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STUDY OF IRON OXIDE MAGNETIC NANOPARTICLES IN CANCER CELL 

DESTRUCTION AND CELL SEPARATION 

Jiaqi Zhao, PhD 

University of Pittsburgh, 2018 

Due to their adjustable physiochemical properties and proven biocompatibility, iron oxide 

(Fe3O4) magnetic nanoparticles are promising in drug delivery, magnetic resonance imaging and 

catalysis. In this thesis, we have utilized two types of iron oxide nanoparticles: i) 

superparamagnetic iron oxide nanoparticles (SPION) for targeted destruction of cancer cells, and 

ii) poly(N-isopropylacrylamide) (pNIPAM) coated magnetic particles (MNP) for multistage cell 

separation. 

SPION are generally considered as drug delivery vehicles for the enhanced permeability 

and retention (EPR) effect. SPION possess the intrinsic peroxidase-like activity as Horseradish 

peroxidase (HRP), which can generate reactive oxygen species (ROS) from H2O2 via Fenton’s 

reaction. ROS regulate cell signaling, but a significant ROS stress can disrupt the redox 

homeostasis of cancer cells leading to selective tumor cell toxicity and destruction. Hereby, we 

developed ROS-induced targeted cell destruction with SPION-GOx bioconjugates platform. 

GOx catalyzes glucose oxidation in cancer cells to produce H2O2. 24 h incubation with 10 μg/mL 

SPION-GOx on 4T1 cells resulted in almost zero cell viability. In vivo evaluation showed 

SPION-GOx led to a much slower tumor growth compared to control groups. 
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Additionally, magnetic activated cell sorting (MACS) has become a common technique 

for the separation of target cell populations from biological suspensions. A major obstacle 

preventing current single stage MACS from achieving satisfying separation efficiency is the non-

specific interactions between the cells and MNP. Thus, we designed a multistage separation 

platform similar to distillation concept in chemical engineering. The repeated capture-and-

release separation process is enabled by attaching the temperature responsive polymer- pNIPAM 

to both MNP and target cells. We manipulate the reversible hydrophobic-hydrophilic interactions 

between such functionalized MNP and target cells through temperature cycling to capture and 

release target cells at a higher efficiency than non-target. After several temperature cycles, target 

cells are enriched in the product. Flow cytometry results suggest that A431 cells (target) could be 

effectively separated from HeLa cells (non-target) after three separation stages resulting in an 

enrichment factor of 3.69 when the starting ratio of target to non-target is 1:2. 
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1.0  INTRODUCTION 

This dissertation consists of two parts of work: 1) targeted destruction of cancer cells by glucose 

oxidase-iron oxide bioconjugates, and 2) multistage separation of cells using hydrophobic 

interactions enabled by temperature responsive polymers. Both projects utilized iron oxide 

(Fe3O4) magnetic nanoparticles for their adjustable physiochemical properties and proven 

biocompatibility. 

Fe3O4 magnetic nanoparticles are a promising candidate in varieties of biomedical 

applications such as drug delivery, cell sorting, magnetic resonance imaging (MRI) and catalysis. 

It is highly desirable to have the particles with controllable sizes so that they are comparable with 

different biological entities of interest. 

Superparamagnetic iron oxide nanoparticles (SPION) with sizes under 50 nm possess the 

same intrinsic peroxidase-like activity as Horseradish peroxidase (HRP). This property is widely 

used in wastewater treatment and detection tools.  SPION generate reactive oxygen species 

(ROS, which play an important role in cell signaling) from H2O2 via Fenton’s reaction. A 

significant oxidative stress from ROS can overwhelm the relatively low antioxidant capacity and 

disrupt the redox homeostasis of cancer cells, leading to selective tumor cell toxicity and 

destruction. Therefore, we developed a novel approach for ROS-induced targeted cell destruction 

with SPION-GOx bioconjugates. GOx stands for glucose oxidase, which is an enzyme that 
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catalyzes the oxidation of glucose to produce H2O2. Along with the enhanced permeability and 

retention (EPR) effect that enables SPION to accumulate passively in tumor, the synergetic 

effect of SPION-GOx provides a great opportunity to significantly reduce the side effects from 

the conventional ROS based chemotherapy and radiotherapy on normal tissues. This work is a 

novel cancer therapy strategy as a substitute or supplement treatment method of radiotherapy and 

photodynamic therapy (PDT). 

Additionally, magnetic activated cell sorting (MACS) has become a common technique 

for the separation of target cell populations from biological suspensions. A major obstacle 

preventing MACS from achieving satisfying separation efficiency is the non-specific interactions 

between the cells and MNP. Thus, we designed a multistage separation scheme by introducing 

multiple capture-and-release cycles to the separation process. By attaching pNIPAM to both 

MNP and target cells, we are able to manipulate the reversible hydrophobic-hydrophilic 

interactions between the functionalized MNP and target cells. This multistage separation 

approach is a promising MACS strategy in clinical prognosis and environment engineering, for 

example, detecting the rare circulating tumor cells (CTCs) from large volume blood samples and 

wastewater treatment. 

The following topics are discussed in this dissertation: synthesis, stabilization, unique 

properties, and applications of Fe3O4 magnetic nanoparticles; cancer treatment by reactive 

oxygen species (ROS); cancer prognosis by isolation and analysis circulating tumor cells 

(CTCs), targeted destruction of cancer cells by glucose oxidase-iron oxide bioconjugates and 

multistage separation of cells using hydrophobic interactions enabled by temperature responsive 

polymers. 
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1.1 IRON OXIDE MAGNETIC NANOPARTICLES: SYNTHESIS, STABILIZATION, 

PROPERTIES AND APPLICATIONS 

The research on nanoparticles has been growing so explosively in recent years that researchers 

are able to fabricate, characterize and functionalize particles for specific clinical purposes in a 

variety of biomedical applications including drug delivery, hyperthermia, MRI agent, separation 

and sorting biological organisms. Among several types of inorganic particles that have been 

investigated, the iron oxide (mostly Fe2O3 and Fe3O4) magnetic particle is a very promising 

candidate for its adjustable physical and chemical properties and proven biocompatibility. This 

provides great opportunity in site-specific drug delivery, hyperthermia treatment for malignant 

cells, magnetic resonance imaging contrast, cell labeling, targeting and as a tool for cell-biology 

research to separate and purify cell populations[1]. 

A major advantage of nanoparticles over bulk materials is the large surface area resulting 

in an improved reactivity[2]. It is necessary that the size and shape of the particles are 

controllable to be comparable with different biological entities of interest.  In order to meet the 

requirements for different situations, particles with diameters ranging from a few nanometers to 

hundreds of nanometers can be synthesized through several approaches, including physical 

methods such as gas phase deposition, electron beam lithography, and wet chemical routes like 

co-precipitation of Fe2+ and Fe3+ aqueous salt solutions by adding a base. In the meantime, the 

magnetic nanoparticles are usually required to be well dispersed in suitable solvents, especially 

aqueous solution for biomedical applications since agglomeration and/or precipitation may 

prevent nanoparticles from being delivered to a specific area[3]. Therefore, surface coating that 

stabilizes the magnetic particles is an important step after synthesis. In this dissertation, two 
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types of iron oxide nanoparticles were synthesized using two different approaches: 

superparamagnetic iron oxide nanoparticles (SPION) were prepared using thermal precipitation 

and were conjugated with glucose oxidase (GOx) for targeted destruction of cancer cells; 

poly(N-isopropylacrylamide) (pNIPAM) coated PAA-MNP via hydrothermal method for 

multistage cell separation. Some popular synthesis and stabilization methods are reviewed and 

compared in this section as well as special features of iron oxide nanoparticles and their 

biomedical applications. 

1.1.1 Synthesis 

During the past decades, synthesis methods for stable and monodisperse magnetic nanoparticles 

have been well studied. Co-precipitation, thermal decomposition, hydrothermal synthesis, and 

microemulsion are popular approaches for the synthesis of high-quality nanoparticles. 

Co-precipitation is a convenient way to synthesize iron oxides (Fe2O3 and Fe3O4) at 

temperature ranging from 20-90°C[1]. By adding a base to Fe2+/Fe3+ salt solution, magnetic 

nanoparticles can be prepared once the conditions are fixed, which include the type of salts used, 

Fe2+/Fe3+ ratio, reaction temperature, pH, and the ionic strength of the media. Particles 

synthesized by co-precipitation tend to have a wide size distribution, which is non-ideal for many 

applications. The well-known nucleation and growth theory indicates that the key to produce 

monodisperse nanoparticles from solution is the fast nucleation and the following slow 

controlled growth. Oleic acid is considered the best candidate as a surfactant to passivate the 

particle surface and produce uniform products in extensive studies on the effect of several 

organic ions, such as carboxylate and hydroxyl carboxylate ions, on stabilizing the magnetite, 
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because spectroscopic characterizations showed that oleic acid ligand undergoes a structural 

change during γ-Fe2O3 nanocrystal synthesis[4]. The mechanism can be explained as the 

chelation of organic ions with metal ions reduces the number of nuclei, which leads to the 

particle growth step becoming dominant; in addition, the additives adhering to the nuclei and 

growing crystals may prevent the growth of particles, which favors the formation of small units 

[1]. 

Water-in-oil microemulsion (reverse micelles) can also be used as nanoreactor for the 

synthesis of magnetic nanoparticles. A microemulsion is thermodynamically stable dispersion 

with aqueous phase dispersed as microdroplets surrounded by a monolayer of surfactants in the 

continuous hydrocarbon phase. The resulting particles can be precipitated from the 

microemulsion by addition of acetone or ethanol, and subsequently extracted by centrifugal. 

Woo et al. reported Fe2O3 nanorods had been synthesized using the microemulsion method via a 

sol-gel-mediated route. The reverse micelles were formed from oleic acid and benzyl ether, with 

FeCl3•6H2O as the iron source and propylene oxide as the proton scavenger[5]. The limitations 

of the microemulsion technique are that the particle shape (e.g., spheroids or tubes) and size may 

vary over a wide range. Moreover, it is not an efficient process and usually gives a low yield 

compared to other methods[1]. 

In this study, according to the specific size and property requirements we set for the 

nanoparticles, thermal decomposition and hydrothermal synthesis were used to prepare the two 

types of iron oxide nanoparticles for targeted cancer cell destruction and magnetic assisted cell 

separation, respectively. Thus, a detailed discussion of these two synthesis methods, including 

reaction condition, mechanism and limitations, is given in the following section. 
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1.1.1.1 Thermal decomposition 

In order to produce highly uniform and small nanoparticles that can be used for cancer therapy 

study on animal models, the thermal decomposition method was taken to synthesize the ultra-

small superparamagnetic nanoparticles (SPION). Thermal decomposition of organometallic 

compounds in high boiling point solvent in the presence of stabilizing surfactants can yield 

monodisperse magnetic nanoparticles with very narrow size distribution. In this system, iron 

acetylacetonate, Fe(acac)3, is the organometallic precursor and oleic acid is used as the 

surfactant. Iron in Fe(III) oxides could be replaced by other metals such as Mn, Co, Ni, Cr[6]; 

fatty acids and hexadecylamine are alternative surfactants. The size and morphology are 

determined mainly by the ratios of the reagents (organometallic compounds, surfactant, and 

solvent), but also affected by reaction temperature, reaction time, and in some cases, the aging 

period[7]. Examples showing the effects of these decisive factors will be given below. 

Peng et al. reported a general and reproducible strategy using generic chemicals for 

controlling the size, shape, and the size distribution of magnetic oxide nanocrystals[8, 9]. Nearly 

monodisperse dot-shaped (as compared to tube- and wire-shaped) Fe3O4 nanocrystals were 

synthesized in the size range between about 6 and 50 nm, as shown in Figure 1. The method is 

based on the pyrolysis of metal fatty acid salts in nonaqueous solutions, which uses either 

octadecene (ODE), n-eicosane, tetracosane, or a mixture of ODE and tetracosane as the 

noncoordinating solvents. The corresponding free fatty acids were added into the system to tune 

the activity of the metal fatty acid salts. The size control of the Fe3O4 nanoparticles was realized 

by varying the concentration and/or the chain length of the fatty acids when the monomer 

concentration was fixed. In simple terms, the higher the ligand concentration is, the larger the 

size of the nanocrystals will be. This is because the ligand concentration greatly affects the 
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monomer reactivity in noncoordinating solvents, while the tunable reactivity of the monomers 

enables a balanced nucleation and growth which is the key to the control of size and size 

distribution[10]. The size remains at a fixed value when relatively long chain fatty acids like 

oleic acid or steric acid were used. However, an increase in particle size was observed, along 

with the acceleration in the overall reaction rate, when the chain was shortened in fatty acids. 

The researchers found that by adding activating reagents, primary amines or alcohols, the 

formation of nanocrystals was significantly accelerated. This is consistent with the increased 

reactivity coefficient of the precursors. Peng also stated that maintaining a balance between the 

nucleation and growth stages to prepare fine nanoparticles is better achieved by introducing 

noncoordinating solvent[8]. In noncoordinating solvents, the reactivity of precursors can be 

tuned by varying the bonding strength of the ligands to the monomers, concentration, chain 

length, and/or configuration of the ligands for the monomers. 

 

 

 

Figure 1. TEM images of as-prepared dot-shaped Fe3O4 nanocrystals. Reprinted (adapted) with permission 
from [8]. Copyright (2004) American Chemical Society. 

 

Sun et al. reported a convenient organic phase process to make Fe3O4 particles with very 

narrow size distribution (i.e., standard deviation < 0.10) and diameter tunable from 3 to 20 nm 

[11, 12], as shown in Figure 2. Under high-temperature (265°C), the reaction of iron (III) 
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acetylacetonate, Fe(acac)3, in phenyl ether in the presence of alcohol, oleic acid, and oleylamine 

can be used to make monodisperse magnetite nanoparticles. It was found that 1,2-hydrocarbon 

diols, such as 1,2-hexadecanediol, react well with the precursor, and both oleic acid and 

oleylamine are necessary for the formation of Fe3O4 particles. Larger particles can be made via 

seed-mediated growth starting with as-synthesized small nanoparticles as seeds[13]. Sun 

indicated that the key to successfully prepare monodisperse nanoparticles is to heat the reaction 

mixture at 200°C before starting reflux in phenyl ether at 265°C, which indicates that under this 

reaction condition, the nucleation and growth of nuclei processes are not fast as demonstrated 

above[12]. 

 

 

 

Figure 2. TEM bright field images of (A) 6 nm and (B) 12 nm Fe3O4 nanoparticles. Reprinted (adapted) 
with permission from [9]. Copyright (2004) American Chemical Society. 

 

Particles as prepared, precipitated and dispersed in organic phase are sterically stabilized 

by the fatty acid and surfactants. The functionalization methods to convert hydrophobic 

nanoparticles to hydrophilic ones will be discussed in the following chapter. 
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After reviewing various approaches for monodisperse nanoparticle synthesis, this high 

temperature organic phase procedure that Sun et al[12] reported was utilized in our cancer cell 

destruction project to prepare the ultra-small nanoparticles (SPION) due to its low cost and high 

yields, in addition to the advantage of size-tunable technique. 

1.1.1.2 Hydrothermal synthesis 

Even though the synthesis strategies discussed in thermal decomposition can produce nearly 

monodisperse nanoparticles as the most desired feature, the conditions including the preheating 

step, relatively high reaction temperature (for example, 265°C in Sun’s procedure[12]), and inert 

atmosphere are not very convenient. Alternatively, hydrothermal synthesis, which includes 

various reactants in a sealed container at high vapor pressure (generally in the range from 0.3 to 

4 MPa) and high temperature (generally from 130 to 250 °C), is more convenient. It is prone to 

obtain the highly crystalline iron oxide nanoparticles since grains formed in hydrothermal 

synthesis have a higher crystallinity[14]. Instead of using organic compound as solvent, 

hydrothermal synthesis is usually in a water-ethanol aqueous solution. 

Li et al. developed a general procedure to synthesize monodisperse ferrite microspheres, 

which produces particles with diameters of about 200–800 nm using hydrothermal reduction[15]. 

The system consists of FeCl3, ethylene glycol, sodium acetate, and polyethylene glycol. The 

mixture was first stirred to form a clear solution, then sealed in Teflon-lined-stainless-steel 

autoclave and heated at 200°C for various periods of time. With constant precursor concentration 

and temperature, the diameter of the microsphere was observed to be increasing from 200 nm (at 

8 h) to 800 nm (at 72 h). The components of reaction mixture in this system were skillfully 

designed: ethylene glycol, as part of the family of polyol, is the reducing agent with high boiling 
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point; sodium acetate salt can prevent particle agglomeration by electrostatic stabilization; last 

but not least, polyethylene glycol works as the surfactant also inhibiting agglomeration. 

