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STATISTICAL ANALYSIS OF RANDOM SYMMETRIC POSITIVE

DEFINITE MATRICES VIA EIGEN-DECOMPOSITION

Brian Rooks, PhD

University of Pittsburgh, 2018

The work in this dissertation is motivated by applications in the analysis of imaging data,

with an emphasis on diffusion tensor imaging (DTI), a modality of MRI used to non-

invasively map the structure of the brain in living subjects. In the DTI model, the local

movement of water molecules within a small region of the brain is summarized by a 3-by-3

symmetric positive-definite (SPD) matrix, called a diffusion tensor. Diffusion tensors can be

uniquely associated with three-dimensional ellipsoids which, when plotted, provide an image

of the brain. We are interested in analyzing diffusion tensor data on the eigen-decomposition

space because the eigenvalues and eigenvectors of a diffusion tensor describe the shape and

orientation of its corresponding ellipsoid, respectively. One of the major contributions of this

dissertation is the creation of the first statistical estimation framework for SPD matrices us-

ing the eigen-decomposition-based scaling-rotation (SR) geometric framework from Jung et

al (2015). In chapter 3, we define the set of sample scaling-rotation means of a sample of SPD

matrices, propose a procedure for approximating the sample SR mean set, provide conditions

under which this procedure will provide a unique solution, and provide conditions guarantee-

ing consistency and a Central Limit Theorem for the sample SR mean set. Our procedure for

approximating the sample SR mean can also be extended to compute a weighted SR mean,

which can be useful for smoothing DTI data or interpolation to improve image resolution. In

chapter 4, we present moment-based hypothesis tests concerning the eigenvalue multiplicity

pattern of the mean of a sample of diffusion tensors which can be used to classify the mean

as one of four possible shapes: isotropic, prolate, oblate, or triaxial. The derivations of these
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test procedures lead to the creation of consistent estimators of the eigenvalues of the mean

diffusion tensor. In the final chapter, we present a mixture distribution framework which

can be used to model the variability of SPD matrices on the eigen-decomposition space, and

an accompanying likelihood-based estimation procedure which can be used for estimation of

parameters of interest or inference via likelihood ratio tests.

iv



TABLE OF CONTENTS

1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.0 MATHEMATICAL BACKGROUND . . . . . . . . . . . . . . . . . . . . . 2

2.1 Notation and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 The Matrix Exponential and Logarithm . . . . . . . . . . . . . . . . . . . . 3

2.3 Curves on Riemannian Manifolds . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 The Tangent Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 A Riemannian Geometric Framework for Diag-Plus(p) . . . . . . . . . . . . 11

2.5.1 The Geometry of Diag-Plus(p) . . . . . . . . . . . . . . . . . . . . . 11

2.5.2 A Canonical Riemannian Framework for Diag-Plus(p) . . . . . . . . 11

2.6 A Riemannian Geometric Framework for SO(p) . . . . . . . . . . . . . . . 13

2.6.1 The Geometry of SO(p) . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6.2 A Canonical Riemannian Framework for SO(p) . . . . . . . . . . . 14

2.7 Geometric Frameworks for Sym-Plus(p) . . . . . . . . . . . . . . . . . . . . 16

2.7.1 The Geometry of Sym-Plus(p) . . . . . . . . . . . . . . . . . . . . . 16

2.8 A Scaling-Rotation Framework for Sym-Plus(p) . . . . . . . . . . . . . . . 17

2.8.1 Scaling-Rotation Curves . . . . . . . . . . . . . . . . . . . . . . . . 17

2.8.2 A Riemannian Framework for the Eigen-Decomposition Space . . . 19

2.8.3 Non-uniqueness of Eigen-decomposition . . . . . . . . . . . . . . . . 20

2.8.4 Minimal Scaling-Rotation Framework . . . . . . . . . . . . . . . . . 23

3.0 SCALING-ROTATION ESTIMATION FOR SYM-PLUS(P) . . . . . . 27

3.1 Minimal Scaling-Rotation Sample Mean Estimation . . . . . . . . . . . . . 27
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1.0 INTRODUCTION

The study of random symmetric positive definite (SPD) matrices has garnered much atten-

tion in recent years. Applications include analysis of diffusion tensor imaging (DTI) data

([1], [49], [43]), longitudinal data analysis ([14]), and estimation of covariance matrices ([8],

[13]). Analysis of DTI data will be of particular interest in this thesis.

Many geometric frameworks for the space of SPD matrices have been used in the analysis

of SPD matrix-valued data, including a Euclidean framework, an Affine-Invariant framework

([37]), a Log-Euclidean framework ([2]), and a Procrustes Size-and-Shape framework ([15]).

Recently, a new geometric framework based on eigen-decomposition was proposed in ([28]).

This minimal scaling-rotation framework identifies each SPD matrix with an ellipsoid and

defines the distance between two SPD matrices as the minimal amount of rotation and scaling

required to transform one ellipsoid into another. Our goal with this thesis is to develop

statistical methods based on eigen-decompositions that will be useful for the analysis of DTI

data.

The layout of this thesis will be as follows: Chapter 2 presents key notation, computa-

tional tools, and necessary definitions and concepts from differential geometry culminating

with a description of the minimal scaling-rotation framework of [28]; Chapter 3 presents

a novel location estimation framework for Sym+(p) based on the minimal scaling-rotation

framework of [28]; Chapter 4 derives new moment-based methods for classifying the shape of

population eigenvalue means of diffusion tensors; and Chapter 5 introduces methods for per-

forming parametric mean estimation and inference for SPD matrices via eigen-decomposition.
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2.0 MATHEMATICAL BACKGROUND

2.1 NOTATION AND DEFINITIONS

Let M(p) denote the set of p× p real-valued matrices. For any M ∈ M(p), let MT denote

the transpose of M , and let Ip ∈M(p) denote the p× p identity matrix. The following sets

of matrices will be of interest:

• GL(p) = {A ∈M(p) : det(A) 6= 0} (p× p invertible matrices)

• Sym(p) = {A ∈M(p) : A = AT} (p× p symmetric matrices)

• Sym+(p) = {AT ∈ Sym(p) : vTAv > 0 for all v ∈ Rp \ {~0}} (p× p SPD matrices)

• Diag(p) = {A ∈M(p) : Aij = 0 for i 6= j} (p× p diagonal matrices)

• Diag+(p) = {A ∈ Diag(p) : Aii > 0 for all i = 1, . . . , p} (p× p positive-definite diagonal

matrices)

• so(p) = {A ∈M(p) : A = −AT} (p× p skew-symmetric matrices)

• O(p) = {A ∈M(p) : AAT = Ip} (p× p orthonormal matrices)

• SO(p) = {A ∈M(p) : AAT = Ip and det(A) = 1} (p× p rotation matrices)

Definition 2.1.1. Let A = (aij) ∈M(p). The Frobenius norm ‖.‖F is

‖A‖F =
√
tr(AAT ) =

( p∑
i=1

p∑
j=1

a2
ij

)1/2

.
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2.2 THE MATRIX EXPONENTIAL AND LOGARITHM

Definition 2.2.1. For A ∈M(p), the matrix exponential of A is

Exp(A) = Ip +
∞∑
k=1

Ak

k!
.

Definition 2.2.2. If there exists some A ∈ M(p) such that Exp(A) = B, then A is called

the matrix logarithm of B, which we will denote as Log(B) = A.

The matrix exponential above is well-defined and absolutely convergent for any A ∈

M(p) [20]. If a matrix A ∈ GL(p) has no negative real-valued eigenvalues, then there

exists a unique matrix logarithm of A called the principal matrix logarithm which has

eigenvalues belonging to the strip {z ∈ C : −π < Im(z) < π} [25]. Since virtually all

matrices in Diag+(p), Sym+(p), and SO(p) possess no eigenvalues on the negative real line,

all uses of the matrix logarithm will be referring to the principal matrix logarithm unless

otherwise stated.

Our primary use of the matrix exponential and logarithm functions will be characterizing

matrices from spaces with special geometric constraints by matrices from linear spaces.

Computing the matrix exponential of diagonal, symmetric, and skew-symmetric matrices

will be of particular interest for this thesis:

Lemma 2.2.1. The following properties hold when the exponential matrix function is applied

to the spaces Diag(p), Sym(p), and so(p):

1. Let Λ ∈ Diag(p) with i-th diagonal entry λii. Then Exp(Λ) ∈ Diag+(p) with i-th diagonal

entry eλii. If D ∈ Diag+(p) with i-th diagonal entry dii > 0, then Log(D) ∈ Diag(p)

with i-th diagonal entry log(dii). In summary, Exp : Diag(p) 7→ Diag+(p) is a bijective

map.

2. If M ∈ Sym(p) with spectral decomposition M = UDUT , where U ∈ SO(p) and D ∈

Diag(p), then Exp(M) = UExp(D)UT . Given L ∈ Sym+(p) with spectral decomposition

WΛW T , where W ∈ SO(p) and Λ ∈ Diag+(p), Log(L) = WLog(Λ)W T . The map

Exp : Sym(p) 7→ Sym+(p) is bijective.

3. Exp : so(p) 7→ SO(p) is a surjective map.

3



For a matrix in Diag(p)(Diag+(p)), calculation of the matrix exponential (logarithm)

simplifies to applying the real-valued exponential (natural logarithm) function to each diago-

nal entry. Similarly, for a matrix in Sym(p)(Sym+(p)), calculation of the matrix exponential

(logarithm) amounts to taking the exponential (natural logarithm) of each eigenvalue while

leaving its corresponding eigenvector unchanged. Closed form solutions for the matrix ex-

ponential (natural logarithm) of matrices in so(p)(SO(p)) exist for dimensions 2 and 3, and

must be computed using numerical methods for dimension p ≥ 4.

Lemma 2.2.2. For dimensions p = 2 and 3, Exp(A) has the following closed form solutions

for A ∈ so(p):

1. For p=2: (Euler’s Formula) Let A = θJ ∈ so(2), where θ ∈ R and

J =

0 −1

1 0

 .

Then we have

Exp(A) = R(θ) =

cos(θ) − sin(θ)

sin(θ) cos(θ)

 .

2. For p=3: (Rodrigues’ Rotation Formula) Let ~a = (a1, a2, a3)T with ~aT~a = 1 and θ ∈ R.

Then we have

Exp(A) = R(θ,~a) = I3 + sin(θ)[~a]× + (1− cos(θ))([~a]×)2,

where A = θ[~a]× with [~a]× denoting the cross product matrix

[~a]× =


0 −a3 a2

a3 0 −a1

−a2 a1 0

 .

Remark 2.2.1. Euler’s Formula provides a rotation angle parametrization of SO(2) since left

multiplication of ~v ∈ R2 by R(θ) rotates ~v counterclockwise by angle θ about the origin.

Rodrigues’ Rotation Formula parametrizes a 3D rotation matrix in terms of an axis and an

angle since left multiplication of ~v ∈ R3 by R(θ,~a) rotates ~v by angle θ about the axis ~a.

4



Remark 2.2.2. It is easy to see that Exp : so(p) 7→ SO(p) is not injective for p = 2, 3 since

Exp(θ1J) = Exp(θ2J) and Exp(θ1[~a]×) = Exp(θ2[~a]×) whenever θ1 ≡ θ2 (mod 2π).

Remark 2.2.3. Rodrigues’ Rotation Formula is often presented with input [~b]× ∈ so(3) with-

out decomposing ~b into its length and direction components. For this version, simply make

the substitutions θ = ‖~b‖ =
√
~bT~b and ~a =

~b

‖~b‖
.

Lemma 2.2.3. Let R ∈ SO(p).

1. p=2: Assume that R 6= −I2. Then

Log(R) =

0 if R = I2

sign(r21) cos−1(r11)J if R 6= I2

.

2. p = 3: Assume that θ 6≡ π (mod 2π), where θ satisfies tr(R) = 1 + 2 cos(θ). Then

Log(R) =

0 if θ = 0

θ
2 sin(θ)

(R−RT ) if θ 6= 0

.

Remark 2.2.4. There is not a unique solution for Log(R) when R ∈ SO(p) is an involution,

meaning R2 = Ip. When p = 2, there is only one form of an involution, R = −I2, which

corresponds to a rotation in the plane by angle ±π. For p = 3, any involution can be

characterized as a 3D rotation matrix R with tr(R) = −1, which corresponds to a rotation

by angle ±π about some axis.

When p = 2, solutions for Log(R) when R is an involution will be of the form Log(R) =

±πJ. One can choose the sign that conforms with their preference for restricting θ to [−π, π)

or (−π, π].

In the p = 3 case, solutions for Log(R) when R is an involution will be of the form

±π[~v]×, where ~v is the axis from the “axis-angle” parametrization of R. To solve for the axis

of rotation, note for a rotation matrix R(θ,~a) with rotation angle θ and axis ~a it holds that

R(θ,~a)~a = ~a (i.e. ~a is an eigenvector of R(θ,~a) with eigenvalue 1).

5



Lemma 2.2.4. Let A ∈ M(p) and t ∈ R. The function c(t) = Exp(tA) traces a smooth

curve in GL(p) with directional derivative

c′(t) = Exp(tA)A.

When t ∈ [0, 1], the curve c(t) = Exp(tA) parametrizes a smooth path on GL(p) that

runs from c(0) = Ip to c(1) = Exp(A) with “initial direction” A since c′(0) = A. This

concept of using the matrix exponential for defining smooth curves on some matrix space

is foundational in establishing the intrinsic geometric structure of curved matrix spaces of

interest like Diag+(p), SO(p), and Sym+(p).

2.3 CURVES ON RIEMANNIAN MANIFOLDS

Definition 2.3.1. Let M be a differentiable manifold and assume ε > 0. A curve on M

passing through q ∈M is a smooth function c : R 7→M that satisfies c(0) = q.

In this thesis we will be interested in curves as matrix-valued functions. Recall that a

matrix valued function F : R 7→ M(p) is a matrix F (t) of functions F (t) = (fij(t)). Re-

quiring a matrix valued function F (t) to lie in a matrix space for all t ∈ R with special

geometric constraints such as Diag(p) or SO(p) is equivalent to imposing the defining geo-

metric characteristics of the space on the coordinate functions of F (t) for all t. For example,

the matrix-valued functions

c1(t) =

2t 0

0 4t

 , c2(t) =

1 + t2 0

0 1 + 3t4

 , and c3(t) =

1 + t 0

0 1 + 3t


define smooth curves on Diag(2) that pass through the identity element I2 (i.e c1(0) =

c2(0) = c3(0) = I2). It is easy to see that the functions c1(t) and c2(t) lie on Diag+(2) for

all t ∈ R, while c3(t) lies in Diag+(2) only if t ∈ (−1,∞).

If all of the coordinate functions of a matrix valued function F are differentiable at some

t, the derivative of F at t is defined via element-wise differentiation as F ′(t) = (f ′ij(t)). While

6



the functions c1(t), c2(t), and c3(t) all pass through I2, they all have different trajectories at

the identity

c′1(0) =

log(2) 0

0 log(4)

 , c′2(0) =

0 0

0 0

 , c′3(0) =

1 0

0 3

 .

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
D11(t)

1

1.5

2

2.5

3

3.5

4

D
2
2
(t

)

c1(t)

c2(t)

c3(t)

Figure 1: Plots of the diagonal functions of the curves c1(t), c2(t), and c3(t) for t ∈ [0, 1].

Definition 2.3.2. A segment connecting points a, b ∈ M is a smooth curve on M with

endpoints at a and b.

To define a measure of distance between points a and b on a smooth manifold M , one

could consider the family of all segments on M connecting a and b, choose the shortest

segment(s) connecting a and b (if any such minimizing curve exists), and then set the distance

between points a and b equal to the length of the minimizing segment(s). To calculate the

length of a segment on M , we adopt the following generalization of arc length:

7



Definition 2.3.3. The arc length of a segment γ : [0, 1] 7→ M with endpoints γ(0) = a

and γ(1) = b is

Lba(γ) =

∫ 1

0

‖γ′(t)‖dt,

where ‖.‖ is some norm defined on the tangent space of M .

Remark 2.3.1. The tangent space of a manifold is defined in the next section.

Definition 2.3.4. Let Ca,b denote the family of segments on M connecting points a and b.

The geodesic distance between a and b, denoted as dG(a, b), equals

dG(a, b) = inf
γ∈Ca,b

Lba(γ).

If such a minimizing curve exists, we will call it the geodesic connecting a and b.

Remark 2.3.2. A more general definition of a geodesic can be found in [16].

For t ∈ [0, 1], the curves c1(t), c2(t), and c3(t) define segments on Diag+(2) connecting

the points

a =

1 0

0 1

 and b =

2 0

0 4

 .

We can metrize the tangent space of Diag+(2) with the Frobenius norm and compute the

arc length of segments c1(t), c2(t), and c3(t) as follows:

Lba(c1) =

∫ 1

0

‖c′1(t)‖Fdt =

∫ 1

0

√
(log(2)2t)2 + (log(4)4t)2dt ≈ 3.1628

Lba(c2) =

∫ 1

0

‖c′2(t)‖Fdt =

∫ 1

0

√
4t2 + 144t6dt ≈ 3.2490

Lba(c3) =

∫ 1

0

‖c′3(t)‖Fdt =

∫ 1

0

√
12 + 32dt =

√
10 ≈ 3.1623.

From Figure 1, it is not surprising that c3(t) is the shortest of the three segments connecting

a and b. In fact, c3(t) defines the geodesic connecting a and b when the Frobenius norm is

used to calculate arc length. This choice of norm treats the space of all segments from a to b

on Diag+(2) as flat subset of R2, and it is known that the shortest segment connecting two

points in Euclidean space is a straight line.

The use of different norms for calculating arc lengths on manifolds will give rise to

different forms of geodesics, and it can be shown that any connected Riemannian manifold
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equipped with the geodesic distance function of Definition 2.3.4 is a metric space. While

the existence of a minimal-length curve connecting any two points on a smooth manifold

is not guaranteed in general, their existence is guaranteed for complete manifolds including

Diag+(p), SO(p), and Sym+(p) via the Hopf-Rinow Theorem.

2.4 THE TANGENT SPACE

Definition 2.4.1. Let M be a differentiable manifold and let Cq denote the space of all

curves on M passing through q ∈ M . The tangent space to M at q, denoted as Tq(M),

can be defined as the set of all possible initial directional derivatives of curves in Cq.

Remark 2.4.1. For a more general definition of the tangent space, we refer the reader to

chapter 2 of [16].

For any dimension p, it can be shown that TI(Diag
+(p)) can be identified with Diag(p).

Any curve on Diag+(p) passing through Ip will be of the form

c(t) =


f1(t) 0 · · · 0

0 f2(t) · · · 0
...

...
. . .

...

0 0 · · · fp(t)

 ,

where the functions f1(t), · · · , fp(t) are differentiable, positive for all t ∈ R, and satisfy

the initial conditions f1(0) = · · · = fp(0) = 1. Since there are no constraints on the

initial derivatives f ′1(0), . . . , f ′p(0), it follows that c′(0) ∈ Diag(p). To see why Diag(p) ⊂

TI(Diag
+(p)), let L ∈ Diag(p) and note that the function γ(t) = Exp(Lt) traces a smooth

curve on Diag+(p) that passes through Ip with initial direction γ′(0) = L, implying that

L ∈ TI(Diag+(p)).

Since Diag+(p) is closed under matrix multiplication, one can construct a curve emanat-

ing from D ∈ Diag+(p) as c(t)D, where c(t) is a curve on Diag+(p) that satisfies c(0) = Ip.

Following the same steps in the previous paragraph, one will fnd that the tangent space to

Diag+(p) at D is the space TD(Diag+(p)) = {LD : L ∈ Diag(p)}.
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To characterize the tangent space to SO(p) at the identity Ip, note that any curve c(t)

on SO(p) passing through Ip must satisfy c(0) = Ip and

c(t)c(t)T = Ip. (2.1)

Differentiating Equation 2.1 with respect to t and evaluating the derivative at 0 yields

c′(0)c(0)T + c(0)c′(0)T = c′(0) + c′(0)T = 0. (2.2)

Thus, we have that any element of TI(SO(p)) must be in so(p). We also have that so(p) ⊂

TI(SO(p)) since the function γ(t) = Exp(At), where A ∈ so(p), defines a smooth curve on

SO(p) passing through Ip with initial direction γ′(0) = A.

To derive the tangent space at any U ∈ SO(p), one can construct a curve on SO(p)

originating from U as c(t)U , where c(t) is a curve on SO(p) with initial condition c(0) = Ip,

since SO(p) is closed under matrix multiplication. By following the steps in the previous

paragraph for characterizing TI(SO(p)), one will find that TU(SO(p)) = {AU : A ∈ so(p)}.

Since Diag(p) and so(p) are vector spaces, it is easy to see that the tangent spaces

TD(Diag+(p)) and TU(SO(p)) are also vector spaces. In fact, for any differentiable manifold

M , it holds that Tq(M) for q ∈M is a vector space [16]. With the tangent spaces of Diag+(p)

and SO(p) now well-defined, we can characterize Diag+(p) and SO(p) as Riemannian man-

ifolds:

Definition 2.4.2. A Riemannian manifold M of dimension p is a p-dimensional smooth

manifold which is equipped with a Riemannian metric, which is a correspondence that

smoothly associates to each q ∈ M an inner product (symmetric, positive-definite, bilin-

ear form) 〈., .〉q on the tangent space Tq(M).

For a Riemannian manifold M , the arc length of a curve connecting a, b ∈ M with

γ(0) = a and γ(1) = b can be calculated as

Lba(γ) =

∫ 1

0

(
〈γ′(t), γ′(t)〉γ(t)

)1/2
dt,

where 〈., .〉γ(t) denotes the Riemannian metric defined on the tangent space Tγ(t)(M). In the

following sections we present closed form expressions for the arc lengths of geodesics defined

on Diag+(p) and SO(p) under special Riemannian geometric frameworks.
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2.5 A RIEMANNIAN GEOMETRIC FRAMEWORK FOR DIAG-PLUS(P)

2.5.1 The Geometry of Diag-Plus(p)

The diagonal entries of any matrix in Diag+(p) lie on the positive real line, so it is easy to

see that the geometric structure of Diag+(p) mirrors that of Rp+, the positive orthant of Rp.

Diag+(p) is not a vector space; in fact, it is a cone since t1D1 + t2D2 ∈ Diag+(p) for any

D1, D2 ∈ Diag+(p) and t1, t2 > 0.

Diag+(p) is a group under matrix multiplication, and is classified as a Lie group since it

is a differentiable manifold whose group operation and group inverse operation are smooth.

In the previous section we saw that Diag(p) is the tangent space to Diag+(p) at the identity

element Ip. More formally, Diag(p) and Diag+(p) are linked as a Lie algebra/Lie group pair.

2.5.2 A Canonical Riemannian Framework for Diag-Plus(p)

Theorem 2.5.1. The spaces Diag(p) and Diag+(p) form a Lie Algebra/Lie Group pair.

Their relationship can be characterized by the following properties:

• Diag(p) and Diag+(p) are differentiable manifolds of dimension p.

