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The three Rat Sarcoma (RAS) genes in humans (HRAS, KRAS, and NRAS) are the most common 

oncogenes that are mutated in human cancer. Mutations that permanently activate RAS are found 

in 20% to 25% of all human tumors and up to 90% in certain types of cancers. For this reason, the 

RAS pathway is being heavily studied, however, there are still many unknowns in regulation and 

downstream effects of RAS in cancer. Previous computational work that focused on signaling in 

the RAS pathway relied mainly on continuous models that use ordinary differential equations or 

reaction rule-based models. These approaches are most often limited in size due to the lack of the 

information required to create such models. In this work, we use a discrete modeling approach, in 

which elements of the intracellular signaling network are modeled as discrete variables, and the 

elements’ regulatory functions are either implemented as logical functions, weighted sums, or 

min/max functions. The network that we are modeling includes a number of intertwined feedback 

and feed-forward loops. We developed several versions of the RAS pathway model, and our results 

demonstrate the advantages of the discrete logical modeling approach when studying intra-cellular 

signaling networks. In addition to model design and analysis, we have worked on developing a 

translator from the biological mechanism representation used by continuous models, into the 

decision tree representation, namely Binary and Algebraic Decision Diagrams. The goal of this 
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translation effort is to allow for a standardized and comprehensive modeling approach, which can 

capture all the available system parameters, while at the same time enabling model design and 

evaluation even in the absence of these parameters.  
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1.0  INTRODUCTION 

The Rat Sarcoma (RAS) gene family are the most commonly mutated genes in human tumors. 

Three elements in this family (HRAS, KRAS, and NRAS) are known to promote cancer 

proliferation and growth in tumors [1]. Mutations in other upstream or downstream components 

of the RAS signaling pathway shown in Figure 1 can also be found in a variety of cancers. The 

mitogen-activated protein kinases (MAPK) – part of the EGFR/RAS/MAPK [8] pathway and 

downstream of the RAS signaling pathway –  increase significantly in activity once there is a 

mutation in the RAS protein [6][7]. KRAS mutations are especially common events in cancer. 

They are detected in 40-45% of all colorectal cancers [2][3] and have been detected in both early 

and late stages of colorectal cancer [4][5], therefore, KRAS mutation might be an early event in 

tumor development.  
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Figure 1 : Ras pathway in a cell, and its upstream and downstream elements [27] 

 

Ras proteins are molecular switches that, by cycling between inactive guanosine 

diphosphate(GDP)-bound and active guanosine triphosphate(GTP)-bound forms, regulate multiple 

cellular signaling pathways, including those that control growth and differentiation. The oscillation 

between inactive and active states is a key feature to regulate cellular growth. The mutation of 

KRAS and its constant activity disrupt this oscillating behavior of the GDP/GTP form, thus leading 

to a growth that is no longer regulated, and the creation of a tumor. Modeling this pathway could 

give critical information about how to regulate the behavior of mutated of a mutated RAS signaling 

pathway to prevent the development of a tumor. 

The computational modeling of intra-cellular signaling pathways such as RAS pathway 

usually includes Ordinary Differential Equations (ODE) that are derived from biochemical 

reactions [10]. Such an approach requires not only listing all the reactions that are involved in the 
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modeled pathway, but also the knowledge of all the reaction rates and molecular concentrations. 

As a result, the ODE-based modeling approach is limited in scale, usually targets only few 

elements on one pathway, and furthermore, the rates of all the reactions are not always known. To 

overcome the problem of exponential growth when modeling biochemical reaction networks, a 

reaction rule-based approach has been proposed and has been used by a number of researchers 

[11][12]. However, the reaction rule-based approach still requires the knowledge of reaction rates 

and molecular concentrations, which are not always known or available.   

