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Overdose of acetaminophen (APAP) is the leading cause of acute liver failure (ALF). 

Although mechanisms of APAP-induced liver injury are well known, those that affect the 

progression of APAP-induced liver disease and facilitate liver recovery are less understood. The 

sulfotransferase 2B1b (SULT2B1b) participates various of liver relative diseases including 

metabolic syndrome, chronic liver injury and hepatocellular carcinoma. Our previous study 

showed that SULT2B1b is transcriptional regulated by Hepatic Nuclear Factor 4α (HNF4α), which 

is essential for liver development and function. However, the importance of SULT2B1b in APAP-

induced acute liver injury remains unknown. In this study, we examined the role of SULT2B1b in 

APAP-induced hepatotoxicity. We showed that hepatic overexpression of SULT2B1b in liver 

sensitized mice to APAP-induced liver injury, whereas ablation of Sult2B1b conferred resistance 

to the APAP hepatotoxicity. Indeed, upregulation of Sult2B1b by Hnf4α in wild type mice showed 

more severe liver injury and this effect was abolished in Sult2B1b knockout mice evidenced by 

comparable liver damage. Therefore, we conclude that SULT2B1b represents a potential 

therapeutic target for the prevention and treatment of APAP-induced acute liver injury. 

The Role of Sulfotransferase 2B1b in Acetaminophen-induced Liver Injury 

Yunqi An, B.S 

University of Pittsburgh, 2018
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1.0  INTRODUCTION 

 

1.1 ACETAMINOPHEN IN LIVER INJURY 

1.1.1 Epidemiology 

Drug-induced liver injury (DLI) and acute liver failure (ALF) remains a major problem in Western 

societies. Among different etiologies, acetaminophen (APAP) is the leading cause of ALF1,2. An 

epidemiological study suggests that among 308 consecutive patients with liver failure admitted to 

1 of 17 referral centers in the United States between 1998 and 2001, 39% are due to APAP 

overdose3. APAP is a widely and commonly used drug to relieve pain and reduce fever. As early 

as 1955, APAP was first introduced for prescription4. By 1960s, reports appear that APAP is 

associated with liver injury5. In the United States, around 50 million people use APAP or APAP-

combination products each week6. In 2014, the American Association of Poison Control Centers' 

National Poison Data System reported 67,187 adult and pediatric cases involving APAP alone and 

47,588 cases involving APAP in combination with other drugs. There were 996 cases of major 

APAP toxicity (defined as life threatening or disabling) and 108 cases of APAP-related deaths7. 

Therefore, liver injury resulting from unintentional APAP overdose becomes an urgently issue that 

must be solved.  
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1.1.2 APAP metabolism 

The initial phases of APAP toxicity were described in Dr. Gillette’s laboratory in the 1970s8. At 

therapeutic doses, about 3% of APAP is excreted as prototype via urine. More than 90% of APAP 

can be rapidly metabolized by Phase II conjugating enzymes, two thirds through glucuronidation 

by UDP-glucuronosyltransferases (UGTs) and one third through sulfation by sulfotransferases 

(SULTs) to the nontoxic compounds which are mainly excreted in the urine and bile. There is also 

5%-9% of APAP undergoes another bioactivation pathway by Phase I cytochrome P450 enzymes 

(CYPs), especially CYP2E1, to the highly reactive toxic intermediate metabolite, N-acetyl-p-

benzoquinone imine (NAPQI)9,10. It has a short half-life and is rapidly eliminated by conjugation 

with glutathione (GSH)11. Then it is excreted via urine as mercapturic acid and cysteine conjugates.  

1.1.3 APAP hepatotoxicity 

APAP hepatotoxicity is directly related to the dose. At doses of more than 4 g/day, can lead to 

serious hepatotoxicity. In the event of APAP overdose, the glucuronidation and sulfation pathways 

are saturated so more amount of APAP is metabolized by CYPs to NAPQI. Excessive NAPQI 

depletes intracellular GSH. As a result, accumulated NAPQI will bind to cellular proteins and lead 

to hepatocyte death11,12.  

