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CLUTTER IDENTIFICATION BASED ON KERNEL DENSITY

ESTIMATION AND SPARSE RECOVERY

Haokun Wang, M.S.

University of Pittsburgh, 2018

Many existing radar algorithms are developed under the hypothesis that the environment

(clutter) is stationary. However, in real applications, the statistical characteristics of the

clutter might change immensely in space, time, or both, depending on the radar-operational

scenarios. If unaccounted for, these non-stationarities may extremely hamper the radar

performance. Therefore, to overcome such performance degradations, we have developed

a cognitive radar framework to dynamically detect changes in the clutter characteristics,

and to adapt to these changes by identifying the new clutter distribution. In this work, we

present a sparse-recovery based clutter identification technique. In this technique, we build

a dictionary matrix of well-known clutter statistics such that each column of the matrix is a

kernel density estimation of a specific clutter distribution. When radar measurements arrive,

sparse recovery, more specifically, orthogonal matching pursuit (OMP) algorithm is used to

identify the distribution of the radar measurements by matching the kernel density estimation

of the measurements to one of the columns of the dictionary matrix. We analyze the effect of

different kernels and distance measures between the kernel density estimations on the clutter

identification accuracy. With numerical examples, we demonstrate that the sparse-recovery

based method provides high accuracy in clutter identification and this technique is robust

to changes in the training and test sample sizes.

Keywords:Clutter identification, Sparse recovery, KDE, OMP, Ozturk .
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1.0 INTRODUCTION

In the late 90’s the idea about knowledge-based systems and agile waveform design was

first introduced, which becomes the foundation of cognitive radar[9, 6], a modern concept

introduced by Haykin in 2006[24]. The definition of cognitive radar quoted by Haykin ”A

cognitive radar continuously learns about the environment through experience gained from

interaction with the environment, the transmitter adjust its illumination of the environment

in an intelligent manner, the whole radar system constitutes a dynamic closed feedback loop

encompassing the transmitter, environment, and receiver”[24].

As a distinctive features of the human brain, cognition distinguishes human being from

all other mammalian species. It is not absurd that when mention cognitive control, we will

naturally consider cognitive control in the brain. More importantly, cognitive control works

on the executive part in brain, conversely coupled to its perception through the working

memory[31]. With this three-fold combination, which resulted to the perception-action cycle

that assimilate the environment, thereby formed as a closed-loop feedback system[31]. In

engineering realization, the cognition is two way approach, one is inside-out and another is

outside-in. Based on the source information inside or outside the receiver, the two approach

could be different from the commonly understanding. If the prior knowledge of the environ-

ment is applied, as part of the receiver, then it’s the inside-out approach, where the prior

knowledge is depended on the application. On the contrary, the outside-in approach could

be seen as short-term memory, which is updated by the receiver. The radar-scene analyzer

initiate the cognition responding to the information obtained from the environment either

by radar itself or other sensors[31, 24].

First feature of cognitive radar is perception, the system would sense the environment

and got trained from significant information of the target and background. Second feature
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is surveillance and tracking, after obtaining the information about the environment, it will

adapt the transmitted signal for optimally matching. In application design, the receiver is

the learning component, it iterate the information learned from experience via the interaction

with the environment. The transmitter is the adaption part, which transform the feature of

the environment in a way of optical in agreement with the information transited via receiver.

And the feed back loop, like many control system, coordinate the performance of receiver

and transmitter in a synchronous way[25].

Detecting and tracking targets in the presence of nonstationary clutter, noise, and in-

terference have been the most pertinent and challenging problems in radar systems. In the

practical scenarios, various issues, such as the terrain and weather conditions, dynamics of

the targets, and hostile electronic environments, may fluctuate and alter the statistical char-

acteristics of the environmental background (clutter) during the radar operation period [5].

These nonstationarities of the clutter, if not adaptively coped with, can significantly hinder

the performance of the classical detection and tracking techniques [27, 49]. For example,

in the target detection problem, the fluctuation of the clutter distribution parameters may

require to readjust the threshold of the detector, and even worse, a change of the family of

the clutter distributions may require to redesign the detector altogether, in order to maintain

the optimal or nearly optimal detection performance.

Traditionally, however, in most of the radar applications, the target detection and track-

ing techniques have been developed with a specific clutter distribution, which is assumed

to be known a priori and be stationary throughout the entire processing period. Although

the Gaussian distributions are used extensively to represent the clutter characteristics, it

has been shown in the literature that the Gaussian representations suffer from performance

deterioration when the the measured clutter data are heavy-tailed [30, 36]. Instead, some

compound-Gaussian distributions, such as K distribution and Student-t distribution, are

proposed to accurately model the received clutter, for example, sea- or foliage-clutter when

radars operate in high-resolution and/or low-grazing-angle modes [4, 42, 7, 51, 21]. Weibull

and lognormal distributions are other two popular clutter distributions that achieve great fit-

ness to the real data, and are capable of modeling the spiky nature of the clutter [44, 12]. In

nonstationary operating scenarios, however, a prior knowledge of the clutter characteristics
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Figure 1: Block diagram of cognitive radar
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represented using a fixed, parametric distribution does not hold true anymore as the clutter

statistics may drastically alter during analysis. Therefore, having a capability of determin-

ing the clutter distribution on-the-fly would be crucial to maintain, or even to improve, the

radar detection/tracking performance in nonstationary environments.

