 

from COHRA and DRDR, which represent the European ancestry samples.  Manhattan and QQ-

plots are shown in Figure 21.  Genomic inflation factor was λ = 1.05.  While no regions of the 

genome reached genome-wide significance, several regions showed suggestive significance (p < 

10-5, Table 11).        
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Figure 21. Manhattan and QQ plots for the whites-only meta-analysis of the quantitative trait in COHRA 
and DRDR 
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Table 11. Top hits for the whites-only meta-analysis of the quantitative trait in COHRA and DRDR 

SNP CHR BP A1/A2 MAF 
COHRA 

MAF 
DRDR 

N P Type DIR* 

rs9750906 2 76804252 c/g 0.29 0.31 1113 1.77E-06 imputed ++ 

rs3797113 5 10695026 c/t 0.06 0.07 1181 7.04E-06 imputed -- 

rs79950078 5 29703754 a/c 0.05 0.07 1180 9.19E-06 imputed ++ 

rs9918187 5 96531684 a/g 0.35 0.33 1148 7.67E-06 imputed -- 

rs10062700 5 128180057 a/c 0.36 0.31 1168 6.42E-06 imputed -- 

rs2860805 5 163265408 c/g 0.24 0.33 1180 8.78E-06 imputed -- 

rs56345510 6 99599021 a/g 0.37 0.34 1150 5.95E-06 imputed ++ 

rs77332164 7 31048669 c/g 0.03 0.07 1182 7.62E-06 imputed -- 

rs78472857 10 131481707 g/t 0.12 0.10 1155 1.25E-06 imputed ++ 

rs3365 11 8704711 a/c 0.14 0.11 1182 4.82E-06 genotyped -- 

rs4969040 17 70947492 a/g 0.09 0.17 1181 2.25E-07 genotyped -- 

rs4444411 18 27622307 g/t 0.09 0.12 1181 6.18E-06 imputed ++ 

rs73199539 21 32938208 c/t 0.06 0.05 1158 6.75E-07 imputed ++ 

rs11704818 22 48248892 c/t 0.18 0.17 1089 6.68E-06 imputed -- 

rs7061889 23 22719993 c/t 0.15 0.16 1177 1.52E-06 imputed ++ 

*Direction of effect in COHRA and DRDR

rs4969040, the most significant SNP (p = 2.25E-7), is intronic to SLC39A11, a member 

of the solute carrier family of membrane transporters (Figure 22).  While this signal lacks a 

tower of significant SNPs in LD with the index SNP typical of other index SNPs, it was 

genotyped in these two samples and showed suggestive evidence of association in both COHRA 
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and DRDR (p = 6.3E-5 and 3.1E-4, respectively.)  SLC39A11 is responsible for cellular transport 

of zinc [146], which is involved in the mineralization of tissues and helps control dental plaque 

and calculus accumulation, though the effect of zinc on dental caries is controversial [147].  High 

zinc levels are correlated with lower rates of enamel demineralization [148], but higher levels of 

zinc have been reported in adults with dental caries (DMFT > 10) compared to those with no 

caries (DMFT = 0) [149].  It is unclear exactly how zinc may influence caries susceptibility, and 

the effect of SLC39A11 on dental caries has not yet been evaluated, but it is plausible that 

SLC39A11 may influence zinc levels, dental caries, and tooth loss.  In addition to SLC39A11, 

this signal is also approximately 200 kb upstream of SSTR2, somatostatin receptor 2.  

Somatostatins (SST) are neuropeptides involved in nociception, the sensory response to painful 

or harmful stimuli, and it has been suggested that this receptor, SSTR2, may modulate orofacial 

pain by inhibiting neuronal activity [150].  SSTs also respond directly to experimentally induced 

tooth pain in rats, with possible involvement of SST receptor 2 [151, 152].  Excessive pain may 

lead to tooth extraction [29]. 
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Figure 22. Regional Association Plot of rs4969040 

Circles and squares indicate imputed and genotyped variants, respectively. 

rs10062700 (p = 6.5E-6) is located about 300 kb upstream of FBN2, fibrillin-2 (Figure 

23).  Fibrillins polymerize to form microfibrils in the ECM of connective tissues, regulate TGF-β 

and BMP signaling, and are involved in cellular mechanoreception [153, 154].  In periodontal 

tissues, fibrillin-2 is synthesized by gingival fibroblasts and PDL cells [155-157] and exhibits 

distinct patterns of expression in the developing tooth and during PDL development [158].  

These observations indicate that as a component of microfibrils, fibrillin-2 contributes to the 

development, structural stability, and homeostasis of the PDL.  Its role in both the PDL and in 

regulating BMP signaling make FBN2 a strong candidate for future genetic studies of tooth loss.   
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Figure 23. Regional Association Plot of rs10062700 

Squares and circles indicate imputed and genotyped variants, respectively. 

rs73199539 (p = 6.75E-07) corresponds to the same signal seen in COHRA only, and is 

located near SOD1, which has implications for the role of superoxide dismutase and oxidative 

damage in dental caries and periodontitis, as previously discussed.  This SNP is only nominally 

significant in DRDR (p = 0.076) and likely remained a top signal in the meta-analysis because of 

its strong association (p = 3.18E-6) in COHRA, though the direction of effect (negative) is 

concordant between the two studies.  Other SNPs showing strong evidence of association in the 

meta-analysis because of high statistical significance in COHRA but with weak evidence in 

DRDR include rs78472857 at MGMT (described in the appendix), rs7061189 at PHEX-

PTCHD1-AS,  and rs2860805 near MAT2B, as well as rs3365, rs56345510, rs79950078 
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(COHRA index SNP: rs77475896), rs4444411, and rs9918187 which do not contain relevant 

genes and were not discussed.  Other SNPs reaching suggestive significance near less interesting 

genes as well as those not located near genes relevant to dental or oral health are described in the 

appendix, along with their Regional Association plots.   

3.4.2 Whites-Only Meta-Analysis – Functional Dentition 

A p-value based meta-analysis was performed for functional dentition to combine GWAS results 

from COHRA and DRDR, which represent the European ancestry samples.  Manhattan and QQ-

plots are shown in Figure 24.  Genomic inflation factor was λ = 1.01.  One region on 

chromosome 5 reached genome wide significance (index SNP rs6898589, p = 4.10E-8) and 

several regions of the genome showed suggestive significance (p < 10-5, Table 12.) 
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Figure 24. Manhattan and QQ plots for the whites-only meta-analysis of functional dentition in COHRA and 

DRDR 
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Table 12. Top hits for the whites-only meta-analysis of functional dentition in COHRA and DRDR 

SNP CHR BP A1/A2 MAF 
COHRA 

MAF 
DRDR 

N P Type DIR* 

rs600411 1 61355371 a/g 0.04 0.09 1182 8.83E-06 genotyped -- 

rs3930612 2 50896945 a/t 0.21 0.21 1152 4.25E-06 imputed -- 

rs1455837 2 219912758 a/g 0.35 0.40 1182 4.62E-06 genotyped ++ 

rs13081582 3 94495036 a/c 0.39 0.42 1181 2.43E-06 genotyped ++ 

rs72673432 4 114066021 a/g 0.05 0.04 1134 4.69E-06 imputed ++ 

rs6898589 5 7961941 a/g 0.14 0.18 1171 4.10E-08 imputed ++ 

rs875142 6 52228225 a/g 0.25 0.31 1155 8.49E-06 imputed -- 

rs1090071 6 93112404 a/t 0.32 0.30 1178 6.83E-06 imputed ++ 

rs55705802 14 73995075 c/g 0.04 0.07 1159 5.93E-06 imputed ++ 

Bolded text denotes genome-wide significance; *Direction of effect in COHRA and DRDR 

rs6898589, which corresponds to the same signal near MTRR seen in COHRA only, 

reached genome-wide significance in this whites-only meta-analysis (p = 4.1E-8, pCOHRA = 8.0E-

6, pDRDR = 7.8E-4; Figure 25).  As discussed previously, MTRR functions in methionine 

synthesis and has a putative role in tooth loss as both MTRR and methionine synthesis have 

previously been implicated in dental caries.  Also in this region is ADCY2, which is involved in 

cAMP signaling and has implications for tooth loss due to periodontal disease. 
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Figure 25. Regional Association Plot of rs6898589 

rs3930612 (p = 4.25E-6) is intronic to NRXN1 (Figure 26).  NRXN1 encodes neurexin 1, 

a member of the neurexin family of cell surface receptors that function in cell adhesion as well as 

synapse formation and neurotransmission in the CNS [159].  Deletions of exons of NRXN1 are 

associated with autism spectrum disorders and schizophrenia [160].  NRXN1 was implicated in a 

GWAS of severe gingival inflammation at suggestive significance (p = 4.0E-6) [161], and is 

differentially expressed between the dental pulp and PDL [162]; both of these findings indicate a 

role of NRXN1 in periodontal health.  NRXN1 was also implicated in GWAS of educational 

attainment (p = 2E-8 [163] and 5E-6 [164]). The association with educational attainment is 

interesting as education is a well established predictor of tooth loss, as discussed previously.  The 
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association observed in this meta-analysis may reflect the association between education and 

tooth loss; alternatively, this may reflect a shared genetic influence of NRXN1 on both tooth loss 

and education.  

Figure 26. Regional Association Plot of rs3930612 

rs1455837 (p = 4.6E-6) is intronic to IHH, Indian hedgehog (Figure 27).  This SNP is in 

LD with rs3099 (r2 = 0.98-99), which lies in 3’ UTR and was suggestively significant in this 

meta-analysis (p = 6.812E-6).  Indian hedgehog (Ihh) is a Hedgehog signaling molecule that 

regulates cell proliferation and differentiation during development and morphogenesis, and it 

regulates endochondral bone formation and ossification [165].  Missense mutations in the N-

terminal active fragment of IHH cause Brachydactyly A-1, and dental anomalies (supernumerary 

teeth and tooth agenesis) have been reported in some of these patients [166].  Altered Ihh 
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signaling is associated with temporomandibular joint (TMJ) degeneration, which is partially 

attributable to occlusal dysfunction that may be caused by missing teeth [167].    In addition to 

IHH, this signal is also 200 kb downstream of WNT6, which is differentially expressed 

throughout tooth development in the developing epithelial layers and enamel structures [168, 

169] and promotes differentiation and mineralization of human dental papilla cells [170].

Furthermore, WNT6 may be involved in dental repair as it has been shown to promote wound 

healing and induce the migration and differentiation of dental pulp cells [171].  This region also 

contains WNT10A, which, as previously discussed, is one of the major genes implicated in tooth 

agenesis [84, 85] and is similarly differentially expressed throughout tooth development [169].  

Both of these Wnts are clearly candidates for further study for any effect on tooth loss.  Also in 

this region is CYP27A1, approximately 250 kb upstream of rs1455837.  CYP27A1 is a vitamin D 

hydroxylase expressed in gingival fibroblasts and PDL cells, and expression is also induced by 

inflammatory stimuli (interleukin-1β and P. gingivalis lipopolysaccharide) [172].  Both 

circulating vitamin D and interleukin-1β levels decrease in periodontal tissue after periodontal 

therapy, indicating a possible role in periodontal inflammation [173].  Thus, CYP27A1 may 

influence periodontal tooth loss because of its activation by inflammatory stimuli and role in 

vitamin D metabolism. 
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Figure 27. Regional Association Plot of rs1455837 

Other SNPs reaching suggestive significance near less interesting genes as well as those 

not located near genes relevant to dental or oral health are described in the appendix, along with 

their Regional Association plots.   