The degree of hepatic toxicity correlates with GSH availability. GSH depletion contributes 

to cellular oxidant stress. NAPQI will bind to critical cellular targets, such as mitochondrial 

proteins. The ultimate result is alteration in calcium homeostasis, mitochondrial dysfunction with 

ATP depletion, DNA damage, and intracellular protein modification. These events lead to necrotic 

cell death13,14. 
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There are a bunch of factors influencing APAP hepatotoxicity. First of all, the metabolism 

of APAP depends on age. Children and infants seem to be less susceptible to APAP 

hepatotoxicity15. Since hepatic toxicity is also relative to the activity of the catalyzing enzyme 

systems, polymorphisms in CYPs play an important role in APAP metabolism and toxicity16. 

Interestingly, people suffered chronic liver injury are no more sensitive to APAP-induced acute 

liver injury due to liver regeneration17,18. Fasting may also enhance APAP toxicity. It is probably 

because of GSH depletion and CYP2E1 induction during fasting19. Alcohol has an effect on APAP 

hepatotoxicity but it depends on acute or chronic alcohol intake. Acute intake may protect because 

alcohol competes with APAP for CYPs. But it is different in chronic alcohol intake. CYP2E1 is 

induced and GSH is depleted by alcohol14,19. All of these factors are involved in APAP 

hepatotoxicity and play important roles. 

1.1.4 Treatment approaches for APAP overdose 

The main goal of treatment is to prevent or minimize liver injury following APAP overdose. N-

acetylcysteine (NAC), a clinical antidote for APAP overdose, is nearly 100% hepatoprotective 

when it is given within 8 hours after an acute APAP overdose14,20. However, NAC has a narrow 

therapeutic window21. NAC may be given orally or intravenously. Although the oral route is 

simpler, it frequently causes nausea and vomiting and is unpleasant. Additionally, the standard 

oral regime is 72 hours in duration as compared with about 20 hours intravenously, although this 

is somewhat arbitrary22. Many centers now shorten the duration of oral use by monitoring the 

serum APAP level and liver enzyme levels. The intravenous route is generally well tolerated, 

although there is a significant incidence of anaphylactoid reactions. There is no evidence of 

difference in efficacy between the two routes. NAC also has some therapeutic effect for patients 
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who present 10 to 24 hours after ingestion, although its efficacy diminishes as the time to treatment 

increases. Intravenous NAC may be of benefit when rendered as late as 36 to 80 hours in 

patients23,24. 

In situations where NAC is not available, oral methionine may be an alternative option. 

Under such rare circumstances where there is no antidotal therapy available, oral-gastric lavage 

and activated charcoal should be considered given the morbidity and mortality from APAP toxicity 

in the absence of antidotal therapy. If no other options are available, hemodialysis may be 

considered as a means of rapidly decreasing the serum APAP concentration in patients presenting 

soon after an acute APAP overdose, provided hemodialysis can be expeditiously initiated and its 

benefits outweigh its risks25,26. 

1.2 SULFOTRANFERASE 2B1b IN APAP-INDUCED LIVER INJURY 

1.2.1 Cytosolic SULT family 

The human cytosolic SULT family consists of encoding 14 different isoforms. The human SULT2 

family, also called hydroxysteroid-SULT family, consists of only 2 genes, termed SULT2A1 and 

SULT2B1. The SULT2 enzymes sulfate a variety of substrates, such as DHEA, pregnenolone and 

cholesterol27. However, they show different tissue distribution, specificities and activities. Based 

on the length of transcripts, SULT2B1 termed SULT2B1a and SULT2B1b. In transcriptional level, 

SULT2B1a and SULT2B1b are highly similar. But only SULT2B1b protein can be detected by 

immunoblot in human28. Therefore, SULT2B1a message may not be efficiently translated in 

human tissues. SULT2B1b has been identified by immunoblot in prostate29, placenta30, intestine31, 
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breast32, skin33 and platelets34. SULT2B1b appears to be the major active SULT2B1 isoform in 

human tissues. SULT2B1b is selective for the sulfation of 3 -hydroxysteroids and also has activity 

with cholesterol suggesting it may have different enzymatic functions in different human tissues27.  

