
A METHODOLOGY FOR PARAMETRIZING DISCRETE MODELS OF BIOLOGICAL 

NETWORKS  

 

 

 

 

 

 

 

 

by 

Nathan Aodren Maugan Renaudie 

B.S in Electrical Engineering, ENSEA (Cergy, FRANCE) 2015 

 

 

 

 

 

 

 

 

 

Submitted to the Graduate Faculty of 

Swanson School of Engineering in partial fulfillment  

of the requirements for the degree of 

Master of Science 

 

 

 

 

 

 

 

 

 

University of Pittsburgh 

2018 

 



 ii 

 

  

UNIVERSITY OF PITTSBURGH 

SWANSON SCHOOL OF ENGINEERING 

 

 

 

 

 

 

 

 

This thesis was presented 

 

by 

 

 

Nathan Renaudie 

 

 

 

It was defended on 

April 4, 2018 

and approved by 

Natasa Miskov-Zivanov, PhD., Assistant Professor, Electrical and Computer Engineering 

Murat Akcakaya, PhD., Assistant Professor, Electrical and Computer Engineering 

Samuel Dickerson, PhD., Assistant Professor, Electrical and Computer Engineering 

Cheryl Telmer, PhD., Research Biologist, Carnegie Mellon University 

 Thesis Advisor: Dr. Natasa Miskov-Zivanov, PhD., Assistant Professor, Electrical and 

Computer Engineering  

 

 



 iii 

  

Copyright © by Nathan Renaudie 

2018 



 iv 

 

 

 

A METHODOLOGY FOR PARAMETRIZING DISCRETE MODELS OF BIOLOGICAL 

NETWORKS  

 

Nathan Renaudie, M.S. 

 

University of Pittsburgh, 2018 

 

 

Humans have always had the desire to understand the world that surrounds us. With the progress 

of science in the last decades, our knowledge has drastically increased, following the fast pace at 

which scientists obtain and publish new results. With this rapid increase in the volume of 

available information about the systems that scientists study, modeling has become crucial in the 

process of learning and understanding these systems. In biology, models can be developed to 

capture different system scales. Here, we are focusing on modeling cellular signaling networks, 

using a discrete modeling approach, where system components are represented as discrete 

variables, and their regulatory functions are approximated with logical, weighted sum, or min-

max functions. We study cellular signaling networks through stochastic simulation, in which 

model switches from one state to another according to elements’ regulatory functions. To start 

simulations, we define scenarios of interest (e.g., cell activation to induce fate change, or a drug 

added to a cancer cell). These scenarios are implemented through parametrizing the model, that 



 v 

is, assigning initial values to all model elements, as well as defining patterns at model inputs, or 

perturbations inside the model. However, the information about the initial state is most often 

incomplete, as experts are familiar with values in some parts of the network, but not in the whole 

network. We have developed several methods to initialize model elements when the knowledge 

about the initial values for a particular scenario is sparse. Next, we applied our initialization 

methods on several cancer cell models. Our results show that varying the initial values can 

significantly influence model behavior, and therefore, emphasize the importance of choosing a 

suitable initialization method. We expect that our methods and the conclusions from our studies 

will enable more accurate setup of future modeling experiments. 



 vi 

TABLE OF CONTENTS 

PREFACE .................................................................................................................................... XI 

1.0 INTRODUCTION ................................................................................................................ 1 

2.0 BACKGROUND ................................................................................................................... 4 

2.1 DISCRETE MODELING APPROACH............................................................ 4 

2.2 SIMULATION METHODS ................................................................................ 6 

2.2.1 Simultaneous update scheme .......................................................................... 6 

2.2.2 Sequential update scheme ............................................................................... 8 

2.3 MODEL EXTENSION ...................................................................................... 12 

3.0 METHODOLOGY ............................................................................................................. 14 

3.1 RANDOM INITIALIZATION ......................................................................... 14 

3.1.1 Uniform Random Initialization .................................................................... 15 

3.1.2 Non-Uniform Random Initialization ........................................................... 16 

3.2 USING EXTERNAL KNOWLEDGE AND DATA ....................................... 17 

3.2.1 Adaptive Threshold ....................................................................................... 18 

3.2.2 Quantile Threshold ........................................................................................ 19 

3.3 FINDING MISSING VALUES ........................................................................ 20 

3.3.1 Maximizing the freedom of the node ........................................................... 21 

3.3.2 Minimizing the freedom of the node ............................................................ 23 



 vii 

3.4 INITIALIZATION USING INPUTS ............................................................... 24 

3.5 ROLE OF LOGIC FUNCTIONS IN INITIALIZATION ............................. 26 

3.6 INITIALIZATION FOR DIFFERENT MAXIMUM STATES .................... 28 

4.0 APPLICATION OF DEVELOPED TECHNOLOGY ON A MELANOMA CELL 

 NETWORK ......................................................................................................................... 32 

4.1 MELANOMA CELL NETWORK .................................................................. 32 

4.2 RANDOM INITIALIZATION ......................................................................... 35 

4.3 INITIALIZATION FROM THE INPUTS ...................................................... 36 

4.4 INITIALIZATION FROM DATA ................................................................... 38 

4.5 EFFECT OF LOGICAL FUNCTION CHOICE AND INITIALIZAITON 40 

4.6 INITIALIZATION WITH DIFFERENT MAXIMUM STATES ................. 41 

4.7 IMPACT OF THE DIFFERENT THRESHOLDING METHODS ON THE 

 TRANSIENT RESPONSE OF THE SYSTEM .............................................. 43 

5.0 CONCLUSION ................................................................................................................... 47 

BIBLIOGRAPHY ....................................................................................................................... 49 

 



 viii 

LIST OF TABLES 

 

Table 1. Transition table of the model with simultaneous update scheme. .................................... 7 

Table 2. Transition table of the model with sequential update scheme. ......................................... 9 

Table 3. Evolution of possible initial set with the size of the model ............................................ 15 

Table 4. Effect of the 2 updating function on a test node ............................................................. 24 

Table 5. Initial values of B, based on its update rule and initial states of its regulators. .............. 28 

Table 6. Initial values based on the maximum number of states. ................................................. 30 

Table 7. Effect of the two updating functions on a test node ....................................................... 31 

Table 8. Location of the elements within the cell ......................................................................... 33 

Table 9. Type of macromolecules inside the Melanoma model ................................................... 33 

Table 10. Average difference between the 2 random initialization methods ............................... 36 

Table 11. Inputs/Outputs of the Melanoma cell network ............................................................. 36 



 ix 

LIST OF FIGURES 

 

Figure 1. Diagram of the modeling approach ................................................................................. 1 

Figure 2. Example of a simple Boolean network. (a) without polarity indicated in graph edges 

and (b) with polarity indicated with different type of edges (regular arrow represents positive 

regulations, and blunt arrow represents negative regulation). ........................................................ 4 

Figure 3. Graph representation of a simple model with three elements. ........................................ 7 

Figure 4. State Transition Graph of the model for simultaneous update ........................................ 8 

Figure 5. State Transition Graph of the model when the sequential update scheme is used. ......... 9 

Figure 6. Simulation results for the random-order sequential update scheme for the toy model 

shown in Figure 3.......................................................................................................................... 11 

Figure 7. Schematic of the model extension process. ................................................................... 12 

Figure 8. Representation of two different state distributions for a three states model (ZERO, LOW 

and HIGH). ................................................................................................................................... 17 

Figure 9. Schematic of the process of data extraction .................................................................. 18 

Figure 10. Adaptive Threshold mapping algorithm ...................................................................... 19 

Figure 11. Comparison between the adaptive threshold method (left) and the quantile threshold 

method (right). .............................................................................................................................. 20 

Figure 12. Representation of a node and its regulators. ................................................................ 21 

Figure 13. Computing of the missing values using the maximization freedom of the node 

function ......................................................................................................................................... 23 

Figure 14. Classification of the nodes of a model into INPUTS at the top, INTERMEDIATES in 

the middle and OUTPUTS at the bottom. ..................................................................................... 25 



 x 

Figure 15. Example of modeling extension. ................................................................................. 27 

Figure 16. An example of dividing the range of value from the data into discrete intervals based 

on the preferred number of element states. ................................................................................... 30 

Figure 17. Schematic of a variable inside the Melanoma model .................................................. 33 

Figure 18. Interactions map of the Melanoma model ................................................................... 34 

Figure 19. Initial values using the random algorithms. ................................................................ 35 

Figure 20. Final values using the random algorithms. .................................................................. 35 

Figure 21. Initial values using the initialization from the inputs. ................................................. 37 

Figure 22. Initial values from the data initialization methods ...................................................... 38 

Figure 23. Comparison of the different initialization from data on the CCE1rna ........................ 39 

Figure 24. Comparison of the different initialization from data on the ATG4rna ........................ 39 

Figure 25. Initial values for the implication of logical functions ................................................. 41 

Figure 26. Simulation of the ribosomal protein S6 in the classical model with 3 states (top) and in 

the different maximum states model (bottom). ............................................................................. 42 

Figure 27. Set of the initial and final values for the different initialization methods ................... 43 

Figure 28. Evolution of the PI3K for the different initialization methods.................................... 44 

Figure 29. Evolution of the PROLIFERATION for the different initialization methods. ............ 45 



 xi 

PREFACE 

 

I would like to first thanks Thomas Tang and Carine Sabouraud of the international 

relations team at ENSEA and Dr Mahmoud El Nokali for giving me the opportunity to study 

abroad at the University of Pittsburgh. 

