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The kidney is a vital organ in the human body. It conserves essential nutrients and eliminates 

endogenous and exogenous waste products by filtration and tubular secretion processes. Organic 

anionic and cationic transport systems expressed in the proximal tubular cells drive active renal 

secretion. Slow recovery and progressive graft function loss following renal transplantation due 

to prolonged cold ischemia (CI), calcineurin inhibitor (CNI) nephrotoxicity, BK virus 

nephropathy (BKVN) and varying grades of acute T-cell mediated rejection (TCMR) are 

hypothesized to affect the secretory function of renal allografts. This body of work is one of the 

first attempts to understand changes in expression and activity of renal transporters after renal 

transplantation. Pre-clinical studies in rats showed significant changes in gene expression of 

important transporters following prolonged-CI and renal transplantation, both in the presence and 

absence of tacrolimus treatment. Quantitative human gene expression studies showed significant 

differences in the expression of various transporters in kidney allografts that underwent 

prolonged-CI (CIT: 15.8±4.80 hrs) and in allografts with BKVN; allografts with acute TCMR 

and fibrosis had significantly compromised renal anionic transporter expression. Renal anionic 

secretory capacity was estimated in transplant patients using low-dose cefoxitin as a probe drug 

in 15 de-novo renal transplant recipients at two time-points post-transplantation. Results of this 

study suggest that anionic secretory capacity in living and deceased donor renal transplant 

recipients with no serious clinical complications is similar in the early post-transplant time-

points. Renal transplant recipients, however, had a significantly higher cefoxitin exposure when 
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compared to historical healthy controls (AUC0-∞: 2.6-fold higher), indicating decreased (~60%) 

renal anionic secretory capacity. A robust physiologically based pharmacokinetic (PBPK) model 

of cefoxitin was built and validated in healthy subjects and renal transplant recipients. This 

PBPK model was used to predict the impact of changes in renal anionic transporter expression 

on anionic drug exposure. Overall this work shows that renal transplant recipients have altered 

expression of various renal transporters and altered activity of anionic transporters. Systematic 

characterization of changes in the activity of other transport systems and clinical monitoring of 

renal secretion is necessary to optimize pharmacotherapy of renally secreted drugs in renal 

transplant recipients. 
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1.0  INTRODUCTION 
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1.1 RENAL DRUG TRANSPORTERS 

The kidney is a vital organ in the human body that conserves essential nutrients and eliminates 

endogenous waste products, toxins, drugs and their metabolites. This is facilitated not only by 

renal filtration, but also by transporters that play an important role in the secretion and re-

absorption of a wide range of endogenous and exogenous molecules [3-7]. More than 400 

membrane transporters are encoded in the human genome. Drug transporters can be broadly 

classified into adenosine triphosphate (ATP)-binding cassette (ABC) superfamily and Solute 

Carrier (SLC) superfamily of integral membrane proteins. ABC transporters are active 

transporters which utilize energy generated from ATP hydrolysis to facilitate transport of 

substrates against their electrochemical gradients. Solute Carrier transporters, on the other hand, 

can facilitate both passive and active transport [4-6]. In the passive transport mode, substrates 

move down their electrochemical gradients and do not require an energy source. For active 

transport of substrates against their electrochemical gradient, they are coupled with a co-solute or 

ion in the direction or against the direction of transport. The transporters within each superfamily 

vary in their tissue localization and expression levels. A detailed list of important ABC and SLC 

drug transporters as identified by the United States Food and Drug Administration (FDA) and 

European Medicines Agency (EMA) for their relatively high abundancy, role in drug disposition 

and drug-drug interactions is provided in Table 1 [5-9]. 
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Table 1. List of important ABC and SLC transporters and their relative expression in important 

tissues 

Transporter Gene Transporter Name Relative Expression in Tissues 

ABCB1 MDR1, P-gp Kidney > small intestine > placenta > Liver > brain 

ABCB4 MDR3 Liver > small intestine > kidney > placenta >  brain 

ABCB11 BSEP Liver 

ABCC1 MRP1 Placenta > small intestine > kidney > brain > liver 

ABCC2 MRP2 Liver > kidney > small intestine > placenta > brain 

ABCC3 MRP3 Liver > small intestine > kidney > placenta >  brain 

ABCC4 MRP4 Kidney > small intestine > brain > placenta > liver 

ABCC5 MRP5 Brain > kidney > small intestine > placenta > liver 

ABCC6 MRP6 Liver > kidney > small intestine > placenta > brain 

ABCG2 BCRP Placenta > small intestine > brain > liver > kidney 

SLC10A1 NTCP Liver > brain > placenta > kidney > small intestine 

SLC10A2 ASBT Small intestine > kidney > brain 

SLC15A1 PEPT1 Small intestine > liver > kidney > placenta 

SLC15A2 PEPT2 Kidney > brain > placenta > small intestine > liver 

SLC22A1 OCT1 Liver > kidney > placenta > brain > small intestine 

SLC22A2 OCT2 Kidney > placenta > brain > liver 

SLC22A3 OCT3 Placenta > liver > kidney > small intestine > brain 

SLC22A4 OCTN1 Kidney > small intestine > placenta > brain > liver 

SLC22A5 OCTN2 Kidney > placenta > small intestine > brain > liver 

SLC22A6 OAT1 Kidney > brain > liver 

SLC22A7 OAT2 Liver > kidney > small intestine > brain > placenta 

SLC22A8 OAT3 Kidney > brain > liver 

SLC22A11 OAT4 Kidney > placenta 

SLC22A12 URAT1 Kidney 

SLC47A1 MATE1 Liver > kidney 

SLC47A2 MATE2K Kidney > liver 

SLCO1A2 OATP1A2 Brain > liver > kidney > placenta > small intestine 

SLCO1B1 OATP1B1 Liver > brain > kidney 

SLCO1B3 OATP1B3 Liver > kidney 

SLCO2B1 OATP2B1 Liver > placenta > small intestine > kidney > brain 

Adapted from relative mRNA expression as reported by Nishimura et al. [7, 8, 10] 
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Several ABC or SLC uptake and efflux transporters are expressed in the renal tissue and 

translocate substrates across the epithelial cell membrane [6-8, 10, 11]. A cartoon showing 

directional orientation of important renal drug transporters in renal epithelial cells is provided in 

Figure 1. 

 

Figure 1. Orientation of important uptake (green), efflux (orange) and bi-directional (yellow) 

transporters expressed in renal proximal epithelial tubular cells [2] 
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Transporters often have overlapping substrates and function as transport systems to 

secrete or reabsorb endogenous and exogenous compounds. More than 90% of the prescribed 

drugs that are eliminated by the kidney are substrates of renal drug transporters which are 

primarily sequestered in the tubular epithelial cells of nephrons, the functional units of kidneys 

[12-14]. Proximal tubular cells are equipped with transport systems for organic anions and 

organic cations, each consisting of multiple transporters localized in the plasma membrane at 

both apical and basolateral sides of the cells. Organic cationic transporters (OCTs) and organic 

anion transporters (OATs) are examples of SLC uptake transporters that are primarily located on 

the basolateral membrane of renal proximal epithelial cells, and pump substrates from the blood 

side into the cells. Multi drug resistance proteins (MRPs), and breast cancer resistance protein 

(BCRP) are examples of ABC efflux transporters that are located on the apical side of the 

proximal epithelial tubular cells pumping specific substrates out of the cell and into the tubular 

lumen [4, 6, 12-14]. For a drug to be secreted it has to be a substrate of an uptake and efflux 

transporter pair. For example cefoxitin, an anionic cephalosporin antibiotic utilizes the OAT1/3 

as the uptake transporters and the MRP2/4 as efflux transporters Figure 2 [1, 15, 16]. 

Expression of anionic and cationic transporters varies considerably with the high inter-

subject variability associated with differences in genetic polymorphisms, dietary intake, disease 

conditions, age and ethnicity, among others. This variability directly affects the rate of secretion 

and re-absorption of administered drugs which may result in drug concentrations below or above 

the therapeutic range [15, 17-19]. Furthermore, the up- or down- regulation of renal transporters 

may result in altered drug exposure and undesired interactions of drugs administered as part of a 

therapeutic regimen. Alterations in renal transporter function can also alter the nephrotoxicity 

potential of certain drugs. 



 6 

1.1.1 Renal Organic Anion Transporters (OATs)  

OAT transporters represent more than half of the SLC22 transporter family with seven important 

transmembrane proteins. OAT1 (SLC22A6), OAT2 (SLC22A7), OAT3 (SLC22A8), OAT4 

(SLC22A11), OAT10 (SLC22A13) and URAT1 (SLC22A12) are the organic anionic transporters 

that are expressed in human renal proximal tubular epithelial cells whereas OAT7 (SLC22A9) is 

primarily expressed in the liver [16, 20, 21]. A list of common endogenous and exogenous 

substrates of renal OAT transporters is provided in Table 2 [8, 16]. Renal OAT1, OAT2 and 

OAT3 transporters are involved in taking up various substrate drugs and endogenous compounds 

from the basolateral side facing the blood into the renal epithelial cells. OAT4 is expressed on 

the apical side and helps efflux its substrates from the cell into the tubular lumen [10, 16, 22]. 

Figure 2. Orientation of OAT1/OAT3 uptake transporters and MRP2/MRP4 efflux transporters in 

renal proximal epithelial tubular cells [2] 
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URAT1 is expressed in the apical side and is involved in reabsorption of uric acid from the 

proximal tubule, making it very important in the uric acid homeostasis [16, 23]. 
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Table 2. Endogenous and exogenous substrates of OAT transporters 

Transporter Name 
Transporter 

Gene Endogenous Substrates Exogenous Substrates 

OAT1 SLC22A6 
Cyclic nucleotides, folates, 

prostaglandin E2/Fα, uric acid 

Acyclovir, adefovir, apricitabine, cefaclor, cefonicid, 

cefoxitin, ceftriaxone, cephadrine, cidofovir, 

ciprofloxacin, dicloxacillin, furosemide, ganciclovir, 

ibuprofen, indomethacin, ketoprofen,  methotrexate, 

olmesartan, para-aminohippurate, tenofovir, 

zalciabine, zidovudine 

OAT2 SLC22A7 Deoxyguanosine, prostaglandin E2/Fα 
5-fluorouracil, bumetanide, erythromycin, paclitaxel, 

tetracycline, theophylline, zidovudine 

OAT3 SLC22A8 
Conjugated hormones, carnitine, 

prostaglandin E2/Fα, uric acids 

Bumetanide, cefaclor, ceftizoxime, cefonicid, 

cefoxitin, ceftriaxone, cephadrine, cidofovir,  

cimetidine, ciprofloxacin, dicloxacillin, fexofenadine, 

furosemide, ganciclovir, ibuprofen, indomethacin, 

ketoprofen, methotrexate, olmesartan, para-

aminohippurate, pitavastatin, pravastatin, 

rosuvastatin, sitagliptin, tetracycline, zidovudine 

OAT4 SLC22A11 

Estrone sulfate, 

dehydropiandrosterone sulfate,  

prostaglandin E2/Fα, uric acid 

Ochratoxin A 

OAT10 SLC22A13 Uric acid Nicotine 

URAT1 SLC22A12 
Uric acid, orotic acid, lactate, 

nicotinoate, acetoacetate, oxybutyrate 
Oxypurinol 
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URAT1, OAT1 and OAT3 transporters have the highest relative expression in the renal 

tissue [7, 8, 10]. OAT1 and OAT3 transporters are considered to be the most important OAT 

transporters by the FDA and EMA for their role in drug disposition and drug-drug interactions 

[5-9]. OAT1 is selective for smaller amphiphilic anionic substrates, whereas OAT3 is selective 

for larger amphiphilic anionic substrates[24]. They transport organic anionic substrates against a 

negative membrane potential in exchange for α-ketoglutarate, which serves as the counter ion. A 

secondary active sodium-dicarboxylate co-transporter, which utilizes the sodium gradient 

maintained by the primary active Na+/K+ ATPase, maintains the α-ketoglutarate gradient [25]. 

BCRP, MRP2, MRP4 and OAT4 are thought to be potential efflux partners for OAT1 and OAT3 

transporters [26-31]. A summary of clinically significant drug interactions involving OAT 

transporters and probenecid, a potent inhibitor of OAT and MRP transporters is provided in 

Table 3 [1, 32-39].  

Table 3. Clinical drug-drug interaction with probenecid and anionic drugs disposed by the renal 

anionic transport system 

Affected 

Drug 
Fold Change in Clinical PK Parameters References 

AUC
0-∞

 C
max

 CLR CL/F t
1/2

 
Acyclovir 1.4 - 0.7 - - Laskin, 1982[36] 
Cefaclor 2.1 1.5 - - 1.6 Welling, 1979 [39] 
Cefonicid 2.1 1.2 0.3 - 1.5 Pitkin, 1981[37] 
Cefoxitin 2.4 - 0.4 - 2 Vlasses, 1980[1] 
Cidofovir - - 0.5 0.6 - Cundy, 1995[33] 

Ciprofloxacin 1.7 - 0.4 0.6 1.5 Jaehde, 1995[35]  
Dicloxacillin 1.9 1.8 0.3 0.5 - Beringer, 2008 [32] 
Famotidine 1.8 1.5 0.4 0.1 - Inotsume, 1990[34] 
Furosemide 2.7 1.5 0.3 0.4 1.7 Vree, 1995[38] 

Summary of significant changes in clinical PK parameters (p<0.05) of anionic drug substrates when probenecid is 

used to inhibit OAT mediated secretory transport. AUC, area under the curve; Cmax, maximum concentration; CLR, 

renal clearance; CL/F, apparent clearance; t1/2, half-life 

‘-‘: Not significant or not reported. 
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1.1.2 Renal Organic Cationic Transporters (OCTs) 

OCT transporters represent the remaining SLC22 transporter family with six important 

transmembrane proteins [23, 40, 41]. OCT2 (SLC22A2), OCT3 (SLC22A3), OCTN1 (SLC22A4) 

and OCTN2 (SLC22A5) are organic cationic transporters that are expressed in human renal 

proximal tubular epithelial cells, whereas OCT1 (SLC22A1) is primarily expressed in the liver 

and OCT6 (SLC22A16) is expressed in the testes [23, 40, 41]. A list of common endogenous and 

exogenous substrates of renal OCT transporters is provided in Table 4 [8, 24, 41, 42]. Renal 

OCT2 and OCT3 transporters are primarily involved in transporting various substrate drugs and 

endogenous compounds from the basolateral side facing the blood into the renal epithelial cells 

[5, 8, 11]. However, OCT transporters facilitate passive diffusion of various organic cations 

down their electrochemical gradient in either direction. They are specific for small organic 

cations[41, 42]. Renal OCTN1 and OCTN2 are expressed on the apical side and help with bi-

directional transport of its substrates to and from tubular lumen. OCTN1 transport activity can be 

affected by both sodium and proton gradients, depending on the substrate. OCTN2 also mediates 

both sodium dependent and sodium-independent uptake, depending on the substrate [5, 24, 41, 

42]. 
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Table 4. Exogenous and endogenous substrates of OCT transporters 

Transporter Name 
Transporter 

Gene Endogenous Substrates Exogenous Substrates 

OCT1 SLC22A1 

Choline, acetylcholine, agmatine, 

dopamine, norepinephrine, 

epinephrine, serotonin, histamine 

Metformin, oxaliplatin, acyclovir, ganciclovir 

OCT2 SLC22A2 

Creatinine, bile acids, choline, 

acetylcholine, dopamine, 

norepinephrine, epinephrine, 

serotonin, histamine, putrescine, 

salsolinol, agmatine 

Metformin, pindolol, procainamide, ranitidine, 

amantadine, amiloride, oxaliplatin, varenicline, 

cisplatin, debrisoquine, proplanolol, guanidine, D-

tubocurarine, pancuronium, mematine, picoplatin, 

ifosfamide, cimetidine, famotidine, zalcitabine, 

lamivudine, berberine 

OCT3 SLC22A3 

Creatinine, carnitine, choline, 

guanidine, acetylcholine, dopamine, 

norepinephrine, epinephrine, 

serotonin, histamine, corticosterone, 

progesterone, testosterone, agmatine 

Atropine, phenoxybenzamine, prazosin, 

diphenylhydramine, metformin, ranitidine, 

amantadine, ketamine, nicotine, phencyclidine, 

clonidine, etilefrine, o-methylisoprenaline 

dizocilpine, verapamil, procainamide, citalopram, 

desipramine, imipramine, granisetron, tropisetron, 

quinine, mitoxantrone, d-amphetamine, mematine, 

cimetidine 

OCT6 SLC22A16 Carnitine, spermidine Bleomycin, doxorubicin 

OCTN1 SLC22A4 Ergothioneine, carnitine, acetylcholine 
Tiotropium, ipratropium, pyrilamine, quinidine, 

quinine, verapamil, doxorubicin, mitoxantrone, 

gabapentin, oxaliplatin 

OCTN2 SLC22A5 Carnitine 
Etoposide, cephaloridine, ipratropium, tiotropium, 

mildronate, cephaloridine, emetine, verapamil, 

spironolactone 
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Among renal cationic transporters, OCT2 has the highest relative expression in renal 

tissues. It functions in conjunction with multidrug and toxin extrusion protein-1, MATE1 

(SLC47A1) and MATE2-K (SLC47A2) which are involved in efflux of OCT2 substrates into the 

urine from the apical end of renal epithelial cells [42]. OCT2 along with MATE1/2-K are 

considered to be important OCT transporters by the FDA and EMA for their role in drug 

disposition and drug-drug interactions [5, 8, 9]. A summary of clinically significant OCT 

transporter level drug interactions involving various OCT inhibitors (cetirizine, cimetidine, and 

trimethoprim) is provided in Table 5 [43-52]. 

Table 5. Clinical drug-drug interaction of cationic drugs disposed by the renal cationic transport 

system 

Affected 

Drug 

Interacting 

Drug 

Fold Change in Clinical PK Parameters 
References 

AUC0-∞ Cmax CLR CL/F t1/2 

Apricitabine Trimethoprim 1.7 1.3 0.6 0.6 1.4 Shiveley, 2008 [43] 

Cephalexin Cimetidine - - 0.8 0.8 - van, 1986 [44] 

Dofetilide Cimetidine 1.5 1.3 0.7 0.7 1.3 Abel, 2000 [45] 

Metformin Cimetidine 1.5 1.7 0.7 - - Somogyi, 1987 [46] 

Pilsicainide Cimetidine 1.3 - 0.7 0.7 1.2 Shiga, 2000 [47] 

Pilsicainide Cetirizine 1.4 - - - - Tsuruoka, 2006 [48] 

Procainamide Cimetidine 1.4 - 0.6 - 1.3 Somogyi, 1983 [49]  

Pindolol Cimetidine 1.4 1.3 0.7 - - Somogyi, 1992 [50]  

Ranitidine Cimetidine 1.3 - 0.7 - 1.3 van, 1986  [44] 

Varenicline Cimetidine 1.3 - 0.8 0.8 - Feng, 2008 [51] 

Zidovudine Trimethoprim - - 0.5 - - Chatton, 1992 [52]  
Summary of significant changes in clinical PK parameters (p<0.05) of cationic drug substrates when inhibitors are 

used to inhibit OCT/MATE mediated secretory transport. AUC, area under the curve; Cmax, maximum 

concentration; CLR, renal clearance; CL/F, apparent clearance; t1/2, half-life 

‘-‘: Not significant or not reported. 
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1.1.3 Effect of Renal Diseases on Renal Transporters 

Research over the last decade has focused on elucidating expression and activity of renal 

transporters and their influence on the pharmacokinetic and pharmacodynamic response of 

renally secreted drugs. Administration of transporter inhibitors or diseases affecting renal 

function can alter the activity of specific renal transporters and ultimately alter exposure of drugs 

that are cleared by renal secretion. Renal dysfunction, acute kidney injury (AKI), chronic kidney 

disease (CKD), glomerulonephritis and diabetic nephropathy have been shown to differentially 

regulate renal OAT and OCT transporters [53-55]. 

Several studies in AKI animal models, have shown that Oat1 and Oat3 expression were 

significantly down regulated [56-60]. Erman et al. investigated the effects of lycopene on the 

expression of OATs, OCTs and MRPs in rats with cisplatin-induced nephrotoxicity. They 

observed a significant increase in Mrp2 and Mrp4 protein and a decrease in Oct1 and Oct2 

protein levels as compared to controls. Another study evaluating the effect of AKI on P-gp 

showed that the function of P-gp was suppressed and this led to accumulation of P-gp substrates 

in plasma [61].   

Effect of CKD on transporters has not been comprehensively studied. A 

pharmacokinetics study using fexofenadine as a probe drug for OATP and P-gp transporters 

exhibited significant increase in exposure (area under concentration–time curve) and decreased 

systemic clearance in CKD patients as compared to healthy adults [62]. A study conducted in the 

nephrectomized rat model showed an increase in Mrp2 expression which was proportional to the 

severity of CKD [63]. Other studies have characterized expression of P-gp and GLUT-1 in 

gloemerulonephritis and diabetic nephropathy, respectively. P-gp expression was significantly 

lower (0.33 ± 0.2 vs 1.0 ± 0.8; p-value < 0.05) in lupus nephritis patients compared with healthy 
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controls [64], while GLUT2 and SGLT2 expression was significantly higher in type-2 diabetes 

mellitus patients when compared to healthy control [65].  

Preliminary preclinical and clinical evidence suggests that acute and chronic renal 

diseases differentially regulate expression and activity of renal transporters. A better 

characterization and understanding of the impact of renal diseases on renal secretory capacity is 

crucial to optimize pharmacotherapy in this patient population [66].  

1.1.4 Regulation of transporters during inflammation 

Complications associated with renal transplantation as well as acute and chronic renal diseases 

present with varying modalities of specific and non-specific inflammatory processes. 

Inflammation is known to activate of nuclear factor- κB (NF-κB) which decreases the expression 

of several nuclear receptors like pregnane X receptor (PXR), constitutive androstane receptor 

(CAR), and farnesoid X receptor (FXR). These receptors control the expression and activity of 

several drug metabolizing enzymes and transporters and a down regulation of these can 

downregulate the expression and activity of renal transporters [67]. 

Acute and chronic inflammation down regulate PXR and thereby downregulate several 

hepatic transporters [68]. However, the role of PXR during inflammation is still not clearly 

understood. Teng et al. evaluated the effect of endotoxins and cytokines on PXR in-vivo in a 

mouse model. It was observed that endotoxin and the inflammatory cytokine interleukin-6 (IL-6) 

caused a significant down regulation of PXR. IL-6 administration led to a significant 

downregulation of MRP2 protein levels; however, OATP2 down regulation did not reach 

statistical significance [68]. 

 



 15 

A recent study suggested that endotoxin activates NF-κB independent PXR activation 

and down regulates numerous ABC and SLC transporters in the liver [69]. There is no 

information available on the molecular mechanisms of regulation of transporters in kidney. 

Experiments in mice have explored the effect of inflammation on renal glucose transporters. 

Lipopolysaccaride induced inflammation led to decreased expression of Sglt2, Sglt3, Glut2, and 

Na
+
-K

+
-ATPase [70]. The same group also investigated the regulation of renal sodium [71], 

chloride [72] and uric acid[73] transporters in inflammation. All three studies concluded that 

down regulation was mediated by pro-inflammatory like tumor necrosis factor-α (TNFα), 

interleukin-1β (IL-1β), interferon-gamma (IFNγ), or IL-6. However, because of overlapping 

actions of different anti-inflammatory and pro-inflammatory cytokines, regulation of specific 

transporters cannot be attributed to a single cytokine. 

The current body of work is an attempt to understand the effect of renal transplantation 

and associated complications on the secretory capacity of renal allografts using preclinical, 

clinical and PBPK modeling strategies. 
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Figure 3. Conditions that can alter the function of renal allografts 

1.2 RENAL DRUG TRANSPORTERS IN RENAL TRANSPLANT RECIPIENTS 

Chronic kidney disease is the ninth leading cause of death in the United States affecting 26 

million adults [74]. More than half-million of these patients are classified as having end stage 

renal disease (ESRD) with an estimated glomerular filtration rate (eGFR) of less than 

15 mL/min/1.73 m2 [75]. Kidney transplantation is the treatment of choice for patients 

diagnosed with ESRD [3, 75]. In the year 2016, 19,060 kidney transplantations were performed 

in the USA with 13,431 kidneys coming from deceased donors and 5,629 kidneys coming from 

living donors [available from: www.unos.org]. Renal allografts are subjected to a unique set of 

injurious conditions such as prolonged CI before being transplanted into the recipient, warm 

reperfusion injury immediately after transplantation, exposure to nephrotoxic CNI based 

immunosuppression therapy, acute T-cell mediated rejection, interstitial fibrosis and 

bacterial/fungal/viral infections post-transplantation [76-86] (Figure 3).  
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Cold ischemic injury, CNI nephrotoxicity, BKVN and T-cell mediated rejection with 

fibrosis that a renal allograft may be subjected to or may have developed following 

transplantation, have been shown to lead to progressive loss of renal function. Inflammatory 

cytokines such as TNFα, IL-6, and IL-1β and the vasoactive hormones such as endothelin-1 

(ET1) which are associated with these abuses are shown to be involved in regulation of drug 

transporters [87, 88]. All these abuses may lead to altered regulation or injury to the renal anionic 

and cationic transport systems and eventually affect the clearance of drugs that are 

predominantly cleared by renal secretion. It is important to characterize the anticipated changes 

in secretory capacity of renal allografts to ensure optimal pharmacotherapy in transplant 

recipients. 

1.2.1 Cold Ischemic Injury 

Patients with end stage renal disease undergoing kidney transplantation receive kidneys 

harvested from deceased or living donors. Kidneys from deceased donors are more readily 

available compared to living donors and are typically preserved in University of Wisconsin 

preservation solution at 4°C until a recipient is available for transplantation[89-91]. The average 

cold storage time has been reported to be around 20 hours over the last decade, and each 

additional hour can increase the risk of allograft failure and death [89-91]. The hypothermic 

conditions slow the degradative reactions and metabolism by a factor of 11-12. Prolonged 

hypothermic preservation causes vasoconstriction and endothelial damage leading to CI injury to 

the graft. This non-specific renal tissue injury is initiated by an inflammatory cascade including 

release of reactive oxygen species (ROS), cytosolic calcium, cytokines, chemokines, and 

leukocytes activation [85, 91, 92]. These effects are amplified by reperfusion and re-oxygenation 
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resulting in delayed graft function (DGF), alloimmune reactivity and chronic damage, ultimately 

contributing to AKI where the kidney rapidly dysfunctions and leads to mortality [93]. 

The renal proximal epithelial cells, which are primarily involved in the secretion of 

various drugs, are also affected in a nonspecific manner and cold ischemic injury may alter the 

secretory capacity of the kidney. 
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1.2.2 Calcineurin Inhibitor Mediated Nephrotoxicity 

Calcineurin inhibitors (CNI) are the most effective class of immunosuppressants available in 

transplant medicine for maintenance of immunosuppression and their use has dramatically 

improved short-term graft survival in solid organ transplant recipients [3]. Currently 94% of all 

renal transplant recipients are on cyclosporine or tacrolimus based CNI maintenance 

immunosuppressive regimen. However, CNI therapy is associated with acute and chronic 

nephrotoxicity and is a major contributing factor to allograft damage and graft loss beyond five 

years post-transplantation [84]. CNI nephrotoxicity is thought to involve a decrease in 

vasodilatory factors such as prostaglandin E2 and nitric oxide along with an increase in 

vasoconstrictive factors such as thromboxane, endothelin and renin-angiotensin system. CNI 

inhibition of prolyl isomerase is also thought to cause impairment of protein synthesis and 

accumulation of unfolded proteins, leading to enlargement of endoplasmic reticulum [79, 84]. 

Further, chronic renal allograft damage is associated with interstitial fibrosis, tubular atrophy, 

arteriolar hyalinosis, and glomerulosclerosis. 

Association between the use of CNIs and nephrotoxicity has been observed from early 

on. For CNIs with narrow therapeutic windows, treatment should be carefully monitored to 

maintain a balance between efficacy and toxicity [3]. This intra- and inter-individual variability 

is associated with various factors including genetic polymorphisms, transplantation associated 

stress conditions, intestinal absorption, dietary regimen, ethnicity, diarrhea, etc. 

Pharmacokinetics of CNIs are also influenced by other therapeutics which are part of post-

transplantation treatment regimen such as macrolide antibiotics, calcium channel blockers and 

antifungal drugs. 
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There are many local renal factors that may also play a role in chronic CNI toxicity, such 

as genetic polymorphisms in renal CYP3A4/5, age of the kidney, and salt depletion. It has been 

reported that decreased expression or activity of ABCB1 (MDR1, P-gp) efflux transporter 

protects proximal tubular cells against apoptotic stress induced by nephrotoxic agents; CNI 

exposure could further increase direct nephrotoxic effects by concentrating the drugs in the 

epithelial cells and thereby increasing the susceptibility to chronic tubulointerstitial damage of 

transplanted kidneys [84, 94]. Lower ABCB1 expression has also been linked to chronic 

histologic changes in kidney transplant patients treated with CNIs. The reduced expression of 

CYP3A5 in the renal tissue may contribute to nephrotoxicity in patients [84]. Conversely, other 

studies have failed to demonstrate a correlation between allograft survival and the ABCB1 

genotype or the association of the CYP3A5 genotype and CNI-mediated nephrotoxicity. Renal 

expression of ABCB1 has been found to be less pronounced in renal specimens with calcineurin 

inhibitor-induced nephrotoxicity [95]. 

Hyperkalemia is another common complication in calcineurin inhibitor treated transplant 

patients. Cyclosporine and tacrolimus treatment is believed to inhibit potassium excretion by 

altering transporter activity and thereby increasing the paracellular chloride reabsorption. In-vitro  

studies have shown that CNIs can alter potassium secretion by three mechanism: (1) reduced 

activity of the Na
+
K

+
-ATPase pump [96], (2) inhibition of the apical secretory K

+
 channels [97], 

and (3) increased reabsorption of chloride [98]. Increased chloride reabsorption via WNK 

kinases alteration prevents generation of lumen-negative potential. This further inhibits the 

potassium secretion.  

Overall, the effect of CNI induced nephrotoxicity on expression of renal transporters may 

critically impact the survival of the transplanted allografts and may lead to other undesirable 
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effects. It is critical to understand their impact for better therapeutic management and long-term 

survival of the transplanted allograft. 