1.2.2 SULT2B1b in liver diseases 

Previous studies have suggested a critical role of SULT2B1b in regulating the chemical and 

functional homeostasis of endogenous and exogenous molecules and in a variate of diseases. Based 

on our previous study, SULT2B1b is transcriptional regulated by HNF4α to prevent uncontrolled 

gluconeogenesis35. Although SULT2B1b expression is fairly low in liver, there have been several 

reports indicating that SULT2B1b is crucial in regulation of liver function and diseases. SULT2B1 

is transcriptionally upregulated during liver regeneration in a mouse model of partial 

hepatectomy36. SULT2B1b mRNA levels in clinical hepatocarcinoma tumor samples were higher 

than in the non-tumorous tissue adjacent to the tumors37. Oxysterols, which are considered as 

activators of Liver X Receptor (LXR), are also substrates of SULT2B1b38,39. Upregulation of 

SULT2B1b aggravated 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-induced liver injury by 

modulating oxysterol-induced LXR activation40. SULT2B1b also can be regulated by nuclear 

receptors, such as CAR41, VDR42 and PPARs43. 

1.3 HNF4Α IN APAP-INDUCED LIVER INJURY 

Hepatocyte Nuclear Factor 4α (HNF4α) is known to modulate regulatory elements in the 

promoters and enhancers of genes involved in cholesterol, fatty acid and glucose metabolism44. 
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Specifically in the liver, HNF4α activates hepatic gluconeogenesis and regulates the expression of 

several genes. A recent study by Lake et al. assessed the role of major transcription factor binding 

sites in non-alcoholic steatohepatitis (NASH)45. HNF4α mRNA expression was significantly 

decreased in human NASH samples, suggesting the contribution of HNF4α to nonalcoholic fatty 

liver disease (NAFLD) development. Using knockout models, previous mouse studies have 

revealed the critical role of HNF4α in the control of bile acid synthesis and glucose homeostasis46,47. 

In addition, an integrative analysis of NAFLD signatures in human and genetically modified 

mouse models demonstrated that HNF4α as a transcription factor plays an important role in 

regulating the expression of the genes involved in the progression of NAFLD to hepatocellular 

carcinoma48.  

In this study, we demonstrated that overexpress SULT2B1b in liver sensitized mice to 

APAP-induced liver injury while deletion of SULT2B1b attenuated its toxicity. Upregulation of 

SULT2B1b by HNF4α aggravated APAP hepatotoxicity and this effect could be abolished in 

SULT2B1b knockout mice. Our study pointed to SULT2B1b as a potential therapeutic target for 

APAP-induced acute liver injury. 
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2.0  METHODS AND MATERIALS 

Animals 

The whole-body Sult2B1b knockout mice (Strain # 018773) and C57BL/6J wild type mice were 

purchased from the Jackson Laboratory (Bar Harbor, ME). FABP-SULT2B1b transgenic mice 

were bred by our laboratory as previously described46. All mice used for the experiments were 6-

8 week-old female mice. All mice were housed under a standard 12-hour light and 12-hour dark 

cycle with free access to food and water. The use of mice in this study complied with all relevant 

federal guidelines and institutional policies.  

Induction of liver injury 

APAP was dissolved in 0.5% methyl cellulose solution. All experiments were performed by fasting 

mice at 4:00 pm and treating APAP to mice by gavage at 8:00 am. Food back 3 hours after 

treatment. The mice were sacrificed 24 hours after APAP treatment49. Liver tissues and serum 

were harvested for biochemical and histological analysis. All chemicals were purchased from 

Sigma (St. Louis, MO). 

