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 With increasing computational demands in the defense and commercial industries, future 

space missions will require new, high-performance architectures. Extensive research, 

benchmarking, and analysis of candidate architectures is required before performing the expensive, 

time-consuming process of radiation-hardening on suitable devices. In this work, we first compare 

two such candidate architectures: the Texas Instruments KeyStone II octa-core DSP and the ARM 

Cortex-A53 quad-core CPU. We evaluate the performance of a key kernel used in space 

applications, the Fast Fourier Transform (FFT), and a key space application, the complex 

ambiguity function (CAF), on each architecture. We also develop and evaluate a direct-memory 

access scheme to take advantage of the KeyStone II architecture to perform FFTs. The KeyStone 

II’s batched 1D-FFT performance-per-watt is 4.1 times greater than the ARM Cortex-A53 and the 

CAF performance-per-watt is 1.8 times greater. Next, we develop and employ an emulator to study 

the performance of the High-Performance Spaceflight Computing (HPSC) processor. The HPSC 

processor is a future architecture under development by Boeing and funded by NASA and AFRL 

for their future space missions. HPSC is comprised of “chiplets” which have two quad-core ARM 

Cortex-A53 CPUs connected by an AMBA bus. These chiplets can be connected by different serial 

interfaces depending on mission needs. By employing two ARM platforms, an octa-core ARM 

architecture and two quad-core ARM architectures connected by Ethernet, we project HPSC 

performance for FFTs and another key space application: synthetic-aperture radar (SAR). We 

project that SAR will scale well on a multi-chiplet platform with a performance gain of 2.94 over 
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a single US+ board when using two connected chiplets. Our research provides new insights on the 

tradeoffs encountered when parallelizing functions on these candidate architectures, including 

novel optimization techniques for each architectures. 
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1.0  INTRODUCTION 

Space is truly the final frontier in the realm of computer engineering. While ground-based 

systems aim to break the exascale barrier (i.e. 1018 operations-per-second) in the coming decade, 

processors in space are just stepping into terascale (i.e. 1012 operations-per-second) [1]. 

Nevertheless, high-performance on-board processing is a major requirement for space missions. 

Sensor technology is developing rapidly, leading to sensors that generate more data than ever 

before [2]. The IKONOS satellite launched in 1998, had a .82 m panchromatic resolution, and 

generated 240,000 square km of imagery per day. By comparison, the WorldView-4 satellite, 

launched in 2016, has a .31 m panchromatic resolution and can generate 680,000 square km of 

imagery per day [3]. Additionally, scientists continue to use this data for a wide variety of 

applications, ranging from weather tracking [4] to national defense [5]. Satellite engineers have 

two options for processing this critical data: send it to Earth for computation at a ground station or 

have perform the complex signal-processing onboard the satellite. Due to the bandwidth 

limitations between Earth and space systems, which are on the order of hundreds of kbps downlink 

data rates for CubeSats [6], many developers are forced to choose the latter. Therefore, space 

computers must be capable of processing sensor data that was previously processed on ground-

based systems. Creating a radiation-hardened (radhard) processor that can not only perform 

reliably in the harsh environment of space but also is also capable of performing these compute-

intensive applications is a lengthy and costly process. Such a process requires extensive research 
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prior to choosing an existing architecture to harden. The research in this thesis provides insight 

into several candidate architectures for space and their viability at performing these intensive 

computations. The thesis is broken into two phases in accordance with the timeline for the research. 

The goal of the first phase is to compare two candidate architectures and their performance and 

performance-per-watt for a kernel and application used in space missions. The second phase 

emulates a radhard processor currently in development and projects its performance for a space 

kernel and application.  

1.1 PHASE ONE: KS2 AND ARM COMPARISONS 

In the first phase of our research, we examine and compare two candidate architectures for space 

processing: the Texas Instruments KeyStone II (KS2) and a quad-core ARM Cortex-A53. The 

KS2 architecture integrates reduced instruction set computers (RISC), specifically ARM cores, 

and digital signal-processing (DSP) cores. We chose to investigate the KS2 because of its multi-

core DSP architecture. The European Space Agency has used DSPs on their missions for many 

years. In 2009, they established the Next-Generation DSP (NGDSP) project in search of an 

architecture to meet their projected needs and replace their current radhard DSP [7]. DSPs are 

designed to compute signal-processing applications, such as the functions considered in this paper, 

utilizing their fast multiply-accumulate units and specialized instruction sets [8]. DSPs are 

particularly interesting because they can achieve efficient solutions to many complex space 

applications, which usually involve some form of signal-processing.  

In a similar effort, NASA and AFRL launched the High-Performance Spaceflight 

Computing (HPSC) initiative to investigate a new multi-core processor for their future space 
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missions which became the motivation for exploring a quad-core ARM CPU [9]. In March 2017, 

Boeing was awarded the contract for this initiative after proposing their “chiplet” approach.  

 

 

Figure 1. HPSC chiplet block diagram [9] 

 

The block-diagram for their proposed chiplet is shown in Figure 1. The main chiplet is 

composed of two ARMv8 Cortex-A53 quad-core clusters connected by an Advanced 

Microcontroller Bus Architecture (AMBA). Each cluster on the chiplet features on-chip memory, 

a Single-Instruction, Multiple-Data (SIMD) engine called NEON, and a Floating-Point Unit 

(FPU). The chiplet provides three serial protocols that are used to connect to peripheral chiplets, 

such as an FPGA accelerator or another compute chiplet. The first protocol, Serial RapidIO 

(SRIO), is built upon the RapidIO protocol which is considered the leading-edge fault tolerant 

standard interconnect [11]. The second interface is XAUI (10-Gigabit-Attachment-Unit-Interface) 
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which is a standard for extending the XGMII (10-Gigabit-Media-Independent-Interface) between 

the MAC and PHY layer of 10-Gigabit-Ethernet to be able to provide chip-to-chip connectivity 

[12]. The final interface is SerDes (Serializer / Deserializer) which is a pair of functional blocks 

that convert between serial and parallel data [13]. HPSC is still under development and will be for 

several years, but it will be an important processor model moving forward. Studying HPSC with 

hardware emulation is, therefore, important for future developers and even for the HPSC architects 

themselves. 

Our methodology for examining these two architectures focuses on studying a key space 

kernel and a key space application on each device. The kernel we chose is the Fast Fourier 

Transform (FFT), a widely-used function that transforms a signal from the time domain to the 

frequency domain. Our work focuses specifically on batched 1D and 2D-FFTs. A batched 1D-FFT 

performs the FFT function on each row in a 2D array of data, whereas the 2D-FFT performs the 

same function along both the rows and columns of that array. Accessing the columns of an array 

is often inefficient, as will be discussed further in Sections 3.0 and 5.2.1. FFTs are known to be 

memory-bound functions which stress the memory bandwidth capabilities of devices, a factor 

which we explore in our device comparisons. To conduct these comparisons, we leverage the 

FFTLIB library from TI for the KS2 and the open-source FFTW library for the ARM Cortex-A53. 

The space application chosen is the complex ambiguity function (CAF). CAF is a radar 

signal-processing algorithm that can be used for geolocation. Many global positioning systems 

calculate the time difference of arrival (TDOA) and frequency difference of arrival (FDOA) of the 

same signal received at two different locations to pinpoint the origin of the signal. CAF can be 

employed to jointly calculate these values. CAF is not an embarrassingly parallel application and 
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contains several complex stages of computation. As a result, it provides a more robust assessment 

of the candidate architectures’ capabilities.  

The contributions from Phase-1 of this research are twofold. The first contribution is the 

newly created direct memory-access (DMA) transfer scheme that is tailored to the KS2 

architecture. The scheme takes advantage of the L2 and L1 on-chip memories in the DSP cores, 

which can be partially configured as scratchpad memory. By pre-fetching data into these locations, 

we can accelerate execution time for batched processes. The second contribution is the 

benchmarking comparisons of FFTs and CAF on the KS2 architecture and on a quad-core ARM 

A53 architecture. We examined both the performance and performance-per-watt for each system. 

1.2 PHASE TWO: HPSC EMULATION AND PROJECTION 

Phase-2 of this research studies the viability of using multiple ARM platforms to emulate the 

HPSC processor. As described earlier, the chiplets for the HPSC have dual quad-core ARM 

Cortex-A53 processors connected by an AMBA bus. We chose to use the HiKey LeMaker Board 

to emulate the HPSC processor because it has a similar architecture. Another important part of 

HPSC emulation is the multi-chiplet performance. This emulation is achieved by connecting two 

Xilinx Zynq UltraScale + (US+) boards together via Ethernet. The 1 Gb/s Ethernet (GbE) interface 

on the board was used as a substitute to connect the boards since none of the proposed HPSC serial 

connections existed natively on the board. Since GbE is not the exact HPSC serial interface, we 

extrapolated performance for 10Gb/s Ethernet (10GbE) and 6-lane 10Gb/s Ethernet (6x10GbE) 

using a custom model. The benchmarking used for projecting HPSC performance is described in 

Section 5.2.3. 



