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DIMENSION REDUCTION OF NEURAL MODELS ACROSS MULTIPLE

SPATIO-TEMPORAL SCALES

Youngmin Park, PhD

University of Pittsburgh, 2018

In general, reducing the dimensionality of a complex model is a natural first step to gaining

insight into the system. In this dissertation, we reduce the dimensions of models at three

different scales: first at the scale of microscopic single-neurons, second at the scale of macro-

scopic infinite neurons, and third at an in-between spatial scale of finite neural populations.

Each model also exhibits a separation of timescales, making them amenable to the method

of multiple timescales, which is the primary dimension-reduction tool of this dissertation.

In the first case, the method of multiple timescales reduces the dynamics of two coupled

n-dimensional neurons into one scalar differential equation representing the slow timescale

phase-locking properties of the oscillators as a function of an exogenous slowly varying pa-

rameter. This result extends the classic theory of weakly coupled oscillators. In the second

case, the method reduces the many spatio-temporal dynamics of “bump” solutions of a neu-

ral field model into its scalar coordinates, which are much easier to analyze analytically.

This result generalizes existing studies on neural field spatio-temporal dynamics to the case

of a smooth firing rate function and general even kernel. In the third case, we reduce the

dimension of the oscillators at the spiking level – similar to the first case – but with ad-

ditional slowly varying synaptic variables. This result generalizes existing studies that use

scalar oscillators and the Ott-Antonsen ansatz to reduce the dimensionality and determine

the synchronization properties of large neural populations.
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1.0 INTRODUCTION

All figure generation code in this dissertation is available on GitHub:

https://github.com/youngmp

1.1 NEURAL OSCILLATORS

Neurons have been known to form the primary computational building block of the brain,

with some of the earliest computational studies performed by Lapique in 1907 [11]. Using

nerve fiber activity in frogs, he reported the first known neural model: a circuit description

of the neural membrane in terms of a parallel capacitor and resistor [1]. A brief overview of

the method and resulting model is shown in Figure 1.

Lapicque was interested in the relation between the membrane parameters (resistance

and capacitance) and its relation to neural excitability. Several decades later, the stage was

set for Hodgkin and Huxley to uncover the mechanism of action potential generation as a

function of the many transmembrane currents.

As part of their seminal work, Hodgkin and Huxley derived an equivalent circuit repre-

sentation of the neural membrane. We show an example of the circuit and its relation to the

membrane in Figure 2. The conductances (conductance is the reciprocal of the resistance)

follow nonlinear voltage-dependent rules, which Hodgkin and Huxley determined through

experiments. They derived a system of four ordinary differential equations that accurately

1

https://github.com/youngmp


R

Vrest

Cm

Sciatic Nerve

B. Neural Recording

V

t
t

V
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C. Model D. Model OutputA. Frog Leg

Action Potential (Spike)

I
V

Figure 1: A schematic of Lapicque’s experiment. A: Location of the sciatic nerve relative to

the frog leg. B: A cartoon of the neural recordings C: Proposed model relating the membrane

capacitance and resistance to excitability. D: Model dynamics. As the potential reaches a

threshold, the model “spikes” and resets.

captured the nonlinear effects of transmembrane currents:

CV̇ = I − ḡKn
4(V − EK)− ḡNam

3h(V − ENa)− gL(V − EL)

ṅ = αn(V )(1− n)− βn(V )n

ṁ = αm(V )(1−m)− βm(V )m

ḣ = αh(V )(1− h)− βh(V )h,

(1.1)

where

αn(V ) = 0.01
10− V

exp
(

10−V
10

)
− 1

, βn(V ) = 0.125 exp

(−V
80

)
,

αm(V ) = 0.1
25− V

exp
(

25−V
10

)
− 1

, βm(V ) = 4 exp

(−V
18

)
,

αh(V ) = 0.07 exp

(−V
20

)
, βh(V ) =

1

exp
(

30−V
10

)
+ 1

.

(1.2)

The variables n, m, and h are voltage-dependent gating variables, whose function is well-

documented in several texts [44, 25]. These gating variables are active (near 1) or inactive

2
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Figure 2: The giant squid axon and equivalent circuit. A: The membrane of the giant axon

contains active and passive mechanisms for action potential propagation. B: The membrane

can be expressed in terms of an equivalent circuit. C: Schematic of the squid (loligo forbesii)

used in the original experiments, and the position of the giant axon. D: Sufficient current

injection in the giant axon or the equivalent circuit model results in an action potential

(spike).

(near 0) depending on the voltage value, and the rate of activation (or inactivation) as a

function of voltage is determined by the α and β functions in Equation (1.2). The terms

ḡK, ḡNa, and gL represent maximal conductance values, which for the squid are typically [44]

ḡK = 36mS/cm2, ḡNa120mS/cm2, gL0.3mS/cm2. (1.3)

3



The constants EK, ENa, and EL represent reversal potentials for each ion type (the leak

current is typically carried by chloride ions). For the squid, these reversal potentials are [44]

EK = −12mV, ENa = 120mV, EL = 10.6mV. (1.4)

The two remaining constants, C and I represent the membrane capacitance, and input

current, respectively. The capacitance C is typically chosen to be C = 1µF/cm2, and the

injected current I has units of µA/cm2.

Equation (1.1) describes the voltage potential of the squid giant axon at a single point.

Remarkably, this conductance-based description of neurons generalizes to any neuron type

where transmembrane currents produce excitability (action potentials or spikes). Thus, with

only slight modifications to this model, it is possible to model excitability in mammalian

cortical neurons, which are the primary neuron type in this dissertation.

We remark that these equations form a system of ordinary differential equations (ODEs).

Hodgkin and Huxley included a spatial component in their original equations thus deriving a

system of partial differential equations (PDEs), but single-neuron models in this dissertation

will focus solely on this ODE single-point description.

Conductance-based models are capable of producing a great number of dynamics as a

function of an input current. In particular, these models may fire repetitive action poten-

tials with sufficient and constant current injection. Similar effects are seen in real neurons,

although repetitive spikes are not perfectly periodic due to natural intrinsic and extrinsic

effects. However, a rigorous mathematical treatment of spiking neurons requires simplifying

assumptions. Of the many approaches one can take to understand single-neuron dynamics,

we take a deterministic dynamical systems approach: assume the dynamics at a single point

on the cell body is given by the smooth autonomous system,

ẋ = F(x), (1.5)

where x ∈ Rn represents a vector of the membrane potential and gating variables of the

neuron. The vector field F : Rn → Rn contains parameters including the external input

current I ∈ R. When the input current is sufficiently large, we assume there exists a closed,

attracting, and isolated T -periodic solution γ(t) ∈ Rn. In dynamical systems theory, γ(t)
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is a stable T -periodic limit cycle solution satisfying Equation (1.5). Note that the

description in Equation (1.5) is a general framework that includes Hodgkin and Huxley’s

conductance-based description in Equation (1.1).

Because the solution γ(t) is stable and isolated, there exists a set of points in the phase

space, B ⊆ Rn, that converge as t→∞ to the set of points on the limit cycle, Γ := {γ(t) :

t ∈ R}. The set of points B is called the basin of attraction. It follows that sufficiently

small-magnitude perturbations off the limit cycle γ allow solutions to remain within the

basin of attraction B and to converge back towards the limit cycle.

One example of weak perturbations arises in the case of weakly coupled oscillators:

ẋ1 = F(x1) + εG1(x1,x2),

ẋ2 = F(x2) + εG2(x2,x1),
(1.6)

where 0 < ε � 1 small, and G : Rn × Rn → Rn is a smooth term describing how the two

vector fields influence each other. The physical interpretation of Gi is rather general, but

in this dissertation it typically represents synaptic neural coupling. The weak assumption

is justifiable by the fact that postsynaptic potentials in the cortex are generally orders of

magnitude smaller than action potentials [42].

In the theory to follow, we write our oscillating solution γ in terms of a phase variable

θ ∈ [0, T ) [71]. When the oscillators are uncoupled (ε = 0), we associate each point x ∈ Γ

with a phase value θ(x), where
dθi
dt

= 1, i = 1, 2.

In turn, because the limit cycle is a simple closed loop, a given phase value θ (mod T )

uniquely determines a point on the limit cycle. This equivalence allows for an analysis of

oscillator phase differences in terms of the phase angle instead of the full n-dimensional

dynamics. As the details of the following derivation exist in many sources, we omit many

calculations. For a thorough introduction to these topics, we refer the reader to [25, 82, 71].

When the oscillators are weakly coupled (ε > 0, small), an order ε term appears in the

phase equation,

dθi
dt

= 1 + ε∇xθ(γ(θi)) ·Gi(γ(θi), γ(θk)), i = 1, 2, k = 3− i.
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The new term depends on the spatial gradient of the phase function, ∇xθ(γ(θi)), and the

coupling function Gi from Equation (1.6). The spatial gradient of θ evaluated along the

limit cycle is the infinitesimal phase response curve (iPRC), i.e., the response of the

neuron to small perturbations. For notational convenience, we denote the iPRC by z.

Subtracting the moving frame and averaging over the timescale of the oscillators al-

lows for the study of slow timescale synchronization properties using the scalar differential

equation,
dφ

dt
= ε[H2(−φ)−H1(φ)], (1.7)

where

Hi(φ) =
1

T

∫ T

0

z(t) ·Gi[γ(t), γ(t+ φ)]dt,

and φ = θ2 − θ1. The fixed points of Equation (1.7) correspond to phase-locked states of

the two oscillators. If, for example, φ = 0 is a stable (unstable) solution to Equation (1.7),

then the neural oscillators satisfying Equation (1.6) will tend to synchronize (with some

dependence on initial conditions). In summary, predicting the synchronization between two

n-dimensional deterministic weakly coupled oscillators reduces to the analysis of one scalar

differential equation. Moreover, this technique generalizes toN oscillators, providing a means

to analyze the degree of synchronization within a population [25].

The scalar reduction of weakly coupled oscillators and subsequent analysis of synchro-

nization properties form the core ideas of Chapter 2.

1.2 MEAN-FIELD NEURON DYNAMICS

Building up a population-level understanding from the spiking-level is possible using weak

coupling theory, and this approach provides a good first approximation to the degree of

synchrony within a neural population. However, there exist rich spatio-temporal dynamics

of the cortex where the population is asynchronous and individual neurons spike irregularly.

We now briefly summarize these dynamics as observed in the cortex.

There exist spatially coherent activity states during normal brain function that cor-

respond to a spectrum of computations. Neurons in the primary visual cortex respond
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preferentially to the orientation of edges [5]. In the rat brain, there exists a system of head-

direction cells that fire maximally when the rat faces one particular direction [96]. In several

model animals, cortical neurons exhibit persistent activity during delayed response tasks

[90, 72]. We show a cartoon of cortical circuitry and corresponding modeling approaches in

Figure 3.

In each of these examples, elevated firing rates are observed at the population level and

the neural populations are entirely asynchronous. Thus, in contrast to the previous section,

these population-level dynamics with asynchronous and irregular spiking neurons requires a

different mathematical framework.

In Wilson and Cowan’s seminal work, they considered two populations of inhibitory and

excitatory neurons and used mean-field theory to derive equations for the firing rate of each

population (Figure 3C,D). This approach allows for a standard planar dynamical systems

analysis, where the results apply to the population level [95]. Extending upon this work,

some studies analyze the spatially extended dynamics of a neural network using a single-

layer mean field description that combines inhibitory and excitatory connections (Figure 3D,

but with both layers compressed into one). The result of this combination is the activity

formulation [2, 76]:

∂u(x, t)

∂t
= −u(x, t) +

∫
Ω

K(x− y)f(u(y, t))dy + α1I(x, t) + α2z(x, t) (1.8)

∂z(x, t)

∂t
= β[−z(x, t) + u(x, t)] (1.9)

where K : Rn → R is a Mexican-hat function (Figures 4A and 5A), f : R→ R is a sigmoidal

function (Figure 4B), I : Rn × R → R is the input current to the system, u : Rn × R → R

is the neural activity at position x at time t (Figures 4C and 5B), and αi, β are parameters

controlling the strength and timecourse of the input current I and adaptation z. In the

literature, the domain Ω is the real line, the ring, the real plane, or the torus. In this

dissertation, we choose Ω to be either the ring, [−π, π], or torus, [−π, π]× [−π, π].

Many studies choose an explicit form for the kernel. One common choice is a difference

of Gaussians, defined by

K̂(x) =
1√
πσe

e−(x/σe)2 − 1√
πσi

e−(x/σi)
2

.

7



A. Brain

Cortical Surface

B. Cortical Organization

Cortex

Circuit Motif Repeated Laterally

C. Spatially Distributed Model

Exc. Layer

Inh. Layer

E

I III I

Pyr

SOM

PV

VIP

Pyr

SOM

PV

VIP

Pyr

SOM

PV

VIP

D. Spatially Distributed Single-Layer
S

y
n
a
p

ti
c 

S
tr

e
n
g

th

Lateral inhibition

Local excitaiton

Distance from Neuron

0

Figure 3: Population-level cortical models. A: The human brain. B: Approximate cor-

tical circuitry. Circles denote inhibitory synapses and arrows denote excitatory synapses.

Pyramidal (Pyr) neurons are innervated by multiple inhibitory interneurons types, including

somatostatin-positive (SOM), parvalbumin-positive (PV), and vasoactive intestinal peptide

(VIP) neurons. PVs exhibit lateral and feedforward inhibition. The green box highlights a

single microcircuit motif that is repeated throughout the neocortex. C: Idealized population-

level modeling based on cortical connectivity. Arrows indicate excitatory connections. D:

The single-layer population-level modeling approach combines the two spatial layers. For

a given neuron, the inhibitory or excitatory synaptic strength depends on the distance of

neighboring neurons.
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This difference of Gaussians results in a function nearly identical to Figure 4A, but defined

on the real line. This choice is motivated by observed cortical connections, where given a

particular neuron, it is excited by nearby neurons, inhibited by neurons slightly farther away,

and receives no influence from neurons much farther away. This type of connectivity structure

is often called lateral inhibition, because in addition to the local excitation, neighboring

neurons inhibit in lateral directions.

This definition of K̂ is sufficient for a domain on the real line, but because our domain

is perodic, we periodize the function:

K(x) =
∑
n∈Z

K̂(x+ 2πn).

We show an example of this function in Figure 4A. Many studies also choose an explicit form

for the firing rate function. A common choice is

f(x) =
1

1 + exp(−r(x− uth))
,

where r is the gain of the sigmoid and uth is the threshold (Figure 4B). Other examples

of the firing rate function include the hyperbolic tangent or arctangent, which are chosen

because of their sigmoidal graph. For our numerical simulations, we choose the firing rate

function above, and a Mexican hat function defined in terms of a cosine:

K(x) = A+B cos(x).

In our theory we use general firing rates and kernels unless otherwise specified. Figure 5A

shows the kernel and panel B shows the resulting bump solution.

Both types of single- and double-layer neural field models are capable of producing a

vast number of spatio-temporal dynamics including stationary and traveling bump solutions

[98, 50, 34, 76, 15, 28], bump solutions that oscillate in width (breathers) [9, 31, 32, 33],

pulse-emitting bumps, [50, 49], oscillatory wavefronts [8, 9], and spiral waves [49]. Many

of these studies require an additional variable representing spike-frequency adaptation, but

the core mechanism (the single-layer neural field in Equation (1.8) or the two-layer Wilson-

Cowan model [95]) remains nearly unchanged across studies. In this thesis, we restrict our

attention to bump solutions of the form in Figures 4C and 5B.
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Figure 4: Typical choices of the Mexican hat kernel. (A), firing rate function (B), and the

resulting bump solution (C). In this figure, σe = 0.5, σi = 1, uth = 0.25, and r = 15.

Classic studies on existence, uniqueness, and stability of solutions to Equation (1.8)

use the infinite-gain limit of the firing rate function f . This assumption is a natural first

step to making Equation (1.8) mathematically tractable. To demonstrate the classic proof

techniques, we consider Equation (1.8) in the high gain limit, without adaptation or input

current:
∂u(x, t)

∂t
= −u(x, t) +

∫
Ω

K(x− y)H(u(y, t)− θ)dy,

where H is the Heaviside step function, θ is the threshold for firing, and K(x) = A+B cos(x),

where A = −0.5 and B = 3. The arguments to follow are similar to [25], chapter 12.4.1, but

we consider a ring domain instead of the real line.

Suppose the system is at steady-state. Then the system reduces to the integral equation

u(x) =

∫
Ω

cos(x− y)H(u(y)− θ)dy.

In this example, our choice of kernel (Figure 5A) leads to a numerically computed bump

solution of the form in Figure 5B. Thus, if a bump solution exists, it is reasonable to assume

that u(x) ≥ θ on the interval [−r, r], where 2r is a constant bounded above by the length of
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Figure 5: The kernel K and numerically computed steady-state bump solution u. A: The

Mexican hat kernel K plotted on the ring domain. B: The bump solution u plotted on the

real domain. The horizontal dashed line shows the threshold value. The bump width is

shown with the vertical lines which mark the interval [−r, r].

the domain. We simplify the integral further by exploiting the Heaviside function and basic

trigonometric identities:

u(x) =

∫ r

−r
cos(x− y)dy

= cos(x)

∫ r

−r
cos(y)dy + sin(x)

∫ r

−r
sin(y)dy

= 2 sin(r) cos(x).

Thus, with a cosine kernel, we can expect a sinusoidal bump solution. Moreover, recalling

that the bump width r depends on the threshold θ, we conclude that the bump solution has

an amplitude that is nonlinearly proportional to the threshold θ.

Numerically, one can show that the bump solution is not always centered at the origin,

suggesting that the bump solution is translation invariant. To show translation invariance
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on the ring domain, we simply repeat the calculations above on the interval [α, β], where

β − α = 2r and |α|, |β| < π. The resulting bump solution is given by

u(x) = 2 sin(r) cos(x− (α + r)).

Given θ, it follows that r is constant, so this solution is unique up to α. In fact, the

term (α + r) represents the center of the bump solution, and for any α the shape of the

solution remains invariant, thus proving translation invariance. Arguments for determining

uniqueness and stability of solutions are found in [2, 25].

These results are useful because they are exact and are qualitatively indistinguishable

from numerical results when the gain of the firing rate function is large but finite. Thus,

they serve as satisfactory proofs for solutions that depend on large and finite gain. Moreover,

the utility of this proof method goes well beyond existence and stability of bump solutions.

Proofs of existence and stability of time-dependent solutions like breathers, sloshers, and

traveling pulses classically rely on the Heaviside assumption [9, 31, 32, 33, 50, 49, 49].

In this thesis, we side-step the Heaviside assumption by reducing the neural field into

scalar differential equations that enable us to analyze the neural field model with a general

kernel and smooth firing rate function (high gain is not necessary). The analysis of Equation

(1.8) through a dimension reduction, assuming weak input current and an additional weak

and slow adaptation variable, forms the primary motivation behind Chapter 3.

1.3 BRIDGING MICROSCOPIC AND MACROSCOPIC DYNAMICS

Despite the success of the Wilson-Cowan model and related activity-based models in model-

ing cortical activity, several recent studies express concern at the derivation of these mean-

field models, which uses strictly population level quantities, e.g., proportion of active cells,

distribution of refractory cells, and the proportion of non-refractory cells receiving above-

threshold input. Thus, recent studies have shifted focus to a re-derivation of the mean-field

starting at the spiking level.
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Macroscopic variables and mean field models have been derived when the population is

asynchronous [58, 57, 79] and with Poisson statistics [4, 3]. However, the missing piece in the

literature, and indeed the goal of this dissertation, is to determine the degree of synchrony

of oscillators in a population when they are not constrained to asynchronous activity.

To this end, most current studies use the Kuramoto model [53] and the Ott-Antonsen

ansatz to derive a complementary order parameter to the mean-field description. To demon-

strate this derivation, we summarize the relevant results of the original Ott and Antonsen

paper [66], followed by a summary of the derivation of macroscopic observables (firing rate

and mean membrane potential) of the continuum limit of quadratic integrate-and-fire neu-

rons in [63].

Consider a simple case of all-to-all, homogeneously coupled Kuramoto oscillators

dθi
dt

= ωi +
K

N

N∑
j=1

sin[θj(t)− θi(t)],

where θi denotes the phase angle of oscillator i = 1, . . . , N , ωi is the natural frequency of

oscillator i, and K is the coupling strength. In the limit as N →∞, the state of the oscillator

system at time t can be described by a continuous distribution function, f(ω, θ, t) satisfying

∂f

∂t
+

∂

∂θ

{[
ω +

K

2i

(
re−iθ − r∗eiθ

)]
f

}
,

where

r(t) =

∫ 2π

0

dθ

∫ ∞
−∞

dωf(ω, θ, t)eiθ.

The partial differential equation is the continuity equation, which is the joint probability

distribution function of oscillators θ and frequencies ω, at time t. The function r is the

complex order parameter expressed as the total of all oscillator states θ and frequencies ω,

and r∗ is the complex conjugate.

The key assumption by Ott and Antonson is to take the Fourier series of f as

f =
g(ω)

2π

{
1 +

[
∞∑
n=1

fn(ω, t) exp(inθ) + c.c.

]}
,

where fn(ω, t) = α(ω, t)n with |α| ≤ 1. The term c.c. stands for complex conjugate. For

further analysis, they require additional assumptions:
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• α can be analytically continued from real ω into the complex ω-plane.

• α has no singularities in the lower half ω-plane.

• |α(ω, t)| → 0 as Im(ω)→ −∞.

• g(ω) = ∆
π

1
(ω−ω0)2+∆2 , i.e., the natural frequencies of the oscillators are drawn from a

Lorentzian distribution.

These assumptions allow the authors to use the residue theorem, from which they derive

a pair of first order differential equations governing the dynamics of the order parameter

r = ρe−iφ, where ρ and φ satisfy

dρ

dt
+

(
1− K

2

)
ρ+

K

2
ρ3 = 0,

dφ

dt
= 0.

These equations are significant because they reduce an infinite dimensional problem to one

non-trivial dimension. The authors use this approach to reduce the dimension of several

related problems, including the case of sinusoidal external drive, and a more general case

with coupled populations of Kuramoto oscillators with heterogeneous coupling between pop-

ulations.

More recent studies also derive macroscopic observables, e.g., the firing rate and mean

membrane potential of large populations of quadratic integrate and fire models [63]. We

briefly summarize the results. Consider the network of quadratic integrate and fire neurons,

V̇j = V 2
j + Ij,

where Ij = ηj + Js(t) + I(t), and s(t) = r(t), the firing rate at time t. J represents the

synaptic strength, and ηj add heterogeneity to the connections. In the continuum limit, the

conditional distribution of neurons, ρ(V |η, t), satisfies the continuity equation

∂tρ+ ∂v[(v
2 + η + Js+ I)ρ] = 0,

where the variable η is a random number drawn from the Lorentzian distribution

g(η) =
1

π

∆

(η − η̄)2 + ∆2
.
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Assuming, independent of g and the initial condition, that all solutions of the continuity

equation converge to a Lorentzian distribution, we can write

ρ(V |η, t) =
1

π

x(η, t)

[V − y(η, t)]2 + x(η, t)2
,

where x is the half-width of the distribution and y is its center. To determine the conditions

on x, y for this ansatz to be a solution, we plug this ansatz into the continuity equation,

resulting in the coupled equations,

∂tw(η, t) = i[η + Js(t)− w(η, t)2 + I(t)],

where w(η, t) ≡ x(η, t) + iy(η, t). From the Lorentzian assumption on η, it follows that the

firing rate r(t) and mean membrane potential v(t) depend on w at one point:

πr(t) + iv(t) = w(η̄ − i∆, t).

This property substantially simplifies the equation for w into a system of two ordinary

differential equations,

ṙ =
∆

π
+ 2rv

v̇ = v2 + η̄ + Jr + I(t)− π2r2.

The authors also show that this system is amenable to the same type of Kuramoto order

parameter reduction as summarized earlier. Thus, the derivation of a mean-field description

from the spiking level, as well as the degree of synchronization at the spiking level is beginning

to be well understood.

Several other papers use different models, or different connections to generalize one or a

combination of the results above. In [12], the authors use the Kuramoto model, but extend

the existing results to more realistic network topologies. The Ott-Antonsen ansatz is used

to derive order parameters for an increasing family of models including the theta model in

[16], the Winfree model in [73], and excitatory-inhibitory Alder units in [80]. Finally, the

Ott-Antonsen ansatz is not the only method in use for this case. In [59], Laing considers

all-to-all pulse-like coupling of theta neurons with and without synaptic delay and derives

the order parameter using the Watanabe-Strogatz ansatz [94, 93]
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In this dissertation, we are interested in deriving the mean field model and complemen-

tary spiking-level phase equations for general n- and m-dimensional slowly coupled oscilla-

tors. The connection between microscopic and macroscopic dynamics forms the motivating

idea of chapter 4.

1.4 FREDHOLM ALTERNATIVE THEOREM

Consider the equation,

Lf = g,

where L is a compact linear operator defined on a Hilbert space H and g is a known T -

periodic function in H. If the linear operator L has a nontrivial nullspace, we require

additional assumptions to guarantee existence of the T -periodic solution f . According to

the Fredholm alternative theorem, there exists a solution f if and only if 〈g, v〉 = 0 for every

function v in the nullspace of the adjoint operator L∗ [47]. The inner product is defined as

〈f, g〉 =

∫ T

0

f(t) · g(t)dt.

This theorem underlies the core mathematical techniques in chapters 2,3, and 4.

1.5 METHOD OF MULTIPLE TIMESCALES

The systems we consider have a sufficiently small parameter ε that introduces a natural

separation of two timescales: a “fast” time s = g(t, ε), which is on the timescale of a T -

periodic solution, and a “slow” time, τ = εt, which is on the timescale of phenomena that

occur in order 1/ε time. In particular, the order 1/ε-time phenomena in our systems can be

described in terms of scalar variables.

If we assume that s and τ are independent, we can use the method of timescales to make

the scalar reduction rigorous. Recall the phase difference equation, (1.7), which is classically

derived using the method of averaging. To demonstrate how we use the method of multiple
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timescales in this dissertation, we re-derive Equation (1.7) by exploiting the difference in

timescales.

Recall our starting assumption,

ẋ1 = F(x1) + εG(x1,x2),

ẋ2 = F(x2) + εG(x2,x1),
(1.10)

where each vector field, when ε = 0, has a stable T -periodic limit cycle solution γ(t). When

ε > 0 and sufficiently small, each limit cycle influences the timing of the other in order 1/ε

time. We take the coupling functions to be identical for simplicity, but the derivation is

identical in the heterogeneous case.

To derive the phase difference dynamics, we make the following ansatz:

x1(t, ε) = γ(s+ θ1(τ)) + εξ1(s+ θ1(τ)) +O(ε2),

x2(t, ε) = γ(s+ θ2(τ)) + εξ2(s+ θ2(τ)) +O(ε2),

where s = t, τ = εt, θ(τ) is a slow timescale phase shift, γ is the T -periodic limit cycle

representing the lowest-order solution, and ξi are first order terms to account for order ε

changes in amplitude. Our goal is to derive dynamics for θi(τ).

We substitute our ansatz into Equation (1.10), use the chain rule, and expand in order

ε. The resulting equation is then

γ′(s+ θ1(τ))

[
1 + ε

dθ1

dτ

]
+ εξ′1(s+ θ1(τ)) +O(ε2)

= F(γ(s+ θ1(τ))) + εDF(γ(s+ θ1(τ)))ξ1(s+ θ1(τ))

+ εG(γ(s+ θ1(τ)), γ(s+ θ2(τ))) +O(ε2),

where DF is the Jacobian matrix of the vector F . Next, we group in terms of order ε,

resulting in a hierarchy of equations,

γ′(s+ θ1(τ)) = F(γ(s+ θ1(τ)))

γ′(s+ θ1(τ))
dθ1

dτ
+ ξ′1(s+ θ1(τ)) = DF(γ(s+ θ1(τ)))ξ1(s+ θ1(τ))

+ G(γ(s+ θ1(τ)), γ(s+ θ2(τ)))

...
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We rearrange the second line to yield:

Lξ1 = −γ′(s+ θ1(τ))
dθ1

dτ
+ G(γ(s+ θ1(τ)), γ(s+ θ2(τ))), (1.11)

where

Lf = f ′ −DF(·)f.

The operator L is a linear compact operator acting on the space of T -periodic functions.

Now the relevance of the Fredholm alternative theorem is clear: for there to exist a solution

ξ1 to Equation (1.11), we require the right hand side of Equation (1.11) to be orthogonal to

all functions in the nullspace of the adjoint operator

L∗g = g′ +DF(·)Tg.

In previous studies, the function in the nullspace of the adjoint operator for this system is

the iPRC, z, with the property that z(s) · γ′(s) = 1. Taking the inner product of z with the

right hand side of Equation (1.11) yields by definition

dθ1

dτ

∫ T

0

−γ′(s+ θ1(τ)) · z(s+ θ1(τ))ds

+

∫ T

0

G(γ(s+ θ1(τ)), γ(s+ θ2(τ))) · z(s+ θ1(τ))ds = 0,

which simplifies to

dθ1

dτ
=

1

T

∫ T

0

G(γ(s+ θ1(τ)), γ(s+ θ2(τ))) · z(s+ θ1(τ))ds.

Because the terms θi(τ) are effectively constant relative to s, we take the transformation

s′ = s+ θ1(τ) to yield

dθ1

dτ
=

1

T

∫ T

0

G(γ(s′), γ(s′ + θ2(τ)− θ1(τ))) · z(s′)ds′.

The calculations are identical for dθ2/dτ , which is straightforward to derive:

dθ2

dτ
=

1

T

∫ T

0

G(γ(s′), γ(s′ + θ1(τ)− θ2(τ))) · z(s′)ds′.
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Finally, taking the phase difference φ = θ2 − θ1 yields

dφ

dτ
= [H(−φ)−H(φ)],

where

H(φ) =
1

T

∫ T

0

G(γ(s), γ(s+ φ)) · z(s)ds.

This equation is identical to Equation (1.7), concluding our demonstration of the method of

multiple timescales.

In each of the chapters to follow, we tailor the starting ansatz to fit the problem, but

the concepts are invariant: we expand the general solution in powers of ε including a term

for slow timescale phase shifts θ(τ). We then list the equations in a hierarchy of linear maps

ordered by powers of ε and use the Fredholm alternative to guarantee existence of each linear

map. As a consequence of the Fredholm alternative theorm, we derive the dynamics of the

unknown term θ(τ).

1.6 OUTLINE

In chapter 2, we extend the theory of weakly coupled oscillators to the case where there is

one slowly varying parameter. Once we derive the theory, we consider biological examples.

In one example, we determine the synchronization of pairs of weakly coupled cortical oscil-

lators modulated by the same slowly varying concentration of neurotransmitter. In the last

example, we determine the degree of synchronization in a population of 51 all-to-all weakly

coupled cortical oscillators.

In chapter 3, we analyze a neural field model by reducing the dynamics to scalar variables.

