
EXPLORING THE GENETIC CHARACTERISTICS

UNDERLYING A MULTIDIMENSIONAL LATENT

CHEMOTHERAPY SYMPTOM BURDEN

by

Winston W. H. Eng

BSE, Case Western Reserve University, Cleveland, Ohio, 2016

Submitted to the Graduate Faculty of

the Department of Biostatistics

Graduate School of Public Health in partial fulfillment

of the requirements for the degree of

Master of Science

University of Pittsburgh

2018



UNIVERSITY OF PITTSBURGH

GRADUATE SCHOOL OF PUBLIC HEALTH

This thesis was presented

by

Winston W. H. Eng

It was defended on

April 13th 2018

and approved by

Daniel E. Weeks, PhD, Professor, Departments of Human Genetics and Biostatistics,

Graduate School of Public Health, University of Pittsburgh

Yan Lin, PhD, Research Associate Professor, Department of Biostatistics, Graduate School

of Public Health, University of Pittsburgh

Stewart J. Anderson, PhD, Professor, Department of Biostatistics, Graduate School of

Public Health, University of Pittsburgh

Thesis Advisor: Daniel E. Weeks, PhD, Professor, Departments of Human Genetics and

Biostatistics, Graduate School of Public Health, University of Pittsburgh

ii



Copyright c© by Winston W. H. Eng

2018

iii



Daniel E. Weeks, PhD

EXPLORING THE GENETIC CHARACTERISTICS UNDERLYING A

MULTIDIMENSIONAL LATENT CHEMOTHERAPY SYMPTOM BURDEN

Winston W. H. Eng, MS

University of Pittsburgh, 2018

ABSTRACT

The incidence rate of cancer is expected to increase within the coming decades. While re-

lated mortality is expected to decrease with improving treatments, oncology patients are still

expected to experience harmful physiological and psychological symptoms. This “symptom

burden” has been shown to permanently extend into the patients’ lives, and researchers have

hypothesized that a genetic component may dictate the severity of its presentation. From a

public health perspective, sustaining an expanding concentration of those considered “symp-

tom burdened” will create unsustainable stress on the current healthcare system. Hoping to

describe the heterogeneity in this oncology experience, researchers have relied on statistical

clustering to generate patient subgroups differing in quality-of-life. This study’s objective

is to assess if there exists any association between Single Nucleotide Polymorphisms (SNP)

and oncology “symptom burden” following subcategorization; more specifically, it aims to

compare analyses of the latent class phenotypes using the “default” method of Multinomial

Logistic Regression with those of the “novel” method of Dirichlet Regression.

A four category latent class was generated while adjusting for site from symptom clus-

ters measured on 2111 subjects from sites UCSFtotal and TOR1. Genotyping occurred

using two versions of the Illumina exome chip: HumanCoreExome-24v1-0 (Group A) and

HumanExome-12v1-1 A (Group B). Group A had 944 UCSFtotal individuals, while Group B

had 669 UCSFtotal and 498 TOR1 subjects. Following quality control, there were 1272 and

415 for the UCSFtotal and TOR1 cohorts respectively. Covariates included within the re-
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gression models were total number of comorbidities, Karnofsky Performance Status (KPS),

sex, and the first four principal components for population substructure.

After applying both the Multinomial Logistic Regression and Dirichlet Regression ap-

proaches, neither method demonstrated statistically significant genetic association (P <

5× 10−8). However, issues concerning SNPs with very low minor allele frequencies appeared

to plague both approaches, indicating that methodological corrections may be necessary in

future studies. Additionally, covariate selection, sample size, and imputation may be areas

of future inquiry with regards to rectifying some of the issues presented. Future aims should

involve simulation and power calculations to determine how appropriate these proposed

methods are for assessing genetic association in relation to oncology “symptom burden.”
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1.0 INTRODUCTION

1.1 SPECIFIC AIMS

From their disease and subsequent treatment plans, oncology patients often report experi-

encing a sweeping number of psychological and physiological symptoms. Previous studies

have assessed this extensive subject-level variability and have reported various subgroups

each representing different levels of a patient’s quality-of-life. Past methods have focused on

latent class analysis on the patient symptom burden. This method, while capable of creating

patterns of association in the symptoms, has relied on a maximum likelihood estimation to

calculate the probabilities associated with a particular set of latent classes. Each individual

case is subsequently assigned to the latent class with the highest probability associated with

it.

This project has provided experience working with this latent class analysis method

in relation to a Genome-Wide Association Study (GWAS). In essence, the patients in our

study have been stratified into different response level groups via latent class analysis based

on their qualitative symptom traits during chemotherapy. My focus has been to see if there

are any genetic differences amongst the different response groups as demonstrated by single

nucleotide polymorphisms (SNPs).

As compared to my previous work, my proposal seeks to change the method in which these

different response groups are assigned. Rather than condense each case to a single latent

class based on the highest probability assignment, we propose using Dirichlet component

regression to consider the probabilities assigned to the set of latent classes as a probability

simplex. Subsequently, we aim to perform a GWAS to assess whether there are any SNPs
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associated with differences in these multidimensional phenotypes derived from the set of

qualitative symptom traits.

1.2 CANCER PATIENT SYMPTOM BURDEN

Cancer has historically been linked to high mortality rates worldwide. Within the United

States, it is the second leading cause of death with a projected 600,000+ loss of life in

2018 [Siegel et al., 2018]. Increased awareness of risk factors, novel and more efficacious

treatments, and improved diagnostic testing have led to an overall 26% decrease in cancer

mortality over the past two decades as well as an significant increase in the 5-year relative

survival rate [Siegel et al., 2018]. However from their disease and subsequent treatment plans,

oncology patients often report experiencing a sweeping number of physical, psychological,

and temporal burdens to their everyday lives. Reports of fatigue, pain, and nausea/vomiting

as well as increased time needed to address these and other side effects demonstrate that

the “burden” cancer brings upon the patient extends beyond the disease itself [Henry et al.,

2008, Harrington et al., 2010]. An international study of over 29 epidemiological cancer-

burden-related studies found a reported pain prevalence of at least 14%, with the majority

of studies reporting a major depressive disorder rate of between 10-25% (25% of studies had

lower rates, 17% had higher). Additionally, these symptoms do not occur exclusively in

isolation; cancer-related fatigue, for instance, was seen to be correlated with psychological

symptoms such as depression [Carr et al., 2002]. Most alarmingly, patients have reported

the assumption that pain is an “inevitable part of dealing with cancer”, which has prevented

them from reporting or seeking more intensive treatment. Moreover, systemic barriers such

as lack of coordination especially “during the transition from cure to hospice mode” have

hindered patients during the entire symptom management cycle [Patrick et al., 2003].

From a patient’s perspective, the term “symptom burden” can defined as “a loss of func-

tional abilities along with psychological suffering, both of which are affected by the impact of

severe symptoms” [Gill et al., 2012]. Previously, advanced cancer individuals suffering from

an intense “symptom burden” have been reported to be associated with increased hospital
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stay length and subsequent unplanned hospital readmission within 90 day [Nipp et al., 2017].

Moreover, it is often seen that this “symptom burden” extends post-treatment and signifi-

cantly impacts survivors for the rest of their lives. Reports of increased quality of life (QOL)

without “symptom burden” improvement has implied that patients often must compromise

their lifestyles to work around the limitations set by their illness [Yang et al., 2012].

1.3 PUBLIC HEALTH IMPACT

Knowing the reality of how detrimental cancer and its “symptom burden” is the first step

in acknowledging the greater public health implications. From 2010 to 2030, the overall US

cancer incidence rate is projected to rise by approximately 45% with the aging US popula-

tion [Smith et al., 2009]. By 2022, 18 million patients are expected to be cancer survivors.

[De Moor et al., 2013] As technology develops and life expectancy increases, sustaining an

increased survivorship will become an increasingly pressing public health concern. If issues

surrounding physical, mental, and social challenges are not directly addressed, the current

healthcare system will experience unsustainable stress. Through studying and identifying ge-

netic components via a Genome-Wide Association study, it may be possible to discover novel

biomarker targets related to this concerning cancer-derived “symptom burden.” Moreover,

another possibility would be to create a predictive model capable of accepting a subject’s

information and determining which specific “treatment group” would be most appropriate.