 6 

Similar to Phase-1, we study a key space kernel and space application on the HiKey and 

the US+ platforms. Batched 1D-FFTs and 2D-FFTs are benchmarked on both platforms using the 

FFTW library just as with the ARM architecture in Phase-1. However, instead of employing the 

CAF application to evaluate the platforms, we chose the synthetic-aperture radar (SAR) algorithm 

for the following reasons. NASA has identified SAR as a highly relevant application for testing 

space-bound processors. SAR requires several complex phases of computation and is a part of the 

HPSC benchmark suite [14]. We also chose SAR because previous students of the NSF SHREC 

Center, along with Dr. Pineda and other members of the Air Force Research Lab, have developed 

an optimized SAR application which was readily available for testing purposes.  

SAR is a radar system used on both aircraft and spacecraft that uses a craft’s trajectory to 

act as an extremely large antenna. By collecting radar reflections from different positions, the 

antenna array is artificially lengthened. This approach allows for a narrow array beam pattern and 

a finer azimuth resolution. As such, SAR systems deliver highly-detailed images even through 

weather effects and at night [15]. A detailed explanation of the SAR algorithm is beyond the scope 

of this thesis and is explained thoroughly by the AFRL researchers in [16,17].  

Phase-2 provides three key contributions into the candidate architectures for future 

developers of these platforms and the HPSC processor. The first contribution details the 

performance tradeoffs of using the AMBA bus and serial connections for parallelizing 

applications, which will help developers determine a suitable granularity for parallelized tasks on 

these processors. The second contribution projects both single-chiplet performance and multi-

chiplet performance for the functions studied, which inform the computing community about the 

performance that can be expected from these platforms. The final contribution is an optimization 

for the 2D-FFT FFTW function, which can be used by any developer using this library.  
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2.0  SPACE-COMPUTING CHALLENGES 

This section discusses the constraints in space for high-performance computing to illustrate the 

difficulty in making processors for space applications and the need for choosing a suitable platform 

before investing time, money, and development resources. Size, weight, power, and cost, or SWaP-

C, are all important considerations for designing space-grade processors. Weight and size 

considerations are derived from weight and mechanical housing restrictions on the spacecraft. For 

example, NASA’s CubeSat Launch Initiative (CSLI) provides educational institutions and non-

profit organizations access to space for small satellites. These CubeSats must conform to standard 

dimensions defined as U, which is 10cm x 10cm x 10cm. Each CubeSat can be 1U, 2U, 3U, or 6U 

in size and usually weigh less than 3lbs per U [18]. Power considerations arise because CubeSats 

can only supply processors with a few watts [19]. By comparison, the terrestrial supercomputers 

today require megawatts to achieve their high performance [20]. Of course, cost considerations are 

present in any system design. However, radhard components are more expensive than their 

commercial off-the-shelf (COTS) counterparts. Additionally, buying space on a rocket for 

deployment is expensive. For example, placing a payload on one of the most economical spacecraft 

available today, the SpaceX Falcon Heavy, costs $640 per pound for Low Earth Orbit (LEO) 

launches [21].  

Space processors also need to tolerate the effects of radiation that ground stations are 

shielded from. Particles, such as protons, neutrons and heavy ions, can create temporary and 

permanent faults in an electronic system, as exemplified in Figure 2. These faults are referred to 

as Single-Event Effects (SEEs). There are several different types of SEEs. The first is Single-Event 

Upsets (SEUs), which are caused by particle hitting a transistor and is observed as a bit flip inside 
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a register or memory element. SEUs may or may not manifest as an error depending on which bit 

is flipped. The affected transistor could hold unused data, or a value could be written to the element 

after the SEU occurs and before the faulty value is read, effectively masking the fault. However, 

the bit flip could be on a critical part of the system, such as the program counter, which could cause 

a catastrophic system failure. Single-Event Transients (SETs) are transient voltage pulses that can 

later be captured by a storage element and propagate throughout the rest of the component. Single-

Event Latch-ups (SELs) occur when a highly-charged particle hits the semiconductor and causes 

the current of the device to be driven out of spec. SELs can result in shorts occurring between 

transistors and power rails inside the ICs. They can disrupt program execution or cause transistors 

to fail permanently. There are several other types of SEEs including Single-Event Snapbacks 

(SESs), Single-Event Burnouts (SEBs), Single-Event Functional Interrupts (SEFIs), and Single-

Event Gate Ruptures (SEGR) [22,23]. All of the above SEEs can normally be remedied by 

rebooting the device, apart from some SELs, SEBs, and SEGRs. However, rebooting is generally 

not an option for critical space missions. Instead, radhard processors reduce the impact these SEEs 

can have on their architecture and repair themselves when a SEE occurs. More advanced 

techniques, discussed later in this section, have been developed to reduce SEEs and to combat their 

effects. 
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Figure 2. Heavy ion strike on the cross-section of a bulk CMOS memory cell [21] 

 

In addition to these short-term effects, long-term exposure to radiation can cause faults to 

accumulate in a device. The amount of exposure a device can withstand before it ceases to operate 

within its specification or stops functioning all together is called the Total Ionizing Dosage (TID). 

TID is measured in rads or radiation absorbed dose. While SEEs are typically caused by high 

energy particles, TID effects are caused by low energy protons and electrons being captured within 

the silicon [23].  

The number of SEEs and severity of TID a processor must cope with depends on the orbit 

a spacecraft inhabits. In LEO for instance, the spacecraft is still within the earth’s magnetosphere 

and is partially shielded from radiation. The TID in LEO is about 100 krad/year without shielding 

[24]. Using less reliable, non-space-grade parts in these orbits is a prudent decision to save on cost. 

One such example is the Hewlett Packard Enterprise supercomputer, launched in August 2017, 

which is currently inside the well-shielded International Space Station in LEO [1]. This high-

performance computer is composed entirely of commercial parts and, at the Supercomputing 

Conference in November 2017, HPE reported that the device has not experienced any faults. Orbits 

farther from Earth are subject to higher amounts of radiation and require additional redundancy or 



 10 

more reliable parts. For example, a processor in Geostationary Transfer Orbit (GTO) experiences 

10 Mrad/year without shielding, three orders of magnitude higher than LEO [24]. The Van Allen 

Belts, layers of charged particles held by Earth’s magnetic field, can also cause fluctuations in 

radiation levels. The South Atlantic Anomaly (SAA) occurs over South America and the southern 

Atlantic Ocean where the inner Van Allen Belt comes closest to the Earth’s surface. The SAA 

causes spacecraft to observe increased levels of radiation, even in LEO [25]. The HARFT 

framework [26] on the CHREC Space Processor (CSP) demonstrates one solution to this 

phenomenon by reconfiguring the system to provide additional redundancy, at the cost of higher 

performance, when higher levels of radiation are detected. Space processors need to be able to 

withstand their worst-case scenario radiation levels or be able to reconfigure themselves, similar 

to the CSP.  

To combat these challenges, radhard processors undergo an extensive development 

process. Radhard device often start their development lifecycle as COTS components. Designers 

then integrate electronic components that are built specifically to resist radiation. The number of 

electronic components that need to be added to or replaced on the COTS device depend on the 

mission needs and expected radiation levels. These components can take advantage of different 

materials, like silicon on sapphire [27], have more complex circuit-level designs, such as using 

TMR on flip-flops [28], use SRAM over DRAM, incorporate shielding to reduce radiation 

exposure, and integrate many other techniques to mitigate the effects of space radiation [29]. 

Designers can also add redundant parts to a chip to act as fail-safes which requires a non-negligible 

amount of room on the die. Adding this redundancy can lead to the removal of parts or features, 

ranging from floating-point execution units to entire cores, to meet SWaP-C constraints. In 

addition, the radiation-hardening process usually requires space-grade processors to use a reduced 
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clock speed leading to lower performance. These factors contribute to an extensive design process 

lasting several years which has created the technological gap between space and commercial 

processors and illustrates the need for a thorough vetting process when selecting a new processor 

for radiation-hardening.  
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3.0  RELATED RESEARCH 

Previous research has studied at many aspects of the candidate architectures presented in this 

research and the functions used to test them. Researchers have also benchmarked the CAF 

algorithm on other radhard space processors such as the Boeing Maestro many-core CPU [30] and 

the BAE RADSPEED™ DSP [31]. Direct comparisons between the results of these studies and 

the results of this research are difficult to make due to many factors. For example, literature on the 

Maestro only reveals iteration time for CAF rather than operations per second as considered in 

Phase-1 of this research. Marshall et al. [31] did not include preprocessing techniques required to 

turn the signal into analytic format presented in this paper in software and instead performed this 

task on an analog signal generator. Additionally, input parameters for these papers were not well 

defined and could have been much larger than the inputs used in this research. Singh et al. [30] did 

present FFTW performance for 1K point FFTs which had comparable performance to the 

architectures described in this research reaching roughly 2.6 giga floating-point operations per 

second (GFLOPS) on double-precision 1K FFTs compared to our results of 2 GFLOPS on the 

ARM architectures and 18 GFLOPS on the KS2. However, the Maestro results were obtained 

using a simulator rather than physical hardware. It is important to note that radhard processors by 

their very nature have lower clock rates and other hardware limitations to overcome the harsh 

environment of space, so comparing the KS2 and ARM CPUs to the Maestro and RADSPEED 

processors requires data about the latter after hardening. 