Histology 

For H&E staining, tissues were fixed in 10% paraformaldehyde, embedded in paraffin, sectioned 

at 4 mm, and stained with H&E. For immunohistochemistry analysis, standard 

immunohistochemical procedures were performed in detection of Ki67 from Abcam (Cambridge, 

MA). A Novus (Littleton, CO) APO-BRDU (TUNEL) Apoptosis kit was used to examine dying 

cells with exposed or fragmented DNA ends as per the manufacturer's instruction. 
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Serum and liver tissue chemistry 

Levels of ALT and AST in serum50 and cells51 were measured using commercial assay kits from 

Stanbio Laboratory (Boerne, TX). The concentration of GSH in the liver was measured by GSH 

Assay Kit from BioAssay Systems (Hayward, CA). 

Real-time PCR 

Total RNA was isolated using the TRIzol reagent from Invitrogen. Reverse transcription was 

performed with random hexamer primers and Superscript RT III enzyme from Invitrogen. SYBR 

Green-based real-time polymerase chain reaction (PCR) was performed with the ABI 7300 Real-

Time PCR System. The PCR primer sequences are shown in Table 1. The quantity of mRNA was 

normalized to the cyclophilin gene. 

Western blot 

For Western blot analysis, tissues and cells were lysed in ice-cold Nonidet P-40 lysis buffer 

containing a protease inhibitor cocktail from Roche, and then quantified for protein concentrations 

by a bicinchoninic acid assay kit from Pierce. Protein samples were resolved by electrophoresis 

on 10% SDS-polyacrylamide gels. After transfer of proteins to nitrocellulose membranes, the 

membranes were probed with primary antibodies against total AKT (cat. no. 9272) and phospho-

Akt (serine 473) (cat. no. 9271) from Cell Signaling (Beverly, MA). Detection was achieved by 

using the enhanced chemiluminescence system from Amersham (Piscataway, NJ). The signals 

were quantified by using the Image J software (http://imagej.nih.gov/ij/). 

Isolation and culture of primary hepatocytes from mice 
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Primary mouse hepatocytes were isolated from 8 to 12 week-old mice, as previously described. 

Briefly, the liver was first perfused with Hanks’ buffered salt solution containing 0.5 mM EGTA 

and 0.1 M HEPES at 5 ml/min for 5–10 minutes and then perfused with L-15 medium containing 

1.8 mM CaCl2, 0.1 M HEPES, and 20 mg/ml liberase (Roche, Indianapolis, IN). After perfusion, 

the dissociated hepatocytes were filtered through 50-mm pore mesh and collected by 

centrifugation at 500 rpm for 3 minutes at 4°C. Hepatocytes were seeded onto type 1 collagen-

coated dishes in William E medium containing 5% fetal bovine serum. The medium was changed 

to HepatoZYME-SFM medium (GIBCO, Grand Island, NY) 2 hours later. 

Adenovirus transfection 

The primary hepatocytes were treated with adenovirus to overexpress Hnf4α. Adenovirus 

expressing Hnf4α (Ad-Hnf4α) was gift from Dr. Yanqiao Zhang from the Northeast Ohio Medical 

University.  

Statistical analysis 

All the data are expressed as means ± standard error of the mean (SEM). Differences were 

evaluated by the unpaired two-tailed Student’s t test (GraphPad Prism). The criterion for statistical 

significance was a P value of ＜0.05. 
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3.0  RESULTS 

3.1 OVEREXPRESSION OF SULT2B1B IN LIVER AGGRAVATED APAP-

INDUCED LIVER INJURY 

To investigate whether SULT2B1b is indeed important in the pathogenesis of APAP-induced liver 

injury, we first treated SULT2B1b transgenic (TG) mice, which specific overexpress SULT2B1b 

in liver, with a single dose of APAP (200mg/kg, gavage). At 24 hours post-treatment, the tissues 

and serum were harvested to analysis. H&E staining revealed that the SULT2B1b TG mice 

displayed more severe damage compared to wild type (WT) mice. In vehicle-treated mice, no 

significant alteration in liver histology was found in TG mice, when compared to WT mice. But 

after APAP treatment, TG mice showed more typical necrotic liver damage than WT mice. The 

ratio of necrotic area in TG mice is higher than in WT mice as well (Fig. 1A). In addition, APAP-

treated TG mice showed increased serum levels of alanine aminotransferase (ALT) and aspartate 

aminotransferase (AST) activity, compared to WT mice (Fig. 1B). The extent of hepatocyte DNA 

fragmentation, as assessed by TUNEL staining, was significantly increased in liver sections from 