1.2.3 Post-Transplant Infections and BK Virus Nephropathy (BKVN) 

Over the last decade, there has been increased evidence demonstrating that the inflammatory 

responses alter the expression of several important drug transporters. [99] Proinflammatory 

cytokines such as IL-6, IL-1β, and TNFα have been shown to play an important role in the 

regulation of numerous drug transporters. NF-κB and nuclear factor-IL6 are up-regulated by 

these proinflammatory cytokines and are thought to be key transcription factors responsible for 

regulation of drug transporters during the acute-phase response to stresses such as infection and 

inflammation.[88] 

Renal transplant recipients receive maintenance immunosuppressive therapeutics to reduce the 

rejection rates of the transplanted allograft. With the emergence of potent immunosuppressive 

agents, viral infections post-transplantation has emerged as a critical concern, which could result 

in increased morbidity and mortality. Transplant recipients are susceptible to various infections 

derived from the kidney donor and infectious complications of the surgical procedure in the 

immediate post-transplantation period (about 1-month post-transplantation). 

BK virus infection is a common post-transplant viral infection, which affects about 15% 

of renal transplant recipients in the first-year post-transplantation. Current strategies for 

prophylactic management of this infection are not robust, and if unaddressed, it may progress to 

allograft dysfunction or loss [100-102]. BK virus nephropathy is therefore a critical concern and 

an evolving challenge in post-transplant management of patients. Currently there is no approved 

antiviral drug for treatment of BK virus. Leflunomide, cidofovir, fluoquinolones have been used 
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with varying degrees of success. Preliminary clinical observations in renal transplant recipients 

with BKVN involving cidofovir treatment in the presence and absence of probenecid suggest 

that renal anionic secretory capacity is compromised in allografts with BKVN [100]. 

Other donor derived infections in the immunosuppressed recipient include 

cytomegalovirus (CMV), herpes simplex virus (HSV), varicella zoster virus (VZV), 

meningococcus, syphilis, candida and aspergillus [77, 82]. Pneumocystic carinii, protozoal 

diseases, fungal infections, and mycobacteria (tuberculosis) are some other pathogens that may 

cause infections in the immunosuppressed recipients in the first 6 months post-transplantation 

[77, 82]. Post-transplant infections including BK virus infection have the potential to alter the 

expression of renal drug transporters. Prophylactic regimens of antibacterial, antifungal, and 

antiviral agents are routinely prescribed to renal transplant recipients to prevent these above-

mentioned infections. Many of these drugs are secreted by various uptake and efflux renal 

transporters (OATs: acyclovir, cidofovir, cephalosporine antibiotics, ganiciclovir, fluoquinolone 

antibiotics) [3, 8]. 

1.2.4 Rejection of Renal Allografts 

Transplanted kidneys can undergo rejection due to complex processes involving the cellular and 

molecular pathways resulting in a broad range of allograft injuries such as acute tubular injury, 

glomerulitis, capillaritis and fibrinoid necrosis. Allograft rejection can be classified as 

hyperacute (occurring within minutes after the vascular anastomosis), acute (occurring days to 

weeks after transplantation), late acute (occurring 3 months after transplantation), or chronic 

(occurring months to years after transplantation) [103, 104]. 
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Acute T-cell mediated rejection (TCMR) is more prevalent and is mediated by human 

leukocyte antigens (HLA) and non-HLA antigens expressed on the allograft’s endothelium. Post-

transplantation, the recipient’s immune system identifies these as foreign components and 

initiates an immune response (recruitment of leukocytes and facilitation of natural killer cell–

mediated or monocyte/macrophage–mediated cytotoxicity) to attack the foreign invaders, 

thereby attacking the donor kidney leading to endothelial damage, loss of vascular integrity and 

increased coagulation [80, 83]. With immunosuppressive therapy, chances of acute TCMR can 

be significantly reduced. On the other hand, antibody mediated rejection is less common but can 

cause acute and chronic allograft dysfunction, and if left untreated can rapidly result in graft loss. 
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1.3 SUMMARY AND INTRODUCTION TO DISSERTATION 

The kidney is a vital organ in the human body, which conserves essential nutrients and 

eliminates toxins drugs, and their metabolites. This is facilitated not only by renal filtration, but 

also by drug transporters that play an important role in the secretion and re-absorption of a wide 

range of endogenous and exogenous molecules. Anionic and cationic transport systems 

expressed in the renal tubular epithelial cells are involved in these critical processes. OAT1, 

OAT3 and OCT2 drug transporters along with their efflux transport partners (MRP2/4 and 

MATE1/2-K) are considered to be the most important renal anionic and cationic transporters by 

the United States FDA and EMA for their high renal abundance, role in disposition of most 

commonly prescribed drugs and clinically significant drug-drug interactions [5-9]. 

Renal transplantation is the treatment of choice for patients with end stage renal disease. 

Following transplantation, renal transplant recipients are left with one functioning kidney and the 

allografts are subjected to a unique set of injurious conditions such as prolonged CI, exposure to 

nephrotoxic CNIs, varying grades of allograft rejection (TCMR), and complications associated 

with infections (BKVN). Renal tubular injury due to each of these abuses may alter the 

expression of these transporters. Preliminary clinical observations in renal transplant recipients 

with BKVN involving cidofovir treatment in the presence and absence of probenecid suggest 

that renal anionic secretory activity may be compromised in allografts with BKVN [100]. 

Inflammation and immune activation due to complications associated with renal transplantation 

may down regulate renal anionic transporters and this effect may be more pronounced in renal 

allografts with BKVN or TCMR [100]. 
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To date, no information exists on the quantitative and comparative expression of 

important renal drug transporters in renal allografts. Currently there is very limited knowledge on 

changes in expression and activity of important transporters following renal transplantation and 

associated complications. The body of work described in this dissertation was performed to gain 

a better understanding of changes renal secretory capacity in renal transplant patients in order to 

improve pharmacotherapy in this patient population. 

The overall hypothesis of this work is that injuries caused by prolonged cold ischemia, 

calcineurin inhibitor nephrotoxicity, varying grades of T-cell mediated rejection and BK virus 

nephropathy would significantly alter the renal anionic secretory capacity in renal transplant 

recipients. The effect of prolonged cold ischemia and tacrolimus treatment on the gene 

expression of five important transporters in a rat renal transplant model was evaluated first 

(Chapter 2.0 ). Quantitative and comparative gene expression of 36 drug transporters in renal 

biopsies collected from renal transplant recipients with no post-transplant complications, 

pathological findings consistent for BKVN, and varying grades of acute TCMR and interstitial 

fibrosis was then studied (Chapter 3.0 ). 

Clinical evaluation of changes in renal anionic secretion following renal transplantation 

was performed by determining the pharmacokinetics of cefoxitin in living donor and deceased 

donor renal transplant recipients in order to assess the longitudinal changes in renal anionic 

secretory capacity, study the effect of prolonged cold ischemia on renal anionic secretory 

capacity and to compare renal anionic secretory capacity of renal transplant recipients with that 

of healthy volunteers. Cefoxitin was used as an ideal probe-drug to evaluate changes in renal 

anionic secretory capacity in renal transplant recipients due to its short half-life, limited protein 

binding, significant secretory clearance and safety profile. 
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Before clinical evaluation of cefoxitin pharmacokinetics, it was necessary to develop a 

rapid and sensitive assay for determination of cefoxitin in human plasma following minimal dose 

administration. Details of the analytical method are described in Chapter 4.0 . Details of this 

clinical pharmacokinetic study are described in Chapter 5.0   

In order to gain a better understanding of the potential impact of physiological changes 

following renal transplantation on the disposition of drug substrates of renal anionic transport 

system, a physiologically based pharmacokinetic (PBPK) modeling approach was used. 

Cefoxitin physiochemical properties, physiological variables of healthy subjects and renal 

transplant recipients were used to build and validate a PBPK model for IV cefoxitin in healthy 

adults and renal transplant recipients to study the significance of changes in OAT transport 

system. Details of this novel modelling approach are described in Chapter 6.0 . Renal drug 

transporter expression data from renal biopsies can be combined with PBPK modeling strategies 

to optimize pharmacotherapy in renal transplant recipients. Summary and clinical implications of 

this work along with recommended future directions are discussed in Chapter 7.0 . 
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2.0  EXPRESSION OF RENAL DRUG TRANSPORTERS FOLLOWING RAT 

KIDNEY TRANSPLANTATION  
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2.1 ABSTRACT 

The kidney is an important excretory organ involved in the elimination of various endogenous 

and exogenous molecules. Changes in renal allograft's transporter mediated secretion capacity 

would significantly alter the clearance and thereby exposure to renally secreted drugs. Slow 

recovery and progressive graft function loss following renal transplantation due prolonged CI 

and CNI induced nephrotoxicity are expected to alter the secretory capacity renal allografts. This 

study is one of the first systematic attempts to understand the changes in expression of important 

renal drug transporters following prolonged CI, renal transplantation and tacrolimus based CNI 

treatment. Gene expression of five important renal drug transporters (Oat1, Oat3, Oct2, Mate1, 

and Mdr1a) was evaluated using renal tissues from a rat kidney transplant model. The mRNA 

expression of Slc22a2 (Oct2) was significantly higher in rat kidneys that were subjected to 24 

hours of CI. Expression of Slc22a6 (Oat1), Slc22a8 (Oat3), Slc22a2 (Oct2) and Slc47a1 (Mate1) 

were significantly lower immediately following syngeneic rat kidney transplantations at three 

hours and 12 hrs post-transplantation; the gene expression of Oat1, Oat3 and Mate1 recovered by 

four weeks post-transplantation, but Oct2 and Mdr1a did not. Among rats that were treated with 

tacrolimus following allogeneic or syngeneic transplantations, only those with allografts 

subjected to 24 hours of prolonged CI had a significantly lower expression of all five important 

drug transporters. The observations from this study suggests that renal transplantation, prolonged 

CI and their combination with CNI therapy may lead significant changes in gene expression of 

important renal drug transporter and this may lead to altered disposition of renally secreted drugs 

in renal transplant patients. 
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2.2 INTRODUCTION 

Kidney transplantation is the treatment of choice for patients with end-stage renal diseases. Renal 

allografts are subjected to a unique set of injurious conditions such as prolonged CI before being 

transplanted into the recipients, warm reperfusion injury immediately after transplantation, and 

are also susceptible to progressive loss of graft function due to rejection, BK virus nephropathy, 

and CNI based immunosuppressive medication induced nephrotoxicity [3, 76, 85, 90]. Since 

kidney is a key excretory organ for drugs, their metabolites and various endogenous molecules, 

changes in renal allograft's filtration capacity, or transporter mediated secretion capacity would 

significantly alter the clearance and exposure (area under the concentration-time curve) of 

renally filtered or secreted compounds. Although creatinine clearance is used to estimate the 

functional capacity of the transplanted graft, there is currently very limited understanding on the 

effect of renal transplantation and associated complications on the expression of renal drug 

transporters that are primarily expressed in the renal tubular epithelial cells. 

Transporter expression and activity can be influenced by drugs, disease states or tissue 

specific injuries. Vasoconstriction and endothelial damage in renal allografts during prolonged 

CI, non-specific pro-inflammatory cytokines released during warm allograft reperfusion and 

transplantation surgery, as well as the tubular damage secondary to tacrolimus treatment may all 

individually effect the expression of renal transporters and in turn the tubular secretory function 

of renal allografts [78, 84-86, 90, 105]. These physiological and pharmacological insults may 

affect the clearance of drugs that are predominantly cleared by renal secretion. 
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The objective of this study is to evaluate the expression of selected important renal drug 

transporters in renal allografts with transplantation associated complications by studying the 

effect of prolonged cold ischemia, transplantation surgery and tacrolimus treatment on the gene 

expression of 5 important transporters in a rat renal transplant model. 

We hypothesize that renal allograft insults caused by prolonged CI, renal transplantation 

surgery and tacrolimus based CNI immunosuppressive treatment would alter the gene expression 

of Oat1, Oat3, Oct2, Mate1, and Mdr1a renal drug transporters that are involved in major clinical 

drug-drug interactions. 

These drug transporters were selected based on their high relative expression in the renal 

tissue, homology in activity and relative expression between rats and humans, as well as their 

role in clinical significant renal drug-drug interactions as identified by US FDA and EMA.  
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2.3 METHODS 

A rat kidney transplant model developed at University of Pittsburgh was used to understand the 

changes in mRNA expression of renal drug transporters in transplanted kidneys that undergo 

prolonged cold ischemia (CI) and treatment with a calcineurin inhibitor (tacrolimus) based 

immunosuppression. Slc22a6 (Oat1), Slc22a8 (Oat3), Slc22a2 (Oct2), Slc47a1 (Mate1), and 

Abcb1a (Mdr1a) were specifically selected as target transporters for this mRNA expression study 

as these are the five most expressed drug transporters in human renal tissue and their human 

analogues are involved in the secretion as well as drug-drug interactions with majority of the top 

200 prescribed drugs in the United States [106]. 

2.3.1 Chemicals 

QIAshredder, and RNeasy Mini kits were purchased from QIAGEN (Hilden, Germany). 

iScript™ Reverse Transcription Supermix for RT-qPCR was purchased from Bio-Rad 

Laboratories, Inc. (Hercules, CA, USA). TaqMan primers for drug transporters and 

housekeeping genes were purchased from Life Technologies (Carlsbad, CA, USA).  All 

chemicals and reagents were purchased from Fischer Scientific (Fair Lawn, NJ, USA) unless 

otherwise noted. 
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2.3.2 Animals 

Male Lewis (LEW) rats were purchased from Harlan Sprague Dawley, Inc. (Indianapolis, IN, 

USA). A breeding colony of green fluorescent protein (GFP)-transgenic and wildtype (WT) 

Sprague-Dawley (SD) rats, originally generated by Masaru Okabe (University of Osaka, Osaka, 

Japan) [107] was maintained at the University of Pittsburgh [108]. All rats weighed 200-250 

grams and were maintained in a 12-hour light-dark cycle at the University of Pittsburgh Animal 

Center in laminar flow cages. Standard diet and water ad libitum was provided to the rats. The 

University of Pittsburgh Guidelines of the Council on Animal Care and the National Research 

Council’s Guide for the Humane Care and Use of Laboratory Animals were followed for all 

procedures.  

2.3.3 Rat Kidney Transplantation 

Orthotopic kidney transplantations were performed using GFP-transgenic SD rats as recipients. 

Syngeneic transplantations were performed using WT SD rats as donors and allogeneic 

transplantations were performed using LEW rats as donors. All surgeries were performed using 

techniques previously described by Neto et al [109]. Left kidney of the donor rats were 

nephrectomized and flushed with 3 ml University of Wisconsin (UW) solution (Du Pont, 

Wilmington, DE, USA) and transplanted either immediately or after 24 hrs preservation in UW 

at 4°C into the recipient by end-to-side anastomoses to recipient infra-renal abdominal aorta and 

infra-renal vena cava. Left native kidney of the recipient rats were removed, and end-to-end 

ureteral anastomosis was performed [110].  
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2.3.4 Experimental Design 

The rat transplant study was designed with two specific aims: (1) to study the effect of prolonged 

cold ischemia and renal transplantation on the mRNA expression of selected renal drug 

transporters and (2) To study the effect of tacrolimus treatment in the presence and absence of 

cold prolonged ischemia on the mRNA expression of selected renal drug transporters. 

2.3.4.1 Effect of Prolonged Cold Ischemia and Renal Transplantation 

Kidneys from WT SD rats were either nephrectomized and stored immediately as controls 

at -80℃ (n=3), nephrectomized, maintained in UW solution at 4℃ for 24 hours and stored -80℃ 

as cold ischemic kidneys (n=4), or nephrectomized, maintained in UW solution at 4℃ for 24 

hours and orthotopically transplanted to GFP-SD rats (n=9). Transplant recipients were 

sacrificed at 3 hrs (n=3), 12 hrs (n=3) and 4 weeks (n=3) post transplantation and renal tissues 

were stored. These timepoints were chosen to study the effect of transplantation and prolonged 

cold ischemia immediately after transplantation (3 hrs and 12 hrs) and at 4 weeks after 

transplantation. All samples collected in this experiment were immediately flash frozen in liquid 

nitrogen and stored at -80℃ until analysis. All SD rats in this experiment underwent syngeneic 

transplantation and no immunosuppressants were used. 

2.3.4.2 Effect of Tacrolimus Treatment in the Presence and Absence of Prolonged CI 

This experiment was divided into two parts: 

 Part 1: WT SD rat kidneys were nephrectomized, maintained in UW solution at 4℃ for 

30 min, and orthotopically transplanted to GFP-SD recipient rats in a syngeneic fashion. 

Transplanted rats were sacrificed and renal tissues stored after 4 weeks of either no 
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tacrolimus treatment (n=3), or with oral tacrolimus treatment (n=3) at 0.5 mg/ day dose 

for 2 weeks followed by 1 mg/ week dose for 2 weeks.  

 Part 2: WT SD and LEW rat kidneys were nephrectomized, maintained in UW solution 

at 4℃ for 24 hrs, and orthotopically transplanted to GFP-SD recipient rats in a syngeneic 

(WT SD as donor) and allogeneic (LEW as donor) manner. Transplanted rats were 

sacrificed and renal tissues stored after 4 weeks of either no tacrolimus treatment (n=3, 

syngeneic only), or with oral tacrolimus treatment at 0.5 mg/day dose for 2 weeks 

followed by 1 mg/week dose for 2 weeks (n=3, syngeneic; n=3, allogeneic).  

All samples collected in this experiment were immediately flash frozen in liquid nitrogen 

 and stored at -80℃ until analysis. 

2.3.5 Sample Preparation and Complementary Deoxyribonucleic Acid (cDNA) 

Preparation 

Rat kidney tissue samples stored at -80℃ were dipped in liquid nitrogen and ground using a 

chilled motar and pestle to create a homogeneous tissue sample. About 30mg tissue was added to 

Eppendorf tubes dipped in liquid nitrogen to prevent thawing. Six hundred µL of Buffer RLT 

from the RNeasy Mini Kit
®
 was added to the pulverized tissue and homogenized. The lysate was 

transferred to QIAshredder homogenizer and rinsed with additional 100µL Buffer RLT. 

QIAshredder was centrifuged in a micro centrifuge at full speed for 2min. Following additional 

centrifugation, the supernatant was transferred and mixed with an equal volume of 70% ethanol. 

This mix was further transferred into the RNeasy Mini Kit column in a 2mL collection tube, 

centrifuged for 15sec at ≥8000g and filtrate was discarded. Three hundred and fifty µL Buffer 
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RW1 was added to the RNeasy column, centrifuged for 15sec at ≥8000g and filtrate was 

discarded. Ten µL of DNase1 incubation mix was added to RNeasy column membrane, and 

placed on benchtop (20-30°C) for 15min. The RNeasy column is further treated with 350µL 

Buffer RW1 followed by centrifugation for 15 sec at ≥8000g and filtrate was discarded. This step 

was repeated with 500µL Buffer RPE (2min at ≥8000g) two times to wash the column and once 

without buffer for 1 min to dry the membrane. The RNeasy spin column was placed in a new 

1.5ml collection tube and 30µL RNase-free water was added and centrifuged for 1min at ≥8000g 

to elute the mRNA. This step was repeated for 2 more times to collect remaining mRNA in lower 

concentrations.  

mRNA yield was quantified using NanoDrop 2000c Spectrophotometer. Onto the 

spectrophotometer pedestal, 2µL of RNase free water was loaded to blank the instrument 

followed by 2µL of purified mRNA sample to measure total mRNA concentrations and purity of 

eluted mRNA. All samples were stored at -80℃ for further analysis. 

iScript™ Reverse Transcription Supermix for RT-qPCR was used to generate cDNA 

from purified mRNA samples. Samples had varying concentrations of mRNA, but 1 µg of 

mRNA was mixed with 4µL of iScript RT supermix and the volume of the contents was adjusted 

to 20 µL with RNase free water. The mix was incubated at 25℃ for 5 min, at 42℃ for 30 min to 

initiate reverse transcriptase activity, and at 85℃ for 5 minutes to inactivate the transcriptase 

enzyme.  

2.3.6 Real Time Quantitative Polymerase Chain Reaction (RT-qPCR) 

RT-qPCR was performed in 96 well plates. Each well was loaded with 4µL of sample cDNA, 

1µL of TaqMan primer mix, 10 µL of TaqMan master mix, and 5 µL of RNase free water. All 
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plates were sealed and centrifuged for 3 minutes at 3000 rpm and 4C to bring the contents to 

bottom of the wells. Applied Biosystems® 7500 Real-Time PCR System was used to amplify 

and detect targeted genes. PCR amplification was performed in 40 cycles of 94°C for 15 s, then 

50°C for 30 s, and 68°C for 60 s. The final elongation step was 68°C for 10 min. TaqMan 

primers against rat Slc22a6 (Oat1), Slc22a8 (Oat3), Slc22a2 (Oct2), Slc47a1 (Mate1), and 

Abcb1a (Mdr1a) for transporter targets and Actb (β-Actin) for housekeeping were procured from 

Life Technologies (Carlsbad, CA, USA). Table 6 provides details of the primers used for the 

experiment.  

Table 6. TaqMan® primers used for RT-qPCR experiment 

Gene Assay ID 
Accession 

Number 

Assay 

Location 

Amplicon 

length 

Slc22a6 (Oat1) Rn00568143_m1 NM017224.2 1083 66 

Slc22a8 (Oat3) Rn00580082_m1 NM031332.1 879 64 

Slc22a2 (Oct2) Rn00580893_m1 NM031584.2 1592 55 

Slc47a1 (Mate1) Rn01460731_m1 NM001014118.2 1309 66 

Abcb1a (Mdr1a) Rn01639253_m1 NM133401.1 2122 79 

Actb (β-Actin) Rn00667869_m1 NM031144.3 881 91 

Actb was used as the housekeeping gene 

 

All samples were plated in triplicates to avoid variability associated with technical errors 

and each target was restricted to a single 96 well plate to avoid inter-plate variability. 

2.3.7 Data Analysis and Statistical Analysis 

Standard curves were generated for each target gene including the housekeeping gene by serial 

dilution of target cDNA and running RT-qPCR in technical triplicates. Standard curves were 

drawn with the Ct plotted against the log of the quantity of a target for each dilution prior to 
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PCR. The amplification efficiency (aE) was calculated from slope the curve using the following 

formula:  

aE = 10
–1/slope

 

Target specific standard curves were used to estimate the concentration of each target 

mRNA in all the experimental samples. mRNA expression of each sample was normalized to β-

actin expression in the corresponding sample and reported in relative actin units. A standard 

concentration of β-actin was used as an inter-plate variability marker and its expression was used 

to normalize expression across all PCR plates. Groups were compared to controls utilizing 

analysis of variance (ANOVA) and Bonferroni post-hoc test were run. Differences were 

considered statistically significant when p <0.05. A minimum of 3 rats were included in each 

experimental group and RT-qPCR runs were carried out in technical triplicates. All data were 

expressed as mean ± standard error of the mean (SEM). Data was analyzed using GraphPad 

Prism 7 statistical software for windows (GraphPad Software, La Jolla, CA, USA). A p-value of 

<0.05 was considered as statistically significant difference.  
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2.4 RESULTS 

2.4.1 Effect of Prolonged Cold Ischemia and Transplantation on mRNA Expression of 

Selected Renal Transporters in Transplanted Rat Kidneys 

Subjecting rat kidneys to cold ischemia for 24 hours significantly up-regulated expression of 

Slc22a2 (Oct2). Orthotopic syngeneic renal transplantation following 24 hours CI had down-

regulatory effect on the mRNA expression of Slc22a2 (Oct2), Slc22a6 (Oat1), Slc22a8 (Oat3) 

and Slc47a1 (Mate1) at 3 hours and 12 hours post-transplantation. By 4 weeks post-

transplantation, Slc22a6 (Oat1) mRNA expression recovered to baseline, Slc22a8 (Oat3) mRNA 

levels recovered to less than baseline where as Slc22a2 (Oct2), Slc47a1 (Mate1), and Abcb1a 

(Mdr1a/Pgp) expression did not recover. The timecourse of changes in expression of these 

transporters were different. Results of this experiment are shown in Figure 4. These results 

validated prior work in a rat model and provides evidence that prolonged cold ischemia and  

renal transplantation significantly and differentialy alters the mRNA expression of the five most 

expressed and important renal drug transporters. 
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Figure 4. Effect of prolonged cold ischemia, early and long-term effects of renal transplantation on the 

mRNA expression of 5 selected renal drug transporters in rat renal allografts. 

CI: cold ischemia; Tx: post-transplantation; *p<0.05 compared to previous time point; ^ p<0.05 compared to 24hrs CI 

group 
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2.4.2 Effect of Tacrolimus Treatment in the Absence of Prolonged Cold Ischemia on 

mRNA Expression of Selected Renal Transporters in Transplanted Rat Kidneys 

The results of this experiment suggest that tacrolimus treatment at 0.5 mg per day for 2 weeks 

followed by 1 mg per week for two weeks to GFP-SD rats that underwent orthotropic syngeneic 

transplantation had no significant impact on the expression of the selected 5 renal drug 

transporters when the allografts were not subjected to CI (30 min cold ischemia). Results of this 

experiment are shown in Figure 5. 

Figure 5. Effect of 4 weeks tacrolimus treatment in the absence of prolonged cold ischemia on the mRNA 

expression of 5 selected renal drug transporters in rat renal allografts. 

CI: cold ischemia; Tx: post-transplantation 
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2.4.3 Effect of tacrolimus treatment in the presence of prolonged cold ischemia on mRNA 

expression of selected renal transporters in transplanted rat kidneys 

The results of this experiment suggest that tacrolimus treatment at 0.5 mg per day for 2 weeks 

followed by 1 mg per week for two weeks to GFP-SD rats that underwent orthotropic syngeneic 

transplantation had significant down-regulatory impact on the expression of the selected 5 renal 

drug transporters when the allografts were subjected to 24 hrs CI. This effect was reproduced in 

rats that underwent orthotopic allogeneic transplantations and received similar tacrolimus 

treatment. Results of this experiment are shown in Figure 6. 

Figure 6. Effect of 4 weeks tacrolimus treatment in the presence of prolonged cold ischemia on the 

mRNA expression of 5 selected renal drug transporters in rat renal allografts. 

CI: cold ischemia; Tx: post-transplantation; FK: tacrolimus treatment 

*p<0.05 compared to no tacrolimus treatment group 
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2.5 DISCUSSION 

The kidney is a key excretory organ for various endogenous and exogenous molecules, and any 

changes in renal allograft's transporter mediated secretion capacity would significantly alter the 

clearance and exposure of renally secreted drugs. The slow recovery and progressive graft 

function loss following renal transplantation due to injuries such as cold ischemic injury and 

drug induced nephrotoxicity are thought to affect the secretory capacity of a transplanted kidney. 

There is currently very limited understanding on renal secretion in renal transplant recipients and 

this study is one of the first attempts to understand the changes in expression of important renal 

drug transporters in renal allografts. 

In the current rat kidney transplant study, the effect of prolonged cold ischemia, 

transplantation, and tacrolimus treatment on mRNA expression of Slc22a6 (Oat1), Slc22a8 

(Oat3), Slc22a2 (Oct2), Slc47a1 (Mate1), and Abcb1a (Mdr1a) was systematically evaluated. 

The selected drug transporters are five of the highest expressed renal drug transporters. They are 

involved in the disposition and drug-drug interactions of the most commonly prescribed 

medications in the United States as identified by the US FDA and EMA. 

Cold ischemic injury results from vasoconstriction and endothelial damage during 

prolonged hypothermic preservation of renal allografts. This nonspecific renal tissue injury is 

initiated by an inflammatory cascade including release of reactive oxygen species, cytosolic 

calcium, cytokines, chemokines, and leukocytes activation [85, 91, 92]. These effects are 

amplified by warm reperfusion and re-oxygenation after transplantation contributing to acute 

kidney injury. The renal proximal epithelial cells, which are primarily involved in the secretion 
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of various drugs, are also affected in a nonspecific manner and we would expect this cold 

ischemic injury to alter the secretory capacity of the kidney.  

Work in rat liver ischemic injury models by several investigators showed that hepatic 

ischemia reperfusion injury significantly changes expression of drug transporters. Kudo et al. 

reported reduction of transporter mediated biliary excretion in rat liver allografts that were 

subjected to 8 hrs of CI at 4℃ in UW solution [111]. This was attributed to decline in expression 

and activity of Mrp2 transporter. Hypoxia treatment to hepatocytes was shown to decrease the 

mRNA and protein expression of Ntcp, Bsep, and Mrp2 transporters as well as the nuclear 

factors involved in the transactivation of these proteins such as hepatocyte nuclear factor-4 α 

(HNF4α), retinoid X receptor-α (RXRα) and FXR [112]. Ikemura et al. studied the effect of rat 

liver ischemia (60 min) and reperfusion (12 hr) injury on the expression and activity of renal 

cationic transporters (Oct2/Mate1) using cimetidine as a substrate drug for this cationic transport 

system. The results of this study showed that oxidative stress induced by liver 

ischemia/reperfusion injury significantly decreased renal Oct2 expression leading to altered 

cimetidine pharmacokinetics [113]. Oxidative stress following ischemia and reperfusion has 

been shown to result in oxidative damage to mitochondria and ATPase activity in mice cardiac 

ischemia/reperfusion model. These changes would lead to lower functional activity of ABC 

transporters. [114]These observations suggest that expression of drug transporters is sensitive to 

tissue level insults caused by ischemia reperfusion injuries and there is differential regulation to 

various drug transport systems. 

In the current study, rat kidneys treated with 24 hours of cold ischemia had a significantly 

higher expression of Slc22a2 (Oct2) and the expression of other transporters were unchanged. 

However, the expression of all 5 transporters was significantly lower immediately after 
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orthotopic syngeneic transplantation following 24 hours of CI. Some of the transporters’ 

expressions recovered by 4 weeks post-transplantation. These results suggest that renal 

transplantation recipients with prolonged cold ischemia may have altered renal secretory 

capacity immediately post-transplantation and the recovery of transporter expression is not 

uniform. Proinflammatory cytokine mediated nuclear receptor level regulation of these 

transporters may be different leading to different expression profiles. Observations from this 

study are consistent with results from previous unpublished work on Oat1/3 expression in 

orthotopic syngeneic rat kidney transplant model as well as results from liver 

ischemia/reperfusion studies.  

Limitations of this study include possible inherent differences in regulation of drug 

transporters between rats and humans, variability in the expression of housekeeping gene at 

different allograft conditions, use of only one housekeeping gene and use of very high dosage 

tacrolimus regimen. Changes in mRNA expression do not always translate into changes in 

protein expression and transporter activity. 