Previous research has also been conducted on the optimization of other functions on the 

KS2 architecture using the L1 and L2 on-chip memory. Gao et al. detail the complex tradeoffs in 

using part of the SRAM as scratchpad [32]. Scratchpad memory is a high-speed internal memory 
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for the temporary storage of data. However, they did not attempt to perform computations and 

transfers asynchronously, as this research does. Bahtat et al. applied radar-pulse compression on 

this architecture using part of the L2 cache as scratchpad [33]. However, they left the L1 space 

configured entirely as cache, hence their transfer scheme differs from the one described in Section 

5.1.1.  

As previously noted, we chose the FFTW library for performing the FFTs on the ARM 

devices. FFTW, an open-source library from MIT, has been shown to have remarkable 

performance and tunes well for many different architectures. Frigo and Johnson [34] describe the 

first version of the library and its performance compared to other available FFT software. They 

concluded that FFTW had better performance than all other open-source FFT libraries and was 

comparable to machine-tuned libraries at the time. Many improvements have been made since its 

inception in 1998. The current version is labelled FFTW3 and continues to provide portable, high-

performance C codebase for FFTs. Frigo and Johnson compares the library to others and details 

the new changes [35]. Notably, FFTW3 has a plan feature which explores the algorithm space of 

FFTs and chooses the one that executes fastest on the architecture at runtime. The plan function 

can tweak how long the plan will consider different steps. FFTW3 is also one of the few libraries 

that takes advantage of SIMD instructions, which allow it to use the ARM NEON engine.  

Other research has optimized FFTs for processors in a similar fashion to that of this paper. 

Mermer et al. describe the process for efficiently implementing 2D-FFTs on Hitachi/Equator’s 

MAP mediaprocessor. They also used a DMA scheme to double buffer data from off chip memory 

to on-chip cache [36]. They acknowledge that accessing along the columns for the 2D-FFT is 

inefficient and report that transposing twice, as described later in our research, is a valid method 

to obtain an increase in performance. This method does necessitate extra cycles purely for data 



 14 

management. Therefore, they are able to process multiple image columns simultaneously to avoid 

the memory-access inefficiency. This optimization led to a runtime improvement of 1.3x over the 

double transpose method and a 1.85x improvement over the naïve method [36]. 
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4.0  ARCHITECTURE OVERVIEW 

As previously stated, our research studies the feasibility of multiple architectures for space 

applications. This section details the features and specifications of four different development 

boards which contain these architectures.  

4.1 K2EVM-HK 

The TI KeyStone II architecture examined in this paper is part of the K2EVM-HK board, shown 

in Figure 3. This system has four ARM Cortex-A15 MPCore processors with eight TMS320C66x 

DSPs. The DSPs are housed within the C66x CorePacs which also include 32 KB of L1 and 1 MB 

of L2 on-chip memory. These memories can be configured to be entirely cache or part cache, part 

scratchpad. The external direct-memory access (EDMA) and internal direct-memory access 

(IDMA) peripherals enable the device to perform DMA-transfers between DDR3 memory and the 

L1 and L2 memory space on the C66x cores. These DMA-transfers do not involve the CPU, so 

computation can run in parallel with DMA-transfers without consuming extra cycles. This 

architectural feature gives developers flexibility in tuning the application to their architecture and 

is the main feature exploited in this research [37].  
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Figure 3. K2EVM-HK block diagram [37] 

4.2 ODROID-C2 

The next architecture examined in this paper is a quad-core ARM Cortex-A53. Several boards 

featured this architecture, the first being the ODROID-C2. The ODROID-C2 is a 64-bit quad-core 

single board computer (SBC) featuring an Amlogic S905 quad-core ARM Cortex-A53 (ARMv8) 

processor running at 1.5GHz whose functional block diagram is shown in Figure 4. The ODROID-

C2 is less expensive than the K2EVM-HK and consumes less power [38].  
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Figure 4. ODROID-C2 block diagram [38] 

4.3 HIKEY LEMAKER 2GB 

The next device used in this study is the HiKey LeMaker 2GB whose block diagram is shown in 

Figure 5. The HiKey is another relatively low-cost ARMv8 architecture development board, 

similar to the ODROID-C2, running at a maximum of 1.2GHz. The HiKey is an octa-core CPU as 

opposed to the quad-core ODROID-C2. The octa-core is constructed from two quad-core clusters 

connected by a CoreLink CCI-400 interconnect, which is built on the AMBA AXI4 specification. 

Therefore, architecture closely resembles the current layout of a single chiplet within the HPSC, 

which contains two quad-cores connected by an AMBA bus [39].  
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Figure 5. HiKey LeMaker 2GB block diagram [39] 

4.4 ZYNQ ULTRASCALE + 

The final device used in this research is the Zynq Ultrascale + (US+) featured on the 

ZCU102 evaluation board whose block diagram is shown in Figure 6. This development board 

includes both a quad-core ARM Cortex-A53 CPU, which runs at a maximum frequency of 1.2 

GHz, and a FPGA fabric. We have connected two of these boards via GbE to emulate the serial 

connection that will connect chiplets in HPSC. We created a model, described in Section 5.2, to 

extrapolate the multi-chiplet performance from this platform [40].  
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Figure 6. Zynq UltraScale+ block diagram [41] 
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5.0  METHODOLOGY 

Multiple novel techniques were developed in this research to optimize and investigate the 

candidate architectures. This section describes these techniques, how the functions were 

benchmarked, and the data collection ideology for both phases of our research.  

5.1 PHASE-1 METHODOLOGY 

This section describes the method in which FFTs and the CAF algorithm are executed on the KS2 

and the quad-core ARM A53 architectures. The DMA scheme developed for batched FFTs on the 

KS2 is also described in this section. Additionally, the method of evaluating CAF on both 

architectures is outlined. 

5.1.1 FFT Methodology on K2EVM-HK 

TI provides several libraries that perform FFT functions. We studied the DSPLIB and FFTLIB 

libraries to give a baseline performance for the KS2. The FFT functions under investigation are 

complex-to-complex, single-precision batched 1D and 2D-FFTs. All functions are verified by 

using MATLAB generated inputs and outputs. The FFT functions are called from a single ARM 

core and sent to a single DSP core using OpenCL (Open Computing Language). OpenCL 

“provides a common language, programming interfaces, and hardware abstractions enabling 

developers to accelerate applications with task-parallel or data-parallel computations in a 
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heterogeneous computing environment” [42]. The input and output buffers and function to be 

executed are declared using OpenCL function calls and then dispatched to a DSP core. Next, 

OpenMP is invoked on a single DSP core to parallelize computation across the other DSP cores. 

OpenMP is an API that “facilitate[s] shared-memory parallel programming” [43]. Rather than 

parallelizing an individual FFT function, different portions of the batch of FFTs are sent to 

different cores for execution, leveraging the inherent task-parallelism of the batched FFT. 

Through benchmarking we found that FFTLIB performed better than DSPLIB, shown in 

Section 6.0, and thus was chosen as a foundation for this work. The performance difference stems 

from the FFTLIB taking advantage of the L2-SRAM space for DMA-transfers whereas DSPLIB 

does not. A custom DMA-transfer scheme, shown in Figure 7, was developed to accelerate batched 

FFT computations using FFTLIB. This scheme is called “ping-pong” and is built upon FFTLIB’s 

DMA scheme. While the FFTLIB batched functions can take advantage of the L2-SRAM space, 

using L1-SRAM in addition is a novel approach.  