 

I also want to give a special thanks to my advisor Dr Natasa Miskov-Zivanov for her trust 

and for giving me a space as a graduate researcher in her lab. And not to forget our collaborator 

Cheryl Telmer that have taken time to explain her biological understanding of our models. 

 

Then, I would like to thank every one of the MeLoDy lab: Adam Butchy, Khaled Sayed, 

Kara Bocan, Mickael Vimbert, Vianney Mixtur, Emily Holtzapple, Gavin Zhou, Yasmine 

Ahmed and Handa Ding, that have taken time to answer any problem that I faced and making of 

our lab a friendly place to work. 

 

 Last, but not least, I would like to thank my fellow French Valentin Paquin, Cedrine 

Rebrion, Blandine Russo, Lou Botherel, Lucie Broyde and Sebastien Oliver that have made 

those two years in the states a great experience.



 1 

1.0 INTRODUCTION 

With the progress of science inside the medical field in the last decades, scientists have 

been able to understand better and better how biological systems work, from macroscopic level 

to cellular behavior. In the meantime, diseases have become more complex and harder to be 

treated [1]. To face these new challenges, such as cancer, scientists need powerful tools to 

accurately model biological systems at the cellular level.  

 

Figure 1. Diagram of the modeling approach 

 

 



 2 

The modeling of biological networks aims to explain the relationships between cellular 

components. The models are designed based on the data collected from experiments, and 

according to the knowledge of experts such as biologists, chemists or physicists. A number of 

approaches have been used to model those biological networks including Monte-Carlo method 

[2], ordinary differential equations (ODEs) [3], reaction ruled-based models [4], and finally 

Boolean networks or logical models, which have been shown to provide both efficient and 

accurate analysis [5][6]. 

Indeed, almost all living organisms, from animals to plants, share the same basic 

structural biological unit: the cell. The eukaryotic cells feature membrane-bound organelles such 

as mitochondria, endoplasmic reticulum, and especially the nucleus that contains the genetic 

material (DNA) within the nuclear envelope [7]. The logical modeling approach is efficient as it 

provides an accurate model using a relatively simple representation: any organelle or a molecule 

in the cell can be represented with a Boolean variable, which has only two possible states. For 

example, one can represent a gene using a Boolean variable with two states, ON and OFF: 

• ON: the gene is activated and will lead to synthesis of the corresponding mRNA and 

protein  

• OFF: the gene is inhibited, it is inactive, and no proteins are synthesized. 

By extending from Boolean to discrete variables that can have several discrete values, it 

is possible to incorporate more details in the model. Instead of modeling only active and inactive 

state, we can represent multiple activity levels of the system’s components (e.g. we could model 

three levels ZERO, LOW and HIGH, as 0, 1, and 2, respectively). 

Then, as we have defined our model elements using discrete variables, we also need rules 

to update their values, and thus, simulate a behavior of elements over time. In logical modeling 



 3 

approach, we create those rules using logic operators such as OR, AND, or NOT, based on the 

interconnections between elements in the model. Next, we need an update scheme for those 

rules: we can choose to update elements at the same time (simultaneously) or one after another 

(sequentially). Critical for the simulation outcomes is the choice of an initial state that the model 

is assigned before the simulation starts.  

Without knowing the initial state of the system, and the conditions under which the 

simulation is initiated, the set of elements and their update rules is not sufficient to analyze the 

system’s behavior. However, it is often the case that for many of the elements that are included 

in the model, initial values are neither available in experimental results, nor experts are familiar 

with these values. For this reason, the initialization of discrete models is an important concern 

that we want to tackle here. 



 4 

2.0 BACKGROUND 

In this section, we describe the discrete model in a general way such as how we represent them 

and how a model can be simulated. Then, we go over the process of model extension, in order to 

improve model behavior and describe the importance of model initialization in such cases. 

2.1 DISCRETE MODELING APPROACH 

The Boolean network concept was first introduced by Kauffman in [8], and later 

developed by others such as [9][10][11]. Similar to our example of a gene above, which can be 

ON or OFF, in general, every element of the logical (Boolean network) model is assumed to have 

two possible states: TRUE (ON) / FALSE (OFF).  

Besides having a state attribute, each element may also be connected to other elements of 

the model, and have a logical function assigned to it, which determines changes in its states, 

according to the states of other elements.  

 

 (a) (b) 

Figure 2. Example of a simple Boolean network. (a) without polarity indicated in graph edges and (b) with polarity 

indicated with different type of edges (regular arrow represents positive regulations, and blunt arrow represents 

negative regulation). 



 5 

 

 

The graph in Figure 2(a) is an example of a typical Boolean network that constitutes of 

three nodes, A, B, and C, which represent model elements, such as proteins, genes, other 

molecule kinds, or components of a cell. The arrows connecting the nodes in Figure 2(a) 

represent only the regulatory connections between the elements of the model. In logical models, 

we also use two opposite polarities of interactions: 

• Positive: in Figure 2(b), A can be assumed to be upregulated by B (B  A). 

• Negative: in Figure 2(b), A can be assumed to be downregulated by C (C —| A). 

The graph representation of a model shown in Figure 2(b) still includes only the 

directionality and polarity of interactions, but it does not include any information about how the 

regulators are combined to affect the value of the regulated element. This function that combines 

together all the regulators of an element, is often referred to as element’s update function or 

regulatory function [12]. The update function determines the behavior of an element, and is 

based only on the previous state of its regulators. For any node xi of a model of N elements, its 

regulatory function fi can be written as: 

𝑥𝑖
∗ = 𝑓𝑖(𝑥1, 𝑥2, … , 𝑥𝑁) (1)

where xi
* denotes the value of the node xi

 at the next step, and x1, x2, …, xN are the elements of 

the model at the previous step before updating xi. 

Using the previous example, we can describe our model including the regulatory 

functions for the three elements. Together, these functions form the update rules of the model: 

{

𝐴∗ = 𝑓𝐴(𝐵, 𝐶) = 𝐵 𝐴𝑁𝐷 𝑁𝑂𝑇 𝐶 = 𝐵 ∙ 𝐶̅

𝐵∗ = 𝑓𝐵(𝐶) = 𝐶

𝐶∗ = 𝑓𝐶(𝐴, 𝐵) = 𝐴 𝑂𝑅 𝐵 = 𝐴 + 𝐵

 (2) 



 6 

These rules allow us to compute the next state of the system, and thus, simulate the 

behavior of our model over time.  

This approach can be generalized into discrete modeling approach where the variables 

inside the model are still using discrete values but can be extended to give more precision about 

the level of activity. In this work, we will most of the time use three state levels that represent the 

ZERO, LOW and HIGH activation states of the variable. 

2.2 SIMULATION METHODS  

The simulations in this work rely on the DiSH simulator described in [14], that have been shown 

to accurately simulate biological models, some examples include T-cell differentiation, 

pancreatic cancer cells, and melanoma cell lines. This simulator supports several different 

simulation schemes, and the following sub-sections detail the two schemes that have been used 

in this work.  

