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Long non-coding RNAs (lncRNAs) can serve as promising biomarkers and therapeutic targets in 

cancer. However, their roles in regulating cancer drug response have not gained much momentum.  

By integrating multiple dimensional pharmacogenomic data of 11,950 lncRNAs in 5,605 

tumors and 1,005 cancer cell lines, I first investigated how the cancer cell lines can recapitulate 

the genomic and epigenetic alterations of lncRNAs in primary tumor patients. Next, I built 

lncRNA-drug response models for 265 anti-cancer agents across 27 cancer types based on Elastic 

Net (EN) regression and bootstrap aggregation. This analysis identified a landscape of 162,327 

lncRNA-drug interactions, yielding more than 1,000 lncRNA-based EN drug response prediction 

(LENP) models in pan-cancer and cancer-specific scales. The LENP models are further applied 

for 49 FDA approved drugs to TCGA patient samples from 21 cancer types. A multivariate cox 

regression is implemented to show that cancer cell line derived LENP models could predict the 

therapeutic outcome in patients with stomach, thyroid, breast, and colorectal cancer. To extend the 

knowledge of how lncRNAs regulate the drug resistance in cancer, I designed an lncRNA-pathway 

co-expression analysis and suggested that lncRNAs could regulate drug response through drug-

metabolism or drug-target pathways. Finally, I conducted the RNA-seq analysis and 

experimentally validated that EPIC1, the top predictive lncRNA for the BET inhibitors, strongly 

promotes iBET762 and JQ-1 resistance in breast cancer through activating MYC transcriptional 

activity. 

Systematic Identification of Non-coding Pharmacogenomic Interactions in Cancer 

Yue Wang, M.S. 

University of Pittsburgh, 2018
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To our best knowledge, this thesis represents the first large-scale systematic study to link 

noncoding genotypes with drug response phenotypes in both cancer cell lines and primary tumors. 

The landscape of lncRNA-drug interactions should serve as a comprehensive knowledgebase for 

the identification of non-coding biomarkers for cancer precision therapy. 
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1.0  INTRODUCTION 

Heterogeneous response to cancer therapies between individuals has been largely attributed 

to genetic difference of tumor cells[1]. Using cell-line based panels annotated with 

pharmacogenomic data, efforts on protein coding genes have led to many insightful discoveries[2], 

as well as new questions: few new biomarkers and drivers were identified to fully explain the 

complicated process that regulates drug resistance in cancer[3, 4].  

Emerging evidence from large-scale studies, such as the Encyclopedia of DNA Elements 

(ENCODE), suggest that up to 80% of the human genome is capable of being transcribed into 

primary RNA transcripts, but the majority of them are non-coding genes that do not encode protein 

products. One big class of these non-coding genes is the long non-coding RNAs (lncRNAs) [5, 6]. 

Due to the dearth of genomics/epigenetic platforms covering the non-coding region of the human 

genome, lncRNAs’ role in cancer drug response has not gained much momentum. This thesis 

would integrate the pharmacogenomics data from both primary tumor and cancer cells to 

investigate how lncRNAs would mechanistically regulate anti-cancer drug response. Using a 

machine-learning based approach that is pure data-driven, this study would present a proof of 

principle for using non-coding genotypes in cancer precision medicine. 
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1.1 REVIEW ON LNCRNA AND CANCER BIOLOGY 

1.1.1 Theory of carcinogenesis 

In the year 2000, Hanahan and Weinberg proposed the concept of cancer hallmarks, which forms 

the very fundamental principle of the transformation from normal cells to the malignant[7]. During 

the past decades, a remarkable progress towards the understanding of the cancer has expanded our 

knowledge to this disease. As a result, the number of cancer hallmarks are further expanded to ten, 

and this number keeps increasing along the accumulated studies in carcinogenesis and cancer 

therapies[8]. 

Tumor formation is a multistep process. To become tumorigenic, a normal cell need to 

acquire particular capacities and evolve progressively to a neoplastic stage. These basic but distinct 

hallmarks include:  

(1) Sustaining proliferative signaling; 

(2) Deregulating cellular energetics; 

(3) Resisting cell death;  

(4) Genome instability and mutations; 

(5) Inducing angiogenesis;  

(6) Enabling replicative immortality;  

(7) Activating invasion and metastasis;  

(8) Tumor-promoting inflammation; 

(9) Evading growth suppressors; 

(10) Avoiding immune destruction. 
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Drugs that could inhibit or interfere with these cancer hallmarks have been rapidly 

developed in past few years, and some of them have already been approved or in clinical trials as 

promising treatments for various types of human cancer. 

1.1.2 Definition of long non-coding RNAs (lncRNAs) 

Non-coding RNAs are transcripts that can not be translated into proteins. Those non-coding RNAs 

that are longer than 200 nucleotides are defined as lncRNAs[9]. According to their genomic 

location, lncRNAs are classified as stand-alone lncRNAs, natural antisense transcripts, long 

intergenic ncRNAs, divergent and promoter-associated transcripts, as well as pseudogenes[10]. 

Many studies have demonstrated that lncRNAs have an approximately 10-fold lower 

abundance than mRNAs in cell populations[11, 12]. This could be explained by the high 

expression variation of lncRNAs between individual cells. In case of the protein coding genes, this 

variation might be lower[13]. On the other hand, about 78% of the lncRNAs are found to be tissue-

specific. This percentage is much higher than that of mRNAs, which is around 20%. In general, 

lncRNAs are mostly located and transcribed in intergenic regions of the genome, but the majority 

of them are transcribed under very complex networks, which may overlap with both sense and 

antisense transcripts, and sometimes even cover part of the protein-coding genes[14]. 

Next generation sequencing studies indicated the huge amount of lncRNAs existing in 

eukaryotes and prokaryotes. However, despite the accumulation of evidences suggesting the 

functional roles of lncRNAs[15, 16], only a very small proportion of them has been clearly 

validated in experiments. By the end of the year 2017, according to the record of LncRNAWiki, 

only about ~1,000 human lncRNAs’ regulation function has been experimentally 

demonstrated[17]. 
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1.1.3 Mechanisms of action: regulation through lncRNAs 

Although lncRNAs do not encode protein, they can achieve their biological function by regulating 

the expression of other genes. There are growing number of evidences suggest that lncRNAs can 

employ one to several mechanisms of action that are described below[10]. 

LncRNAs in epigenetic regulation 

LncRNAs can recruit protein factors to regulate the chromatin states by either cis or trans-

action[18]. For example, studies have shown that HOTAIR can repress the transcription of HOXD 

in trans by interacting with PRC2, a chromatin-modifying complex[19]. In contrary, Xist, another 

well-known lncRNA, can recruit PRC2 in cis to the synthesis site and lead to the X chromosome 

inactivation[20]. 

In some cases, lncRNAs can also function as a scaffold on which different protein 

complexes can be assembled together. For instance, besides the interaction with PRC2, HOTAIR 

could also interact with the LSD1/CoREST/REST complex, which leads to the demethylation of 

histone H3K4 and hence repress the gene activation[21]. 

LncRNAs in transcriptional regulation 

LncRNAs could direct affect the transcription by decoying, co-regulating or inhibiting the 

RNA polymerase. For example, Gas5 could compete for the binding of transcription factor on 

glucocorticoid receptors, keeping away other glucocorticoid response elements[22]. SRA is an 

lncRNA coactivator of nuclear steroid receptors[23]. The co-activation mechanism via SRA could 

result in dramatic alterations of the downstream targets of these nuclear receptors[24]. Some 

lncRNAs transcribed from SINEs (a class of retrotransposons) may repress the transcript synthesis 
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by directly binding with RNA Pol II. The binding between these lncRNAs and RNA polymerase 

may prevent the formation of pre-initiation complexes that are essential to transcription[25, 26]. 

LncRNAs in post-transcriptional regulation 

In addition to the epigenetic and transcriptional regulation, lncRNAs could also participate 

in mRNA processing and stability regulation. As an example, MALAT1 could mediate the 

alternative splicing by interacting with the splicing factors[27]. On the other hand, transcripts in 

the cytoplasm could be regulated by factors that influence the RNA stability. More than 5% of 

human genes contain a set of AU-rich elements (AREs) in 3’-UTRs. This region could recruit 

RNA-binding proteins and lead to the destabilization of host transcripts[28]. Studies have found 

an antisense that is produced from the 3’-UTR of iNOS could interact with its sense counterpart 

and an ARE-binding factor. The interaction could contribute to the stability of transcripts that 

contain AREs[29]. 

LncRNAs in microRNA-mediated regulation 

Besides to the mechanisms introduced above, many studies have revealed that lncRNAs 

may interfere with mRNA destabilization mediated by microRNAs. A good example is BACE-AS 

(antisense transcript of the Alzheimer-associated β-secretase-1), which could increase mRNA 

stability of its sense counterpart through masking miR-485-5p binding sites[30, 31]. 

LncRNAs can also compete with microRNAs themselves in addition to competing with 

the binding sites. Some pseudogenes, such as PTENP1[32], have binding sites for microRNAs on 

3’-UTRs. These binding sites allow the pseudogenes to be sponges that could sequester the 

microRNAs away from their original targets.  
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LncRNAs can also be host genes for microRNAs. For instance, H19 is the host gene of 

miR-675[33]. The imprinted Gtl2, anti-Rtl1, and Mirg RNAs are also found to be microRNA host 

genes, which have covered approximately 50 microRNAs and 40 snoRNAs[34]. 

1.1.4 LncRNAs involved in cancer initiation and progression 

The association between lncRNAs and diseases have raised a growing interest, of which the most 

notable one is the cancer[35].  

LncRNAs can participate in the regulation of sustaining proliferative signaling. A recent 

study in prostate cancer discovered an lncRNA, PCAT-1, which promotes cell proliferation and is 

highly upregulated in some metastatic and high-grade localized prostate cancers[36].Several 

lncRNAs could also help tumor cells evading tumor growth suppressors. Researchers found ANRIL, 

an lncRNA that is highly expressed in several cancers, could directly interact with a subunit of 

PRC2 and recruits the complex to repress the expression of p15, a well-known tumor suppressor. 