On the ring (torus), the one (two) scalar variable(s) represent the position of the bump

centroid. The analysis adds to existing studies by assuming a smooth firing rate function

(without a necessarily high gain) and any even Mexican-hat shape kernel that produces a

bump solution. Using our reduction we rigorously explore the existence and stability of

solutions as well as their many bifurcations using classic dynamical systems theory.
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In chapter 4, we derive a set of phase equations complementing the mean field description

of neurons coupled by strong and slow synapses. By rephrasing the strong and slow coupling

as weak and fast coupling, we make the system amenable to a classic phase reduction. We

then derive a system of phase equations with the mean field synaptic values as an exogenous

parameter. We then show that we can predict synchronization at the spiking level given the

mean field description.
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2.0 WEAKLY COUPLED OSCILLATORS IN A SLOWLY VARYING

WORLD

This chapter is based on [68], with all figure-generation code available on GitHub:

https://github.com/youngmp/park_and_ermentrout_2016

2.1 INTRODUCTION

The theory of weakly coupled oscillators [53, 26, 27] has served very well as a predictor

of the dynamics in networks of coupled neural oscillators (for a comprehensive review, see

[83]). In the application of this theory, one generally assumes that, while the oscillators

may have different intrinsic frequencies, these frequencies are fixed as are the vector fields of

the uncoupled limit-cycle oscillators. However, more generally, local regions of the nervous

system are constantly modulated by extrinsic inputs and by slow processes such as the

accumulation of extracellular ions. Thus, synchronization and other properties are likely to

change due to this modulation which can change the frequency, conductances, and even the

synapses within an oscillatory network [74].

Neuronal modulators such as acetylcholine, norepinephrine [62], and dopamine [39] are

known to alter the firing properties of neurons. These properties, in turn, could alter the

synchronization behavior of neurons and more formally, the form that the weak coupling

equations take. One of the key components to understanding synchronization of neuronal

oscillators is the phase response curve (PRC) which describes how the phase of an oscillator

is shifted by the timing of inputs. The PRC plays the key role in determining whether or

not a pair of coupled neuronal oscillators will synchronize. In [86, 87], the authors directly
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demonstrated that cholinergic modulation of a cortical pyramidal neuron had a profound

effect on the shape of the PRC. Acetylcholine is known to directly act on the so-called M-type

potassium current and in [20], they showed how changing the strength of this current made

a huge difference on the shape of the PRC as well as in the ability of synaptically coupled

neurons to synchronize. Neuronal properties are also affected by the extracellular milieu,

notably, concentration of extracellular potassium which can profoundly alter excitability

of neurons [17]. Rubin et al [81] showed that the synchronization between two coupled

neurons was strongly dependent on the mean concentration of extracellular potassium. Jeong

and Gutkin [45] showed the changes in the reversal potential of GABAergic conductances

changed the ability of neurons to synchronize; the reversal potential is mainly driven by

extracellular chloride. Thus, since many neuromodulators as well as the ionic concentrations

are constantly changing, it is important to see how this time varying environment alters the

ability of neurons to synchronize.

In two recent papers Kurebayashi et al [55, 56], extended the notion of phase reduction to

oscillators that are subject to large slowly varying parameters. They demonstrated that the

evolution of the phase depended, not just on the instantaneous frequency of the oscillator,

but, also on the rate of change of the slowly varying parameter. in this chapter, we re-derive

the phase equation in [55] by using the method of adiabatic invariance [47] (Chapter 12.1.2)

and incorporate the slow variation of parameters into weak coupling of oscillators using the

Fredholm alternative. Thus we have a theory to predict oscillator synchrony and whether or

not synchrony is stable, in the presence of a slowly varying parameter. Moreover, because we

only assume the parameter to be slowly varying, our theory is shown to accurately predict

phase differences with periodic, quasi-periodic, and stochastic slowly varying parameters.

We first derive the equations for the phases and the phase-differences for a pair of coupled

oscillators that are subject to slow changes in a parameter. Next, we apply the theory to

the Hopf oscillator (so-called λ − ω system, [51]) where all of the required functions for

our analysis can be exactly derived. We then consider a biophysical Hodgkin-Huxley model

for pyramidal neurons (the simplified “Traub” model [20]). This model includes an M-type

potassium current, so in our analysis and simulations, we allow the conductance to slowly

change as a model for cholinergic modulation. We conclude with a discussion and contrast
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the results with fast modulation.

2.2 METHODS

2.2.1 Weakly Coupled Oscillators With a Slowly Varying Parameter

We consider a pair of weakly coupled slowly-varying oscillators:

dXa

dt
= F (Xa, q(εt)) + εGa(X

b, Xa) (2.1)

dXb

dt
= F (Xb, q(εt)) + εGb(X

a, Xb)

where 0 < ε� 1 is a small parameter. We assume that the slowly varying parameter, q, lies

in an interval Q := [q−, q+] such that for each q ∈ Q, the system:

dX

dt
= F (X, q)

has an asymptotically stable limit cycle with frequency ω(q). The period of the oscillators

is just T (q) = 2π/ω(q). Thus, each of the two oscillators is modulated by a common slowly

varying signal, q(εt) that can alter the shape and frequency of the rhythm but does not

destroy its existence. The functions Ga,b represent the weak coupling between the two os-

cillators. If there is no modulation of the oscillations, then, we can regard equation (2.1)

as a standard weakly coupled system. However, the slow modulation changes the dynamics

and interactions in a way that we will now demonstrate. We point out that [55] derived

the phase modulation for a single slowly varying oscillator using successive changes of vari-

ables and showed that the “naive” phase approximation was not valid. More precisely, the

term β(τ) defined in equation (2.9) accounts for possibly large variations in the slowly vary-

ing parameter. Therefore, omitting this term (the “naive” approximation) from equations

(2.7)–(2.8) results in a poor phase approximation in the case of a single forced oscillator.

Here, we introduce a simpler way to derive the same equations using a standard adiabatic

approximation [47], and extend the results to coupled oscillators. In the coupled oscillator

case, the “naive” phase approximation is valid.
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Clearly, there are two time scales in this problem, a slow time scale, τ = εt and a fast

time scale, s that is related to t. To put everything on a similar fast time scale, we generally

allow that
ds

dt
= g(τ, ε)

and expand to get a relationship between s and t that is τ−dependent. However, we need

only terms in the lowest order in the fast time scale, so we will simply cut to the chase and

write s = ω(q)t, so that the oscillators are all 2π−periodic in s. (For the time being, we have

suppressed the implicit τ dependence of the fast time scale, by just putting the parameter q

in the frequency, but, in fact, q is just shorthand notation for q(τ).)

Before continuing with the perturbation, we introduce some additional notation. Let

U0(s, q) be the limit cycle solution to the uncoupled system

ω(q)∂U/∂s = F (U, q), (2.2)

and let A(s, q) := DUF (U0, q) be the linearization of the uncoupled system evaluated at the

limit cycle. By taking the derivative with respect to s on both sides of equation (2.2), we

see that the linear equation

L(s, q)Y := ω(q)
∂Y

∂s
− A(s, q)Y = 0 (2.3)

has a periodic solution given by ∂sU0(s, q) where the notation, ∂s means differentiation with

respect to the first component in U0. Associated with the set of 2π−periodic functions is an

inner product defined as

〈Y1(s), Y2(s)〉 =

∫ 2π

0

Y1(s) · Y2(s) ds,

where Y1 · Y2 is the standard Euclidean dot product. With this inner product, the linearized

equation has a well-defined adjoint operator:

L∗(s, q)Y := ω(q)
∂Y

∂s
+ AT (s, q)Y, (2.4)

from which we attain the adjoint equation,

ω(q)
∂Y ∗

∂s
= −AT (s, q)Y ∗
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where AT is the transpose. There is a unique 2π−periodic solution to the adjoint equation,

which we call Z(s, q) such that

Z(s, q) · ∂U0(s, q)

∂s
= 1.

Finally, the linearization has the Fredholm alternative property [47]. That is, there is a

2π−periodic solution to:

L(s, q)Y = b(s) (2.5)

where b(s) is 2π−periodic and L is defined in (2.3) if and only if

∫ 2π

0

Z(s, q) · b(s) ds = 0.

With these preliminaries defined, we are now ready to analyze weak coupling of slowly

varying oscillators.

We assume that the solutions to equation (2.1) can be expressed in a series in ε and have

the form

Xa(t, ε) = Xa
0 (s, τ) + εXa

1 (s, τ) + . . .

Xb(t, ε) = Xb
0(s, τ) + εXb

1(s, τ) + . . . .

To lowest order, we must have

ω(q(τ))
∂Xa,b

0 (s, τ)

∂s
= F (Xa,b

0 (s, τ), q(τ)).

The 2π−periodic limit cycle solution to this problem is

Xa,b
0 (s, τ) = U0(s+ θa,b(τ), q(τ))

where θa,b(τ) are slowly varying arbitrary phase shifts due to the time-translation invariance

of the limit cycle. Our goal is to now derive equations for the slow evolution of the phase.
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Using the chain rule, we see that d/dt = ω∂/∂s+ ε∂/∂τ. Thus, after a bit of rearranging,

the next order equations are:

L(s, q(τ))Xa
1 (s, τ) = −∂sU0(s+ θa(τ), q(τ))

∂θa

∂τ
(2.6)

−∂qU0(s+ θa(τ), q(τ))
dq

∂τ

+Ga[U0(s+ θb(τ), q(τ)), U0(s+ θa(τ), q(τ))],

where L(s, q(τ)) is defined by (2.3). There is a similar equation for Xb
1(s, τ). Finally, we see

that this equation has the form of (2.5), so that there is a 2π−periodic solution if and only

if the right-hand side is orthogonal to the adjoint. This leads to the following equations for

the phases:

∂θa

∂τ
= −β(τ) + ha(θ

b − θa, τ) (2.7)

∂θb

∂τ
= −β(τ) + hb(θ

a − θb, τ), (2.8)

where,

β(τ) =

∫ 2π

0

Z(s, q(τ)) · ∂qU0(s, q(τ))
∂q

∂τ
ds (2.9)

ha,b(φ, τ) =

∫ 2π

0

Z(s, q(τ)) ·Ga,b[U0(s+ φ, q(τ)), U0(s, q(τ))] ds. (2.10)

The extra β(τ) term arises due to the fact that the parameter q is slowly varying. Notice in

its definition through equation (2.9), that it is proportional to the time derivative of q(τ).

This is the term that [55] emphasized in their analysis. That is, we recover their results if

we ignore coupling. We remark that the phase-interaction functions, ha,b(·) are exactly those

that would be obtained from standard weak-coupling theory with all parameters held fixed.

In absence of coupling, the total phase evolves as

θ(t) = θ(0) + ω(q(τ))t− ε
∫ t

0

β(εt′) dt′.

If both oscillators are subject to the exact same slowly varying inputs, then the β term

becomes irrelevant to their phase difference, φ := θb − θa which satisfies the simple scalar

slowly varying equation [83]:

dφ

dτ
= hb(−φ, τ)− ha(φ, τ) := G(φ, τ) (2.11)
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Equation (2.11) will be our main tool for comparing the phase reduced model to the full

model. We remark that the interaction functions are τ−dependent, so that the reduced

system for the phase-difference is no longer autonomous and we will not be able to write

exact solutions. However, if ha = hb, then the right-hand side of equation (2.11) is, for each

τ , an odd periodic function of φ, so that φ = 0, π will always be equilibrium points. That is

G(0, τ) = G(π, τ) = 0 for all τ. In this symmetric case, we define Hodd to be the odd part of

the function ha.

2.2.2 Mode Truncation

In order to study the phase-reduced equations, we need to get formulae for the τ−dependent

interaction functions, ha,b. For our first application of the method, these functions are ex-

plicitly computable since the oscillation and the adjoint are simple sine and cosine functions.

However, for the neural model that we also study (and which gives more interesting results),

we need to somehow approximate the required slowly varying functions. To this end, we

use XPPAUTO [19] to numerically compute the adjoint and interaction functions. For each

interaction function we perform a mode truncation (that is, we keep just a few of the Fourier

terms). We finish the approximation by deriving a q-dependent equation for the coefficients

of the Fourier series expansion.

In general, we expect the q-dependent equation for the coefficients for the Fourier series

expansion to be nonlinear, with a high number of terms to preserve any changes in stability.

However, we found empirically that a linear relationship between the Fourier coefficients

and the slow parameter q, as well as just two sine coefficients, were sufficient to preserve the

change in synchrony and bistability between synchrony and antiphase (π−phase difference),

and other interesting phenomena.
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2.3 RESULTS

We apply our theory to the λ−ω system and a modified Traub model with adaptation. For

each model, we consider three types of slowly varying parameters, which we briefly discuss

before delving into the details of each model. We remark that all figure code and relevant data

files are available on github at https://github.com/youngmp/park_and_ermentrout_2016

2.3.1 Slowly Varying Parameters

The slowly varying parameter, q(τ), is explicitly written as three types of slowly varying

parameters: periodic (qp), quasi-periodic (qqp), and stochastic (qs):

qp(τ) := q0 + q1 cos(fτ),

qqp(τ) := q0 + (q1/2)(cos(fτ) + cos(fτ
√

2)),

qs(τ) := q0 + q1ζ(τ).

(2.12)

The terms qi, f , and ε depend on the system. For the λ − ω system, we choose f = 1 and

various combinations of q0 and q1 because the choice of qi affects the asymptotic dynamics.

Surveying multiple values of qi provides a more complete demonstration of the dynamics and

the accuracy of our theory. For the Traub model, we chose by default q0 = 0.3, q1 = 0.2, and

f = 5 unless otherwise stated (as in figure 13). The default choice of parameters represents a

biophysically realistic parameter range, while the slightly different parameter choice in figure

13 demonstrates the accuracy of our theory when we avoid slow stability changes.

The noisy parameter, ζ, is an Ornstein-Uhlenbeck (OU) process satisfying the stochastic

differential equation

µdζ = −ζdt+
√
µdW,

where µ = 1000. The raw random noise data is normalized so that

ζ(τ) ∈ [−1, 1], ∀τ,

and this data is used in all noisy simulations. The OU data may be reproduced by using

XPP seeds 1–4.
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2.3.2 Lambda-Omega System

We first apply our result to the λ− ω system [51] with weak diffusive coupling,

ẋj
ẏj

 =

 λ(rj) −ω(rj, q(τ))

ω(rj, q(τ)) λ(rj)

xj
yj

+ ε

1 −κ
κ 1

xk − xj
yk − yj

 (2.13)

where j, k = 1, 2 and k 6= j; rj :=
√
x2
j + y2

j ; and

λ(r) = 1− r2

ω(r, q) = 1 + q(r2 − 1).

When ε = 0, equation (2.13) is equivalent to the Hopf oscillator in polar coordinates,

ṙj = rjλ(rj)

θ̇j = ω(rj, q(τ)).

One can verify the limit cycle for uncoupled system is

U0(s, τ) = [cos(s), sin(s)]T ,

and the solution to the adjoint equation (the iPRC) is

Z(t) = [q(τ) cos(t)− sin(t), q(τ) sin(t) + cos(t)]T .

Finally, Equation (2.11) for the λ− ω system is

dφ

dτ
= 2 (κq(τ)− 1) sin(φ). (2.14)

Note that synchrony (φ = 0) is indeed a fixed point of Eq. 2.14. For a brief stability analysis,

we note that equation (2.14) is a separable equation and solve for an implicit solution the

differential equation:

tan(φ/2) = c exp

[∫ τ

0

(κq(s)− 1)ds

]
. (2.15)
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We can write the inside of the exponential as τQ(τ) where Q(τ) = (1/τ)
∫ τ

0
[κq(s) − 1] ds.

Q(τ) is the running average of the integrand. Since the integrand is bounded and continuous,

the limit of Q(τ) exists as τ → ∞. If this limit is positive then the exponential diverges to

+∞ and the phase φ→ ±π. Similarly, if the limit is negative, then the exponential goes to

zero and φ converges to 0.

Figure 6 shows the result of simulating equation (2.13) for different functions of q(τ). In

the left column (labeled a,c,e) the mean value of q(τ) is less than 1, so that we expect that

the phase differences will go to synchrony. In the right panels, the mean value of q(τ) > 1

so that the theory predicts that phase-differences will go to π. This is clearly evident from

the simulations of the full model. Furthermore, the approach to equilibrium predicted by

the phase model is almost identical to that of the full simulations. There is very little error

even in the stochastic cases (panels e,f). Even though this is a highly nonlinear system,

the system goes to the stable state that is appropriate for the average of the slowly varying

parameter. If we break the homogeneity, then the dynamics is more complex and interesting.

2.3.2.1 Heterogeneities So far, the model derivation assumes that both oscillators are

identical. However, in general, this will not necessarily be the case. If the differences are

O(ε) (that is, small) then we will get some additional terms in the phase equations. To

account for this, in general, we add terms to equation (2.1) of the form:

εfa,b(X
a,b, τ) (2.16)

where we could also include some τ -dependence in the heterogeneity. For example, in the

λ− ω system, we could set

ωa,b(r, q) = 1 + q(τ)(r2 − 1) + ε[da,b + ca,b(τ)(r2 − 1)]

where the subscripts refer again to the two oscillators. Here, the parameters da,b are just

constants that affect the baseline frequency and ca,b(τ) are modulatory. With the addition of
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(a) (b)

(c)

(e)

(d)

(f)

Figure 6: Periodic ((a),(b)), quasi-periodic ((c),(d)) and stochastic ((e),(f)) slowly varying

parameters. The phase difference φ = θ2 − θ1 theory (light blue dashed line) is plotted on

top of numerics (black solid line). The slow periodic parameter is shown as a dashed red

line. The horizontal line represents the parameter value q at which there is onset or offset of

synchrony. For all subfigures, ε = 0.0025, f = κ = q1 = 1. (a) Periodic, q0 = 0.9, E[q] < 1.

(b) Periodic, q0 = 1.1, E[q] > 1. (c) Quasi-periodic, q0 = 0.9, E[q] < 1. (d) Quasi-periodic,

q0 = 1.1, E[q] > 1. (e) Stochastic (OU), q0 = 0.85, E[q] = 0.913, XPP seed 2. (f) Stochastic

(OU), q0 = 0.9, E[q] = 1.145, XPP seed 1.

the terms (2.16), the phase equations we get are like equations (2.7-2.8) but have additional
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terms:

∂θa

∂τ
= −β(τ) + ηa(τ) + ha(θ

b − θa, τ)

∂θb

∂τ
= −β(τ) + ηb(τ) + hb(θ

a − θb, τ),

where

ηa,b(τ) =

∫ 2π

0

Z(s, q(τ)) · fa,b(U0(s, q(τ)), τ) ds.

Subtracting the two equations yields the more general phase equation with heterogeneities:

dφ

dτ
= ηb(τ)− ηa(τ) + hb(−φ, τ)− ha(φ, τ) := G(φ, τ). (2.17)

We have still eliminated the commmon O(1) slow variation β(τ), but the explicit hetero-

geneities appear threough the differences ηb(τ)− ηa(τ).

With this extension, we now alter the simple model by introducing a small frequency

difference in the oscillators. For oscillator 2, we replace ω(r, q) = 1 + q(1− r2) with ω(r, q) =

1 + εd + q(1 − r2), so that in absence of coupling, there is an order ε frequency difference,

εd. In this case the equation for φ becomes

dφ

dτ
= d+ 2 (κq(τ)− 1) sin(φ). (2.18)

This means that φ(τ) will no longer generally approach a steady state. In figure 7 we show

two simulations with different values of ε when there is a slight difference in frequency. For

ε = 0.025, the solutions match for most of the time, but there are places in each segment,

where the solutions are about π out of phase. On the other hand, when we reduce ε by factor

of 10, the solutions to the full model and the phase model are indistinguishable.

As the effects of heterogeneities are rather interesting, even in this simple case, we will

now examine equation (2.18) in more detail in order to explain the behavior in figure 7. We

can rewrite equation (2.18) as a system with the time rescaled:

φ′ = (d+ 2(q(s)− 1) sinφ)/f

s′ = 1.
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Figure 7: The effects of inhomogeneity on slowly modulated solutions. The slowly varying

parameter is chosen to be periodic with q0 = 1.1, q1 = 2, f = 1.3, d = 0.05, κ = 1. (a)

ε = 0.025 (b) ε = 0.0025. Black is the full model and blue dashed is the phase-reduced

model. The solid gray lines at φ(t) = 0 ≡ 2π (φ(t) = π) represent synchrony (anti-phase).
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This is an equation on the torus and so the behavior is fairly restricted; in particular, the

ratio ρ = limτ→∞ φ/s, called the rotation number is a continuous function of the parameters.

We find three different behaviors as the inhomogeneity d and the frequency f vary. Figure 8

shows the behavior as these parameters are varied. In the upper left part of the diagram (high

frequency), above the red curve, φ(τ) has a winding number of 0. That is, φ(τ + 2π) = φ(τ).

This means that the phase-difference, φ between the two oscillators is bounded between two

values and one oscillator is consistently ahead of the other. In the lower right part of the

diagram (low frequency), φ(τ + 2π) = φ(τ) + 2π, that is, φ has winding number 1. This

means that the phase-difference between the two neurons stays close to 0 for about half a

cycle and close to π for the other half and makes these switches rapidly and periodically; it

does not get “stuck” at synchrony or anti-phase. Finally, the middle region (and also the

choice used in figure 7) shows that the the phase makes rapid transition, first between π and

2π and then between π and 0. This explains the switching back and forth observed in figure

7. In sum, heterogeneity (even in the simplest form) can add good deal of complexity to the

dynamics.

2.3.3 Traub Model with Adaptation

The membrane potential dynamics of the Traub model, V , satisfies

CV̇ = −gNam3h(V − ENa)− (gkn
4 + q(τ)w)(V − Ek)− gl(V − El) + I

≡ f(V, q(τ)),
(2.19)

where q(τ) is the slowly varying parameter with q ∈ [0.1, 0.5], q0 = 0.3, q1 = 0.2, and gating

variables n,m, h, w satisfying

ṅ = an(V )(1− n)− bn(V )n,

ṁ = am(V )(1−m)− bm(V )m,

ḣ = ah(V )(1− h)− bh(V )h,

ẇ = (w∞(V )− w)/tw(V ).

Adaptation in this model is controlled by the magnitude of the M−type potassium current

(which appears in Equation (2.19) as q(τ)w). This low-threshold, slow current can drastically
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Figure 8: The behavior of equation (2.18) for periodic modulation as a function of the

homogeneity, d and the modulation frequency, f . Green points show the border for 1 : 1

locking; red points show the border for 0 : 1 locking and between these are mixed solutions.

Typical phase-planes are shown in each region.
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affect the dynamics of the Traub model [20] changing it from Class I excitable (oscillation

arises via a saddle-node infinite cycle or SNIC) to class II excitable (oscillation arises via a

sub-critical Hopf bifurcation). Because of that change, the adjoint, Z(t) can also drastically

change [10, 21] and thus, the interaction function will also be strongly affected. Biologically,

this current is quite important since it is altered by acetylcholine, a neuromodulator. Thus,

since neuromodulators tend to operate at much slower time scales than the firing rates of

neurons, the slow alteration of the M−type potassium current is an ideal example of the

methods we have developed in this chapter.

We introduce weak coupling by adding a synaptic conductance

dV1

dt
= f(V1, q(τ)) + εgs2(Esyn − V1),

dV2

dt
= f(V2, q(τ)) + εgs1(Esyn − V2),

where si is the synaptic conductance of Vi and satisfies

ṡi = α(Vi)(1− si)− si/τs,

where α(V ) = 4/(1 + exp(−v/5)) [91].

Figure 9 shows the results of a numerical computation of the adjoint and the odd part

of the interaction function. For small values of the M-current (q = 0.1) the adjoint (a) is

almost strictly positive which is typical for so-called Class I excitable systems where the

periodic orbit arises as a SNIC. On the lower panel (b) we see that the Hodd(φ) is small and

that synchrony is unstable. (Recall that the phase model satisfies, φ′ = −2Hodd(φ), so that

a negative (positive) slope at an equilibrium is unstable (stable).) Anti-phase (φ = π) is

also unstable, but there are two stable fixed points that are near anti-phase. When there is

sufficient M-current (q = 0.5), the adjoint has a large negative lobe right after the spike. This

qualitative change in the shape of the adjoint leads to the stabilization of the synchronous

state (panel b). Thus, as q is varied from a low to high value, we expect that the phase-

difference will move toward synchrony (at high values) and away from synchrony (at lower

values). Panel b also shows that a two-term sine approximation is reasonable and captures

the qualitative (and to some extent, quantitative) shape of the functions. In particular, the

full Hodd(φ) and the two-term sine approximation have the same equilibrium point properties.
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Figure 9: The Traub model (equation (2.19) for two fixed values of q, the M-type potassium

current. (a) the adjoints for q = 0.1 and q = 0.5; (b) The odd part of the interaction
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For this reason, we make a simple linear interpolation using a two term sine expansion of

the interaction as q slowly varies. The approximation is thus:

−2Hodd ≈ 2(b1(q(τ)) sin(φ) + b2(q(τ)) sin(2φ)),

where a linear approximation to bi(q) passing through the points (0.1, bi(0.1)) and (0.3, bi(0.3))

predicts onset and offset of synchrony sufficiently well:

bi(q) = 5(b̂i(0.3)− b̂i(0.1))q + 1.5b̂i(0.1)− 0.5b̂i(0.3), i = 1, 2.

The number represented by b̂i(x) is the actual coefficient value at q = x (see appendix A.1.1).

In order to compare the slowly varying phase model to the full model, we need a way

to extract the phase from the full model. For the simple λ − ω model, we could get the

exact phase since the limit cycle is a circle with a constant angular velocity. One method

that is commonly used is to apply a Hilbert transform to the voltage and then extract the

phase from this. However, for the Traub model (and, in fact, any model), we have more

than just the voltage, so we can extract an approximate phase by picking a point on the

unperturbed limit cycle that is closest to the point whose phase we wish to determine. (This

is a fairly crude approximation; ideally, we would determine which isochron the point lies

on by integrating the initial data forward for several periods and then matching the point.

This method is very time consuming [18], so we have opted for the simpler approximation.)

Figure 10 shows how this is done. We take the (V, n) coordinates of the simulation and find

the value of (V, n) on the projected limit cycle that is closest in distance to the point on the

actual trajectory. Since the voltage (V ) spans a region of about 150mV and the recovery

(n) spans values between 0 and 1, we scale the distance metric accordingly. We compute

the variance of V0(t), n0(t) over one cycle of the unperturbed limit cycle, call these (σ2
V , σ

2
n).

Thus the distance is:

dist(∆V,∆n) :=
√

(∆V )2/σ2
V + (∆n)2/σ2

n.

We define the phase of a point (V (t), n(t)) to be the value φ that minimizes:

dist(V (t)− V0(φT/(2π)), n(t)− n0(φT/(2π))),

38



where T is the natural period of the unperturbed limit cycle. We pick the comparison

limit cycle (V0, n0) for a fixed value of the slowly varying parameter that is the mean value.

However, as the figure shows, the phase portrait is very similar for two different values of q.

As we will see later, this method produces a very reasonable approximation of the phase.

The next three figures compare the approximated phase model with the approximated

phase extracted from the full model. That is, there are several levels of approximation to

compare the theory to the full model. As described above, we approximate the function

G(φ, τ) in equation (2.11) by two sine terms whose coefficients are τ−dependent (cf Figure

9b). We apply the same slowly varying function for the conductance of the adaptation

current to get the τ−dependence for the phase model. We extract the approximate phase-

difference from the full model and compare the result with the phase-difference derived from

equation (2.11). Figure 11 shows the result of letting q vary periodically in time; the period

is 5 seconds. The dashed red curves show the modulation and the red line shows the mean

value. The light blue curve is the phase-difference as predicted by equation (2.11) and the

black dots are the instantaneous approximate phase-differences from the model equations.

Each dot represnts the phase value at approximately 1/300 of one period. Because the period

of the oscillation varies from 12.65s to 24.6s as a function of the slowly varying parameter,

we can not give a precise total number of cycles. However, based on the total times one

oscillator passes through zero phase, we estimate that there are 245 total cycles.

On the falling phase of the modulation (say, t = 2.5 − 5, t = 8 − 10, etc) the phase

model and the full model agree very closely, On the rising phase, the reduced system lags

the full system by quite a bit. Since both the rising and falling parts of the stimulus include

all ranges of q, this difference cannot be due to a bad approximation of the interaction

functions. As we noted above, the synchronous solution is a fixed point and for a range of q,

it is attracting. Because synchrony is a fixed point and we are slowly changing from stable to

unstable, there is great sensitivity at the transition. Small changes (such as ignoring small

higher order terms in the perturbation) can have drastic effects on the “jump-up” time as

synchrony loses stability. This is an example of a slow passage through a bifurcation [61]. To

see what we mean here, we simulate the phase-model with the periodic stimulus and perturb

the phase-difference, φ by slightly increasing it when it is close to 0. Figure 12 shows the
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result of such a manipulation. By increasing φ(t = 164) from, say, 10−14 to 10−4 (this is

still an order of magnitude smaller than the ε used in the simulations), we can advance the

“jump-up” time by almost an eighth of the cycle. The inset of the figure shows that dφ/dt

is very small at this point. For this reason, we can expect that the main error will be on

the up-jump since φ has to escape from the equilibrium point at zero. We will see similar,

although less drastic, effects in the subsequent comparisons. By reducing the range of the

slow parameter so that it is never close to the value for which synchrony is an attractor,

we can do a much better job of tracking the phase-difference through the reduced model.

Figure 13 shows an example where the modulated adaptation never gets to a region where

synchrony is stable. In this case, the phase-difference for the phase-reduced model never gets

close to 0 and the modulation stays away from any bifurcation points.

Figure 11: Periodic slowly varying parameter. Absolute value of phase difference |φ| =

|θ2 − θ1| ∈ [0, 2π) theory (light blue) vs numerics (black dots). The slow periodic parameter

is shown as a dashed red line. The horizontal line represents the parameter value q at which

there is onset or offset of synchrony. ε = 0.0025, f = 5. 245 cycles.

Figure 14 is similar to figure 11, except that the modulation is quasi-periodic. As with

the periodic modulation, the phase model follows the full model quite closely once the system

jumps away from the synchronous equilibrium. However, like the periodic case, the phase

model has a delayed jump-up from synchrony relative to the full model; this is especially
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Figure 13: Periodic slowly varying parameter. Absolute value of phase difference |φ| =

|θ2 − θ1| ∈ [0, 2π) theory (light blue) vs numerics (black dots). The slow periodic parameter

is shown as a dashed red line. The slowly varying parameter constants are q0 = 0.175,

q1 = 0.125. ε = 0.0025, f = 5. 219 cycles.

evident at t ≈ 25.

Finally, in Figure 15, we use a slowly varying stochastic signal that is generated by an

Ornstein-Uhlenbeck process and then rescaled so that the range is [−1, 1]. As in figures 11

and 14, the phase model does a fairly good job of tracking the full model. Similarly, the

jump up from synchrony is often delayed (especially evident for t ∈ [2.5, 4] ) as was the case

in all the previous simulations.