2.2.1 Simultaneous update scheme 

In the simultaneous update scheme, all elements of the model are updated at the same 

time, that is, all the rules are executed concurrently by the simulator. Thus, this simulation 

scheme is deterministic, as the same model state will always lead to the same next state. To 

represent the evolution of the model from one state to another, we can use a state transition graph 

(STG) that includes all the possible state transitions following element update rules, and the 



 7 

deterministic update scheme. We use the model in Figure 3 as a simple example of how the 

simultaneous scheme works. 

 

Figure 3. Graph representation of a simple model with three elements. 

 

 

First, from the graph representation we can create the logical rules for every node of the model:  

{
𝐴∗ = 𝐵

𝐵∗ = 𝐴 + 𝐶
𝐶∗ = �̅�

 (3) 

Then, from these logical functions, we can compute the transition table of the system by 

computing the new state (𝐴∗, 𝐵∗, 𝐶∗), based on the current state (𝐴, 𝐵, 𝐶):  

Table 1. Transition table of the model with simultaneous update scheme. 

Current state Next state 

A B C A* B* C* 

0 0 0 0 0 1 

0 0 1 0 1 1 

0 1 0 1 0 1 

0 1 1 1 1 1 

1 0 0 0 1 0 

1 0 1 0 1 0 

1 1 0 1 1 0 

1 1 1 1 1 0 

 

 

 



 8 

 

Figure 4. State Transition Graph of the model for simultaneous update 

 

 

Now as we have all possible transitions for every possible state of the model, we can 

represent its evolution with a state transition graph using the vector of elements (𝐴, 𝐵, 𝐶) and the 

previous table, as illustrated in Figure 4. For this simple model, we can see that there are two 

possible outcomes, depending on the initial conditions: 

• A cycle between 010 and 101 if the initial state is either 100, 010 or 101. 

• A steady state value 110 for any other initial state of the system. 

2.2.2 Sequential update scheme 

In the sequential update scheme, only one node is updated at each time step. There are 

different ways to choose this updated element. First, we will show how the sequential update 

scheme changes the behavior of the example model. In Table 2, we list the state transition now 

taking into account which element is updated in the current state. 



 9 

Table 2. Transition table of the model with sequential update scheme. 

CURRENT STATE ELEMENT UPDATE 

A     B     C A B C 

0 0 0 0 0 0 0 0 0 0 0 1 

0 0 1 0 0 1 0 1 1 0 0 1 

0 1 0 1 1 0 0 0 0 0 1 1 

0 1 1 1 1 1 0 1 1 0 1 1 

1 0 0 0 0 0 1 1 0 1 0 0 

1 0 1 0 0 1 1 1 1 1 0 0 

1 1 0 1 1 0 1 1 0 1 1 0 

1 1 1 1 1 1 1 1 1 1 1 0 

 

 

 

As we have done before, using this transition table, we can draw the STG for our 

example model, which is different in the sequential case, compared to the one in Figure 4. The 

difference in the behavior stems from the fact that elements can be updated in a different order in 

the sequential case.  

 

Figure 5. State Transition Graph of the model when the sequential update scheme is used. 

 

 

With this update scheme, we see that our model now has a unique steady state (110). 

Every starting point will lead to that steady state, with more or less time, depending on the order 

of the model update. While this steady state is the same as in the case of the simultaneous update 



 10 

scheme, the trajectory to reach the steady state can be different, depending on the order of 

updating model elements. Therefore, besides the STGs, we are interested in studying individual 

model elements, as their behavior can vary on different trajectories to the same steady state.  

As shown in Table 2 and in Figure 5, the order in which sequential updates occur can 

significantly affect element trajectories from initial to steady state. Here, we focus on a random-

order update scheme, meaning that we will select at every simulation step a random element to 

update. With this update scheme, we can update the same element twice or more in consecutive 

simulation steps. By using this method, every simulation run may have different results, even 

with the same initial values, as the order of the element updates is different from one run to 

another. 

By running multiple simulations starting from the same initial state, we can output the 

simulation results as continuous plots by averaging across different runs. For this toy example, 

we use a simulation length of 30 steps and compute average value of each model element at each 

simulation step across 100 simulation runs. We observe here the same final value as shown in the 

STG (110), however, we also get in this case the trajectory of each element from the initial to the 

final state. 



 11 

 

Figure 6. Simulation results for the random-order sequential update scheme for the toy model shown in Figure 3. 

 

 

The random-order sequential update scheme is very suitable for simulating biological 

systems, as reactions in a population of cells within one organism do not all occur at the exact 

same time. This stochastic approach takes into account the diversity of the cells, and the average 

of the results can be seen as an average on population of cells: each simulation run computes one 

trajectory for each model element, and this can be interpreted as element behavior in a single 

cell. Thus, by averaging across results from 100 simulation runs, we get the general trend of 

elements A, B, and C in our example, in a population of 100 cells. 



 12 

2.3 MODEL EXTENSION 

Besides being necessary to simulate the behavior of models, initialization has also its importance 

in other applications such as model extension, when new information about element interactions 

is available. To emphasize the critical role of proper initialization in the case of model extension, 

we outline in Figure 7 the model extension procedure, and provide the details of the procedure 

following the schematic. 

 

Figure 7. Schematic of the model extension process.  

 

 

The inputs to model extension are the baseline model that is to be extended (called 

“dictionary” in Figure 7), the list of new candidate interactions that can be added to the model 

(“korkut_targeted_mcie” file in Figure 7), and the list of scenarios under which the model is 

studied (“Scenarios” in Figure 7). New element interactions can be obtained from reading the 

literature, from experts, or from data. After receiving inputs, the model extension process is 

divided into two steps. The first step, the extension clustering part, is designed to create clusters 

of new element interactions. The second step, the actual model extension part, consists of 

evaluating the performance of the model when the previously obtained clusters are added to the 



 13 

model. When new elements and interactions are added to the model, we need to check how this 

modification affects the model behavior. If we get closer to the expected behavior, then we can 

add the elements to the baseline model. If the extension cluster didn’t improve the model, we test 

other clusters until we find the set of clusters that leads to the largest improvement in model 

behavior. 

The values of new elements that belong to the set of extensions, and that are eventually 

added to the model are often not known. The choice of values for these elements is not 

straightforward. In order to compute the trajectories for the updated model, and to accurately 

evaluate whether the model behavior has improved, it is important to properly determine initial 

values for these new elements.  

 



 14 

3.0 METHODOLOGY 

The aim of the initialization procedure is to determine initial states of elements in a model for 

which these values are not known or not available, such that all model elements have defined 

state before the start of simulation. Depending on the overall system state that is to be 

represented by the model, there are various ways to define element initial values. This thesis 

presents several approaches that utilize existing knowledge when initializing model elements. 

The methods are presented from the simpler one that does not use any knowledge from the 

model or from literature, to a mix of both for most optimal use of available information. 

3.1 RANDOM INITIALIZATION 

The simplest approach to initialize logical models is to perform a random initialization of all the 

elements in the model. There are different ways to assign random values, based on the kind of 

distribution used. 

This method provides various initial states for the same model, as each value is randomly 

selected. The number of possible sets of initial values, Ninitial states, for a model of N elements is 

given by: 

𝑁𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒𝑠 = (𝑛𝑠𝑡𝑎𝑡𝑒𝑠)
𝑁 (4.1) 



 15 

where nstates represents the number of states allowed for the elements inside the model. For 

example, in the case of the three-state model described in Section 2.1, the equation (4.1) 

becomes: 

𝑁𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒𝑠 = 3
𝑁 (4.2) 

Table 3 lists the number of possible initial states for several model sizes. As we can see, 

the number of possible initial states increases exponentially with the number of elements in the 

model.  

Table 3. Evolution of possible initial set with the size of the model 

Number of elements (N) Number of possible initial states 

1 3 

5 243 

10 59046 

100 5.15× 1047 
 

 

 

In the following, we describe two types of random initialization approaches. In the first 

one, we assume that all states are equally likely to occur, and in the second one, we assume that 

some states have higher probability than the other ones.  

3.1.1 Uniform Random Initialization 

In the case of uniform random initialization, each value that can be assigned to an element has 

the same probability. For example, in a logical model this means that the probability for each ON 

and OFF state is 50%. 