Calcineurin inhibitors are the most effective class of immunosuppressants available in 

transplant medicine for maintenance of immunosuppression with tacrolimus being the most 

commonly used CNI. However, tacrolimus treatment is riddled with acute and chronic 

nephrotoxicity profiles which lead to allograft damage and graft loss [84]. CNI nephrotoxicity 

involves decrease in vasodilation factors such as prostaglandin E2 and nitric oxide along with an 

increase in vasoconstriction factors such as thromboxane, endothelin and renin-angiotensin 

system. CNI inhibition of prolyl isomerase is also thought to cause protein synthesis impairment 

and accumulation of unfolded proteins, leading to endoplasmic reticulum enlargement [79, 84]. 

Since renal drug transporters are primarily expressed in renal tubular region, CNI mediated 



 45 

nephrotoxicity was hypothesized to deleteriously affect renal secretion. In the current study, rats 

that were treated with tacrolimus following syngeneic or allogeneic transplantation of allografts 

subjected to 24 hours of prolonged cold ischemia had a significantly lower expression of all 

selected renal drug transporters. This effect was absent in rat allografts that were not subjected to 

24 hrs CI but exposed to tacrolimus treatment. The renal allografts may have increased 

susceptibility to nephrotoxic profile of high dose tacrolimus following injury due to prolonged 

cold ischemia. 

The results of this study show differential expression of various important renal drug 

transporters in rat renal allografts. A systematic evaluation of changes in expression of other 

important renal transporters in human tissues is presented in Chapter 3.0 . A prospective study to 

assess the renal anionic secretory capacity in renal transplant recipients was planned and 

conducted following the observations of this study (Chapter 5.0 ).  
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3.0  EXPRESSION OF RENAL DRUG TRANSPORTERS IN RENAL TRANSPLANT 

PATIENTS 



 47 

3.1 ABSTRACT 

Renal transplantation is the treatment of choice for patients with ESRD. Since kidney is a major 

excretory organ for various endogenous and exogenous molecules, changes in renal graft 

function would significantly alter the clearance, and thereby exposure of renally secreted drugs. 

Slow recovery and progressive graft function loss following transplantation due to injuries and 

complications such as prolonged CI, CNI nephrotoxicity, BKVN and acute TCMR with 

interstitial fibrosis are thought to affect the secretory capacity renal allografts. This study is the 

first comprehensive attempt to understand changes in expression of important renal transporters 

in renal transplant patients with normal allografts and those with transplant associated 

complications. Gene expression of important renal transporters was evaluated using formalin-

fixed paraffin-embedded (FFPE) renal biopsies procured from living donor and deceased donor 

renal transplant patients (LDRT and DDRT). In renal biopsies of renal transplant patients, gene 

expression of 36 renal transporters were quantified by NanoString nCounter® gene expression. 

DDRT recipients had significantly higher expression of SLC5A1 (SGLT1; 2.7-fold), when 

compared to LDRT recipients. Biopsies from patients with BKVN had a significantly lower 

expression of SLC9A3 (NHE3; 5.3-fold low) when compared to controls. Expression of several 

transporters involved in the renal anionic transport system was significantly compromised in 

allografts with acute TCMR and fibrosis (OAT1: 11-fold lower; OAT3: 4.4-fold lower). Results 

of this study suggest that renal transplant recipients may experience significant changes in renal 

transporter mediated disposition of various endogenous and exogenous compounds and 

systematic evaluation of renal secretory activity is warranted in this patient population. 
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3.2 INTRODUCTION 

Kidney transplantation is the treatment of choice for patients with end-stage renal disease. Renal 

allografts are subjected to a unique set of injurious conditions such as prolonged cold ischemia 

before being transplanted into the recipients, warm reperfusion injury immediately after 

transplantation and are also susceptible to progressive loss of graft function due to graft 

rejection, BKVN, and CNI induced nephrotoxicity [3, 76, 85, 90]. Optimal therapy with various 

immunosuppressive, anti-bacterial, antifungal and antiviral medications is necessary for long 

term graft and patient survival in renal transplant recipients. In a recent report on functional 

recovery of renal graft following kidney transplantation (Tx) in 310 living kidney transplant 

patients, 77.1% had an immediate recovery post-Tx as evidenced by a mean pre-Tx serum 

creatinine of 7.1 mg/dL that decreased to 1.4 mg/dL by day 1 post-Tx and 0.7 mg/dL by day 14 

post-Tx whereas 22.9% had a much slower recovery of the renal graft function [105]. The slow 

recovery and progressive graft function loss is even more pronounced in kidneys transplanted 

from deceased donors. 

Since kidney is a key excretory organ for drugs, their metabolites and various 

endogenous molecules, changes in renal allograft's filtration capacity, or transporter mediated 

secretion capacity would significantly alter the clearance and exposure of renally filtered or 

secreted compounds. Although creatinine clearance is used to estimate the functional capacity of 

the transplanted graft, there is currently very limited understanding of the effect of renal 

transplantation and associated complications on the expression of renal drug transporters that are 

primarily expressed in the renal tubular epithelial cells. 
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Transporter expression and activity can be influenced by various disease or tissue specific 

injuries. About 40-80% of transplant recipients experience at least one infection during the first 

year after transplantation [115]. BK virus is a polyomavirus that replicates in the nuclei of renal 

tubular epithelial cells [116] where majority of renal drug transporters are expressed. BK viral 

infection leads to inflammation and ultimately BK virus nephropathy (BKVN) in about 10% of 

renal transplant recipients [117] and this may lead to compromised renal secretion. Decreased 

renal secretion of cidofovir, a substrate of anionic transport system, has been reported in kidney 

transplant recipients with BK viral infection [100]. Vasoconstriction and endothelial damage 

during prolonged CI, pro-inflammatory cytokines released during warm reperfusion and 

transplantation surgery, acute TCMR as well as the tubular damage secondary to tacrolimus 

treatment may all individually effect the tubular secretory capacity of renal allografts [78, 79, 84-

86, 90, 105]. These physiological and pharmacological insults to the renal allograft may 

eventually affect the clearance of drugs that are predominantly cleared by renal secretion. 

We hypothesize that renal allograft insults caused by tacrolimus treatment following 

prolonged CI, BKVN and TCMR with interstitial fibrosis would differentially alter the 

expression of important ABC and SLC renal drug transporters involved in the disposition of 

various endogenous and exogenous compounds. 

The objective of this study is to evaluate the gene expression of 36 important drug 

transporters in renal biopsies collected from LDRT and DDRT patients with no post-transplant 

complications, pathological findings consistent for BKVN, and varying grades of acute TCMR 

and interstitial fibrosis. 
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3.3 METHODS 

Effect of prolonged cold ischemia, BKVN and allograft rejection on the gene expression of 

various important renal drug transporters was studied by directly quantitating RNA that was 

purified from FFPE tissues collected from renal biopsies of living donor and deceased donor 

renal transplant recipients. 

3.3.1 Chemicals 

QIAshredder and RNeasy FFPE kits were purchased from QIAGEN (Hilden, Germany). Custom 

code-set for nCounter® assays and nCounter Master Kit was purchased from NanoString 

Technologies (Seattle, WA, USA).  All chemicals and reagents were purchased from Fischer 

Scientific (Fair Lawn, NJ, USA) unless otherwise noted. 

3.3.2 Study Subjects 

This study was performed using renal biopsies procured from adult renal transplant recipients. 

Adult living donor and deceased donor renal transplant recipients who underwent renal 

transplantation procedure and follow-up transplant care at the University of Pittsburgh Medical 

Center (UPMC) Montefiore hospital were considered for this study. The renal biopsies used in 

this study were accessed under a retrospective study protocol (IRB# PRO14040523) and a 

prospective study protocol (IRB# PRO15010155) which were granted approval by the 
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Institutional Review Board (IRB) at the University of Pittsburgh. Written informed consent was 

obtained from all patients prior to participation in the prospective study. Written informed 

consent requirement was waived for the retrospective study since all patient information and 

biopsy samples were de-identified and retrospectively collected (exempt status). All biopsies 

used for this study were collected in the routine standard of care for the transplant recipients. 

All patients included in this study received anti-thymocyte globulin based induction 

therapy based induction regimen and tacrolimus based maintenance immunosuppressive therapy. 

A detailed description of patient who participated in the prospective study is provided in 

Chapter 5.0  (Section 5.3.2). 

3.3.3 Renal Biopsies 

Needle renal biopsies that were FFPE for preservation were used for this study. All biopsies were 

collected either during 3 months post-transplant care visit or when clinically deemed necessary 

as a part of standard of care (median: 99.5 days post-Tx; range: 14 to 392 days post-Tx). Biopsy 

samples used in this study were accessed from the biopsy repository at the University of 

Pittsburgh Medical Center, Department of Pathology. They were de-identified and provided for 

gene expression analysis by IRB approved honest broker. 

3.3.4 Study Design 

This renal biopsy study was designed with two specific aims: (1) to study the effect of prolonged 

cold ischemia and tacrolimus treatment on gene expression of important renal drug transporters 



 52 

in renal allografts and (2) To study the effect of BKVN and allograft rejection in renal transplant 

recipients on gene expression of important renal drug transporters. 

3.3.4.1 Effect of prolonged cold ischemia and tacrolimus treatment 

Renal biopsies collected from living donor and deceased donor renal transplant recipients who 

were a part of the prospective study described in Chapter 5 were used for this experiment. Drug 

transporter gene expressions in biopsies collected from deceased donor renal transplant 

recipients (n=8) were compared with those collected from living donor renal transplant recipients 

(n=8) to evaluate the effect of prolonged cold ischemia in the presence of tacrolimus treatment. 

3.3.4.2 Effect of BKVN, interstitial fibrosis with tubular atrophy and acute TCMR 

Renal biopsies (n=23) collected from living donor and deceased donor renal transplant recipients 

who were a part of retrospective and prospective protocols were used for this experiment. Based 

on the pathology findings, biopsies were grouped into controls (N=6), BKVN (N=4), borderline 

acute TCMR with varying grades of interstitial fibrosis (N=7), and acute TCMR with varying 

grades of fibrosis (N=6). Each group description is provided in Table 7.  

Table 7. Study group characteristics 

Groups Biopsy Characteristics 

Control (N=6) No significant pathological finding for rejection or BKVN 

BKVN (N=4) Significant pathological findings for BK virus nephropathy 

Borderline Acute TCMR 

w/fibrosis (N=7) 

Intermediate interstitial inflammation and foci of mild 

tubulitis with varying degrees of interstitial fibrosis 

Acute TCMR w/fibrosis (N=6) 

Significant interstitial inflammation and foci of severe 

tubulitis with varying degrees of interstitial fibrosis; Banff 

IA and IB acute TCMR 

Banff IA and Banff IB as defined by Banff 2013 classification was used [80, 83]; TCMR: T-cell mediated acute 

rejection 



 53 

Drug transporter gene expressions in biopsies from BKVN, borderline acute TCMR with 

fibrosis and acute TCMR with fibrosis groups were compared with those in control group to 

evaluate the effect of BKVN and acute TCMR with interstitial fibrosis. 

3.3.5 Renal Biopsy Sample Preparation 

About 15-20 μm tissue of the FFPE blocks was discarded before cutting sections for RNA 

extraction. RNA was purified from at least four, 5μm thick tissue sections containing more than 

75% renal tissue using RNeasy FFPE kit according to manufacturer’s instructions (similar to 

sample processing described in Section 2.3.1.5). mRNA yield was quantified using NanoDrop 

2000c Spectrophotometer. Onto the spectrophotometer pedestal, 2µL of RNase free water was 

loaded to blank the instrument followed by 2µL of purified mRNA sample to measure total 

mRNA concentrations and purity of eluted mRNA. All samples were stored at -80℃ for further 

analysis. 

3.3.6 NanoString nCounter® Assay 

NanoString Technologies nCounter assays (NanoString Technologies, Seattle, WA, 

USA) are designed to provide a single-tube, sensitive, reproducible, and provide a method for 

direct detection of targets with molecular barcodes without the use of reverse transcription or 

amplification. nCounter® is a multiplexed assay that can detect expression of gene targets in 

very low mRNA concentrations (0.1fM per copy per cell) [118]. This technology has shown to 

detect quantitative expression even in samples with significantly degradation, where at least 20% 

of the sample has RNA fragments of greater than 300 base pairs [119, 120]. A custom 
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nCounter® assay code-set was developed with 75 gene targets for quantitative assessment of 

expression. The gene targets include 36 renal ABC and SLC drug transporters, 4 housekeeping 

genes (ACTB, B2M, GAPDH and PGK1) and 35 additional targets representing CYP and UGT 

enzymes as well as various inflammation markers. The custom code-set was designed for various 

types of human tissues. A detailed list of genes and their corresponding target sequences 

included in our custom code-set is provided in Table 8. List of drug transporter genes and their 

corresponding target sequences included in the custom code-set 

 

nCounter® Master kit was used to process and load 300 ng of RNA purified from FFPE 

samples (n=26) onto the custom code-sets using manufacturer's instructions. nCounter® assays 

were processed on a fully automated PrepStation and data was collected and tabulated by the 

nCounter Digital Analyzer at the Genomics Research Core in University of Pittsburgh, 

Pittsburgh, PA. 
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Class Target Genes Position Target Sequence

ABCA1 871-970 GGTTCCTGTATCACAACCTCTCTCTCCCAAAGTCTACTGTGGACAAGATGCTGAGGGCTGATGTCATTCTCCACAAGGTATTTTTGCAAGGCTACCAGTT

ABCB1 784-883 TATCAATGATACAGGGTTCTTCATGAATCTGGAGGAAGACATGACCAGGTATGCCTATTATTACAGTGGAATTGGTGCTGGGGTGCTGGTTGCTGCTTAC

ABCB4 2092-2191 AAATTCACAAATGTGTCAGAAGAGCCTTGATGTGGAAACCGATGGACTTGAAGCAAATGTGCCACCAGTGTCCTTTCTGAAGGTCCTGAAACTGAATAAA

ABCB11 2357-2456 TTCTGAAATTCAGTGCTCCAGAATGGCCCTACATGCTGGTAGGGTCTGTGGGTGCAGCTGTGAACGGGACAGTCACACCCTTGTATGCCTTTTTATTCAG

ABCC1 326-425 CCCTTCTACTTCCTCTATCTCTCCCGACATGACCGAGGCTACATTCAGATGACACCTCTCAACAAAACCAAAACTGCCTTGGGATTTTTGCTGTGGATCG

ABCC2 1381-1480 TCAGTGTTATTTCCAACTGTGCTTCAAGCTGGGTGTAAAAGTACGGACAGCTATCATGGCTTCTGTATATAAGAAGGCATTGACCCTATCCAACTTGGCC

ABCC3 1213-1312 GGGTGAAGTTTCGTACTGGGATCATGGGTGTCATCTACAGGAAGGCTCTGGTTATCACCAACTCAGTCAAACGTGCGTCCACTGTGGGGGAAATTGTCAA

ABCC4 1775-1874 CAGTGTATCAAGATGCTGACATCTATCTCCTGGACGATCCTCTCAGTGCAGTAGATGCGGAAGTTAGCAGACACTTGTTCGAACTGTGTATTTGTCAAAT

ABCC5 228-327 GGAGAGAACCAGCACTTCTGGGACGCACAGAGACCGTGAAGATTCCAAGTTCAGGAGAACTCGACCGTTGGAATGCCAAGATGCCTTGGAAACAGCAGCC

ABCC6 1661-1760 TCTACATTTCTGGTCGCACTGGTGGTGTTTGCTGTCCACACTCTGGTGGCCGAGAATGCTATGAATGCAGAGAAAGCCTTTGTGACTCTCACAGTTCTCA

ABCG1 936-1035 GCGCCAAACTCTTCGAGCTGTTCGACCAGCTTTACGTCCTGAGTCAAGGACAATGTGTGTACCGGGGAAAAGTCTGCAATCTTGTGCCATATTTGAGGGA

ABCG2 2021-2120 TGCATCTTGGCTGTCATGGCTTCAGTACTTCAGCATTCCACGATATGGATTTACGGCTTTGCAGCATAATGAATTTTTGGGACAAAACTTCTGCCCAGGA

SLC2A1 2501-2600 AGGCTCCATTAGGATTTGCCCCTTCCCATCTCTTCCTACCCAACCACTCAAATTAATCTTTCTTTACCTGAGACCAGTTGGGAGCACTGGAGTGCAGGGA

SLC2A2 3181-3280 CAATTATGGAAATATAGTTCTGATGGGTCCCAAAAGCTTAGCAGGGTGCTAACGTATCTCTAGGCTGTTTTCTCCACCAACTGGAGCACTGATCAATCCT

SLC5A1 617-716 GCTGGGGTGGTGACAATGCCAGAGTACCTGAGGAAGCGGTTTGGAGGCCAGCGGATCCAGGTCTACCTTTCCCTTCTGTCCCTGCTGCTCTACATTTTCA

SLC5A2 481-580 GATCTCAGTGGACATGTTCTCCGGAGCTGTATTCATCCAGCAGGCTCTGGGCTGGAACATCTATGCCTCCGTCATCGCGCTTCTGGGCATCACCATGATT

SLC8A1 441-540 GAGACCACCAAGACAACTGTGAGGATCTGGAATGAAACAGTTTCTAACCTGACCTTGATGGCCCTGGGATCTTCTGCTCCTGAGATTCTCCTTTCAGTAA

SLC9A1 2313-2412 TGGCTGTGAAGAAAAAGCAAGAGACGAAGCGCTCCATCAACGAAGAGATCCACACACAGTTCCTGGACCACCTTCTGACAGGCATCGAAGACATCTGTGG

SLC9A3 736-835 CCTGTTCATCATCGTCTTCGGGGAGTCGCTGCTGAACGACGCAGTCACCGTGGTTCTGTACAATGTGTTTGAATCTTTCGTGGCGCTGGGAGGTGACAAC

SLC10A1 1241-1340 TAAACTAGAGAGAGCAGCAAAAACACCAGTCTTGCCTGAGTCTTTCTCCAGCATTTCCAGTACATCTATCAGAATCATCAAGTCTTGGCCGGGAACACAG

SLC19A1 1206-1305 TGGCTGTGCTATGCGGCCTTCGTGCTGTTCCGCGGCTCCTACCAGTTCCTCGTGCCCATCGCCACCTTTCAGATTGCATCTTCTCTGTCTAAAGAGCTCT

SLC22A1 1021-1120 GCTCAAAAGAATGGGAAGTTGCCTCCTGCTGATTTAAAGATGCTTTCCCTCGAAGAGGATGTCACCGAAAAGCTGAGCCCTTCATTTGCAGACCTGTTCC

SLC22A12 965-1064 AGGCCGACACGGAGCCGTGTGTGGATGGCTGGGTCTATGACCGCAGCATCTTCACCTCCACAATCGTGGCCAAGTGGAACCTCGTGTGTGACTCTCATGC

SLC22A2 1636-1735 CTAACATCTGGCTTGAGCTCCCGCTGATGGTTTTCGGCGTGCTTGGCTTGGTTGCTGGAGGTCTGGTGCTGTTGCTTCCAGAAACTAAAGGGAAAGCTTT

SLC22A3 661-760 TCCCTGTGTTTGTGATCTTCCGCTTCCTGCAAGGTGTATTTGGAAAGGGGACGTGGATGACTTGCTACGTGATTGTGACAGAAATAGTAGGTTCGAAACA

SLC22A6 901-1000 TCTGGCTGGCATCTCCCTCAACTGCATGACACTGAATGTGGAGTGGATGCCCATTCACACACGGGCCTGCGTGGGCACCTTGATTGGCTATGTCTACAGC

SLC22A7 647-746 TGGGCCTGGCATCTGCAGCCTCCGTCAGCTATGTAATGTTTGCCATCACCCGCACCCTTACTGGCTCAGCCCTGGCTGGTTTTACCATCATCGTGATGCC

SLC22A8 1171-1270 TTTGGCTATGGGTGTGGAAGAATTTGGAGTCAACCTCTACATCCTCCAGATCATCTTTGGTGGGGTCGATGTCCCAGCCAAGTTCATCACCATCCTCTCC

SLC44A1 1809-1908 CCTTTGTCATTCTGGTGGAGAATGCTTTGCGAGTGGCTACCATCAACACAGTAGGAGATTTTATGTTATTCCTTGGCAAGGTGCTGATAGTCTGCAGCAC

SLC44A2 123-222 CCACAGAAGTATGATCCCACTTTCAAAGGACCCATTTACAATAGGGGCTGCACGGATATCATATGCTGTGTGTTCCTGCTCCTGGCCATTGTGGGCTACG

SLC47A1 1181-1280 TACTACCGACCGAGACATCATTAATCTGGTGGCTCAGGTGGTTCCAATTTATGCTGTTTCCCACCTCTTTGAAGCTCTTGCTTGCACGAGTGGTGGTGTT

SLC47A2 383-482 GTGACCCTCGCGGTGGCCTTTGTCAATGTCTGCGGAGTTTCTGTAGGAGTTGGTTTGTCTTCGGCATGTGACACCTTGATGTCTCAGAGCTTCGGCAGCC

SLCO1A2 915-1014 GTTGACACTGGATTTGTGAACACAGATGATCTGATCATAACTCCCACTGACACTCGTTGGGTCGGTGCATGGTGGTTTGGCTTTCTGATTTGTGCAGGAG

SLCO1B1 1173-1272 ACTTATGTCTTCAAATACGTAGAGCAACAGTATGGTCAGCCTTCATCTAAGGCTAACATCTTATTGGGAGTCATAACCATACCTATTTTTGCAAGTGGAA

SLCO1B3 71-170 AACAGCAGAGTCAGCATCTTCAGAGAAAAAGAAAACAAGACGCTGCAATGGATTCAAGATGTTCTTGGCAGCCCTGTCATTCAGCTATATTGCTAAAGCA

SLCO2B1 2141-2240 CTCCTCTGAGTCCTTTGCCCAAGATTGGGTGTCAAGAGCCCTGTGTTCCATTCTGGCTCCTCCACTAAATTGCTGTGTGACTTCAGGCAAGACATTGATC

ACTB 1011-1110 TGCAGAAGGAGATCACTGCCCTGGCACCCAGCACAATGAAGATCAAGATCATTGCTCCTCCTGAGCGCAAGTACTCCGTGTGGATCGGCGGCTCCATCCT

B2M 26-125 CGGGCATTCCTGAAGCTGACAGCATTCGGGCCGAGATGTCTCGCTCCGTGGCCTTAGCTGTGCTCGCGCTACTCTCTCTTTCTGGCCTGGAGGCTATCCA

GAPDH 973-1072 CACTCCTCCACCTTTGACGCTGGGGCTGGCATTGCCCTCAACGACCACTTTGTCAAGCTCATTTCCTGGTATGACAACGAATTTGGCTACAGCAACAGGG

PGK1 1031-1130 GCAAGAAGTATGCTGAGGCTGTCACTCGGGCTAAGCAGATTGTGTGGAATGGTCCTGTGGGGGTATTTGAATGGGAAGCTTTTGCCCGGGGAACCAAAGC

ABC 

Transporters

SLC 

Transporters

Housekeeping

 
Table 8. List of drug transporter genes and their corresponding target sequences included in the custom code-set 
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3.3.7 Code-set Internal and External Controls 

The codeset was designed to contain 4 external controls (housekeeping genes: ACTB, B2M, 

GAPDH and PGK1), 6 positive internal controls at varying concentrations (128 fM, 32 fM, 8 fM, 

2 fM, 0.5 fM, and 0.125 fM ) and 8 negative internal controls in each assay well [121]. 

NanoString has adopted positive and negative control sequences developed and tested by the 

External RNA Control Consortium (ERCC). Reporter probes designed against ERCC transcript 

sequences are pre-mixed into every code-set. The range of internal concentrations corresponds to 

the expression levels of most mRNAs of interest present in 100 ng of total RNA [121, 122]. 

3.3.8 Bioinformatics and Statistical Data Analysis 

Geometric mean of expression counts of negative internal controls in each well were subtracted 

from the expression data in the corresponding well to eliminate the non-specific background. 

Variability unrelated to the samples was eliminated by normalizing expression counts from each 

well with expression counts of the internal positive controls. Variability related to samples was 

minimized by calculating the average of the geometric means of housekeeping genes across all 

wells and dividing this average by the geometric mean in each well to get a lane-specific 

normalization factor. Each well specific factor was multiplied by all the target expression counts 

to get normalized gene expression counts. 

nSolver® software (NanoString Technologies) was used to perform Student’s t-tests to 

compare the mean expression between comparator groups of samples. For assessment of fold 

changes in target genes between two groups, the numerator samples were compared to the 
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denominator samples to determine the statistical significance of the calculated fold change value. 

A two-tailed t-test was used for comparisons of log-transformed normalized data. The 

distribution of the t-statistic was calculated by using the Welch-Satterthwaite equation for the 

degrees of freedom and in the estimation of the 95% confidence limits for observed differential 

expression between groups. The statistical significance was set at p<0.05. 
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3.4 RESULTS 

3.4.1 Quality Control 

The overall expression of 6 positive controls at 128 fM, 32 fM, 8 fM, 2 fM, 0.5 fM, and 

0.125 fM concentrations loaded in each nCounter code-set well was consistently reproducible 

with limited variability (Figure 7).  

Figure 7. Expression of positive controls at 6 different concentrations in 26 renal biopsy samples. 
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Among the 8 negative controls, 4 controls were consistently not detectable across all 

assays and the other 4 controls had very small mRNA counts (mean counts < 12.5 per assay) 

indicating that there was very minimal background noise (Figure 8). This negative control signal 

was used to eliminate the background noise in gene expression counts.  

 

Figure 8. Expression of 8 negative controls in 26 renal biopsy samples. 
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All four housekeeping genes were expressed in all the samples tested. The relative 

expression of B2M was highest and that of PGK1 being the lowest. There was more variability in 

the expression of B2M gene among the renal transplant biopsies. Using the average of the 

geometric means of all four housekeeping gene expression would reduce the variability when 

normalizing target gene expressions. Figure 9 shows the relative expression of housekeeping 

genes in the assayed biopsy samples. 

Figure 9. Relative expression of 4 housekeeping genes in 26 renal biopsy. 
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3.4.2 Relative Expression of Renal Drug Transporters 

A total of 12 ABC and 24 SLC transporters were included in the nCounter code-set. The relative 

gene expression of important ABC transporters in all 26 renal transplant biopsies is presented in 

Figure 10. Among the genes quantitated, ABCB1 had the highest median gene expression and 

ABCB4 had the lowest median expression. There was a wide variability in expression of ABCC2, 

ABCB11 and ABCB1 when all 26 biopsies from renal transplant recipients were pooled together. 

Figure 10. Relative expression of ABC transporters in 26 renal biopsy samples. 

The blue line represents lower adjuster value, 1st quartile, 3rd quartile and upper adjusted value when following 

from bottom to top. Red dot depicts the median and curve around the plot shows distribution. 
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Of the 24 SLC transporters present in the code-set, 12 are primarily involved in 

disposition of endogenous compounds and the other 12 are involved in disposition of exogenous 

compounds (drugs and their metabolites). In the assayed renal biopsies SLC8A1 had the highest 

median expression and SLC10A1 had the lowest median expression among the SLC transporters 

involved in disposition of endogenous compounds. SLC22A8 had the highest median gene 

expression among SLC transporters involved in disposition of exogenous compounds. SLCO1B1 

and SLCO1B3 had negligible expression. The relative gene expression of important SLC 

transporters in all 26 renal transplant biopsies is presented in Figure 11 and Figure 12. 
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Figure 11. Relative expression of SLC transporters primarily involved in disposition of endogenous compounds. 

The blue line represents lower adjuster value, 1
st
 quartile, 3

rd
 quartile and upper adjusted value when following from bottom to top. Red dot depicts the median and 

curve around the plot shows distribution. 
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Figure 12. Relative expression of SLC transporters primarily involved in disposition of exogenous compounds. 

The blue line represents lower adjuster value, 1
st
 quartile, 3

rd
 quartile and upper adjusted value when following from bottom to top. Red dot depicts the median and 

curve around the plot shows distribution. 
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3.4.3 Effect of Prolonged Cold Ischemia and Tacrolimus Treatment 

The effect of prolonged cold ischemia and tacrolimus treatment on gene expression of 36 renal 

drug transporters was evaluated by comparing results of renal biopsies collected from living 

donor renal transplant, LDRT recipients (n=8) and decease donor renal transplant, DDRT 

recipients (n=8). SLC8A1, SLC22A6, SLC22A8, ABCB1, ABCC4 and ABCC6 had the highest 

relative expression among ABC and SLC transporters in all renal allografts. Most of these 

transporters are primarily involved in the transport anionic drugs (Chapter 1.0 ). Among ABC 

transporters, ABCB1, ABCC3, ABCC4, and ABCG1 were significantly higher in DDRT 

recipients (1.2 to 1.87-fold higher; p-value<0.05) when compared to LDRT recipients. The 

relative expression of ABC transporters between LDRT and DDRT recipients is shown in Figure 

13. Among SLC transporters, SLC2A1, SLC5A1, SLC44A1, SLC44A2, and SLC22A7 were 

significantly higher in DDRT recipients (1.30 to 2.66-fold higher; p-value<0.05) when compared 

to LDRT recipients. The relative expression of SLC transporters between LDRT and DDRT 

recipients is provided in Figure 14 and Figure 15. A detailed statistical comparison of gene target 

expressions between DDRT and LDRT groups is provided in Table 9.  
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Figure 13. Bar chart comparing gene expression of ABC transporters in renal allograft biopsies in LDRT and DDRT recipients. 

*p-value <0.05 when comparing with corresponding LDRT expression; error bars represent standard deviation. 
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Figure 14. Bar chart comparing gene expression of SLC transporters involved in disposition of endogenous compounds in renal 

allograft biopsies from LDRT and DDRT recipients. 

*p-value <0.05 when comparing with corresponding LDRT expression; error bars represent standard deviation. 



 68 
 

Figure 15. Bar chart comparing gene expression of SLC transporters involved in disposition of exogenous compounds in renal allograft 

biopsies from LDRT and DDRT recipients. 

*p-value <0.05 when comparing with corresponding LDRT expression; error bars represent standard deviation. 
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3.4.4 Effect of BKVN and Acute TCMR with Interstitial Fibrosis 

The effect of BKVN and acute TCMR in the presence of interstitial fibrosis on gene expression 

of 36 renal drug transporters was evaluated by comparing assay results of renal biopsies 

collected from allografts with BKVN (n=4), borderline acute TCMR with fibrosis (N=7) and 

acute TCMR with fibrosis (N=6) groups with renal biopsies collected from healthy allografts 

(N=6). 

Biopsies with significant findings consistent for BKVN had significantly lower 

expression of ABCB1, ABCC5, SLC9A3, SLC44A2 and SLC47A2 targets, when compared to 

controls (1.65 to 5.25-fold lower; p-value<0.05). A comparison of relative expression of the 

selected transporters between control and BKVN groups is presented in Figure 16, Figure 17, 

Figure 18 and a detailed statistical comparison of gene target expressions between BKVN and 

control groups is provided in Table 9. 
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Figure 16.  Bar chart comparing quantitative gene expression of ABC transporters from renal allograft biopsies in BKVN and control groups. 