The slowly modulated interaction function works well in spite of the many approxima-

tions that we have made in the biophysical model.

2.3.4 Networks and synchrony

The methods we have described have, so far, been applied only to two coupled oscillators.

There is no reason why we cannot apply them to networks as well. In this case, it is interesting

to consider the idea of global synchronization in the presence of modulation. Here we consider

43



Figure 14: Quasi-periodic slowly varying parameter. The absolute value of phase difference

|φ| = |θ2 − θ1| ∈ [0, 2π) in theory (light blue) vs numerics (black dots). The quasi-periodic

parameter is shown as a dashed red line. ε = 0.0025, f = 5. 444 cycles.

(for simplicity) a population of N (we take N = 51, here) globally coupled neurons that are

subject to slow modulation of the M−current as in the previous sections. We weakly couple

the Traub model neurons with excitatory coupling and slow periodic modulation of the

adaptation. Coupling is all-all and divided by the total number of neurons. Thus, each

includes the synaptic current, Isyn = gsynstot(t)(V − Esyn), where

stot(t) =
1

51

50∑
j=0

sj(t) (2.20)

and sj(t) are the individual synaptic gating variables for each neuron. Figure 16 shows the

result of the simulation. As a surrogate for, say, the local field potential, we look at the total

voltage of all the oscillators, Vtot = (1/N)
∑

j Vj(t). Panel A shows the full picture of Vtot(t)

over 12 seconds. It is difficult to see the synchronization, but can be roughly judged by

looking at the variance of Vtot: larger variance means greater synchrony. (If the oscillators

were completely asynchronous, their sum would be close to a constant and so the variance

of the sum will be small. If they are completely synchronized, then the variance of the sum
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Figure 15: Noisy slowly varying parameter. Absolute value of phase difference |φ| = |θ2 −
θ1| ∈ [0, 2π) theory (light blue) vs numerics (black dots). The noisy parameter is shown as

a dashed red line. XPP seed 4. ε = 0.0025, f = 5. 404 cycles.

will be large as the voltage swings over a 150 mV range.) To better illustrate this point, we

have also computed the spectrogram (panel B) over this period of time. Notice the large

red band that starts at the peak of q(t) and tails off as q(t) tends to zero. Higher bands

represent harmonics of the oscillations. This panel also illustrates the dramatic effect that

adaptation has on the frequency of the rhythm which ranges between 40 and 100 Hz. Higher

frequencies correspond to lower adaptation and weaker synchrony. We can apply the same

phase reduction methods to this model to get a system of phase equations:

θ′i =
1

N + 1

N∑
j=0

H(θj − θi, τ) + σξj
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where we have added some weak noise, σ to push off the invariant synchrony manifold. To

quantify the synchronization, we look at the order parameter:

OP =
1

N + 1

∣∣∣∣∣
N∑
j=0

eiθj

∣∣∣∣∣ .
Figure 16c shows the clear periodic waxing and waning of OP as the slowly varying potassium

conductance goes from large to small. When q(t) is close to zero (no adaptation), the OP

is also near zero and as q(t) tends to its maximum value of 0.5, OP gets very close to 1.

Thus, we see that slow modulation of this type of network shows transitions in and out of

synchrony. We expect similar effects for non-periodic modulation as long as it is sufficiently

slow.

2.4 DISCUSSION

We have shown that it is possible to accurately apply weak coupling theory and phase re-

duction to oscillators even in a changing environment when the changes are occurring at a

sufficiently slow time scale. In a previous paper [81], the authors showed that slow coupling

between oscillators was equivalent to weak coupling and that when the slow parameters

were frozen, then the spike-to-spike synchrony in some moderate interval of time could be

predicted by the corresponding interaction function. Here, we formalize this notion and

demonstrate that the interaction functions are time-dependent (with respect to the slowly

varying parameter) and thus, we do not need to freeze any parameters. In the present theory,

the slow forcing was exogenous and imposed on the system. In contrast, in bursting sys-

tems, the slow modulation is internally generated as the slow variable goes through various

bifurcations between quiescence and oscillations. In [84], Sherman studied two weakly cou-

pled bursters and observed that during the spiking phase (when the fast system is periodic),

spikes did not synchronize but were driven to asymmetric and out-of-phase oscillations. The

methods we have developed here require the existence of a limit cycle, so they cannot be

applied globally to the spike synchronization during autonomous bursting. However, if we

make the reasonable assumption that during the quiescent stage of the burst, the two cells
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Figure 16: Network of 51 Traub oscillators all-all coupled as in previous figures. (a) Summed

voltage Vtot =
∑

j Vj(t) along with the modulation of the potassium conductance; (b) Spec-

trogram showing greatly increased power when the conductance is high; (c) Order parameter

from the phase reduction showing a similar increase

are drawn to the slowly changing equilibrium, then, when they jump up, they will be nearly

synchronous (but, not quite; if they were precisely synchronous, then they would stay that

way for all time). We can then use the theory developed here to study the dynamics of the

47



spike-to-spike synchrony during the active period of the burst and thus explain in a more

formal matter Sherman’s results.

Gutkin et al [40] looked at how spiking neural oscillators subjected to a slowly varying

input responded to brief perturbations given between spikes. They measured the inter-spike

interval (ISI) without the perturbation and then fixed the input so the oscillator had the

same period as the ISI. With this fixed oscillator, they computed the phase response curve

(the function Z(t) solving the adjoint problem) and used this to predict how the perturbation

would affect the spike time in the slowly varying system. The method developed here, could

be used to improve this estimate since we know both the slowly varying frequency and the

slowly varying function Z(t; τ). This type of correction was, in fact, the goal of [55].

Slowly varying inputs differ in ways both quantitative and, more importantly, qualitative

from faster inputs. For example, suppose that two oscillators receive identical periodic inputs

that have a frequency close to the unforced frequency of the oscillators. Then for some range

of input amplitudes, we can expect the oscillators to lock in a 1:1 manner with each other and

thus be completely synchronized even in absence of coupling. Similarly, weak identical noise

applied to two uncoupled oscillators will also synchronize them [75, 88, 23], but the noise

has to be sufficiently fast; synchrony falls off rapidly as the time constant of the noise slows

down [38]. Thus, fast common rapidly changing inputs will tend to synchronize uncoupled

oscillators. But the slow modulations we study here have no such properties. Indeed, looking

at equations (2.7-2.8), the common slow input cannot move the phase-difference without

direct coupling. It would be interesting to look at the synchronization between two slowly

varying oscillators that are subjected to fast correlated noise and derive some equations for

the expected phase-difference.

2.5 CONCLUSION

The Fredholm alternative provides a useful proof method to re-derive the phase equation

in Kurebayashi et al. After obtaining the phase equation, we use the theory of weakly

coupled oscillators to derive the interaction function, from which we can study the stability
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of synchrony and anti-synchrony.

Despite the phase estimation and the mode truncation, our theory accurately predicts

the phase of the Traub model with periodic, quasi-periodic, and stochastic slowly varying

parameters (we have similar positive results for the λ − ω system). Because the mode

truncation depends on the accuracy of the numerically derived interaction functions, and

because the interaction functions in turn depend only on the coupling terms and the iPRC,

we can apply the mode truncation method (and subsequently our result) to any autonomous

system for which the iPRC and coupling terms are known. The methods here show that we

can extend the notion of weak coupling and synchronization of nonlinear neural oscillators

to the more realistic scenario in which the environment is changing.
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3.0 SCALAR REDUCTION OF A NEURAL FIELD MODEL WITH SPIKE

FREQUENCY ADAPTATION

This chapter is based on [70], with all figure-generation code available on GitHub:

https://github.com/youngmp/park_and_ermentrout_2017

3.1 INTRODUCTION

Spatially coherent activity states exist during normal brain function including mammalian

path integration, head direction tracking, visual hallucination, working memory, spatial ob-

ject location, and object orientation [15, 14, 32]. Neural field models (also called continu-

ous attractor neural networks) are one way to understand the mechanism underlying such

spatially coherent phenomena [36, 34, 35]. In neural recordings and field models, these

spatio-temporal dynamics manifest as traveling waves, spirals, or single or multiple localized

“bumps” or “pulses” of activity [15].

Extensive literature exists on the analysis of these behaviors. In particular, [98] show the

existence and stability of traveling bumps using multiple-layer neural fields. Several other

studies use one of or a combination of short term depression and spike frequency adaptation.

In [50], the authors show that traveling pulses exist in a model with synaptic depression and

adaptation when synaptic depression is sufficiently weak. For stronger synaptic depression,

the traveling pulse ceases to exist via a saddle-node bifurcation. In [34] the authors show that

spontaneous motion of a bump solution exists for a neural field with only spike frequency

adaptation, and in a similar neural field model with only short term synaptic depression. The

authors in [76] show the existence of a traveling pulse solution in a neural field model with
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spike frequency adaptation. The previous two studies also show the existence of traveling

wavefronts in their respective neural field models.

In addition to the analysis of traveling bumps or wavefronts, rich oscillatory solutions of

neural fields are also possible. For example, with spatially localized input current and spike

frequency adaptation, a bump solution may oscillate in diameter (breathers)[9, 31, 32, 33],

which may play a role in generating epileptiform activity [33] and the processing of sensory

stimuli [32]. There also exist studies of a combination of traveling and breathing pulses in

an inhibitory-excitatory neural field [30]. In addition to breathers, there exist pulse-emitting

neural fields [50, 49], oscillatory wavefronts [8, 9], and spiral waves [49].

Despite this large body of literature, the analyses often require particular assumptions.

For example, the existence of “sloshing” solutions – bump solutions that oscillate periodically

in the centroid – that arise through a Hopf bifurcation is known under certain assumptions.

In early work, sloshers are shown to exist numerically using a rate model with a threshold

nonlinearity [41]. In recent work, the authors of [22] show the existence of a Hopf bifurcation

with a cosine kernel and a particular choice of smooth firing rate function. In [29], Folias

computes a normal form for the Hopf bifurcation using a general kernel, but for a Heaviside

firing rate function.

Proving existence of other phenomena also require special assumptions. In [28], the

authors consider a neural field model on the real line with synaptic depression and prove the

existence of a traveling pulse without a Heaviside assumption, but use the particular choice

of a normalized exponential kernel. In [48], the authors use a center manifold reduction to

analyze the existence of moving bump solutions. They allow the firing rate to be sigmoidal

or a Heaviside, but require a cosine kernel. Similar assumptions are made in [60], where they

assume a hyperbolic tangent firing rate function and a cosine kernel.

The most general of such studies, [76], considers a neural field model on the real line with

spike frequency adaptation and a singular perturbation approach to construct a constant

velocity traveling pulse on the real line with a general firing rate function and a general

kernel. However, the existence of other phenomena are not shown.

In this chapter, we introduce a method to analyze the dynamics of a neural field model

on a one- and two-dimensional domain with periodic boundary conditions and assume a
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smooth firing rate and an even, periodic kernel. Using our method, with standard numerical

and analytical dynamical systems tools, we show existence and stability of traveling pulse

solutions and oscillatory dynamics. In particular, we analyze sloshing solutions on the ring

and torus.

The neural field we consider in this chapter is defined as

∂u(x, t)

∂t
= −u(x, t) +

∫
Ω

K(x− y)f(u(y, t)) dy (3.1)

+ ε [qI(x)− gz(x, t)] ,

∂z(x, t)

∂t
= εβ[−z(x, t) + u(x, t)], (3.2)

where the parameter ε is small, 0 < ε� 1, and x,y ∈ Rn. For n = 2, the kernel function K

is an even function in the sense that, K(−x, y) = K(x,−y) = K(x, y), and doubly periodic

in the sense that K(x+2nπ, y+2mπ) = K(x, y), for any integers n,m. The terms q, g, β are

constants. For convenience, we will denote the domain Ω = [−π, π)m, with m = 1, 2. Thus

in one-dimension the domain is a ring and in two-dimensions a torus. The variable z(x, t)

represents linear adaptation [76] and I(x) an external input to the network. External inputs

represent persistent stimuli that can be used to entrain the bump and move it to a specific

location [6]. We have chosen to make both the timescale of adaptation and its magnitude to

be small. While there is good biological justification for the former assumption as there are

many forms of slow adaptation ([46] section 7.4), the assumption that the adaptation is small

is less biological. For the existence of traveling waves, adaptation need not be small [76], but

in order to study how the adaptation interacts with stimuli, we need both the adaptation

and the stimuli to be the same order of magnitude. The effects of large stimuli to general

neural field models are not easy to analyze, so that by treating them as perturbations, we are

able to consider the effects in a great deal of detail. Thus, one can regard this assumption

as a starting point for the continuation of these phenomena to large amplitude stimuli and

adaptation.

Our goal in this chapter is to analyze Equations (3.1),(3.2) when ε is small. When

ε = 0, there is a stable “bump” attractor, u0(x), in the scalar neural field (3.1), i.e., a local

stationary peak of u(x, t) centered at x = 0. The bump attractor satisfies

u0(x) =

∫
Ω

K(x− y)f(u0(y))dy,
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where u0 is nonconstant and even.

Although we allow for a general even, doubly periodic kernel in one- and two-dimensions

and a general smooth threshold nonlinearity f , we make particular choices for numerical

simulations. We choose f as

f(x) =
1

exp(−r(x− uth))
,

where r = 15, uth = 0.25. In the one-dimensional case, we choose the kernel to be K(x) =

A + B cos(x) with A = −0.5, B = 3 unless stated otherwise. In the two-dimensional case,

we form the Mexican-hat function,

K̂(r) = Ae−(r/σe)2 −Be−(r/σi)
2

,

where r ≡ r(x, y, n,m) =
√

(x+ 2πn)2 + (y + 2πm)2. We make the the function K̂ periodic

in two dimensions using the definition

K(x, y) =
∞∑

m=−∞

∞∑
n=−∞

K̂(r(x, y, n,m)).

The parameters here are

A =
1√
πσe

, B =
1√
πσi

,

where σe = 2, and σi = 3. For numerical simulations, we find it sufficient to replace the

infinite sum with a finite sum from n,m = −5 to n,m = 5. This is because the function

K̂(r) is a decaying exponential and therefore negligible for large r. For example, if a bump

solution remains close to the origin, contributions from terms a distance of 10π (i.e., n or

m=5) are negligible because exp (−(10π)2) ≈ 2× 10−429.

To analyze particular dynamics in more detail, we numerically compute the periodic

kernel above, then take the Fourier truncation of this doubly periodic kernel,

K(x, y) = k0 + k1(cosx+ cos y) + k2 cosx cos y.

We now outline the organization of the chapter, as follows: We reduce Equations (3.1),(3.2)

to a set of integro-differential equations for the centroid of the bump solution on the ring and

torus. We study bifurcations of these equations using numerical and analytical techniques
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to show existence and stability of constant velocity traveling bumps and sloshing bumps.

Depending on the parameter values g, q, these traveling bumps may traverse the domain

periodically or exhibit chaos. Next we turn to the torus domain and perform similar anal-

yses: we study bifurcations of these equations using numerical and analytical techniques to

show existence and stability of constant velocity traveling bumps. In addition to the sloshing

solutions found in the one-dimensional model, we also find several types of traveling bumps

and modulated traveling bumps that densely fill the torus. We also find chaotic motion in

some cases. We conclude with a discussion and some contrasts to previous analyses. We

remark that all figure generation code and relevant data files with documentation is available

on GitHub at https://github.com/youngmp/park_and_ermentrout_2017

3.2 DERIVATION OF THE PHASE EQUATION

We start with Equations (3.1),(3.2). Let τ = εt be a slow timescale and assume that both z

and u depend only on (x, τ). In this case, we can integrate equation (3.2) to obtain:

z(x, τ) = z(x, 0)e−βτ + β

∫ τ

0

e−β(τ−s)u(x, s) ds.

Since we are mainly interested in long term behavior, we can ignore the first exponentially

decaying term. With these assumptions, we obtain the following scalar integro-differential

equation:

ε
∂u(x, τ)

∂τ
= −u(x, τ) +

∫
Ω

K(x− y)f(u(y, τ)) dy (3.3)

+ ε

[
qI(x)− gβ

∫ τ

0

e−β(τ−s)u(x, s) ds

]
.

We will assume u(x, τ) = U(x, τ, ε) and expand U as a power series in ε to get an approximate

solution. Thus,

U(x, τ, ε) = U0(x, τ) + εU1(x, τ) +O(ε2).
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Here, we are saying that the lowest order term in the expansion, U0 is generally some time-

dependent function, but we have not yet asserted exactly what form it takes. Substituting

this power series into (3.3), we get (with a bit of re-arrangement):

0 = −U0(x, τ) +

∫
Ω

K(x− y)f(U0(y, τ))dy (3.4)

(LU1)(x, τ) =
∂U0(x, τ)

∂τ
−R1(x, τ), (3.5)

where

(Lv)(x, τ) = −v(x, τ) +

∫
Ω

K(x− y)f ′(U0(y, τ))v(y, τ) dy,

and

R1(x, τ) = qI(x)− gβ
∫ τ

0

e−β(τ−s)U0(x, s) ds.

The equation for U0(x, τ) is the general function for the lowest term in the expansion.

However, this lowest order term is not only the steady-state bump solution, but the steady-

state bump solution is translation invariant. Thus,

U0(x, τ) = u0(x + θ(τ))

where θ(τ) is a τ−dependent phase shift of the bump, and u0 is the stationary bump solution.

Our goal, then is to determine the dynamics of θ(τ). Figure 17 shows typical examples of

the stationary bump u0(x) for one- and two-dimensions.

Before continuing with the perturbation calculation, we establish a few preliminaries.

We define the compact linear operator

(L0v)(x) = −v(x) +

∫
Ω

K(x− y)f ′(u0(y))v(y) dy

and establish several properties of it. Recall that the bump, u0(x) satisfies

−u0(x) +

∫
Ω

K(x− y)f(u0(y)) dy = 0.

By making a change of variables and noting that all functions are periodic in x (that is,

periodic in each of the components of x), then u0(x) satisfies

−u0(x) +

∫
Ω

K(y)f(u0(x− y)) dy = 0. (3.6)

55



−3 −2 −1 0 1 2 3

x

−1

−0.5

0

0.5

1
A

ct
iv

it
y

θ

A

x

−π −π
2 0 π

2
π

y

−π

−π
2

0

π
2

π
−4

−3

−2

−1

0

1

2

3

(θ1, θ2)

B

Figure 17: Numerically computed stationary bump solutions on the ring A:, and torus B:.

The red circle denotes the centroid of each bump solution. On the ring, we denote the

centroid by θ, while we denote the centroid of the bump on the torus by (θ1, θ2). Our phase

model (Equation (3.9)) describes shifts in the centroid.

Recalling that the domain is Ω = [−π, π)m, with m = 1, 2, we center u0 at the origin.

Thus, u0(x) is an even periodic function of x, component-wise. Let ∂iu(x) denote the partial

derivative of u(x) along the xi direction where x = (x1, x2). If we differentiate (3.6) along

one of the axes, we see that

−∂iu0(x) +

∫
Ω

K(y)f ′(u0(x− y))∂iu0(x− y) dy = 0.

and changing variables again, we rewrite this as

−∂iu0(x) +

∫
Ω

K(x− y)f ′(u0(y))∂iu0(y) dy = 0, (3.7)
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so we see that L0∂iu0(x) = 0. In other words, the linear operator, L0 has an m−dimensional

nullspace spanned by the principle directional derivatives of u0(x). With the natural inner

product

〈u(x), v(x)〉 =

∫
Ω

u(x)v(x) dx

the operator L0 has an adjoint

(L∗v)(x) = −v(x) + f ′(u0(x))

∫
Ω

K(x− y)v(y) dy.

By multiplying equation (3.7) by f ′(u0(x)), we see that the nullspace of L∗ is spanned by

v∗i (x) = f ′(u0(x))∂iu0(x). Since u0(x) is an even periodic function, componentwise, we note

that ∂1u0(x) is even in x2 and odd in x1 where x = (x1, x2); v∗1(x) has the same property, while

∂2u0(x), v∗2(x) are even in x1 and odd in x2. These properties imply the 〈∂iu0(x), v∗k(x)〉 = 0

when i 6= k. We also have

〈∂iu0(x), v∗i (x)〉 =

∫
Ω

f ′(u0(x))[∂iu0(x)]2 dx = µ > 0.

Finally, the Fredholm alternative holds for L0. That is, for any continuous periodic function

b(x),

(L0v)(x) = b(x)

has a bounded solution if and only if

〈v∗i (x), b(x)〉 = 0

for i = 1, . . . ,m [47].

With these technical issues aside, we turn to equation (3.5), which we can rewrite as

(L0U1)(x, τ) = (∂1u0(x + θ(τ)), ∂2u0(x + θ(τ))) · dθ(τ)

dτ
−R1(x, τ)

Writing θ(τ) = (θ1(τ), θ2(τ)) and applying the m conditions for the Fredholm alternative,

we arrive at

µ
dθi
dτ

= qJi(θ) +Wi(θ)− gβ
∫ τ

0

e−β(τ−s)Hi(θ(s)− θ(τ))ds (3.8)
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where

µ =

∫
Ω

f ′(u0(x))[∂iu0(x)]2 dx,

Ji(θ) =

∫
Ω

f ′(u0(x + θ))∂iu0(x + θ)I(x) dx,

Hi(θ) =

∫
Ω

f ′(u0(x))∂iu0(x)u0(x + θ) dx.

We note that because of the symmetry of u0(x), the functions, Hi(θ) have a similar symmetry

which we will exploit in the analysis of Equation (3.8). The derivation here has been fairly

general and holds in any dimension although we will focus only on one- and two-dimensional

bumps in this model. Figure 18 shows the functions H(θ), J(θ) in the one-dimensional case,

while Figure 19 shows the functions Hi(θ), Ji(θ) in the two-dimensional case.

Remark We have assumed linear adaptation in our derivation of the reduced model,

but, this is not necessary. We could replace Equation (3.2) by

∂z(x, t)

∂t
= εβ[−z(x, t) +M(u(x, t))]

where M(u) is an arbitrary monotonically increasing continuously differentiable function. In

this case, we find

Hi(θ) =

∫
Ω

f ′(u0(x))∂iu0(x)M(u0(x + θ)) dx.

The new version of Hi has exactly the same properties as the linear case since M(u0(x)) is

an even function and its derivative with respect to x is an odd function.

We have reduced the problem of the bump dynamics to slow timescale phase shifts

of the bump solution, represented as an integro-differential equation. For simplicity and

convenience, we ignore transients by changing the limits of integration in Equation (3.8)

from [0, τ ] to (−∞, τ ]. Without this domain change, we would be forced to keep track of

transient terms that decay for large τ . We are only concerned with large τ , thus we choose

to ignore these transient terms by changing the domain. By applying the change of variables

ξ = τ − s, we rewrite the system as

µ
dθi
dτ

= qJi(θ)− gβ
∫ ∞

0

e−βξHi(θ(τ − ξ)− θ(τ))dξ.
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Figure 18: Numerically computed functions for the one-dimensional phase model. A: H

(black solid), plotted against sine-function approximation (light blue, dashed). B: J (black

solid), plotted against its sine-function approximation (light blue, dashed). Parameters:

I(x) = u0(x) and K(x) = A+B cos(x), A = −0.5, B = 3.

With a trivial change of notation, we arrive at the equations

µ
dθi
dτ

= qJi(θ)− gβ
∫ ∞

0

e−βsHi(θ(τ − s)− θ(τ))ds, i = 1, . . . ,m. (3.9)

We study stability properties and bifurcations in this form. Note that Hi is implicitly a

function of the kernel K.

To facilitate calculations, we first prove the following statements:

1. Each function Hi is odd, i.e., Hi(−θ1,−θ2) = −Hi(θ1, θ2). In particular, H1 is odd in the

first coordinate and even in the second coordinate.

2. H1(θ1, θ2) = H2(θ2, θ1).

3. If the input current I(x) is defined as the steady-state bump solution, then Hi(θ) =

−Ji(θ).

For the first statement, fix θ1, θ2 and consider the sum H1(−θ1, θ2) + H(θ1, θ2). By

definition this sum is the sum of integrals∫
Ω

f ′(u0(x))∂1u0(x)[u0(x1 + θ1, x2 + θ2) + u0(x1 − θ1, x2 + θ2)]dx.
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Figure 19: Numerically computed functions for the two-dimensional phase model A: H1, B:

H2, C: J1, D: J2. Note that H2(x, y) = H1(y, x). We always choose I(x) = u0(x). That is,

we always use the steady-state bump as the pinning function. With this choice, Ji = −Hi

in 1- and 2-dimensions.

Given x2, and for the sake of clarity, consider the temporary function Φ(x1) := [u0(x1 +

θ1, x2 + θ2) + u0(x1 − θ1, x2 + θ2)]. Φ(x1) is an even function in x1 because

Φ(−x1) ≡ u0(−x1 + θ1, x2 + θ2) + u0(−x1 − θ1, x2 + θ2)

= u0(x1 − θ1, x2 + θ2) + u0(x1 + θ1, x2 + θ2)

≡ Φ(x1).
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These lines follow by the even assumption on each coordinate of the bump solution u0.

The remaining terms in the integrand, ∂1u0(x), and f ′(u0(x)), are odd and even in x1,

respectively. Thus, the integrand is odd in x1 and the integral evaluates to zero for each x2

(and indeed, for each θ1, θ2). It follows that H1(−θ1, θ2) + H(θ1, θ2) = 0, i.e., that the first

coordinate is odd.

To show that the second coordinate is even, we use a similar argument. Again, fix θ1, θ2

and consider the sum H1(θ1,−θ2)−H(θ1, θ2). By definition, this sum is the sum of integrals

∫
Ω

f ′(u0(x))∂1u0(x)[u0(x1 + θ1, x2 − θ2)− u0(x1 + θ1, x2 + θ2)]dx.

Given x1, we redefine our temporary function Φ as Φ(x2) := [u0(x1 + θ1, x2 − θ2)− u0(x1 +

θ1, x2 + θ2)] and show that it is an odd function in x2.

Φ(−x2) ≡ u0(x1 + θ1,−x2 − θ2)− u0(x1 + θ1,−x2 + θ2)

= u0(x1 + θ1, x2 + θ2)− u0(x1 + θ1, x2 − θ2)

= −[u0(x1 + θ1, x2 − θ2)− u0(x1 + θ1, x2 + θ2)]

≡ −Φ(x2).

Again, these lines follow by the even assmption on each coordinate of the bump solution u0.

The integrand term ∂1u0(x) is even in the second coordinate as is the term f ′(u0(x)). Thus,

the integrand is odd in x2 and the integral evaluates to zero for each x1 (and indeed, for each

θ1, θ2). It follows that H1(θ1,−θ2)−H(θ1, θ2) = 0, i.e., that the second coordinate is even.

We have shown that H1 is an odd function that is odd in the first coordinate and even

in the second coordinate. The proof of H2 being an odd function that is even in the first

coordinate and odd in the second follows using the same arguments, or by using the second

statement, which we prove next.

To prove the second statement, we proceed by definition.

H1(θ1, θ2) =

∫
Ω

f ′(u0(x1, x2))∂1u0(x1, x2)u0(x1 + θ1, x2 + θ2)dx1dx2.

61



The steady-state bump solution is invariant under reflections about the unit line, and due to

the radial symmetry of the bump solution, its partial derivatives are related by ∂1u0(x1, x2) =

∂2u0(x2, x1). Thus,

H1(θ1, θ2) =

∫
Ω

f ′(u0(x2, x1))∂2u0(x2, x1)u0(x1 + θ1, x2 + θ2)dx1dx2.

Next we relabel the coordinates and flip the order of integration

H1(θ1, θ2) =

∫
Ω

f ′(u0(x1, x2))∂2u0(x1, x2)u0(x2 + θ1, x1 + θ2)dx1dx2.

Then we flip the coordinates of u0, and the resulting integral is by definition H2(θ2, θ1):

=

∫
Ω

f ′(u0(x1, x2))∂2u0(x1, x2)u0(x1 + θ2, x2 + θ1)dx1dx2

= H2(θ2, θ1).

To prove the third statement, suppose that a function ĥ on a periodic two-dimensional

domain [0, 2π]×[0, 2π] is odd in the first coordinate and even in the second so that ĥ(x1, x2) =

ĥ(x1,−x2) = −ĥ(−x1,−x2). In particular, it follows that for a given value x2,∫ 2π

0

ĥ(x1, x2)dx1 = 0,

and therefore ∫
Ω

ĥ(x)dx = 0.

This integral property holds when ĥ is even in the first coordinate and odd in the second

with a similar argument.

If we choose I(x) to be the steady-state bump, then

Ji(θ) =

∫
Ω

f ′(u0(x + θ))∂iu0(x + θ)u0(x) dx

=

∫
Ω

f ′(u0(x))∂iu0(x)u0(x− θ) dx.

Then taking the sum Hi(θ) + Ji(θ) yields

Hi(θ) + Ji(θ) =

∫
Ω

f ′(u0(x))∂iu0(x)[u0(x + θ) + u0(x− θ)] dx.
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For a given θ, the term [u0(x+θ)+u0(x−θ)] in the integrand is even in both coordinates. The

remaining term, f ′(u0(x))∂iu0(x), when i = 1 (i = 2), is odd (even) in the first coordinate

and even (odd) in the second. Therefore, when i = 1 (i = 2), the integrand is an odd function

in the first (second) coordinate and the integral evaluates to zero. It follows trivially that

Hi(θ) = −Ji(θ). (3.10)

This property remains true on the ring using the same argument.

These statements will come in useful in the sections to follow. We now proceed with an

analysis of the reduced equations on the ring domain.

3.3 THE RING DOMAIN

In this section, we choose the domain Ω to be the ring. First, we thoroughly analyze the full

neural field model through a bifurcation analysis. We then turn to Equation (3.9) on the

ring and perform the same bifurcation analysis and through analytical study.

3.3.1 Equivalent Neural Field Model on the Ring

To classify the bifurcations of the full neural field model on the ring, we transform the

equations to an equivalent 6-dimensional system of ODEs, allowing us to use dynamical

systems software and techniques to analyze the model. Recall that for numerical simulations

on the ring, we choose a cosine kernel K(x) = A + B cos(x). This technique and choice

of kernel is the same as that used in [60], where as part of the study they analyze a rate

model similar to the model in the current study, but in contrast, the adaptation and input

current terms are input directly to the firing rate function. They provide sufficient detail

with regards to transforming their rate model to a system of ODEs, but as the details differ

from our model, we include the derivation of our model here (in particular they include a

phase lag between the peak of the bump activity u and the peak of the adaptation activity

z which results in slightly different equations).
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Note that with this choice of kernel, the bump solution is also sinusoidal and without loss

of generality takes the form u0(x) = C + D cos(x). For simplicity we choose J(x) = u0(x).

We are now ready to transform the equations.