It is simple to extend this method to the discrete modeling approach where elements can 

have more than two states. In this case, the randomization must be done with more than two 



 16 

values. In a discrete model, if a number of states for an element is denoted as 𝑛𝑠𝑡𝑎𝑡𝑒𝑠, the 

probability for each value is: 

{
 
 

 
 𝑃(𝑋 = 0) =

1

𝑛𝑠𝑡𝑎𝑡𝑒𝑠
⋮

𝑃(𝑋 = 𝑛𝑠𝑡𝑎𝑡𝑒𝑠 − 1) =
1

𝑛𝑠𝑡𝑎𝑡𝑒𝑠

(5) 

3.1.2 Non-Uniform Random Initialization 

The non-uniform distribution is used when we want to assign to each value of the model a 

specific probability. This is relevant for a model with more than two states, for example, we may 

want to assign to a non-activate state (e.g., ZERO) the same probability as for all the other active 

states together (e.g., LOW and HIGH in a three-level model). In that case, the probability for 

each value is given by: 

{
 
 
 

 
 
 𝑃(𝑋 = 0) =

1

2

𝑃(𝑋 = 1) =
1

2 × (𝑛𝑠𝑡𝑎𝑡𝑒𝑠 − 1)
⋮

𝑃(𝑋 = 𝑛𝑠𝑡𝑎𝑡𝑒𝑠 − 1) =
1

2 × (𝑛𝑠𝑡𝑎𝑡𝑒𝑠 − 1)

(6) 

To illustrate the difference between a uniform and a non-uniform random initialization, in Figure 

8 we show the probabilities of the three element values in the case of our example model from 

Section 2.1 where elements have three states. 



 17 

 

Figure 8. Representation of two different state distributions for a three states model (ZERO, LOW and HIGH). 

 

 

3.2 USING EXTERNAL KNOWLEDGE AND DATA 

Although the random initialization is a straightforward approach to testing many different initial 

states of the system, it also has a downside: it does not take into account the element 

relationships inside the model itself. Therefore, many of the initial states that are defined using 

this approach are not biologically meaningful, and they unnecessarily extend the time needed to 

reach steady state, or they cause unrealistic oscillations. 

The second method that we have used in our work does not create the initial model state 

randomly, instead, it uses information from literature, expert knowledge, or available data to find 

all known initial values for model elements.  

The first step when using the knowledge or data-based method is to match the names of 

elements that are in our model with the names of elements in databases or in literature. This step 



 18 

is needed as proteins usually have multiple synonyms, and the names may not exactly match 

between the model and the knowledge sources.  

 

Figure 9. Schematic of the process of data extraction 

 

 

As describe previously, we are using in this work models with discrete element values, 

and thus, for each model element we determine the smallest number of integer values needed to 

represent all levels of its activity. On the other hand, the raw data is usually obtained using 

measurement techniques that consider larger number intervals and have higher precision. 

Therefore, we need to develop a translation between our discrete variable levels and the raw data 

intervals. We convert the available data values from these external sources into the discrete 

values of corresponding model elements using one of the two methods described in the following 

sub-sections. Specifically, we will demonstrate our methods using the three-level discrete 

example. 

3.2.1 Adaptive Threshold 

In the Adaptive Threshold approach, we use the following steps to discretize the available data 

into the number of desired states, for example three levels (ZERO, LOW, and HIGH): 



 19 

1. Find the minimal and maximal value inside the whole data in order to determine the 

range of the values we want to discretize. 

2. Split this interval in as many equal parts as required to represent the desired number of 

states; for example, in the three-level model, we split this interval into three equal parts. 

3. Map the available data to these intervals, to determine the discrete values that will be 

used in simulations. 

This process can be summarized in the following algorithm: 

 

Figure 10. Adaptive Threshold mapping algorithm. 

 

 

3.2.2 Quantile Threshold 

While the first method assumes that the range of all the available values is divided into equal 

intervals, this method relies on the number of available data values when creating intervals, that 

is, it assumes that each interval has the same number of data values. In the three-level case, this 

means that the data will be split into three intervals (terciles) such that 1/3 of the values will be 

mapped to ZERO level in our discrete model, 1/3 of the values will be mapped to the LOW level 

in the model, and the last 1/3 of the values will be mapped to the HIGH level. 



 20 

 

Figure 11. Comparison between the adaptive threshold method (left) and the quantile threshold method (right). 

 

 

3.3 FINDING MISSING VALUES 

Most often the information that is available is not sufficient to assign initial values to all model 

elements, and therefore a method to complete the initialization is needed. In the following sub-

sections, we provide details of several methods that we have developed to derive meaningful and 

biologically relevant initial states. 

This last way to initialize the Boolean network is based on the relationship between the 

elements of the model. For this method, we will need to introduce a notion from the graph theory 

[13] as we can represent our model as a directed graph. Also, we assume in this part that we need 

to find only some missing initial values and not to create a full initial state for the model. 

For the future, we will use the term regulator to describe an element that has an effect on 

the node we are currently looking at. In our modeling approach, we assume two types of 

regulators: 

• Activator: an element that has a positive effect on another element. 

• Inhibitor: an element that has a negative effect on another element. 



 21 

Using the example network from Figure 2, we can say that C is an activator of B, but also 

that C is an inhibitor of A. 

To establish a formula to compute a node’s initial value, we will use the following 

general representation of a node and its regulators, also outlined in Figure 12. 

 

Figure 12. Representation of a node and its regulators. 

 

 

We assume here that the initial values of N activators (P1, P2, …, PN) of element Xi, and 

the initial values of M inhibitors (N1, N2, …, NM) Xi are known, and that we only need to compute 

the initial value of element Xi.  

3.3.1 Maximizing the freedom of the node 

The first approach to assigning an initial value to element Xi is to allow for the largest change in 

the value of Xi during simulation, given the known values of its regulators. To establish a 

formula for the initial value of Xi, we will study three cases: 

1. There is only positive regulation affecting our node 𝑋𝑖. This is possible either when the node 

doesn’t have any inhibitors (M = 0) or only the activators have an initial value different from 

ZERO (so all inhibitors are inactive ∑ 𝑁𝑖[0] = 0𝑀
1 ). In this case, we know that the node is 



 22 

going to be up-regulated during the simulation, and thus, its value will rise to either a LOW 

or HIGH activation state. To allow change in the element state, we initialize it at a ZERO (no 

activation) state. 

2. The second case is similar to the first one but for the negative regulation. In this case, there is 

negative regulation of element 𝑋𝑖 since it does not have activators (N = 0), or because only its 

inhibitors have initial values different from ZERO (so all activators are inactive ∑ 𝑃𝑖[0] =
𝑁
1

0). Then, we know that this element value is going to decrease during the simulation. Again, 

to allow for larger change, we initialize it at a HIGH state. 

3. In the last case, we have no way to predict the trend of our element: when both positive and 

negative regulation are affecting a node. Without more knowledge, we want to give our 

variable the most freedom possible: the initialization at a LOW state allows it to rise or 

decrease following the change in its regulators’ activation. 

To summarize all the above cases, we use the following formula to compute the initial 

value for any model element Xi (at time point t=0): 

𝑋𝑖[0] = 1 − 𝑓𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (7) 

where fpositive is a Boolean function equal to 1 when at least one activator has an initial state 

different from ZERO and fnegative is a Boolean function equal to 1 when at least one inhibitor has 

an initial state different from ZERO: 

fpositive = f (P1, P2, …, PN) = (P1 > ZERO) + (P2 > ZERO) +… + (PN > ZERO)) 

fnegative = f (N1, N2, …, NM) = (N1 > ZERO) + (N2 > ZERO) +… + (NM > ZERO)) 

where “+” represents logical OR, as described in Section 2.1. 

This approach to compute the missing value of a node can be describe using the following 

algorithm outlined in Figure 13. 



 23 

 

Figure 13. Computing of the missing values using the maximization freedom of the node function. 
 

 

3.3.2 Minimizing the freedom of the node 

The second approach we take is to assign the missing initial value of a node to minimize the 

possible change of node 𝑋𝑖 during simulations. By having the opposite reasoning as before, we 

can derive an equation to compute initial value for 𝑋𝑖 using Boolean functions fpositive and fnegative: 

𝑋𝑖[0] = 1 + 𝑓𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 − 𝑓𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒  (8)

Using equations (7) or (8), we are able to compute the initial value for any model element 𝑋𝑖 by 

only knowing the initial states of its regulators. In Table 4, we illustrate the two initialization 

approaches on element 𝑋 that has a single activator 𝑃 and a single inhibitor 𝑁. 

For the cases where the positive and negative regulation are both present at the same 

time, the two formulas, (7) and (8), will give the same initial value (LOW), and when there is 

only positive or only negative regulation, the two formulas will give opposite values (ZERO or 

HIGH). 