In the effort to avoid the problem of limited knowledge, this work uses a discrete, element 

rule-based modeling approach, which also allows to include a much larger number of elements 

without increasing duration or complexity of the simulation when compared to continuous 

modeling. The discrete modeling approach can capture characteristic dynamic behavior such as 

multi-stability, excitation and adaptation behavior. Whereas utilizing incomplete information 

about pathways (which is the case for many intra-cellular pathways) is usually not practical in 

ODE models, it can be dealt with by using indirect causal evidence when building discrete models. 

This work aims to demonstrate how to reduce the complexity and increase the scope of a 

continuous model by translating it into a discrete model, without loss of biological information. 

For this purpose, we will analyze a reaction rule-based model from Kochańczyk et al. [11] and 

translate it into a discrete model, while keeping the important characteristics of their model. We 

developed a method that utilizes Binary and Algebraic Decision Diagrams (BDDs and ADDs) to 

implement both reaction rules and discrete element update rules. We show how to use these data 

structures in the biological context, when modeling intra-cellular networks. Due to the complexity 

of the RAS pathway, and its critical role in cancer development, we demonstrate our approach on 
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this pathway. Therefore, this work introduces a novel element rule-based discrete model of the 

RAS pathway, its upstream regulation and downstream effectors.  

In Section 2.0 , we briefly discuss intra-cellular signaling networks, continuous ODE-based 

and reaction rule-based modeling, as well as the logical and discrete modeling. We also briefly 

describe the BDD data structure. Next, in Section 3.0 , we provide details of our modeling 

methodology to tackle several biological phenomena: spontaneous behavior, oscillations and 

phosphorylation. Then, we will explain in Section 4.0  how to use the data structure of an ADD 

and their application to analyze biological events. Finally, we will show the results obtained for 

the application of this work to the RAS pathway and to what it could lead to in the future. 
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2.0  BACKGROUND 

This work applies methods from electrical and computer engineering to biology. Thus, in this 

section we discuss relevant background information in both domains. We first describe different 

modeling approaches that we use in this work, continuous (reaction rule-based) and discrete logical 

(element rule-based) modeling approach, followed by the discussion on an implementation method 

and data structures that could be used to represent models in both approaches.  

2.1 MODELING INTRA-CELLULAR NETWORKS 

The construction of a model begins with identifying key components of the studied system. Each 

component can be represented as a model element, and for each element, we determine its 

regulators. In Figure 2, we show several examples of intra-cellular networks. There are three main 

types of these networks: 

- Signal transduction networks 

- Metabolic networks 

- Gene regulation networks 

Most often, computational modelers focus only on one network type. Signal transduction 

networks are mainly focused on protein-protein interactions and protein kinases. The proteins 

responsible for detecting a stimulus are called receptors. The ligand will bind to the receptor and 

create a signaling cascade. This cascade results in interactions such as phosphorylation, 

transcription, translation of gene, post-translational changes in proteins. Metabolic networks are 



 6 

directed graphs which contain genes, enzymes and biochemical reactions such as oxidation and 

reduction, the breakdown of glucose or the joining of amino-acids to form a protein. Gene 

regulatory networks can represent genes, mRNAs, protein/protein complexes or cellular processes 

and the interactions between these elements are usually represented as activation, inhibition and 

binding. 

  

 

Figure 2 : Different types of intra-cellular networks. 
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2.1.2 Reaction rule-based modeling 

Rule-based modeling is an approach that uses a set of rules to represent reactions. These rules can 

then be translated into Markov chains or differential equations for simulation of the system. To 

establish a rule-based model we need to know the interactions of the model components and have 

information about the kinetic laws. A powerful feature of this type of modeling is the ability to 

include current states and potential bindings for each model element. In the case of 

phosphorylation, this feature allows for easy tracking of every phosphorylation state of an element. 

A widely-used simulator is BioNetGen [16]. The binding reaction is presented in Figure 3. 

 

Figure 3 : Rule representing a binding reaction using BioNetGen Language [13] 

 

 

2.1.3 Logical Modeling 

The biologists often draw networks that they are studying as graphs, like the one shown in Figure 

4, where nodes represent model elements, and edges represent the interactions between elements. 