TG mice after APAP treatment (Fig. 1C). Liver regeneration is known for survival after APAP 

overdose. Thereby, we also evaluated the proliferation and cell cycle-related gene expressions in 

livers by real-time PCR. TG mice showed significantly higher expression of Pcna than WT mice 

(Fig. 1D). It indicated that TG mice had more liver damage than WT mice. Furthermore, hepatic 

expression of inflammatory cytokines interleukin-6 (Il-6) and interleukin-1β (Il-1β) in TG mice 

was much higher than that in WT mice after APAP treatment. (Fig. 1E). Collectively, 
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overexpression of SULT2B1b results in enhanced liver injury with severe necrosis and increased 

liver regeneration and inflammation. 
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Figure 1. Overexpression of SULT2B1b in liver aggravated APAP-induced liver injury.  

A Representative H&E staining on liver paraffin sections at 24 hours after APAP-treated WT and 

SULT2B1b TG mice (middle, original magnification 100), APAP-induced centrilobular necrosis 

(right panels, enlarged view of boxed region in middle panels) and quantification of necrotic areas 

in liver sections (n=5 per group). B Serum levels of ALT and AST in WT and TG mice treated 

with vehicle or APAP. C Representative images of TUNEL staining in liver sections from WT 

and TG mice at 24 hours after vehicle or APAP treatment (magnification 200). D Relative mRNA 

levels of Pcna, Ki67, C-myc, Ccnd1, and Ccne1 in the livers. E Relative mRNA levels of Il-6, Il-

1β in livers. Data are expressed as mean  SEM. *P < 0.05.  
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3.2 DELETION OF SULT2B1B PROTECTED MICE FROM APAP-INDUCED 

LIVER INJURY 

To assess whether SULT2B1b ablation affects APAP-induced liver injury, we also treated 

Sult2B1b knockout (KO) mice with a single dose of 200mg/kg APAP. As a result, Sult2B1b KO 

mice showed less damage compared to WT mice. The WT liver showed expected typical necrotic 

liver damage at 24 hours post-APAP. In contrast, KO mice showed little signs of damage (Fig. 

2A). Also, APAP-treated KO mice showed reduced serum levels of ALT and AST, compared to 

their WT counterpart (Fig. 2B). In TUNEL staining, KO mice showed significantly less positive 

cells (Fig. 2C). We also evaluated proliferation of hepatocytes by Ki67 staining. KO mice showed 

remarkably less hepatocyte proliferation than WT mice (Fig. 2D). Consistently, mRNA levels of 

Pcna and Ccnd 1 expressions decreased in KO mice as well (Fig. 2E). Moreover, Il-1β mRNA 

expressions were dramatically induced in WT mice than that in KO mice (Fig. 2F). These results 

suggest that deletion of Sult2B1b conferred resistance to APAP hepatotoxicity.  
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Figure 2. Deletion of Sult2B1b protected mice from APAP-induced liver injury. 

A Representative H&E staining on liver paraffin sections at 24 hours after vehicle or APAP-treated 

WT and Sult2B1b KO mice (middle, original magnification 100), APAP-induced centrilobular 

necrosis (right, enlarged view of boxed region in middle panels) and quantification of necrotic 

areas in liver sections (n=2 for WT-vehicle and Sult2B1b KO-vehicle, n=8 for WT-APAP and 

Sult2B1b KO-APAP). B Serum levels of ALT and AST in WT and KO mice treated with vehicle 

or APAP. C Representative images of TUNEL staining in liver sections from WT and Sult2B1b 

KO mice at 24 hours after vehicle or APAP treatment (original magnification 200). D 

Representative images of Ki67 staining in liver sections from WT and Sult2B1b KO mice at 24 

hours after vehicle or APAP treatment (original magnification 200).   E Relative mRNA levels 

of Pcna, Ki67, C-myc, Ccnd1, and Ccne1 in the livers. F Relative mRNA levels of Il-6, Il-1β in 

livers. Data are expressed as mean  SEM. *P < 0.05; **P < 0.01.  