3.4.3 Hispanics-Only Meta-Analyses 

A p-value based meta-analysis was performed for both the quantitative trait and functional 

dentition to combine GWAS results from POFC-G and POFC-PA, which represent the Hispanic 

ancestry samples.  Manhattan and QQ-plots are shown in Figures 28 and 30.  Genomic inflation 

factor was λ = 0.98 and λ = 0.95 for the quantitative trait and functional dentition, respectively, 

both of which indicate deflation.  While no regions of the genome reached genome-wide 
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significance, several regions showed suggestive significance (p < 10-5).  These results are 

summarized in Tables 13 and 14, including a brief description of nearby genes with potential 

roles in oral health and tooth loss.  Regional Association plots for these results are shown in 

Figures 29 and 31.  Due to the small sample size in this meta-analysis and lack of genome-wide 

significant findings, these suggestively significant loci should be interpreted with caution. 
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Figure 28. Manhattan and QQ plots for the Hispanics-only meta-analysis of the quantitative trait 
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Table 13. Top hits for the Hispanics-only meta-analysis of the quantitative trait 

SNP CHR BP EA† MAF 
POFC-
G 

MAF 
POFC-
PA 

N P DIR‡ Gene and 
Possible Role in 
Dental/Oral 
Health 

rs3908116 2 51040820 A 0.14 0.18 406 6.45E-06 -- NRXN1: Hits in 
the whites-only 
and trans-ethnic 
meta-analyses for 
functional 
dentition 

rs12506662 4 87861476 A 0.24 0.28 451 3.61E-06 -- AFF1: Unknown 
MAPK10: Part of 
the MAPK 
signaling 
pathway, which is 
involved in 
immune response 
and inflammation 
[174] 

NA* 6 32472247 T 0.28 0.12 316 2.20E-06 -- HLA genes : HLA 
proteins have been 
implicated in 
periodontal 
disease [175] and 
dental caries [176] 

rs7795775 7 122540202 C 0.44 0.43 454 9.60E-06 -- CADPS2: 
Unknown 
TAR2S16: Taste 
receptor for 
bitterness [177] 

rs72719502 9 38701150 C 0.09 0.16 426 3.22E-06 ++ CNTNAP3 : 
Member of NCP 
family of 
neurexins [178]; 
neurexin1 was 
implicated in the 
meta-analysis for 
whites 

rs67639374 12 18931236 A 0.40 0.21 437 6.95E-07 ++ PLCZ1: Unknown 
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Table 13 Continued 

rs138380112 12 44062693 A 0.46 0.45 438 4.91E-06 ++ IRAK4 : Activates 
NF-κB to regulate 
immune and 
inflammatory 
response [179]; 
NF-κB is 
implicated in 
periodontal 
disease [180] 

rs34806537* 16 9325529 C 0.15 0.08 435 1.56E-06 -- CARHSP1: 
Regulates TNF-α 
production by 
stabilizing TNF-α 
mRNA [181]; 
TNF-α is a critical 
moderator of 
inflammation, 
immune response, 
and periodontal 
disease 
progression [182] 

rs76720124* 16 57390538 C 0.03 0.03 421 7.05E-06 -- CCL22: Cytokine 
that is increased 
expression in 
gingiva of 
periodontal 
disease (PD) 
patients and after 
induction of PD in 
mice [183]; loss of 
CCL22 in mice 
lead to increased 
PD phenotype 
[184] 
CCL17: Increased 
expression in 
gingiva of PD 
patients [183] and 
plays a role in 
periodontal 
inflammation[185] 
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Table 13 Continued 

rs1441296 18 47956586 C 0.48 0.44 329 1.03E-06 -- SKA1: Unknown 
MAPK4: Part of 
the MAPK 
signaling pathway 
[174]  

rs405011 22 20164696 C 0.13 0.23 447 7.98E-06 -- TBX1: Critical 
regulator of 
enamel formation 
[186-188] 

* Regional Association plot included below; all other plots are located in the appendix; †Effect Allele; ‡Direction of effect
in POFC-G and POFC-PA
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Figure 29. Regional Association Plots for hits in the Hispanics-only meta-analysis of the quantitative trait 

LD information was not available for all plots, and annotation of imputed vs. genotypes variants was 
unavailable. 



85 

Figure 30. Manhattan and QQ plots for the Hispanics-only meta-analysis of functional dentition 
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Table 14. Top hits for the Hispanics-only meta-analysis of functional dentition 

SNP CHR BP EA† MAF 
POFC-
G 

MAF 
POFC-
PA 

N P DIR‡ Possible Role in 
Dental/Oral Health 

rs139769216* 3 12649936 C 0.09 0.06 454 6.05E-06 ++ RAF1: Differentially 
expressed in developing 
dental tissues throughout 
tooth development[189]; 
Part of Ras/MAPK 
signaling pathway that 
regulates cell 
proliferation/differentiation 
in tooth development [190] 
TIMP4: Elevated 
expression in gingival 
tissue of patients with 
chronic periodontitis [191]; 
Induction of TIMP-4 
improved periodontitis 
symptoms in arthritic rats 
[192] 

rs11304053 3 71294110 GA 0.28 0.33 454 5.15E-06 -- FOXP1: Also a GWAS hit 
for lymphocyte count (p = 
4 x10-20)[193] 

rs59987264 4 39454916 T 0.33 0.39 454 1.99E-06 -- WDR19: Mutations are 
associated with 
cranioectodermal 
dysplasia, manifestations 
of which include dental 
anomalies (hypodontia, 
enamel defects, delayed 
tooth eruption) [194] 

rs142286663 6 134788699 A 0.22 0.19 454 2.56E-07 ++ SGK1: Part of anti-
inflammatory pathway that 
inhibits Toll-like receptor 
mediated inflammation 
[195]  

rs10085380 7 68661978 C 0.49 0.48 454 5.15E-06 ++ AUTS2 : Unknown 
rs10256805 7 104556251 A 0.37 0.42 454 5.62E-06 ++ LHFPL3-AS2: Unknown 
NA 9 107399986 C 0.04 0.12 454 7.12E-06 -- ABCA1 : Increased in 

expression after oxysterol-
induced osteogenic 
differentiation of PDL 
stem cells during 
periodontal regeneration 
[196]



87 

Table 14 Continued 

rs72507759 11 101025134 T 0.13 0.07 454 8.03E-06 ++ TRPC6: Calcium channel 
protein required for 
odontogenic differentiation 
of human dental pulp cells 
[197] 

rs61916630 12 616069 C 0.06 0.04 454 4.22E-06 -- B4GALNT3 : Unknown 
12p13.3 deletion syndrome 
includes dental anomalies, 
including malocclusion 
[198] 

NA 13 86689246 T 0.36 0.36 454 4.26E-07 -- SLITRK6: Expressed in 
developing tooth tissues 
[199] 

rs8009351* 14 37178427 C 0.18 0.06 454 9.99E-06 ++ PAX9: Critical for proper 
tooth development as 
mutations are implicated in 
tooth agenesis, including 
agenesis of  >5 teeth [85] 
NKX2-1: Knockout mice 
show defects in tooth 
development and 
morphology [200] 

rs139066701 14 39797524 C 0.06 0.05 454 9.76E-08 -- CTAGE5: Unknown 
SEC23A : Targeted by 
TFII-I transcription factors 
(TFs); the genes encoding 
these TFs are deleted in 
Williams Syndrome, 
features of which include 
dental and craniofacial 
anomalies [201] 

rs12900666 15 49256375 A 0.17 0.15 454 9.23E-06 -- FGF7: Exhibits specific 
expression patterns in 
developing dental tissues 
[202, 203] 
FBN1: FBN2 was 
implicated in whites-only 
and trans-ethnic meta-
analyses of the quantitative 
trait; exhibits specific 
expression patterns in the 
PDL [158] 

rs30387* 16 79612121 C 0.05 0.09 454 8.34E-06 -- MAF : Transcription factor 
expressed in ameloblasts 
[204]; implicated in 
GWAS of dental caries in 
the permanent dentition (p 
= 5.2E-6) [60] 
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Table 14 Continued 

rs6139511 20 4636334 A 0.14 0.07 454 9.26E-06 ++ PRNP : Exhibits specific 
expression patterns during 
tooth development and 
may regulate tooth 
development [205] 
SLC23A2: Intragenic 
variants may be associated 
with aggressive 
periodontitis [206] 

* Regional Association plot included below; all other plots are located in the appendix; †Effect Allele; ‡Direction of effect in
POFC-G and POFC-PA
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Figure 31. Regional Association Plots for hits in the Hispanics-only meta-analysis of functional dentition 

Note: LD information was not available for all plots. Annotation of imputed vs. genotypes variants was unavailable 
in POFC-G and POFC-PA. 
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3.4.4 Trans-Ethnic Meta-Analysis – Quantitative trait 

A p-value based meta-analysis was performed to combine GWAS results from four study 

samples (COHRA, DRDR, POFC-G, and POFC-PA) for the quantitative trait.  Manhattan and 

QQ-plots are shown in Figure 32.  Genomic inflation factor was λ = 1.03.  While no regions of 

the genome reached genome-wide significance, several regions showed suggestive significance 

(p < 10-5).  Meta-analysis results are shown in Table 15, and allele frequencies in all 4 cohorts 

are shown in Table 16. 
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Figure 32. Manhattan and QQ plots for the trans-ethnic meta-analysis of the quantitative trait 
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Table 15. Top hits for the trans-ethnic meta-analysis of the quantitative trait 

SNP CHR BP N P Type (in 
COHRA) 

DIR* 

rs6663322 1 200649869 1630 9.79E-06 imputed ++++ 

rs72488321 2 76805700 1574 8.55E-06 imputed ---- 

rs764629 5 57455043 1608 5.97E-06 imputed ++++ 

rs10062700 5 128180057 1611 8.34E-06 imputed ---+ 

rs2860807 5 163265540 1632 7.92E-06 imputed ---- 

rs4569988 6 123862050 1588 6.68E-06 imputed ---- 

rs2532011 16 4130204 1584 4.16E-06 imputed ++++ 

rs4969040 17 70947492 1327 5.66E-07 genotyped --+- 

rs17208994 22 19373861 1631 9.85E-06 imputed ---- 

*Direction of effect in COHRA, DRDR, POFC-G, and POFC-PA
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Table 16. Allele frequencies for the top hits of the trans-ethnic meta-analysis of the quantitative trait 