Interestingly, Li claimed that[15], in their system, NaOAc seemed to assist in the ethylene glycol 

mediated reduction of FeCl3 to Fe3O4, as it showed that Fe3+ could not be reduced solely by 

ethylene glycol under the same reaction conditions in the control experiment. The magnetic 

particles prepared from Li’s synthetic strategy could remain in suspension for more than 1 day 

after being suspended in doubly distilled water by sonication, which demonstrates a great 

systematic colloid stability. 

This study conducted by Li’s group showed that the microsphere size is controllable with 

diameters ranging from 200 to 800 nm using the hydrothermal synthetic strategy. These 

microspheres are colloidal stable and very hydrophilic, which made them good candidates for 

clinical diagnosis and in the transport of drugs, proteins after proper surface modification. The 

raw materials used in this synthesis method are inexpensive and the yields are ~92 %, which is 

relatively high. Therefore, these microspheres can be of great use in biomolecular separations, 

targeted drug delivery, cancer diagnosis and treatment, as well as MRI[15]. 

As for the cell separation project, we modified Li Group’s strategy[15] by adding 

polyacrylic acid (PAA) as to meet our need for the subsequent modification with poly(N-

isopropylacrylamide) (pNIPAM) on particle surface, since the carboxyl groups from PAA are 

able to react with the amine groups on the temperature-responsive polymer, pNIPAM terminated 

by –NH2. Therefore, PAA acted both as a ligand and a surface functionalization agent in this 

solvothermal reaction system. Details of the synthesis, characterization, and the subsequent 

modification and application in multistage cell separation of the PAA-MNP will be described 

and discussed in chapter 3.0. 
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1.1.2 Stabilization 

Maintaining the stability of particles from precipitation and oxidation from air is important after 

successful synthesis[1]. Therefore, protection to obtain physically and chemically stable colloidal 

system is crucial for any application of magnetic nanoparticles. At the same time, 

functionalization of particles for further conjugation with linkers or biomolecules can also be 

achieved through selected coating processes. Basically, all the coating strategies are to form a 

core-shell structure. The coating layer, i.e. the shell, protects the naked core (magnetic particle) 

from the environment where oxidation of Fe2+ and acid erosion could occur and induce damage 

to both particles and the colloidal system. Current coating strategies roughly fall into two major 

categories: organic coatings from surfactants/polymeric stabilizer, such as dextran[16], 

poly(ethylene glycol) (PEG)[17], etc.; inorganic shells from silica[18], carbon[19] or precious 

metals like Ag[20], Au[21]. 

Polymeric materials used as stabilizers act like a barrier between particles by absorption 

onto particle surface to provide steric repulsion. An amphiphilic copolymer, which bears a 

hydrophilic segment to spread into aqueous phase and a hydrophobic segment to anchor on the 

particle surface, provides the most efficient repulsion. If a polymer chain is charged, the 

additional electrostatic repulsion will further stabilize the particles[22]. A few characteristics of 

polymer stabilizer should be taken into consideration when the coating for MNPs is designed. 

For example, the chemical structure determines the biodegradability and 

hydrophilic/hydrophobic property; the conformation contributes to the overall size of the colloid, 

which plays an important role in minimizing the rapid blood clearance; the geometric 

arrangement and degree of surface coverage; the attachment mechanism (covalent or ionic 
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binding, hydrophobic interaction), etc. Researchers found that hydrophilic polymeric coatings 

may increase the plasma half-life resulting from the stealth properties of the shell[23, 24]. PEG is 

the most widely used hydrophilic polymer that is non-toxic and has great steric repulsive 

properties[25, 26]. PEG chain can be attached to MNPs by various approaches, such as 

polymerization at the particle surface[27], modification via sol-gel[28], and silane grafting[29]. 

Polysaccharide dextran has also been used on MNPs coating for in vivo imaging purpose[30]. 

Silica may also facilitate the stability and functional design by introducing alkoxysilanes (for 

example, 3-aminopropyltriethoxysilane)[31]. The advantage of SiO2 coating is that it is easy to 

synthesize and its great stability in aqueous phase[32].  

Alternatively, particles can be dispersed in a dense matrix (like polymer, silica or carbon) 

to form particle composites, which consist of a polymer matrix or a reservoir system[33, 34]. In 

this case, the polymeric shells that avoid size growth after nucleation can create repulsive force 

to balance the magnetic and the van der Waals attractive forces on particles. Surfactants and 

polymers that are either physically absorbed or chemically tethered to particle surfaces work 

similarly as the polymeric shell in particle composites to create repulsion to obtain the colloidal 

stability. Polymeric shell not only provides improved water dispersity and colloidal stability, but 

also introduces functional groups, such as amine and carboxyl groups to the surface. Relevant 

research using gelatin[35], poly(acrylic acid) (PAA)[36], poly(D,L-lactide)(PLA)[37, 38], 

poly(D,L-lactide-co-glycolide)(PLGA)[39-41] has been conducted for encapsulation of MNPs. 

Senna et al found from the XRD diffraction pattern that crystallinity of the particles decreased 

with increasing poly(vinylalcohol) (PVA) concentration[42], indicating defects in the crystal 

structure might occur due to the presence of polymer or copolymer during the nucleation and 
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growth. This may affect the magnetic features of MNPs, so that caution should be exercised for 

the selection of stabilizers. 

Another way of particle stabilization is by encapsulating magnetic particles into 

liposome, which is a spherical vesicle used for administration of pharmaceutical drugs[43, 44]. 

Liposomes are mostly phospholipids with at least one lipid bilayer in aqueous solution[45]. A 

liposome has an aqueous core surrounded by a hydrophobic membrane. As a result, hydrophilic 

solutes dissolved in the core cannot pass the bilayer. The fact that liposomes can fuse with cell 

membrane, which is also a bilayer, provides great potential for drug delivery to a specific site, 

even though this process is not spontaneous[46]. Similar to encapsulation into polymeric shell, 

surface functionalization can be realized by liposomal methodology without modification of the 

MNP core, which makes the stabilization process convenient. Joniau et al. studied the adsorption 

of different phosphatidylglycerols onto MNPs in this liposomal magnetic system (also known as 

magnetoliposome) [47]. The bilayer configuration of magnetoliposome is formed with a quick 

absorption of inner monolayer orientated to MNP surface, followed by a much slower assembly 

of outer layer through interactions with the exposed hydrocarbon chains. The kinetics results 

showed that 30%-35% of the adsorption occurs within the first minute, which can be attributed to 

the high binding affinity character of the inner layer adsorption. The adsorption beyond the high-

affinity zone was demonstrated to obey the Langmuir expression (shown in Figure 3): 
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where  is the molar number of lipid adsorbed per gram of Fe3O4 in the Langmuir zone, is 

the number at saturation, c is the phospholipid equilibrium concentration and  is the 

association constant. 

 

 

 

Figure 3. The adsorption of the outer layer on MNP surface beyond the high-affinity zone obeys the 
Langmuir adsorption isotherms. Reprinted by permission from Springer Nature[47] COPYRIGHT (1988). 

 

Instead of incorporating magnetic particles into the aqueous interior of a vesicles during 

the preparation, Cuyper et al. developed another approach to adsorb a phospholipid bilayer onto 

the particle core that were already surfactant-coated[45]. Briefly, phospholipid was vacuum dried 

from the solvent chloroform and dispersed in TES buffer (4mM, pH 7.0), then sonicated to form 

small unilamellar vesicles. Afterwards, solid lauric acid was added to stabilize MNPs and 
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maintained at 90 ºC to improve the solubility of the detergent. Finally, the lauric acid was 

substituted by phospholipids using dialysis of Fe3O4 - lauric acid complex in the presence of 

vesicles for 3 days at 37 ºC. The author claimed that the encapsulation following this protocol for 

the preparation of magnetoliposomes could be considered to be 100%, since all the MNPs were 

found to be covered by a phospholipid bilayer. 

1.1.3 Special features and biomedical applications 

Controllable size and unique properties make iron oxide magnetic particles ideal candidates in 

plenty of biomedical applications. Firstly, owing to various and advanced synthesis 

methodology, the size of iron oxide particles may range from a few nanometers to tens of 

micrometers, which are comparable to the size of a cell (10 – 100 µm), a bacteria (0.2 – 10 µm), 

a virus (20 – 450 nm), a protein (5 – 50 nm) or a gene (2 nm wide and 10–100 nm long)[48]. 

This controllable size allows the particles to easily interact with or bind to almost any biological 

entity of interest. Moreover, the magnetic property of iron oxide [Fe3O4 and γ-Fe2O3 (one 

common form of Fe2O3, cubic structure)] allows particles to be manipulated remotely by external 

magnetic field gradient. By applying external magnetic fields and letting them penetrate into a 

particular tissue, magnetic nanoparticles, or magnetically tethered biological entities can be used 

to transport and/or immobilize drug vehicle, such as anticancer drug (doxorubicin)[49], or a 

cohort of radionuclide atoms to a targeted region of the body[50]. Third, the magnetic 

nanoparticles can resonantly respond to a time-varying magnetic field transforming 

electromagnetic energy from the high-frequency field to heat. In this case, particles can be heated 

up, providing the application opportunity as hyperthermia agents, delivering toxic amounts of 
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thermal energy to targeted bodies such as tumors; or as chemotherapy and radiotherapy 

enhancement agents, where a moderate degree of tissue warming results in more effective 

malignant cell destruction. The applications discussed above are made possible in biomedicine as 

a result of the special physical properties of magnetic nanoparticles. 

 

 

 

Figure 4. Nanoscale size effect of WSIO nanocrystals on magnetism and induced MR signals. (a) TEM 
images of Fe3O4 nanocrystals of 4 to 6, 9, and 12 nm. (b) Size-dependent T2-weighted MR images of WSIO 
nanocrystals in aqueous solution at 1.5 T. (c) Size-dependent changes from red to blue in color-coded MR images 
based on T2 values. Reprinted (adapted) with permission from [51]. Copyright (2005) American Chemical Society. 

 

Cheon et al. investigated the effect of nanoparticle size on MRI signal intensity for their 

utilization in cancer diagnostics[51]. Highly monodisperse (σ = ∼5%) water-soluble iron oxide 

nanoparticles with sizes of 4, 6, 9, and 12 nm using the thermal decomposition of Fe(acac)3 were 

first synthesized, and then demonstrated the correlation between the particle size and magnetism 

by measuring the mass magnetization values. It is shown that as magnetic particle size increases, 

the T2-weighted MR signal intensity continuously decreases[51], as shown in Figure 4. 
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1.1.3.1 Gene and Drug Delivery 

The idea of using magnetic particles to deliver therapeutic agents, such as gene and 

pharmaceutical agents, was first proposed in the late 1970s by Widder et al.[52]. The basic 

concept of magnetic drug delivery is to attach the magnetic nanoparticles to the drug, and thus to 

target at a specific site guided by the localized magnetic field. The drug-loaded magnetic 

particles can be held at the therapy location until the therapy is complete or the local 

concentration is high enough, which minimizes the side effects and toxicity in other normal 

organs and tissues. The therapeutic molecules can be attached to, or encapsulated within a 

vehicle which may be a core-shell structured magnetic particle with polymer coatings, or may be 

in the form of porous polymers with magnetic nanoparticles precipitated in the pores[53]. By 

modifying the polymer coating, drugs for targeted chemotherapy or therapeutic DNA to fix a 

genetic defect can be attached to magnetic particle carriers. Several approaches have been 

applied to attach the agents to particle, including conjugating cleavable linkers[54], incorporating 

therapeutic molecules into degradable shell, or simply taking advantage of electrostatic 

interactions between the positively charged particle surface and negatively charged backbone of 

DNA[55].  

Even though the targeted drug delivery enabled by magnetic particles has been proven to 

be successful in many studies[32, 52, 53, 56], only a small number of clinical trials have been 

performed to date. A trial performed in 2004 examined the efficacy of magnetic targeted carrier 

bound to doxorubicin (MTC-DOX) for the treatment of four patients with inoperable 

hepatocellular carcinoma[57]. In this study, doxorubicin was absorbed to composite 

microparticles made from metallic iron and activated carbon following the Langmuir theory[58]. 

MTC-DOX was delivered via the hepatic artery using concurrent MR imaging to monitor, and 
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interim catheter manipulation was performed with fluoroscopic guidance to optimize delivery to 

the tumor and minimize the effects on normal tissue[57]. The particles were targeted to the tumor 

sites by using rare earth magnets placed on the body surface. The results indicated that the MTC-

DOX microparticles were well targeted at the tumor sites with the tumor volumes shrinking 

down to 64%–91% of the originals, while the affected normal liver volume only ranged from 

7%–30%. Despite of the drawbacks of the long duration of the treatment sessions, the expense of 

obtaining multiple MR images and the abnormal pain reported by all four patients, this study has 

provided very important information for future research in magnetic particle facilitated drug 

delivery. 

1.1.3.2 Hyperthermia 

Magnetic hyperthermia is an experimental treatment for cancer based on the fact that magnetic 

nanoparticles can transform electromagnetic energy from an external high-frequency field to 

heat. Hyperthermia is considered a supplementary treatment since a small temperature rise 

makes cancer cells more susceptible to radiation and chemotherapy[59]. The biological basis of 

hyperthermia is that temperature rise (to 40–45°C) initiates a series of subcellular events, 

rendering the cells susceptible to apoptosis or other forms of damage, leading to subsequent cell 

death. Because of the low efficiency of blood flow and oxygen transport through newly formed 

blood vessels within tumors, tumor cells in an acidotic and nutrient-deprived setting tend to be 

more thermosensitive[60]. Previous studies showed that intravenously injected nanoparticles 

prefer to accumulate in tumors rather than in normal tissues, which is often referred to as the 

enhanced permeability and retention (EPR) effect[61]. Therefore, when magnetic particles are 

exposed to alternating magnetic fields, heat is generated at tumor site from magnetic hysteresis, 

https://en.wikipedia.org/wiki/Magnetic_nanoparticles
https://en.wikipedia.org/wiki/Magnetic_nanoparticles
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Neel-relaxation and Brown-relaxation[62]. Tumor-targeted nanoparticles results in less non-

specific accumulation in the other part of body, enabling a lower dosage for an equal therapeutic 

effect and a decreased toxicity induced by nanoparticles. A monolayer of PEG covering 

polymeric dextran shell could enhance the circulation half-life[63] to prevent bare iron oxide 

particles from being cleared from blood too fast and accumulation in liver, spleen and lymph 

instead of tumor[59]. To achieve adequate concentrations in the tumor, magnetic nanoparticles 

are modified by targeting molecules like peptides and antibodies. Triton BioSystems, Inc. 

(Chelmsford, MA) developed the system of alternating magnetic field (AMF) responsive 

nanoparticles and targeted these to cancerous tissues by conjugating with monoclonal 

antibodies[59]. The degree of heating is controlled by the AMF field. However, increasing the 

AMF field strength generates heat in normal tissues from eddy current losses. Therefore, the 

raised temperature in the normal tissues limits the extent to which the AMF field can be 

increased[64]. 

1.1.3.3 Diagnostic: MRI contrast 

MRI is one of the most powerful non-invasive imaging modalities utilized in hospitals and 

clinics for medical diagnostic[65]. The process through which the hydrogen protons return to 

their original state from the alignment to the applied magnetic field is termed the relaxation. 

Longitudinal relaxation (T1) and transverse relaxation (T2) are two independent processes, 

which can be monitored to generate an MR image. Proton density, as well as the nature of the 

tissues, determines the local variation in relaxation, corresponding to image contrast. MNPs 

provide MR contrast enhancement when accumulated in tissues[56]. This ability of MNPs to 
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serve as MR imaging contrast agents provides great detection and diagnostics opportunities in 

cancer imaging, cardiovascular disease imaging and molecular imaging [30]. 

Helmberger et al. demonstrated that imaging of liver tumors and metastases through 

RES-mediated uptake of SPION is able to distinguish lesions as small as 2–3 mm[66]. Moreover, 

ultrasmall superparamagnetic iron oxide nanoparticles(USPIOs) have been proven effective 

identifying lymph node metastases with a diameter of 5–10 mm under MRI[67]. Another 

promising usage of MNPs in cancer therapy is to improve the delineation of brain tumor 

boundaries and quantify tumor volumes[68]. This is because MNPs improved cellular 

internalization and were cleared more slowly from tumor site, which prolonged the delineation of 

tumor margins[69]. 