 

 

Figure 7. Ping-pong DMA scheme using L1-SRAM 
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The motivation behind this new scheme is to accelerate computation by manually pre-

fetching data into the L1-SRAM scratchpad to reduce future memory-access latency. The L1 

memory is the closest memory space to the C66x core. Placing data here enables the core to access 

the input data faster than data stored in DDR3 memory and reduces overall execution time by 

limiting the amount of cache misses. Four buffers are set in the L2-SRAM space: two for input 

and two for output. Two buffers are also set in the L1-SRAM space, both input buffers, along with 

additional room for the twiddle factors in the L1-SRAM space. Twiddle factors are trigonometric 

constant coefficients that are used throughout the course of the FFT algorithm, so it is important 

to keep them in L1-SRAM. Since data can be transferred back to the L2-SRAM scratchpad after 

computations, output buffers for the L1-SRAM scratchpad are not required. The maximum FFT 

size studied is 1K due to the size limitation of L1-SRAM. To fit two input buffers and the twiddle 

factors, a 1K FFT using single-precision floating-point data requires 24KB of space. The L1 space 

is only 32KB, so larger FFTs are not be feasible with this scheme.  
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Figure 8. Ping-pong scheme in action for batched 1D-FFT 

 

Next, we describe the process for performing batched 1D-FFTs as illustrated in Figure 8. 

Solid colored squares are input FFT blocks while gradient colored squares are completed FFT 

blocks. The first FFT input and twiddle factors are loaded into the input ping buffer in L1 and 

twiddle buffer, respectively, from DDR3 memory, while the second FFT input is loaded into the 

L2 input pong buffer. This preloading stage only occurs at the beginning of the function. Then, the 

first FFT is computed from L1 ping buffer, while at the same time the second input set is loaded 

into the L1 pong buffer from the L2 pong buffer. The third FFT set is also loaded into L2 ping at 

this time. The FFT result is stored into the L2 output ping buffer which is transferred back to DDR3 

memory on the next cycle. This process repeats until all FFTs have been computed as the DMA 

managers switch between loading and storing to ping and pong buffers, hence the name “ping-

pong”. 2D-FFTs are performed in a similar same way, however, instead of only using four buffers 

in L2-SRAM, scratchpad there are five, the fifth being the transpose buffer. All data from 

computation is sent to the transpose buffer instead of the output buffers. Finally, an optimized 

transpose using an FFTLIB function is performed from the transpose buffer to one of the output 
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buffers to complete a batched 1D-FFT with transpose. This process is performed again to compute 

the 2D-FFT. 

Since the L2 space is much larger than the L1 space, the program could load, for example, 

10 sets of FFTs into the L2-SRAM followed by 10 L1 DMA-transfers and then FFT computations 

would occur before transferring the data back from L2 to DDR3 memory. Ideally, the time required 

to transfer data to the L1-SRAM and compute all FFTs loaded into the L1 space would be the same 

as the time to transfer everything into the L2 space since both operations are occurring 

simultaneously. Since L2 transfer time usually takes longer than L1 transfer time, using different 

transfer sizes is typically an advantageous strategy. In contrast, the base FFTLIB simply transfers 

the maximum possible amount of data into the L2 and L1-SRAM scratchpads. Balancing the 

transfer time and computation time of the data is critical to achieving maximum performance. For 

the results, these transfer sizes are tuned for each problem-size and number of cores used to obtain 

maximum performance.  

5.1.2 FFT Methodology on ODROID-C2 

The FFTW3 library is used to calculate the FFTs on the ODROID-C2 platform. The rationale for 

using this library was presented in Section 3.0. FFTW3 automatically detects the number of cores 

available for parallelization through OpenMP. Overall, FFT programming for the ODROID-C2 is 

a much faster process because the optimizations are performed by the FFTW3 library. The only 

functionality we had to develop for the ODROID-C2 was batching the FFTW3 library’s 1D-FFT 

function.  
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5.1.3 Complex Ambiguity Function Methodology 

The mathematical definition of CAF is shown in Equation 1, where S1 and S2 are continuous-time 

signals in analytic signal format, T is the integration period, τ is the time delay between the two 

signals, and f is the frequency offset between the signals. The * symbol denotes the complex 

conjugate of the variable. In discrete time, the function becomes similar to the definition of a 

Discrete Fourier Transform (DFT) which is efficiently computed using an FFT. Therefore, 

Equation 1 can be rewritten as Equation 2. 

 

 
𝐶𝐶𝐶𝐶𝐶𝐶(τ, f)  =  � 𝑆𝑆1(𝑡𝑡)𝑆𝑆2 ∗ (𝑡𝑡 +

𝑇𝑇

0
τ)𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋 

5-1 

 𝐶𝐶𝐶𝐶𝐶𝐶(τ, k)  =  FFT[S1(n)S2 ∗ (n + τ)] 5-2 

 

The magnitude of the CAF surface produced will peak when τ and k/N (the fractional 

frequency difference) are equal to the TDOA and FDOA, the target values of the function. As 

previously noted, CAF requires that the S1 and S2 signals are in analytic signal format. Typically, 

signals include both positive and negative frequencies. However, an analytic signal has only 

positive frequency components. The Hilbert Transform can be used to transform a real-valued 

signal into its analytic representation.  

CAF is computed in a similar fashion on both the K2EVM-HK and ODROID-C2 boards. 

Figure 9 shows the flow diagram for CAF. The input data is based on a boat emitting a pure sine 

wave as it moves away from a receiver in a ship port tower. X1 and X2 are the input signals to the 
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algorithm. X1 is a pure sine wave at 9GHz and X2 is the same sine with a frequency offset of 4kHz 

and a time offset of 100us. Both input signals have 16K samples.  

 

Figure 9. Complex ambiguity function flow diagram 

 

This input was chosen in conjunction with our partners at Harris Corporation. The format 

of CAF is based off MATLAB code from [44]. The fine computation described [44] is not used in 

our function because the computational requirements needed for a nearly-negligible improvement 

in output precision were deemed unnecessary. The input data does not contain complex numbers 

and is transformed into analytic format for correct computation in the pre-processing stage in 

Figure 9. This process is composed of a Hilbert Transform, a lowpass finite response filter (FIR), 

and decimation by two. This process also mimics the quadrature demodulation that would occur 

in a real system. The Hilbert Transform and FIR are optimized using OpenMP and the decimation 

is optimized with SIMD instructions native to the ODROID-C2 architecture. The application ran 

on the KS2 did not include this SIMD optimization. Next, the FFTs are performed along with an 

optimized version of MATLAB’s fftshift function to create the S1 and S2 signals for the next block 
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as denoted in Figure 8. For the K2EVM-HK, these signals are transferred using DMA to the L2 

space for the remaining computation. However, the DMA transfer does not occur on the ODROID-

C2 because it lacks the required functionality. 

In the next stage, S1 is shifted by different amounts ranging from the maximum negative 

frequency to the maximum positive frequency, which is application-specific. The shifted S1 is then 

multiplied by the complex conjugate of S2. The FFT of the product of these signals is performed 

and the maximum value of the FFT, index of this value, and value at that index of the S1 / S2 

product, determine the TDOA and FDOA. The batches of FFTs are parallelized with OpenMP by 

having different cores work on different shifted S1 signals. The final results are compared to 

MATLAB results for verification.  

The optimized batched FFT method described in Section 5.1.1 is not optimal for CAF on 

K2EVM-HK. Attempts were made to ping-pong the data to L1 and back, but this resulted in slower 

performance. The performance loss occurs because the same data set is computed in the for loop 

for CAF rather than loading new data every iteration, as in our FFT functions. In the beginning of 

CAF, when the processor tries to retrieve the first input array, there will be a cache miss. For all 

subsequent operations, there will be cache hits since that data remains in cache. The advantage of 

the ping-pong scheme for FFTs is the avoidance of cache misses, but the data movement in CAF 

does not lead to cache misses due to its inherent spatial locality. However, the transfer of S1 and 

S2 to L2-SRAM did result in a speedup of 2.3 times. Additionally, the pre-processing did not occur 

in the L2 space because the gain in computation speed is too small to offset the additional transfer 

time for these functions due to the small problem-size studied in this paper.  
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5.1.4 Performance Measurements 

Timing starts on the KS2 after the function has been dispatched to the DSP cores using OpenCL. 

Any initializations, including allocating memory space, declaring external DMA managers, setting 

the number of OpenMP cores to use, and setting the L1 and L2-SRAM scratchpad sizes, occur 

prior to starting the timer. This timing ideology was chosen because real-world applications would 

likely run continuously on the DSP cores, so these initializations would only affect performance 

at startup. All computation, DMA-transfer time, and OpenMP management, is included in our 

timing. The KeyStone II instruction set includes a function to return the current cycle count from 

the internal cycle counter. By noting this number at the beginning and end of the program, we can 

calculate how many cycles were consumed in the function. The performance, measured in 

GFLOPS, is calculated by Equation 3. The 109 cycles/second factor is calculated using the 1 GHz 

clock speed of the device.  