In order to create such an adaptive framework, recent advances in computational ca-

pabilities have allowed radar system designers to consider the design of more complex and

intelligent systems, termed as cognitive radar systems [8, 24]. Cognitive radars aim to early

detect the changes of the environments (clutter), precisely learn the new distribution of clut-

ter, and adaptively update the detection/tracking algorithms for maintaining or bettering

the performances achieved by current (nonadaptive) state-of-the-art systems. In our previ-

ous work[5], we proposed a data-driven method and used the (extended) CUSUM algorithm

to address the first issue in the cognitive radar framework, i.e., finding out whether the

modeled/assumed clutter distribution has changed or not. For the second issue, we previ-

ously developed a sparse recovery based clutter identification method [28, 53], that applies

the kernel density estimation (KDE) and a batch orthogonal matching pursuit (BOMP)

method to identify the distribution of the received clutter data based on a pre-learned dic-

tionary of distributions. Earlier, another clutter identification method, namely the Ozturk

algorithm [35, 39], was proposed to identify the received clutter distribution as the nearest

neighbor to a dictionary of distributions after transforming each distribution to a point on

two-dimensional plane. The Ozturk algorithm is used to transform different distributions

into a point in two- dimensional space. These points in the two-dimensional space are used

to built a library, and subsequently to identify the clutter distributions. While this method

is able to identify the K-distribution with low shape values with an accuracy of about 70%,

it does not perform well as the shape parameter increases. However, comparing the per-

formances of the sparse-recovery based clutter identification approach (i.e., BOMP method)

with that of the Ozturk algorithm, we have shown [53] that the BOMP method has (i)

improved accuracy in identifying clutter distributions that have different parameters, but

are from the same family; and (ii) robustness in terms of measurements used for dictionary

generation and test distribution identification.
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To further explore the potentials of the sparse-recovery based clutter identification, in

the paper, we investigate the effects of different kernels types and kernel parameters used

in KDE on the clutter identification accuracy, while only the normal kernel with a default

parameter was considered in our previous work. We observe that the BOMP method is

robust to the kernel bandwidth selection, the Epanechnikov kernel is found to be the most

suited kernel for the BOMP algorithm and canberra metric presented to be the best atom

selection measurement.

The rest of the paper is organized as follows. In Section 2, the basic idea about the

dictionary learning and sparse recovery are introduced. In Section 3, we describe the sparse

recovery based clutter identification method and provide the details of the kernel density

estimation approach. In Section 4, we demonstrate various simulation results to objectively

compare the effects of different types of kernels and kernel parameters. Section 4 provides a

discussion of the observed results, and Section 5 concludes the paper.
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2.0 DICTIONARY LEARNING AND SPARSE RECOVERY

2.1 DICTIONARY LEARNING

For radar signals, mixed with many environment noise, making it largely redundant in two

main parts:1) The multiple correlated versions of the same scenario are contained, 2) Each

version of the scenario is densely sampled by sensors. Compared with the recorded data,

the relevant information about the underlying process which form the observation is much

reduced. The dictionary learning method determines the proper features of the data through

subspace with reduced dimension. It could be applied to both features of the signal and

processing task. This method is based on the idea that observation could be viewed as a

sparse subset chosen from a redundant dictionary[45, 33, 1]. The dictionary learning method

focuses on the dictionary of atoms building algorithm which give effective representation of

groups of signals. For most of the dictionary learning problems, the degree of sparsity is the

key constraints to that.

Sparse approximation is made to present a signal y with a specific dimension n as a

linear combination of a few number of atoms from the dictionary. Typically, the element of

the dictionary is unit norm function, the atom. The dictionary could be denote as D and

the atom φk, k = 1, ...N , where N denotes the dictionary size. It should be no surprise that

the dictionary is over complete and its atoms are all linear dependent, which means every

signal could be viewed as a linear combination of atoms in dictionary[45, 33, 1, 48, 18]. Since

the dictionary is redundant, it’s impossible to set a unique combination of the dictionary.

To make the problem applicable in math, the approximation error is introduced to find the

sparse linear combination.
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Now the problem becomes finding the sparse vector which makes the significant coef-

ficients minimum while the others are nearly zero. In this case, the atoms used for signal

formation are minimized, represented as:

min
a

||a||0, y = Φa + η, ||η||22 < ǫ (1)

Where η denotes the approximation error and ǫ denotes the energy. The polynomial time

approximation algorithms are applied to this problem finding a sub-optimal solution for the

sparse vector since it’s NP-hard problem[45, 33, 37, 54]. Normally, these approximation

algorithms could be assigned to two groups. The first group mainly include the greedy pro-

cess, like orthogonal matching pursuit, which select the local optimal vectors every iteration.

The other group of algorithms are based on convex relaxation method like the east absolute

shrinkage and selection operator (LASSO)[33, 54, 22, 38]. For dictionary learning, there are

three widely used algorithm groups, first is the probabilistic learning, second is the cluster-

ing based or vector quantization based, and third is the particular construct learning, which

normally driven by prior knowledge of the data structure or the target usage[38]. The prob-

abilistic learning is usually established as the two-step optimization structure, the sparse

approximation step and the dictionary update step. One of the commonly used probabilistic

learning algorithm is the maximum likelihood dictionary learning, developed by Olshausen

and Field[32]. Since their work focused on image representation, it’s reasonable that the

signal they processed is high dimensional and complex, making the represent and code of

the image a hard problem. The maximum likelihood learning method is called sparse coding,

which aims to find the evidence that the coding process in human cortex, specifically the

visual area V1 could probably match a model created with sparse coding. Based on their

hypothesis, the visual cortex would reduce the high dimensional signal to reduced space

which defined by active neurons[32].

For cluster based methods, which keeps the core two-step optimization structure but

based on vector quantization(VQ) applied through K-means clustering[32, 33, 22]. The VQ

approach was first applied to video-coding[43], which optimiza a dictionary with patches of

images by first allocate the pattern which has minimum distance to the given atom, then

update the atom to ensure minimize the total distance. An implicit assumption, every single
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patch could be made by a atom which has coefficient equal to one, was made to reduce the

learning progress to a K-means clustering[43, 32]. Known that each patch was represented

by a single atom, the sparse approximation becomes trivial to the whole algorithm. The

K-means algorithm based dictionary learning is K-SVD algorithm, which use OMP to create

the sparse approximation step and apply the singular value decomposition to make the

error minimum[2]. The dictionary update step is therefore a generalized K-means algorithm

because every single patch could be composed by multiple atoms accomplished with different

weights. Although not globally convergence, it still has relative high performance in real

application.