As opposed to receiving the default treatment plan available to her, an assigned patient

would have the opportunity for more specialized care designed to be more efficacious for

her condition. Lastly, contributing to this research could allow us to further strengthen the

forthcoming “personalized medicine” approach leading to not only safer treatments but also

increased efficiency and productivity with regards to developing these therapeutics [Ginsburg

and McCarthy, 2001].
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1.4 ASSESSING CANCER SUBGROUPS

It is imperative to highlight that “symptom burden” is not experienced equally by all on-

cology patients. Previous assessments have concluded that tailored treatments either to

individual or cancer type may be more accurate in managing symptom burden [Deshields

et al., 2014]. Past methods have relied on analysis of latent variables as a way of subcategoriz-

ing patients based on their symptom burdens. From techniques such as latent class analysis,

studies have been able to identify clusters of patients who are at a “higher risk for multiple

co-occurring symptoms and diminished Quality-of-Life [QoL]” as well as highlight demo-

graphical differences amongst gender, ethnicity, and age [Astrup et al., 2017, Miaskowski

et al., 2014, Miaskowski et al., 2015].

Though Latent Class Analysis (LCA) is capable of creating patterns of association from

qualitative symptom traits, its methods are fallible under certain conditions. Via maximum

likelihood estimation, LCA calculates the probabilities associated with a particular set of

latent classes and assigns each individual case to the latent class with the highest associated

probability. As a result, there is no assumed difference between individuals who have a more

nuanced differences amongst the probability simplex and those subjects who are more clear

cut. For instance, consider the example:

Table 1: Latent Class Example with Posterior Probabilities

Subject I Subject II

Posterior Probabilities Posterior Probabilities

Latent Class I 0.1 0.3

Latent Class II 0.1 0.3

Latent Class III 0.8 0.4

In this case, both subjects (I & II) will be assigned to “Latent Class III”. As a result, it

may be possible to consider that there exists some heterogeneity within and amongst the

latent class groups instead of clear-cut separation. This may especially be a major concern in
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situations where LCA is used to cluster individuals before running a genome-wide association

study.

1.5 OBJECTIVE

Rather than condense each case to a single latent class based on the highest probability

assignment, the primary objective of this study revolves around using a Dirichlet Component

Regression method to consider the entirety of the probability simplex when detecting genetic

association. Formally, this study aims to answer the following question:

How do the dirichlet-derived phenotypes perform compared to those of the most-likely

latent class phenotypes when evaluating association?
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2.0 METHODS

2.1 STUDY DESIGN

2.1.1 DATA DESCRIPTION

All subjects were 18 years or older and had a diagnosis of breast, gastrointestinal, gyne-

cological, or lung cancer. Each subject had already received treatment in the form of Cy-

clophosphamide (CTX), a standard chemotherapy, at least four weeks prior to taking part

in the study [Miaskowski et al., 2017]. Each patient filled out a demographical questionnaire

alongside a self-administered comorbidity questionnaire. Topics including but not limited to

age, ethnicity, gender, marital status, living arrangements, education, employment status,

income status, and comorbid status (occurrence, treatment, functional impact). To further

determine functional status, patients filled out a Karnofsky performance status (KPS) scale

evaluation [Mor et al., 1984, Yates et al., 1980]. Additionally, subjects self-reported on the

Memorial Symptom Assessment Scale (MSAS) questionnaire, demonstrating certain symp-

tom occurrence within the past week. [Portenoy et al., 1994] Finally, to evaluate quality of

life (QOL), subjects underwent the Medical Outcomes Study-Short Form-12 and Quality of

Life Scale-Patient Version [QOL-PV] for general and disease-specific measures respectively

[Ware Jr et al., 1996, Ferrell et al., 1989].

In total, there were two separate cohorts from here on referenced as UCSF and TOR1.

The UCSF group involved 1343 patients gathered from an ongoing longitudinal symptoms

experience study in the San Francisco Bay Area, while the TOR1 group included 534 indi-

viduals gathered from Norway. Both groups have been previously assessed in past symptom
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cluster studies [Astrup et al., 2017, Miaskowski et al., 2014, Miaskowski et al., 2015, Mi-

askowski et al., 2017].

Before recruiting and obtaining written informed consent from subjects, Miaskowski, et

al received approval from the related Human Subject Committees. More intensive details

regarding the recruitment process may be found in a previous study [Illi et al., 2012].

2.1.2 GENOTYPE INFORMATION

The Johns Hopkins University Genetic Resources Core Facility (GRCF) SNP Center per-

formed the genotype calling for the Illumina Exome Chip Data which was split into two

different groups from here on referenced as Group A and Group B. Group A had 944 sub-

jects and their SNPs associated with the HumanCoreExome-24v1-0 array and hg19 Genome

Build; Group B had 2,330 subjects and their SNPs associated with the HumanExome-12v1-1 A

array and hg19 Genome Build. The UCSF cohort was split between Group A and Group B,

while the TOR1 cohort was only in Group B (Table 2). For ease of nomenclature, we will call

the UCSF subgroups as “UCSFA” and “UCSFB” for Group A and Group B UCSF subjects

respectively and leave “TOR1” as self-referential since it was only present in a Group B.

For analyses requiring the entire UCSF cohort (UCSFA + UCSFB), it shall be referred as

UCSFtotal.

Additionally, outside of the UCSF and TOR1 cohorts were individuals who had been

previously collected from the same sample population as well as assessed in other studies

Table 2: Distribution of UCSF and TOR1 Samples as Separated by Group

UCSFtotal TOR1

Group Assignment Group A Group B Group A Group B

Short-hand Reference UCSFA UCSFB NA TOR1

Pre-Filtering Count 944 669 0 498

Post-Filtering Count 730 542 0 415
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[Miaskowski et al., 2014, Miaskowski et al., 2015]. These individuals were included to increase

the sample size and subsequently make the genotype calling more accurate, a technique often

used in population genetic studies [Fumagalli, 2013]. GRCF’s calling algorithm relied on

GenomeStudio version 2011.1, Genotyping Module version 1.9.4, and GenTrain Version 1.0.

2.1.3 DATA STORAGE

All data is securely stored in the ‘Gattaca’ cluster currently under Dr. Weeks’s supervision.

2.1.4 DATA CLEANING

The “GWASTools” package was utilized to clean the data before any formal analysis was

attempted [Gogarten et al., 2012]. Each dataset, A and B, underwent a filtering pipeline.

Initially, subjects who had missing call rates over all SNPs ≥ 3% (missing.e2) were excluded.

To determine discrepancies between genetic and annotated sex, mean allelic intensities of

SNPs on both the X and Y chromosomes were assessed. Females with low X intensities and

males with low Y intensities were assumed to be the result of potential sample misidenti-

fication and were not retained. Additionally, relatedness was assessed. The given pedigree

structure insinuated that subjects in this study were not related; however, from the geno-

type data, individuals who were determined to be duplicates or familial were excluded. As

both Groups A and B included subjects from multiple studies, it was the case that there

were, in fact, individuals who were in multiple studies. In this section of the data cleaning

stage, those with the lowest missingness were retained, while their duplicate counterparts

were excluded. B Allele Frequency (BAF) and Log R Ratio were assessed to determine if

there were any chromosomal aberrations such as duplications or (partial and full) deletions.

Additionally, subjects who had an annotated missing gender were excluded. Finally, subjects

with BAF values greater than 5mb (indicating a missingness greater than 5,000,000 bases)

were dropped as well.
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2.1.5 GENETIC IMPUTATION

Genetic Imputation was performed using the Minimac3 imputation engine available via the

Michigan Imputation Server [Das et al., 2016]. For chromosomes 1-22, the Haplotype Re-

search Consortium (HRC) Version r1.1 2016 was the reference panel and Eagle v2.3 was

used for Phasing. The X chromosome utilized the same HRC reference panel; however, it

required the ShapeIT v2.r790 (unphased) option instead of Eagle v2.3. All data was secured

via Advanced Encryption Standard (AES) 256 encryption.

2.1.6 LATENT CLASSES DERIVATION

For UCSFtotal and TOR1 groups, latent class analysis (LCA) was performed on their common

22 qualitative traits as defined in Table 3. All variables were chosen from the the 32 total

variables found within the MSAS questionnaire as each had a rate of occurrence ≥ 40%

within both the UCSF and TOR1 subjects. Additionally, each was dichotomous; patients

responded with either a “Yes” or “No” to indicate the presence of absence of the trait as a

part of their symptom burdens.