• Diag(p) = TI(Diag
+(p)), the tangent space of Diag+(p) at the identity element Ip.

• The tangent space to Diag+(p) at an arbitrary element Λ ∈ Diag+(p) is of the form

TΛ(Diag+(p)) = {DΛ : D ∈ Diag(p)}.

• The matrix exponential with base Λ ∈ Diag+(p) from the tangent space TΛ(Diag+(p)) to

Diag+(p) can be defined as

ExpΛ(LΛ) = Exp(L)Λ

• The matrix logarithm with base Λ ∈ Diag+(p) from Diag+(p) to TΛ(Diag+(p)) can be

defined as

LogΛ(A) = Log(AΛ−1)Λ

• A Riemannian inner product at Λ for L1Λ, L2Λ ∈ TΛ(Diag+(p)) is

〈L1Λ, L2Λ〉Λ := 〈Λ−1L1Λ,Λ−1L2Λ〉 = 〈L1, L2〉 = tr(L1L2) (2.3)

where 〈., .〉 denotes the Frobenius inner product 〈X, Y 〉 = tr(XY T ) for X, Y ∈M(p).
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Theorem 2.5.2. Let Λ1,Λ2 ∈ Diag+(p). The curve

γ(t) = Exp(tLog(Λ2Λ−1
1 ))Λ1 (2.4)

for t ∈ [0, 1], traces the geodesic on Diag+(p) with endpoints Λ1 and Λ2. The length of γ(.)

using the inner product from Equation 2.3 equals the geodesic distance between Λ1 and Λ2

and is given by

dD+(p)(Λ1,Λ2) = LΛ2
Λ1

(γ) =

∫ 1

0

(
〈γ′(t), γ′(t)〉γ(t)

)1/2
dt

=
(
tr(Log2(Λ2Λ−1

1 ))
)1/2

= ‖Log(Λ2Λ−1
1 )‖F . (2.5)

Remark 2.5.1. The geodesic distance function dD+(p)(., .) is a proper metric on Diag+(p)

and can be described as invariant under the group action since dD+(p)(X, Y ) is not affected

by simultaneous left or right multiplication for any X, Y ∈ Diag+(p) (i.e. dD+(p)(X, Y ) =

dD+(p)(D1XD2, D1Y D2) for any D1, D2 ∈ Diag+(p)).

Remark 2.5.2. The distance between matrices X, Y ∈ Diag+(p) can be simplified into the

following formula

‖Log(Y X−1)‖F = ‖Log(Y )− Log(X)‖F =

( p∑
i=1

(log(yii)− log(xii))
2

)1/2

.

Remark 2.5.3. Since ExpΛ : TΛ(Diag+(p)) 7→ Diag+(p) is a bijective map, the tangent space

to Diag+(p) provides a global linearization of the curved space Diag+(p).
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2.6 A RIEMANNIAN GEOMETRIC FRAMEWORK FOR SO(P)

2.6.1 The Geometry of SO(p)

Any R ∈ SO(p) must satisfy RTR = Ip and det(R) = 1. Let R1, . . . , Rp denote the columns

of a rotation matrix R. The right-most column Rp is completely determined by columns

R1, . . . , Rp−1 since Rp must be orthogonal to the other columns and hence belongs to the

one-dimensional orthogonal complement of the span of columns R1, . . . , Rp−1. The sign of Rp

is chosen so that det(R) = 1. The mutual orthogonality and unit length constraints impose(
p−1

2

)
+p−1 = p(p−1)

2
non-linear restrictions on the remaining columns, leaving p(p−1)

2
degrees

of freedom among R1, . . . , Rp−1. Thus, SO(p) is a p(p−1)
2

dimensional non-linear space.

The identification of R ∈ SO(p) with its first p− 1 columns provides a characterization

of SO(p) as a special case of a Stiefel manifold. Recall that the Stiefel manifold V (m,n)

consists of all m× n matrices (with n ≤ m) containing orthonormal columns, so SO(p) can

be represented as the Stiefel manifold V (p, p−1). For more information on Stiefel manifolds,

we refer the reader to [11].

When p = 2, every 2× 2 rotation matrix has the representation

R(θ) =

cos(θ) − sin(θ)

sin(θ) cos(θ)

 ,

which identifies SO(2) with S1, the unit circle in R2. Left multiplication of v ∈ R2 by R(θ)

rotates v counterclockwise about the origin by angle θ. SO(2) is commutative under matrix

multiplication since R(θ)R(φ) = R(θ+φ) = R(φ+θ) = R(φ)R(θ), and is special since SO(p)

ceases to be a commutative group for p > 2.

For p = 3, any 3× 3 rotation matrix has the axis-angle representation

R(θ,~a) = I3 + sin(θ)[~a]× + (1− cos(θ))[~a]2×

where ~a ∈ R3, ~aT~a = 1, and [~a]× denotes the cross product matrix which computes [~a]×~v =

~a × ~v for any ~v ∈ R3. Left multiplication of v ∈ R3 by R(θ,~a) rotates v about the axis ~a

by angle θ. This axis-angle representation is not unique if θ is allowed to vary over all of R

since R(−θ,−~a) = R(θ,~a) and R(θ1,~a) = R(θ2,~a) whenever θ1 ≡ θ2 (mod 2π). To obtain
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a unique axis-angle parametrization for a 3D rotation matrix, it makes sense to restrict the

angle of rotation [0, π) since R(θ,~a) = R(2π−θ,−~a). When θ = π, it is impossible to obtain

a unique axis-angle representation since R(π,~a) = R(π,−~a). A rotation matrix with angle

θ ∈ [0, π) and axis ~a ∈ S2 can be identified with the vector θ~a, which lies in the interior of

a sphere of radius π centered at the origin (0, 0, 0)T , which we will denote as Vπ. Rotations

about the axis ~a by angle π can be identified with the antipodal points π~a and −π~a that lie

on the boundary of Vπ.

SO(p) is a group under matrix multiplication, and is classified as a Lie group since it is

a differentiable manifold whose group operation and group inverse operation are smooth. In

the previous section we saw that so(p) is the tangent space to SO(p) at the identity element

Ip. More formally, so(p) and SO(p) are linked as a Lie algebra/Lie group pair.

2.6.2 A Canonical Riemannian Framework for SO(p)

Theorem 2.6.1. The spaces so(p) and SO(p) form a Lie Algebra/Lie Group pair. Specifi-

cally, their relationship can be characterized by the following properties:

• so(p) and SO(p) are differentiable manifolds of dimension 1
2
p(p− 1).

• so(p) = TI(SO(p)), the tangent space of SO(p) at the identity element Ip.

• The tangent space to SO(p) at U ∈ SO(p) is TU(SO(p)) = {AU : A ∈ so(p)}.

• The matrix exponential with base U ∈ SO(p) from the tangent space TU(SO(p)) to SO(p)

can be defined as

ExpU(AU) = Exp(A)U

• The matrix logarithm with base U ∈ SO(p) from SO(p) to TU(SO(p)) can be defined as

LogU(R) = Log(RUT )U

• A Riemannian inner product at U for A1U,A2U ∈ TU(SO(p)) is

〈A1U,A2U〉U :=
1

2
〈A1U,A2U〉 =

1

2
〈A1, A2〉 =

1

2
tr(A1A

T
2 ) (2.6)

where 〈., .〉 denotes the Frobenius inner product 〈X, Y 〉 = tr(XY T ) for X, Y ∈M(p).
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Theorem 2.6.2. Let R1, R2 ∈ SO(p). The curve

γ(t) = Exp(tLog(R2R
T
1 ))R1 (2.7)

for t ∈ [0, 1] traces a geodesic on SO(p) with endpoints R1 and R2. The length of γ(.) using

the inner product from Equation 2.6 equals the geodesic distance between R1 and R2, and is

given by

dSO(p)(R1, R2) = LR2
R1

(γ) =

∫ 1

0

(
〈γ′(t), γ′(t)〉γ(t)

)1/2
dt

=

(
1

2
tr(Log(R2R

T
1 )Log(R2R

T
1 )T )

)1/2

=
1√
2
‖Log(R2R

T
1 )‖F .

(2.8)

Remark 2.6.1. The geodesic distance function dSO(p)(., .) is a proper metric on SO(p) and

is invariant under the group action since dSO(p)(X, Y ) is invariant under simultaneous left

or right multiplication for any X, Y ∈ SO(p) (i.e. dSO(p)(X, Y ) = dSO(p)(U1XU2, U1Y U2) for

any U1, U2 ∈ SO(p)).

Remark 2.6.2. For p equal to 2 or 3, dSO(p)(R1, R2) has a physical interpretation as the

magnitude of a rotation angle. When identifying elements R1, R2 ∈ SO(2) with points on

the unit circle in R2, the distance dSO(p)(R1, R2) equals length of the shortest arc on the

unit circle connecting the points corresponding to R1 and R2, which is depicted by the blue

connecting arc in the left diagram of Figure 2. For 3D rotation matrices R1 and R2 in SO(3),

the distance dSO(p)(R1, R2) equals the magnitude of the rotation angle from the axis-angle

representation of the rotation matrix R2R
T
1 .

Remark 2.6.3. There will be multiple geodesics connecting points R1 and R2 whenever the

rotation matrix R2R
T
1 is an involution, meaning (R2R

T
1 )2 = Ip and R2R

T
1 6= Ip. For p =

2 or 3, the matrix R2R
T
1 will be an involution if and only if dSO(p)(R1, R2) = π. Rotation

matrices in SO(2) or SO(3) that differ by angle π are often referred to as antipodal points.

This case is illustrated for SO(2) in the right diagram of Figure 2.
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R1

R2

R1R2

Figure 2: Visualization of rotation matrices R1, R2 ∈ SO(2) as points on the unit circle.

2.7 GEOMETRIC FRAMEWORKS FOR SYM-PLUS(P)

2.7.1 The Geometry of Sym-Plus(p)

Any M ∈ Sym+(p) must satisfy M = MT and xTMx > 0 for any x 6= 0. The symmetric

condition reduces the number of degrees of freedom for any SPD matrix to p(p+1)
2

. The

positive definite restriction prevents Sym+(p) from being a vector space; moreover, Sym+(p)

is a cone since c1M1 + c2M2 ∈ Sym+(p) for any M1,M2 ∈ Sym+(p) provided that c1, c2 > 0.

As a simple illustration of Sym+(p), we consider the case when p = 2. Any M ∈ Sym+(2)

must be of the form

M =

a c

c b

 ,

where a > 0, b > 0, and ab − c2 > 0. Then Sym+(2) can be characterized as the set

{(x1, x2, x3) ∈ R3 : x1 > 0, x2 > 0, x1x2 − x2
3 > 0}, which forms the interior of a cone in R3.

In addition, any M ∈ Sym+(p) can be identified with the ellipsoid in Rp whose surface

coordinates x ∈ Rp satisfy xTM−1x = 1. In particular, the semi-principal axes of this

ellipsoid and their squared lengths correspond to the eigenvectors and respective eigenvalues

of M . For example, the matrix

X =

6 4

4 6


16



Figure 3: Sym+(2) as a cone in R3.

has eigenvalues 10 and 2, with respective eigenvectors
(

1√
2
, 1√

2

)T
and

(−1√
2
, 1√

2

)T
. Solutions

to the equation vTX−1v = 1 trace an ellipse in R2 having principal axes of length
√

10 and

directions ±
(

1√
2
, 1√

2

)T
, and minor axes of length

√
2 with directions ±

(−1√
2
, 1√

2

)T
.

Unlike Diag+(p) and SO(p), Sym+(p) is not closed under matrix multiplication. How-

ever, movement throughout Sym+(p) can be accomplished via the group action φ : GL(p)×

Sym+(p) 7→ Sym+(p) defined as φG(M) = GMGT ∈ Sym+(p), where G ∈ GL(p) and

M ∈ Sym+(p). This conjugation action can be used to motivate an affine-invariant Rieman-

nian geometric framework for Sym+(p) (see [18]).

2.8 A SCALING-ROTATION FRAMEWORK FOR SYM-PLUS(P)

2.8.1 Scaling-Rotation Curves

In this section we provide motivation for the scaling-rotation framework for Sym+(p) pro-

posed in [28].

Recall that any X ∈ Sym+(p) has an eigen-decomposition X = UDUT , where U ∈

SO(p) and D ∈ Diag+(p). For any X1, X2 ∈ Sym+(p), deformation from X1 to X2 can

be described by a combination of scaling the eigenvalues and rotating the eigenvectors of

X1. When X1 and X2 are viewed as ellipsoids, deformation from X1 to X2 occurs as a

combination of rotating the axes of X1 to align with those of X2 and scaling the lengths of
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the axes of X1 to match the length of the axes of X2. If X1 and X2 have eigen-decompositions

X1 = U1D1U
T
1 and X2 = U2D2U

T
2 with D1, D2 ∈ Diag+(p) and U1, U2 ∈ SO(p), one method

for smoothly scaling the eigenvalues of X1 to match those of X2 and smoothly rotating the

eigenvectors of X1 to match those of X2 is via the geodesic curves from Equation 2.4 and

Equation 2.7

χS(t) = Exp(Log(D2D
−1
1 )t)D1

χR(t) = Exp(Log(U2U
T
1 )t)U1

defined for t ∈ [0, 1]. The curves above can be combined via eigen-composition to create the

following smooth curve in Sym+(p) running from X1 to X2

χSR(t) = χR(t)χS(t)χR(t)T ,

which we will refer to as a scaling-rotation curve.

Pure Rotation

Pure Scaling

Rotation Plus Scaling

Figure 4: Interpolation between 2× 2 SPD matrices along various scaling-rotation curves.

One can define the distance between X1 and X2 as the length of a scaling-rotation curve

connecting X1 and X2. Developing a scaling-rotation framework for Sym+(p) will require

a geometric framework for Diag+(p) × SO(p), the cross product space which contains all

possible eigen-decompositions, and a method to account for the non-uniqueness of eigen-

decomposition for a given SPD matrix.
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2.8.2 A Riemannian Framework for the Eigen-Decomposition Space

To define a scaling-rotation framework for Sym+(p), we first describe a Riemannian geomet-

ric framework for Diag+(p)×SO(p) that combines the frameworks for Diag+(p) and SO(p)

that were described in section 2.5 and section 2.6.

Theorem 2.8.1. The spaces Diag(p)×so(p) and Diag+(p)×SO(p) form a Lie Algebra/Lie

Group pair. Their relationship can be characterized by the following properties:

• Diag(p)×so(p) and Diag+(p)×SO(p) are differentiable manifolds of dimension p+ p(p−1)
2

.

• Diag(p)× so(p) = TI(Diag
+(p)×SO(p)), the tangent space to Diag+(p)×SO(p) at the

identity element (Ip, Ip).

• The tangent space to Diag+(p) × SO(p) at (Λ, U) ∈ Diag+(p) × SO(p) is of the form

T(Λ,U)(Diag
+(p)× SO(p)) = {(LΛ, AU) : L ∈ Diag(p) and A ∈ so(p)}.

• The matrix exponential with base (Λ, U) ∈ Diag+(p) × SO(p) from the tangent space

T(Λ,U)(Diag
+(p)× SO(p)) to Diag+(p)× SO(p) can be defined as

Exp(Λ,U)((LΛ, AU)) = (Exp(L)Λ, Exp(A)U).

• The matrix logarithm with base (Λ, U) ∈ Diag+(p) × SO(p) from Diag+(p) × SO(p) to

T(Λ,U)(Diag
+(p)× SO(p)) can be defined as

Log(Λ,U)(D,R) = (Log(DΛ−1)Λ, Log(RUT )U).

• A Riemannian inner product at (Λ, U) for (L1Λ, A1U), (L2Λ, A2U) ∈ T(Λ,U)(Diag
+(p)×

SO(p)) is

〈(L1Λ, A1U), (L2Λ, A2U)〉(Λ,U) = 〈Λ−1L1Λ,Λ−1L2Λ〉+
k

2
〈A1U,A2U〉

= tr(L1L2) +
k

2
tr(A1A

T
2 ), k > 0, (2.9)

where 〈., .〉 denotes the Frobenius inner product 〈X, Y 〉 = tr(XY T ).
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Theorem 2.8.2. Let (Λ1, R1), (Λ2, R2) ∈ Diag+(p)× SO(p). The curve

γ(t) = (Exp(Log(Λ2Λ−1
1 )t)Λ1, Exp(Log(R2R

T
1 )t)R1) (2.10)

for t ∈ [0, 1] traces a geodesic on Diag+(p)×SO(p) with endpoints at (Λ1, R1) and (Λ2, R2).

The length of γ(.) using inner product Equation 2.9 equals the geodesic distance between

(Λ1, R1) and (Λ2, R2), and is given by

dSR((Λ1, R1), (Λ2, R2)) = L
(Λ2,R2)
(Λ1,R1)(γ) =

∫ 1

0

(〈γ′(t), γ′(t)〉γ(t))
1/2dt

=

(
tr(Log2(Λ2Λ−1

1 )) +
k

2
tr(Log(R2R

T
1 )Log(R2R

T
1 )T )

)1/2

=

(
‖Log(Λ2Λ−1

1 )‖2
F +

k

2
‖Log(R2R

T
1 )‖2

F

)1/2

. (2.11)

Remark 2.8.1. When k = 1, dSR(., .) is equal to (d2
D+(p)(., .)+d2

SO(p)(., .))
1/2, where d+

D(p)(., .)

and dSO(p)(., .) are the distance functions defined in Equation 2.5 and Equation 2.8.

Remark 2.8.2. The distance function above inherits the invariance properties of Equation 2.5

and Equation 2.8.

2.8.3 Non-uniqueness of Eigen-decomposition

Given X ∈ Sym+(p) with eigen-decomposition X = UDUT , the eigen-decomposition (D,U)

is not unique since it is always possible to find a matrix R ∈ SO(p), R 6= Ip, such that

RTDR ∈ Diag+(p) and (RTDR,UR) is also an eigen-decomposition of X.

For example, the matrix

X =

6 4

4 6


has eigen-decompositions (D1, U1) and (D2, U2) with

D1 =

10 0

0 2

U1 =

 1√
2
− 1√

2

1√
2

1√
2



D2 =

2 0

0 10

U2 =

− 1√
2
− 1√

2

1√
2
− 1√

2


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since U1D1U
T
1 = X = U2D2U

T
2 .

If (D1, U1) and (D2, U2) are eigen-decompositions of some X ∈ Sym+(p), we will call

them versions of the eigen-decomposition of X. Different versions of the eigen-decomposition

of an SPD matrix differ by special orthonormal transformations, and under special circum-

stances, there will be finitely many versions. In order to describe the transformations that

link the different versions of an eigen-decomposition, we recall some special types of matrices:

Definition 2.8.1. Let π denote a permutation of {1, 2, . . . , p}. The permutation matrix

associated with π, which we will denote as Pπ, is a p × p matrix whose entries are all zero

except for elements (i, π(i)) for i = 1, . . . , p, which equal 1.

For any A ∈ M(p), left multiplication of A by Pπ permutes the rows of A according to

π, while right multiplication by P T
π permutes the columns of A according to π. Any permu-

tation matrix Pπ satisfies PπP
T
π = Ip and det(Pπ) = ±1, where the sign of the determinant

equals the sign of the permutation π. To create permutation matrices with strictly positive

determinants, we define the modified permutation matrix

P+
π =

Pπ if det(Pπ) = 1

PπA+ if det(Pπ) = −1

,

where

A+ =

−1 0

0 Ip−1

 .

It is straightforward to show that P+
π ∈ SO(p) for any permutation π.

Definition 2.8.2. A sign change matrix, which we denote as Iσ, is a p× p matrix whose

diagonal elements equal 1 or -1 and off-diagonal elements equal zero, with the restriction

that det(Iσ) = 1.

Let {i1, . . . , ik} ⊂ {1, . . . , p} and suppose Iσ is a sign-change matrix with -1 on the

diagonal of columns i1, . . . , ik. For any A ∈ M(p), left multiplication of A by Iσ changes

the signs of rows i1, . . . , ik of A, while right multiplication of A by Iσ changes the signs

of columns i1, . . . , ik of A. For any sign change matrix Iσ, it holds that IσI
T
σ = Ip and

det(Iσ) = 1, implying that Iσ ∈ SO(p).
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Lemma 2.8.1. The following results hold for modified permutation matrices and sign change

matrices:

1. There are p! distinct modified permutation matrices of size p× p.

2. There are 2p−1 distinct sign change matrices of size p× p.

3. The spaces of modified permutation matrices and sign change matrices are subsets of

SO(p) and are closed under matrix multiplication.

Theorem 2.8.3. Let X ∈ Sym+(p). Every eigen-decomposition X = UDUT , where U ∈

SO(p) and D ∈ Diag+(p), is of the form (D∗, U∗) = (Dπ, UR(P+
π )T ), where R ∈ SO(p)

satisfies RDRT = D and Dπ = P+
π D(P+

π )T . If the eigenvalues of X are distinct, then every

R ∈ SO(p) that satisfies RDRT = D is a sign change matrix.

Corollary 2.8.1. Let X ∈ Sym+(p). If the eigenvalues of X are distinct, then there are

2p−1p! different version of the eigen-decomposition of X.

Returning to our example

X =

6 4

4 6

 ,

we now know that X also has eigen-decompositions (D3, U3) and (D4, U4) with

D3 =

10 0

0 2

U3 =

− 1√
2

1√
2

− 1√
2
− 1√

2



D4 =

2 0

0 10

U4 =

 1√
2

1√
2

− 1√
2

1√
2


in addition to its previously mentioned decompositions (D1, U1) and (D2, U2). All four eigen-

decompositions of X are represented in Figure 5. For a given decomposition, red (black)

arrows follow the direction of the first (second) column of the eigenvector matrix and have

length equal to the square root of the first (second) eigenvalue.

Note that when an SPD matrix has some eigenvalues that are equal, there will be in-

finitely many eigen-decompositions. For example, the 2 × 2 SPD matrix X = 4I2 can be

decomposed as X = U(4I2)UT , where U is any member of SO(2).
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(D1; U1)(D2; U2)

(D3; U3) (D4; U4)

Figure 5: Depiction of the four eigen-decompositions of X.

2.8.4 Minimal Scaling-Rotation Framework

Define the eigen-composition map as F : Diag+(p)× SO(p) 7→ Sym+(p) as

F(D,U) = UDUT . (2.12)

Given X ∈ Sym+(p), the set of all possible eigen-decompositions of X is

F−1(X) = {(D,U) ∈ Diag+(p)× SO(p) : X = UDUT}.

For X, Y ∈ Sym+(p), one can define the distance between X and Y as the length of a

minimal length scaling-rotation curve connecting members of F−1(X) and F−1(Y ).

Definition 2.8.3. Given X, Y ∈ Sym+(p), the minimal scaling-rotation distance be-

tween X and Y is defined as

dMSR(X, Y ) := inf
(DX ,UX)∈F−1(X),
(DY ,UY )∈F−1(Y )

dSR((DX , UX), (DY , UY )), (2.13)

where dSR(., .) is the scaling-rotation distance function defined in Equation 2.11.
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Remark 2.8.3. The function dMSR(., .) is a semi-metric on Sym+(p) (the triangle inequality

fails to hold over all of Sym+(p)) and is a proper metric when restricted to the set of SPD

matrices with all distinct eigenvalues.