Since the functions u(x, t), z(x, t) are periodic in x, we expand them in a Fourier series,

u(x, t) = â0(t) +
∞∑
n=1

ân(t) cosnx+ b̂n(t) sinnx,

z(x, t) = ĉ0(t) +
∞∑
n=1

ĉn(t) cosnx+ d̂n(t) sinnx.

and plug into equations (3.1),(3.2). First, a direct substitution into the dynamics of u yields

â′0+
∞∑
n=1

â′n cos(nx) + b̂n sin(nx)

=− â0 −
[
∞∑
n=1

ân cosnx+ b̂n sinnx

]
+ A

∫
Ω

f(u(y, t))dy

+B cos(x)

∫
Ω

cos(y)f(u(y, t))dy

+B sin(x)

∫
Ω

sin(y)f(u(y, t))dy

+ ε

[
q(C +D cos(x))− g

(
ĉ0(t) +

∞∑
n=1

ĉn(t) cosnx+ d̂n(t) sinnx

)]
.

We have used the elementary trigonometric identity cos(x−y) = cos(x) cos(y)+sin(x) sin(y)

to separate the kernel and distribute the integrals. A direct substitution into the dynamics

of z yields

ĉ′0+
∞∑
n=1

ĉ′n cos(nx) + d̂n sin(nx)

=εβ

[
−ĉ0(t)−

∞∑
n=1

ĉn(t) cosnx+ d̂n(t) sinnx

+â0(t) +
∞∑
n=1

ân(t) cosnx+ b̂n(t) sinnx

]
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Next, we group like terms in the Fourier basis, starting with the Fourier coefficients of u:

â′0 = −â0 + A

∫
Ω

f(u(y, t))dy + ε[qC − gĉ0]

â′1 = −â1 +B cos(x)

∫
Ω

cos(y)f(u(y, t))dy + ε[qD − gĉ1]

â′2 = −â2 + ε[−gĉ2]

â′3 = −â3 + ε[−gĉ3]

...

and

b̂′1 = −b̂1 +B sin(x)

∫
Ω

sin(y)f(u(y, t))dy + ε[−gd̂1]

b̂′2 = −b̂2 + ε[−gd̂2]

b̂′3 = −b̂3 + ε[−gd̂3]

...

We repeat this grouping for the Fourier coefficients of z:

ĉ0 = εβ(−ĉ0 + â0)

ĉ1 = εβ(−ĉ1 + â1)

...

and

d̂0 = εβ(−d̂0 + b̂0)

d̂1 = εβ(−d̂1 + b̂1)

...
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The pattern is clear at this point: The coefficients of all Fourier modes, where i > 1, satisfy

â′i = −âi − εgĉi,

b̂′i = −b̂i − εgd̂i,

ĉ′i = εβ(−ĉi + âi),

d̂′i = εβ(−d̂i + b̂i).

Through an elementary stability analysis, all solutions to these equations decay to zero so

they are unnecessary to consider. We proceed with the remaining nontrivial terms,

u(x, t) = â0(t) + â1(t) cosx+ b̂1(t) sinx,

z(x, t) = ĉ0(t) + ĉ1(t) cosx+ d̂1(t) sinx.

Using this notation, we have the system

â′0 = −â0 + A

∫
Ω

f(u(y, t))dy + ε(qC − gĉ0),

â′1 = −â1 +B

∫
Ω

cos(y)f(u(y, t))dy + ε(qD − gĉ1),

b̂′1 = −b̂1 +B

∫
Ω

sin(y)f(u(y, t))dy − εgd̂1,

d̂′1 = εβ(−d̂1 + b̂1),

ĉ′i = εβ(−ĉ1 + â1), i = 0, 1.

Note that we do not need to explicitly write the full Fourier series of f or extract any of its

coefficients. In fact, only the lowest two Fourier modes of each integral containing f(u) are

relevant as we will now show.

Consider the Fourier series of f(u(x, t)):

f(u(x, t)) = α̂0(t) +
∞∑
n=1

α̂n(t) cos(nx) + β̂n(t) sin(nx)
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This expansion exists because f is bounded and integrable on [0, 2π]. We now evaluate each

integral,
∫

Ω
f(u(y, t))dy,

∫
Ω

cos(y)f(u(y, t))dy, and
∫

Ω
sin(y)f(u(y, t))dy in turn. First,

∫
Ω

f(u(y, t))dy =

∫
Ω

α0 +
∞∑
n=1

αn cos(ny) + βn sin(ny)dy

= α0

∫
Ω

dy +
∞∑
n=1

αn

∫
Ω

cos(ny)dy + βn

∫
Ω

sin(ny)dy

= 2πα0.

Next, ∫
Ω

cos(y)f(u(y, t))dy = cosx

∫
Ω

cos(y)

[
α0 +

∞∑
n=1

αn cos(ny) + βn sin(ny)

]
dy

= α0 cosx

∫
Ω

cos(y)dy +
∞∑
n=1

αn

∫
Ω

cos(y) cos(ny)dy + βn

∫
Ω

cos(y) sin(ny)dy

= πα1

and finally,∫
Ω

sin(y)f(u(y, t))dy = sinx

∫
Ω

sin(y)

[
α0 +

∞∑
n=1

αn cos(ny) + βn sin(ny)

]
dy

= α0 sinx

∫
Ω

sin(y)dy +
∞∑
n=1

αn

∫
Ω

sin(y) cos(ny)dy + βn

∫
Ω

sin(y) sin(ny)dy

= πβ1.

Thus, the nonlinearity f in the integrand only appears in the dynamics of the first few Fourier

coefficients. At each time step in the numerics, we compute the integrals
∫

Ω
f(u(y, t))dy,∫

Ω
cos(y)f(u(y, t))dy, and

∫
Ω

sin(y)f(u(y, t))dy using Riemann integration at each time step

as it is more straightforward than extracting the necessary Fourier coefficients.

We focus our numerical studies on the coefficients â1 and b̂1 because they produce the

most salient features of the bump solution (the â0 coefficient changes as a function of time,

but only up to order O(ε), while the terms ĉi and d̂i represent aggregate behavior of the

adaptation variable z). By following the fixed points and oscillatory behavior in â1 and b̂1,

we produce a bifurcation diagram of this system in Figure 20.
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Figure 20 shows that there are three main solution types: the pinned or stationary bump,

the sloshing bump, and the traveling bump, which traverses the ring at some finite speed. In

addition there are small regions of bistability between the sloshing bump and the traveling

bump.

3.3.2 Phase Model on the Ring

We now turn to the analysis of the phase dynamics on the ring. The analysis to follow

depends on proving the following statements:

1. H(0) = 0,

2. H ′(0) > 0,

3. If K(x) = A + B cos(x), then H(θ) = A′ sin(θ), A′ > 0, where A′ depends on the

parameters A,B.

Recall the scalar version of the functions Hi(θ) and v∗i (x):

H(θ) =

∫
Ω

u∗(y)u0(y + θ)dy

u∗(x) = f ′(u0(x))u′0(x),

Because u0 is even, it follows that f ′(u0) is even, u′0 is odd, and therefore u∗ is odd. Noting

that

H(0) =

∫
Ω

u∗(y)u0(y)dy,

where the function u∗(y)u0(y) is odd, the first statement follows.

For the second statement, we follow the definitions to arrive at

H ′(0) =

∫
Ω

f ′(u0(y))u′0(y)u′0(y)dy.

The function f is an increasing sigmoidal, thus f ′ > 0. In addition, u′20 > 0. Thus, H ′(0) > 0.

Next, we prove the third statement. With the kernel choice K(x) = A + B cos(x), the

steady-state bump solution is some shifted multiple of cosine, u0(x) = C + D cos(x), where

C,D implicitly depend on the kernel parameters A,B. Plugging this u0 into H(θ) yields

H(θ) =

∫ π

−π
f ′(C +D cos(y))[−D sin(y)][C +D cos(y + θ)]dy.
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Figure 20: 1- and 2-parameter bifurcation diagrams of the neural field model on the ring.

Solid red lines: Stable equilibrium. Solid Green: Stable periodic solutions. Solid blue: Un-

stable periodic solutions. Solid black: unstable equilibrium. (A,B) Bifurcation diagram in â1

and b̂1 for fixed q = 0.5. As g increases from 0 to 5, the system undergoes a Hopf bifurcation

(HB, orange). Solutions here slosh with a small deviation from the origin. By increasing

g, we see a region of bistability (shown in the insets with the interval of bistability marked

by vertical dotted black lines), marking the emergence of large-sloshing solutions alongside

sloshing solutions. Next, the system reaches a limit point (LP, purple) beyond which there

exists a traveling bump solution. For panel B:, the branches of the Hopf bifurcation are

symmetric over the x-axis, thus we only show one branch. C: Two parameter bifurcation

diagram in g and q. To the left of the Hopf bifurcation (HB, dashed orange line), there is

only a stationary bump solution (1.). Motion exists to the right of this dividing line in the

form of sloshes (2.) and a traveling bump solution (4.).
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Let h(y) = f ′(C+D cos(y))[D sin(y)], which is an odd function. Recalling that cos(y+x) =

cos(y) cos(x)− sin(y) sin(x), H simplifies to

H(θ) = −C
∫ π

−π
h(y)dy −

∫ π

−π
h(y)D[cos(y) cos(θ)− sin(y) sin(θ)]dy.

Because h(y) is odd, some integrals cancel, and we are left with

H(θ) = A′ sin(θ),

where A′ = D
∫ π
−π h(y) sin(y)dy.

From these statements, it follows that dJ
dθ

∣∣
θ=θ

< 0 and J(θ) = 0 where θ represents a

steady-state bump peak. WLOG, we let θ = 0 because we generally choose the center of the

steady-state bump to be the origin.

Remark: For the more general adaptation (c.f. above), as long as M(u) is differentiable

and monotonically increasing, we still have that H ′(0) > 0..

3.3.2.1 Equivalent Phase Model on the Ring We next show that there are really

only two relevant parameters. We can rescale time to obtain

µβ
dθ

dτ
= qJ(θ)− g

∫ ∞
0

e−sH(θ(τ − s)− θ(τ))ds,

where we have re-used τ as the now scaled time βτ . Next, divide by µβ to obtain

dθ

dτ
= q̂J(θ)− ĝ

∫ ∞
0

e−sH(θ(τ − s)− θ(τ))ds, (3.11)

with q̂ = q
µβ

and ĝ = g
µβ

. This rearrangement shows that making adaptation slower by

decreasing β is equivalent to increasing the rescaled parameters ĝ and q̂. For analytic calcu-

lations, we will often reference this equation without the hats on the parameters.

For numerical studies of bifurcations in this system, we let H(θ) = A′ sin θ, from which

J follows immediately (see Equation (3.10) and statement 2 above). We once more abuse

notation and absorb A′ into ĝ and into q̂, then drop the hats. So we will now study

dθ

dτ
= −q sin(θ)− g

∫ ∞
0

e−s sin(θ(τ − s)− θ(τ))ds,
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To numerically integrate this phase equation, we rewrite this differential equation as a

system of three equations by exploiting basic differentiation properties of integrals. To begin,

we use a trigonometric identity to rewrite the integral in the right-hand side

dθ

dτ
= −q sin(θ)− g

∫ ∞
0

e−s sin(θ(τ − s)− θ(τ))ds

= −q sin(θ)− g[cos(θ)S(τ)− sin(θ)C(τ)],

where

S(τ) =

∫ ∞
0

e−s sin(θ(τ − s))ds,

C(τ) =

∫ ∞
0

e−s cos(θ(τ − s))ds.

With the change of variables s′ = τ − s, S,C become

S(τ) =

∫ τ

−∞
e−(τ−s′) sin(θ(s′))ds′,

C(τ) =

∫ τ

−∞
e−(τ−s′) cos(θ(s′))ds′.

By differentiating, we rewrite S and C as ODEs:

dS

dτ
= −S(τ) + sin θ,

dC

dτ
= −C(τ) + cos θ.

We have transformed a single integro-differential equation into a system of three ODEs,

simplifying the numerics considerably:

dθ

dτ
= −q sin(θ)− g[cos(θ)S(τ)− sin(θ)C(τ)]

dS

dτ
= −S(τ) + sin θ,

dC

dτ
= −C(τ) + cos θ.

The bifurcation diagram in Figure 21 summarizes the dynamics of the phase model on

the ring. On the left panel, we fix a parameter value q = 0.5 and as we vary the parameter

g, the system transitions from steady-state to sloshing solutions, then to a co-existence of

large-amplitude and relatively small amplitude sloshing solutions, and eventually to a steady

traveling pulse. On the right panel, we find that the parameter space is separated into several
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regions. In particular, for q ≥ 0 arbitrarily small, there exists a traveling bump for some

nonzero g.

In the following sections, we analyze the existence of these bifurcations including the

Hopf bifurcation leading to sloshing solutions, and the saddle-node bifurcation leads to the

constant-velocity traveling bump.

3.3.3 Constant Velocity Bump Solution on the Ring

To show the existence of a constant velocity traveling bump solution, we require that q = 0

and g > 0. For the first part of this analysis, we do not require the kernel to take a particular

form. We only require the kernel to be even and admit a steady-state bump solution to

Equation (3.1). We make a traveling bump ansatz, θ(τ) = ντ , where ν corresponds to the

traveling bump velocity. We first determine the existence and stability of the zero velocity

bump solution. Plugging the ansatz into Equation (3.11) yields

ν = −g
∫ ∞

0

e−sH(−νs)ds

= g

∫ ∞
0

e−sH(νs)ds,

(3.12)

where the last line follows by the oddness of H. Because H(0) = 0, ν = 0 is a solution.

To determine the stability of the zero velocity solution, we consider a small perturbation,

θ(τ) = ντ+εψ. By plugging this perturbation into Equation (3.11), we extract the dynamics

of the perturbed variable ψ,

dψ

dτ
= −g

∫ ∞
0

e−sH ′(νs)[ψ(τ − s)− ψ(τ)]ds. (3.13)

Assuming ψ(τ) = eλτ and ν = 0, we obtain the stability equation,

λ = −g
∫ ∞

0

e−sH ′(0)
[
e−λs − 1

]
ds.

We integrate the right-hand side and rearrange to yield

λ = gH ′(0)
λ

1 + λ
.
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Figure 21: 1- and 2-parameter bifurcation diagrams of the phase equation on the ring. (A,B)

Bifurcation diagram in for fixed q = 0.5. As g increases from 0 to 5, the system undergoes

a Hopf bifurcation (HB, orange) then produces a limit point (LP 1, black), a branch point

(BP, teal), and another limit point (LP 2, purple), respectively. Between the limit point LP1

and branch point BP, there is bistability, the interval of which is denoted by vertical dotted

black lines. Beyond the second limit point LP2, there exists a traveling bump solution. This

traveling bump solution is distinct from the equilibria and periodic solutions denoted by

solid lines, thus we label it with a dashed green line. B: Two parameter bifurcation diagram

in g and q. To the left of the Hopf bifurcation (HB, dashed orange line), there is only a

stationary bump solution (1.). Motion exists to the right of this dividing line in the form of

sloshes (2., 3.) and a traveling bump solution (4.).

Thus, either λ = 0, or λ = −1 + gH ′(0). Moreover, the zero velocity solution becomes

unstable when g > 1/H ′(0).

In general, we may view the relationship between g and ν by rearranging Equation (3.12)
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into the function

g = Γ(ν) :=
ν∫∞

0
e−sH(νs)ds

. (3.14)

We show examples of Γ in Figure 22. In the left panel, the relationship between the adap-

tation strength g and bump velocity ν is straightforward: as g increases, there is some

critical value ν where a nonzero velocity traveling bump exists. However, the choice of

kernel may change the shape of Γ, and therefore change the relationship between g and

ν, as well as the stability of traveling bump solutions. For example, a kernel of the form

K(x) = a+ b cos(x) + c cos(2x) results in an H function of the form

H(θ) = a′ sin(θ) + b′ sin(2θ).

Using this H function to plot Γ results in the right panel of Figure 22. The branch with

negative slope represents another traveling bump solution. We now show that if Γ′(ν) < 0,

then the traveling bump with velocity ν is unstable.
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Figure 22: Examples of the function Γ(ν). A: Γ constructed using our usual H function,

H(x) = sin(x). B: Γ constructed using a different H function, H(x) = sin(x)− 0.25 sin(2x),

resulting from a different choice of kernel. The dashed black line represents an unstable

traveling bump velocity.

Recall again Equation (3.13). Assuming ψ(τ) = eλτ and ν 6= 0, we obtain the stability

equation,

f(λ) ≡ 1 + g

∫ ∞
0

e−sH ′(νs)

[
e−λs − 1

λ

]
ds. (3.15)
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To prove the statement, we seek to show that limλ→∞ f(λ) > 0 and limλ→0 f(λ) < 0. Then

by continuity of f , there exists a positive root to Equation (3.15). We take each limit in

turn, starting with the limit as λ→∞.

lim
λ→∞

f(λ) = 1 + g

∫ ∞
0

e−sH ′(νs) lim
λ→∞

[
e−λs − 1

λ

]
ds

= 1 > 0.

Thus, the positive λ limit is positive. For the other limit, we rearrange Equation (3.14) into

Γ(ν)D(ν) = ν,

where D(ν) =
∫∞

0
e−βsH(νs)ds, and differentiate with respect to ν to obtain

Γ(ν)D′(ν) + Γ′(ν)D(ν) = 1.

Solving for Γ′(ν) yields

Γ′(ν) =
1− Γ(ν)D′(ν)

D(ν)
.

Note that D(ν) > 0 at least within a neighborhood of ν = 0 since H(0) = 0 and H ′(0) > 0.

In addition, D′(ν) =
∫∞

0
e−sH ′(νs)sds. Using the hypothesis that Γ′(ν) < 0, we have the

inequality

1 < Γ(ν)D′(ν).

We use this fact in the next limit

lim
λ→0

f(λ) = 1 + g

∫ ∞
0

e−sH ′(νs) lim
λ→0

[
e−λs − 1

λ

]
ds

= 1− g
∫ ∞

0

e−sH ′(νs)sds

= 1− gD′(ν)

= 1− Γ(ν)D′(ν) < 0.

Thus, the zero λ limit is negative. Because f(0) is negative, and f(λ) is positive for asymp-

totically large values of λ, there exists a positive root λ of f(λ) by continuity. It follows that
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branches of Γ(ν) with negative slope indicate an unstable traveling bump at least within a

neighborhood of ν = 0.

For the next part of this analysis, we show how to compute a formula for the velocity of

the traveling bump when the kernel is K(x) = A+B cos(x). With this kernel, the H function

is proportional to sin(x), and Equation (3.12) becomes explicitly computable. Computing

the integral results in a formula for the nontrivial bump velocity ν,

ν = ±
√
g − 1. (3.16)

Equation (3.16) corresponds to the branches of a pitchfork bifurcation in the velocity of

the traveling bump. We show a particular example of a constant-velocity traveling bump

in Figure 23A. We note that any odd H will lead to a pitchfork bifurcation to a traveling

bump. In particular, it is trivial to derive the following bifurcation equation:

ν2 = (1− gH ′(0))/gH ′′′(0).

This equation tells us that the pitchfork bifurcation is super-critical if H ′′′(0) < 0 and sub-

critical otherwise.

3.3.4 Andronov-Hopf Bifurcation on the Ring

We now prove the existence of a Hopf bifurcation. For this analysis, we do not require H or J

to take a particular form. However, we do require that H and J be sufficiently differentiable,

along with the properties H(0) = J(0) = 0, H ′(0) > 0,J ′(0) < 0, H odd, and g, q > 0.

Consider again the simplified phase model, Equation (3.11). Let us fix q and absorb the

parameter into J . We write J and H as Taylor expansions,

J(θ) = j1θ + j2θ
2 + j3θ

3,

H(θ) = h1θ + h3θ
3.

Then to first order,
dθ

dτ
= j1θ − gh1

∫ ∞
0

e−s[θ(τ − s)− θ(τ)]ds.
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Figure 23: Dynamics of the traveling bump on the ring. Each row represents the bump

solution at a particular time. White represents high activity, while black represents low

or inhibited activity. The numerical centroid (black solid) is plotted against the analytic

prediction (dashed blue). A: A constant-velocity bump, g = 3.5,q = 0. B: A sloshing bump,

g = 3, q = 1. C: A non-constant velocity bump, g = 5.5, q = 1. For each panel, we shift

the theory along the time axis to show qualitative agreement with the numerics. Parameter

ε = 0.01.

Letting θ = eλt and rearranging the resulting equation yields

λ = j1 + gh1 −
gh1

λ+ 1
,

or equivalently,

λ2 + λ(1− j1 − gh1)− j1 = 0.

Since j1 < 0 and h1 > 0, there exists a Hopf bifurcation when

g∗ =
1− j1

h1

.

This bifurcation leads to oscillations in the peak of the bump solution. We show a

particular example of this oscillatory behavior in Figure 23B.
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3.3.4.1 Normal Form for the Hopf Bifurcation on the Ring We wish to analyze

the bifurcation to a sloshing pulse for the general integral equation:

dθ

dτ
= −qJ(θ)− g

∫ ∞
0

e−sH(θ(τ − s)− θ(τ)) ds (3.17)

as g increases. For simplicity, we will assume J(θ) is an odd periodic function (as is the case

for H(θ) and through suitable rescaling of g, q, we will assume:

J(θ) = θ + j3θ
3 + . . .

H(θ) = θ + h3θ
3 + . . . .

We also assume q > 0 so that θ = 0 is stable without adaptation. If, we use H(θ) = J(θ) =

sin(θ), then j3 = h3 = −(1/6). The linearization about θ = 0 has the form:

θτ = −qθ − g
∫ ∞

0

e−s(θ(τ − s)− θ(τ)) ds

which has the general solution, eλτ . After some simplification, we find that

λ2 + (1 + q − g)λ+ q = 0

so there is an imaginary eigenvalue, i
√
q := iω when g = 1 + q ≡ g0, so we expect a Hopf

bifurcation will occur.

All nonlinearities are odd, so we can assume the multiple timescale expansion

g = g0 + δ2g2, θ = δθ1(ζ, ξ) + δ3θ3(ζ, ξ),

where δ is the amplitude of the bifurcating solution, ζ = τ is a “fast” time, and ξ = δ2τ is

a “slow” time. We detail the remaining steps of the normal form analysis in Appendix B.1

and jump to the conclusion,

α
dz

dξ
= z[γ̂0 + γ̂3|z|2] (3.18)
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where

α = 1− g0

1 + 2iω − ω2
=

2

1 + q
(q +

√
qi)

γ̂0 = g2
iω

1 + iω
=

g2

1 + q
(q +

√
qi)

γ̂3 =
3q

4q + 1
[[q(12h3 − 4j3)− j3] + i18h3

√
q] .

To get the actual normal form, we divide (3.18) by α, to obtain:

dz

dξ
= z(g2/2 + γ3|z|2)

where

γ3 =
3

8q + 2
[q(12qh3 − 4qj3 − j3 + 6h3) + i

√
q(6qh3 − 4qj3 − j3)] .

If we assume that j3 = h3 as would be the case if the input was the bump, itself, then

γ3 = h3
3q(8q + 5)

8q + 2
− ih3

3
√
q(2q − 1)

8q + 2
.

We compare the normal form calculation to the numerics in Figure 24. We use XPPAUTO [19]

to compute the numerical bifurcation diagram. As expected, the normal form approximation

is quite accurate near the bifurcation.

3.3.5 Non-Constant Velocity Bump Solution on the Ring

When adaptation is made even stronger, the solution breaks free from the oscillating state

and travels across the periodic domain (Figure 23C. The onset is shown numerically in the

bifurcation diagrams of Figures 20 and 21, purple LP2). Due to the pinning term, the

velocity of the bump is nonconstant.

Remark. As q → 0, we see in figure 21B that all the two-parameter curves

converge to the point g∗ which is the point of onset of the traveling bumps with

no input stimulus.
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Figure 24: Normal form calculation for the neural field model on the ring. A: Amplitude of

oscillations predicted by the normal form calculation (dashed blue) compared to the actual

amplitude (solid black). q = 1. B: Amplitude of oscillations predicted by the normal form

calculation (dashed blue) compared to the actual amplitude (solid black). q = 0.25.

3.3.6 Chaos on the Ring

With g, q > 0, there exists a small parameter range in which the neural field exhibits chaotic

movement about the ring. Examples of this behavior are shown in Figure 25. In both panels,

the initial conditions differ by 1e-7. The solutions in each panel remain nearly identical for

a long time (we have truncated a significant portion of the simulation).

This section completes our analysis of the one-dimensional case. We have found a good

match between the phase-reduced equations and the full neural model. For a fixed amplitude

of the external input, we find a transition from a stationary bump to “sloshers”, and, finally

to bumps that move completely around the ring, modulated traveling bumps. In the sections

to follow, we repeat the analytical and numerical analysis for the two-dimensional domain.

3.3.7 Lurching Bump

In this section, we explore the effects of allowing the input current to vary slowly in time.

In particular, we take I(x, τ) to have a constant velocity, I(x, τ) = I(x + Ωτ), and assume
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Figure 25: Chaotic dynamics of the traveling bump in the full neural field model (left) and

the reduced phase model (right) on the ring. Original solutions are shown in black. Solutions

with a different initial condition is shown in dashed blue. For each panel, initial conditions

differ by 1e-7. A: g = 2.65, q = 0.5. B: g = 2.661, q = 0.5. For all simulations in this figure,

ε = 0.01.

that we have a cosine kernel K(x) = A+B cos(x), which allows us to assume , without loss

of generality, that H(x) = sin(x). We seek to find solutions of the form θ(τ) = ντ + ψ and

determine the stability, where φ represents a possible lag between the bump position θ and

the traveling input current. Plugging into the phase equation (3.8) and integrating yields

Ω = −q sin(ψ) + g
Ω

1 + Ω2
.

Because ψ is the only unknown, we use a symbolic solver to solve for ψ:

ψ(Ω) = arcsin

(−Ω + gΩ− Ω3

q(1 + Ω2)

)
+ 2πn,

where n ∈ N. We show typical examples of ψ in Figure 26

To determine the stability of a stimulus-locked solution (ν = Ω), we use the ansatz

θ(τ) = ντ + ψ + εeλτ . Plugging into Equation (3.9) and integrating yields the equation

λ = −q cos(−ψ(Ω))− g
[
− 1

1 + Ω2
+

1 + λ

(1 + λ)2 + Ω2

]
. (3.19)
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Figure 26: Phase lag ψ and stability eigenvalues λi as a function of input velocity Ω. A:

Phase lag φ between the peak of the bump solution and the peak of the input current as

a function of input velocity Ω. Examples of ψ are shown for q = 2, 3, 4. For a given input

strength q, slow velocities Ω result in small phase lags. Larger velocities can result in greater

phase lags. If Ω is chosen to be outside of the domain of ψ, the solution is a non-constant

velocity traveling bump. B: The first root of Equation (3.19) when q = 2. Its real part

(black) is negative for the given range of velocities Ω. The vertical dashed red lines (one at

Ω = 0.5 and the other at Ω = 1) indicate the velocity values used in Figure 27. C: The two

other eigenvalues are complex conjugates. For Ω = 0.5, the real parts are positive, while for

Ω = 1 the real parts are negative. Parameter g = 4.
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Figure 27: Two examples of solutions with the same parameter values as in Figure 26B,C.

Black: numerical simulation of the original neural field model. Blue: phase reduced model.

In panel A, as predicted above, for the velocity Ω = 0.5, the constant velocity solution is

unstable, leading to lurching waves. Panel B confirms our prediction above where for Ω = 1,

the constant velocity solution is stable.
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3.4 TORUS DOMAIN

In this section, we define the domain Ω as the torus, or the square [−π, π] × [−π, π] with

periodic boundary conditions. We seek to analyze the full neural field model on this do-

main using the same bifurcation analysis performed in the one-dimensional case. We begin

by considering simplifications that allow us to use standard bifurcation analysis tools like

XPPAUTO.

3.4.1 Approximation of the Neural Field Model on the Torus

In order to numerically investigate the full neural field equation (3.1-3.2), we need to either

discretize space in two-dimensions or use an approximation of the kernel that is degenerate.

(Since the integral operator is compact, it can be approximated to arbitrary precision by

a degenerate integral operator ;see section 2.8 [77]). Thus to study the dynamics of the

full neural field model on a two-dimensional domain, we take a Fourier truncation of the

kernel to make the integral in Equation (3.3) separable. This truncation allows us to rewrite

the infinite dimensional system as a finite system of ODEs and use traditional dynamical

systems tools like XPPAUTO to analyze the system. To begin, take the truncated Fourier

approximation to the kernel,

K(x, y) = k00 + k10 cos(x) + k01 cos(y) + k11 cos(x) cos(y), (3.20)

and plug it into Equation (3.3):

u(x) =

∫
Ω

K(x1 − y1, x2 − y2)f(u(y))dy.
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After expanding the kernel using standard trigonometric identities, we derive the time-

varying solutions

u(x, t) = a00(t) + a10(t) cos(x1) + a01(t) cos(x2)

+ b10(t) sin(x1) + b01(t) sin(x2)

+ a11(t) cos(x1) cos(x2) + b11(t) sin(x1) sin(x2)

+ c1(t) sin(x1) cos(x2) + c2(t) cos(x1) sin(x2).

z(x, t) = E00(t) + E10(t) cos(x1) + E01(t) cos(x2)

+ F10(t) sin(x1) + F01(t) sin(x2)

+ E11(t) cos(x1) cos(x2) + F11(t) sin(x1) sin(x2)

+G1(t) sin(x1) cos(x2) +G2(t) cos(x1) sin(x2).

(3.21)

where the coefficients satisfy

a′ij = −aij + kijpij(t) + ε(quij − gEij),

b′ij = −bij + kijrij(t)− εgFij,

c′i = −ci + k11si(t)− εgGi,

ξ′ = εβ(−ξ + ζ),

(3.22)

where i = 0, 1 and j = 0, 1. The dummy variables ξ, ζ represent each of the pairs (aij, Eij), (bij, Fij),

and (ci, Gi). The time-varying functions pij, rij, si are defined as

p00(t) =
∫

Ω
f(u(y, t))dy p01 =

∫
Ω

cos(y2)f(u(y, t))dy

p10(t) =
∫

Ω
cos(y1)f(u(y, t))dy p11 =

∫
Ω

cos(y1) cos(y2)f(u(y, t))dy

r01(t) =
∫

Ω
sin(y2)f(u(y, t))dy r10 =

∫
Ω

sin(y1)f(u(y, t))dy

r11(t) =
∫

Ω
sin(y1) sin(y2)f(u(y, t))dy

s1(t) =
∫

Ω
cos(y1) sin(y2)f(u(y, t))dy s2 =

∫
Ω

sin(y1) cos(y2)f(u(y, t))dy,

and the coefficients uij are taken from the truncated Fourier series of the steady-state solu-

tion,

u0(x, y) = u00 + u10 cos(x) + u01 cos(y) + u11 cos(x) cos(y).
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The coefficient values of the kernel and steady-state bump solutions are shown in Tables 4

and 5, respectively. Details on how we approximate the spatial integrals of pij, rij, si are in

Appendix B.3.