SNP CHR BP A1/A2 MAF 
COHRA 

MAF 
DRDR 

MAF 
POFC-G 

MAF 
POFC-PA 

rs6663322 1 200649869 a/g 0.32 0.30 0.47 0.46 

rs72488321 2 76805700 g/t 0.28 0.23 0.25 0.26 

rs764629 5 57455043 g/t 0.45 0.47 0.38 0.4 

rs10062700 5 128180057 a/c 0.15 0.25 0.36 0.31 

rs2860807 5 163265540 a/t 0.29 0.30 0.24 0.34 

rs4569988 6 123862050 c/t 0.23 0.39 0.45 0.42 

rs2532011 16 4130204 c/t 0.41 0.34 0.41 0.36 

rs4969040 17 70947492 a/g 0.08 0.07 0.09 0.17 

rs17208994 22 19373861 a/c 0.06 0.05 0.06 0.04 

rs4969040 in SLC39A11 and near SSTR2 (Figure 33) remained significant in the trans-

ethnic analysis (p = 5.7E-7), though this is mostly due to its significance in COHRA and DRDR, 

as pPOFC-G = 0.24 and pPOFC-PA = 0.05.  SLC39A11 is a zinc transporter [146], the concentration of 

which may have important consequences for enamel mineralization [148, 149].  SSTR2 is a 

somatostatin receptor that is involved in nociception and orofacial pain [150-152].   
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Figure 33. Regional Association Plot of rs4969040 

For all plots in the trans-ethic meta-analysis, LD information was not included on the plot as it represents a mixed 
sample.  Annotation of imputed vs. genotypes variants was based on COHRA and DRDR. 

rs2532011 (p = 4.2E-6) lies in a region on chromosome 16 with three genes possibly 

involved in tooth loss (Figure 34).  This SNP is intronic to ADCY9, another adenylate cyclase; 

ADCY2 was implicated in both the COHRA only GWAS and the whites-only meta-analysis of 

functional dentition.  Adenylyl cyclases catalyze the formation of cyclic adenosine 

monophosphate (cAMP), and the cAMP signaling pathway mediates cellular response to 

mechanical stress [127].  cAMP signaling is induced in response to mechanical force on PDL 

cells [128, 129], decreased cAMP signaling in PDL cells has been associated with aggressive 

periodontitis [130],  and miRNAs involved in cAMP signaling are increased in expression in 

response to P. gingivalis lipopolysaccharides [131]. 
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rs2532011 is also located approximately 200 kb upstream of CREBBP; mutations in 

CREBBP cause Rubinstein-Taybi syndrome, and manifestations include dental anomalies such 

as malocclusion, dental caries, and hypodontia [207].  Furthermore, CREBBP binds to cAMP-

response element binding protein (CREB), a transcription factor that initiates gene expression in 

response to cAMP signaling [208].  As this gene is involved in response to cAMP signaling, it 

may have implications for tooth loss akin to those of ADCY2 and ADCY9.  CREB is involved in 

tooth mineralization as it is expressed in the nucleus of odontoblasts, cementoblasts, dental pulp, 

and PDL fibroblasts, and is phosphorylated, or activated, in the nucleus of molar odontoblasts 

and cementoblasts [209].  CREBBP may influence tooth loss through its interaction with CREB. 

Lastly, this region also contains TRAP1, approximately 400 kb downstream of 

rs2532011.  TRAP1 encodes tumor necrosis factor (TNF) receptor associated protein 1.  TNF-α 

is a key mediator of inflammation seen in periodontitis, and it may induce tissue destruction, 

attachment loss, and bone loss [210].  Levels of TNF-α are associated with periodontal disease 

status, with the higher levels of expression in gingival crevicular fluid of patients with more 

severe disease [211, 212].  Expression of TNF-α is associated with infection by P. intermedia in 

gingival tissues of periodontitis patients, which may increase clinical disease measurements and 

disease progression [182].   
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Figure 34. Regional Association Plot of rs2532011 

rs4569988 (p = 6.7E-6) is intronic to TRDN (Figure 35), triadin, and this index SNP is in 

moderate LD (r2 = 0.66) with a missense variant in the third exon of TRDN (p.Thr128Ser 

[c.383C>G]; rs9490809).  However, this missense variant is predicted to be benign by ClinVar 

and is at a relatively high frequency in both European and Amerindian populations (MAF = 0.52 

and MAF = 0.38, respectively; 1000 Genomes Phase I.)  Triadins are sarcoplasmic reticulum 

transmembrane proteins that organize microtubules in muscle cells and participate in excitation 

contraction coupling by regulating cellular Ca2+ levels [213, 214].  Deletion of triadin results in 

loss of muscle strength in mice [214], and loss of function mutations in triadin are responsible 

for cardiac arrhythmias with sudden death in humans [215].  It is currently unknown how triadin 

may affect dental and oral health. 
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This signal is also approximately 200 kb upstream of NKAIN2, which was implicated in a 

GWAS of chronic periodontitis (p = 8E-7)[67] as well of rate of cognitive decline in Alzheimer’s 

disease (p = 6E-7)[216].  NKAIN2, Na+/K+ transporting ATPase interacting 2, resides in a 

chromosomal region commonly deleted in cancers, indicating its possible role as a tumor 

suppressor gene, and it is also involved in nervous system development [217].  Functional 

studies of NKAIN2 in prostate cancer cells indicate that it promotes apoptosis to control cell 

growth and migration, indicating a regulatory role in the cell cycle [218].  It is unclear how 

NKAIN2 may affect dental health, but the suggestively significant hit in the GWAS of chronic 

periodontitis supports the association observed here for missing teeth.     

Figure 35. Regional Association Plot of rs4569988 
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rs17208994 (p = 9.9E-6) is intronic to HIRA and is located in the region deleted in 

22q11.2 deletion syndrome (Figure 36).  Manifestations of 22q11.2 deletion syndrome include 

palatal abnormalities, characteristic facial features, and dental anomalies, including enamel 

hypoplasia and hypomineralization, hypodontia, delayed tooth eruption, abnormal tooth shape, 

gingivitis, and excessive dental caries [219, 220].  rs17208994 also overlaps a region of 

suggestive significance for Alzheimer’s Disease age-of-onset (p = 5 x10-7) [221], which may 

reflect the relationship between tooth loss and cognitive decline.   

While there is no known role of HIRA in dental health, this region of significance is 

located approximately 400 kb upstream of TBX1, which encodes an evolutionarily conserved 

transcription factor with a T-box DNA binding domain [222].  22q11.2 deletion syndrome is 

associated with increased susceptibility to infection, and TBX1 mutations are associated with low 

T cell counts, indicating a role of TBX1 in immunity and immunodeficiency [223], though no 

relationship between TBX1 and periodontal disease has been reported.  As part of a negative 

feedback loop including microRNA-96 and PITX2, Tbx1 plays a critical role in the regulation of 

dental epithelial cell proliferation and differentiation during tooth development in adult mice, 

and levels of Tbx1 expression affect tooth and cusp morphology, ameloblast differentiation, and 

enamel production [186, 188].  Knockdown of Tbx1 in mice resulted in decreased production of 

amelogenin, the major component of the enamel matrix, and subsequent enamel defects [186, 

188].  Tbx1 null mice showed a decrease in tooth mineralization, an absence of ameloblasts 

during tooth development, decreased amelogenin gene expression, and a lack of enamel on adult 

incisors [187].  TBX1 may influence missing teeth as a critical regulator of enamel formation and 

tooth development.  
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Figure 36. Regional Association Plot of rs17208994 

Other SNPs reaching suggestive significance near less interesting genes as well as those 

not located near genes relevant to dental or oral health are described in the appendix, along with 

their Regional Association plots.   

3.4.5 Trans-Ethnic Meta-Analysis – Functional dentition 

A p-value based meta-analysis was performed to combine GWAS results from four study 

samples (COHRA, DRDR, POFC-G, and POFC-PA) for functional dentition.  Manhattan and 

QQ-plots are shown in Figure 37.  Genomic inflation factor was λ = 1.00.  While no regions of 

the genome reached genome-wide significance, several regions showed suggestive significance 

(p < 10-5.)  Meta-analysis results are shown in Table 17, and allele frequencies in Table 18. 
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Figure 37. Manhattan and QQ plots for the trans-ethnic meta-analysis of functional dentition 
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Table 17. Top hits for the trans-ethnic meta-analysis of functional dentition 

SNP CHR BP N P Type (in 
COHRA) 

DIR* 

rs674271 1 78712402 1607 3.01E-06 imputed ++++ 

rs3930612 2 50896945 1606 3.34E-06 imputed ---- 

rs2815822 6 6320808 1636 4.90E-06 genotyped ++++ 

rs10963759 9 18787638 1636 8.32E-06 genotyped ---- 

rs28734985 10 60084051 1606 8.39E-06 imputed ---- 

rs4575613 18 22697408 1634 1.31E-06 imputed ++++ 

*Direction in COHRA, DRDR, POFC-G, and POFC-PA

Table 18. Allele frequencies for the top hits of the trans-ethnic meta-analysis of functional dentition 

SNP CHR BP A1/A2 MAF 
COHRA 

MAF 
DRDR 

MAF 
POFC-G 

MAF 
POFC-PA 

rs674271 1 78712402 a/c 0.26 0.27 0.16 0.26 

rs3930612 2 50896945 a/t 0.09 0.16 0.21 0.21 

rs2815822 6 6320808 g/t 0.12 0.08 0.10 0.13 

rs10963759 9 18787638 c/t 0.44 0.43 0.25 0.27 

rs28734985 10 60084051 a/g 0.10 0.08 0.09 0.09 

rs4575613 18 22697408 c/g 0.42 0.43 0.42 0.48 

rs3930612 (p = 3.3E-6) corresponds to the same signal seen in the whites-only meta-

analysis that is intronic to NRXN1 (Figure 38).  This gene is important for proper synapse 

formation and neurotransmission in the CNS [159] and may play a role in periodontal health as it  
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was implicated in a GWAS of severe gingival inflammation [161] and is differentially expressed 

in dental tissues [162].  There is increasing statistical evidence that this gene is involved in tooth 

loss and may function in periodontal health. 

Figure 38. Regional Association Plot of rs3930612 

rs2815822 (p = 4.9E-6) is intronic to F13A1 (Figure 39); this SNP was genotyped in 

COHRA and DRDR.  P-values in each smaller GWA scan were as follows: pCOHRA = 0.05, pDRDR 

= 0.13, pPOFC-G = 0.025, pPOFC-PA = 0.0599.  Although this plot shows only one SNP, this is in 

accordance with available LD information in this region, as HaploReg reports LD to be low (no 

SNPs with r2 > 0.5 in either whites or Hispanics.)  F13A1 encodes the coagulation factor XIII A 

subunit (FXIIIA), which stabilizes the fibrin clot and prevents fibrinoloysis [224].  Loss of 

function mutations in either F13A1 or F13B cause factor XIII deficiency (OMIM: 613225), a 
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rare autosomal recessive disorder resulting in life-long bleeding diathesis and inefficient wound 

healing [224, 225].  Frequent bleeding in the mouth and gums is a common occurrence reported 

in patients [224, 226].  This SNP, rs2815822, corresponds to the previously reported 

Int1(+12)C>A variant, which resides in a regulatory region of intron 1 of F13A1; the C>A 

mutation results in decreased binding affinity of the Sp1 transcription factor, leading to 

decreased transcription of F13A1 gene and decreased FXIIIA expression[225].  While the effect 

of the Int1(+12)A variant on FXIIIA expression was originally ascertained in FXIIIA patients 

with exon mutations of F13A1, this variant is also associated with mild FXIII deficiency in 

patients with no mutations in either F13A1 or F13B [227].  Decreased FXIIIA levels resulting in 

oral bleeding could increase risk of infection by periodontal pathogens and periodontal 

inflammation, and impaired wound healing could affect retention of teeth affected by periodontal 

disease or trauma.    