*p-value <0.05 when comparing with corresponding control group expression; error bars represent standard deviation. 
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Figure 17. Bar chart comparing quantitative gene expression of SLC transporters involved in disposition of endogenous compounds from 

renal allograft biopsies in BKVN and control groups. 

*p-value <0.05 when comparing with corresponding control group expression; error bars represent standard deviation. 
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Figure 18. Bar chart comparing quantitative gene expression of SLC transporters involved in disposition of exogenous compounds from renal 

allograft biopsies in BKVN and control groups. 

*p-value <0.05 when comparing with corresponding control group expression; error bars represent standard deviation. 
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Biopsies with intermediate interstitial inflammation and foci of mild tubulitis with 

varying degrees of interstitial fibrosis (borderline acute TCMR w/fibrosis) had significantly 

lower expression of SLC9A3 (1.93-fold lower; p-value: 0.001) targets when compared to 

controls.  Biopsies with findings consistent for Banff IA or Banff IB acute TCMR with varying 

grades of interstitial fibrosis (acute TCMR w/fibrosis) had significantly lower expression of 

ABCC2, ABCC4, ABCC6, SLC5A2, SLC9A3, SLC19A1, SLC22A6, SLC22A7, SLC22A8, 

SLC22A12, and SLC47A1 (1.97 to 11.02-fold lower; p-value<0.05) targets when compared to 

controls. SLCO2B1 expression was significantly higher for both TCMR groups when compared 

to controls. Comparison of relative expression of the selected 36 transporters between the 

comparator TCMR groups is presented in Figure 19, Figure 20, and Figure 21. A detailed 

statistical comparison of gene target expressions between all study groups is provided in Table 9 

and Table 10. Most of the transporters with compromised quantitative expression in acute TCMR 

group belonged to the organic anionic transport system. 
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Figure 19. Bar chart comparing quantitative gene expression of ABC transporters from renal allograft biopsies in control, borderline acute TCMR 

with fibrosis and Acute TCMR with fibrosis groups. 

*p-value <0.05 when comparing with corresponding control group expression; error bars represent standard deviation. 
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Figure 20. Bar chart comparing quantitative gene expression of SLC transporters involved in the disposition of endogenous compounds from renal 

allograft biopsies in control, borderline acute TCMR with fibrosis and Acute TCMR with fibrosis groups. 

*p-value <0.05 when comparing with corresponding control group expression; error bars represent standard deviation. 
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Figure 21. Bar chart comparing quantitative gene expression of SLC transporters involved in the disposition of exogenous compounds from renal 

allograft biopsies in control, borderline acute TCMR with fibrosis and Acute TCMR with fibrosis groups. 

*p-value <0.05 when comparing with corresponding control group expression; error bars represent standard deviation.  
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CI: confidence interval; DDRT: deceased donor renal transplant recipient; LDRT: living donor renal  

Transplant recipient; BKVN: BK virus nephropathy 

Statistically significant changes (p-value <0.05) are bolded 

Fold Change (95% CI) p-value Fold Change (95% CI) p-value

ABCA1 (CERP) 1.18 (-1.11 to 1.55) 0.216 1.06 (-1.42 to 1.58) 0.745

ABCB1 (MDR1, P-gp) 1.37 (1.05 to 1.80) 0.023 -1.75 (-3.00 to -1.02) 0.044

ABCB4 (MDR3) -1.81 (-4.56 to 1.39) 0.187 1.19 (-5.84 to 8.32) 0.823

ABCB11 (BSEP) 1.89 (-1.19 to 4.24) 0.114 1.80 (-3.09 to 9.98) 0.444

ABCC1 (MRP1) 1.22 (-1.02 to 1.53) 0.074 -1.02 (-1.85 to 1.78) 0.933

ABCC2 (MRP2) 1.12 (-1.48 to 1.88) 0.633 -3.14 (-12.77 to 1.30) 0.066

ABCC3 (MRP3) 1.87 (1.11 to 3.14) 0.021 1.69 (-1.63 to 4.64) 0.257

ABCC4 (MRP4) 1.36 (1.11 to 1.67) 0.006 -1.82 (-3.56 to 1.07) 0.051

ABCC5 (MRP5) 1.04 (-1.21 to 1.30) 0.737 -1.65 (-2.44 to -1.12) 0.019

ABCC6 (MRP6) 1.16 (-1.35 to 1.81) 0.492 -2.91 (-10.00 to 1.18) 0.057

ABCG1 (WHITE1) 1.20 (1.02 to 1.42) 0.029 -1.18 (-1.49 to 1.07) 0.119

ABCG2 (BCRP) 1.39 (-1.18 to 2.30) 0.175 -1.19 (-2.92 to 2.07) 0.662

SLC2A1 (GLUT1) 1.53 (1.06 to 2.22) 0.026 -1.29 (-2.21 to 1.33) 0.297

SLC2A2 (GLUT2) -1.00 (-1.47 to 1.46) 0.979 -1.60 (-3.29 to 1.28) 0.149

SLC5A1 (SGLT1) 2.66 (1.47 to 4.80) 0.003 -4.26 (-66.79 to 3.69) 0.213

SLC5A2 (SGLT2) 1.13 (-1.45 to 1.84) 0.611 -2.14 (-7.89 to 1.72) 0.171

SLC8A1 (NCX1) -1.31 (-2.10 to 1.22) 0.237 -1.45 (-3.17 to 1.50) 0.289

SLC9A1 (NHE1) 1.39 (-1.05 to 2.02) 0.084 -1.26 (-2.06 to 1.29) 0.289

SLC9A3 (NHE3) 1.27 (-1.31 to 2.12) 0.324 -5.25 (-21.96 to -1.26) 0.030

SLC10A1 (NTCP) 2.42 (-1.05 to 6.11) 0.059 -1.29 (-6.32 to 3.81) 0.709

SLC19A1 (RFC1) 1.31 (-1.04 to 1.79) 0.078 -1.67 (-2.31 to -1.21) 0.006

SLC22A1 (OCT1) 1.27 (-1.16 to 1.88) 0.211 -2.50 (-6.49 to 1.04) 0.051

SLC22A2(OCT2) 1.23 (-1.15 to 1.73) 0.223 -2.42 (-6.13 to 1.05) 0.055

SLC22A3(OCT3) 1.16 (-1.17 to 1.57) 0.319 -1.31 (-1.89 to 1.11) 0.116

SLC22A6 (OAT1) -1.08 (-1.77 to 1.52) 0.749 -5.98 (-88.63 to 2.47) 0.119

SLC22A7 (OAT2) 1.73 (1.03 to 2.89) 0.039 -5.02 (-30.27 to 1.20) 0.054

SLC22A8 (OAT3) 1.01 (-1.79 to 1.82) 0.978 -3.65 (-18.53 to 1.39) 0.084

SLC22A12 (URAT1) 1.52 (-1.12 to 2.59) 0.111 -2.94 (-10.01 to 1.16) 0.049

SLC44A1 (CTL1) 1.30 (1.05 to 1.61) 0.021 -1.18 (-2.10 to 1.51) 0.496

SLC44A2 (CTL2) 1.47 (1.19 to 1.81) 0.001 -1.73 (-2.82 to -1.06) 0.033

SLC47A1 (MATE1) 1.13 (-1.18 to 1.50) 0.386 -2.29 (-7.41 to 1.41) 0.098

SLC47A2 (MATE2K) -1.12 (-1.63 to 1.31) 0.549 -1.92 (-3.68 to -1.01) 0.046

SLCO1A2 (OATP1A2) 1.55 (-1.21 to 2.91) 0.156 -1.42 (-8.66 to 4.31) 0.638

SLCO1B1 (OATP1B1) -1.07 (-1.31 to 1.15) 0.511 -1.20 (-1.59 to 1.10) 0.156

SLCO1B3 (OATP1B3) -1.07 (-1.31 to 1.15) 0.511 -1.20 (-1.59 to 1.10) 0.156

SLCO2B1 (OATP2B1) 1.00 (-1.14 to 1.15) 0.950 1.32 (-1.43 to 2.47) 0.258

BKVN vs ControlDDRT vs LDRT
Gene Name (Protein)

 

 

 

Table 9. Statistical comparison of ABC and SLC gene target expressions between DDRT vs LDRT and 

BKVN vs Control groups 
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CI: confidence interval; TCMR: T-cell mediated rejection  

Statistically significant changes (p-value <0.05) are bolded 

 

 

Fold Change (95% CI)p-value Fold Change (95% CI) p-value

ABCA1 (CERP) 1.25 (-1.05 to 1.64) 0.098 1.19 (-1.26 to 1.78) 0.347

ABCB1 (MDR1, P-gp) 1.11 (-1.2 to 1.49) 0.425 -3.45 (-14.59 to 1.23) 0.077

ABCB4 (MDR3) 1.58 (-2.01 to 5.00) 0.388 1.47 (-2.16 to 4.66) 0.463

ABCB11 (BSEP) 2.34 (-1.63 to 8.90) 0.171 3.44 (-1.16 to 13.81) 0.071

ABCC1 (MRP1) 1.16 (-1.22 to 1.65) 0.332 1.04 (-1.40 to 1.53) 0.804

ABCC2 (MRP2) -1.13 (-1.84 to 1.44) 0.595 -6.78 (-22.87 to -2.01) 0.007

ABCC3 (MRP3) 1.61 (-1.47 to 3.80) 0.236 1.34 (-2.07 to 3.74) 0.529

ABCC4 (MRP4) -1.10 (-1.35 to 1.11) 0.294 -2.01 (-2.78 to -1.45) 0.001

ABCC5 (MRP5) -1.24 (-1.60 to 1.03) 0.079 -1.99 (-4.09 to 1.04) 0.051

ABCC6 (MRP6) -1.48 (-2.27 to 1.04) 0.067 -2.92 (-6.69 to -1.28) 0.018

ABCG1 (WHITE1) -1.15 (-1.38 to 1.05) 0.120 -1.07 (-1.42 to 1.24) 0.576

ABCG2 (BCRP) -1.10 (-2.30 to 1.89) 0.764 1.05 (-2.32 to 2.54) 0.909

SLC2A1 (GLUT1) -1.28 (-2.20 to 1.34) 0.328 1.02 (-2.57 to 2.68) 0.960

SLC2A2 (GLUT2) 1.07 (-1.45 to 1.65) 0.753 -1.45 (-3.05 to 1.45) 0.273

SLC5A1 (SGLT1) -1.26 (-3.76 to 2.37) 0.624 -1.54 (-5.22 to 2.21) 0.445

SLC5A2 (SGLT2) 1.03 (-1.73 to 1.84) 0.909 -2.75 (-6.58 to -1.15) 0.026

SLC8A1 (NCX1) -1.04 (-2.08 to 1.93) 0.905 -1.71 (-3.56 to 1.22) 0.128

SLC9A1 (NHE1) 1.02 (-1.60 to 1.66) 0.932 -1.95 (-4.53 to 1.19) 0.099

SLC9A3 (NHE3) -1.93 (-2.69 to -1.38) 0.001 -4.94 (-13.23 to -1.85) 0.007

SLC10A1 (NTCP) -1.44 (-4.82 to 2.32) 0.514 1.56 (-4.27 to 10.44) 0.602

SLC19A1 (RFC1) -1.12 (-1.61 to 1.28) 0.492 -1.97 (-3.38 to -1.14) 0.019

SLC22A1 (OCT1) -1.02 (-1.64 to 1.59) 0.943 -1.66 (-3.17 to 1.15) 0.108

SLC22A2(OCT2) -1.36 (-2.01 to 1.09) 0.112 -2.27 (-7.34 to 1.43) 0.124

SLC22A3(OCT3) -1.15 (-1.74 to 1.31) 0.458 -1.07 (-2.19 to 1.92) 0.830

SLC22A6 (OAT1) -1.14 (-1.90 to 1.47) 0.587 -11.02 (-124.62 to 1.03) 0.049

SLC22A7 (OAT2) -1.22 (-2.23 to 1.49) 0.471 -3.37 (-9.19 to -1.24) 0.022

SLC22A8 (OAT3) 1.00 (-2.01 to 2.01) 1.000 -4.41 (-13.88 to -1.40) 0.017

SLC22A12 (URAT1) -1.21 (-1.97 to 1.34) 0.392 -4.25 (-15.9 to -1.13) 0.032

SLC44A1 (CTL1) 1.16 (-1.18 to 1.60) 0.277 -1.10 (-1.67 to 1.38) 0.617

SLC44A2 (CTL2) -1.12 (-1.53 to 1.22) 0.418 -2.84 (-9.55 to 1.18) 0.071

SLC47A1 (MATE1) -1.18 (-1.62 to 1.16) 0.269 -2.23 (-4.55 to -1.09) 0.031

SLC47A2 (MATE2K) -1.01 (-1.71 to 1.69) 0.981 -2.08 (-4.65 to 1.08) 0.066

SLCO1A2 (OATP1A2) 1.33 (-2.2 to 3.90) 0.537 2.13 (-1.73 to 7.82) 0.219

SLCO1B1 (OATP1B1) -1.00 (-1.36 to 1.35) 0.981 1.55 (-1.51 to 3.64) 0.255

SLCO1B3 (OATP1B3) -1.00 (-1.36 to 1.35) 0.981 1.45 (-1.63 to 3.41) 0.333

SLCO2B1 (OATP2B1) 1.11 (1.02 to 1.22) 0.022 1.53 (1.08 to 2.16) 0.022

Gene Name (Protein)

Borderline Acute TCMR 

w/fibrosis vs. Control

Acute TCMR                     

w/fibrosis vs. Control

Table 10. Statistical comparison of ABC and SLC gene target expressions between T-cell mediated 

acute rejection groups with varying grades of fibrosis and control group 
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3.5 DISCUSSION 

The kidney is an important excretory organ, which is involved in the elimination of various 

endogenous and exogenous molecules. Changes in transporter mediated secretion capacity of the 

renal allograft would significantly alter the clearance and exposure of renally secreted drugs. The 

slow recovery and progressive graft function loss following renal transplantation due to injuries 

and complications such as cold ischemic injury, drug induced nephrotoxicity, BKVN, interstitial 

fibrosis and varying grades of TCMR are thought to affect the secretory capacity of a 

transplanted kidney. Although creatinine clearance is used to estimate the GFR, there is currently 

very limited understanding of the renal secretion capacity in renal transplant recipients. The 

effect of prolonged CI, renal transplantation, and tacrolimus treatment on the gene expression of 

five important renal drug transporters (Oat1, Oat3, Oct2, Mate1, and Mdr1a) was studied in a rat 

kidney transplant model (Chapter 2.0 ). Significantly lower expression of the selected 

transporters was observed in rat kidneys, which were subjected to 24 hrs CI before 

transplantation and where recipient rats were treated with tacrolimus post-transplantation. 

Observations of this study prompted us to systematically evaluate the effect of prolonged CI with 

tacrolimus treatment, BKVN and TCMR with fibrosis on the gene expression of renal drug 

transporters in transplant patients. 

Gene expression of 36 important drug transporters in renal transplant recipients were 

quantitated using a novel NanoString nCounter® gene expression assay. nCounter® gene 

expression assay offers high sensitivity and reproducibility in a single-tube without the necessity 

for a cDNA creation or mRNA replication steps like in the case of qPCR-based quantitation. 

This method also gives us the ability to measure absolute expression as compared to relative 
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expression with traditional methods. The nCounter® assay has been successfully used to 

quantitate expression of gene from FFPE samples [123].  

FFPE biopsies from 26 renal allografts were used to extract the mRNA for quantitation of 

drug transporter gene expression. This work is the first comprehensive attempt to understand 

changes in expression of important renal drug transporters in renal transplant patients with 

normal allografts and those with transplant associated complications. The relative expressions of 

important ABC and SLC transporters in all renal allografts were similar to the relative 

expressions observed in non-transplanted kidneys reported by Nishimuta et al with the exception 

of SLC22A12 (URAT1) which was shown to have the highest relative expression in non-

transplanted healthy renal tissues [7]. OAT1, OAT3, OCT2, MATE1/2K and MDR1 had highest 

relative gene expressions in all sampled renal allografts and URAT1 gene expression was less 

than half the expression of OAT1/3. These comparisons suggest that renal transplant patients 

may have compromised uric acid reabsorption capacity compared to healthy subjects. 

Hyperuricemia has been linked to renal disease and the progression of CKD by various animal 

and human experimental studies [124]. The findings of this study is supported by various 

observations reporting compromised uric acid regulation in renal transplant recipients [125]. 

There was also a wide variability in the expression of OAT1, OAT3, BSEP and MRP2 gene 

expression when samples from renal allografts with and without transplantation associated 

complications were pooled together. This comparison suggests that organic anionic transport 

system (OAT/MRP) is sensitive to allograft insults associated with renal transplantation. 

FFPE renal biopsies from 16 LDRT and DDRT recipients who were on tacrolimus 

treatment were used to study the effect of CI and tacrolimus treatment on gene expression of the 

selected renal transporters. DDRT patients had allografts with 15.8±4.8 hrs CI whereas LDRT 
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recipients had allografts with 1.3±0.4 hrs CI and all patients were on tacrolimus-based 

immunosuppression therapy as per UPMC protocols. DDRT recipients have a significantly 

higher expression of several ABC and SLC transporters when compared to LDRT recipients 

suggesting differential regulation of specific renal drug transporters in the presence of prolonged 

cold ischemia and tacrolimus treatment. However, the magnitude of change in expression of 

transporters may not be clinically significant except for SLC5A1 (SGLT1) which was 

significantly increased by 2.66-fold. SGLT1 is involved in the active tubular reabsorption of 

glucose in the kidneys [126]. An increase in SGLT1 expression in DDRT allografts suggests a 

protective mechanism to conserve glucose. 

Renal allografts with pathological findings consistent for BKVN had significantly lower 

expression of several ABC and SLC transporters when compared to healthy allografts suggesting 

a loss of function. SLC9A3, which codes for sodium-hydrogen exchanger 3 (NHE3) had 5.25-

fold lower expression in BKVN group, suggesting renal transplant recipients with BKVN may 

have a compromised sodium homeostasis. Preliminary clinical observations in renal transplant 

recipients with BKVN involving cidofovir treatment in the presence and absence of probenecid 

suggested that renal anionic secretory capacity (OAT1/3 and MRP2/4) is compromised in 

allografts with BKVN [100]. In the current study, allografts with BKVN had lower mean and 

median gene expression of OAT1/3 and MRP2/4 transporters when compared to control 

allografts but this decline was not statistically significant (Table 11). A structured study with 

more biopsies in each group is warranted to better understand the effect of BKVN on organic 

anionic transport system. 
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Table 11. Comparison of OAT1/3 and MRP2/4 gene target expressions between BKVN and Control groups 

 

 

 

 

CI: confidence interval 

Several transporter targets involved in the renal anionic transport system were 

significantly lower in the acute TCMR with fibrosis group with the expression of SLC22A6 

(OAT1) being 11.0-fold lower and SLC22A8 (OAT3) being 4.41-fold lower when compared to 

controls. The expression of OAT1/3 counterparts on the apical side, ABCC2 (MRP2) and ABCC4 

(MRP4) were also significantly lower by 6.78-fold and 2.01-fold respectively. These results 

suggest that renal transplant recipients with Banff IA or higher acute TCMR and interstitial 

fibrosis may have severely compromised renal anionic secretory capacity. Gene expression of 

NHE3, SGLT2 and URAT1 were significantly lower in acute TCMR with interstitial fibrosis 

group, suggesting that renal transplant recipients with Banff IA or higher acute TCMR may have 

compromised sodium, glucose, and uric acid homeostasis. 

The custom code-set used for this assay was designed to facilitate transporter expression 

studies for various tissue types; some of the transporter targets on the code-set were not 

functionally relevant for renal tissue due to low relative expression levels (example: SLCO1B1 

and SLCO1B3). Changes in mRNA expression do not always translate into changes in protein 

expression and transporter activity and this is a limitation to directly relate these changes to 

transporter activity changes.  

 

Gene Name (Protein) 
BKVN vs Control 

Fold Change (95% CI) p-value 

SLC22A6 (OAT1) -5.98 (-88.63 to 2.47) 0.119 

SLC22A8 (OAT3) -3.65 (-18.53 to 1.39) 0.084 

ABCC2 (MRP2) -3.14 (-12.77 to 1.30) 0.066 

ABCC4 (MRP4) -1.82 (-3.56 to 1.07) 0.051 
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The results of this study show differential expression of various important renal drug 

transporters in renal allografts. A systematic evaluation of changes in regulation of endogenous 

substances such as sodium, glucose and uric acid in renal transplant patients is warranted. 

Involvement of changes in expression of proinflammatory cytokines and their regulatory 

mediators in altered expression and activity of renal transporters should also be evaluated. A 

prospective study to assess the renal anionic secretory capacity in renal transplant recipients was 

planned and conducted following the observations of this study (Chapter 5.0).  
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4.0  RAPID AND SENSITIVE ULTRA-PERFORMANCE LIQUID 

CHROMATOGRAPHY-TANDEM MASS SPECTROMETRIC ASSAY FOR 

DETERMINATION OF CEFOXITIN IN HUMAN PLASMA FOLLOWING LOW DOSE 

DRUG ADMINISTRATION 
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4.1 ABSTRACT 

A rapid, sensitive, and selective method for the determination of cefoxitin in human plasma 

using ultra performance liquid chromatography with tandem mass spectrometry (UPLC–

MS/MS) was developed and validated. Plasma samples were processed by a solid-phase 

extraction (SPE) using Oasis
®
 HLB 1cc extraction cartridges prior to chromatography. 

Cefuroxime was used as the internal standard (IS). Chromatographic separation was performed 

using Acquity UPLC HSS T3 1.8 µm column (2.1x100 mm), which was combined with a 1.8 µm 

Vanguard Pre-column (2.1x 5 mm) using a gradient elution with a mobile phase consisting of 

[A] 5% Acetonitrile in water containing ammonium acetate (2 mM) and formic acid (0.1%), and 

[B] Acetonitrile containing ammonium acetate (2 mM) and formic acid (0.1%) at a flow rate of 

0.3 mL/min. The total run-time was 6 min, with cefoxitin and cefuroxime eluting at 1.56 min and 

1.40 min, respectively. The analytes were detected by a XEVO TQS mass spectrometer in 

negative electron spray ionization (ESI) mode using multiple reaction monitoring (MRM). The 

extracted ions monitored following MRM transitions were m/z 426.16 → 156.05 for cefoxitin 

and m/z 423.10 → 207.13 for cefuroxime (IS). The assay was linear over the range of 25–50,000 

ng/mL. Inter-day accuracy (% bias: -0.7 to 10.7%), intra-day accuracy (% bias: -3.2 to 2.2%), 

inter-day precision (% CV: 2.3 to 3.4%), and intra-day precision (% CV: 3.4 to 5.7%). This assay 

has a short run time (6 min), uses limited sample volume (20 µL), and gives us the ability to 

perform quantitative assessment of plasma cefoxitin in the range of 25-50,000 ng/mL, enabling 

us to perform low dosing and limited volume sampling studies for estimation of renal secretory 

changes in renal transplant patients for academic research purposes. 
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4.2 INTRODUCTION 

Cefoxitin is a second-generation cephalosporin antibiotic. It is a semisynthetic anionic compound 

derived by chemical modification of cephamycin C, a naturally occurring substance produced by 

Streptomyces lactamdurans [127, 128]. This modification enables cefoxitin to have a high degree 

of resistance towards inactivation by cephalosporinases and penicillinases of Gram-negative and 

Gram-positive bacteria. It has been shown to be active against various Gram-positive, Gram-

negative and Anaerobic bacteria (Table 12) [129-131]. 

 

Table 12. Cefoxitin Antibacterial Activity 

Gram-positive bacteria 
Gram-negative 

bacteria 
Anaerobic bacteria 

Staphylococcus aureus* Escherichia coli Clostridium spp. 

Staphylococcus epidermidis* Haemophilus influenzae Peptococcus niger 

Streptococcus agalactiae Klebsiella spp. 
Peptostreptococcus 

spp. 

Streptococcus pneumoniae Morganella morganii Bacteroides spp. 

Streptococcus pyogenes Neisseria gonorrhoeae 

 
 

Proteus mirabilis 

 

 

Proteus vulgaris 

   Providencia spp.   
*methicillin-susceptible isolates only 

 

Intravenous (IV) and intramuscularly (IM) administered cefoxitin is approved by the 

United States FDA for systemic treatment of various infections and for prophylaxis of infection 

in patients undergoing various surgeries [129]. Cefoxitin is not readily metabolized and about 

85% of the administered dose is excreted unchanged in the urine. Probenecid, a non-specific 
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inhibitor of organic anionic transporters, increased cefoxitin exposure (AUC0-∞) by 2.4-fold 

indicating that cefoxitin is primarily secreted by the renal anionic transport system into urine [1]. 

Cefoxitin has a very short half-life of about 40 minutes in healthy volunteers with an acceptable 

safety profile [1, 129]. Given its short half-life, safety profile, being a substrate of anionic 

transport system, and the feasibility to conduct pharmacokinetic studies with low IV/IM doses 

within a short study duration, it is an ideal probe drug to study renal anionic secretory clearance 

in various patient populations, including renal transplant recipients. 

Although cefoxitin pharmacokinetics have been described in subjects with normal renal 

function and with impaired renal function [1, 132-135], no data is available regarding its 

pharmacokinetics in patients with single transplanted kidneys. In order to evaluate the 

pharmacokinetics of cefoxitin for the assessment of renal anionic secretory capacity in renal 

transplant recipients, it was necessary to develop a sensitive and specific assay method for the 

determination of cefoxitin in human plasma. To date, several high performance liquid 

chromatography techniques with ultraviolet detection (HPLC-UV) have been developed for 

quantification of cefoxitin in biological fluids and limited literature articles with LC-MS/MS 

methods [128, 131, 136-145]. 

All published methods require a large blood volume making intensive sampling difficult. 

Most of these methods have used protein precipitation using different organic solvents like 

trichloroacetic acid [128, 131, 143], methanol [130] and acetonitrile [146]. This is the first report 

of a method using solid phase extraction for sample preparation and UPLC for separation with 

tandem mass spectrometric detection. 
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The objective of this study was to develop a rapid, highly sensitive and reproducible 

UPLC-MS/MS analytical method to quantify cefoxitin concentrations in human plasma 

following administration of low doses in kidney transplant recipients. 
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4.3 MATERIALS AND METHODS 

4.3.1 Chemicals and Reagents 

Chemical structures of Cefoxitin and the internal standard, cefuroxime are shown in Figure 22 

and Figure 23, respectively. Cefoxitin and cefuroxime was purchased from Toronto Research 

Chemicals (Toronto, ON, Canada). Oasis
®
 HLB 1cc extraction cartridges with 30 mg sorbent per 

cartridge and 30 µm particle size were purchased from Waters (Milford, MA, USA). Ammonium 

acetate (99.999 trace metals basis) and Optima
TM

 LC/MS grade acetonitrile, formic acid, 

methanol and water were obtained from Fisher Scientific (Fair Lawn, NJ, USA). Human plasma 

was procured from central blood bank of Pittsburgh (Pittsburgh, PA, USA). 

 

Figure 22. Chemical structure of cefoxitin (molecular weight: 427.45 g/mol) 
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4.3.2 Chromatographic Conditions 

The UPLC system used for the analysis of Cefoxitin was a Waters Acquity H class model 

(Waters Corporation, MA, USA). Separation was achieved on Acquity UPLC HSS T3 1.8 µm, 

2.1 x 100 mm column with a Acquity UPLC HSS T3 1.8 µm Vanguard Pre-column (2.1 x 5 

mm). The mobile phase used consisted of [A] 5% Acetonitrile in water containing ammonium 

acetate (2 mM) and formic acid (0.1%) and [B] Acetonitrile containing ammonium acetate (2 

mM) and formic acid (0.1%). A sample volume of 20 µL was injected and a 6 min gradient 

method at a flow rate of 0.3 mL/min was developed for elution of the compounds. The gradient 

started at 30% ‘B’, maintained for 0.5 min, then increasing to 90% ‘B’ from 0.51 min to 2.5 min, 

maintaining for 0.5 min, then decreasing to 30% ‘B’ from 3.01 to 3.6 min and maintained at 30% 

‘B’. 

Figure 23. Chemical structure of cefuroxime (molecular weight: 424.39 g/mol) 
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4.3.3 Mass Spectrometric Conditions 

Analysis was performed on a XEVO TQS mass spectrometer (Waters, Milford, MA, USA) with 

negative electro spray ionization mode using multiple reaction monitoring (MRM). MRM 

settings for cefoxitin and cefuroxime (internal standard) are provided in Table 13.  

 

Table 13. Multiple reaction monitoring settings 

Setting Value 

Capillary Voltage 3.5 kV 

Source Temperature 150 °C 

Desolvation temperature 500 °C 

Cone Gas flow 150 L/hr 

Desolvation Gas flow 1000 L/hr 

Collision Gas flow 20 mL/min 

Argon pressure 20±10 psig 

Nitrogen pressure 100±20 psig 

Dwell time 0.025 sec 

 

The extracted ions following MRM transitions monitored were m/z 426.16→156.05 for 

Cefoxitin, m/z 423.10→207.1 for Cefuroxime (IS). The cone and collision energy for Cefoxitin 

was 28 V and 8 V respectively; cone and collision energy for Cefuroxime was 2 V and 16 V 

respectively. Dwell times are 0.025 s for both compounds. The LC–MS system was controlled 

by Masslynx® software version 4.1, and data were collected with the same software. 

4.3.4 Standards and Quality Controls 

Primary stock solutions for standards and quality control samples were prepared in methanol 

(1 mg/mL). Working standards and quality control samples were diluted from primary stock 
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solution with 50% MeOH : 50% water.  The working internal standard solution (1000 ng/mL) 

was prepared from the primary stock in 50% methanol and 50% water. Routine daily calibration 

curves and controls were prepared by spiking human plasma with working solution. The 

concentrations of the spiked plasma standards were 25, 50, 100, 250, 500, 1000, 2500, 5000, 

25,000 and 50,000 ng/mL. The concentrations of quality control (QC) samples were initially 

planned to be either targeting a lower range (Low quality control: 40 ng/mL; Mid quality control: 

2,000 ng/mL; High quality control: 4000 ng/mL) or a higher range (Low quality control: 400 

ng/mL; Mid quality control: 8,000 ng/mL; High quality control: 40,000 ng/mL) depending on the 

concentration of cefoxitin in patient samples. Working standard solutions, spiked plasma 

standard, quality control samples and internal standard solutions were stored at −80°C. 