For the specific structure case, the dictionary is obtained from the generation function.

Since these functions are parametric, they could present a short description of the atoms,

making it useful in the case where a restriction of memory or complexity is needed[32].

To build such a parametric dictionary, we could use the prior knowledge of the formation

of signal. For example, applying perceptual criteria could alter the selection of generation

function while building the atoms. Once the goal is to rebuild the data which already per-

ceived by censor system, the learning pattern could become learn parameters for generating

function, which largely reduced the complexity[32, 55]. This dictionary design algorithm,

like the others, reveals some defects. The main defect lays on the parametric class, which

is not explicitly a given one. For instance, if the real data performs more likely locates in

a subspace among signal space, the created optimal dictionary would result in more atoms

to suit that case of the subspace. Which, however, might violate the minimum coherence

constraint so it’s not suitable for dictionary with a large size.

8



2.2 SPARSE RECOVERY

The sparse recovery is normally applied to the acquisition of compressible signals which cal-

culate an approximate representation through a few non-adaptive linear measurement of the

signal[20]. In practical, a given signal x ∈ RN is reconstructed with the linear measurement

y = Ax, where A is a M × N matrix, which usually referred as the measurement vector

of x. While the representation size M is much smaller than the signal size N , it still has

many useful information of the signal x which could be applied to acquire a compression or

sparsely approximation[20, 3].

The key assumption lays on that the signal x is a K − sparse or compressible one with

a feature: rapidly decaying entry magnitude when sorted. Based on this situation, one

can find the solution of this under-determined linear system through the sparse recovery

theory and also recover the signal x from measurement y. To exact reconstruct the signal

x, one sufficient condition is needed, the so called restricted isometry property (RIP)[10].

Practically, it means a coefficient δK is needed to ensure:

(1− δK)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δK)‖x‖22 (2)

works for all

‖x‖0 ≤ K

.

The measurement vector A is usually chosen as a random matrix whose entries are created

as independent Gaussian distribution. If the sizes meet the relation M ≥ O(Klog(N/K)),

then the random matrix would most probably satisfy the RIP[10, 29]. Then it ensures the

convex optimization

arg min
x∈RN

‖x‖1 such that y = Ax (2)

could reconstruct the sparse signal x.

It’s quite common in real applications, for example in remote sensing the process of dis-

posing direct measurement is impossible while the indirect measurement is the solution. It’s

also the same case that these measurements are much fewer compared with the amount to
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necessary complete the describe of object due to the sensor limitations of data processing

or transmitting, costs of detecting. Based on these limitations, the problem we processed

become ill-posed, which no longer has unique solution and not totally depend on data re-

ceived. So when recovery the signal, the extra information denoted as prior in the statistical

literature corresponding to the conditional probability is required[20].
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3.0 CLUTTER IDENTIFICATION METHOD

In this section, we introduce the sparse-recovery based clutter identification method, includ-

ing the impact of kernel density estimation, specifically the effects of the kernel-type and

kernel-bandwidth on the estimation procedure.

3.1 BOMP METHOD

Sparse recovery algorithms aim to estimate a signal by linearly adding columns from a

dictionary of predefined waveforms. Typically, representing the dictionary as a matrix D =

{φω : ω ∈ Ω}, whose each member φω is called as atom and coefficient ω is obtained from a

index set Ω, sparse recovery techniques solve for γ using Dγ = s, where s is the original

signal and γ is a coefficient vector. In general, the objective is to estimate the signal with

m atoms, where m is much smaller than the size of dictionary N ,[47, 46, 15] and hence it is

referred to as a sparsity-based estimation technique.

In general, dictionariesD are designed to be fat matrices, meaning a single exact solution

of γ does not exist. Instead, greedy approaches are used to solve for the signal as an

approximation. The most popular greedy approaches fall under the category of Matching

Pursuit (MP) algorithms, one of which is the orthogonal matching pursuit (OMP) algorithm

that reconstructs the input signal with the least number of atoms, implying the sparsest

recovery. For exact-sparse problem, the exact recovery condition (ERC) for OMP method

is given as maxφ ||a ∈ span{φλ : λ ∈ Λj}|| < 1 , where the maximum reaches over the

atoms that are not be part in the optimal representation of the signal, meaning that the

sparest signal reconstruction is unique.[46] Starting with the initial approximation a0 = 0
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and initial residual r0 = s, OMP method at each step tries to find an atom which correlates

most perfectly with the residual;for example, at step j, the atom index λj is calculated by

solving the optimization problem:

λj ∈ argmax
ω∈Ω

|〈rj, φω〉| (3)

Subsequently, the jth approximation is computed as

aj = argmin
a

‖s− a‖2 , subject to a ∈ span{φλ : λ ∈ Λj} , (4)

where Λj = {λ1, ...λj} denotes the atom-indexes selected till the jth step. Because the

residuals are orthogonal to the atoms which have already been chosen, OMP never chooses

the same atom twice, resulting to a zero residual after d steps[23, 50]. It’s clear that OMP is

a greed method which at each step the atom is chosen as the most correlated to the present

residual, by calculating the highest inner product. Once the atom is chosen, the signal is

ensured to project to the sapn of the chosen atoms orthogonally,as 1 shows. The step 4 is

the greed approach and indeed the similarity calculation step. The accuracy at this step is

crucial since the atom chosen is the key to the loop, which strongly correlated to the accuracy

of the whole algorithm. The later section will study the improvement in detail. And take

the time complexity into consideration, step 7 is definitely the high cost step.

Algorithm 1 OMP algorithm

1: Input: Dictionary D, signal y, target error ǫ

2: Initialize: Set I := (), r := y, γ := 0,n := 1

3: while r − γ ≤ ǫ do

4: k̂ := argmaxk|dT
k r|

5: I := (I, k̂)

6: γI = (DI)
+x

7: r = x−DIγI

8: n = n+ 1

9: end while
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This time cost could be reduced by implying a matric trick, the Cholesky process[14].