Remark 2.8.4. The method for computing the minimal scaling-rotation between X, Y ∈

Sym+(p) depends on the eigenvaule multiplicity patterns of X and Y . Procedures for com-

puting the minimal scaling-rotation distance for p = 2 and 3 were introduced in [28] and

later improved upon in [22].

The minimal scaling-rotation distance between X, Y ∈ Sym+(p) measures the length of

a minimal-length scaling-rotation curve on the product space Diag+(p)× SO(p) connecting

members of F−1(X) and F−1(Y ). Intuitively, it can be thought of as the minimal amount

of rotation and scaling required to deform the ellipsoid associated with X into the ellipsoid

associated with Y . If (D∗X , U
∗
X) ∈ F−1(X) and (D∗Y , U

∗
Y ) ∈ F−1(Y ) are endpoints of a

minimal length curve among all curves connecting eigen-decompositions of X and Y , we will

refer to (D∗X , U
∗
X) and (D∗Y , U

∗
Y ) as a minimal pair of eigen-decompositions for X and Y .

Definition 2.8.4. Let (DX , UX), (DY , UY ) be a minimal pair of eigen-decompositions for

X, Y ∈ Sym+(p). A minimal scaling-rotation curve running from X to Y on Sym+(p)

is of the form

χMSR(t) = (Exp(Log(UYU
T
X)t)UX)(Exp(Log(DYD

−1
X )t)DX)(Exp(Log(UYU

T
X)t)UX)T

(2.14)

for t ∈ [0, 1].

As an illustration of how to compute the minimal scaling-rotation distance between two

SPD matrices, let

X =

10 0

0 2

 and Y =

 1√
2
− 1√

2

1√
2

1√
2

10 0

0 2

 1√
2

1√
2

− 1√
2

1√
2

 .

The four possible scaling-rotation curves connecting X and Y on Sym+(2) are displayed in

Figure 6. Each row in the figure corresponds to a different scaling-rotation curve and can be

read from left to right to visualize deformation from X, represented by the leftmost ellipse

in each row, to Y , which is represented by the rightmost ellipse in each row. The heading
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above each row displays the length of its corresponding scaling-rotation curve computed via

Equation 2.11 with k = 1. It is no surprise that the deformation paths in the first two rows

have the shortest scaling-rotation distances since those two paths are pure rotations from X

to Y , while the bottom two rows appear to follow the same rotation patterns plus scaling.

The deformation paths in the first two rows represent the two possible ways to rotate the

principal axes of X to align with those of Y : clockwise rotation by 135 degrees (row 1) or

counterclockwise rotation by 45 degrees (row 2). Note that since the scaling-rotation curves

in the first two rows are pure rotations, their scaling-rotation lengths equal the total angle of

rotation from X to Y along each path, and we have that the curve in row two is the minimal

scaling-rotation curve connecting X and Y , with minimal scaling-rotation distance equal to

45 degrees or π/4 radians.

SR Distance: 2.3562

SR Distance: 0.7854

SR Distance: 3.2760

SR Distance: 2.4078

Figure 6: The four possible scaling-rotation curves connecting X and Y .

Note that in the example illustrated in Figure 6, there were four distinct scaling-rotation

curves of four distinct lengths connecting X and Y and hence, only one minimal scaling-

rotation curve running from X to Y . In the supplementary section of [22], the authors

provide examples of pairs of SPD matrices from Sym+(2) and Sym+(3) that are connected

by more than one minimal scaling-rotation curve. A pair of SPD matrices from Sym+(2)
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can be connected by one, two, or three distinct minimal scaling-rotation curves, and explicit

conditions for each case are provided in the aforementioned supplementary section. While

explicit conditions for each possible number of distinct minimal scaling-rotation curves con-

necting a pair of SPD matrices from Sym+(3) is not yet known (this would be an extremely

tedious combinatorial exercise), the authors provide their most recent “worst case” of non-

unique minimal scaling-rotation curves with an example of a pair of SPD matrices from

Sym+(3) that are connected by nine distinct minimal length scaling-rotation curves. While

the non-uniqueness of minimal scaling rotation curves connecting two SPD matrices can

occur, it is virtually impossible to be observed in real data since the non-uniqueness requires

equality of functions depending on the eigenvalues and eigenvectors of the two matrices.

We conclude this section with an informal description of the geometric stucture of

Sym+(p) when equipped the minimal scaling-rotation distance function. For a thorough

and rigorous description of the geometry of Sym+(p) under the minimal scaling-rotation

framework, we refer readers to [22]. Eigen-decomposition partitions Sym+(p) according to

eigenvalue multiplicity patterns. For example, using the notation from [22], Sym+(3) =

Stop∪Smid∪Sbot where Stop denotes the set of 3×3 SPD matrices having 3 distinct eigenval-

ues, Smid denotes the set of 3× 3 SPD matrices with only two distinct eigenvalues, and Sbot

denotes the set of SPD matrices having only one distinct eigenvalue with multiplicity 3. The

spaces Stop,Smid, and Sbot are disjoint manifolds of different dimensions, which characterizes

Sym+(3) as a stratified space. For any X ∈ Sym+(3), the structure of F−1(X) will vary

depending on whether X belongs to Stop,Smid, or Sbot, which explains why the computation

of dMSR(X, Y ) depends on the respective eigenvalue multiplicity patterns of X and Y .

This informal description of the minimal scaling-rotation geometric framework can be

adapted for general p 6= 3 by noting that Sym+(2) = Stop ∪ Sbot and Sym+(p) = Stop ∪

Smid ∪ Sbot for p > 3, where Smid is the union of subsets of Sym+(p) corresponding to

all possible eigenvalue multiplicity patterns having at least two distinct eigenvalues and

at least one repeated eigenvalue. It is important to note that while the cross-product space

Diag+(p)×SO(p) is a Riemannian manifold when equipped with the scaling rotation distance

from Equation 2.11, Sym+(p) is not a Riemannian manifold under the minimal scaling-

rotation framework [22].
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3.0 SCALING-ROTATION ESTIMATION FOR SYM-PLUS(P)

3.1 MINIMAL SCALING-ROTATION SAMPLE MEAN ESTIMATION

In this chapter we consider the setting in which we have a random sample of SPD matrices

and would like to compute a sample-based location estimator. Location estimation is an

important first step in the development of many statistical techniques including two sample

hypothesis testing ([45]) for comparing average brain scans from two groups of interest,

principal geodesic analysis ([18]) for visualizing major modes of variation in a sample of

SPD matrices, and weighted mean estimation, which has useful applications in diffusion

tensor processing, including fiber tracking, smoothing, and interpolation ([4],[9]).

One of the challenges of developing methods for analyzing SPD-valued data is that the

positive-definite constraint precludes Sym+(p) from being a vector space. This can be easily

seen when p = 2, as plotting the free coordinates (two diagonal elements and upper off-

diagonal element) of all 2× 2 SPD matrices in R3 fills the interior of a convex cone. Hence,

conventional estimation or inferential techniques developed for data that varies freely over

Euclidean space may not be appropriate for the statistical analysis of SPD matrices. With

this in mind, many location estimation frameworks that account for the geometry of Sym+(p)

have been developed in recent years, including the Log-Euclidean framework ([2]), Affine-

Invariant framework ([18], [40]), and Procrustes Size and Shape framework ([15]). Given

a sample of SPD matrices, most of these estimation methods amount to transforming the

SPD-valued observations, averaging in the space of the transformed observations, and then

mapping the mean of the transformed data into Sym+(p). For example, the Log-Euclidean

method maps each observation into Sym(p), the space of p× p symmetric matrices, via the

matrix logarithm, computes the sample mean of the transformed observations, and then
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maps that mean into Sym+(p) via the matrix exponential function, while the Procrustes

Size and Shape method begins with computing a matrix square root for each observation,

averages the matrix square roots in a way that accounts for the non-uniqueness of the matrix

square root, and then maps the final average L̂ to Sym+(p) as Σ̂ = L̂L̂T .

While these geometric frameworks account for the curvature of Sym+(p), it is not clear

which of the Log-Euclidean, Affine-Invariant, or Procrustes Size-and-Shape is most “natural”

for describing deformations of SPD matrices. Motivated by the analysis of DTI data, a

setting in which observations are ellipsoids in R3, Jung et al. ([28]) developed the scaling-

rotation framework for Sym+(p). Under this framework, the distance between SPD matrices

X and Y is defined as the minimal amount of rotation of axes and scaling of axis lengths

necessary to defom the ellipsoid associated with X into the ellipsoid associated with Y .

The authors found that the scaling-rotation framework yields interpolation curves that have

desirable properties, including constant rate of rotation and log-linear scaling of eigenvalues,

and found it to be the only geometric framework (compared to Euclidean, Log-Euclidean,

and Affine-Invariant) to produce both pure scaling interpolation curves and pure rotation

curves when the endpoints differed by pure scaling or pure rotation.

Given that no statistical methods yet exist for the scaling-rotation framework, the goal of

this chapter is to establish location estimation methods using the scaling-rotation framework

as a foundation for future methods that will inherit the interpretability of the framework. In

this chapter, we provide computational procedures for computing a sample scaling-rotation

mean set and a weighted sample scaling-rotation mean set, and list conditions that guarantee

uniqueness, strong consistency, and a type of Central Limit Theorem for sample scaling-

rotation means. We conclude the chapter with some real data applications of our scaling-

rotation estimation framework to multivariate tensor-based morphometry and DTI data

processing.

3.1.1 Fréchet Mean Estimation

An approach often used for developing location estimators for non-Euclidean metric spaces

is Fréchet mean estimation [19], in which estimators are derived as minimizers of a metric-

28



dependent sample mean-squared error. In this subsection, we provide definitions of popu-

lation and sample Fréchet means, as well as references to examples of well-known Fréchet

mean estimators for Sym+(p).

Definition 3.1.1. Let M be a metric space with metric ρ and suppose that X,X1, . . . , Xn

are i.i.d. M -valued random variables with probability measure µ. The population Fréchet

mean set is

argmin
C∈M

∫
M

ρ2(X,C)dµ(X).

The sample Fréchet mean set is

argmin
C∈M

1

n

n∑
i=1

ρ2(Xi, C).

The Fréchet mean estimation framework can viewed as an extension of location estima-

tion on the real line to location estimation on metric spaces since the population Fréchet

mean and sample Fréchet mean equal the expected value of a random variable and arithmetic

mean of a random sample, respectively, when M = R and ρ(x, y) = |x− y|.

Examples of location estimators that have been developed for Sym+(p) using the sample

Fréchet mean estimation framework include the Log-Euclidean mean ([2]), Affine-Invariant

mean ([18], [40]), and Procrustes Size and Shape mean ([15]).

3.1.2 Sample Scaling-Rotation Mean

In this section, we define the sample minimal scaling-rotation mean set as the sample Fréchet

mean set of a sample of SPD matrices under the scaling-rotation framework, introduce a

related estimator called the sample partial minimal scaling-rotation mean set which often

coincides with the sample minimal scaling-rotation mean set, and then provide a procedure

for computing a candidate member of the sample partial minimal scaling-rotation mean set.

Definition 3.1.2. Let S1, . . . , Sn be a random sample of SPD matrices. The sample minimal

scaling-rotation mean set is

argmin
Σ∈Sym+(p)

1

n

n∑
i=1

d2
MSR(Si,Σ;K).
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Solving for the sample minimal scaling-rotation mean set will be challenging in prac-

tice. Suppose that (D∗i , U
∗
i ) ∈ F−1(Si) and (D

(i)
Σ , U

(i)
Σ ) ∈ F−1(Σ) form minimal pairs for

i = 1, . . . , n. Then 1
n

∑n
i=1 d

2
MSR(Si,Σ) = 1

n

∑n
i=1 d

2
SR((D∗i , U

∗
i ), (D

(i)
Σ , U

(i)
Σ )), and there is no

guarantee that (D
(i)
Σ , U

(i)
Σ ) = (D

(j)
Σ , U

(j)
Σ ) for any pair i, j, which complicates optimization

over M(p). To address this issue, note that the minimal scaling-rotation distance can be

simplified as

dMSR(S,Σ) = inf
(DS ,US)∈F−1(S)

dSR((DS, US), (D,U)), (3.1)

where (D,U) is any eigen-decomposition of Σ when S and Σ both have no repeated eigenval-

ues. Motivated by this simplification, we define the following measure of distance between

an SPD matrix and a given eigen-decomposition:

Definition 3.1.3. The partial minimal scaling-rotation distance is dPMSR : Sym+(p) ×

M(p) 7→ [0,∞) given by

dPMSR(S, (D,U)) = inf
(DS ,US)∈F−1(S)

dSR((DS, US), (D,U)).

Definition 3.1.4. Let S1, . . . , Sn be a random sample of SPD matrices. The sample partial

minimal scaling-rotation mean set is

argmin
(D,U)∈M(p)

1

n

n∑
i=1

d2
PMSR(Si, (D,U)).

Remark 3.1.1. Note that the sample partial minimal scaling-rotation mean set belongs to

the product space M(p) = Diag+(p) × SO(p), while the sample minimal scaling-rotation

mean set belongs to Sym+(p). If one prefers to define the sample partial minimal scaling-

rotation mean set on Sym+(p), each memeber of the set can be mapped to Sym+(p) via

eigen-composition.

The partial scaling-rotation sample mean set should, in practice, provide a good ap-

proximation of the eigen-decompositions of the scaling-rotation sample mean set since those

sets are equivalent, by (3.1), when each observation has no repeated eigenvalues and the

parameter space is restricted to the set of SPD matrices which have no repeated eigenvalues.

Expecting all observations to have no repeated eigenvalues in practice is not unreasonable,

as this will be the case with probability 1 if the sample arises from a continuous distribution.
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Let Q(D,U) = 1
n

∑n
i=1 d

2
PMSR(Si, (D,U)). We propose the following procedure, which is

similar to the Generalized Procrustes Algorithm ([21]), for approximating a member of the

sample partial scaling-rotation mean set:

1. Set tolerance ε > 0 and pick initial guess (D̂(0), Û (0)).

2. For k ≥ 0 and i = 1, . . . , n, find (D
(k)
i , U

(k)
i ) ∈ F−1(Si) that has the smallest scaling-

rotation distance from (D̂(k), Û (k)).

3. Compute

(D̂(k+1), Û (k+1)) ∈ argmin
(D,U)∈M(p)

1

n

n∑
i=1

d2
SR((D

(k)
i , U

(k)
i ), (D,U))

4. If |Q(D̂(k+1), Û (k+1))−Q(D̂(k), Û (k))| > ε, repeat steps 2 and 3.

Otherwise, set (D̂PMSR, ÛPMSR) = (D̂(k+1), Û (k+1)).

Remark 3.1.2. The above procedure will always terminate since Q(D,U) ≥ 0 for any

(D,U) ∈M(p) and Q(D̂(k), Û (k)) ≥ Q(D̂(k+1), Û (k+1)) for any k ≥ 0.

When observation Si has no repeated eigenvalues, performing Step 2 will simply require

searching over the 2(p−1)p! distinct eigen-decompositions (cf. Theorem 3.3 of [28]) of Si to

find one that attains the minimal scaling-rotation distance from (D̂(k), Û (k)). Solving for

the minimizing eigen-decomposition of Si is also easy when Si is a scaled identity matrix,

since Si = cIp = U(cIp)U
T for any U ∈ SO(p) implies that (cIp, Û

(k)) will be the eigen-

decomposition of Si with minimal geodesic distance from (D̂(k), Û (k)). Determining the

minimizing eigen-decomposition of Si when p = 3 and Si has two unique eigenvalues can

be done by using a similar computational method as in part (iii) of Theorem 4.3 from [28].

For p > 3 and Si having more than 1 but fewer than p unique eigenvalues, determining

the minimal eigen-decomposition of Si for step 2 is an open problem. Since the number of

eigen-decompositions (2(p−1)p!) of a SPD matrix which has no repeated eigenvaues grows

rapidly with p, we intend to use this procedure for p = 2, 3. Performing Step 2 for larger

p may require numerical procedures that can circumvent having to search over all 2(p−1)p!

eigen-decompositions for each observation.

The optimization problem over M(p) from Step 3 can be divided into separate minimiza-

31



tion problems over Diag+(p) and SO(p):

D̂(k+1) = argmin
D∈Diag+(p)

1

n

n∑
i=1

‖Log(D
(k)
i )− Log(D)‖2

F

Û (k+1) ∈ argmin
U∈SO(p)

1

n

n∑
i=1

‖Log(U
(k)
i U−1)‖2

F .

D̂(k+1) has the closed-form solution D̂(k+1) = Exp( 1
n

∑n
i=1 Log(D

(k)
i )). The solution for Û (k+1)

must be approximated via numerical procedures, and it shown in [34] that when the rotation

matrices U
(k)
1 , . . . , U

(k)
n lie within a geodesic ball of radius π

2
, there is a unique solution for

Û (k+1) which can be approximated by a globally convergent gradient descent algorithm.

3.1.3 Weighted Scaling-Rotation Mean

Often it is useful to compute a weighted average of SPD matrices, especially in the process-

ing of diffusion tensor data via fiber tracking, interpolation, or smoothing. The procedure

for estimating the sample partial minimal scaling-rotation mean can easily be adapted to

compute a weighted sample partial minimal scaling-rotation mean:

Definition 3.1.5. The weighted partial minimal scaling-rotation sample mean set is

argmin
(D,U)∈M(p)

n∑
i=1

wid
2
PMSR(Si, (D,U)).

where positive weights w1, . . . , wn satisfy
∑n

i=1wi = 1.

The procedure for finding a candidate member of the sample partial minimal scaling-

rotation mean set can be modified to compute a candidate member of the weighted sample

partial minimal scaling-rotation mean set, which involves changing step 3 so that

D̂(k+1) = argmin
D∈Diag+(p)

n∑
i=1

wi‖Log(D
(k)
i )− Log(D)‖2

F

Û (k+1) ∈ argmin
U∈SO(p)

n∑
i=1

wi‖Log(U
(k)
i U−1)‖2

F .

D̂(k+1) has the closed form solution D̂(k+1) = Exp(
∑n

i=1wiLog(D
(k)
i )) and Û (k+1) can be

computed by modifying the gradient descent method of [34] to solve for U ∈ SO(p) satisfying∑n
i=1 wiLog(U

(k)
i U−1) = 0.
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3.2 THEORETICAL PROPERTIES OF THE SCALING-ROTATION

SAMPLE MEAN

In this section we assume that we have an i.i.d. random sample S1, . . . , Sn of SPD matrices

which have no repeated eigenvalues. The notation Stopp will denote the set of p × p SPD

matrices which have no repeated eigenvalues, E(PMSR) will denote the set of population

partial minimal scaling-rotation means, and E
(PMSR)
n will denote the set of sample partial

minimal scaling-rotation sample means.

3.2.1 Even Signed Permutations

To set up the main theoretical properties of the sample partial scaling-rotation mean, in

this subsection we formally describe the set of eigen-decompositions of an SPD matrix from

Stopp in relation to a special finite subgroup of SO(p), which we define as the set of even

signed permutation matrices. At the end of this section, we define a descriptor of the set

of even signed permutation matrices which, when scaled, provides a lower bound on the

distance between distinct eigen-decompositions. This descriptor will be used in conditions

for uniqueness of the sample partial scaling-rotation mean and a Central Limit Theorem

(CLT) in the subsequent subsections.

Recall from Theorem 2.8.3 that an SPD matrix from Stopp has 2p−1p! distinct eigen-

decompositions, which are related via permutations of eigenvalues and simultaneous sign-

changes and permutations of eigenvectors. More precisely, given (D,U) ∈ F−1(X), any

other eigen-decomposition (D′, U ′) ∈ F−1(X) has the form (D′, U ′) = (P+
π DP

+T
π , UIσP

+T
π ),

where Iσ is a positive-determinant sign change matrix and P+
π is a modified permutation

matrix.

To simplify notation when describing the set of eigen-decompositions of an SPD matrix

from Stopp , we define the set of even signed permutation matrices:

Definition 3.2.1. The set of p× p even signed permutation matrices is

G(p) = {W ∈ SO(p) : W = P+
π Iσ, where P+

π ∈ P+(p), Iσ ∈ A(p), }
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where P+(p) denotes the set of p × p modified permutation matrices and A(p) denotes the

set of p× p positive-definite sign-change matrices.

Remark 3.2.1. In [23], the authors use the notation S̃+
p to denote the set of p × p signed

permutation matrices.

G(p) is a group under multiplication and is a subgroup of SO(p) of order 2p−1p!. We

define the action of G(p) on M(p) via the map η : G(p)×M(p) 7→M(p) with

η(G, (D,U)) = (GDGT , UGT ).

If (DX , UX) is an eigen-decomposition of an SPD matrix from Stopp , then the orbit of

(DX , UX), which we denote as η(G(p), (DX , UX)) = {η(G, (DX , UX)) : G ∈ G(p)}, is the

set of eigen-decompositions of X. This orbit structure is also useful for describing the set of

sample partial minimal scaling-rotation means when each observation in the sample comes

from Stopp since it can be shown that

1

n

n∑
i=1

d2
PMSR(Si, (D,U)) =

1

n

n∑
i=1

d2
PMSR(Si, η(G, (D,U))) (3.2)

for any G ∈ G(p) when S1, . . . , Sn ∈ Stopp . It follows from (3.2) that for any (D∗, U∗) ∈

E
(PMSR)
n , its orbit η(G(p), (D∗, U∗)) also belongs to E

(PMSR)
n . Thus, E

(PMSR)
n will contain

at least 2(p−1)p! elements whenever a solution exists, and in the case when E
(PMSR)
n only

contains 2(p−1)p! elements which all belong to the same orbit, we will say that the sample

partial minimal scaling-rotation mean is unique up to the action of G(p).

The following result concerning the distance between eigen-decompositions of an SPD

matrix from Stopp will be useful in subsequent subsections:

Lemma 3.2.1. For any X ∈ Stopp , any two distinct eigen-decompositions (DX , UX) and

(D′X , U
′
X) of X satisfy

dM((DX , UX), (D′X , U
′
X)) ≥

√
KβG(p),

where K is the rotation distance multiplier from Equation 2.11 and βG(p) is defined as

βG(p) = min
G∈G(p)\{Ip}

1√
2
‖Log(G)‖F .

For any p ≥ 2, it is true that βG(p) ≤ π/2.
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Proof. Given X ∈ Stopp , let (DX , UX) and (D′X , U
′
X) be two distinct eigen-decompositions of

X. From Theorem 2.8.3, there is an even signed-permutation matrix G such that (D′X , U
′
X) =

(GDGT , UGT ). Since (DX , UX) and (D′X , U
′
X) are distinct, G 6= Ip. Then we have that

dSR((DX , UX), (D′X , U
′
X))

= (d2
D+(p)(DX , GDXG

T ) +Kd2
SO(p)(UX , UXG

T ))1/2

≥
√
KdSO(p)(UX , UXG

T )

=
√
KdSO(p)(Ip, G

T )

≥
√
KβG(p).