Figure 39. Regional Association Plot of rs2815822 
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rs10963759 (p = 8.3E-6) is intronic to ADAMTSL1 (Figure 40), an ADAMTS-like protein 

showing homology to other members of the ADAMTS family but without the pro-

metalloprotease and the disintegrin-like domains typical of ADAMTS proteins [228].  It may 

function in the ECM and is primarily expressed in skeletal muscle.  Hendee et al. (2017) 

described a multi-generational family segregating a loss of function coding variant in 

ADAMTSL1, and affected family members exhibited dental defects including delayed tooth 

eruption and early loss of permanent teeth at 20-30 years of age [229].  While it is unclear 

precisely how ADAMTSL1 may affect dental health, there is supporting biological evidence that 

it may influence tooth loss. 

Figure 40. Regional Association Plot of rs10963759 
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Other SNPs reaching suggestive significance near less interesting genes as well as those 

not located near genes relevant to dental or oral health are described in the appendix, along with 

their Regional Association plots.   
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4.0  DISCUSSION 

4.1 NOTABLE FINDINGS 

The observation of both suggestive and genome-wide significant hits that were relevant to tooth 

loss supports a genetic basis to tooth loss and confirms the effect of common variants on 

susceptibility to tooth loss.  As GWAS is hypothesis-generating, the goal of this project not to 

prove an association between these SNPs and tooth loss but to identify novel genes for further 

study.  This goal was achieved as evidenced by the large number of suggestive findings relevant 

to tooth loss.  Suggestively significant results were annotated to help generate hypotheses and 

nominate results for further study; we are not advocating that these are true associations nor that 

the nearby relevant genes are necessarily implicated in dental and oral diseases.  Annotation of 

the results of these analyses relies on known biology of genes and available information from 

bioinformatic databases, both of which are far from complete.  Genes whose known functions are 

not related to dental and oral health may have other unknown functions that may still be relevant 

to tooth loss.  Similarly, genes of unknown function implicated by proximity to top hits should 

not be dismissed in light of the known functions of other nearby, biologically plausible genes. 

While many SNPs seen at suggestive significance in COHRA remained significant in the 

meta-analyses, several were only seen in the meta-analyses primarily because of their relatively 

high significance in COHRA.  This result to be expected, as COHRA had the largest weight in 
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the meta-analysis as it had approximately 3.5 times as many individuals as any other cohort.  

Additionally, the genome-wide significant hit near POSTN (rs12430287, p = 4.1E-8) seen in 

POFC-G was not significant in POFC-PA (p = 0.37); this SNP was neither imputed nor 

genotyped in COHRA or DRDR, therefore the association between this variant and tooth loss in 

whites unable to be tested.  Failure of SNPs to achieve significance in the meta-analysis may be 

due to several reasons.  The simplest explanation is that the signal was a false positive and was 

rightfully not significant in other samples.  Alternatively, the most significant SNPs may also be 

subject to the “winner’s curse”, where their effect sizes are inflated in the sample in which they 

were originally discovered.  While the effect does exist, the true effect size is smaller than 

originally estimated, thus there is lower power to replicate the association in additional cohorts 

[230].  Unmeasured gene-by-environment interactions may also be driving associations seen in 

only one sample.  Differences in drinking water fluoridation govern dental caries experience, and 

stratification by fluoride levels has previously revealed sample-specific GWAS signals [59].  

Such gene-by-environment interactions were not modeled in this project.  Additionally, the 

COHRA sample comprises many individuals from rural areas while DRDR is more metropolitan 

as participants were ascertained from the University of Pittsburgh dental school.  Moreover, 

POFC-G and POFC-PA represent two very different Hispanic ancestry samples, one coming 

from Guatemala in Central America and the other from the Patagonia region of Argentina.  The 

two samples likely differ in environmental factors governing tooth loss, such as access to dental 

care.  Altogether, failure to replicate associations across cohorts is unsurprising as there may be 

variants whose effect is exaggerated or counteracted by differences in environmental exposures 

associated with oral health and tooth loss.   
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There was little overlap between association signals seen between the quantitative trait 

and functional dentition.  Only one signal in COHRA was suggestively significant for both traits, 

that seen near MKI67 (see Appendix A).  This lack of overlap may be due to the fact that 

functional dentition dichotomizes missing teeth to extreme cases vs. “normal” controls, 

compared to total missing teeth, which, as a continuous distribution, encompasses common 

variation in missing teeth.  The biology of severe versus common disease may differ, which 

leads to different variants being more or less important between disease states. 

Many of the genes identified in the study share common functions.  These themes were 

generated by the literature, however, which is biased.  Gene set enrichment analyses were not 

performed, though this would be a way to follow up these results in a future study.  A large 

number of these genes play some role in tooth development, either directly or through a putative 

interaction with a known regulator of tooth development.  Genes exhibiting specific 

temporospatial patterns of expression during tooth development include WNT6 [168-170], 

WNT10A [169], PRICKLE2 [231], ADAMTS9 [232], MKI67 [233, 234], NUMB [235], POSTN 

[140], AQP1 [236], TRPC6 [197], PAX9 [85, 237], NKX2-1 [200], FGF7 [202, 203], PRNP 

[205], TBX1 [186, 188], and RAF1 [189, 190].  Additionally, BMPRIB is a target of RNA 

interference during tooth development [120] and regulates ameloblast differentiation and enamel 

formation [121],  PTCHD1 may act as a receptor of Shh signaling [106], which is a critical 

regulator of tooth development [109-112], and AJAP1 may influence tooth development though 

an interaction with basigin [61, 115], which regulates tooth development by regulating MMPs 

[116, 117].  Genes important during tooth development may be relevant to tooth loss as improper 

formation of tooth structures may predispose to dental decay, malocclusion and extraction for 
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orthodontic reasons, dental avulsion, or periodontal disease.  Furthermore, these genes may have 

an additional role in dental health by maintaining tooth structures after tooth development. 

Several of the genes implicated at various stages of the analysis are associated with single 

gene disruption or small deletion disorders that include dental and/or periodontal manifestations. 

In the whites-only meta-analysis of the quantitative trait, one of the top hits was intronic to IHH, 

mutations of which cause Brachydactyly A-1, and dental anomalies, while not characteristic of 

the disorder, have been reported in some patients [166].  Mutations in WDR19, which was 

implicated in the Hispanics-only meta-analysis, cause cranioectodermal dysplasia, dental 

manifestations of which include hypodontia, enamel defects, and delayed tooth eruption [194]. 

Also implicated in the Hispanics-only meta-analysis is the chromosomal region 12p13.3, 

deletion of which causes a syndromic condition that includes dental malocclusion [198], and 

SEC23A, a target of TFII-I transcription factors, loss of which cause Williams Syndrome, a 

disorder that includes dental anomalies [201].  The trans-ethic meta-analyses implicated 

CREBBP, which is linked to Rubinstein-Taybi syndrome, features of which include dental caries, 

malocclusion, and hypodontia [207].  DDX59 mutations are associated with oro-facial-digital 

syndrome, again with dental manifestations [238].  The 22q11.2 deletion syndrome region was 

implicated in the trans-ethnic meta-analysis of the quantitative trait.  Various dental anomalies 

are common in patients with this disorder, most notably enamel hypoplasia, gingivitis, and 

excessive dental caries [219, 220].  TBX1 is the strongest candidate within this region for causing 

these enamel defects and dental anomalies, as knockout mice recapitulate these features [186-

188].  F13A1 mutations cause factor XIII deficiency, a bleeding disorder that includes excessive 

bleeding of the mouth and gums [224, 226].  Early loss of permanent teeth has been reported in 

individuals with a loss of function coding mutation in ADAMTSL1 [229].  Also notable is PHEX, 
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which was implicated in COHRA only; mutations in PHEX cause X-linked familial 

hypophosphatemic rickets, symptoms of which include dental defects including premature tooth 

loss [113, 114], though it is unlikely that the associated SNPs affect PHEX function or 

expression as the signal is approximately 450kb downstream.  Altogether, these findings lend 

weight to the theme common in complex trait genetics, that common variants in or near genes 

causing syndromic disorders when disrupted may contribute to related common traits.  In this 

case, variants causing moderate to severe dental defects when disrupted may contribute to 

genetic susceptibility to dental caries, periodontal disease, and tooth loss.   

A handful of implicated genes are involved in mechanoreception, including OPG, 

CTNND2, ADCY2, ADCY9, ADCYAP1R1, AQP1, and POSTN.  Improper response of the 

periodontal ligament to mechanical forces like those induced by chewing or tooth grinding and 

failure to maintain periodontal homeostasis are plausible mechanisms through which tooth loss 

may occur.  Additionally, there were numerous associations seen near genes related to immunity 

and the inflammatory response, including SOD1, FAM195A, NRXN1, CYP27A1, IL17F, IL17A, 

MAPK10, HLA genes, IRAK4, CARHSP1, CCL17, MAPK4, SGK1, TRAP1, and IPMK.  These 

signals may reflect an underlying genetic susceptibility to periodontitis and periodontal tooth 

loss.  Altogether, there were many positive results located near biologically plausible genes, and 

it is unlikely that each one of these signals occurred at random.      
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4.2 SCIENTIFIC CONTEXT 

Results of this GWAS and meta-analysis of missing teeth do not support the candidate gene 

studies of tooth loss and previously reported associations that were discussed in the introduction 

section.  More specifically, the OGG1, ESR1, APOE, and VDR variants were not significant after 

multiple test correction at any stage in the analysis (data not shown), and none of the previously 

reported candidate genes were implicated by any of top hits.  The OGG1 polymorphism was 

previously reported to be associated with tooth loss in the elderly [17], however the samples 

included in the data presented here were not limited to elderly individuals.  The effect of this 

polymorphism may indeed exist in the elderly, but was not associated with tooth loss in this 

study because of a potential interaction with age.  The APOE ε4 allele was also not associated 

with missing teeth or functional dentition at any stage of the analysis.  The original study 

assessed differences in frequency of the ε4 allele between dentate and completely edentulous 

individuals [15], thus the lack of association in this study between any APOE variants and tooth 

loss may reflect differences in definitions of tooth loss.  Similarly, the VDR polymorphism was 

associated with number of teeth lost during a period of follow-up in older individuals [78], and 

the association between estrogen receptor and VDR genotypes reported by Taguchi et al. (2001, 

2003) and tooth loss was reported in post-menopausal Japanese women [79, 80].  Association 

between an MPG polymorphism and tooth loss was again observed in elderly Japanese women 

[77], though MPG is involved in bone and tooth formation, and there were many hits for those 

processes in this study, most notably those involving BMP and hedgehog signaling.  The failure 

of any of these polymorphisms to achieve suggestive significance in this study may reflect the 

fact that the previously reported associations were false positives, or it may be due to these 

differences in study populations and definitions of tooth loss.    
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Because dental caries and periodontitis are the main factors contributing to missing teeth, 

it is reasonable to assume that GWAS of missing teeth would also implicate genes previously 

discovered for periodontitis and dental caries.  However, with a few exceptions, this was not the 

case.  Only a handful of genes implicated by these analyses were also implicated in dental caries 

and periodontitis.  NRXN1, which remained suggestively significant in the whites-only and trans-

ethnic meta-analyses was previously implicated in a GWAS of severe gingival inflammation at 

suggestive significance [161], and NKAIN2, also a hit in the trans-ethnic meta-analysis, was 

implicated in GWAS of chronic periodontitis, again at suggestive significance [67].  AJAP1, 

which was implicated at suggestive significance in both COHRA and the whites meta-analysis, 

was previously identified in GWAS of dental caries at genome-wide significance [61].  The 

absence of such signals may be driven by the degree of disease, as tooth loss due to periodontal 

disease and dental caries are manifestations of severe disease.  GWAS of dental caries and 

periodontitis have generally been done on traits that represent mild to moderate forms of disease; 

the genetic susceptibility to mild versus severe forms of complex disease may differ.  