We show the bifurcation diagram and salient solutions of this system in Figure 28.

The only bifurcations classified by XPPAUTO are a subcritical Hopf bifurcation (HB, orange)

and limit points (limit points occur at each change in stability of periodic solutions). The

Hopf bifurcation leads to small amplitude unstable solutions. We attribute the existence

of a subcritical Hopf bifurcation to the coarse discretization of the spatial domain in the

parameters of Equation (3.22). Although not shown here, a finer discretization of the spatial

domain using 200 intervals results in a qualitatively supercritical Hopf bifurcation.

To summarize, we find the usual types of oscillatory solutions in this truncated neural

field model as we found in the neural field model. A stable limit cycle of this system is shown

in the first bottom left panel (A, which corresponds to the initial conditions taken from the

point A in the bifurcation diagram). A large-sloshing solution exists for slightly larger g

(B,C), and eventually, for sufficiently large g, there exist only traveling bump solutions

D. Additional non-periodic attractors are shown in panels E–G. The attractors shown in

this figure are simply those with the largest basins of attraction. Generally, starting random

initial conditions with g anywhere in the range 1.55 < g < 1.95 (the gray shaded area labeled

F in the main plot) results in solutions that qualitatively match panel F. The same holds

for the shaded areas E and F, with their corresponding panels. Indeed, there exist several

attractors not shown in this figure that are more difficult to find numerically. However, the

focus of this study is not the thorough classification of attractors in the truncated neural

field model, so we move on to the analysis of the phase model on the torus.

3.4.2 Approximations of the Phase Model on the Torus

We now turn to the analysis of the phase dynamics in two-dimensions and begin by reducing

the number of parameters with the same rescaling used to obtain Equation (3.11) in the one

dimensional case,

dθi
dτ

= qJi(θ)− g
∫ ∞

0

e−sHi(θ(τ − s)− θ(τ))ds, i = 1, 2, (3.23)
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Figure 28: Bifurcation diagram of the truncated neural field model on the torus with g as a

bifurcation parameter and q = 0.1. The stable fixed point (red line) undergoes a subcritical

Hopf bifurcation (HB, orange) and becomes an unstable fixed point (black line). The green

and blue lines represent stable and unstable oscillations, respectively. Thick, solid green

lines represent stable oscillations. Thick, dashed green lines represent stable oscillations

that wrap around the torus. Thin solid blue lines represent unstable periodic solutions.

Stable attractors are shown in panels A–D. In panels E–G, we show solutions in parameter

regimes without stable periodic attractors. These solutions are displayed in a relatively

short time window after integrating for long times and travel from light to dark. In panel E

(g = 1.4), we integrate for t = 5000 time units and show the last 30% of the data. In panel F

(g = 1.7), we integrate for t = 8000 time units and show the last 10% of the data. In panel

G (g = 2.4), we integrate for t = 8000 time units and show the last 6% of the data. We

initialize the solutions of panels E–F using standard normally distributed random variables.

Parameter ε = 0.01.
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Figure 29: Cartoon of the parameter space of the approximate neural field model on the

torus (Equation (3.22)). The most salient solutions are shown. Solutions advance in time

from light to dark, thin to thin. For sufficiently small g or sufficiently large q, the bump

solution tends to a stationary solution. By increasing g or decreasing q to g = 1.2, q = 0.1,

the centroid of the bump solution oscillates about the origin. For larger g, say g = 4, q = 0.5,

the solution begins to traverse chaotically about the domain. When q = 0, there exists a

constant velocity traveling bump solution for g sufficiently large, e.g., g = 3. Parameter

ε = 0.01.

and recall that

Hi(θ) =

∫
Ω

f ′(u0(x))∂iu0(x)u0(x + θ) dx.
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Details on the numerical integration of the integro-differential equation, Equation (3.23), are

shown in Appendix B.3.

To facilitate the study of existence and stability of solutions, we consider two approxi-

mations to Hi to be used in Equation (3.23): the first is a high-accuracy Fourier series of

Hi, and the second is a low-accuracy Fourier series of Hi. We detail these approximations

in turn.

For the accurate Fourier series approximation of Hi, we use one of two equivalent forms

H1(θ) =
∑
n,m∈Z

anm sin(nθ1) cos(mθ2), (3.24)

where, due to the odd (even) property of the first (second) coordinate, the coefficients have

the property that an,±m = −a−n,±m. We can then rewrite this Fourier series into the equiv-

alent form,

H1(θ) =
∑
n,m∈Z

ânm sin(nθ1 +mθ2), (3.25)

where ânm = 4anm. This equivalent form makes integrals much easier to compute. We use

both forms interchangeably as we see fit, and abuse notation in Equation (3.25) by removing

the hats from the coefficients. We find that 30 Fourier coefficients provides a sufficiently

good approximation for simulations on a 64× 64 domain (the error is on the order of 1e-7).

For the low-accuracy Fourier series, we consider a more substantial truncation of the

interaction function using only 3 Fourier coefficients. While this truncation is drastic, it

allows us to analyze Equation (3.23) more rigorously. We derive the 3 term Hi-function

starting with the same Fourier truncation of the kernel as above, which leads to the same

steady-state bump solution,

u0(x, y) = u00 + u10 cos(x) + u01 cos(y) + u11 cos(x) cos(y),

which in turn leads to a truncated Hi function,

HF
1 (θ1, θ2) = sin(θ1)(h10 + h11 cos(θ2)),
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where

h10 = 4u10

∫
Ω

sin2(x)(u10 + 2 cos(y)u11)dxdy,

h11 = 8u11

∫
Ω

cos(y) sin2(x)(u10 + 2 cos(y)u11)dxdy.

For simplicity, analysis of this Hi function uses the simpler form

HF
1 (θ1, θ2) = sin(θ1)(1 + b cos(θ2)), (3.26)

where we have absorbed h10 into the parameter g of Equation (3.23), and relabeled h11/h10

as b. Naturally, it follows that HF
2 (x, y) = HF

1 (y, x) and HF
i = −JFi .

Using the truncated interaction function HF
1 enables us to use traditional dynamical

systems tools and techniques to identify qualitative dynamics of Equation (3.23) through a

bifurcation analysis.

Finally, for Hi and all of its approximations, we require the following properties to hold:

1. ∂H1(0, 0)/∂y = ∂H2(0, 0)/∂x = 0,

2. ∂H1(0, 0)/∂x, ∂H2(0, 0)/∂y > 0,

3. ∂J1(0, 0)/∂x, ∂J2(0, 0)/∂y < 0.

Properties 1 and 2 follow from the evenness of the ε = 0 bump solution and 3 is made WLOG

since we could just change the sign of q otherwise.

To summarize, we consider two approximations to Hi:

H1(θ) =
30∑

n,m=1

anm sin(nθ1) cos(mθ2) ∝
30∑

n,m=1

anm sin(nθ1 +mθ2),

HF
1 (θ) = sin(θ1)(1 + b cos(θ2)).

We note that the second approximation, HF
1 , is a result of using the truncated kernel in

Equation (3.20).
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3.4.2.1 Equivalent Truncated Phase Model on the Torus For the truncated func-

tion HF
i , we transform the delay integro-differential equations into a system of ordinary

differential equations using identical arguments used to transform the phase equation on the

ring from a delay integro-differential equation into a system of ODEs. The new system is

θ′i = qJFi (θ)− g(ηi1 + ηi2), i = 1, 2

N ′ = −N + P

M ′ = −M +Q

(3.27)

where

(N,P ) ∈ {(cx, cos θ1), (cy, cos θ2), (sx, sin θ1), (sy, sin θ2)}

(M,Q) ∈ {(sxsy, sin(θ1) sin(θ2)), (sxcy, sin(θ1) cos(θ2)),

(cxsy, cos(θ1) sin(θ2)), (cxcy, cos(θ1) cos(θ2))}

η11 = sx cos(θ1)− cx sin(θ1)

η12 = b[cos(θ1) cos(θ2)sxcy − sin(θ1) cos(θ2)cxcy

+ cos(θ1) sin(θ2)sxsy − sin(θ1) sin(θ2)cxsy].

The function η21 (η22) is the same as η12 (η11) with θ1 and θ2 flipped and each x and y

flipped in the notation (for example, sxcy and cos(θ2) in η12 become sycx and cos(θ1) in η21,

respectively).

We show the many bifurcations and salient solutions of this system in Figure 30. We

find that there exists a stable sloshing bump solution that arises from a Hopf bifurcation

(solution A, bifurcation HB). Due to the symmetry of the system, there is also an unstable

sloshing solution in an axial direction (G) that arises from the same Hopf bifurcation. For

slightly larger parameter values, there is bistability of large-sloshing solutions (H and B),

and an even larger-sloshing solution (F) that loses stability through a torus bifurcation (TR).

For this choice of q = 0.1, the solutions are chaotic for parameter values between the first

torus bifurcation (TR1) and the first period doubling bifurcation (PD1). The multitude of

period doubling bifurcations beyond this point represents the onset of chaotic behavior of

the system due to the Fourier truncation, the error of which is proportional to g. This error
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Figure 30: Bifurcation diagram of the equivalent truncated phase model on the torus over

varying values of g with q = 0.1. Some branches refined using XPPY [65]. Sample solutions

(labeled A–H in the bifurcation diagram) are shown in the subplots to the bottom and right

of the diagram. Bifurcations are labeled according to the type: Hopf (HB), limit point (LP),

torus (TR), period-doubling (PD), and branch point (BP). The number following each bi-

furcation type correspond to the same bifurcation type and number in the two parameter

bifurcation in Figure 31. Panels A–E show stable attractors. In panels F–H, we show solu-

tions in parameter regimes without stable periodic attractors. These solutions are displayed

in a relatively short time window after integrating for long times and travel from light to

dark. In panel F (g = 1.05), we integrate for t = 500 time units and show the last 9% of the

data. In panel F (g = 1.5), we integrate for t = 500 time units and show the last 7% of the

data. In panel G (g = 2.15), we integrate for t = 500 time units and show the last 5% of the

data. We initialize the solutions of panels F–H using standard normally distributed random

variables. Parameter ε = 0.01.
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is more apparent beyond limit point LP2 where there are no more traveling bump solutions,

which qualitatively disagrees with the original system where traveling bump solutions exist

for even relatively large g.

The most salient bifurcations are captured in the two-parameter bifurcation in Figure

31. There are several qualitative similarities to the two parameter bifurcation diagram of

the phase model on the ring. In particular the transition from the stationary bump to

the sloshing bump, and from sloshing to large-sloshing. However, for the two-dimensional

domain, there are much larger regions of chaotic solutions.

In the following sections, we study the dynamics of the original phase model and the

truncated phase model and repeat most of the analysis as completed in the ring domain.

In particular, using a combination of numerical and analytical methods, we analyze the

existence and stability of traveling bump solutions, and the existence of a Hopf bifurcation.

3.4.3 Constant Velocity Bump Solution on the Torus

In this section, we analyze the existence and stability of constant velocity bump solutions on

the torus for q = 0, the only case in which there can be constant velocity traveling bumps.

Figure 32 shows the type of solutions we analyze in this section: constant velocity traveling

bump solutions in the full neural field model (panel A), the reduced model with the accurate

Fourier approximation (panel B), and the truncated reduced model (panel C).

3.4.3.1 Existence To show existence of solutions in the axial directions, we only need

to show existence of the solution θ1(τ) = ντ and θ2(τ) = 0. We plug this ansatz into (3.23)

and rearrange to yield

g = Γ(ν) ≡ ν∫∞
0
e−sH1(νs, 0)ds

. (3.28)

The analysis of this equation is identical to the one-dimensional case, Equation (3.14). By

varying ν from zero, we can find the values of g where there are solutions. Values of g for

which ν is nonzero imply there exists a traveling bump solution. In the case of the truncated

H function, we compute this integral explicitly to derive the velocity ν as a function of
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Figure 31: Two parameter bifurcation diagram of the equivalent truncated phase model

on the torus. The parameter regions are separated into stationary solutions (1.), sloshing

solutions (2.), large-sloshing solutions (3.), and generally chaotic solutions (4.). To the right

of the curve LP2 (purple dashed) for g ≥ 1.5, the qualitative behavior breaks down as this

bifurcation point marks the end of traveling bump solutions. Parameter b = 0.8.

adaptation strength g:

Γ(ν) =
1 + ν2

1 + b
.

To determine the critical value for the existence of axial constant velocity bump solutions,

we take the limit limν→0 Γ(ν):

g∗ = lim
ν→0

Γ(ν) =
1

1 + b
.
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Figure 32: Constant velocity dynamics of the traveling bump on the torus. The curve that

goes from light to dark and thin to thick represents the movement of the centroid over time.

A: Full neural field model on the torus, q = 0, g = 3, simulated for t = 7000 time units with

the last 60% of the data shown. B: Phase model on the torus with the accurate Fourier

series of Hi, q = 0, g = 2.2, simulated for t = 6, 700 time units with the last 10% of the data

shown. C: Phase model on the torus with the truncated Fourier series HF
i , q = 0, g = 2.5,

simulated for t = 3, 500 time units with the last 20% of the data shown. For these parameter

choices, the axial directions are unstable and over long times converge to non-axial directions.

Parameter ε = 0.01.

To show existence of non-axial solutions, we use the ansatz θ1(τ) = ν1τ and θ2(τ) = ν2τ

where ν1, ν2 6= 0. There exist non-axial traveling bump solutions if ν1, ν2 simultaneously

satisfy

0 = −ν1 + gG(ν1, ν2),

0 = −ν2 + gG(ν2, ν1),
(3.29)

where

G(ν1, ν2) =

∫ ∞
0

e−sH1(ν1s, ν2s)ds.
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Figure 33: Existence of traveling bump solutions using the accurate approximation to the

interaction function Hi. Left: After a first critical value (g∗) of the bifurcation parameter

g (red plane), there exist traveling bumps in the axial directions. After a second critical

value (g∗∗) (marked by a green plane), off-diagonal solutions form and continue to persist

for large g. The dark to light color gradient and thin to thick thickness gradient corresponds

to increasing values of g. Right: The projection of the branches on the left onto the g = 1.6

plane. A given point on one of these branches marks the magnitude and direction of a

traveling bump. If necessary, one can approximate the parameter value g of this traveling

bump by looking at the thickness and color of the chosen point and looking back at the

branches in the left panel.

We can not compute the velocities ν1, ν2 explicitly as a function of g, but we can exploit

the Fourier series of Hi to compute G explicitly, allowing us to use XPPAUTO to follow the

velocities as a function of the adaptation parameter g. The existence of traveling solutions

using the accurate Fourier series is shown in Figure 33, and the existence of traveling solutions

using the truncated Fourier series is shown in Figure 34.

In these figures, we find that the truncated model (Figure 34) exhibits a similar set of

traveling bump solutions as the full phase model (Figure 33). In particular, each system at
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Figure 34: Existence of traveling bump solutions using the truncated interaction function

HF
i (q = 0, b = 0.8). Left: After a first critical value (g∗) of the bifurcation parameter

g (red plane), there exist traveling bumps in the axial directions. After a second critical

value (g∗∗) (marked by a green plane), off-diagonal solutions form and continue to persist for

large g. The dark to light color gradient and thin to thick thickness gradient corresponds to

increasing values of g. Right: The projection of the branches on the left onto the g = 4 plane.

A given point on one of these branches marks the magnitude and direction of a traveling

bump. If necessary, one can approximate the parameter value g of this traveling bump by

looking at the thickness and color of the chosen point and looking back at the branches in

the left panel.

a critical value g∗, bifurcates into two axial solutions and one diagonal solution. For larger

g, the system bifurcates again at another critical value g∗∗, giving rise to two non-axial,

non-diagonal constant velocity directions. Indeed, negative velocity solutions exist, but as

these solutions are symmetric up to multiples of a 90-degree rotation about the g-axis, we

only show the positive directions. The “mixed” solutions that branch off for g > g∗∗ are, in

general, not rationally related so that the resulting traveling bumps will densely cover the

torus. As such quasi-periodic solutions are often not structurally stable, we expect to see
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complex and possibly chaotic behavior when q > 0. Indeed, looking at Figure 31, we see

that most of the complex behavior occurs for a small value of q and g sufficiently large.

Now that we have shown existence of traveling bump solutions, we proceed with a sta-

bility analysis.

3.4.3.2 Stability We begin this section with stability of traveling bump solutions in the

axial directions. We perturb off the axial solution, θ1(τ) = ντ + εeλ1τ and θ2(τ) = 0 + εeλ2τ ,

with Re(λi) > −1. The first order terms yield two independent eigenvalue problems

λ1 = −g
∫ ∞

0

e−s
∂H1

∂x
(νs, 0)[e−λ1s − 1]ds,

λ2 = −g
∫ ∞

0

e−s
∂H1

∂x
(0, νs)[e−λ2s − 1]ds,

which we combine with Equation (3.28) to yield two independent eigenvalue equations,

λ1 = − ν∫∞
0
e−sH1(νs, 0)ds

∫ ∞
0

e−s
∂H1

∂x
(νs, 0)[e−λ1s − 1]ds,

λ2 = − ν∫∞
0
e−sH1(νs, 0)ds

∫ ∞
0

e−s
∂H1

∂x
(0, νs)[e−λ2s − 1]ds.

Using these equations, we may determine stability of a traveling bump solution as a function

of its velocity. We rephrase this problem and consider the independent scalar valued functions

Λ1(ν, λ) = λ+
ν∫∞

0
e−sH1(νs, 0)ds

∫ ∞
0

e−s
∂H1

∂x
(νs, 0)

(
e−λs − 1

)
ds, (3.30)

Λ2(ν, λ) = λ+
ν∫∞

0
e−sH1(νs, 0)ds

∫ ∞
0

e−s
∂H1

∂x
(0, νs)

(
e−λs − 1

)
ds. (3.31)

For a given Λi, the zero level curves in (ν, λ) space determine stability properties of traveling

bump solutions.

We begin the analysis of these equations using the accurate Fourier series of Hi and

compute the integrals explicitly. The zero level set of the resulting function is shown in

Figure 35. On the left panel, find that for any velocity, the x-direction is always stable. On

the right, we find that for sufficiently small velocities, θ2(τ) = 0 is a stable solution. Thus,

constant velocity traveling solutions in this parameter regime will converge to the x-axis.
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Figure 35: Stability of solutions in the horizontal axial direction (calculated using the phase

model with the accurate Fourier series). Both plots show the level curves where Re(Λi) = 0

(black) and Im(Λi) = 0 (gray). For small velocities ν, both components are stable. For larger

velocities, the horizontal velocity remains stable, but the vertical velocity loses stability. The

dashed gray line shows where λi = 0.

Finally, for greater traveling bump velocities, the vertical direction loses stability, giving rise

to non-axial solutions.

With the truncated Hi, which we recall to be HF
i (θ1, θ2) = sin(θ1)(1 + b cos(θ2)), we may

compute the equations Λi = 0 explicitly as polynomials,

0 = λ2
1 + λ1 + 2ν2

0 = λ3
2 + c2λ

2
2 + c1λ2 + c0,

where

c0 =
(2b− 1)ν2 − ν4

b+ 1
,

c1 =
(1 + b+ (2b− 1)ν2)

b+ 1
,

c2 =
(2(b+ 1)− ν2)

b+ 1
.

(3.32)
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The coefficients of Equation (3.32) determine the stability of the horizontal traveling

solution. Note that for ν sufficiently small, all coefficients are positive and the product c1c2

dominates the coefficient c0. Thus, for small velocities, the coefficients have the properties

c1c2 > c0 and c2, c0 > 0, which implies stability by the Routh Hurwitz criterion. When

ν∗ = ±
√

2b− 1, the coefficient c0 is no longer positive and the stability condition fails.

We have found that horizontal traveling bump solutions lose stability at some critical

velocity ν∗, giving rise to non-axial traveling bump solutions. By symmetry, this argument

holds for vertical traveling bump solutions: after the same critical ν∗, constant velocity

traveling bumps in the vertical direction lose stability and become non-axial solutions.

Now that we understand the existence of and stability of axial constant velocity traveling

solutions, we turn our attention to the stability of non-axial traveling bump solutions.

To determine the stability of non-axial directions, we consider the solution, θ1(τ) =

ντ + φ1e
λτ and θ2(τ) = ντ + φ2e

λτ . This ansatz results in the equations,

λφ1 = −gφ1

∫ ∞
0

Q1(s)
(
e−λs − 1

)
ds− gφ2

∫ ∞
0

Q2(s)
(
e−λs − 1

)
ds,

λφ2 = −gφ1

∫ ∞
0

Q3(s)
(
e−λs − 1

)
ds− gφ2

∫ ∞
0

Q4(s)
(
e−λs − 1

)
ds,

where

Q1(s) =

∫ ∞
0

e−s
∂H1

∂x
(−ν1s,−ν2s), Q2(s) =

∫ ∞
0

e−s
∂H1

∂y
(−ν1s,−ν2s),

Q3(s) =

∫ ∞
0

e−s
∂H1

∂y
(−ν2s,−ν1s), Q2(s) =

∫ ∞
0

e−s
∂H1

∂x
(−ν2s,−ν1s).

By rewriting the integrals in the more compact form,

λφ1 = −gφ1Q̂1(λ)− gφ2Q̂2(λ),

λφ2 = −gφ1Q̂3(λ)− gφ2Q̂4(λ),

where Q̂i =
∫∞

0
Qi(s)(e

−λs − 1)ds, the problem reduces to finding an eigenvector (φ1, φ2)T

with corresponding eigenvalue −λ:

g

Q̂1(λ) Q̂2(λ)

Q̂3(λ) Q̂4(λ)

φ1

φ2

 = −λ

φ1

φ2

 . (3.33)
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This condition holds if and only if the determinant

E(λ) =

∣∣∣∣∣∣g
Q̂1(λ) Q̂2(λ)

Q̂3(λ) Q̂4(λ)

+ λI2

∣∣∣∣∣∣ (3.34)

is zero. This determinant is the Evans function, and we use its roots to determine stability

properties of the constant velocity solutions.

Using the accurate Fourier series of Hi, the integrals of the eigenvalue problem (3.33)

are explicitly computable. Given a value g, it is straightforward to compute the contours of

E = 0 using a standard contour plot routine. In panels A and B of Figure 36, we show the

Evans function when g = 1.5, and g = 3, respectively.

The domain values where the real part of the Evans function is zero is shown as a

black contour, while the domain values where the imaginary part is zero is shown in gray.

Intersections of these contours show roots of the Evans function. Generally, there exists a

root of the Evans function at the origin due to translation invariance of the underlying bump

solution. Thus we ignore this root and consider only those nontrivial roots with real part

sufficiently greater than −1. These nontrivial roots are marked with red dots.

We follow these roots using XPPAUTO and generate the bifurcation diagram shown in the

right panel of Figure 36. The real part of the root remains negative for the range of g that

we consider, thus the constant traveling bump solution remains stable for a large range of

adaptation strengths.

We repeat the analysis of the Evans function using the truncated Fourier interaction

function, HF . Once again, the integrals of the eigenvalue problem (3.33) are explicitly

computable and we follow the roots of the Evans function using XPPAUTO in two parameters,

b and g, the Fourier coefficient, and adaptation strength, respectively. The right panel of

Figure 37 shows the result of this continuation: within the unstable region (marked in light

blue), constant velocity solutions are unstable, as demonstrated by the lower inset showing θ1

as a function of time. Because the instability arises through a Hopf bifurcation, the traveling

bumps begin to “wobble”. In the stable region, bump solutions travel with constant velocity,

as demonstrated by the upper inset showing θ1 as a function of time.

The left panels (A and B) of Figure 37 demonstrates the existence of a Hopf bifurcation

on the boundary between stable and unstable regions. These panels correspond to points
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Figure 36: Evans function for the accurate Fourier series H. Left panels A and B: roots of

the real (black) and imaginary (gray) parts of the evans function for g = 1.5 and g = 3,

respectively. Intersections of the gray and black lines denote zeros of the Evans function.

We use α and β to denote the real and imaginary part of the Evans function, respectively.

Right panel: The real and imaginary parts of the nontrivial root(s) of the Evans function

for various choice of g. The horizontal red dashed line denotes the real axis.

labeled A and B on the right panel. In each case, we find a complex conjugate pair of

eigenvalues that cross the imaginary axis.

In this section, we analyzed the reduced neural field model with nonzero adaptation

strength (g > 0) and no input current (q = 0). We now explore the dynamics arising from

activating the time-invariant input current.

3.4.4 Hopf Bifurcation on the Torus

We have seen in Figures 31, 28 that for nonzero g and q, the system may produce a traveling
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Figure 37: Evans function for the truncated interaction function HF . Left panels A and

B: roots of the real (black, g = 3.1, b = 2.28) and imaginary (gray, g = 4.84, b = 0.65)

parts of the evans function demonstrating a loss of stability through a Hopf bifurcation.

Intersections of the gray and black lines denote zeros of the Evans function. Right panel:

the black line denotes where the real part of the Evans function is zero in b and g parameter

space (i.e., where the bump solution loses stability). The points labeled A and B correspond

to panels A and B, respectively. The horizontal dashed gray line shows our usual choice

of the parameter value b = 0.8.Two insets with example solutions of θ1(τ) over slow time

τ are shown, corresponding to the blue star in parameter space. In the stable region, the

traveling bump solution moves with constant velocity (inset parameter values g = 15,b = 1.3

integrated over t = 20000 time units with the last 7.5% of the data shown). In the unstable

region, the traveling bump solution loses stability through a Hopf bifurcation and begins

to travel with nonconstant velocity (inset parameter values g = 3,b = 0.9 integrated over

t = 20000 time units with the last 2.5% of the data shown). Parameter: ε = 0.01.
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bump solution that oscillates about the origin-centered input. For a fixed parameter value q,

the origin is stable for g = 0, and with increasing g eventually becomes unstable through a

Hopf bifurcation. We study this phenomenon with Equation (3.23), using the same technique

as used on the ring: linearization about the origin.

−π 0 π
θ1

−π

0

π

θ 2

A

−π 0 π
θ1

B

−π 0 π
θ1

C

Figure 38: Limit cycle dynamics of the traveling bump on the torus. The curve that goes

from light to dark and thin to thick represents the movement of the centroid over time. A:

Full neural field model on the torus, q = 2, g = 5, period of t = 805 time units. B: Phase

model on the torus with the accurate Fourier series approximation of Hi, q = 1, g = 3,

period of t = 187 time units. C: Phase model on the torus with the truncated Fourier series

HF
i , q = 0.2, g = 1, period of t = 370 time units. Parameter ε = 0.01.

Let (θ1(τ), θ2(τ)) = (eλτ , eλτ ). Plugging into Equation (3.23) results in a system of two

decoupled equations,

λ = qĴ0
i − gĤ0

i

∫ ∞
0

e−s(e−λs − 1)ds,

where

Ĵ0
i =

∂Ji
∂x

(0, 0) +
∂Ji
∂y

(0, 0),

Ĥ0
i =

∂Hi

∂x
(0, 0) +

∂Hi

∂y
(0, 0).
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Evaluating the integral and solving for λ yields

2λ = −(1− qĴ0
i − gĤ0

i )±
√

(1− qĴ0
i − gĤ0

i )2 + 4qĴ0
i .

Thus, as in the case of the ring, for a fixed q and given g sufficiently large, there exists a

Hopf bifurcation at the critical value

g =
1− qĴ0

i

Ĥ0
i

.

For the truncated interaction function HF
i , the critical value is

g =
1 + q(1 + b)

1 + b
.

3.4.5 Non-Constant Velocity Bump Solution on the Torus

As we have seen in earlier sections, stable oscillating solutions exist for particular choices

of input current strength and adaptation on both the ring and torus. The similarities of

solutions on the ring and torus continue as adaptation strength increases. On the ring,

the oscillating solution gives way to a bump solution that travels around the ring with

non-constant velocity. Similarly, with sufficiently large adaptation g, the bump solution on

the torus also breaks free from the oscillating solution and traverses the domain with non-

constant velocity. Figure 39 shows examples of these solutions in the full model (panel A),

the phase model with the accurate Fourier series (panel B), and the phase model with the

truncated Fourier series (panel C).

There are plenty of other examples of these types of solutions (Figures 30,29,28) that

are in fact chaotic. To demonstrate the existence of chaos numerically, we use the truncated

phase model and a Poincaré section through cy = 0, as we find that generically the variable

cy consistently crosses zero throughout simulations.
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Figure 39: Non-constant velocity dynamics of the traveling bump on the torus. The curve

that goes from light to dark and thin to thick represents the movement of the centroid over

time. A: Full neural field model on the torus, q = 1, g = 5, simulated for t = 5, 000 time

units with the last 60% of the data shown. B: Phase model on the torus with the accurate

Fourier series of Hi, q = 1, g = 5, simulated for t = 6, 700 time units with the last 8% of

the data shown. C: Phase model on the torus with the truncated Fourier series HF
i , q = .5,

g = 4.5, simulated for t = 6, 700 time units with the last 7% of the data shown. Parameter:

ε = 0.01.
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3.4.5.1 Chaos on the Torus For a given g, we simulate the truncated phase model

(Equation (3.27)) for t = 150000 time units and ignore the first 7000 time units to remove

transients. By plotting the appropriate state variables, we are able to determine whether

a system is aperiodic (and possibly chaotic) or periodic. The top panel of Figure 40 shows

one example of one such plot, where for each g value we plot all cy values for the duration

of the simulation. The black regions of Figure 40 correspond to the gray regions of Figure

30: the approximate range 0.85 < g < 1.1 corresponds to region F, the approximate range

1.18 < g < 1.61 corresponds to region G, and the approximate range g > 2.05 corresponds

to region H, respectively.

Figure 40: Chaotic attractors. Top panel: crude bifurcation diagram of cy as a function

of parameter g. Black regions correspond to aperiodic and possibly chaotic behavior, while

regions with dots correspond to periodic solutions. Parameter: q = 0.1.

We show sample solutions of the chaotic attractors in regions F,G,H in the bottom

three panels of Figure 40. The vertical red line in the top panel denotes the parameter value

corresponding to each attractor.
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3.5 DISCUSSION

Our motivation for this work was to understand the behavior of the model presented in

[43] where the authors showed that heterogeneities in a recurrent network with adaptation

produced a seemingly randomly moving bump of activity. Similar moving bump dynamics

was also found in a homogeneous bump model with adaptation in [37]; here the authors report

only axially moving bumps with no external inputs. The neural field model considered in

this chapter (Equations (3.1),(3.2)) is also capable of producing a rich variety of solutions

on the ring and torus. On the ring, the centroid of the bump solution exhibits sloshing and

large-sloshing behaviors (for moderate strengths of input current and adaptation) that, for

stronger adaptation, lead to non-constant velocity traveling bump solutions. With no input

current and sufficient adaptation, the system generates a constant velocity traveling bump

solution. We also observe chaotic solutions for a narrow range of adaptation strengths.