We next show that βG(p) ≤ π/2 for any p ≥ 2. The set G(p) contains the block diagonal

signed permutation matrix

B =

Ip−2 0

0 R(π
2
)

 ,

where

R

(
π

2

)
=

cos(π
2
) − sin(π

2
)

sin(π
2
) cos(π

2
)

 =

0 −1

1 0

 .

It can be shown that

Log(B) =

0 0

0 Log(R(π
2
))

 ,

where

Log

(
R

(
π

2

))
=

0 −π
2

π
2

0

 .

Then we have that dSO(p)(Ip, B) = π/2, implying that βG(p) ≤ π/2.

3.2.2 Uniqueness of the Partial Minimal Scaling-Rotation Sample Mean

Much work has been done on the question of uniqueness of the sample Fréchet mean of

Riemannian manifold-valued observations, coming to the conclusion that the the sample

Fréchet mean will be unique as long as the observations lie within a geodesic ball of a certain

radius (see, for example, [3]). While Sym+(p) is not a Riemannian manifold when equipped
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with dSR, we can obtain a similar result for a kind of uniqueness of the sample partial scaling-

rotation mean. Recall that if (D∗, U∗) ∈ E
(PMSR)
n , then η(G(p), (D∗, U∗)) ⊂ E

(PMSR)
n by

(3.2). This means that, at best, a sample partial minimal scaling-rotation mean is unique up

to the action of G(p), which occurs when there are 2(p−1)p! sample partial scaling-rotation

means belonging to the same orbit.

In the subsequent theorem, we show that if the sample observations are sufficiently

concentrated around the initial guess, then the sample mean estimation procedure from

Section 3.1.2 will yield a solution that is unique up to the action of G(p), and will converge

after two iterations.

Theorem 3.2.1. Assume S1, . . . , Sn ∈ Stopp . If

dMSR(Si, Sj) <
βG(p)

√
K

2(1 +
√

2)
(3.3)

for i, j = 1, . . . n, then choosing an eigen-decomposition of any observation from the sam-

ple as the initial solution will lead to a unique solution, up to the action of G(p), and the

estimation procedure will terminate after two iterations, with (D̂(1), Û (1)) = (D̂(2), Û (2)) =

(D̂PMSR, ÛPMSR).

Proof. Without loss of generality, set the initial guess (D̂0, Û0) to be any eigen-decomposition

of S1. For i = 1, . . . , n choose (D
(0)
i , U

(0)
i ) ∈ F−1(Si) that forms a minimal pair with (D̂0, Û0),

and then compute the scaling-rotation sample mean

(D̂(1), Û (1)) ∈ argmin
(D,U)∈M(p)

1

n

n∑
i=1

d2
SR((D

(0)
i , U

(0)
i ), (D,U)).

Let C = βG(p)

√
K/(2(1 +

√
2)). From the definition of the scaling-rotation distance

function, it is easy to verify that dMSR(Si, S1) < C for i = 1, . . . , n implies that

dD+(p)(D
(0)
i , D̂(0)) < C and

√
KdSO(p)(U

(0)
i , Û (0)) < C

for i = 1, . . . , n. The eigenvalue matrix mean of the aligned eigenvalue matrices has the closed

form expression D̂(1) = Exp( 1
n

∑n
i=1 Log(D

(0)
i )). While there is no closed-form expression for

the eigenvector matrix mean, there is a unique solution for Û (1) since U
(0)
1 , . . . , U

(0)
n lie within

a geodesic ball of radius less than π/2 centered at Û (0) (cf. Theorem 5 of [34]).
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We first establish that the eigenvalue matrix mean D̂(1) also lies within a geodesic ball

of radius C centered at D̂(0). Given dD+(p)(D
(0)
i , D̂(0)) < C for i = 1, . . . , n, it follows that

d2
D+(p)(D̂

(1), D̂(0))

=

∥∥∥∥ 1

n

n∑
i=1

[Log(D̂
(0)
i )− Log(D̂(0))]

∥∥∥∥2

F

=
1

n2

n∑
i=1

n∑
j=1

tr

(
[Log(D

(0)
i )− Log(D̂(0))][Log(D

(0)
j )− Log(D̂(0))]

)

≤ 1

n2

n∑
i=1

n∑
j=1

dD+(p)(D
(0)
i , D̂(0))dD+(p)(D

(0)
j , D̂(0))

< C2.

The penultimate inequality follows from an application of the Cauchy-Schwarz inequality.

We next show that U
(0)
1 , . . . , U

(0)
n lying with a geodesic ball of radius less than C/

√
K

centered at Û (0) implies that the eigenvector matrix mean Û (1) also has distance less than

C/
√
K from Û (0) by application of Theorem 2.1 from [3]. We need to show that C/

√
K ≤

min{inj(SO(p)), π/
√
4}/2, where inj(SO(p)) denotes the injectivity radius of SO(p) and

4 is an upper bound on the sectional curvatures of SO(p). The Riemannian manifold SO(p)

equipped with metric dSO(p) has an exponential map with injectivity radius bounded below

by π and sectional curvatures belonging to the closed interval [0, 1/4] (Section 5 of [34]),

which imply that min{inj(SO(p)), π/
√
4}/2 ≥ π/2. Since C/

√
K < βG(p) ≤ π/2, we have

our desired bound for the radius of the geodesic ball containing U
(0)
1 , . . . , U

(0)
n , and it follows

that Û (1) also has distance less than C/
√
K from Û (0).

We continue the procedure for computing a candidate for sample partial minimal scaling-

rotation mean by choosing (D
(1)
i , U

(1)
i ) ∈ F−1(Si) that forms a minimal pair with (D̂(1), Û (1))

for i = 1, . . . , n. For any observation Si, we can bound dSR((D
(0)
i , U

(0)
i ), (D

(1)
i , U

(1)
i )) as follows

dSR((D
(0)
i , U

(0)
i ), (D

(1)
i , U

(1)
i ))

≤ dSR((D
(0)
i , U

(0)
i ), (D̂(1), Û (1))) + dSR((D

(1)
i , U

(1)
i ), (D̂(1), Û (1)))

≤ 2dSR((D
(0)
i , U

(0)
i ), (D̂(1), Û (1)))

≤ 2dSR((D
(0)
i , U

(0)
i ), (D̂(0), Û (0))) + 2dSR((D̂(0), Û (0)), (D̂(1), Û (1)))

< 2(1 +
√

2)C
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Most of the inequalities above are applications of the Triangle Inequality, and the last

inequality follows from dMSR(Si, S1) < C for i = 1, . . . , n and that dD+(p)(D̂
(1), D̂(0)) < C

and dSO(p)(Û
(1), Û (0)) < C/

√
K imply that dSR((D̂(0), Û (0)), (D̂(1), Û (1))) <

√
2C. Plugging

in the value for C, we get dSR((D
(0)
i , U

(0)
i ), (D

(1)
i , U

(1)
i )) < βG(p)

√
K. By Lemma 3.2.1, we

have that (D
(0)
i , U

(0)
i ) = (D

(1)
i , U

(1)
i ) for i = 1, . . . , n, which implies that (D̂(1), Û (1)) will

equal (D̂(2), Û (2)), and the estimation procedure will terminate after two iterations. The final

solution for the sample partial minimal scaling-rotation mean will be (D̂PMSR, ÛPMSR) =

(D̂(1), Û (1)) = (D̂(2), Û (2)).

Remark 3.2.2. The initial guess need not be an eigen-decomposition of a sample observation,

as the conclusion of Theorem 3.2.1 will also follow from picking an initial guess (D̂(0), Û (0)) ∈

M(p) satisfying

dPMSR(Si, (D̂
(0), Û (0))) <

βG(p)

√
K

2(1 +
√

2)

for i = 1, . . . , n.

Remark 3.2.3. If (D̂
(0)
1 , Û

(0)
1 ), (D̂

(0)
2 , Û

(0)
2 ) ∈M(p) satisfy

dPMSR(Si, (D̂
(0)
j , Û

(0)
j )) <

βG(p)

√
K

2(1 +
√

2)

for i = 1, . . . , n and j = 1, 2, then choosing (D̂
(0)
1 , Û

(0)
1 ) or (D̂

(0)
2 , Û

(0)
2 ) as the initial guess for

the sample partial scaling-rotation mean will lead to the same final solution for the sample

partial scaling-rotation mean set.

Given an initial guess (D̂(0), Û (0)) for a member of the sample partial minimal scaling-

rotation mean set, let (D
(0)
i , U

(0)
i ) denote the eigen-decomposition of Si that has minimal

scaling-rotation distance from the initial guess. Note that the concentration condition

dPMSR(Si, (D̂
(0), Û (0))) <

βG(p)

√
K

2(1 +
√

2)
(3.4)

for i = 1, . . . , n of Theorem 3.2.1 implies that

dD+(p)(D
(0)
i , D̂(0)) <

βG(p)

√
K

2(1 +
√

2)
and dSO(p)(U

(0)
i , Û (0)) <

βG(p)

2(1 +
√

2)

for i = 1, . . . , n. In samples where Theorem 3.2.1 holds, K affects the amount of variability

of the sample aligned eigenvalue matrices D
(0)
1 , . . . , D

(0)
n about D̂(0). When K is very large
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(small), the sample aligned eigenvalue matrices will belong to a ball centered at D̂(0) with

a very large (small) radius. This makes intuitive sense because K controls the importance

of rotation distance relative to scaling distance in the computation of the scaling-rotation

distance: when K is much larger than 1, the minimal scaling-rotation curves connecting two

SPD matrices will have minimal rotation of eigenvectors with little regards to the amount

of scaling of eigenvalues, and vice versa when K is very small compared to 1.

3.2.3 Asymptotic Properties of the Scaling-Rotation Sample Mean

In this section we address two aspects of the asymptotic behavior of the sample partial

minimal scaling-rotation mean: (i) strong consistency of the sample partial minimal scaling-

rotation mean set to the population partial minimal scaling-rotation mean set and (ii) the

limiting distribution of the sample partial minimal scaling-rotation mean as n→∞. Much

work has been done to establish consistency and CLT-type results for sample Fréchet means

on Riemannian manifolds and metric spaces ([6], [7], [5]), however, estimation of the partial

minimal scaling-rotation mean does not fit into the context of estimation on Riemannian

manifolds nor metric spaces since the sample space, Stopp , and parameter space, M(p) are

different. With this in mind, we applied the asymptotic results for sample Fréchet means

on general product spaces in [26] and [27] to partial scaling-rotation mean estimation to

establish conditions for strong consistency and a Central Limit Theorem.

Lemma 3.2.2. The following properties hold for dPMSR:

1. (Uniform Continuity) For every ε > 0 there is a δ(ε) > 0 such that for every X ∈ Stopp ,

dSR((D,U), (D′, U ′)) < δ implies |dPMSR(X, (D,U);K)− dPMSR(X, (D′, U ′);K)| < ε.

2. (Continuity) dPMSR is continuous on Stopp ×M(p).

3. (Coercivity) For any X ∈ Stopp , (D0, U0) ∈ M(p), and any sequence (Dn, Un) ∈ M(p)

with dM((Dn, Un), (D0, U0))→∞, it follows that dPMSR(X, (Dn, Un))→∞.

Proof. 1. From Exercise 20 of Ch. 4 from [41], we know that if A is any non-empty subset

of a metric space (M,d), then the function f(y) = infx∈A d(x, y) satisfies

|f(y)− f(y′)| ≤ d(y, y′)
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for any y, y′ ∈M .

From the fact that (M(p), dSR) is a metric space and F−1(X) ⊂ M(p) is non-empty for

any X ∈ Sym+(p), and the definition of dPMSR, we have that

|dPMSR(X, (D,U))− dPSR(X, (D′, U ′))| ≤ dM((D,U), (D′, U ′))

for any (D,U), (D′, U ′) ∈M(p).

Fix ε > 0 and set δ = ε. Then we have that dSR((D,U), (D′, U ′)) < δ implies that

|dPMSR(X, (D,U))− dPMSR(X, (D′, U ′))| < ε.

2. Define the map ρ : M(p)×M(p) 7→ [0,∞) as

ρ((D′, U ′), (D,U)) = min
G∈G(p)

dSR((GD′GT , U ′GT ), (D,U)).

Note that ρ((D′, U ′), (D,U)) = ρ(η(G, (D′, U ′)), (D,U)) for any G ∈ G(p), meaning ρ is

constant over orbits of its first variable, and dPMSR(X, (D,U)) = ρ((DX , UX), (D,U)),

where (DX , UX) ∈ F−1(X), for any (X, (D,U)) ∈ Stopp ×M(p). If we restrict ρ to the

domain M(p)top×M(p), where M(p)top denotes the eigen-decompositions of all members

of Stopp , this restriction of ρ induces a function on Stopp ×M(p) which is dPMSR.

The distance function dSR is continuous on M(p) ×M(p) since it is a metric on M(p).

Then ρ is also continuous on M(p)×M(p) because it is the minimum of a finite number

of functions which are continuous on M(p)×M(p), which implies that the restriction of

ρ to M(p)top ×M(p) is continuous on M(p)top ×M(p). Finally, since this restriction of

ρ is continuous and is constant over orbits of its first variable, we have that its induced

function dPMSR is also continuous.

3. Pick any X ∈ Stopp , (D0, U0) ∈ M(p), and let (Dn, Un) ∈ M(p) be a sequence satisfying

dSR((Dn, Un), (D0, U0))→∞.

For any n ≥ 1, one can choose (D
(n)
X , U

(n)
X ) ∈ F−1(X) that has minimal scaling-rotation

distance from (Dn, Un). By the Triangle Inequality, we have that

dSR((Dn, Un), (D0, U0))

≤ dSR((Dn, Un), (D
(n)
X , U

(n)
X )) + dSR((D

(n)
X , U

(n)
X ), (D0, U0))

= dPMSR(X, (Dn, Un)) + dSR((D
(n)
X ), (U

(n)
X ), (D0, U0))

≤ dPMSR(X, (Dn, Un)) + max
(D,U)∈F−1(X)

dSR((D,U), (D0, U0))
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Then we have dPMSR(X, (Dn, Un)) > dSR((Dn, Un), (D0, U0)) − B − 1 for any n ≥ 1,

where B = max(D,U)∈F−1(X) dSR((D,U), (D0, U0)) is a fixed positive constant which does

not depend on n. Finally, we have that dSR((Dn, Un), (D0, U0)) → ∞ implies that

dPMSR(X, (Dn, Un))→∞.

Theorem 3.2.2. Let X,X1, . . . , Xn be i.i.d. random variables from a distribution on Stopp .

If the following conditions hold:

1. X has compact support or E[d2
PMSR(X, (D,U))] <∞ for any (D,U) ∈M(p).

2. E(PMSR) 6= ∅.

3. ∪∞n=1E
(PMSR)
n enjoys the Heine-Borel property.

then for every ε > 0, there is a number n = n(ε) > 0 such that

∪∞k=nE
(PMSR)
k ⊂ {(D,U) ∈M(p) : dSR(E(PMSR), (D,U)) ≤ ε} (3.5)

almost surely.

Proof. Conditions 1-3 are special cases of conditions from Theorems A.3 and A.4 from [27].

In [27], the coercivity condition also includes the requirement that there is a (D0, U0) ∈M(p)

and C > 0 such that Pr(dPMSR(X, (D0, U0)) < C) > 0. We will first show that this property

is satisfied as a consequence of condition 1 from Theorem 3.2.2.

From condition 1, it follows that E[d2
PMSR(X, (D,U))] < ∞ for any (D,U) ∈ M(p).

Since the support of X is a subset of Stopp , we have E[d2
PMSR(X, (Ip, Ip))] > 0. Let C =

√
2
√
E[d2

PMSR(X, (Ip, Ip))]. Since dPMSR(X, (Ip, Ip)) is a non-negative real-valued random

variable, it follows from the Markov Inequality that

P (dPMSR(X, (Ip, Ip)) < C) ≥ 1− E[d2
PMSR(X, (Ip, Ip))]

C2
=

1

2
> 0.

Theorems A.3 and A.4 also requires that dPMSR be a continuous function on Stopp ×M(p),

be uniformly continuous in its second argument, and possess the coercivity property in its

second argument. These requirements for dPMSR are not listed in the theorem conditions

since they were verified in Lemma 3.2.2.
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Partial minimal scaling-rotation mean sets can be mapped to Sym+(p) in the following

way:

Definition 3.2.2. The SPD sample and population partial scaling-rotation mean set are

defined as

F(EPMSRn ) = {F(D,U) : (D,U) ∈ EPMSRn }

F(EPMSR) = {F(D,U) : (D,U) ∈ EPMSR}.

The sets F(EPMSRn ) and F(EPMSR) are simply the images of the sample and population

partial scaling-rotation mean sets under eigen-composition. Using these SPD versions of the

sample and population partial minimal scaling-rotation mean sets, the version of strong

consistency from Theorem 3.2.2 can be restated as convergence on Sym+(p):

Corollary 3.2.1. Under the conditions of Theorem 3.2.2, it follows that for every ε > 0,

there is a number n = n(ε) such that

∪∞k=nF(EPMSRk ) ⊂ {S ∈ Sym+(p) : dMSR(F(EPMSR), S) ≤ ε} (3.6)

with probability 1.

Proof. Let An,ε denote the event from (3.5) and Bn,ε denote the event from (3.6). We will

show that if event An,ε occurs, then event Bn,ε must also occur. Fix ε > 0 and choose n(ε)

so that for n ≥ n(ε), event An,ε occurs with probability 1.

Pick n = n(ε) and choose S ∈ ∪∞k=nF(EPMSRk ). From the definition of the SPD sample

partial minimal scaling-rotation mean set, there is some (D,U) ∈ ∪∞k=nE
PMSR
k such that

S = F(D,U). Likewise, if S∗ ∈ F(E(PMSR)), there is some (D∗, U∗) ∈ E(PMSR) such that

S∗ = F(D∗, U∗). By the definition of the minimal scaling-rotation distance, we have that

dMSR(S, S∗) ≤ dSR((D,U), (D∗, U∗))

for any S∗ ∈ F(E(PMSR)), which implies that

dMSR(S,F(E(PMSR))) = inf
S∗∈F(E(PMSR))

dMSR(S, S∗)

≤ inf
(D∗,U∗)∈E(PMSR)

dSR((D,U), (D∗, U∗)) = dSR((D,U), E(PMSR)) ≤ ε.
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Thus, we have that if event An,ε occurs, then event Bn,ε will occur, which implies that

P (Bn,ε) ≥ P (An,ε) = 1.

A usual way to define a Central Limit Theorem for an estimator that lives on a Rie-

mannian manifold of dimension d is to first define a chart, a locally smooth and invertible

function which maps the manifold to Rd, and then establish the asymptotic distribution of

the linearized estimator. We use the following definition of a Central Limit Theorem for a

Riemannian manifold valued estimator from [26]:

Definition 3.2.3. Let P be a D-dimensional Riemannian manifold. A P -valued estimator

µn of population mean µ ∈ P satisfies a CLT if in any local chart (φ, U) near µ = φ−1(0)

there are a suitable D ×D matrix Aφ and a Gaussian random variable Gφ with zero mean

and symmetric semi-definite covariance matrix Σφ such that

√
nAφ(φ(µn)− φ(µ))→ Gφ

in distribution as n→∞.

Our parameter space of interest M(p) is a Riemannian manifold of dimension p+ (p−1)p
2

.

We choose the following local chart φ of M(p) centered at φ−1(0) = (D,U):

φ(D,U)((Λ, R)) = (Log(ΛD−1), Log(RUT )),Λ ∈ Diag+(p), R ∈ SO(p) (3.7)

φ−1
(D,U)((L,A)) = (Exp(L)D,Exp(A)U), L ∈ Diag(p), A ∈ so(p) (3.8)

Theorem 3.2.3. Suppose that (D,U) is a member of E(PMSR) which is unique up to the

action of G(p) on M(p). Assume that (Dn, Un) ∈ E
(PMSR)
n is unique up to the action of

G(p) and is a strongly consistent estimator of (D,U) in the sense of Theorem 3.2.2. If X

has compact support such that

dPMSR(X, (D,U)) <

√
K

4
βG(p)

with probability 1, then for any choice (D′n, U
′
n) ∈ E(PMSR)

n , there is a sequence Gn ∈ G(p)

such that (Dn, Un) = η(Gn, (D
′
n, U

′
n)) satisfies a CLT using the chart defined in (3.7).
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Proof. This is a special case of Theorem 6 from [26]. That theorem has a condition that the

distance function be continuous on its product space, which we do not include as a condition

for Theorem 3.2.3 since the continuity of dPSR on Stopp ×M(p) is demonstrated in Lemma

3.2.2.

Theorem 6 from [26] also has a condition which states, in the context of Theorem 3.2.3,

that for any choice (D′n, U
′
n) ∈ EPMSRn , there is a sequence Gn ∈ G(p) such that (Dn, Un) =

η(Gn, (D
′
n, U

′
n)) is a consistent estimator of (D,U). We do not include this as a condition

for Theorem 3.2.3 since this result follows from the assumption that (Dn, Un) ∈ E(PMSR)
n is

unique up to the action of G(p) and is a strongly consistent estimator of (D,U). Note that

since (Dn, Un) is unique up to the action of G(p), any selection (D′n, U
′
n) ∈ EPMSRn belongs

to the same orbit as (Dn, Un), meaning there exists a Gn ∈ G(p) such that (Dn, Un) =

η(Gn, (D
′
n, U

′
n)).

The only remaining condition from Theorem 6 of [26] that we need to verify is the

smoothness of the map

(L,A) 7→ d2
PMSR(X,φ−1

(D,U)((L,A))) (3.9)

where A ∈ so(p) and L ∈ Diag(p). We need to show that there is some neighborhood about

(0, 0) such that the map is twice continuously differentiable with probability 1 when (L,A)

belongs to that neighborhood.

There are two possible sources of non-differentiability in (3.9): (i) changing of the eigen-

decomposition of X that forms a minimal pair with φ−1
(D,U)((L,A)) as (L,A) varies within

some neighborhood about (0, 0), and (ii) the fact that dSO(p)(R
′, R) is not differentiable with

respect to R when R belongs to the cut locus of R′.

We first restrict (L,A) to belong to a neighborhood centered at (0, 0) so that for any X in

the support of the distribution, the eigen-decomposition of X that forms a minimal pair with

φ−1
(D,U)((L,A)) does not change as (L,A) varies within that neighborhood. Based on the as-

sumption that dPMSR(X, (D,U)) <
√
KβG(p)/4 with probability 1, we will restrict (L,A) to

belong to a neighborhood centered at (0, 0) so that dSR(φ−1
(D,U)((L,A)), (D,U)) <

√
KβG(p)/4.

Suppose that (DX , UX) ∈ F−1(X) forms a minimal pair with (D,U). By the Triangle In-

equality, we have dSR(φ−1
(D,U)((L,A)), (DX , UX)) <

√
KβG(p)/2 for any (L,A) belonging to
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that neighborhood. By Lemma 3.2.1, no other eigen-decomposition of X can belong to that

neighborhood centered at φ−1
(D,U)((L,A)), implying that (DX , UX) and φ−1

(D,U)((L,A)) form a

minimal pair. Then we have d2
PMSR(X,φ−1

(D,U)((L,A))) = d2
SR((DX , UX), φ−1

(D,U)((L,A))) for

any (L,A) such that dSR(φ−1
(D,U)((L,A)), (D,U)) <

√
KβG(p)/4 with probability 1.