Initially, Dr. Bruce Cooper, a collaborator from University of California, San Francisco,

performed the LCA using the same methodology and MPlus software as previously conducted

in past publications regarding symptom cluster burden and latent classes [Miaskowski et al.,

2014, Miaskowski et al., 2015, Muthén and Muthén, 2012]. In this analysis, the latent classes

were estimated using the combined UCSF and TOR1 data while adjusting for site, thereby

allowing latent class phenotypes to be equivalent in definition. Additionally, we provided

quality assurance by verifying the phenotypes ourselves; this was conducted via the ’poLCA’

R package [Linzer and Lewis, 2011].

poLCA initially maximizes the log-likelihood function of each specified latent class model

via the expectation-maximization (EM) algorithm with a Newton-Ralphson step. After

deleting cases where there are missing observations for the predictor variables, the function

then esimates the latent class regression. Initially, the LCA regression was run with up to a

max of 10 possible latent classes; the poLCA algorithm additionally calculated each model’s

associated Bayesian Information Criteria (BIC) and Akaike Information Criteria (AIC).
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Table 3: The 22 Qualitative Traits Utilized in Latent Class Analysis

Variable Definition

1 dfcno Difficulty Concentrating

2 paino Pain

3 enrgo Lack of Energy

4 cougho Cough

5 nrvso Feeling Nervous

6 drymo Dry Mouth

7 nauso Nausea

8 drwsyo Feeling Drowsy

9 numbo Numbness or Tingling in Hands or Feet

10 dfslpo Difficulty Sleeping

11 bloto Feeling Bloated

12 sado Feeling Sad

13 swtso Sweats

14 wryo Worrying

15 sxlo Problems with Sexual Interest or Activity

16 aptito Lack of Appetite

17 dizzyo Dizziness

18 irrito Feeling Irritable

19 hrlso Hair Loss

20 cnstpo Constipation

21 tasto Change in the Way Food Tastes

22 myslfo I Do Not Look Like Myself

Subjects responded with either a “Yes” or “No” indicating the presence of the trait as a part

of their symptom burdens.

10



However, one thing to note is that despite LCA models with different number of classes

being technically considered nested models, it is not appropriate to utilize a likelihood ratio

test to distinguish statistically significant differences due to the failure of meeting the reg-

ularity conditions [Nylund et al., 2007]. Computing the difference in likelihood between a

model with K classes and K-1 classes does not, in fact, follow a χ2 distribution [McLachlan

and Peel, 2000]. However, [Lo et al., 2001] have built upon the work of [Vuong, 1989]to pro-

vide an alternative method which approximates the likelihood ratio test distribution and can

be used for nested latent class regression models. Unlike the LRT, the VLMR test is capable

of discerning whether adding an additional class within the model will lead to a statistically

significant improvement [Nylund et al., 2007]. Therefore, in his analysis, Dr. Cooper uti-

lized the the VLMR test and determined that the 4 Latent Class Regression Model was most

appropriate for our dataset.

2.2 LATENT CLASS ANALYSIS

2.2.1 LATENT VARIABLE

A latent variable is defined as a variable that is not directly observed but rather inferred

from existing observations. Latent Class models utilize categorical variables to determine

mutually exclusive subgroups (or latent classes) that theoretically comprise a population. For

“g” latent classes, an individual has a set of “g” assigned posterior probabilities. After the

probability calculations, the subject is assigned to the latent class with the highest posterior

probability.

2.2.2 LATENT CLASS MODEL

Given that in the actual analysis, it was inferred that there were four latent classes from 22

separate categorical variables, we will now detail the Latent Class Model asumming there

are four classes. First, assume that there are 22 categorical variables (A1, A2, ..., A21, A22)

consisting of (C1, C2, ..., C21, C22) classes respectively. [Goodman, 1974] Let π(c1...c22) denote

11



the probability that an individual will be at level (c1, ..., c22) with respect to the joint variable

(A1, A2, ..., A21, A22) where (c1 = 1, ..., C1; c2 = 1, ..., C2; ...; c21 = 1, ..., C21; c22 = 1, ..., C22).

Suppose there exists a latent polygamous variable X, consisting of 4 classes that can ex-

plain the relationships among manifest variables (A1, A2, ..., A21, A22). As demonstrated in

[Goodman, 1974], we can define the following:

π(c1...c22) =
4∑
t=1

π
(A1...A22)X
(c1...c22)t

(2.1)

where

π
(A1...A22)X
(c1...c22)t

= πXt

22∏
w=1

(
π
Aw|X
cwt

)
(2.2)

In this case, we can consider π
(A1...A22)X
(c1...c22)t

to be the probability that the individual will

be at level (c1, ..., c22, t) with respect to the joint variable (A1, ..., A22, X). In the definition

of π
(A1...A22)X
(c1...c22)t

in Equation (2.2), πXt denotes the probability that an individual will be at

level t with respect to variable X. Additionally, π
A1|X
c1t represents the conditional probability

that an individual will be at level c1 with respect to variable A1, given that he is at level

t with respect to variable X. π
A2|X
c2t ,..., π

A22|X
c22t represent similar conditional probabilities.

Equation (2.1) demonstrates that all individuals can be classified into 4 mutually exclusive

and exhaustive latent classes, while Equation (2.2) explains that within the t-th latent class,

the manifest variables of A1...A22 are mutually independent.

Additionally, consider the following formulae:

T∑
t=1

πXt = 1 (2.3)

∀i ∈ {1, ..., 22},
T∑

ci=1

π
Ai|X
cit = 1 (2.4)

πXt =
∑

c1,...,c22

π
(A1...A22)X
(c1...c22)t

(2.5)

πXt π
A1|X
c1t =

∑
c2,...,c22

π
(A1...A22)X
(c1...c22)t

(2.6)
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From (2.3), (2.4), and (2.5), (2.6) can be generated for A as (2.6) has been summed over

c1. Similar equations can be generated for πXt π
A2|X
c2t ,..., πXt π

A22|X
c22t .

π
(A1...A22)|X
(c1...c22)t

=
π
(A1...A22)X
(c1...c22)t

πc1...c22
(2.7)

Let π
(A1...A22)|X
(c1...c22)t

describe the conditional probability that an individual is in latent class t,

given that he was at level (c1, ..., c22) with respect to the joint variable (A1, ..., A22). There-

fore, we can rewrite (2.5) and (2.6) as:

πXt =
∑

c1,...,c22

πc1...c22π
(A1...A22)|X
(c1...c22)t

(2.8)

and

π
A1|X
cit =

∑
(c2,...,c22)

πc1...c22π
(A1...A22)|X
(c1...c22)t

πXt
(2.9)

respectively. Equations similar to (2.9) can be obtained for π
A2|X
c2t ,...,π

A22|X
c22t .

Additionally, by letting πXt > 0 and πc1...c22 > 0, we can determine the maximum like-

lihood estimates of the latent-class model specified above. From (2.1) and (2.2), let π̂c1...c22

be defined as:

π̂c1...c22 =
T∑
t=1

π̂
(A1...A22)X
(c1...c22)t

(2.10)

where

π̂
(A1...A22)X
(c1...c22)t

= π̂Xt

22∏
i=1

π̂
Ai|X
cit , (2.11)

and from (2.7)

π̂
(A1...A22)|X
(c1...c22)t

=
π̂
(A1...A22)X
(c1...c22)t

π̂c1...c22
(2.12)

If pc1...c22 is defined as the observed proportion of individuals at level (c1, ..., c22) with respect

to the joint variable (A1, ..., A22), then the maximum likelihood estimates must satisfy the

following system of equations:

π̂Xt =
∑

c1,...,c22

pc1...c22 π̂
(A1...A22)|X
(c1...c22)t

, (2.13)
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π̂
A1|X
c1t =

∑
c2,...,c22

pc1...c22 π̂
(A1...A22)|X
c1...c22t

π̂Xt
, (2.14)

π̂
A2|X
c2t =

∑
c1,c3,...,c22

pc1...c22 π̂
(A1...A22)|X
c1...c22t

π̂Xt
, (2.15)

...

π̂
A21|X
c21t =

∑
c1,...,c20,c22

pc1...c22 π̂
(A1...A22)|X
c1...c22t

π̂Xt
, (2.16)

π̂
A22|X
c22t =

∑
c1,...,c21

pc1...c22 π̂
(A1...A22)|X
c1...c22t

π̂Xt
, (2.17)

In order to determine the maximum likelihood estimate π̂, let π act as the vector com-

prised of the parameters of the latent class model (π̂Xt , π̂
A1|X
c1t , ..., π̂

A22|X
c22t ). Initially, starting

with π(0), which in turn is equivalent to {π̂A1|X
c1t (0), ..., π̂

A22|X
c22t (0)}, it is possible to determine

the value for (2.11), (2.12), and subsequently (2.13) through (2.17). This process can be

performed iteratively with different trial values, and when an estimate is equal to zero, the

corresponding latent class is dropped. By assessing different initial values for π̂, we can

determine which solution minimizes the chi-squared statistic based upon the likelihood ratio

χ2 = 2
∑

c1,...,c22

fA1...A22 log

(
fc1...c22

F̂c1...c22

)
(2.18)

where

fc1...c22 = npc1...c22 , F̂c1...c22 = nπ̂c1...c22 , (2.19)

with π̂c1...c22 coming from (2.10) and n being the observed number of cases. Whichever trial

value leads to the lowest value in (2.18) will have yielded the maximum likelihood estimate

π̂.

