
MOLECULAR SIMULATIONS OF PATHWAYS

AND KINETICS FOR PROTEIN-PROTEIN

BINDING PROCESSES

by

Ali Sinan Saglam

B.A. Chemistry, Marmara University, 2011

Submitted to the Graduate Faculty of

the Dietrich School of Arts and Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2018



UNIVERSITY OF PITTSBURGH

DIETRICH SCHOOL OF ARTS AND SCIENCES

This dissertation was presented

by

Ali Sinan Saglam

It was defended on

April 3 2018

and approved by

Lillian Chong, Professor, Chemistry

Kenneth Jordan, Professor, Chemistry

Seth Horne, Professor, Chemistry

Thomas Kiefhaber, Professor, Faculty of Natural Sciences I, Martin-Luther-Universitat

Halle-Wittenberg

Dissertation Director: Lillian Chong, Professor, Chemistry

ii
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University of Pittsburgh, 2018

Protein-protein binding processes are crucial for biological functions and characterizing these

processes fully has been a challenge in biophysics. In this work I use weighted ensemble path

sampling method coupled with molecular simulations of varying levels of detail to answer

long standing questions regarding protein-protein binding. In Chapter 3, I investigate the

effects of preorganization on association between an intrinsically disordered peptide frag-

ment of tumor suppressor p53 and the MDM2 protein using flexible residue level models.

I simulated the binding process between p53 and MDM2 with varying degrees of preorga-

nization in p53 and determined that the association rate constant of p53 peptide does not

depend on the extent to which the peptide is preorganized for binding MDM2. In Chapter

4, I apply simulations with flexible molecular models to directly compute the “basal” kon

for the association of the two proteins barnase and barstar, in the absence of electrostatics.

I simulated the binding process between exact hydrophobic analogues barnase and barstar

and determined the extent with which the electrostatics enhance the basal kon. Finally, in

Chapter 5, I have generated binding pathways of barnase and barstar using all-atom simu-

lations with explicit solvent. This study not only enabled a more detailed characterization

of the binding mechanism but also provided an opportunity to determine the role of solvent

in the binding process. Water molecules are proposed to play a crucial role in binding of

barnase and barstar since water molecules can be found at the binding interface in the crys-

tal structure and they increase the interfacial complementarity. Overall, the work presented

here demonstrates the power of the weighted ensemble strategy in making it practical to
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characterize binding processes that are otherwise unfeasible for standard simulations.
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1.0 PROTEIN-PROTEIN ASSOCIATION

1.1 INTRODUCTION

Many biological processes involve the formation of complexes involving two or more proteins.

Formation of these complexes controls the assembly of cellular structures, signal transduction

and inhibition, immune response and more. Furthermore, protein-protein interactions have

been a focus of the field of drug design due to the attractiveness of protein-protein interfaces

as drug targets.

Characterizing the mechanisms of protein-protein binding processes has been a challenge

in biophysics. Typical biophysical experiments can provide ensemble-averaged observables

for the binding processes as well as high-resolution structures of stable states. As an ideal

complement to such experiments, molecular dynamics simulations can function as a com-

putational “microscope” to provide atomically detailed views of complete pathways for the

binding processes, including states that are too transient to be captured by experiment.

However, due to the long-timescales of protein binding processes, it has not been practical

to access these timescales using standard simulations. The overarching goal of this work is

to couple the enhanced sampling of the weighted ensemble strategy with atomistic molecular

dynamics simulations to characterize the pathways and kinetics of protein-protein binding

processes.
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1.2 RESEARCH QUESTIONS

In the primary body of my work I have investigated different aspects of protein-protein

binding, including the effect of conformational changes on the binding process. Many proteins

are either partially or completely unfolded when not bound to their partners and are thus

known as intrinsically disordered peptides (IDPs). An unanswered question regarding IDPs

is the effect of preorganization of a disordered binding partner have on the binding process.

Previous efforts to answer this question involved analogues of the IDP with varying degrees

of preorganization; however, experimentally, it is difficult to vary the secondary structure

of an IDP without chemical alterations which can affect the binding process. In contrast,

molecular simulations enable changes to a single aspect of the binding process (e.g. degree

of preorganization) without perturbing other aspects (e.g. chemical sequence). In Chapter

3, I discuss the binding simulations of p53 and MDM2 where I have tuned the protein model

of p53 to obtain completely preorganized and completely disordered variants of p53 without

chemical alterations.

A crucial unanswered question for protein-protein association was the effect of electro-

statics on the basal kon, the rate constant of association in the abscence of electrostatic inter-

actions. To answer this question, I have investigated the mechanism of one of the most rapid

protein-protein binding processes involving the extracellular ribonuclease barnase and its

intracellular inhibitor barstar. I have simulated, in molecular detail, the wild-type barnase-

barstar and the exact barnase-barstar hydrophobic isosteres, in which the partial charges are

set to zero but the shapes are identical. In Chapter 4, I discuss the association simulations

of hydrophobic isosteres of barnase and barstar and the effect of electrostatics on binding.

In Chapter 5, I have simulated barnase and barstar binding using atomically detailed

simulations with explict solvent, characterized the binding process and investigated the role

of solvent in the protein-protein binding process. In particular, while it is well known that

desolvation of the binding interfaces occur during binding, it is not known when during

binding it occurs.

Finally, while this thesis is focused on my work in protein-protein binding simulations,

I have also worked together with another member of the lab on characterizing alternate
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folded states of the fast-folding villin headpiece subdomain. Although the folding process

of this subdomain has been long characterized as a two-state process, recent experimental

studies by our collaborator, Thomas Kiefhaber (Martin Luther University Halle-Wittenberg)

have demonstrated that the subdomain adopts two distinct folded states. The goal of our

simulation study is to provide atomically detailed structures of these two alternate states.

1.3 ACCESSING LONGER TIMESCALES

While there are many ways to use molecular simulations, in this work I focus on methods

that provide complete pathways leading to binding so that I can directly look at the binding

process rather than indirect models. While the difficulty of generating events is completely

dependent on the binding process and the size of the proteins, generating complete protein-

protein binding pathways is generally computationally expensive. This difficulty can be

somewhat mitigated by the use of simpler models that provide less detail, but, depending

on the process even simpler models can be challenging. Furthermore, the model detail has

to be selected carefully depending on the scientific question that is being asked.

Standard simulations, which are carried out for sufficiently long times to capture a large

number of the events of interest, can only routinely access process as long as a microsecond.

To access timescales beyond microseconds, a variety of strategies have been developed that

enhance the sampling of long-timescale processes while maintaining rigorous kinetics. My

thesis work has focused on the development of simulation protocols involving the weighted

ensemble path strategy to enable the generation of complete pathways for protein binding

process without introducing any bias in the dynamics. The strengths and limitations of the

WE strategy are covered in the next chapter.
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2.0 REVIEW OF PATH-SAMPLING STRATEGIES

The text in this chapter has been adapted from L. T. Chong, A. S. Saglam and D. M.

Zuckerman, Curr. Opin. Struc. Biol., 2017, 43, 88-94.

2.1 CHAPTER SUMMARY

Despite more than three decades of effort with molecular dynamics simulations, long-timescale

(ms and beyond) biologically relevant phenomena remain out of reach in most systems of

interest. This is largely because important transitions, such as conformational changes and

(un)binding events, tend to be rare for conventional simulations (<10 µs). That is, conven-

tional simulations will predominantly dwell in metastable states instead of making large tran-

sitions in complex biomolecular energy landscapes. In contrast, path sampling approaches

focus computing effort specifically on transitions of interest. Such approaches have been

in use for nearly 20 years in biomolecular systems and enabled the generation of pathways

and calculation of rate constants for ms processes, including large protein conformational

changes, protein folding, and protein (un)binding.

2.2 INTRODUCTION

Advances in computing hardware and software1–3 along with record-setting molecular dy-

namics (MD) simulations, in terms of both length4 and system size5 bode well for the future

of simulation. Nevertheless, the capacity of MD for investigating long timescales of biological

4



interest remains inadequate, particularly as investigators set their sights on ever larger and

more complex systems.6,7

Path sampling approaches can substantially increase the ‘reach’ of MD in simulating rare

events such as protein conformational changes, (un)folding, and (un)binding, by focusing

computational effort on the functional transitions rather than the stable states (Figure 1)

— without introducing bias in the results. In particular, such approaches exploit the fact

that for rare events, the duration of the transition event itself (tb) is much shorter than the

dwell time (tdwell) in the preceding metastable region (tb � tdwell). Even when there is not a

clear separation of timescales between tb and tdwell, path sampling may offer a considerable

advantage over straight-ahead MD, as described in the next section (‘Path sampling methods

and recent advances’).

In addition to providing rigorous estimates of rate constants, a key strength of path sam-

pling approaches is the generation of an ensemble of transition trajectories. The trajectories

themselves yield the full sequence of intermediate configurations of a transition, which are

essential for characterizing the mechanism of a complex biological process and too fleeting

to be captured by laboratory experiments. Further, the probabilistic description intrinsic

to an ensemble quantifies pathway heterogeneity, the importance of which remains to be

understood in biomolecular processes of different types.

Path-sampling methods have been advanced significantly in recent years and appear to

have reached a state of maturity where theoretical underpinnings have been clarified, and

where essential commonalities can be discerned. However, the reader is cautioned that all

of the approaches have intrinsic limitations, sketched below, and that path-sampling data

must be critically analyzed for undersampling to prevent unfounded interpretation.

We take this opportunity to survey key ideas and recent progress in the field. We cover

only approaches that are well-founded in non-equilibrium statistical mechanics and hence

capable of yielding, for example, unbiased estimates of rate constants and a true sample of

the transition path ensemble. We note that the related Markov state modeling approach will

be addressed separately in this issue.
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2.3 PATH SAMPLING METHODS AND RECENT ADVANCES

2.3.1 Conceptual framework

Path sampling approaches exploit the separation of timescales that typically occurs in

biomolecular systems. Consider the extreme example of attempting to observe transient

unfolding of a stable protein under native conditions: unfolding events will be few and far

between. Path sampling approaches can explicitly focus computational effort on the unfold-

ing event, bypassing the lengthy dwells in the folded state.

Path sampling can be useful for rare events even when the separation of timescales is

ambiguous. Consider another extreme case where a single uncharged receptor and ligand oc-

cupy a large volume, so that the probability of complexation is very small on MD timescales.

The time for binding by diffusion arguably is the same as the ‘transition time’ (tb) in such a

system and there is no clear timescale separation. Yet path sampling approaches can focus

simulation effort on successful events, and even account for the rareness of binding without

bias8. Likewise the conformational sampling of stable states separated by low barriers can

be efficiently accomplished using path sampling9,10.

Though path sampling approaches can yield equilibrium state populations and potentials

of mean force, their primary strength is a capacity to estimate non-equilibrium observables

such as rate constants. In the latter context, the ability to account for directionality and

history is critical — particularly tracing back any given trajectory to the most recently

occupied state (A or B, ‘initial’ or ‘target’ state), which enables unbiased rate calculation11–13;

see also14,15. This insight from path theory has important practical implications for analyzing

ordinary MD simulations and avoiding the Markov assumption16.

Current path sampling approaches can be divided into the following three categories for

conceptual clarity.

2.3.2 Methods using complete paths

Two approaches work directly with complete A-to-B transition paths (Figure 2a). Transition

path sampling (TPS) is based on Pratt’s suggestion to run Monte Carlo (MC) simulations on

6



Figure 1: A schematized very long MD trajectory which successfully transitions to basin B

after starting in A is superimposed over energy contours (gray lines). By definition, every

unbiased transition trajectory consists of (i) a dwell period (blue) of duration tdwell prior to

the last exit from the initial state and (ii) the transition event itself (red) of duration tb. If

tb � tdwell, then path sampling strategies may be useful in focusing computational effort on

the transition process.

7
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Figure 2: An energy landscape (gray contours) is shown for which the transition from basin

A to B is rare on the timescale of typical MD simulations. (a) Some methods use full-length

transition trajectories. In transition path sampling, an initial unphysical trajectory (brown)

is perturbed via random trials (green) using a Metropolis Monte Carlo procedure in trajectory

space, whereas in dynamic importance sampling, a set of biased trajectories (dark blue)

are reweighted to conform with unbiased behavior. (b) Many methods use fully unbiased

trajectory segments (brown) connecting bins (i and j), such as the weighted ensemble, or

connecting interfaces (η and ν), such as milestoning and non-equilibrium umbrella sampling.

(c) Other approaches, such as transition interface sampling and forward flux sampling, use

strictly nested interfaces interpolating from A to B. Generally speaking, shorter transitions

among bins or interfaces are much more probable than full A-to-B transitions, and trajectory

segments can be connected using rigorous statistical mechanics to infer longer-time behavior.
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entire trajectories17 rather than on the more familiar MC for configurations. Advanced by

Chandler and coworkers18–20, TPS uses trial perturbations to an existing A-to-B trajectory

and a Metropolis acceptance criterion. Dynamic importance sampling (DIMS), proposed by

Woolf21 based on earlier work22,23, also uses complete paths. In DIMS, however, independent

transition trajectories are generated using biased dynamics, and are then reweighted using

the ratio of sampled to true probability24.

2.3.3 Methods using trajectory segments: region-to-region

Most current path-sampling approaches work procedurally with trajectory segments, even if

fully or nearly continuous A-to-B transitions ultimately are produced. As shown in Figures

2b,c, segment-based methods can be categorized accordingly to whether partial transitions

are sampled between regions (‘bins’) or between interfaces. Bin-to-bin transitions typically

are sampled via trajectory segments of fixed duration, whereas interfacial transitions require

‘catching’ trajectories in the act of crossing.

Huber and Kim proposed the weighted ensemble (WE) approach in 199625, which was

essentially a rediscovery of the ‘splitting’ strategy described by Kahn in 195126. The basic

idea is to classify configuration space into bins among which transitions are affordably likely.

A set of unbiased trajectories is run in parallel, with replication of segments that reach

new bins, encouraging progress toward B. Statistical weighting ensures unbiased results27,

and the approach has been extended for steady state and rate-constant calculations28,29.

The related adaptive multilevel splitting (AMS) approach uses trajectory splitting within a

different statistical formulation without bins30. See also31,32.

Underscoring the methodological convergence occurring in the field, some interfacial

approaches have now been adapted for bin-to-bin sampling33,34. Markov state models also

operate in a bin-to-bin framework (see review by Noe in this issue). The discrete path

sampling approach uses energy basins instead of bins35–37; see also38,39.
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2.3.4 Approaches using trajectory segments: interface–interface

Most current methods sample trajectory segments of heterogeneous lengths that start and

end on interfaces. Some approaches require fully nested interfaces that interpolate from

initial to target state and others can use nearly arbitrary interfaces — surfaces of arbitrary

bins tiling configuration space (Figure 2b,c).

With transition interface sampling (TIS), van Erp, Moroni, and Bolhuis11 introduced

an extension of TPS which attempted to improve the rate-constant calculation by using a

series of partial-flux calculations for a set of nested interfaces separating states A and B

— see Figure 2c. Intermediate TPS calculations are used to generate the necessary TIS

path ensembles. There have been a number of TIS extensions40,41. Forward flux sampling

(FFS) uses a similar formalism but instead runs standard (not TPS) simulations between

interfaces42, and FFS has been generalized33. See also43.

Interfaces which may not be nested (e.g., boundaries of Voronoi cells — see Figure 2b) are

used in some approaches. Non-equilibrium umbrella sampling (NEUS), introduced by Dinner

and coworkers, first showed how to use interfaces for arbitrary cells which tile configuration

space in steady-state calculations44 and was further developed13,45,46. Milestoning, although

originally introduced by Faradjian and Elber for nested interfaces47, was later generalized

for use with arbitrary interfaces48,49.

2.3.5 Limitations

All the approaches discussed here share the goal of generating an ensemble of transition

trajectories, and hence they also share certain limitations. The focusing of sampling on

transition regions instead of stable states in an unbiased manner typically requires that the

transition trajectories are correlated with one another (e.g.,19,27). Such correlations imply a

reduction in information content: perhaps one in 100 transitions is truly independent. There-

fore, trajectories should be analyzed carefully for correlations and sampling quality8,11,29,49.

For methods where the path-sampled trajectories are not correlated, there generally is an-

other type of statistical inefficiency24.

Another practical concern regards software. Several pathsampling packages are publicly
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available50–53, and most require some parameter tuning. Algorithms which examine trajec-

tories at fixed time intervals, such as WE, lend themselves to facile interoperability with

a variety of MD engines. Interface-based methods require ‘catching’ trajectories in the act

of crossing boundaries, which already has been hard-wired in some packages53,54, but could

represent a significant barrier for users desiring alternative dynamics.

2.4 SUCCESSES

In recent years, path sampling approaches have enabled the simulation of several types of

long-timescale biological processes that would not have been practical using conventional

simulation: large protein conformational transitions, protein folding, and protein–ligand

(un)binding.