4.3.5 Sample Preparation and Assay Methodology 

Routine daily calibration curves, controls and the clinical samples were thawed at room 

temperature.  

4.3.5.1 Plasma samples 

Twenty µL of plasma was diluted 50 times with 1 mL of LC/MS grade water containing 0.2% 

formic acid. To this, 10 µL of internal standard (Cefuroxime,1000 ng/mL) was added. Samples 

were extracted using solid phase extraction by passing the solution through Oasis® HLB 1cc 

(30 mg) extraction cartridges. The cartridges were previously conditioned with methanol and 

LC/MS grade water (0.2% formic acid), under vacuum. After washing with 1 mL of LC/MS 

grade water (0.2% formic acid), sample was eluted with 2 mL of methanol and the eluent was 

evaporated to dryness under air. The residue was reconstituted in 100 µL of 50% MeOH:50% 
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H2O (0.2 % formic acid) of starting mobile phase and 10 µL was injected into the UPLC system 

connected to the mass spectrometer. 

4.3.6 Assay Validation 

4.3.6.1 Calibration curve and lower limit of quantitation 

Human plasma spiked with working solutions of standard cefoxitin in 50% methanol and 50% 

water were used in establishing the standard curve. The final concentrations ranged from 25–

50,000 ng/mL for plasma samples. Calibration curves were constructed by plotting the peak area 

ratio of analyte to the internal standard (Y) against the analyte concentration (X). A linear 

regression analysis with weighing (1/X) was used to determine slopes, intercepts, and correlation 

coefficients. Concentration of analyte in the unknown samples were calculated from their peak 

area ratios and the calibration curve. The acceptance criterion for each back-calculated 

concentration of QC standards (low range QCs: 40, 2000, 4000 ng/ml or high range QCs: 400, 

8000, and 40,000 ng/mL) and standards was set at ≤15% deviation from the nominal value, 

except at the lower limits of quantification, where it was ≤20%. Lower limit of quantification 

(LLOQ) was determined as the lowest concentration of the test compound that gave a signal-to-

noise ratio of at least 5:1 and had deviation from nominal concentration of less than 20%. 

4.3.6.2 Accuracy and precision 

The accuracy and precision of the developed method were determined by analyzing plasma 

samples with cefoxitin at the 400, 8000, and 40,000 ng/mL concentrations since all patient 

samples were more than 400 ng/mL. Accuracy, expressed as percent bias, was measured as the 

percentage difference from theoretical value according to the equation:  
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where ConM is measured concentration and ConT is theoretical concentration. 

Precision was calculated as the percent coefficient of variance (%CV) where %CV is 

standard deviation/mean x 100. A deviation and precision within ±15% of the nominal value is 

considered acceptable. The precision and accuracy of the developed method were determined by 

analysis of QC samples following injecting three samples at each concentration on the same day 

assessed intra-day variation of the assay. Inter-day variation was assessed by injecting six 

samples of each concentration on 5 days. 

4.3.6.3 Extraction recovery and matrix effect  

The extraction recovery of cefoxitin from human plasma was determined by comparing the 

absolute response of an extract of control plasma to which cefoxitin had been added after 

extraction, with respect to the absolute response of an extract of plasma to which the same 

amount of cefoxitin had been added before extraction. To evaluate the effect of endogenous 

matrix constituents on the assay, responses of cefoxitin at the 3 QC concentrations in triplicate 

were evaluated. The matrix effect of plasma on cefoxitin was defined as the effect on the signal 

when comparing the absolute response of an extract of control plasma to which cefoxitin had 

been added after the extraction with the absolute response of reconstitution solvent to which the 

same amount of cefoxitin had been added. 

4.3.6.4 Stability  

The stability of cefoxitin in plasma was evaluated at the three QC concentrations in triplicates 

following room temperature storage for 24 hr, storage at 4°C for 7 days, storage at -80°C for 
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1 month. Three freeze-thaw cycles of plasma samples prior to extraction were assessed. Stability 

was expressed in terms of percentage of nominal concentration. The acceptance criterion for 

percent relative recovery was set at 100 ± 10%. The assay was developed to support academic 

studies and requires further qualification and validation to support further development through 

commercialization which is beyond the scope of this work.  
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4.4 RESULTS 

4.4.1 Mass Spectrometry and Chromatography 

Following injection of cefoxitin and cefuroxime (IS) into the mass spectrometer with the 

negative ion electrospray ionization interface, the mass to charge transition from parent to 

product ions were observed to have m/z 426.16 → 156.05 for cefoxitin and m/z 423.10 → 207.13 

for cefuroxime. Instrument parameters were selected to optimize specificity and selectivity of 

both parent and daughter ions. The final instrument parameters were, capillary voltage: 3.5 kV, 

source temperature: 150°C, desolvation temperature of 500 °C, cone gas flow of 150 L/hr, 

desolvation gas flow of 1000 L/hr, argon pressure of 20±10 psig, and nitrogen pressure of 

100±20 psig and dwell time of 0.025 seconds. The optimization of collision energy for cefoxitin 

and cefuroxime are shown in Figure 24 and Figure 25 respectively.  

m/z  

Figure 24. Optimization of collision energy in mass spectrometry for cefoxitin. 
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Figure 25. Optimization of collision energy in mass spectrometry for cefuroxime. 
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The retention times for cefoxitin and cefuroxime were 1.56 min and 1.40 mins 

respectively with a total run time of 6 minutes. Representative chromatograms of cefoxitin and 

cefuroxime spiked in plasma at 500 ng/mL concentrations is provided in Figure 26 and Figure 

27. 

Figure 26. Representative chromatogram of cefoxitin in plasma (500 ng/mL). 

Figure 27. Representative chromatogram of cefuroxime in plasma (500 ng/mL). 
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4.4.2 Assay Validation  

Triplicate standard curves were performed in the plasma on five sequential days. The ratio of 

peak cefoxitin area to peak cefuroxime concentration was linear for cefoxitin between the 

concentration range of 25 to 50,000 ng/mL. The 1/x weighted correlation coefficient of 

calibration curve was in the range of 0.995-0.999. The LLOQ was 25 ng/mL using a plasma 

volume of 20 µL. The calibration curves for cefoxitin in plasma are presented in Figure 28. 

Figure 28. Standard curve of cefoxitin in plasma over a concentration range of 25-50000 ng/mL along 

with a plot of residuals. 
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4.4.3 Accuracy and Precision 

The inter-day and intra-day accuracy and precision for cefoxitin were performed with the higher 

range of QCs (400, 8,000, and 40,000 ng/mL) since all the patient plasma samples quantitated 

were greater than 400 ng/mL. The inter-day and intra-day accuracy and precision for cefoxitin 

were within 10.7%. Results of the assay precision and accuracy are presented in Table 14 and 

Table 15 respectively. 

 

Table 14. Inter-day and Intra-day precision of cefoxitin assay 

Inter-day QC concentration (ng/mL) 

Test Day 
400 

(N=3) 

8000 

(N=3) 

40,000 

(N=3) 

Day 1 404 7708 45436 

Day 2 383 8156 42967 

Day 3 392 7692 45175 

Day 4 390 8260 43949 

Day 5 417 8144 43967 

Mean ± SD 397±14 7992±270 44299±1008 

%CV 3.4 3.4 2.3 

Intra-day QC concentration (ng/mL) 

Occasion 
400 

(N=3) 

8000 

(N=3) 

40000 

(N=3) 

1 388 8273 39151 

2 355 7903 36383 

3 378 8224 38140 

4 407 8562 41519 

5 408 7920 38698 

Mean ± SD 387±22 8176±274 38778±1857 

%CV 5.7 3.4 4.8 

QC: Quality control; SD: standard deviation; %CV: percent coefficient of 

variation 
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Table 15. Inter-day and Intra-day accuracy of cefoxitin assay 

Inter-day QC concentration (ng/mL) 

Test Day 

400 

(N=3) 

8000 

(N=3) 

40,000 

(N=3) 

Day 1 404 7708 45436 

Day 2 383 8156 42967 

Day 3 392 7692 45175 

Day 4 390 8260 43949 

Day 5 417 8144 43967 

Mean 397 7992 44299 

%Bias -0.7 -0.1 10.7 

Intra-day QC concentration (ng/mL) 

Occasion 

400 

(N=3) 

8000 

(N=3) 

40000 

(N=3) 

1 388 82734 39151 

2 355 7903 36383 

3 379 8224 38140 

4 407 8562 41519 

5 408 7920 38698 

Mean 387 8176 38778 

%Bias -3.2 2.2 -3.1 

QC: Quality control; %CV: percent coefficient of variation 
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4.4.4 Stability Data 

Samples were stable on the bench-top at room temperature for 24 hours, in the autosampler (4℃) 

for 7 days and following 3 freeze-thaw cycles from -80℃ for up to 3 months. The average 

percent change of peak areas were ≤10.6%. Results of stability studies at each QC level and 

shown in Table 16. 

Table 16. Results of stability studies 

QC concentration (ng/mL), mean 

  
400 

(N=3) 

8000 

(N=3) 

40000 

(N=3) 

RT 412 8374 41478 

% Bias 3 4.7 3.7 

4C 443 8191 37111 

% Bias 10.6 2.4 -7.2 

-80 C 401 8629 38177 

% Bias 0.1 7.9 -4.6 

QC: Quality control; RT: room temperature 
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4.4.5 Recovery and Ion Suppression 

The SPE recovery of cefoxitin was determined by comparing the absolute response of an extract 

of control plasma to which cefoxitin was added at three QC concentrations after SPE with the 

absolute response of an extract of plasma to which the same QC concentrations of cefoxitin was 

added before SPE. Recovery data and relative response when tested from matrix effects are 

shown in Table 17. There was minimal matrix effect and the total recovery was 83.6% across the 

three QC concentrations. 

 

Table 17. Total and ion suppression recovery of cefoxitin in human plasma 

QC Concentrations 

(ng/ml), N=3 

Ion Suppression 

Relative Recovery           

Mean ± SD (%) 

Total Recovery       

Mean ± SD (%) 

400 88.6 ± 0.8 84.1 ± 4.6 

8000 97.6 ± 4.1 80.2 ±1.2 

40000 104 ± 1.1 86.5 ± 1.1 
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4.4.6 Cefoxitin Detection in Renal Transplant Patients 

The developed cefoxitin assay was used to quantitate cefoxitin plasma concentrations in 15 renal 

transplant recipients following administration of a single dose of 200 mg IV cefoxitin over 1-2 

minutes as an IV push. The concentration versus time plot of cefoxitin in renal transplant 

recipients is provided in Figure 29. Very few plasma samples had concentrations above range of 

the standard curve. These samples were diluted to fall within range of quantitation. Further 

details of the clinical study are discussed in Chapter 5.0 . 

 

 

 

Figure 29. Concentration versus time cure showing cefoxitin exposure in renal transplant recipients following 

administration of 200 mg IV cefoxitin over 1-2 min. Error bars represent standard deviation. 
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4.5 DISCUSSION 

Cefoxitin is a second-generation cephalosporin antibiotic with activity against various Gram-

positive, Gram-negative and Anaerobic bacteria (Table 12) [129-131]. Given its short half-life, 

acceptable safety profile, its properties as a substrate of anionic transport system, and feasibility 

to conduct pharmacokinetic studies with low IV/IM doses within a short study duration, it is an 

ideal probe drug to study renal anionic secretory clearance in renal transplant recipients. To date, 

several HPLC-UV chromatographic techniques have been developed for quantification of 

cefoxitin in biological fluids, but limited LC-MS/MS methods have been described in the 

literature. All currently published methods are limited by their requirement for relatively large 

volume of serum or plasma (100-1000 µL), longer run-times (elution time: 5.30 to 12.9 min), 

and higher LLOQ (1.00 to 100 µg/mL) [128, 131, 136-143]. 

Here we describe the development and validation of a rapid and sensitive UPLC-MS/MS 

assay to detect cefoxitin in human plasma following administration of low doses of cefoxitin for 

the evaluation of renal anionic secretion in renal transplant recipients. During initial assay 

development, higher sensitivity was observed with negative ionization mode. An anion exchange 

solid phase extraction procedure was used to process plasma samples. Separation of cefoxitin 

from other components in plasma was performed using an analytical column with a gradient 

profile. The selected column and mobile phase provided well separated and sharp peaks. 

Cefoxitin has been successfully used as an internal standard for cefuroxime LC-MS/MS assay 

[140] and so cefuroxime was used as an internal standard in this cefoxitin LC-MS/MS assay. 

Cefuroxime provided consistent response under the conditions utilized in this method. It also 

eluted close to the analyte of interest and facilitated a short run-time (6 minutes).  
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In clinical pharmacokinetic studies plasma samples are handled at room temperature or 4°C and 

stored at -20 to -80 °C until analysis and exposed to various temperatures during assay 

procedures. As a result, it was necessary to understand the stability of cefoxitin at these varying 

conditions. Stability was determined by the comparison of QC concentrations of fresh samples to 

those left for 24 h at room temperature, 7 days at 4°C, and 3 months at −80°C. Additionally 

cefoxitin stability for up to 3 freeze-thaw cycles was tested. These different sample handling and 

storage conditions did not affect estimated cefoxitin concentrations indicating stability under the 

conditions evaluated. There was minimal matrix effect and the total recovery was 83.6% across 

the three QC concentrations. 

It is necessary to determine cefoxitin concentration in urine samples in order to evaluate 

cefoxitin pharmacokinetics from urine data. Since majority of cefoxitin is excreted unchanged in 

the urine, its concentrations in urine are expected to be very high, especially in renal transplant 

recipients with limited urine output [147]. For these samples, sensitivity in the nanograms/mL is 

not necessary and so similar methodology described above was used to determine cefoxitin 

concentration in urine with some minor modifications. Urine samples underwent direct serial 

dilutions (1000 fold) in water containing 0.2% formic acid without solid phase extraction. 

We successfully evaluated cefoxitin exposure in renal transplant recipients using this assay. A 

detailed report on this clinical study is provided in Chapter 5.0 . This rapid and sensitive UPLC–

MS/MS method for quantitative assessment of cefoxitin in human plasma has a short run time 

(6 min), uses limited sample volume (20µL) and gives us the ability to perform cefoxitin 

quantitative assessment in the range of 25-50,000 ng/mL. This assay enables us to perform low 

dosing and limited volume sampling studies. 
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5.0  CLINICAL EVALUATION OF CHANGES IN RENAL ANIONIC SECRETION 

FOLLOWING LIVING DONOR AND DECEASED DONOR RENAL 

TRANSPLANTATION: CLINICAL PHARMACOKINETICS OF MINIMAL DOSING 

CEFOXITIN 
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5.1 ABSTRACT 

Renal transplantation is the treatment of choice for patients with ESRD. Since kidney is the 

primary excretory organ for various drugs and their metabolites, changes in renal graft function 

would significantly alter the clearance and therefore exposure of renally secreted drugs. Kidneys 

from living and deceased donors that are transplanted into recipients normally undergo numerous 

insults including CI injury and are also subjected to nephrotoxicity due to CNI. These 

physiological and pharmacological stresses can alter the expression and functional capacity of 

renal anionic drug transporters. The objectives of this study were to (1) assess the longitudinal 

changes in renal anionic secretory capacity, (2) study the effect of prolonged CI on renal anionic 

secretory capacity in kidney transplant patients on tacrolimus therapy, and (3) and to compare 

renal anionic secretory capacity of renal transplant recipients with healthy volunteers. Cefoxitin 

was used as a probe drug to assess renal anionic secretory capacity. Cefoxitin plasma and urine 

pharmacokinetic studies were performed in 15 de-novo renal transplant recipients following 

administration of 200 mg IV cefoxitin within 14 days post-transplantation, and beyond 90 days 

post-transplantation. The concentrations of cefoxitin in plasma and urine were measured using a 

validated LC-MS/MS method. Historical data from cefoxitin pharmacokinetic in healthy 

volunteers was used to compare results. There were no differences in renal anionic secretory 

capacity in de-novo LDRT and DDRT recipients during the early post-transplant period. Renal 

anionic secretory capacity in renal transplant recipients was reduced by 60% compared to 

historical healthy controls. This study shows that renal transplant recipients would need 
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significantly lower dosage of drugs that are renally secreted via organic anionic transport system 

despite having eGFR in the normal range post-transplantation. 
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5.2 INTRODUCTION 

Chronic kidney disease (CKD) is the ninth leading cause of deaths in the United States. An 

estimated 26 million adults or 13% of the US population is expected to have CKD [74]. About 

500,000 CKD patients are classified as having ESRD with an eGFR of less than 15 mL/min/1.73 

m
2
 [75]. Kidney transplantation is the treatment of choice for the patients diagnosed with ESRD. 

In the year 2016, 19,060 kidney transplantations were performed in the USA with 13,431 

kidneys coming from deceased donors and 5,629 kidneys coming from living donors (available 

from: www.unos.org) [3, 76]. Renal allografts are subjected to a unique set of injurious 

conditions such as prolonged CI before being transplanted into the recipient, warm reperfusion 

injury immediately after transplantation, exposure to nephrotoxic CNI based immunosuppression 

therapy, varying grades of allograft rejection, and bacterial/fungal/viral infections post-

transplantation [3, 76, 78, 79, 84-86]. The cold ischemic injury and nephrotoxic CNI therapy that 

the renal transplant recipients receive have been shown to lead to progressive loss of renal 

function with a five-year recipient survival of 84% for deceased donor kidney transplantations as 

compared to 91% for living donor kidney transplantations (available from: www.unos.org) [105]. 

The tubular damage caused by CI and CNI could lead to alteration in the expression and activity 

of renal drug transporters, which primarily reside in renal tubular epithelial cells. This damage 

may eventually affect the clearance of drugs that are predominantly cleared by renal secretion. 

Drugs that are eliminated by tubular secretion primarily undergo active transport into the 

lumen of the proximal tubule. For a drug to be successfully cleared it is usually a substrate of an 

uptake and efflux pair of transporters such as in the case of cefoxitin where OAT1/3 and MRP2/4 
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are thought to be involved in the uptake and efflux activities respectively in the renal epithelial 

cells [26, 27, 29-31]. 

Renal organic anionic transporters are specifically of interest in the context of renal 

transplant recipients as they are involved in the clearance of various medications (acyclovir, 

cidofovir, fluoqionolone antibiotics, several cephalosporine antibiotics and many others) 

prescribed to renal transplant recipients. Some of these medications such as cidofovir is 

nephrotoxic and is considered a narrow therapeutic index drug. OAT1 and OAT3 renal uptake 

transporters are considered to be the most important renal organic anionic transporters by the US 

FDA and EMA for their role in drug disposition and drug-drug interactions [9]. For the 

disposition of various anti-infective medications, MRP2 and MRP4 are thought to be the efflux 

partners for OAT1 and OAT3 [26, 27, 29-31] (Figure 30).  

Figure 30. Orientation of OAT1 and OAT3 uptake transporters and MRP2 and MRP4 efflux 

transporters in renal proximal epithelial tubular cells. 
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As described in Chapter 2.0 , our work on the mRNA expression of Slc22a6 (Oat1), 

Slc22a8 (Oat3), Slc22a2 (Oct2), Slc47a1 (Mate1), and Abcb1a (Mdr1a/P-gp) renal transporters 

in rat transplant model showed that rat kidneys exposed to 24 hrs of CI in the presence of 

tacrolimus treatment for 4 weeks following transplantation, has significant lower mRNA 

expression (3 to 14.5-fold decline) of the above mentioned 5 important renal transporters that are 

highly expressed in human renal tissues. This effect was reproduced after allogeneic rat kidney 

transplantations. Interestingly, tacrolimus treatment mediated downregulation of the selected 

transporters was absent in kidneys that were not subjected to 24 hrs of CI. 

These results show that tacrolimus mediated down regulation of renal Oat1/3 mRNA 

occurs only in the presence of prolonged CI. Since renal allografts undergo prolonged CI, warm 

reperfusion injury and nephrotoxic CNI therapy, it is important to characterize the anticipated 

change in renal organic anionic secretory capacity in living donor and deceased donor renal 

transplant recipients to ensure optimal pharmacotherapy. 

The present study was conducted to determine the pharmacokinetics of cefoxitin in living 

donor and deceased donor renal transplant recipients in order to (1) assess the longitudinal 

changes in renal anionic secretory capacity, (2) study the effect of prolonged cold ischemia on 

renal anionic secretory capacity in kidney transplant patients on tacrolimus based maintenance 

immunosuppression therapy, and (3) and to compare renal anionic secretory capacity of renal 

transplant recipients with that of healthy volunteers. 
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5.3 MATERIALS AND METHODS 

5.3.1 Selection of Substrate to Assess Organic Anionic Secretory Capacity: 

Probenecid, a non-specific potent OAT inhibitor has been clinically used to successfully show 

the involvement of OATs in the renal secretion of several drugs [1, 32-39]. A systematic 

literature search was performed to identify renally cleared drugs which have been shown to have 

altered clinical pharmacokinetics (PK) with the administration of probenecid in healthy 

volunteers. Table 18 summarizes the observed significant changes in the clinical PK parameters 

reported in literature [1, 32-39]. 

 

Table 18. Clinical Drug-Drug Interaction with Probenecid and Anionic Drugs 

Affected 

Drug 
Fold Change in Clinical PK Parameters References 

AUC
0-∞

 C
max

 CLR CL/F t
1/2

 
Acyclovir 1.4 - 0.7 - - Laskin, 1982[36] 
Cefaclor 2.1 1.5 - - 1.6 Welling, 1979 [39] 
Cefonicid 2.1 1.2 0.3 - 1.5 Pitkin, 1981[37] 
Cefoxitin 2.4 - 0.4 - 2 Vlasses, 1980[1] 
Cidofovir - - 0.5 0.6 - Cundy, 1995[33] 

Ciprofloxacin 1.7 - 0.4 0.6 1.5 Jaehde, 1995[35]  
Dicloxacillin 1.9 1.8 0.3 0.5 - Beringer, 2008 [32] 
Famotidine 1.8 1.5 0.4 0.1 - Inotsume, 1990[34] 
Furosemide 2.7 1.5 0.3 0.4 1.7 Vree, 1995[38] 

Summary of significant changes in clinical PK parameters (p<0.05) of anionic drug substrates when probenecid 

is used to inhibit OAT mediated secretory transport. AUC, area under the curve; Cmax, maximum concentration; 

CLR, renal clearance; CL/F, apparent clearance; t1/2, half-life 

‘-‘: Not significant or not reported. 
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Among the drugs identified in Table 18, we excluded nephrotoxic agents as well as the 

drugs transplant clinicians were not comfortable administering to their patients for research 

purposes and ones without a clinical need. Of the remaining drugs, cefoxitin had a good safety 

profile when given at low doses as an intravenous push administration, a short half-life and 

highest change in exposure when co-administered with oral probenecid as compared to cefoxitin 

alone (AUC0-∞ was 2.4-fold higher) [1]. The pharmacokinetic properties of cefoxitin are 

summarized in Table 19. With a short half-life of 40 minutes, we have the ability to perform a 

complete PK study of this drug during scheduled clinic visits of renal transplant patients and 

avoid having a separate study visit. 

 

Table 19. Pharmacokinetic properties of cefoxitin in healthy volunteers [1] 

Drug Cefoxitin 

Dosage Form IV 

Half-Life (Hrs) 0.8 

Clearance (ml/min/1.73 m
2
) 329 

Renal Clearance (ml/min/1.73 

m2) 
280 

% unchanged in Urine 85% 

Protein Binding 74% 

AUC Fold Change with 

Probenecid 
2.4 

 

Based on safety profile, pharmacokinetic properties, and feasibility of conducting a 

pharmacokinetic study in renal transplant recipients in an academic hospital, cefoxitin was 

selected as an ideal drug substrate to evaluate changes in renal organic anionic transport in renal 

transplant recipients. 
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5.3.2 Patients 

5.3.2.1 Renal transplant recipients 

This study was performed in adult renal transplant recipients. Living donor and deceased donor 

renal transplant recipients who were going to undergo their renal transplantation procedure and 

follow-up transplant care at the UPMC Montefiore hospital were approached to participate in the 

study. The study protocol was approved by the Institutional Review Board of the University of 

Pittsburgh (IRB# PRO15010155) and written consent was obtained from all patients prior to 

participation in this study. Kidney transplant recipients were routinely screened clinically and 

evaluated for participation in the study. 

Inclusion criteria included: 

1. Have been scheduled for living or deceased donor renal allograft transplantation at 

UPMC 

2. Men and women aged between 18 and 65 years 

3. Subjects who are scheduled to receive de novo kidney transplant 

4. Subjects willing to sign informed consent form 

5. Be treated in accordance with the standard care protocols currently in effect for living and 

deceased donor renal transplant patients including immunosuppressants use and other 

elements of pre- and post-surgery 
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Exclusion criteria included: 

1. Subjects receiving UNOS extended criteria donor organs 

2. Pregnant or breastfeeding women 

3. Re-transplantation 

4. Subjects with HIV or Hepatitis B/C 

5. Active tuberculosis 

6. Body mass index > 35 kg/m
2
 

7. Subjects who have developed malignancy or any medical condition that, in the 

investigator’s opinion, should not be treated with cefoxitin 

8. Subjects who can't undergo anti-thymocyte globulin based induction therapy 

9. Subjects allergic to tacrolimus or cefoxitin 

10. Subjects with unresolved delayed graft function by 14 days post-transplantation 

11. Subjects with a hemoglobin of 8 g/dL or less. 

Patients with the above-mentioned characteristics were excluded as patients with these 

factors would add additional variability to the transporter activity study. The listed criteria such 

as hepatitis, greater BMI, etc. were not exclusion criteria for renal transplantation at UPMC, but 

are exclusion criteria specifically for this study. 

Once an evaluation has been performed if the patient meets the inclusion/exclusion 

criteria, they were further screened before being included in the study.  
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Screening procedures included: 

1. Ability to understand the informed consent and provide consent to participate willingly in 

the study 

2. Medical history 

3. Medication reconciliation, medication allergy and dietary history 

4. Baseline clinical laboratory measurements: renal function tests including serum and urine 

creatinine, creatinine clearance, BUN and urine pH; liver function tests including ALT, 

AST, alkaline phosphatase, bilirubin, albumin, α1 acid glycoprotein collected as part of 

the standard of care. 

Investigators discussed the study with each patient face-to-face and introduced every 

detail of the study. The patients were informed at the very first time that their participation was 

voluntary, and they could withdraw from the study at any time. They were encouraged to ask any 

questions and take sufficient time to think about the study. 

5.3.2.2 Historical controls/healthy volunteers 

Six healthy volunteers who participated in cefoxitin pharmacokinetic studies conducted in the 

presence and absence of orally administered probenecid by Vlasses et al. were used as historical 

controls [1]. Since this is a pilot study to assess the effect of renal transplantation, historical 

controls were utilized instead of prospective controls to minimize resource utilization and 

minimize drug exposure in healthy volunteers. All subjects gave written consent and the protocol 

of this study was approved by the Thomas Jefferson University Committee on Research. 
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5.3.3 Study Design 

A prospective longitudinal single center pharmacokinetic study was performed on two separate 

occasions in living donor and deceased donor renal transplant recipients who met the study 

criteria. Part 1 was conducted approximately 1-2 weeks post-transplantation, when the serum 

creatinine level stabilized as determined by the transplant clinician. Part 2 was conducted after 3 

months following transplantation only in subjects who underwent part-1 of the study. In both 

parts, the pharmacokinetic parameters of cefoxitin were evaluated following administration of a 

single dose of 200 mg Cefoxitin administered intravenously over 1-2 minutes (IV push). 

Cefoxitin powder was reconstituted with sterile water and 2 ml of 100 mg/mL concentration 

cefoxitin was drawn-up into a 5-ml syringe for the study by the Investigational Drug Services 

pharmacist at University of Pittsburgh Medical Center. The study design is outlined in Figure 31. 

For comparison of this study results with healthy volunteer data, cefoxitin concentration 

data from a historical crossover pharmacokinetic study performed in the presence and absence of 

orally administered probenecid was used [1]. In this study, the investigators administered 2 

grams of cefoxitin as an IV push over 3 minutes to perform the first PK study for 10 hours. After 

a 1-week washout period the investigators administered 2 grams of cefoxitin as an IV push over 

3 minutes administered with 1 gram of probenecid given orally 1 hour before the cefoxitin dose 

to perform the second PK study in the same study subjects. 
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Part 1 

Part 2 

Figure 31. Schematic of cefoxitin pharmacokinetic study design 
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5.3.4 Blood and Urine Sampling 

For the cefoxitin plasma pharmacokinetic assessment, a peripheral venous catheter was placed in 

left or right hand. The IV line was used for administration of a single dose of 200 mg cefoxitin as 

well as collection of blood samples. 4 ml of blood were collected into lavender capped K2-

EDTA coated vacutainers at approximately 0, 15 min, 30 min, 1hr, 1.5hr, 2hr, 3hr and 4hrs post- 

administration of cefoxitin. The IV line was flushed with 0.9% sodium chloride solution prior to 

and after cefoxitin administration and prior to each blood sample draw. Plasma was separated 

within 30 minutes of blood collection and frozen at -80℃ until analysis. 

Urine was collected in aliquots from 0-1, 1-2, 2-4, and 4-8 hours or when voided by the 

patient. The total volume of urine voided by each subject in each interval is noted and aliquots of 

urine are labeled to match the time-period. Urine samples were frozen at -80℃ until analysis. 

5.3.5 Analytical Methodology 

Cefoxitin concentrations in plasma were determined by the liquid chromatographic-mass 

spectrometric method described in Chapter 4.0 . Briefly, plasma samples were processed by an 

anion exchange solid phase extraction procedure. Chromatography was performed using a 

Acquity UPLC HSS T3 analytical column, 1.8 μm, 2.1 x 100 mm, with isocratic elution. 

Cefoxitin was detected by a triple quadrupole mass spectrometer in negative electron spray 

ionization mode using multiple reaction monitoring with cefuroxime as the internal standard. 

With 10µL injections of samples the LLOQ for the cefoxitin in plasma assay was 50 ng/mL. 
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Since majority of cefoxitin is excreted unchanged in the urine, its concentrations in urine are 

expected to be very high, especially in renal transplant recipients with limited urine output [147]. 

For these samples, sensitivity in the nanograms/mL is not necessary and so similar methodology 

described in Chapter 4.0  was used to determine cefoxitin concentration in urine with some 

minor modifications in sample processing. Urine samples underwent direct serial dilutions (1000 

fold) in water containing 0.2% formic acid. With 10µL injections of samples, the LLOQ for the 

cefoxitin in urine assay was 10 µg/mL. Representative chromatogram of a blank urine samples 

spiked with cefoxitin is displayed in Figure 32.  