1.1.3.4 Magnetic Assisted Separation 

Magnetic particles have been proven to be effective and useful in magnetic-driven separation of 

biochemical products like protein, DNA, and cells[70-73]. It is a reliable and simple method to 

efficiently capture specific biomolecules from mixtures by applying external magnetic field. The 

unique superparamagnetic feature that magnetic particles in certain sizes have is of great usage 

since they can be magnetized from the external magnetic field and resuspended immediately as 

soon as the magnetic field is removed. 

Xu et al. used dopamine (DA) as a novel anchor to immobilize functional molecules, 

nitrilotriacetic acid (NTA), on the iron oxide shell of magnetic nanoparticle, which exhibits high 

specificity and capacity for histidine-tagged protein purification from cell lysate[70]. The 

average sizes of M/Fe2O3 synthesized are 8.5 nm and 9.5 nm when the cores of nanoparticle are 

Co and SmCo5.2, respectively. Dopamine was chosen to be the anchor on Fe2O3 shell for two 
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main reasons. Firstly, the bidentate enediol ligands of dopamine can convert coordinatively 

unsaturated Fe surface sites to a bulk-like lattice structure[74], which may result in high binding 

affinity of dopamine to Fe2O3 shell. Secondly, Langmuir isotherms indicate that the adsorption of 

dopamine from Fe2O3 nanoparticles is more favorable than desorption[75]. After removing the 

physically absorbed proteins on M/Fe2O3-DA-NTA-Ni2+ particles by deionized water, 10 and 

500 mM of imidazole elutions were used to sequentially wash the protein-bound nanoparticles. It 

is shown in Figure 5A that only the target protein (6xHis-GFP, lanes 4, 5, and 7) existed in the 

imidazole elutions. In addition, electrophoresis traces in Figure 5B show that the fractions 

washed from the particles with SmCo5.2 core that had been boiled in Tris buffer (pH = 7.9) for 

20 min contain only the histidine-tagged protein, indicating the specificity and efficiency the 

particles remain unaffected from heating[70]. 

 

 

 

Figure 5. SDS/PAGE analysis of the purity of the proteins. (A) Cell lysate (lane 1), GFP standard (lane 2), 
molecular weight marker (lane 3), the fractions from freshly made SmCo5.2/Fe2O3−NTA by washing with imidazole 

elutions (10 mM, lane 4; 500 mM, lane 5), fractions from the freshly made Co/Fe2O3−NTA using imidazole 
elutions (10 mM, lane 6; 500 mM, lane 7). (B) Cell lysate (lane 1), GFP standard (lane 7), the molecular weight 

marker (lane 8), the fractions washed from the freshly made 6b (lanes 2 and 3), boiled 6b (lanes 4 and 5), and the 
microbeads of the commercial HiTrap affinity column (lanes 6 and 9). The concentrations of imidazole are 10 mM 
(lanes 2, 4, and 6) and 500 mM (lanes 3, 5, 9). Reprinted (adapted) with permission from [70]. Copyright (2004) 

American Chemical Society. 
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Magnetic nanoparticles have also shown great capabilities in gene separation due to their 

high separation efficiency[71]. Separation of rare DNA/mRNA targets from complex matrix is 

critical in diagnostics, gene expression studies, and gene profiling. Weihong Tan et al. developed 

a novel genomagnetic nanocapturer (GMNC) for collection, separation, and detection of trace 

amounts of DNA/RNA molecules with one single-base difference[72]. The GMNC was coated 

with silica as the protection layer, where avidin-biotin was used as linkers to conjugate the 

molecular beacon DNA probes onto the particle surface. After being evaluated in both artificial 

buffer solution and in cancer cell samples containing different proteins and random DNA 

sequences, the GMNC was demonstrated to be highly efficient in collection of trace amount of 

DNA/mRNA samples down to femtomolar (10-15 M) concentrations. This newly developed 

genomagnetic nanocapturers have exceptional feature of real-time monitoring and product 

collection as well, which provides plenty of future application opportunities in gene separation. 

1.2 CANCER TREATMENT BY REACTIVE OXYGEN SPECIES 

Reactive oxygen species (ROS) are a wide range of critical signaling molecules[76, 77]. When 

the unpaired electron of oxygen reacts with other molecules, the partially reduced highly reactive 

products formed are defined as ROS. ROS consist of a group of chemicals, including superoxide 

anion radical, singlet oxygen, hydrogen peroxide and the hydroxyl radical. ROS can be produced 

from several enzyme systems, including the mitochondrial electron transport chain, cytochrome 

P450, lipoxygenase, cyclooxygenase, the NADPH oxidase complex, xanthine oxidase, and 

peroxisomes[78]. Among those systems, mitochondrial oxygen metabolism is the major source 
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of superoxide resulting from the electron transport chain. The hydroxyl radical, •OH, is the 

neutral form of the hydroxide ion (OH-). The high reactivity of hydroxyl radical makes it a very 

destructive radical with a short half-life of approximately 10-9 s[79], which mostly leads to local 

reactions at the site where it is formed shortly beforehand. 

ROS act as a second messenger in cell signaling and essentials for biological processes in 

normal cells, while they are ironically considered harmful to cells, tissues and organisms 

meantime[80]. ROS are physiologically produced intracellularly through multiple mechanisms 

depending on the cell type. The major process, oxidative phosphorylation in which adenosine 

triphosphate (ATP) is produced, involves the transport of protons via the electron transport 

chain. Electrons are transferred through proteins via redox reactions, and finally to oxygen 

molecule. In most cases, the oxygen is fully reduced to water by gaining four electrons; however, 

oxygen can sometimes be partially reduced to produce the superoxide radical (•O2
−), the 

hydrogen peroxide (H2O2), and hydroxyl radical (•OH) by receiving one, two, three electrons, 

respectively[81]. ROS can also be generated by exogenous sources like radiation, and 

pathologically by inflammation of metal such as copper and iron. In human body, iron normally 

binds to transferrin, which is blood plasma glycoproteins that control the concentration of 

free iron in the blood[82]. When iron is not bound, it will generate ROS, particularly the most 

reactive hydroxyl radicals, via Fenton’s reactions[83]: 

Fe2+ + H2O2 Fe3+ +  OH+OH

Fe3+ + H2O2 Fe2+ +  OOH+H  

ROS level is usually maintained very stable by scavenging systems, in which such ROS 

are involved in cell signaling[84]. Whereas redox balance, the ratio between oxidizing and 

https://en.wikipedia.org/wiki/Blood_plasma
https://en.wikipedia.org/wiki/Glycoprotein
https://en.wikipedia.org/wiki/Iron
https://en.wikipedia.org/wiki/Biological_fluids
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reducing species within cells, is achieved by a few enzyme systems that neutralize toxic oxidants 

like ROS. For example, superoxide dismutases (SOD) can catalyze the reaction of •O2
− to H2O2, 

and subsequently H2O2 is converted to H2O by gluthathione (GSH) peroxidase coupled with 

glutathione reductase[85]. A slight increase in ROS level may induce higher cell proliferation 

and differentiation rates, while a significant ROS stress resulting from the exogenous agents can 

overwhelm the relatively low antioxidant capacity and disrupt the redox homeostasis inside 

cancer cells, and cause damage to proteins, lipids and DNA, which can lead to cellular damage 

and death[86-88], as shown in Figure 6. 

 

 

 

Figure 6. Influence of ROS exposure level on cell sinaling. Reproduced from [85], Copyright 2007 with 
permission from AACR. 

 

DNA damage mediated by ROS plays an important role in carcinogenesis initiation and 

malignant transformation[89]. Hydroxyl radicals may react with pyrimidines, purines, and 
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chromatin protein, causing base modifications, genomic instability, and alterations in gene 

expression[85]. Chronic inflammation or chronic chemical irritants like tobacco smoking can be 

some pathologic sources of transforming ROS[90]. Due to the shortage or absence of cell cycle 

checkpoints, and the overexpress in oncogene growth factors and the receptor tyrosine, 

transformed cells ultimately end up with tumor formation and chronic hypoxia[91]. Inhibition of 

protein phosphatases caused by H2O2 induces proliferation and apoptosis suppression, and also 

associates oncogene overexpression with ROS-mediated signaling[92]. Abnormal cell 

proliferation driven by oncogene growth factor activation and signal transduction requires larger 

amount of oxygen which is beyond the capacity of the resting vasculature, and therefore 

stimulates the development of new blood vessels[93]. 

Among all the reactive oxygen species, the hydroxyl radical is extremely reactive 

because it is able to propagate a chain reaction by removing electrons from any molecule in its 

path, and turning that molecule into a free radical, which makes it the most damaging radical. 

Cancer cells are known for an exhibition of increased intrinsic oxidative stress. Therefore, the 

high level of ROS in cancer cells has provided opportunity to develop new therapeutic strategy 

to preferentially kill cancer cells rather than both the cancer cells and the healthy cells in current 

cancer treatments[94]. 

There are a few common approaches to generate ROS in current clinical research, 

including radiotherapy, photodynamic therapy and chemotherapy. During radiotherapy, there is a 

massive boost in ROS level initiated by X-rays, γ-rays, or heavy particle radiation such as 

protons and neutrons. However, concerns about the healthy tissue damage and radiation safety 

have been restricting the application of radiation therapy to a very large extent[95-98]. Whereas 

photodynamic therapy (PDT) uses ROS generated by irradiating nontoxic photosensitizer with 
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appropriate light in the presence of molecular oxygen to destroy tumor cells[99-101]. Even 

though the principle is simple, it is difficult and challenging to control the dose of drug and light, 

as well as the interval between drug and light administration[99, 102-104]. Moreover, PDT is 

limited by the penetration depth of the light that excites the photosensitizers. 

Recently, a few studies utilized SPION in combination with ROS-based anticancer drugs 

to potentially improve drug targeting specificity and therapeutic efficacy in theranostic 

nanomedicine platforms for multimodal cancer image-guided cancer therapy[105, 106]. 

As described above, increased ROS level leads to enhanced cell proliferation and 

apoptosis suppression, therefore modulation of ROS to a certain level can be used as a 

therapeutic strategy in cancer therapy. The pathways in which ROS are increased in malignant 

cells are oncogene signaling via the NADPH oxidase complex and by hypoxia-related 

mitochondrial ROS. Therefore, two therapeutic approaches targeting the pathways are 

considered: (a) increasing ROS scavenging, thereby reducing H2O2 signaling and restraining 

tumor growth; (b) interfering with ROS scavenging within cells, causing excess ROS 

accumulation therefore triggering apoptosis[107, 108]. 

Cullen et al.[109] showed evidence to support that increasing ROS scavenging could be a 

promising therapeutic strategy using ROS. They investigated if the overexpression of 

phospholipid glutathione peroxidase (PhGPx), which decreases lipid hydroperoxides from 

biomembranes, could change pancreatic tumor cell behavior. Both mitochondrial PhGPx form 

(L-form) and nonmitochondrial PhGPx form (S-form) were used in the synthesis of adenovirus–

PhGPx (L/S-form) construct. In the nude mice with pancreatic cancer cells implantation model, 

AdPhGPx-L- form decreased in vivo tumor growth to a greater extent than did AdPhGPx-S-

form. Meanwhile, AdPhGPx-S-form demonstrated 80% tumor growth inhibition in vitro, 
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whereas AdPhGPx-L-form demonstrated 95% tumor growth inhibition. This growth-inhibitory 

effect showed that overexpression of glutathione peroxidase could depress tumor growth both in 

vitro and in vivo in mouse models. 

On the other hand, interference with ROS removal can also result in the accumulation of 

excess ROS, which leads to apoptosis by triggering mitochondrial to open permeability transition 

pore and release pro-apoptotic factors[110]. ROS are one of the most efficient activators of the 

PTP for apoptosis[111]. When ROS are generated, Ca2+, a potent stimulus for the PTP, is 

released from both intracellular stores and the extracellular environment [112], which put tumor 

cells under oxidative stress as well as a greater risk from the cytosolic calcium. Chandra et al 

stated that tumor cells which are resistant to chemotherapy drugs can isolate Ca2+ more 

efficiently[113]. The tumor cells also show a reduction in the release of Ca2+ from intracellular 

storage sites once apoptosis is inducted. Thus, these tumor cells are less sensitive to the 

stimulation caused by Ca2+. 

A platform that enables singlet oxygen (1O2) generation at specific tumor site for cancer 

cell destruction has been developed by Chen et al.[106] to show evidence of feasibility of ROS 

used as therapeutic agents in cancer treatment. The system was based on a reaction similar to 

Fenton reaction discussed above between linoleic acid hydroperoxide (LAHP) attached to iron 

oxide nanoparticles and the ferrous ions released from the particles under acidic condition. This 

system has been shown to lead to apoptosis of U87MG cell line both in vitro and in vivo through 

1O2 generation at tumor site and ROS mediated mechanism. This study[106] provided important 

evidence that moderating ROS level by introducing external ROS source can be a feasible 

approach for tumor specific cancer treatment. 
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1.3 CANCER PROGNOSIS BY ISOLATION AND ANALYSIS CIRCULATING 

TUMOR CELLS (CTC) 

Despite of the advanced techniques in surgery, metastasis is still one of the most critical 

problems that affect the prognosis of cancer patients[114]. During metastasis, tumor cells are 

detached from the original site and shed into the bloodstream, then arrested in the small vessels. 

These so called circulating tumor cells (CTCs) can finally grow into secondary tumors after they 

successfully survived from the host defense mechanisms and establish a microenvironment. In 

other words, CTCs are the seeds for subsequent growth of additional tumors in fairly distant 

organs, resulting in the majority of cancer-related deaths. 

It is clinically important to find out a way detecting a small quantity of CTCs in the 

relatively large amount blood sample. In previous studies, disseminated tumor cells in peripheral 

and mesenteric venous blood were detected by conventional cytology or immunocytological 

methods using monoclonal antibodies (mAbs) to cytokeratin (CK) or epithelial cell membrane 

markers[115-117]. However, these staining methods are too complicated for routine use, and the 

sensitivity was limited by the low analysis capacity. Developments in molecular technology have 

made it possible to detect small numbers of tumor cells in the peripheral blood, and several 

reports have described the usefulness[42, 47]. 

In addition to capturing CTCs from blood, cell separation processes also have broad 

application in isolation of immune cells from peripheral blood, isolation of white blood cells 

from tissue, and food industry such as separation of pathogenic bacteria from food. Three 

different cell separation approaches, which are classified based on if the cell type of interest is 

targeted and retained for subsequent analysis, include positive selection, depletion, and negative 
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selection[118]. With positive selection, the cell of interest is targeted by the removal mechanism 

and retained for downstream analysis. This typically is enabled by targeting a cell surface marker 

like receptor or antigen with a monoclonal antibody or peptide[119]. Alternatively, depletion is 

to remove a single cell type from a biological mixture. For example, removal of red blood cells 

(RBCs) from peripheral blood mononuclear cells (PBMCs)[120]. Similar to depletion, when 

several cell types are removed to leave only one cell type remained, it is called negative 

selection, for instance, depletion of all cells except for T-Cells, or removal of all cells except for 

B-Cells, from samples like whole blood or bone marrow[121]. Currently, various cell separation 

technologies have been studied and developed commercially, including fluorescence activated 

cell sorting (FACS), magnetic activated cell sorting (MACS), buoyancy activated cell sorting 

(BACS) and other technologies, such as microfluidics, centrifugation, and filtration. 

The general idea of fluorescence activated cell sorting (FACS) is based on cell labeling 

with fluorescent markers, either internal or external markers of the cells. The cells are then 

measured and identified one at a time and then sorted based on the fluorescence signal generated 

from the marker using flow cytometry. Flow cytometry is a very informative and powerful 

method for the analysis and separation of cell populations. Its strength is to measure multiple 

parameters quantitatively from statistically adequate numbers of cells to define the properties of 

a cell population or its component subpopulations[122]. FACS can be widely utilized for cell 

separation thanks to the monoclonal antibodies, which have greatly increased the range and 

effectiveness of immunofluorescence measurements. Herzenberg et al.[123] reported in the 

1960s that they used intracellular fluorescence, which was developed from fluorochromasia after 

exposure to fluorescein diacetate, as the sorting parameter for separation of cultured Chinese 

hamster ovarian (CHO) tumor cells from mouse spleen cells. The intracellular fluorescence in 
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CHO was realized by incubating the CHO live cells with fluorescein diacetate, which can enter 

the cells and be hydrolyzed by intracellular esterases. Since the fluorescein generated cannot exit 

the cell membrane, the CHO cells are able to show fluorescent signal when illuminated by the 

appropriate exciting beam, thus can be detected and analyzed in the flow cytometry. The method 

was also used to sort highly fluorescent fractions with similar procedure from mouse spleen cells 

immunized to sheep erythrocytes. The enrichment factor in antibody-producing cells reached 4 - 

10. 