2.4.1 Protein conformational transitions and folding processes

Notable successes involving large protein conformational transitions include simulations of

substrate-induced conformational changes in enzymes and large conformational transitions

in membrane transport proteins. In studies involving enzymes, milestoning has generated

ms conformational transitions between the open and closed states of the HIV reverse tran-

scriptase55,56, yielding rate constants that are consistent with experiment (Figure 3a). In

studies involving membrane transport proteins, the WE approach has generated pathways

for outward-to-inward-facing transitions in the sodium symporter Mhp1 using coarse-grained

simulations57 and the DIMS approach has generated transitions between the cytoplasmic

open conformation and perisplamic open conformation of the lactose permease transporter

using atomistic simulations in implicit solvent58. For the related problem of ion permeation,

the WE approach 90 has enabled the calculation of current–voltage relationships for a simple

model ion channel59.

Applications of path sampling approaches to protein folding — the most extreme pro-

tein conformational transition — have been focused on mini-proteins that fold on the ms
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Figure 3: (a) Milestoning has generated pathways and calculated rate constants for

substrate-induced transitions between the open (gray) and closed (blue) conformations of

HIV reverse transcriptase in complex with Mg2+ ions (yellow) and duplex DNA (green); for

clarity, only the p66 subunit is shown, although both p66 and p51 subunits were included

in the simulations [4]. (b) The WE approach has generated pathways and calculated rate

constants for the protein–peptide binding process involving the MDM2 protein (gray) and

an intrinsically disordered p53 peptide (yellow)10.
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timescale. For example, the single-replica multistate TIS method has enabled efficient simu-

lation of both folding and unfolding processes for Trp-cage60 while the FFS method has been

used to simulate a loop unfolding transition in Trp-cage61 that was revealed by a previous

TIS study to be rate-limiting for the unfolding process62. In addition, the single-replica

multistate TIS method has been applied to the ms-folding process of the villin headpiece

as well as its much slower sub-ms unfolding process (mean first passage time of 0.8 ms),

demonstrating that path sampling approaches can be effective in estimating rate constants

for protein unfolding processes as well as folding processes63. Of future interest are the

application of these approaches to the (un)folding processes of entire proteins (e.g., NTL9

and ubiquitin) at experimental temperatures; due to their long-timescales (ms or beyond),

such folding processes have typically been characterized at the (considerably higher) melting

temperatures by straightforward simulations64,65.

2.4.2 Protein (un)binding processes

The characterization of protein (un)binding mechanisms is not only fundamental to biology,

but of great interest to the field of drug design. The simulation of protein binding pro-

cesses with rigorous kinetics is particularly challenging due to the presence of metastable

intermediates (e.g., the encounter complex).

Path sampling has yielded initial successes with models at different levels of resolution.

For example, the WE approach has enabled the first atomistic simulations (to our knowledge)

of protein–peptide binding pathways with rigorous rate constants; these simulations involved

the MDM2 protein and an intrinsically disordered p53 peptide, which adopts an α-helical

conformation upon binding MDM210. In addition, two studies have demonstrated the power

of path sampling strategies in generating atomistic pathways for protein–ligand unbinding

processes and the corresponding koff values, which are of great interest for drug design efforts.

These studies involve, firstly, the application of the WE approach to the FK506 binding

protein and several low-affinity, small molecule inhibitors, which unbind on timescales up

to tens of ns, resulting in the first analysis of ligand-exit distributions66, and second, the

application of the AMS approach to trypsin and the benzamidine inhibitor, which unbinds
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on the ms timescale67. In addition, it has been demonstrated that experimental kon values

can be efficiently reproduced for various protein–ligand systems using milestoning as part of

an atomistic MD/Brownian Dynamics approach68.

Even coarse-grained models may not be amenable to complete sampling via straight-

ahead simulation. For example, the WE strategy has been of great benefit to even Brown-

ian Dynamics simulations involving coarsegrained, albeit flexible protein models that have

been parameterized to reproduce the molecular shapes, electrostatic potentials, and diffusion

properties of all-atom models. The resulting WE simulations enabled not only the efficient

reproduction of experimental kon values for wild-type and mutant complexes of barnase and

barstar, but a statistically robust estimate of the much slower ‘basal’ kon involving the hy-

drophobic isosteres of the two proteins — a quantity of fundamental interest to the field of

molecular recognition8 (Figure 3b).

2.5 CHALLENGES

As path sampling approaches are used to target more complex systems and slower processes,

which seems inevitable, a number of challenges remain. The most basic difficulty hinges on

intrinsic timescales of the systems themselves: for example, if the transition event duration

(see Introduction section) for a certain process exceeds 1 µs, then sampling an ensemble of

uncorrelated transition events would be almost impossible given a total budget of 10 µs. Of

course, the intrinsic timescales would not be known ahead of time, suggesting caution is

necessary for complex systems.

Coordinates and correlations present the primary methodological challenge. The prob-

lem of generating correlated transition trajectories was discussed above in ‘Path Sampling

Methods and Recent Advances’, but it is closely connected to the difficulty of constructing

suitable coordinates (or bins or interfaces) for methods requiring them. Consider a system

which is not readily described by a one dimensional reaction coordinate (i.e., which has slow

orthogonal coordinates). If one-dimensional bins or interfaces are used, it can be expected

that fully sampling the orthogonal space will be slow and may render the results unreliable
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— the sampled trajectory segments may be overly correlated. Fortunately, investigators are

already beginning to make progress in adaptively developing bins and interfaces27,69,70.

It will be important to develop software resources further. As noted in ‘Path sampling

methods and recent advances ’ section, several highly scalable packages are currently available,

including WESTPA, AWE-WQ and FRESHS, which have demonstrated inter-operability

with a variety of dynamics engines50–52. A competitive software ecosystem with additional

robust packages should be a boon to the field. Nevertheless, we caution that path sampling

tools are likely to continue to require considerable user expertise in yielding reliable results.

On a final note, another frontier that has already been addressed by initial studies is

the application of path sampling approaches to problems at other scales. Several approaches

have already been applied to signaling networks, gene regulation, and spatially resolved cell

models42,71–77.
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3.0 FLEXIBILITY VS PREORGANIZATION: DIRECT COMPARISON OF

BINDING KINETICS FOR A DISORDERED PEPTIDE AND ITS EXACT

PREORGANIZED ANALOGUES

The text in this chapter has been adapted from A. S. Saglam, D. W. Wang, M. C. Zwier,

and L. T. Chong., J. Phys. Chem. B, 2017, 121 (43), pp 10046–10054.

3.1 CHAPTER SUMMARY

Many intrinsically disordered proteins, which are prevalent in nature, fold only upon binding

their structured partner proteins. Such proteins have been hypothesized to have a kinetic

advantage over their folded, preorganized analogues in binding their partner proteins. Here

we determined the effects of ligand preorganization on the kon for a biomedically impor-

tant system: an intrinsically disordered p53 peptide ligand and the MDM2 protein receptor.

Based on direct simulations of binding pathways, computed kon values for fully disordered

and preorganized p53 peptide analogues were within error of each other, indicating little if

any kinetic advantage to being disordered or preorganized for binding the MDM2 protein.

We also examined the effects of increasing the concentration of MDM2 on the extent to

which its mechanism of binding to the p53 peptide is induced fit vs conformational selection.

Results predict that the mechanism is solely induced fit if the unfolded state of the peptide

is more stable than its folded state; otherwise, the mechanism shifts from being dominated

by conformational selection at low MDM2 concentration to induced fit at high MDM2 con-

centration. Taken together, our results are relevant to any protein binding process that

involves a disordered peptide of a similar length that forms a single α-helix upon binding a
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partner protein. Such disorder-to-helix transitions are common among protein interactions

of disordered proteins and are therefore of fundamental biological interest.

3.2 INTRODUCTION

Many proteins that are either partially or completely unfolded in their unbound states78,79

fold only upon binding their structured partner proteins. Such “intrinsically disordered”

proteins (IDPs) have been proposed to have a kinetic advantage over their preorganized,

folded analogues for binding their partners,80,81 which challenges the long-standing assump-

tion that the preorganization of a ligand to its receptor-bound conformation results in a

faster association rate constant (kon). Potential mechanisms by which this kinetic advan-

tage might be achieved are (i) the “fly-casting” mechanism, in which the IDP collides more

rapidly with the partner receptor due to a larger “capture” radius,80 and (ii) the “dock-and-

coalesce” mechanism for IDPs with two or more segments in which the initial docking of one

segment results in a more rapid, pseudointramolecular docking of the remaining segments.81

Throughout this work, the term “ligand” refers to a molecule (e.g., small molecule, peptide,

or protein) that binds to a larger molecule that serves as the target receptor.

While experimental studies have provided informative insights about the effects of pre-

organization on the binding kinetics of IDP ligands,82–87 these studies have not been able

to provide definitive proof of a kinetic advantage (or lack thereof) to being disordered vs

preorganized. Existing experimental studies indicate differing results on the effect of ligand

preorganization on binding kinetics. For example, preorganization has resulted in faster

binding for certain IDPs (ACTR and Y507A mutant of the E3 rRNase domain),82,83 and

no significant effect on the binding kinetics for other IDPs (PUMA and cMyb).84,85 In addi-

tion, an unfolded variant of the Fyn SH3 domain that was engineered via truncation of only

four residues has achieved the same kon as the full-length, folded domain for a high-affinity

peptide,86 and the preorganization of the disordered monomers of an engineered GCN4-p1

leucine zipper variant has resulted in slower dimerization.87 Ideally, the effect of ligand pre-

organization on binding kinetics would be assessed by engineering peptide analogues that
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differ only in their degree of preorganization without altering the chemical structures, which

is not possible in experiments.

Molecular simulations provide the only practical means to compute kon values for both

IDPs and their exact preorganized analogues — which have been engineered in silico—by

directly generating the corresponding binding pathways. Furthermore, while experiments

can typically measure only the kon, simulations can be used to directly compute the rate

constants of individual steps. However, due to the relatively long time scales of protein

binding processes, only one simulation study has reported atomistic binding pathways along

with the kon for an IDP ligand (p53 peptide) and its protein receptor (MDM2), and these

simulations did not sample fully disordered analogues.10 Both atomistic and residue-level

models have been used to characterize solely the late stages of binding, i.e., after the IDPs

have collided with their partner proteins.88–90 Residue-level simulation studies of binding

pathways for IDPs have been reported,91,92 including the only study that has determined

the effects of preorganization on the binding kinetics of an IDP, focusing on the intrinsically

disordered, phosphorylated KID (pKID) domain and its folding into a pair of linked-together

α-helices upon binding the KIX protein.92

Here, we focused on an IDP ligand that adopts a single α-helix upon binding its folded

protein receptor: the intrinsically disordered, N-terminal peptide fragment of tumor sup-

pressor p53 and MDM2 protein. We determined the effects of ligand preorganization on

the kon by directly simulating binding pathways of the disordered p53 peptide and several

of its exact analogues with various extents of preorganization. In addition, we used the

computed kon values to predict the effect of increasing the concentration of MDM2 on the

extent to which the binding mechanism proceeds through induced fit and conformational

selection. Based on atomistic simulations, the binding mechanism of the MDM2 receptor

and p53 peptide ligand is predicted to shift from being dominated by conformational selec-

tion at low receptor concentration to induced fit at high receptor concentration.93 Likewise,

based on experimental rate constants, this shift in mechanism is expected to occur upon

increasing the ligand concentration for systems involving disordered protein receptors and

their small organic ligands.94,95 Given the prevalence of single α-helix binding motifs among

protein-ligand interactions,96 the mechanism of MDM2-p53 binding is not only of biomedical
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importance97 but fundamental to biology.

3.3 METHODS

Key features of our simulation strategy are the following. First, we employed minimal

residue-level models (Cα models) along with a Gō-type potential energy function,98,99 which

enables tuning of the extent of preorganization of the IDP (in our case, the p53 peptide)

from fully disordered to fully preorganized. Second, dynamics were propagated using a

Brownian dynamics algorithm with the inclusion of appropriately parametrized hydrody-

namic interactions (HIs) between protein residues to yield realistic diffusion properties.100

Third, we applied the weighted ensemble (WE) path sampling strategy,25,27,101 which has

been demonstrated to be orders of magnitude more efficient than standard Brownian dynam-

ics simulations in generating pathways and rate constants for protein binding processes.8 Full

details of the protein model, simulations, and analysis are below.

3.3.1 The Protein Model

Residue-level protein models were used in which each residue was represented by a single

pseudoatom at its Cα position, yielding 85 pseudoatoms for the MDM2 protein (residues 25-

109) and 13 pseudoatoms for the p53 peptide (residues 17-29). Coordinates for the unbound

and bound conformations of MDM2 and p53 peptide were taken from the crystal structure

of the MDM2-p53 peptide complex (PDB code: 1YCR).102

A Gō-type potential energy function98,99 was used to govern the conformational dynamics

of the protein model. In this energy function, bonded interactions between pseudoatoms

are modeled by standard molecular mechanics terms for bonds, angles, and dihedrals; and

nonbonded interactions between pseudoresidues separated by four or more pseudobonds were

treated as either native or non-native contacts. A native contact was defined as a residue-

residue contact in which the heavy atoms of the two residues are within 5.5 Å of each other in

the crystal structure of the native complex. In addition to 57 intermolecular native contacts
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between p53 and MDM2, the p53 peptide and MDM2 consisted of 10 and 266 intramolecular

contacts, respectively.

The protein model was parametrized by focusing separately on the following three con-

tributions to the total energy function:

Etotal = Ep53 + EMDM2 + EMDM2/p53 (3.1)

where Ep53 and EMDM2 correspond to intramolecular contributions from p53 and MDM2,

respectively, and EMDM2/p53 corresponds to the intermolecular MDM2/p53 contributions.

As others have done,103 we tuned the degree of structure and backbone flexibility of the

IDP (in our case, the p53 peptide) by applying a single scaling factor α to the pseudoangle,

pseudodihedral, and intramolecular nonbonded terms of the energy function involving solely

the IDP:

Ep53 =
∑
bonds

kbond(r − req)2

+ α

{ ∑
angles

kangles(θ − θeq)2

+
∑

dihedrals

V1 [1 + cos(ϕ− ϕ1)] + V3 [1 + cos(3ϕ− ϕ3)]

+

p53∑
i<j−4,non−native

εnon−native

(
σnon−native
ij

rij

)12

+

p53∑
i<j−4,native

εnative

[
5

(
σnative
ij

rij

)12

− 6

(
σnative
ij

rij

)6
]}

(3.2)

where r, θ, ϕ are pseudo bond lengths, pseudoangles, and pseudodihedrals, respectively; V1

and V3 are potential barriers for the dihedral terms; εnative is the energy well depth for native

contacts, rij is interatomic distance between pseudoatoms i and j during simulation, and

σnative
ij is the corresponding distance in the crystal structure; σnon−native

ij and εnon−native for

non-native contacts were set to 4.0 Å and 1 kcal/mol, respectively. Equilibrium bond lengths

(req), angles (θeq), and dihedral phase angles (ϕ1 and ϕ3) were taken from the crystal struc-

ture. The force constants, kbond and kangle, were set to 100 kcal/mol/Å and 20 kcal/mol/rad,
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respectively, and V1 and V3 were set to 1 and 0.5 kcal/mol, respectively. The scaling factor

α was set to 0.1, 0.5, 1.0, and 2.0 to model analogues of the p53 peptide that exhibit, on

average, a fraction of native contacts (Qp53) of 0.25, 0.5, 0.85, and 0.99, respectively, based

on 10 µs standard simulations of the isolated peptide (Figures S7 and S8). Thus, α values of

0.1 and 2.0 represent the fully disordered and fully preorganized versions of the p53 peptide,

respectively.

The same potential function was used for MDM2 (EMDM2) and nonbonded MDM2-p53

interactions (EMDM2/p53), except for the omission of the scaling factor α. An εnative of 1.0

kcal/mol was used for intramolecular native contacts of MDM2, yielding a fraction of native

contacts QMDM2 > 0.8 based on five 10 µs simulations. To ensure that the fully disordered

p53 peptide folds upon binding MDM2, the εnative for native MDM2-p53 interactions was set

to the minimum value (2.0 kcal/mol) required to ensure that the peptide folds upon binding

MDM2 (Qp53 > 0.7 throughout a 10 µs standard simulation (no WE sampling); Figure S9).

Following others,92 the same εnative value for intermolecular contacts (in our case, MDM2-p53

contacts) was used for all analogues of the IDP (the p53 peptide). The same εnative was also

used for native contacts within the fully preorganized p53 peptide.

3.3.2 Weighted Ensemble Simulations

To generate MDM2-p53 peptide binding pathways, we applied the weighted ensemble (WE)

path sampling strategy,25 as implemented in the WESTPA software package (https://westpa

.github.io/westpa),50 to orchestrate a large set of Brownian dynamics trajectories that were

carried out using the framework of the Northrup-Allison-McCammon (NAM) method.104 In

this hybrid WE/ NAM approach, two concentric spherical surfaces are first defined with

radii b and q that correspond to separation distances between MDM2 and the p53 peptide.