The Cholesky factorization is a decomposition process where a Hermitian, positive-definite

matrix becomes the product of lower triangular and its conjugate transpose. It can be

presented as:A = LL∗, where L is a lower triangular matrix with real and positive diagonal

entries.In OMP1, the step 6 could be written as: γI = (DI)
+x = (DT

I DI)
−1DT

I x. Since

it’s an orthogonal process, the inner-matrix DT
I DI is non-singular and symmetric positive

definite. For each iteration, the inner-matrix only append a single column/row to it, so the

Cholesky factorization only needs to computation the last row. For such a inner matrix

Ã = L̃L̃T ∈ R
(n−1)×(n−1), the Cholesky factorization of A =





Ã v

vT c



 ∈ R
n×n is given as

A = LLT , where L =





L̃ 0

wT
√
c− wTw



 ,w = L̃−1v.

Algorithm 2 Cholesky-OMP algorithm

1: Input: Dictionary D, signal y, target error ǫ

2: Initialize: Set I := (), L := [1], r := y, γ := 0, α := DTx, n := 1

3: while r − γ ≤ ǫ do

4: k̂ := argmaxk|dT
k r|

5: if n > 1 then

6: w := Solve for w Lw = DT
I dk̂

7: L :=





L 0

wT
√
1−wTw





8: end if

9: I := (I, k̂)

10: γI := Solve for c {LLTc = αI}
11: r = x−DIγI

12: n = n+ 1

13: end while

The OMP algorithm is updated by applying Cholesky factorization, however in real

application the signal and dictionary size are huge, pre-computing process could reduce the

calculation amount drastically. By further implementing the BOMP(batch-OMP), the time
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complexity of the algorithm is significantly reduced[41]. As a variant of OMP algorithm,

BOMP still aims to solve the reconstruction problem by finding the local minimum solution of

an undetermined linear system, while reducing the computational complexity by introducing

the Cholesky factorization for residual calculation.[41, 15] Denoting α = DTr, α0 = DTs,

G = DTD, and the sub-matrix DΛ containing the columns indexed by Λ, we can write a

new equation involving the pseudo inverse as

α = DT
(

s−DΛ(DΛ)
+s

)

= α0 −GΛ

(

GΛ,Λ
−1α0

Λ

)

. (5)

Therefore, with the pre-calculated G and α0, it only needs to compute α instead of r at

each iteration. Also, the new multiplier GΛ,Λ replaces the dictionary D, where GΛ,Λ denotes

the progressive Cholesky factorization result.[47, 41, 15] The key point is that for the atom

selection step, it’s not necessary to know the r and γ exactly, but only the DT r. Based on

the feature that the residual is not explicitly computed, the error-based stopping criterion

could be applied to the algorithm. After n-th iteration, denoting the rn as residual and γn

as the approximation, we could get

rn = x−Dγn = x−Dγn−1 +Dγn−1 −Dγn = rn−1 +D(γn−1 − γn) (6)

With the knowledge that the residual is orthogonal to the approximation, rnTDrn = 0, the

squared approximation en could be expressed as:

||rn||2 = ||rn−1||2 − (γn)TGγn + γn−1Gγn−1 (7)

To simplify the equation, we denote σ = (γn)TGγn, so the approximation equation could be

written as: en = en−1 − σn + σn−1. The basic idea of BOMP is to reduce the calculation

amount when recovering a great number of signals from the same measurement matrix [41].

By using BOMP, the stopping criterion C could be used to further enforce the sparsity of

the output. It allows the user to specify the number of columns from dictionary applying for

the description of the original signal. The algorithm could be summarized as in Algorithm 3.

Note that I is an index vector, DI is a matrix formed by indicated columns of D, αI and

γI are vectors formed by indicated elements of vectors α and γ, respectively, and dk is kth

column of D. After this transformation, the batch-OMP algorithm becomes:
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Algorithm 3 Batch-OMP algorithm

1: Input: Dictionary D, signal y, target error e, G = DDT

2: Initialize: Set I := (), L := [1], γ := 0, α := α0 = DTx, n := 1

3: while en−1 ≥ e do

4: k̂ := argmaxk|dT
k r|

5: if n > 1 then

6: w := Solve for w Lw = DT
I dk̂

7: L :=





L 0

wT
√
1−wTw





8: end if

9: I := (I, k̂)

10: γI := Solve for c {LLTc = αI}
11: β = GIγI

12: α := α0 − β

13: σn = γT
I βI

14: e = en−1 − σn + σn−1

15: n = n+ 1

16: end while
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3.2 OZTURK ALGORITHM

The Ozturk algorithm provides a graphical distance measurement between the sampled data

and distributions in the dictionary [35, 39, 34]. This algorithm could be applied for univariate

and multivariate cases, by normalizing the ordered samples and then converting the ordered

samples into points in the two-dimensional plane. The distance between the endpoint of the

sampled data and that of a distribution in the dictionary presents the fitness of the sampled

data with the specific distribution [35].

The Ozturk algorithm is originally designed for the fitness test. Assume that X1, . . . , Xn

are randomly sampled from a distribution function F (x). Then the ordered samples are

written as X1:n ≤ X2:n ≤ · · · ≤ Xn:n. Assume that a location-scale distribution F0((x−µ)/σ)

is the null distribution (reference distribution), where µ and σ are the location and scale

parameters, respectively. Then we denote the expected order statistics from the standard

null distribution as m1:n,m2:n, . . . ,mn:n. The standardized ith sample order statistic could

be written as Yi:n =
∣

∣Xi:n − X̄
∣

∣ /S, where X̄ and S are the sample mean and standard

deviation, respectively. Then the two-dimensional location of ith point corresponding to

the ith sample order statistic could be defined by Qi:n = (Ui:n, Vi:n) , i = 1, 2, . . . , n, where

Ui:n = 1
n

∑i

j=1 cos (πF0(mj:n))Yi:n, and Vi:n = 1
n

∑i

j=1 sin (πF0(mj:n))Yi:n.