 

 
𝐺𝐺𝐶𝐶𝐺𝐺𝐺𝐺𝐺𝐺𝑆𝑆 =

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁 𝑜𝑜𝑜𝑜 𝐶𝐶𝐺𝐺𝐺𝐺𝐺𝐺𝐹𝐹
𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑒𝑒𝐹𝐹

∗  
109 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑒𝑒𝐹𝐹
𝐹𝐹𝑒𝑒𝑐𝑐𝑜𝑜𝑠𝑠𝑠𝑠

∗  
1 𝐺𝐺𝐶𝐶𝐺𝐺𝐺𝐺𝐺𝐺
109𝐶𝐶𝐺𝐺𝐺𝐺𝐺𝐺

 
 5-3  

 

For the ODROID-C2, we followed the same ideology for timing the function. There is not 

a cycle counter for the ODROID-C2, so a wall-clock time function is used to measure the 

performance of the kernel. In this case, we can use Equation 4 to calculate GFLOPS. 

 

 
𝐺𝐺𝐶𝐶𝐺𝐺𝐺𝐺𝐺𝐺𝑆𝑆 =

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁 𝑜𝑜𝑜𝑜 𝐶𝐶𝐺𝐺𝐺𝐺𝐺𝐺𝐹𝐹
𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑁𝑁𝑒𝑒

∗  
1 𝐺𝐺𝐶𝐶𝐺𝐺𝐺𝐺𝐺𝐺
109𝐶𝐶𝐺𝐺𝐺𝐺𝐺𝐺

  5-4 
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5.1.5 Power Measurements 

Power consumption for the kernels and applications is measured using a Watts Up? Pro power 

meter from Vernier. The power meter measures the power drawn by the entire board by placing it 

between the board and wall power. A baseline power reading is taken before beginning any 

computation. For the K2EVM-HK, the baseline power is 23W and for the ODROID-C2 it is 5.5W. 

Then, the function under testing is run 10000 times in succession so that the power comes to a 

steady-state value. The power reported in the results follows Equation 5. 

  

 𝐺𝐺𝑜𝑜𝑃𝑃𝑒𝑒𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜋𝜋𝐶𝐶𝜋𝜋𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐺𝐺𝑜𝑜𝑃𝑃𝑒𝑒𝑁𝑁𝑆𝑆𝜋𝜋𝑆𝑆𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝜋𝜋𝐶𝐶𝜋𝜋𝑆𝑆 −  𝐺𝐺𝑜𝑜𝑃𝑃𝑒𝑒𝑁𝑁𝐵𝐵𝐶𝐶𝐵𝐵𝑆𝑆𝑒𝑒𝐶𝐶𝐶𝐶𝑆𝑆  5-5 

 

In this way, we record the power used solely for the computation of the function and eliminate any 

peripherals on the boards that are drawing power.  

5.2 PHASE-2 METHODOLOGY 

This section describes the method in which FFTs and SAR are executed on the HiKey and the US+ 

boards. An optimization of the FFTW functions to compute 2D-FFTs is also discussed. Finally, 

the model for projecting HPSC performance is detailed at the end of this section. The timing 

methodology is identical to that used for the ODROID-C2 outlined in Section 5.1.  
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5.2.1 FFT Methodology on HiKey and US+ 

Since the HiKey and US+ are ARM CPUs, the FFTW3 library is also used to compute batched 

1D-FFT and 2D-FFT on these devices. In this phase of the research, both single- and double-

precision FFTs were investigated after industry feedback on the first phase of research. The 

research for Phase-1 was published in [45] and resulted in a peer suggestion to include double-

precision data, which is required for some applications Again, OpenMP is used to parallelize the 

functions across the Cortex-A53 cores.  

An additional optimization over FFTW was discovered for 2D-FFTs in the second phase 

of this research. In previous research on the KS2, there were many methods investigated for 

performing the 2D-FFT before deciding to use a transpose buffer. We attempted to perform the 

second dimension of the FFTs along the columns without transposing as well as transposing the 

data while performing the DMA transaction from the L2 cache to DDR3. Both techniques led to 

too much overhead and it was concluded that performing a separate transpose was ultimately better 

than inefficient memory accesses along columns as in the previous two methods. We believe this 

extra transpose is performed in the shared-memory FFTW library, instead the second batched 1D-

FFT is simply performed along the columns. From the FFTW documentation: “For the Cilk and 

threads versions of FFTW, we simply divide these one-dimensional transforms equally between 

the processors…Unfortunately, this means that the arrays being transformed by different 

processors are interleaved in memory, resulting in more memory contention than is desirable. [46]” 

The consequences of using an extra transpose for 2D-FFTs are discussed later in Section 6.0. 

Unfortunately, the HiKey boards became nonfunctional when trying to execute SAR across eight 

cores before this optimization was discovered. Therefore, HiKey FFT performance only reports 

the base FFTW performance.  
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For the US+, GbE is used to connect two boards and the FFTs are divided between them. 

For batched 1D-FFTs, this process is trivial since half of the batch of data is sent to the client board 

for computation while the server board does computation on the other half of data. Then, the client 

board sends its finished half of the task back to the server. For the 2D-FFT, the FFTW function 

had to be broken up to parallelize across boards (which led to the discovery in the previously 

mentioned discovery). The batched 1D-FFT along the rows of the matrix is performed identically 

to the regular batched 1D-FFT. After all the data has been sent back to the server, the server 

performs a transpose on the array of data, again using OpenMP for parallelization. This process is 

repeated to complete the 2D-FFT.  

5.2.2 SAR Methodology on HiKey and US+ 

Previous SHREC students worked with AFRL to develop code to perform the SAR function on a 

sample of real data. AFRL members went on to refine this code, which was sent back to us for 

testing in this project. The code accepts a raw file as an input along with a parameters document 

which describes the settings used for collecting the data. The data is split into “patches” and each 

patch then has four functions performed on it. These functions are range compression, patch 

processing, range migration, and azimuth compression. These steps are further detailed in [17]. 

The code, in its current state, can divide the image into 9 or 35 patches. These different levels of 

granularity of the code change the performance of the application as further detailed in Section 

6.2.7. For parallelization across US+ boards, multiple patches are sent over Ethernet for processing 

on the client board and the final data is sent back to the server. Ethernet benchmarking revealed 

that sending the entire patch at once was inefficient. Each patch was broken up into 4096 integer 

segments, a more efficient packet size, and then transferred to reduce communication penalty.  
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5.2.3 HPSC Projection Model 

The HPSC modeling is conducted in several steps. First, we benchmark the performance of FFT 

and SAR on the HiKey to understand how performance is impacted when splitting the application 

across the quad-cores using the AMBA bus. For HPSC chiplet estimation, we wanted to study the 

most advanced ARM architecture available. We could simply use the HiKey data to project single 

chiplet performance since it’s architecture more closely resembles a single chiplet. However, as 

demonstrated in the results, the US+ outperforms the HiKey because the US+ has both a larger 

memory bus and the memory used is faster than that of the HiKey. We used Equation 6 to estimate 

the percent performance increase for upgrading from a single US+ quad-core ARM Cortex-A53 

to two such cores connected by an AMBA bus.  

 

 % 𝑐𝑐ℎ𝑡𝑡𝑠𝑠𝑎𝑎𝑒𝑒 𝐹𝐹𝑡𝑡𝑠𝑠𝑎𝑎𝑡𝑡𝑒𝑒𝑁𝑁𝑜𝑜𝑡𝑡𝑁𝑁𝑠𝑠 𝑡𝑡𝑜𝑜 𝑐𝑐ℎ𝑡𝑡𝑖𝑖𝑡𝑡𝑒𝑒𝑡𝑡 = % 𝑐𝑐ℎ𝑡𝑡𝑠𝑠𝑎𝑎𝑒𝑒 𝐻𝐻𝑡𝑡𝐻𝐻𝑒𝑒𝑐𝑐 4 𝑡𝑡𝑜𝑜 8 𝑐𝑐𝑜𝑜𝑁𝑁𝑒𝑒𝐹𝐹 ∗  
% 𝑐𝑐ℎ𝑡𝑡𝑠𝑠𝑎𝑎𝑒𝑒 𝑈𝑈𝑆𝑆 +  2 𝑡𝑡𝑜𝑜 4 𝑐𝑐𝑜𝑜𝑁𝑁𝑒𝑒𝐹𝐹
% 𝑐𝑐ℎ𝑡𝑡𝑠𝑠𝑎𝑎𝑒𝑒 𝐻𝐻𝑡𝑡𝐻𝐻𝑒𝑒𝑐𝑐 2 𝑡𝑡𝑜𝑜 4 𝑐𝑐𝑜𝑜𝑁𝑁𝑒𝑒𝐹𝐹

 5-6 

 

This equation encapsulates the performance hit contributed by the AMBA bus, which is 

the first term on the right side of the equation, and the difference in scalability of the processors, 

which is denoted by the quotient of the second and third term on the right side of the equation. The 

projected single-chiplet performance is then found by multiplying the percent change value found 

above by the four-core performance of the US+. As a simple, sample case we will assume the 

HiKey percent change from four to eight cores is 120%, the US+ change from two to four cores is 

175%, and the HiKey change from two to four core is 150% according to Equation 6. This would 

result in projecting single chiplet performance to be 140% of US+ four core performance. The 
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US+ scales better than the HiKey in this example, therefore it is natural to project two US+ quad-

cores connected by an AMBA bus to scale better (140%) than the HiKey does (120%).  