The inner sphere, or b surface, represents the initial unbound state, and the outer sphere,

or q surface, represents a much larger separation distance (q � b) at which trajectories

are terminated to avoid wasting computing time sampling any indefinite drifting apart of

the binding partners. The next step of the WE/ NAM approach is to define a progress

coordinate between the unbound and bound states and to divide this coordinate into bins
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with the goal of populating each bin with N trajectories, each of which is assigned a statistical

weight. Starting from N trajectories in the initial unbound state, the dynamics of each

trajectory are simultaneously propagated in parallel and occasionally coupled by replication

and combination events at fixed time intervals τ based on their progress toward the target

state (e.g., the bound state), splitting and combining the statistical weights, respectively,

such that no bias is introduced into the dynamics.25 To maintain steady-state conditions,

any trajectory that reaches the q surface is “recycled” by terminating the trajectory and

starting a new trajectory from an initial, unbound state with the same statistical weight.

In our WE simulations, the radii b and q were set to 35 and 50 Å, respectively; as required

for the WE/NAM approach, b is sufficiently large such that the intermolecular forces between

the binding partners can be assumed to be isotropic (as mentioned above, only short-range

residue-residue interactions were modeled in our simulations). Initial unbound states were

generated by randomly reorienting the binding partners with respect to each other at a

separation of 35 Å using their corresponding conformations from the crystal structure of

MDM2-p53 complex.102 For the progress coordinate, we used the Cα RMSD of the p53

peptide after alignment of MDM2 ranging from 0 to 100 Å. This progress coordinate was

evenly divided into 29 bins with a target number of 6 trajectories/bin, yielding a maximum

total of 390 trajectories at any point in the WE simulation. The fixed time interval τ for

each WE iteration was set to 100 ps, which allowed for at least one trajectory to advance to

the next bin after each WE iteration.

For each p53 peptide analogue (each α value), 10 independent WE simulations of the

MDM2-p53 binding process were carried out under pseudoequilibrium conditions in which

trajectories were recycled at the q surface, but not the bound state, to allow for refinement

of the bound-state definition after completion of the simulations. Once this was refined,

we effectively recycled trajectories that reached the refined definition of the bound state

by removing the trajectories from subsequent analysis with proper renormalization of the

remaining probabilities. This renormalization was straightforward given that no trajecto-

ries in the reverse, unbinding direction were generated in our Gō-type simulations. Each

WE simulation was carried out for a maximum trajectory length of 200 ns (2000 WE itera-

tions), which was sufficiently long for obtaining converged estimates of the kon (Figure S11).
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Conformations were sampled every 1 ps for analysis.

3.3.3 Propagation of Dynamics

The dynamics of our WE simulations were propagated using a standard Brownian dynamics

algorithm105 with the inclusion of hydrodynamic interactions (HI),100 as implemented in the

UIOWA BD software.100,106 Hydrodynamic radii were set to 5.3 Å, which has been found

to reproduce the translational and rotational diffusion coefficients of all-atom models of

folded proteins when using the residue-level models of this study.100 The solvent viscosity

was set to 0.89 cP to represent water at 25 ◦C. To enable the use of a 50 fs time step, all

pseudobonds between residues were constrained to their native bond lengths by applying the

LINCS algorithm.107

3.3.4 Calculation of Bimolecular Rate Constants

All bimolecular rate constants k were calculated using the Northrup-Allison-McCammon

(NAM) equation:104

k =
kD(b)β

1− (1− β)kD(b)/kD(q)
(3.3)

where kD(r) is the diffusion rate constant for the two binding partners achieving a separation

distance r, and β is the probability that a simulation starting from the unbound state with a

separation distance of b (35 Å) reaches the target state before drifting apart to a separation

distance of q (50 Å). To calculate the rate constant k1, the target state is the encounter

complex; likewise, to calculate kon, the target state is the native, bound state (see definitions

in Results).

Assuming that the motions of the two binding partners are isotropic, the diffusion rate

constants were calculated using the Smoluchowski equation: kD = 4πDr, where D is the rela-

tive translational diffusion coefficient of the two partners (i.e., the sum of their corresponding

diffusion coefficients). Therefore, eq 3 reduces to

k =
4πDbβ

(1− (1− β)b/q)
(3.4)
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The translational diffusion coefficient of MDM2 was calculated using five 10 µs standard

simulations of isolated MDM2, and the translational diffusion coefficient for each analogue of

the p53 peptide was calculated using conformations sampled every 100 ps from a single 10 µs

standard simulation of the corresponding isolated p53 peptide. The β value was estimated

using the following equation:108

β =
f target

SS

f target
SS + fqsurf

SS

(3.5)

where f target
SS is the steady-state flux into the target state (encounter complex or bound

state) and fqsurf
SS is the steady-state flux across the q surface in the WE simulation. All rate

constants were calculated from each of 10 independent WE simulations, and then averaged.

Uncertainties in the averaged rate constants represent two standard errors of the mean

(SEM).

3.3.5 Calculation of the Percentage of Productive Collisions

The percentage of productive collisions (i.e., encounter complexes that succeed in rearranging

to the bound state) was calculated according to the following equation:

% productive collisions =
fnative

SS

f encounter
SS

(3.6)

where fnative
SS is the steady-state flux into the native, bound state and f encounter

SS is the steady-

state flux into the encounter complex; both fluxes were evaluated only after an approximate

steady state was achieved (Figure S11). Reported percentages of productive collisions are

averages over 10 independent WE simulations with uncertainties representing two SEM.

3.4 RESULTS

The goals of this study were to determine (i) the effects of preorganizing the p53 peptide

ligand on its kon for binding the MDM2 protein receptor and (ii) the effect of increasing the

concentration of the MDM2 receptor on the binding mechanism. As shown in Figure 4A,
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the extent of preorganization in the p53 peptide was tuned by applying a scaling factor α

to the components of the energy function that involve solely the p53 peptide (see Methods)

and setting the α values to 0.1 (fully disordered), 0.5, 1.0, and 2.0 (fully preorganized).

To enable the calculation of statistically robust rate constants, we applied the WE path

sampling strategy25,27 in conjunction with molecular simulations to enhance the sampling

of binding events while maintaining rigorous kinetics. For each p53 peptide analogue (i.e.,

each α value), a set of 10 independent WE simulations were carried out, yielding > 3000

binding events per simulation to achieve highly precise rate constants with relative errors

of ≤16%, which amounts to a ≤ 0.1 kcal/mol difference in the corresponding free energy

barrier at 25 ◦C as estimated by −RT ln(1/1.16). The simulations required one month to

complete using 128 CPU cores of 2.3 GHz AMD Interlagos processors.
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Figure 4: Tuning of the protein model to yield p53 peptide analogues with varying extents

of preorganization. (A) Representative conformations of p53 peptide analogues that range

from fully disordered (α = 0.1) to fully preorganized (α = 2.0). Conformations were sampled

every 1 µs from 10 µs BF simulations of the corresponding unbound p53 peptide. (B) The

fully disordered p53 analogue folds only upon binding the MDM2 protein as revealed by

monitoring the average fraction of native contacts in the p53 peptide (Qp53) as a function of

the fraction of native contacts between MDM2 and p53 peptide (QMDM2/p53) for all of the p53

peptide analogues. Data shown for each p53 peptide analogue is based on 10 independent

WE simulations.

3.4.1 Is There a Kinetic Advantage to Being Disordered vs Preorganized?

To directly compare the binding kinetics of the fully disordered p53 peptide relative to

the other more preorganized analogues, it was essential to ensure that the fully disordered

peptide was able to fold into an α-helical conformation upon binding MDM2. As shown by

Figure 4B, all of the p53 peptide analogues are folded when bound to the MDM2 protein.
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By construction, our model of the fully disordered peptide (α = 0.1) results in an induced fit

(folding-after-binding) mechanism109 in which the peptide folds only upon binding MDM2 in

our simulations; likewise, the fully preorganized peptide (α = 2.0) results in a conformational

selection (binding-after-folding) mechanism in which the peptide is fully folded before binding

MDM2 in our simulations (Figure 4B).

For all of the p53 peptide analogues, ranging from fully disordered to fully preorganized,

our simulations reveal that the mechanism of binding to the MDM2 receptor involves a

two step process in which diffusive collisions of the binding partners first form a metastable

“encounter” complex followed by rearrangement of the encounter complex to the native,

bound state (Figure 4; Figure S9):

p53 peptide + MDM2

k1−−⇀↽−−
k-1

encounter complex
k2−−⇀↽−−
k-2

bound state (3.7)

where k1 is the rate constant for formation of the encounter complex, k−1 is the rate constant

for the dissociation of the encounter complex to the unbound state, k2 is the rate constant

for rearrangement of the encounter complex to the bound state, and k−2 is the rate constant

for rearrangement of the bound state to the encounter complex.

For our calculations of rate constants, we used the most stringent definitions of the

encounter complex and bound state that encompassed the corresponding basins in the prob-

ability distributions of both the fully disordered and preorganized p53 peptides in Figure 5.

The encounter complex was defined as those conformations satisfying the following criteria:

(i) the binding partners are within van der Waals contact (< 6 Å), (ii) the Cα RMSD for

the p53 peptide after alignment of MDM2 is > 2 Å, and (iii) at least one MDM2-p53 native

contact is formed. The bound state was defined as having the binding partners within van

der Waals contact and a Cα RMSD ≤ 2 Åof the p53 peptide after alignment of MDM2.

To assess whether there is a kinetic advantage to the peptide ligand being disordered

or preorganized, we computed the kon values of the exact ordered and disordered analogues

using the NAM framework in conjunction with WE simulations (see Methods). As shown

in Table 1, the ratio of the kon for the fully disordered peptide relative to that of the fully
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preorganized peptide is 0.9 ± 0.2 (uncertainties represent two SEM), with a percent uncer-

tainty that amounts to only a 0.1 kcal/mol difference in the corresponding free energy barrier

as estimated by −RT ln(kα=2.0
on /kα=0.1

on ). Thus, given the high precision of these computed

values, any kinetic advantage to being disordered (or preorganized) is very small.

We next examined the extent to which ligand preorganization influences the individual

steps of the binding process. The computed bimolecular rate constant for formation of the

encounter complex, k1, of the fully disordered p53 peptide is within error of that of its

fully preorganized analogue with a ratio of 1.0 ± 0.1, indicating that being disordered (or

preorganized) did not enable more rapid initial collisions.
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Figure 5: Zoomed-in views of probability distributions over the WE progress coordinate for

various extents of structure in the p53 peptide, ranging from fully disordered (α = 0.1) to

fully preorganized (α = 2.0) (for a representative full view of the probability distribution,

see Figure S10). The progress coordinate consisted of the Cα RMSD of the p53 peptide after

alignment of MDM2 from the crystal structure of the MDM2-p53 peptide complex29 and

minimum MDM2-p53 distance. Definitions of the encounter complex and bound state are

delineated by the solid black lines (for a representative full view of the probability distribu-

tion, see Figure S10). The color scale represents −RT lnP where P is the pseudoequilibrium

probability density based on trajectory weights from each of 10 independent WE simulations

that were carried out for the corresponding MDM2-p53 system (see Methods). Contour lines

represent intervals of 0.5 kcal/mol.
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relative to α = 0.1

α = 0.1 α = 0.5 α = 1.0 α = 2.0 α = 0.5 α = 1.0 α = 2.0

kon (107M−1s−1) 5.7± 0.6 5.7± 0.3 5.6± 0.6 5.1± 0.8 1.0± 0.1 1.0± 0.2 0.9± 0.2

k1 (107M−1s−1) 6.1± 0.5 6.1± 0.3 6.2± 0.6 5.9± 0.6 1.0± 0.1 1.0± 0.1 1.0± 0.1

lifetime of the encounter complex (ps) 80± 20 90± 30 130± 50 80± 20 1.1± 0.5 1.6± 0.8 1.0± 0.4

% productive collisions 65± 3 64± 6 68± 3 66± 2 1.0± 0.1 1.1± 0.1 1.0± 0.1

D(10−6cm2/s) 4.2± 0.7 3.9± 0.4 3.9± 0.5 4.0± 0.4 0.9± 0.2 0.9± 0.2 1.0± 0.2

Table 1: Computed kon, k1 for Formation of the Encounter Complex, Lifetime of the En-

counter Complex, % Productive Collisions, and Relative Translational Diffusion Coefficients

D for the MDM2-p53 Binding Process and p53 Peptide Analogues Ranging from Fully Dis-

ordered (α = 0.1) to Fully Preorganized (α = 2.0) in the Presence of Hydrodynamic Inter-

actions (HIs). Data shown are averages from 10 independent WE simulations; uncertainties

represent two SEM.

Given that native contacts are rewarded and non-native contacts are penalized in our

simulation model (a Gō-type model), k−2 � k2 such that the expression for the overall

association rate constant is kon = (k1k2/(k−1 + k2)). Since kon and k1 are within error of

each other for all of the peptide analogues [e.g., for the fully disordered peptide, the kon

and k1 are (5.7 ± 0.6) ×107 M−1s−1 and (6.1 ± 0.5) ×107 M−1s−1 , respectively], the

kinetics of the binding processes must be close to the limiting case where k−1 � k2, such

that kon = (k1k2/(k−1 + k2)) ∼= k1.109 The formation of the encounter complex is therefore

rate-limiting for all of the p53 peptide analogues (k2 was not computed since the hybrid

WE/NAM approach permits calculation of bimolecular rate constants, but not unimolecular

rate constants). Interestingly, the most preorganized peptide analogues (α = 1.0 and α

= 2.0) undergo partial loss of structure upon forming the encounter complex (Figure 4B).

This result suggests that the MDM2 receptor might aid the process of binding by disrupting

preformed interactions within the p53 peptide that hinder rearrangement of the encounter

complex to the bound state.

To gain further insight into the similarity in the kon values among all of the p53 peptide
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analogues, we calculated the percentage of productive collisions (i.e., those collisions that

eventually reach the bound state) and the lifetime of the encounter complex. As shown in

Table 1, the percentage of productive collisions for the fully disordered and fully preorga-

nized p53 peptides are within error of each other (a ratio of 1.0 ± 0.1 for the percentage of

productive collisions of the fully disordered peptide relative to that of the fully preorganized

peptide) as are the lifetimes of the encounter complex (ratio of 1.0 ± 0.4). The high per-

centages of productive collisions (65 ± 3% and 66 ± 2% for the fully disordered and fully

preorganized peptides, respectively) are consistent with our conclusion above that k−1 � k2.

Given that our simulations were carried out under steady-state conditions, generating path-

ways in only the binding direction, it was possible to obtain statistically robust estimates

of nonequilibrium observables (e.g., rate constants and percentage of productive collisions),

but not equilibrium observables (e.g., populations and lifetimes of the encounter complex),

which would require sampling of unbinding as well as binding pathways. Nonetheless, since

both the percentage productive collisions and lifetimes of the encounter complex are similar

for the fully disordered and fully preorganized peptides, k−1 as well as k2 must be similar

for the peptides. Thus, the folding of the fully disordered p53 peptide upon binding MDM2

does not appear to affect k2 relative to that of the fully preorganized peptide. It is worth

noting that the k2 step may be slower in all-atom simulations due to attractive non-native

interactions that are missing in our Gō-type simulations and that such nonnative interactions

would likely result in additional benefits to the p53 peptide being preorganized relative to

being disordered.

Our computed kon values are within error of the computed kon from atomistic simulations

[(7 ± 4) ×107M−1s−1] 11 and 6× faster than the experimental value (9.2 ×106M−1s−1).110

Thus, while the use of the Gō-type potential energy function98,99 would be expected to

artificially accelerate the dynamics,111,112 the inclusion of appropriately parametrized HIs

yields realistic rate constants.100 In particular, the computed relative translational diffusion

coefficients for MDM2 and the p53 peptide for all of the peptide analogues are in excellent

agreement with that predicted for the corresponding all-atom models by the hydrodynam-

ics program HYDROPRO,113 3.7 ×10−6cm2/s. As others have shown,100 the translational

diffusion coefficients of proteins are underestimated in molecular simulations that neglect
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HIs in our case, by 10× (Table 1; Table 2) underscoring the importance of including HIs

in simulations that lack explicit solvent.100 Interestingly, the extent of structure in the p53

peptide has no significant effect on the relative translational diffusion coefficient for the p53

peptide and MDM2 protein.

3.4.2 Effect of Including Hydrodynamic Interactions (HIs)

The inclusion of HIs in our simulations increased the kon by 30× (Table 1; Table 2). This

result may appear at odds with previous simulation studies of protein-protein associations

in which the inclusion of HIs was found to slow down the approach of the proteins.8,114

However, our results are in fact consistent with these studies since the effect of including

HIs on the kon depends on the extent to which the intramolecular and intermolecular HIs

have opposing effects on the diffusion of the binding partners. Whereas intramolecular

HIs speed up the diffusion of binding partners that have no interactions with each other,

yielding larger translational diffusion coefficients, intermolecular HIs slow down the diffusion

of the binding partners when they are close to one another and have the tendency to move

together. Our results involving the MDM2–p53 system reveal that the net effect of including

both intramolecular and intermolecular HIs is a faster k1 as well as slower dissociation of

the encounter complex (k−1), the latter being evident from longer lifetimes of the encounter

complex and a greater percentage of productive collisions.