XEVO-TQS#WAA5192000

Time
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%

0
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FOX+IS_20161123_STD1 Sm (Mn, 5x5) MRM of 3 Channels ES- 
426.16 > 156.048 (Cefoxitin)

6.04e5

1.56

Figure 32. Representative chromatogram of blank human urine spiked with cefoxitin 
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The ratio of peak cefoxitin area to peak cefuroxime coincentration was linear for 

cefoxitin between the concentration range of 25 to 2,000 ng/mL. The 1/x weighted correlation 

coefficient fo calibration curve was in the range of 0.995-0.999. Equation of linearity was y = 

0.000890x – 0.000250, where x = cefoxitin concentration in µg/mL and y = cefoxitin 

area/cefuroxime area. The LLOQ was 10 µg/mL using a urine volume of 20 µL. The calibration 

curves for cefoxitin in urine are presented in Figure 33. 

 

Concentration 

Concentration 

Figure 33. Standard curve of cefoxitin in urine over a concentration range of 5-2000 µg/mL along with a plot of 

residuals. 
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5.3.6 Noncompartmental Pharmacokinetic Analysis 

Plasma cefoxitin concentrations assayed in blood samples collected for part-1 and part-2 of the 

study were used for pharmacokinetic analysis. Descriptive pharmacokinetic parameters for 

cefoxitin were estimated by noncompartmental analysis Phoenix WinNonlin® (Certara, St. 

Louis, MO). The terminal disposition rate constant (k) was obtained by linear regression of at 

least the last 3 data points, and half-life (t1/2) was calculated by dividing 0.693 by k. The area 

under the plasma concentration-time profile from the time of dosing until infinity was calculated 

by the log-linear trapezoidal method with extrapolation beyond the last measured concentration, 

according to: 

AUC0- ∞ = AUC0-4 + C4/ k 

Total body clearance (CLTotal) and the volume of distribution during terminal phase (Vz) 

were determined using the following equations: 

CLTotal = Dose / AUC0- ∞ 

Vz= Dose /[( AUC0- ∞) x k ] 

Urine cefoxitin concentration in samples collected following IV dose was with the 

volume of urine collected for that particular time interval to estimate the amount of cefoxitin 

renally eliminated in a given time depending on last urine collection. Sum of amounts of 

cefoxitin eliminated for all urine collections was used to estimate the total amount of cefoxitin 

renally eliminated in 4 hours (Ae(0-4)). Renal clearance (CLRenal) was estimated using the 

following equation: 

CLRenal= (Ae(0-4))/ AUC0-4 
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Cefoxitin tubular reabsorption was assumed to be negligible (0 mL/min), cefoxitin 

filtration clearance (CLFiltration) and tubular secretion clearance (CLSecretion) were estimated using 

the following equations: 

CLFiltration = fu x CLCr 

CLSecretion = CLRenal – CLFiltration 

Where fu is the fraction of cefoxitin unbound (0.26) [129] and CLCr is the creatinine clearance 

based estimate of the glomerular filtration rate which is calculated using the Cockcroft Gault 

equation: 

CLCr =  (140-age)(weight kg) / (72 X SrCr) in mL/min 

multiplied by 0.85 for female subjects 

Plasma and urine cefoxitin concentration data reported by Vlasses et al [1] in the 

presence and absence of 1 gram probenecid given orally 1 hour before cefoxitin administration 

were considered in calculations. Non-compartmental PK analysis and derived PK parameters 

described above were employed for estimating PK parameters of cefoxitin in healthy volunteers. 

5.3.7 Statistical Analysis 

All data were expressed as mean ± SD (standard deviation). Student’s paired t-tests will be used 

to statistically compare patient demographic parameters and PK parameters such as t1/2, AUC0-∞, 

CLTotal, CLRenal, CLFiltration and CLSecretion between living donor and deceased donor renal 

transplant recipients at both time-points and also within living donor renal transplant recipients 

comparing results for both time-points and within deceased donor renal transplant recipients 

comparing results for both time-points. Dose normalized PK parameters were used when 

comparing PK results from renal transplant recipients and PK results from healthy volunteers 
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(historical controls). Data was analyzed using GraphPad Prism 7 statistical software for windows 

(GraphPad Software, La Jolla, CA, USA). A p-value of <0.05 was considered as statistically 

significant difference.  
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5.4 RESULTS 

5.4.1 Patient Demographics  

Patient characteristics for subjects who completed at least one pharmacokinetic study are 

provided in Table 20. Forty seven renal transplant recipients who met the inclusion/exclusion 

criteria for the study were approached and 15 of them consented to participate in the study and 

underwent part 1 (PK study ≤ 14 days post-transplantation) and 9 of the 15 subjects who 

underwent Part 1 of also completed Part 2 of the study (PK study ≥ 90 days post-transplantation). 

Table 20. Patient characteristics 

Patient Characteristics 
All Subjects 

(n=15) 

LDRT        

(n=8) 

DDRT       

(n=7) 
*p - value 

Age (years) (mean ± SD) 47.5 ± 12.7 50.3 ± 15.6 44.3 ± 8.6 0.39 

Weight (kg) (mean ± SD) 86.6 ± 27.2 92.1 ± 25.9 80.3 ± 29.2 0.42 

BSA (m
2
) (mean ± SD) 1.9 ± 0.3 2.1 ± 0.3 1.8 ± 0.2 0.05 

Sex M= 6 ; F= 9 M= 4 ; F= 4 M= 2 ; F= 5 - 

African American 6 1 5 - 

Caucasian 9 7 2 - 

CIT (hrs) (mean ± SD) 8.1 ± 8.1 1.3 ± 0.4 15.8 ± 4.8 <0.05 

WIT (hrs) (mean ± SD) 0.8 ± 0.3 0.8 ± 0.3 0.7 ± 0.4 0.95 

Transplant Reason 

IgA Nephropathy 5 2 3 - 

Hypertension 5 3 2 - 

DM-II/HTN 2 2 0 - 

Other 3 1 2 - 

Donor Information 

Age (years) (mean ± SD) 43.4 ± 15.8 47.0 ± 17.5 38.5 ± 12.9 0.31 

Cadaveric =7 ; Living-Related = 7; Living unrelated =1 

 LDRT: living donor renal transplant recipient; DDRT: deceased donor renal transplant recipient; BSA: body 

surface area; CIT: cold ischemic time; WIT: warm ischemic time; DM-II: type-2 diabetes mellitus; HTN: 

Hypertension; * comparing LDRT vs DDRT 
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Difficulty obtaining IV access and scheduling conflict were the reasons for the 6 subjects 

to not complete Part 2 of the study. On average, the study participants were 47.5 ± 12.7 years of 

age and weighed 86.6 ± 27.2 kgs. Of the 15 study participants 8 underwent LDRT and 7 

underwent DDRT. Majority of LDRT recipients were Caucasian (7/8, 87.5%) and majority of 

DDRT recipients were African American (5/7, 71.4%). The average cold ischemic time 

experienced by allografts transplanted to LDRT recipients (1.3 ± 0.4 hrs) was significantly 

shorter compared to that of DDRT recipients (15.8 ± 4.8 hrs). Majority of the living donors were 

related to recipients (7/8, 87.5%) and living donors were relatively older than deceased donors 

but their age was not significantly different.  

All subjects underwent rabbit anti-thymocyte globulin based induction therapy and 

received tacrolimus and mycophenolic acid based maintenance immunosuppression. 

Prophylactic anti-infective regimens taken by all patients included valganciclovir and 

sulfamethoxazole-trimethoprim. None of the patients were taking any other medications that are 

known to be renally eliminated by the OAT transport system. 

Additional details on patient characteristics before starting Part 1 and Part 2 of the study 

are provided in Table 21. On average all study subjects were 7.1 ± 2.3 days post transplantation 

before starting Part 1 of the study and 115.6 ± 20.0 days before starting Part 2 of the study with 

114.3 ± 21.0 days between both the PK studies. All patients had stable renal function during both 

the PK studies and the tacrolimus tough levels were within their target therapeutic ranges. 

Although the serum creatinine for DDRT recipients (1.2 ± 0.1 mg/dL) was significantly lower 

than that of LDRT recipients (1.4 ± 0.1 mg/dL), this was not a clinically significant difference. 
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Table 21. Patient characteristics comparing LDRT vs DDRT and Part 1 vs Part 2 

Patient Characteristics Comparing LDRT vs DDRT 

  
LDRT Recipient 

(mean±SD), N=8 

DDRT Recipient 

(mean±SD), N=7 
*p - value 

Part 1: Days Since Tx 6.9 ± 1.8 7.3 ± 3.0 0.75 

Part 2: Days Since Tx 112.8 ± 10.6 121.50 ± 27.1 0.41 

Days Between Part 1 & 2 110.8 ± 13.7 118.8 ± 29.7 0.51 

SrCr (mg/dL) 1.4 ± 0.1 1.2 ± 0.08 <0.05 

CrCL (mL/min) 55.9 ± 19.5 52.5 ± 8.4 0.68 

Blood Concentrations of 

FK (ng/mL) 
8.2 ± 1.9 9.9 ± 3.2 

0.21 

Patient Characteristics Comparing all Subjects at Part 1 vs Part 2 

  
Part 1: ≤ 14 Days Post-Tx       

(mean±SD), N=15 

Part 2: ≥ 90 days Post-Tx 

(mean±SD), N=9 
*p - value 

Days Since Tx 7.1 ± 2.3 115.6 ± 20.0 - 

Days Between Part 1 & 2 114.3 ± 21.0 - 

SrCr (mg/dL) 1.5 ± 0.7 1.3 ± 0.1 0.30 

CrCL (mL/min) 49.8 ±17.4 54.4 ± 14.8 0.52 

Blood Concentrations of 

FK (ng/mL) 
8.8 ± 2.9 9.1 ± 2.1 

0.78 

LDRT: living donor renal transplant recipient; DDRT: deceased donor renal transplant recipient; SrCr: serum 

creatinine; CrCL: creatinine clearance calculated by Cockcroft Gault equation; FK: tacrolimus trough level 

* comparing LDRT vs DDRT and Part 1 vs Part 2 

 

In the historical control study, 6 male volunteers between the ages of 21 and 35 years 

participated in the crossover study. All subjects were within ±10% of ideal body weight and 

evaluated to be healthy based on physical examinations and results of laboratory screening 

studies as determined by the investigators [1]. 
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5.4.2 Safety and Tolerability 

Cefoxitin given at a low-dose of 200 mg as an IV push over 1-2 minutes was well tolerated. 

There were no injection site reactions in any of the patients, and none of the patients were 

allergic to cefoxitin. No changes were observed in biochemical indices of kidney or liver 

function after administration. Two patients experienced metallic taste following cefoxitin 

administration and this was resolved within 5 minutes. The resolution of this effect is consistent 

with the observed rapid disposition of cefoxitin. 

5.4.3 Pharmacokinetics of Cefoxitin: Non-Compartmental Analysis 

Cefoxitin was used as a surrogate marker to assess the renal anionic secretory capacity in renal 

transplant recipients. Cefoxitin pharmacokinetics studies were performed in 8 LDRT and 7 

DDRT recipients following administration of a single dose of 200 mg cefoxitin as an IV push 

over 1-2 minutes, cefoxitin 4 hr plasma and urine PK studies were conducted within 14 days 

post-transplantation and beyond 3 months post transplantation. This study was performed to 

investigate longitudinal changes in renal anionic secretory capacity in LDRT and DDRT 

recipients, to investigate the effect of prolonged cold ischemia on renal anionic secretory 

capacity immediately and beyond 90 days post renal transplantation, and to compare renal 

anionic secretory capacity of renal transplant recipients to that of healthy volunteers. 
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5.4.3.1 Assessment of longitudinal changes in renal anionic secretory capacity in   

 renal transplant recipients 

Post-transplant changes in renal anionic secretory capacity among LDRT and DDRT recipients 

were evaluated by assessing cefoxitin pharmacokinetics at two early post-transplant time-points 

(≤14 days and ≥ 90 days post transplantation). Linear plots of cefoxitin plasma concentration 

versus time at both time-points are shown in Figure 34. Concentration vs Time plot of 200 mg 

cefoxitin given as IV push in renal transplant recipients at ≤ 14 Days (blue) and ≥ 90 days 

(orange) post transplantation.. The concentration-time curves were virtually superimposable, 

suggesting no difference in cefoxitin clearance in renal transplant recipients by at least 90 days 

post transplantation when compared to immediately after transplantation. A summary of 

pharmacokinetic parameters for IV cefoxitin at these two time-points is presented in Table 22.  
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Table 22. Summary of pharmacokinetic parameters of 200 mg cefoxitin in renal transplant recipients at ≤ 14 

Days and ≥ 90 days post transplantation 

 

PK Parameters 

Part 1                                

≤ 14 Days Post-Tx 

(N=15), mean±SD 

Part 2                         

≥ 90 days Post-Tx 

(N=9), mean±SD 

Combined 

(N=15), mean±SD 
*p - value 

AUC0-∞ (mg*hr/L) 35.0 ± 13.1 35.6 ± 9.3 35.2 ± 11.6 0.91 

t1/2 (Hrs) 1.4 ± 0.7 1.1 ± 0.2 1.3 ±0.6 0.25 

Vz (L) 15.0 ± 4.6 12.1 ± 3.4 13.9 ± 4.4 0.10 

CLTotal (mL/min) 108.1 ± 40.0 99.3 ± 24.7 104.8 ± 34.7 0.56 

CLRenal (mL/min) 90.2 ± 33.4 82.9 ± 20.6 87.5 ± 29.0 0.56 

CLFiltration (ml/min) 13.0 ± 4.5 14.1 ± 3.4 13.4 ± 4.2 0.52 

CLSecretion (mL/min) 77.3 ± 28.9 73.3 ± 25.1 74.1 ± 24.8 0.74 

AUC0-∞: area under the concentration-time curve from time dose administration to infinite time; t1/2: half-life; Vz: 

terminal volume of distribution; CLTotal: cefoxitin total clearance; CLRenal: cefoxitin renal clearance; CLFiltration: 

cefoxitin filtration clearance; CLSecretion: cefoxitin secretion clearance;* comparing Part 1 and Part 2. 

Figure 34. Concentration vs Time plot of 200 mg cefoxitin given as IV push in renal transplant recipients at ≤ 14 

Days (blue) and ≥ 90 days (orange) post transplantation. 

Tx: transplantation 
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Cefoxitin exposure (AUC0-∞), total clearance (CLTotal), renal clearance (CLRenal), filtration 

clearance (CLFiltration) and secretion clearance (CLSecretion) were statistically similar during Part 1 

and Part 2 of the study. The majority of CLTotal was attributed to its CLSecretion (~71%). Half-life 

of cefoxitin in renal transplant patients is about 1.3 ±0.6 hrs in both periods. 

Linear plots of cefoxitin plasma concentration versus time at both time-points among 

LDRT and DDRT are shown in Figure 35 and Figure 36 respectively. The concentration-time 

curves were virtually superimposable when looking at LDRT and DDRT recipients separately, 

suggesting no difference in cefoxitin clearance in renal transplant recipients by at least 90 days 

post transplantation when compared to immediately after transplantation in LDRT and DDRT 

recipients. Summaries of pharmacokinetic parameters for IV cefoxitin at these two time-points in 

LDRT and DDRT recipients are presented in Table 23 and Table 24 respectively. 
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Table 23. Summary of pharmacokinetic parameters of 200 mg cefoxitin in LDRT recipients at ≤ 14 Days and 

≥ 90 days post transplantation 

 

 

 

PK Parameters 

Part 1                                

≤ 14 Days Post-Tx 

(N=8), mean±SD 

Part 2                          

≥ 90 days Post-Tx 

(N=5), mean±SD 

Combined 

LDRT 

(N=8), mean±SD 

*p - value 

AUC0-∞( mg*hr/L) 36.3 ± 9.7 38.0 ± 11.3 37.0 ± 9.9 0.77 

t1/2 (Hr) 1.5 ± 0.8 1.2 ± 0.2 1.4 ± 0.7 0.47 

Vz (L) 15.2 ± 4.70 12.3 ± 4.3 14.1 ± 4.60 0.28 

CLTotal (mL/min) 97.4 ± 24.3 94.9 ± 30.5 96.5 ± 25.6 0.87 

CLRenal (mL/min) 81.4 ± 20.3 79.2 ± 25.5 80.6 ± 21.4 0.88 

CLFiltration (ml/min) 13.2 ± 5.3 14.5 ± 5.1 13.7 ± 5.03 0.66 

CLSecretion (mL/min) 68.2 ± 15.0 64.7 ± 20.4 66.8 ± 16.4 0.73 

AUC0-∞: area under the concentration-time curve from time dose administration to infinite time; t1/2: half-life; Vz: 

terminal volume of distribution; CLTotal: cefoxitin total clearance; CLRenal: cefoxitin renal clearance; CLFiltration: 

cefoxitin filtration clearance; CLSecretion: cefoxitin secretion clearance;* comparing Part 1 and Part 2. 

Figure 35. Concentration vs Time plot of 200 mg cefoxitin given as IV push in LDRT renal transplant recipients 

at ≤ 14 Days (blue) and ≥ 90 days (orange) post transplantation. 

LDRT: living donor renal transplant recipients; Tx: transplantation 
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Table 24. Summary of pharmacokinetic parameters of 200 mg cefoxitin in DDRT recipients at ≤ 14 Days and 

≥ 90 days post transplantation 

PK Parameters 

Part 1                             

≤ 14 Days Post-Tx 

(N=7), mean±SD 

Part 2                          

≥ 90 days Post-Tx  

(N=4), mean±SD 

Combined 

DDRT    

(N=7), mean±SD 

*p - value 

AUC0-∞( mg*hr/L) 33.6 ± 16.9 32.6 ± 6.1 33.2 ± 13.6 0.92 

t1/2 (Hr) 1.3 ± 0.5 1.0 ± 0.2 1.2 ± 0.4 0.30 

Vz (L) 14.8 ± 4.8 11.8 ± 2.6 13.7 ± 4.3 0.28 

CLTotal (mL/min) 120.2 ± 52.2 104.7 ± 17.7 114.6 ± 42.3 0.60 

CLRenal (mL/min) 100.3 ± 43.6 87.5 ± 14.8 95.7 ± 35.3 0.58 

CLFiltration (mL/min) 12.7 ± 3.8 13.6 ± 2.18 13.0 ± 3.2 0.66 

CLSecretion (mL/min) 87.7 ± 39.7 73.8 ± 12.6 82.6 ± 32.1 0.52 

AUC0-∞: area under the concentration-time curve from time dose administration to infinite time; t1/2: half-life; Vz: 

terminal volume of distribution; CLTotal: cefoxitin total clearance; CLRenal: cefoxitin renal clearance; CLFiltration: 

cefoxitin filtration clearance; CLSecretion: cefoxitin secretion clearance;* comparing Part 1 and Part 2. 

Figure 36. Concentration vs Time plot of 200 mg cefoxitin given as IV push in DDRT renal transplant recipients 

at ≤ 14 Days (blue) and ≥ 90 days (orange) post transplantation. 

DDRT: deceased donor renal transplant recipients; Tx: transplantation 
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Cefoxitin exposure (AUC0-∞), total clearance (CLTotal) , renal clearance (CLRenal), 

filtration clearance (CLFiltration) and secretion clearance (CLSecretion) were statistically similar 

during Part 1 and Part 2 of the study for LDRT and DDRT recipients when compared separately. 

Majority of CLTotal was attributed to its CLSecretion (~72%).  Average half-life of cefoxitin in 

LDRT and DDRT were similar (1.4 ± 0.67 hrs and 1.2 ± 0.41 hrs respectively). 

5.4.3.2 Effect of prolonged cold ischemia on renal anionic secretory capacity in kidney 

 transplant recipients on tacrolimus based maintenance immunosuppression therapy 

Renal anionic secretory capacity between LDRT recipients with allografts that underwent 

an average of 1.3±0.4 hrs of cold ischemia and DDRT recipients with allografts that underwent 

an average of 15.8±4.8 hrs of cold ischemia were compared to study the effect of prolonged cold 

ischemia at two time-points post transplantation (≤14 days and ≥90 days post transplantation).  

Cefoxitin pharmacokinetics among LDRT and DDRT recipients were compared at both early 

time-points and the linear plots of cefoxitin plasma concentration versus time during Part 1 (≤14 

days post transplantation) and Part 2 (≥ 90 days post transplantation) are shown in Figure 37 and 

Figure 38 respectively. 
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Figure 37. Concentration vs Time plot of 200 mg cefoxitin given as IV push in LDRT (blue) and DDRT (orange) 

renal transplant recipients at ≤ 14 days post transplantation. 

LDRT: living donor renal transplant; DDRT: deceased donor renal transplant; Tx: transplantation 

 



 137 

 

Cefoxitin exposure (AUC0-∞), total clearance (CLTotal), renal clearance (CLRenal), filtration 

clearance (CLFiltration) and secretion clearance (CLSecretion) were statistically similar between 

LDRT and DDRT recipients during Part 1 and Part 2 of the study when compared separately. 

There was no significant impact of prolonged cold ischemia (15.8 ± 4.8 hrs for DDRT vs 1.3 ± 

0.4 hrs for LDRT recipients) on renal anionic secretion of cefoxition immediately after 

transplantation and beyond 90 days post transplantation (Table 23 and Table 24). 

Figure 38. Concentration vs Time plot of 200 mg cefoxitin given as IV push in LDRT (blue) and DDRT 

(orange) renal transplant recipients at ≥ 90 days post transplantation. 

LDRT: living donor renal transplant; DDRT: deceased donor renal transplant; Tx: transplantation 
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5.4.3.3 Comparing renal anionic secretory capacity of renal transplant recipients with that 

 of healthy volunteers 

Healthy volunteer data from a crossover cefoxitin pharmacokinetic study performed in the 

presence and absence of orally administered probenecid (anionic secretion blocker) was used to 

compare renal anionic secretory capacity of renal transplant recipients [1]. In the first part of the 

healthy volunteer crossover study, subjects underwent a 4 hr cefoxitin PK study following IV 

administration of 2 grams cefoxitin over 3 min. Following a 1-week washout period, they 

underwent a 4 hr cefoxitin PK study following IV administration of 2 grams cefoxitin over 3 min 

and oral administration of 1 gram probenecid 1 hour prior to cefoxitin administration. 

Summarized linear plots of dose normalized cefoxitin concentration versus time in renal 

transplant patients (15 patients; 24 PK studies) and in historical healthy controls (6 patients) with 

and without probenecid treatment are shown in Figure 39. 
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Figure 39. Dose normalized concentration vs time plot following administration of IV cefoxitin in renal 

transplant recipients in early post-transplant period (black), historical healthy controls without probenecid 

treatment (blue), and historical healthy controls 

Cefoxitin concentration-time data in healthy volunteers reported by Vlasses et al [1] was used as historical healthy 

controls. 
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Visually, the dose normalized concentration-time curves suggest that renal transplant 

recipients experience a higher exposure of cefoxitin when compared to healthy volunteers not 

treated with probenecid. There was no statistically significant difference in cefoxitin exposure 

when comparing renal transplant recipients and healthy volunteers who are treated with 

probenecid. A summary of pharmacokinetic parameters for IV cefoxitin in these subjects is 

provided in Table 25. 

Table 25. Comparison of dose normalized cefoxitin PK parameters between healthy controls ± 1 g probenecid 

administered orally 1 hr prior to cefoxitin administration and in renal transplant recipients 

PK Parameters 

Historical Healthy 

Controls 

(mean±SD) 

Historical 

Healthy Controls                       

+ 1g Probenecid  

(mean±SD) 

Renal Tx 

Recipients 

(mean±SD) 

*p- value 

AUC0-∞/Dose 

(mg*hr/L)/g 
68.5 ± 8.1 170.1 ± 43.9

₹
 176.2 ± 58.0 

0.0001 

t1/2 (Hr) 0.6 ± 0.1 1.5 ± 0.2
₹
 1.3 ±0.6 0.0070 

Vz (L) 17.5 ± 5.1 16.1 ± 5.2 13.9 ± 4.4 0.090 

CLTotal (mL/min) 246.2 ± 29.8 105.8 ± 37.5
₹
 104.8 ± 34.7 0.0001 

CLRenal (mL/min) 205.6 ± 24.9 88.3 ± 31.3
₹
 87.5 ± 30.0 0.0001 

CLSecretion (mL/min) ~117 - 74.1 ± 24.8 - 

Cefoxitin concentration-time data in healthy volunteers reported by Vlasses et al [1] was used as historical healthy 

controls. AUC0-∞: area under the concentration-time curve from time dose administration to infinite time; t1/2: half-

life; Vz: terminal volume of distribution; CLTotal: cefoxitin total clearance; CLRenal: cefoxitin renal clearance; 

CLFiltration: cefoxitin filtration clearance; CLSecretion: cefoxitin secretion clearance; Tx: transplantation 

* comparing healthy controls and renal Tx recipients;
₹
 comparing healthy controls and healthy controls + probenecid  

 

Renal transplant recipients had significantly higher dose normalized exposures of 

cefoxitin when compared to healthy volunteers who were not administered probenecid 

(176.2±58.0 vs 68.5±8.10 mg*hr/L/g). Total clearance (CLTotal) and renal clearance (CLRenal) 

were significantly lower in renal transplant recipients when compared to healthy volunteers who 

were not administered probenecid.  CLsecretion in healthy controls was estimated to be about 117 



 141 

mL/min by subtracting CLRenal in probenecid treated arm from CLRenal in the control arm. For this 

estimate probenecid was assumed to have blocked all the anionic secretion in healthy volunteers. 

Contribution of CLSecretion when compared to CLTotal was considerably higher in renal transplant 

recipients (71% vs 48%). Cefoxitin exposure, CLTotal, CLRenal, and t1/2 were statistically similar 

between renal transplant recipients and healthy volunteers who were administered 1 gram of 

probenecid 1 hr prior to cefoxitin administration. 
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5.5 DISCUSSION 

Following transplantation, renal transplant patients have only one functioning kidney that is 

subjected to various insults such as prolonged CI, CNI exposure, opportunistic infections, BKVN 

and acute TCMR. Clinicians routinely monitor changes in filtration capacity to evaluate allograft 

function and adjust dose/frequency of renally cleared drugs, including those that are primarily 

secreted. A better understanding of changes in secretory capacity following renal transplantation 

is needed to optimize pharmacotherapy of renally secreted drugs. This study is one of the first 

attempts to systematically assess renal anionic secretory capacity in LDRT and DDRT recipients. 

Longitudinal changes in cefoxitin exposure and renal secretory clearance in early post-transplant 

period was studied to understand the effect of renal transplantation on renal anionic secretory 

function; differences in cefoxitin exposure and renal secretory clearance between DDRT and 

LDRT recipients was studied to assess the effect of prolonged cold ischemia on renal anionic 

secretory capacity; dose normalized cefoxitin exposure and renal clearance in renal transplant 

recipients was compared with that of historical healthy controls to identify differences in renal 

anionic secretory capacity in renal transplant recipients. 

Cefoxitin is a suitable probe drug to assess the renal anionic secretion as more than 85% 

of the drug is eliminated unchanged in urine, with majority of renal clearance attributed to 

secretion. Probenecid is a potent inhibitor of organic anionic transporters and probenecid 

treatment was shown to increase IV cefoxitin exposure by 2.4-fold in healthy volunteers [1]. 

Based on this clinical observation and relative abundance of OAT transporters in renal epithelial 

cells, cefoxitin is thought to be primarily taken up into renal tubular epithelial cells by OAT1 and 
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OAT3 transporters. The drug transporters responsible for cefoxitin efflux across the apical 

membrane has not been identified yet, but MRP2 and MRP4 are thought to be involved in this 

process since they act as efflux transporter pairs on apical side for drugs that are taken up by 

OAT1 and OAT3 on the basolateral side of renal tubular epithelial cells (Figure 40). Probenecid 

was also shown to inhibit MRP2 and MRP4 [26, 27, 29-31]. 

 

Results of the longitudinal study shows that cefoxitin exposure and renal secretory 

clearance in renal transplant patients remains unchanged in the early post-transplant period when 

comparing cefoxitin PK within 14 days post-transplantation and that beyond 90 days post- 

transplantation (Table 22). There were no longitudinal differences in cefoxitin pharmacokinetics 

when LDRT and DDRT recipients were compared separately (Table 23 and Table 24). This 

suggests that there are no clinically significant changes in function of renal anionic transporters 

Figure 40. Orientation of OAT1/OAT3 uptake transporters and MRP2/MRP4 efflux transporters in renal 

proximal epithelial tubular cells [1] 
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in the early post-transplant period among patients without BKVN or Banff1A or higher acute 

TCMR. Half-life of cefoxitin in renal transplant patients was 1.3 ±0.6 hrs for both periods. 

The effect of prolonged CI in the presence of tacrolimus treatment was studied by 

comparing cefoxitin pharmacokinetics between DDRT recipients with 15.8±4.8 hrs CIT and 

LDRT recipients with 1.3±0.4 hrs CIT. There was no significant difference in cefoxitin exposure 

between DDRT and LDRT recipients during Part-1 (≤ 14 Days Post-Tx) and Part-2 (≥ 90 days 

Post-Tx) of the study (Table 23 and Table 24). These results show that renal anionic secretory 

capacity of allografts that are subjected to prolonged cold ischemia (in DDRT) is similar to that 

of allografts that are not subjected to prolonged cold ischemia (in LDRT). However, the LDRT 

group was primarily Caucasian and DDRT group was primarily African American. 

Although 47 de-novo renal transplant recipients were approached, only 15 consented to 

participate in the study. Some of the limitations in this prospective pilot study include limited 

number of study subjects in LDRT (n=7) and DDRT (n=8) groups. Of the 15 patients who 

participated in Part 1 of the study, only 9 (5 LDRT recipients and 4 DDRT recipients) completed 

Part 2 of the study. Difficulty obtaining IV access and scheduling conflict were the reasons for 

the 6 subjects to not complete Part 2 of the study. 