It is also necessary to understand how performance is affected by parallelizing applications 

across chiplets. Therefore, we next benchmark Ethernet and application performance for the dual-

board configuration of the US+ boards. However, we also had to account for the difference in 

Ethernet speeds between the US+ (GbE) and HPSC (10GbE). To estimate the performance of 

HPSC we needed to create a model we could validate. We estimated dual-board GbE performance 

with only single-board results and Ethernet benchmark results using Equation 7. The total runtime 

should be the combination of the compute runtime when using more resources and the added 

overhead from using Ethernet to communicate between boards. The first two terms in the equation 

estimate the time to complete the computation of the problem. The last two terms estimate the 

overhead added from using Ethernet.  
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The “% server work after split” term is application-specific. For FFTs the number is 1/2 

since the amount of work has been evenly split between two boards. For SAR the term depends 

on how many patches are used. For 9 patches the value is 2/3 and for 35 patches it is 5/9. These 

values are derived from the number of sections the problem is divided into when using different 

numbers of cores. For example, with 9 patches executing on four cores the problem is divided into 

three sections with each executing four, four, and one patch, respectively. When there are 9 patches 

executing on eight cores, the problem is divided into two sections with each executing eight and 
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one patch, respectively. Therefore, the work the server board must do 2/3 of the work it previously 

had to do after splitting the application. 

The Ethernet communication time is also included as the second term on the right side of 

the Equation7. Ethernet receive time was always larger than the send time which led to its use in 

Equation 7, as opposed to Ethernet send time. Ethernet benchmarking results are also included in 

Section 6.2.4. The number of Ethernet transfers varied from application to application. For batched 

1D-FFT, there were two transactions: sending half of the batch to the client board at the beginning 

of the application and receiving half of the output at the end of the application. For 2D-FFTs, there 

were four transactions. Half the data is sent to the client board and then sent back after computation 

to the server board. The server board computes the matrix transpose and then the process is 

repeated. For SAR, there were 8 transactions when using 9 patches: sending 4 patches to the client 

board and receiving the output of those four patches from the client board. For 35 patches, 16 

patches were sent to the client board for computation. The detailed report for this GbE estimation 

compared to the actual results, in Section 6.2.6, but the average accuracy of the estimate across all 

problem-sizes for FFTs is 82%, for SAR with 9 patches is 83%, and for SAR with 35 patches is 

97%. Accuracy was measured using Equation 8. 

 

 
𝐶𝐶𝑐𝑐𝑐𝑐𝑁𝑁𝑁𝑁𝑡𝑡𝑐𝑐𝑐𝑐 =  

�𝐺𝐺𝑒𝑒𝑁𝑁𝑜𝑜𝑜𝑜𝑁𝑁𝑁𝑁𝑡𝑡𝑠𝑠𝑐𝑐𝑒𝑒𝐴𝐴𝐴𝐴𝜋𝜋𝐶𝐶𝐶𝐶𝑒𝑒 − 𝐺𝐺𝑒𝑒𝑁𝑁𝑜𝑜𝑜𝑜𝑁𝑁𝑁𝑁𝑡𝑡𝑠𝑠𝑐𝑐𝑒𝑒𝑃𝑃𝑃𝑃𝐶𝐶𝑗𝑗𝑆𝑆𝐴𝐴𝜋𝜋𝑆𝑆𝑆𝑆�
𝐶𝐶𝑠𝑠𝑒𝑒𝑁𝑁𝑡𝑡𝑎𝑎𝑒𝑒(𝐺𝐺𝑒𝑒𝑁𝑁𝑜𝑜𝑜𝑜𝑁𝑁𝑁𝑁𝑡𝑡𝑠𝑠𝑐𝑐𝑒𝑒𝐴𝐴𝐴𝐴𝜋𝜋𝐶𝐶𝐶𝐶𝑒𝑒 − 𝐺𝐺𝑒𝑒𝑁𝑁𝑜𝑜𝑜𝑜𝑁𝑁𝑁𝑁𝑡𝑡𝑠𝑠𝑐𝑐𝑒𝑒𝑃𝑃𝑃𝑃𝐶𝐶𝑗𝑗𝑆𝑆𝐴𝐴𝜋𝜋𝑆𝑆𝑆𝑆)
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The high accuracy we achieved allows us to estimate 10GbE performance with relative 

confidence. Equations 9 and 10 show our projections for 10GbE and 6x10GbE, respectively, which 
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are slight variations of Equation 7. One caveat to Equation 9 is that 6x10GbE is likely not six times 

faster than 10GbE in real applications, so this value represents an upper bound estimation.  
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+
𝐺𝐺𝑡𝑡ℎ𝑒𝑒𝑁𝑁𝑠𝑠𝑒𝑒𝑡𝑡 𝑅𝑅𝑒𝑒𝑐𝑐𝑒𝑒𝑡𝑡𝑠𝑠𝑒𝑒 𝑇𝑇𝑡𝑡𝑁𝑁𝑒𝑒

10
∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁 𝑜𝑜𝑜𝑜 𝑇𝑇𝑁𝑁𝑡𝑡𝑠𝑠𝐹𝐹𝑜𝑜𝑒𝑒𝑁𝑁𝐹𝐹 
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These Ethernet projection equations can also be used to estimate dual-chiplet performance 

when connected by a 10GbE connection and with 6x10GbE. Single-board runtime is replaced by 

single-chiplet performance for this computation.  

5.2.4 SAR Projection for HiKey 

As previously mentioned, the HiKey boards became nonfunctional during this research which 

occurred while gathering the results for four- and eight-core SAR performance. Estimating HPSC 

SAR performance requires these values, as shown in Equation 6. Therefore, these values were 

estimated using HiKey 2DFFT performance and US+ SAR performance. Four-core performance 

can be estimated using existing HiKey and US+ performance data, as shown in Equation 11. This 

performance was projected similarly to single-chiplet projections from Equation 6. The first term 

represents the cost for moving from two to four cores and the second and third terms comprise the 

difference in scalability between the processors. HiKey four-core performance is found by 

multiplying this percentage change by the two-core performance measurement. 
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% 𝑐𝑐ℎ𝑡𝑡𝑠𝑠𝑎𝑎𝑒𝑒 𝑈𝑈𝑆𝑆 +  1 𝑡𝑡𝑜𝑜 2 𝑐𝑐𝑜𝑜𝑁𝑁𝑒𝑒𝐹𝐹  5-11 

   

To project eight-core performance, we need to use HiKey 2D-FFT performance data since 

it is the only data that encapsulates the impact the AMBA bus has on performance. To determine 

if this is a valid approach for estimating the scalability of SAR we reviewed two studies, [47] and 

[48], which profiled runtime for the kernels within the SAR application. From these papers we 

derived the percentage of SAR runtime dedicated to FFTs and transposes, the two kernels within 

2D-FFTs. For the TI scheme we assume FFTs comprise roughly two thirds of range and azimuth 

compression, since range and azimuth compression’s main kernels are FFT, filter multiplication, 

and inverse Fast Fourier Transform (IFFT). With this assumption, and the profile data from Wang 

et al., we conclude FFTs and transposes account for roughly 60% of the application’s runtime with 

the remainder composed of multiplications and data management [47]. Przytula et al. conclude 

that roughly 72% of the application runtime is comprised of FFTs and transposes, with 

multiplications and data management accounting for the remainder [48]. Since FFTs and 

transposes account for a significant portion of SAR, using 2D-FFT performance data for scaling 

is fair for a naïve estimation. To perform the estimation, we calculated the average percentage 

change of runtime from four to eight cores on the higher 2D-FFT sizes (SAR FFT size is larger 

than 1K) which was 83.5%. Therefore, estimated eight-core runtime is 83.5% of the estimated 

four-core runtime.  
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6.0  RESULTS 

No research is complete without discussing the results. This section details the benchmarking 

results and performance estimations for the candidate architectures and discusses the trends seen 

in the results.  

6.1 PHASE-1 RESULTS 

This section describes the results and accomplishments of Phase-1 starting with the FFT results. 

Performance here, and throughout the rest of this section, is described with units of giga floating-

point operations (GFLOPS) and mega floating-point operations (MFLOPS). Then, CAF 

performance and power vs performance results will be discussed. Performance is reported in 

GFLOPS in this section along with performance-per-watt in GFLOPS-per-watt (GFLOPS/W).  