They also found that the depletion of ANRIL could increase p15 expression and therefore inhibit 

the cell proliferation[37]. In addition, many studies revealed the regulation role of lncRNAs in 

activating invasion and metastasis. MALAT-1 is found to associate with metastasis and poor 

prognosis in early-stage non-small cell lung cancer[38]. This lncRNA is highly expressed in many 

human cells and is, interestingly, highly conserved across several species. Moreover, lncRNAs 

could also take part in preventing the tumor cells from cell death. PCGEM1 was identified as a 

prostate cancer-associated lncRNA that could potentially induce a delayed induction of p53 and 

p21 after being overexpressed[39].  
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Collectively, the above examples strongly emphasize the functional importance of 

lncRNAs in regulating the hallmarks of cancer, suggesting the great potential of lncRNAs to 

become robust diagnostic markers and therapeutic targets in cancer therapy. 

1.2 MULTI-DIMENSIONAL CANCER GENOMIC DATA SETS 

1.2.1 The Cancer Genome Atlas (TCGA) 

The Cancer Genome Atlas (TCGA) [40] is a dataset comprising 2.5 petabytes of multi-dimensional 

genomic and epigenetic data for more than 11,000 cancer patients across 33 cancer types. This 

publically available database has greatly facilitated the cancer research community for decades in 

understanding the cancer initiation, progression and therapeutics. 

On December 13, 2015, National Institutes of Health (NIH) launched the TCGA project to 

comprehensively explore the landscape of genomic alterations in human tumors. Since then, taking 

the advantage of the high-speed development of next generation sequencing techniques, scientists 

in TCGA research network have curated huge amount of data for patients involved in this project. 

These data include genomic data such as DNA-seq, RNA-seq, methylation, copy number 

alterations and SNPs, as well as clinical information such as survival, tumor residues, 

drug/immune response and other prognostic metrics. These data enabled both independent 

researchers and the TCGA research network to understand the association between individual or 

sets of genes and various cancer disease phenotypes. 

For example, the major type of ovarian cancer is the ovarian serous cystadenocarcinoma. 

Due to a lack of effective early detection and treatment, only 31% of patients are expected to live 
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for 5 years or more[41]. By performing in-depth analyses of the genomic and epigenetic alterations 

in high-grade ovarian serous cystadenocarcinoma, TCGA researchers successfully identified 

several druggable mutations with high presence in ovarian cancer patients. These mutations 

include TP53 mutation in 96% of the specimens, as well as BRCA1/2 mutated in 22% of the patient 

samples. In their study, they also successfully identified subtypes of ovarian cancer on different 

level, from the transcriptional to the transcriptional, that is associated with patient prognosis. 

Recent integrative studies using TCGA data have further demonstrate the effect of BRCA1/2 

mutations on ovarian cancer patients’ survival[42]. These studies on the TCGA ovarian cancer 

dataset have greatly expanded our knowledge about this fatal disease. 

1.2.2 Genomics of Drug Sensitivity in Cancer (GDSC) 

The GDSC database (www.cancerRxgene.org) is one of the largest open access resource for 

information on drug sensitivity and molecular markers of drug response in cancer cell lines. 

Currently, this database contains drug sensitivity data for approximately 75,000 experiments, 

covering the response profile of 256 anticancer drugs across more than 1,000 cancer cell lines. 

These 265 compounds include 48 clinical drugs, 76 drugs in clinical development and 141 

experimental compounds. 

One of the advantage of GDSC is that all of the cell line drug sensitivity data are integrated 

with large genomic datasets obtained from the Catalogue of Somatic Mutations in Cancer 

(COSMIC) [43]database. These genomic information includes information on somatic mutations 

in cancer genes, gene amplification and deletion, tissue type and transcriptional data. Connecting 

the genotypes with drug response phenotypes, the GDSC database have provided an unprecedented 

opportunity to facilitate the discovery of new biomarkers for cancer precision therapies. 
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1.2.3 Cancer Cell Lines Encyclopedia (CCLE) 

The Cancer Cell Line Encyclopedia (CCLE) [2] project is a compilation of gene expression, 

mutation and copy number alterations from 947 human cancer cell lines. Coupling with 

pharmacological profiles for 24 anticancer drugs across 479 of the cell lines, the CCLE database 

enabled the researchers to identify novel gene-expression-based predictors of drug resistance.  

Using multi-level pharmacogenomic information in CCLE, the researchers discovered a 

novel correlation between plasma cell lineage and IGF1 receptor inhibitors sensitivity. They also 

found a dramatic association between AHR expression and MEK inhibitor efficacy in NRAS-

mutant lines. These results, which came from the in silico analyses, were successfully validated in 

cell line experiments, indicating the great potential of CCLE in exploring novel therapeutic 

biomarkers in cancer drug development. 

1.3 MACHINE LEARNING FOR INTEGRATIVE OMICS DATA ANALYSIS 

1.3.1 Curse of dimensionality 

In quantitative research studies, ‘curse of dimensionality’, which was first introduced by Richard 

Bellman when he was solving optimization problems for a large-scale dataset in 1957, has always 

been an essential issue. In many computational problems (especially for optimization problems), 

when the dimension increases, the computing complexity would increase exponentially. Such 

increase would make these computing tasks unaccomplishable within life time, and the optimized 

solution is usually unachievable. 
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Besides the optimization problem, the high dimension also leads to another type of ‘curse’. 

In statistics, when estimating a kernel density function within given population, high dimensions 

would usually make the estimation function converge too slowly to approach the true solution. On 

the other hand, when applying hypothesis testing to high dimensional data, the resulting test 

statistics could be misleading for scientific interpretation. For example, in a real situation of 

genotype-phenotype association analysis where we have 20,000 genes, we would expect 20,000 * 

0.01 = 200 genes with p-value < 0.01 simply by chance. Such kind of false discovery will mask 

the true causal relationship, and will greatly increase the time and the cost for experimental and 

clinical validation. 

1.3.2 Strategies to reduce dimensions 

As more and more high-dimensional data are accumulated through modern techniques, the issue 

of ‘curse of dimensionality’ has gained growing attention. There are many widely used dimension 

reduction algorithms to reduce the redundant dimensions and thus facilitate large-scale data 

analysis. 

The most common and fundamental way to reduce dimension is principal component 

analysis (PCA) and singular value decomposition (SVD). These two technique would allow the 

high-dimensional data in Euclidean space to be projected to a low-dimensional orthogonal space. 

Features with similar sub-population structure will be very close to each other, giving us the 

information and the relationship among individual features in the original-dimension space. 

However, one drawback of these two algorithms is that, despite their efficiency in reducing the 

high-dimensional noise, they do not generate sparsity for the features. In other words, PCA and 



 11 

SVD would not help identifying the features (e.g. genes, SNPs) that are relevant to the phenotypes 

(e.g. disease progression, survival).  

Another similar approach is clustering. However, instead of decomposing the variance 

structure as PCA and SVD did, the clustering algorithms will take the information of a predefined 

distance between individual features, and could provide prediction when a new feature comes in. 

Taken together, these techniques are called ‘unsupervised machine learning’, because they do not 

need any label information for training. In genomic studies, these label information usually refer 

to biological priori knowledge or disease phenotypes. Without the label information, unsupervised 

machine learning would purely focus on the data pattern. They can be hypothesis generating, but 

will also become challenging when the underlying statistical property of the data is hard to address. 

Therefore, to identify the phenotype/outcome-associated features, a class of algorithms, 

named ‘supervised machine learning’, is developed in contrast to ‘unsupervised machine learning’. 

In genomic studies, the goal of supervised machine learning is to construct a classification or a 

regression model from the given genomic data to predict the disease or phenotype information. 

Popular supervised machine learning classifiers used in genomic studies include random forest, 

Bayesian network, support vector machines as well as neural networks; in case of regression 

models, least absolute shrinkage and selection operator (LASSO) regression and Elastic Net (EN) 

regression are the most widely used approaches when number of features (p) are far greater than 

number of samples (n). With the label information being involved, these supervised machine 

learning algorithms could score each of the features in the original data space based on their 

contribution to the optimization problem or the prediction performance. Through simple ranking, 

regularization or resampling aggregation, sparsity could be generated and the most relevant 

features to prediction outcome could be easily identified. 



 12 

1.3.3 Regularization in regression setting 

In common genomic applications, we would usually have ten thousands of genes but only hundreds 

of samples. This situation is called ‘small n, large p’, where the least square (LS) linear models 

could not fit the models well because the parameters are not identifiable in the below optimization 

problem: 

𝛽̂𝐿𝑆 = 𝑎𝑟𝑔 min
𝛽

∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑋𝑖𝑗
𝑝
𝑗=1 )

2𝑛
𝑖 . 

In the past few decades, regularization methods are developed to practically solve this 

problem without exhaustively searching all possible feature combinations. The most fundamental 

regularization methods are Ridge regression and Lasso regression. 

Ridge regression 

Ridge regression was first proposed by Andrey Tikhonov in 1995. The optimization 

problem of Ridge regression takes the form: 

𝛽̂𝑅𝑖𝑑𝑔𝑒 = 𝑎𝑟𝑔 min
𝛽

∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑋𝑖𝑗

𝑝

𝑗=1

)

2
𝑛

𝑖

+ 𝜆‖𝛽‖𝐿2

2 . 

The solution of the optimization problem could be derived by partial deviation on 𝛽: 

𝛽̂𝑅𝑖𝑑𝑔𝑒 = (𝑋𝑇𝑋 + 𝜆𝐼 )−1𝑋𝑇𝑦 

The term 𝜆𝐼 makes the problem nonsingular, and hence allows the optimization function 

to achieve a unique solution. To decide an appropriate 𝜆, cross-validation is usually utilized during 

parameter optimization. Notably, since 𝛽̂𝑅𝑖𝑑𝑔𝑒 is not invariant, standardization must be applied 

before fitting the model. 
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Since the Ridge penalty takes the form of L2-norm, which is a smooth function, it is hard 

to provide sparsity to the features. In other words, although Ridge regression could provide a 

solution to the linear regression equation, it may sometimes overfit the model with a great number 

of features that have coefficients extremely close to zero. 

Lasso regression 

In contrast to Ridge regression, Lasso regression takes the L1-norm penalty, which is not 

a smooth function and hence is much easier to generate sparsity. 

The Lasso regression was introduced by Robert Tibshirani in 1996. The optimization 

problem of Lasso regression takes the form: 

𝛽̂𝐿𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔 min
𝛽

∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑋𝑖𝑗

𝑝

𝑗=1

)

2
𝑛

𝑖

+ 𝜆‖𝛽‖𝐿1. 