The graph starts from the origin in the two-dimensional system, and each point (Ui:n, Vi:n)

is plotted to form linked vectors. These vectors could reveal a certain pattern under the null

hypothesis [34]. Further, if samples are drawn from the hypothesized distribution then

it should create a pattern uniformly close to the expected linked vector pattern. In this

way, a (100 (1− α)) confidence contour for the expected endpoint (E(Un:n), E(Vn:n)) can

be generated, which is able to test whether samples are obtained from the hypothesized

distribution [34]. This fitness test method is extended to be a distribution identification

algorithm in [35] by selecting the nearest neighbour of the sample endpoint (Un:n, Vn:n) from

the graphical dictionary generated by the expected endpoints (E(Un:n), E(Vn:n)) of various

predefined distributions. For the given samples X1, X2, · · · , Xn, the Ozturk algorithm for

the distribution identification could be summarized as in Algorithm 4.
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As pointed out in [35], the statistic Qn:n is location and scale invariant. If the expected

endpoints (E(Un:n), E(Vn:n)) are plotted for different distributions, then any location-scale

family of distributions could be represented as a single point, while distributions having

shape parameters form a curve.

Algorithm 4 Ozturk algorithm

1: Obtain the ordered sample observations Xi:n

2: Calculate the standard order statistics Yi:n

3: Calculate the statistics Un:n and Vn:n and plot the endpoint Qn:n = (Un:n, Vn:n).

4: Compare the sample endpoint Qn:n = (Un:n, Vn:n) with the expected endpoints

(E(Un:n), E(Vn:n)) generated by the existing distributions in the graphical dictionary,

and find the nearest neighbouring distribution.
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3.3 KERNEL DENSITY ESTIMATION

Kernel density estimation (KDE) is commonly used to estimate the pdf of a random variable,

which could be viewed as an update of histogram, where weight function becomes the kernel

function with bandwidth. For example, given a set of random samples x = {x1, . . . , xn}
from an unknown distribution fX(x), the kernel density estimator is represented as

f̂(x) =
1

nh

n
∑

i=1

K

(

x− xi

h

)

, (8)

where K(·) is a kernel function determining the shape of weight function, and h is the kernel

bandwidth determining the amount of smoothing applied in the estimation process.[16, 13]

The kernel function could be any symmetric pdf since it meets the following properties:
∫

K(t)dt = 1 and K(t) ≥ 1. Furthermore, given sufficient number of samples, the kernel

density estimator f̂(x) would asymptotically converge to any density function fX(x), and

therefore KDE is applicable for almost every distribution.[16]

Now, it is obvious that the choice of kernel type and bandwidth would critically affect

the estimation performance. To evaluate the estimation accuracy, let us define the mean

squared error (MSE) as MSE(f̂(x)) = E(f̂(x) − fX(x))
2 = bias2(f̂(x)) + var(f̂(x)). Then,

by transforming and expanding with Talyor series, we get

MSE(f̂(x)) ≈ 1

4
h4 k2

2 f
′′(x)2 +

1

nh
j2 , (9)

where k2 =
∫

z2K(z)dz and j2 =
∫

K(z)2dz. Therefore, the global estimation accuracy can

be expressed in terms of the mean integrated square error (MISE) as

MISE ≈ 1

4
h4 k2

2 β(f) +
1

nh
j2 , where β(f) =

∫

f ′′(x)2dx . (10)

As MISE is a function of bandwidth h, a simple way to obtain the optimal bandwidth is to

take gradient of MISE and set it to zero, which results in

hopt =

[

1

n

γ(K)

β(f)

] 1

5

, where γ(K) = j2 k
−2
2 . (11)

However, as hopt depends on the pdf which is unknown, its practical computation is not

possible.
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To select the kernel bandwidth h, one commonly applied method is to assume a reference

distribution, mostly the Gaussian, and then to compute the optimal bandwidth as hopt =

(4σ
5
s

3n
)
1

5 , where σs is the sample standard deviation σs =
√

1
n−1

∑n

i=1(xi − x̄). Based on

the Gaussian assumption, a better expression of bandwidth is given as hopt =
0.9σ̃
n5 , where

σ̃ = min
(

σs,
IQR
1.34

)

and IQR is the inter-quartile range, i.e., the difference between the 75th

and 25th percentile points.

Another way to estimate the bandwidth is to test a set of bandwidth values, and select

the one with highest accuracy. It’s reasonable to assume that a smaller bandwidth would

make the histogram more accurate since it keeps more points. However, numerically the

small bandwidth would increase the time complexity of the algorithm, especially for the

large dictionary and in some scenario the data needs to be processed online. So it’s impor-

tant to find a suitable bandwidth fit both the accuracy rate and the algorithm complexity.

Usually the default bandwidth is created by Gaussian assumption, although different from

the real distribution, the result is acceptable. A fast and efficient way is to chose the default

bandwidth as base, and then create a test bandwidth set consisted with a variety percentage

of the default bandwidth. Notice here the percentage set is usually less than 100%, while in

real application the signal is non-stationary and the distribution parameters are unknown,

the default bandwidth might be smaller for histogram. So in the numerical test, the band-

width set includes elements larger than the default one. And by comparing the identification

rate of different bandwidth, a suggested selection range could be obtained.

A more data-driven method is the ‘plug-in’ estimation, by using a separate smooth trick

for f ′′(x) estimation and calculating the gradient based bandwidth[17, 26, 19].
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3.4 METRIC STUDY

For the clutter identification purpose, we formulate the dictionary based on a data-driven

approach using the KDE paradigm as

D = [ f1(s) f2(s) · · · fN(s) ] , (12)

where each column is created for a pre-defined clutter distribution estimated via KDE.