2.2.3 CLASS COMPARISON METHOD

It is necessary to select the fewest number of latent classes capable of most accurately

explaining the relationships between the observed variables. While the Akaike Information
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Criterion and Bayesian Information Criterion were calculated and evaluated for each of the

latent class models, the VLMR test, as specified in Subsection 2.1.6, was actually utilized to

determine which latent class regression model would be most appropriate.

2.3 DIRICHLET REGRESSION

2.3.1 DIRICHLET DISTRIBUTION

Let a (k − 1) dimensional probability simplex be a surface in Rk space with k non-negative

components which sum to 1. As each value in the probability simplex is bounded between

0 and 1, they can be equivalently thought of as probability mass functions (pmfs). The

Dirichlet distribution is defined as the probability distribution of these pmfs, effectively

making it a distribution of distributions.

Moreover, the Dirichlet distribution is a generalization of the beta distribution beyond

two dimensions.

For {W1, ...,Wk} where 0 < Wi < 1 and
∑
Wi = 1 for all the {i = 1,...,k}, the density

function is defined as

D(w|α) = f(w1, ..., wk|α1, ..., αk) =
Γ (
∑

(αi))∏
Γ(αi)

∏
i

wai−1i (2.20)

with parameters {a1, ..., ak} > 0 for all {i = 1, ..., k}.

It can be thought of a distribution comprised of multinomials as
∑
Wi = 1 for all

{i = 1, ..., k}, and it is the conjugate prior of the multinomial distribution.

2.3.2 DIRICHLET REGRESSION

From (2.20), we can determine the full log-likelihood of the model:

li(w|α) = log Γ

(
k∑
i=1

(αi)

)
−

k∑
i=1

log Γ (αi) +
k∑
i=1

(αi − 1)log (wi) (2.21)

15



However, given that wi may take any value [0,1], a correction proposed by Smithson and

Verkuilen (2.22) must be applied in order to account for data taking a value of 0 or 1 e.g.

given wi = 0, log(wi) = −∞, while wi = 1, log(wi) = 1.

w∗ =
w(N − 1) + 1

k

N
(2.22)

N, in this case, represents the number of observations within the dataset. Additionally,

this correction constricts the data symmetrically around 0.5. As N → ∞, the restriction

increasingly relaxes indicating that larger datasets may be less affected by this correction.

The resulting link function g(wi) can be defined as the combination of the predictor

matrix X [i] and the matrix comprising of the regression coefficients in each dimension β[i].

g(wi) = X [i]β[i] (2.23)

2.3.3 DIRICHLET REGRESSION INTERPRETATION

Espin-Garcia (2014) [Espin-Garcia et al., 2014] initially suggested a likelihood model to relate

the genetic information and response variable from a Dirichlet Regression:

L =
n∏
i=1

[
γ(Λ(si)

4∏
k=1

y
λi(si)−1
ij

λj(si)

]
(2.24)

where λj(si) = λij > 0, Λ(si) = Λi =
∑4

j=1 λj(si) and Γ(·) represents the gamma function.

Additionally, let λj(si) be defined using a logarithm link,

log(λj(si)) = log(λij) =
M∑
m=1

βjmsim = siβj (2.25)

where j = 1, 2, 3, 4 or the number of components within the probability simplex, M is the

number of covariates within the model, and Bj is the vector or regression coefficients that

account for the effects of the covariates on the jth component in the log scale.

Therefore, two models (additive and adjusted) can be constructed.

Model 1: log(λij) = αM1
j + βM1

j gki (additive)

Model 2: log(λij) = αM2
j + βM2

j gki + FAMiδ
M2
j (adjusted)
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For the additive model, gki is the number of minor allele copies of the kth SNP for the ith

individual. FAMi describes the ith row of the contrast matrix for the pedigree number, and

θhj = (αhj , β
h
j , δ

ht

j )t is the vector of regression coefficients on the jth component.

From these models, we could construct a series of Wald tests to evaluate the two-sided null

hypothesis of no association between individuals SNPs and the response or more formally:

H0 : β = 0; HA : β 6= 0 where β = (β1, β2, β3, β4)

2.3.4 MODEL COMPARISON METHOD

To test the differences between two consecutive models, a likelihood ratio test can be utilized.

For example, a full model D and its nested model W will have likelihood values of LD and

LW respectively.

A standard likelihood-ratio test (LRT) can then be constructed to test model W against

D:

LRTDW = −2log

(
LW
LD

)
= −2 (lW − lD) , where LRTDW ∼ χ2

nD−nW
(2.26)

where nD and nW represent the different model parameters within models D and W respec-

tively. In this case, the test statistic follows the asymptotic chi-squared distribution with

nD − nW degrees of freedom under the null hypothesis.

2.4 SNP ASSOCIATION

2.4.1 COVARIATE SELECTION

As part of the SNP association modeling process includes adjusting for covariates. From the

data, there were a total of 11 variables including: (1) age, (2) body mass index (BMI), (3)

Karnofsky Performance Status (KPS), (4) the number of comorbidities, (5) the time from

cancer diagnosis, (6) Number of Prior Cancer Treatments, (7) Gender, (8) Education Level,

(9) Marital Status, (10) Ethnicity, and (11) Cancer Diagnosis. For reproducibility we want
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to adjust for some set of covariates in both analyses. From the glmnet package, we used

a LASSO multinomial regression method with latent class as the outcome [Simon et al.,

2011]. In both the UCSFtotal and TOR1 groups, the KPS and the number of comorbidities

variables were retained. In total, UCSFtotal contained additional variables after running

the cross-validation; these included: sex, the marital status of the individual, the age, and

the educational level. It is important to note that the UCSFtotal cluster was much larger

than its TOR1 counterpart, and while most of the variables asked for and received identical

responses, not all variables were as comparable in the dataset we used at the time of analysis.

For instance, the definition of “partnered” was a dichotomous option for the UCSFtotal group

(Yes; No) instead of multinomial as it was for the TOR1 group (Unmarried; Married/Living

Together; Divorced; Widow; Separated). Additionally, race, which self-reported, was not

included within the analysis. However, it is important to note that there currently does

exist a dataset assembled by Dr. Miaskowski which sees the previously discrepant variables

as harmonized; any future analysis beyond this work should favor using that complete dataset

over what was utilized in this analysis.

2.4.2 PRINCIPAL COMPONENTS

Finally, to account for population substructure, principal components (PCs) were generated.

For a study focused on the genetics of the individual, PCs provide a more accurate and

appropriate measure of subjects’ genetic ancestry due to differences in minor allele frequencies

from genetically distant ancestries. Via the GWASTools R package, linkage disequilibrium

(LD) pruning was applied in order to determine which SNPs have low levels of LD, missing.n1

< 0.03, and MAF < 0.05 [Gogarten et al., 2012]. Subsequenty, principal components analysis

(PCA) was applied on the genotypes and the first 32 eigenvalues were calculated from this

subset of SNPs. By including PCA-identified continental ancestry, it is possible to stratify

samples by population group via treating the initial four eigenvectors (which account for the

majority of the variation seen) as covariates within association analyses [Gogarten et al.,

2012]. This additionally provides a solution to allele frequency differences between cases and

controls which may arise from systematic ancestry differences [Price et al., 2006].
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2.4.3 TRINCULO

Trinculo is an open source, C-based program capable of calculating an omnibus P-value

of association for each variant against categorical phenotypes using a likelihood ratio test

[Jostins and McVean, 2016]. It requires the “phenotype” (Latent Class Designation), “co-

variates”(as selected by LASSO), and “bed” (genotype calls at biallelic variants)/“bim” (ad-

ditional variant information) /“fam” (sample information) files to calculate the multinomial

logistic regression.

A multinomial regression approach within genetic association studies considers each indi-

vidual i as either a control (wi = 0) or one of D different phenotypes (wi = d|d ∈ (1, ..., D)).

The choice of “control” is arbitrary; however, by default, TRINCULO is programmed to

chose to label the “control” as the first category it encounters within the data. In order to

keep consistency, our analyses referred to the subset of individuals with the lowest “symp-

tom burden” (e.g. the blue class in Figure 2) as the control reference. Additionally, each

individual can be considered to have a specific genotype (gi) at each locus which can fall

under the designation of gi ∈ (0, 1, 2) depending on the absence, singular presence, or com-

plete presence of the minor allele. By using the multinomial logit function, it is possible to

assume that the probability of an individual having a “wi = d” phenotype is related to their

genotype at some locus with some β0d and β1d representing the intercept and effect size for

each phenotype “wi = d” where d ∈ (1, ..., 4) respectively [Jostins and McVean, 2016].