Since the shape of L1-norm is sharp while L2-norm is smooth, the optimization contour of 

Lasso is more likely to hit the vertex of constrain region compared to Ridge regression. Therefore, 

under the setting of Lasso regression, coefficients of features that do not have enough contribution 

to the model performance will be pulled to zeros. This unique feature of Lasso makes it an ideal 

algorithm to select features in genomic studies, where the number of genes is usually far greater 

than number of samples. Although Lasso could be a biased estimator, it has a much lower variance 

in predicting the test sets because less features are kept in a model. Therefore, Lasso is also an 

ideal approach to reduce the risk of overfitting in large-scale data analysis. 
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1.3.4 Feature selection through Elastic Net 

When solving optimization problem under situation of ‘small n, large p’, collinearity between 

individual features is not ignorable. In previous section, we have shown that Ridge regression 

makes all coefficients non-zero (hence no sparsity is provided), while Lasso forces some of the 

coefficients to zero. Therefore, when there is a group of covariates that are highly correlated with 

each other, Lasso will randomly include one of them into the final model. This is a drawback of 

Lasso regression, since the procedure of randomly picking could be extremely uninterpretable. 

To overcome this problem, Elastic Net regression, which combines the Ridge and Lasso 

penalty together in the optimization function, was proposed. The optimization formula of Elastic 

Net is shown below: 

𝑚𝑖𝑛
(𝛽0,𝛽)∈𝑅𝑝+1

𝑅𝑒𝑔𝜆(𝛽0, 𝛽) = 𝑚𝑖𝑛
(𝛽0,𝛽)∈𝑅𝑝+1

[
1

2𝑁
∑ (𝑦𝑖 − 𝛽0 − 𝑥𝑖

𝛵,∙ 𝛽)2 + 𝜆𝑃𝛼(𝛽)𝑁
𝑖=1 ], 

where 

𝑃𝛼(𝛽) = (1 − 𝛼)
1

2
‖𝛽‖𝐿2

2 + 𝛼‖𝛽‖𝐿1
. 

The parameters 𝜆, 𝛼 control the total weight of two penalties and the relative proportion 

between them. When there is high collinearity among a group of features, Elastic Net will retain 

the entire group in the final model (more Ridge). Meanwhile, Elastic Net will still keep the sparsity 

for the other features (more Lasso). As a result, the flexibility of Elastic Net allows it to alleviate 

the shortcomings of both Ridge and Lasso regression, and hence perform better in many cases. 

In this study, I chose Elastic Net regression as the core algorithm to identify drug-response-

related lncRNAs based on three reasons. First, this study encounters a very typical case of ‘small 

n, large p’: there are more than 10,000 lncRNAs, but only about 500 cancer cell lines are available 

for model training. Second, a nature of gene expression is its high collinearity between individual 
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genes. Such collinearity may imply a biological function within a group of highly-correlated genes, 

thus, I would prefer to retain this kind of sub-structures in constructing the identification models. 

Another reason of choosing Elastic Net regression is that, before this study, many high-profile 

projects have demonstrated the power of this regression algorithm in identifying critical genomic 

features that could predict drug response in cancer cell lines[2]. Taken these reasons together, I 

would use Elastic Net regression in this study to (1) identify potential drug response regulator 

lncRNAs as well as (2) to predict drug response in cancer patients. 
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2.0  METHODOLOGY 

In this chapter, methods used throughout this thesis will be divided into four sections. The first 

section ‘Data Profiling and Preprocessing’ will include the strategies and details in profiling the 

multi-dimensional high-throughput data used in this study, i.e. pharmacological data for anti-

cancer agents, as well as genomic landscape of cancer cell lines and patient samples. The second 

section ‘Modelling the Drug Response via Machine Learning’ will describe the training and 

construction procedures of lncRNA-based Elastic Net regression Prediction (LENP) models. The 

third section ‘Prediction and Functional Analysis’ will describe the methodologies and algorithms 

that are used to explore lncRNAs’ mechanism in regulating cancer drug resistance. The fourth 

section ‘Experimental Validation’ will include the RNA-seq analysis and in vitro experiment 

details in validating a potential drug-resistance regulator lncRNA in breast cancer cell lines. 

2.1 DATA PROFILING AND PREPROCESSING 

2.1.1 Pre-processing the lncRNAs alteration data 

For cancer cell lines, expression of 13,335 lncRNAs across 505 cancer cell lines from Cancer Cell 

Line Encyclopedia (CCLE) was downloaded from Expression Atlas [44] with matched drug 

response data from Genomics of Drug Sensitivity in Cancer (GDSC). For patient samples, 

expression of 12,190 cancer-related lncRNAs in 5,605 TCGA patient samples was downloaded 
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from MiTranscriptome[45]. Expression level of these lncRNAs are logarithmic transformed and 

z-score normalized for both cell lines and patients. 

We obtained the lncRNAs copy number alteration data for both 505 cell lines and 5,605 

TCGA patient samples by mapping 12,139 Affymetrix SNP 6.0 microarray segmentations to 2,614 

lncRNA regions. 

For DNA methylation, we repurposed IIlumina 450K Human Methylation microarray to 

get beta values of 2,804 unique probes for lncRNAs in (i) 1,028 cell lines from COSMIC[43] and 

(ii) 5,605 patients from TCGA. 

2.1.2 Pre-processing of drug response data 

Drug response data of 265 compounds across 1,001 cancer cell lines were downloaded from GDSC 

database[43]. These 265 compounds include 48 clinical drugs, 76 drugs in clinical development 

and 141 experimental compounds. The drug response in each cell line is indicated by logarithmic 

transformed IC50s and AUCs. 505 cell lines with genomic alteration data available are retained 

for model training and following analysis. 

2.1.3 Compare the lncRNAs alterations between cell lines and primary tumors 

The comparison between cell lines and tumors was based on feature correlations and an adjusted 

K-nearest-neighbor matching with the average, broken down by different cancer types. 

A bootstrapping procedure was performed for each comparison: for each cancer type, we 

calculate the fold-change for each genomic feature (e.g. gene expression, methylation, copy 

number alterations) between that cancer type and a resampling of all other cancer types. To ensure 
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the representation of homogeneous tissue-type, we only retained cancer types with primary tumor 

samples more than 15 and cell line samples more than 20. Next, we calculated the pairwise 

Pearson's correlation coefficient of the fold-changes between cell lines and primary tumors. This 

procedure would be iterated for 10 times with different samplings. The final asymmetric 

correlation matrix for each genomic feature is an average matrix of coefficients obtained by 10 

iterations, and the diagonal demonstrated the agreement between cell lines and tumors within the 

same cancer type. A comparison with p-value fell into the first 10% percentile would be considered 

as significant correlation. This correlation matrix was further used to fit the nearest-neighbor 

classification model implementing by ball tree algorithm. 

2.2 MODELLING THE DRUG RESPONSE VIA MACHINE LEARNING 

2.2.1 Identification of predictive lncRNA-drug interactions 

To identify lncRNAs that were most associated with drug response, we applied Elastic Net 

regression[46], a machine learning approach, combined with a bootstrapping procedure for each 

of the 265 compounds. For each compound, this algorithm would pick up group of lncRNAs whose 

expression pattern could best explain the drug sensitivity profiles of the cell lines. The Elastic Net 

regression is a well-demonstrated model to work with the conditions in which the number of 

features is far greater than the number of observations. Before our study, many high-profile studies 

have already applied this regression algorithm to identify critical genomic features that could 

predict drug response in cancer cell lines[43]. 
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For each compound, we constructed a drug response vector 𝑌 ∈ 𝑅𝑁,1 , where 𝑁  is the 

number of cell lines treated with this compound. The values in the vector represent the drug 

responses across these cell lines, i.e. logarithmic transformed IC50 or area under the curve (AUC). 

For these cell lines, we then constructed an lncRNA expression matrix 𝑋 ∈ 𝐸𝑁,𝑝, where 𝑁 is the 

number of cell lines and 𝑝 is the number of lncRNAs. With input of 𝑌 and 𝑋, we then used the 

scikit-learn 0.17.0 package to solve the following optimization problem:  

𝑚𝑖𝑛
(𝛽0,𝛽)∈𝑅𝑝+1

𝑅𝑒𝑔𝜆(𝛽0, 𝛽) = 𝑚𝑖𝑛
(𝛽0,𝛽)∈𝑅𝑝+1

[
1

2𝑁
∑(𝑦𝑖 − 𝛽0 − 𝑥𝑖

𝛵,∙ 𝛽)2 + 𝜆𝑃𝛼(𝛽)

𝑁

𝑖=1

], 

where 

𝑃𝛼(𝛽) = (1 − 𝛼)
1

2
‖𝛽‖𝐿2

2 + 𝛼‖𝛽‖𝐿1
. 

In this equation, 𝛼 controls the ratio of the 𝐿1 and 𝐿2 penalty terms, while 𝜆 controls the 

overall weight of the regression penalty. The optimization begins with 10 values of 𝛼 ∈ [0.2,1.0] 

and 200 values of 𝜆 = 𝑒𝜏 with 𝜏 ∈ [−5,5]. The optimal 𝛼 and 𝜆 that lead to the minimal mean 

square error of the regression model is obtained by 10-fold cross-validation. 

Next, we implemented a bootstrapping strategy to identify the most predictive lncRNAs 

for each compound. This procedure would generate 200 resampled datasets with replacement from 

the complete sample sets, (𝑋𝐵𝑆𝑖 , 𝑌𝐵𝑆𝑖)𝑖=1,2,…,200, where 𝑋𝐵𝑆𝑖 ∈ 𝐸𝑁,𝑝 and𝑌𝐵𝑆𝑖 ∈ 𝑅𝑁,1. Based on the 

optimal 𝛼 and 𝜆, the elastic net equation would be solved for each of the resampled datasets, and 

a regression coefficient matrix 𝛽𝐵𝑆 ∈ 𝐵𝑝,200 would finally be built for each compound.  

To assess the extent to which an lncRNA is associated with the drug response, we then 

created a metric named ‘predictive score’ based on how frequent this lncRNA is selected by the 

regression model during the bootstrapping. For each lncRNA 𝑢 of each compound,𝑢 ∈ {1,2, … , 𝑝}, 

the predictive score of lncRNA 𝑢 is then calculated by: 
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𝑃𝑆𝑢 =
1

200
∑ 𝐼(𝛽𝑢,𝑗

𝐵𝑆)200
𝑗=1 , where 𝐼(𝑥) = {

0, 𝑥 = 0
1, 𝑥 ≠ 0

. 