3.4.3 Effect of Increasing Receptor Concentration

As demonstrated by previous experimental studies, the mechanism by which a small organic

ligand binds a disordered protein receptor shifts from conformational selection to induced

fit with increasing ligand concentration.94,95 Here, we examined the effects of increasing the

concentration of a protein receptor (MDM2) on its mechanism of binding to a disordered

peptide (p53 peptide), i.e., the relative fluxes through conformational selection and induced-

fit mechanisms (Figure 63A).
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Figure 6: Conformational selection and induced-fit mechanisms of binding, and the effects of

increasing receptor concentration. (A) Conformational selection and induced fit mechanism

of binding for an IDP ligand and its folded receptor. N is the folded (fully preorganized) state

of the IDP, U is the unfolded (fully disordered) state of the IDP, and R is the receptor, U:R

and N:R are the encounter complexes resulting from diffusional collisions of the unfolded and

folded states, respectively, with the receptor, and NR is the native, bound conformation. (B)

Fractional flux through conformational selection (CS) for the binding process as a function

of receptor (MDM2) concentration. Given that the equilibrium constant Keq of the IDP

(Keq = kf/ku) is not known, the fractional flux is estimated for three Keq values (0.01,

1, and 100). The black line represents the [MDM2] used in an experimental study of the

MDM2-p53 peptide binding mechanism.110

Given that the computed kon k1 for all of the p53 peptide analogues in this study, the

binding mechanism for the MDM2/p53 peptide system can be approximated as a twostep

mechanism with a very fast second step (the k2 step; Figure S12) such that the fractional

flux can be calculated using the following equation:

FCS

FCS + FIF

=
kf

(ku + kf) + kon[R]
(3.8)
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where kon is set to an order-of-magnitude estimate (107 M−1s−1 ) since the computed kon

values are essentially the same for the fully disordered and fully preorganized p53 peptides;

FCS and FIF are the fluxes through the conformational selection and induced-fit mechanisms,

respectively; [R] is concentration of the folded receptor (MDM2); as shown in Figure 6A,

kf is the rate constant for folding of the ligand (p53 peptide) from the fully disordered,

unfolded (U) state, and kU is the rate constant for unfolding of the ligand from the fully

preorganized, native folded (N) state. Thus, in this scenario, the fractional flux through

conformational selection depends only on the concentration of the receptor and is therefore

independent of ligand concentration. A detailed derivation of eq 7 can be found in the

Supporting Information.

Since the equilibrium constant Keq (ratio of kf /kU) for the folding of the isolated p53

peptide is not known, we tested three different scenarios: (i) Keq = 1 for equally stable

unfolded and folded states, (ii) Keq = 100 for an unfolded state that is much less stable than

the folded state, and (iii) Keq = 0.01 for an unfolded state that is much more stable than the

folded state (Figure 6B). When the folded state is much less stable than the unfolded state

(Keq = 0.01), the mechanism of binding would be solely induced fit, regardless of MDM2

concentration. Substantial flux through conformational selection would be expected only

when the folded state is equal or greater in stability to the unfolded state (Keq ≥ 1). For

example, if Keq = 1, 10% flux through conformational selection would be expected at the

MDM2 concentration (1 µm) in binding kinetics experiments.110 In the regime where Keq ≥

1, the mechanism of binding is predicted to shift from being dominated by conformational

selection to induced fit with increasing MDM2 concentration (Figure 6B). These results

are consistent with those from atomistic simulations in which a Markov state model115,116

was constructed to estimate rate constants for the MDM2-p53 peptide binding process and

relative fluxes through conformational selection and induced fit were estimated (i) using a

mechanism consisting of four instead of the three states used here and (ii) for various extent

of helical content of the p53 peptide, which is analogous to varying Keq values for the un-

folding/folding equilibrium of the peptide.93 In particular, the dominant binding mechanism

becomes induced fit as the concentration of MDM2 increases and the extent of helical content

decreases (or Keq decreases).
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3.5 DISCUSSION

To our knowledge, the only other study that has directly compared the binding kinetics of

an IDP relative to its exact preorganized analogue is a simulation study that focused on

the binding of the disordered pKID domain to its partner protein, KIX.92 In this study,

the disordered pKID domain was found to have a modest kinetic advantage (>> 2.5x) for

binding relative to the preorganized analogue due to a more rapid k2 step, which corresponds

to the rearrangement of the encounter complex to the native, bound state. In contrast, our

study yielded similar computed kon values for the disordered and preorganized analogues of

the p53 peptide in binding the MDM2 protein, revealing that the folding of the disordered

p53 peptide upon binding MDM2 is very fast such that the k2 step is just as rapid as that

of the preorganized analogue.

As noted above, the pKID domain is significantly larger than the p53 peptide: upon

binding its partner protein, the pKID domain adopts two α-helices while the p53 peptide

adopts only a single α-helix. Given its larger size, the folding of the fully disordered pKID

domain is slower and may therefore have a more significant influence on k2. In particular,

since the fully disordered pKID consists of two segments, the folding of the domain can

take advantage of a dock-and-coalesce mechanism81 in which the docking of one segment

facilitates the folding process in the k2 step.

The fact that our computed k1 values for the formation of the encounter complex are the

same for the disordered and preorganized p53 peptides indicates that the MDM2-p53 bind-

ing process does not involve the “fly-casting” mechanism in which the disordered peptide

would be predicted to collide more rapidly with its partner protein due to a greater capture

radius.80 The lack of a fly-casting effect in our molecular simulations is underscored by our

use of a Gō-type potential, which creates the optimal scenario for capturing the effect, i.e.,

the fully disordered p53 peptide folds only upon binding (forming ≥70% of intramolecular

p53 native contacts only upon forming ≥98% of intermolecular MDM2-p53 native contacts;

Figure 4B). Furthermore, we observed no differences in the capture radius of the fully disor-

dered p53 peptide relative to its fully preorganized analogue as quantified by the radius of

gyration Rg (most probable values of 7.7 and 7.3 Å, respectively) as well as a more sensitive
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metric, the maximum principal axis radius RM (6.6 and 6.9 Å, respectively; see Figure S11),

despite the fact that the disordered conformations were generated with no rewarding of na-

tive contacts. The lack of differences in the capture radius and therefore the hydrodynamic

radius is consistent with the fact that the computed translational diffusion coefficients of the

fully disordered and fully preorganized p53 peptides are indistinguishable from each other

(Table 1). Regardless, based on the Stokes-Einstein equation in which the translational diffu-

sion coefficient is inversely proportional to the hydrodynamics radius, any kinetic advantage

that could result from a larger capture radius (and therefore hydrodynamics radius) of the

disordered peptide relative to its preorganized analogue might be canceled out by the effects

of a slower translational diffusion coefficient.
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3.6 CONCLUSIONS

We have determined the effects of preorganization of the intrinsically disordered, N-terminal

p53 peptide on the kinetics of binding its partner protein, MDM2, using molecular simula-

tions. In particular, our application of the WE strategy enabled the generation of > 3000

of binding events, yielding statistically robust kon values for the fully disordered p53 peptide

and exact analogues of the peptide that have been preorganized to various extents.

The resulting computed kon values are in reasonable agreement with experiment. No-

tably, the kon for the fully disordered p53 peptide is within error of that for its fully pre-

organized analogue, indicating no kinetic advantage to being disordered or preorganized for

binding MDM2. Given that the rate constant k1 for formation of the encounter complex is

essentially the same for the fully disordered and fully preorganized peptides, fly-casting is

not a significant effect in our simulations of the MDM2-p53 peptide system, even though

the ideal scenario for this effect was modeled, i.e., using a Gō-type potential that ensured

folding of the fully disordered peptide only upon binding MDM2. Furthermore, since the

percentages of productive collisions and lifetimes of the encounter complex are similar for

the fully disordered and preorganized p53 peptides, the rate constant k2 for rearrangement

of the encounter complex to the bound state must also be similar. Thus, folding of the

fully disordered p53 peptide upon binding MDM2 during the k2 step must be very rapid. In

contrast, the slower folding of larger IDPs may have a more significant effect on k2 relative

to that for their fully preorganized analogues, as predicted for the pKID domain92 and by

the dock-and-coalesce mechanism.81 Interestingly, the two most preorganized p53 peptide

analogues undergo partial loss of structure upon forming the encounter complex, implying

that the MDM2 receptor might “erase” preformed interactions within the p53 peptide that

hamper the k2 step.

Finally, based on our kon values, we determined the effect of increasing the concentration

of MDM2 on its mechanism of binding to the disordered p53 peptide ligand. When the

unfolded state is much less stable than the folded state of the isolated p53 peptide, the

mechanism for the binding of the MDM2 receptor to the disordered p53 peptide is predicted

to switch from being dominated by conformational selection to induced-fit with increasing
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concentration of MDM2. On the other hand, when the unfolded state is either equal to or

much greater in stability than the folded state, the mechanism of binding is solely induced fit,

regardless of the MDM2 concentration. These results are consistent with those from recent

atomistic simulations of the binding process involving the MDM2 receptor and p53 peptide

ligand.93 Given the general features of our residue-level simulation models, results from

our molecular simulations are relevant to any protein binding process involving a disordered

peptide of a similar length to the p53 peptide that folds into a single α-helix upon binding its

partner protein. Such disorder-to-helix transitions are common among molecular recognition

events, including protein interactions of IDPs that play crucial cellular roles.79,96,117 Our

results provide a valuable set of simulation data for testing future hypotheses that might be

proposed for the binding mechanisms of IDPs and their preorganized analogues.
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3.8 SUPPORTING INFORMATION

3.8.1 SI Figures
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Figure 7: Probability distributions of the fraction of native contacts of the p53 peptide (Qp53)

in the absence of MDM2, ranging from fully disordered (α = 0.1) to fully preorganized (α =

2.0). Distributions for each value of the scaling factor α were generated using conformations

sampled every 100 ps from a single 10 µs standard simulation starting from the MDM2-bound

conformation.
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Figure 8: Average fraction of native contacts in p53 (Qp53) as a function of the εnative

for MDM2-p53 native contacts. For each εnative value, the average Qp53 was calculated

using conformations sampled every 100 ps from a single 10 µs standard simulation of the

MDM2-p53 peptide complex with the fully disordered peptide (α = 0.1) starting from the

MDM2-bound conformation.
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Figure 9: Full view of the free energy landscape of the MDM2-p53 binding process as a

functionof the Cα RMSD of the p53 peptide after alignment of MDM2 from the crystal

structure of the MDM2-p53 peptide complex 1 and the minimum MDM2-p53 distance for

the fully disordered p53 peptide (α = 0.1). Data shown is based on conformations sampled

every 1 ps from 10 independent WE simulations under steady-state conditions. Contour

lines represent intervals of 0.5 kcal/mol.
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Figure 10: Computed kon as a function of WE iteration for p53 peptide analogues with

various extents of structure, ranging from fully disordered (α = 0.1) to fully preorganized

(α = 2.0). The molecular time is defined as Nτ where N is the number of WE iterations and

τ is the fixed time interval of each iteration.
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Figure 11: Probability distributions of the “capture” radius for the p53 peptide with various

extents of structure, ranging from fully disordered (α = 0.1) to fully preorganized (α = 2.0),

as monitored by the radius of gyration Rg, and maximum principal axis radius RM. For

each a value, the probability distribution was calculated from a 10 µs BF simulation of the

isolated peptide. Based on the Rg metric, it may appear that the fully disordered p53 peptide

achieves a significantly larger maximum value than that of the fully preorganized peptide

(11.6 Å vs. 8.0 Å). However, the more sensitive RM metric reveals that the fully disordered

p53 peptide not only assumes more expanded conformations (maximum value of 10.2 Å),

but also more contracted conformations (minimum value of 3.3 Å).

43



α (without HI) 0.1 0.5 1.0 2.0

kon (106M−1s−1) 1.5± 0.4 2.0± 0.3 1.4± 0.4 1.3± 0.3

k1(106M−1s−1) 1.8± 0.3 2.1± 0.3 1.7± 0.4 1.3± 0.2

lifetime of the encounter complex (ps) 50± 10 90± 20 60± 20 80± 20

% productive collisions 45± 6 49± 4 43± 5 49± 6

D(10−6cm2/s) 0.4± 0.1 0.4± 0.1 0.4± 0.1 0.4± 0.1

Table 2: Computed kon, k1 for formation of the encounter complex, lifetime of the en-

counter complex, % productive collisions, and relative translational diffusion coefficients for

the MDM2-p53 binding process and various analogues of the p53 peptide, ranging from fully

disordered (α = 0.1) to fully preorganized (α = 2.0) in the absence of hydrodynamic inter-

actions (HIs). Data shown are averages from 10 independent WE simulations; uncertainties

represent 95% confidence intervals.

3.8.2 SI Methods

3.8.2.1 Calculation of the “capture” radius. To quantify the extent that the p53

peptide can reach out to contact its partner protein —termed the “capture radius” — we

computed the radius of the longest principal axis of an approximate ellipsoid surrounding

the peptide. A radius of gyration tensor was first constructed as follows:

R =


∑
x2
n

∑
xnyn

∑
xnzn∑

ynxn
∑
y2
n

∑
ynzn∑

znxn
∑
znyn

∑
z2
n

 (3.9)

where R is the gyration tensor, and xn,yn,zn are the coordinates of the nth pseudoatom

assuming the center of geometry is located at the origin. The eigenvalues of R, {λ1, λ2, λ3},

give the principal moments of the gyration tensor along the principal axes of the peptide.

Assuming λ3 > λ2 > λ1, then the radius of the longest principal axis, RM , is given by:

RM = 2
√
λ3 (3.10)
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Probability distributions of RM as well as the radius of gyration Rg for each p53 peptide

analogue were calculated using conformations sampled every ns from a 10 µs BF simulation

of the peptide in its unbound, isolated state.

3.8.2.2 Derivation of equation for fractional flux through conformational selec-

tion. Given that the computed kon
∼= k1 for both the fully disordered (unfolded) and fully

preorganized (folded) p53 peptide analogues, we can approximate the corresponding binding

mechanisms with those shown in Fig. S12.
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Figure 12: Approximation of the binding mechanism of the disordered p53 peptide ligand to

the folded MDM2 protein receptor when kon
∼= k1. States are defined as in Fig. 6A.

As done by others95, fluxes through the conformational selection and induced-fit mech-

anisms can be calculated using the following equations for parallel and serial paths:

Parallel reaction paths : Ftotal =
∑
Fi

Serial reaction paths : Ftotal =
∑

1
1/Fi

where Fi is the flux of the ith reaction step. The fluxes through conformational selection

and induced fit (FCS and FIF , respectively) are therefore predicted by the following:
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FCS = (
1

kf [U ]
+

1

kon[N ][R]
)−1 = (

kon[N ][R] + kU [U ]

kfkon[N ][R][U ]
)−1 =

kfkon[N ][R][U ]

kon[N ][R] + kf [U ]

FIF = kon[U ][R]

where U is the unfolded state of the IDP ligand, N is the native, folded state of the IDP

ligand, and R is the folded receptor; kf is the rate constant for folding of the ligand from

the unfolded (fully disordered) state; and the kon is the association rate constant, which was

found to be essentially the same value for both the unfolded (U) and folded (N) analogues

of the p53 peptide. We can then derive the expression for predicting the fractional flux

[FCS/(FCS + FIF )] through conformational selection:

FCS + FIF =
kfkon[N ][R][U ]

kon[N ][R] + kf [U ]
+ kon[U ][R]

=
kfkon[N ][R][U ] + k2

on[U ][N ][R]2 + kfkon[R][U ]2

kon[N ][R] + kf [U ]

FCS
FCS + FIF

=

kfkon[N ][R][U ]

kon[N ][R]+kf [U ]

kfkon[N ][R][U ]+k2on[U ][N ][R]2+kfkon[R][U ]2

kon[N ][R]+kf [U ]

=
kfkon[N ][R][U ]

kfkon[N ][R][U ] + k2
on[U ][N ][R]2 + kfkon[R][U ]2

=
kf [N ]

kf [N ] + kon[N ][R] + kf [U ]

Since U and N are in equilibrium (i.e. kf [U ] = kU [N ]), we can replace kf [U ] in the

denominator:

FCS
FCS + FIF

=
kf [N ]

kf [N ] + kon[N ][R] + kU [N ]
=

kU
(kf + kU) + kon[R]

Thus, the expression we have used to calculate the fractional flux through conformational

selection is the following:

FCS
FCS + FIF

=
kU

(kf + kU) + kon[R]
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4.0 HIGHLY EFFICIENT COMPUTATION OF BASAL KON USING

DIRECT SIMULATION OF PROTEIN-PROTEIN ASSOCIATION WITH

FLEXIBLE MOLECULAR MODELS

The text in this chapter has been adapted from Ali S. Saglam and Lillian T. Chong, J. Phys.