 24 

Table 4. Effect of the 2 updating function on a test node 

REGULATOR INITIAL VALUES X INITIAL VALUE 

P N MAX   (7) MIN   (8) 

0 0 1 1 

0 1 2 0 

0 2 2 0 

1 0 0 2 

1 1 1 1 

1 2 1 1 

2 0 0 2 

2 1 1 1 

2 2 1 1 

 

 

 

3.4 INITIALIZATION USING INPUTS 

This last approach is meant to create a full set of initial values based on the model knowledge 

and with some of the outside data available. But first, let us classify our nodes into three possible 

categories:  

• Inputs: those elements that do not have any regulators within the model, thus they will 

not be updated during the simulation and their regulatory function is the identity: 

𝑋𝑖𝑛𝑝𝑢𝑡
∗ = 𝑋𝑖𝑛𝑝𝑢𝑡 (9) 

• Intermediate nodes: these are the most common elements for bigger models, they both 

regulate other elements and are themselves regulated by other elements. 

• Outputs: these elements do not affect the model as they do not regulate any other 

elements, but they are influenced by some model elements. 



 25 

Once we have classified our model’s elements into those three categories, we can put our 

model in the following form, where the top elements are the ones that have more influence on the 

model, and the bottom ones are only affected by the model. 

 

Figure 14. Classification of the nodes of a model into INPUTS at the top, INTERMEDIATES in the middle and 

OUTPUTS at the bottom. 

 

 

Following this top-to-bottom hierarchy, the following are the steps of the method that we 

have developed to initialize the whole model: 

• First, we need to initialize the inputs of the model. As the input values cannot be 

computed, they must be taken from the external data. 

• Then, we can start to compute initial values of the intermediate nodes. To do so, we take 

all the intermediate elements as a sub-model of our complete network.  

o All these variables should have an initial value to be able to compute a new value. We 

do a random initialization here to give values to our intermediate variables. 

o We need now to consider the relationship between these variables in the model: we 

update the value of every variable according to our previous formulas (7) or (8) to 

complete the missing values. 



 26 

o For bigger model, the path that goes from one element to another can be long, in 

order to take this into account, we do a loop of the updating process to give time to a 

change in an initial value to go through a long path and have influence on 

downstream variables. 

• Finally, we now only have to deal with the outputs. This can be achieved by computing 

the values using the same updating formulas from (7) and (8). 

This method uses all the previous methods described in this section in order to create a 

full initial state for the system based on both the information from the data and from our model 

knowledge. 

3.5 ROLE OF LOGIC FUNCTIONS IN INITIALIZATION 

The previous methods were focusing on the relationship between the elements inside the model, 

so they were based on the assumption that we have already all the knowledge in our model. In 

some cases, such as in the case of model extension, we are trying to integrate new elements to 

improve the model. 

In the model extension process we are assuming to have a baseline model, with known 

element update functions and known initial values of all elements, and we are automatically 

adding elements to that baseline. In that case, we have less elements to initialize and the 

following method has been implemented: 

• If the element added is an INPUT, then its initial value should be LOW as we want to see 

the effect of this variable on our model. 



 27 

• For the other cases, we can determine elements’ initial values from our formula (7) or (8), 

as we have the knowledge of the elements’ regulators, as long as all the regulators are in 

the baseline model. 

Before, the way to initialize the new elements was arbitrary chosen to add all of them at a LOW 

level. But now, with this method, when including extensions in the model, we assign to new 

elements an initial state that is coherent with the rest of the model, taking into account the new 

elements interactions with the baseline model. 

Then, the second step after choosing initial states for those new elements added to the 

model is to take into account their effects in the extended model. Let us take a single element 𝐵 

with an activator 𝐴 as an example, where we add one inhibitor 𝐸𝑥𝑡 from outside of the model 

using the model extension process, as shown in Figure 15. Example of modeling 

extension.Figure 15. 

 

Figure 15. Example of modeling extension. 

 

 

After adding the external element 𝐸𝑥𝑡 to regulation of element 𝐵, we have changed its 

regulatory function, and thus, its behavior. However, there are several ways to add elements, that 

is, the new rule for element B can be one of the following 

𝐵∗ = 𝐴 𝐴𝑁𝐷 𝐸𝑥𝑡 = 𝐴 × 𝐸𝑥𝑡 (10) 

𝐵∗ = 𝐴 𝑂𝑅 𝐸𝑥𝑡 = 𝐴 + 𝐸𝑥𝑡 (11) 



 28 

Using those new rules and the initial values for 𝐴 and 𝐸𝑥𝑡, we can create the truth table 

to determine the initial value of 𝐵: 

Table 5. Initial values of B, based on its update rule and initial states of its regulators. 

INITIALS VALUES B 

A Ext AND   (10) OR   (11) 

0 0 0 0 

0 1 0 1 

0 2 0 2 

1 0 0 1 

1 1 1 2 

1 2 2 2 

2 0 0 2 

2 1 1 2 

2 2 2 2 

 

 

 

From Table 5, we can observe that using an AND function when adding a new regulator 

to B will force 𝐵 to start at ZERO if the two regulators are not both activated at the same time 

(either LOW or HIGH). 

3.6 INITIALIZATION FOR DIFFERENT MAXIMUM STATES 

All the previous approaches have something in common: they assume that every element within 

the model has the same number of states. Here, we propose a method to initialize model elements 

with different number of states. 

The first step in this process, is to determine the maximum state for each model element. 

The proposed method is based on the idea to give a value for the maximal state to each element 

according to the number of its regulators. The aim is to give a wider range to elements that have 



 29 

a high number of regulators, and thus, might have more interesting regulatory functions. 

However, even if we assign different number of possible states to model elements, we do not 

want these numbers to vary too much, as this could disturb the balance during simulations. We 

will use the following formula to keep the balance between elements with different number of 

states: 

𝑚𝑎𝑥𝑆𝑡𝑎𝑡𝑒𝑠 = 𝑚𝑖𝑛𝑆𝑡𝑎𝑡𝑒𝑠 (
𝑁𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟𝑠

𝛼
) (12) 

where 𝑚𝑖𝑛𝑆𝑡𝑎𝑡𝑒𝑠 is the minimum number of states allowed for an element and 𝛼 a coefficient to 

limit the maximum number of states 𝑚𝑎𝑥𝑆𝑡𝑎𝑡𝑒𝑠 that an elements can have. 

Then, as we have defined the maximum number of states, maxStates, for each element in 

the model, we need to decide how to discretize our data according to that number of states. As 

every element has a different maxStates number, we need to create a thresholding function that 

considers this number. The following function is similar to the adaptive threshold, but gives 

different results based on the maximum state of the variable: 

𝑋𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 = (
𝑋𝑑𝑎𝑡𝑎 −𝑀𝐼𝑁

𝑀𝐴𝑋 −𝑀𝐼𝑁
) (𝑚𝑎𝑥𝑆𝑡𝑎𝑡𝑒𝑠 + 1) (13) 

where Xdiscrete is the discrete value of element X, Xdata is the numerical value of X in the data, MIN 

the minimal value in the data, and MAX the maximal value in the data. To demonstrate how this 

could be applied in a real example, let us assume that we have a database in which the values 

range from 3 to 12, and that the element we are discretizing has a value 𝑋𝑑𝑎𝑡𝑎 = 7.2, then in 

Table 6 we show possible initial values for the element, based on the number of states of the 

element using the formula (13): 

𝑋𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 = (
7.2 − 3

12 − 3
) (𝑚𝑎𝑥𝑆𝑡𝑎𝑡𝑒𝑠 + 1) 



 30 

Table 6. Initial values based on the maximum number of states. 

MAXSTATES 3 4 5 6 

XDISCRETE 1 2 2 3 

 

 

 

As it can be seen in this example, we can assign different initial values to element X due 

to the fact that the range of values found in the data can be split into different intervals, such that 

the same numerical value in the data does not have to imply the same discrete value in the model 

(Figure 16). 

 

Figure 16. An example of dividing the range of value from the data into discrete intervals based on the preferred 

number of element states. 