We then define an lncRNA as predictive to one compound if its predictive score is higher 

than 0.1. If an lncRNA has a predictive score higher than 0.8, we would regard it as a strong 

predictor to that compound. LncRNAs with predictive score higher than 0.1, together with the 

corresponding compounds, will be termed as candidate lncRNA-drug interactions and are retained 

for the following analyses. 

2.2.2 Pairwise comparison of feature selection 

To compare the similarity of predictive lncRNA sets between compounds, we used three different 

measurements to perform the pairwise comparison: Fisher’s exact test, Cohen’s Kappa score and 

Tanimoto distance. For lncRNA set of each compound 𝑑 (𝑑 ∈ {1,2, … ,265}), we dichotomized 

their predictive scores to 0 and 1 based on whether an lncRNA is considered as predictive or not. 

This operation would generate a binary vector 𝐵𝑑
𝑝,1

 for each compound 𝑑, where 𝑝 is the number 

of lncRNAs. Next, a similarity score matrix would be built based on the pairwise comparison of 

(𝐵𝑑
𝑝,1)

𝑑∈{1,2,…,265}
 by performing Fisher’s exact test, Cohen’s Kappa score or Tanimoto distance. 

The resulting matrix would then be analyzed by hierarchical clustering using ‘average’ method 

and Euclidean distance. 

2.2.3 Lineage effect on drug response and lncRNA expression 

ANOVA are used to evaluate the contribution of lineages to the drug response. For ANOVA, the 

cell lines are grouped by cancer types, following by the comparison between the inter- and intra-
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type variance of drug responses for each compound. A significant p-value indicates that the 

response of that drug is likely to be cancer-specific. 

2.2.4 Construction of LncRNA-based EN regression Prediction (LENP) models 

For each of the 265 compounds, we selected top 20 lncRNAs with highest predictive score to build 

predictive models of drug response with Elastic Net regression. For each compound, we 

constructed a drug response vector 𝑌 ∈ 𝑅𝑁,1, where 𝑁 is the number of cell lines treated with this 

compound. The values in the vector represent the drug responses across these cell lines, i.e. 

logarithmic transformed IC50 or area under the curve (AUC). For these cell lines, we then 

constructed an lncRNA expression matrix 𝑋 ∈ 𝐸𝑁,20, where 𝑁 is the number of cell lines. With 

input of 𝑌 and 𝑋, we optimize the parameters with 10 values of 𝛼 ∈ [0.2,1.0] and 200 values of 

𝜆 = 𝑒𝜏 with 𝜏 ∈ [−5,5] by 10-fold cross-validation. Using optimal parameters, we build the final 

model 𝑌 = 𝑓(𝑋) for each compound and estimate the predictive power by 10 iterations of 10-fold 

cross validation. The assessment is achieved by calculating the Pearson’s correlation coefficient 

and Kendall’s 𝜏 between the predicted and observed drug activity. We selected the best models 

based on the cross validation process. 

2.2.5 Independent validation of LENP model performance 

To assess the robustness of our pan-cancer as well as cancer-specific models, we obtained drug 

response data in the Cancer Cell Line Encyclopedia (CCLE) [2] from the CCLE web-portal. After 

mapping the cell lines and compounds to those in our study, we got 389 overlapping cell lines and 

15 overlapping compounds. Since AUC values were not available for the CCLE datasets, we only 
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focused on predicting the IC50s using our models. The prediction performance is evaluated by the 

Pearson’s correlation between predicted and real IC50s in CCLE study. 

2.3 PREDICTION AND FUNCTIONAL ANALYSIS 

2.3.1 Predict the drug response in patient samples 

Expression of 2,614 cancer-related lncRNAs in 3,814 TCGA patients with survival information 

available and was obtained from MiTranscriptome[45]. Patients with stage-1 disease are further 

filtered out except for the LAML patients. Using the expression data, we constructed an expression 

matrix 𝐸 ∈ 𝑅𝑁,𝑝 , where 𝑁  is the number of patients and 𝑝  is the number of lncRNAs. For 

compound 𝑖 , the predicted response 𝑃𝑖 ∈ 𝑅𝑁,1 is calculated by the model based on lncRNA 

expression 𝑒𝑁,20 ∈ 𝐸𝑁,𝑝, forming a final matrix of predicted response𝑃 ∈ 𝑅𝑁,265. The predicted 

response is then sorted by values, from which patients of first quantile are labeled as ‘sensitive 

response’. The patients are then categorized by 𝑐cancer types, where ∑ 𝐶𝑗 = 𝑁𝑐
𝑗=1 . The sensitive 

percentage 𝑆𝑗,𝑖
𝑝𝑒𝑟𝑐𝑒𝑛𝑡

for compound 𝑖 is calculated by 
𝑛

𝐶𝑗
, where 𝑛 is the number of patients that have 

‘sensitive response’ in cancer 𝑗 . Finally, a matrix of sensitive percentage 𝑆𝑗,265
𝑝𝑒𝑟𝑐𝑒𝑛𝑡

for all the 

compounds is constructed based on these results. 

2.3.2 Survival analysis 

Univariate Cox regression. Survival information of TCGA patients, including overall survival (OS) 

and progression-free interval (PFI), was obtained from TCGA database. Cox regression based on 
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predicted drug response 𝑃 ∈ 𝑅𝑁,𝑖 was then applied for each compound 𝑖, where 𝑖 ∈ {1,2, … ,265}. 

The regression algorithm is implemented by Lifelines 0.8.0.1 package. The hazard ratios are 

calculated by exponentiation of the coefficients from the regression models. 

Multivariate Cox regression. Clinical information about TCGA patients, including age and 

disease stages at diagnosis, was obtained from TCGA database. For each patient, the age is 

dichotomized as ‘young’ and ‘old’ with a cutoff at 65 years’ old. For patients from cancer 𝑐, the 

predicted response of 𝑛 drugs that are approved for this cancer would be assigned ranks based on 

predicted response values. The weighted average 𝑅 ´ of the ranks for each patient is given as follow: 

𝑅́ =
∑ 𝑤𝑖𝑅𝑖

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

, where 𝑤𝑖 = {
1.0, 𝑖 ∈ {1𝑠𝑡𝑙𝑖𝑛𝑒𝑎𝑔𝑒𝑛𝑡𝑠}

0.5, 𝑖 ∈ {2𝑛𝑑𝑙𝑖𝑛𝑒𝑎𝑔𝑒𝑛𝑡𝑠}
. 

Next, Kaplan-Meier analysis was performed based on the weighted average ranks and 

overall survival (OS) and progression free interval (PFI). After that, the weighted average ranks 

are sorted by ascending and dichotomized as ‘sensitive response’ (top 30%), ‘partial response’ 

(30%~50%), ‘partial resistance’ (50%~70%), and ‘resistance’ (bottom 30%). With the survival 

information and the input factors (age, disease stage and weighted average rank of the predicted 

response), a multivariate Cox regression is then performed for each cancer type. The hazard ratios 

for each of the factors are calculated by exponentiation of the coefficients from the regression 

models. 

2.3.3 Identification of multi-drug-response (MDR) related lncRNAs 

To identify MDR-related lncRNAs that are independent from drug mechanism, we constructed a 

vector 𝐷 with length 𝑚 for each predictive lncRNA 𝑖. Each element 𝐷𝑗  in 𝐷 denotes the target 

pathway of the corresponding agent 𝑗 that lncRNA 𝑖 is predictive to, and 𝑗 ∈ {1,2, … , 𝑚}. In total, 
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𝐷  will be expected to have 𝑛  unique elements, denoted by 𝐶 . Next, for each lncRNA 𝑖 , we 

calculate the Shannon entropy 𝐻𝑖of 𝐷 using the following formula: 

𝐻𝑖(𝐷) = − ∑ 𝑝𝐶𝑘
𝑙𝑜𝑔2𝑝𝐶𝑘

𝑛
𝑘=0 , where 𝑝𝐶𝑘

= 𝑃𝑟(𝐷𝑗 = 𝐶𝑘 𝑗∈{1,2,…,𝑚}). 

The resulted entropy metrics will be further transformed into z scores. LncRNAs with a z 

score greater than 1, i.e. one standard deviation from the right side of the mean, would be selected 

as an MDR-related lncRNA. 

2.3.4 Co-expression and Gene Sets Enrichment Analysis (GSEA) 

We calculated the Pearson’s correlation coefficients between 19,680 protein coding genes’ 

expression and 2,614 lncRNAs’ expression, forming a coefficient matrix  𝛽𝑝,𝑙 , where  𝑝 is the 

number of protein coding genes and𝑙 is the number of lncRNAs. We ranked the protein coding 

genes based on their expression correlation with lncRNAs. Gene Sets Enrichment Analysis (GSEA) 

is performed based on cancer hallmarks (h) genesets from GSEA database[47, 48]. The final 

enrichment score matrix is given by normalized enrichment score (NES) and false discovery rate 

(FDR) from GSEA. An enrichment with FDR <= 0.25 would be considered as significant 

enrichment.  

For each target pathway, we construct an lncRNA selection matrix by using top predictive 

lncRNAs from respective agents. Top predictive lncRNAs are defined as top 20 lncRNAs with 

highest predictive scores in single agent. An lncRNA selection vector is constructed for each 

compound, and is merged into a selection-pathway matrix with 21 rows (pathways) and 1,292 

columns (predictive lncRNAs that are top predictors for at least one compound). Next, one-sided 

(greater) Fisher’s exact test is performed to assess the enrichment of top lncRNAs in each pathway 

is assessed by based on dichotomized enrichment matrix and lncRNA selection matrix. 
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2.4 EXPERIMENTAL VALIDATION 

2.4.1 Cell culture, RNA interference and real-time PCR 

Human breast cancer cell lines, Hs578T and MCF-7, were purchased from American Type Culture 

Collection (ATCC) and cultured as suggested by ATCC’s guidelines. Human ovarian cancer cell 

line, A2780 and the cisplatin resistant version of the cell line, A2780cis, were obtained from the 

European Collection of Cell Cultures (ECACC), supplied by Sigma-Aldrich, and cultured in RPMI 

1640 medium supplemented with 2 mM glutamine, 10% FBS, 1% penicillin, and 1% streptomycin; 

A2780cis cells were also supplemented with 1 µM cisplatin. 