Pr (wi = d|gi, β0, β1) =
eβ0d+β1d×gi

1 +
∑D

v=1 e
β0v+β1v×gi

(2.27)

Subsequently, it is possible to utilize Equation (2.27) generate a formula which can take into

account the inclusion of all (j = 7) predictors (sex, KPS, total number of comorbidities, and

all four principal components). Additionally, let N be set as the number of given individuals

and xi as the vector of predictors assigned to subject i. With the intercept defined as

predictor “0” (xi0 = 1 ∀ i), the total number of predictors moves to j = 8. It is then possible

to construct a matrix X with elements xij each describing each subject’s predictor values.

Additionally, the effect sizes for all predictors and phenotypes can be set as an “effect

size” matrix B, where Bjd = βjd is the effect size for predictor j on phenotype d. Thus, let
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βd be the vector of effect sizes of all predictors on phenotype d, and βj as the vector of effect

sizes of predictor j on all phenotypes. Equation 2.28 defines the probability that a subject

is in category d given predictors xi and matrix B.

Pr (wi = d|B, xi) =


eβ

T
d xd

1 +
∑D

v=1 e
βT
v xi

, if wi > 0

1

1 +
∑D

v=1 e
βT
v xi

, if wi = 0

(2.28)

Finally, omnibus testing can be performed by using a likelihood ratio test between the

full model and null model which differentiate based on the inclusion or exclusion of the

genotypic effect respectively. Having a full model demonstrating a statistically significant

difference when compared to the null model will indicate that the variant is significantly

associated with any of the phenotypes [Jostins and McVean, 2016].

2.4.4 META-ANALYSIS

For the meta-analysis, the Z-Transform Test was utilized to combine the p-values from the

Group A and Group B UCSF analyses into an overall UCSFtotal p-value. As the multino-

mial logistic regression omnibus test relies on the likelihood ratio test which follows a χ2

distribution, it can be considered a series of one-tailed tests which do not include directional

effect. As a standard normal deviate Z can range between -inf to inf and pi can take any

value from 0 to 1, any value of pi will be bijective with a value of Z. Dubbed “Stouffer’s

Method” (Zs), this Z-Transform test is capable of transforming one-tailed p-values (pi) from

k independent tests into standard normal deviates Zi [Whitlock, 2005]. Furthermore, the

sum of the standard normal deviates (Zi’s) divided by the square root of the total number

of tests (k) will follow a standard normal distribution under the null hypothesis.

Zs =

∑k
i=1 Zi√
k

(2.29)

As opposed to using a Fisher’s combined probability test approach, the Z-Transform

Test was chosen as it provides increased power and precision. Fisher’s method is asymmet-

rically sensitive to small p-values when compared to larger p-values which can bias results

and incorrectly reject the null hypothesis [Whitlock, 2005]. It was utilized to combine the
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multinomial logistic regression (TRINCULO) results from both UCSFA & UCSFB in order

to fully represent the UCSF population.

2.4.5 GWAS COMPARISON

From both the Multinomial Logistic Regression and Dirichlet Regression methods, SNPs

of interest were evaluated at three different levels: 1) 5 × 10−8, 2) 1 × 10−5, and 3) a

conservative Bonferroni-corrected threshold. In a genome-wide association setting, the initial

value of 5 × 10−8 is commonly indicative of significant and replicable results, while 1 ×

10−5 is ”suggestive” [Panagiotou et al., 2011]. For the Multinomial Logistic Regression

pipeline, the Bonferroni-corrected values for UCSFtotal and TOR1 were 2.651e-06 and 3.607e-

07 respectively. For the Dirichlet Regression, the UCSFtotal cohort was split into UCSFA

and UCSFB; UCSFA, UCSFB, and TOR1 had Bonferroni-corrected values of 1.973e-07,

2.703e-06, 3.667e-07 respectively. In lieu of a more rigorous comparison which would involve

running a simulation to test the power of the Dirichlet Regression method when compared

to that of the Multinomial Logistic Regression method, we will solely compare the results

and request further study.
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Figure 1: Analysis Roadmap

Dr. Cooper’s LCA found that a total of four separate latent classes was most appropriate

for both the UCSFtotal and TOR1 cohorts. As shown in Figure 2, both the UCSFtotal and

TOR1 cohorts encounter similar situations. Latent Classes 1 (in blue) and 4 (in red) show
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Figure 2: Frequency of Occurrence for the 22 Qualitative Traits as Separated by

Latent Class for UCSF (Left) and TOR1 (Right) Cohorts

In both cases, Latent Class 4 individuals (blue) appear to have the lowest overall frequency of traits,
while Latent Class 1 subjects (red) have with the highest overall frequency of traits. Subjects from
Latent Class 2 (green) and 3 (yellow) appear to be less distinguishable.

the extremes of the symptom cluster burden, while latent classes 2 and 3 (in green and

yellow) are more difficult to differentiate. Some qualitative traits, such as the experience of

“lack of energy” (enrgo) and “difficulty sleeping” (dfslpo), that appear to be two of the most

frequently occurring qualitative traits comparatively within all groups. Additionally, it may

not be too far of a stretch to imagine how all three may possible be related to increases in

overall “stress” for any surviving cancer patient.

Regarding, other characteristics about the subjects, it was worth noting the demographics

of the final groups post-filtering. For the UCSFtotal group (Table 4), females outnumbered

males overall by roughly 3.6:1, while “white” was the most common self-reported race.

For the TOR1 group (Table 5), females, again, outnumbered males overall by about 2.6:1.

However, “white” was the overwhelming majority for self-reported race with only one “black”

and three “Asian/Pacific Islander” subjects in comparison.
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Table 4: Distribution of Sex and Self-Reported Race as Separated by Latent Class

for the Filtered UCSFtotal Cohort

LC Female Male Asian/Pacific Islander Black Hispanic/Mixed/Other White

1 283 36 38 22 44 211

2 386 124 67 43 48 343

3 163 35 14 10 17 157

4 164 81 38 17 24 162

The distributions of the main covariates, Karnofsky Performance Status (KPS) and the

total number of comorbidities, were also assessed for each of the different groups. A KPS

value of 100 indicates “perfect health”, while a score of 0 represents a deceased individual.

For both UCSF and TOR1, subjects within Latent Class 1 were shown to have a lower

“overall wellbeing” especially when compared to those within Latent Class 4. Additionally,

Latent Class 1 appeared to have a higher mean value of comorbidities when compared to

Latent Class 4.

3.1 QUALITY CONTROL FILTERING

3.1.1 SUBJECT QUALITY CONTROL FILTERING

From an initial count of 1613 samples (include technical duplicates), the UCSFtotal cohort

retained 1272 unique individuals after the filtering process, while the TOR1 cohort retained

415 (Table 6).
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Table 5: Distribution of Sex and Self-Reported Race as Separated by Latent Class

for the Filtered TOR1 Cohort

LC Female Male Asian/Pacific Islander Black White

1 43 15 2 0 56

2 29 9 0 0 38

3 116 36 1 0 151

4 111 56 0 1 166

3.1.2 SNP QUALITY CONTROL FILTERING

From Group A, there were 527182 SNPs remaining after the filtering process. From Group

B, there were 239101 SNPs post exclusion (Table 7).