FACS facilitated with flow cytometry is overall a rapid and simple procedure to sort and 

analyze cell populations. Appropriate combinations of fluorescence labeling and exciting 

wavelengths allow us to evaluate multiple parameters on each cell, and therefore to distinguish 

between cell types in mixed cell populations, or to assess the relationships between each cellular 

variable[124]. Taken the requirement to avoid coincidence counting and mechanical damage to 

the cells into consideration, the factors of the cell concentrations in the sample and linear flow 

rates usually yield that mostly 100 to 1,000 cells s-1 are analyzed by the instrument, which 

renders FACS a very high-speed analysis technology. The requirement of single cell suspensions 

for flow cytometry may pose certain limitations on its applicability, in addition to a substantial 

cost on the instrument[125]. 

Another widely used cell separation method is magnetic activated cell sorting (MACS), 

which is a gentle, fast and promising method for isolating and detecting a small amount of tumor 

cells that are functionally active from the blood circulation by magnetic labeling (shown in 

Figure 7)[126]. The technology is based on magnetic particles, in combination with an external 

magnetic field, a column or magnetic separator or simply a magnet. When a strong enough 

magnetic field is applied, the magnetically labeled cells (target cells) retain in the column, while 
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unlabeled cells pass through, which can be collected as the unlabeled fraction, which are non-

target cells. The retained cells are eluted to form a new solution after removal from the magnet. 

Typically, MNPs are functionalized with a receptor to bind the molecules on the surface 

of the specific cell, and high separation efficiency is enabled by the extremely high binding 

affinity and specificity of the receptor, such as an antibody, immobilized on the MNPs.  

However, a major obstacle that prevents the MACS technology from achieving satisfying 

separation efficiencies is the non-specific interactions between the cells and MNPs. Despite that 

the binding affinity of antibodies to the antigens is orders of magnitude greater than that of the 

nonspecific binding, the effect of nonspecific interactions becomes significant and eventually 

becomes a major challenge in the case of separation processes that require very large enrichment 

factors. 
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Figure 7. MACS separation scheme: ideal vs. realistic. 
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2.0  TARGETED DESTRUCTION OF CANCER CELLS BY GLUCOSE OXIDASE-

IRON OXIDE BIOCONJUGATES 

In this chapter, a platform was designed for ROS induced cancer cell destruction based on the 

fact that a significant increase in ROS level could lead to cell apoptosis and death. The ROS in 

this platform is generated via Fenton’s reaction between Fe2+/ Fe3+ provided by the iron oxide 

nanoparticles and H2O2 produced from glucose. Glucose oxidase and iron oxide were conjugated 

by click chemistry method to form SPION-GOx bioconjugates, which were able to passively 

accumulate in the tumor due to the EPR effect induced by nanoparticles. 

The feasibility of the platform designed above has been demonstrated: 

1) Both FPLC and DLS results showed that the SPION-TCO and GOx-Tz were successfully 

conjugated based on the increase in particle size; 

2) TMB assay indicated that SPION-GOx bioconjugates generate ROS effectively from the 

substrate glucose;  

3) In vitro cell viability assay showed that SPION-GOx bioconjugates efficiently destruct 

tumor cells;  

4) In vivo cytotoxicity assessment indicated that SPION-GOx possess a low toxicity and 

side effect. 
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2.1 INTRODUCTION 

Ultra-small superparamagnetic iron oxide nanoparticles (SPION) are a multi-duty platform with 

the particle diameter <50 nm. Small size enables cellular uptake, extravasation, and tissue 

localization in drug delivery. Smaller particles accumulate in pathological tissues with leaky 

vasculature via the enhanced permeability and retention (EPR) effect[127]. In addition, small 

size results in enhanced accumulation in target organs by minimizing nonspecific clearance in 

reticuloendothelial system tissues like liver and spleen[128].Furthermore, the mechanism of 

cellular uptake and subsequent intracellular routing is also affected by size, with smaller particles 

being internalized via clathrin-coated pits and more likely to reach lysosomes[129]. As a result, 

small particles reach cellular targets more efficiently, but require a mechanism to escape 

lysosomal degradation. While there are benefits of using small nanoparticles, there is also a need 

to give them complex function, so they can overcome obstacles presented by their small size. 

Despite of the fact that SPION have not shown toxicities after cell uptake and cellular 

internalization so far, the biological activities of them have hardly been developed for therapeutic 

applications. SPION are generally considered MRI contrast agents or drug delivery vehicles with 

no intended pharmacological functions. The possibility to modify the surface of the particles 

with biologically active compounds, like antibodies and peptides, enables transport of 

therapeutic agents into specific tumor cells, increasing specificity and avoiding the access of 

cytotoxic agents to healthy tissues during the delivery process. 

Recently, a few studies utilized SPION in combination with ROS-based anticancer drugs 

to potentially improve drug targeting specificity and therapeutic efficacy in theranostic 

nanomedicine platforms for multimodal cancer image-guided cancer therapy[105, 106]. ROS are 
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a group of chemical species (including superoxide anion radical, singlet oxygen, hydrogen 

peroxide and the hydroxyl radical) that act as a second messenger in cell signaling and essentials 

for biological processes in normal cells, while they are ironically considered harmful to cells, 

tissues and organisms meantime[80]. ROS are physiologically produced intracellularly through 

multiple mechanisms depending on the cell types. The major process being the one called 

oxidative phosphorylation in which adenosine triphosphate (ATP) is produced, involves the 

transport of protons via the electron transport chain. Electrons are transferred through proteins 

via redox reactions, and finally to oxygen molecule. In most cases, the oxygen is fully reduced to 

water by gaining four electrons; however, oxygen can sometimes be partially reduced to produce 

the superoxide radical (•O2
−), the hydrogen peroxide (H2O2), and hydroxyl radical (•OH) by 

receiving one, two, three electrons, respectively[81]. ROS can also be generated by exogenous 

sources like radiation, and pathologically by inflammation or metal such as copper and iron. In 

human body, iron normally bind to transferrin, which is blood plasma glycoproteins that control 

the concentration of free iron in the blood[82]. When iron is not bound, it will generate ROS, 

particularly the most reactive hydroxyl radicals, via Fenton’s reactions[83]: 

Fe2+ + H2O2 Fe3+ +  OH+OH

Fe3+ + H2O2 Fe2+ +  OOH+H  

A slight increase in ROS level may induce higher cell proliferation and differentiation 

rates, while a significant ROS stress resulting from the exogenous agents can overwhelm the 

relatively low antioxidant capacity and disrupt the redox homeostasis inside cancer cells, and 

cause damage to proteins, lipids and DNA, which can lead to cellular damage and death[86-88]. 

https://en.wikipedia.org/wiki/Blood_plasma
https://en.wikipedia.org/wiki/Glycoprotein
https://en.wikipedia.org/wiki/Iron
https://en.wikipedia.org/wiki/Biological_fluids
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Among all the reactive oxygen species, the hydroxyl radical is extremely reactive because it is 

able to propagate a chain reaction by removing electrons from any molecule in its path, and 

turning that molecule into a free radical, which makes it the most damaging radical. Cancer cells 

are known for an exhibition of increased intrinsic oxidative stress. Therefore, the high level of 

ROS in cancer cells has led us to develop new therapeutic strategy to preferentially kill cancer 

cells rather than kill the healthy cells simultaneously in current cancer treatments[94]. 

To avoid the healthy tissue damage, radiation safety issue caused by radiation therapy, 

and difficulties in controlling PDT light administration, in the past decades, some therapeutic 

drugs that either generate ROS or inhibit antioxidant enzymes have been investigated for cancer 

treatment [30-32]. Here we propose a new approach for ROS-induced cell destruction through 

passive accumulation of SPION-GOx bioconjugates in cancer cells by producing ROS from 

blood sugar. 
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Figure 8. Schematics for targeted destruction of tumor cells by SPION-GOx bioconjugates. 
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As shown in Figure 8, The mechanism of the destruction of tumor cells is basically that:  

aggressive tumor cell proliferation induces elevated glucose concentration in tumor[130, 131]; 

H2O2 is released when glucose comes into contact with GOx and it is oxidized to 

gluconolactone; afterwards, H2O2 diffuses to the surface of SPION that catalyzes the production 

of ROS from H2O2; and high level of ROS, especially hydroxyl radicals results in highly 

efficient tumor cell destruction. It should be noted that RGD in this scheme is a peptide that 

specifically binds to the integrin αvβ3. RGD was conjugated onto GOx only when the 

biodistribution of GOx-RGD needed to be determined in this thesis. Cetuximab, a commercially 

available monoclonal antibody was also used in a previous preliminary study as a targeting 

agent, like RGD. 

Our preliminary experimental results indicate this tumor cell destruction platform is 

effective and it could lead to a new cancer therapy with unprecedented low side effect and long-

term effectiveness. In particular, we have demonstrated that GOx and SPION are not effective 

individually. Instead, they need to be conjugated in order to produce ROS in this platform. As a 

result, our strategy is to deliver SPION to tumor site in the first step facilitated by MRI providing 

the intrinsic MRI guidance ability of SPION, and then GOx will initiate production of hydroxyl 

radicals by forming a SPION-GOx bioconjugates. It is noteworthy that both GOx and SPION 

serve as catalysts in this reaction. 
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2.2 METHODS 

2.2.1 Materials  

All solvents and reagents were purchased from commercial sources and used without additional 

purifications, unless otherwise noted. DSPE-PEG (2000)-Amine was obtained from Alvanti 

(Alabaster, AL). The monoclonal antibody Cetuximab (Erbitux, 2.0 mg/mL) was purchased from 

ImClone Systems Incorporated (New York, NY). TCO-(PEG)4-NHS and Tz-(PEG)4-NHS were 

obtained from Fisher Scientific (Pittsburgh, PA). Sulfo Cyanine7(Cy7)-NHS ester was purchased 

from Lumiprobe Corporation (Hallandale Beach, FL). Glucose Oxidase was obtained from 

Crescent Chemical Company (Islandia, NY). All other chemicals and reagents were obtained 

from Sigma Aldrich (St. Louis, MO). 

2.2.2 Synthesis of SPION  

A narrow size distribution of the nanoparticles is the prerequisite for the uniform physical and 

chemical properties for further applications. Based on the prior studies, common methods to 

prepare Fe3O4 nanoparticles smaller than 20 nm include: co-precipitation of ferrous and ferric by 

a base[126, 132], solvothermal reaction of iron salt in a non-aqueous solvent (hexane) in 

presence of oleic acid and laurylamine[133], and thermal decomposition of organo-metallic 

compounds in an organic solvent at high temperature[12]. Hereby, SPION for the tumor cell 

destruction purpose were synthesized in an organic phase according to the method reported by 

Sun with slight modification[12]. Briefly, Fe(acac)3 (2 mmol), 1,2-hexadecanediol (10 mmol), 
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oleic acid (6 mmol), oleylamine (6 mmol), and benzyl ether (20 mL) were mixed and 

magnetically stirred under a flow of nitrogen. The mixture was heated to 200 °C and stirred for 2 

h, followed by reflux (~300 °C) for 1 h in nitrogen environment.  After the reaction mixture was 

cooled down to room temperature, the SPION were precipitated by addition of ethanol into the 

mixture and washed with hexane and ethanol 3 times each. The as-synthesized SPION particles 

were dispersed in hexane. 

2.2.3 Surface functionalization of SPION 

SPION as synthesized from last step were well dispersed in the organic phase. However, SPION 

need to be hydrophilic and suspended in aqueous solution for further linkage and biological 

purposes. To this end, surface coating was applied to alter the hydrophobicity of the particles. 

Herein, the film hydration method was used to coat nanoparticles with a lipid, DSPE-PEG 

(2000)-amine to form micellar nanoparticles, shown in Figure 9. In aqueous solution, DSPE-

PEG (2000) micelles are oblate spheroids with a maximum diameter of 18 nm. DSPE-PEG was 

firmly tethered to the iron oxide core via hydrophobic interaction between DSPE and oleic acid 

or oleylamine. At the free end of the PEG chain, amine groups were also introduced, which 

allowed further linkage to biological ligands[134]. Briefly, the SPION suspension was 

centrifuged to replace the original solvent hexane with chloroform. Subsequently, 40 mg DSPE-

PEG (2000)-amine (25 mg/mL in chloroform) was added to 20 mg SPION (12 mg/mL in 

chloroform). The solvent was evaporated under a blanket of nitrogen to obtain the lipid film. The 

film was further dried in a vacuum chamber overnight to remove the remaining solvent. Finally, 

the coated particles were hydrated in PBS buffer. 
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Figure 9. Stabilization of MNP using lipid DSPE-PEG (2000)-amine. Reprinted (adapted) with permission 
from [134]. Copyright (2010) American Chemical Society. 

 

2.2.4 Determination of SPION concentration and amine density 

The concentration of SPION dispersed in DI water was determined by measuring the Fe3+ 

concentration. After the addition of 12N HCl and 30% w/w H2O2, the mixture was incubated at 

37°C for 2h. After being mixed with 5% KSCN, the absorbance of the resulting sample, which 

showed an intense red color from FeSCN2+, was measured at 480 nm on a Plate Reader, and then 

compared to the standard curve. 

To understand the available sites for the following NHS reactions, the density of primary 

amine on SPION particles after the surface functionalization was determined by a non-

fluorescent reagent, fluorescamin, which reacts with primary amine to form a highly fluorescent 

complex (Excitation / Emission: 365/470 nm). The intensity of the fluorescence signals of the 

sample and standards were measured by BioTek Plate Reader. 
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2.2.5 Preparation of Cy7-GOx-Tz 

Methyltetrazine-(PEG)4-NHS ester (3.0 mg, 6.0 µmol) and Sulfo-Cy7-NHS (3.0 mg, 6.0 µmol) 

were added to a solution of GOx (14.6 mg, 70 nmol) in Na2HPO4 buffer (0.05 M, pH = 8.2, 7.3 

mL), and the resulting mixture was incubated overnight in a 4 °C cold room with gentle rotation. 

The resulting Cy7-GOx-Tz conjugate was purified by passing through a ZebaTM spin desalting 

column (2 ml, MWCO 7k, Pierce) 2 – 3 times to remove excess small molecules. The 

concentration of Cy7-GOx-Tz was determined by Size Exclusion Chromatography (SEC) at 

280nm. The retention time of Cy7-GOx-Tz under a flow rate of 0.6 mL/min was 17 min. The 

number of attached Tz group per GOx was determined by titration of Cy7-GOx-Tz with the 

fluorescent dye TCO-Cy5, which has the maximum absorbance at the wavelength of 650nm, and 

does not overlap with the spectrum of Cy7. 

2.2.6 Preparation of SPION-TCO 

Since the acylation of primary amines is favored at pH 7 – 9, in order to achieve high 

conjugating efficiency, SPION particles dispersed in PBS were firstly exchanged into Na2HPO4 

buffer (0.05 M, pH = 8.2, 4.0 mL) by a ZebaTM spin desalting column (5 ml, MWCO 7k, Pierce). 

Then TCO-(PEG)4-NHS ester (1.5 mg, 3.0 µmol)  was added into the solution of the SPION (28 

mg) and incubated overnight in the 4 °C cold room with gentle rotation. To lower the possibility 

of particle aggregation, the resulting SPION-TCO were purified using Slide-A-Lyzer™ Dialysis 

Cassettes (MWCO 10k, 0.5 – 3 ml, Pierce) to remove unreacted small molecules. The SPION-

TCO conjugate was dialyzed in 1X PBS buffer 1h, 2h at room temperature, and overnight in the 
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4 °C cold room. Finally the conjugate was collected from the cassette and concentrated with 

Millipore® Amicon® Ultra-4 Centifugal Filter Concentrators (NMWL 30k). 20 mg of the 

purified SPION-Tz was obtianed in 4.0 mL 1X DPBS. The number of TCO group per SPION 

was determined by titration with the fluorescent dye Tz-Cy5, accordingly, in the SEC at the 

wavelength of 650 nm. The retention time of SPION-TCO under a flow rate of 0.6 mL/min was 

10 min. 

2.2.7 Preparation of SPION-GOx bioconjugates 

The above SPION-TCO (20 mg in 4 mL 1X DPBS) were mixed with the prepared Cy7-GOx-Tz 

(2.0 mg in 1 mL 1X DPBS), and the resulting reaction mixture was incubated 1h at room 

temperature with gentle rotation. The resulting SPION-GOx were injected into the SEC to 

confirm the conjugation efficiency. No peak of the Cy7-GOx-Tz at 750 nm would be observed if 

the bioorthogonal linkage between GOx and SPION was complete. 15 mg of purified GOx-

SPION was obtianed in 3.0 mL 1X DPBS. The amount of immobilized GOx protein was 

estimated to be 45 µg/mL based on the Bradford protein assay. 