 Despite this relative lack of overlap, there are some similarities between the current 

study and GWAS for dental caries and periodontitis.  Genes implicated in dental caries are 

frequently involved in tooth development, and those implicated in periodontitis are involved in 

inflammation and immune response.  Genes involved in all of these functions were commonly 

located near top hits in the current study.  Also, there are no highly statistically significant 

associations seen in multiple study samples or populations for either dental caries or 

periodontitis, and no such associations were observed in this meta-analysis.  This result 

underscores the multi-factorial nature of oral diseases, as it is the combination of genetic and 

environmental exposures that ultimately cause disease.  Top hits for dental caries and 



113 

periodontitis generally have p-values on the order of 10-9 or less, which is consistent with 

findings in this GWAS. P-values of this magnitude are to be expected, as statistical power is low 

for discovering variant of low effect size, which are theorized to be major contributors to genetic 

susceptibility to dental caries and periodontitis. Similarly, this may be attributable to relatively 

small samples sizes in these GWAS; sample sizes for dental caries and periodontitis are typically 

around 2,000 individuals (see Tables 1 & 2 in Introduction). 

4.3 STRENGTHS AND LIMITATIONS 

There are several limitations of the current study.  First and foremost is the relatively small 

sample size for GWAS, which limits the statistical power to detect rare (MAF < 0.01) variants 

and variants with a low effect size.  This outcome is primarily reflected in the relative dearth of 

genome-wide significant results.  In addition, a large number of the suggestively significant 

associations seen in COHRA only and the meta-analyses are likely to be false positives, as they 

do not exceed the multiple test correction threshold (p < 5 x 10-8) and are expected to be 

observed by chance alone.  Indeed, many of the top associations were not located near genes 

relevant to oral or dental health.  The sample size in the final, trans-ethnic meta-analysis was 

approximately 1,630 individuals, which is a relatively small sample size compared to GWAS of 

other complex traits.  As sample size is directly related to study power, this may explain the 

relatively few associations observed at genome-wide significance.  Perhaps with a larger sample 

size, many of the variants observed at suggestive significance levels that were biologically 

relevant to tooth loss would have surpassed genome-wide significance.  Since sample size 

determines power, it also limits the ability to test rare (MAF < 0.01) variants; variants at MAF < 
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0.01 would only be seen 15 times in 1,500 individuals, which does not give adequate power 

when performing tests at the genome-wide scale.  Due to the small sample size, only variants 

with MAF > 0.03 were included in this study at all steps of the analysis (except for POFC-USA, 

see Appendix C), thus we were unable to examine the association between tooth loss and rare 

variants.  The majority of SNPs are rare variants, and these may potentially have the largest and 

most significant effects on disease.  Further studies with large samples sizes are needed to 

determine the effect of rare variants on tooth loss. 

The effect sizes identified in this GWAS are relatively large for the effect of common 

genetic variants on common disease.  Few examples of common variants with large effect sizes 

for common disease are known, but the effect of APOE alleles on Alzheimer’s disease 

susceptibility is a classic example.  Most GWAS only identify variants with odd ratios around 

1.2-2.0 [87].  In this study, however, many SNPs had odds ratios of 5 or higher – rs7717485 in 

COHRA only had an odds ratio of 8.19 and a wide 95% CI (3.47, 19.31.)  These large odds 

ratios may be in part due to the small sample size and correspondingly large standard error; true 

estimates may be on the lower end of these wide confidence intervals.  Alternatively, these 

variants may indeed have a large contribution to susceptibility to oral diseases and tooth loss, or 

these variants may have a small effect on oral health, but the cumulative nature of tooth loss 

leads to a large number of missing teeth and a large effect size. 

As the goal of GWAS is gene discovery, only age, sex, genetic ancestry, and study site 

were controlled for in genetic association analyses.  Other factors also associated with missing 

teeth, such as smoking status and education, were not included as covariates.  While 

Pennsylvania vs. West Virginia residency was controlled for in COHRA, which incorporates 

income and education, modeling potential gene-by-environment interactions between these two 



115 

populations was beyond the scope of this project.  Additionally, while the biological role of the 

top associations in dental and oral health was investigated via bioinformatics, no functional 

studies were performed for strongly associated SNPs.  This study only established statistical 

associations between genetic variants and missing teeth, not the biological effect of these 

variants and implicated genes on tooth loss.  Further studies are needed to determine the 

functional effect of these genes on missing teeth.  Lastly, as missing teeth is a composite 

phenotype representing teeth missing due to periodontitis, dental caries, trauma, orthodontics, 

and tooth agenesis, there may be some “noise” hindering statistical power to detect variants 

driving specific disease processes.  GWAS of dental caries and periodontal disease have used 

novel derived phenotypes [61, 73] generated through hierarchical clustering and principal 

component analysis which reflect different aspects of the biology of the diseases.  Separating the 

missing teeth phenotype into teeth missing due to periodontal disease, dental caries, or other 

reasons may reveal novel associations that are lost in the “noise” of the combined missing teeth 

phenotype.   

Despite these limitations, there were many strengths to this study.  As one of the first 

GWAS of missing teeth [Shaffer, personal communication], this study supports previous 

evidence for a genetic basis of tooth loss.  The genome-wide significant hit at MTRR establishes 

a putative genetic risk factor for tooth loss, and the abundance of suggestively significant hits 

relevant to dental and oral health, like that of TBX1, are strong candidates for further functional 

studies or replication in other cohorts.  Unlike dental caries and periodontal disease, missing 

teeth is an unambiguous, straightforward phenotype – either the tooth is present or it is not. 

GWAS of dental caries and periodontal disease have been plagued with issues in defining 

disease status or parameters for the purpose of GWAS, like periodontal disease status or 
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quantitative disease measures.  This study also used samples with different genetic backgrounds 

(whites vs. Hispanics) and environmental exposures (POFC-G vs. POFC-PA, COHRA vs. 

DRDR), which allowed for the examination of the differential effect of genetic variants in these 

varying populations.  Variants important for conferring genetic susceptibility to disease may 

differ between populations, as evidenced by differences in significant findings in stratified 

analyses, like POSTN in POFC-G and POFC-PA. 

4.4 SIGNIFICANCE AND FUTURE DIRECTIONS 

This work makes a significant contribution to public health in that it establishes a foundation to 

build upon for future studies of the genetic contribution to tooth loss.  In this study, potential 

genetic variants associated with missing teeth and functional dentition were identified, albeit 

mostly at suggestive significance.  However, as this is one of the first GWAS of missing teeth, to 

further assess the effect of these variants, additional studies including larger and more diverse 

cohorts are warranted.  The ultimate goal of studying the genetics of a disorder is to identify at-

risk individuals and develop novel treatments.  While more work needs to be done to assess the 

effect of the variants identified in this study before they can be used in screening, this GWAS 

and meta-analysis is a starting point as it nominates several genes and polymorphisms for further 

study.  Additionally, several biological processes were highlighted by the associations, including 

tooth development, mechanoreception and periodontal homeostasis, and inflammatory pathways. 

Targeting these areas, specifically genes that are differentially expressed between disease states, 

may benefit individuals at risk of tooth loss.  The contribution this work makes to understanding 
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the genetics of missing teeth and tooth loss may help to decrease oral health disparities across 

communities and alleviate the burden of oral diseases within populations in the future. 
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APPENDIX A: GWAS RESULTS 

Other regions of the genome implicated in the GWA scans in COHRA and POFC-G are 

described in this section, including their Regional Association Plots. 

A.1 COHRA – QUANTITATIVE TRAIT

rs75040946 (p = 2.0E-6, β = -0.34 [-0.48, -0.20]) on chromosome 10 is intronic to MGMT 

(Figure 41), a DNA repair protein that transfers methyl groups from DNA to protect against 

carcinogens and mutagenesis [196].  Predictably, alterations in MGMT activity are associated 

with multiple cancer types, including oral cancers [239-242].  Activity of MGMT is also 

upregulated in oral keratinocytes in response to carcinogenic exposure such as areca nut chewing 

[241], and is underexpressed in oral squamous cell carcinomas from smokers [240, 242].  While 

there is currently no known role of MGMT in dental health, MGMT may play a role in tooth loss 

associated with smoking. 
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Figure 41. Regional Association Plot of rs75040946 

rs4823141 (p = 2.2E-6, β = 0.21 [0.12, 0.29]) is located in a gene-rich region on 

chromosome 22 (Figure 42).  This SNP is intronic to EFCAB6, an oncogene which binds the 

androgen receptor (AR) to regulate AR activity, though EFCAB6 has reportedly been expressed 

primarily in the testis [243].  The androgen receptor is expressed in human tooth pulp [244, 245] 

and may contribute to dentinogenesis and tissue mineralization [245]. Furthermore, the androgen 

receptor has been shown to be upregulated in gingival fibroblasts in response to drug-induced 

gingival overgrowth [246].  In addition to the potential role of EFCAB6 in dental health via the 

androgen receptor, this SNP is located approximately 400 kb upstream of SCUBE1, which was 

implicated in a GWAS of molar-incisor hypomineralization, a developmental enamel defect  

[247].  Lastly, this signal is approximately 300 kb downstream of MPPED1; MPPED2 has been 
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associated with dental caries in previously [59, 63, 126], though it is unknown how MPPED1 

may affect caries susceptibility.   

Figure 42. Regional Association Plot of rs4823141 

rs75195099 (p = 2.5E-6, β = 0.54 [0.32, 0.76]) is located just upstream of MKI67 (Figure 

43), marker of proliferation 67 (Ki-67).  Ki-67, the protein, is widely used as a marker of cellular 

proliferation in cancer studies and developmental biology.  The precise function of Ki-67 in cell 

proliferation is as yet unclear, though inhibition of Ki-67 inhibits DNA synthesis and it is 

suggested that Ki-67 plays a role in rRNA synthesis [248].  As Ki-67 is such a widely used 

marker of cellular proliferation, it has been used in many studies of tooth development.  Ki-67 

has been shown to be differentially expressed throughout the stages of tooth development in the 

dental papilla and parts of the developing enamel organ such as ameloblasts (enamel depositing 
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cells) [233], and decreases in Ki-67 expression and cell proliferation coincide with 

differentiation of cell types such as ameloblasts and odontoblasts  [234].  Follow-up studies 

would be necessary to determine whether Ki-67 plays a direct role in cellular proliferation and 

thus tooth development, or if it is merely a marker of proliferation, which is abundant during 

tooth development. 