From the definitions of the partial minimal scaling-rotation distance, scaling-rotation

distance and (3.8), we have that

d2
PMSR(X,φ−1

(D,U)((L,A)))

= d2
SR((DX , UX), φ−1

(D,U)((L,A)))

= d2
D+(p)(DX , Exp(L)D) +Kd2

SO(p)(UX , Exp(A)U) (3.10)

for any (L,A) such that dM(φ−1
(D,U)((L,A)), (D,U)) <

√
KβG(p)/4 with probability 1. We

next address restrictions on (L,A) that will guarantee that (3.10) will be twice continuously

differentiable.

The map L 7→ d2
D+(p)(DX , Exp(L)D) is continuously differentiable of all orders at any

L ∈ Diag(p) since it can be shown that d2
D+(p)(DX , Exp(L)D) is a quadratic function in

each diagonal coordinate of L.

The map A 7→ d2
SO(p)(UX , Exp(A)U) will not be twice continuously differentiable for

all A ∈ so(p). More specifically, it will fail to be differentiable if and only if there is not

a unique geodesic on SO(p) connecting UX and Exp(A)U . Since d2
SO(p)(UX , Exp(A)U) =

d2
SO(p)(Ip, Exp(A)UUT

X) = 1
2
‖Log(Exp(A)UUT

X)‖2
F , this question can be reduced to assessing

the uniqueness of Log(Exp(A)UUT
X). A unique principal logarithm of Exp(A)UUT

X exists if

none of the eigenvalues of Exp(A)UUT
X lie on the negative real line ([25]).

We next explain an equivalent sufficient condition for the existence of a unique principal

matrix logarithm of a rotation matrix. Let k =
⌊
p
2

⌋
, the floor of p

2
. Recall that for any

R ∈ SO(p), its eigenvalues lie on the unit circle of the complex plane. If p is even, its

eigenvalues split off into k complex conjugate pairs: eiθ1 , e−iθ1 , . . . , eiθk , e−iθk . If p is odd, R

has an eigenvalue equal to 1 and its remaining p− 1 eigenvalues form k complex conjugate

pairs eiθ1 , e−iθ1 , . . . , eiθk , e−iθk . Then R will have an eigenvalue on the negative real line if

and only if an angle from one of its complex conjugate pairs is equivalent to π modulo 2π.

Thus, R will have a unique principal matrix logarithm if θj 6≡ π (mod 2π) for j = 1, . . . , k.
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For R ∈ SO(p) with complex conjugate eigenvalues eiθ1 , e−iθ1 , . . . , eiθk , e−iθk , it can be

shown that dSO(p)(R, Ip) = (
∑k

j=1 θ̃
2
j )

1/2 where θ̃j ≡ θj (mod 2π) and |θ̃j| ≤ π for j =

1, . . . , k. Then we have that dSO(p)(R, Ip) < π implies that θj 6≡ π (mod 2π) for j = 1, . . . , k,

which implies that R has a unique principal matrix logarithm.

Since βG(p) ≤ π/2 for any p ≥ 2, assuming that dPMSR(X, (D,U);K) <
√
KβG(p)/4

with probability 1 and (L,A) satisfies dSR(φ−1
(D,U)((L,A)), (D,U);K) <

√
KβG(p)/4 im-

plies dSR((DX , UX), φ−1
(D,U)((L,A))) <

√
Kπ with probability 1, from which it follows that

dSO(p)(UX , Exp(A)U) < π and Exp(A)UUT
X has a unique principal logarithm with probabil-

ity 1.

Thus, we have that restricting (L,A) to a neighborhood centered at (0, 0) such that

dM(φ−1
(D,U)((L,A)), (D,U)) <

√
KβG(p)/4 implies that (3.9) will be twice continuously differ-

entiable with probability 1.

3.3 DTI ANALYSIS INTERPOLATION EXAMPLES

In this section we illustrate the usefulness of scaling-rotation mean estimation for interpo-

lation of diffusion tensors along one and two dimensions. We compare interpolation via the

scaling-rotation framework to interpolation using other widely-used geometric frameworks

for Sym+(p), including the Log-Euclidean, Affine-Invariant, and Procrustes Size-and-Shape

frameworks.

Diffusion tensor imaging provides measurements of local water diffusion along white

matter fiber tracts at voxels within a biological object [46]. The diffusion tensor model

assumes that this movement of water molecules at time t follows a mean-zero trivariate

normal distribution with covariance matrix 2Σt ∈ Sym+(3) [1]. The quantity Σ is the

diffusion tensor.

Two core concepts for describing diffusion tensors are anisotropy and isotropy. Let

λ1 ≥ λ2 ≥ λ3 > 0 denote the eigenvalues of a diffusion tensor. The case λ1 = λ2 = λ3

describes a perfectly isotropic diffusion tensor, while the case λ1 � λ2, λ3 describes an

anisotropic diffusion tensor. A voxel of the brain that is modeled by an isotropic diffusion
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tensor can be thought of as a region where water molecules move with no preferred direction,

while a voxel with a highly anisotropic diffusion tensor can be thought of as a region where

the movement of water molecules occurs primarily along one direction.

Figure 7: Isotropic (left) and highly anisotropic (right) diffusion tensors.

The eigen-decomposition of a diffusion tensor plays an important role in DTI analysis.

Perhaps the simplest descriptive measure of the strength of diffusivity at a voxel is the Mean

Diffusivity (MD):

MD(D) =
1

3
tr(D) =

λ1 + λ2 + λ3

3
. (3.11)

One of the most commonly used measures of anisotropy of a diffusion tensor D is Fractional

Anisotropy (FA) [31]

FA(D) =

√
3[(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2]

2(λ2
1 + λ2

2 + λ2
3)

, (3.12)

where λ̄ = MD(D). FA(D) ranges from 0 in the case of perfect isotropy to 1 in the

case of linear anisotropy (λ1 > λ2 = λ3 = 0). A closely related measure of anisotropy is

Procrustes Anisotropy (PA), which computes the fractional anisotropy of
√
λ1,
√
λ2, and

√
λ3

(i.e. PA(D) = FA(
√
D)) [15].
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3.3.1 Common Frameworks for Sym-Plus(p)

In this subsection we review some established geometric frameworks for Sym+(p), including a

Eucidean framework, a Log-Euclidean framework ([2]), a Riemannian affine-invariant frame-

work (citations needed), and matrix square root based approaches including a Cholesky-

based framework, a root-Euclidean framework, and a framework based on the Procrustes

Size-and-Shape metric of [15].

We first discuss a Euclidean framework for Sym+(p). Let X, Y ∈ Sym+(p). Since

Sym+(p) ⊂ Sym(p), which is isomorphic to R
p(p+1)

2 and can be metrized with the Frobenius

norm ‖.‖F , one can can measure the distance between X and Y via the distance function

dE(X, Y ) = ‖X − Y ‖F .

The distance dE(X, Y ) measures the length of the line

χE(t) = (1− t)X + tY

for t ∈ [0, 1].

We next move on to the Log-Euclidean framework for Sym+(p). Again, let X, Y ∈

Sym+(p). Recall that Exp : Sym(p) 7→ Sym+(p) is bijective, so any M ∈ Sym+(p) can be

uniquely identified with Log(M) ∈ Sym(p). Hence, Sym+(p) can be thought of as a “log-

linear” space, and one can measure the distance between X, Y ∈ Sym+(p) via the distance

function

dLE(X, Y ) = ‖Log(X)− Log(Y )‖F .

Geodesics corresponding to dLE(., .) are curves of the form

χLE(t) = Exp((1− t)Log(X) + tLog(Y ))

for t ∈ [0, 1]. We refer the reader to [2] for a more detailed account of the geometric properties

of the Log-Euclidean characterization of Sym+(p).

We finally present an affine-invariant Riemannian framework for Sym+(p). Let X, Y ∈

Sym+(p). Note that we can write Y as Y = MX(M−1
X Y (M−1

X )T )MT
X , where MX ∈ GL(p)
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is a square root of X (i.e. MXM
T
X = X) and M−1

X Y (M−1
X )T ∈ Sym+(p) since Sym+(p) is

closed under conjugation by matrices in GL(p). For t ∈ [0, 1], the curve

χAI(t) = MXExp(Log(M−1
X Y (M−1

X )T )t)MT
X

traces a geodesic connectingX and Y under the usual Riemannian inner product for Sym+(p)

that is invariant under the group action. This curve has length

dAI(X, Y ) = ‖Log(M−1
X Y (M−1

X )T )‖F .

It is important to note that the curve χAI(t) and its corresponding distance function dAI(.)

are invariant with respect to the choice of square root for X. For more information on this

affine-invariant Riemannian framework, we refer the reader to [37].

We next present frameworks based on square root decompositions, beginning with the

Cholesky decomposition. Recall that the Cholesky decomposition uniquely factors a matrix

X ∈ Sym+(p) as X = QQT , where Q is a lower triangular matrix with positive diagonal

entries. Given X, Y ∈ Sym+(p), suppose that X and Y have Cholesky decompositions

X = QXQ
T
X and Y = QYQ

T
Y . Via Cholesky composition, one can define a smooth curve on

Sym+(p) running from X to Y using the formula

χC(t) = [QX + t(QY −QX)][QX + t(QY −QX)]T

for t ∈ [0, 1]. This curve traces a geodesic on Sym+(p) from X to Y with length

dC(X, Y ) = ‖QY −QX‖F .

Another unique square root decomposition of an SPD matrix is the symmetric square root

decomposition. Given X ∈ Sym+(p) with eigen-decomposition X = UDUT , we define its

symmetric square root as X1/2 = UD1/2UT , where D1/2 is a diagonal matrix whose diagonal

entries are the positive square roots of the diagonal entries of D. Given X, Y ∈ Sym+(p),

one can create the following curve

χH(t) = [X1/2 + t(Y 1/2 −X1/2)]2
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which traces a geodesic on Sym+(p) from X to Y for t ∈ [0, 1] with length

dH(t) = ‖Y 1/2 −X1/2‖F .

This geometric framework for Sym+(p) based on the symmetric square root is referred to as

the Root-Euclidean framework in [48].

Note that the Cholesky decomposition and symmetric square root decomposition meth-

ods yield two out of infinitely many possible square roots of an SPD matrix. Indeed, if

X ∈ Sym+(p) and X = LLT then LR, where R ∈ O(p), is also a square root of X since

(LR)(LR)T = X. Given X, Y ∈ Sym+(p) with square roots QX and QY , one can define a

measure of distance between X and Y as

dS(X, Y ) = inf
R∈O(p)

‖QX −QYR‖F ,

which finds the square root of Y that is closest to the initial square root QX of X under the

Frobenius norm. Given initial square roots QX and QY for X and Y , respectively, it can be

shown that

R̂ = arg inf
R∈O(p)

‖QX −QYR‖F = UW T

where W,U ∈ O(p) come from the singular value decomposition QXQ
T
Y = WΛUT . A

geodesic from X to Y on Sym+(p) with respect to this metric will be of the form

χS(t) = [QX + t(QY R̂−QX)][QX + t(QY R̂−QX)]T

for t ∈ [0, 1]. More information on this framework can be found in [15].

Like the Scaling-Rotation framework, the Log-Euclidean and affine-invariant Riemannian

frameworks for Sym+(p) are also intrinsic frameworks since the geodesics χLE(t) and χAI(t)

lie in Sym+(p) for all t ∈ R. While the curve χE(t) lies in Sym(p) for all t ∈ R, there will be

some t for which χE(t) will fail to be positive-definite. The curves χC(t), χH(t), and χS(t)

will be non-negative definite, symmetric matrices for all t ∈ R, but can be less than full rank

for some t. Hence, the Euclidean, Cholesky, Root-Euclidean, and Procrustes frameworks are

all extrinsic frameworks for Sym+(p).

Of all the frameworks discussed in this section, the Procrustes size-and-shape framework

perhaps shares the most conceptual similarities with the Scaling-Rotation framework. Both
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frameworks parameterize Sym+(p) via non-unique matrix decompositions (matrix square

root and eigen-decomposition), and the distance between elements X, Y ∈ Sym+(p) is de-

fined as the minimum distance between all possible decompositions of X and Y .

3.3.2 Interpolation of Diffusion Tensors

The interpolation of diffusion tensors is vital to tracking white matter fiber tracts in the brain

and reducing noise in image data ([4],[10]). In this section we compare interpolation between

two diffusion tensors under the minimal scaling-rotation framework and the geometric frame-

works described in the previous section. We analyze interpolation under three deformation

patterns: scaling plus rotation, pure rotation, and pure scaling from an anisotropic diffusion

tensor to an isotropic diffusion tensor. For each of the examples, we have plots of 11 equally

spaced points
(
t = j

10
for j = 0, 1, . . . , 10

)
along a geodesic curve and a comparison of MD,

FA, PA, log determinant, and rotation angle (defined as the angle of swing from the major

axis at time 0 to the major axis at time t) among the geometric frameworks.

3.3.3 Example I: Interpolation Under Scaling Plus Rotation

For our first example, we analyze interpolation from X1 to Y1, where

X1 =


15 0 0

0 2 0

0 0 1

 and Y1 =


1√
2

0 1√
2

0 1 0

− 1√
2

0 1√
2




100 0 0

0 2 0

0 0 1




1√
2

0 − 1√
2

0 1 0

1√
2

0 1√
2

 .

As can be seen in Figure 8, the “pointy” shape of X1 and Y1 is preserved along the geodesic

curve under the Scaling-Rotation, Cholesky, and Procrustes frameworks. This is reflected in

the plots of FA and PA, in which we see that only those three interpolation types exhibit

monotone growth of FA and PA as X1 deforms to Y1. The Root Eucliean and Euclidean

interpolants appear to suffer most from the “fattening effect”, which describes interpolated

diffusion tensors that are more isotropic than the endpoints of a geodesic curve [10]. Only the

Log-Eucliean interpolation path exhibits the “shrinking effect” [4] (when some interpolated

diffusion tensors have lower MD than the endpoints of a geodesic curve) for this example.
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The Log-Euclidean and Scaling-Rotation frameworks both possess log-linear growth of

determinant since χLE(t) and χMSR both satisfy

log(det(χLE(t))) = log(det(χMSR(t))) = (1− t) log(det(X1)) + t log(det(Y1)).

In addition to the “fattening effect,” the Euclidean and Root Euclidean frameworks both

also exhibit the “swelling effect”, which occurs when some interpolated diffusion tensors have

larger determinant than the endpoints of the geodesic curve [2].

Only the Scaling-Rotation interpolation exhibits linear evolution of rotation angle along

its geodesic path. In fact, the rotation angle at any point along the Scaling-Rotation geodesic

path from X to Y is given by

θMSR(t) =
‖Log(UYU

T
X)‖F√

2
t

where (DX , UX) and (DY , UY ) are eigen-decompositions of X and Y . The plot of rotation

angles in Figure 9 shows that the other interpolated diffusion tensors rotate from the ori-

entation of X1 to the orientation Y1 at variable speeds, with all of the frameworks except

the Log-Euclidean framework rotating with faster initial speed than the Scaling-Rotation

framework.

All three of the Scaling-Rotation, Cholesky, and Procrustes interpolation paths exhibit

monotone growth of FA and PA from X1 to the more anisotropic Y1, and none of them

suffer from the swelling, shrinking, or fattening effects. Interpolation via the Cholesky or

Procrustes frameworks yields visually similar geodesic paths from X1 to Y1 that possess

similar DTI summary measures, as seen in Figure 8 and Figure 9, respectively. It could

be argued that the Scaling-Rotation method of interpolation is desirable over the Cholesky

and Procrustes methods since it is the only framework in which interpolants rotate linearly,

which is consistent with human visual perception of rotation.

52



3.3.4 Example II: Interpolation Under Pure Rotation

For our second example, we analyze deformation from X2 to Y2, where

X2 =


15 0 0

0 2 0

0 0 1

 and Y2 =


1√
2

0 1√
2

0 1 0

− 1√
2

0 1√
2




15 0 0

0 2 0

0 0 1




1√
2

0 − 1√
2

0 1 0

1√
2

0 1√
2

 .

Visualization of the interpolation curves and DTI summary statistics for this example can

be found in Figure 10 and Figure 11. Scaling-Rotation interpolation was the only method

that perfectly preserved the shape of X2 as it rotated to align with Y2, as confirmed by

its constant FA and PA curves. Diffusion tensors along the Euclidean and Affine-Invariant

interpolation paths appear to suffer most from the “fattening effect,” especially near the

midpoints (t = 0.5) of the geodesic curves. All interpolation methods except for the Scaling-

Rotation and Euclidean methods suffer from the “shrinking effect” in this example. The

Scaling-Rotation interpolation method was also one of the few interpolation types (including

the Log-Euclidean and Affine-invariant methods) to maintain a constant determinant along

its geodesic path from X2 to Y2. Finally, Scaling-Rotation interpolation is the only method

possessing linear evolution of rotation angle, while the other frameworks provide nearly linear

patterns of rotation during interpolation.

In summary, the Scaling-Rotation interpolation method outperforms the other six in-

terpolation types in the comparisons of DTI summary values in Figure 11, and is the only

interpolation method to preserve volume and shape, or in other words acting as pure rota-

tion, along its geodesic path in this example. The Cholesky and Procrustes interpolation

methods yield similar geodesic paths to the Scaling-Rotation method, and seem to yield in-

terpolants that are close in volume and degree of anisotropy to endpoints X2 and Y2, making

them good alternative options to the Scaling-Rotation method for this example.
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3.3.5 Example III: Interpolation Under Pure Scaling

For our third example, we analyze interpolation from X3 to isotropic Y3, where

X3 =


1√
2

0 1√
2

0 1 0

− 1√
2

0 1√
2




16 0 0

0 4 0

0 0 1




1√
2

0 − 1√
2

0 1 0

1√
2

0 1√
2

 and Y3 =


4 0 0

0 4 0

0 0 4

 .

Visualization of the interpolation curves and plots of DTI summary measures can be found

in Figure 12 and Figure 13. Since deformation from X3 to Y3 consists of pure scaling, the

interpolation curves for the Scaling-Rotation, Log-Euclidean, and Affine-Invariant methods

are equivalent [28]. All of the interpolation methods exhibit monotone decreasing FA and

PA curves. The Cholesky, Procrustes, and Euclidean interpolation types all suffer from the

“swelling effect” for this example. For all interpolation methods except for the Cholesky

method, the rotation angle equals 0 for all t (i.e. the orientation of the interpolants matches

that of X2), while the orientation of the Cholesky interpolants rotates by about 15 degrees

along the interpolation curve.

3.3.6 Example IV: 2D Interpolation I

In this first 2D interpolation example, the weighted sample means of the four corner points

of the 5×5 grid are computed to interpolation between the corner points and fill in the grid.

The upper left corner point is an isotropic diffusion tensor and the three remaining corner

points are highly anisotropic and differ only by rotations. All four corner points have the

same determinant. The top left, top right, bottom left, and bottom right have coordinates

(1, 1), (1, 5), (5, 1), and (5, 5), respectively, and the weights used to compute the interpolants

at an interior point are the reciprocals of the squared distances from the interior coordinate

to the corner coordinate points, with the weights scaled to sum to 1. The colors of the

diffusion tensor range from yellow for FA of 0 to red for FA of 1.

Of all the methods shown in Figure 14, the scaliing-rotation framework does the best job

of preserving shape and anisotropy along paths connecting corner points that differ only by

rotations. The other frameworks exhbit a smoother progression of anisotropy along paths

54



emanating from the upper left corner compared to the scaling-rotation framework. Not

surprisingly, the Euclidean interpolants appear to suffer from the swelling effect compared

to the other frameworks.

3.3.7 Example V: 2D Interpolation II

Interpolation in this 2D example, which can be seen in Figure 15, were performed as in Ex-

ample IV. The top left corner point is an isotropic diffusion tensor, the top-right corner point

is prolate diffusion tensor (it has a maximum eigenvalue and the two smaller eigenvalues are

equal), and the bottom corner points are highly anisotropic and only differ by rotation. The

Scaling-Rotation, Log-Euclidean, and Procrustes Size-and-Shape interpolants look similar,

with the Procrustes interpolants generally having larger determinants compared to those

from Log-Euclidean and Scaling-Rotation interpolation. As in Example IV, Euclidean 2D

interpolation yields interpolants that generally have larger determinants compared to the

interpolants using the other three frameworks.

3.3.8 Summary of Examples I-V

The Scaling-Rotation interpolation method performed well in comparison to the other meth-

ods described in this section. In all three examples, the Scaling-Rotation interpolation

method never suffered from the swelling, fattening, or shrinking effects and always yielded

monotone evolution of FA and PA. In examples I and II, the Cholesky and Procrustes

frameworks provide good alternatives to the Scaling-Rotation method. In example III, the

Scaling-Rotation, Log-Euclidean, and Affine-Invariant methods yields equivalent interpola-

tion curves.

It should be noted that Cholesky framework is not used in practice for analyzing diffusion

tensors since the Cholesky metric is not invariant to change of coordinates. More specifically,

for X1, X2 ∈ Sym+(p), it is possible to have

dC(X1, X2) 6= dC(RX1R
T , RX2R

T )

for some R ∈ SO(p). An illustration of this problem can be found in section 4.3.3 of [48].
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In the 2D interpolation examples, we saw that the Scaling-Rotation framework performed

well at yielding nearly pure rotation paths between corner points which differ only by ro-

tation, while the Log-Euclidean and Procrustes Size-and-Shape frameworks were better at

yielding nearly pure scaling paths between corner points which differ only by scaling.

3.4 DATA APPLICATIONS

3.4.1 Multivariate Tensor-Based Morphometry

In [38], the authors compared the lateral ventricular structure in the brains of 17 preterm

and 19 fullterm infant children. After an MRI scan of a subject’s brain was obtained and

processed through an image processing pipeline, the shape data collected at 102816 vertices

on the surfaces of their left and right ventricles were mapped onto the left and right ventricles

of a template brain image, after which the 2 × 2 Jacobian matrix J from that surface

registration transformation was computed at each vertex for each subject. The deformation

tensor X = (JJT )1/2 ∈ Sym+(2) was then computed at each vertex for each subject. To

summarize the structure of the data, there are 102816 vertices along the surfaces of the

template ventricles, and at each vertex there are deformation tensors (2× 2 SPD matrices)

from 17 preterm and 19 full term infants.

One way that the authors tested for differences in ventricular shape between the fullterm

and preterm infants was by performing two sample location tests at each vertex via use of

the Log-Euclidean version of Hotelling’s T 2 test statistic introduced in [33]. Conceptually,

this procedure “linearizes” the deformation tensors via the Log-Euclidean framework and

then computes the classic T 2 test statistic with the linearized data.