2.2.8 Determination of hydrodynamic diameters of SPION-GOx bioconjugates using 

Dynamic Light Scattering (DLS) 

Since the SPION-GOx bioconjugates are dispensed in PBS buffer when injected intravascularly 

into mice, the hydrodynamic diameter is an important parameter that needs to be measured and 

taken into consideration to ensure that no particles are with the size over 200 nm, nor 
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aggregation are present in the injection solution. The sizes and size distributions of the SPION, 

GOx, and the SPION-GOx were determined by DLS (dynamic light scattering) technique with a 

Zetasizer Nano ZS (Malvern Instruments, Massachusetts). Samples of 0.1mg SPION-GOx, 

SPION-TCO, GOx in 600 µL PBS buffer were prepared and pipetted into cuvettes that have 

a light path of 10 mm. A refractive index of 2.45 as that of Fe3O4 was obtained from the 

handbook[135] and used for SPION-TCO and SPION-GOx samples, while a default 

refractive index of protein was used in the measurement of GOx. 

2.2.9 TMB based ROS assay 

20 μL SPION (5.0 mg/mL), GOx (1.0 mg/mL), mixture of GOx (0.5 mg/mL) and SPION (2.5 

mg/ML) without conjugation, GOx-SPION (5.0 mg/mL), and cetuximab-GOx-SPION (5.0 

mg/mL) was added into 380 μl reaction buffer (0.1 M NaAc, pH 4, 50 μg TMB), followed by 

addition of either 100 µL of 100 mM glucose or 100 µL of DiH2O.  After the mixtures were 

incubated at 37 °C for 6 h on the shaker, the absorbance was scanned and measured from 800 nm 

to 200 nm using Cary Bio 100 UV-Vis spectrophotometer. 

2.2.10 Cell Culture 

4T1 cancer cells were purchased from ATCC. They were cultured in the RPMI-1640 medium 

containing 10% FBS, penicillin (100 U/ml), and streptomycin (100 μg/ml) at 37°C in a 

humidified atmosphere containing 5% CO2 and 95% air. They were subcultured every 2 – 3 days 

with 0.25% trypsin-0.53mM EDTA solution at a subcultivation ratio of 1:5. 
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2.2.11 In vitro cytotoxicity evaluation of SPION-GOx bioconjugates 

4T1 cells were seeded into a 96-well plate at a density of 104 per well and cultured at 37°C for 

24h. 50 µL SPION (10 µg/mL), GOx (0.0688 µg/mL), mixture of GOx (0.0688 µg/mL) and 

SPION (10 µg/mL) without conjugation, SPION-GOx (10 µg/mL), or PBS (as control) was 

added to each well respectively, followed by addition of 100 µL of Dulbecco's Modified Eagle's 

medium (DMEM) containing 4 g/L glucose. After incubation for various time periods, the old 

DMEM medium was removed and the cells were washed with PBS 3 times. Cell viability was 

measured by using CellTiter-Glo viability assay kit. Basically, 100 µL CellTiter-Glo reagent was 

added to each well that contained 100 µL fresh DMEM. Control wells with medium but no cells 

were prepared for background luminescence. The contents were mixed on an orbital shaker for 2 

min to induce cell lysis and incubated at room temperature for 10 min to stabilize the 

luminescence signal. 

2.2.12 In vitro assessment of glucose for 4T1 cells proliferation 

4T1 cells were seeded into a 96-well plate at a density of 104 per well and cultured at 37°C for 

24h. To study the cytotoxic effects as the function of the concentration of cetuximab-GOx-

SPION and glucose, 50 µL cetuximab-GOx-SPION at various concentrations was added to a 96-

well plate seeded with A431 cancer cells, followed by addition of 100 µL of DMEM that 

contains different concentrations of glucose (4 and 20 g/L). After 1.5 h incubation, the cells were 

washed with PBS 3 times and then cultured in 200 µL of DMEM. After being incubated for 

another 12 h, cell viability was measured by using CellTiter-Glo viability assay kit. 
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2.2.13 In vivo cytotoxicity evaluation of SPION-GOx bioconjugates 

Healthy female Balb/c mice (~20g) were obtained and raised under a National Institutes of 

Health Animal Care and Use Committee (NIHACUC) approved protocol. 16 mice were 

randomly divided into 8 groups, administered with a single dose of 5 mg/mL SPION-GOx in 

PBS at a dosage of 1, 2, 3, 4, 5, 7.5, 10, 12.5 mg/kg mouse via tail vein injection. 2 other mice 

were used as control with 200 µL saline administrated at the same time point. The Size and size 

distribution of SPION-GOx bioconjugates were determined using DLS before injection to ensure 

the conjugation was complete. Meanwhile, a sample from the SPION-GOx PBS solution to be 

used on animal study was also taken to run a TMB assay, in order to verify the effective 

generation of ROS. The weights and health situation of mice were monitored every day. 

2.2.14 In vivo therapeutic efficacy of SPION-GOx on female Balb/c mice 

4T1 cells (2×105 cell/mouse) were implanted subcutaneously into the right shoulders of female 

balb/c nude mice (~20 g). In vivo therapy experiments were performed when the tumor reached 

6~8 mm in average diameter (10 days after implant). 3-5 mice were randomly assigned to 4 

groups, including Group A: SPION-GOx, Group B: SPION and GOx mixture (not conjugated), 

Group C: GOx and Group D: blank group where only saline was injected as control. Group A 

were administered with a single dose of 5 mg/mL SPION-GOx in saline at a dosage of 5 mg/kg 

mouse via tail vein injection. Group B were injected with the mixture of unconjugated SPION 

and GOx at the dosage of 5 mg/kg and 8.5 nmol/kg mouse respectively. Group C received the 

8.5 nmol GOx/kg mouse, while Group D were administrated with 200 µL saline as control. All 
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the administration was made around the same time of the day. The size and size distribution of 

SPION-GOx bioconjugates were determined using DLS before injection to ensure the 

conjugation was complete. Meanwhile, a sample from the SPION-GOx PBS solution to be used 

on animal study was also taken to run a TMB assay, in order to verify the effective generation of 

ROS. The weights and health situation of mice were monitored every day. The mice were 

anesthetized and dissected in 21 days of post-injection. 

2.2.15 Biodistribution of SPION, GOx, and SPION-GOx bioconjugates 

Healthy female Balb/c mice (~20g) were obtained and raised under a National Institutes of 

Health Animal Care and Use Committee (NIHACUC) approved protocol. The mice were 

intravenously administered with a single dose of SPION-Cy5.5 in PBS (5 mg/kg) via tail vein 

injection. Several other mice were used as control. The mice were anesthetized and dissected in 

14 days of post-injection. The major organs (heart, liver, spleen, lung, kidney, pancreas) were 

dissected. 

2.2.16 Evaluation of mice survival 

All experiments with live animals were performed in accordance with a protocol approved by the 

National Institutes of Health Committee (NIHCC). Briefly, the mice were euthanized when 

either the tumor size reaches 1.5 cm or 21 days after treatment, whichever comes first. Therefore, 

the mice survival was calculated based on the life span from the date when the mice received 

treatment to the date when the tumor size reached 1.5 cm. For each group subjected to the 
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corresponding treatment, the survival rate was calculated by dividing the number of surviving 

mice at different days of post-treatment by the total number of mice before treatment in that 

group. A survival curve was then plotted. 

2.3 RESULTS 

2.3.1 Characterization of SPION 

The SPION was synthesized through a high-temperature solution phase reaction of iron (III) 

acetylacetonate with 1, 2-hexadecanediol in the presence of oleic acid and oleylamine[136]. 

Then the amine groups were coated onto the as-synthesized SPION by ligand exchange with 

aminosilane to produce SPION-NH2. The amount of amine groups on the surface of each SPION 

was estimated to be around ~200 based on a fluorescein quantification assay. Figure 10 shows a 

transmission electron microscopy (TEM) image of the SPIONs. The particles were uniform and 

have an average size of 8 nm. Figure 11 shows the SPION was successfully dispersed in aqueous 

solution after the modification with the lipid. The suspension was stable at 4°C for more than 6 

months. 
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Figure 10. TEM image of SPION. 
 

 

 

 

Figure 11. SPION before and after ligand exchange. a, as-synthesized SPION dispersible in hexane 
(upper). b, SPION-NH2 dispersible in water (lower) after exchanging the ligand with amine groups. 
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2.3.2 Determination of SPION-GOx bioconjugates’ hydrodynamic size and size 

distribution 

Dynamic light scattering is a common physical method to measure molecule size and distribution 

in suspensions. A monochromatic light source, usually a laser, is shot into the sample. The 

principle of DLS is that when the light hits the molecules (smaller than 250 nm) in the solution, 

it gets diffracted in all directions, i.e., Rayleigh scattering. The scattering intensity fluctuates 

over time because the small molecule undergoes Brownian motion. Then the scattered lights 

from different molecules interfere with each other constructively or destructively, which also 

contributes to the information of time scale of scatters’ movement. The dynamic information of 

the particles is then derived from an autocorrelation of the intensity trace recorded. The second 

order autocorrelation curve is generated from the intensity trace: 

 

where g2(q;τ) is the autocorrelation function at a particular wave vector, q, and delay time, τ, and 

I is the intensity. The angular brackets < > denote the expected value operator. The Siegert 

equation[137] relates the second-order autocorrelation function with the first-order 

autocorrelation function g1(q;τ) as follows: 

 

where the parameter β is a correction factor that depends on the geometry and alignment of the 

laser beam in the light scattering setup. Cumulant method is a common mathematics approach 

and also the method used in the Malvern software to derive information from the first-order 

autocorrelation function: 
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, with 

 

where Γ is the average decay rate, μ2/Γ2 is the second order polydispersity index (PDI) which 

indicates the variance. The z-averaged translational diffusion coefficient Dz is derived at a single 

angle or at a range of angles depending on the wave vector q. λ is the incident laser wavelength, 

n0 is the refractive index of the sample and θ is angle at which the detector is located with respect 

to the sample cell. Parameters beyond µ3 should barely be used, because overfitting data with too 

many parameters in a power-series expansion will make all the parameters less precise[138]. 

Three types of distributions are commonly encountered when particle size distribution needs to 

be characterized. The number distribution shows the number of particles in the different size 

bins. The intensity distribution describes how much light is scattered by the particles in the 

different size bins. The volume distribution shows the total volume of particles in the different 

size bins. For isotropic particles, the scattering intensity from a spherical particle is proportional 

to the size to the sixth power. Intensity distributions emphasize the larger particles in the 

distribution, whereas the number distributions emphasize the smaller particles in the distribution. 

However, it is important to know that both are just different representations of the same physical 

reality of a distribution of different sizes. 

Therefore, the size distributions both by number and intensity of SPION and SPION-

GOx are shown in Figure 12-15 to provide more detailed information on the size and size 

distribution changes before and after the SPION-GOx bioconjugates being formed. The Z-

average diameter and polydispersity index (PDI) characterizing the size distribution are 
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summarized in Table 1. Basically, the Z-average size of SPION is approximately 62.74 nm, 

while the SPION-GOx bioconjugates are 76.53 nm. The 14 nm in size difference is the exact size 

of the globular protein GOx, indicating the successful conjugation formed between SPION and 

GOx. 

 

 

 

Figure 12. Size distribution by number of SPION. 
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Figure 13. Size distribution by intensity of SPION. 
 

 

 

 

Figure 14. Size distribution by number of SPION-GOx. 
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Figure 15. Size distribution by intensity of SPION-GOx. 
 

Table 1. Summary of DLS results 

Particles Z-average (avg ± sd) /nm PDI 

SPION-GOx 76.53 ± 1.18 0.169 ± 0.0095 

SPION 62.74 ± 1.28 0.151 ± 0.019 

 

 

2.3.3 Determination of ROS generation by TMB assay 

Formation of ROS from the SPION-GOx bioconjugates was visualized by using a chromogenic 

substrate 3, 3’, 5, 5’-tetramethylbenzidine (TMB). It produces a blue color when highly active 

ROS is present in the solution so that it can be detected at the wavelength of 650 nm using a UV-

Spectroscopy [139-141]. In the in vitro study, we used an antibody, Cetuximab, instead of the 
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peptide RGD as targeting probe, to characterize the levels of ROS produced by GOx and SPION 

alone, mixture of GOx and SPION with no conjugation, as well as GOx-SPION, and Cetuximab-

GOx-SPION. The result is presented in Figure 16, in which the peak appears at 650 nm on the 

UV-vis spectroscopy indicating the existence of ROS in the system. The result shows that 

presence of glucose, as a substrate, in the system is essential for producing ROS. Moreover, it 

suggests that neither GOx nor SPION alone is able to produce highly active ROS from glucose.  

It is interesting that even a mixture of unconjugated GOx and SPION cannot generate ROS. This 

result suggests that synergistic activity between GOx and SPION plays a key role in the process 

of ROS, where GOx generates hydrogen peroxide from glucose and SPION catalyzes the 

production of ROS from hydrogen peroxide. If GOx and SPION are not in a close distance as in 

the case of Cetuximab-GOx-SPION bioconjugates, the intermediate hydrogen peroxide may 

react with other chemicals in the system very quickly before it reaches SPION to generate ROS. 

The result in Figure 17 also shows that Cetuximab does not significantly change the activity of 

SPION-GOx in producing ROS. Figure 18 shows the change of ROS concentration in the 

solution as a function of time. The level of ROS in this system keeps increasing till 1 h after the 

reaction starts. After incubated at 40°C overnight, the blue color of the solution faded and some 

precipitation and aggregation of SPION-GOx were observed. 
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Figure 16. TMB assay absorption spectra produced by: GOx, SPION, mixture of GOx and SPION without 
conjugation, GOx-SPION, and Cetuximab-GOx-SPION, with and without the presence of glucose. 
 

 

 

 

Figure 17. TMB assay absorption as results of different incubation SPION-GOx. 
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2.3.4 Cytotoxicity of SPION-GOx bioconjugates in vitro and in vivo 

4T1 murine breast cancer cell line was used to demonstrate the tumor cell destructive capability 

of the SPION-GOx-RGD bioconjugates. 4T1 cells were incubated with SPION-GOx-RGD, 

SPION-GOx and other parallel treatments, including SPION with no conjugation, GOx, mixture 

of unconjugated SPION and GOx under the same condition. Cell viabilities after different 

treatments are shown in Figure 18, where 1X PBS buffer is used as negative control (assuming 

100% viability, not shown in the chart). Treatment with 10 μg/mL SPION-GOx-RGD and 

SPION-GOx resulted in comparable cell viabilities after 24 h, that is, nearly no cells survived. In 

contrast, no significant reduction in the cell viability was observed in the groups where cells 

were treated with either SPION alone or the mixture of unconjugated SPION and GOx after up 

to 24 h in the presence of glucose with the same concentration (4 g/L). 

 

 

 

Figure 18. Cell viability 1 h, 3 h, 4 h, 24 h after treatment with mixture of unconjugated SPION and GOx; 
SPION only; GOx only; SPION-GOx; SPION-GOx-RGD. 
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Figure 19. Cell viability 3.5 h after treatment with SPION-GOx-RGD and 4 g/L glucose. 

 

We also studied the cytotoxicity of the system as a function of the concentration of 

SPION-GOx-RGD. Figure 19 presents cell viabilities after 3.5 h treatment with SPION-GOx-

RGD at 4 different concentrations (0.01, 0.1, 1, and 10 μg/mL) in the presence of 4 g/L glucose. 

The cell viability decreases as the concentration of SPION-GOx-RGD increases.  

Moreover, from the cytotoxicity evaluation of SPION-GOx bioconjugates on female 

balb/c mice, we found that the mice only could not last for more than 48 hours after the 

administration at the dosages of 10, 7.5, 6 mg/kg mouse. However, at a slightly lower 

concentration of 5 mg/kg mouse, the mice were able to survive despite experiencing a slight 

weight loss of approximately 2 g. It should be noted that the cytotoxicity study was performed on 

healthy mice that were not implanted with any tumor. Knowing that the SPION-GOx 

bioconjugates will passively accumulate at the tumor site, which has been confirmed in the 

biodistribution study, we hypothesized the 5 mg/kg would be a reasonable dose for the next step 

therapeutic efficacy study because the accumulation of the bioconjugates in other organs like 
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liver and kidney, would be less severe. That is to say, even though the tumor bearing mice are 

less healthy than normal mice, they may be more tolerant to SPION-GOx bioconjugates. The 

targeting peptide RGD was not conjugated to the SPION-GOx because we understood from the 

optical imaging and PEG biodistribution results that SPION-GOx were able to accumulate 

passively at tumor without the guidance of targeting agent because of the EPR effect. Moreover, 

a shift in project goal happened since originally, we were going to study a two-step cancer cell 

destruction with injecting RGD-GOx and SPION separately and let them assemble at tumor to 

release ROS, in order to minimize the cytotoxicity that might arise in the early stage after 

injection. Again, though this project was done within a tight schedule and limited resource, we 

still got to the same conclusion that SPION-GOx can generate the destructive ROS that causes 

cancer cell death. 