3.3 UPREGULATION OF SULT2B1B BY HNF4Α SENSITIZED MICE TO APAP-

INDUCED LIVER INJURY 

To study the effects of upregulation of SULT2B1b by overexpressing HNF4α on APAP-induced 

acute liver injury, we injected adenovirus to overexpress Hnf4α in WT mice. After a week, these 

mice were treated with APAP as previous experiments. Hnf4α and Sult2B1b protein levels were 

increased compared to control mice (Fig. 3A). Compared to WT mice injected with Ad-Ctrl, WT 

mice injected with Ad-Hnf4α displayed more severe injured liver (Fig. 3B). H&E staining revealed 

more severe and widespread necrosis in WT mice with Ad-Hnf4α compared to control mice (Fig. 

3B). Liver injury was also assessed by ALT and AST levels. After APAP treatment, ALT and AST 

levels were significantly higher in WT mice injected with Ad-Hnf4α than in WT mice injected 

with Ad-Ctrl (Fig. 3C). To further confirm it in vitro, we also isolated primary hepatocytes from 

WT mice and treated them with Ad-Hnf4α. After 5nM APAP treatment for 24 hours, the 

percentage of ALT release slightly increased by Ad-Hnf4α (Fig. 3D). These observations suggest 

that overexpression of HNF4α upregulates SULT2B1b expression and aggravates APAP-induced 

liver injury.   
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Figure 3. Upregulation of Sult2B1b by Hnf4α sensitized mice to APAP-induced liver injury. 

A Hepatic Sult2B1b and Hnf4α expressions in Ad-ctrl+APAP and Ad-Hnf4+APAP WT mice by 

Western blot analysis. B Representative appearance (top) and H&E staining on liver paraffin 

sections of Ad-ctrl+APAP and Ad-Hnf4+APAP WT mice (original magnification 100, middle) 

and APAP-induced centrilobular necrosis (bottom, enlarged view of boxed region in middle 

panels). n=3 for Ad-ctrl+APAP, n=5 for Ad-Hnf4+APAP. C After APAP treatment, serum levels 

of ALT and AST in WT mice injected with Ad-ctrl or Ad-Hnf4α. D Sult2B1b and Hnf4α 

expressions in WT primary hepatocytes treated with Ad-ctrl or Ad-Hnf4α by Western blot analysis. 

E The percentage of ALT release from WT primary hepatocytes treated with 5nM APAP for 24 

hours. Data are expressed as mean  SEM. *P < 0.05.  

 

 

 

3.4 SULT2B1B IS ESSENTIAL FOR THE SENSITIZATION OF HNF4Α IN APAP 

HEPATOTOXICITY 

To understand whether HNF4α sensitizes mice to APAP hepatotoxicity in a SULT2B1b-dependent 

manner, we then injected Ad-Ctrl and Ad-Hnf4α respectively to Sult2B1b KO mice. We first 

verified that Hnf4α was overexpressed in livers of Sult2B1b KO mice (Fig. 4A). After APAP 

treatment, on the contrary, KO mice injected with Ad-Ctrl and Ad-Hnf4α showed similar levels of 

ALT and AST (Fig. 4B). The livers showed comparable damage and the histology is consistent 

with serum analysis as well (Fig. 4C). These findings suggest that deletion of Sult2B1b abolished 

the effect of Hnf4α overexpression on APAP hepatotoxicity. Therefore, we proved that the 

sensitization of HNF4α in APAP-induced liver injury is dependent on SULT2B1b.  
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Figure 4. Sult2B1b is essential for the sensitization of Hnf4α in APAP hepatotoxicity. 