Cefoxitin renal clearance was estimated in 21 of the 24 PK studies as patients 

accidentally flushed-down the urine samples in 3 instances. Most urine samples were measured 

in urine collection jugs with the exception of a few instances where the study nurse recorded 

urine volumes using a urine hat. The average duration of urine collection was 4.3 ± 1.0 hrs. The 

amount of cefoxitin excreted unchanged into the urine for both study periods is presented in 

Table 26. There was no statistically significant difference in the amount of drug excreted into the 

urine between all four groups.  
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Table 26. Cefoxitin urine data 

Study grouping 

Duration of 

Urine 

Collection 

(Hr) 

Amount of Drug 

Excreted into 

Urine, Ae (mg) 

Percent of Drug 

Excreted into 

Urine (%) 

LDRT 4.0 ± 0.3 164.5 ± 25.6 82.1 ± 12.6 

DDRT 5.0 ± 1.8 189.1 ± 13.6 94.1 ± 7.7 

≤ 14 Days Post-Tx 4.5 ± 1.2 166.3 ± 24.3 83.2 ± 12.2 

≥ 90 days Post-Tx 4.5 ± 1.6 192.4 ± 11.5 95.4 ± 7.1 
LDRT: living donor renal transplant recipients; DDRT: deceased donor renal transplant recipients; Tx: 

transplantation 

Cefoxitin pharmacokinetics in renal transplant recipients in early post-transplant period 

was compared to that in historical healthy volunteers (with and without probenecid treatment) to 

understand differences in renal anionic secretory capacity between these two populations. Dose 

normalized cefoxitin exposure in renal transplant recipients was significantly higher 

(AUC0-∞/Dose: 176.2 ± 58.0 mg*hr/L/g) when compared to healthy controls who were not 

treated with probenecid (AUC0- ∞/Dose:  68.5 ± 8.1 mg*hr/L/g). Cefoxitin renal clearance was 

57.3% lower (renal-Tx: 87.5 ± 29.0 mL/min; healthy volunteers: 205.6 ± 24.9 mL/min) and half-

life was 2.2-fold higher (renal-Tx: 1.3 ± 0.6 hrs; healthy volunteers: 0.6 ± 0.1 hrs) in renal 

transplant recipients when compared to healthy volunteers. Contribution of CLSecretion when 

compared to CLTotal was considerably higher in renal transplant recipients (71% vs 48%). There 

was no statistically significant difference in cefoxitin pharmacokinetic parameters when 

comparing renal transplant recipients (1 functioning kidney) and healthy volunteers (2 

functioning kidneys) who were treated with 1 gram of oral probenecid 1 hour prior to cefoxitin 

therapy (Table 25). These findings suggest that renal anionic tubular secretion in renal transplant 

recipients is significantly lower compared to healthy volunteers. The findings of this study are 

consistent with the observations in the rat renal anionic transporter expressions in allografts that 

were subject to prolonged CI and tacrolimus treatment (Chapter 2.0 ). Although absolute gene 
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expression of OAT1, OAT3, MRP2 and MRP4 transporters in renal allografts has been 

quantitated using sensitive nCounter® assay (Chapter 3.0 ), a comparative quantitation in healthy 

renal tissue is currently not available. Currently published gene expression studies reported 

relative expression of renal transporters using semi-quantitative approaches (RT-qPCR and 

Microarray) [7, 8, 10]. In comparison to these findings, transporter gene expression studies in 

renal biopsies from patients with Banff IA or higher acute TCMR with interstitial fibrosis show 

that OAT system is significantly compromised in these patients (OAT1: 11-fold lower; OAT3: 

4.4-fold lower; MRP2: 6.78-fold lower; MRP4: 2.01-fold lower) when compared to biopsies 

from healthy allografts (Table 10). Preliminary clinical observations in renal transplant recipients 

with BKVN involving cidofovir treatment in the presence and absence of probenecid suggest 

that renal anionic secretory function is decreased in allografts with BKVN [100]. 

 

Historical healthy controls were used to compare the results of this prospective study in 

renal transplant recipients. The healthy volunteer study was conducted several decades ago with 

less sensitive bioanalytical methods in human serum. All healthy volunteers were young male 

subjects between the ages of 21 and 35 years. In this study the investigators did not estimate 

cefoxitin filtration clearance and so cefoxitin secretory clearance could not be accurately 

estimated in healthy volunteers. Assuming 1 g probenecid blocked all the anionic secretion in 

healthy volunteers, CLsecretion in healthy controls was estimated to be about 117 mL/min by 

subtracting CLRenal in probenecid treated arm from CLRenal in the control arm.  

Renal anionic secretory function in renal transplant recipients is reduced by 61% as 

evidenced by differences in cefoxitin pharmacokinetics between renal transplant recipients and 

healthy volunteers (no probenecid treatment). There were no differences in renal anionic 
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secretory capacity within de-novo renal transplant recipients who had no BKVN or acute TCMR 

and underwent rabbit anti-thymocyte globulin based induction regimen and tacrolimus based 

maintenance immunosuppression. Results of this study suggest that cefoxitin secretion per 

functioning kidney is higher in renal allografts when compared to healthy kidneys. 

Low-dose cefoxitin was well tolerated by study subjects with no adverse events. Four-

hour PK study was sufficient to characterize cefoxitin secretion in this patient population. 

Currently transplant clinicians adjust dosage and frequency of all renally excreted anionic drugs 

based on CLCr. This study shows that renal transplant recipients would need significantly lower 

dosage of drugs that are renally secreted via organic anionic transport system despite having 

normal CLCr (LDRT recipients: 55.9 ± 19.5 mL/min; DDRT recipients: 52.5 ± 8.4 mL/min) post-

transplantation for dosing renally cleared drugs. 

A prospective study evaluating renal anionic secretion in renal transplant recipients with 

no complications, BKVN, acute TCMR and in healthy volunteers is warranted. A cefoxitin 

micro-dosing pharmacokinetic study with limited sampling and dried-blood-spot based sample 

collection should be conducted in renal transplant patients in order to validate cefoxitin micro-

dosing, limited and minimally-invasive sampling strategy in this population.  A validated study 

will give us the ability to evaluate renal anionic secretion in more renal transplant patients and 

would give clinicians the opportunity to optimize pharmacotherapy of renally secreted drugs. 
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6.0  PHYSIOLOGICALLY BASED PHARMACOKINETIC MODELING OF 

OAT/MRP TRANSPORT SYSTEM IN RENAL TRANSPLANT RECIPIENTS 
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6.1 ABSTRACT 

Renal allografts are subjected to a unique set of injurious conditions such as prolonged CI, CNI 

induced nephrotoxicity, BKVN and varying grades of acute TCMR. Tubular damage caused by 

these factors could lead to alteration in the expression and activity of renal drug transporters 

which may eventually affect the clearance of drugs that are predominantly cleared by renal 

secretion. Renal OATs are specifically of interest in the context of renal transplant recipients as 

they are involved in the clearance of various medications prescribed to renal transplant 

recipients. OAT1/OAT3 renal uptake transporters and MRP2/MRP4 efflux transporter are 

thought to work as a paired transport system to secrete anionic drugs. Cefoxitin is a suitable 

probe drug to assess the renal anionic secretion as it primarily undergoes anionic secretion, it has 

a short half-life, good safety profile, and offers feasibility to conduct PK studies with low doses 

within a short study duration. In the present study, PBPK modeling approach was used to help us 

gain a better understanding of the impact of physiological changes following renal 

transplantation on the disposition of cefoxitin. Full-PBPK model of IV cefoxitin in healthy 

subjects was built and validated. Virtual renal transplant population was developed in SimCyp® 

PBPK software and cefoxitin PBPK model was validated in this population. The PBPK model 

incorporated organic anionic transport system based disposition of cefoxitin and its disposition 

into 12 major tissues in the body. The model was robust in predicting cefoxitin exposure in 3 

independent studies (healthy subjects and renal transplant recipients) across a dose range of 200-

2000 mg. All predicted IV cefoxitin PK parameters fell well within ±14% range of the 

corresponding PK parameters calculated from observed studies. With this PBPK model we have 

the ability to predict drug exposure of cefoxitin and other anionic drugs that are primarily 

disposed by renal OAT systems in renal transplant recipients. 
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6.2 INTRODUCTION 

Kidney transplantation is the treatment of choice for the patients diagnosed with ESRD with 

more than 16,000 kidney transplants performed in the US every year [3, 76]. Renal allografts are 

subjected to a unique set of injurious conditions such as prolonged CI before being transplanted 

into the recipient, warm reperfusion injury immediately after transplantation, exposure to 

nephrotoxic CNI based immunosuppression therapy, acute/chronic rejection of the organ, and 

bacterial/fungal/viral infections post-transplantation [3, 76, 78, 79, 84-86]. The tubular damage 

caused by these factors could lead to alteration in the expression and activity of renal drug 

transporters which primarily reside in renal tubular epithelial cells. This damage may eventually 

affect the clearance of drugs that are predominantly cleared by renal secretion. As described in 

the prospective cefoxitin clinical pharmacokinetic study in renal transplant recipients 

(Chapter 5.0 ), anionic secretory capacity of renal allografts is reduced by 61% as evidenced by 

differences in cefoxitin pharmacokinetics between renal transplant recipients and historical 

healthy controls. This study showed that renal transplant recipients would need significantly 

lower dosage of drugs that are renally secreted via organic anionic transport system despite 

having normal eGFR for dosing drugs (LDRT recipients: 55.9 ± 19.5 mL/min; DDRT recipients: 

52.48 ± 8.39 mL/min) post-transplantation. 

Renal organic anionic transporters are specifically of interest in the context of renal 

transplant recipients as they are involved in the clearance of various medications prescribed to 

renal transplant recipients. OAT1 and OAT3 renal uptake transporters are considered to be the 

most important renal organic anionic transporters by the US FDA and EMA for their relative 
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abundance, role in drug disposition and drug-drug interactions [9]. For the disposition of various 

anti-infective medications, MRP2 and MRP4 are thought to be the efflux partners for OAT1 and 

OAT3 [26, 27, 29-31].   

Cefoxitin is a suitable probe drug to assess the renal anionic secretion as more than 85% 

of the drug is eliminated unchanged in urine, with majority of renal clearance attributed to 

anionic secretion, a short half-life (0.59 ± 0.13 hrs in healthy volunteers; 1.3 ±0.6 hrs in renal 

transplant recipients), good safety profile [1, 129] and offers feasibility to conduct 

pharmacokinetic studies with low IV/IM doses within a short study duration. Based on clinical 

observations and relative abundance of OAT transporters in renal epithelial cells, cefoxitin is 

thought to be primarily taken up into renal tubular epithelial cells by OAT1 and OAT3 

transporters. The drug transporters responsible for cefoxitin efflux across the apical membrane 

has not been identified yet, but MRP2 and MRP4 are thought to be involved in this process. 

The present study was conducted to gain a better understanding of the impact of 

physiological changes following renal transplantation on the disposition of drug substrates of 

renal anionic transport system. Physiologically based pharmacokinetic (PBPK) modeling 

approach was used to help us gain this understanding. PBPK modeling is a very comprehensive 

and relatively inexpensive strategy to address the impact of various clinical pharmacotherapeutic 

and physiological factors that impact drug dosing. PBPK modeling approach incorporates a 

drug’s physiochemical properties, human physiological variables and population variability 

estimates to predict drug exposure [9, 29, 85, 129, 148]. Because population PBPK models 

incorporate anatomical, physiological, and drug transporter attributes, any physiological 

alterations induced due to disease, age, gender, genetic polymorphism, and other 

pathophysiologic conditions can be captured by such a model. To the best of our knowledge, the 
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use of PBPK modeling in predicting cefoxitin exposure has not been explored in healthy and 

renal transplant populations. The objective of this work was to build and validate a PBPK model 

for IV cefoxitin in healthy adults and renal transplant recipients to study the significance of 

changes in OAT transport system. 
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6.3 METHODS 

Cefoxitin PBPK modeling and simulations were conducted using SimCyp® population-based 

simulator v15.1 (SimCyp limited, Sheffield, UK). Systematic and extensive literature search in 

MEDLINE through PubMed was performed to identify published physicochemical properties 

(Table 27), plasma protein binding of cefoxitin, and clinical trials using IV cefoxitin in healthy 

volunteers. These data were tabulated and digitized where necessary for PBPK model building or 

model validation. GetData Graph Digitizer V.2.26 [149] was used to digitize published cefoxitin 

clinical pharmacokinetic data. 

Table 27. Summary of cefoxitin physiochemical parameters 

Parameter Value 

MW (g/mol) 427.45 

Log Po:w -0.020 

Compound type Monoprotic Acid 

pKa1  2.2 

B/P 0.55* 

fu 0.25* 
Source: Pubchem/ DrugBank and cefoxitin package insert[129, 150] 

MW: molecular weight; logP: logarithm of the octanol to water partition 

coefficient, pKa: negative logarithm of the acid dissociation constant, 

B/P: blood to plasma partition coefficient; fu: Plasma fraction unbound; 

*parameters were fitted by non-linear mixed effect modeling strategy 

using parameter estimation module of SimCyp®. Unity and 0.26 were 

used as initial estimates for B/P and fu.  
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6.3.1 General Workflow for Model Building and Model Validation 

A full PBPK model was initially developed for IV cefoxitin using physiochemical properties 

(Table 27) [129, 150] and published IV cefoxitin clinical PK data in healthy subjects [1]. 

Following IV administration, cefoxitin was modeled to enter the systemic circulation through 

venous blood (Figure 41). 

A model naïve IV cefoxitin clinical PK dataset was used to perform model validation in 

healthy volunteers by comparing mean AUC0-∞, CLTotal, CLRenal and t1/2 values between the 
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Figure 41. Compartmental structure of the full IV cefoxitin PBPK model in healthy 

volunteers 
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observed and predicted data. CLSecretion was not compared for healthy volunteer model since 

eGFR was not available in the healthy volunteer datasets used to build and validate the model. 

After establishing a validated IV cefoxitin PBPK model in healthy volunteers, a cefoxitin PBPK 

model in renal transplant recipients was built and validated by creating a virtual renal transplant 

recipient population in SimCyp® and validating cefoxitin PBPK model using the clinical PK 

data obtained from cefoxitin PK study in renal transplant population (Chapter 5.0 ). Cefoxitin 

AUC0-∞, CLTotal, CLRenal, CLSecretion and t1/2 pharmacokinetic parameters between the observed and 

predicted renal transplant data was compared.  

For the validations, we performed visual predictive checks by using plots of fitted and 

predicted against the observed mean concentration-time profiles. Fifth to 95
th

 percentile intervals 

(PI) were calculated to show the overall inter-patient variability. The goal was to use IV cefoxitin 

PBPK model to predict AUC0-∞, CLTotal, CLRenal and t1/2, and compare it to observed data. The 

criterion for model validation is the difference of the mean predicted and observed AUC0-∞, 

CLTotal, CLRenal and t1/2 in 100 virtual subjects should fall ± 25%. There is no established FDA 

guidance regarding an acceptable error range that should be used for the evaluation of predicted 

data by PBPK models. Other investigators in this field have used up to a 2-fold error criterion for 

model validation. [151, 152] 

AUC0-t is the drug exposure between time zero and t hours (the last blood collection time 

point) and this was estimated using trapezoidal method. AUC0-∞ is the drug exposure between 

zero hours and infinite time and this was estimated by the summation of AUC0-t and extrapolated 

exposure from Clast to infinite time (AUClast-∞= Clast/k), where k is the terminal disposition rate 

constant. CLTotal was calculated per the following equation: 

http://aac.asm.org/content/60/6/3558.full
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CLTotal = dose/AUC0–∞ 

Cmax is the observed maximus concentration after administration of a dose. CLRenal was 

calculated per the following equation: 

CLRenal= (Ae(0-t))/ AUC0-t 

Where Ae(0-t) is the amount of drug eliminated in the urine in time ‘t’. 

In renal transplant recipients Cefoxitin tubular reabsorption was assumed to be negligible 

(0 mL/min), cefoxitin filtration clearance (CLFiltration) and tubular secretion clearance (CLSecretion) 

were estimated using the following equations: 

CLFiltration = fu x CLCr 

CLSecretion = CLRenal – CLFiltration 

Where fu is the fraction of cefoxitin unbound (0.26) [129] and CLCr is the creatinine clearance 

which is estimated using the Cockcroft Gault equation: 

CLCr =  (140-age)(weight kg) / (72 X SrCr) in mL/min 

multiplied by 0.85 for female subjects 

 

6.3.2 IV Cefoxitin PBPK Model Development in Healthy Volunteers 

6.3.2.1 Absorption component 

IV cefoxitin PBPK model was developed and so absorption specific parameters were not 

estimated and incorporated into the model.  
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6.3.2.2 Distribution component 

Tissue composition and blood flow rates outlined by SimCyp® for the virtual healthy volunteer 

population was used for building IV cefoxitin PBPK model (Figure 42and Figure 43). 

 

 

 

 

 

 

Figure 42. Tissue composition parameters used for building IV cefoxitin PBPK model in healthy volunteer 

population. 

Water; IW : % Intracellular Water; NL : % Neutral Lipids; NP : % Neutral Phospholipids; AP : % Acidic 

Phospholipids; Kp,Alb : tissue-plasma partition coefficient for serum albumin; Kp,LPP : tissue-plasma partition 

coefficient for  lipoproteins 
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Cefoxitin reference volume of distribution at steady state (Vss = 0.167 L/kg) was 

Figure 43. Blood flow rates associated with each physiological compartment that were used for building IV 

cefoxitin PBPK model in healthy volunteer population. 

Screenshot from SimCyp® population-based simulator v15.1 (SimCyp limited, Sheffield, UK). 
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estimated from the data reported by Vlasses et al [1] using the following equation: 

Vss = (Dose x AUMC0-∞) / (AUC0-∞)
2
 

Where AUMC0-∞ is the areas under the moment curve from time of administration to infinite 

time. PBPK distribution component was built using cefoxitin physicochemical properties tissue 

to plasma partition coefficients (Kp) for all major tissue specific physiological compartments for 

cefoxitin were estimated. Predicted Vss was estimated by serial addition of plasma volume (Vp), 

erythrocyte volume (Ve) and volumes associated with each major tissue (Vt) [153].  

Vss = Vp + Ve × (E: P) + ∑ Vt × Kp 

Where E:P represents erythrocyte to plasma partitioning. The E:P is estimated using the 

SimCyp® parameter estimation modules based on the information of blood to plasma ratio and 

hematocrit. 

Tissue specific Kp values of cefoxitin for the full-PBPK model were estimated using the 

Rogers and Rowland method [154, 155]. This model accounts for tissue water volume to be split 

into intra- and extra cellular components, addition of the tissue acidic phospholipid fraction and 

takes account of the extent of ionization of a compound at the pH of the concerned compartment. 

Rogers and Rowland method of estimating Kp values enable us to predict transporter mediated 

disposition of drug compounds [154, 155]. 
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Cefoxitin tissue specific Kp values for 12 major physiological tissues estimated using 

Rogers and Rowland method are presented in Table 28.  

Table 28. Distribution parameters for cefoxitin drug profile 

Parameter Value 

Model Full PBPK 

Tissue Partition Coefficients (Kp) 

Adipose 0.067 

Bone 0.133 

Brain 0.148 

Gut 0.230 

Heart  0.240 

Kidney 0.247 

Liver 0.164 

Lung 0.292 

Pancreas 0.141 

Muscle 0.030 

Skin 0.100 

Spleen 0.182 
Predicted Kp values for all tissues using 

Rodgers and Rowland method [154, 155] 

 

6.3.2.3 Metabolism component 

Since cefoxitin is primarily excreted into the urine as unchanged drug (85% unchanged) and 

there is lack of evidence of specific drug metabolism enzymes involved in clearance of cefoxitin, 

enzymatic metabolism of cefoxitin was not incorporated into this model [129] and the remainder 

clearance (~15%) was attributed to the default additional systemic clearance in SimCyp® 

Simulator. 
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6.3.2.4 Excretion component: 

Cefoxitin is extensively secreted into the urine as unchanged drug. Clinical pharmacokinetic 

studies in the presence and absence of probenecid, suggest a significant involvement of renal 

organic anionic transport system in its disposition. In order to model cefoxitin renal transporter 

mediated disposition, the default renal OAT uptake transporter in the SimCyp® healthy 

volunteer population was considered to be a combined OAT1/OAT3 active renal uptake 

transport entity and the default renal MRP efflux transporter was considered to be a combined 

MRP2/MRP4 active efflux transport entity. A full-PBPK permeability-limited kidney model 

(Mech-KiM) was considered for cefoxitin PBPK modeling. 

Initial estimates of intrinsic clearance (CLint) attributed to uptake and efflux transport 

system was estimated from cefoxitin CLsecretion which was calculated from clinical 

pharmacokinetic data used to build the cefoxitin PBPK model [1]. Intrinsic clearance attributed 

to uptake and efflux transport system is expressed in ‘µL/min/millions of proximal tubular cells’ 

and this was estimated by normalizing cefoxitin CLSecretion in the absence of probenecid with 

number of proximal tubular cells in an average kidney (7980 million cells; [156, 157]). In all 

modeling exercises, CLint associated with passive permeability was assumed to be negligible. 

Initial estimates of CLint OAT and CLint MRP were calculated to be 26 µL/min/millions of 

proximal tubular cells based on CLsecretion of 205.6 ± 24.9 mL/min (Table 25). The final model 

estimates of CLint OAT and CLint MRP were estimated using the parameter estimation module within 

SimCyp®. CLint OAT value of 65 µL/min/millions of proximal tubular cells and CLint MRP value of 

50 µL/min/millions of proximal tubular cells yielded the best final model fit when comparing 

model predictions to the observed data based on the validation criteria set forth. 
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After the final IV cefoxitin PBPK model was built, cefoxitin PK parameters in 

100 age-matched virtual healthy volunteers (21-35 years old) were compared to those calculated 

from PK data reported by Vlasses et al. [1]. The prediction model dosing administration was 

matched to that of the observed clinical study and a PK sample every 10 seconds was considered 

for the model predicted PK profile. 

6.3.3 IV Cefoxitin PBPK Model Validation in Healthy Volunteers 

Cefoxitin clinical pharmacokinetic data in healthy volunteers reported by Ko et al [2] was used 

for model validation. Cefoxitin clinical pharmacokinetic data following IV administration of 2 

grams cefoxitin over 5 min in healthy volunteers was used for validating the built IV cefoxitin 

PBPK model. One hundred virtual healthy subjects spread over 10 trials were used for the PBPK 

simulation. 

As mentioned above, visual predictive checks were performed by using plots of fitted and 

predicted against the observed mean concentration-time profiles. The goal was to use IV 

cefoxitin PBPK model to predict AUC0-∞, CLTotal, CLRenal and t1/2, and compare it to observed 

data. The criterion for model validation is the difference of the mean predicted and observed 

AUC0-∞, CLTotal, CLRenal and t1/2 in 100 virtual healthy subjects should fall ± 25%. 

6.3.4 Virtual Renal Transplant Population 

Virtual renal transplant population was built by modifying existing SimCyp® healthy volunteer 

population [156].  Since renal transplant recipients have only one functioning kidney, the number 

of functioning nephrons was halved in the custom-built virtual renal transplant population to 
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0.807 million nephrons per subject from 1.615 million nephrons in healthy adults. Since the 

cefoxitin exposure increased by 2.6-fold and renal secretory capacity went down by about 60% 

in renal transplant recipients (Chapter 5.0 ), the abundance of OAT and MRP transport proteins 

was lowered by ~60% from the individual baseline values. Although OAT and MRP quantitative 

gene expression in renal allografts was investigated (Chapter 3.0 ), their quantitative expression 

in healthy kidney tissues is currently not available and so change in anionic transport activity 

was used to build this model. Changes in albumin level and hematocrit levels were not sensitive 

to cefoxitin exposure and clearance and so these parameters were unchanged in the virtual renal 

transplant population. 

6.3.5 IV Cefoxitin PBPK Model Validation in Renal Transplant Population 

Cefoxitin clinical pharmacokinetic data in renal transplant recipients presented in Chapter 5.0  

which involved IV administration of 200 mg cefoxitin over 2-3 min in renal transplant recipients 

was used for validating the built IV cefoxitin PBPK model in virtual renal transplant population. 

One hundred virtual renal transplant subjects spread over 10 trials were used for the PBPK 

simulation. 

As mentioned above, visual predictive checks were performed by using plots of fitted and 

predicted against the observed mean concentration-time profiles. The goal was to use IV 

cefoxitin PBPK model to predict AUC0-∞, CLTotal, CLRenal, CLSecretion and t1/2, and compare it to 

observed data. The criterion for model validation is the difference of the mean predicted and 

observed AUC0-∞, CLTotal, CLRenal, CLSecretion and t1/2 in 100 virtual subjects should fall ± 25%. 
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6.4 RESULTS 

Six healthy volunteers who participated in cefoxitin pharmacokinetic studies conducted in the 

absence of orally administered probenecid by Vlasses et al. were used as historical controls [1]. 

All subjects were between 21 and 35 years of age and within ±10% of ideal body weight and 

evaluated to be healthy based on physical examinations and results of laboratory screening 

studies as determined by the investigators [1]. In this study, the investigators administered 2 

grams of cefoxitin as an IV push over 3 minutes. Linear plots of cefoxitin serum concentration 

versus time for these 6 subjects is shown Figure 44. Cefoxitin concentration-time data in these 

subjects was used to build the cefoxitin PBPK model.   

Figure 44. Concentration vs Time plot of 2000 mg cefoxitin given as IV push over 3 min to 

healthy subjects. 

Data was reported by Vlasses et al and was used to build cefoxitin PBPK model [1]. 
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6.4.1 IV Cefoxitin Final PBPK Model-Build in Healthy Volunteers  

The final IV cefoxitin PBPK model in age matched healthy volunteers with predicted means of 

concentration-time profile and 90% PI overlaid with the observed data reported by Vlasses et al 

is provided in Figure 45 [1]. As shown, the observed data was within the 90% PI of the 

variability observed around the predicted mean exposure. The predicted and observed mean 

concentration-time profiles were visually similar.  

The accuracy of the predicted means of AUC0-∞, CLTotal, CLRenal and t1/2 were within ±5% 

of the observed means (Table 29). 

Figure 45. Concentration-time profiles of final-model prediction and observed data in healthy volunteers. 

Exposure profiles following administration of 2000 mg cefoxitin given as IV push over 3 min to 100 virtual healthy 

subjects and 6 historical healthy subjects along with 5
th

 and 95
th

 percentile population variability limits. Data was 

reported by Vlasses et al [1] and was used to build cefoxitin PBPK model. 
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Table 29. IV cefoxitin PBPK model prediction vs observed parent dataset 

PK parameters 

Vlasses et al. [1] 

Observed 
Predicted 

% Change 

mean (SD) mean (SD) 

CLTotal (L/hr) 16.72 (3.28) 16.9 (6.08) 1.08 

CLRenal (L/hr) 13.86 (1.53) 14.22 (5.66) 2.60 

AUC0-∞ (mg.hr/L) 136 (16.7) 137.18 (58.97) 0.87 

t1/2 (hr) 0.8 (0.2) 0.82 2.50 
SD: Standard deviation; % change is the percentage change between predicted and observed 

parameters 

6.4.2 IV Cefoxitin Final PBPK Model -Validation in Healthy Volunteers 

The cefoxitin PBPK model in healthy volunteers was validated using a model-naïve clinical PK 

dataset reported by Ko et al [2] where 2000 mg of IV cefoxitin was administered over 5 min to 

16 healthy male volunteers between the ages of 20 and 49 years. The model prediction in age 

matched virtual healthy subjects with predicted means of concentration-time profile and 90% PI 

overlaid with the observed data reported by Ko et al is provided in Figure 46 [2]. The predicted 

and observed mean concentration-time profiles were visually similar. The accuracy of the 

predicted means of AUC0-∞, CLTotal, CLRenal and t1/2 were within ±8% of the observed means 

(Table 30). 
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Table 30. IV cefoxitin PBPK model prediction vs observed model naïve dataset 

PK parameters 

Ko et al. [2] 

Observed 
Predicted 

% Change 

mean (SD) mean (SD) 

CLTotal (L/hr) 16.74 (1.76) 16.93 (5.98) -1.14 

CLRenal (L/hr) 13.26 (2.05) 14.28 (5.54) -7.69 

AUC0-∞ (mg.hr/L) 129 (13.23) 135.44 (54.89) -4.99 

t1/2 (hr) 0.81 (0.1) 0.825 -1.85 
SD: Standard deviation; % change is the percentage change between predicted and observed 

parameters 

 

 

Figure 46. Concentration-time profiles of model predicted and observed data in healthy volunteers 

(Validation). 

Exposure profiles following administration of 2000 mg cefoxitin given as IV push over 5 min to 100 virtual healthy 

subjects and 16 historical healthy subjects along with 5
th

 and 95
th

 percentile population variability limits. Data was 

reported by Ko et al [2] and was used to validate cefoxitin PBPK model. 
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6.4.3 IV Cefoxitin PBPK Model in Renal Transplant Patients 

The cefoxitin PBPK model in renal transplant recipients was validated using a model-naïve 

clinical PK dataset reported in Chapter 4, where 200 mg of IV cefoxitin was administered over 

2-3 min to 15 living donor and deceased donor renal transplant recipients. The model prediction 

in age matched virtual renal transplant subjects with predicted means of concentration-time 

profile and 90% PI overlaid with the observed is provided in Figure 47. 

Figure 47. Concentration-time profiles of model prediction and observed data in renal transplant patients. 

Exposure profiles following administration of 200 mg cefoxitin given as IV push over 3 min to 100 virtual renal 

transplant subjects and 15 renal transplant recipients along with 5
th

 and 95
th

 percentile population variability limits. 

Observed clinical PK data reported in detail in Chapter 5.0 was used to validate cefoxitin PBPK model in renal 

transplant recipients.  
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The predicted and observed mean concentration-time profiles were visually similar with 

the exception of the first time-point. Since cefoxitin undergoes rapid disposition following 

administration as an IV push, collecting a very earlier first cefoxitin sampling time-point 

immediately after dose administration is critical to better capture the true exposure of cefoxitin. 

The earliest data-point in the renal transplant patients was earlier (3-5 min post dose 

administration) than the earliest data-point in the healthy subject datasets (10 min) used to build 

and validate the base model. The accuracy of the predicted means of AUC0-∞, CLTotal, CLRenal, 

CLSecretion and t1/2 were within ±19% of the observed means (Table 31). 

 

Table 31. IV cefoxitin Transplant PBPK model prediction vs observed model naïve dataset 

PK parameters 
Renal-Tx: Observed PBPK-Tx: Predicted % 

Change mean (SD) mean (SD) 

CLTotal (L/hr) 104.8 (34.7) 96.9 (35.5) -7.5 

CLRenal (L/hr) 87.5 (29.0) 76.8 (38.7) -12.2 

AUC0-∞ (mg.hr/L) 35.2 (11.6) 34.7 (18.8) -1.4 

t1/2 (hr) 1.3 (0.6) 1.5 (0.3) 13.3 

SD: Standard deviation; Tx: Transplantation; % change is the percentage change between predicted and 

observed parameters 
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6.5 DISCUSSION 

Most drugs that are eliminated by tubular secretion primarily undergo active transport into the 

lumen of the proximal tubule. For a drug to be successfully cleared it is usually a substrate of an 

uptake and efflux pair of transporters such as in the case of cefoxitin where OAT1/3 and MRP2/4 

are thought to be involved in the uptake and efflux activities respectively in the renal epithelial 

cells [26, 27, 29-31]. Renal organic anionic transporters are specifically of interest in the context 

of renal transplant recipients as they are involved in the clearance of various medications 

(acyclovir, cidofovir, fluoqionolone antibiotics, several cephalosporine antibiotics, etc.) 

prescribed to renal transplant recipients. OAT1 and OAT3 renal uptake transporters are 

considered to be the most important renal organic anionic transporters by the US FDA and EMA 

for their role in drug disposition and drug-drug interactions [9]. For the disposition of various 

anti-infective medications, MRP2 and MRP4 are thought to be the efflux partners for OAT1 and 

OAT3. 