Chem. B 2016, 120, 117-122.

4.1 CHAPTER SUMMARY

An essential baseline for determining the extent to which electrostatic interactions enhance

the kinetics of protein-protein association is the “basal“ kon, which is the rate constant for as-

sociation in the absence of electrostatic interactions. However, since such association events

are beyond the milliseconds timescale, it has not been practical to compute the basal kon by

directly simulating the association with flexible models. Here, we computed the basal kon

for barnase and barstar, two of the most rapidly associating proteins, using highly efficient,

flexible molecular simulations. These simulations involved a) pseudo-atomic protein models

that reproduce the molecular shapes, electrostatic, and diffusion properties of all-atom mod-

els, and b) application of the weighted ensemble path sampling strategy, which enhanced

the efficiency of generating association events by >130-fold. We also examined the extent

to which the computed basal kon is affected by inclusion of intermolecular hydrodynamic

interactions in the simulations.
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4.2 INTRODUCTION

Of fundamental interest to biology is the extent to which electrostatic interactions enhance

the rate of protein-protein association. An essential baseline for determining the magnitude

of these rate enhancements is the “basal” kon, which is the rate constant for association in

the absence of electrostatic interactions.118 In principle, the basal kon should be measured in

the same solvent environment using the hydrophobic isosteres - that is, hypothetical mutants

with molecular shapes that are identical to those of the wild-type proteins, but are entirely

uncharged. However, due to the difficulty of engineering hydrophobic isosteres, experimental

studies have instead estimated the basal kon by measuring the kon for the wild-type proteins

at various salt concentrations and extrapolating to the limit of infinite salt concentration

where electrostatic interactions would be completely screened.118

An alternative approach is to construct the exact hydrophobic isosteres in silico by set-

ting all partial charges of the wild-type proteins to zero and directly computing the basal kon

by simulating the association of the hydrophobic isosteres. Ideally, such simulations would

involve the use of flexible molecular models in order to capture conformational changes dur-

ing the association process. However, since the weak associations of completely hydrophobic

proteins are beyond the milliseconds timescale,118–124 it has only been feasible to directly

compute the basal kon using rigid, models with atomically detailed simulations.119 Theoreti-

cal estimates of the basal kon have also been made using spherical models with orientational

constraints120–123 and applications of transition-rate theory to rigid, atomistic models.124

Here, for the first time, we directly computed the basal kon for a protein-protein associ-

ation process using flexible models with molecular simulations. We focused on barnase and

barstar, which are among the most rapidly associating proteins by virtue of their comple-

mentary electrostatic surfaces.119 Our simulations employed flexible, pseudo-atomic protein

models of barnase and barstar that were designed by Frembgen-Kesner and Elcock114 to

retain the molecular shapes, electrostatic potentials, and diffusion properties of the corre-

sponding atomistic models at the experimental ionic strength (50 mM).125 The same authors

have demonstrated that the use of these models with standard “brute force” simulations can

reproduce the experimental kon values of both the wild-type and mutant protein pairs. How-
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ever, they were unable to carry out such simulations to obtain a statistically robust estimate

of the kon for the hydrophobic isosteres (i.e. the basal kon) due to the large computational

cost.114

A critical feature of our study is the application of the weighted ensemble (WE) strategy25

to enhance the sampling of rare events, e.g. the slow association of completely hydrophobic,

uncharged proteins. Although the WE strategy has been previously applied to protein

binding processes using Brownian dynamics (BD) simulations,25,108 these studies were carried

out without the inclusion of HIs) between, and within, the diffusing proteins. In the absence

of explicit solvent, it has been demonstrated that the translational and rotational diffusion

coefficients of flexible protein models are drastically underestimated unless intramolecular

HIs are included in the simulations.100 In addition, the neglect of intermolecular HIs in

previous BD studies of protein binding processes114 119,122,126 is likely to have contributed to

their consistent overestimation of association rate constants.114 Importantly, our simulations

were validated by computing the kon values for both wild-type barnase and its R59A mutant,

which associates more slowly than wild-type barnase with barstar,125 and comparing the

computed values to experiment.

4.3 METHODS

4.3.1 The protein model and energy function

The wild-type and mutant pairs of barnase and barstar were represented using flexible,

pseudo-atomic models developed by Frembgen-Kesner and Elcock.114 Full details of these

models are provided in ref114. Briefly, the generation of these models began with all-atom

models of the wild-type proteins, which were based on the crystal structure of the barnase-

barstar complex (PDB code: 1BRS);127 the same models were used for both the unbound and

bound states. Approximately one pseudo-atom was then used to represent every three amino

acid residues (33 pseudo-atoms for the 110 residues of barnase and 27 pseudo-atoms for the

89 residues of barstar). For the wild-type proteins and R59A mutant barnase, the effective

49



charge method126 was used to derive effective charges for the pseudo-atomic models such that

the electrostatic potential of the corresponding all-atom model was reproduced. Electrostatic

potentials were obtained by numerically solving the non-linear Poisson-Boltzmann equation

under experimental conditions (pH 8, 25 oC, and ionic strength of 50 mM).125 Pseudo-atoms

were then positioned and sized to replicate the electron density envelope of the all-atom

model. To generate models of the exact hydrophobic isosteres of barnase and barstar, we

started with the pseudo-atomic models of the wild-type proteins and set all effective charges

to zero.

The energy function consisted of a single intramolecular term involving flexible, har-

monic bonds between the pseudo-atoms and intermolecular terms for electrostatic and non-

electrostatic interactions. To maintain the molecular shapes of the proteins, three bonds per

pseudo-atom were formed on average. All intermolecular electrostatic interactions between

pseudo-atoms were calculated using the Debye-Hückel equation; intramolecular electrostatic

interactions were omitted. Non-electrostatic interactions were calculated using a very weak

Gō-type potential energy function with a shallow well depth (ε = 0.1 kcal/mol). Thus, native

contacts were only slightly rewarded by a weakly attractive Lennard-Jones-like potential and

nonnative contacts were penalized by a purely repulsive potential.98,99 The well-depth was

kept at a minimal value in order to avoid implicitly double counting the attractive electro-

static interactions, which are assumed to be a primary driving force for the formation of the

barnase-barstar complex.125 Two pseudo-atoms were considered to form a native contact if

any non-hydrogen atoms of the residues in the all-atom model are within 5.5 Å of each other

in the crystal structure of the native complex, yielding a total of 34 intermolecular native

contacts.

4.3.2 Weighted ensemble (WE) simulations

All simulations were carried out using the WE path sampling strategy,25 as implemented

in the WESTPA software package (https://westpa.github.io/westpa).50 In this strategy, a

large number of simulations, or trajectory “walkers”, are started in parallel from the initial

state and iteratively evaluated at fixed time intervals τ for resampling in which walkers
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are either replicated or combined to maintain a similar number of walkers per bin along a

progress coordinate towards the target state. Rigorous management of the statistical weights

associated with each walker ensures that no bias is introduced into the dynamics.

In this study, the WE strategy was applied using steady-state simulations within the

framework of the Northrup-Allison-McCammon (NAM) method.104 This framework involves

the definition of two concentric spherical surfaces with radii b and q that correspond to

center-to-center separation distances for barnase and barstar. The inner sphere, or b surface,

represents the initial, unbound state, and the outer sphere, or q surface, is an absorbing

surface that is positioned at a much larger separation distance (q � b) to avoid wasting

computational effort sampling the indefinite drifting apart of the proteins. Each WE simu-

lation was started from 24 configurations of the unbound state in which barnase and barstar

were randomly oriented at a center-to-center separation distance of b. A walker was con-

tinued until the pair of proteins either exceeded a separation distance q or satisfied the

criterion for the target state for successful association, i.e. reaching a threshold value, Qrxn,

in the fraction of native intermolecular contacts, Q, that reproduces the experimental kon

for the wild-type proteins. Consistent with previous brute force simulations,114 b and q were

set to 100 and 500 Å, respectively. Upon reaching the q surface, a walker was “recycled”

by starting a new walker from the unbound state with the same statistical weight thereby

maintaining a steady state and enforcing a constant effective protein concentration (3.2 µM).

Upon reaching a particular Qrxn value, a walker was effectively recycled after completing the

WE simulation by removing the walker and its replicas prior to calculating the kon.

For each barnase-barstar pair, five independent WE simulations were performed with

different initial random seeds for BD propagation. In each simulation, the configurational

space of the protein pairs was divided into 760 bins along a progress coordinate that was

intended to capture the slowest protein motions of the association process. We used a

progress coordinate that consisted of three zones: a) a “far” zone involving the distance

between barnase and barstar, b) an “intermediate” zone involving the RMS deviation of

barstar from its bound-state position following alignment of barnase, and c) a “near” zone

involving the same RMS deviation metric as in b) and the fraction of native contacts between

barnase and barstar. Simulations were evaluated for resampling at fixed time intervals τ (or
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iterations) of 2 ns to maintain 24 walkers per bin. Each simulation was carried out for 1000

iterations, or a molecular time of 2 µs (defined as Nτ where N is the number of iterations).

4.3.3 Propagation of dynamics

The dynamics of our WE simulations were propagated using the UIOWA-BD software,100,106

which is the same BD engine that was used for the brute force simulations by Frembgen-

Kesner and Elcock.114 Consistent with these simulations, our WE simulations were performed

at a constant temperature of 25 oC using a standard BD algorithm with the inclusion of

hydrodynamic interactions (HIs) via calculation of the diffusion tensor using the equations of

Rotne & Prager and Yamakawa;128,129 the same values were used for the hydrodynamic radii

of the pseudo-atoms to reproduce the translational diffusion coefficients of the corresponding

all-atom protein models by the hydrodynamics program HYDROPRO;113 and a time step

of 0.25 ps was used throughout the simulations.

4.3.4 Calculation of kon values

For each barnase-barstar pair, the kon value was computed from each of five independent

WE simulations using conformations that were sampled every 20 ps once a steady state was

achieved (Figure S17, Supporting Information). These values were then averaged. All WE

simulations were sufficiently long to yield relative percent uncertainties in the average kon of

<20% (Figure S18, Supporting Information). Uncertainties in the average kon values were

represented by calculating 95% confidence intervals. The kon from each WE simulation was

calculated using the NAM method according to the following equation:104

kon =
kD(b)β

[1− (1− β)kD(b)/kD(q)]
(4.1)

where k(b) and k(q) are the diffusion rate constants for achieving separation distances of b

and q, respectively, and β is the probability of successful collisions, i.e. that a simulation

starting from the unbound state with a separation distance of b (100 Å) reaches the bound

state before drifting apart to a separation distance of q (500 Å). Assuming that the motions

of the binding partners are isotropic, k(b) and k(q) are given by the Smoluchowski result;
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k(r) = 4Dr where D is the relative translational diffusion coefficient of the two proteins

(i.e. the sum of their corresponding diffusion coefficients). As done for the brute force

simulations by Frembgen-Kesner and Elcock,114 we used the estimate from HYDROPRO113

for D = 2.672× 102Å2ps−1. The β value was calculated using the following equation:

β =
f bindSS

f bindSS + f qsurfSS

(4.2)

where f bindSS is the steady-state flux into the bound state and f qsurfSS is the steady-state flux

into the q surface. As evident in the above equations, the influence of HIs is considered in

our calculation of the probability of successful collisions (β), but only approximately on the

diffusion of the two proteins by using the sum of their diffusion coefficients (D).130

4.3.5 Calculation of WE efficiency

For each barnase-barstar pair, we determined the efficiency of a single WE simulation relative

to brute force simulation in computing the kon for each of five independent WE simulations;

these efficiencies were then averaged and uncertainties in the efficiencies were determined by

calculating the 95% confidence intervals. The efficiency of each WE simulation was calculated

using the following equation:

Efficiency of WE =
tBF
tWE

(4.3)

where tBF and tWE are the wall-clock times required by brute force simulation and the WE

simulation, respectively, to generate the same number of independent (uncorrelated) asso-

ciation events using the same computing resource (i.e. 256 CPU cores of 2.3 GHz AMD

Interlagos processors). Association events were considered independent if, within the period

between the event and one correlation time before the event, their corresponding trajecto-

ries did not share a common simulation segment. The correlation time was determined by

monitoring autocorrelation of the flux into the bound state as a function of the lag time and

identifying the first lag time that results in zero autocorrelation (within a 95% confidence

interval; see Figure S17, Supporting Information). Since it was not practical to directly
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obtain tBF for all of the barnase-barstar pairs (i.e., the hydrophobic isosteres), we estimated

tBF in a consistent manner for each pair using the following equation:

tBF = MBF (
0.02 days/trajectory/CPUcore

256 CPU core
) (4.4)

MBF =
number of association events

β
(4.5)

where MBF is the number of trajectories in a brute force simulation to generate the same

number of independent association events observed in a WE simulation - given that the

brute force trajectories are terminated when the proteins either associate or reach a separa-

tion distance of q according to the NAM method; 0.02 days/trajectory/core is the average

wall-clock time that would be required to complete a single brute force trajectory before

the proteins reach a separation distance of q; and β (as defined above) is the probability

calculated by WE for a single brute force trajectory to generate a successful association event

before dissociating to a separation distance of q.

4.4 RESULTS

Our general strategy for computing kon values from our simulations was to first identify a

criterion for successful association that reproduces the experimental kon for wild-type barnase

and barstar. Next, we validated the simulations by using this criterion to calculate the kon for

R59A mutant barnase and wild-type barstar, which associates 9-fold more slowly than the

wild-type proteins,125 and comparing the calculated kon to the experimental value. Finally,

we used this criterion to estimate the basal kon, i.e. the kon for the hydrophobic isosteres

in which all effective charges of the wild-type proteins are set to zero. Following the brute

force simulations by Frembgen-Kesner and Elcock,114 our criterion for successful association

was to reach a threshold value, Qrxn, in the fraction of native intermolecular contacts, Q;

dynamics were propagated using the same BD engine with the inclusion of intramolecular

HIs to achieve realistic diffusive properties of the individual proteins; and kon values were

calculated according to the NAM method (see Methods section).104
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4.4.1 Validation of the simulation strategy

Figure 13 shows the computed kon as a function of Qrxn for all five independent WE simula-

tions of each barnase-barstar pair. The experimental kon for wild-type barnase and barstar

(2.86 × 108M−1s−1)125 was reproduced when using Qrxn values of 0.27 and 0.56 for simu-

lations with and without intermolecular HIs, respectively. These values differ slightly from

those determined by Frembgen-Kesner and Elcock using brute force simulations and the

same protein models (0.32 and 0.47, respectively)114 due to more frequent monitoring of

the reaction criterion (every 20 ps instead of 100 ps); thus, our WE simulations are less

likely to have missed conformations that satisfy the reaction criterion. Importantly, using

the Qrxn values that we have identified, the computed kon values for R59A barnase and

wild-type barstar are in excellent agreement with experiment, regardless of whether or not

intermolecular HIs were included (Figure 14; see also Table S3, Supporting Information).

The reproduction of experimental kon values for both wild-type and mutant pairs of barnase

and barstar is consistent with results from brute force simulations,114 providing validation

of our WE simulation protocol. Relative to the basal kon, our computed kon values for wild-

type barnase and barstar are 53- and 103-fold faster with and without intermolecular HIs,

respectively. These rate enhancements are solely due to the electrostatic interactions be-

tween the wild-type proteins given the omission of intramolecular electrostatic interactions

in our simulations.
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Figure 13: Computed kon values for each barnase-barstar pair from each of five independent

WE simulations as a function of the fraction of intermolecular native contacts Qrxn. Results

from simulations without and with the inclusion of intermolecular HI are shown in the left

and right panels, respectively. The vertical gray line in each panel indicates the Qrxn value

that reproduces the experimental kon for the wild-type pair for simulations without and with

HI (0.56 and 0.27, respectively) and was used for calculating kon values for the mutant pairs

in that panel.
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pseudo-atomic protein model of barnase (gray) and barstar (cyan) is shown in the upper

right corner.

4.4.2 Estimation of the basal kon

The basal kon computed from our simulations with and without intermolecular HIs are (2.85

± 1.30) ×106 M−1s−1 and (5.79 ± 0.17) ×106 M−1s−1, respectively. At the effective protein

concentration maintained in our simulations (3.2 µm), these rate constants correspond to

timescales beyond tens of milliseconds. Our computed basal kon values are similar to those

using less computationally intensive strategies; in particular, the use of spherical models

with orientational constraints120–123 has provided estimates in the range of 105-106 M−1s−1

and the use of rigid, atomistic models in either the application of transition-rate theory124

or direct BD simulation of protein-protein association119 has yielded estimates of ∼ 1× 106
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M−1s−1. The similarity of our estimates to these previous estimates suggests that flexible

models may not be essential for obtaining realistic estimates of kon values for proteins such

as barnase and barstar that do not undergo significant conformational changes upon binding

(the Cα RMS deviation between the crystal structures of the unbound131,132 and bound127

conformations is only 0.5Å for both barnase and barstar). However, it has not been possible

to directly estimate the basal kon with uncertainties of <100% using standard BD simulations

with rigid, atomistic models since the association events were much slower in the absence

of electrostatic forces.119 On the other hand, our WE simulations with flexible molecular

models enable significantly more precise calculations of the kon (uncertainties of 22-46%) and

could therefore be used for even more complicated binding processes, including ones that

involve large conformational changes. Notably, our computed kon values are significantly

lower than that obtained by experiment from extrapolation to infinite salt concentration

(1.4 × 107M−1s−1),118 suggesting that the favorable electrostatic interactions between the

proteins are not completely eliminated at high salt concentrations.