3.1.3 RETAINED COVARIATES

From the 11 total variables possibly available as covariates (Section 2.4.1), three were chosen

for the final set of covariates within the model: “sex”, “KPS”, and “Number of Comorbidi-

ties.” While, “KPS” and “Number of Comorbidities” were highlighted as common variables

from the UCSFtotal and TOR1 LASSO regression model outputs, “sex” was retained due

to its biological significance and relation to cancer susceptibility. [Dorak and Karpuzoglu,

2012, Edgren et al., 2012]. Additionally, the four principal components were retained to

account for existing population substructures produced by genetic ancestry especially at the

case-control level. In total, these four covariates were utilized in both the Trinculo and

Dirichlet Regression methodologies.
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Figure 3: Distribution of Karnofsky Performance Status (KPS) and Comorbidities

Count per Latent Class for UCSFtotal (Left) and TOR1 (Right) Cohorts

The center dot represents the mean, while its intersecting line indicates the interquartile range.
The values are jittered in order to more easily highlight the density at certain points

26



Table 6: Subject Quality Control for UCSFtotal and TOR1 Cohorts

UCSFtotal TOR1

Filtering Criteria Retained Excluded Retained Excluded

Starting Count 1613 NA 498 NA

Missing.e2 ≥ 0.03 1610 3 498 0

Females with low X intensities 1602 8 497 1

Males with low Y intensities 1597 5 495 2

Genotype quality scores 1595 2 493 2

Sibling 1594 1 493 0

Unexpected Duplicates 1592 2 493 0

Expected Duplicates 1469 123 446 47

High BAF sd 1461 5 443 3

Missing Gender 1296 165 419 24

Base distance > 5mb 1285 11 415 4

Missing Latent Class 1272 13 415 0

Table 7: SNP Quality Control for Group A and Group B Cohorts

Group A Group B

Filtering Criteria Retained Excluded Retained Excluded

Starting Count 547644 NA 242901 NA

Missing.n2 ≥ 0.03 535198 12446 239880 3021

Unknown Chromosome Position SNPs 534505 693 239880 0

Duplicate SNPs 527182 7323 239101 779

3.2 MULTINOMIAL LOGISTIC REGRESSION RESULTS

After applying the multinomial logistic regression and meta-analysis on the UCSFtotal cohort

to test for genome-wide association, we found that there were no SNPs that achieved genome-
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Figure 4: Manhattan Plot and Q-Q Plot of Single Nucleotide Polymorphisms for

UCSFtotal (Left) and TOR1 (Right) Cohorts from TRINCULO.

“Suggestive Association” and “Bonferroni-corrected” Significance are represented via the blue and
green lines respectively.
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wide significance (p < 5 × 10−8), Bonferroni-corrected significance (p < 2.651 × 10−6), or

“suggestive association” significance (p < 10−5). However, the top three SNPs that were

closest to the “suggestive association” threshold can be found in Table 8. Additionally, the

Q-Q plot of the expected vs observed p-values additionally reflects this notion; it’s stark

linearity suggests a lack of associated SNPs with the latent class outcome. Referencing

Figure 4, all of the SNPs in the TOR1 cohort failed to achieve genome-wide significance

(p < 5 × 10−8), Bonferroni-corrected significance (p < 8.792136 × 10−7), and “suggestive

association” significance (p < 10−5). Its Q-Q plot also demonstrated this lack of association.

3.3 DIRICHLET REGRESSION

When we applied the Dirichlet regression to the probability simplexes, there were a few key

observations. Initially, there were a marked excess of extremely small p-values as demon-

strated in both the Manhattan and Q-Q plots (left-half of Figure 5). Further investigation

revealed that all SNPs with p-values that exceeded the least restrictive “suggestive associa-

tion” threshold, had minor allele frequencies (MAF) less than 0.001. Possibly, this may be

indicative that the test statistic is not robust to very low MAF conditions. Relatedly, Wald

tests in regular association test of genetic variants with low MAFs have also encountered this

issue and had led to application of correction methods such as Firth’s bias correction [Zhou

et al., 2017]. Additionally, when we filter out the results when the minor allele frequency is

less than 5 %, we are left with SNPs with p-values ≥ 1.917025× 10−4. As demonstrated in

the right-half of Figures 5, 6, and 7, all SNPs from the UCSFA, UCSFB, and TOR1 cohorts

with MAF ≥ 0.05 have non-significant p-values > 1 × 10−5 (the least restrictive “sugges-

tive association” threshold). Additionally, when evaluating the Manhattan Plots before the

< 5% MAF Exclusion, it is possible to see a horizontal “chunks” of “white space.” After

further evaluation, we postulate that this phenomena may be related to the extremely low

MAFs associated with certain SNPs.

When we graph the −log10(p-values) from the Multinomial Meta-Analysis vs Dirichlet

Regression results from the UCSF cohort after removing the low MAF SNPs, we fail to
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Figure 5: Manhattan and Q-Q Plots of Single Nucleotide Polymorphisms for

UCSFA Cohort Before (Left) and After (Right) less than 5% Minor Allele Fre-

quency Exclusion from Dirichlet Regression

“Genome-Wide Association”, “Suggestive Association”, and “Bonferroni-corrected” Significance
are represented via the red, blue, and green lines respectively.
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Figure 6: Manhattan and Q-Q Plots of Single Nucleotide Polymorphisms for

UCSFB Cohort Before (Left) and After (Right) less than 5% Minor Allele Fre-

quency Exclusion from Dirichlet Regression

“Genome-Wide Association”, “Suggestive Association” and “Bonferroni-corrected” Significance are
represented via the red, blue, and green lines respectively.
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Figure 7: Manhattan and Q-Q Plots of Single Nucleotide Polymorphisms for TOR1

Cohort Before (Left) and After (Right) less than 5% Minor Allele Frequency

Exclusion from Dirichlet Regression

“Genome-Wide Association”, “Suggestive Association” and “Bonferroni-corrected” Significance are
represented via the red, blue, and green lines respectively.
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Figure 8: −log10 P-values for Meta-Analysis vs Dirichlet for UCSFA (Left) &

UCSFB (Right)

see consistent results and good agreement (Figure 8). This may be indicative of greater

issues such as mismatched assumptions underlying each model that would allow for such

discordance.

3.4 UCSFTOTAL MULTINOMIAL LOGISTIC REGRESSION TOP HITS

After running the meta-analysis for the UCSFtotal individuals from the multinomial logis-

tic regression results, the top three SNPs after the < 0.05 MAF filtering were rs278981,

rs72932959, and rs35455589 as shown in Table 8. Each SNP appeared to fall on 7 tran-

scripts in 2 genes, 21 transcripts in 3 genes, and 11 transcripts in 2 genes respectively. Both

rs278981 and rs35455589 appear to have relatively common allele frequency in many popu-

lations; however, rs72932959 appears to have a much higher allele frequency in Asian and

Latino populations. Additionally, both rs278981 and rs35455589 are missense variants in-

ferring that they may be functional [Lek et al., 2016]. RBM47, HYAL3, and HYAL2 each

represent a single gene that has been associated with one of the SNPs, and each of them

have been investigated in literature reviews and associated with breast cancer progression

or lung cancer tumors [Vanharanta et al., 2014, Rai et al., 2001, Udabage et al., 2005].

33



Table 8: Meta-Analysis of Multinomial Regression Results - Top Hits

SNP Chr:BP P.Value Lit Review

rs278981 4:40,428,010 2.642e-05 RBM47: suppressor of breast cancer progression and metastasis [Vanharanta et al., 2014]

rs72932959 3:50,336,292 4.833e-05 HYAL3: candidate lung cancer tumor suppressor [Rai et al., 2001]

rs35455589 3:50,355,730 4.833e-05 HYAL2: over-expression implicated in invasiveness of breast cancer [Udabage et al., 2005]

When assessing the p-values of these SNPs from the UCSFA and UCSFB Dirichlet

Regression results, we found that all values were significantly larger and none were as close

to the “associated significance” threshold (Table 9). Both the Multinomial and Dirichlet

Regression results for the TOR1 cohort (Table 10) repeated these findings. Lastly, when

assessing the odd ratios of each latent class against the latent class with the highest “symptom

burden” (LC1) (Table 11), we found that none of them were unnaturally inflated, yet almost

all groups (except for LC2) appeared to demonstrate that as the load of minor alleles increases

(i.e. as the genotype increases from 0 to 1 to 2, where the number represents the number of

rare alleles the individual has), the odds of being in a class other than LC1 increases. When

looking at the Counts and Percentages of each SNP more closely (Tables 12 - 17), we can

see that the trend holds in the UCSFA but not in the UCSFB tables. Possibly, each SNP,

even those designated as “missense” and therefore functional, may play a role in actually

alleviating aspects of the “symptom burden” for the subjects. From Tables 13 & 14 and 16