For RNA interference, cells were transfected with 40 nM siRNA targeting EPIC1, or 

control siRNA using Lipofectamine RNAiMAX (ThermoFisher, #13778150) per the 

manufacturer’s instructions. Total RNA was isolated 72 h later using an RNeasy Mini kit (Qiagen, 

#74104) according to the manufacturer’s instructions. For real-time PCR analysis, cDNAs were 

synthesized from 0.5 µg of total RNA using a High-Capacity cDNA Reverse Transcription Kit 

(Applied Biosystems, #4368813). Real-time PCR was performed with Power SYBR Green PCR 

Master Mix (Applied Biosystems, #4367659) on a QuantStudio 6 Flex Real-Time PCR System 

(Applied Biosystems). Relative gene expression was determined by ΔΔCt normalized to GAPDH.  

The following siRNAs were used (sense, antisense): EPIC1 siRNA_A#, 

CCUUCAGACUGUCUUUGAAdTdT, UUCAAAGACAGUCUGAAGGdTdT; EPIC1 

siRNA_B#, AGUGUGGCCUCAGCUGAAAdTdT, UUUCAGCUGAGGCCACACUdTdT; 

control siRNA, GUGCGUUGUUAGUACUAAUdTdT, AUUAGUACUAACAACGCACdTdT. 

Sequences of primers for qRT-PCR were: EPIC1 forward, TATCCCTCAGAGCTCCTGCT, and 



 26 

EPIC1 reverse, AGGCTGGCAAGTGTGAATCT; GAPDH forward, 

GGTGAAGGTCGGAGTCAACG, and GAPDH reverse, TGGGTGGAATCATATTGGAACA. 

2.4.2 Validation of lncRNA-drug interactions in cell lines 

MCF-7 cells stably expressing an empty vector and EPIC1 (MCF-7/Vector and MCF-7/EPIC1) 

were established with retroviral particles. To validate lncRNA-Drug interactions, MCF-7/Vector 

and MCF-7/EPIC1 cells were seeded at 2,000 cells per well in 96-well culture plates and incubate 

for overnight at 37°C, 5 % CO2. After treatment with a series of 2-fold diluted drugs (JQ-1 and I-

BET-762) for 48 hours, MTT assays were performed with a CellTiter 96 Non-Radioactive Cell 

Proliferation Assay Kit (Promega, #G410) following the manufacture’s guidelines. The 

absorbance value was measured at 570 nm using an xMark Microplate Spectrophotometer (Bio-

Rad) with a reference wavelength of 630 nm and the IC50 of JQ-1 and I-BET-762 on cells was 

calculated, respectively. 

2.4.3 Next generation sequencing: RNA-seq analysis 

STAR-RSEM pipeline was used to profile and quantify the RNA-seq data of EPIC1-knockdown 

cell lines. Differential expression analysis and Gene Sets Enrichment Analysis were implemented 

as down-stream analyses for quantified expression data. 
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3.0  RESULTS 

3.1 CELL LINES RECAPITULATE LNCRNA ALTERATIONS IN TUMORS 

3.1.1 Overview of lncRNA alteration profile in 27 cancer types 

To assess whether cancer cell lines resemble the primary tumors in the perspective of lncRNA 

alterations,  RNA-seq, copy number and DNA methylation data are obtained for 5,605 TCGA 

tumor samples and 505 cancer cell lines across 27 cancer types (Figure 1A, 1B and 1C).  

 

Figure 1 Genomic and epigenetic alterations of cancer-related lncRNAs in 505 cancer cell lines 

Cell lines are arranged by columns. LncRNAs are arranged by rows. Three heatmaps indicate the patterns of the expression 

(A), DNA methylation (B), and copy number (C) for cancer-related lncRNA (Online Methods). Twenty-two cancer types 
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are indicated by different colors on top of each heatmap. (D) Percentage of lncRNA genomic and epigenetic alterations 

occurring in at least one or at least three cell lines. 

The 2,614 cancer-related lncRNAs were first identified based on differential expression 

between patient tumors and normal tissues in the TCGA database. Among these cancer-related 

lncRNAs, all of them are expressed in at least one cancer cell line; 2,511 (96.06%) are expressed 

in at least three cell lines (Figure 1D).  

3.1.2 Correlation of lncRNA alterations between cell lines and primary tumors 

Using a pairwise correlation analysis with resampling procedure, the lncRNA expression 

profile in cell lines are shown to significantly correlate with patient tumors for 14 out of 18 

(77.78%) cancer types (Figure 2A). The DNA methylation profile in cell lines are highly 

correlated with tumors for 15 out of 19 (78.94%) cancer types (Figure 2B). In case of copy number 

alterations, 13 out of 18 (72.22%) cancer types exhibit significant correlation between primary 

tumors and cell lines (Figure 2C).  

The correlation coefficient reached to a median of 0.23 for expression (median p = 8.53 x 

10-17, Pearson's correlation) with random expectation at –0.03. For copy number alteration and 

DNA methylation, the correlation coefficient reached to medians of 0.49 (median p = 8.78 x 10-

93, Pearson's correlation) and 0.27 (median p = 1.32 x 10-18, Pearson's correlation), respectively 

(Figure 2A, 2B and 2C). 
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Figure 2 Pairwise Pearson's correlation of lncRNA alterations between cell lines and patient tumors 

Pairwise Pearson's correlation of lncRNA alterations between cell lines and patient tumors for each cancer-type in CNV, 

methylation and expression.  The correlation of lncRNA alteration within the same and different cancer types are shown in 

the boxplots. 

3.1.3 Represent the cancer types using lncRNA-based nearest-neighbor classifier 

To further determine if lncRNA alteration profiles in cancer cell lines are representative for patient 

tumor, we used a simple nearest-neighbor classifier based on the lncRNA alterations in patient 

tumors to predict the cancer type of cancer cell lines (Figure 3).  

Within the third nearest neighbors, the KNN classifier could correctly match the tissue of 

origin of cell lines to primary tumors using lncRNA methylation or copy number for 42.1% and 
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33.3% of the cases with random expectation at 15.7% and 11.1%, respectively. When using 

expression, the match rate increased to 50% with random expectation at 5.6%. When considering 

the fifth nearest neighbors, this percentage substantially increased to 73.6%, 55.5% and 83.3% 

(with random expectation at 21.1%, 22.2% and 16.7%) for methylation, copy number and 

expression.  

 

Figure 3 Nearest-neighbor classifier to predict cell origin 

Performance of a K-nearest-neighbor classifier to predict cell origin using CNV, methylation and expression respectively. 

In sum, the concordance of lncRNA alterations between primary tumors and cancer cell 

lines was most prominent in the expression level, followed by DNA methylation level and copy 

number level. Therefore, the following modelling and analyses sections would mostly focus on 

the expression profile of lncRNAs in cancer cell lines and patient samples. 

3.1.4 Discussion 

In this chapter, correlation analysis and classification algorithms were used to assess how lncRNAs 

alterations in primary tumors could be recapitulated by cancer cell lines. The results served as the 

very fundamental of using cell line-based panels to predict drug response in patient. 
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 In the following chapters, only the lncRNA expression profiles are included to train the 

EN-models, because (1) the lncRNA expression exhibits the highest similarity between cancer cell 

lines and patient tumors; (2) the changes of both CNA and DNA methylation will eventually be 

manifested by the expression of lncRNA, and (3) the redundancy of including lncRNA CNA and 

DNA methylation data may not be properly handled by the EN-model in current study. Emerging 

deep learning algorithms, such as artificial neural networks, have shed to light to modeling high-

dimension and high-redundancy data. In future study, we will use deep-learning algorithm to 

comprehensively model the cancer drug response by integrating lncRNA and PCG genomics and 

epigenetic changes.  

 

3.2 A LANDSCAPE OF LNCRNA-DRUG INTERACTIONS IN CANCER 

3.2.1 Overview of anti-cancer agents included in this study 

Drug response data of 265 compounds across 1,001 cancer cell lines were downloaded from GDSC 

database[43]. These 265 compounds, targeting 21 key pathways in cancer, include 48 clinical 

drugs, 76 drugs in clinical development and 141 experimental compounds. The drug response data 

includes the values of IC50 and area under the curve (AUC) of 265 anti-cancer agents from the 

GDSC database. 
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3.2.2 Identify lncRNA-drug interactions by Elastic Net regression 

LncRNAs expression profile and drug response data across 505 cancer cell lines were integrated 

to identify predictive lncRNA-drug interactions. Below shows the identification-prediction 

framework of this study (Figure 4).  

 

Figure 4 A flow chart of building lncRNA-based EN models. 

By conjugating Elastic Net (EN) Regression and bootstrap aggregating, lncRNA-drug 

response prediction models are built for each agent across all the cell lines (pan-cancer model) or 

cell lines from a specific cancer type (cancer-specific model). The model performance was 

assessed by the Pearson Correlation Coefficient between the predicted response and the observed 

response for each agent. Overall, pan-cancer models for 265 drugs achieved median performance 

at r = 0.31 (p = 6.76×10-5, Pearson’s correlation) in bootstrapping. Cancer-specific models built by 

smaller numbers of samples, on the other hand, achieved a decreased median performance at r = 

0.13 (Pearson’s correlation) (Figure 5A). 
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Figure 5 The Landscape of LncRNA-Drug Interactions in Cancer Cell Lines 

(A) Volcano plot of pan-cancer models (left) and cancer-specific models (right) performance in drug response prediction in 

the bootstrapping process. The negative log-transformed p values (y axis) and Pearson correlation coefficients (x axis) of 

each model were generated between predicted drug response and observed drug response.  

(B) A Venn diagram of the identified lncRNA-drug interactions the pan-cancer model and cancer-specific models. An 

interaction with predictive score higher than 0.8 is defined as strong interaction. 

(C) lncRNA-drug interactions landscape across 265 agents and 505 cancer cell lines. The predictive score for each lncRNA-

drug interaction and the negative log-transformed p value for Pearson's correlation between the lncRNA expression and IC50 

were shown in the y-axis and x-axis of the volcano plot.  
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To determine each lncRNA’s contribution to drug response, a predictive score (PS) was 

assigned to each lncRNA based on the frequency it was selected by EN regression throughout the 

bootstrapping. The lncRNA with higher PS would be more associated to the corresponding agent 

response, referring to a predictive lncRNA-drug interaction.  