Specifically, to create each dictionary column, S samples are used to calculate an estimated

clutter pdf, fn(s), which is then normalized on a set support of W points. Thus, the final

dictionary has dimension W × N . In a similar manner, we create the test signal as an

estimated pdf g(s) by first collecting Nt target-free radar measurements and then applying

KDE with the same support W which is used to build the dictionary. Once g(s) has been

estimated, the BOMP method is applied to select the column(s) from the dictionary D that

is(are) the best match to the estimated pdf g(s) of the measured clutter data[28]. Sparse

recovery aims to find a solution to the following equation Dγ = y to obtain an estimate of

γ, where y is a vector of observations, D is a fat matrix (dictionary matrix,i.e the atom)

such that it has more columns than rows, and γ is the unknown vector to be estimated [40].

Since D is a fat matrix, there are less number of observations in y than the unknowns in γ.

It was shown that if γ is sparse, then there are greedy approaches to optimize the solution

of this problem. Examples of such greedy approaches include matching pursuit algorithms,

and in this paper, we apply batch orthogonal matching pursuit (BOMP) to find a solution to

this optimization problem [40]. Next, we describe how we formulate the clutter identification

as a sparse recovery problem.

The atom index selection is made by inner product3, a commonly used measurement to

identify the similarity between two distributions. Since the atom is sparse, select the index

with inner product would be less precise.

To update the algorithm, the metric method for a more precise distance/similarity mea-

surement is needed. Many geometrical distances could be applied to the BOMP algorithm.

Like the inner product method, city block is a simple and high efficient method, similar
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Table 1: Table of metrics

Metric Name Function

Inner Product S =
∑n

i=1 PiQi

Canberra S =
∑n

i=1
|Pi−Qi|
Pi+Qi

Intersection S =
∑n

i=1min (Pi, Qi)

Fidelity S =
∑n

i=1

√
Pi −Qi

to compare two pdfs and the discrete versions of various divergences in probability and in-

formation theory fields are considered.[11] In this paper, four metrics are applied for the

Euclidean distance while the effect of a large difference in a single dimension is dampened

because since the distances are not squared. The four methods listed here are all typical

because each method represents a group of similarity algorithm. For these commonly used

algorithms, the implementation effect is unknown for this scenario, but different groups have

specific features. Then the numeric test could be designed as first choose the representative

algorithm of each group, comparing the identification accuracy rate. Then find the highest

accuracy rate one, then do more test based on the algorithm group.

Canberra distance is a weighted Manhattan distance, similar to Srensen distance while

normalizes the absolute difference of the individual level. It’s suitable for sparse application

since the sensitivity to small changes near zero.[11] The intersection between two pdfs is a

widely used form of similarity, so as the Fidelity, the sum of geometric means.
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4.0 NUMERICAL RESULTS AND DISCUSSION

This section shows the numerical examples of comparing different kernel types as well as

bandwidth among specific test sample size and dictionary size applying BOMP. By randomly

choosing the test parameters from dictionary and creating test samples with KDE, the change

of accuracy rate in different scenarios reveals the impact of kernel types and bandwidth. The

dictionary is predefined with these four distributions[52]:

1. K-distribution: sK = |√τn|, where sK follows a K-distribution when τ ∼ Gamma(k, θ)

[ k is the shape parameter and θ is the scale parameter] and n ∼ CN (0, σ2
n).

2. Weibull distribution: sWbl ∼ Wbl(α, β), where sWbl follows a Weibull distribution with

the shape parameter α and the scale parameter β.

3. Log-normal distribution: sLN ∼ LogN(µLN, σ
2
LN), where sLN follows a log-normal distri-

bution, implying that (ln yLN−µLN)
σLN

∼ N (0, 1).

4. Student-t distribution: sSt =
√
τw, where sSt follows a non-standardized Student-t dis-

tribution when 1/τ ∼ Gamma(v, 1/v) and w ∼ N (0, σ2
w).

Firstly, based on these distributions, we first construct the dictionary D with l elements,

where each element is pre-learned using N i.i.d. samples from a specific clutter distribution.

For example, an element of dictionary in the Ozturk algorithm based method is an expected

endpoint generated by a clutter pdf. Then, considering the standard Gaussian distribution

as the reference distribution, i.e., considering F0 as a standard Gaussian cdf, the nearest

neighbouring distribution in the graphical dictionary is identified as the underlying clutter

distribution, as suggested by [35]. Note that the expectations of the endpoints are computed

by 10, 000 Monte Carlo trials in the dictionary generation. In addition, usually the expected

order statistics mi:n do not have closed-form expressions; therefore, we use 20, 000 Monte

Carlo runs to approximate them. For the BOMP based method, an element of dictionary D
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is a pre-learned discretized pdf (estimated by KDE method), which is then normalized. The

underlying clutter pdf is then identified by BOMP based method with sparsity level C = 1.

For simplicity, we define a notation {l : ∆ : u} as a set that collects real numbers starting

from l to u with increment ∆. For instance, {1 : 0.5 : 3} = {1.0, 1.5, 2.0, 2.5, 3.0}.
Secondly, we comprehensively compare the BOMP based clutter identification technique

with the Ozturk algorithm based method using a dictionary that includes the K, Weibull,

log-normal, and Student-t distributions. In addition, we consider three dictionary sample

sizes, N = 500, 1000, and 2500. For each of them, the test sample sizes Nt vary from 300 to

2800. Note that here we fix the dictionary sample size regardless of the test sample size while

even applying the Ozturk method, because in many radar applications only one dictionary

is preferred. To test the identification performance, we randomly select test pdfs from the

dictionary, and apply the BOMP and Ozturk based methods to identify them.