On the torus, the qualitative solutions are similar to those on the ring: Stationary bump

solutions give rise to sloshing solutions (for moderate strengths of input current and adapta-

tion), as well as non-constant velocity traveling bump solutions (with sufficient adaptation)

and constant velocity traveling solutions (with no input current and sufficient adaptation).

In this system, we do not see pulses that change in diameter with a fixed centroid (breathers)

on the ring or torus.

Neural fields with nonsmooth firing rate functions (i.e., the Heaviside or rectifying non-

linearity) reproduce many of these qualitative behaviors. The existence and bifurcation of

sloshing solutions on the ring are analyzed in [29, 22], and constant velocity solutions are

shown to exist on the ring ([97, 22]), the real line ([50]), and the plane ([34]). Nonconstant

velocity bump solutions are shown to exist in [22]. However, there are no studies showing

the existence of aperiodic attractors on the torus (assuming a deterministic system with an

even kernel), or the existence of chaos on the ring.

In this study, we contributed to the analysis of the known behaviors by using a smooth

firing rate function and a caveat of weak and slow adaptation. This assumption on the

adaptation variable allowed us to reduce the neural field model, which is a distributed par-

tial integro-differential equation, to a system of scalar delay integro-differential equations
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describing the centroid of the bump solution. Moreover, our only restriction on the kernel

is of Mexican-hat type. Put together, these assumptions and our results are more general

than what currently exists in literature.

In one spatial dimension, for example, we derived the normal form for the Hopf bifurca-

tion in the one-dimensional neural field model and determined the conditions for super- and

sub-criticality. Although normal form calculations exist for neural field models on the ring

or the real line, our calculation allows for a general choice of kernel and a smooth firing rate

function (as opposed to a particular choice of kernel or a non-smooth Heaviside firing rate

function [22, 29]).

As mentioned previously, existing studies require particular choices of kernels or Heavi-

side firing rate functions where a smooth firing rate function would be desirable ([8] note that

a smooth firing rate function allows for a straightforward normal form analysis). Although

these assumptions are restrictive, these studies have advantages that the current study does

not address. In particular, our analysis requires that adaptation is weak and slow and that

the input current is weak. As a result, we can only study phenomena that evolve on a

slow timescale. These weak and slow assumptions are well-suited for studying long-lasting

sequences of spatially coherent activity in the absence of changing external stimuli [72, 43],

but may not be as well suited to study phenomena on a faster timescale, like the effects of

weak modulatory interactions mediated by the reciprocal, long-range patchy connections in

primary visual cortex [29].

Generally speaking, one might ask why we need the adaptation to be both slow and

weak. For example, in [76], the adaptation was slow but not weak. One could imagine doing

a perturbation analysis for a weak stimulus such as in [24] where a weak slowly moving

stimulus is applied to a system that has a stable traveling bump. However, strong adaptation,

will alway induce movement in a bump so that we can never pin the bump with weak inputs.

Furthermore, by keeping the adaptation O(1), one needs to compute the adjoint solution to a

two-variable traveling bump, a difficult task in one spatial dimension, and impossible (as far

as we can tell) in two spatial dimensions. Thus, by working with weak inputs and weak/slow

adaptation, we have hit a sweet spot from which many of the interesting dynamics emerges.

One type of behavior that has been observed in this class of models that does not occur
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in our analysis is the so-called breathing solutions [31]. Breathers are periodic solutions to

the neural field equations that occur when the bump solution loses stability via a symmetric

mode. In contrast, sloshers appear when there is a Hopf bifurcation to an anti-symmetric

mode. In the breather case, the centroid of the bump does not change, so our reduced

equations cannot detect such a bifurcation. In contrast, sloshers lead to modulation of the

centroid and thus our analysis can capture that. To further explore this, we were able to

induce bifurcation to a breathing solution in equations (3.1,3.2) but only when ε is sufficiently

large. We find that it is possible to continue this bifurcation in ε and make ε quite small, but

only if we increase both the strength of adaptation g and the heterogeneity, q such that εq, εg

remain O(1). That is, breathers can only occur when the adaptation and input magnitudes

are large compared to the rate of adaptation. Our analysis, therefore, cannot include the

appearance of breathers.

The effects of noise on the phase equations is one possible direction for future study.

Several cited papers analyze the movement of bump solutions in the presence of noise. Near

the drift bifurcation for traveling bump solutions with sufficiently strong linear adaptation,

it is possible to derive a stochastic amplitude equation when the adaptation strength and

stochastic forcing are similar in magnitude [48]. Sufficiently far from the bifurcation, the

stochastic forcing leads to diffusive wandering of the bump solution. Other studies analyze

the diffusive behavior of solutions to neural field models and how pinning eliminates diffusive

behavior [78]. In [60], the authors add Gaussian noise to the adaptation term of a neural

field model similar to the model in this chapter, but with strong input and adaptation, which

is not necessarily slow. In this case, the bump solution velocity decreases as a function of

noise level. Laing and Longtin then consider colored noise (noise with temporal correlations)

to adaptation, and show that the bump velocity decreases as a function of noise correlation

time. The authors compute the effects of adding noise to the normal form of the pitchfork

bifurcation, and show that greater noise levels delay the onset of moving bumps. As men-

tioned previously, these studies assume either a particular firing rate function or kernel. The

general case remains unexplored.
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4.0 A MULTIPLE TIMESCALES APPROACH TO BRIDGING SPIKING-

AND POPULATION-LEVEL DYNAMICS

This chapter is based on [69], with all figure-generation code available on GitHub:

https://github.com/youngmp/park_and_ermentrout_2018

4.1 INTRODUCTION

Neural mean field models are a useful framework for studying mesoscopic and macroscopic

spatio-temporal activity in the cortex. Examples include mammalian path integration, head

direction tracking, visual hallucination, working memory, spatial object location, and object

orientation [15, 14, 32, 7].

Existing studies derive macroscopic quantities starting at the spiking level, but require

particular assumptions including asynchronous firing [58, 57, 79] and Poisson statistics [4, 3].

These studies contain no information about synchronization at the spiking level, which could

underpin the loss or gain of power in electroencephalogram (EEG) frequency bands [16].

Recent studies relax the asynchronous firing assumption with the goal of predicting

population synchrony, and have successfully used low-dimensional spiking models like the

Kuramoto model [85], theta model [27, 16], Alder units [80], and quadratic integrate-and-fire

models [63] to this end. These models are amenable to the Ott-Antonsen ansatz [67], which

results in a complementary order parameter in addition to the mean field variables, e.g.,

firing rate.

In contrast to these studies, the goal of the present study is to derive a metric of synchrony

at the spiking level for general oscillators. In particular, we derive a set of phase equations for
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each oscillator as a function of the mean field. Moreover, the existence of multiple timescales

allows us to derive the phase equations as a function of the mean field dynamics.

We begin with a finite network of N , n-dimensional excitatory spiking neurons and N ,

m-dimensional inhibitory spiking neurons connected by slow synapses:

dxi
dt

= Fx(xi, s
x, sy) + εGx

i (xi), (4.1)

dyi
dt

= Fy(yi, s
x, sy) + εGy

i (yi), (4.2)

µx
dsx

dt
= ε

[
−sx +

1

N

N∑
j=1

δ(t− tj,x)

]
, (4.3)

µy
dsy

dt
= ε

[
−sy +

1

N

N∑
j=1

δ(t− tj,y)

]
, (4.4)

where i = 1 . . . , N , the term tj,x represents the spike times of each neuron i = 1, . . . , N , Fk

is the vector field for neuron type k = x, y, and Gk
i represents heterogeneity in oscillator i of

vector field k. For conductance-based models, we take the spike time be the upwards zero-

crossing of the membrane potential. The same notation holds for the inhibitory population

y.

Equations (4.3) and (4.4) exhibit fast and slow changes: sx (sy) resets instantaneously

as sx 7→ s̄x + ε/(Nµx) (sy 7→ s̄y + ε/(Nµy)) whenever neuron i spikes in either population.

With these notations defined, we turn to the assumptions.

• The term ε is small, 0 < ε� 1. Thus the synapses increment instantaneously with order

ε, but decay slowly between spikes.

• There is a separation of timescales into a “fast” time t and a “slow” time τ = εt.

• The mean synaptic values, s̄x and s̄y, are constant and differ at most by a small amount

O(ε). If the mean values are the same, we denote the mean synaptic values by s̄, where

s̄ = s̄x = s̄y.

• In the decoupled case without heterogeneity (ε = 0), we assume that there exists a T -

periodic limit cycle Φk(t, τ) satisfying Equations (4.1),(4.2) for a range of values s̄k ∈
[s−, s+] where k = x, y.

• Generally, s̄k > 0, and there may exist no limit cycle when s̄k = 0.
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• The vector field dimensions are arbitrary: Fx,Gx
i : Rn × R × R → Rn and Fy,Gy

i :

Rm × R× R→ Rm, where n,m ≥ 1.

These assumptions appear in a similar form in [81]. The authors show that when the mean

synaptic values are constant with slow synaptic decay, the slow and strong coupling problem

becomes a fast and weak coupling problem, and thus amenable to the classic phase reduction.

However, we are also interested in the case where the synaptic variables sx, sy are slowly

varying. Thus, we allow that

• There can exist small amplitude (order ε) oscillations in the mean slow variables s̄x, s̄y

for some parameter values µx, µy satisfying the mean field description of Equations (4.1)–

(4.4)

µx
ds̄x

dt
= ε[−s̄x + ωx(Ix(s̄x, s̄y))],

µy
ds̄y

dt
= ε[−s̄y + ωy(Iy(s̄x, s̄y))],

(4.5)

where ωk is the frequency of population k = x, y as a function of an input current Ik that

depends on the mean synaptic variables s̄x and s̄y. The input current is the total current

applied to the neural membrane as a result of the synaptic activity. The small oscillation

amplitude is independent of ε, and generally may be orders of magnitude greater than

ε. However, if the mean field description can produce oscillations, we are only interested

in small, order ε oscillations, so for simplicity we say that the oscillations, if they exist,

are order ε.

Thus the mean-field dynamics are determined entirely by the frequency-current (FI)

curves of the neural models we consider in this chapter (Section 4.3.6). We show examples

of FI curves for the models we consider in Figure 41. In panel A we show the FI curve for

the Traub model with calcium, and in panel B we show the FI curve for the Wang-Buzsáki

model. In general, these FI curves are computed numerically using XPPAUTO [19]. In some

cases they can be computed explicitly as in the theta model, which is another model we

consider in this chapter (Section 4.3.1).

The goal of this chapter is to derive a system of equations describing the phase locking

properties of the network (Equations (4.1)–(4.4)) that complement the mean field description
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Figure 41: The frequency-current (FI) curves of the Traub with calcium model (solid black)

and Wang-Buzsáki model (dashed black). Frequency is in units of cycles per millisecond.

The horizontal gray line through the frequency value 0.05Hz denotes our choice of fixed mean

synaptic current. Small and slow oscillations of the synaptic variables in this network are

about this mean value and are fully determined by the values of these FI curves.

of the network (Equation (4.5)). The primary contribution of the chapter is to show that

the phase reduction is valid when the synapses are slowly varying with small amplitude.

4.2 DERIVATION OF THE PHASE MODEL

We begin the reduction to phase oscillators with the ansatz

xi(t, τ) = xi(t+ θi(τ), s̄) = Φx(t+ θxi (τ), s̄) + εξxi (t+ θxi (τ), s̄) +O(ε2),

yi(t, τ) = yi(t+ θi(τ), s̄) = Φy(t+ θyi (τ), s̄) + εξyi (t+ θyi (τ), s̄) +O(ε2),

sx(t, τ) = s̄x(τ) +
ε

Nµx

∑
j

f
(
t+ θxj (τ)

)
+O(ε2),

sy(t, τ) = s̄y(τ) +
ε

Nµy

∑
j

f
(
t+ θyj (τ)

)
+O(ε2),

(4.6)

where s̄k(τ) is the slowly varying mean synaptic value for k = x, y, and f represents the

effects of fast timescale, small-magnitude spikes on the synaptic variable. Technically, xi, yi,

φk, and ξxi have arguments of the form (t+θi(τ), s̄x(τ), s̄y(τ)), but because we evaluate these
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functions at the fixed mean value s̄ = s̄x = s̄y, we abbreviate the notation of the redundant

inputs by writing (t+ θi(τ), s̄).

Using the periodicity of sk(τ) on the fast timescale and small delta function impulses of

order ε, one can derive f explicitly as

f(t+ θk(τ)) =
[(

1− (t+ θk(τ))/T mod 1
)
− 1/2

]
.

We detail the calculations in appendix C.2. For notational convenience, we do not write f

explicitly for the remainder of the derivation.

Next, because the slow oscillations are small amplitude (order ε), we include an additional

term in the expansion:

sk(t, τ) = s̄k(τ) + s̄− s̄+
ε

Nµx

∑
j

f
(
t+ θkj (τ)

)
= s̄+ ε

(
s̄k(τ)− s̄

ε

)
+

ε

Nµx

∑
j

f
(
t+ θkj (τ)

)
,

where s̄ stands for the constant fixed mean values s̄x = s̄y.

Plugging in Equation (4.6) into Equation (4.1) and grouping in terms of small order ε

results in the system of equations,

∂Φx

∂t
= Fx[Φx(t+ θxi (τ)), s̄],

dθxi
dτ

∂Φx

∂t
(t+ θxi (τ), s̄) +

d

dt
ξxi (t+ θxi (τ), s̄)

= Fx
Φx(Φx(t+ θxi (τ)), s̄)ξxi (t+ θxi (τ), s̄)

+ Fx
sx(Φx(t+ θxi (τ)), s̄)

(
[s̄x(τ)− s̄]/ε+

1

Nµx

∑
j

f
(
t+ θxj (τ)

))

+ Fx
sy(Φx(t+ θxi (τ)), s̄)

(
[s̄y(τ)− s̄]/ε+

1

Nµy

∑
j

f
(
t+ θyj (τ)

))

+ Gx
i (Φ

x(t+ θxi (τ)))
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For an n-dimensional (m-dimensional) vector field Fx (Fy), the derivative Fx
Φx (Fy

Φy) repre-

sents the Jacobian matrix. Rewriting yields,

Lξxi (t+ θxi (τ))

=
dθxi
dτ

dΦx

dt
(t+ θxi (τ), s̄)

− Fx
sx(Φx(t+ θxi (τ)), s̄)

(
[s̄x(τ)− s̄]/ε+

1

Nµx

∑
j

f
(
t+ θxj (τ)

))

− Fx
sy(Φx(t+ θxi (τ)), s̄)

(
[s̄y(τ)− s̄]/ε+

1

Nµx

∑
j

f
(
t+ θyj (τ)

)
)

)

−Gx
i (Φ

x(t+ θxi (τ)))

(4.7)

where

Lu ≡ −du
dt

+ Fx
Φx(Φx(t+ θxi (τ)), s̄)u.

Note that we have already collected terms in order ε, so we have no need to keep the ε/ε

term and neglect it from now on. It is straightforward to show that the adjoint of L is

L∗v = v′ + [Fx
Φx(Φx(t+ θxi (τ)), s̄)]T v.

We find that a function zx in the nullspace of this adjoint operator satisfies

dzx

dt
(t+ θxi (τ)) = − [Fx

Φx(Φx(t+ θxi (τ)), s̄)]T zx(t+ θxi (τ)),

and

zx · dΦx

dt
= 1.

The function zx is the same as the infinitesimal phase response curve of the oscillator Φx

[25].

Next, we require the existence of a bounded periodic function ξxi satisfying Equation

(4.7). Because the operator L has a closed range defined on the space of real-valued T -

periodic functions, it follows that there exists a function u satisfying Lu = b if and only if

〈u, v〉 = 0 for all v in the nullspace of L∗ [47], where

〈u, v〉 =

∫ T

0

u · v dt.
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Applying the existence condition directly to the right hand side of Equation (4.7) yields

(with a bit of rearrangement)

∫ T

0

dθxi
dτ

dΦx

dt
(t, s̄) · zx(t, s̄) dt

=

∫ T

0

Fx
sx(Φx(t), s̄) · zx(t, s̄)

(
s̄x(τ)− s̄

ε
+

1

Nµx

∑
j

f
(
t+ θxj − θxi

))
dt

+

∫ T

0

Fx
sy(Φx(t), s̄) · zx(t, s̄)

(
s̄y(τ)− s̄

ε
+

1

Nµx

∑
j

f
(
t+ θyj − θxi

))
dt

+

∫ T

0

Gx
i (Φ

x(t), s̄) · zx(t, s̄) dt.

Simplifying and rewriting, we arrive at the phase equations:

dθxi
dτ

= [s̄x(τ)− s̄]βxx/ε+ [s̄y(τ)− s̄]βxy/ε+Bx
i

+
1

Nµx

N∑
j=1

Hxx(θxj (τ)− θxi (τ)) +
1

Nµx

N∑
j=1

Hxy(θyj (τ)− θxi (τ)) (4.8)

where

βxy =
1

T

∫ T

0

Fx
sy(Φx(t), s̄) · zx(t, s̄)dt

βxx =
1

T

∫ T

0

Fx
sx(Φx(t), s̄) · zx(t, s̄)dt,

Hxx(φ) =
1

T

∫ T

0

Fx
sx(Φx(t), s̄) · zx(t, s̄)f(t+ φ)dt,

Hxy(φ) =
1

T

∫ T

0

Fx
sy(Φx(t), s̄) · zx(t, s̄)f(t+ φ)dt,

Bx
i =

1

T

∫ T

0

Gx
i (Φ

x(t), s̄) · zx(t, s̄) dt.

The vigilant reader may notice a possible issue with the term (s̄x(τ)− s̄)/ε, where ε is small.

We require that the deviations of s̄x(τ) from s̄ to be small, in particular to be of order ε.

In our derivation, the order ε term cancels so that we can treat the difference (s̄x(τ)− s̄) as

order ε. Thus, the term (s̄x(τ)− s̄)/ε is order O(1).
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Using the same arguments, we arrive at the phase equations for the y population,

dθyi
dτ

= [s̄x(τ)− s̄]βyx/ε+ [s̄y(τ)− s̄]βyy/ε+By
i

+
1

Nµy

N∑
j=1

Hyx(θxj (τ)− θyi (τ)) +
1

Nµy

N∑
j=1

Hyy(θyj (τ)− θyi (τ)),
(4.9)

where

βyx =
1

T

∫ T

0

Fy
sx(Φy(t), s̄) · zy(t, s̄)dt,

βyy =
1

T

∫ T

0

Fy
sy(Φy(t), s̄) · zy(t, s̄)dt,

Hyx(φ) =
1

T

∫ T

0

Fy
sx(Φy(t), s̄) · zy(t, s̄)f(t+ φ)dt,

Hyy(φ) =
1

T

∫ T

0

Fy
sy(Φy(t), s̄) · zy(t, s̄)f(t+ φ)dt,

By
i =

1

T

∫ T

0

Gy
i (Φ

y(t), s̄) · zy(t, s̄) dt.

Note that in the phase equations (4.8) and (4.9), the synaptic variables are exogenous and

do not depend on the microscopic solutions – only the microscopic solutions depend on

the mean field. Thus, the microscopic dynamics are fully described by properties of the

individual oscillators (the iPRC zk, the vector field Fk), and the mean synaptic variables s̄k.

When analyzing solutions, we use the phase differences φxi = θxi −θx1 , φyi = θyi −θy1 , where

i = 1, . . . , N , and φz = θy1 − θx1 . By definition, φx1 = φy1 = 0 and dφx1/dτ = dφy1/dτ = 0, so

we only plot phase differences for i > 1. As we have shown in our derivation, our theory

tolerates order ε heterogeneities in the vector fields. The phase difference dynamics are then

Nµx
dφxi
dτ

=
N∑
j=1

[
Hxx

(
φxj − φxi

)
−Hxx

(
φxj
)]

+Bx
i −Bx

1

+
N∑
j=1

[
Hxy

(
φyj − φxi + φz

)
−Hxy

(
φyj + φz

)]
,

(4.10)
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Nµy
dφyi
dτ

=
N∑
j=1

[
Hyy

(
φyj − φyi

)
−Hyy

(
φyj
)]

+By
i −By

1

+
N∑
j=1

[
Hyx

(
φxj − φyi − φz

)
−Hyx

(
φxj − φz

)]
,

(4.11)

dφz

dτ
= [s̄x(τ)− s̄](βyx − βxx)/ε+ [s̄y(τ)− s̄](βyy − βxy)/ε

+
1

Nµy

N∑
j=1

[
Hyx

(
φxj − φz

)
+Hyy

(
φyj
)]

− 1

Nµx

N∑
j=1

[
Hxx

(
φxj
)

+Hxy
(
φyj + φz

)]
+By

1 −Bx
1

(4.12)

where i = 1, . . . , N . When the mean synaptic variables, s̄k(τ), which satisfy Equation (4.5),

are slowly varying, the terms s̄k(τ)− s̄ in the right hand side of dφz/dτ are what contribute

to large phase drifts between the populations.

To aid in the numerics and analysis, we make note of some facts, starting with the

relationship between constant mean synapses and frequency.

4.2.1 Relationship Between Constant Mean Synapses and Frequency

Suppose that the mean s̄k is constant. Recall that following a spike,

sk(t) = sk(0)e−εt/µ
k

, t < T−,

where T− is the period of the fast oscillator up to and not including the spike. We may

determine the initial condition by solving

sk(T+) = sk(0)e−εT/µ
k

+ ε/µk = sk(0),

which yields

sk(0) =
ε

µk
1

1− e−εT/µk .
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Taking the mean value of sk(t) over one period,

s̄k =
1

T

∫ T

0

sk(t)dt,

we find that

s̄k =
1

T
. (4.13)

That is, s̄ is the same as the fast frequency.

4.2.2 Fourier Approximation

Because the domain of each function Hjk is periodic, we can use a Fourier series approxi-

mation to make the numerics tractable. We extract the Fourier coefficients using the fast

Fourier transform (FFT) and construct an approximation by writing

Hjk(x) =
M∑
n=0

(an cos(nx/T ) + bn sin(nx/T )).

All right hand sides can be written as a sum of sines and cosines, thus amenable to a

bifurcation analysis using XPPAUTO. Constructing the Jacobian matrix using derivatives of

Hjk is also straightforward, since we only need to take the derivative of sines and cosines:

dHjk

dx
(x) =

M∑
n=0

[−nan cos(nx/T )/T + nbn sin(nx/T )/T ] .

See Tables 9, 10 for the values of the Fourier coefficients.
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4.3 RESULTS

We now turn to the simulation of neural models to test our theory. We begin by considering

a population of excitatory and inhibitory theta neurons [27] and look at two cases: first

when the mean synaptic values are fixed, and second when the mean synaptic values are

slowly varying with small amplitude about a fixed point. In the first case we show the

existence and stability of various phase locked solutions. In the second case we use numerics

to demonstrate the accuracy of our phase model.

We conclude by repeating the same comparison using biophysically realistic models. The

models we consider are excitatory Traub models with calcium [89], and inhibitory Wang-

Buzsáki models [92].

4.3.1 Theta Neurons

Consider a network of excitatory and inhibitory theta neurons with all-to-all coupling,

dxj
dt

= π(1− cos(xj) + (1 + cos(xj))[a
x + bxsx − cxsy]),

dyj
dt

= π(1− cos(yj) + (1 + cos(yj))[a
y + bysx − cysy]),

µx
dsx

dt
= ε

[
−sx +

1

N

∑
j

δ(xj − π)

]
,

µy
dsy

dt
= ε

[
−sy +

1

N

∑
j

δ(yj − π)

]
.

(4.14)

Given values s̄x and s̄y, the period T k of oscillators in population k is given by the integral

T k =
1

π

∫ π

−π

dx

1− cos(x) + (1 + cos(x))Ik
, k = x, y,

where Ik = ak + bks̄x − cks̄y. We skip the details, but this integral is explicitly computable

[25], allowing us to express the period T k as a function of the input Ik:

T k(Ik) = 1/
√

[Ik]+,
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where [x]+ = max{0, x}. The reciprocal of the period T k is the frequency,

ωk(Ik) =
√

[Ik]+.

Thus, the averaged dynamics are

µx
dsx

dt
= ε

(
−sx +

√
[Ix]+

)
, (4.15)

µy
dsy

dt
= ε

(
−sy +

√
[Iy]+

)
. (4.16)

For this system, the limit cycle and iPRC are, respectively [25],

Φi(t, s̄) ≡ Φ(t, s̄) = 2 arctan(s̄ tan(s̄π(t+ T/2)),

Zi(t, s̄) ≡ Z(t, s̄) = [cos2(s̄π(t+ T/2)) + s̄2 sin2(s̄π(t+ T/2))]/(2s̄2π),

where s̄ is the fixed point s̄x = s̄y. To compute the H functions, we note that the partial

derivatives of the right-hand side of Equation (4.14) evaluated on the limit cycle Φ(t, s̄ and

mean synaptic value s̄ are:

π
∂

∂sx
(1− cos(xj) + (1 + cos(xj))[a

x + bxsx − cxsy])|xj=Φ(t,s̄),sx=sy=s̄

= bxπ[1 + cos(Φ(t, s̄))],

π
∂

∂sy
(1− cos(xj) + (1 + cos(xj))[a

x + bxsx − cxsy])|xj=Φ(t,s̄),sx=sy=s̄

= −cxπ[1 + cos(Φ(t, s̄))],

π
∂

∂sx
(1− cos(yj) + (1 + cos(yj))[a

y + bysx − cysy])|yj=Φ(t,s̄),sx=sy=s̄

= byπ[1 + cos(Φ(t, s̄))],

π
∂

∂sy
(1− cos(yj) + (1 + cos(yj))[a

y + bysx − cysy])|yj=Φ(t,s̄),sx=sy=s̄

= −cyπ[1 + cos(Φ(t, s̄))],
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Thus the H functions of Equations (4.8) and (4.9) for this system are given by

Hxx(φ) =
bxπ

Tµx

∫ T

0

Z(t, s̄)[1 + cos(Φ(t, s̄))]f(t+ φ)dt,

Hxy(φ) = − c
xπ

Tµy

∫ T

0

Z(t, s̄)[1 + cos(Φ(t, s̄))]f(t+ φ)dt,

Hyx(φ) =
byπ

Tµx

∫ T

0

Z(t, s̄)[1 + cos(Φ(t, s̄))]f(t+ φ)dt,

Hyy(φ) = − c
yπ

Tµy

∫ T

0

Z(t, s̄)[1 + cos(Φ(t, s̄))]f(t+ φ)dt.

(4.17)

0 1 2 3
−2

0

2
Hxx

A

0 1 2 3
−2

0

2
Hxy

B

0 1 2 3

φ

−2

0

2
Hyx

C

0 1 2 3

φ

−2

0

2
Hyy

D

Figure 42: Example H-functions of the theta model. Panel A: Hxx. Panel B: Hxy. Panel

C: Hyx. Panel D: Hyy. In all panels, parameter values are ax = ay = 0.1, bx = by = 1,

cx = cy = 1.1, and µx = µy = 1.

We show examples of the H-functions in Figure 42. For clarity in the calculations to

follow, we define a new function Ĥjk in order to write the parameters explicitly.

bxĤxx(φ)/µx = Hxx(φ)

−cxĤxy(φ)/µy = Hxy(φ)

byĤyx(φ)/µx = Hyx(φ)

−cyĤyy(φ)/µy = Hyy(φ).
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Note that the slope of Ĥky is the opposite of the slope of Hky for k = x, y.

Using the tools developed up to this point, we can begin to explore the limitations of the

mean field description and test if our phase reduction successfully captures the spiking-level

synchronization. For a rudimentary demonstration of a mean field description that carries

no information about microscopic dynamics, we direct our attention to Figure 43.

In this figure, we simulate a small network of N = 2 excitatory and N = 2 inhibitory

theta neurons (for simplicity we define φx = θx2 − θx1 , φy = θy2 − θy1 , and φz = θy1 − θx1). In the

left column, panel A represents the dynamics of the mean field description overlaid on the

simulated synaptic variables plotted in gray. Panel C shows the synchronization properties

of the spiking model, and and panel E shows our proposed theory. The theory correctly

predicts synchronization of all oscillators. In the right column, panels B, D, and F show the

mean field model, spiking model, and proposed theory, respectively. All panels A–F use the

same parameters as in Figure 42, except for the right column (panels B, D, and F) where we

take µy = 1.4. The antiphase lines representing T x/2 (gray solid) and T y/2 (gray dashed)

are hard to distinguish because they happen to nearly coincide.

Strikingly, we observe changes in the microscopic synchronization despite virtually no

change in the mean field description. There is a slight quantitative change in the mean field

descriptions when µy changes from µy = 1 to µy = 1.4. In particular, when µy = 1, the fixed

point is an asymptotically stable node with real negative eigenvalues. When we increase µy

to µy = 1.4, the fixed point remains stable but becomes a spiral node with small imaginary

eigenvalues. Thus, the fixed point remains asymptotically stable and a numerical analysis

of the mean field does not reveal any bifurcation points. Moreover, prior knowledge of this

quantitative difference gives no indication with regards to the change in synchronization

properties.

4.3.2 Existence of Synchronous Solutions

The existence of synchronous solutions is straightforward to show. Generically, the syn-

chronous solution φxi = φyi = 0 for i = 2, . . . , N exists independent of φz (all right-hand-side

terms cancel with these values), even when the mean synaptic variables are slowly varying.
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Figure 43: Mean field and microscopic behavior with constant mean synapses. Panel A:

mean field synaptic variables (black) plotted on top of the simulated synaptic variables

(gray). The black star denotes a stable fixed point. Panel C: phase difference at the spiking

level in the full simulation. The estimated anti-phase value is shown in gray solid (T x/2)

and gray dashed (T y/2) (they happen to overlap substantially and are almost impossible to

distinguish). Panel E: phase difference using our proposed phase reduction. Parameters are

the same as in Figure 42 with µx = µy = 1 and ε = 0.01. In the right column (panels B, D,

and F), we increase µy = 1 to µy = 1.4 and plot data in the same order as panels A, C, and

E, respectively, .
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However, in this slowly varying case, there is synchrony within each excitatory or inhibitory

population, but not between populations – the variable φz undergoes a large phase drift.

Similar solutions are just as straightforward to show. For example, φxi = 0 (φyi =

0) for i = 1, . . . , N gives us dφxi /dτ = 0 (dφyi /dτ = 0) independent of the dynamics of

φyi (φxi ) and φz. Thus, it is possible for the excitatory (inhibitory) population to remain

synchronous despite a phase drift between populations and possibly asynchronous behavior

in the inhibitory (excitatory) population. By inspection, using Equations (4.10), (4.11), and

(4.12), we see that the same terms cancel. Thus, this behavior is not restricted to the theta

model and exist generically..

4.3.3 Existence and Stability of Phase-Locked Solutions (Fixed Mean)

We now determine the stability of a given phase-locked solution to Equations (4.10),(4.11),

and (4.12) in the case of a fixed mean. To this end, we begin with the most general case

of a generic phase-locked solution and construct the Jacobian matrix using the following

derivatives: [
∂

∂φx2
· · · ∂

∂φxN
,

∂

∂φy2
· · · ∂

∂φyN
,

∂

∂φz

]
.