 

 

Finally, to complete the set of initial values for our model, if there are missing values, we 

need to determine those values similar to the approach shown in equations (7) and (8), now 

assuming different maximum number of states: 

𝑋𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = (1 − 𝑅𝑁 + 𝑅𝑃)
𝑚𝑎𝑥𝑆𝑡𝑎𝑡𝑒𝑠

2
 (14) 

𝑋𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = (1 + 𝑅𝑃 − 𝑅𝑁)
𝑚𝑎𝑥𝑆𝑡𝑎𝑡𝑒𝑠

2
 (15) 

where Xinitial is the initial state, RP is the ratio of the positive regulators (sum of the initial values 

over the sum of the maximum states of all the positive regulators), RN is the ratio of negative 

regulators. 

We can use the same example as before with element 𝑋 having a single activator 𝑃 and a 

single inhibitor 𝑁. We will assume that each of those variables has a different number of 



 31 

maximum states. 𝑋 will have 6 states (from 0 to 5), 𝑃 will have 5 states and 𝑁 will have 3 states. 

Table 7 shows initial values for X for different combinations of P and N, and when using one of 

the two formulas (14) and (15) above. The trend in initialization is similar to what we saw in 

Table 4: if we use function (14), the only case when we can initialize element X to a 0 value is 

when the negative regulator is at 0, and the positive is at its highest value. 

Table 7. Effect of the two updating functions on a test node 

REGULATORS INITIAL VALUES X INITIAL VALUE 

P N MAX   (14) MIN   (15) 

0 0 3 3 

0 1 4 2 

0 2 5 1 

1 0 2 3 

1 1 3 2 

1 2 4 1 

2 0 1 4 

2 1 2 3 

2 2 3 2 

3 0 1 4 

3 1 2 3 

3 2 3 2 

4 0 0 5 

4 1 1 4 

4 2 2 3 

 

 



 32 

4.0 APPLICATION OF DEVELOPED TECHNOLOGY ON A MELANOMA CELL 

NETWORK 

As we have now several different initialization methods, we will apply them on an existing 

biological model: the melanoma cell network. We will first describe this model, then apply all 

the initialization methods on the model, and finally, discuss the effect of different methods on the 

steady-state and transient responses of the system. 

4.1 MELANOMA CELL NETWORK 

Melanoma is a malignant proliferation of the melanocytes (pigment-containing cells). It’s the 

most dangerous kind of skin cancer with more than 130,000 new cases every year, with 59,800 

deaths in a single year (2015) [15]. It results in moles with increase in size, irregular edges, or 

changes in color. The main cause of Melanoma, as for most skin cancers, is due to a DNA 

damage resulting from an exposure to UV light [16]. 

The modeling of this complex process was conducted using several cell lines. In Figure 

17, we illustrate the procedure for creating variable names, as this notation will be used in the 

following sections.  



 33 

 

Figure 17. Schematic of a variable inside the Melanoma model 

 

 

In this model, we use two types of cells: melanoma cells (MEL) and the macrophage 

(MAC). And for those two types of cells, we assume elements can be at five different locations, 

listed in Table 8. The full name of the variable also indicates the type of macromolecules that are 

classified in six different categories, listed in Table 9. 

Table 8. Location of the elements within the cell 

LOCATION NAME IN THE MODEL LOCATION IN THE CELL 

MEM Membrane 

CYTO Cytoplasm 

NUC Nucleus 

MITO Mitochondria 

EX Outside of the cell 

 

 

 

Table 9. Type of macromolecules inside the Melanoma model 

NAME INSIDE THE MODEL TYPE OF MACROMOLECULE 

PN Protein 

PF Protein family 

GENE Gene 

RNA RNA 

CHE Chemical 

BP Biological process 

 

 

 



 34 

The melanoma model that we used has 265 variables, and those variables have 233 

positive regulation and 82 negative regulations. With 315 edges, the model is pretty complex, 

and the pathways are not easily reckonable.   

 

Figure 18. Interactions map of the Melanoma model 

 

 

 



 35 

4.2 RANDOM INITIALIZATION 

Using the first method for initializing model elements, that does not take any information from 

the literature or from the model, we will assign only the values given by the two random 

initializations: 

• Random Uniform Initialization (RUI) 

• Random Non-Uniform Initialization (RNUI) 

 

Figure 19. Initial values using the random algorithms. 

 

 

 

Figure 20. Final values using the random algorithms.  

 

 

We can see from Figure 19 that applying the RNUI method results in a larger number of 

elements being initialized to value ZERO than in the case of the RUI method. To see how this 



 36 

difference in the initial states impacts our system, we will look at the final values after 200 runs 

of 3000 steps using the random-order sequential update scheme of the simulator. The results are 

shown in Figure 20. Note that the gray scale results from the fact that we are using random-order 

sequential approach and averaging across multiple runs, as described in Section 2.2.2 and 

illustrated in Figure 6. 

As can be seen from Figure 20, the final values for the RNUI method seem much closer 

to the RUI method than the initial values. To further evaluate the difference between initial and 

final values, we compute the average difference for both initial and final values between the two 

methods, shown in Table 10. 

Table 10. Average difference between the 2 random initialization methods 

 INITIAL (%) FINAL (%) 

AVERAGE DIFFERENCE BETWEEN RUI AND RNUI 43.77 30.48 

 

4.3 INITIALIZATION FROM THE INPUTS 

The first step we need to do here is to classify our model into INPUTS, INTERMEDIATE and 

OUTPUTS. With the high number of elements, we will only display the INPUTS and the 

OUTPUTS in Table 11. 

Table 11. Inputs/Outputs of the Melanoma cell network 

INPUTS 

FIBRONECTINpn@exMEL GLUCOSEche@ex ICMTpn@erMEL 

IFNGRpf@memMEL IGF1pf@ex IGF1Rpf@memMEL 

IL1R1pf@memMEL MUTPTENext@cytoMEL IL6RBpf@memMEL 

IL6pn@ex RAGEpn@memMEL ROScf@ex 

TGFB1Rpf@memMEL VEGFRpf@memMEL WNTpf@ex 

INJURYbp@memMEL MUTBRAFext@cytoMEL  IL10pn@ex 

MUTCDN2Aext@nucMEL   

 



 37 

Table 11. (continued) 

OUTPUTS 

EXOSOMESbp@memMAC INFLAMMATORYbp@nucMEL AUTOPHAGYbp@cyto

MEL 

RPS6KB1pf@cytoMEL PROLIFERATIONbp@nucMEL INGR2gene@memMAC 

IMMUNEbp@nucMEL APOPTOSISbp@cytoMEL P53pn@cytoMEL 

ANAEROBICbp@nucMEL   

 

 

 

Then, we use the value in the data from [17] for the inputs, and we use either the formula 

from (7) or (8) to compute the missing values: 

• Initialization from Inputs using the MAX update function (IIMAX) 

• Initialization from Inputs using the MIN update function (IIMIN) 

 

Figure 21. Initial values using the initialization from the inputs. 

 

 

In that initialization process, some elements are initialized with the same values: the 19 

inputs of the model and the elements with LOW activation value as this is the only value that is 

assigned in the same way in the two methods (7) and (8). The difference in the computation of 

the missing value can be seen on values with either ZERO or HIGH activation as they are 

initialized differently in those two methods. 

mailto:P53pn@cytoPCC


 38 

4.4 INITIALIZATION FROM DATA 

This method is similar to the previous one except that instead of using the values of the data only 

at the inputs, we derive element initial values from all available data, and we use the update 

functions only for the elements that were missing in the data: 

• Initialization from Data using Adaptive Threshold and MAX to fill the missing values 

(IDATMAX) 

• Initialization from Data using Adaptive Threshold and MIN to fill the missing values 

(IDATMIN) 

• Initialization from Data using Quantile Threshold and MAX to fill the missing values 

(IDTTMAX) 

• Initialization from Data using Quantile Threshold and MIN to fill the missing values 

(IDTTMIN) 

 

Figure 22. Initial values from the data initialization methods 

 

 

By looking at the overall initial values, we can see that some elements are always 

initialize at the same values across the four methods (elements that were found in the data) and 

some elements that have different initial value either from the different thresholding or from the 

computation using the missing value algorithm. 



 39 

The difference in the thresholding function can be seen as we have more ZERO value in 

the first two rows (Adaptive thresholding) and only a few HIGH values. And in the last two 

rows, we observe a better repartition of those three level of expression when using the quantile 

threshold. 