Figure 43. Regional Association Plot of rs75195099 

rs2964805 (p = 2.9E-6, β = -0.22 [-0.32, -0.13]) is located approximately 200 kb from 

CTNND2 (Figure 44), which encodes an adhesive junction associated protein and plays a role in 

cell adhesion.  CTNND2 was found to be downregulated 14-fold in (PDL) cells in response to 

mechanical force loading, indicating a role of this gene in maintaining homeostasis in PDL cells 
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in response to stretch induced cell realignment, periodontal remodeling, orthodontic tooth 

movement, and occlusal function [249]. 

Figure 44. Regional Association Plot of rs2964805 

rs73199539 (p = 3.2E-6, β = -0.42 [-0.60, -0.25]) is located approximately 100 kb 

upstream of SOD1 (Figure 45); this gene encodes the enzyme superoxide dismutase (SOD), 

which regulates oxidative damage by destroying damaging superoxide radicals.  Lower oxidative 

damage and increased activity of SOD has been reported in adults with severe caries and 

children with severe early childhood caries [149, 250], indicating a possible role of SOD1 in 

dental caries susceptibility.  Oxidative stress generated by reactive oxygen species (ROS) also 

plays a role in periodontal disease, as ROS are produced by leukocytes during the inflammatory 
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response and contribute to periodontal tissue destruction [251].  Indeed, increased levels of 

oxidative damage are associated with periodontal disease [252, 253]. 

Figure 45. Regional Association Plot of rs73199539 

rs2860805 (p = 5.6E-6, β = -0.22 [-0.32, -0.13]) is located near a handful of genes with 

no known role in dental or oral health (Figure 46).  NUDCD2, the function of which is unknown, 

is located approximately 400 kb downstream of this SNP.  HMMR and HMMR-AS1 are located 

approximately 350 upstream of this SNP; HMMR, hyaluronan mediated motility receptor, is 

involved in formation of the mitotic spindle [254] and is implicated in various cancer types, 

especially breast cancer [255-257].  MAT2B, approximately 300 kb upstream of the index SNP, 

is involved in methionine metabolism, a process implicated by the results in COHRA and the 

whites-only meta-analysis for functional dentition.  MAT2B encodes the beta subunit of 
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methionine adenosyltransferase, which catalyzes the production of S-adenosylmethionine from 

methionine and ATP [258].  It is unclear how variation within this genomic region may influence 

dental health and tooth loss. 

Figure 46. Regional Association Plot of rs2860805 

rs12297548 (p = 4.7e−06, β = 0.36 [0.21, 0.51]) is located just upstream of GPR133 

(Figure 47), an adhesion G protein-coupled receptor that functions in the Gs protein/adenylyl 

cyclase pathway [259].  While the role of this G-protein receptor in dental or oral health is 

unknown, G-protein signaling, adenylyl cyclases, and cAMP signaling may be important in tooth 

loss as cAMP signaling may play a role in periodontal homeostasis and immune response, as 

discussed previously. 
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Figure 47. Regional Association Plot of rs12297548 

rs73104494 (p = 5.98e−06, β = 0.23 [0.13, 0.33]) is located approximately 100 kb 

upstream of ROBO2 (Figure 48), which was implicated in a GWAS of chronic periodontitis, also 

at suggestive significance (p = 2.64E-6) [67].  ROBO2 functions in axon guidance during neural 

development, as well as cell migration [260], though it is unknown how Robo proteins may 

affect dental or oral health. 
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Figure 48. Regional Association Plot of rs73104494 

rs10812719 (p = 8.48e−06, β = -0.19 [-0.28, -0.11]) is intronic to KIAA0020, also known 

as PUM3 (Figure 49).  This index SNP is in high LD with rs2270888 (r2 = 0.96) and rs7036752 

(r2 = 0.95), both of which are missense variants; however, it is unknown how these missense 

variants affect PUM3 gene function, or how PUM3 may affect dental health. 

http://archive.broadinstitute.org/mammals/haploreg/detail_v4.1.php?query=&id=rs2270888
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Figure 49. Regional Association Plot of rs10812719 

Other SNPs reaching suggestive significance were not located near genes relevant to 

dental or oral health (Figure 50). 
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Figure 50. Regional Association Plots for other suggestively significant hits for the quantitative trait in 
COHRA

 
LD information was not available for all plots.  For rs5966776 annotation of imputed vs. genotyped variants is 

reversed. 
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A.2 COHRA – FUNCTIONAL DENTITION

rs72673432 (p = 8.61E-7, OR = 4.09, 95% CI: [2.34, 7.18]) is intronic to ANK2 (Figure 51), 

which encodes an ankyrin protein.  Ankyrin proteins are known to be involved in ion transport 

and ion channel function, and mutations in ANK2 cause ankyrin-B syndrome, which is 

characterized by a cardiac arrhythmias and sudden death [261].  No known role in dental and 

oral health has yet been established.  This genomic region also contains several mRNAs, though 

none have been studied in dental and oral health. 

Figure 51. Regional Association Plot of rs72673432 

rs7717485 (p = 1.58E-6, OR = 8.19, 95% CI: [3.47, 19.31]) is intronic to CDH14 (Figure 

52), which encodes a type II class cadherin molecule expressed in the central nervous system and 
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is possibly involved in regulating neural development [262], though it has no known role in 

dental health. 

Figure 52. Regional Association Plot of rs7717485 

rs7624909 (p = 2.47E-6, OR = 5.29, 95% CI: [2.64, 10.57]) is located just downstream of 

ADAMTS9 (Figure 53).  The ADAMTS family of proteins, which are expressed in the 

extracellular matrix (ECM) and interact with ECM proteins, are involved in neural crest 

formation and craniofacial morphogenesis, and ADAMTS9 may influence cell proliferation by 

controlling ECM composition in cells derived from the neural crest [263]. Adamts9 is expressed 

in the developing tooth socket of mice as well as the tooth itself, indicating a possible role in 

tooth development [232].  This signal is also approximately 220 kb upstream of PRICKLE2, a 

planar cell polarity protein with a role in amelogenesis [231]; PRICKLE2 is expressed in 
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secretory ameloblasts, and expression was correlated with sites of ameloblast proliferation and 

differentiation in rats.     

Figure 53. Regional Association Plot of rs7624909 

rs76798443 (p = 2.51E-6, OR = 4.49, 95% CI: [2.4, 8.38]; Figure 54) corresponds to the 

same signal near MKI67 seen the quantitative trait (Figure 43).  Interestingly, this was the only 

signal in common between both traits at p < 10-5.     
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Figure 54. Regional Association Plot of rs76798443 

chr14:74029866 (p = 2.51E-6, OR = 4.49, 95% CI: [2.4, 8.38]) is located near a cluster of 

ACOT genes (Figure 55), though these have no known role in dental health.  However, this SNP 

is located approximately 100 kb upstream of NUMB, which is critical in determining cell fate 

during development and is part of Notch and Hedgehog signaling pathways [264].  NUMB 

isoforms are differentially expressed in odontogenic cells, and overexpression of NUMB in 

ameloblasts inhibited Notch and downregulated Hedgehog proteins, indicating that NUMB may 

regulate ameloblast differentiation through these interactions [235].  In addition to NUMB, this 

signal is also 250 kb downstream of PAPLN, an ECM glycoprotein, which was found to be 

differentially expressed in the developing mouse molar tooth, specifically in ameloblasts [204].   
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Figure 55. Regional Association Plot of chr14:74029866 

rs76944100 (p = 9.11E-6, OR = 3.78, 95% CI: [2.10, 6.81]) is located approximately 250 

kb upstream of EFR3A and 400 kb downstream of OC90 (Figure 56), which were implicated in a 

GWAS of dental caries in the primary dentition at suggestive significance (p = 9.8E-6) [63]. 
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Figure 56. Regional Association Plot of rs76944100 

Other associations seen at suggestive significance were not located near genes relevant to 

dental or oral health (Figure 57). 
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Figure 57. Regional Association Plots for other suggestively significant hits for functional dentition in 
COHRA 

For rs1090071 annotation of imputed vs. genotyped variants is reversed, and the plot covers a larger genomic region 
due to their being no genes within 500 kb on either side of the index SNP.  

A.3 POFC-G – QUANTITATIVE TRAIT

A handful of SNPs associated with the quantitative trait at suggestive significance were located 

near genes relevant to dental and oral health (Figure 58).  rs139066701 (p = 1.5E-6) corresponds 

to a region also implicated in the Hispanics-only meta-analysis, which is intronic to CTAGE5 

and located near SEC23A.  While the role of CTAGE5 in dental health is currently unknown, 

SEC23A is targeted by TFII-I transcription factors, which are deleted in Williams Syndrome, 

features of which include dental and craniofacial anomalies [201].  rs3908116 (p = 2.6E-6) 
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corresponds to NRXN1, which remained significant in the final trans-ethnic meta-analysis.  

rs74410908 (p = 5.9E-6) is intronic to APOB, and levels of apoB in GCF fluid were higher at 

diseased sites and decreased after periodontal therapy [265].  rs13057386 (p = 7.24E-6) is 

intronic to MPPED1.  This region is approximately 400 kb upstream of rs4823141, which was 

implicated in COHRA only, located near EFCAB6, MPPED1, and SCUBE1, all with possible 

roles in dental and oral health.  Lastly, rs7100483 (p = 8.5E-6) is located approximately 350 kb 

upstream of CDH23, mutations of which have been implicated in selective mandibular incisor 

agenesis [237]. 
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Figure 58. Regional Association Plots for suggestively significant hits in POFC-G for the quantitative trait 

A.4 POFC-G – FUNCTIONAL DENTITION

There were several suggestively significant associations relevant to dental and oral health 

observed in POFC-G for functional dentition that were not seen at other points in the analysis 

(Figure 59).  rs3276 (p = 1.4E-7) is located near several genes with potential roles in dental and 

oral health.  This index SNP is in the 3’UTR of IGFBP5 and is also just downstream of IGFBP2. 