Using IC50 as an indicator of drug response, this feature selection process identified 75,132 

lncRNA-drug interactions in pan-cancer models and 103,155 interactions in cancer-specific 

models (162,327 unique lncRNA-drug interactions in total) (Figure 5B and 5C). When using 

AUC as an indicator of drug response, a highly consistent lncRNA-drug interaction network was 

obtained (r = 0.63, p < 10-26, Pearson’s correlation), suggesting the robustness of our strategy.  

The EN regression successfully identified well-documented lncRNAs that are related to 

drug response. For instance, MEG3 overexpression is identified as a predictor of cisplatin 

sensitivity (PS: 0.15), which is consistent with previous findings that lung and ovarian cancer 

patients with MEG3 over-expression have better response to cisplatin treatment[49-51]. Our model 

also identified previously reported regulation of cisplatin response by HOTAIR [52], MALAT1 

[53] and NEAT1 [54]. Besides, we also uncovered novel interactions that potentially contribute to 

clinical outcome. For example, the expression of LINC00992 in primary tumors increases along 

with the disease progression (Figure 6A) and associates with poor patient survivals in multiple 

cancer types that routinely receive chemotherapy (Figure 6B). Meanwhile, LINC00992 is 

identified as a drug-resistance predictor for many cytotoxic agents, including cisplatin in the pan-

cancer model (PS: 0.99), gemcitabine in both pan-cancer (PS: 0.99) and BRCA models (PS: 0.22). 

LINC00992 overexpression related chemo-resistance may account for the observed poor prognosis 

in patients with high LINC0992 expression. 
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Figure 6 LINC00992 expression and correlation with survival 

(A) LINC00992 expression of TCGA cancer patients at different stages. (B) Kaplan-Meier plot of overall survival of patients 

with different LINC00992 expressions in breast cancer (left) and colon adenocarcinoma and rectum adenocarcinoma 

(right).    

3.2.3 Compare predictive lncRNAs between agents and target pathways 

Notably, one lncRNA could be predictive to multiple agents’ response, and agents targeting the 

same pathway tended to share similar predictive lncRNAs (Figure 7A).  

The below example shows that agents targeting the genome integrity shared significantly 

more predictive lncRNAs (p = 9.6×10-9, Wilcoxon Rank-Sum test) (Figure 7B). Moreover, within 

the genome integrity group, PARP inhibitors olaparib and talazoparib shared a significantly higher 

proportion of predictive lncRNAs (p = 1.6×10-55, Fisher's exact test) than with CHEK inhibitor 

AZD7762 (p = 8.9×10-6, Fisher’s exact test).  
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Figure 7 Similarity between predictive lncRNA selected by different agents. 

(A) Cumulative distribution of two-tailed Fisher’s exact test p-value shows the similarity between predictive 

lncRNA selected by different agents. (B) Agents targeting genome integrity clustered by shared predictive lncRNA 

signatures. One-sided Fisher exact test p values were indicated by different colors in the heatmap.  

These observations indicated that lncRNA-drug interactions may imply the underlying 

mechanism through which the cell lines respond to treatment. 

3.2.4 Construction of LncRNA-based EN regression Prediction (LENP) models 

Using the most predictive lncRNAs identified by the bootstrapping training, an LncRNA-based 

EN prediction model (LENP) was developed for each agent. The LENP models were built in pan-

cancer scale as well as in cancer-specific scale with sufficient cell lines (n > 15). The model 

performance was assessed by ten-fold cross-validation using Pearson’s correlation coefficient and 

Kendall’s 𝜏 of observed versus predicted IC50s. 
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Figure 8 LncRNA-based EN-Prediction Models Predict Drug Response in Cancer Cell Lines 

(A) Comparison of model performance between LENP training by AUC (y-axis) and LENP training by IC50s (x-axis) within 

agent categories. Each cross marker represents one agent. A regression line is drawn for each comparison. (B) Performance 

comparison between LENP and bootstrapping EN models for 265 drugs in pan-cancer and specific cancer types. Model 
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performance is shown on the y-axis. (C) LENP performance of pan-cancer models and cancer-specific models using top 

20 predictive lncRNAs for each agent. (D) Pan-cancer LENP performance for agents from different target pathways. 

Here, we refer to LENP models using IC50 values, but very similar results were obtained 

by using AUCs (Figure 8A). Compared to the previous bootstrapping procedure with all of the 

lncRNAs included, LENP models have a substantially increased performance in predicting the cell 

lines IC50s by using the top predictive lncRNAs (Figure 8B). The improved model performance 

indicated the EN regression’s power in identifying lncRNAs that are highly predictive to drug 

response.  

Overall, the pan-cancer LENP models reached a median performance at r = 0.55 (p < 10-

33, Pearson’s correlation), while the cancer-specific LENP models have a median performance at 

r = 0.71 (p < 10-6, Pearson’s correlation) (Figure 8C). Notably, compounds with higher pan-cancer 

performance are prone to be non-target agents that have a broader anti-cancer spectrum (Figure 

8D). 

 For instance, compounds targeting the cell cycle, genome integrity and mitosis have 

overall better performances than compounds targeting the ABL signaling and IGFR signaling in 

pan-cancer models. We also observed that some models built for targeted compounds have 

increased performance in cancer-specific models compared to pan-cancer models. For example, 

the LAML-specific model for imatinib, an ABL inhibitor and FDA approved leukemia medicine, 

had an elevated performance (r = 0.82, Pearson’s correlation) compared to the pan-cancer model 

in predicting the IC50s in leukemia cell lines (r = -0.09, Pearson’s correlation). 
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3.2.5 Independent validation of LENP model performance 

Next, I sought to validate the LENP models using an independent drug response data from the 

Cancer Cell Line Encyclopedia (CCLE) [2]. Among the 14 overlapped agents in both studies, 

LENP models successfully predicted the cell line response for 9 agents (p < 0.05, Spearman’s 

correlation), including paclitaxel (rho = 0.34, p = 0.0014, Spearman’s correlation) and 17-AAG 

(rho = 0.32, p = 4.6×10-7, Spearman’s correlation) (Figure 9A).  

For the other 5 agents, high proportion of censored IC50s in the original CCLE datasets 

may account for the sub-optimal validation in LENP models (Figure 9B). 

 

Figure 9 Independent validation using CCLE dataset 

(A) Prediction performance of EN models in CCLE data. The performance is assessed by Spearman correlation coefficients 

(x-axis) and -log10 transformed p value of real IC50s in CCLE versus predicted IC50s by lncRNA-based EN models. Label 

colors demonstrated the significance: the model with p value less than 0.05 is considered as having good independent 

validation performance. (B) Left: cumulative distribution of real CCLE IC50s in agents with good independent validation 

performance. Right: cumulative distribution of real CCLE IC50s in agents with poor independent validation performance. 

3.2.6 Discussion 

The study of lncRNAs’ role in cancer drug response has not gained much momentum due to the 

dearth of genomics/epigenetic platforms covering the non-coding region of the human genome 
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and the paucity of information regarding drug response in tumors. These bottlenecks have led the 

majority of lncRNA studies to use a “bottom-up” strategy by first determining each individual 

lncRNA’s downstream regulatory function and then investigating the lncRNA’s regulation of drug 

response in cancer. In this chapter, a “top-down” approach has been applied to construct the 

lncRNA-based drug response prediction models. The sparsity provided by EN regression greatly 

helps to identify the candidate lncRNAs under the condition where sample size (n) is far smaller 

than the feature number (p). Using bootstrapping aggregation, lncRNAs that may regulate drug 

response would be more frequently selected by the regression model. This analysis is totally data 

driven and does not require any priori biological knowledge. 

3.3 PREDICTING PATIENT THERAPEUTIC OUTCOMES VIA LENP 

The previous chapters have shown that cancer cell lines could recapitulate the lncRNA alterations 

in primary tumors. Therefore, in this chapter, the LENP models would be applied to 3,814 TCGA 

tumor lncRNA expression profile and predicted patient drug response across 21 cancer types. 

Since chemotherapy is widely used on advanced stage diseases, the prediction is restricted to 

patients with stage II (or later) disease except for LAML patients. 

3.3.1 Predicting known and novel drug indications 

For each patient, the tumor’s response is predicted for all of the 265 compounds. For each 

compound, the tumor’s response is classified as ‘sensitive’ or ‘resistant’ based on the rank of 

predicted IC50 by LENP models. Among 49 FDA approved drugs, 26 of them were predicted to 
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have a top 10 response rate in at least one cancer type that were approved for clinically use by 

FDA (Figure 10A).  

For example, Bleomycin is an FDA approved agent to treat head-neck squamous cell 

carcinoma (HNSC), uterine corpus endometrial carcinoma (UCEC), cervical squamous cell 

carcinoma and endocervical adenocarcinoma (CESC). Compared to an average response rate at 

23.8% of other cancer types, significant higher response rate to bleomycin were observed in 

patients with UCEC (response rate: 95.3%, p = 3.59 x 10-74), CESC (response rate: 55.5%, p = 

3.53 x 10-16), and HNSC (response rate: 38.5%, p = 0.06) (Figure 10B). Another example is 

Imatinib, an FDA approved agent for treating LAML. Based on LENP model, 100% of acute 

myeloid leukemia (LAML) patients are predicted to be imatinib sensitive (p = 2×10-15, two-tailed 

K-S test) (Figure 10C).   



 42 

 

Figure 10 LncRNA-based EN-Prediction Models Predict Drug Response in Patient Tumors 

(A) Percentage of patients in each cancer type that are predicted to be sensitive/responsive to FDA-approved 

agents by lncRNA-based EN models. (B-D) Imatinib (left), bleomycin (middle), and gefitinib (right) were predicted to be 

sensitive in several cancer types using GSEA analysis. 

Interestingly, besides these FDA approved indications (i.e. drug-cancer type pairs), there 

are 46 out of 49 (93.9%) drugs that had proportion of ‘sensitive’ patients higher than 50% with 

cancers that were not approved by FDA. For example, approximately 74.2% of patients with 

glioblastoma (GBM) (p = 7.41 x 10-06, K-S test) and 99.1% of patients with low-grade glioma 

(LGG) (p = 3.96 x 10-60, K-S test) were predicted to be sensitive to Imatinib (Figure 10D). 