 

Figure 23. Comparison of the different initialization from data on the CCE1rna 

 

 

 

Figure 24. Comparison of the different initialization from data on the ATG4rna 

0

20

40

60

80

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
ct

iv
it

y 
Le

ve
l [

%
]

Simulation Steps

Evolution of CCNE1rna@nucMEL over the different initialization 
methods from data

IDATMAX IDATMIN IDTTMAX IDTTMIN

0

20

40

60

80

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
ct

iv
it

y 
Le

ve
l [

%
]

Simulation Steps

Evolution of ATG4Arna@nucMEL over the different initialization 
methods from data

IDATMAX IDATMIN IDTTMAX IDTTMIN



 40 

 

 

To observe the effect of the computation of missing functions, there are two possible 

cases: 

• The prediction of the element behavior has been correct such as in Figure 23 and 

the use of MAX function (7) enables better modeling of transient response, while 

the MIN function (8) only provides the steady state value. 

• The prediction of the behavior has been wrong, as in the Figure 24 where initially 

there was a positive regulation affecting our node but during the transient period 

between initial and steady state the negative regulation took over. In that case, 

both computations of the missing value methods show a transient response. 

4.5 EFFECT OF LOGICAL FUNCTION CHOICE AND INITIALIZAITON 

Here, we have used the baseline model initial state updated with the elements that are added to 

the model, and we are also taking into account the combined impact of initialization and 

regulatory functions: 

• Assuming that the new element is a necessary condition for the node 

activation/inhibition, that is, using an AND operator when extending the regulatory 

function.  

• Assuming that the new element is only a sufficient condition for the node 

activation/inhibition, that is, using an OR operator when extending the regulatory 

function. 



 41 

 

Figure 25. Initial values for the implication of logical functions 

 

 

The only difference in initial values in this case stems from the elements that get the 

external elements as a new regulator. And then, based on the old model element’s previous initial 

value in the baseline model and on the new external element initial value, we update the old 

model element value by using either AND or OR operator in the updated logical function. 

4.6 INITIALIZATION WITH DIFFERENT MAXIMUM STATES 

To compare the results of the model where all elements had three states and the model 

where every element has a different number of maximum states, we ran a simulation of the 

classic three states model for 3000 steps and 200 runs and compared this results with the model 

using elements with a different number of maximum states. We achieve a similar result by using 

the following parameters for the number of 𝑚𝑎𝑥𝑆𝑡𝑎𝑡𝑒𝑠 (12): 

• 𝛼 = 3 

• 𝑚𝑖𝑛𝑆𝑡𝑎𝑡𝑒𝑠 = 3 

𝑚𝑎𝑥𝑆𝑡𝑎𝑡𝑒𝑠 = 𝑚𝑖𝑛𝑆𝑡𝑎𝑡𝑒𝑠 + (
𝑁𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟𝑠

𝛼
) = 3 +

𝑁𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟𝑠

3
 



 42 

 

  

 

Figure 26. Simulation of the ribosomal protein S6 in the classical model with 3 states (top) and in the 

different maximum states model (bottom). 

 

 

By looking at a single run, we can see the difference in the number of levels: in the 

different maximum states model, the S6 protein has six states. The only difference is on the 

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

A
ct

iv
it

y 
le

ve
l [

%
]

Simulation steps

Evolution of S6ext@cytoMEL

Single Run Average of 200 runs

0

10

20

30

40

50

60

70

80

90

100

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

0
0

2
2

0
0

2
4

0
0

2
6

0
0

2
8

0
0

3
0

0
0

3
2

0
0

3
4

0
0

3
6

0
0

3
8

0
0

4
0

0
0

4
2

0
0

4
4

0
0

4
6

0
0

4
8

0
0

5
0

0
0

5
2

0
0

5
4

0
0

5
6

0
0

5
8

0
0

6
0

0
0

A
ct

iv
it

y 
le

ve
l [

%
]

Simulation steps

Evolution of S6ext@cytoMEL

Single Run Average of 200 runs



 43 

simulation steps axis, as in the new model the element has twice the number of states than before 

(six instead of three), it also needs twice the time to decrease the element value by the same 

amount (6000 steps instead of 3000 before). Adding more states to our element with our formula 

does not change their behavior, it slows them but gives them more freedom in terms of changing 

their values. 

4.7 IMPACT OF THE DIFFERENT THRESHOLDING METHODS ON THE 

TRANSIENT RESPONSE OF THE SYSTEM 

To compare different thresholding methods on the transient response of the system, we 

chose a set of 10 elements that have larger number of regulators in the model. Having a higher 

number of regulators means a more complex regulatory function, and thus, more sensitivity to a 

change in the initial values. 

 

Figure 27. Set of the initial and final values for the different initialization methods 



 44 

 

 

By looking at both the initial values and the final values of the selected 10 elements, we 

can find out some behavior change during our simulations. 

 

 Figure 28. Evolution of the PI3K for the different initialization methods. 

 

 

Even if we change the initial value as for the PI3K, the final state of the element might 

not change. In this case, changing the element’s initial value only changes its transient response 

to achieve its final value. The RUI and IIMIN method that have set up the PI3K at a HIGH initial 

level (100%) do not show any changes during the intermediate simulations steps as these 

elements are already in their steady states. The IDTTMAX and OR method that set these 

elements to LOW activation (50%) have also a different behavior: there is first a negative 

regulation going on before the positive took over after a few steps, while all the others methods 

initialize the elements at a ZERO level when they have only positive regulation. This is the case 

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
ct

iv
it

y 
Le

ve
l [

%
]

Simulation Steps

Evolution of PI3Kpn@cytoMEL over the different 
initialization methods

RUI RNUI IIMAX IIMIN IDATMAX

IDATMIN IDTTMAX IDTTMIN AND OR



 45 

for most of the elements we have selected, the final values show less changes than the initial 

ones. 

In another case, the same initial value can lead to different final values. For the 

PROLIFERATION, the changes in the final values are due to a slight change in its behavior 

where its positive regulation has been delayed, and thus, its oscillating behavior looks slightly 

different and induces a change in its final values. 

 

Figure 29. Evolution of the PROLIFERATION for the different initialization methods. 

 

 

Thus, we can say that in the case of a stable element value, such as in Figure 28, no 

matter what starting point is chosen for the element, since the system is stable for that element, 

the final value will not be affected. Only the time needed to reach that steady state and the 

behavior between initial and final state is changing. 

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

A
ct

iv
it

y 
Le

ve
l [

%
]

Simulation Steps

Evolution of PROLIFERATIONbp@cytoMEL over the 
different initialization methods

RUI RNUI IIMAX IIMIN IDATMAX

IDATMIN IDTTMAX IDTTMIN AND OR



 46 

But for those elements that are not stable, or have an oscillatory behavior, such as in 

Figure 29, the choice of initial values induces more changes in both transient behavior and final 

values. 



 47 

5.0 CONCLUSION 

As we have seen, initialization of discrete models is the first and mandatory step in order 

to be able to simulate these models, and thus emulate a biological system behavior. In this thesis, 

we have proposed several approaches to initialize such models. 

 Random initialization, as the simplest one and independent from any knowledge of the 

system. We have shown that the use of this method does not achieve the best results. In spite of 

giving an easy way to initialize any model and produce a huge selection of possible initial states, 

its randomness is more likely to produce undesired behavior within the model. 

 Initialization from inputs, using the less possible knowledge from the outside and the 

more from the model is suitable when we already have sufficient confidence in our model. For a 

model that have been proven to accurately simulate a system, initialization from inputs is the best 

alternative, as it heavily relies on the interconnection between elements inside the model. 

Initialization from data, that uses as much of the external knowledge as possible and the 

less from our model is, opposite from the initialization from inputs, more suitable for a new 

model that needs to be tested. As the information from our model are to be verified, it is 

recommended to rely more on outside knowledge to test our model. 

 In other cases, when we want to emphasize the study of our model in some particular 

elements, the initialization of the model with a different number of maximum states is the best 

choice in order to achieve a finer resolution on the targeted elements. 



 48 

And finally, when we are looking at improving a model, such as in the process of model 

extension, the creation of new connections within this model must be reflected on the new initial 

state of the model. The initialization using the interplay of logical function AND/OR is in that 

case recommended. 



 49 

BIBLIOGRAPHY 

[1] IOM (Institute of Medicine). 2009. Microbial evolution and co-adaptation: a tribute to the 

life and scientific legacies of Joshua Lederberg. Washington, DC: The National Academies 

Press. 