Besides being directed, the edges also indicate the polarity of regulation, positive (regular arrows 

in Figure 4) or negative (blunt arrows in Figure 4).  
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Figure 5 : A BDD and a truth table for the function F(X,Y,Z)= !X*!Y*!Z + X*Y + Y*Z 

 

 

This conclusion leads to the second type of a decision tree that is now commonly used as 

a more optimized version of a decision tree: Reduced Order Binary Decision Diagram (ROBDD). 

As discussed above, the diagram can contain useless or redundant nodes that do not carry any 

additional information. Therefore, we can eliminate them to create an ROBDD. The figure below 

shows the ROBDD for the function F declared above. 

 

Figure 6 : Reduced Order Binary Decision Diagram for the example function in Figure 5. 

 

 

Now we can clearly see that when X=1, the value of Y will determine the value of F. Binary 

Decision Diagrams (BDDs – used as a short for ROBDDs) [20][21] have significantly changed 

the landscape of synthesis, formal verification, and testing of digital circuits. BDDs provide an 

efficient and canonical form of representation of those functions. Despite being reduced to the 
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simplest structure, conventional algorithms such as breadth-first search, do not do well on large 

graphs, simply because they process vertices and edges on an individual basis. Several examples 

of successful applications of symbolic graph algorithms in reachability analysis of finite state 

machines have been reported. All these applications are topological; they address problems where 

connectivity is the principal issue. However, a follow-up work [22] introduced a class of 

algorithms for arithmetic symbolic computation, based on a new kind of BDDs called a Multi-

Terminal Binary Decision Diagram (MTBDD), whose main feature is the adoption of multiple 

terminal nodes. One application of these MTBDD are Algebraic Decision Diagram (ADDs), which 

provide an efficient means for representing and performing arithmetic operations on functions 

from a factored Boolean domain to a real-valued range. The ADDs can also be reduced and 

ordered, thus in this work ADD will refer to ROMTBDD. 
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3.0  MODELING BIOLOGICAL EVENTS USING DISCRETE APPROACH 

  

Figure 7 : Flow diagram for our model assembly and analysis methodology. 

 

 

The development and analysis of a discrete model follows the flowchart in Figure 7. Model 

development relies on the approaches discussed in Section 2.1, which are also further expanded in 

our modeling approach, as will be discussed in the following sections. In short, we decide the 

number of discrete values that each element can take and create update rules for all model 

elements.  

Model analysis starts by identifying or designing an analysis scenario, which guides 

initialization of all model elements, external model stimulations, or internal perturbations, and the 

choice of simulation scheme (deterministic or stochastic) [25]. Depending on the simulation 

scheme, one or more elements can be selected simultaneously and updated according to their 

corresponding update rules. The choice of elements to be updated in each simulation step can be 



 15 

either deterministic or random. We obtain simulation traces for all model elements, and in the case 

of random update scheme, we also compute average trace for each element across multiple 

simulation runs. Finally, we plot all or selected element traces to conduct the analysis and guide 

model updates if necessary. 

In this work, we approach model analysis from two different perspectives. In the first case, 

we are using a model from literature, with the goal to reproduce the results of that model using our 

modeling approach, and to compare and contrast modeling approaches. In the second case, we 

focus on new scenarios, not previously explored. For example, we explore the influence of a 

reaction on a pathway, or on the overall model. To do so, we start by turning OFF this particular 

reaction, and if we do not observe any changes in model’s behavior, we use our model and 

simulation results to explain this observation. If the absence of the reaction changes simulation 

result, then we further explore the reasons for the influence of this reaction, and the overall model 

sensitivity to the reaction. 

3.1 DISCRETE APPROACH 

In this work, we extended beyond commonly used Boolean modeling approach, which assumes 

variables that have only 0 and 1 values, to discrete modeling approach. The limited number of 

possible element values in the Boolean modeling approach leads to a lack of precision and can 

even introduce some errors. For example, let us assume that an element C can be activated by 

element A and inhibited by element B. The truth table associated with this regulatory rule is shown 

in Table 2. From left to right, increase in A and B value, from top to bottom increase in C value. 