First, consider the partial derivatives with respect to φxk, φ
y
k, and φz of the right hand side

of dφxi /dτ :

N
∂

∂φxk

dφxi
dτ

=
N∑
j=1

[
Hxx
φ (φxj − φxi )(δjk − δik)−Hxx

φ (φxj )δjk
]

+
N∑
j=1

Hxy
φ (φyj − φxi + φz)(−δik)

N
∂

∂φyk

dφxi
dτ

=
N∑
j=1

[
Hxy
φ (φyj − φxi + φz)δjk −Hxy

φ (φyj + φz)δjk
]

N
∂

∂φz
dφxi
dτ

=
N∑
j=1

[
Hxy
φ (φyj − φxi + φz)−Hxy

φ (φyj + φz)
]

(4.18)

The Kronecker delta functions are defined as

δij =

1, if i = j,

0, else,
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and Hφ denotes the derivative of H with respect to its independent variable. Next, the

partials with respect to φxk, φ
y
k, φ

z of the right hand side of dφyi /dτ :

N
∂

∂φxk

dφyi
dτ

=
N∑
j=1

[
Hyx
φ (φxj − φyi − φz)δjk −Hyx

φ (φxj − φz)δjk
]

N
∂

∂φyk

dφyi
dτ

=
N∑
j=1

Hyx
φ (φxj − φyi − φz)(−δik)

+
N∑
j=1

[
Hyy
φ (φyj − φyi )(δjk − δik)−Hyy

φ (φyj )δjk
]

N
∂

∂φzk

dφy

dτ
=

N∑
j=1

[
Hyx
φ (φxj − φyi − φz)(−1)−Hyx

φ (φxj − φz)(−1)
]

(4.19)

Finally, the partials with respect to φxk, φ
y
k, φ

z of the right hand side of dφz/dτ

N
∂

∂φxk

dφz

dτ
=

N∑
j=1

[
Hyx
φ (φxj − φz)δjk −Hxx

φ (φxj )δjk
]

N
∂

∂φyk

dφz

dτ
=

N∑
j=1

[
Hyy
φ (φyj )δjk −Hxy

φ (φyj + φz)δjk
]

N
∂

∂φzk

dφz

dτ
=

N∑
j=1

[
Hyx
φ (φxj − φz)(−1)−Hxy

φ (φxj + φz)
]
.

(4.20)

The synchronous solution, φyi = φxi = 0 is most straightforward to analyze. In this case,

all off-diagonal terms cancel except the last row, so the Jacobian matrix is lower-triangular

with diagonal entries

NJii = −bxĤxx
φ (0)/µx + cxĤxy

φ (0)/µy, i = 1, . . . , N − 1

NJii = −byĤyx
φ (0)/µx + cyĤyy

φ (0)/µy, i = N, . . . , 2N − 2

NJ2N−1,2N−1 = −byĤyx
φ (0)/µx + cxĤxy

φ (0)/µy.

(4.21)

These entries form the eigenvalues of the Jacobian matrix. We have seen in Figure 42

that Hkx(0) has negative slope for k = x, y (panels A,C) and Hky(0) has positive slope (and

hence negative slope for Ĥky(0)) for k = x, y (panels B,D). Then, for µy sufficiently large,

the negative contributions from functions Hky are small and the eigenvalues may become

positive, indicating a loss of stability to the synchronous solution. This loss of stability

confirms our observation in Figure 43.
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We found that non-synchronous fixed point attractors of this network take the form

(φx, 0, 0), or (φx, 0, φz). For the remainder of this subsection, we analyze the existence and

stability of fixed points starting with the synchronous solution φx = φy = φz = 0.

We can show that the bifurcation point occurs at µy = 1.1 by writing down the eigen-

values of this system (Equation (4.21) with N = 2):

λ1 =
[
−Hxx

φ (0)−Hxy
φ (0)

]
,

λ2 =
[
−Hyx

φ (0)−Hyy
φ (0)

]
,

λ3 =
[
−Hyx

φ (0)−Hxy
φ (0)

]
.

These H functions are identical except for the choice of parameters bx = by = 1, and

cx = cy = 1.1 (Equation (4.17)). By inspection, the eigenvalues are zero when when µx = 1

and µy = 1.1 indicating a change of stability at µy = 1.1. This change in stability is shown

in Figure 44. When the fixed point loses stability through a transcritical bifurcation, the

stable attractor becomes a fixed point of the form (φx, 0, 0), where φx 6= 0. For µy ≈ 1.4,

the stable solution approximately takes the form (−T/2, 0, 0), indicating that the excitatory

population is stable near anti-phase.

We now turn to the final stable branch, which takes the form (φx, 0, φz) (Figure 45).

In panel A, we show the φx coordinate value as a function of µy and panel B shows the

φz coordinate value as a function of µy. Initially, synchrony is stable, until the bifurcation

at µy = 1.1, which leads to a stable branch that asymptotically approaches anti-phase as

a function of µy, and an unstable branch at the origin. We used XPPAUTO to follow the

equilibria as a function of µy. There exist no other stable fixed points, concluding our

analysis of existence and stability in the case of the fixed mean.

4.3.4 Existence and Stability of Phase-Locked Solutions (Slowly Varying Mean)

With particular coupling parameter choices, the mean field undergoes a supercritical Hopf

bifurcation and gives rise to slow, stable oscillations (Figure 46A). This slowly varying mean

has the effect of forcing the excitatory population to spike at a different frequency from the

inhibitory population. The goal of this section is to analyze the existence and stability of

fixed points of the phase model in this case.
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Figure 44: Stability of the fixed point taking the form (φx, 0, 0). The solution φx = 0 is stable

when µy = 1, and becomes unstable as µy increases through µy = 1.1. When µy = 1.4, the

stable solution is of the form (−T/2, 0, 0) indicating anti-phase solutions are stable in the

excitatory population. The vertical red lines correspond to the two values of parameter µy

in Figure 43. The left line corresponds to µy = 1 and the left column (panels A,C,E) of

Figure 43. The right line corresponds to µy = 1.4 and the right column (panels B,D,F) of

Figure 43.
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Figure 45: Stability analysis of phase-locked solutions of the form (φx, 0, φz) using parameters

from Figures 43 and 42. Black dots and lines: stable fixed points. Red dots and lines:

unstable fixed points. A: x-coordinate values of fixed points. B: z-coordinate values of fixed

points.

129



5.0 5.2 5.4 5.6 5.8 6.0

µy

0.8

0.9

1.0

1.1

1.2

s̄
x HB

A Theta Model

22.0 22.5 23.0 23.5 24.0

µy

0.040

0.045

0.050

0.055

0.060

HB

B Traub+Ca, WB

Figure 46: Hopf bifurcations in the mean field. A: Supercritical Hopf bifurcation in the

mean field of the theta network Equations (4.15) and (4.16). Parameters ax = 0.5, bx =

7, cx = 6.5, ay = 1.1, by = 25, cy = 25.1, µx = 1. Black: stable fixed point. red solid: unstable

fixed point. Green: stable periodic solution. B: Supercritical Hopf bifurcation in the mean

field of the Traub+Ca and Wang-Buzsáki network. Parameters Ixx = 101.5µA/cm2, Ixy =

104µA/cm2, Iyx = 13µA/cm2, Iyy = 10.5µA/cm2, µx = 1ms

4.3.4.1 Hopf Bifurcation in the Slowly Varying Case Figure 47A shows slow, pe-

riodic behavior in the mean synaptic values. This periodic solution is a stable limit cycle

solution arising from a supercritical Hopf bifurcation. By using the mean field in Equations

(4.15) and (4.16), we show existence of of a Hopf bifurcation and its criticality numerically.

4.3.4.2 Phase Models Modulated by Slowly Varying Synapses Figure 47B shows

the results of the numerical simulation in terms of phase differences. Due to the slowly

varying synaptic variables, the period of the oscillators change (as shown by the dashed gray

and solid gray anti-phase lines). The excitatory population (pink) tends towards antiphase

and the inhibitory population (green) tends towards synchrony. The difference in periods of

the oscillators contributes to the phase drift (orange).

Figure 47C shows the results of the phase model simulation in terms of phase differences.

We see the same general trends: excitatory population to anti-phase (pink), inhibitory pop-

ulation to synchrony (green), and a phase drift between populations (orange).
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Figure 47: Numerics and theory for the theta model with slowly varying synapses. A: Mean

field solutions (solid lines) vs numerical synaptic variables (opaque lines). Inset: Example

of mean field solution plotted over the numerically simulated synaptic solutions. B: Theta

model simulation. C: Phase model simulation. Purple: φx = θx2 − θx1 . Green: φy = θy2 − θy1 .

Orange: φz = θy1 − θx1 . Gray solid and gray dashed lines denote antiphase values T x/2 and

T y/2 over time, respectively. Parameters as in Figure 46 and ε = 0.005.
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4.3.5 Theta Models with Input Heterogeneities

In this section, we consider the same theta neurons as above with N = 2 with an additional

input heterogeneity:

dxj
dt

= π(1− cos(xj) + (1 + cos(xj))[(a
x + εηxj ) + bxsx − cxsy]),

dyj
dt

= π(1− cos(yj) + (1 + cos(yj))[(a
y + εηyj ) + bysx − cysy]),

µx
dsx

dt
= ε

[
−sx +

1

N

∑
j

δ(xj − π)

]
,

µy
dsy

dt
= ε

[
−sy +

1

N

∑
j

δ(yj − π)

]
.

(4.22)

We place no restriction on the heterogeneities ηkj , so long as they are chosen such that εηkj

remains order ε. In this example, we choose four numbers [0.097, 0.43, 0.21, 0.089].

We show an example of a simulation in Figure 48.

In Figure 48A, the full network simulation of the mean field (transparent blue, red

labeled sx, sy) differs slightly in mean from the mean field approximation without input

heterogeneities (solid blue, red labeled s̄x, s̄y). In Figure 48B, the input heterogeneity results

in a phase drift in the excitatory population (pink). Figure 48C shows our proposed theory,

which accurately captures the transient dynamics as well as the phase drift in the excitatory

population.

4.3.6 Wang-Buzsáki and Traub with Calcium

We now repeat the analysis above using biophysically realistic models. In this section,

we consider the synchronization properties in two populations of excitatory and inhibitory

conductance-based models. The Excitatory population consists of the Traub model [89] with

calcium current, while the inhibitory population consists of the Wang Buzsáki model [92].

As in the previous section, we consider two cases. In the first case, the synaptic mean values

are fixed, and in the second case, the synaptic mean values are slowly varying.
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Figure 48: Effects of input heterogeneity. A: The full network simulation of the mean field

(transparent blue, red labeled sx, sy) and the mean field approximation without input het-

erogeneities (solid blue, red labeled s̄x, s̄y). B: Oscillator phase differences in the full network

simulation. C: Predicted oscillator phase differences in the reduced model. Parameter values

are the same as in Figure 42 and Figure 43, with µy = 1.5, ε = 0.01.
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The Traub model with calcium is defined by the system

ẋ =
d

dt


V

x

w

[Ca]

 =


(−Iionic + Iext)/C

ax(V )(1− x)− bx(V )x

(w∞(V )− w)/τw(V )

(−αICa − [Ca]/τCa)

 = Fx(x, Iext) (4.23)

where x represents the dynamics of gating variables h,m, and n. The ionic currents are

listed in Equation (C.1) of Appendix C.1.1.

The Wang-Buzsáki system is given by

ẏ =
d

dt

V
x

 =

−Iionic + Iext

φ(x∞ − x)/τx

 = Fy(y, Iext), (4.24)

where x represents the dynamics of gating variables h and n. The ionic currents are listed

in Equation (C.2) of Appendix C.1.1.

We introduce coupling through currents:

dxi
dt

= Fx(xi, I
x + Ixxsx − Ixysy),

dyi
dt

= Fy(yi, I
y + Iyxsx − Iyysy),

µx
dsx

dt
= ε

[
−sx +

1

N

N∑
j=1

δ(t− tj,x)

]
,

µy
dsy

dt
= ε

[
−sy +

1

N

N∑
j=1

δ(t− tj,y)

]
.

(4.25)

The terms Ixx, Ixy, Iyx, andIyy are constants with units of µA/cm2 that we modify through-

out this section.

Aside: While we also could include synaptic coupling using conductance-based synapses,

the mean field equations are more complex as they are not just functions of sums of excitatory

and inhibitory currents. Thus, we will use the simpler type of coupling shown in Equation

(4.25).

The synapses sx, sy (dimensionless) increment each time the voltage variable of the neural

models cross V = 0 from negative to positive. Unless otherwise stated, we choose s̄ = 0.05.
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The mean field dynamics obey Equation (4.5), where ωx is given by the frequency-input

current (FI) function shown by the black curve in Figure 41 and ωy is shown by the FI curve

given by the dashed curve in the same figure. We compute both curves numerically using

XPPAUTO.

This choice of coupling in Equation (4.25) results in scalar derivatives:

Fx
sx(Φx(t), s̄, s̄) = (Ixx, 0, 0, 0, 0, 0, 0)T

Fx
sy(Φx(t), s̄, s̄) = (−Ixy, 0, 0, 0, 0, 0, 0)T

Fy
sx(Φy(t), s̄, s̄) = (Iyx, 0, 0)T

Fy
sy(Φy(t), s̄, s̄) = (−Iyy, 0, 0)T

Thus the H functions of Equations (4.8) and (4.9) for this system are given by

Hxx(φ) =
Ixx

Tµx

∫ T

0

Zx(t, s̄)f(t+ φ)dt,

Hxy(φ) = − Ixy

Tµy

∫ T

0

Zx(t, s̄)f(t+ φ)dt,

Hyx(φ) =
Iyx

Tµx

∫ T

0

Zy(t, s̄)f(t+ φ)dt,

Hyy(φ) = − Iyy

Tµy

∫ T

0

Zy(t, s̄)f(t+ φ)dt.

(4.26)

We show plots of these H functions in Figure 49.

In Figure 50, we simulate 2 excitatory Traub with calcium conductance-based models

(Traub with calcium, Equation (4.23)), and 2 inhibitory conductance-based models (Wang-

Buzsáki, Equation (4.24)) with constant mean-field dynamics. All parameter values are the

same except the parameter µy = 1 (left column) and µy = 2.5 (right column).

We plot the mean field in panels A and B using the same scale to emphasize the qualita-

tive difference in the mean field description. The stability remains the same between the left

and right columns (negative real eigenvalues in both cases). The double-headed red arrow

indicates the magnitude of the perturbation off the fixed point. In both columns we choose

to perturb the sx variable by magnitude ε/4, where ε = 0.0025. Interestingly, this system

135



−0.4

−0.2

0.0

0.2

0.4

Hxx

A

−1.0

−0.5

0.0

0.5

1.0 Hxy

B

0 5 10 15 20

φ

−1.5

−1.0

−0.5

0.0

0.5

1.0 Hyx

C

0 5 10 15 20

φ

−1.0

−0.5

0.0

0.5

1.0

Hyy

D

Figure 49: The H functions of the Traub with calcium and Wang-Buzsáki network. A:

Hxx. B: Hxy. C: Hyx. D: Hyy. Parameter values Ixx = 10µA/cm2, Ixy = 14µA/cm2, Iyx =

13µA/cm2, Iyy = 10µA/cm2, µx = µy = 1ms.

exhibits similar features in the mean field description shown in Figure 43, and the micro-

scopic dynamics reach different steady-states despite no detectable changes to the stability

of the mean field model.

Panel C shows that the excitatory (φx, purple) and inhibitory populations (φy, green)

approach synchrony. In panel D, we re-initialize the simulation with the same initial con-

ditions for all variables with only one change in the synaptic time constant from µy = 1 to

µy = 2.4. The excitatory population reaches a non-synchronous steady-state phase locked

value, indicating nearly a quarter-period difference in spike times. Panels E and F show

that our theory correctly predicts the differing steady state dynamics in panels C and D,

respectively.

4.3.6.1 Existence and Stability of Phase-Locked Solutions (Fixed Mean) We

now analyze the phase locked solutions of this system in the case of constant-mean synapses.
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Figure 50: Mean field description and microscopic behavior with constant mean synapses. A:

mean synaptic variables (black). The star denotes a stable fixed point. C: phase difference at

the spiking level in the full conductance-based model simulation. The estimated half-period

is shown in gray solid (T x/2) and gray dashed (T y/2) (they happen to overlap substantially

and are almost impossible to distinguish). E: phase difference using our proposed phase

reduction. Parameters are the same as in Figure 49, and µx = µy = 1. In the right column,

we increase µy = 1 to µy = 2.5 and plot the same data in the same order with the same

initial conditions. Other parameters: ε = 0.0025, Ix = 6.74µA/cm2, Iy = 0.66µA/cm2.

137



As in the network of theta neurons, we use coupling parameters that lead to changes in the

synchronization properties of the oscillators as a function of µy, while the mean field remains

invariant. We show the existence and stability of phase locked solutions of Figure 50 in

Figure 51.
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Figure 51: Existence and stability of phase locked solutions in the Traub Wang-Buzsáki

network. Vertical red dotted lines denote the two parameter values corresponding to the

left and right columns of Figure 50. Black curves denote stable values and solid red curves

denote unstable values. A: Branches of φx fixed point values. B: Branches of φz fixed point

values. Generally, φy = 0 (data not shown). Note that for µy = 1, the only fixed point that

exists agrees with the steady-state in Figure 50. For µy = 2.4, the fixed point corresponding

to the upper stable branch of panel A and the upper stable branch of panel B coincides with

the right column of Figure 50. Parameter values are identical to Figure 50.

In Figure 51 we plot the value of each coordinate as a function of µy (φx in panel A and

φz in panel B). We do not show φy because φy = 0 for this parameter range. As expected, the

point (φx, φy, φz) ≈ (0, 0, 3T/4) is stable for µy = 1. As we increase µy, the system undergoes

a pitchfork bifurcation, resulting in two stable fixed points. The fixed point we see in Figure

50 corresponds to the upper branch of both panels, where (φx, φy, φz) ≈ (T/4, 0, 3T/4).

4.3.6.2 Phase Locked Solutions (Slowly Varying Mean) Finally, as in the theta

network, the mean field of the Traub+Ca and Wang-Buzsáki network may undergo a su-

percritical Hopf bifurcation (Figure 46B). In this section, we demonstrate that our theory

accurately predicts the phase locking properties in this case of a slowly varying mean (Figure
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52). We show the synaptic variables and mean field approximations in the top panel, the full

numerical simulation in the middle panel, and our proposed theory in the bottom panel. We

find that our theory correctly predicts the general trend of φx (pink) which tends towards

antiphase, and of φy (green) which remains close to its initial condition.
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Figure 52: Numerics and theory for the Wang-Buzsáki and Traub with calcium models with

nonconstant mean synapses. A: Mean field solutions (solid lines) vs numerical synaptic vari-

ables (opaque lines). Inset: Example of mean field solution plotted over the numerically

simulated synaptic solutions. B: Theta model simulation. C: Phase model simulation. Pa-

rameters Ixx = 101.5µA/cm2, Ixy = 104µA/cm2, Iyx = 13µA/cm2, Iyy = 10.5µA/cm2, µx =

1ms, µy = 24.79ms, ε = 0.00125.
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4.4 DISCUSSION

In the current study, we have shown that in an all-to-all, homogeneously coupled network

of heterogeneous oscillators, there are two cases of the mean synaptic values that make the

oscillators amenable to a phase reduction. In the first case, the mean synaptic values are

fixed and equal, or fixed and different up to a small difference of order ε. In the second

case, the mean synaptic values are slowly varying with small amplitude up to order ε. Using

neurophysiologically motivated models, we demonstrate that the phase reduction is accurate

for at least order 1/ε time and explore the existence and stability of phase locked solutions

in both cases.

The first case of fixed mean synapses follows the classic stability analysis of phase locked

states. However, our contribution is that with changes to the timescale of the inhibitory

synapse of the mean field description, we are able to predict different phase locked states

despite very little qualitative changes to the mean field. In the second case of variable mean

synapses, we are able to predict the long timescale synchronization properties of the networks

despite large phase drift between the oscillator populations. Moreover, our model reduction

shows explicitly that the large phase drift is due to the deviations of the mean synaptic

values from the fixed point in the mean field.

Our choice of coupling in the Traub, Wang-Buzsáki network also simplifies the analysis,

but we need not restrict the form of the input current. In fact, a biophysically realistic

synaptic input current of the form skg(V − V k), where g represents a conductance, V k the

reversal potential, and sk the synaptic variable, is well within the scope of this study. In this

case, we would add more complexity to the H functions in Equation (4.26) and in the mean

field equations, but the analysis remains otherwise unchanged.

The title of this dissertation involves the dimension reduction of neural models, thus a few

words on how this chapter fits in with the idea of dimension reductions are appropriate. In

this chapter, the dimension reduction is restricted entirely to the change of high-dimensional

conductance-based models to a single phase variable for each model. Thus, for large popu-

lation sizes, say N = 100, the phase Equations (4.8) and (4.9) become substantially more

complicated. So in contrast to Chapter 3, the dimension reduction here does not allow for an
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easier analysis of large populations, but only enables a rigorous study of small populations.

Particular elements and motives of the current study are similar to existing works. Early

studies in bridging spiking models to the mean field description use leaky integrate-and-fire

(LIF) models with Poisson statistics [4, 3]. Later studies derive additional statistics like the

coefficient of variation in the interspike interval [79]. However, deriving equations measuring

the degree of synchrony in a population of neurons (the order parameter [54]) is more recent.

This reduction was first shown in [66], where the authors use what is now called the Ott-

Antonsen ansatz to reduce an infinite number of Kuramoto oscillators into a simple pair of

differential equations for the order parameter.

In [63], the authors derive a pair of ordinary differential equations for other macroscopic

observables like the mean membrane potential and the firing rate by starting at the spiking

level. They then show that the network is also amenable to the order parameter reduc-

tion using the Ott-Antonsen ansatz. Thus, it is possible to derive a complementary set of

equations describing the mean field activity and the associated degree of synchronization.

This derivation has also been applied to theta neurons in [16], where the authors derive a

complementary set of ordinary differential equations describing the population firing rate

and the degree of synchrony.

The excitatory-inhibitory network structure has also been studied previously. In [80],

Roulet and Mindlin use the Ott-Antonsen ansatz to derive low dimensional differential equa-

tions for the order parameters of networks of excitatory and inhibitory Alder units:

θ̇i = ωi − cos θi + I(θj, θ̃j),

˙̃θi = ω̃i − cos θ̃i + Ĩ(θj, θ̃j),

where the untilded variables refer to units in the excitatory population and the tilded vari-

ables refer to units in the inhibitory population. The coupling functions are defined as

I(θj, θ̃j) =
kE
N

N∑
j=1

(1− cos θj)−
kI

Ñ

Ñ∑
j=1

(1− cos θ̃j),

where k, k̃ > 0 denote the coupling strengths, N and Ñ denote the number of neurons in

each of the two populations.
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Roulet and Mindlin then derive low dimensional differential equations for the order

parameters of excitatory and inhibitory theta models:

θ̇i = 1− cos θi + (1 + cos(θi))[ηi + I(θj, θ̃j)],

˙̃θi = 1− cos θ̃i + (1 + cos θ̃i))[η̃i + Ĩ(θj, θ̃j)],

with the same coupling functions as above. The equations are similar to the theta model

we consider in this chapter, except that the mean of the input current is slaved to the fixed

parameters ηi and thus the mean can not drift over time.

In [85], the authors consider the effects of time-varying coupling on the synchroniza-

tion properties of a network of Kuramoto oscillators. In particular, they show that with

sufficiently fast binary switching of coupling strengths, the network exhibits behavior char-

acteristic of a static network. In contrast, our results apply only to slow, continuous changes

in input current.

Another aspect of the our results that have been studied in the past includes pulse

coupled oscillators. Pazó and Montbrió, in [73], use the Winfree model with a smooth pulse-

like coupling of the form P (x) = an(1 + cos(x))n. Combined with the Ott-Antonsen ansatz,

they derive a pair of differential equations for the order parameter. In [13], the authors

consider a network of theta models with similar pulse-like coupling and derive the order

parameter using the Ott-Antonsen ansatz. In addition, they relax the all-to-all coupling

hypothesis and apply the Ott-Antonsen ansatz to a randomly generated network given an

arbitrary degree distribution. General network structure satisfying classic weak coupling

assumptions are studied in [52]. In [59], the author considers all-to-all pulse-like coupling of

theta neurons with and without synaptic delay and derives the order parameter using the

Watanabe-Strogatz ansatz [94, 93].

Generalizing the synaptic weights is also a natural next step of the current study. In
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this case, the system becomes

dxi
dt

= Fx

(
xi,

N∑
j=1

wxxij s
x
j ,

N∑
j=1

wxyij s
y
j

)
,

dyi
dt

= Fy

(
yi,

N∑
j=1

wyxij s
x
j ,

N∑
j=1

wyyij s
y
j

)
,

µxi
dsxi
dt

= ε [−sxi + δ(t− tj,x)] ,

µyi
dsyi
dt

= ε [−syi + δ(t− tj,y)] , i = 1 . . . , N.

To ensure that all neurons have the same firing rate when the synaptic variables are constant

and identical, we require that

∑
j

wjkij = w̄jk, i = 1, . . . , N, for j, k = x, y,

where w̄jk is a constant for each j, k = x, y. We are then free to choose coupling types of

the form Wij = K(|i− j|∆x), where K is a typical even kernel, like a Gaussian or difference

of Gaussians, and ∆x = 1/N . This type of modification brings us closer to classic spatially

distributed neural field models and the resulting system remains amenable to the methods

of the current study. This direction also ties in with [58, 57], where bump-type solutions are

shown to exist a priori in large networks of theta models. Our method could show the same

results with more general models.

The Ott-Antonsen ansatz is an undoubtedly powerful tool for understanding oscillator

models. However, it has some limitations which the current chapter addresses directly.

Our proposed theory offers a general dimension reduction of a finite number of N - and

M -dimensional coupled oscillators. While our theory tolerates only small heterogeneities,

we place no restrictions on how the heterogeneities are distributed. However, our theory is

restrictive in that the interactions must be on a slow timescale.

Another natural next step to consider involves the effects of noise on synchronization.

In [64], where a network of these oscillators are driven by a common Gaussian noise signal,

the authors analytically show noise-induced synchronization, and suggest that weak common

noise generally promotes synchronization of weakly coupled oscillators. We have shown to a
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limited extent the effects of noise by introducing input heterogeneities drawn from a uniform

distribution. However, analyzing the effects of a single time-dependent noisy input signal in

our framework requires different techniques beyond the scope of this chapter, and warrants

close study in its own right.
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5.0 CONCLUSION

In this dissertation, we applied the method of multiple timescales to three spatial scales:

microscopic single-neuron, macroscopic infinite-neuron continuum limit, and an in-between

scale of a finite neuron population. In each problem we introduced slow phase shifts θ(τ) rep-

resenting the slow timescale dynamics, and used the Fredholm alternative to derive dynamics

for θ(τ), effectively reducing the dynamics of each system of scalar variables. Remarkably,

we found that the phase variables reproduce the dynamics of the original system for at least

order O(1/ε) time, and found the phase dynamics much more amenable to standard ana-

lytical and numerical dynamical systems tools. Thus, we gained much more insight into the

dynamics of the original system by rigorously and comprehensively analyzing the dynamics

of the phase dynamics.

In Chapter 2, we not only recapitulated the results in [55, 56], where the phase response

properties are shown to depend on both the instantaneous frequency of the oscillator and the

rate of change of the slowly varying parameter, but extended their results to weakly coupled

oscillators with a slowly varying parameter. Such a case is plausible in the cortex when a

slowly varying concentration of acetylcholine substantially modulates the synchronization

properties of cortical oscillators [86, 87]. Our result applies to a general set of models, and

we step through several examples starting with the analytically tractable Lambda-Omega

system [51], to the neurophysiologically motivated Traub model with adaptation [91]. In

each example we showed that our theory accurately predicts oscillator phase differences over

long times when the slowly varying parameter is periodic, quasi-periodic, and stochastic

(in the stochastic case, the parameter is taken to be an Ornstein-Uhlenbeck process where

the drift is slow, thus the stochastic process is effectively slow). In our final example, we

demonstrated an accurate characterization of synchrony in a population of 51 neurons with
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adaptation.

In Chapter 3, we reduced the dynamics of a neural field model to two scalar delay

differential equations given that the input and adaptation are weak, and that adaptation is

slow. The reduction allowed an exact analysis of a neural field model with a general even

kernel and general smooth firing rate function, generalizing existing results that either fix

a particular kernel or take the high-gain limit of the firing rate function. Using our scalar

reduction, we demonstrated its ability to accurately reproduce the many spatio-temporal

dynamics of the original system (standing, constant-velocity, sloshing, and chaotic bumps)

on the ring and torus, then analytically determined the existence and stability of many of

the spatio-temporal dynamics. The weak input and weak adaptation are restrictive because

many cortical dynamics are influenced by strong input and adaptation. However, our analysis

serves as a strong starting point for future studies with greater parameter values.

In Chapter, 4, we derived a set of phase equations for finite populations of inhibitory and

excitatory oscillators given that the global synaptic variables are slowly varying. As in [81],

we showed that strong slow synapses can be rewritten as weak and fast coupling, making the

original system amenable to classic phase reduction methods. We derived phase equations

with the mean synaptic variables as exogenous parameters, which allowed us to determine

spiking-level synchrony given the mean field synaptic dynamics. We demonstrated through

two examples: a network of two inhibitory and two excitatory theta neurons, and a network

of two inhibitory Wang-Buzsáki and two excitatory Traub with calcium models. In each

example, we found that it is possible for the synaptic dynamics to change very little, but for

the spiking dynamics to change nontrivially. We were also able to accurately predict phase

differences with slowly varying oscillating mean synapses. In this case, the difference in the

mean synaptic values resulted in large frequency differences of the populations. In the phase

reduction, the exogenous mean synaptic term faithfully captured and reproduced the phase

drift.