4.4.3 Effect of intermolecular HIs on the kinetics of association

Although the inclusion of intermolecular HIs has no effect on the ability of the simulation

model to reproduce the effects of mutation on the kon, for a fixed value of Qrxn, the inclusion

of intermolecular HIs significantly slows down the rate of association for all three pairs of the

barnase-barstar system (Figures 14 and 15). Surprisingly, the extent to which kon decreases is

essentially the same for wild-type and R59A mutant pairs (e.g. by ∼ 5-fold at Qrxn = 0.27).

In contrast, the impact of intermolecular HIs in the brute force simulations by Frembgen-

Kesner and Elcock was more pronounced for slower associating mutants of barnase such as

R59A in which the electrostatic interactions with barstar are diminished.114 Based on these

results, it was predicted that the impact would be the most pronounced for the hydrophobic

isosteres of barnase and barstar. However, the enhanced sampling provided by the WE

strategy reveals no statistical difference between the impact of the intermolecular HIs on the

kon for the wild-type and R59A mutant pairs. For the hydrophobic isosteres, our results are

inconclusive. Although it was possible to obtain statistically robust estimates of the basal kon
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–which was the primary goal of this work– our simulations did not reach the level of precision

in the ratio of the kon values with and without intermolecular HIs that would be required

to determine the effect of HIs on the association kinetics relative to the wild-type pair (note

the large confidence intervals in Figure 15). For future studies of this effect, significantly

greater sampling using a larger number of simulations and/or longer simulations would be

required to achieve a sufficient level of precision in the computed kon values, particularly in

the absence of intermolecular HIs.
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Figure 15: Ratio of association rate constants kwithHIon /kwithoutHIon computed from simulations

with and without intermolecular HIs as a function of the fraction of intermolecular contacts

Qrxn. The shaded regions represent 95% confidence intervals for averages (filled circles) from

five independent WE simulations.
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4.4.4 Efficiency of WE simulation

Finally, it would not have been practical to obtain converged estimates of the basal kon

without the use of the WE strategy. In addition, a highly scalable, parallel implementation

of this strategy was essential since it would have otherwise required > 2 years to carry out

the simulations using a serial implementation. To determine the efficiency of parallelized

WE vs. brute force simulation in estimating the kon, we compared the wall-clock time that

would be required of WE vs. brute force simulation (both using the NAM framework) to

generate the same number of independent (uncorrelated) association events using the same

computing resource (256 CPU cores of 2.3 GHz AMD Interlagos processors). Figure 16 shows

the efficiencies of WE simulations relative to brute force simulations for each barnase-barstar

pair (see also Table S4, Supporting Information). For the wild-type pair, a WE simulation

was 6-fold more efficient than brute force simulation with the inclusion of intermolecular
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HI. This efficiency increased to 46-fold for the R59A mutant pair and ultimately 131-fold

for the hydrophobic isosteres. In the latter case, brute force simulation using the same

flexible protein models would be highly impractical, requiring 386 days in wall-clock time

to generate the same number of association events (> 1000) as a single WE simulation,

which required only 3 days. The greater efficiency of WE observed for the slower processes

(i.e. increasing with the barrier height) is consistent with previous WE studies of other rare

events.69,108,133,134

4.5 CONCLUSIONS

In conclusion, we have directly computed the basal kon for a protein-protein association

process for the first time using flexible models with molecular simulations. In particular,

we computed the basal kon for the barnase-barstar system using highly efficient, flexible

molecular simulations. Our computed basal kon is significantly lower than that obtained

by experiment from extrapolation to infinite salt concentration, suggesting that the elec-

trostatic interactions are not completely eliminated at high salt concentrations. This result

underscores the importance of directly computing the basal kon using the true hydropho-

bic isosteres of the proteins under regular salt concentrations—a goal that can only be

achieved by molecular simulation. Relative to our basal kon, the electrostatic interactions of

the wild-type proteins enhance the rate of association by > 130-fold. As demonstrated by

Frembgen-Kesner and Elcock using brute force simulations,114 the inclusion of intermolecu-

lar HIs significantly decreases the computed kon values for both wild-type and mutant pairs.

However, the extensive sampling provided by our WE simulations has revealed that the ex-

tent by which the kon is reduced is the same for both the wild-type and R59A mutant pairs.

For the hydrophobic isosteres, the relative extent to which the kon was affected by the inter-

molecular HIs was inconclusive due to insufficient precision in the ratio of the kon with and

without intermolecular HI. Finally, our results demonstrate that WE simulations are orders

of magnitude more efficient than brute force simulation in providing converged estimates of

rate constants for the slow associations of proteins in the complete absence of electrostatic
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interactions. The computation of such rate constants is otherwise impractical when using

flexible protein models—even when these models are coarse-grained. Given its high effi-

ciency, the simulation strategy used in this study would be useful for even more complicated

systems, including those that undergo large conformational changes upon binding.
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4.7 SUPPORTING INFORMATION
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Figure 17: Average calculated kon values for each barnase-barstar pair as a function of the

molecular time from five independent WE simulations without and with the inclusion of

intermolecular HI (top and bottom panels, respectively). The molecular time is defined as

Nτ where N is the number of WE iterations and τ is the fixed time interval of each iteration.

Uncertainties (shaded in pink) are 95% confidence intervals. All subsequent analysis of the

simulations was performed starting from a molecular time where an approximate steady

state has been reached (vertical lines).
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Figure 18: A representative autocorrelation of the flux into the bound state from a single WE

simulation as a function of the lag time and its use in determining the number of indepen-

dent association events. Data shown corresponds to a simulation involving the hydrophobic

isosteres with the inclusion of intermolecular HI. The lag time is the frequency with which

the flux into the bound state (Qrxn = 0.27) was sampled and the correlation time (vertical

gray line) is the time interval required to reach zero autocorrelation in the flux, i.e. the 95%

confidence interval centered on zero (gray shaded region). Association events were consid-

ered independent if, within the period between the event and one correlation time before the

event, their corresponding trajectories did not share a common simulation segment.
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kon/108(M−1s−1)

simulation experiment

without HI with HI

wild-type

barnase/barstar
2.94± 0.96 3.04± 0.66 2.86

R59A barnase/

wild-type barstar
0.243± 0.067 0.390± 0.124 0.31

hydrophobic isosteres

of barnase/barstar
0.0285± 0.0130 0.0579± 0.0017 0.14

Table 3: Average calculated kon values for each barnase-barstar pair from five independent

WE simulations (with and without intermolecular HI) vs. experimental values. Uncertainties

represent 95% confidence intervals.
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wild-type

barnase/barstar

R59A barnase/

wild-type barstar

hydrophobi isostares

of barnase/barstar

with HI without HI with HI without HI with HI without HI

number events 1926± 70 2182± 168 1329± 62 958± 23 1096± 102 374± 18

tWE (days) 2.1± 0.3 3.0± 0.6 2.0± 0.5 2.8± 1.0 3.1± 0.8 3.4± 0.5

tBF (days) 13.6± 3.2 15.9± 3.0 77.0± 23.8 87.8± 22.0 386.0± 80.6 311.4± 103.6

β/10−2 1.214± 0.261 1.182± 0.364 0.156± 0.049 0.095± 0.003 0.025± 0.007 0.011± 0.005

efficiency of WE 6± 1 5± 1 46± 27 35± 13 131± 26 92± 34

Table 4: Average efficiencies of weighted ensemble (WE) vs brute force (BF) simulation

in estimating the kon using five independent WE simulations. The efficiency of each WE

simulation was estimated using tBF/tWE where tWE is the wall-clock time required of the

WE simulation and tBF is the wall-clock time required of BF simulation to generate the same

number of independent association events using the same computing resource (256 CPU

cores of 2.3GHz AMD Interlagos processors). The latter was estimated using the probability

β of capturing a successful association event over the course of the WE simulation (see

Methods section). Averages for the free energy barrier to association, number of independent

association events, tWE, tBF , and β are also provided. Uncertainties represent 95% confidence

intervals.
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5.0 PROTEIN-PROTEIN BINDING KINETICS AND CONTINUOUS

PATHWAYS FROM ATOMISTIC SIMULATIONS IN EXPLICIT SOLVENT

5.1 CHAPTER SUMMARY

A complete characterization of a protein binding process requires the generation of atomically

detailed pathways, which are the mechanism of the binding process with all of the key

states, including states that are too transient to capture using experiments. Here we applied

the weighted ensemble (WE) path sampling strategy to enable the atomistic simulation of

protein-protein binding pathways in explicit solvent for the barnase/barstar system. Our

WE simulation generated 203 continuous binding pathways and yielded a computed kon

that is in good agreement with experiment. Results reveal three residues in barnase that

are kinetically important for binding the barstar ligand. In addition, partial desolvation of

the proteins occurs late in the binding process during the rearrangement of the encounter

complex to the bound state. Interfacial waters are crucial for forming the native bound

structure and hydrogen bond bridging waters found in the crystal structure can be found in

the bound state of the WE simulation.

5.2 INTRODUCTION

Protein-protein interactions enable essential biological functions such as signal transduction,

cell metabolism, and muscle contraction. A complete understanding of the mechanisms

of protein-protein binding processes, however, remains inaccessible to experimental studies,

due to the difficulty in characterizing the transient states along the binding pathways. These
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processes can be fully characterized using binding pathways with atomistic level detail which

can be used to characterize not only the transient states but also the exact paths between

states.

Alternatively, molecular dynamics (MD) simulations can provide atomistic pathways

with high temporal resolution. However, due to the computational prohibitive timescales of

protein binding processes, only a few atomistic simulations of protein-ligand binding pro-

cesses have been reported. In addition, only one atomistic simulation of protein-protein

binding process involving the barnase/barstar system has been generated; this simulation

was carried out with explicit solvent and consisted of short, discontinuous trajectories, which

were subsequently analyzed using a Markov State Model to compute rate constants for the

long-timescale binding process of barnase and barstar.135

Here, we have applied the weighted ensemble (WE) path sampling strategy in conjunction

with atomistic MD simulations to generate complete pathways for the protein-protein binding

process of the barnase/barstar system in explicit water. The WE strategy can generate

continuous trajectories and rigorous rate constants for any type of stochastic dynamics for a

rare event (e.g., protein folding and binding). This strategy can be orders of magnitude more

efficient than standard simulations in generating pathways and rate constants for rare events

and has already enabled atomistic simulations of a protein-peptide binding process.10 To our

knowledge, our study provides the first continuous, atomistic pathways of a protein-protein

association process with rigorous kinetics. The inclusion of explicit solvent has also enabled

the characterization of the role of solvent in the mechanism of the binding process.

5.3 METHODS

Atomistic simulations of protein-protein binding pathways for barnase-barstar were enabled

in this study by the application of the WE path sampling strategy.25 This strategy involves

carrying out a large number of trajectories in parallel, with each trajectory assigned a weight

to properly represent the path ensemble. To control the distribution of trajectories, config-

urational space is divided into bins along a progress coordinate towards the target state and
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trajectories are evaluated at fixed time intervals τ for resampling. The resampling procedure

involves either the replication or combination of trajectories to maintain a specified number

of target trajectories/bin while adjusting trajectory weights according to rigorous statistical

rules such that no bias is introduced into the dynamics. In the present study, the WE strat-

egy was applied under equilibrium conditions to permit the refinement of key states after

completion of the simulation as well as the calculation of rate constants.29

5.3.1 Weighted Ensemble (WE) Simulations.

All WE simulations were carried out in explicit water using the open-source, highly scalable

WESTPA software (https://westpa.github.io/westpa).50 Prior to carrying out WE simu-

lations of the protein-protein binding processes of the wild-type barnase-barstar system,

representative unbound conformations of each binding partner were generated by running a

separate equilibrium WE simulation starting from the conformation of that partner in the

native, bound complex.

Equilibrium WE simulations of the isolated binding partners involved the use of a one-

dimensional progress coordinate consisting of the heavy-atom RMSD of the protein from its

conformation in the crystal structure of the complex. The progress coordinate was divided

into 45 bins, with a fine bin spacing of 0.1-3.0 Å in the region corresponding to rearrangements

of the encounter complex to the bound state and a coarser bin spacing of 0.5-10 Å. The

simulations were carried out using a target number of 12 trajectories/bin for 1200 WE

iterations with each iteration having a fixed τ of 5 ps, yielding a maximum trajectory length

of 6 ns to achieve reasonable convergence of the probability distributions as a function of the

progress coordinate.

Unbound states for the binding simulations were then generated by selecting conforma-

tions of each binding partner according to its probability from the last iteration of the WE

simulation and randomly orienting the partners with respect to each other at a separation of

20 Å to yield 1728 possible pairs of unbound conformations of barnase and barstar. These

pairs were then reduced to 100 pairs by assigning trajectories to appropriate bins along the

minimum separation distance dimension of the progress coordinate that was used for the
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binding simulation and combining trajectories with small weights according to the standard

WE algorithm. The initial ensemble of unbound states for the subsequent binding simulation

consisted of 16 copies of each of the 100 unbound states to yield a total of 1600 unbound

states with the weights of these states appropriately renormalized.

To simulate the binding process, an equilibrium WE simulation of the binding process was

started from the set of 1600 pre-equilibrated unbound states. A two-dimensional progress

coordinate was used throughout the simulation, consisting of (i) the heavy-atom RMSD

of Asp35 and Asp39 (the most buried barstar residues in the crystal structure) of barstar

relative to the barnase-bound crystal pose following alignment on barnase, and (ii) the

minimum separation distance between and two binding partners. The RMSD dimension of

the progress coordinate was divided into 71 bins with a fine bin spacing from an RMSD of

0.5-10 Å to focus the sampling primarily in the region corresponding to the rearrangement

of the encounter complex to the bound state, and a coarser bin spacing from an RMSD of

1-60 Å. As done in our previous study,8 to ensure that conformations that are in contact

are not combined with ones that are not during resampling, the distance dimension of the

progress coordinate was divided into only two bins using the encounter complex region as a

dividing point, with one bin for distances < 5 Å and the other bin for distances ≥5 Å. To

make optimal use of a given number of available CPU cores, the total number of trajectory

segments that were being carried out at a time was fixed at a constant number of 1600,

adjusting the number of target trajectories in each bin as appropriate. On average, these

adjustments resulted in ∼ 22 target trajectories/bin.

For the binding process of barnase and barstar, the equilibrium WE simulation was

carried out for 650 iterations, each with a fixed time interval of τ = 20 ps to yield a maximum

trajectory length of 13 ns and 18 µs of aggregate simulation time. After all existing initial

states formed an encounter complex (by a maximum trajectory length of 6 ns), the sampling

was focused on the encounter complex region. The simulation was sufficiently long to yield

a steady value of the kon (Fig. S28 Supporting Information).
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5.3.2 Propagation of dynamics.

For the equilibration WE simulations, the dynamics were propagated using GROMACS 4.6.7

dynamics engine with the all-atom AMBER03* force field136 and TIP3P water model137.

Heavy-atom coordinates for initial models of the unbound proteins and native complex were

taken from the crystal structure of the wild-type complex (PDB code: 1BRS127). Hydrogen

atoms were added to each model using ionization states present in solution at pH 7. System

was immersed in a sufficiently large dodecahedron box of explicit water molecules to provide

a minimum 12 Å clearance between the solutes and box walls for the unbound states in

which the binding partners were separated by 20 Å. A total of 31 Na+ and 29 Cl- ions were

included to both neutralize the net charge of the protein system and yield an ionic strength

of 50 mM, yielding ∼ 100, 000 atoms for the total system.

Prior to production simulations using the WE strategy, the systems were first subjected to

energy minimization and then two stages of equilibrating the solvent while applying harmonic

constraints to the proteins with a force constant of 10 kcal mol-1• Å-2. During the first stage,

the system was equilibrated for 20 ps at constant temperature (25 oC) and volume. During

the second stage, the system was equilibrated for 1 ns at constant temperature (25 oC) and

pressure (1 atm). Since the WE strategy requires stochastic dynamics, the temperature was

maintained using a stochastic velocity rescaling thermostat with a coupling constant of 0.1 ps;

pressure was maintained using a weak Berendsen barostat with a coupling constant of 0.5 ps.