If the cell is blue, this indicates that the value of C at the next step is minimal (0 in both Boolean 
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and discrete cases), if the cell is green, the value of C at the next step will be intermediate, and if 

the cell is red, the value of C at the next step will be maximal (1 in Boolean and 2 in discrete case). 

Table 2 : Example truth tables: (left) Boolean variable C;  (right) discrete variable with three values. 

C\AB 00 01 10 11 

0     

1     

  

  

 
Table 3 : Percentages comparison of the two cases in Table 2. 

 0-1 0-2 

Decrease 3/8 -> 37.5% 6/27 -> 22.2% 

Stay 4/8 -> 50% 15/27 -> 55.5% 

Increase 1/8 -> 12.5% 6/27 -> 22.2% 

 6/8 -> 75% 9/27 -> 33.3% 

 0/8 -> 0% 9/27 -> 33.3% 

 2/8 -> 25% 9/27 -> 33.3% 

 

 

 

We can quantify the lack of precision and errors introduced when working with 0-1 values versus 

0-2 values, as shown in Table 3. One could encode all discrete model elements with Boolean 

variables only, which would in the case of our example mean that each element A, B and C is 

represented with two Boolean variables (e.g., A is represented with Ahigh and Alow). With the 

Boolean approach and the truth table in Table 2, the equation for Chigh (using the same notation as 

in Section 2.1.3) is: 

Clow*Chigh*(!Alow*!Ahigh*!Blow*!Bhigh + Alow*!Ahigh*!Blow*!Bhigh + Alow*!Ahigh*Blow*!Bhigh + 

Alow*Ahigh*!Blow*!Bhigh + Alow*Ahigh*Blow*!Bhigh + Alow*Ahigh*Blow*Bhigh) + 

Clow*!Chigh*(Alow*!Ahigh*!Blow*!Bhigh + Alow*Ahigh*!Blow*!Bhigh + Alow*Ahigh*Blow*!Bhigh).  

The logic functions become even more complicated if we are representing discrete variables and 

their update functions using the Boolean approach. An increase in the number of regulators leads 

C\AB 00 01 02 10 11 12 20 21 22 

0          

1          

2          
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the biggest source of error from model simulations, because without this feature, the elements were 

reaching a wrong steady-state. 

3.2.1  Example in the RAS model 

In the RAS model, one example of spontaneous decay is shown with the elements RALA, B and 

EXOC1-8. As can be seen from Figure 8, the only regulations of EXOC1-8 is an activation from 

RALA and RALB.  

 

Figure 8 : A pathway example used to illustrate the spontaneous behavior. 

 

 

The results of simulation for elements RALA, RALB, EXOC2, EXOC3, before extending 

our modeling approach to include the spontaneous behavior, are shown in Figure 9. 
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Figure 9 : Traces of RALA, B and EXOC2,3 without the spontaneous decay implementation. 

 

 

We can observe from Figure 9 that RALA, B is going down and is not present anymore 

after 2000 steps. However, EXOC2,3 which is only activated by RALA, B is still at max level 

after step 2000. As explained in the introduction of this subsection, the behavior of EXOC2,3 is 

not the one we should expect in biology. Thus, the simulation results improve after implementing 

the spontaneous decay, as shown in Figure 10. 

 

 

Figure 10 : Traces of RALA, B and EXOC2,3 with the spontaneous decay implementation. 

 

 

Without implementing the decay the branch of the Ras pathway shown in Figure 8 would 

not be able to oscillate unless we use negative autoregulation on every element. This solution 

would have produced the expected results but would be biologically incorrect. Now, if RALA, B 

oscillates then the elements downstream are going to oscillate too, depending on the duration of 
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time interval where RALA, B stay at level zero, the decay in EXOC2,3 varies. The whole RAS 

pathway has an oscillatory behavior, and therefore, implementing the spontaneous 

increase/decrease to allow for oscillations in the model was critical to accurately capture this 

system behavior. 