[2] Gillespie, D. T. Exact stochastic simulation of coupled chemical reactions. The Journal of 

Physical Chemistry, 81, 25 (1977), 23402361. 

[3] Novak, M. and Tyson, J. J. A model for restriction point control of the mammalian cell cycle. 

Journal of Theoretical Biology, 230, 4 (2004), 563-579. 

[4] Faeder, J. R., Blinov, M. L. and Hlavacek, W. S. Rule-based modeling of biochemical 

systems with BioNetGen. Methods Mol Biol, 500(2009), 113-167. 

[5] M. I. Davidich and S. Bornholdt “Boolean Network Model Predicts Cell Cycle Sequence of 

Fission Yeast” PLoS One, vol. 3, Feb 2008. 

[6] N. Miskov-Zivanov and et al. “Boolean Modeling and Analysis of Peripheral T Cell 

Differentiation of Work” personal communication, 2013. 

[7] Molecular Biology of the Cell. 4th edition. Alberts B, Johnson A, Lewis J, et al. New York: 

Garland Science; 2002. 

[8] Kauffman, S. A. Metabolic stability and epigenesis in randomly constructed genetic nets. J 

Theor Biol, 22, 3 (1969), 437-467. 

[9] Thomas, R., Thieffry, D. and Kaufman, M. Dynamical behaviour of biological regulatory 

networks--I. Biological role of feedback loops and practical use of the concept of the loop-

characteristic state. Bull Math Biol,57, 2 (1995), 247-276. 

[10] I. Shmulevich, R. Dougherty, S. Kim, W. Zhang, "Probabilistic Boolean neworks: A rule-

based uncertainty model for gene regulatory networks", Bioinformatics, vol. 2, no. 18, pp. 

261-274, 2002. 

[11] B. Samuelsson, C. Troein, "Superpolynomial growth in the number of attractots in 

Kauffman networks", Phys. Rev. Lett., vol. 90, pp. 90098701, 2003. 

[12] Xiao Y.F. A tutorial on analysis and simulation of Boolean gene regulatory network 

models. Curr. Genomics 10, 511–525 (2009). 

[13] T. Cormen, C. Leiserson, R Rivest, C. Stein (2001) Introduction to algorithms, second 

edition. 



 50 

[14] Khaled Sayed, Natasa Miskov-Zivanov, Yu-Hsin Kuo and Anuva Kulkarni, DiSH 

Simulator: Capturing Dynamics of Cellular Signaling with Heterogeneous Knowledge. 

[15] World Cancer Report 2014. World Health Organization. 2014. pp. Chapter 5.14.  

[16] Wang S, Setlow R, Berwick M, Polsky D, Marghoob A, Kopf A, Bart R (2001). 

"Ultraviolet A and melanoma: a review". J Am Acad Dermatol. 44 (5): 837–46 

[17] Mohammad Fallahi-Sichani, Nathan J Moerke,  Mario Niepel, Tinghu Zhang,  Nathanael S 

Gray, andPeter K Sorger1Systematic analysis of BRAF(V600E) melanomas reveals a role for 

JNK/c-Jun pathway in adaptive resistance to drug-induced apoptosis. Mol. Syst. 

Biol. 2015;11:797. doi: 10.15252/msb.20145877. 

 

https://www.iarc.fr/en/publications/pdfs-online/wcr/2003/WorldCancerReport.pdf
https://www.ncbi.nlm.nih.gov/pubmed/?term=Fallahi-Sichani%20M%5BAuthor%5D&cauthor=true&cauthor_uid=25814555
https://www.ncbi.nlm.nih.gov/pubmed/?term=Moerke%20NJ%5BAuthor%5D&cauthor=true&cauthor_uid=25814555
https://www.ncbi.nlm.nih.gov/pubmed/?term=Niepel%20M%5BAuthor%5D&cauthor=true&cauthor_uid=25814555
https://www.ncbi.nlm.nih.gov/pubmed/?term=Zhang%20T%5BAuthor%5D&cauthor=true&cauthor_uid=25814555
https://www.ncbi.nlm.nih.gov/pubmed/?term=Gray%20NS%5BAuthor%5D&cauthor=true&cauthor_uid=25814555
https://www.ncbi.nlm.nih.gov/pubmed/?term=Gray%20NS%5BAuthor%5D&cauthor=true&cauthor_uid=25814555
https://www.ncbi.nlm.nih.gov/pubmed/?term=Sorger%20PK%5BAuthor%5D&cauthor=true&cauthor_uid=25814555

	Title page
	Committee membership page
	Abstract
	TABLE OF CONTENTS
	List of tables
	Table 1. Transition table of the model with simultaneous update scheme
	Table2. Transition table of the model with sequential update scheme
	Table 3. Evolution of possible initial set with the size of the model
	Table 4. Effect of the 2 updating function on a test node
	Table 5. Initial values of B, based on its update rule and initil states of its regulators
	Table 6. Initial values based on the maximum number of states
	Table 7. Effect of the two updating functions on a test node
	Table 8. Location of the elements within the cell
	Tbale 9. Type of macromolecules iniside the Melanoma model
	Table 10. Average difference between the 2 random initialization methods
	Table 11. Inputs/Outputs of the Melnoma cell network

	List of figures
	Figure 1. Diagram of the modeling approach
	Figure 2. Example of a simple Boolean network. (a) without polarity indicated in graph edges 	and (b) with polarity indicated with different type of edges (regular arrow represents positive regulations, and blunt arrow represents negative regulation)
	Figure 3. Graph representation of a simple model with three elements
	Figure 4. State Transition Graph of the model for simultaneous update
	Figure 5. State Transition Graph of the model when the sequential update scheme is used
	Figure 6. Simulation results for the random-order sequential update scheme for the toy model shown in Figure 3
	Figure 7. Schematic of the model extension process
	Figure 8. Representation of two different state distributions for a three states model (ZERO, LOW and HIGH)
	Figure 9. Schematic of the process of data extraction
	Figure 10. Adaptive Threshold mapping algorithm
	Figure 11. Comparison between the adaptive threshold method (left) and the quantile threshold method (right)
	Figure 12. Representation of a node and its regulators
	Figure 13. Computing of the missing values using the maximization freedom of the node function
	Figure 14. Classification of the nodes of a model into INPUTS at the top, INTERMEDIATES in the middle and OUTPUTS at the bottom
	Figure 15. Example of modeling extension
	Figure 16. An example of dividing the range of value from the data into discrete intervals based on the preferred number of element states
	Figure 17. Schematic of a variable inside the Melanoma model
	Figure 18. Interactions map of the Melanoma model
	Figure 19. Initial values using the random algorithms
	Figure 20. Final values using the random algorithms
	Figure 21. Initial values using the initialization from the inputs
	Figure 22. Initial values from the data initialization methods
	Figure 23. Comparison of the different initialization from data on the CCE1rna
	Figure 24. Comparison of the different initialization from data on the ATG4rna
	Figure 25. Initial values for the implication of logical functions
	Figure 26. Simulation of the ribosomal protein S6 in the classical model with 3 states (top) and in the different maximum states model (bottom)
	Figure 27. Set of the initial and final values for the different initialization methods
	Figure 28. Evolution of the PI3K for the different initialization methods
	Figure 29. Evolution of the PROLIFERATION for the different initialization methods

	Preface
	1.0 Introduction
	2.0 Background
	2.1 Discrete modeling approach
	2.2 Simulation methods
	2.2.1 Simultaneous update scheme
	2.2.2 Sequential update scheme

	2.3 Model extension

	3.0 Methodology
	3.1 Random Initialization
	3.1.1 Uniform Random Initialization
	3.1.2 Non-Uniform Random Initialization

	3.2 Using external knowledge and data
	3.2.1 Adaptive Threshold
	3.2.2 Quantile Threshold

	3.3 Finding missing values
	3.3.1 Maximizing the freedom of the node
	3.3.2 Minimizing the freedom of the node

	3.4 Initialization using inputs
	3.5 Role of logic functions in initialization
	3.6 Initialization for different maximum states

	4.0 Application of developed technology on a Melanoma cell network
	4.1 Melanoma cell network
	4.2 Random Initialization
	4.3 Initialization from the inputs
	4.4 Initialization from data
	4.5 Effect of logical function choice and initializaiton
	4.6 Initialization with different maximum states
	4.7 impact of the different thresholding methods on the transient response of the system

	5.0 Conclusion
	Bibliography