& 17, we can see that rs729392959 and rs35455589 are generating very similar counts. As

these two SNPs are on the same chromosome and relatively close to one another (Table 8),

this may be indicative that the markers are in linkage disequilibrium.
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Table 9: UCSFtotal Dirichlet Regression P-Values - Top Hits

rs278981 rs72932959 rs35455589

UCSFA P-value 0.0112 0.477 0.477

UCSFB P-value 0.632 0.632 0.877

Table 10: TOR1 Regression P-Values - Top Hits

rs278981 rs72932959 rs35455589

Multinomial P-value 0.643 0.129 0.129

Dirichlet P-value 0.904 0.961 0.961

Table 11: Odds Ratio Comparisions for Top Hit SNPs from Multinomial Regres-

sion (TRINCULO)

rs278981 rs72932959 rs35455589

UCSFA OR (LC2 vs LC1) 0.200 2.323 0.578

UCSFA OR (LC3 vs LC1) 1.419 1.448 2.323

UCSFA OR (LC4 vs LC1) 1.419 1.416 0.869

UCSFB OR (LC2 vs LC1) 1.458 17.940 2.256

UCSFB OR (LC3 vs LC1) 1.458 17.940 2.256

UCSFB OR (LC4 vs LC1) 1.255 0.683 0.860
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Table 12: Genotype (rs278981) by Latent Class, Counts (Left) and Row Percent-

ages (Right), UCSFA Multinomial Regression

LC1 LC2 LC3 LC4

0 108 137 79 75

1 69 127 36 58

2 4 28 3 6

LC1 LC2 LC3 LC4

0 0.271 0.343 0.198 0.188

1 0.238 0.438 0.124 0.200

2 0.098 0.683 0.073 0.146

Table 13: Genotype (rs72932959) by Latent Class, Counts (Left) and Row Per-

centages (Right), UCSFA Multinomial Regression

LC1 LC2 LC3 LC4

0 153 236 102 115

1 18 40 12 14

2 9 16 4 9

LC1 LC2 LC3 LC4

0 0.252 0.389 0.168 0.190

1 0.214 0.476 0.143 0.167

2 0.237 0.421 0.105 0.237

Table 14: Genotype (rs35455589) by Latent Class, Counts (Left) and Row Per-

centages (Right), UCSFA Multinomial Regression

LC1 LC2 LC3 LC4

0 154 235 101 114

1 18 40 12 15

2 9 16 4 9

LC1 LC2 LC3 LC4

0 0.255 0.389 0.167 0.189

1 0.212 0.471 0.141 0.176

2 0.237 0.421 0.105 0.237
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Table 15: Genotype (rs278981) by Latent Class, Counts (Left) and Row Percent-

ages (Right), UCSFB Multinomial Regression

LC1 LC2 LC3 LC4

0 20 35 22 22

1 17 28 15 11

2 2 2 2 1

LC1 LC2 LC3 LC4

0 0.202 0.354 0.222 0.222

1 0.239 0.394 0.211 0.155

2 0.286 0.286 0.286 0.143

Table 16: Genotype (rs72932959) by Latent Class, Counts (Left) and Row Per-

centages (Right), UCSFB Multinomial Regression

LC1 LC2 LC3 LC4

0 27 48 33 29

1 11 12 4 3

2 1 5 2 2

LC1 LC2 LC3 LC4

0 0.197 0.350 0.241 0.212

1 0.367 0.400 0.133 0.100

2 0.100 0.500 0.200 0.200

Table 17: Genotype (rs35455589) by Latent Class, Counts (Left) and Row Per-

centages (Right), UCSFB Multinomial Regression

LC1 LC2 LC3 LC4

0 27 47 33 28

1 11 12 4 3

2 1 5 2 2

LC1 LC2 LC3 LC4

0 0.200 0.348 0.244 0.207

1 0.367 0.400 0.133 0.100

2 0.100 0.500 0.200 0.200
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4.0 DISCUSSION

As demonstrated in Figure 1, the project was broken down into several phases: data quality

assessment, variable generation, covariate selection, genetic imputation, and the genome-

wide association analyses. Starting with the first phase, recall that there were two separate

cohorts, UCSF and TOR1, which involves individuals both from the San Francisco Bay Area

as well as Norway. In total there initially were 1613 and 498 individuals in each respective

group; 1272 and 415 respectively remained after the sample filtering process. Additionally,

the genotype calling was split into two separate groups, Group A and Group B, based on

the different arrays used; the UCSF cohort was split between Group A and Group B, while

TOR1 was only called in Group B. Post SNP quality control, there were 527,182 and 239,101

SNPs evaluated within Group A and Group B respectively.

4.1 PHENOTYPIC COMPARISONS

When looking at the frequency of the occurrence for the 22 qualitative traits as separated by

latent class (Figure 2), it initially is worth noting how strikingly similar the UCSFtotal and

TOR1 profiles are especially given the inherent differences in the populations. However, as

the latent classes were generated using a combination of both the UCSF and TOR1 datasets

(while adjusting for site), this should come as no surprise. It is notable that the middle latent

classes (green & yellow) are a bit indistinguishable from each other, while the lowest and

highest latent classes (blue & red) more easily visualize the individuals who had the least

and greatest frequency of occurrence for these qualitative traits. In Figure 3, which describes

the distributions of the covariates separated by latent class, we can see something similar:
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the latent class with the lowest presentation of the 22 qualitative traits (blue) tends to have

the highest KPS and lowest number of comorbidities, while the highest variable presenting

latent class (red) appears to have the lowest KPS and highest number of comorbidities.

With regards to self-reported ethnicities, “white” remained the most common self-reported

race in both groups (Tables 4 & 5), yet the overall distributions in each population were

different. TOR1 reflected a nearly homogeneous “white” population (as would be expected

for a Norwegian sample), while UCSFtotal had significantly more variation in comparison.

A point of interest to make is that the latent classes are determined from the dataset

as a whole and are not an attribute directly measurable on a single individual. This may

lead to issues with regards to reproducibility unless future analyses utilize the exact same

models created here to maintain the same definitions for the latent classes. However, from

a public health perspective, this approach may be worth developing further as its ability to

draw inferences from observed variables may allow the creation of models capable of indi-

cating certain latent characteristics of the patient. For instance, by setting a new subject’s

information (defined by the exact same set of variables used for the LCA), into the model,

it would be possible to assign her into a specific “treatment group” as extrapolated from the

exact latent class assignment. Thereby, once it is know that the patient is in that specific

treatment group, she may be given a specifically tailored set of special care which may be

more appropriate than the usual standard-of-care.

4.1.1 IMPUTATION

Recall that the UCSFtotal group was split into Group A and Group B for genotype call-

ing, and a meta-analysis was performed on the common set of SNPs between UCSFA and

UCSFB. By utilizing panel references such as the Haplotype Reference Consortium (HRC),

shared haplotypes can be identified amongst subjects and the missing genotypes from each

individual can be replaced by the observed alleles from the reference [Li et al., 2009]. Through

imputation, we were able to increase the number of commonly shared SNPs found in both

groups thereby allowing a larger number of SNPs to be analyzed in the meta-analysis for

the UCSFtotal cohort. Unfortunately due to time constraints, the imputed values were only
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utilized for the UCSFtotal multinomial logistic regression analyses. More specifically, we were

able to conduct a meta-analysis on 18,862 commonly shared UCSFtotal variants; the TOR1

subjects did not have any imputed values assessed.

4.1.2 COVARIATE SELECTION: SIMPSON’S PARADOX

When performing the covariate selection for the regression models, it is important to high-

light the potential issue of Simpson’s Paradox, which describes events where an association

may be present within individual groups but may not appear to be the case when all groups

are combined. Recall that in the analysis, the UCSFtotal and TOR1 subjects each underwent

a LASSO multinomial regression in order to determine which variables would be associated

with the latent classes. There were differences in the wording and options that the UCSFtotal

and TOR1 groups received as part of questionnaire. Condensing down the TOR1 group’s

definition of “partnered” to match that of the UCSFtotal group’s variable (e.g. Umarried;

Married/Living Together; Divorced; Widow; Separated into Partnered:Yes/no) would po-

tentially lead to a misrepresentation of the data. As mentioned previously, it is worth noting

that the dataset used at the time of analysis has been replaced by a newer version. In its

up-to-date form, the discordant variables have now been harmonized thus giving any future

analysis a direct way to circumvent the issues listed above.

4.1.3 COVARIATE SELECTION: KPS

While Karnofsky Performance Status (KPS) was included in the regression models as a

covariate due to its performance within the LASSO selection process, it is important to

highlight the accompanying set of issues. KPS describes a measure of overall “wellness of

being/function” for an individual as observed by a separate party; having certain symptoms

of disease which could manifest in the individual as “diarrhea”, “nausea”, or “pain” could

lead to an overall lower KPS score or lower “wellness of being.” Perhaps it may be repet-

itive then to include the KPS score as a covariate within the model as there is arguably

substantial overlap with some of the 22 qualitative traits utilized in the latent class analysis

to subcategorize the individuals into different levels of “quality-of-life.” Additionally, as pa-
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tients in this study had already undergone chemotherapy, their collective KPS values would

have been skewed towards a generally lower overall “wellness of being.”