Both of these genes encode insulin like growth factor binding proteins and are differentially 

expressed during tooth development [266] and during the differentiation of dental pulp cells 

[267], and IGFBP2 may regulate differentiation of dental pulp cells.  IGFBP2 levels in gingival 
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crevicular fluid are also correlated with periodontal disease parameters [268].  IGFBP5 levels are 

decreased in diseased periodontal tissues, and expression improved periodontal tissue 

regeneration and decreased inflammation in an animal model [269].  IGFBP5 was also found to 

be downregulated in PDL cells in response to mechanical force [270].  Also in this region is 

TNP1 (approximately 200 kb upstream of rs3276), which was implicated in a GWAS of 

permanent tooth eruption (p = 2.16E-14) [271].  Lastly, mutations of SMARCAL1 (approximately 

200 kb upstream) cause Schimke Immuno-osseous Dysplasia, features of which include defects 

of tooth development, such as microdontia, hypodotia, and abnormally shaped molar teeth 

[272]. 

rs35005031 (p = 7.6E-7) is intronic to AGTR1, which may be involved in periodontal 

inflammation through the regulation of IL-6 and IL-1β [273].  This SNP is also located 

approximately 400 kb upstream of HSP3; mutations in HPS3 are a cause of Hermansky-Pudlak 

Syndrome, manifestations of which include bleeding diathesis, especially gingival bleeding and 

excessive bleeding after tooth extraction [274].  Also in this region is CP, located approximately 

450 kb upstream of the index SNP.  CP encodes the protein ceruloplasmin, which binds copper 

in plasma; increased levels of ceruloplasmin is associated with periodontitis [275, 276].  

rs79982195 (p = 8.3E-7) is intronic to MPPED2, has previously been associated with 

dental caries in whites  [59, 63, 126]; this gene may play a role in periodontal pathogen 

colonization [277].  rs12542122 (p = 4.9E-6) is intronic to SULF1, a heparan sulfate 

endosulfatase that is differentially expressed during tooth development, and Sulf1/Sulf2 double 

knockout mice show defects in tooth morphology (dentin hypoplasia and short tooth roots) [278].  
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Figure 59. Regional Association Plots for suggestively significant hits in POFC-G for functional dentition 

LD information was not available for all plots 
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Several other suggestively significant signals corresponded to those seen in the 

Hispanics-only meta-analysis (Figure 60).  rs139066701, located near CTAGE5 and SEC23A, 

was again a significant hit (p = 6.9E-8).  rs137949125 (p = 2.1E-7) corresponds to the same 

signal seen in the Hispanics meta-analysis near SGK1, which is part of an anti-inflammatory 

pathway that inhibits Toll-like receptor mediated inflammation [195].  rs139769216 (p = 4.7E-6) 

is the same SNP implicated in the Hispanics meta-analysis near RAF1, which is important for 

tooth development [189, 190].  rs8009351 (p = 6.4E-6) was also a hit for the Hispanics-only 

meta-analysis; this SNP is located near PAX9, a major gene implicated in tooth agenesis [85], 

and NKX2-1, which is involved in tooth development as knockout mice show defects in tooth 

morphology [200]. 
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Figure 60. Regional Association Plots for other suggestively significant hits in POFC-G for 
functional dentition 
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APPENDIX B: META-ANALYSIS RESULTS 

Other regions of the genome implicated in the meta-analyses are described in this section, 

including their Regional Association Plots. 

B.1 WHITES-ONLY META-ANALYSIS RESULTS – QUANTITATIVE TRAIT

rs9750906 (p = 1.77E-06) showed evidence of association in both COHRA and DRDR (p = 

4.8E-05 and 0.01, respectively).  However, this corresponds to a genomic region containing only 

an uncharacterized genomic element (LOC101927907) and LRRTM4, which has no known role 

in dental health and is located approximately 200 kb downstream of this signal (Figure 61). 
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Figure 61. Regional Association Plot of rs9750906 

rs11704818 (p = 6.7E-6) approximately 600 kb upstream of FAM195A (Figure 62), 

which may play a role in immune response and inflammation, as it is a chemokine that can 

activate macrophages and stimulate their migration, though it is supposedly a brain-specific 

chemokine [279].  Without information on the expression of FAM195A in oral tissues it is 

unclear whether it may play a role in periodontal inflammation and tooth loss. 
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Figure 62. Regional Association Plot of rs11704818 

Squares and circles indicate imputed and genotyped variants, respectively. 

rs77332164 (p = 7.6E-6) is located just upstream of ADCYAP1R1 (Figure 63), an 

adenylate cyclase activating polypeptide receptor.  While this gene has not been studied in dental 

and oral health, it is yet another hit for genes that interact with adenyl cyclases and potentially 

cAMP signaling, processes that are implicated in periodontal disease.  This index SNP also lies 

just downstream of AQP1, which encodes aquaporin 1, a transmembrane water channel protein 

[280].  During tooth development, AQP1 is expressed specifically in endothelial cells of 

capillary vessels of developing dental tissues [236], and increased levels of AQP1 in gingival 

tissue are positively correlated with the severity of periodontal disease [281].  AQP1 may also be  

involved in periodontal tissue remodeling in response to experimental tooth movement [282] and 

in mechanoreception in the PDL [283]. 
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Figure 63. Regional Association Plot of rs77332164 

Squares and circles indicate imputed and genotyped variants, respectively. 

B.2 WHITES-ONLY META-ANALYSIS RESULTS – FUNCTIONAL DENTITION

rs13081582, the second  most significant SNP (p = 2.4E-6), has a broad association signal 

extending over 500 kb due to extended LD (Figure 64).  However, this is also a gene desert, 

containing only one long intergenic noncoding RNA.  There is no supporting evidence that this 

region is involved in tooth loss. 
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Figure 64. Regional Association Plot of rs13081582 

rs1090071 (p = 6.8E-6) is located in a gene desert on chromosome 6 (Figure 65).  The 

nearest gene downstream of this signal is CASC6, cancer susceptibility 6, whose function is 

relatively unknown.  Upstream of this signal is EPHA7, which was implicated in a GWAS of 

dental caries in the primary dentition [59].  However, this signal is located approximately 1 

million BP downstream of EPHA7 and is therefore unlikely to affect EPHA7 expression or 

function.  At this time it is unknown how variation within this region may influence oral health 

and tooth loss. 
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Figure 65. Regional Association Plot of rs1090071 

rs875142 (p = 8.5E-6) is intronic to PAQR8 (Figure 66).  There is no known role of 

PAQR8 in oral health, but this SNP is also located about 100 kb upstream of IL17F, interleukin 

17F.  IL-17F can promote inflammatory cytokines production through nuclear factor-kappa beta 

(NF-κB) signaling, and expression of IL-17F mRNA is higher in gingival tissue affected by 

periodontitis compared to controls [284].  Il17f knockout mice show more inflammatory activity 

and a greater susceptibility to alveolar bone loss following infection by P. gingivalis, and IL-

17F levels were higher in gingival crevicular fluid of controls compared to periodontitis patients 

[285].  These findings indicate that proper expression and function of IL-17F may contribute to 

the pathogenesis of periodontal disease, most likely because of its inflammatory activity.  This 

region also contains IL17A, which is similarly implicated in periodontitis [284] and 
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polymorphisms of IL17A have been associated with periodontal disease [286, 287]. However, 

this region is less likely to have an effect on IL17A as it is located upstream of rs875142, 

compared to IL17F, which is just downstream of rs875142. 

Figure 66. Regional Association Plot of rs875142 

As with the quantitative trait, there were several top hits in this meta analysis of 

functional dentition whose statistical significance were mainly driven by the association in 

COHRA and were not significant in DRDR (Figure 67).  These include rs72673432 near in 

ANK2 (pmeta = 4.7E-6, pCOHRA = 8.6E-7, pDRDR = 0.72), rs55705802 near NUMB (pmeta = 5.9E-6, 

pCOHRA = 1.4E-5, pDRDR = 0.15), and rs600411 (not discussed) (pmeta = 8.8E-6, pCOHRA = 4.2-5, 

pDRDR = 0.08).  
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Figure 67. Regional Association Plots of rs72673432, rs55705802, and rs600411 

For rs55705802, annotation of imputed vs. genotyped variants is reversed 

B.3 HISPANICS-ONLY META-ANALYSIS RESULTS – QUANTITATIVE TRAIT

Regional Association plots of regions that do not contain genes with clear biological roles in 

dental or oral health are included below (Figure 68.)  Descriptions of these regions are included 

in the table of results in the Results section. 
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Figure 68. Regional Association Plots of other suggestive significant hits for the quantitative trait in 
the Hispanics-only meta-analysis 
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B.4 HISPANICS-ONLY META-ANALYSIS RESULTS – FUNCTIONAL DENTITION

Regional Association plots of regions that do not contain genes with clear biological roles in 

dental or oral health are included below (Figure 69.)  Descriptions of these regions are included 

in the table of results in the Results section. 
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Figure 69. Regional Association Plots of other suggestive significant hits for functional dentition in 
the Hispanics-only meta-analysis

  
LD information was not available for all plots. 
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B.5 TRANS-ETHNIC META-ANALYSIS RESULTS –QUANTITATIVE TRAIT

rs764629 (p = 6.0E-6) is located near several uncharacterized genomic elements and a handful of 

genes with no known role in dental or oral health (Figure 70).  This signal is ~300 kb 

downstream of the transcription start site of PLK2, which is involved in embryonic growth, 

skeletal development, and cell cycle progression [288].  The nearest gene this signal is upstream 

of is GAPT, GRB2 binding adaptor protein, also approximately 300 kb away.  The function of 

GAPT is largely uncharacterized, though GAPT is known to be largely expressed in B cells and 

may be involved in B cell activation and antibody production [289]. 

Figure 70. Regional Association Plot of rs764629 

For all plots in the trans-ethic meta-analysis, LD information was not included on the plot as it represents a mixed 
sample, and annotation of imputed vs. genotypes variants was based on COHRA and DRDR. 
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rs2860807 (p = 7.9E-6; Figure 71) corresponds to the same signal seen in COHRA for 

the quantitative trait near NUDCD2, HMMR, HMMR-AS1, and MAT2B, which is the most 

interesting gene as it is involved in methionine synthesis, which was implicated in tooth loss by 

the association seen near MTRR. 

Figure 71. Regional Association Plot of rs2860807 

 rs10062700 (p = 8.3E-6) is the same signal seen in the whites-only meta-analysis near 

FBN2 (Figure 72), which forms microfibrils in connective tissue ECM and is synthesized in the 

PDL to provide structural stability and maintain homeostasis [67-72].  The function and existing 

evidence of FBN2 activity in the PDL corroborates the increasing statistical evidence that this 

genomic region may influence missing teeth. 
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Figure 72. Regional Association Plot of rs10062700 

rs72488321 (p = 8.5E-6) lies approximately 200 kb upstream of LRRTM4 (Figure 73), 

leucine rich repeat transmembrane neuronal 4, which has no known role in dental or oral health. 