Similarly, one could compute a scaling-rotation version of Hotelling’s T 2 test statistic by

linearizing the deformation tensors at a given vertex using the scaling-rotation framework

and then computing the test statistic using the linearized data. To map an observation X to

its scaling-rotation tangent space centered at (D,U) we will use the map τ(D,U) : Sym+(p) 7→
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×Diag(p)× so(p) given by

τ(D,U)(X) = (Log(D∗XD
−1), Log(U∗XU

−1)),

where (D∗X , U
∗
X) is an eigen-decomposition of X that has minimal geodesic distance from

(D,U). We propose the following procedure for computing the scaling-rotation Hotelling’s

T 2 test statistic given observations X1, . . . , Xn1 from sample 1 of size n1 and observations

Y1, . . . , Yn2 from sample 2 of size n2:

1. Compute (D̂1, Û1) and (D̂2, Û2), sample partial scaling-rotation means of sample 1 and

2.

2. Let (D∗1, U
∗
1 ) denote the eigen-decomposition of Σ̂1 = Û1D̂1Û

T
1 which has minimal scaling-

rotation distance from (D̂2, Û2) and compute c = vec(τ(D̂2,Û2)(Σ̂1)).

3. For i = 1, . . . , n1 compute xi = vec(τ(D∗1 ,U
∗
1 )(Xi)) + c and for i = 1, . . . , n2 compute

yj = vec(τ(D̂2,Û2)(Yj)).

4. Compute Hotelling’s T 2 test statistic using the linearized data x1, . . . , xn1 and y1, . . . , yn2 .

As an example, we have computed the Log-Euclidean and scaling-rotation versions of

Hotelling’s T 2 test statistic at vertex 75412 from the dataset used by [38]. The scaling-

rotation T 2 statistic is 37.38 while the Log-Euclidean T 2 is 0.99. To investigate this discrep-

ancy in test statistics, we have plotted the linearized versions of the deformation tensors using

the Log-Euclidean and scaling-rotation frameworks in the top plots in Figure 16. Observa-

tions from preterm infants are blue and observations from fullterm infants are red. There

is little separation between the fullterm and preterm observations in the Log-Euclidean tan-

gent space, whereas there is almost perfect separation between the fullterm and preterm

observations along the angle direction in the scaling-rotation tangent space. To help see the

separation between the fullterm and preterm observations in the scaling-rotation tangent

space more clearly, we have plotted the log-eigenvalues in the bottom left plot and the an-

gles as points on the unit circle in the bottom right plot of Figure 16. These bottom plots

show a lot of overlap in log-eigenvalues between fullterm and preterm infants and very little

overlap of eigenvector rotation angles between fullterm and preterm infants, suggesting that

the main location differences between the two groups at vertex 75412 are due to rotation.
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With this example in mind, more work is needed to investigate if the Log-Euclidean T 2

statistic is less sensitive in detecting rotation differences between groups than the scaling-

rotation T 2 statistic, and a full vertex-wise analysis of the ventricle data from [38] using the

scaling-rotation T 2 statistic should be carried out to see if the scaling-rotation T 2 statistic

detects new and scientifically meaningful regions of significant structural differences between

the preterm and fullterm groups.

3.4.2 Diffusion Tensor Interpolation

We next present an application of the scaling-rotation estimation framework to interpolation

of diffusion tensor imaging (DTI) data. DTI is a modality of magnetic resonance imaging that

models local water diffusion along white matter fiber tracts within a biological object, and

has been used extensively for brain imaging [46]. The diffusion tensor model assumes that

the movement of water molecules at time t follows a mean-zero trivariate normal distribution

with covariance matrix 2Σt ∈ Sym+(3), where Σ is referred to as the diffusion tensor [1].

Weighted averaging of diffusion tensors is useful for image interpolation, fiber tracking

[4], and smoothing to removing noise inherent in the image generation process [9]. Using

data from [47], we interpolate the diffusion tensors from an image of a coronal slice of

a healthy human brain to improve image resolution. Interpolation of diffusion tensors in

two dimensions can be done by subdividing each collection of four neighboring diffusion

tensors into a grid of equally space points with the original diffusion tensors placed at the

four corners. Weighted averaging of the original diffusion tensors can then be done to add

interpolated diffusion tensors to the non-corner points on the grid. Weights are usually

chosen as functions of the distances between the non-corner points and the locations of the

nearest diffusion tensors from the original data.

In Figure 17 we have plotted Fractional Anisotropy (FA) maps using the original diffusion

tensors and the interpolated diffusion tensors. The fractional anisotropy of a diffusion tensor

D is computed as

FA(D) =

√
3

2

√
(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2

λ2
1 + λ2

2 + λ2
3

,
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where λ1 ≥ λ2 ≥ λ3 > 0 are the eigenvalues of D. FA(D) describes the shape of D, ranging

from 0 when λ1 = λ2 = λ3 (D is isotropic) to 1 when λ1 > λ2 = λ3 = 0 (D is perfectly

anisotropic). Values of FA near 0 in a region suggeset minimal structure (i.e. water molecues

diffuse easily in all directions), while regions where FA is close to 1 are highly structured

(i.e. water molecules tend to diffuse along the direction of the white matter structures). The

colors in the FA maps range from black for FA=0 to white for FA=1. When comparing the

FA maps of the original diffusion tensors and the interpolated diffusion tensors, we can see

that interpolation greatly improves the resolution of the FA map.

3.5 DISCUSSION

In this chapter we have presented the first statistical estimation methods for Sym+(p) based

on the scaling-rotation framework of [28], which sets the foundation for the development

of more scaling-rotation statistical methods, such as two sample hypothesis tests of lo-

cation differences, hypothesis testing for a variety of eigenvalue and eigenvector patterns,

scaling-rotation principal geodesic analysis, and a scaling-rotation regresssion framework.

The scaling-rotation framework shold also be particularly amenable to diffusion tensor pro-

cessing since the eigenvectors and eigenvalues of a diffusion tensor model the principal di-

rections of water diffusion and diffusion intensity at a particular voxel.

We recommend using the scaling-rotation estimatio procedure presented in this chapter

for p = 2, 3 since the number of eigen-decompositions of an SPD matrix from Stopp grows

rapidly with p, and procedures for determining a minimal pair of eigen-decompositions for

p > 3 for arbitrary eigenvalue multiplicity patterns do not yet exist. A computational

procedure for calculating the sample minimal scaling-rotation mean set can be developed for

p = 2, 3, and establishing asymptotic properties for the sample minimal scaling-rotation set

could provide interesting future work.

We also note that in subsection 3.2.2, we have established conditions under which our

procedure for estimating the sample partial minimal scaling-rotation mean will yield a solu-

tion which is unique up to the group action of G(p), however, we have not yet established
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conditions under which the sample partial minimal scaling-rotation mean, as defined in def-

inition 3.1.4, is unique up to the group action of G(p). We hypothesize that this result will

hold if the observations S1, . . . , Sn are sufficiently concentrated, however we have not yet

established this kind of result. It would also be interesting to establish a similar result for

the population partial minimal scaling-rotation mean.
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Figure 8: Seven different geodesic paths between X1 and Y1.

0 0.5 1

t

0

10

20

30

40

M
D

0 0.5 1

t

3

4

5

6

7

Lo
g 

D
et

er
m

in
an

t

0 0.5 1

t

0.4

0.6

0.8

1

P
A

0 0.5 1

t

0.7

0.8

0.9

1

F
A

0 0.5 1

t

0

20

40

60

R
ot

at
io

n 
A

ng
le

Scaling-Rotation
Euclidean
Log-Euclidean
Affine-Invariant
Cholesky
Root Euclidean
Procrustes

Figure 9: DTI summary measures along each geodesic path connecting X1 and Y1.
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Figure 10: Seven different geodesic paths between X2 and Y2.
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Figure 11: DTI summary measures along each geodesic path connecting X2 and Y2.
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Figure 12: Seven different geodesic paths between X3 and Y3.
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Figure 13: DTI summary measures along each geodesic path connecting X3 and Y3.
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Figure 14: 2D interpolation of 4 diffusion tensors.
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Figure 15: 2D interpolation of 4 diffusion tensors.
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Figure 16: Observations from preterm infants are blue and observations from fullterm infants

are red. (Top Left) Linearized deformation tensors used to compute the Log-Euclidean

Hotelling’s T 2 test statistic. (Top Right) Linearized deformation tensors used to compute

the scaling-rotation Hotelling’s T 2 test statistic. (Bottom Left) Plot of log-eigenvalues from

Top Right plot. (Bottom Right) Plot of angles from Top Right plot mapped to the unit

circle in R2.
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Figure 17: (Top) Fractional Anisotropy map of the original DTI data. (Bottom) Fractional

Anisotropy map of interpolated DTI data.
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4.0 MOMENT BASED ESTIMATION AND INFERENCE OF

EIGENVALUE PARAMETERS

In the visualization of diffusion tensor imaging data, it is often of interest to describe and

quantify the shape of diffusion tensors via anisotropy measures such as fractional anisotropy,

which was defined in Equation 3.12. Anisotropy describes the spread of the eigenvalues of a

diffusion tensor, with emphasis on how distinct the largest, or principal, eigenvalue is from

the two smaller eigenvalues. When the spread of the eigenvalues is very small, a diffusion

tensor will look almost spherical, and when the largest eigenvalue is much larger than the

two smaller eigenvalues, the diffusion tensor will have one very long axis corresponding to

the principal eigenvalue and two comparatively short axes corresponding to the two smaller

eigenvalues. These two cases, visualized in Figure 7, are known as isotropy and anisotropy,

respectively.

The shape of a diffusion tensor with eigenvalues λ1 ≥ λ2 ≥ λ3 can also be described by

its eigenvalue multiplicity pattern. There are four possible eigenvalue multiplicity patterns

which correspond to four different diffusion tensor shapes:

• (Isotropic) λ1 = λ2 = λ3

• (Prolate) λ1 > λ2 = λ3

• (Oblate) λ1 = λ2 > λ3

• (Triaxial) λ1 > λ2 > λ3

Isotropic diffusion tensors are spherical, prolate diffusion tensors are football-shaped, and

oblate diffusion tensors resemble discs.

In this chapter we consider the situation in which we observe a random sample of dif-

fusion tensors S1, . . . , Sn ∈ Sym+(3) and we would like to estimate and perform inference
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about the multiplicity pattern of the population eigenvalue mean. In [44], the authors de-

rive hypothesis tests concerning the multiplicity pattern of the population eigenvalue mean

assuming that the data follows a specific type of normal distribution for SPD matrices. In

this chapter, we derive estimation procedures and hypothesis tests about multiplicity pat-

terns of the population mean of the log-eigenvalue distribution of diffusion tensors making

no distributional assumptions except for finite second moments and an isotropic covariance

structure of the log-eigenvalues.

Suppose that we observe a random sample of SPD matrices S1, . . . , Sn. We assume that

each SPD matrix arises from the same generating distribution on Diag+(p)×SO(p). Denote

the distribution of the vectorized log-eigenvalues from the generating distribution as G with

the following assumptions

1. G is a continuous distribution on Rp.

2. G has an unknown mean µ ∈ Rp.

3. G has an isotropic covariance structure with unknown variance σ2 > 0.

SinceG is continuous, each SPD matrix will have no repeated eigenvalues with probability

1, and will have 2p−1p! distinct eigen-decompositions. Let (D1, U1), . . . , (Dn, Un) denote

the unobservable generating eigen-decompositions of S1, . . . , Sn. The log-eigenvalue vectors

X1 = vec(Log(D1)), . . . ,Xn = vec(Log(Dn)) are i.i.d. observations from G(µ, σ2).

To estimate µ, we will first pick observed eigen-decompositions (D′1, U
′
1), . . . , (D′n, U

′
n)

as random draws from the uniform distributions on F−1(S1), . . . ,F−1(Sn). The vectorized

log-eigenvalues from observed eigen-decomposition (D′i, U
′
i) have the representation

Yi = vec(Log(D′i)) = ZiXi, (4.1)

where Xi ∼ G(µ, σ2) and Zi is a permuation matrix randomly drawn from the uniform

distribution on the set of p× p permutation matrices.

From the assumptions on G(µ, σ2) it can be shown that for Y = ZX = (Y1, . . . , Yp)
T ,

where X ∼ G(µ, σ2) and Z follows the uniform distribution on the p × p permutation
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matrices, the following moment equations hold:

α1 = E[Y1] = · · · = E[Yp] =
1

p

p∑
i=1

µi. (4.2)

α2 = E[Y 2
1 ] = · · · = E[Y 2

p ] = σ2 +
1

p

p∑
i=1

µ2
i . (4.3)

α3 = E[YkY`] =
1(
p
2

) ∑
1≤i<j≤p

µiµj for any k 6= `. (4.4)

α4 = E[YhY`Ym] =
1(
p
3

) ∑
1≤i<j<k≤p

µiµjµk for h 6= ` 6= m and p ≥ 3. (4.5)

We will use the moment equations above to develop moment-based hypothesis tests of mult-

plicity patterns for µ.

4.1 MOMENT-BASED HYPOTHESIS TEST FOR ISOTROPIC

EIGENVALUE MEAN

We first present a test of the null hypothesis H0 : µ1 = · · · = µp versus the alternative

hypothesis HA : µi 6= µj for some i 6= j. From (4.2) and (4.4), it can be shown that

g(α1, α3) = α2
1 − α3 =

1

p2(p− 1)

∑
1≤i<j≤p

(µi − µj)2,

which equals 0 if and only if µ1 = · · · = µp.

Using sample estimators α̂1 and α̂3 for α1 and α3, we will create a test statistic for the

hypotheses above based on the quantity g(α̂1, α̂3). Given a random sample of vectorized

log-eigenvalues Y1, . . . ,Yn with Yi = (Yi1, . . . , Yip)
T , we define the sample estimators α̂1

and α̂3 as

α̂1 =
1

n

n∑
i=1

(
1

p

p∑
j=1

Yij

)
=

1

n

n∑
i=1

Wi (4.6)

α̂3 =
1

n

n∑
i=1

(
1(
p
2

) ∑
1≤j<k≤p

YijYik

)
=

1

n

n∑
i=1

Vi. (4.7)
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By the Central Limit Theorem,
√
n(α̂1−α1, α̂3−α3)T → N2(0,Γ). Note that g(x, y) = x2−y

has gradient at (α1, α3) equal to

∇g(α1, α3) =

(
∂g

∂x

∣∣∣ (x,y)=
(α1,α3)

= 2α1,
∂g

∂y

∣∣∣ (x,y)=
(α1,α3)

= −1

)T
,

which does not equal (0, 0) for any combination of α1 and α3 produced by µ. From an

application of the Delta Method, it follows that

√
n(g(α̂1, α̂3)− g(α1, α3))

L−→ N(0,∇g(α1, α3)TΓ∇g(α1, α3)).

We will estimate the asymptotic variance in the equation above with the consistent

estimator ∇g(α̂1, α̂3)T Γ̂∇g(α̂1, α̂3), where

∇g(α̂1, α̂3) = (2α̂1,−1)T

Γ̂11 =
1

n

n∑
i=1

(Wi − α̂1)2

Γ̂12 = Γ̂21 =
1

n

n∑
i=1

(Wi − α̂1)(Vi − α̂3)

Γ̂22 =
1

n

n∑
i=1

(Vi − α̂3)2.

Under the null hypothesis, it follows that

Tn =

√
ng(α̂1, α̂3)√

∇g(α̂1, α̂3)T Γ̂∇g(α̂1, α̂3)

L−→ N(0, 1) (4.8)

by Slutsky’s Theorem. To create an asymptotic α-level test of H0 vs. HA, reject H0 if

Tn > Φ−1(1− α) where Φ−1(.) denotes the inverse cdf of the standard normal distribution.

We are using a one-sided test of H0 : µ1 = · · · = µp because if the alternative hypothesis

is true, for large n, the test statistic Tn will approximately follow a normal distribution with

positive mean
√
ng(α1, α3)/

√
∇g(α1, α3)TΓ∇g(α1, α3) and variance 1. Thus, having a test

statistic Tn that is large and positive should provide evidence in favor of the alternative

hypothesis.

To illustrate the convergence of the test statistic Tn to a standard normal distribution

under the null hypothesis that µ1 = · · · = µp, we have performed a simulation experiment
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drawing 1000 samples of size n = 50, 100, and 500 from the bivariate normal distribution

with mean µ = (2, 2)T and covariance matrix 0.75I2. To simulate each observation as

the log-eigenvalues from a randomly chosen eigen-decomposition, the components of each

observation were permuted with probability 1/2. For each sample of observed log-eigenvalues,

we computed the test statistic Tn using the formula from (4.8), resulting in 1000 test statistics

for each of the sample sizes 50, 100, and 500. In Figure 18, we can see that the distribution

of Tn is very similar to a standard normal distribution with n = 50 and appears even closer

to normal for larger sample sizes. As can be seen in Table 1, the empirical type-I error rate

is generally close to the intended significance level, and not surprisingly, the empirical error

rate is closest to the intended level at the largest sample size of n = 500, suggesting that the

asymptotic type-I error rate of the hypothesis test will equal the intended significance level

of the test.

Figure 18: Histograms and quantile-quantile plots to illustrate the convergence of Tn to

N(0, 1) in distribution under H0 : µ1 = µ2.
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Table 1: Empirical Type I Error Rates

Asym. α n = 50 n = 100 n = 500

0.01 0.0130 0.0180 0.0120

0.05 0.0630 0.0710 0.0590

0.10 0.1240 0.1380 0.1100

4.2 METHOD OF MOMENTS ESTIMATION FOR P=2

The derivation of the moment-based hypothesis test of an isotropic log-eigenvalue mean can

also lead to moment-based estimators for µ when p = 2. It can be shown that

g(α1, α3) = α2
1 − α3 =

(
µ1 − µ2

2

)2

when p = 2. Then µ(1) = max{µ1, µ2} and µ(2) = min{µ1, µ2} can be recovered from the

following equations

µ(1)(α1, α3) = α1 +
√
α2

1 − α3

µ(2)(α1, α3) = α1 −
√
α2

1 − α3.

Note that the mean µ can only be estimated up to permutations of its entries because, if µ

is unknown then we will not know if µ = (µ(1), µ(2))
T or µ = (µ(2), µ(1))

T .

Given Y1, . . . , Yn, a random sample of vectorized log-eigenvalues from observed eigen-

decompositions, we begin with µdesc(α̂1, α̂3) = (µ(1)(α̂1, α̂3), µ(2)(α̂1, α̂3))T as a sample es-

timator for µdesc(α1, α3) = (µ(1)(α1, α3), µ(2)(α1, α3))T , where α̂1 and α̂3 are defined as in

(4.6) and (4.7). The quantity α̂2
1− α̂3 can be negative, so to avoid obtaining complex-valued

estimates for µdesc(α1, α3), we will make the following modification

µdesc(α̂1, α̂3) =

(µ(1)(α̂1, α̂3), µ(2)(α̂1, α̂3))T if α̂2
1 − α̂3 ≥ 0

(α̂1, α̂1)T if α̂2
1 − α̂3 < 0

.
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Table 2: Empirical Mean Squared Error (MSE) from Simulations of µdesc(α̂1, α̂3)

µ n = 50 n = 100 n = 500

µ1 = µ2 0.1093 0.0756 0.0291

µ1 6= µ2 0.0390 0.0191 0.0036

Alternatively, the conditions above could depend on the test statistic Tn from the previ-

ous subsection since the sign of Tn is determined by α̂2
1 − α̂3. Thus, we could also write

µdesc(α̂1, α̂3) in a more compact form

µdesc(α̂1, α̂3) = (α̂1, α̂1)T + I{Tn ≥ 0}
√
α̂2

1 − α̂3(1,−1)T , (4.9)

where I{Tn ≥ 0} denotes the indicator function for the event “Tn ≥ 0”.

The estimator µdesc(α̂1, α̂3) will be a consistent estimator of µdesc(α1, α3). Regardless of

the multiplicity pattern of µ, the estimators α̂1 and α̂3 will be consistent estimators of α1

and α3 by the Law of Large Numbers, which implies that
√
α̂2

1 − α̂3 will be a consistent

estimator of
√
α2

1 − α3. If µ1 = µ2, then µdesc(α̂1, α̂3)
p−→ (α1, α1)T = µdesc(α1, α3) because√

α2
1 − α3

p−→
√
α2

1 − α3 = 0 and Tn
L−→ N(0, 1), which implies that I{Tn ≥ 0} will converge

to a Bernoulli random variable with probability of success 1/2. If µ1 6= µ2, then Tn will

have the same asymptotic behavior as Zn = Z +
√
ng(α1, α3)/

√
∇g(α1, α3)TΓ∇g(α1, α3),

where Z ∼ N(0, 1). Then we have that P (Tn ≥ 0) → 1 − Φ(−∞) = 1, which implies that

µdesc(α̂1, α̂3)
p−→ µdesc(α1, α3).

To illustrate the consistency of µdesc(α̂1, α̂3), we have performed a simulation experi-

ment drawing 1000 samples of size n = 50, 100, and 500 from bivariate normal distributions

N2(µ1, σ
2I2) and N2(µ2, σ

2I2) with mean µ1 = (2, 2)T , µ2 = (2 +
√

3/4, 2 −
√

3/4)T , and

σ2 = 3/4. To simulate each observation as the log-eigenvalues from a randomly chosen eigen-

decomposition, the components of each observation were permuted with probability 1/2. For

each sample of observed log-eigenvalues, we computed µdesc(α̂1, α̂3) using the formula from

(4.9), resulting in 1000 estimates for each combination of means µ1 and µ2 with the sample

sizes 50, 100, and 500. As can be seen in Table 2, the empirical mean-squared error (MSE)

decreases as the sample size increases under both assumptions about the mutliplicity pattern

of µ, supporting the consistency arguments above.
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4.3 MOMENT-BASED HYPOTHESIS TEST FOR EIGENVALUE MEAN

IN MIDDLE OR LOWER STRATUM (P=3)

We next present a hypothesis test of H0 : µ has at most 2 unique values versus the alternative

HA : µ has three unique values. From the moment equations for α1 and α3 when p = 3, it

can be shown that

µ3 = 3α1 − (µ1 + µ2) (4.10)

µ2
1 + µ2

2 + µ2
3 = 3(3α2

1 − 2α3). (4.11)

Plugging (4.10) into (4.11) yields

µ2
1 + µ2

2 + µ1µ2 − 3α1(µ1 + µ2) + 3α3 = 0, (4.12)

which is the equation for an ellipse in (µ1, µ2) that is centered at (α1, α1). Equation 4.12 can

be simplified as vTAv = 3(α2
1 − α3) where

v = (µ1 − α1, µ2 − α1)T , A =

1 1
2

1
2

1

 .