3.2.2 Approach to modeling spontaneous increase/decrease 

The solution adopted is to use a counter that starts when the score of an element’s activators 

(inhibitors) is zero. Given that not all reactions happen at the same rate, we can use a parameter to 

specify how many steps to wait before the spontaneous decrease (increase). In the example used 

above, the counter would start when RALA and RALB are equal to 0. If one of the two elements 

are not 0, then the counter will not start. At every step, one element is updated and the counter will 

only increase when the element is picked. For example, if we have 100 elements with a uniform 

probability distribution and we specified 1 step for decay, then we would need an average of 100 

steps for the element’s value to decrease by one. If the number of steps specified is greater than 

one, then the counter will reset if the conditions are not met. Furthermore, if we use a much larger 

network such as the one describe later in 5.3 and shown in Figure 25, which contains 230 elements, 

and the value range is from 0 to 9, when EXOC2 starts to decay it will need 9*230 =2070 steps 

approximately to reach 0.  

The use of the spontaneous increase/decrease feature implies being careful when 

introducing more variable to represent elements such as dimers. The extra variable used to 

represent the dimers will slow down the decay downstream, as it will require the variable 

representing the dimers to be zero before the element downstream can decay whereas the decay 

can start as soon as the element is 0 if not using an extra variable. 
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3.3 OSCILLATIONS 

As stated briefly in the introduction, the behavior of the entire RAS signaling pathway is 

oscillatory. This behavior is mostly due to the activation of EGFR by EGF and its spontaneous 

deactivation. The work from [11] established a correlation between the trace of the concentration 

of EGFR over time and the elements downstream of it. This implies that most of the oscillations 

are due to spontaneous behavior. However, positive or negative feedback from elements 

downstream will change the characteristics of these oscillations such as rising time or amplitude.  

 

Figure 11 : Concentration (moles) of activated RAS, RAF and MEK over time (seconds) 

 

 

3.3.1 Spontaneous behavior 

Once the spontaneous behavior was implemented as described in the previous sections, we can see 

oscillations in the pathway. For example, let us use Figure 12 and remove all the feedback. 

 

Figure 12 : Graph of the feedback in the BioNetGen model [11] 
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With the simplest model containing only activations, and with a manual oscillation of 

EGFR (deactivation at step 150 during 150 steps), the traces of the six elements in Figure 12 are 

the following: 

 

Figure 13 : The trajectories for pathway elements assuming oscillations in EGFR only.  

 

 

With the previous explanation of the spontaneous behavior mechanism and its 

implementation, we analyze the plots in Figure 12, and we can observe the propagation of the 

decay through the signaling pathway.  

3.3.2 Feedbacks 

All the feedbacks presented in Figure 12 have a specific role. The positive feedback from RAS to 

SOS allows for signal amplification. Negative feedbacks emanating from ERK have been 

associated mainly with response attenuation, but negative feedbacks in general may be tackled to 

ensure perfect adaptation or give rise to oscillations [11]. For example, sustained oscillations may 
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arise when a negative feedback loop is embedded within a relatively slow positive feedback loop 

or when a positive feedback loop is embedded within a relatively slow negative feedback loop. 

The time constant of the negative feedback from ERK to SOS is 3e-9, and the positive feedback 

has a time constant of 1e-6 or 1e-7, depending on whether RAS is binding to SOS GTP or SOS 

GDP, respectively. Therefore, in this pathway we have a fast-positive feedback from RAS 

encapsulated in a slower negative feedback from ERK. When using only the feedback in the model, 

without the oscillations in EGFR, we obtain the result shown in Figure 14. 

 

Figure 14 : The trajectories for pathway elements assuming negative feedbacks only. 

 

 

As can be seen from Figure 14, the oscillations in EGFR were not manually enforced, 

however, for elements downstream of EGFR we can still observe oscillations around a mean value 

before they reach steady state. Finally, it is the combination of both the feedback and the 

spontaneous decay due to the oscillation of EGFR that will produce more complex results. 
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3.4 PHOSHPORYLATION 

3.4.1 Phosphorylation in BioNetGen model 

 

Figure 15 : Phosphorylation of SOS by ERK. 