A Hepatic Hnf4α expressions in Ad-ctrl+APAP and Ad-Hnf4+APAP KO mice by Western blot 

analysis. B Representative appearance (top) and H&E staining on liver paraffin sections at APAP-

treated KO mice with Ad-ctrl or Ad-Hnf4α injection (middle, original magnification 100) and 

APAP-induced centrilobular necrosis (bottom, enlarged view of boxed region in middle panels). 

n=3 for Ad-ctrl+APAP, n=5 for Ad-Hnf4+APAP. C After APAP treatment, serum levels of ALT 

and AST in Sult2B1b KO mice injected with Ad-ctrl or Ad-Hnf4α. Data are expressed as mean  

SEM. *P < 0.05.  
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3.5 PROFILE OF APAP METABOLISM IN SULT2B1B TG AND KO MICE 

To pursue the role of SUT2B1b in APAP metabolism, we compared the difference in APAP 

metabolism among these mice in different genotypes. Only Ugt1 was induced in TG mice and the 

expressions of other relative APAP metabolizing enzymes showed no significant difference in both 

TG and KO mice (Fig. 5A). Then the total hepatic GSH content in TG and KO mice was measured 

(Fig. 5B). It was significantly reduced in TG mice but no alterations in KO mice. By LC-MS, the 

concentration of APAP metabolites, APAP-sulfate and APAP-glucuronide, in serum were 

measured (Fig. 5C). Based on current results, it is limited to make a conclusion, so we will also 

measure APAP-cysteine content in liver of these mice.  

 

 

  A B 
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Figure 5. Profile of APAP metabolism in SULT2B1b TG and KO mice.  

A Relative mRNA levels of Ugt1, Gstα, Gstμ, Gstπ, Sult2a1 and Cyp2e1 in livers from WT, 

SULT2B1b TG and KO mice treated with APAP. B Total GSH content in livers from WT, 

SULT2B1b TG and KO mice treated with APAP (n=3 per group).  C LC-MS analysis of the 

content of APAP-Sulfate and APAP-Glucuronide in livers from WT, SULT2B1b TG and KO mice 

at 24 hours after APAP treatment. Data are expressed as mean  SEM. *P < 0.05; **P < 0.01.  

 

 

 

C 
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4.0  DISCUSSION 

Identification of the molecular mechanisms during pathogenesis of APAP-induced liver injury will 

provide promising therapeutic avenues for the treatment for APAP overdose. In this study, we first 

demonstrated that the hepatic overexpression of SULT2B1b enhanced APAP-induced acute liver 

injury in mice while ablation of Sult2B1b in mice conferred resistance to this liver injury. 

Furthermore, TG mice also showed increased hepatocyte death and inflammation, whereas KO 

mice reduced. Our previous study showed that SULT2B1b is transcriptionally regulated by 

HNF4α35. Thereby, we also identified that overexpression of Hnf4α to upregulate Sult2B1b 

sensitized WT mice to APAP hepatotoxicity. In contrast, this sensitization of HNF4α was 

abolished in Sult2B1b KO mice. Therefore, Sult2B1b is essential for regulation of HNF4α to 

APAP-induced liver injury.  

SULT2B1b is a hydroxysteriod sulfotransferase which plays an important role in lipid and 

glucose metabolism, inflammatory responses and cell proliferation52,53. It has been reported that 

SULT2B1b is involved in a series of liver diseases, including metabolic syndrome35, HCC37, 

NASH and NAFLD54. Noted that SULT2B1b suppresses LXR activity38,55. We previously 

demonstrated that activation of LXR accelerates APAP clearance to prevent APAP toxicity49. 

Based on these, we are curious about the role of SULT2B1b itself in APAP hepatotoxicity and we 

propose upregulation of SULT2B1b sensitizes mice to APAP-induced liver injury. We followed 

our previous protocol to treat mice with 200mg/kg APAP by gavage after 16-hour fasting49. 

Because fasting accelerates GSH depletion and induces CYP2E1 expression to promote APAP 

toxicity19. As a result, consistent with our hypothesis, TG mice showed significant severe necrosis 

and increased serum ALT and AST levels, whereas KO mice alleviated APAP-induced liver injury 



 22 

and reduced ALT and AST levels. In APAP-induced liver injury, it is believed that overdose of 

APAP is metabolized by CYPs to reactive intermediate NAPQI which depletes GSH, binds to 

cellular proteins and induce nuclear DNA fragmentation, leading to necrotic hepatocyte death13. 