Although this drug is not currently approved by FDA to treat these two cancer types, phase II 
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clinical trials have been carried out to test the efficacy of imatinib in treating GBM and LGG [55, 

56].  

Together, these observations suggest that LENP models are capable of predicting both the 

known and novel drug response in patients. 

3.3.2 Associate the predicted drug response with therapeutic outcome 

Because the TCGA cancer patients were mostly treated based on standard chemotherapy protocol 

[41], I hypothesized that patients would have poor prognosis if they were predicted to be resistant 

to therapies. For 49 FDA approved therapeutic agents, 66 significant associations are observed 

between predicted drug resistance and significantly shorter survival in specific cancer types (p <= 

0.05, univariate Cox regression). Importantly, among 73 of FDA approved chemotherapy 

indications, 41 (56.2 %) of them have patients, who were predicted to be drug resistant, undergoing 

significantly poorer survival. 

3.3.3 Consensus drug resistance correlates with poor survival 

In clinic, patients usually take a combination of different drugs rather than single agents. Thus, to 

better study the chemotherapy response of cancer patients, each patient is given with a consensus 

drug response score by combining the prediction of first- and second-line chemotherapy that are 

approved by FDA for each cancer type. Using this heuristic method, a significant poor prognosis 

is observed for patients predicted to be chemotherapy resistant in THCA (Thyroid Carcinoma, p = 

0.045, two tailed Log-rank test), STAD (Stomach Adenocarcinoma, p = 0.015), BRCA (Breast 

Cancer, p = 0.063), and COAD-READ (Colorectal Cancer, p = 0.034) samples (Figure 11A).  
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Figure 11 LENP models could predict patient therapeutic outcome 

(A) The Kaplan-Meier curves of overall survival for patients grouped by different predicted responses to FDA-approved 

first- and second-line cancer drugs in four cancer types. (B) Forest plot of multivariate Cox regression analysis of “Drug 

resistance”, “Stage” and “Age at diagnosis” on patient survival in four cancer types. 

The improvement in prognosis is still significant after adjusting for known prognostic 

factors, e.g. age at diagnosis and disease stages, using multi-variate Cox regression model. 

Specifically, the predicted chemotherapy resistance remains to be significantly correlated with 

patients’ poor survival in THCA (hazard ratio = 1.76, p = 0.05), STAD (hazard ratio = 1.40, p = 

0.02) and COAD-READ (hazard ratio = 1.38, p = 0.08) (Figure 11B). 

3.3.4 Discussion 

As is shown in the previous chapters, cancer cell lines could highly recapitulate the lncRNAs 

alterations in primary tumors. In this chapter, by integrating the patient tumors genomics and 

clinical data, the cancer cell line based EN-models, i.e. LENP models, are shown to have the ability 
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in predicting the therapeutic responses in patients across different cancer types. Due to the 

complexity of chemotherapy that was given to each individual cancer patient, the patient overall 

survival are used to approximately represent chemotherapy outcome of the cancer patients. Further 

multivariate Cox regression model revealed that lncRNA based EN-models can predict patient 

survival in patient samples after adjusting for known prognostic factors such as age at diagnosis 

and disease stages.  

These analyses served as a proof of principle for using the non-coding genotype in cell-

line based panels to gain insights into precision cancer medicine. With the emerging of the 

pharmacogenomics data of standardly designed cancer precision medicine project like GENIE [57], 

we should be able to determine the performance of lncRNA based EN-models in patient tumor in 

short future. 

3.4 MECHANISM OF LNCRNAS IN REGULATING CANCER DRUG RESISTANCE 

LncRNAs have been reported to regulate the cancer drug resistance through regulating the protein-

coding genes involved in drug-metabolism and drug-target pathways[58, 59]. Since multi-drug 

resistance remains a major obstacle of successful chemotherapy in clinical treatment of primary 

and recurrent disease[60], I am particular interested in lncRNAs that are predictive to multi-drug 

response of agents with different mechanisms. Therefore, in this chapter, lncRNAs that may 

associate with multi-drug resistance would be identified by using a data-driven approach. Two 

different mechanism of lncRNAs in regulating cancer drug resistance would be proposed based on 

integrative co-expression and pathway analysis. 
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3.4.1 Drug resistance induced by lncRNAs through general pathways 

To get rid of imbalance agent numbers among different target categories, an entropy-based 

algorithm was designed to measure the extent of an lncRNA to be multi-drug response (MDR) 

related. Using this approach identified 221 MDR-related lncRNAs that are independent from drug 

target mechanism.  

To determine the possible functional roles of these lncRNAs, Gene Sets Enrichment 

Analysis (GSEA) [47]  was performed on the co-expression profile between lncRNAs and protein 

coding genes (Figure 12A). Strikingly, a significant correlation was observed between MDR 

lncRNAs and xenobiotic metabolism (p = 7.7×10-53, Spearman’s correlation) and glycolysis 

pathways (p = 2.06×10-47, Figure 12B).  

 

Figure 12 Identification of MDR-related lncRNAs 

(A) Distribution of the number of agents that multi-agent response (MDR) related lncRNAs are predictive to. The listed are 

top five lncRNAs predicting the greatest number of agents’ response in cell lines. (B) Correlation between the Shannon 

entropy of lncRNAs and their absolute normalized enrichment score across cancer hallmarks pathways. (C) Cumulative 

distribution of absolute NES in lncRNAs with high (low) Shannon entropy. Red (blue) denotes lncRNAs that have high (low) 

level of entropy. 

Interestingly, previous studies have highlighted the remarkable contribution of xenobiotic 

metabolism and glycolysis in inducing multi-drug resistance[61, 62]. Specifically, genes involved 

in xenobiotic metabolism (e.g. cytochrome P450 genes) could regulate the drug metabolism and 
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modulate the intracellular drug concentration, which would result in drug resistance and 

heterogeneous response among individual tumors[60-62]. 

3.4.2 LINC00992: an MDR-related lncRNA correlated with xenobiotic metabolism 

In total, this analysis identified 90 MDR related lncRNAs that are significantly correlated with 

xenobiotic metabolism (FDR < 0.25, GSEA) (Figure 13A). LINC00992 is identified as one of 

these MDR lncRNAs. LINC00992 is an intergenic lncRNA located on chromosome 5q23.1 and is 

expressed in multiple cancer types (Figure 13B).  

Being predictive to cell line response of 158 agents, LINC00992 exhibited significant 

positive expression correlation with CYP2J2 (r = 0.29, Pearson’s correlation, p < 0.001), CYP1A1 

(r = 0.21, Pearson’s correlation, p < 0.001) as well as several other genes involved in xenobiotic 

metabolism pathway (NES: 1.25, FDR < 0.01, GSEA) (Figure 13C). Cancer cell lines with high 

expression of LINC00992 and CYP genes showed resistance to 154 (97.4%) of the predictable 

agents.  
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Figure 13 LINC00992 as a potential MDR-related lncRNA 

(A) Marginal distribution of predictive score in pan-cancer models. The red (blue) color denotes MDR-related lncRNAs that 

are positively (negatively) associate with xenobiotic metabolism genes. The pie chart on the right indicates the ratio between 

two groups of lncRNAs. (B) The expression of LINC00992 in cancer patients and its association with patient survival. The 

upper boxplot indicates the expression (normalized counts) of LINC00992 in 21 cancer types. The lower heatmap indicates 

the hazard ratio given by univariate cox regression. The red (blue) indicates a positive (negative) hazard ratio. The size of 

the inner circle denotes the significance of hazard ratio. (C) The association among the high expression of LINC00992, genes 

in xenobiotic metabolism and the IC50s of top predictable agents across cancer cell lines. The upper heatmap shows the 

expression level from blue (low) to red (high) colors. The lower heatmap shows the IC50s from green (sensitive) to purple 

(resistant) colors. (D) The Kaplan-Meier curves of overall survival for patients grouped by LINC00992 expression level in 

BRCA and LIHC. 

Furthermore, elevated expression of LINC00992 associated with poor survival in patients 

of BRCA (p = 0.022, two-tailed Log-rank test), LIHC (p = 0.065), THCA (p = 0.024) and READ 

(p = 0.178) (Figure 13D). Interestingly, LINC00992 has been identified as a potential regulator of 

CYP genes, which play important roles in chemotherapy resistance in cancer[60] [63]. Therefore, 
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LINC00992 may serve as a novel biomarker and a potential master regulator for multi-drug 

resistance through xenobiotic metabolism. 

3.4.3 Drug resistance induced by lncRNAs through drug target pathways 

In addition to the drug metabolism pathways, our analysis also revealed lncRNAs that regulate the 

drug response directly through drug target pathways. I analyzed the enrichment pattern of top 

predictive lncRNAs from each agent and successfully identified a number of specific pathway 

enrichments (Figure 14). 

 

Figure 14 Association between predictive lncRNAs and cancer hallmark pathways 

Enrichment of top predictive lncRNAs for each agent in cancer hallmark pathways. The left panel lists the target information 

of the agents. The right panel shows the number of predictive lncRNAs that are significantly associated with cancer hallmarks. 

The significant association is cut at FDR < 0.25 by GSEA. 

For example, estrogen response pathway significantly correlated with expression of 14 out 

of 20 (70%) top predictive lncRNAs in the pan-cancer tamoxifen EN-model. The top predictive 
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lncRNAs for PARP1/2 inhibitor, including olaparib (FDA approved) and talazoparib (in clinical 

trial), demonstrated significant co-expression with genes in DNA repair (85% of top predictive 

lncRNAs for olaparib; 70% for talazoparib) and G2M checkpoint (85% for olaparib and 70% for 

talazoparib). Intriguingly, top lncRNAs of Bromodomain and Extra-Terminal (iBET) inhibitors 

are significantly correlated with MYC-related pathways (80% for iBET762 and 85%for JQ1). This 

is consistent with the previous reports that iBETs achieves therapeutic effect in multiple cancer 

types by targeting c-MYC pathway[64-70]. 