Table 2: Table of kernels

Kernel Name Function

Normal K(u) = 1√
2π
e−

1

2
u2

Triangle K(u) = 1− |u|, |u| ≤ 1

Rectangle K(u) = 1
2u
, |u| ≤ 1

Epanechnikov K(u) = 3
4
(1− u2), |u| ≤ 1
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4.1 KERNEL RESULTS

To study the impact of different kernels, we compared the accuracy of identification under

different kernel types and different sample sizes with a fixed bandwidth calculated by rule-of-

thumb (while the bandwidth calculated by rule-of-thumb). In practical, the sample sizes are

chosen as 500,1000 and 2500. For each sample size, the accuracy test would be computed by

10,000 Monte Carlo trials. In this paper,four different types of kernel are applied as 2 And

the distribution parameters are chosen as in the previous work to reveal the kernel feature,

given as:

1. K-distributions with fixed σn = 1, fixed θ = 1, and k ∈ {0.1 : 0.2 : 3.9} ∪ {4 : 2 :

24} ∪ {50 : 25 : 200}
2. Weibull distributions with fixed scale β = 1, and shape parameters α ∈ {0.1 : 0.1 :

3.9} ∪ {4 : 2 : 20}
3. Log-normal distributions with µLN = 0, and σLN ∈ {0.05 : 0.05 : 1} ∪ {1.1 : 0.1 : 3}
4. Student-t distribution with σw = 1, and v ∈ {0.1 : 0.2 : 4.9}∪{5 : 5 : 25}∪{50 : 25 : 200}

This part shows the average identification accuracy when using the default bandwidth calcu-

lated by rule-of-thumb, with different test dictionary sample sizes (500,1000 and 2500) and

test sample sizes (from 300 to 2800). The result is supposed to show the performance of

kernels in different scenarios. The results are presented in Figure 2(a) to Figure 2(d), every

figure shows a specific kernel accuracy rate.
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4.2 BANDWIDTH RESULTS

To study the impact of bandwidth, we compared the accuracy of identification under differ-

ent bandwidth selection methods. In practical, the sample sizes are chosen as 500,1000 and

2500 and the kernel types are the same as in the previous simulation. For each sample size,

the accuracy test would be computed by 10,000 Monte Carlo trials. And the bandwidth

selection methods are given as:

1. Rule-of-thumb : ĥopt =
0.9σ
n5 .

2. Subjective bandwidth set: Chosen the rule-of-thumb bandwidth as reference, creating a

set with [0.1:0.1:1.1] ĥopt.

This part shows the average identification accuracy when using the set of bandwidth. The

result is supposed to show the performance of bandwidth in different scenarios. The results

presented in Figure 3(a) to Figure 3(d) show different accuracy rate, computed with an

unique kernel function and depending only on the bandwidth set3.

Table 3: Table of bandwidth selection

Bandwidth selection Name Function

Maximum likelihood cross-validation The pseudo-likelihood
∏n

i=1 f(Xi) is maximized

Biased cross-validation Estimate R(f r+2)

Complete cross-validation Estimation of derivative of the density

Unbiased cross-validation estimate h the minimizer of ISE(h)
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(d) Accuracy epanechnikov kernel.

Figure 2: Effects of kernel types.
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4.3 METRIC RESULTS

To study the impact of metric methods, we first implement the comparing test among four

representative similarity algorithms. Since they are the most common used method in their

group, the result could be viewed as an average performance. The kernel is chosen as

epanechnikov, which is the best in previous numerical test and with different test dictionary

sample sizes (500,1000 and 2500) and test sample sizes (from 300 to 2800). The results

presented in Figure 4(a) to Figure 4(d) show different accuracy rate, computed with an

unique metric.

Obtained the results above, it’s clear that the canberra algorithm performs the best.

Based on this result, the further discussion is about the optimal metric method in this

group. Thereby three other metric methods are included in the further test, they all have

similar calculation part, however, still keeps features which could make a significance change

in simulation. The three other metric methods are Soergel, Kulczynski and Srensen. So the

following numerical test are based on the L1 groups. The results presented in Figure 5(a)

to Figure 5(d) show different accuracy rate, computed with an unique metric function. The

metric families shown below:

Table 4: Table of canberra metric

Metric name Function

Canberra S =
∑

n

i=1
|Pi−Qi|∑

n

i=1
maxPi,Qi

Soergel Estimate R(f r+2)

Kulczynski S =
∑

n

i=1
|Pi−Qi|

minPi,Qi

∑
n

i=1

Srensen S =
∑

n

i=1
|Pi−Qi|∑

n

i=1
Pi+Qi
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Figure 3: Effects of bandwidth.
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0 500 1000 1500 2000 2500 3000

Test Sample Size

70

75

80

85

90

95

100

A
c
c
u
ra

c
y

AVG Accuracy

Intersection

Dictionary Size 500

Dictionary Size 1000

Dictionary Size 2500

(c) Intersection accuracy.
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(d) Inner product accuracy.

Figure 4: Four typical metrics accuracy.
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(b) Soergel accuracy.
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(c) Kulczynski accuracy.
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Figure 5: L1 group accuracy.
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4.4 COMPARISON OF OZTURK ALGORITHM AND BOMP

The Graphical dictionaries(K,Weibull,Log-normal,Student’s-t distributions) generated by

Ozturk method using different sample sizes(500,1000,2500) is presented below. The graph-

ical dictionary changes when the sample sizes are varying, especially for the Weibull and

log-normal distributions. More precisely, some distributions in the dictionary are relative

stable with respect to the sample size, while the other distributions are not. Now, in the

Ozturk algorithm based clutter identification method, if we plan to identify a test distribu-

tion, in principle the test sample size Nt needs to match the dictionary sample size N , unless

the graphical dictionary is not sensitive to dictionary sample size. In 4.4, as an empirical

observation result, those endpoint-sensitive cases generally correspond to the distributions

with relative large variances. However, to the best of our knowledge, there is no theoretical

analysis which thoroughly discussed the sensitivity of the dictionary of the Ozturk method to

the sample size. In modern cognitive radar framework, it would be an advantage that radar

can adaptively control/change the number of (test) samples acquired from the environment

and the target. In such applications, radar systems might need to store various graphical

dictionaries with different N values, rather than one dictionary, to adapt to different test

sample sizes while using the Ozturk method.