 

 

The model from [11] includes a biological event that is not implemented in our modeling approach. 

This event is the phosphorylation of an element. In Figure 15, we can observe that SOS can be 

phosphorylated up to 4 times and it can only bind to RAS when it is unphosphorylated. Therefore, 

unphosphorylated SOS can be considered as active, whereas phosphorylated SOS (one, two, three 

or four times) can be considered as inactive. Secondly, given the reaction rates q=3e-9s and p=3e-

4s, the speed of the overall reaction is unbalanced as the unphosphorylation happens faster than 

the phosphorylation. Besides, the phosphorylation is not cooperative: when SOS changes from the 

unphosphorylated to the single phosphorylated form, this is happening faster than transforming 

SOS from the 3-phosphorylated to the 4-phosphorylated form. In the translated model, we will use 

delay to represent this difference in the kinetics of phosphorylation. 

3.4.2 Implementation of phosphorylation in discrete modeling 

Our first goal here was to develop a representation for different phosphorylation states of an 

element. So far, one variable was used to represent an element. If its activity was 0, then it is 
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inactive, otherwise it is considered as active. Let us define SOS= {0,1,2,3,4}, the active state of 

SOS is represented as value 4, phosphorylated one time is represented as value 3, phosphorylated 

two times is represented as value 2, phosphorylated once is represented as value 1, and finally, 

unphosphorylated is represented as value 0. Thus, the truth table for RAS, which is activated by 

the binding of SOS unphosphorylated and EGFR active, can be written as shown in Table 5.  

Table 5 : Truth table for RAS 

EGFR SOS RAS 

0 0 0 

0 1 0 

0 2 0 

0 3 0 

0 4 0 

1 0 0 

1 1 0 

1 2 0 

1 3 0 

1 4 1 

 

 

 

Although this method is technically possible, it is not suited for a large model, as it would 

require significant manual (not automated) work. Using more variables is a necessity to represent 

multiple phosphorylation. However, as we stated at the beginning of this thesis, one of the goals 

of our work and the discrete modeling approach is to be able to use abstraction to overcome the 

issues of incomplete or uncertain information. If too many details are introduced then there is no 

advantage to use this method compared to ODEs, except the speed of simulation. Therefore, using 

one variable for each state of an element was ruled out and we introduced two variables to represent 

the different states: One for the inactive/phosphorylated state and one for the 

unphosphorylated/active state. A high activity of the phosphorylated variable would represent a 
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highly phosphorylated state of the element. In Figure 16, we show the behavior of the two variables 

that we introduced to represent different phosphorylation states of SOS. 

 

Figure 16 : Trajectories for the two SOS variables: phosphorylated (left) and unphosphorylated 

(right). 

 

 

As can be seen from Figure 16, we always have a small activity of unphosphorylated SOS 

ready to bind, and the average of phosphorylation for SOS is the 3-phosphorylated state. This result 

was expected due to the rates of the reactions: the unphosphorylation happens faster than the 

phosphorylation, therefore always having a small amount of unphosphorylated SOS is correct.  
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4.0  IMPLEMENTATION OF REACTION RULE-BASED MODELS USING BDD 

AND ADD DATA STRUCTURES  

As explained in Section 3.1, Boolean simulation was extended to discrete simulation thanks to the 

use of mathematical operations to translate Boolean operator. In Section 2.2, we explained the 

structure of an ADD and we saw that it does not have weight on its edges. However, in a biological 

context we can determine whether an element is high/present or low/absent. Therefore, adding a 

probability for each node to be equal to one would be equivalent to include the element activity. 

With this property added to this structure, ADD can now be used in two different ways: first, it 

can translate biological reaction, and second, it can be used to perform short term analysis of a 

node through simulations. 