From this elliptical equation and (4.10), we can solve for the coordinates of µ1, µ2, and µ3

as

µ1 = α1 +
√

3(α2
1 − α3)

(
− cos(θ) +

1√
3

sin(θ)

)
(4.13)

µ2 = α1 +
√

3(α2
1 − α3)

(
cos(θ) +

1√
3

sin(θ)

)
(4.14)

µ3 = α1 − 2
√

(α2
1 − α3) sin(θ). (4.15)

Plugging these coordinates for µ1, µ2, and µ3 into the moment equation for α4 when p = 3

yields the equality

α4 − α3
1 + 3α1(α2

1 − α3) = 2(α2
1 − α3)3/2 sin(3θ). (4.16)

From (4.16), we will show that the quantity

h(α1, α3, α4) = 4(α2
1 − α3)3 − (α4 − α3

1 + 3α1(α2
1 − α3))2
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equals 0 if and only if µ has at most 2 unique values. When µ1 = µ2 = µ3, it follows that

α4 − α3
1 = 0 and α2

1 − α3 = 0, which imply that h(α1, α3, α4) = 0. If two of the entries of µ

are equal, one of the cases below must be true:

µ1 − µ2 = −2
√

3(α2
1 − α3) cos(θ) = 0 ⇐⇒ cos(θ) = 0 ⇐⇒ θ ∈

{
π

2
,
3π

2

}
(4.17)

µ2 − µ3 = cos(θ) +
√

3 sin(θ) = 0 ⇐⇒ sin(θ)

cos(θ)
= − 1√

3
⇐⇒ θ ∈

{
5π

6
,
11π

6

}
(4.18)

µ1 − µ3 = − cos(θ) +
√

3 sin(θ) = 0 ⇐⇒ sin(θ)

cos(θ)
=

1√
3
⇐⇒ θ ∈

{
π

6
,
7π

6

}
. (4.19)

For θ ∈ {π
6
, 5π

6
, 3π

2
}, sin(3θ) = 1, while sin(3θ) = −1 for θ ∈ {π

2
, 7π

6
, 11π

6
}. For all of these

cases, it follows from (4.16) that |α4 − α3
1 + 3α1(α2

1 − α3)| = |2(α2
1 − α3)3/2|, which implies

that h(α1, α3, α4) = 0.

If all three entries of µ are distinct, then we will have that θ /∈ {π
6
, 5π

6
, 3π

2
, π

2
, 7π

6
, 11π

6
},

which, from (4.16), implies that |α4−α3
1+3α1(α2

1−α3)| < |2(α2
1−α3)3/2| and h(α1, α3, α4) > 0.

To summarize, the quantity h(α1, α3, α4) will equal 0 when µ has at most 2 unique entries,

and will be positive when µ has three unique entries.

Using sample estimators α̂1, α̂3, and α̂4 for the population moments α1, α3, and α4, we

will create a test statistic for the null hypothesis that µ has at most 2 distinct entries based

on the sample statistic h(α̂1, α̂3, α̂4). Given a random sample of vectorized log-eigenvalues

Y1, . . . , Yn with Yi = (Yi1, Yi2, Yi3)T , we define the sample estimators α̂1, α̂3, and α̂4 as

α̂1 =
1

n

n∑
i=1

(
1

3

3∑
j=1

Yij

)
=

1

n

n∑
i=1

Ti (4.20)

α̂3 =
1

n

n∑
i=1

(
1(
3
2

) ∑
1≤j<k≤3

YijYik

)
=

1

n

n∑
i=1

Wi (4.21)

α̂4 =
1

n

n∑
i=1

Yi1Yi2Yi3. (4.22)

By the Central Limit Theorem,
√
n(α̂1−α1, α̂3−α3, α̂4−α4)

L−→ N3(0,Γ). The gradient

of the function h(x, y, z) evaluated at (α1, α3, α4), which we will denote as ∇h(α1, α3, α4),
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will have partial derivatives

∂h

∂x

∣∣∣ (x,y,z)=
(α1,α3,α4)

= 24α1(α2
1 − α3)2 − 2(α4 − α3

1 + 3α1(α2
1 − α3))(3α2

1 + 3(α2
1 − α3)) (4.23)

∂h

∂y

∣∣∣ (x,y,z)=
(α1,α3,α4)

= 6α1(α4 − α3
1 + 3α1(α2

1 − α3))− 12(α2
1 − α3)2 (4.24)

∂h

∂z

∣∣∣ (x,y,z)=
(α1,α3,α4)

= −2(α4 − α3
1 + 3α1(α2

1 − α3)). (4.25)

If µ1 = µ2 = µ3, then α4−α3
1 = 0 and α2

1−α3 = 0, which imply that the gradient equals

(0, 0, 0)T . If µ only has two distinct entries, then α2
1−α3 > 0 and |α4−α3

1 + 3α1(α2
1−α3)| =

|2(α2
1−α3)3/2|, which imply that ∂h

∂z
will not equal 0 when evaluated at (x, y, z) = (α1, α3, α4).

Thus, ∇h(α1, α3, α4) will never equal 0 when µ has two distinct entries. We will next show

that ∇h(α1, α3, α4) will never equal 0 when µ has three distinct entries. First consider the

case when µ has three distinct entries and α4 − α3
1 + 3α1(α2

1 − α3) = 0. In this case, ∂h
∂y

evaluated at (x, y, z) = (α1, α3, α4) will equal −12(α2
1 − α3)2, which will be non-zero. In the

case when µ has three distinct entries and α4 − α3
1 + 3α1(α2

1 − α3) 6= 0, ∂h
∂z

will not equal 0

when evaluated at (x, y, z) = (α1, α3, α4). Thus, we have that ∇h(α1, α3, α4) only equals 0

when µ1 = µ2 = µ3.

We will next establish the asymptotic behavior of the quantity
√
nh(α̂1, α̂3, α̂4) under

the null hypothesis that µ has at most two unique entries. First suppose that µ1 = µ2 = µ3.

Since ∇h(α1, α3, α4) equals 0, we will use a second order Taylor Expansion to determine the

asymptotic distribution of
√
nh(α̂1, α̂3, α̂4). Since

√
n(α̂1 − α1, α̂3 − α3, α̂4 − α4)

L−→ N(0,Γ),

h(α1, α3, α4) = 0, and ∇h(α1, α3, α4) = 0, it follows that

nh(α̂1, α̂3, α̂4)
L−→ YT∇2h(α1, α3, α4)Y

where Y ∼ N3(0,Γ) and ∇2h(α1, α3, α4) denotes the Hessian matrix of h(x, y, z) evaluated

at (α1, α3, α4). When µ1 = µ2 = µ3, it can be shown that

∇2h(α1, α3, α4) =


−18α4

1 18α3
1 −6α2

1

18α3
1 −18α2

1 6α1

−6α2
1 6α1 −2

 ,
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which is symmetric, has rank 1, and has non-zero eigenvalue λH = Tr(∇2h(α1, α3, α4)) =

(−1)(2 + 18α2
1 + 18α4

1). If wH denotes the eigenvector of ∇2h(α1, α3, α4) associated with λH ,

then ∇2h(α1, α3, α4) can be represented as ∇2h(α1, α3, α4) = λHwHw
T
H . From the eigen-

decomposition Γ = UDUT we can represent Y ∼ N3(0,Γ) as Y = Γ1/2Z = UD1/2Z, where

Z ∼ N3(0, I3). Then we have that

nh(α̂1, α̂3, α̂4)
L−→ YT∇2h(α1, α3, α4)Y

= ZTD1/2UTλHwHw
T
HUD

1/2Z

= λHZT (D1/2UTwH)(D1/2UTwH)TZ.

Note that the center matrix (D1/2UTwH)(D1/2UTwH)T is a rank 1 symmetric matrix with

non-zero eigenvalue Tr((D1/2UTwH)(D1/2UTwH)T ) = wTHΓwH . If v denotes the correspond-

ing eigenvector for this eigenvalue, then we have that

nh(α̂1, α̂3, α̂4)
L−→ λHw

T
HΓwh(v

TZ)2 = (λHw
T
HΓwH)χ2

1 (4.26)

since vTZ ∼ N(0, 1). Finally, we have that
√
nh(α̂1, α̂3, α̂4) = (1/

√
n)nh(α̂1, α̂3, α̂4)

p−→ 0.

Next we establish the asymptotic behavior of
√
nh(α̂1, α̂3, α̂4) assuming that µ has two

distinct entries. As was shown earlier, ∇h(α1, α3, α4) does not equal (0, 0, 0)T , so we can

apply the Delta Method to get

√
nh(α̂1, α̂3, α̂4)

L−→ N(0,∇h(α1, α3, α4)TΓ∇h(α1, α3, α4))

when µ has two distinct entries. We will estimate the asymptotic variance from the equation

above with the consistent estimator ∇h(α̂1, α̂3, α̂4)T Γ̂∇h(α̂1, α̂3, α̂4), where the entries of Γ
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are estimated as

Γ̂11 =
1

n

n∑
i=1

(Ti − α̂1)2

Γ̂12 = Γ̂21 =
1

n

n∑
i=1

(Ti − α̂1)(Wi − α̂3)

Γ̂13 = Γ̂31 =
1

n

n∑
i=1

(Ti − α̂1)(Yi1Yi2Yi3 − α̂4)

Γ̂22 =
1

n

n∑
i=1

(Wi − α̂3)2

Γ̂23 = Γ̂32 =
1

n

n∑
i=1

(Wi − α̂3)(Yi1Yi2Yi3 − α̂4)

Γ̂33 =
1

n

n∑
i=1

(Yi1Yi2Yi3 − α̂4)2.

When µ has two distinct entries, the test statistic

Vn =

√
nh(α̂1, α̂3, α̂4)√

∇h(α̂1, α̂3, α̂4)T Γ̂∇h(α̂1, α̂3, α̂4)

L−→ N(0, 1) (4.27)

by Slutsky’s Theorem. To create an asymptotic α-level test of H0 vs. HA, reject H0 if

Vn > Φ−1(1− α) where Φ−1(.) denotes the inverse cdf of the standard normal distribution.

We are using a one-sided hypothesis test because if the alternative hypothesis is true,

then for large n, the test statistic Vn will approximately follow a normal distribution with

positive mean
√
nh(α1, α3α4)/

√
∇h(α1, α3, α4)TΓ∇h(α1, α3, α4) and variance 1. Thus, it

makes sense to reject the null hypothesis when Un is positive and large. Note that when µ

has only one unique entry, the test statistic Vn will be negative with very high probability

for large n since Vn will approximately follow the distribution of a χ2
1 random variable scaled

by (λHw
T
HΓwH)/

√
n∇h(α̂1, α̂3, α̂4)T Γ̂∇h(α̂1, α̂3, α̂4) < 0 for large n (it was previously shown

that λH = (−1)(2 + 18α2
1 + 18α4

1)).

To illustrate the asymptotic distribution of the test statistic Vn under the null hy-

pothesis, we have performed simulation experiments drawing 1000 samples of size n =

50, 100, and 500 under two cases. Under Case I, samples of size n are drawn from the

trivariate normal distribution with mean µ = (2, 2, 2)T and covariance matrix 0.75I3. Un-

der Case II, samples of size n are drawn from the trivariate normal distribution with mean
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µ = (2 + 2
√

3/4, 2 + 2
√

3/4, 2)T and covariance matrix 0.75I3. To simulate each observa-

tion as the log-eigenvalues from a randomly chosen eigen-decomposition, the components

of each observation were permuted by a permutation matrix randomly selected from the

uniform distribution on the set of 3× 3 permutation matrices. For each sample of observed

log-eigenvalues, we computed the test statistic Vn using the formula from (4.27), resulting

in 1000 test statistics for each of the sample sizes 50, 100, and 500 for each case.

From the simulations under Case I, we see in Figure 19 that the test statistics are

negative with high probability and when they are positive, they never exceed Φ−1(1−α) for

α = 0.01, 0.05, or 0.10, as can be seen in Table 3. In Figure 20, we can see the distribution of

Vn converging to a standard normal distribution under Case II, and in Table 4, the empirical

type I error rate is generally close to the intended value when the sample size is large (greater

than 100).

In Figure 21, we illustrate how the speed of convergence of the numerator
√
nh(α̂1, α̂3, α̂4)

to a normal distribution when µ has two unique values depends on the separation between

its unique values. Let µ(1) and µ(2) denote the unique values of µ, with µ(1) ≥ µ(2). For fixed

n = 100, we see that the distribution of
√
nh(α̂1, α̂3, α̂4) becomes more normal as µ(1)− µ(2)

increases.

4.4 METHOD OF MOMENTS ESTIMATION FOR P=3

The derivation of the moment-based test that the log-eigenvalue mean has at most two

unique entries from the previous subsection can also lead to a moment-based estimator of µ

when p = 3.

Solving for θ in (4.16) requires locating solutions to

sin(3θ) = a0 =
α4 − α3

1 + 3α1(α2
1 − α3)

2(α2
1 − α3)3/2

. (4.28)

Note that (4.28) cannot be solved when µ1 = µ2 = µ3 since the numerator and denominator

of a0 both equal 0 in that case. In this case, µ1 = µ2 = µ3 = α1.
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Figure 19: Histograms of Vn under null hypothesis Case I.

Figure 20: Histograms and quantile-quantile plots to illustrate the convergence of Vn to

N(0, 1) in distribution under null hypothesis Case II.
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Figure 21: Histograms of 1000 simulated
√
nh(α̂1, α̂3, α̂4) values from samples of size n =

100. From left to right, the differences between the two unique values of µ are 0, σ =√
3/4, and 2σ =

√
3.

Table 3: Empirical Type I Error Rates Case I

Asym. α n = 50 n = 100 n = 500

0.01 0 0 0

0.05 0 0 0

0.10 0 0 0

Table 4: Empirical Type I Error Rates Case II

Asym. α n = 50 n = 100 n = 500

0.01 0.0010 0.0010 0.0070

0.05 0.0270 0.0560 0.0560

0.10 0.1040 0.1150 0.1070
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When µ = (µ1, µ2, µ3)T has two unique values, it was shown in the previous subsection

that a0 equals 1 or -1. When a0 = 1, there are three solutions for θ: π/6, 5π/6, and 3π/2.

Switching between these three solutions permutes the elements of µ = (µ1, µ2, µ3)T since

µ1 = µ3 = α1 −
√
α2

1 − α3 and µ2 = α1 + 2
√
α2

1 − α3 for θ =
π

6

µ2 = µ3 = α1 −
√
α2

1 − α3 and µ1 = α1 + 2
√
α2

1 − α3 for θ =
5π

6

µ1 = µ2 = α1 −
√
α2

1 − α3 and µ3 = α1 + 2
√
α2

1 − α3 for θ =
3π

2
.

When a0 = −1, the three solutions for θ are π/2, 7π/6, and 11π/6. Switching between these

three solutions also permutes the elements of µ = (µ1, µ2, µ3)T since

µ1 = µ2 = α1 +
√
α2

1 − α3 and µ3 = α1 − 2
√
α2

1 − α3 for θ =
π

2

µ1 = µ3 = α1 +
√
α2

1 − α3 and µ2 = α1 − 2
√
α2

1 − α3 for θ =
7π

6

µ2 = µ3 = α1 +
√
α2

1 − α3 and µ1 = α1 − 2
√
α2

1 − α3 for θ =
11π

6
.

When µ = (µ1, µ2, µ3)T has 3 unique values, a0 ∈ (−1, 1). One solution for θ will be the

quantity θ∗ = sin−1(a0)/3 (mod 2π). Since the image of the arcsine function is [−π/2, π/2],

it follows that θ∗ will belong to [0, π/6) ∪ (11π/6, 2π). We have excluded the endpoints π/6

and 11π/6 because we are assuming that µ has 3 unique values.

If θ∗ ∈ [0, π/6), the other solutions to (4.28) are π − θ∗, θ∗ + 2π/3, π/3− θ∗, θ∗ + 4π/3,

and 5π/3 − θ∗. Let µ1(θ), µ2(θ), and µ3(θ) denote the equations from (4.13), (4.14), and

(4.15), respectively. Switching between these six solutions to (4.28) permutes the elements

of µ since it can be shown that

µ1(π − θ∗) = µ2(θ∗), µ2(π − θ∗) = µ1(θ∗), µ3(π − θ∗) = µ3(θ∗)

µ1(θ∗ + 2π/3) = µ2(θ∗), µ2(θ∗ + 2π/3) = µ3(θ∗), µ3(θ∗ + 2π/3) = µ1(θ∗)

µ1(π/3− θ∗) = µ3(θ∗), µ2(π/3− θ∗) = µ2(θ∗), µ3(π/3− θ∗) = µ1(θ∗)

µ1(θ∗ + 4π/3) = µ3(θ∗), µ2(θ∗ + 4π/3) = µ1(θ∗), µ3(θ∗ + 4π/3) = µ2(θ∗)

µ1(5π/3− θ∗) = µ1(θ∗), µ2(5π/3− θ∗) = µ3(θ∗), µ3(5π/3− θ∗) = µ2(θ∗).
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If θ∗ ∈ (11π/6, 2π), the other solutions to (4.28) are 3π − θ∗, θ∗ − 2π/3, 11π/3 − θ∗,

θ∗− 4π/3, and 7π/3− θ∗. Switching between these six solutions permutes the elements of µ

since it can be shown that

µ1(3π − θ∗) = µ2(θ∗), µ2(3π − θ∗) = µ1(θ∗), µ3(3π − θ∗) = µ3(θ∗)

µ1(θ∗ − 2π/3) = µ3(θ∗), µ2(θ∗ − 2π/3) = µ1(θ∗), µ3(θ∗ − 2π/3) = µ2(θ∗)

µ1(11π/3− θ∗) = µ1(θ∗), µ2(11π/3− θ∗) = µ3(θ∗), µ3(11π/3− θ∗) = µ2(θ∗)

µ1(θ∗ − 4π/3) = µ2(θ∗), µ2(θ∗ − 4π/3) = µ3(θ∗), µ3(θ∗ − 4π/3) = µ1(θ∗)

µ1(7π/3− θ∗) = µ3(θ∗), µ2(7π/3− θ∗) = µ2(θ∗), µ3(7π/3− θ∗) = µ1(θ∗).

Thus, if µ has at least two distinct entries and is unknown, the entries of µ can only be

estimated up to permutations.

We define µperm(α1, α3, θ
∗), which is a permutation of µ, as

µperm(α1, α3, θ
∗) =

(α1, α1, α1)T if µ1 = µ2 = µ3

(µ1(α1, α3, θ
∗), µ2(α1, α3, θ

∗), µ3(α1, α3, θ
∗))T if µi 6= µj for i, j

,

where θ∗ is defined as sin−1(a0)/3 and µ1(α1, α3, θ
∗), µ2(α1, α3, θ

∗), and µ3(α1, α3, θ
∗) are the

equations from (4.13), (4.14), and (4.15), respectively, evaluated at α1, α3, and θ∗.

Given Y1, . . . , Yn, a random sample of vectorized log-eigenvalues from observed eigen-

decompositions, let α̂1, α̂3, and α̂4 denote the sample estimators for α1, α3, and α4 from the

previous subsection. The “plug-in” estimator µperm(α̂1, α̂3, θ̂
∗) with entries

µperm1 (α̂1, α̂3, θ̂
∗) = α̂1 +

√
3(α̂2

1 − α̂3)

(
− cos(θ̂∗) +

1√
3

sin(θ̂∗)

)
µperm2 (α̂1, α̂3, θ̂

∗) = α̂1 +
√

3(α̂2
1 − α̂3)

(
cos(θ̂∗) +

1√
3

sin(θ̂∗)

)
µperm3 (α̂1, α̂3, θ̂

∗) = α̂1 − 2
√

(α̂2
1 − α̂3) sin(θ̂∗),

where θ̂∗ satisfies

sin(3θ̂∗) = â0 =
α̂4 − α̂3

1 + 3α̂1(α̂2
1 − α̂3)

2(α̂2
1 − α̂3)3/2

,

is a starting point for a sample-based estimator of µperm(α1, α3, θ
∗).
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To avoid complex-valued solutions for µperm(α̂1, α̂3, α̂4), we must modify the estimator

to handle the cases (i) α̂2
1− α̂3 < 0 and (ii) α̂2

1− α̂3 ≥ 0 and |â0| > 1. Under case (i), we will

replace α̂2
1 − α̂3 with 0, which sets µperm(α̂1, α̂3, α̂4) equal to α̂1(1, 1, 1)T . Under case (ii), if

â0 < −1, we will set â0 equal to -1 by setting θ̂∗ equal to −π/6, which yields the estimators

µperm2 (α̂1, α̂3,−π/6) = µperm3 (α̂1, α̂3,−π/6) = α̂1 +
√
α̂2

1 − α̂3

µperm1 (α̂1, α̂3,−π/6) = α̂1 − 2
√
α̂2

1 − α̂3.

If â0 > 1, we will set â0 equal to 1 by setting θ̂∗ equal to π/6, which yields the estimators

µperm1 (α̂1, α̂3, π/6) = µperm3 (α̂1, α̂3, π/6) = α̂1 −
√
α̂2

1 − α̂3

µperm2 (α̂1, α̂3, π/6) = α̂1 + 2
√
α̂2

1 − α̂3.

To summarize, the modified sample-based estimator for µperm(α1, α3, θ
∗) is

µperm(α̂1, α̂3, θ̂
∗) =



α̂1(1, 1, 1)T if α̂2
1 − α̂3 < 0

µperm(α̂1, α̂3,−π/6) if α̂2
1 − α̂3 ≥ 0 and â0 < −1

µperm(α̂1, α̂3, π/6) if α̂2
1 − α̂3 ≥ 0 and â0 > 1

µperm(α̂1, α̂3, θ̂
∗) if α̂2

1 − α̂3 ≥ 0 and |â0| ≤ 1.

(4.29)

This estimator will be a consistent estimator of µperm(α1, α3, θ
∗), regardless of the multi-

plicity pattern of µ. First, suppose that µ1 = µ2 = µ3. Since α̂1, α̂3, and α̂4 are consistent

estimators of α1, α3, and α4, it follows that
√
α̂2

1 − α̂3
p−→
√
α2

1 − α3 = 0, which implies that

µperm(α̂1, α̂3, θ̂
∗)

p−→ µperm(α1, α3, θ
∗) for all four cases on the previous page.

Next, suppose that µ has two unique entries and that a0 = 1. Since
√
α̂2

1 − α̂3
p−→√

α2
1 − α3 > 0, it follows that the probability of the event “α̂2

1 − α̂3 < 0” will converge

to 0. The consistency of α̂1, α̂3, and α̂4 implies that â0
p−→ a0 = 1, which implies that the

probability of the event “α̂2
1− α̂3 ≥ 0 and â0 < −1” will converge to 0. From the consistency

of α̂1 and α̂3, we have that µperm(α̂1, α̂3, π/6)
p−→ µperm(α1, α3, π/6). Finally, â0

p−→ 1 implies

that θ̂∗
p−→ sin−1(1)/3 = π/6, implying that µperm(α̂1, α̂3, θ̂

∗)
p−→ µperm(α1, α3, π/6). Similar

reasoning can be used to argue consistency when a0 = −1.
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Finally, suppose that µ has 3 unique values. From the consistency of α̂1, α̂3, and α̂4, we

have that
√
α̂2

1 − α̂3
p−→
√
α2

1 − α3 > 0, â0
p−→ a0 ∈ (−1, 1), and θ̂∗

p−→ θ∗, which imply that

the probability of the event “α̂2
1 − α̂3 ≥ 0 and |â0| ≤ 1” will converge to 1, under which

µperm(α̂1, α̂3, θ̂
∗)

p−→ µperm(α1, α3, θ
∗).