3.4.4 EPIC1: a top predictive lncRNA of BET inhibitor resistance 

The iBETs are a class of small molecules that could reversibly block the function of Bromodomain 

and Extra-Terminal motif (BET) protein family. The iBETs have been demonstrated to be a 

promising new therapy in several cancer types including breast cancer[68, 71]. These inhibitors 

displace BET bromodomain proteins such as BRD4 from chromatin by competing with their 

acetyl-lysine recognition modules, leading to inhibition of oncogenic transcriptional programs[72].  

Using LENP models, both Pan-Cancer and BRCA-specific LENP models can be predicted 

with high sensitivity and specificity (Figure 15A). Among the novel predictive features to BET 

inhibitors responses are RP11-275I4.4 and RP11-708B6.2 (top predictors of sensitivity), as well 

as EPIC1 (Figure 15B). 

EPIC1 is an intergenic lncRNA located on chromosome 22q13.31, which is highly 

overexpressed in 15 cancer types including BRCA (Figure 15C) and is selected as a top predictor 

by iBET in BRCA-specific models. Consistent with LENP model prediction, EPIC1 expression 

has a significant positive correlation with IC50s of iBET-762 in breast cancer cell lines (rho = 0.53, 

p = 0.002, Spearman’s correlation) (Figure 15D).  
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Figure 15 EPIC1 as a top predictor of iBET762 resistance in breast cancer cell lines 

(A) Comparison of EN-model predicted IC50 in ten iterations and observed IC50 for I-BET-762. Model performance in ten 

iterations for both pan-cancer and BRCA-specific models were demonstrated in the box plot. (B) EN model for I-BET-762 

in BRCA. The top curve shows observed IC50 of I-BET-762 in each cell line. The central heatmap shows the top predictive 

lncRNA expression in the model across all cell lines (x-axis). Bar plot (left): weight of the top predictive lncRNAs in the 

model for I-BET-762 sensitivity (bottom) or insensitivity (top). (C) EPIC1 expression across cell lines grouped by cancer 

types. (D) The expression of EPIC1 in cancer patients and its association with patient survival. The upper boxplot indicates 

the expression (normalized counts) of EPIC1 in 21 cancer types. The lower heatmap indicates the hazard ratio given by 

univariate cox regression. The red (blue) indicates a positive (negative) hazard ratio. The size of the inner circle denotes the 

significance of hazard ratio. (E) Joint-density plot showing the correlation between EPIC1 expression and IC50 of iBET762 

in pancan cell lines. The y-axis and the box plot on the left show the minus ln-transformed IC50 of iBET762 in pancan cell 

lines (blue) and the breast cancer cell lines (red). The x-axis and the box plot on the bottom show the log-transformed 

expression of EPIC1 in all of the cancer cell lines (blue) and the breast cancer cell lines (red).  
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3.5 EPIC1: VALIDATION OF A BET INHIBITOR RESISTANCE REGULATOR 

3.5.1 Expression profile of EPIC1 in 13 cancer cell lines 

Primers are designed to screen EPIC1’s expression in 13 cell lines using RT-PCR. According to 

the quantification analysis, EPIC1 is upregulated in MCF-7, BT-20, A2780-Cis, Hs578T, K562 

and T-47D cell lines (Figure 16). 

 

Figure 16 Endogenous expression level of EPIC1 in 13 cancer cell lines 

3.5.2 Overexpression of EPIC1 lead to iBET resistance 

The full-length human EPIC1 cDNA was cloned and overexpressed EPIC1 in MCF-7 breast 

cancer cells. The EPIC1 overexpressed cells were treated with two iBET inhibitors (i.e., iBET-

762 and JQ1) to determine the functional role of EPIC1 in iBET responses. In accordance with the 

LENP prediction, overexpression of EPIC1 significantly led to iBET-762 and JQ1 resistance in 

MCF-7 cells (Figure 17A and 17B). 
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Figure 17 Overexpression of EPIC1 leads to MCF-7 resistance to iBETs 

(A) Efficacy of EPIC1 knock down by individual and pooled siRNAs compared to control siRNA. (B) Growth inhibition 

curves for EPIC1 overexpression or control MCF-7 cells treated with BET inhibitor I-BET-762 (G) and JQ-1 (H). 

3.5.3 RNA-seq analysis: mechanism of EPIC1 in regulating iBET resistance 

To further explore the underlying mechanism of EPIC1 to regulate iBET resistance, RNA-seq 

analyses were performed in A2780, A2780-Cis, MCF-7 and Hs578T cells after EPIC1 knockdown 

with two EPIC1 siRNAs, individually or pooled (Figure 18A).  

Here, to exclude the possible siRNA off-target effects, only genes regulated in the same 

direction in all three transfections are focused. EPIC1 knockdown in breast and ovarian cancer 

cells resulted in significant expression change of 4,318 genes, which were significantly overlapped 

with EPIC1-correlated genes in 505 cancer cell lines (p < 0.0001, two-tailed Fisher’s exact test) 

(Figure 18B).  
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Figure 18 EPIC1 regulate the iBET resistance by interacting with MYC-related pathway 

(A) Efficacy of EPIC1 knock down by individual and pooled siRNAs compared to control siRNA. (B and C) Overlapped 

EPIC1-regulated genes/pathways between knockdown cell lines in RNA-seq analysis and 505 cell lines from GDSC. (D) 

down regulation of cMYC-targets in EPIC1 knockdown A2780-Cis and MCF-7 cell lines. (E) Expression alteration of 

cMYC-targets in EPIC1 knockdown cell lines. The red (blue) indicates an up (down) regulation.  



 55 

Moreover, 16 out of 18 EPIC1-correlated pathways in 505 cancer cell lines are 

significantly regulated by EPIC1-knockdown (FDR < 0.25, GSEA) (Figure 18C). Among them, 

the MYC pathway/targets are prominent gene sets enriched with EPIC1-associated genes in both 

cancer cell lines and EPIC1-knockdown cells (Figure 18D and 18E).  

In another study of our group, we have mechanistically demonstrated that EPIC1 regulates 

MYC transcriptional activity by directly interacting with MYC protein. Overexpression of EPIC1 

increased MYC target expression and breast tumorigenesis in vitro and in vivo, which can be 

abolished by MYC knockdown [73]. Our observations suggest that EPIC1 is an oncogenic lncRNA 

and also plays an important role in promoting the resistance to iBETs by increasing MYC protein’s 

transcriptional activity. 

3.5.4 Discussion 

In this chapter, we have experimentally demonstrated that EPIC1, the top predictive lncRNA for 

iBET drug response, strongly regulates iBET resistance in breast cancer. The iBETs are a class of 

MYC inhibitors, which have been demonstrated to have great potential to be translated to clinic in 

several cancer types including BRCA[68, 71]. The success of targeting MYC by iBET[68, 72, 74], 

with only minor toxicity in patients[75], has potentiated iBETs as a very promising class of agents 

for cancer therapy. However, the resistance to iBET, which was recently reported in multiple 

cancer types such as leukemia and BRCA, has largely hindered their translation into clinic[69, 71, 

76]. Despite that tremendous effort has been invested to identify the underlying regulator and 

biomarker for iBETs resistance, the detailed mechanism remains elusive. Our results suggest that 

EPIC1 may regulate iBET resistance through increasing MYC protein’s transcriptional activity. 

Future mechanistic study is warranted to demonstrate this hypothesis.  
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4.0  CONCLUSIONS 

This study has integrated multi-dimensional pharmacogenomic data of 11,950 long noncoding 

RNAs (lncRNAs) and 265 anti-cancer agents across 5,605 tumors and 1,005 cancer cell lines. By 

implementing a machine learning-based regression approach, our analysis identified 162,327 

lncRNA-drug interactions that potentially regulate the drug resistance/sensitivity in cancer cell 

lines. The prediction model derived by top lncRNA-drug interactions in cancer cell lines, i.e. 

LENP models, could readily predict the therapeutic outcome in patients across 21 cancer types. 

Furthermore, through integrative lncRNA-pathway analysis, we revealed that lncRNA could 

regulate the drug response by either mediating drug metabolism or interacting with drug-target 

pathways. Particularly, via RNA-seq analysis and in vitro experiments, we have demonstrated that 

EPIC1, the top predictive lncRNA for BET inhibitors (iBETs) drug response, strongly regulates 

iBETs resistance in breast cancer through increasing the transcriptional activity of MYC protein.  

Collectively, this study showed a proof of principle for using non-coding genotypes in cell-

line based panels for precision cancer medicine. This landscape of non-coding pharmacogenomic 

interactions can serve as a comprehensive knowledgebase for investigating lncRNAs’ role in 

cancer drug response, and will greatly facilitate the identification of non-coding biomarkers for 

cancer precision therapy. 
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APPENDIX A 

LIST OF ABBREVIATIONS 

Abbreviation Full Term 

ACC Adrenocortical carcinoma 

ALL Acute Lymphoblastic Leukaemia 

ANOVA Analysis of Variance 

iBET Bromodomain and Extra-Terminal motif protein inhibitor 

BLCA Bladder Urothelial Carcinoma 

BRCA Breast invasive carcinoma 

CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma 

CCLE Cancer Cell Line Encyclopedia 

COAD/READ Colon and rectum adenocarcinoma 

EN Elastic net 

ESCA Esophageal carcinoma 

GBM Glioblastoma multiforme 

GSEA Gene Set Enrichment Analysis 

GDSC Genomics of Drug Sensitivity in Cancer 

HNSC Head and Neck squamous cell carcinoma 

KEGG Kyoto Encyclopedia of Genes and Genomes 

KIRC Kidney renal clear cell carcinoma 

LAML Acute Myeloid Leukemia 

LASSO Least absolute shrinkage and selection operator 

LENP LncRNA-based EN regression prediction model 
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LGG Brain Lower Grade Glioma 

LIHC Liver hepatocellular carcinoma 

LncRNAs Long non-coding RNAs 

LUAD Lung adenocarcinoma 

LUSC Lung squamous cell carcinoma 

mRNA Messenger RNA 

OV Ovarian serous cystadenocarcinoma 

PAAD Pancreatic adenocarcinoma 

PCG Protein coding gene 

PRAD Prostate adenocarcinoma 

READ Rectum adenocarcinoma 

RNA Ribonucleic Acid 

SKCM Skin Cutaneous Melanoma 

SNP Single Nucleotide Polymorphism 

STAD Stomach adenocarcinoma 

TCGA The Cancer Genome Atlas 

THCA Thyroid carcinoma 

UCEC Uterine Corpus Endometrial Carcinoma 
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