6.1.1 FFT on K2EVM-HK Results 

Before creating the direct memory access scheme, we benchmarked the TI FFT libraries to see 

determine which would provide the best foundation for our work. Figure 10 shows the performance 

of DSPLIB, FFTLIB, and FFTLIB with the ping-pong scheme using L1-SRAM for batched 1D-

FFTs on a single core. For these problem-sizes, the FFT and the batch size are the same. For 

example, a 512 FFT / batch size in the graph legend indicates that 512 1D-FFTs of size 512 were 

performed. We chose this size convention so 2D-FFTs were calculated with a comparable 
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problem-size. Across the problem-sizes investigated, FFTLIB outperformed DSPLIB, which is 

why we chose it for a baseline library. Further, the ping-pong scheme also outperformed FFTLIB 

across all problem-sizes investigated for single-core, 1D-batched FFTs. The average performance 

improvement of the ping-pong scheme over baseline FFTLIB is 32% for a single core. 

 

 

Figure 10. K2EVM-HK single-core, single-precision, batched 1D-FFT performance with different libraries 
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Table 1. Optimal FFT Line Size for Ping-Pong Scheme 

128 FFT Size 256 FFT Size 

# of Cores L2Lines L1Lines # of Cores L2Lines L1Lines 

1 16 4 1 16 2 

2 8 4 2 16 2 

4 8 4 4 4 1 

8 8 4 8 4 2 

512 FFT Size 1024 FFT Size 

# of Cores L2Lines L1Lines # of Cores L2Lines L1Lines 

1 16 1 1 16 1 

2 16 1 2 16 1 

4 16 2 4 8 1 

8 2 1 8 4 1 

 

 

Unfortunately, there was not a specific rule that appeared to determine what combination 

of line sizes led to the best performance. There were some general trends, however. Using 16 L2 

lines was always best for lower numbers of cores, suggesting that we could use a higher percentage 

of the memory bandwidth available when only one core is in use. As more cores are used, and the 

bandwidth is exhausted, using less L2 lines is preferred. 

For the remainder of this section, we will only be comparing the difference between the 

FFTLIB with and without our ping-pong scheme to judge the effectiveness of the scheme. 

Interesting trends are revealed as FFTs are parallelized across more cores. Figure 10 shows the 

performance of batched 1D-FFTs for different problem-sizes with and without L1-SRAM usage. 

The performance benefit for both schemes decreases as the number of cores increases.  
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Figure 11. K2EVM-HK batched 1D-FFT performance with and without L1-SRAM in the DMA scheme 
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the cache controller less flexibility with line replacement. Another trend shown in this graph is that 
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enough bandwidth is available, the ping-pong scheme provides an advantage over the FFTLIB 

scheme for batched 1D-FFTs.  

Figure 12 shows the same problem-sizes and core numbers as Figure 11, but for 2D-FFTs. 

Here, a problem-size of 256 indicates a 256 x 256 2D-FFT is being performed. The extra transposes 

at larger sizes may hide some of the transfer time, leading to a small gain rather than a dip. Small 

problem-sizes especially suffer from the new scheme for 2D-FFTs. The smaller FFT’s transposes 

make up a larger portion of the total runtime, so our scheme is not beneficial for these instances. 

For larger problem-sizes, however, our scheme appears to be effective with performance gain up 

to 41%. Larger problem-sizes also have less of a performance dip from four to eight cores, likely 

because the transfer overhead was less of a factor due to the increased computation time.  

 

 

Figure 12. K2EVM-HK 2D-FFT performance with and without L1-SRAM in the DMA scheme 

3.15

4.75

6.54
6.01

2.79

4.44

6.34 5.97

0

2

4

6

8

1 2 4 8

G
FL

O
PS

Number of Cores

2DFFT 128 x 128 Performance

FFTLIB FFTLIB-L1SRAM

3.85

6.97

11.45
10.51

4.44

7.71

11.53 11.1

0

5

10

15

1 2 4 8

G
FL

O
PS

Number of Cores

2DFFT 256 x 256 Performance

FFTLIB FFTLIB-L1SRAM

4.19

8.1

14.72 14.16

4.64

8.65

14.94 15.5

0

5

10

15

20

1 2 4 8

G
FL

O
PS

Number of Cores

2DFFT 512 x 512 Performance

FFTLIB FFTLIB-L1SRAM

4.72

9.30
12.36 13.31

5.55

10.46

17.46 17.54

0

5

10

15

20

1 2 4 8

G
FL

O
PS

Number of Cores

2DFFT 1k x 1k Performance

FFTLIB FFTLIB-L1SRAM



 42 

Figure 13 shows the average speedup using our scheme for different numbers of cores and 

Figure 14 shows the average speedup using our scheme for different problem-sizes for batched 

1D-FFT and 2D-FFTs. These two graphs highlight many of the trends previously discussed. 

Figures 13 and 14 show that the ping-pong scheme provides significant performance benefit on 

average when using less cores or for smaller problem-sizes for batched 1D-FFTs. Meanwhile, the 

scheme provides near constant performance gain across different core numbers and becomes better 

for higher problem-sizes for 2D-FFTs.  

 

 

Figure 13. K2EVM-HK performance increase using L1 DMA-transfers averaged across problem-size 

 

Figure 14. K2EVM-HK performance increase using L1 DMA-transfers averaged across number of cores used 
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6.1.2 FFT on ODROID-C2 Results 

Figure 15 shows the performance for FFTs on the ODROID-C2. Unlike the K2EVM-HK, there 

were few unexpected trends on this processor. For batched 1D-FFTs, the performance scales 

almost linearly as more cores are used. There are not any memory bandwidth issues that affect 

how well the algorithm scales on this processor. For the 2D-FFT, 128x128 seems to perform much 

better than the rest of the problem-sizes which could be caused by the processor being able to 

handle those data sizes more efficiently in cache. However, accessing the columns of the array for 

the 2D-FFT could be causing increasing overhead as the problem-size grows, which is further 

discussed in Section 6.2.2.  

 

 

Figure 15. ODROID-C2 FFT performance 
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larger memory bandwidth than the ODROID-C2 due to the use of faster memory and a larger 

memory bus-width. Since the FFT is a memory-bound function, having a larger memory 

bandwidth will lead to greater performance. Also, the KS2 architecture allows for more flexibility 

in its memory-transfer scheme and has DSP units that can perform FFTs more efficiently. Note 

that there is no ODROID-C2 data point for 8 cores since there are only 4 cores available.  

 

 

Figure 16. CAF performance on K2EVM-HK and ODROID-C2 
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the same reason as the dip in performance. When stalls occur, there are fewer computations 

performed, and therefore less power consumed.  
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Figure 17. Performance and power results for FFTs and CAF on the K2EVM-HK and ODROID-C2 boards 
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6.1.5 Performance and Power Comparisons 

Figure 18 compares performance and performance-per-watt for the largest problem-size FFT and 

the CAF algorithm. For the reasons stated above, the K2EVM-HK exhibits superior performance. 

The performance of FFTs scale much better on the K2EVM-HK as the problem-size increases 

because of the differences in memory architecture. Even though the ODROID-C2 consumed less 

power, the lack of performance led to poorer performance-per-watt. It is notable that, overall, the 

ODROID-C2 does use less board power than the K2EVM-HK and that it was significantly easier 

to program the device for these functions. The difference in performances for CAF on each board 

is comparable to the difference in performance for 128 batched 1D-FFT, likely because the input 

size of the CAF is similar to this FFT size. If the CAF input size was increased, the performance 

discrepancy between the two devices would likely increase. 

 

 

Figure 18. Maximum performance and performance-per-watt application comparison 
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6.2 PHASE-2 RESULTS 

In this section we will discuss the results from Phase-2 of the research, including FFT and SAR 

single board performance for the HiKey and US+ boards, Ethernet benchmarking on the US+, FFT 

and SAR results when split between two US+ boards, an overall comparison of performance 

between US+ and HiKey, and HPSC projection modeling. Performance for FFTs is presented in 

MFLOPS. Performance for SAR is reported by runtime as opposed to FLOPS because the 

application is too large to accurately determine the number of operations performed.  

6.2.1 HiKey FFT Results 

Figure 19 depicts the single- and double-precision performance, respectively, for batched FFTW 

1D-FFT on the HiKey. The problem-size indicated in the graph denotes both the size of the FFTs 

and the number of batches of those FFTs, as in Phase-1. The main difference between the two 

precisions is performance. Double-precision requires about double the time of single-precision. 

The overall performance improves as the problem grows due to Gustafson’s law. The overhead 

due to the parallelization of the problem becomes amortized as the problem-size increases, 

increasing performance.  
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Figure 19. HiKey single- and double precision batched 1D-FFT performance 
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where the access patterns are not along the columns, the performance remains relatively constant 

across problem-size.  