And the Comparison of BOMP and Ozturk methods for clutter identification is shown

below. we comprehensively compare the BOMP based clutter identification technique with

the Ozturk algorithm based method using a dictionary that includes the K, Weibull, log-

normal, and Student-t distributions. Specifically, we consider

1. K-distributions with fixed σn = 1, θ ∈ {1, 10}, and k ∈ {0.1 : 0.5 : 3.6} ∪ {4 : 5 : 24},
2. Weibull distributions with shape parameters α ∈ {0.5 : 0.5 : 3} ∪ {4 : 4 : 20}, and scale

parameters β ∈ {1, 2},
3. Log-normal distributions with µLN = 0, and σLN ∈ {0.05 : 0.2 : 0.85} ∪ {1 : 0.5 : 2},
4. Student-t distributions with σw = 1, and v ∈ {0.5 : 0.5 : 1.5} ∪ {2 : 3 : 8}.
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In addition, we consider three dictionary sample sizes, N = 500, 1000, and 2500. For each

of them, the test sample sizes Nt vary from 300 to 2800. Note that here we fix the dictionary

sample size regardless of the test sample size while even applying the Ozturk method, be-

cause in many radar applications only one dictionary is preferred. To test the identification

performance, we randomly select test pdfs from the dictionary, and apply the BOMP and

Ozturk based methods to identify them. The resulting performance comparison is shown in

Fig. 4.4. In general, we notice from Fig. 4.4 that the proposed BOMP based technique for

clutter identification significantly outperforms the Ozturk algorithm based method. It is due

to the fact that the deficiencies of the Ozturk algorithm, such as the location-scale invariant

property, hinder its identification performance. In addition, we observe that both methods

have improved performances with more test samples. Also, for BOMP based identification

technique, the larger the dictionary sample size, the better is the overall identification ac-

curacy. However, for the Ozturk algorithm based method, increasing the sample size in the

dictionary generation does not substantially change the overall identification performance.

Compared to the simulation for Fig. 4.4, we do not include Log-normal distributions of

large variances in the dictionary in the simulation for Fig. 4.4, and thus the performance of

Ozturk algorithm seems robust. In the second group of figures, Figure 2(a) to Figure 2(d)

we notice that the average clutter identification accuracy is higher when dictionary size is

larger. With larger dictionary size, each column in the dictionary has more support points,

which helps solving the BOMP optimization problem more accurately. Also, the test sample

size is roughly correlated with the accuracy, while a fall back is detected when test sample

are larger than 1500. This situation is obviously shown in low dictionary size, for which the

normal kernel and Epanechnikov kernel are more robust than the others. When applying

larger dictionary size, all kernels perform well and with the increase of the test sample size,

the accuracy rate roughly rises from 78% to 95% at same pace. When the dictionary has

a size of 1000, the accuracy of box kernel is inferior to the others. When dictionary size is

doubled from 500 to 1000, the accuracy rate of kernel box increases much slower than the

others. Comparing Figure 2(a) and Figure 2(d), the kernel normal seems to be more robust

to discrepancies between the dictionary and test sample sizes than the Epanechnikov kernel

for large dictionary sizes.
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In the second group of figures, Figure 3(a) to Figure 3(d), the accuracy rate of clutter

distribution identification changes slightly when bandwidth varies from 10% to 110% of

the bandwidth computed through the rule-of-thumb method. This implies that the BOMP

method is robust for the application scenarios with different bandwidth. We do not observe a

direct correlation between the changes in the bandwidth and accuracy of clutter distribution

identification. The rule-of-thumb method, even though it is established for calculation of

bandwidth for normal kernels, performs well for other kernels as well. Therefore, we suggest

using the rule-of-thumb method for the calculation of the kernel bandwidths. Among the

four chosen kernels, the triangle kernel still performs inferior to the others. The normal

and Epanechnikov kernels are preferable, as both of them are robust in terms of bandwidth

change. On the other hand, the box kernel requires a large dictionary size to achieve similar

clutter distribution identification accuracies. Also, we note that the Epanechnikov kernel

shows good results with small dictionary size, which is significant for scenarios in which

not enough data are available to build the dictionary, especially when updating dictionary

online. In such cases, we suggest to apply the Epanechnikov kernel function.

In the third group of figures, Figure 4(a) to Figure 4(d), the four typical metric methods

are applied. Comparing with the accuracy rate, the atom selection algorithm using can-

berra and intersection obviously have higher performance than others. Also, taken the real

application into consideration, the canberra metric behaves well in smaller dictionary size,

which makes it suitable for the online processing. Since canberra is a typical metric of norm

group, it’s much helpful to apply other metric measurements of the same group to find an

optimal choice. Then Figure 5(a) to Figure 5(d) are introduced, where each graph represents

a common metric measurement in norm group. It can be viewed that all their performance

is better than the other typical metrics previously, and the canberra method still performs

the best among them.
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5.0 CONCLUSIONS AND FUTURE WORK

In this work, we presented a sparse-recovery based clutter identification method and ana-

lyzed its performance with respect to two different kernel bandwidth selection methods and

for different kernel functions. Based on the numerical examples, we demonstrated that the

sparse-recovery based technique provided (i) robustness in terms of different kernel types

and bandwidths; and (ii) high accuracy in identifying clutter measurements originating from

different families of distributions. Our results further demonstrated that the Epanechnikov

kernel with canberra metrics performs the best compared to the other kernels. We observed

that compared to the sparse recovery based method, Ozturk algorithm does not have suf-

ficient accuracy in identifying the distributions originating from the same family but with

different parameters, especially it suffers from identifying the scale parameters correctly due

to its location-invariant property and this in result decreases its overall efficiency/accuracy

in identifying clutter distributions.

In our future work, we plan to adaptively increase and decrease dictionary size of the

sparse-recovery based method; such adaptive change in dictionary size will be crucial in order

to characterize measured data that may not be well-represented by any specific distribution

in the dictionary and to control the computational load. Furthermore, with real measured

data, we will incorporate the sparse-recovery based clutter identification method into the

design of a fully cognitive radar system, which will include the statistical tests for estimating

change points in the clutter distribution, methods for identifying the new clutter distribution

and adaptation techniques for detection/tracking algorithms to the newly learned clutter

distribution.
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