2.3.5 Biodistribution of SPION-GOx determined by optical imaging 

A preliminary animal study was also conducted to determine the biodistribution of SPION in 

mice. It was realized by detecting the fluorescence signals emitted by the Cyanine7 labeled 

SPION in the organs of interest. Animal experiments were conducted in accordance with the 

guidelines for the Care and Use of Laboratory Animals of the Medical Research Council of 

University of Pittsburgh. Optical imaging was performed with a Xenogen IVIS Spectrum 

imaging system (IVIS Lumina XR; excitation, 745 nm; emission, 780 nm; exposure time, 1 s; 

binning, medium; field of view, C). Imaging and quantification of signals were controlled by the 

acquisition and analysis software, i.e., Living Image 2.5 software (Xenogen, Alameda, 

California). Injections of SPION-Cy7 with tumor-bearing mice were performed 14 days after the 



 59 

 

implantation of tumor cells. Each mouse was injected with 5mg Fe/kg mouse (dissolved in 200-

μL saline) via the tail vein when they were anesthetized by continuous exposure to 2.5% 

isoflurane. Mice were sacrificed and images at the following time points were collected: 3-, 4-, 

5-, 6-, and 7 days post-injection. The main normal organs, such as lung, heart, blood, liver, 

pancreas, spleen, kidney, stomach and intestine, muscle and bone, as well as the tumor were 

harvested for in vitro imaging. 

It was observed from Figure 20 that SPION had accumulated on the tumor site on the 

third day after injection. This passive accumulation is due to the enhanced permeability and 

retention (EPR) effect, which is a property of nanoparticles with ultra-small sizes tending to 

accumulate in tumor tissue much more than they do in normal tissues. Biodistribution of SPION 

concentrations in various organs, in the rank order of magnitude, was liver > kidney > pancreas> 

other. This result shows that SPION mainly accumulates in the liver. The concentration 

difference in the distribution results from the SPION metabolism. 
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Figure 20. Biodistribution of SPION-Cy7. 3-, 4-, 5-, 6-, 7 days post injection. From upper to lower, left to 
right: lung, heart, blood, liver, pancreas, spleen, tumor, kidney, stomach and intestine, muscle and bone. 

 

2.3.6 In vivo therapeutic efficacy of SPION-GOx on female Balb/c mice 

By measuring tumor sizes and weight after treatment, we can evaluate the therapeutic effect of 

SPION-GOx bioconjugates on 4T1 cancer cells in animals. Shrinking tumors are promising signs 

indicating the effectiveness of the ROS introduced from SPION-GOx bioconjugates on cell 

destruction, while no severe toxicity effect like significant weight loss or animal death should be 

observed. The normalized tumor sizes since the day of mice receiving treatment after tumor 

implantation in each treatment group are shown in Figure 21. 

A great slowdown of tumor growth is observed in the mice treated with SPION-GOx 

(red) as compared to the all 3 control groups, which agrees with the cell study results that the 

ROS generated from the conjugated SPION-GOx could effectively destruct cancer cells. The 
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mice in this group experienced a weight loss of ~2g in the first 4 days but grew back to their 

normal weights before treatment and kept constant soon after the drop. Unconjugated SPION and 

GOx (blue), and GOx alone (yellow) both stimulated the tumor growth in the 21-day span, which 

can be explained by the double role that ROS play to cause cell proliferation when a slight 

increase in ROS level is introduced. While SPION and GOx mixture yield a steady tumor 

growth, treatment with GOx at a concentration of 8.5 nmol/kg mouse created an explosion. One 

mouse in saline group had very fast-growing tumor that yields the outlier in that group and 

contributes to a large standard deviation on Day 10. It was sacrificed at day 12, leading to a 

decrease of average tumor size growth rate in the group. 
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Figure 21. Therapeutic efficacy of the SPION-GOx bioconjugates. 3-5 female balb/c mice bearing 4T1 
tumor cells were assigned to each group. The 4 groups were administrated at Day 0 with: unconjugated SPION and 
GOx (blue), GOx (yellow), saline (green) and SPION-GOx (red), respectively. All mice were sacrificed at Day 21 
after tumor size and weight measurement. 

 

2.3.7 Survival curve 

The survival curve indicating the living status of the animals is shown in Figure 22. All the 

decreases in animal number were related to sacrifice due to the outgrowing tumor. No animal 

died from any type of treatment (SPION-GOx and three control groups, including GOx, 

unconjugated SPION and GOx mixture and saline) in the 21-day study. Additionally, the 

SPION-GOx bioconjugates slowed down the tumor growth dramatically so that there were no 

mice sacrificed until the end point of the in vivo study. However, due to a limited number of 
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animals used in each group, the death of one mouse affects the survival curve result 

tremendously. 

 

 

 

Figure 22. Survival curve. 
 

2.4 DISCUSSION 

It is evident that SPION-GOx bioconjugates are able to destruct tumor cells both in vitro and in 

vivo via in situ production of ROS. This low side effect treatment can be a promising strategy for 

cancer therapy. 

Uniform and ultra-small size iron oxide nanoparticles were essential for the 

bioconjugates to effectively accumulate at tumor through EPR effect. Therefore, the thermo 
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decomposition method was chosen to meet the specific size requirements. The as-synthesized 

nanoparticles were characterized by transmission electron microscopy (TEM) that shows the 

Fe3O4 core and later using dynamic light scattering (DLS) that represents the hydrodynamic 

diameter and size distribution when the nanoparticles were functionalized with the PEG chain to 

be dispersible in aqueous solution. The thickness of the coating layer from the DSPE-PEG2000-

NH2 in aqueous solutions can be estimated with a scaling model, which was originally developed 

by Johnsson et al[142]. Briefly, the thickness of PEG layer is determined by the following 

factors: the number of monomeric units per PEG chain, the statistical length of a monomer (= 

0.39 nm), the number of PEG chains on the surface, and the radius of the core. It should be noted 

that both Fe3O4 core and the lipid bilayer formed by DSPE and oleic acid/oleylamine contribute 

to the radius of the core. The lipid bilayer is usually assumed to be the same size of cell 

membrane (~ 3 nm). The experimental measurements from TEM and DLS agree with theoretical 

predictions. After the particles were prepared and stabilized, the functionalization of SPION and 

GOx using click chemistry was performed following a similar procedure. The key step to modify 

SPION and GOx with the NHS esters is to adjust the pH to 8-9. This is because hydrolysis is a 

competing reaction with primary amines of proteins/peptides. Acylation is favored using 

concentrated protein solutions (1 - 5 mg/ml) at pH 7 - 9. It is also important to use an amine-free 

buffer for the NHS ester reactions. Buffers containing primary amines (e.g. Tris, Glycine) would 

result in a loss of available NHS esters for the main reactions. NHS esters are moisture-sensitive 

and readily hydrolyze, so that they need to be dissolved in a dry water-miscible organic solvent 

such as DMSO or DMF prior to use. 

Secondly, the single peak from UV-vis FPLC as well as Z-average particle size from 

DLS indicated that the click chemistry is an effective method for conjugation of iron oxide 
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nanoparticles with another large biomolecule, GOx. This is an important progress in the work 

because the conjugated product is the foundation of the successful generation of ROS and the 

prerequisite of the delivery to tumor site without a targeting agency attached. It was one of the 

most challenging preparation steps due to the intrinsic inconsistency of nanoparticles and the 

batch-to-batch difference because amine functionalized SPION were purchased from 

OceanNanotech for further modification with TCO-PEG4-NHS esters because of the limited 

time. 

The in vivo cytotoxicity evaluation result shows that the mice could tolerate the SPION-

GOx at 5.0 mg/kg mouse from a single injection. From the biodistribution obtained from optical 

imaging, we observed the significant accumulation of SPION-GOx in the tumor, while as time 

goes by, the residues in other major organs, like liver, kidney, and pancreas were slowly cleared. 

This result suggests that the SPION-GOx can remain at the tumor site generating ROS as a long 

lasting therapeutic cancer drug, which is convenient for patients since frequent repeating 

injections are avoided. Due to the limited resources, in the cytotoxicity assessment, each dose 

was administrated on only 2-3 mice. This could possibly result in a “pseudo positive” conclusion 

because of the lack of statistical analysis from multiple data points, which can be resolved by an 

experimental design with a greater number of animals assigned in each group, and a 

comprehensive animal study with complete demonstration with all positive and negative control 

groups. 

The key experiment to test the production of ROS from the SPION-GOx system is using 

the TMB assay. The TMB assay results of the peaks at 650 nm on the UV-vis spectroscopy 

indicated the existence of ROS in the system. In addition, the result showed that neither GOx nor 

SPION alone is able to produce highly active ROS from glucose, which is the substrate that is 
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essential for production of ROS. It is noticeable that a mixture of unconjugated GOx and SPION 

does not generate as much ROS as the conjugated SPION-GOx does. This result suggests that 

synergistic activity between GOx and SPION plays a key role in the process of ROS, where GOx 

generates hydrogen peroxide from glucose and SPION catalyzes the production of ROS from 

hydrogen peroxide. If GOx and SPION are not in a close enough distance as in the case of 

SPION-GOx bioconjugates, the intermediate hydrogen peroxide may react with other chemical 

species in the system quickly before it reaches SPION to generate ROS. Another significant 

result of our experiment is that mass production of ROS and destruction of cells only takes place 

when SPION and GOx are conjugated. This sheds new lights to an alternative therapy with 

unprecedented low-side effect and specificity by first delivering the SPION to specific tumor and 

then introducing the targeting agent modified GOx to initiate the ROS production. 

Distinguishable from other ROS-mediated therapies, our platform only requires blood glucose as 

the reactant for the production of ROS, and it turns a nutrient required for tumor proliferation 

into a cytotoxin that destroys the tumor cells. 

A concern with the platform is the systematic variation introduced by the nanoparticles. 

Some inconsistency exists from batch to batch, which sometimes leads to inexplicable results. 

For example, when we were coupling the TCO-PEG4-NHS onto the SPION surface, using the 

reaction condition, we got very different TCO per SPION results from different batches of 

nanoparticles. Therefore, repeatability is an issue that needs to be taken into consideration to 

make any rigorous conclusion. 

Overall, our study demonstrates that SPION-GOx bioconjugates is a promising approach 

for cancer therapy with low side effect in normal tissues but long lasting targeted cancer cell 

destruction capability. Additionally, with the intrinsic MRI guidance ability, SPION-GOx 
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delivery process can be guided and confirmed by MRI, which lays the ground for imaging-

guided drug delivery and potentially a theranostic (combination of diagnostics and therapy) 

platform. 
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3.0  MULTISTAGE SEPARATION OF CELLS USING HYDROPHOBIC 

INTERACTIONS ENABLED BY TEMPERATURE RESPONSIVE POLYMER 

3.1 INTRODUCTION 

Despite of the advanced techniques in surgery, metastasis is still one of the most critical 

problems that affect the prognosis of cancer patients[114]. During metastasis, tumor cells are 

detached from the original site and shed into the bloodstream, then arrested in the small vessels. 

These so called circulating tumor cells (CTCs) can finally grow into secondary tumors after they 

successfully survived the host defense mechanisms and established a microenvironment. In other 

words, CTCs are the seeds for subsequent growth of additional tumors in fairly distant organs, 

resulting in the majority of cancer-related deaths. 

It is clinically important to find out a way that a small quantity of CTCs can be detected 

in the relatively large amount of blood sample. In previous studies, disseminated tumor cells in 

peripheral and mesenteric venous blood were detected by conventional cytology or 

immunocytological methods using monoclonal antibodies (mAbs), cytokeratin (CK) or epithelial 

cell membrane markers[115-117]. However, these staining methods are too complicated for 

routine use, and the sensitivity was limited by its low analysis capacity. Developments in 

molecular technology have made it possible to detect small numbers of tumor cells in the 

peripheral blood, and several previous reports have demonstrated the feasibility[42, 47]. 
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Magnetic assisted separation has attracted considerable attentions providing a rapid and 

simple method for efficient separation of cell population [119, 143-145].  Basically, magnetic 

particles (MNPs) bind specific cells when added to cell mixture and separate them from the 

complex heterogeneous mixture when an external magnetic field is applied. One of the highly 

efficient separation is enabled by the high binding affinity and specificity of certain receptors 

that are immobilized on the MNPs, such as monoclonal antibody (mAb), peptide, or aptamer, 

which capture cells selectively[146]. A few magnetic assisted cell sorting (MACS) technologies 

have been established recently[144, 147-149].  CellSearch is an FDA-approved isolation system 

using epithelial cell adhesion molecule (EpCAM) coated magnetic beads[13, 147, 150]. The 

ability of CellSearch to detect circulating tumor cells (CTCs) from the peripheral blood of 

patients with metastatic breast cancer was validated by Riethdorf et al[151], who found that 

CTCs were detected in ∼70% of metastatic breast cancer patients (n = 97) using 

CellSearch[151]. Alternatively, Hoshino et al. used a flat dimension microfluidic channel 

combined with high gradient magnetic field to capture magnetically tagged CTCs[149]. They 

achieved a 90% capture rate at a flow rate of 10 ml h-1, with 25% fewer particles being required 

in comparison to CellSearch[149]. 

However, a major obstacle that hinders the MACS from achieving adequate separation 

efficiencies is non-specific interactions between cells and MNPs. For instance, epithelial-specific 

antibodies can label not only non-tumor epithelial cells by specific labelling, but also non-tumor 

non-epithelial cells by non-specific labelling, thus giving false positive results[152].When very 

large separation efficiencies are required, problems caused by the non-specific interactions 

become significant and challenging[153, 154]. 
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Herein, we report a multistage cell separation platform to circumvent the challenge 

resulting from non-specific interactions in current single-stage magnetic separation, shown in 

Figure 23. In this platform, we utilized poly(N-isopropylacrylamide) (pNIPAM) which has been 

applied in protein purification[155-157] and cell separation[158-160], as it undergoes a unique 

reversible phase transition at its lower critical solution temperature (LCST) of ~32°C[161]. By 

manipulating the hydrophilic-to-hydrophobic phase transition of the polymers simply through 

temperature cycling, we were able to reversibly capture and release target cells when pNIPAM 

was grafted onto both MNPs and target cells. In this work, A431 and HeLa cell lines were used 

as target and non-target cells, respectively, for their significant difference in  epidermal growth 

factor receptor (EGFR) expression level[162], while Cetuximab (C225) was the mAb used to 

bind to EGF receptor at a high binding affinity (Kd = 0.39 nM)[163]. Flow cytometry was 

utilized in the analysis of cell counting. The results showed an increasing enrichment factor after 

multiple separation cycles, which indicates that A431 cells (target) can be effectively separated 

from HeLa cells (non-target) using the multistage platform and that the separation efficiency 

increases with the number of separation cycle. 

The key approach to the multistage separation is based on reversible hydrophobic-to-

hydrophilic transition of the polymers tethered to the magnetic particles (MNPs) and target cells 

by changing the temperature. Zhu et al has utilized temperature change in their microfluidic 

separation device to release the captured CCRF-CEM cells from DNA aptamer sgc8c by raising 

the temperature to 48°C [164]. In order to provide a mild environment for cells, among various 

temperature-responsive polymers that undergo a reversible phase transition in aqueous solutions 

upon changing of the temperature [7-11], poly(N-isopropylacrylamide) (pNIPAM) is chosen in 

this work. PNIPAM exhibits a well-known temperature-responsive phase transition in aqueous 
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solution at its LCST of about 32°C [12,13]. It is hydrophilic and water-soluble when the 

temperature is below LCST but becomes hydrophobic and aggregate in aqueous solutions when 

the temperature is above LCST. The aggregation can be dissolved in aqueous solutions when the 

temperature is decreased to below LCST again. This reversible hydrophilic-to-hydrophobic 

transition is believed to be accompanied by a conformational change of the polymer chain from a 

disordered, random hydrophilic coil to an ordered, collapsed hydrophobic globule.  By attaching 

pNIPAM to both target cells and MNPs, target cells can be captured and released by the MNPs at 

a higher efficiency than the non-target cells, which may also be captured and released by the 

MNPs due to non-specific interactions. The difference in the capture-and-release efficiencies of 

target cells versus non-target cells in a single cycle will be amplified by multiple separation 

stages, following a similar concept of the distillation process. Therefore, the overall separation 

efficiency will increase with the number of separation stages. 
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Figure 23. Realistic process flow for multistage separation scheme. (a) Cycle starts with a mixture of target 
(T) and non-target (NT) cells; (b) PNIPAM-MNPs added; (c)Trigger pNIPAM to its hydrophobic conformation at 

37 °C, some target cells may not be captured while some non-target may get captured; (d) Attract MNPs in a 
magnetic field; (e) Disperse the pellet in fresh buffer; (f) Trigger pNIPAM to hydrophilic phase by cooling the 
mixture to 4°C, some target may still be attached on MNPs, and some non-target may escape; (g) Separate the 

MNPs in a magnetic field, the pellet may contain some target while the supernatant may have some non-target; (h) 
Cycle ends with target-rich in the supernatant but not a complete separation of target from non-target cells. 