So in this study, we assessed nuclear DNA fragmentation by TUNEL staining. On the other hand, 

hepatocyte necrosis eventually induces liver regeneration56. Liver regeneration is also known to 

be important for survival after APAP overdose57. Usually, more necrosis is followed by more cell 

proliferation. Furthermore, enhanced liver injury in SULT2B1b TG mice was also accompanied 

by an exacerbation of inflammation58, as evidenced by increased hepatic expression of Il-6 or Il-

1β. In contrast, Il-1β decreased in Sult2B1b KO mice. 

HNF4α is a key regulator of both hepatocyte differentiations during embryonic 

development and maintenance of a differentiated phenotype in adult59. It has been shown that 

HNF4α is essential for liver development, lipid and glucose metabolism, NASH, ALF and HCC, 

etc46,48,60,61. Therefore, the regulation of HNF4α and changes in its downstream are essential for 

liver development and function. To overexpress Hnf4α, we tried hydrodynamic transfection and 

adenovirus infection expressing Hnf4α in vivo respectively. By hydrodynamic transfection, 

hepatic expressions of Hnf4α and Sult2B1b rapidly increased at both mRNA and protein levels 

(data not shown). However, hydrodynamic transfection also induce severe liver injury with 

extravasated blood62. We found it is difficult to tell the damage caused by APAP or hydrodynamic. 

And APAP-induced liver damage was compensated probably because of liver regeneration. It is 

probably because of liver regeneration. Therefore, we overexpressed Hnf4α by adenovirus to 

upregulate Sult2B1b. But it takes a week to fully upregulate Sult2B1b so only Hnf4α protein 

increase was detected. Surprisingly, Hnf4α sensitized WT mice to APAP hepatotoxicity. To our 

knowledge, it is the first demonstration proved that HNF4α aggravated APAP-induced liver injury 
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via SULT2B1b upregulation. The mechanism will be illuminated. So SULT2B1b may have a 

directly or indirectly effect on APAP hepatotoxicity. Because adenovirus infection also induced 

mild liver damage leading to liver regeneration, the necrosis after APAP treatment in these mice 

was not as dramatic as simple APAP-treated mice. Then we were wondering whether the 

sensitization of HNF4α is dependent on SULT2B1b. As expected, Sult2B1b KO mice injected 

with Ad-Hnf4α showed similar liver injury to those injected with Ad-ctrl. Thereby, we concluded 

that HNF4α promoted APAP-induced liver injury via SULT2B1b upregulation.  

Our results suggested that most of gene expressions of APAP metabolizing enzymes, 

except for Ugt1 in TG mice, did not change. It indicated that SULT2B1b may be dispensable for 

the metabolism of APAP. But for the total content of GSH, there was an abnormal reduce in TG 

mice. One possible reason is that dramatic necrosis results in GSH degradation.  Because GSH 

depletion reflects the amount of excessive NAPQI, another possible explanation is that 

overexpression of hepatic SULT2B1b affected initial depletion of GSH levels. Further study will 

be needed to elucidate this issue. We preliminarily measured APAP metabolites in serum at 24 

hours post-APAP. To our surprise, two nontoxic metabolites, APAP-sulfate and APAP-

glucuronide, remarkably increased in SULT2B1b TG mice though no significant decrease in KO 

mice. We still need to analyze the concentration of APAP-cysteine in liver to further conclude 

whether SULT2B1b influences APAP metabolism.  

In summary, we have uncovered a novel function of SULT2B1b in APAP-induced acute 

liver injury. Because HNF4α plays a pivotal role in liver development and function, the induction 

of SULT2B1b by HNF4α contributes to an important regulation to APAP hepatotoxicity. Thus, 

our results suggest that hepatic SULT2B1b may be a potential therapeutic target for APAP-induced 

liver injury. 
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