Bonds involving hydrogens were constrained using the LINCS algorithm to enable a 2-fs time

step. Van der Waals interactions were switched off smoothly between 8 and 9 Å along with

the application of a long-range analytical dispersion correction to energy and pressure. Real-

space electrostatic interactions were truncated at 10 Å. Long-range electrostatic interactions

were calculated using particle mesh Ewald summation. Conformations were sampled every

20 ps for subsequent analysis.

5.3.3 State definitions.

Prior to the calculation of rate constants, definitions of the unbound state, encounter com-

plex, and bound state were determined from the equilibrium WE simulation of the binding
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process. The unbound state was defined as having a minimum separation distance of ≥

20Å between the proteins. The metastable encounter complex was defined to include only

complexes that had a sufficiently long survival time to proceed to the native complex, i.e.

heavy-atom RMSD of ≥ 4 Å and ≤ 20 Å for Asp35 and Asp39 of barstar after alignment on

barnase and a minimum separation distance of ≤ 3 Å between the proteins. The bound state

was defined as having a heavy-atom RMSD ≤ 3.5 Å for Asp35 and Asp39 of barstar after

alignment on barnase and a minimum separation distance of ≤ 3 Å between the proteins.

5.3.4 Calculation of rate constants.

Rate constants kij between states i and j along the binding processes were calculated using

the following:

kij,bimolecular = (fijC0)

(
1

piC2
0

)
=

(
fij
pi

)(
1

C0

)
(5.1)

kij,unimolecular =
fij
pi

(5.2)

where fij is the flux of probability carried by trajectories originating in state i and arriving

in state j, pi is the fraction of trajectories more recently in state i than in j, and C0 is

the reference concentration of the binding partners, calculated as 1/(NAV ) where NA is

Avogadro’s number and V is the volume of the dodehedral box used for the simulations (956

Å3). The C0 for both binding simulations was 1.7 mM. The bimolecular form (equation

(1)) was used for the rearrangement of the encounter complex to the bound state (k2) and

the unimolecular form (equation (2)) was used for the formation of the encounter complex

(k1). All reported uncertainties in rate constants represent 95% confidence intervals and

were estimated using a Monte Carlo blocked bootstrapping technique. Rate constant k1

was calculated using the entire simulation while k2 and kon were calculated using the latter

half of the simulation that focused greater sampling on the rearrangement of the encounter

complex to the bound state.
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5.3.5 Calculation of pairwise residue contact maps:

To identify kinetically important residues, we analyzed the contacts formed in the encounter

complex of the transition path ensemble (TPE) which consisted of only productive pathways

each of which begins where the trajectory last exited the initial unbound state and ends where

the trajectory first enters the bound state. This allows us to look at only the productive

pathways and the contacts they form without being obscured by the unproductive pathways,

as was shown to be effective in a recent study.138 A contact was defined as having two heavy

atoms within 4.5Å of each other and was calculated every τ , considering only the contacts

between binding partners. The statistical weight of each conformation in TPE was defined

as the sum of the weights of its successful child trajectories, similar to the aforementioned

study.138 The probability of contact formation of each residue i with residue j was calculated

as the sum of the TPE probability of every trajectory where residue i and residue j are in

contact.

5.3.6 Analysis of conformation space networks.

To visualize the various tracks of binding pathways, we generated conformational space

networks as done by others using a WE-based strategy139. For each of the 203 binding

events, the longest two pathways were selected and then altogether organized into 2000

clusters by applying the KCenters clustering algorithm with a Canberra distance metric

as implemented in MSMBuilder;140 the feature vector for the clustering consisted of the

RMSD progress coordinate and minimum separation distance between the binding partners.

Network graphs of the sampled conformational space were then generated using the Gephi

0.9.2 software package141 and ForceAtlas 2 layout algorithm,142 with each node represent a

cluster center and the edges between nodes representing observed transitions between each

cluster. The size of each node is proportional to the total weight of the conformations in

the corresponding cluster and colored according to the weighted average of the property of

interest over every conformation in that cluster. The committor probability for each cluster

was calculated from the number of transitions between relevant nodes.
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5.3.7 Detection of bridging water molecules between the proteins.

To detect interfacial bridging water molecules between proteins in the bound state, we cal-

culated the probability that a water molecule forms hydrogen bonds with both proteins over

conformations sampled every 20 ps. Probabilities were calculated from the WE simulation

using trajectory weights that were normalized by the population of the bound state. Hydro-

gen bonds were identified using the MDAnalysis Python library143,144 and defined as having

a ≤ 3 Å distance between donor and acceptor atoms and a ≥ 120◦ donor-hydrogen-acceptor

angle.

5.3.8 Monitoring protein desolvation and tryptophan burial during the binding

process.

To monitor the desolvation of the two proteins during the binding process, we tracked the

number of water molecules Nw within 6 Å of each protein to encompass the first two solvation

shells. We then calculated the “percent solvation” by dividing the average number of waters

in a particular conformation by the average number of waters observed in the unbound state.

The percent burials of the barstar residues, Trp38 and Trp44, upon binding were calculated

as (SASA in barstar)/(SASA in solution) x 100% where the SASA is the solvent accessible

surface area that was calculated using the Shrake and Rupley algorithm145 as implemented in

MDTraj Python library.146 Both analyses were performed every 20 ps on the same ensemble

of successful binding pathways that was used for the conformational space networks (see

above).

5.3.9 Calculation of conformational entropy per residue.

The conformational entropy of each residue was calculated using the following equation:

Sx = −R
∑
i

px (i) ln px(i) (5.3)

where Sx is the entropy of residue x, R is the ideal gas constant, and px (i) is the probability

of observing a particular heavy-atom RMSD value of i for residue x among the distribution

74



of RMSD values corresponding to the conformations sampled. The RMSD for each residue

was calculated by aligning on the α carbons of the corresponding protein.

5.4 RESULTS

A complete characterization of the mechanism of protein-protein binding requires analyzing

the relevant kinetics as well as the ensemble of binding pathways. To generate a diverse

set of binding pathways, our simulation protocol involved the following two features: (i)

provided multiple chances for each pre-equilibrated unbound state to result in successful

binding pathways by generating 16 copies of each unbound state to yield a total of 1600

initial states for the binding simulation, and (ii) reduced the likelihood of an initial state

to be terminated via recombination during the early stages of the simulation by setting the

total number of trajectories across all bins at a given iteration to the number of initial states

(1600) thereby “front-loading” the simulation with a large number of trajectories in bins

between the unbound state and encounter complex.

5.4.1 Mechanism of binding.

Our WE simulation was successful in generating a large ensemble of continuous atomistic

pathways for barnase-barstar association in explicit solvent. A total of 203 independent

binding pathways were generated within 30 days by carrying out an equilibrium WE sim-

ulation using 1600 CPU cores at a time on the XSEDE Stampede supercomputer with an

aggregate simulation time of 18 µs and a maximum continuous trajectory length of 13 ns.

Results reveal that the binding process of this system involves a two-step process in

which a metastable “encounter complex” intermediate (Fig. 19) is first formed, followed by

rearrangement of this complex to the bound state. Approximately 81% of the aggregate

simulation time resulted in diffusional collisions of the binding partners and 11 ± 5% of

them were productive (i.e. eventually reaching the native complex). While only 5% of the

aggregate simulation time yielded successful binding pathways, our simulation was partic-
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ularly effective at generating productive encounter complexes, which resulted from 35% of

the aggregate simulation time.
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Figure 19: (A) Probability distribution of the protein-protein binding process as a function of

the WE progress coordinate. The progress coordinate consisted of the heavy-atom RMSD of

residues Arg35bs and Arg39bs of barstar after alignment of barnase from the crystal structure

of barnase-barstar complex and minimum distance between barnase-barstar. Definitions of

the encounter complex and bound state are delineated by the solid black lines. The color

scale represents –RTln P where P is the pseudo-equilibrium probability density based on

trajectory weights. (B) Reference conformational space network of barnase and barstar built

from binding trajectories, highlighting the location of key states along the network.

Since our WE simulation was focused primarily on enhancing the sampling of association

events, we did not observe a sufficient number of dissociation events to compute statistically

robust rate constants for the unbinding direction and therefore focused exclusively on char-

acterizing the kinetics in the association direction. As shown in Table 5, our computed

rate constant kon [(2.3 ± 1.0) x 108 M-1s-1] is in good agreement with experiment [(2.86

± 0.7) x 108 M-1s-1]..119 Given that the computed rate constant for the formation of the

encounter complex k1 [(1.8 ± 0.2) x 109 M-1s-1] is approximately equal to the kon and that
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process rate constant value

unbound state → encounter complex k1(M−1s−1) 1.8± 0.2× 109

encounter complex → bound state k2(s−1) 2.7± 0.5× 1010

unbound state → bound state kon (M−1s−1) 2.3± 1.0× 108

experimental kon (M−1s−1) 2.86± 0.67× 108

Table 5: Computed rate constants and 95% confidence intervals for the barnase-barstar bind-

ing process. Rate constant k1 was calculated using the entire simulation and rate constants

involving the bound state, kon and k2, were calculated using the second half of the simulation

where the sampling was focused on the encounter and bound states and our rate constant

estimates are converged (see Fig. 28).

the computed rate constant for the rearrangement of the encounter complex k2 to the bound

state is relatively fast [(2.7 ± 0.5) x 109 s-1], the rate-limiting step is the diffusion-controlled

formation of the encounter complex. The rate constant k1 for this initial step is on the order

of the Smoluchowski limit (∼ 5 x 109 M-1s-1) despite the orientational constraints due to

electrostatic interactions between the proteins118 and the ∼ 3× faster diffusion that results

with the TIP3P water model.137

5.4.2 Diversity of binding pathways.

Five different tracks of complete binding pathways (I, II, III, IV, and V) were generated by

our simulation with each track originating from a different pre-equilibrated unbound state

and therefore not sharing any common trajectory segments with other binding tracks. As

shown in Fig. 20 and Fig. 21, the initial unbound states of these binding tracks involve

a variety of different relative orientations of the binding partners, including orientations in

which the binding interface of barstar is facing the opposite side of barnase from the binding

pocket (Track V). Thus, the binding tracks can be differentiated according to the extent to

which the binding partners must rotate relative to each other to form productive encounter
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complexes with Track III being the most direct track, requiring the least amount of relative

rotations of the binding partners, and Track V being the most indirect track (Fig. 20),

requiring the greatest amount of relative rotations of the binding partners. Despite the fact

that Tracks I and II originated from unbound states with similar relative orientations, Track

II involved a less direct route to forming the encounter complex (Fig. 21).
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Figure 20: Diversity of starting structures that led to binding for the most direct and indirect

tracks. Top: Surface representation of the starting structures, barnase is shown in blue,

barstar is shown in orange, cyan residues are Lys27bn and Arg59bn which form the strongest

interactions with the most buried residues in barstar binding helix, Asp35bs and Asp39bs

shown in yellow. Bottom: A representative pathway from Tracks III-V overlayed on the

probability distribution estimated from the WE simulation. Color map represents the − ln

of the probability, the paths are shown in white, plotted every 20 ps.
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Figure 21: Similar starting structures leading to diverse pathways. Top: Surface repre-

sentation of the starting structures, barnase is shown in blue, barstar is shown in orange,

cyan residues are Lys27bn and Arg59bn which form the strongest interactions with the most

buried residues in barstar binding helix, Asp35bs and Asp39bs shown in yellow. Bottom: A

representative pathway from each track overlayed on the probability distribution estimated

from the WE simulation. Color map represents the − ln of the probability, the paths are

shown in white, plotted every 20 ps.

We have also tracked the percent burial of individual residues during the binding process

in our simulations. Interestingly, the two interfacial Trp residues in barnase, Trp38 and

Trp44, become buried upon forming the encounter complex with Trp44 becoming buried

before Trp38. Thus, the detection of binding in stopped-flow Trp fluorescence experiments

would include the formation of encounter complexes as well as the native complex. In

addition, our results reveal that the barstar residues, Asp35bs and Asp39bs, that become

the most buried in the bound state end up burying themselves earlier in the binding process
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than other barstar residues with Asp35bs burying earlier than Asp39bs (Fig. 22).
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Figure 22: Conformation space networks showing the minimum percent burial of residues

on barstar in each cluster. The color scale represents percent burial of a residue on barstar

and sizes of nodes corresponds to the total weight of walkers in each cluster. See Fig. 19B

for reference conformational space network.

Our WE simulation was successful in generating a diverse ensemble of encounter com-

plexes that resulted from a variety of relative orientations of the two proteins in the unbound

state, as illustrated by the cloud of “collision entry points” for barstar that is mapped onto

the surface of a unit sphere centered on barnase (Fig. 23). These encounter complexes

resulted from 1564 continuous pathways that originated from 6 of the 100 pre-equilibrated

unbound states. A comparison of collision entry points of all pathways (Fig. 23B) and only

productive pathways (Fig. 23C) shows that the productive collisions generally occurred near

Arg59bn (front).
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all collisions
productive 

collisions

Front

Back
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Figure 23: Cloud of collision entry points of barstar mapped onto a unit sphere centered on

barnase. (A) Front and back orientations of barnase (blue) with binding interface residues

Lys27bn and Arg59bn highlighted in cyan. These orientations are used to generate panels

B and C in the corresponding rows. (B) Cloud of entry points for all diffusional collisions,

and (C) cloud of entry points for productive collisions that form encounter complexes, which

eventually rearrange to the native complex. Spheres are colored according to − ln p where

p is the probability distribution of collision entry points projected onto the surface of unit

sphere, ranging from least probable (white) to most probable (dark green).

A limitation of all rare-event sampling strategies is that these strategies may only cap-

ture the faster pathways depending on the maximum length of the trajectories and that

indirect, slower pathways may be missed. For WE and related approaches, relevant free en-

ergy barriers to be surmounted may be orthogonal to the progress coordinate used to focus

the sampling. In principle, however, if the progress coordinate captures the slowest relevant

motion, then faster, correlated coordinates will also be captured. In the present study, the

progress coordinate focuses the sampling of binding pathways in which the binding inter-

faces of the two proteins are pointing towards each other before diffusional collisions to form

the encounter complex. Thus, the successful binding pathways involve unbound states in
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which the binding interfaces of the two proteins were already oriented towards each other

or unbound states in which the proteins end up rotating to into promising relative orienta-

tions. A future goal of great interest for WE methods development is to generate indirect

pathways to binding such as those that involve rearrangement of the encounter complex to

the native, bound state via “crawling” of the binding partners over each other’s molecular

surfaces. Promising strategies for achieving this goal are the use of progress coordinates that

exhaustively cover the configurational space (e.g. Voronoi bins based on the pairwise RMSD

between sampled conformations) and the improvement of schemes for replication and combi-

nation of trajectories to minimize the merging of very low-weight trajectories along indirect

tracks to forming the bound state.

5.4.3 Kinetically important residues.

Based on our WE simulation, we identified kinetically important residues for the binding

process by monitoring the frequency of intermolecular pairwise residue interactions formed

by each interfacial residue in the encounter complexes (Fig. 24).

Our analysis revealed three barnase residues and three barstar residues that are involved

in the formation of intermolecular contacts in the majority of encounter complexes: Arg59bn,

His102bn, Ser38bn, Asp35bs, Gly43bs, and Trp44bs (“bn” for barnase and “bs” for barstar).

The barnase residues, Arg59bn, His102bn, and Ser38bn, form interactions with the α-helix

of barstar that lies at its binding interface (the binding helix) in 81%, 77%, and 68% of the

encounter complexes, respectively. The barstar residues, Asp35bs, Gly43bs and Trp44bs,

are located either on or near the binding helix, forming intermolecular contacts in 78%, 90%

and 66% of the encounter complexes, respectively.

Our results are consistent with previous experimental and simulation studies.147 Ex-

perimental studies have identified Lys27bn and Arg59bn as playing an important role in

the association kinetics of barnase and barstar.147 In addition, the kinetic importance of

Ser38bn was also predicted by a recent simulation study135 involving the construction of

Markov State Models and the use of a different simulation model (AMBER ff99SB-ILDN

and TIP3P).137,148
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Figure 24: (A) Map of pairwise residue contacts formed in encounter complex ensemble

generated by our WE simulation. The start of each secondary structure is shown in both axes

where a beta sheet is shown as an arrow and an α-helix is shown with a cylinder. Kinetically

most important set of contacts are highlighted with an empty-headed arrow. (B) Locations

of the most kinetically important residue in the crystal structure of the native complex of

barnase (blue) and barstar (orange). Arg59bn, His102bn and Ser38bn are shown in cyan

and Asp35bs, Gly43, Trp44 are shown in yellow.

5.4.4 Changes in the conformational entropy of individual residues during the

binding process.

To quantify the extent to which individual residues in barnase and barstar change in confor-

mational flexibility, we calculated the conformational entropy of each residue according to

the distributions of heavy-atom RMS deviations that residue after aligning on the Cα atoms

of the corresponding protein in the crystal structure of the native complex.