146



APPENDIX A

WEAKLY COUPLED OSCILLATORS IN A SLOWLY VARYING WORLD

A.1 TRAUB MODEL WITH ADAPTATION

All other equations for the Traub model are defined as follows

tw(V ) = τw/(3.3 exp((V − Vwt)/20) + exp(−(V − Vwt)/20))

w∞(V ) = 1/(1 + exp(−(V − Vwt)/10))

am(V ) = 0.32(54 + V )/(1− exp(−(V + 54)/4))

bm(V ) = 0.28(V + 27)/(exp((V + 27)/5)− 1)

ah(V ) = 0.128 exp(−(V − Vhn)/18)

bh(V ) = 4/(1 + exp(−(V + 27)/5))

an(V ) = 0.032(V + 52)/(1− exp(−(V + 52)/5))

bn(V ) = 0.5 exp(−(57 + V )/40)

α(V ) = a0/(1 + exp(−(V − Vt)/Vs))

A.1.1 Fourier Coefficients

The Fourier coefficients used in the approximation are shown in Table 2
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Table 1: Traub parameter values

Parameter Value

C 1µF/cm2

g 5mS/cm2

ε 0.0025

f 0.5(1000ε
2π

Hz)

I 3µA/cm2

Vwt −35mV

τw 100ms

Ek −100mV

ENa 50mV

El −67mV

gl 0.2mS/cm2

gk 80mS/cm2

gNa 100mS/cm2

Vhn −50mV

a0 4

τ 4ms

Vt 0mV

Vs 5mV

Esyn 0mV

q0 0.3mS/cm2

q1 0.2mS/cm2
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Table 2: Traub Fourier Coefficients

Cosine Sine

a0(0.1) = 19.6011939665 -

a0(0.3) = 17.4255017198 -

a1(0.1) = −3.32476526025 b1(0.1) = 0.721387113706

a1(0.3) = −6.97305767558 b1(0.3) = −1.5028098729

a2(0.1) = −0.255371105623 b2(0.1) = 0.738312597998

a2(0.3)− 0.83690237427 b2(0.3) = 1.03494013487
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APPENDIX B

SCALAR REDUCTION OF A NEURAL FIELD WITH SPIKE FREQUENCY

ADAPTATION

B.1 NORMAL FORM FOR THE HOPF BIFURCATION ON THE RING

Recall that we analyze the bifurcation to sloshing pulses for the general integral equation,

dθ

dτ
= −qJ(θ)− g

∫ ∞
0

e−sH(θ(τ − s)− θ(τ)) ds (B.1)

as g increases. For simplicity, we assume the expansions

J(θ) = θ + j3θ
3 + . . .

H(θ) = θ + h3θ
3 + . . . ,

and q > 0. Based on the eigenvalue equation,

λ2 + (1 + q − g)λ+ q = 0

we expect a Hopf bifurcation to occur.

To analyze the Hopf bifurcation, we use a multiple time scale expansion. We assume

that θ(τ) is a function of a “fast” time ζ = τ and a “slow” time ξ = δ2τ where δ measures

the amplitude of the bifurcating solution. As the nonlinearities are all odd, we can assume

that

g = g0 + δ2g2, θ = δθ1(ζ, ξ) + δ3θ3(ζ, ξ)
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to order δ3. We develop a perturbation expansion to obtain the normal form. Before contin-

uing, we need to briefly describe how the integral equation gets expanded in multiple scales.

If f(ζ, ξ) is a function of the fast and slow time-like variable, then, clearly

df

dτ
=
∂f

∂ζ
+ δ2∂f

∂ξ

and ∫ ∞
0

e−sf(τ − s) ds =

∫ ∞
0

e−sf(ζ − s, ξ − δ2s) ds.

We expand this expression to order δ2 to get:

∫ ∞
0

e−sf(τ − s) ds ≈
∫ ∞

0

e−sf(ζ − s, ξ) ds− δ2

∫ ∞
0

se−s
∂f(ζ − s, ξ)

∂ξ
ds. (B.2)

Let

(Lu)(ζ) :=
∂u

∂ζ
+ qu+ g0

∫ ∞
0

e−s[u(ζ − s)− u(ζ)] ds.

By our choice of g0, L has a nullspace e±iωζ and since it is a scalar, so does the adjoint

operator under the usual inner product

〈u, v〉 :=

∫ 2π/ω

0

ū(s)v(s) ds.

We plug in all the expansions and find to first order that

θ1 = z(ξ)eiωζ + c.c

where z(ξ) is a complex function of ξ and c.c means complex conjugates. Our goal is to

derive equations for z. To cubic order, we obtain:

(Lθ3)(ζ) = zξe
iωζ

(
−1 +

g0

1 + 2iω − ω2

)
+ c.c

+ g2ze
iωζ iω

1 + iω
+ c.c

+−qj3
[
zeiωζ + z̄e−iωζ

]3
+−gh3

∫ ∞
0

[
z(ξ)eiωζ(e−iωs − 1) + z̄(ξ)e−iωζ(eiωs − 1)

]3
ds.
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The first line comes from applying equation (B.2). Taking the inner product of this equation

with exp(iωζ) (essentially, the Fredholm alternative), yields the equation for z(ξ):

α
dz

dξ
= z[γ̂0 + γ̂3|z|2] (B.3)

where

α = 1− g0

1 + 2iω − ω2
=

2

1 + q
(q +

√
qi)

γ̂0 = g2
iω

1 + iω
=

g2

1 + q
(q +

√
qi)

γ̂3 =
3q

4q + 1
[[q(12h3 − 4j3)− j3] + i18h3

√
q] .

B.2 COMPUTATION OF FUNCTIONS HI AND JI

To numerically integrate the phase models on the ring or torus, we require an approximation

to the functions Hi, and Ji. These functions depend on and use lookup tables for the

steady state bump u0 (u0ss), the derivative of the firing rate evaluated at the steady state

bump f ′(u0) (df u0b), and the partial derivatives of the steady state bump, ∂u0/∂x, ∂u0/∂y

(ux,uy). On the toroidal domain, each lookup table has N × N entries, where for the

coefficients below, we choose N = 64.

To compute Hi in Equation (3.9),we use the following procedure

H1 = zeros(N,N)

H2 = zeros(N,N)

for i=1:N

for j=1:N

temp1 = 0

temp2 = 0

for n=1:N

for m=1:N

xn = mod(n+i+N/2,N)
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xm = mod(m+j+N/2,N)

temp1+=ux[n,m]*df_u0b[n,m]*u0ss[xn,xm]

temp2+=uy[n,m]*df_u0b[n,m]*u0ss[xn,xm]

end

end

H1[i,j] = temp1

H2[i,j] = temp2

end

end

H1 *= (2*pi)^2/N^2

H2 *= (2*pi)^2/N^2

To compute Ji in Equation (3.9), we use the following procedure

J1 = zeros(N,N)

J2 = zeros(N,N)

for i=1:N

for j=1:N

temp1 = 0

temp2 = 0

for n=1:N

for m=1:N

xn = mod(n+i+N/2,N)

xm = mod(m+j+N/2,N)

temp1+=ux[xi,xj]*df_u0b[xn,xm]*I[n,m]

temp2+=uy[xi,xj]*df_u0b[xn,xm]*I[n,m]

end

end

J1[i,j] = temp1

J2[i,j] = temp2

end
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end

J1 *= (2*pi)^2/N^2

J2 *= (2*pi)^2/N^2

On the torus, taking the difference Ji − (−Hi) results in a negligible error, revealing

that Ji = −Hi. Thus, for all phase computations involving Ji, we use the same Fourier

approximations for Hi and Ji.

On the ring, the computations are virtually identical with the obvious exception of array

shapes.

B.2.1 Fourier Approximations

After creating the lookup tables H1,H2, we perform a Fourier approximation to make numer-

ical integration easier. The following function and corresponding coefficients and frequencies

(Table 3) provide an excellent approximation to the lookup tables H1,H2. A basic error

analysis shows that the supremum norm difference between the lookup tables H1,H2 and

their Fourier approximations,H1, H2, is ‖H1−H1‖∞ ≈ 3.354e−7.

H1(x, y) = −
26∑
k=1

ak
N2

sin(xnk + ymk). (B.4)

The coefficients in Table 3 are computed using Python with the numerics package Numpy

by taking the Fourier transform of the lookup tables H1,H2.

B.3 NUMERICAL INTEGRATION

In this section, we detail the various numerical methods used to evaluate the many integro-

delay-differential equations of this chapter.

154



Table 3: Fourier Coefficients of H1 for N = 64. The maximum pointwise difference between

this approximation of H1 and the original H1 is 3.53733478176e-07

k ak (nk,mk) k ak (nk,mk)

0 -0.299041640592 (1,0) 16 8.78193375764e-06 (-2,2)

1 -0.0123427222227 (2,0) 17 0.00134078962566 (-1,2)

2 -2.92404662557e-07 (3,0) 18 -0.00134078962566 (1,-2)

3 2.92404662711e-07 (-3,0) 19 -8.78193375764e-06 (2,-2)

4 0.0123427222227 (-2,0) 20 -1.40550932907e-07 (3,-2)

5 0.299041640592 (-1,0) 21 1.4055093291e-07 (-3,-2)

6 -0.110662059947 (1,1) 22 8.78193375763e-06 (-2,-2)

7 -0.00255677958311 (2,1) 23 0.00134078962566 (-1,-2)

8 -1.30119169782e-07 (3,1) 24 -0.110662059947 (1,-1)

9 1.30119169839e-07 (-3,1) 25 -0.00255677958311 (2,-1)

10 0.00255677958311 (-2,1) 26 -1.30119169783e-07 (3,-1)

11 0.110662059947 (-1,1) 27 1.30119169839e-07 (-3,-1)

12 -0.00134078962566 (1,2) 28 0.00255677958311 (-2,-1)

13 -8.78193375763e-06 (2,2) 29 0.110662059947 (-1,-1)

14 -1.40550932909e-07 (3,2)

15 1.40550932908e-07 (-3,2)
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Table 4: Fourier Coefficients of the steady-state coefficients. Plotting u00 + 2u10 cos(x) +

2u01 cos(y)+4u11 cos(x) cos(y) gives a reasonable approximation to the numerically computed

steady-state bump solution.

k uk (nk,mk)

0 -2.17382490474 (0, 0)

1 -0.74563470929 (0, 1)

5 -0.74563470929 (1, 0)

6 0.338867473649 (1, 1)

7 0.340507108446 (1, -1)

10 -0.74563470929 (-1, 0)

11 0.340507108446 (-1, 1)

12 0.338867473649 (-1, -1)

Table 5: Fourier Coefficients of the kernel. Plotting k00 + 2k10 cos(x) + 2k01 cos(y) +

4k11 cos(x) cos(y) gives a reasonable approximation to the original periodix kernel.

k kk (nk,mk)

0 -0.473945684407 (0, 0)

1 0.19095061386 (0, 1)

4 0.19095061386 (0, -1)

5 0.19095061386 (1, 0)

6 0.108965377668 (1, 1)

7 0.111033925698 (1, -1)

10 0.19095061386 (-1, 0)

11 0.111033925698 (-1, 1)

12 0.108965377668 (-1, -1)
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B.3.1 Truncated Neural Field Model on the Torus

The integration of Equation (3.22) requires the approximation of several double integrals. In

the interest of reducing computation time, we use Riemann integrals and a relatively coarse

discretization of the spatial domain. For example, for a given time t, the coefficient p10(t) is

approximated as

p10(t) ≈
N∑
n=1

N∑
m=1

cos(ym)f(u(xn, ym, t))
(2π)2

N2
.

Because a linear increase in N leads to a quadratic increase in the total number of operations,

we keep N = 100, which is an acceptable compromise between speed and accuracy for this

problem. All other double sums that appear in pij, rij, and si are computed this way.

When computing the bifurcation diagram using this system, we use XPPAUTO and the

numerical options shown in Table 6. The most important options are Ntst and Dsmin. If

Ntst is less than 1000, XPPAUTO is unreliable in determining the stability of periodic solutions.

If Dsmin is too large, XPPAUTO will skip bifurcation points.

B.3.2 Delay Integro-Differential Equations

We implement the right hand side of the integro-differential in Equation (3.23) as

f


tk

~xM

~yM

 =

(
−g
(
M−1∑
n=0

e−ndtH1[xk−n − xk, yk−n − yk]
)
dt+ qJ1(xk, yk)

)

h


tk

~xM

~yM

 =

(
−g
(
M−1∑
n=0

e−ndtH2[xk−n − xk, yk−n − yk]
)
dt+ qJ2(xk, yk)

)
,

where dt is the time step and

~xM =


xk
...

xk−(M−1)

 , ~yM =


yk
...

yk−(M−1)
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Table 6: XPPAUTO parameters for the bifurcation diagram Figure 28. XPPAUTO version 8 has

a third column of numerics options, which we left at default values.

AUTO Option Value

Ntst 1000

Nmax 200

NPr 2

Ds 0.01

Dsmin 0.0001

Ncol 4

EPSL 0.0001

Dsmax 0.1

Par Min 0

Par Max 5

Norm Min 0

Norm Max 1000

EPSU 0.0001

EPSS 0.0001
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are the arrays containing solution values for M previous time steps. The functions Hi and

Ji are either the accurate Fourier approximation (Equations (3.24),(3.25)), or the truncated

Fourier series (Equation (3.26)). The time step dt is the same as the discretization of the

integral.

The algorithm is a straightforward Euler method. For a given time step i,

th1[i+1] = th1[i] + dt*f(t[i],th1[i],..,th1[i-(M-1)],

th2[i],..,th2[i-(M-1)])

th2[i+1] = th2[i] + dt*h(t[i],th1[i],..,th1[i-(M-1)],

th2[i],..,th2[i-(M-1)])

The initial condition for this algorithm requires an array of M time steps. If the parameters

are chosen such that a limit cycle exists, then we initialize in an arc:

r0 = 1

n0 = linspace(0,-.01,M)

for k = 0:M-1

th1[k] = r0*cos(n0[k])

th2[k] = r0*sin(n0[k]).

If the parameters are chosen such that a constant-velocity bump exists, then we initialize in

a line:

x_line = linspace(0,1,M)

y_line = linspace(2,3,M)

for k = 0:M-1

th1[k] = x[k]

th2[k] = y[k].

When plotting solutions, we disregard at least the first M entries of the solution vector.

159



B.4 SCALAR REDUCTION OF NEURAL FIELDS WITH OTHER

SPATIO-TEMPORAL DYNAMICS

The method of multiple timescales does not depend on the spato-temporal dynamics of just

bump solutions. In this section, we detail an extension of the existing theory in Chapter 3

to the case of slowly traveling waves.

The neural field we consider in this appendix is defined as

∂u(x, t)

∂t
= −u(x, t) +

∫
Ω

K(x− y)f(u(y, t)− α) dy (B.5)

+ ε [qI(x + Ωεt)− gz(x, t)] ,

∂z(x, t)

∂t
= εβ[−z(x, t) + u(x, t)], (B.6)

where the parameter ε is small, 0 < ε� 1, and x,y ∈ Rn. For n = 2, the kernel function K

is an even function in the sense that, K(−x, y) = K(x,−y) = K(x, y) and normalized such

that ∫
Ω

K(x)dx = 1.

The parameters q, g, α, β are constants. For convenience, we will denote the domain Ω = Rm,

with m = 1, 2. Thus in one-dimension the domain is the real line, and in two-dimensions

the real plane. The variable z(x, t) represents linear adaptation [76] and I(x, t) an possibly

time-varying external input to the network.

In the simplest case, we define I(x, t) it to be strictly monotonic, I(−∞) = 0, I(∞) = 1,

and 0 ≤ I(x, t) ≤ 1 for all x ∈ Rn and all t ∈ R. However, the input current does not have

to take this form, so long as its values are order 1. Generally, we assume the function f is

sigmoidal and smooth.

Our goal in this appendix is to analyze Equations (B.5),(B.6) when ε is small. When

ε = 0, there is a stable attracting “wave”, u0(x, t), in the scalar neural field (B.5). If we

carefully choose the threshold value α, the wave has zero velocity, which we denote without

the time dependence, u0(x). The wave solution satisfies

u0(x) =

∫
Ω

K(x− y)f(u0(y)− α0)dy,

160



where u0 is nonconstant and monotonic. The standing and traveling wave solutions we

consider are monotonic such that for some vector y on a line L in the plane, u(x) → 0 for

all large x,y s.t. 〈x,y〉 > 0 and u(x)→ 1 for all large x,y s.t. 〈x,y〉 < 0 that is positioned

such that its threshold crossing is at x = 0.

For ε nonzero, we write the threshold α as α = α0 + εα1, where α0 is the standing wave

value, and α1 is the perturbation away from this balanced state. Remarkably, the scalar

reduction in this case is nearly identical to [70].

B.4.1 Derivation of the Phase Equation for Slowly Traveling Waves

We start with Equations (B.5),(B.6). Let τ = εt be a slow timescale and assume that both

z and u depend only on (x, τ). In this case, we can integrate equation (B.6) to obtain:

z(x, τ) = z(x, 0)e−βτ + β

∫ τ

0

e−β(τ−s)u(x, s) ds.

Since we are mainly interested in long term behavior, we can ignore the first exponentially

decaying term. With these assumptions, we obtain the following scalar integro-differential

equation:

ε
∂u(x, τ)

∂τ
= −u(x, τ) +

∫
Ω

K(x− y)f(u(y, τ)− α0) dy

+ ε [qI(x + Ωεt)

− α1

∫
Ω

K(x− y)f ′(u(y, τ)− α0) dy

−gβ
∫ τ

0

e−β(τ−s)u(x, s) ds

]
.

(B.7)

We will assume u(x, τ) = U(x, τ, ε) and expand U as a power series in ε to get an approximate

solution. Thus,

U(x, τ, ε) = U0(x, τ) + εU1(x, τ) +O(ε2).

Substituting this power series into (B.7), we get (with a bit of re-arrangement):

0 = −U0(x, τ) +

∫
Ω

K(x− y)f(U0(y, τ)− α0)dy (B.8)

(LU1)(x, τ) =
∂U0(x, τ)

∂τ
−R1(x, τ), (B.9)
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where

(Lv)(x, τ) := −v(x, τ) +

∫
Ω

K(x− y)f ′(U0(y, τ)− α0)v(y, τ) dy,

and

R1(x, τ) = qI(x)− α1

∫
Ω

K(x− y)f ′(U0(y, τ)− α0) dy

− gβ
∫ τ

0

e−β(τ−s)U0(x, s) ds

The equation for U0(x, τ) is the equation for the standing wave solution and since it is

translation invariant, we see that

U0(x, τ) = u0(x + θ(τ))

where θ(τ) is a τ−dependent phase shift of the wavefront. Our goal, then is to determine

the dynamics of θ(τ).

Before continuing with the perturbation calculation, we establish a few preliminaries.

We define the compact linear operator

(L0v)(x) := −v(x) +

∫
Ω

K(x− y)f ′(u0(y)− α0)v(y) dy

and establish several properties of it. Recall that the bump, u0(x) satisfies

−u0(x) +

∫
Ω

K(x− y)f(u0(y)− α0) dy = 0.

By making a change of variables and noting that all functions are periodic in x (that is,

periodic in each of the components of x), then u0(x) satisfies

−u0(x) +

∫
Ω

K(y)f(u0(x− y)− α0) dy = 0. (B.10)

Recalling that the domain is Ω = Rm, with m = 1, 2, we center u0 at the origin. Thus, u0(x)

is an even periodic function of x, component-wise. Let ∂iu(x) denote the partial derivative

of u(x) along the xi direction where x = (x1, x2). If we differentiate (B.10) along one of the

axes, we see that

−∂iu0(x) +

∫
Ω

K(y)f ′(u0(x− y)− α0)∂iu0(x− y) dy = 0.
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and changing variables again, we rewrite this as

−∂iu0(x) +

∫
Ω

K(x− y)f ′(u0(y)− α0)∂iu0(y) dy = 0, (B.11)

so we see that L0∂iu0(x) = 0. In other words, the linear operator, L0 has an m−dimensional

nullspace spanned by the principle directional derivatives of u0(x). With the natural inner

product

〈u(x), v(x)〉 =

∫
Ω

u(x)v(x) dx

the operator L0 has an adjoint

(L∗v)(x) = −v(x) + f ′(u0(x)− α0)

∫
Ω

K(x− y)v(y) dy.

By multiplying equation (B.11) by f ′(u0(x)−α0), we see that the nullspace of L∗ is spanned

by v∗i (x) = f ′(u0(x) − α0)∂iu0(x). Finally, the Fredholm alternative holds for L0. That is,

for any continuous bounded function b(x),

(L0v)(x) = b(x)

has a bounded solution if and only if

〈v∗i (x), b(x)〉 = 0

for i = 1, . . . ,m [47].

With these technical issues aside, we turn to equation (3.5), which we can rewrite as

(LU1)(x, τ) = (∂1u0(x + θ(τ)), ∂2u0(x + θ(τ))) · dθ(τ)

dτ
−R1(x, τ)

Writing θ(τ) = (θ1(τ), θ2(τ)) and applying the m conditions for the Fredholm alternative,

we arrive at
dθ

dτ
= M−1R (B.12)

where dθ/dτ =
(
dθ1
dτ
, dθ2
dτ
, . . . , dθn

dτ

)T
, the ith coordinate of R = (R1, R2, . . . , Rn)T is

Ri = qJi(θ, τ)− α1Di +Wi − gβ
∫ τ

0

e−β(τ−s)Hi(θ(s)− θ(τ))ds,
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the (i, j)th coordinate of M is

Mij = 〈v∗i (x), ∂ju0(x)〉,

and

Ji(θ, τ) =

∫
Ω

f ′(u0(x + θ)− α0)∂iu0(x + θ)I(x + Ωτ) dx,

Di =

∫
Ω

f ′(u0(x)− α0)∂iu0(x)

∫
Ω

K(x− y)f ′(u0(y)− α0) dy dx,

Hi(θ) =

∫
Ω

f ′(u0(x)− α0)∂iu0(x)u0(x + θ) dx.

Because the standing wave solution u0 is not even, we are unable to directly simplify the

matrix M to a diagonal matrix as in ympgbe2.

B.4.2 One-Dimensional Domain

In this section, we restrict our attention to the one-dimensional domain. Here, the phase

equation is one scalar differential equation,

dθ

dτ
= qJ(θ)− α1D − gβ

∫ τ

0

e−β(τ−s)H(θ(s)− θ(τ))ds,

where J , D, and H are as in the n-dimensional case above, but the partial derivatives are

now regular derivatives.

B.4.2.1 Classic Traveling Wave Consider the phase equation (B.12), with no hetero-

geneities, and g = α0 = 0. Then we are left with

dθ

dτ
= α1D. (B.13)

Note that if the input current is uniform, the input current appears as a constant term on

the right hand side of the phase equation. The result is the same.
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B.4.2.2 Sloshing Solutions Suppose that a fixed point exists at θ = θ∗ for g, q, α1 > 0

and let θ(τ) = θ∗ + δψ(τ). To lowest order, the fixed point θ∗ satisfies

0 = qJ(θ∗)− α1D − gH(θ∗).

The order δ terms determine stability:

λ = qJ ′(θ∗) + gH ′(θ∗)

[
λ

1 + λ

]
.

Solving for λ yields

2λ = −(1− qJ ′(θ∗))±
√

(1− qJ ′(θ∗))2 − 4(−qJ ′(θ∗)− gH ′(θ∗)).

For a Hopf bifurcation to occur, we require that 1− qJ ′(θ∗) = 0 and

0 < 4(−qJ ′(θ∗)− gH ′(θ∗)).

Generally, H ′(θ), D′(θ) > 0 and J ′(θ) < 0, thus for appropriate choices of q, α1, and g, a

Hopf bifurcation is possible.
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APPENDIX C

A MULTIPLE TIMESCALES APPROACH TO BRIDGING SPIKING- AND

POPULATION-LEVEL DYNAMICS

C.1 MODEL EQUATIONS AND PARAMETERS

C.1.1 Traub With Calcium

ẋ =
d

dt


V

x

w

[Ca]

 =


(−Iionic + Iext)/C

ax(V )(1− x)− bx(V )x

(w∞(V )− w)/τw(V )

(−αICa − [Ca]/τCa)

 = Fx(x, Iext)

where x represents the dynamics of gating variables h,m, and n, and

Iionic = INa + IK + ICa + Iahp + IM + gL(V − EL)

INa = gNam
3h(V − ENa)

IK = gKn
4(V − EK)

ICa = gCaML∞(V )(V − ECa)

Iahp =
gahp[Ca](V − EK)

[Ca] +Kd

IM = gMw(V − EK)

(C.1)

The voltage variable V has dimensions of mV, all currents are in dimensions of µA/cm2,

time is in units of milliseconds, the variables n,m, h, and w are dimensionless, and the
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variable [Ca] represents the intracellular calcium concentration in millimolar units. We show

dimensions of all model parameters in Table 7.

am(V ) =
0.32(V + 54)

1− exp(−(V + 54)/4)

bm(V ) =
0.28(V + 27)

exp((V + 27)/5)− 1

ah(V ) = 0.128 exp(−(V + 50)/18)

bh(V ) =
4

1 + exp(−(V + 27)/5)

an(V ) =
0.032(V + 52)

1− exp(−(V + 52)/5)

bn(V ) = 0.5 exp(−(V + 50)/40)

τw(V ) =
τw

3.3 exp((V − Vwt)/20) + exp(−(V − Vwt)/20)

w∞(V ) =
1

1 + exp(−(V − Vwt)/10)

ML∞(V ) = 1/(1 + exp(−(V − VLth)/Vshp))

C.1.2 Wang-Buzsáki

ẏ =
d

dt

V
x

 =

−Iionic + Iext

φ(x∞ − x)/τx

 = Fy(y, Iext),

where x represents the dynamics of gating variables h and n, and

Iionic = gL(V − EL) + INa + IK

INa = gNam
3
∞h(V − ENa)

IK = gKn
4(V − EK)

(C.2)

As in the Traub model above, the variable V has dimensions of mV, time units of milliseconds,

the variables h and n are dimensionless, and currents are in units of µA/cm2. We show

dimensions of all model parameters in Table 8.
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Table 7: Traub with calcium parameter values

Parameter Value

C 1 µF/cm2

EK −100mV

ENa 50mV

EL −67mV

ECa 120mV

gL 0.2mS/cm2

gK 80mS/cm2

gNa 100mS/cm2

gm 0mS/cm2

gCa 1mS/cm2

gahp 0.5mS/cm2

Kd 1mM

α 0.002mmol/(cm× nC)

τCa 80ms

Vshp 2.5mV

VLth −25mV

Vsshp 2mV

Vth −10mV

Vwt −35mV

τw 100ms
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Table 8: Wang-Buzsáki parameter values

Parameter Value

EK −90mV

ENa 55mV

EL −65mV

gL 0.1mS/cm2

gNa 35mS/cm2

gK 9mS/cm2

φ 5

αm(V ) =
0.1(V + 35)

1− exp(−(V + 35)/10

βm(V ) = 4 exp(−(V + 60)/18)

αh(V ) = 0.07 exp(−(V + 58)/20)

βh(V ) =
1

1 + exp(−(V + 28)/10)

αn(V ) =
0.01(V + 34)

1− exp(−(V + 34)/10)

βn(V ) = 0.125 exp(−(V + 44)/80)

x∞ = x1/(x1 + x2)

τx = 1/(x1 + x2)

where x in the last two lines represents m,h, or n and x1, x2 may be αx and βx, respectively.
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C.2 DERIVATION OF SPIKING TERM

Recall our starting ansatz for the phase equation,

xi(t, τ) = xi(t+ θi(τ), s̄) = Φx(t+ θxi (τ), s̄) + εξxi (t+ θxi (τ), s̄) +O(ε2),

yi(t, τ) = yi(t+ θi(τ), s̄) = Φy(t+ θyi (τ), s̄) + εξyi (t+ θyi (τ), s̄) +O(ε2),

sx(t, τ) = s̄(τ) +
ε

Nµx

∑
j

f
(
t+ θxj (τ)

)
+O(ε2),

sy(t, τ) = s̄(τ) +
ε

Nµy

∑
j

f
(
t+ θyj (τ)

)
+O(ε2),

where

f(t+ θ) = [(1− (t+ θ)/T mod 1)− 1/2] .

In this section, we derive the order ε term f .

For simplicity, consider a network consisting of one excitatory neuron x1 with one synap-

tic variable sx(t, τ). Note that following a spike, the solution x1 increments by εk ≡ ε/µk

and decays exponentially. Moreover, each sk is periodic with sk(T+) = sk(0), where k = x, y.

Putting these facts together, we have that

sk(T+) = sk(0)e−εkT + εk = sk(0).

Solving for sk(0) reveals

sk(0) =
εk

1− e−εkT .

Therefore, sk(t) after a spike is

sk(t) =
εk

1− eεkT e
−εkt.

Notice that

sk(t) =
εk

1− e−εkT e
−εkt =

1

T
+ εkf(t),

which after a trivial rearrangement yields

εkf(t) =
εk

1− e−εkT e
−εkt − 1

T
.
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Since εk is small, we take a Taylor expansion of the exponential and simplify in a series of

algebraic steps:

εkf(t) =
εk(1− εkt+O(ε2

k))

1− (1− εkT + (εkT )2/2 +O(ε3
k))
− 1

T

=
1− εkt+O(ε2

k)

T − εkT 2/2 +O(ε2
k)
− 1

T

=
1

T

1− εkt+O(ε2
k)

1− εkT/2 +O(ε2
k)
− 1

T

=
1

T

(
1− εkt+O(ε2

k)

1− εkT/2 +O(ε2
k)
− 1− εkT/2 +O(ε2

k)

1− εkT/2 +O(ε2
k)

)
=

1

T

εkT/2− εkt+O(ε2
k)

1− εkT/2 +O(ε2
k)

1 + εkT/2 +O(ε2
k)

1 + εkT/2 +O(ε2
k)

=
1

T

εkT/2− εkt+O(ε2
k)

1 +O(ε2
k)

≈ 1

T
εk(T/2− t).

Thus,

f(t) =

(
1

2
− t

T

)
,

over one period. For multiple periods, the resulting function is a sawtooth. In our imple-

mentations we write

f(t) = ((1− t/T ) mod 1)− 1/2.

In general, we need to account for possible slow timescale phase shifts θkj (τ) and the con-

tributions from multiple spikes. We simply sum these contributions to arrive at the desired

form:
ε

Nµx

∑
j

f
(
t+ θxj (τ)

)
.

C.3 FOURIER COEFFICIENTS

We use many Fourier truncations in the chapters above. For convenience to the reader, and

to aid in helping keep the dissertation style consistent, we list only an abridged list of the

tables and refer the reader to the paper that contains the full list of coefficients [70].
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Table 9: H-function coefficients of the theta model. The series takes the form∑n
i=1 ai cos(ix) + bi sin(ix). Error = 7e-3.

Coefficient Hxx Hxy Hyx Hyy

a1 0.006693442 -0.00736278 0.006693442 -0.00736278

b1 -1.09191412 1.201105540 -1.09191412 1.201105540

Table 10: Abridged H-function cosine coefficients of the Traub with calcium (Hxx, Hxy) and

Wang-Buzsáki (Hyx, Hyy). a0 +
∑n

i=1 ai cos(ix) + bi sin(ix). Maximum pointwise error =

1e-2.

Coefficient Hxx Hxy Hyx Hyy

a0 -0.00014179 0.000340298

a1 -0.40559133 0.973419204 0.014799680 -0.01138436

a2 -0.00296584 0.007118019 0.120314654 -0.09254973

a3 0.008194908 -0.01966778 0.045877649 -0.03529049

b1 -0.14512093 0.348290252 -1.29140450 0.993388080

b2 -0.07327966 0.175871190 -0.22112111 0.170093167

b3 -0.01561869 0.037484866 -0.07939645 0.061074193

b4 -0.00449755 0.010794122 -0.03842115 0.029554737
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