4.1 REACTION TRANSLATION USING ADDS 

In this section, we will describe our approach to use ADDs to represent the reactions that were 

defined in Section 2.1.1: activation, inhibition, binding/unbinding and phosphorylation. We 

illustrate our approach using small examples with elements A, B, C. 
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Figure 17 : ADD for the (left) Inhibition rule and (right) Activation rule. 

 

 

In Figure 17, we show a simple example of this data structure to represent biological 

reactions. The terminal of the tree represents a change in B activity at the next step: in the left tree, 

A is inhibiting B, therefore, if A is present, the activity of B will decrease at the next step. But this 

structure can be used to represent more complex reaction such as unbinding. From Figure 18, we 

can see that more precision can be achieved on this structure by including a constant rate. In Figure 

18 (left), we illustrate the representation of unbinding without including a rate constant, while in 

Figure 18 (right), we show an ADD with a rate constant of 0.2 for unbinding. Elements A and B 

bind to create element C. Unbinding, which is the reverse reaction, leads to the decomposition of 

C and elements A and B are recovered. So, if C is present, meaning we are looking at the true edge, 

it can unbind. Without the rate constant value in the terminal node, it would mean that all of C is 

unbinding, so it could be applied to single cell modeling. With the rate value, only a portion of C 

is unbinding and the value of C_next is 0.8 instead of 0.  
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Figure 18 : ADD for the Unbinding rule: (left) with rate constant,(right) without rate constant 

 

 

Figure 17 and Figure 18 show how we can use mathematical operations to translate biological 

events. In the case of more complex biological motifs, this structure enables fast translation from 

reaction rule-based approach to element rule-based approach and it also facilitates validation of 

the discrete modeling approach. 

 

4.2 SHORT TERM ANALYSIS 

Additional application of the ADD structure is in model analysis. The implementation of discrete 

or logical models using ADDs is straightforward, and therefore ADDs can speed up the analysis 

of models created using the discrete or logical modeling approach. 
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Figure 19 : Representation of SOS1 update rule using an ADD. 

 

 

With the introduction of probabilities to represent the activity/amount of each variable 

present at a certain step, we can use this structure to determine what behavior will SOS1 have in 

the next step. The update rule of SOS1 is EGFR*EGF + RTK – MAPK3*MAPK1. We use two 

scenarios here. The Scenario 1 contains a high value of RTK which will allow SOS1 to increase. 

The Scenario 2 shows that when RTK is turned down, SOS1 will not have strong enough activators 

to increase. 

Table 6 : Probabilities of elements 

Probability EGFR EGF RTK MAPK3 MAPK1 

Scenario 1 0 0.33 0.7 0.1 0.7 

Scenario 2 0 0.33 0.1 0.1 0.7 

 

 

 

 In Table 6, we present the probabilities for each element in the SOS1 update rule to be 

equal to 1 in the two scenarios. Using these probabilities, an algorithm will compute the probability 
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to reach every final value. Table 7 shows the total probability for every terminal value in the two 

scenarios. If the highest probability is negative, then SOS1 will decrease in the next step. If the 

probability is 0, SOS1 will stay constant, and if the highest probability is positive then SOS1 will 

increase. The yellow cells represent the highest probability computed in the two scenarios. These 

results are confirmed by the simulation traces shown in Figure 20, for Scenario 1 (left) and for 

Scenario 2 (right). 

Table 7 : Total probabilities for every element value. 

Probability -3 -2 -1 0 1 2 3 4 

Scenario 1 0.01407 0.006930 0.132660 0.168610 0.026730 0.462000 0.189000 0 

Scenario 2 0.042210 0.020790 0.397980 0.365830 0.080190 0.066000 0.027000 0 

 

 

 

 

Figure 20 : Traces of SOS 1 in Scenario 1 (left) and Scenario 2 (right). 

 

 

These examples show that this method is yet limited to short term analysis because once a 

feedback occurs (around 500 steps in Scenario 1), then SOS1 starts to decay, and the probability 

of decay is not high enough. Finally, since the ADD structure is automatically reduced, we can 

aim to use this structure to find simplification in update rules. 
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