To demonstrate the consistency of µperm(α̂1, α̂3, θ̂
∗), we have performed simulation ex-

periments drawing 1000 samples of size n = 50, 100, and 500 from trivariate normal dis-

tributions N3(µ1, σ
2I3), N3(µ2, σ

2I3), N3(µ3, σ
2I3), and N3(µ4, σ

2I3). Let µ(1) ≥ µ(2) ≥ µ(3)

denote the ordered values of µ. The variance is σ2 = 3/4, the mean µ1 has one unique value

µ(1) = µ(2) = µ(3) = 2, the mean µ2 has two unique values µ(1) = µ(2) = 2 +
√

3 > µ(3) = 2,

the mean µ3 has two unique values µ(1) = 2 > µ(2) = µ(3) = 2 −
√

3, and the mean µ4 has

three unique values µ(1) = 2 +
√

3 > µ(2) = 2 > µ(3) = 2−
√

3. To simulate each observation

as the log-eigenvalues from a randomly chosen eigen-decomposition, the components of each

observation were permuted by a permutation matrix randomly selected from the uniform

distribution on the set of 3 × 3 permutation matrices. For each sample of observed log-

eigenvalues, we computed µperm(α̂1, α̂3, θ̂
∗) using the formula from Equation 4.29, resulting

in 1000 estimates for each combination of means µ1,µ2,µ3, and µ4 with the sample sizes

50, 100, and 500. For all of the eigenvalue mean multiplicity patterns presented in Table 5,

the empirical MSE decreases as n increases.

4.5 DISCUSSION

The hypothesis tests from sections 4.1 and 4.3 can be used sequentially for classification of

the shape of the population log-eigenvalue mean of a random sample of diffusion tensors.

After specifying a significance level of α(1), if you fail to reject the null hypothesis of an

isotropic population log-eigenvalue mean at level α(1), classify the mean as isotropic. If you

reject the null hypothesis of an isotropic population log-eigenvalue mean at level α(1), set

a second significance level α(2) for a second round of testing. If you fail to reject the null

hypothesis that the population log-eigenvalue mean has at most two unique values at level

α(2), then classify the population log-eigenvalue mean as oblate if â0 is closer to -1 or prolate
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if â0 is closer to 1. If you reject the null hypothesis that the population log-eigenvalue mean

has at most two unique values at level α(2), then classify the population log-eigenvalue mean

as triaxial. More work needs to be done to assess the potential classification accuracy of this

approach.

While the methods presented in this chapter make no assumptions about the generating

distribution of the log-eigenvalues and are based on sample statistics which are easy to

compute, the assumption that the generating log-eigenvalue distribution have an isotropic

covariance pattern is a strong assumption. More work needs to be done to see if these

methods can be extended to allow for more general covariance patterns in the generating log-

eigenvalue distribution. A good start for this might be the compound symmetry pattern in

which the covariance matrix is parametrized by a single variance term and a single covariance

term.

It might also be of interest to perform shape classification of population eigenvalue means

over a region of the brain, rather than at a single voxel, from brain scans from n individuals.

We would need to adjust the shape classification procedure to account for multiple tests over

the region of interest. At each voxel, it would be interesting to approximate the probability

that the population mean is isotropic, oblate, prolate, or triaxial, and then color the voxel

using a weighted average of four colors. Voxels at which the mean is nearly isotropic, oblate,

etc. would be closest in color to the color corresponding to isotropic, oblate, etc.
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Table 5: Empirical Mean Squared Error (MSE) from 1000 Simulations of µperm(α̂1, α̂3, θ̂
∗)

µ n = 50 n = 100 n = 500

µ(1) = µ(2) = µ(3) 0.2134 0.1546 0.0652

µ(1) = µ(2) > µ(3) 0.1487 0.1001 0.0345

µ(1) > µ(2) = µ(3) 0.1464 0.0951 0.0347

µ(1) > µ(2) > µ(3) 0.0639 0.0318 0.0062
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5.0 PARAMETRIC ESTIMATION AND INFERENCE ON THE SPACE OF

EIGEN-DECOMPOSITIONS

In this chapter, we assume that we observe a random sample S1, . . . , Sn ∈ Sym+(p) which

arise via eigen-composition of latent generating eigen-decompositions (D1, U1), . . . , (Dn, Un).

If the unobservable generating eigen-decompositions follow a distribution with location pa-

rameter (D∗, U∗), what can we learn about (D∗, U∗) from our random sample of SPD ma-

trices? In this chapter, we present a likelihood-based approach to estimation and inference

about the location parameter (D∗, U∗) that allows the user to specify the distribution of the

eigenvalues and eigenvectors, and allows for direct estimation and inference of eigenvalue

and eigenvector parameters.

5.1 EXAMPLES OF GENERATING DISTRIBUTIONS

We first provide some examples of generating distributions onDiag+(p)×SO(p) with location

parameter (D∗, U∗) for p = 2. Let θU = sign(U21) cos−1(U11) denote the unique angle

parametrization of U ∈ SO(2).

We first present a distribution F1 in which D and U are independent with Log(D) ∼

N2(Log(D∗), τ−1
1 I2) and θU following the Von Mises distribution with mean θU∗ and concen-

tration parameter τ2 > 0. The density function of F1 is given by

f1((D,U)) =

(
τ1

2π

)
det(D−1) exp

{
− τ1

2
d2
D+(p)(D,D

∗)

}
1

2πI0(τ2)
exp{τ2 cos(θU − θU∗)}
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where I0(.) denotes the modified Bessel function of order 0. Use of the Von-Mises distribution

is prolific in the field of directional statistics, and more information about it can be found

in [35].

Alternatively, one could allow θU to be the circular version of a normal random variable

with mean θU∗ and variance τ−1
2 truncated to lie in the interval (θU∗ − π, θU∗ + π) and again

have D, which is indepdent of θU , follow the log-normal distribution satisfying Log(D) ∼

N2(Log(D∗), τ−1
1 I2). The density function for this distribution F2 is

f2((D,U)) =

(
τ1

2π

)
det(D−1) exp

{
− τ1

2
d2
D+(p)(D,D

∗)

}
1

N(τ2)
exp

{
− τ2

2
d2
C(θU , θU∗)

}

where N(τ2) =
√

2π
τ2
erf(π

√
τ2
2

) and dC(., .) denotes the circular minimal arc length distance

function given by

dC(θ1, θ2) =

|θ̄1 − θ̄2| if |θ̄1 − θ̄2| ≤ π

|θ̄1 − θ̄2| − π if |θ̄1 − θ̄2| > π

with θ̄i = θi (mod 2π) for i = 1, 2. We use the circular distance function dC(., .) to ensure

that the distribution of θU is periodic (i.e. invariant under shifts by integer multiples of 2π).

It can be shown that

dC(θ1, θ2) = dSO(2)(Uθ1 , Uθ2)

where Uθi ∈ SO(2) is the 2 × 2 rotation matrix associated with angle θi and dSO(2) is the

Riemannian affine-invariant distance function from Equation 2.8. Many properties of this

circular truncated normal distribution are presented in [12].

Finally, we present a distribution F3 that allows for dependence between the scaling

and rotation variables. Let v((D,U); (D∗, U∗)) = vec(Log(D(D∗)−1), Log(U(U∗)T )), a 3-

dimensional vector containing the free entries from (Log(D(D∗)−1), Log(U(U∗)T )), which

are the coordinates of (D,U) on the tangent space centered at (D∗, U∗) (see Theorem 2.8.1).

To compute v((D,U); (D∗, U∗)), note that

Log(D(D∗)−1) =

log(d1)− log(d∗1) 0

0 log(d2)− log(d∗2)


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Log(U(U∗)T ) =

 0 −θ(U(U∗)T )

θ(U(U∗)T ) 0


where θ(U(U∗)T ) = sgn([U(U∗)T ]21) cos−1([U(U∗)T ]11). Then we have that

v((D,U); (D∗, U∗)) = (log(d1)− log(d∗1), log(d2)− log(d∗2), θ(U(U∗)T ))T .

We then define F3 as a kind of tangent normal distribution with density function

f3((D,U)) =
1

N(Σ)
exp

{
− 1

2
(v((D,U); (D∗, U∗)))TΣ−1v((D,U); (D∗, U∗))

}

where N(Σ) is the normalizing constant and Σ ∈ Sym+(3) defines the covariance structure

on the tangent space. For highly concentrated distributions of this type, we make the

simplification

N(Σ) ≈ (det(2πΣ))1/2

from approximating the distribution of v((D,U); (D∗, U∗)) with a mean zero trivariate nor-

mal distribution with covariance matrix Σ.

All three of these distributions on Diag+(2)× SO(2) can be generalized for any p ≥ 2.

5.2 MIXTURE-BASED LIKELIHOOD ESTIMATION FRAMEWORK

Given a random sample S1, . . . , Sn of SPD matrices, we assume that the observations arise

as eigen-compositions of unobservable i.i.d. generating eigen-decompositions. Our goal is to

estimate the parameters of the generating eigen-decomposition distribution from a sample

of SPD matrices. We make the following assumptions:

1. The unobservable generating eigen-decompositions (D1, U1), . . . , (Dn, Un) are i.i.d. obser-

vations from a continuous distribution F on Diag+(p)× SO(p) with location parameter

(D∗, U∗) and concentration parameters Γ. F has density function f((D,U); (D∗, U∗),Γ).
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2. The generating distribution F is a location family: if a random variable (D,U) fol-

lows distribution F with location parameter (D∗, U∗) and concentration parameters Γ,

then the random variable (D′, U ′) = (GDGT , UGT ) follows distribution F with loca-

tion parameter (GD∗GT , U∗GT ) and concentration parameters Γ for any even signed

permutation matrix G ∈ G(p).

3. Observed eigen-decompositions (D′1, U
′
1), . . . , (D′n, U

′
n) of S1, . . . , Sn are randomly chosen

from the uniform distributions on F−1(S1), . . . ,F−1(Sn).

From these assumptions, we have that each observation will have no repeated eigenvalues

with probability 1, and that the distribution of an observed eigen-decomposition will be a

mixture distribution with density function

h((D′, U ′); (D∗, U∗),Γ) =
1

2p−1p!

2p−1p!∑
j=1

f((D′, U ′); (GjD
∗GT

j , U
∗GT

j ),Γ). (5.1)

Note that the location parameter (D∗, U∗) is not identifiable since

h((D′, U ′); (D∗, U∗),Γ) = h((D′, U ′); (GD∗GT , U∗GT ),Γ)

for any G ∈ G(p). Thus, the location parameter of the unobservable generating distribution

is identifiable up to signed permutations; this is equivalent to defining our parameter space

of interest as the quotient group (Diag+(p)× SO(p))/G(p).

As a simple illustration, suppose that (D1, U1), . . . , (Dn, Un) is an i.i.d. random sample

on Diag+(2)×SO(2) (plotted in black in the left plot from Figure 22), which yields a random

sample F(D1, U1) = S1, . . . ,F(Dn, Un) = Sn of 2 × 2 SPD matrices (plotted in light blue

in the right plot from Figure 22). The three other versions of the eigen-decompositions of

S1, . . . , Sn are plotted in red, blue, and green in the left plot from Figure 22. When extracting

the “observed” eigen-decompositions (D′1, U
′
1), . . . , (D′n, U

′
n) from our sample of SPD matri-

ces S1, . . . , Sn, we will never know exactly how the observed eigen-decomposition (D′i, U
′
i)

is related to the unobserved data generating eigen-decomposition (Di, Ui) for i = 1, . . . , n.

In relation to Figure 22, we will never know if eigen-decomposition (D′i, U
′
i) corresponds to

a point from the black, red, blue, or green point cloud from the left plot of all possible
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eigen-decompositions. Under the mixture model from Equation 5.1, an observed eigen-

decomposition occurs as a uniform random draw from the black, red, blue, or green point

cloud. To make sure that observed eigen-decompositions follow this mixture model in prac-

tice, we will select an intial eigen-decomposition for each observation Si and then map that

initial eigen-decomposition to (possibly) another eigen-decomposition of Si via a randomly

selected even signed permutation from the uniform distribution on G(p).
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Figure 22: Plots of a random sample of 2x2 SPD matrices (right) and their 4 different

eigen-decompositions in the cross-product space (left). The different versions of the eigen-

decompostions are represented by the four distinct colors.

We plan to perform parameter estimation and inference in this setting via likelihood-

based methods. From Equation 5.1, the log-likelihood of the observed eigen-decompositions

has the form

`((D∗, U∗),Γ) =
n∑
i=1

log

{
1

2p−1p!

2p−1p!∑
j=1

f((GT
j D
′
iGj, U

′
iGj); (D∗, U∗),Γ)

}
. (5.2)

Optimizing Equation 5.2 directly may be computationally intractable, however the mix-

ture distribution of the observed eigen-decompositions lends suggests that the EM algorithm

may be useful for indirectly maximizing the likelihood above.
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5.3 MEAN ESTIMATION VIA EM ALGORITHM

For each observation Si, label its eigen-decompositions as

F−1(Si) =

2(p−1)p!⋃
j=1

{
(
D

(j)
i , U

(j)
i

)
},

where versions (D
(j)
1 , U

(j)
1 ), . . . , (D

(j)
n , U

(j)
n ) form an i.i.d. sample from a continuous distri-

bution F with location parameter (D(j),U (j)) satisfying assumptions 1-3 from the previ-

ous section. To simplify the notation of the set of location parameters, let (D(1),U (1)) =

(D∗, U∗). By assumption 2 from the previous section, (D(j),U (j)) = (GjD
∗GT

j , U
∗GT

j ) for

some Gj ∈ G(p) for j = 1, . . . , 2(p−1)p!. Then we will denote the set of location parameters

as [(D∗, U∗)] ∈ (Diag+(p) × SO(p))/G(p), which is the orbit of (D∗, U∗) under the group

action of G(p) on Diag+(p)× SO(p) (as defined in subsection 3.2.1).

Let k(p) = 2(p−1)p!, and suppose that (D′1, U
′
1), . . . , (D′n, U

′
n) is a sample of observed

eigen-decompositions as specified in assumption 3 from the previous section. Each observed

eigen-decomposition has the mixture representation

(D′i, U
′
i) =

k(p)∑
j=1

(ZjD
(j)
i , ZjU

(j)
i )

where Z̄ = (Z1, . . . , Zk(p)) follows a multinomial distribution with the constraint
∑k(p)

j=1 Zi = 1

and probabilities π̄ = (1/k(p), . . . , 1/k(p)). This representation leads to the observed data

log-likelihood from Equation 5.2, which will be difficult to optimize in practice.

If we were able to observe the version indicator variable zij for each observed eigen-

decomposition (D′i, U
′
i), then we could form the complete data log-likelihood

`C((D∗, U∗),Γ) =
n∑
i=1

k(p)∑
j=1

zij log[f((GT
j D
′
iGj, U

′
iGj); (D∗, U∗),Γ)]− n log(k(p))

and estimate the parameters using standard maximum likelihood estimation. The EM algo-

rithm will address our missing data problem by iteratively imputing values for the unobserv-

able version indicator variables and then performing maximum likelihood estimation using

the complete data log-likelihood with imputed values plugged in for the version indicator

variables. The steps are:

94



1. Choose initial estimates (D̂∗(0), Û∗(0)) and Γ̂(0) for the parameters (D∗, U∗) and Γ and set

tolerance ε > 0.

2. Expectation Step: Compute

ẑ
(k)
ij =

f((GT
j D
′
iGj, U

′
iGj); (D̂∗(k), Û∗(k)), Γ̂(k))∑k(p)

j=1 f((GT
j D
′
iGj, U ′iGj); (D̂∗(k), Û∗(k)), Γ̂(k))

3. Maximization Step: Compute

((D̂∗(k+1), Û∗(k+1)), Γ̂(k+1)) = argmax
n∑
i=1

k(p)∑
j=1

ẑ
(k)
ij log[f((GT

j D
′
iGj, U

′
iGj); (D∗, U∗),Γ)]

4. If |`((D̂∗(k+1), Û∗(k+1)), Γ̂(k+1)) − `((D̂∗(k), Û∗(k)), Γ̂(k))| > ε, then return to Step 2. Oth-

erwise, set the final parameter estimates equal to Φ̂(k+1).

We illustrate how to perform parameter estimation via the EM algorithm when the

generating eigen-decompositions follow distribution F2 with p = 2 from Section 5.1 with

density function

f2((D,U); (D∗, U∗),Γ) =

(
γ1

2πN(γ2)|D|

)
exp

{
− γ1

2
d2
D+(2)(D,D

∗)− γ2

2
d2
SO(2)(U,U

∗)

}
where |D| = det(D) and N(γ2) =

√
2π/γ2erf(π

√
γ2/2). Let S1, . . . , Sn be a random sample

of SPD matrices arising from eigen-composition of the distribution F2 and let (D′i, U
′
i) denote

an observed eigen-decomposition of Si randomly drawn from the uniform distribution on

F−1(Si). We begin with initial guesses (D̂∗(0), Û∗(0)) and Γ̂(0) for the parameters (D∗, U∗)

and Γ.

Performing the expectation step after k iterations simply requires computing

ẑ
(k)
ij =

f2((GT
j D
′
iGj, U

′
iGj); (D̂∗(k), Û∗(k)), Γ̂(k))∑4

j=1 f2((GT
j D
′
iGj, U ′iGj); (D̂∗(k), Û∗(k)), Γ̂(k))

for i = 1, . . . , n and j = 1, . . . , 4.

Performing the maximization for the k + 1 iteration requires solving

D̂∗(k+1) = argmin
D∈Diag+(2)

n∑
i=1

4∑
j=1

(
ẑ

(k)
ij

n

)
d2
D+(2)(G

T
j D
′
iGj, D) (5.3)

Û∗(k+1) = argmin
U∈SO(2)

n∑
i=1

4∑
j=1

(
ẑ

(k)
ij

n

)
d2
SO(2)(U

′
iGj, U) (5.4)

95



to obtain estimates for the location parameters. It can be shown that

D̂∗(k+1) =
n∑
i=1

4∑
j=1

(
ẑ

(k)
ij

n

)
GT
j D
′
iGj

and that solving for Û∗(k+1) requires locating U ∈ SO(2) that satisfy

n∑
i=1

4∑
j=1

(
ẑ

(k)
ij

n

)
Log(U ′iGjU

T ) = 0.

After substituting (D̂∗(k+1), Û∗(k+1)) for (D∗, U∗) into the approximate complete data

log-likelihood, we can solve the equations

γ̂
(k+1)
1 = argmax

γ1

n log(γ1)− γ1

2

n∑
i=1

4∑
j=1

(
ẑ

(k)
ij

n

)
d2
D+(2)(G

T
j D
′
iGj, D̂

∗(k+1)) (5.5)

γ̂
(k+1)
2 = argmax

γ2

−n log(N(γ2))− γ2

2

n∑
i=1

4∑
j=1

(
ẑ

(k)
ij

n

)
d2
SO(2)(U

′
iGj, Û

∗(k+1)) (5.6)

to obtain estimates for the concentration parameters. After differentiating Equation 5.5 and

setting the derivative equal to 0, we have that

γ̂
(k+1)
1 =

[
1

2

n∑
i=1

4∑
j=1

(
ẑ

(k)
ij

n

)
d2
D+(2)(G

T
j D
′
iGj, D̂

∗(k+1))

]−1

.

From differentiating Equation 5.6 and setting the derivative equal to 0, we get that γ̂
(k+1)
2

should satisfy

V (γ̂
(k+1)
2 ) = −N

′(γ̂
(k+1)
2 )

N(γ̂
(k+1)
2 )

=
n∑
i=1

4∑
j=1

(
ẑ

(k)
ij

n

)
d2
SO(2)(U

′
iGj, Û

∗(k+1)).

It is shown in [12] that V is a one-to-one function, so γ̂
(k+1)
2 is unique and can be approximated

with a numerical procedure such as Newton’s method.

To demonstrate the performance of this estimation method, we performed simulation

experiments drawing 500 samples of size n = 50, 100, and 500 from the distribution F2 with

p = 2 and parameters γ1 = 2, γ2 = 5,

D∗ =

10 0

0 2

 , and U∗ =

cos(π/6) − sin(π/6)

sin(π/6) cos(π/6)

 .
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Table 6: Empirical Mean Squared Error (MSE) from 500 Simulations

Parameter n = 50 n = 100 n = 500

(D∗, U∗) 1.6042 0.8928 0.1756

γ1 0.1068 0.0493 0.0089

γ2 1.7845 0.8069 0.1237

We computed the empirical mean squared error from estimating (D∗, U∗) using the formula

MSE((D∗, U∗)) =
1

500

500∑
t=1

‖F(D̂∗t , Û
∗
t )−F(D∗, U∗)‖2

F

where (D̂∗t , Û
∗
t ) is the sample estimate for (D∗, U∗) from sample t. We can see in Table 6

that the empirical MSE for each parameter decreases as n increases, suggesting that the EM

estimation procedure is consistent for this example.

5.4 DISCUSSION

It would be interesting to establish conditions on the distribution of the generating eigen-

decompositions which would guarantee that the EM algorithm would find a global maximizer

of the likelihood function and would provide consistent estimates. Perhaps more interesting,

the mixture likelihood-based estimation framework proposed in this chapter can easily be

extended to create likelihood ratio tests for single and multi-sample inference. For example,

to test the null hypothesis that (D∗, U∗) = (D(0), U(0)),Γ = Γ0, one could use the test statistic

Λ = 2[`((D̂∗, Û∗), Γ̂)− `((D0, U0),Γ0)],

where `((D̂∗, Û∗), Γ̂) is the observed log-likelihood evaluated at the EM parameter estimates

and `((D0, U0),Γ0) is the observed log-likelihood evaluated at the null hypothesis param-

eter values. Under the null hypothesis, we conjecture that Λ will asymptotically follow a

chi-square distribution with degrees of freedom equal to the number of free parameters in

D∗, U∗, and Γ.

97



Given data from two independent samples, it might be of interest to test the null hy-

pothesis that the two samples have the same location parameters (i.e. (D∗1, U
∗
1 ) = (D∗2, U

∗
2 ))

while assuming that they have the same concentration parameters. For this test, we could

use the test statistic

Λ = 2[`((D̂∗1, Û
∗
1 ), Γ̂pooled) + `((D̂∗2, Û

∗
2 ), Γ̂pooled)− `((D̃∗, Ũ∗), Γ̃)],

where (D̂∗1, Û
∗
1 ) and (D̂∗2, Û

∗
2 ) are the EM location estimates for samples 1 and 2 under the

alternative hypothesis, Γ̂pooled contains the pooled concentration parameter estimates under

the alternative hypothesis, and (D̃∗, Ũ∗) and Γ̃ are the EM estimates for the location and

concentration parameters under the null hypothesis after combining both samples into one

sample. We conjecture that, under the null hypothesis, this test statistic will asymptoti-

cally follow a chi-square distribution with degrees of freedom equal to the number of free

parameters in D∗ and U∗.
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