 

 

Figure 20. HiKey single- and double precision 2D-FFT performance 
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Figure 21. US+ batched 1D-FFT performance 
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Figure 22. US+ 2D-FFT performance 
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Figure 23. 2DFFT improvement over base FFTW scheme 
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6.2.3 FFT Board Comparison 

Figure 24 shows the FFT performance comparison using only the base FFTW scheme. One of the 

main differences between the boards is the difference in memory. The US+ has a 64-bit bus width 

connecting the ARM cores to DDR4 memory whereas the HiKey has a 32-bit bus width connecting 

the ARM cores to DDR3 memory. As a result, the US+ performs better or near the same for this 

memory-bound application. For higher problem-sizes of batched 1D-FFT, the HiKey might 

perform better due to a difference in the Linux builds. HiKey’s build environment allows the CPU 

to use a frequency governor to a performance mode, which is not available on the US+. Something 

similar might be happening for the 128-problem size 2D-FFT. Unfortunately, we do not possess 

the tools or documentation necessary to fully these differences on a fundamental level. The US+ 

is used to project the HPSC chiplet performance, since it has overall better performance.  

 

 

Figure 24. US+ Performance / HiKey Performance FFT Comparison 
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6.2.4 US+ Ethernet Results 

To estimate dual-board performance, we benchmarked the GbE interface on the US+. We used the 

socket functions send and receive for this benchmark. Figure 25 shows the latency of each function 

for different packet sizes. The overhead for sending anything over Ethernet can be approximated 

by the time that it takes to send one integer. This number converges to 4.5ns.  

 

 

Figure 25. Send and receive Ethernet latency between US+ boards 
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patch transfer was broken up into 4096 integer chunks. This change increased the performance of 

SAR by 14%.  

 

 

Figure 26. US+ Ethernet throughput between boards 
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Figure 27. US+ Dual-board FFT single-precision performance 
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Figure 28. Dual-board FFT estimated performance accuracy 
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Figure 29. US+ FFT performance with 10GbE and 6x10GbE estimations 
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US+ leads to greater performance compared to the HiKey. Additionally, unlike in FFT testing, 

using GbE between the US+ boards led to a performance increase. SAR is complex enough that 

the time to transfer the patches to the other board, estimated to be 13.8 and 27.6 seconds for 9 and 

35 patches respecitvely, is less than the runtime reduction from using more cores. SAR US+ dual-

board performance is 97% and 83% accurate to the dual-board projection model for 9 and 35 

patches, respectively. Like the FFTs, the simpler Ethernet transaction pattern with 9 patches was 

better represented by the model. 

 

 

Figure 30. SAR performance on the HiKey and US+ in single and dual-board configurations 
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a processor composed of two US+ quad-core ARM Cortex-A53s connected by an AMBA bus, 2 

Chiplet designates an estimate of two chiplets connected by 10GbE, and 2 Chiplet 6-lane 

designates an estimate of two chiplets connected by 6x10GbE. 
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Figure 31. HPSC projections for FFTs and SAR 
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For small problem-sizes in FFTs, using a chiplet over a single board provides little, and 

sometimes negative, performance gain because of the overhead caused by the AMBA bus. 

Similarly, the FFT problem-size needs to be sufficiently large to gain performance with two 

chiplets because of the Ethernet overhead. 6x10GbE provides the best performance for all FFT 

problem-sizes but this is an upper bound estimate because 6x10GbE is likely not six times faster 

than 10GbE. On average, one chiplet provides a performance gain of 1.22 over a single US+ board, 

two chiplets provide a performance gain of 1.28, and two chiplets with 6x10GbE provide an upper 

bound performance gain of 2.17.  

SAR projects better to HPSC than the FFT kernels. On average, one chiplet provides a 

performance gain of 1.63 over a single US+ board, two chiplets provide a performance gain of 

2.94, and two chiplets with 6x10GbE provide an upper bound performance gain of 2.97. There is 

little benefit to using 6x10GbE over 10GbE because of the proportionally low Ethernet overhead. 

Additionally, the naïve estimation for HiKey four- and eight-core performance results in a chiplet 

estimation that closely matches the US+ eight-core 10GbE estimation. These two estimations 

should be similar because the AMBA and Ethernet overheads are a minuscule portion of the total 

runtime. 



 63 

7.0  CONCLUSIONS 

In Phase-1 we studied the TI K2EVM-HK, which features eight DSP cores, and the ODROID-C2, 

a quad-core ARM Cortex-A53 CPU, to determine if these architectures are suitable for future space 

missions. We developed a custom DMA-transfer scheme for the KS2 that accelerated batched 

FFTs. Our scheme performs particularly well when using a single core, providing a 44% speedup 

over the baseline method for batched 1D-FFTs. However, when eight cores are used the 

performance gain decreases to an average of 6%. Our scheme is not desirable for 2D-FFTs with 

small problem sizes, but once the problem size is large enough it can provide a performance gain, 

as a 32% speedup was observed for 1K × 1K 2D-FFTs over the baseline FFTLIB. We observed 

that memory bandwidth plays a large part in the efficacy of this DMA-transfer scheme with 

performance occasionally dipping from four to eight cores. If a radhard version of this device was 

created, designers could use less cores to achieve similar performance for FFTs and similar 

kernels. Additionally, the ping-pong scheme can be applied to other batched computations with 

the caveat that some manual tuning of transfer sizes is needed to obtain the best performance. The 

FFT performance on the K2EVM-HK is always better than on the ODROID-C2, which provided 

9.7 times the performance for 1K × 1K batched 1D-FFTs. It also surpassed the ODROID-C2 in 

performance-per-watt by 4.1 times.  

Additionally, CAF was benchmarked on each device. The K2EVM-HK provided 3 times 

the performance and 1.7 times the performance-per-watt than the ODROID-C2. The performance 

margin between processors observed in FFT studies was smaller with CAF. The CAF input size 

was smaller than the 1K × 1K FFT and might not have saturated the memory as the FFT did. 

Nevertheless, the K2EVM-HK proved to be a more powerful device, but the ODROID-C2 had 
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lower total power usage, is lower cost, and is easier to program. Additionally, the ODROID-C2 

had better parallel efficiency. These factors, along with NASA and DOD goals to use multiple 

ARM processors together, suggest ARM processor performance can scale well in the future. 

In Phase-2 we benchmarked batched 1D-FFTs, 2D-FFTs, and SAR on the octa-core ARM 

Cortex-A53 LeMaker HiKey and the quad-core ARM Cortex-A53 Zynq UltraScale + in single-

board and dual-board configurations. US+ performs better than HiKey for nearly every problem-

size because it uses a faster memory and a larger memory bus width. The results revealed the 

overhead incurred by adding an AMBA bus or Ethernet connection to the system. In some 

instances, parallelizing across more resources using these interfaces resulted in slower system 

performance. FFTs, in particular, are affected by this overhead because their computation time is 

comparable to the overhead. SAR computation time is significant enough to outweigh the overhead 

time and parallelizing with these interconnects always leads to speedup. We created a model to 

estimate dual-board US+ performance for FFTs and SAR. This model had an average accuracy of 

82% for FFTs and 90% for SAR. This high accuracy let us expand the model to predict dual-board 

performance with different interconnect topologies, namely 10GbE and 6x10GbE. The model 

could also be used for other serial connections, such as SRIO and SerDes, and future 10GbE and 

6x10GbE benchmarking would increase the accuracy of the model. An optimization for the 2D-

FFT function in the FFTW library was also found when splitting the function across the US+ 

boards which led to an average speedup of 1.44 for larger FFT sizes.  

We used the benchmarking results to project the performance of the future HPSC chiplet 

and multiple HPSC chiplets connected by 10GbE and 6x10GbE with our model. Parallelizing 

FFTs across multiple chiplets is an inefficient use of resources with an upper bound performance 

increase of 2.17 over single-board US+ when using two chiplets connected by 6x10GbE. By 
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comparison, SAR has a better parallel efficiency with 1.63 times speedup over single-board US+ 

by using just one chiplet and 2.94 times speedup when using two chiplets. The scalability 

difference in FFTs and SAR suggest that coarser granularity for parallelization is preferable on 

this system. SAR is a computationally relevant application to NASA and AFRL and such 

scalability is auspicious for the future of the HPSC chiplet approach.  

To summarize, this research showcased two distinct architectures and introduced new 

optimizations for signal-processing functions. The KS2 architecture provides high performance 

with the ability to tune the memory access scheme to the application. Our ping-pong scheme offers 

a new way to accelerate batched functions on the architecture. We also found that adding 

transposes to multi-dimensional FFTs can greatly increase performance for larger problem-sizes 

by eliminating column-wise memory accesses. The ARM Cortex-A53 architecture provides a 

simple-to-use, low power platform that scales signal-processing applications well, especially when 

paired with a large memory bus width and fast memory. Boeing’s HPSC chiplet approach for 

future space missions will be a powerful platform based off the emulation studies conducted in 

this research, especially when using coarse-grained task parallelization. Our model for projecting 

HPSC performance provides notable accuracy. Supplementary benchmarking into other serial 

interfaces in the future could augment the model’s accuracy.  
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