LRRTM4 is an excitatory postsynaptic protein, and knockout mice show defects in excitatory 

synapse formation and function in the brain [290].  There is no existing biological evidence that 

this genomic region may influence missing teeth. 
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Figure 73. Regional Association Plot of rs72488321 

rs6663322 (p = 9.8E-6) is intronic to DDX59 (Figure 74), DEAD-box helicase 59, which 

is an RNA helicase involved in RNA metabolism [291].  Mutations in DDX59 are associated 

with oral-facial-digital syndrome, manifestations of which include dental anomalies such as 

hypodontia and extramandibular tooth buds [238].  Additionally, impaired Shh signaling has 

been implicated in affected families with DDX59 mutations [291].  Also in this region is 

CACNA1S and TMEM9, which were previously identified in a GWAS of permanent tooth 

eruption [271], albeit in a different genomic position.  Timing of permanent tooth eruption may 

influence missing teeth, as early eruption increases exposure to dental caries and has implications 

for periodontal disease and malocclusion. 
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Figure 74. Regional Association Plot of rs6663322 

B.6 TRANS-ETHNIC META-ANALYSIS RESULTS – FUNCTIONAL DENTITION

rs4575613 (p = 1.3E-6) is intronic to ZNF521 (Figure 75), zinc finger protein 521.  This 

association is largely driven by its significance in COHRA (p = 5.5E-7), as it is only nominally 

significant in POFC-G (p = 0.058) and POFC-PA (p = 0.022) and is not significant in DRDR (p 

= 0.57.)  Zfp521, the protein product of ZNF521, regulates lineage commitment of cell types 

during development and mediates osteoblast over adipocyte differentiation induced by BMP2 in 

mesenchymal cells [292].  However, Zfp521 has not been studied in tooth development and it is 

unknown how this protein may affect dental and oral health.  
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Figure 75. Regional Association Plot of rs4575613 

rs674271 (p = 3.0E-6) is intronic to MGC27382 (Figure 76), an uncharacterized non-

coding RNA.  It has been found to be upregulated in colorectal cancer stem cells positive for 

CD133, a biomarker of tumor initiating cells, versus those negative for CD133 [293], and it was 

implicated in a GWAS of body-mass index in women adjusted for physical activity (p = 6.4E-11) 

[294].  This region also contains several other genes, those most likely to be affected by the 

associated SNPs based on proximity being PTGFR and FUBP1, but none are relevant to dental 

and oral health; it is unknown how this region of the genome may affect missing teeth.    
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Figure 76. Regional Association Plot of rs674271 

rs28734985 (p = 8.4E-6) is located just upstream of IPMK (Figure 77), inositol 

polyphosphate multikinase.  It has been shown that IPMK stabilizes TRAF6, tumor necrosis 

factor receptor-associated factor 6, which is a key mediator of Toll-like receptor (TLR) signaling 

[295].  Deletion of IPMK in mice macrophages resulted in a decrease in TLR signaling and 

subsequent inflammatory response, including pro-inflammatory cytokine production; these mice 

were also resistant to bacterial infection [295].  While IPMK has not been studied in periodontal 

disease, its regulatory role in TLR signaling makes it a plausible candidate for tooth loss due to 

periodontitis, as TLR signaling is a key inflammatory pathway implicated in the pathogenesis of 

periodontal disease [180, 195].  
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Figure 77. Regional Association Plot of rs28734985 
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APPENDIX C: RESULTS IN POFC-USA 

All results in POFC-USA are included in this appendix section since spot-checking of significant 

associations did not add to the weight of evidence that discovered variants are associated with 

missing teeth and functional dentition. 

C.1 COVARIATE MODELING

For POFC-USA, sample characteristics and trait distributions are shown in Table 19, and p-

values for the test of association between demographic variables and both missing teeth traits are 

shown in Table 20.  As with COHRA, the sample size in these results is greater than that of the 

GWAS, as some individuals did not have genotype information available but were included in 

initial trait development and covariate modeling.  Only education (p = 0.016) and age (p = 

9.19E-8) were significantly associated with the quantitative trait, and only age (p = 1.28E-5) was 

associated with functional dentition.  Plots of the first 4 PCs of genetic ancestry are shown in 

Figure 78.  Three PCs were sufficient to pull out each ancestry group, and the fourth no longer 

distinguished between them.    
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Table 19. Study characteristics and trait distribution in POFC-USA 

Variable Value Count (%)/ 
Mean (SD) 

Functional 
Dentition 

Yes 199 (92.1%) 
No 17 (7.9%) 

Total Missing 
Teeth 

0.75 (0.92) 

Age 36.2 (11.1) 
Sex Male 80 (36.7%) 

Female 138 (63.3%) 
Education* High School, GED, or 

lower 
82 (42.5%) 

Tech School, Associate 
degree 

35 (18.1%) 

Undergrad or higher 76 (39.4%) 
Site Colorado 27 (12.4%) 

Pittsburgh 136 (62.4%) 
Puerto Rico 47 (21.6%) 
Texas 8 (3.7%) 

Race* White 155 (88.6%) 
Black 11 (6.3%) 
Asian 1 (0.6%) 
Other 7 (4%) 
Caucasian & Native 
American 

1 (0.6%) 

Ethnicity Non-Hispanic 151 (69.6%) 
Hispanic 66 (30.4%) 

Categorical covariates show counts and percents, and continuous variables show means and standard deviations. 
*Total number of individuals is lower for race and education than other covariates due to missing data.
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Table 20. Association of Covariates with Missing Teeth Traits in POFC-USA 

Variable Quantitative Trait Functional Dentition 
P Beta (SE)  P Beta (SE) 

Age 9.19E-8 0.03 (0.005) 1.28E-5 0.087 (0.02) 
Sex 0.68 0.05 (0.13) 0.24 0.70 (0.59) 
Education 0.016 -0.18 (0.07) 0.13 -0.46 (0.30)
Site 0.46 0.14 (0.19) 0.65 0.36 (0.79) 
Race 0.36 0.05 (0.05) 0.14 0.18 (0.12) 
Ethnicity 0.29 0.14 (0.14) 0.11 -1.23 (0.77)
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Figure 78. PCA plots of PC1-4 in POFC-USA 

Circles and triangles represent non-Hispanic and Hispanic ethnicity, respectively.  Black coloring represents white 
ancestry, pink African American, and blue Asian.  Rectangles indicate 1, 2, and 3 standard deviations as calculated 

from the self-reported whites only, and yellow circle represents the mean.  

C.2 GWAS-RESULTS

For POFC-USA, GWAS was performed in 192 individuals for whom genotype information was 

available.  A minor allele frequency threshold of MAF > 0.09 was chosen as GWA scans at 

MAF > 0.03 did not appear well-behaved.  At MAF > 0.03, the quantitative trait showed 

inflation (λ = 1.02), especially on the QQ plot, as observed p-values begin to deviate from the 

expected p-values just after –log10(p) = 2; functional dentition showed deflation (λ = 0.91) and 

was exceptionally low powered as only 17 individuals lacked a functional dentition.  Manhattan 

and QQ-plots for MAF > 0.09 are shown in Figures 79-80 for both phenotypes.  As with DRDR 

and POFC-PA, the results of this GWA scan were not annotated due to the small sample size and 

lack of genome-wide significant hits.  At MAF > 0.09, genomic inflation factor was λ = 0.97 and 
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λ = 0.92 for the quantitative trait and functional dentition, respectively, both of which indicate 

deflation.  Additionally, the observed p-values depart from expectations at the lower tail of the 

distribution.  As both GWA scans show these departures from expectations, this indicates that 

the test statistics are not behaving well at the genome scale.  Therefore, POFC-USA was not used 

for gene discovery and was not included in the meta-analysis; it was only used to check 

significant associations seen in the meta-analyses. 
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Figure 79. Manhattan and QQ plots for the quantitative trait in POFC-USA at MAF > 0.09 
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Figure 80. Manhattan and QQ plots for functional dentition in POFC-USA at MAF > 0.09 
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C.3 SPOT-CHECKING OF ASSOCIATIONS FROM OTHER ANALYSES

No SNPs from the whites-only meta-analysis or the trans-ethnic meta-analysis were significant 

in POFC-USA at α = 0.05 (Tables 21-24).  However, two SNPs had p < 0.10 and would have 

lowered the p-value of the variants in the meta-analysis as they were both directionally 

concordant with the meta-analysis SNPs (p < 0.10).  This is denoted in the tables. 

Table 21. Association of the top hits for the whites-only meta-analysis of the quantitative trait in POFC-USA 

SNP CHR BP Pmeta PPOFC-USA BETA N MAF 

rs9750906 2 76804252 1.77E-06 0.2174 -0.5023 186 0.23 

rs3797113 5 10695026 7.04E-06 0.7326 -0.2181 192 0.08 

rs79950078 5 29703754 9.19E-06 0.3692 -0.6881 194 0.05 

rs9918187 5 96531684 7.67E-06 0.7838 0.1065 186 0.33 

rs10062700 5 128180057 6.42E-06 0.2113 0.464 194 0.34 

rs2860805 5 163265408 8.78E-06 0.8489 0.0868 192 0.27 

rs56345510 6 99599021 5.95E-06 0.08327 0.6543 191 0.32 

rs78472857 10 131481707 1.25E-06 0.8539 -0.1127 177 0.12 

rs4444411 18 27622307 6.18E-06 0.172 -0.903 193 0.09 

rs73199539 21 32938208 6.75E-07 0.7951 -0.2589 186 0.03 

rs7061889 23 22719993 1.52E-06 0.3552 -0.3728 181 0.18 

Bolded text denoted SNPs with PPOFC-USA < 0.10 
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Table 22. Association of the top hits for the whites-only meta-analysis of functional dentition in POFC-USA 

SNP CHR BP Pmeta PPOFC-USA OR N MAF 

rs600411 1 61355371 8.83E-6 0.6084 0.578 190 0.05 

rs1455837 2 219912758 4.62E-6 0.7425 1.15 192 0.38 

rs3930612 2 50896945 4.25E-6 0.2465 0.4074 179 0.20 

rs13081582 3 94495036 2.43E-6 0.2266 0.543 182 0.42 

rs6898589 5 7961941 4.10E-8 0.3186 1.718 188 0.18 

rs875142 6 52228225 8.49E-6 0.6351 0.8057 187 0.29 

rs1090071 6 93112404 6.83E-6 0.3015 1.548 194 0.30 

Table 23. Association of the top hits for the trans-ethnic meta-analysis the quantitative trait in POFC-USA 

SNP CHR BP Pmeta PPOFC-USA BETA N MAF 

rs6663322 1 200649869 9.79E-06 0.5998 -0.1919 194 0.45 

rs72488321 2 76805700 8.55E-06 0.1978 -0.5701 187 0.19 

rs764629 5 57455043 5.97E-06 0.9678 -0.01472 193 0.35 

rs10062700 5 128180057 8.34E-06 0.2113 0.464 194 0.34 

rs2860807 5 163265540 7.92E-06 0.9226 0.04375 191 0.27 

rs4569988 6 123862050 6.68E-06 0.492 -0.2444 191 0.48 

rs2532011 16 4130204 4.16E-06 0.8799 -0.05504 192 0.34 

rs17208994 22 19373861 9.85E-06 0.3576 -0.7355 194 0.05 
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Table 24. Association of the top hits for the trans-ethnic meta-analysis of functional dentition in POFC-USA 

SNP CHR BP Pmeta PPOFC-USA Effect 
Direction 

N MAF 

rs674271 1 78712402 3.01E-06 0.3204 - 192 0.21 

rs3930612 2 50896945 3.34E-06 0.2465 - 179 0.20 

rs10963759 9 18787638 8.32E-06 0.8685 - 190 0.27 

rs28734985 10 60084051 8.39E-06 0.06653 + 191 0.07 

rs4575613 18 22697408 1.31E-06 0.5456 - 191 0.45 

Bolded text denoted SNPs with PPOFC-USA < 0.10 
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