 

To tether pNIPAM to MNPs, poly(acrylic acid)-modified Fe3O4 magnetic particles (PAA-

MNPs) were synthesized in a solvothermal method and amino-terminated pNIPAM was 

covalently attached to the MNPs via coupling the amine group with the carboxyl groups. On the 

other side, to selectively attach pNIPAM to target cells, we first conjugated pNIPAM to protein 

A, which is a secondary antibody that binds the Fc region of immunoglobulin G (IgG) from 

many mammalian species with a high specific binding affinity[165]. Carboxylic acid terminated 

pNIPAM (pNIPAM-COOH) was used to react with protein A to form stable amide linkages. 

Therefore, when the pNIPAM-protein A is mixed with the targeting mAb Cetuximab, the 

resulting pNIPAM-protein A-Cetuximab complex can selectively capture the cells that 

overexpress EGFR. It has been reported that the LCST of pNIPAM conjugated to protein A 

through this approach does not change significantly after the conjugation[166]. Cetuximab is 
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previously labeled with fluorescence dye to distinguish target cells from non-target cells in the 

cell mixtures for the subsequent flow cytometry analysis. 

After the preparation of pNIPAM tethered MNPs and pNIPAM-protein A-Cetuximab 

complex, the separation process starts with adding pNIPAM-MNPs to the cell mixtures 

containing both the target and the non-target cells. Subsequently, the cell mixture is incubated up 

to 37 °C for 10 min in the dark. The aggregates are then collected by a neodymium−iron-boron 

magnet attached to the wall of vials. The magnetically collected cell pellet is separated from the 

bulk solution by removing the supernatant. After the cell pellet is redispersed in the cold PBS 

buffer, the resulting cell suspension is incubated at 37 °C again and ready to be captured by the 

MNPs. After multiple capture-and-release cycles described above, the overall or enrichment 

factor is therefore amplified to achieve a high separation efficiency. 

3.2 METHODS 

3.2.1 Synthesis of MNP 

The PAA-MNPs were synthesized using the solvothermal method. Briefly, FeCl3 (0.8 g) was 

dissolved in ethylene glycol (40 mL) with vigorous stirring, followed by addition of NaOAc (3.6 

g) and PAA (1.0 g). The mixture was stirred continuously for 30 min, sealed in a Teflon-lined 

stainless-steel autoclave, and then reacted at 200 °C for 10 h. After the reaction, the autoclave 

was cooled to room temperature. The products were collected, washed several times with 

ethanol, and then dried under a vacuum at 60 °C before characterization and usage. 
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3.2.2 Characterization of MNP 

The size and morphology of the as-synthesized PAA-MNPs were characterized using scanning 

electron microscopy (SEM, Philips XL-30 field, 15 kV). The crystal structures of the PAA-

MNPs were examined by using powder X-ray diffraction (XRD) (Philips X’pert Diffractometer 

using CuKα radiation, λ=1.54178 Å). The sample of PAA-MNPs was washed five times with 

ethanol, redispersed in water and dried in a powder form. 

3.2.3 Modification of MNP with pNIPAM 

The carboxyl group on the surface of PAA-MNPs was covalently linked to the amino-terminated 

pNIPAM via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) chemistry. 

The PAA-MNPs (0.5 mL, 2.5%) were washed three times in 0.1 M carbonate buffer (pH 9.6) 

and then another three times in 0.1 M MES buffer (pH 6.5). After washing, the MNPs were 

redispersed in MES buffer. To activate the carboxyl groups, fresh solution of EDC (2%, w/v) in 

MES buffer was added and the mixture was incubated for 3 h at room temperature in the dark. 

After incubation, the MNPs were washed three times with MES buffer to remove the unreacted 

EDC. Then, the MNPs (1-fold) were redispersed in 0.1 M borate buffer (pH 8.5) and 50-fold 

amino terminated pNIPAM was added for the functionalization. The mixture was incubated 

overnight at room temperature in the dark. Following conjugation, the MNPs were magnetically 

separated and thoroughly washed with PBS (pH 7.4) to remove unbound amino-terminated 

pNIPAM. The MNPs were then rinsed thoroughly, and finally stored in storage buffer (PBS, 
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0.1% BSA w/v) with a concentration of 1 mg/mL at 4 °C. Similar procedure was used for 

grafting of carboxyl-terminated pNIPAM to Protein A. 

3.2.4 Fluorescence labeling of Cetuximab with FITC 

Saturated Sodium bicarbonate (NaHCO3) solution was firstly added to 1ml of 2mg/mL (0.013 

nmole) Cetuximab stock solution to adjust pH to 8-9. 0.063 mg (0.13 nmole) 5(6)-

Carboxyfluorescein N-hydroxysuccinimide ester dissolved in DMF was added to the Cetuximab 

solution and incubated at 37°C for 4 h. Afterwards, the excess fluorescence dye was removed by 

desalting column with a cutoff molecular weight of 7,000. The product was dissolved in PBS 

buffer (pH 7.4) and ready for use. 

3.2.5 Multiple separation enabled by reversible capture-and-release of target cells using 

pNIPAM-MNPs 

The A431 cells and HeLa cells were cultured following the ATCC cell culture procedures. After 

the cells were harvested from cell culture flasks and counted using a hemocytometer, the two 

types of cells were mixed at several ratios, including A431: HeLa = 1:1, 1:2, 1:10, 1:20. The cell 

mixtures were incubated with the protein A-pNIPAM complex at 37°C for 1 h in the dark. 

The separation process started with adding a certain amount of pNIPAM-MNPs to the 

mixtures containing both the target and the non-target cells. Subsequently, cell suspension of 1 

mL 4 °C PBS buffer was warmed up to 37 °C and then incubated for 10 min in the dark. The 

aggregates were then collected by a neodymium−iron-boron magnet attached to the wall of vials. 
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The magnetically collected cell pellets were separated by removing the supernatant and then 

redispersed in a 4 °C PBS buffer. The resulting new cell suspension was again incubated at 37 

°C for 10 min in the dark. The above capture-and-release cycle was repeated for a specified 

number of times as needed. A small amount of cell mixture sample was taken after each 

separation process for flow cytometry cell counting. 

3.2.6 Flow cytometry 

Samples from cell mixtures were counted and the numbers non-target (HeLa) and target (A431) 

in PBS buffer after each capture-and-release cycle were determined using a BD FACS Aria flow 

cytometer (BD BioSciences, San Jose, CA). 

3.3 RESULTS  

3.3.1 SEM of PAA-MNP 

To demonstrate the feasibility of the multistage cell separation scheme, we firstly performed a 

proof-of-concept experiment by using polystyrene (PS) microspheres to mimic cells. Fluorescent 

PS microspheres grafted with pNIPAM were used to mimic target cells; carboxylate non-

fluorescent PS microspheres (bare spheres with no pNIPAM on the surface) were used to mimic 

non-target cells, noted that the temperature-responsive polymer pNIPAM was covalently linked 

to the target spheres in advance. The size of the microspheres is about 5 µm, which is on the 
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same length scale as cells. Two types of PS microspheres were first mixed and then separated in 

multiple stages. 

 

 

 

Figure 24. SEM image of poly (acrylic acid) modified MNPs (PAA-MNPs). 
 

Poly(acrylic acid)-modified MNPs (PAA-MNPs) were synthesized and tethered with 

pNIPAM in a one-step solvothermal method, in which PAA acted both as a ligand and a surface 

functionalization agent. Figure 24 presents an SEM image of the resulting products. The as-

synthesized PAA-MNPs are uniform spheres of about 300 nm in diameter. The PAA-MNPs were 

well dispersed in water by sonication and the suspension remained stable for more than 0.5 h 

before precipitation started. The PAA-MNPs were attracted to where the magnet was placed and 

agglomerated at the vial wall within a few seconds, leaving the supernatant clear. After removing 

the magnet, the PAA-MNPs were easily redispersed in water with gentle shaking. These results 

indicate that the synthesized MNPs possess both a high magnetization (so that they can be 

effectively separated from solution by using a moderate magnetic field) and a superparamagnetic 
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property (so that the aggregated MNPs can be easily re-dispersed in solution upon removal of the 

magnetic field). Both properties are required for the separation proposed here. 

3.3.2 Multistage separation of A431 from HeLa cells result analysis using flow cytometry 

After the demonstration of the separation scheme with microspheres, we moved on to real tumor 

cells. The cell lines we used here were A431 and HeLa as targets and non-targets, respectively, 

with their significant difference in expression level of epidermal growth factor receptor (EGFR). 

EGFR is a membrane bound protein related to cell growth, proliferation for both healthy and 

cancerous cells. The average EGFR density on A431 cell surface was found to be 636/ μm2 with 

an estimation of 5 × 105 EGFR per cell measured by Surface Plasmon Resonance imaging 

(SPRi) technique, while HeLa were found to be 270 receptors/μm2, corresponding to 0.53 per 

cell, much lower than A431. Other than linking pNIPAM to target spheres directly, when it came 

to cells, pNIPAM were firstly conjugated to protein A and then form a complex with antibodies 

which will bind to the target cells through antibody-antigen interaction. The commercialized 

drug used in the treatment of metastatic colorectal cancer, Cetuximab (C225), which is a 

chimeric IgG1 monoclonal antibody that blocks the EGFR activation, was used in this study as 

the antibody that specifically binds to the targets surface. 

Flow cytometry data analysis is based on the principle of gating. Gates are placed around 

populations of cells with common features, usually forward scatter, side scatter and marker 

expression, to investigate the cell population. Usually, before a flow cytometry experiment, it is a 

good idea to find out much information about cell lines and include the right controls. The first 

step in gating is often distinguishing populations of cells based on their forward and side scatter 
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properties. Forward and side scatter give an estimation of the size and granularity of the cells 

respectively. Moreover, in our case, we already know that A431 cells have a known 

overexpressing marker, EGFR, it was helpful to include this information by staining the cells 

with C225 conjugated to fluorophores as it will help identify the target cells in the later analysis 

for cell mixtures. Conversely a known negative, in this case, HeLa cells with low expression of 

EGFR, can allow us to set negative gates and determine real populations. Dead cells often have a 

lower level of forward scatter and are found at the bottom left corner of the density plot. 

 

 

 

Figure 25. Gating strategies of positive control A431 cells. Top left is SSC vs FCS density plot, each dot 
on the plot represents an individual particle that has passed through the laser; top right and bottom left are FSC-W 

vs. FSC-H and SSC-H vs SSC-W respectively, which gives narrow vertical population plots; bottom right is a single 
parameter histogram to show the high expression of the EGFR marker on A431 cells stained with C225-FAM. 



 80 

 

 

Figure 26. Gating strategies of negative control HeLa cells. Top left is SSC vs FCS density plot; top right 
and bottom left are FSC-W vs. FSC-H and SSC-H vs SSC-W respectively; bottom right is the histogram to show the 

low expression of the EGFR marker on HeLa cells incubated with C225-FAM. 
 

Providing all the positive results from the microspheres study showing the proposed 

multistage separation scheme to be effective, we conducted the experiments with the two types 

of tumor cells to verify the feasibility of our idea in terms of biologically active cells. We mixed 

target A431 with non-target HeLa at ratios of (RT/NT) of 1:1, 1:2, 1:10 and 1:20, and three 

separation cycles were conducted for each sample. The antibody C225 was labeled with a green 

fluorescein, 5 - (and-6)-Carboxyfluorescein (FAM), to create a fluorescent signal that can be 

identified by the detector during the flow cytometry analysis when it was bound to the target 

cells. We incubated the FAM-C225 with the cell mixture for 1.5h and removed the free FAM-
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antibody in the solution by centrifugation. Afterwards, the pre-prepared protein A/pNIPAM 

conjugation was added to finally attach pNIPAM to the target cell surface. 

 

 

 

Figure 27. Top two histograms are C225-FAM stained A431 and HeLa cells, respectively; bottom 
histogram is the overlay of a negative population HeLa onto the stained population A431 allows easy identification 

of the positive cells. 
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Figure 25-27 shows the gating strategy adapted by analyzing the A431 and HeLa samples 

separately, as positive and negative controls and the regimes for the green FAM signals will fall 

in at the wavelength of 488nm. 

 

 

 

Figure 28. Stacked histogram of FAM fluorescence signals in cell mixture starting at the ratios of HeLa: 
A431 at 1:1, 2:1, 10:1 and 20:1. 

 

 

 

Figure 29. Overall enrichment factor koverall vs. the number of separation cycles with various initial ratios of 
target to non-target cells. 
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The koverall calculated from each sample after three capture-and-release cycles (Figure 28) 

are shown in Figure 29. An ascendant tendency in the overall enrichment factors as the number 

of capture-and-release cycles increase is still noticeable, even though the overall enrichment 

factors of 2.65, 3.69, 1.71, 1.27 (when the initial RT/NT was 1:1, 1:2, 1:10 and 1:20 respectively) 

are not as large as those from the microspheres separation process. 

3.4 DISCUSSION 

This multistage cell separation process employs the distillation concept that is commonly used in 

oil industry for transforming crude oil into fuels. Distillation is the process of separating the 

components from a mixture by selective boiling and condensation. It may result in either nearly 

pure products or a partial separation that increases the concentration of selected components of 

the mixture. When the boiling points of the components are sufficiently close so that Raoult's 

law must be taken into consideration, successive distillations are used to separate the components 

by repeated vaporization-condensation cycles. Each vaporization-condensation cycle yields a 

purer solution of the more volatile component. Similarly, since single stage separation cycle is 

not able to achieve adequate separation efficiency as mentioned, the multistage cell separation 

platform is designed. 
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Figure 30. Schematic flow chart for multistage separation of cells. 
 

The target cell corresponds to the more volatile component in the solution as in 

distillation for its higher binding affinity to the antibody as compared to non-target. In the 

configuration shown in Figure 30, the cells of “target-rich” streams separated from each flash 

cycle are used as the feed stream in the next “higher” flash cycle. A small portion of the streams 

is collected for flow cytometry analysis. The overall enrichment factor of this repeated separation 

process is y1/z for target cells. 

The as-designed multistage separation of cells using temperature responsive pNIPAM 

was proven to be feasible by analyzing the resulting samples from each separation. The as-

synthesized PAA-MNPs were well dispersed in PBS buffer at both 4°C and 37°C until the 

multiple separation cycles were completed, which meets the prerequisites for maintaining stable 

heterogeneous cell-and-MNPs suspension. The enrichment factor for target cells shows an 

obvious tendency to increase as the number of separation cycles increases, which correlates with 
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circumvention of the non-specific interaction between MNPs and non-target cells that is 

described above. Similar to Zhu’s strategy to release the captured cells from aptamer by 

temperature change[164], the capture step here was performed at a moderate temperature of 

37°C with the hydrophobization of pNIPAM observed, which provides a gentler separation 

condition for cells as compared to 48°C. 

However, the enrichment factors following the current design are relatively low, in 

comparison to the ones from multistage microspheres separation study[167], especially 

considering that the initial target to non-target ratio is much smaller in a blood sample with very 

rare CTCs. The low koverall might be caused by a few reasons. Firstly, we observed that after the 

second and third temperature increase to 37°C, the hydrophobic pNIPAM chains that are 

attached to both cells and MNPs were tangled with each other, resulted in the precipitation of 

some cells and MNPs from the suspension, which might be related to surface charge change. 