As shown in Fig. 25, the largest loss of flexibility at the binding interface was observed

in barstar binding helix, particularly residues Ala36bs to Leu41bs. At the binding interface
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of barnase, residues Ser38bn and His102bn were the ones that lost the most flexibility upon

binding. Interestingly, quite a few residues in both proteins that are not at the binding inter-

face also lost flexibility upon binding. In particular, barstar residues Lys60bs and Asp83bs

lost flexibility the most, followed by barnase residues on the third helix of barnase, Gly40bn,

Leu42bn and Ala46bn as well as beta sheet residues Asn77bn and Thr79bn lost flexibility

upon binding.
Bound stateEncounter complexUnbound state

k1

k-1

k2

k-2

Figure 25: Per residue entropy calculated from per residue RMSD distributions shown as

binding occurs. Proteins are shown in cartoon representation, entropy is shown using a red-

green-blue color map and each residue is colored accordingly. In units of the gas constant

R, red is 0.2 – 0.6, green is 0.6 – 1.4 and blue is 1.4 – 2.25.

5.4.5 Desolvation during the binding process.

While it is well-known that the desolvation of proteins occurs during protein-protein binding

processes, it is not known when in the binding processes this desolvation occurs (e.g. upon

forming the encounter complex and/or during rearrangement of the encounter complex to

the bound state). To monitor the progress of desolvation during the barnase-barstar binding

process in our explicit-solvent simulations, we calculated the percent solvation of each con-

formation relative to the unbound state, tracking the number of water molecules within 6 Å

of each protein (see Methods). We then generated a conformational space network to visu-

alize the various binding tracks and colored this network according to the minimum percent

solvation thereby detecting any instance of desolvation. As shown in Fig. 26A, desolvation

of the proteins occurs in the late stages of the binding process in our simulations. In partic-

84



ular, the two proteins undergo the greatest extent of desolvation during the rearrangement

of the encounter complex to the native complex.

We also determined if a “drying effect” was occurring during the binding process in our

simulations. As predicted by previous theoretical studies, the water molecules that occupy

hydrophobic binding cavities may undergo drying effect, i.e. phase transition from a liquid

to a gas phase149–152(ref). This effect has been demonstrated by simulation studies involving

the association of hydrophobic slabs153 and for hydrophobic cavities of six proteins including

Cox-2.154,155 As shown in Fig. 26B, there are no large shifts in the density of the surrounding

water molecules during the binding process in our simulations of the barnase/barstar system.

Thus, no drying effect was detected in our simulations.
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Figure 26: Conformational space networks of barnase and barstar built from binding tra-

jectories, showing desolvation during binding. (A) Conformational space network colored

by the minimum number of water molecules observed within 6Å of each protein in a given

cluster of conformations. (B) Conformational space network colored by the average number

of water molecules observed within 6Å of each protein in a given cluster of conformations.

See Fig. 19B for reference conformational space network.

5.4.6 Interfacial, structural water molecules.

To determine the extent to which the positions of interfacial crystallographic water molecules

are occupied in our simulation, we calculated the percent occupancy of each of the nine
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Residues bridged % occupancy in the bound state

Lys62bn/Tyr103bn – Asp35bs 4

Lys62bn/Asn58bn – Asp35bs 16

Arg59bn – Asp35bs 18

Glu73bn – Asp35bs 0

Ile55bn/Glu73bn -Trp38bs 16

Lys27bn/Glu73bn – Asp39bs 27

Arg83bn – Gly43bs 3

Ser38 – Val45bs 2

Ser38bn – Tyr47bs 2

Table 6: Percent occupancies of crystal water molecules that bridge hydrogen bonds between

wild-type barnase and barstar (PDB code: 1BRS)127 in the bound state sampled by WE

simulation.

positions in the bound state ensemble. As shown in Table 6, these water molecules bridge

hydrogen bonds between barnase and barstar, and all except one of the nine positions are

occupied with four of these positions occupied >15% of the time. The occupancy of these

positions of the crystal water molecules in the bound state is an encouraging validation of

the ability of the force field and water model, particularly since the simulations were started

from the unbound state.

In addition, our simulation identified water molecules in the bound-state ensemble that

were not resolved in the crystal structure of the native complex and bridge hydrogen bonds

between residues that were identified above as kinetically important (Fig. 27). One of these

water molecules bridge hydrogen bonds between two barnase residues, Arg83bn and Lys27bn,

and Asp39bs of barstar. The other water molecule bridges hydrogen bonds between Ser38bn

of barnase and Trp44bs of barstar.
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Figure 27: Occupancy map of waters that bridge residues through hydrogen bond formation.

Both axes contain residues from both proteins and the black lines delineate the two proteins.

Residues that are bridged by crystal waters are marked with red boxes. Occupancies are

calculated from conformations in the bound state ensemble every 20 ps.

5.5 CONCLUSIONS

Starting from a large unbound state ensemble, we have generated 203 independent continuous

binding pathways for the all-atom, explicit solvent barnase-barstar system. Our use of the

WE strategy enabled the generation of continuous pathways for a protein-protein binding

process in 30 days on a supercomputer. Binding pathways included indirectly oriented

starting structures, improving on our previous study in terms of generating diverse binding
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pathways.

We have directly computed the association rate constant, which was in good agreement

with the experimental association rate constant. The diffusion-controlled formation of the

encounter complex was the rate limiting step of the binding mechanism. Furthermore, we

have shown that desolvation happens during rearrangement of the encounter complex into

the bound state by direct analysis of the explicit water molecules. Despite observing desol-

vation in some binding pathways, the binding interface was still solvated in the bound state

ensemble of our simulation, indicating that water molecules are important for binding of

barnase and barstar, as predicted by previous studies. Hydrogen bridging water molecules

that were present in the crystal structure were identified in the bound state ensemble, fur-

ther underlining the importance for modelling explicit waters for protein-protein binding

simulations.
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5.6 SUPPORTING INFORMATION
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Figure 28: Evolution of calculated kon values as a function of molecular time for barnase and

barstar binding simulations. Gray lines show the 95% confidence interval. The molecular

time is defined as Nτ where N is the number of WE iterations and τ is the fixed time interval

of each iteration.
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6.0 CONCLUSIONS AND FUTURE DIRECTIONS

Molecular dynamics simulations remain the only means to generate atomically detailed views

of all of the protein conformational changes that occur during protein binding processes.

As such, these simulations provide an ideal complement to experimental studies of these

processes that in turn, provide important validation of the simulations. In this work, I

have tackled a variety of research questions regarding the mechanisms of protein binding

processes.

First, I have determined whether preorganization affects the binding kinetics of the in-

trinsically disordered p53 peptide to the MDM2 protein using flexible molecular models

(Chapter 3). Using in silico modifications I have tuned the extent of preorganization in

the the p53 peptide from fully disordered to fully preorganized, and directly simulated the

association of each peptide variant with the MDM2 protein. Coupled with the weighted

ensemble strategy, the resulting simulations yielded > 3000 binding events and statistically

robust association rate constants for each p53 peptide variant. Not only was the association

rate constant in reasonable agreement with experiment, the association rate constant of the

fully preorganized and fully disordered variants were in agreement as well, indicating no

kinetic advantage to being disordered for the p53 peptide. Further analysis indicates that

the rearrangement step for the fully disordered peptide upon binding to MDM2 to be very

rapid. Therefore, a potential future direction to this work involve simulating the association

of larger and slower folding proteins with their binding partners using a similar methodology

that directly address the question.

Secondly, I have directly computed the basal kon for a protein-protein association process

using using flexible molecular models in Chapter 4. Estimating the association rate constant

of barnase and barstar in the absence of electrostatic interactions proved to be unfeasible
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using standard simulations in previous studies. The application of the WE strategy enabled

efficient sampling of binding between hydrophobic isosteres of barnase and barstar which

resulted in a converged, computed basal kon, revealing that the electrostatic interactions in

the wild-type system enhance the association rate constant by > 130-fold.

Finally, I have characterized the barnase barstar binding process using atomically detailed

models with explicit water in Chapter 5. Starting from a large set of unbound structures, I

have generated a diverse set of 203 continuous binding pathways. The diffusion-controlled

formation of the encounter complex was the rate limiting step for this binding process and

the directly computed kon was in good agreement with the experimental association rate

constant. Analysis of the explicit water molecules revealed that the binding interface is still

solvated in the bound state, including hydrogen bond bridging water molecules that can be

found in the crystal structure. Any desolvation happened during binding, happened late in

the process, right before the formation of the binding complex.

Overall, results of this work show the feasibility of using molecular level simulations

in generating of protein-protein binding pathways, enabled by the use of WE strategy. In

particular, generating atomically detailed binding pathways for the protein-protein binding

process including explicit waters have been shown to be feasible on standard computing

clusters. Potential future directions for this work include further increasing the efficiency of

generating a diverse set of pathways using history based replication and combination rules

and focusing the sampling on indirect pathways where binding partners ”crawl” over each

others molecular surfaces.
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APPENDIX A

“RULES OF THUMB” FOR RUNNING BINDING SIMULATIONS

During my graduate career, I have carried out hundreds of WE simulations of protein binding

processes across different timescales and using a variety of different simulation models that

have included residue-level as well as atomic levels of detail. As a result, I have gained

a deeper understanding of choosing the optimal WE parameters for such simulations. My

recommendations are summarized below.

A.1 PROGRESS COORDINATE

The WE strategy offers a great deal of flexibility in focusing the sampling on transitions

between stable states. Typically, the sampling is focused using a progress coordinate and

this progress coordinate can be modified “on the fly” during a simulation. This progress

coordinate should capture the slowest relevant motion of the system.

For binding processes, an RMSD progress coordinate can be particularly sensitive in

discriminating between non-native and native complexes, provided that the alignment in-

volves just one of the binding partners thereby quantifying the relative orientations of the

two binding partners. Furthermore, the sensitivity of the RMSD coordinate can be further

improved by focusing on the minimal set of atoms that must “click” into place in the binding

pocket to ensure that the remainder of the binding interface residues reach their intended

positions in the native complex. From my experience, focusing on the “anchor” residues of
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the protein ligand that become the most buried upon binding the protein receptor has been

effective as it reduces the protein ligand to a “small-molecule” mimic. Furthermore, it has

been important to include the distance between the binding partners as a dimension of the

progress coordinate in order to separate states that are within van der Waals contact from

states that are no in contact. This separation has been helpful in providing more thorough

sampling of non-native complexes such as the encounter complex intermediate and greatly

simplifies the analysis that involve encounter complexes (e.g. rate constant for encounter

complex formation) after the simulation has been completed.

A.2 PLACEMENT OF BINS

An important rule of thumb for the placement of bins along a progress coordinate is to make

sure to include one or more bins for every state of interest. As mentioned in the previous

section, this ensures that transitions in and out of these states are better sampled, allowing

for the characterization of kinetics at these regions of the configuration space. For binding,

separating the structures that are in contact, but not bound, from the ones that are not in

contact is important to ensure better sampling of rearrangement from the encounter complex

to the bound state.

Furthermore, as shown in a previous study138, the efficiency of the WE strategy can

increase exponentially with the free energy barrier for the process of interest given optimal

placement of bins. For example, the use of finer spacings between bins along the steeper parts

of the barrier has been helpful in improving the efficiency of WE simulations. For protein

binding processes, it has been helpful to use a finer bin spacing in the region of the progress

coordinate that corresponds to the rearrangement of the encounter complex to the native

complex. On the other hand, adding extra bins to regions corresponding to stable states or

low barriers can lead to less efficient sampling. While the oversampling of these regions can

reduce the efficiency of sampling binding events, the diversity of binding pathways may be

greatly improved.
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A.3 SIMULATION CONVERGENCE

As with any simulation, it is important to demonstrate the convergence of the simulation

according to the computed properties of interest. For binding simulations, one would monitor

the flux into the target bound state and hence the computed association rate constant as well

as the evolution of the probability distribution as a function of the WE progress coordinates.

It is important to note that, generally, state populations converge more slowly than rate

constants and that it is possible to get converged rate constants even when state populations

have not converged.

In the event that the progress coordinate is switched to a different one, it is important

to note that the probability distribution over the new progress coordinate may be incorrect

since the sampling was focused on the previous progress coordinate and the new progress

coordinate might not be sufficiently sampled. Depending progress coordinates, it might be

difficult to converge to the correct probability distribution once the progress coordinate has

been switched. My suggestion in this scenario is to monitor the evolution of the probability

distribution over the new progress coordinate and ensure that this distribution is converged

before calculating any observables of interest.

As an additional consideration for analysis, storage is an important factor for large sys-

tems. In particular all-atom, explicit solvent simulations of protein-protein binding processes

require a large amount of storage. Estimating the amount of storage space and ensuring there

is enough storage ahead of time is important. Additionally, a good way to analyze these

systems once the simulation is over is to save the protein coordinates every iteration in a sep-

arate file for every iteration. WESTPA provides tools to analyze data stored in this way in a

parallelized fashion and the option to save the iteration data in separate files automatically

is planned for an upcoming release.
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APPENDIX B

SOFTWARE DEVELOPED

B.1 YAML INTERFACE FOR WESTPA PARAMETERS

Despite recent efforts in rare event sampling software to make these algorithms more acces-

sible to a wider range of researchers, most rare event sampling methods remain difficult to

use for non-expert users. An important part of developing a rare event sampling software

that is accessible is to have simple user interfaces that allow the user to control the rare

event sampling algorithm without requiring a lot of prior programming experience.

The weighted ensemble path sampling method has a flexible and open-source imple-

mentation in WESTPA, used throughout this work and developed by the Chong lab. I

have developed an interface for WESTPA that allows non-programmer users to enter sys-

tem parameters in a fashion that doesn’t require extensive coding knowledge. This interface

builds up on the previous interface for defining other WESTPA parameters and uses widely

used YAML markup language. Prior to this development two files were required to fully

setup WESTPA parameters for a simulation, one of which must be written in Python pro-

gramming language. With this YAML interface, now the standard for defining WESTPA

simulation parameters (such as progress coordinate dimensionality, data format of progress

coordinate, progress coordinate binning and number of simulations per bin) it is possible to

setup WESTPA simulation parameters with a single file that requires no prior programming

knowledge to edit.
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[116] Noé, F.; Horenko, I.; Schütte, C.; Smith, J. C. Hierarchical analysis of conformational
dynamics in biomolecules: Transition networks of metastable states. The Journal of
Chemical Physics 2007, 126, 155102.

104



[117] Liu, J.; Faeder, J. R.; Camacho, C. J. Toward a quantitative theory of intrinsically
disordered proteins and their function. Proc. Natl. Acad. Sci. USA 2009, 106, 19819–
19823.

[118] Schreiber, G.; Haran, G.; Zhou, H. Fundamental Aspects of Protein - Protein Associ-
ation Kinetics. Chem. Rev. 2009, 109, 839–860.

[119] Gabdoulline, R.; Wade, R. Simulation of the diffusional association of barnase and
barstar. Biophys. J. 1997, 72, 1917–29.

[120] Northrup, S.; Erickson, H. Kinetics of protein-protein association explained by Brow-
nian dynamics computer simulation. Proc. Natl. Acad. Sci. USA 1992, 89, 3338–3342.

[121] Zhou, H. Enhancement of Protein-Protein Association Rate by Interaction Potential
: Accuracy of Prediction Based on Local Boltzmann Factor. Biophys. J. 1997, 73,
2441–2445.

[122] Camacho, C.; Kimura, S.; DeLisi, C.; Vajda, S. Kinetics of desolvation-mediated
protein-protein binding. Biophys. J. 2000, 78, 1094–105.

[123] Schlosshauer, M.; Baker, D. Realistic protein–protein association rates from a simple
diffusional model neglecting long-range interactions, free energy barriers, and landscape
ruggedness. Prot. Sci. 2004, 13, 1660–1669.

[124] Alsallaq, R.; Zhou, H. Prediction of protein-protein association rates from a transition-
state theory. Structure (London, England : 1993) 2007, 15, 215–24.

[125] Schreiber, G.; Fersht, A. Rapid, electrostatically assisted association of proteins. Nat.
Struct. Biol. 1996, 3, 427–431.

[126] Gabdoulline, R. R.; Wade, R. C. Effective charges for macromolecules in solvent. J.
Phys. Chem. 1996, 100, 3868–3878.

[127] Buckle, A.; Schreiber, G.; Fersht, A. Protein-protein recognition: crystal structural
analysis of a barnase-barstar complex at 2.0-A resolution. Biochemistry 1994, 33,
8878–8889.

[128] Rotne, J.; Prager, S. Variational treatment of hydrodynamic interaction in polymers.
J. Chem. Phys. 1969, 50, 4831–4837.

[129] Yamakawa, H. Transport properties of polymer chains in dilute solution - hydrodynamic
interaction. J. Chem. Phys. 1970, 53, 436–443.

[130] Dlugosz, M.; Antosiewicz, J.; Zielinkski, P.; Trylska, J. Contributions of far-field hydro-
dynamic interactions to the kinetics of electrostatically driven molecular association.
J. Phys. Chem. B 2012, 116, 5437–5447.

105



[131] Martin, C.; Richard, V.; Salem, M.; Hartley, R.; Mauguen, Y. Refinement and struc-
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