4.1.4 COVARIATE SELECTION: INCLUSION

The current approach of selecting common covariates from both the UCSFtotal and TOR1

analyses provided the opportunity to evaluate the outcome variable as a function of the same

set of variables. When variables are added to the model, the proportion of variance in the

dependent variable that can be explained by the set of independent variables or coefficient of

determination (r2) increases. Therefore, it may be possible to view that the way one might

define the regression residuals may be different depending on which variables were selected to

be in the model. It is possible to see this in genetics, where the inclusion of covariates within

the regression model changes the context of the genetic effects one may be assessing. More

specifically, a confounder, a risk factor which will skew the relationship between exposure

of interest and disease manifestation, will have differing implications if it is included in the

model versus if it is not. For instance, inclusion of BMI in a genetic association test for

Type 2 Diabetes (T2D) would demonstrate an entirely different context as BMI’s nature as

a strong risk factor would influence the occurrence of cases within the population. It would

not be possible to conclude that, given the statistic passing the set significance threshold,

there is an association just between this particular SNP and T2D; BMI, played a major role

as a confounder, and the interpretation of the the association would need to include that

aspect as well. In other words, one would be assessing the association between the SNP and

phenotype conditional on the covariate by using this approach [Vansteelandt et al., 2009].

Additionally, covariate presence in genetic studies has been met with caution when testing

for novel associations especially if they are not confounders. In case-control studies, the

ascertainment process for subjects can bias cases to be individuals with risk genotypes as

well as high-risk covariate levels; overall this can lead to a loss of power due to increased

standard error of the genetic association due to the correlation [Mefford and Witte, 2012].

[Kuo and Feingold, 2010] assessed the effect of covariate inclusion via simulation and found

that the regression model with just the genotype alone was more powerful in determining a
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genetic effect when compared to the model including a covariate; this indicates that it may

be detrimental to include covariates within the model when performing genetic association.

Finally, including covariates within a genetic model relies on the assumption that there is

no association between the covariate and the marker locus. This may not hold up in a

genome-wide context especially when the covariate of interest may have a high heritability

[Vansteelandt et al., 2009].

4.2 INFLUENCE OF LOW MINOR ALLELE FREQUENCY

With regards to the results of the analysis pipelines, we did not find any genome-wide

significant signals after excluding for extremely low MAF. Though rare and low frequency

variants with MAFs < 0.5−1% are thought to play a major role in heritability for common,

complex diseases, it is important to highlight that low MAF has been associated with an

increased false-positive rate [Tennessen et al., 2012, Tabangin et al., 2009]. Given the number

of latent class and genotype assignments possible, it should be understood that low MAFs

may be very possible within our dataset. Recall that in the original multinomial regression

approach, there were four latent class assignments; moreover, there were three separate

genotypes possible depending on the mixture of major (A) and minor (B) alleles for each

individual: 1) AA, 2) AB, and 3) BB. In a situation where the minor allele frequency or

overall number of minor alleles has been determined to be quite low within the sample, it

should come as no surprise that after separating that sample into four latent classes, the

number of minor alleles in each group may possible be extremely low or non-existent. In

fact, Figures 5, 6, & 7 demonstrated excessively small p-values previous to any MAF filtering

which could be seen as a result of the increased false-positive rate from having SNPs with

low MAF.
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4.3 MULTINOMIAL LOGISTIC REGRESSION

In our data, it has been shown that there are many markers with very low MAFs; subse-

quently, it is the case that their latent class/genotype contingency tables have empty cells.

In general, it is important to note that having low or empty counts in the marker’s latent

class/genotype contingency table can cause high standard errors for the coefficient associated

with that category [Menard, 2002]. In logistic regression, having a similar scenario of a low

number of event-per-variable (EPV) can lead to biased results; this has led to the applica-

tion of Firth’s bias correction as a correction to apply when dealing with small sample sizes

[Peduzzi et al., 1996, Maiti and Pradhan, 2008]. With regards to the Multinomial Logistic

Regression, it is also possible to extend Firth’s bias correction. In the genetic context, pre-

vious research has demonstrated the use of Firth’s bias correction in rare variant association

tests when dealing with single low-count variants [Bull et al., 2002, Wang, 2014, Ma et al.,

2013]. Unfortunately, the TRINCULO software utilized for the multinomial logistic regres-

sion analysis did not appear to use this method, and this may be related to the abnormal

Q-Q plots observed within our results (Figure 4).

4.4 DIRICHLET REGRESSION

In the Dirichlet Regression approach, the phenotype (e.g. the independent variable) is not

the categorical latent class assignment; rather, it is the probability simplex, the vector of

four posterior probabilities associated with each latent class. Figure 9 visually demonstrates

the distribution of those simplex probabilities. In this context, each vertex represents one of

the four probabilities (p1, p2, p3, p4) that make up the probability simplex, and the combined

probability simplex sums to a total of 1
(∑4

i=1 pi = 1
)
. Having a point within Figure 9 be

near top of the pyramid, for instance, would indicate that a subject’s p1 value would be

close to 1 and subsequently her other probability values (p2, p3, p4) would be near or at 0.

The Dirichlet Regression approach allows us to utilize the entirety of the probability simplex

space as containing possible phenotypes; however, it is important to note that each subject’s
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probability simplexes appear to be stratified to the area closely surrounding the vertices.

As the Dirichlet Regression method is capable of handling a more heterogeneous spread of

probability simplexes but the DirichletReg R package utilized to perform the analysis did

not include an option to account for skewness nor heteroscedasticity, perhaps this lack of

adjustment could be responsible for the abnormal Q-Q plots (Figures 5, 6, & 7) [Maier,

2014].

4.5 COMPARING PHENOTYPES FOR ASSOCIATION

The goal of this analysis was to assess how probability simplex phenotypes perform compared

to those of the most-likely latent class phenotypes when evaluating association. Overall, as

shown in Figure 8, the p-values showed very poor agreement. Moreover, while the top

three SNPs from the UCSFtotal Multinomial Logistic Regression were also present within

the Dirichlet Regression results, comparatively, the p-values were significantly larger when

compared to the 1× 10−5 “associated significant” threshold (Figures 8 & 9).

Additionally, consider a situation where there exists a “perfect” three class model where

every observation is predicted perfectly by the genotype. Plotting the probabilities would

result in a triangular graph with all points centered at the three separate vertices (Figure

9). We created a three class artificial dataset with 3,000 individuals per vertex, where

everyone in vertex i had genotype i-1 for i ∈ (1...3), so genotype perfectly predicted each

person’s probability simplex. Running the Multinomial Logistic Regression on these data

led to predicted probabilities close to the expected vertices (Table 18). However, when these

data were analyzed with the Dirichlet Regression method, we found that the predicted, fitted

values for each genotype were much farther away from the vertices (Table 19). Inherently, the

Multinomial Logistic Regression and Dirichlet Regression approach are modeling the data in

completely different manners. Such differences may be another reason for the discrepancies

observed between the p-values from the actual analyses.
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Figure 9: Distribution of Dirichlet Probability Simplex for UCSFA, UCSFB, and

TOR1 (clockwise from upper left)

The four probabilities of the simplex are shown in teal, pink, yellow, and black respectively.
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Table 18: “Perfect” Expected Probabilities (Left) vs Multinomial-Derived Pre-

dicted Probabilities (Right)

1 2 3

0 1.000 0.000 0.000

1 0.000 1.000 0.000

2 0.000 0.000 1.000

1 2 3

0 1.000 1.268e-32 4.729e-09

1 0.000 1.000 2.243e-08

2 0.000 5.327e-09 1.000

Table 19: “Perfect” Expected Probabilities (Left) vs Dirichlet-Derived Predicted

Probabilities (Right)

1 2 3

0 1.000 0.000 0.000

1 0.000 1.000 0.000

2 0.000 0.000 1.000

1 2 3

0 0.683 0.218 0.099

1 0.353 0.295 0.353

2 0.099 0.218 0.683
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4.6 FUTURE WORK

There are a number of ways to move forward with this project. One avenue may involve

recruiting more individuals. If focusing on bolstering the UCSFtotal and TOR1 cohorts, a

boost in sample size could lead to an increase in power for the GWAS [Spencer et al., 2009].

TOR1 was chosen to act as a dataset capable of validating any potential findings within the

UCSFtotal cohort. While, in this analyses, no findings could be replicated, perhaps having

the funds to recruit heavily from a separate population may provide that opportunity in the

future. With regards to the existing dataset, utilizing the newest updated dataset with the

harmonized variables would be necessary and would allow us to run the LASSO variable

selection process with both cohorts together with site as a covariate. Additionally, imputing

the TOR1 subjects and using the imputed data in the Dirichlet Regression analyses would

be the ideal choice. Alternatively, we could follow through with whole genome sequencing

which would provide a significantly larger number of available variants with compared to our

current approach of focusing on the exome. However, in order to determine if the Dirichlet

Regression approach is comparable to the Multinomial Logistic Regression method at hand,

a simulation study including power calculations should be run.
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