This leads to a loss of usable magnetic beads for the following separation cycle, which are 

essential for achieving a high separation efficiency. Adding additional MNPs after each step to 

the mixture is necessary to maintain the separation efficiency. Meanwhile, some of both target 

and non-target cells are lost as well because it was difficult to aspirate the precipitation to form a 

fine suspension again. Moreover, the type of MNPs added to the mixture might also be a factor 

that can be manipulated to achieve a higher separation effiency. Due to a limited timeframe and 

resources, we only used one size of MNPs at one initial concentration in this study. The system 

could be further optimized by tuning the size of MNPs, the density of pNIPAM on MNPs, the 

amount of pNIPAM modified MNPs added to the mixture, etc. 
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4.0  OUTLOOK AND SUMMARY  

4.1 OUTLOOK 

We have demonstrated that the SPION-GOx bioconjugates system can generate ROS causing 

cell destruction in vitro, while the in vivo cytotoxicity evaluation indicated that the toxicity of the 

bioconjugates were able be maintained at a low level with a dosage of 12.5 mg/kg mouse. The 

therapeutic efficacy of the designed system still needs to be evaluated on animal models. 

Meanwhile, more control groups should also be studied in the future research, including SPION 

only, GOx only, mixture of unconjugated SPION and GOx, and blank group (saline). The 

biodistribution determined from previous study was obtained by optical imaging enabled by 

fluorescence labeling. To have a better understanding of delivery and clearance of the SPION-

GOx bioconjugates in animals starting from the tail vein injection, other imaging technologies 

like MRI and CT can be utilized to gain more insights. 

4.1.1 Biodistribution of Zirconium-89 labeled SPION-GOx bioconjugates using PET 

imaging 

Even though the optical imaging of solid tumors enabled by fluorescence labeling, in this case, 

with Cy5.5 and Cy7 for biodistribution is simple and sensitive, the mice had to be sacrificed in 
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order to obtain the organs of interest for an optical imaging in IVIS (In vivo imaging system). 

This is mainly because the near-infrared (NIR) light (700-100 nm wavelength) is capable of 

penetrating only several centimeters into tissue so that fluorescence signal from the internal 

organs deep inside mouse bodies was not intense enough to be detected [168]. 

An alternative approach to obtain biodistribution information is to use positron emission 

tomography (PET) to record and detect the γ-rays emitted by the injected radiopharmaceuticals 

labeled with positron-emitting radionuclide. When the radionuclide decays, a positron is ejected 

from the nucleus and soon annihilated with an electron to release two 511 keV γ rays that are 

detected by the PET scanner. The data acquired over time are collected and reconstructed into 

images showing radiotracer’s location within the organism by algorithm developed in computer. 

PET has higher sensitivity and resolution and therefore has become more popular in clinical 

diagnosis[168]. Some commonly used radiometals are Cu, Ga, Y, and Zr, since their favorable 

decay characteristics are greatly useful in coordinating with biological half-lives of different 

targeting agents like peptides, antibodies, and nanoparticles. The major advantage of the PET 

imaging over the optical imaging is that the γ-rays emitted are able to penetrate the animal body 

so that a real-time monitoring of in vivo tracer distribution could be fulfilled without sacrificing 

the mice. 

Zirconium-89 is a radioisotope of zirconium with a half-life of 78.4 hours, Eγ = 909 

keV[169]. Its long half-live makes it very useful in labeling of antibodies and nanoparticles, 

which requires slower clearing time, thus PET imaging acquisition at a longer time point. 

Furthermore, when the monoclonal antibody labeled with radionuclide internalizes, 89Zr-mAbs 

yields higher tumor-to-normal tissue ratios than the corresponding 124I-labeled mAbs[170], thus 

showing better contrast on PET images. Hydrated Zr (IV) only exists at high dilution in very 
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acidic solutions, and the total coordination number of 8 is typical in their X-ray structures[168]. 

89Zr labeling can be achieved through several chelators, but primarily through desferrioxamine B 

(DFO), which forms a stable chelate with 89Zr through 3 hydroxamate groups[171]. Actually in 

clinical PET imaging studies, all complexation of zirconium are currently performed with the 

chelator DFO[172]. When efficiently chelated with DFO, the 89Zr-DFO complex can be 

conjugated to mAbs or nanoparticles without changing the biodistribution of the mAb or 

nanoparticle thus providing important biodistribution information by PET imaging. 

Zirconium-89 is a radioisotope of zirconium with a half-life of 78.4 hours, Eγ = 909 

keV[169]. Its long half-live makes it very useful in labeling antibodies and nanoparticles, which 

requires longer clearing time. Furthermore, when the monoclonal antibody labeled with 

radionuclide internalizes, 89Zr-mAbs yields higher tumor-to-normal tissue ratios than the 

corresponding 124I-labeled mAbs[170], thus showing better contrast on PET images. Hydrated Zr 

(IV) only exists at high dilution in very acidic solutions, and the total coordination number of 8 is 

typical in their X-ray structures[168]. 89Zr labeling can be achieved through several chelators, 

but primarily through desferrioxamine B (DFO), which forms a stable chelate with 89Zr through 

3 hydroxamate groups[171]. Actually in clinical PET imaging studies, all complexation of 

zirconium are currently performed with the chelator DFO[172]. When efficiently chelated with 

DFO, the 89Zr-DFO complex can be conjugated to mAbs or nanoparticles without changing the 

biodistribution of the mAb or nanoparticles thus providing important biodistribution information 

by PET imaging. 

A few methods can be used to achieve our goal of attaching the chelator DFO to 

nanoparticles, including lysine methods, thiol methods, and click methods. A recent study by 

Perk and Vosjan et al. using Lysine methods was a great improvement from previous procedures 
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since they used a p-isothiocyanatobenzyl-bearing DFO (DFO-Bz-NCS)[173], which is a 

commercially available chelate that can form a stable thiourea linkage between chelator and 

antibody in one step. However, the lack of water insolubility in p-isothiocyanatobenzyl-DFO 

precursor requires more finesse than the straightforward N-suc-DFO chemistry[174]. Another 

concern with this lysine method is that nonspecific attachment in conjugation may hinder 

immunoreactivity if the chelate binds at an antigen-binding site. Thiol methods can do better 

because the conjugation through the thiol group of cysteine is more site specific, but no 

significant advantage in immunoreactivity was demonstrated[175]. Another method to conjugate 

mAbs or nanoparticles onto zirconium is the click chemistry as we have discussed above in 

chapter 2.1. Click chemistry is a specialized conjugation method, which expands the possibilities 

of 89Zr PET imaging application[174]. A great advantage of click chemistry method is its 

modularity, which allows spontaneous conjugations between different chelator-radiometal pairs 

or different antibodies pairs[176]. Given that the SPIONs were already functionalized with TCO 

groups, and the fact that a great amount of the TCO reacting sites were still available after the 

reaction with GOx-Tz, click chemistry between DFO-Tz and SPION-TCO was chosen as the 

radiolabeling strategy here. 

SPION-GOx bioconjugates were prepared as described above in chapter 2.2, followed by 

conjugation with 89Zr. labeled tetrazine modified DFO. Briefly, DFO-Tz was synthesized by 

adding Tz-NHS 5µmole to DFO-NH2 2µmole dissolved in 0.5ml DMF. Then 20µmole DIEA 

was subsequently added, and the reaction mixture was stirred at room temperature for 2h. Later 

the resulting mixture was left in the lyophilizer overnight to remove the solvent. The residue was 

dissolved in Acetonitrile: H2O = 1 : 1 afterwards and purified by HPLC. Electrospray ionization 

mass spectrometry (ESI-MS) was used to verify the molecular weight. Afterwards, 89Zr-labeled 
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SPION-GOx bioconjugates were prepared following the post-radiolabeling conjugation method. 

Briefly, Tz-DFO was radiolabeled with 89Zr in 1.0M HEPES (pH = 7.0) at 95°C for 30min. The 

resulting Tz-(89Zr) DFO with a specific activity of 0.5 mCi/nmole was then mixed with the 

SPION-GOx bioconjugates (0.05 mCi of Tz-(89Zr)DFO with SPION) in PBS buffer. The 

reaction mixture was incubated at 37 °C for 60 min, and the extent of labeling was determined by 

FPLC. The unconjugated Tz-(89Zr)DFO was removed by the Zeba spin desalting column to give 

89Zr-labeled SPION-GOx bioconjugates. After the successful labeling of zirconium, 89Zr labeled 

SPION-GOx and SPION were administrated to two groups of Balb/c female mice bearing 4T1 

tumors respectively using the procedures described in chapter 2.0. PET images were taken and 

analyzed for biodistribution. 

4.1.2 Preliminary Results 

ESI-MS result showed that the molecular weight of the product from DFO-NH2 and Tz-NHS 

was 787.92, which is the exact molecular weight of DFO-Tz. The radioactivity FPLC radio 

detector results from both SPION-TCO and SPION-GOx labeled with Tz-(89Zr)DFO are shown 

in Figure 31-32. The shape of the peaks for SPION and SPION-GOx from the radio FPLC is 

consistent with the ones from absorbance peaks observed from previous FPLC results without 

radiolabeling. The tiny peaks with the retention time of 33 minutes associate with unreacted 89Zr 

in the solution. We can see that ~ 98% of the 89Zr was successfully labeled on the SPION-TCO, 

while ~91% was conjugated with SPION-GOx. The shape of SPION-GOx is different from 

SPION, which also indicates that GOx was attached to form the bioconjugates from previous 

step. 



 91 

 

 

Figure 31. FPLC of Tz-(89Zr) DFO labeled SPION-TCO. 
 

 

 

 

Figure 32. FPLC of Tz-(89Zr)DFO labeled SPION-GOx bioconjugates. 
 

The mice injected with 89Zr labeled SPION-GOx were scanned in PET 1h, 3h, and 24h 

post injection. The PET images are shown below in Figure 33-34. Biodistribution information 

was obtained 3h and 24h after the injection and shown in Figure 35-36. The results suggest that 

SPION-GOx bioconjugates are gradually accumulating in the tumor through 24h. 
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Figure 33. PET imaging of Balb/c mice bearing 4T1 tumors 1h, 3h, 24h post injection of 89Zr labeled SPION-GOx. 
 

 

 

 

Figure 34. PET imaging of tumor site. 1h, 3h, 24h post injection of 89Zr labeled SPION-GOx. 
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Figure 35. Biodistribution of 89Zr labeled SPION-GOx in major organs 3h after injection. 
 

 

 

 

Figure 36. Biodistribution of 89Zr labeled SPION-GOx in major organs 24h after injection. 
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Increase of radioactivity were observed in some organs other than the tumor, such as 

kidney, liver, bone, while there was reduction in blood, lung, spleen and pancreas. The amount 

of SPION-GOx bioconjugates in muscles, heart, and intestine remained at a constant level in the 

time period of 24 hours. All the three mice in this group were either dead or sacrificed after the 

24 h PET scanning. 

The other group of two mice were injected with 89Zr labeled SPION using the same 

procedure, but only PET scanning results were obtained, shown in Figure 37-38. The tumor area 

became brighter after 24h of injection compared to 1h, indicating the accumulation of SPION in 

the tumor over time, which is consistent with the trend of SPION-GOx bioconjugates 

accumulating in this time period. In vivo PET scanning was performed 1h and 24h after the 

injection. Limited information was obtained from this group because the exact death time of the 

two mice in this group could not be determined so that the biodistribution obtained from the 

organs would not be valid. 
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Figure 37. PET imaging of balb/c mice bearing 4T1 tumors: 1h and 24h post-injection of 89Zr labeled 
SPION. 

 

 

 

 

Figure 38. PET imaging of tumor site. 1h and 24h post injection of 89Zr labeled SPION. 
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4.1.3 Discussion 

The biodistribution results and the PET images clearly showed the accumulation of both SPION-

GOx and SPION in the tumor over a short time period of 24 hours due to the EPR effect of 

SPION. This result is very exciting because SPION-GOx bioconjugates can be efficiently 

delivered to the tumor site without any other modifications with targeting agents like peptides 

and antibodies, which suggests that this easy and convenient synthesis procedure could be 

effective. On the other hand, a targeting agent (i.e. peptide or antibody) attached to the 

bioconjugates could greatly improve the binding specificity of tumor cell, which requires further 

research in order to establish a pre-targeting 2-step cancer cell destruction system. 

Other than the tumor, increase of radioactivity was observed in some major organs, such 

as kidney, liver, bone as well. At the meantime, there was decrease in blood, lung, spleen and 

pancreas. The amount of SPION-GOx bioconjugates in muscles, heart, and intestine remained at 

a relatively constant level during the 24-hour time period. The accumulation in liver is not a 

major concern since liver has a high tolerance for toxicity. The small drop of SPION-GOx level 

in blood can be explained by a slow clearance of the large biomolecules. However, the relatively 

high amount of accumulation in the bone might be a major concern since bone marrow plays the 

key role in hematopoiesis. 

Limited biodistribution information of SPION-GOx and SPION was obtained because the 

mice in both groups were either dead before a pre-designed time point or had to be sacrificed 

after the 24 h PET scanning. Further experiments need to be designed and performed to find out 

the reasons for the inconsistency from the previous in vivo cytotoxicity evaluation. The SPION-

GOx bioconjugates did not show a very clear cytotoxicity at an even higher dosage of 12.5 
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mg/kg mouse. The mice administrated with the single dose of 12.5 mg/kg mouse appeared 

healthy one month after the injection, and no significant weight loss was observed. One of the 

possible reasons for unexpected death of mice is that the SPION-GOx suspension was not 

sanitized before the injection. The bacteria and other large size impurities that might exist in the 

suspension can be removed by simply filtering the suspension with a 0.22 µm membrane filters 

before the administration. A bacteria test as well as filtration can be conducted to verify that the 

suspension was safe for injection in the future. 

Using 89Zr to label SPION-GOx over other PET isotopes with comparable decay half-

lives such as 124I has several advantages. For example, the energy required for 89Zr production is 

lower[177]. In addition, 124I has a relatively low specificity because 124I links directly to mAbs 

via tyrosine residues, which can be subjected to dehalogenation in vivo. This may lead to 

significant radioactivity uptake in the organs that are not supposed to be targeted by the mAb-

antigen binding[178], whereas 89Zr has the higher specificity realized by the chelator DFO and 

highly specified conjugation through click chemistry. However, there is limited availability for 

89Zr. A major disadvantage of 89Zr is that the gamma emission is at a high energy level of 908.97 

keV, which may limit the radioactive dose that can be administered into patients[179]. 

Overall, PET imaging could be of great use in the future study for acquisition of 

biodistribution of any system with large biomolecules like nanoparticle or antibodies. 
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4.2 SUMMARY 

Two types of iron oxide nanoparticles, SPION and PAA-MNP have been synthesized via 

appropriate synthesis and stabilization strategies to meet the needs of desirable size and size 

distribution, proper functional groups, and great biocompatibility, etc. 

The platform using SPION-GOx bioconjugates as a novel approach for ROS-induced cell 

destruction was demonstrated to be able to effectively produce ROS from H2O2 via Fenton’s 

reaction after the oxidation of glucose catalyzed by GOx. TMB assay showed a clear blue color 

which was characterized in spectroscopy, indicating the generation of large amount of ROS. In 

vitro cell viability assay demonstrated that the SPION-GOx bioconjugates can destruct the tumor 

cells efficiently, which suggests that the platform could lead to a new cancer therapy with 

unprecedented low side effect and long-term effectiveness. The in vivo cytotoxicity evaluation 

showed that the balb/c mice can tolerate the bioconjugates with no significant weight loss at a 

dosage of 5.0 mg/kg mouse. Most importantly, SPION-GOx are able to accumulate in the tumor 

after 48 hours due to the EPR effect, and release ROS resulting in an oxidative stress that 

effectively slow down the tumor growth by targeted destruction of cancer cells. 

Additionally, MNP that are modified with the temperature responsive pNIPAM to enable 

the multistage cell separation are capable of enhancing the enrichment factor after a few 

separation cycles by improving separation efficiency caused by the non-specific interactions 

between the cells and MNP in traditional MACS system. The multiple capture-and-release cycles 

was realized by the reversible hydrophobic-hydrophilic interactions between functionalized 

MNP and target cells. Flow cytometry results suggest that A431 cells (target) could be 

effectively separated from HeLa cells (non-target) after three separation stages resulting in an 
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enrichment factor of 3.69 when the starting ratio of target to non-target is 1:2. Even though the 

separation efficiency was not dramatically enhanced, a lot of parameters in this scheme can 

potentially be tuned to optimize the system performance, like particle size, polymer density on 

particle surface, etc. 

This work suggests that Fe3O4 magnetic nanoparticles are promising material for varieties 

of biomedical applications like cancer theranostic and cell sorting for their extraordinary 

characteristics and tons of modification possibilities to meet different requirements in new 

applications. 
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