Cefoxitin is a suitable probe drug to assess the renal anionic secretion as more than 85% 

of the drug is eliminated unchanged in urine, with majority of renal clearance attributed to 

anionic secretion, it also has a short half-life (0.6 ± 0.1 hrs in healthy volunteers); 1.3 ±0.6 hrs in 

renal transplant recipients), good safety profile [1, 129], and offers feasibility to conduct 

pharmacokinetic studies with low IV/IM doses within a short study duration. A prospective 

clinical PK study using cefoxitin as a probe drug was conducted in renal transplant patients to 

assess the effect of renal transplantation on anionic secretory capacity in this population (Chapter 

5.0 ). There were no differences in renal anionic secretory capacity in de-novo LDRT and DDRT 
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recipients during the early post-transplant period. However, renal anionic secretory capacity in 

renal transplant recipients was reduced by 60%. 

In this study, we built and validated full-PBPK model of IV cefoxitin in healthy subjects 

and renal transplant recipients. The full-PBPK model incorporates organic anionic transport 

system based disposition of cefoxitin and its disposition into 12 major tissues in the body. The 

model was robust in representing the multi-compartment first order disposition of cefoxitin. The 

predicted concentration-time profiles in the study-matched virtual patient populations are 

consistent with observed data across 3 independent studies among healthy subjects and renal 

transplant recipients across a dosage range of 200 mg to 2000 mg. The predicted IV cefoxitin PK 

parameters fell well within ±25% validation range of the corresponding PK parameters 

calculated from the IV cefoxitin observed studies. 

Cefoxitin was modeled as a substrate of OAT/MRP transporter system based on clinical 

evidence of increased cefoxitin exposure (2.4-fold increase) in the presence of high dose 

probenecid, a known potent organic anionic transport blocker [1]. Since there is currently no in-

vitro transporter data available on the disposition kinetics of cefoxitin by OAT1/OAT3 uptake 

transporters and MRP2/MRP4 efflux transporters, uptake transporters were modeled together as 

OAT transport system and efflux transporters were modeled together as paired MRP transport 

system. Renal OAT1 and MRP2 abundancies incorporated in SimCyp® were used to model their 

contributions in virtual healthy subjects. Cefoxitin intrinsic clearance for OAT uptake and MRP 

efflux was initially estimated by normalizing cefoxitin secretory clearance to the number of 

proximal epithelial cells assuming uniform distribution of transport proteins in all tubular cells. 

Parameter estimation module within SimCyp® was used to further optimize CLint values for 
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OAT and MRP transport systems [156]. On performing exploratory sensitivity analysis, changes 

in cefoxitin exposure was found to be sensitive to OAT intrinsic clearance value when compared 

to MRP intrinsic clearance values. CLint OAT of 65 µL/min/millions of proximal tubular cells and 

CLint MRP value of 50 µL/min/millions of proximal tubular cells yielded the best final model fit 

when comparing model predictions to the observed data based on the validation criteria set forth. 

Due to lack of specific in-vitro data of MRP2/4 mediated cefoxitin disposition, this model cannot 

differentiate the percent contribution of MRPs and OATs. In future, with availability of in-vitro 

data this model can be updated and used to tease out these differences. 

Renal allografts undergo abuses such as prolonged cold ischemic injury, calcineurin 

inhibitor based nephrotoxicity, BKVN and various grades of rejection. Each of these injuries or a 

combination of varying degrees of these injuries could compromise the renal anionic transport 

system. Transporter gene expression studies in renal biopsies from patients with Banff IA or 

higher acute TCMR with interstitial fibrosis show that OAT system is significantly reduced in 

these patients (OAT1: 11.0-fold lower; OAT3: 4.41-fold lower; MRP2: 6.78-fold lower; MRP4: 

2.01-fold lower) when compared to biopsies from healthy allografts (Table 10). This PBPK 

modelling work was conducted to gain a better understanding of the impact of such physiological 

changes following renal transplantation on the disposition of drug substrates of renal anionic 

transport system. Figure 48 outlines the predicted concentration-time plots of cefoxitin in 

subjects with varying functional abundancies of renal OAT1/3 transporters. 
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Figure 48. Predicted concentration-time profiles following administration of 2000 mg cefoxitin given as IV 

push over 3 min to virtual population representative with varying functional abundancies of OAT1/3 uptake 

transporters. 
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Table 32 outlines projected fold changes in cefoxitin exposure (AUC0-∞) in healthy 

subjects and renal transplant recipients with varying abundancies of OAT1/3 uptake transporters 

in renal proximal epithelial cells of renal allografts. Based on gene expression data and these 

projections, renal transplant recipients with Banff 1A or higher acute TCMR and interstitial may 

experience up to 4-fold higher exposure (AUC0-∞) of cefoxitin when compared to healthy 

volunteers.  

Table 32. Projected fold changes in cefoxitin AUC0-∞ among renal transplant recipients when compared to 

healthy volunteers with two functioning kidneys 

Percent 

Abundance of OAT1/3 

Fold Change in cefoxitin AUC0-∞ Relative to 

Healthy Volunteers 

Healthy Volunteers 

With 2 Functioning 

Kidneys 

Renal-Tx Recipients with 

1 Functioning Kidney 

100% OAT1/3 abundance 1.0 1.7 

75% OAT1/3 abundance 1.2 2.0 

50% OAT1/3 abundance 1.4 2.3 

25% OAT1/3 abundance 1.5 2.6 

10% OAT1/3 abundance 2.4 4.0 

 

Using the developed PBPK model we have the ability to predict drug exposure of 

cefoxitin and other narrow therapeutic index drugs (such as cidofovir) that are primarily disposed 

by renal OAT systems in renal transplant recipients. Renal drug transporter expression data from 

renal biopsies can be combined with PBPK modeling strategies to optimize pharmacotherapy in 

renal transplant recipients.  
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7.0  SUMMARY AND FUTURE DIRECTIONS 
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7.1 SUMMARY AND CLINICAL INFERENCE 

The kidney is a vital organ in the human body. It conserves essential nutrients and eliminates 

toxins, drugs and their metabolites by filtration, tubular secretion and re-absorption processes. 

Organic anionic and organic cationic transport systems expressed in the proximal tubular cells 

are primarily responsible for renal secretion of endogenous and exogenous compounds. OAT1, 

OAT3 and OCT2 renal up-take transporters along with their efflux transport partners (MRP2/4 

and MATE1/2-K) are considered to be the most important renal anionic and cationic transporters 

by the United States FDA and EMA for their high renal abundance, role in drug disposition of 

most commonly prescribed drugs and clinically significant drug-drug interactions [5-9].  

Administration of transporter inhibitors, changes in physiology and renal diseases affect 

renal function and can alter the activity of specific renal transporters and ultimately alter 

exposure of drugs that are cleared by renal secretion. Research over the last decade has focused 

on elucidating expression and activity of renal transporters and their influence on the 

pharmacokinetic and pharmacodynamic response of renally secreted drug. Renal dysfunction, 

AKI, CKD, glomerulonephritis and diabetic nephropathy have been shown to differentially 

regulate renal OAT and OCT transporters [53-55]. 

Kidney transplantation is the treatment of choice for patients diagnosed with ESRD [3, 

75] with over 19,000 kidney transplantations performed in the USA in 2016 alone [available 

from: www.unos.org]. Progressive loss of renal function following transplantation is shown to be 

caused by various allograft insults to the allograft associated with renal transplantation such as, 

cold ischemic injury, CNI nephrotoxicity, BKVN and T-cell mediated rejection with fibrosis. 
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Inflammatory cytokines such as TNFα, IL-6, and IL-1β and the vasoactive hormones such as 

endothelin-1 (ET1), which are associated with these insults are known to be involved in the 

regulation of drug transporters [87, 88]. These insults may lead to altered regulation or injury to 

the renal anionic and cationic transport systems including counter transport systems that 

contribute to SLC transporter activity and ATPase activity. The overall hypothesis of this work is 

that injuries caused by prolonged cold ischemia, CNI nephrotoxicity, varying grades of TCMR 

and BKVN would significantly alter the renal anionic secretory function in renal transplant 

recipients. Additionally, clinical observations in renal transplant recipients with BKVN involving 

cidofovir treatment in the presence and absence of probenecid suggest that renal anionic 

secretory activity may be compromised in allografts with BKVN [100]. 

It is important to systematically characterize the anticipated changes in secretory function 

of renal allografts to ensure optimal pharmacotherapy in transplant recipients. This body of work 

is one of the first attempts to understand changes in expression and functional activity of renal 

transporters after renal transplantation. 

In chapter 2.0 , we described the pre-clinical evaluation of changes in expression of 

important renal drug transporters in renal allografts with transplantation associated complications 

by studying the effect of prolonged CI, transplantation surgery and tacrolimus treatment on the 

gene expression of Oat1, Oat3, Oct2, Mate1, and Mdr1a transporters in a rat renal transplant 

model using TaqMan RT-qPCR assays. The mRNA expression of Slc22a2 (Oct2) was 

significantly higher in rat kidneys that were subjected to 24 hours of CI. Expression of Slc22a6 

(Oat1), Slc22a8 (Oat3), Slc22a2 (Oct2) and Slc47a1 (Mate1) were significantly lower 

immediately following syngeneic rat kidney transplantations at 3 hrs and 12 hrs post-

transplantation; the gene expression of Oat1 and Oat3 recovered by 4 weeks post-transplantation, 
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but Oct2 and Mdr1a did not. This suggests that Oct2 transporter is more susceptible to insults by 

CI and transplantation when compared to Oat1/3 transporters. Observations from this study are 

consistent with results from previous unpublished work on Oat1/3 expression in orthotopic 

syngeneic rat kidney transplant model as well as results from liver ischemia/reperfusion studies. 

Among rats that were treated with tacrolimus following allogeneic or syngeneic transplantations, 

only those with allografts subjected to 24 hours of prolonged CI had a significantly lower 

expression of all 5 important drug transporters. The renal allografts may have increased 

susceptibility to nephrotoxic profile of high dose tacrolimus following injury due to prolonged 

cold ischemia. Rat kidney transplant model captures changes in renal transporter expression 

following transplantation and serves as a good model for future renal transporter studies.  

In the next part of the study (Chapter 3.0 ), we evaluated the effect of prolonged CI with 

tacrolimus treatment, BKVN and acute TCMR with fibrosis on the gene expression of 36 

important drug transporters in renal biopsies collected from renal transplant patients. FFPE renal 

tissue biopsies procured from LDRT and DDRT recipients were utilized and gene expression of 

transporters were quantified by NanoString nCounter® gene expression assay. nCounter® gene 

expression assay offers high sensitivity and reproducibility in a single-tube without the necessity 

for a cDNA creation or mRNA replication steps like in the case of qPCR based quantitation. This 

method also gives us the ability to measure absolute expression as compared to relative 

expression with traditional methods. The nCounter® assay has been successfully used to 

quantitate expression of gene from FFPE samples [123].  

This work showed that relative expressions of important ABC and SLC transporters in all 

renal allografts were similar to the relative expressions observed in non-transplanted kidneys 

reported by Nishimuta et al with the exception of SLC22A12 (URAT1) which was shown to have 
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the highest relative expression in non-transplanted healthy renal tissues [7]. DDRT recipients had 

significantly higher expression of SGLT (2.7-fold) when compared to LDRT recipients 

suggesting that prolonged CI may have a protective mechanism in renal allografts to conserve 

glucose. Biopsies from patients with BKVN had a significantly lower expression of NHE3 (5.25-

fold lower) when compared to controls, suggesting that renal transplant recipients with BKVN 

may have a compromised sodium homeostasis. Allografts with BKVN also had lower mean and 

median gene expression counts for OAT1, OAT3, MRP2 and MRP4 transporters when compared 

to control allografts but this decline was not statistically significant. Expression of several 

transporters involved in the renal OAT system was significantly compromised in allografts with 

acute TCMR and fibrosis (OAT1: 11-fold lower; OAT3: 4.4-fold lower). Results of this study 

suggest that renal transplant recipients may experience significant changes in renal transporter 

mediated disposition of various endogenous and exogenous compounds and systematic 

evaluation of renal secretory activity is warranted in this patient population. 

For the evaluation of anionic transport capacity in renal transplant patients, Cefoxitin, a 

second-generation cephalosporin antibiotic was selected as a probe drug due to its short half-life, 

acceptable safety profile, its properties as a substrate of anionic transport system, and feasibility 

to conduct pharmacokinetic studies with low IV/IM doses within a short study duration. To date, 

several HPLC-UV chromatographic techniques have been developed for quantification of 

cefoxitin in biological fluids. All currently published methods are limited by their requirement 

for relatively large volume of serum or plasma (100-1000 µL), longer run-times (elution time: 

5.30 to 12.9 min), and higher LLOQ (1.00 to 100 µg/mL) [128, 131, 136-143]. In chapter 4.0 , 

we describe the development and validation of a rapid and sensitive UPLC-MS/MS assay to 

detect cefoxitin in human plasma following administration of low doses of cefoxitin. This assay 
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uses cefuroxime as the IS, requires SPE for sample processing, has a short run time (6 min), uses 

limited sample volume (20µL) and gives us the ability to perform cefoxitin quantitative 

assessment in the range of 25-50,000 ng/mL enabling us to perform low dosing and limited 

volume sampling studies for estimation of renal secretory changes in renal transplant patients. 

Similar strategy was used for quantitation of cefoxitin in human urine. 

In chapter 5.0 , we (1) evaluated the longitudinal changes in renal anionic secretory 

capacity of a renal allograft, (2) studied the effect of prolonged CI on renal anionic secretory 

capacity in kidney transplant patients on tacrolimus therapy, and (3) and compared renal anionic 

secretory capacity of renal transplant recipients with historical healthy volunteers. Cefoxitin 

pharmacokinetic studies were performed in 15 de-novo renal transplant recipients following 

administration of 200 mg IV cefoxitin within 14 days post-transplantation, and beyond 90 days 

post-transplantation. Historical data from cefoxitin pharmacokinetic in healthy volunteers was 

used to compare results.  

Results of this study show that renal anionic secretory capacity of allografts that are 

subjected to prolonged cold ischemia (in DDRT) is similar to that of allografts that are not 

subjected to prolonged cold ischemia (in LDRT). Dose normalized cefoxitin exposure in renal 

transplant recipients was significantly higher (AUC0-∞/Dose: 176.2 ± 58.0 mg*hr/L/g) when 

compared to healthy controls who were not treated with probenecid (AUC0- ∞/Dose:  68.5 ± 8.1 

mg*hr/L/g). Cefoxitin renal clearance was 57.3% lower and half-life was 2.2-fold higher in renal 

transplant recipients when compared to historical healthy controls. These findings suggest that 

renal anionic transport function in renal transplant recipients is significantly lower compared to 

healthy volunteers. However, percent contribution of renal secretion per kidney is higher for 

renal allografts. The findings of this clinical study are in accordance with the findings of renal 
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anionic transporter expression changes observed in the renal allograft transplant model 

(Chapter 2.0 ). 

In order to gain a better understanding of the impact of physiological changes following 

renal transplantation, PBPK modeling approach was used to predict and study the impact of 

changes in OAT transport system on disposition of anionic drug substrates in renal transplant 

patients. In Chapter 6.0 , we described the model building and validation of IV cefoxitin PBPK 

models in healthy adults and renal transplant recipients. PBPK modeling is a relatively 

inexpensive strategy to address the impact of various clinical pharmacotherapeutic and 

physiological factors that impact drug dosing. PBPK modeling approach incorporates a drug’s 

physiochemical properties, human physiological variables and population variability estimates to 

predict drug exposure [9, 29, 85, 129, 148]. To the best of our knowledge, the use of PBPK 

modeling in predicting cefoxitin exposure has not been explored in healthy and renal transplant 

populations.  

Cefoxitin is a class-3 drug in the biopharmaceutical drug classification scheme. It was 

modeled as a substrate of OAT/MRP transporter system based on clinical evidence of increased 

cefoxitin exposure (2.4-fold increase) in the presence of high dose probenecid, a known potent 

organic anionic transport blocker [1]. Since there is currently no in-vitro transporter data 

available on the disposition kinetics of cefoxitin by OAT1/OAT3 uptake transporters and 

MRP2/MRP4 efflux transporters, uptake transporters were modeled together as OAT transport 

system and efflux transporters were modeled together as paired MRP transport system. Cefoxitin 

intrinsic clearance for OAT uptake and MRP efflux was initially estimated by normalizing 

cefoxitin secretory clearance to the number of proximal epithelial cells assuming uniform 
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distribution of transport proteins in all tubular cells. Parameter estimation module within 

SimCyp® was used to further optimize CLint values for OAT and MRP transport systems [156]. 

Cefoxitin exposure was relatively sensitive to OAT intrinsic clearance value when compared to 

MRP intrinsic clearance values. CLint OAT of 65 µL/min/millions of proximal tubular cells and 

CLint MRP value of 50 µL/min/millions of proximal tubular cells yielded the best final model fit 

when comparing model predictions to the observed data based on the validation criteria set forth.  

The final models were robust in representing the multi-compartment first order 

disposition of cefoxitin. The predicted concentration-time profiles in the study-matched virtual 

patient populations are consistent with observed data across 3 independent studies among healthy 

subjects and renal transplant recipients across a dosage range of 200 mg to 2000 mg. The 

predicted IV cefoxitin PK parameters fell well within ±25% validation range of the 

corresponding PK parameters calculated from the IV cefoxitin observed studies. 

FDA and EMA require drugs to be studied in renally compromised patients and alternate 

dosing schedules are provided for drugs that are significantly renally cleared. However, all FDA 

and EMA approved renal dosing schedules are based on changing filtration function (CLCr) of 

the patients and do not account for changing secretory function. Currently, all renally cleared 

drugs, even those that are significantly renally secreted are routinely dose and dose-frequency 

adjusted by transplant clinicians based on their regulatory labeling. Renal transplant recipients 

who have sufficient renal filtration for dosing renally cleared drugs (CLCr ≥ 50 mL/min), but 

significantly reduced secretory function, would be at risk for over exposure. 

The results of this study make a convincing argument to monitor renal secretory function among 

renal transplant recipients in order to optimize their pharmacotherapy. 
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7.2 LIMITATIONS 

Rat gene expression study (Chapter 2.0 ): 

 Limitations include possible inherent differences in regulation of drug 

transporters between rats and humans, variability in the expression of 

housekeeping gene at different allograft conditions, use of only one housekeeping 

gene and use of very high dosage tacrolimus regimen. Changes in mRNA 

expression do not always translate into changes in protein expression and 

transporter activity. 

Human gene expression study (Chapter 3.0 ): 

 Custom code-set used for this assay was designed to facilitate transporter 

expression studies for various tissue types; some of the transporter targets on the 

code-set were not functionally relevant for renal tissue due to low relative 

expression levels (example: SLCO1B1 and SLCO1B3). Changes in mRNA 

expression do not always translate into changes in protein expression and 

transporter activity and this is a limitation to directly relate these changes to 

transporter activity changes. Use of FFPE tissues may have non-specific mRNA 

degradation compared to frozen tissues. The number of biopsies evaluated in 

BKVN group were not sufficient to see a statistically significant difference in 

expression of OAT/MRP transporters. Predictions based on expression studies 

assume no change in co-transporter and/or ATPase activity. 
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Cefoxitin clinical PK study (Chapter 4.0 ): 

 Limited number of study subjects were evaluated in LDRT (n=7) and DDRT 

(n=8) groups. The LDRT group was primarily Caucasian and DDRT group was 

primarily African American. Of the 15 patients who participated in Part 1 of the 

study, only 9 (5 LDRT recipients and 4 DDRT recipients) completed Part 2 of the 

study. Difficulty in obtaining IV access and scheduling conflict were the reasons 

for the 6 subjects to not complete Part 2 of the study. 

 Cefoxitin renal clearance was estimated in 21 of the 24 PK studies as patients 

accidentally flushed-down the urine samples in 3 instances. Most urine samples 

were measured in urine collection jugs with the exception of a few instances 

where the study nurse recorded urine volumes using a urine hat. Variability in 

measurement of volume by these two methods is a limitation of this study. 

Fraction of drug unbound to plasma proteins was assumed to be 0.26 for the 

purposes of calculating CLFiltration. There may be variability in protein binding in 

renal transplant patient population and this is a limitation. Biopsy samples from 

the study patients were analyzed for transporter expression but expression-activity 

relationship could not be established since there was a lack of transporter 

expression data in healthy volunteers. 

 The historical healthy volunteers were studied and reported several decades ago 

with less sensitive bioanalytical methods in human serum. All healthy volunteers 

were young male subjects between the ages of 21 and 35 years. In this study the 

investigators did not estimate cefoxitin filtration clearance and so cefoxitin 
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secretory clearance could not be accurately estimated in healthy volunteers. 

Assuming 1 g probenecid blocked all the anionic secretion in healthy volunteers, 

CLsecretion in healthy controls was estimated to be about 117 mL/min by 

subtracting CLRenal in probenecid treated arm from CLRenal in the control arm.  

Cefoxitin PBPK study (Chapter 6.0 ): 

 Uptake transporters (OAT1/3) were modeled together as OAT transport system 

and efflux transporters (MRP2/4) were modeled together as paired MRP transport 

system. Due to lack of in-vitro cefoxitin disposition data in OAT1/3 and MRP2/4 

transporter, we are not able to discriminate the percent contribution of each of 

these transporters in the elimination of cefoxitin. Parameter estimation module 

within SimCyp® was used to further optimize CLint values for OAT and MRP 

transport systems. 
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7.3 FUTURE DIRECTIONS 

1) Quantitative gene expression of important renal transporters should be systematically 

evaluated in larger cohorts of renal allografts with BKVN, CNI nephrotoxicity, and varying 

grades of acute and chronic TCMR and they should be compared to corresponding 

expressions in healthy non-transplanted renal tissues or tissues from transplant patients with 

normal biopsies. This work will give us the ability to correlate transporter expression changes 

to activity changes and enable us to enhance PBPK models in renal transplant patients. 

2) Flash frozen renal biopsy samples should be tested for co-transporter expression or ATP 

content. 

3) A cefoxitin micro-dosing pharmacokinetic study with limited sampling and dried-blood-spot 

based sample collection should be conducted in renal transplant patients in order to validate 

cefoxitin micro-dosing, limited and minimally-invasive sampling strategy in this population.  

A validated study will give us the ability to evaluate renal anionic secretion in more renal 

transplant patients and would give clinicians the opportunity to optimize pharmacotherapy of 

renally secreted drugs. 

4) Renal anionic secretory capacity of renal transplant patients with BKVN and varying grades 

of acute TCMR should be evaluated using a validated cefoxitin micro-dosing, limited and 

minimally-invasive sampling strategy. 

5) Renal cationic secretory capacity of renal transplant patients with transplantation associated 

complications should be evaluated by prospectively studying plasma and urine 

pharmacokinetics of metformin (probe for OCT2 and MATE1/2K transporters). 
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6) Longitudinal studies should be performed pre- and post-transplantation in order to minimize 

inter-subject variability in transporter expression. 

7) Robust PBPK models should be built and validated for renally secreted anionic and cationic 

drugs in renal transplant patients by incorporating post-transplantation physiological changes 

in this patient population. 

 

Currently there is very limited knowledge on changes in expression and activity of important 

transporters following renal transplantation and associated complications. The proposed future 

research direction will help us gain a better understanding of changes renal secretory capacity in 

renal transplant patients and help clinicians improve pharmacotherapy in this patient population. 
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A.1 ABSTRACT 

Title: Effect of Prolonged Cold Ischemia in the Presence of Tacrolimus Therapy on Renal 

Secretory and Vitamin-D Metabolic Capacity of Transplanted Kidneys 

Renal transplantation (Tx) is the treatment of choice for patients with various end-stage renal 

diseases. Since kidney is the primary excretory organ for endogenous compounds, drugs and 

their metabolites, changes in renal graft function (filtration or secretion by transporter or 

reabsorption) would significantly alter the clearance and exposure (AUC) of endogenous 

compounds as well as renally filtered or secreted drugs. Kidney also contributes significantly to 

the metabolism of various endogenous compounds including Vitamin-D. Kidneys from living 

and deceased donors that are transplanted into recipients normally undergo numerous insults 

including cold ischemia and warm-reperfusion injury, and are also subjected to nephrotoxicity 

due to calcineurin inhibitors (CNI). These physiological and pharmacological stresses can alter 

the expression and functional capacity of renal drug transporters and endogenous metabolic 

enzymes. The main objectives of this study are to improve dosing of prescription medications 

such as organic anionic drugs (Acyclovir, Cefoxitin, Cidofovir, Ciprofloxacin and others) that 

are renally secreted in deceased donor renal transplant (DDRT) and living donor renal transplant 

(LDRT) recipients, and to better understand Vitamin-D metabolism in these patients. 

Our studies were prompted by our recent observations in animal models of kidney 

transplantation. After syngeneic rat kidney-Tx we have observed a significant down-regulation 

(3-14.5-fold decline) of m-RNA of several renal transporters (Oat1, Oat3, Oct2, Mdr1a, and 

Mate1) following 24hr cold ischemic time (CIT) and 4 weeks of tacrolimus treatment post-Tx. 
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However, this effect was not observed in rats that did not undergo 24hrs of CIT, indicating 

greater susceptibility of kidneys to tacrolimus with prolonged CIT. Reduced expression and 

activity of organic anionic secretion (renal OAT1/3 and MRP2 transporters) is expected to 

increase the systemic exposure of several anionic drugs that are primarily secreted in to the urine 

through this pathway. We hypothesize that endothelial damage and vasoconstriction associated 

with prolonged CIT in combination with CNI induced renal tubular damage will significantly 

alter the expression and activity of OAT1, OAT3 and MRP2 transporters, and vitamin D 

metabolizing enzymes in a transplanted kidney. In this study, we propose to evaluate the function 

of renal OAT1/3 and MRP2 transporters using cefoxitin, a second generation cephalosporin 

antibiotic, that is primarily cleared by renal tubular secretion. Calcitriol  to calcidiol ratio will 

serve as a measure of vitamin-D metabolic capacity. Living donor and deceased donor renal 

transplant recipients (LDRT: n=10 with cold ischemic time of 12 hrs) will be recruited for this 

study. All of them will be treated with tacrolimus as part of standard of care. Within 1-week 

post-Tx and approximately 3 months post-Tx, a single dose of 200 mg of Cefoxitin will be 

administered iv and 4 ml of blood will be collected at approximately 0, 15 min, 30 min, 1hr, 

1.5hr, 2hr, 3hr and 4hrs. Total urine voided over 8 hours will also be collected. The 

concentrations of cefoxitin in plasma and urine will be measured using a validated HPLC-UV 

method. Renal clearance and renal secretory clearance of cefoxitin will be calculated. Calcitriol 

to calcidiol ratio in plasma samples collected prior to transplantation, at approximately 1-week 

post-Tx and at 3 months post-Tx will provide a measure of Vitamin-D metabolic capacity of the 

kidney in LDRT and DDRT recipients. Due to increased damage to the tubular secretory 

transporters, DDRT recipients with longer CIT (>12 hr) would have a significantly lower 

secretion and metabolic capacity when compared to recipients with shorter CIT. 
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A.2 INVESTIGATORS 

Name of the Principal Investigator:   

Raman Venkataramanan 

Address of Principal Investigator: 

University of Pittsburgh, 

School of Pharmacy, 

718 Salk Hall, 

3501 Terrace St, 

Pittsburgh, PA, 15261 

 

List of Co-Investigators:  

 

 

 

 

 

 

 

Last First Organization 

Hariharan Sundaram U of Pgh | School of Medicine | Medicine 

Humar Abhinav U of Pgh | School of Medicine | Surgery 

Kalluri 
Hari 

Varun 
U of Pgh | School of Pharmacy | Pharmaceutical Science 

Randhawa Parmjeet U of Pgh | School of Medicine | Pathology 

Sood Puneet U of Pgh | School of Medicine | Medicine 

Tevar Amit U of Pgh | School of Medicine | Surgery 

Venkataramanan Raman U of Pgh | School of Pharmacy | Pharmaceutical Science 
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A.3 STUDY OBJECTIVE AND SPECIFIC AIMS 

Objective: 

The primary objectives of this study is to evaluate changes in OAT1/3 and MRP2 mediated renal 

secretory clearance in deceased donor and living donor kidney transplant recipients. 

 

The Secondary objective of this study is to evaluate changes in Vitamin-D metabolism 

(conversion of calcidiol to calcitriol) in deceased donor and living donor kidney transplant 

recipients.  

    

  

Specific Aims:  
Hypothesis: 

Endothelial damage and vasoconstriction associated with prolonged cold ischemia in 

combination with calcineurin inhibitor mediated renal tubular damage will significantly down-

regulate the expression and activity of OAT1/3 and MRP2 transporters and Vitamin-D 

metabolizing enzyme (CYP27B1) in deceased donor kidney transplant recipients. 

 

Specific Aim 1: 

To study the longitudinal changes in the activity of OAT1/3 and MRP2 renal transporters as 

measured by cefoxitin renal tubular clearance in living donor renal transplant (LDRT) and 

deceased donor renal transplant (DDRT) recipients on tacrolimus therapy. 

 

Specific Aim 2: 

To study the longitudinal changes in Vitamin-D metabolic capacity by comparing calcitriol 

(1,25-dihydroxycholecalciferol) to calcidiol (25-hydroxycholecalciferolin) ratio in LDRT and 

DDRT recipients on tacrolimus therapy. 

 

Secondary Aims: 

1. To study the longitudinal changes in mRNA and protein expression of OAT1/3 and MRP2 

transporters in LDRT and DDRT recipients on tacrolimus therapy. 

2. To study changes in FGF23 levels as a surrogate marker for decompensated renal secretory 

and metabolic function due to prolonged CI and tacrolimus therapy in DDRT. 

3. To study the longitudinal changes in mRNA and protein expression of Vitamin-D receptor 

(VDR), and 25-hydroxyvitamin D-1 alpha hydroxylase (CYP27B1) in LDRT and DDRT 

recipients on tacrolimus therapy. 

4. To associate serum cytokine concentrations to changes in activity of transporters studied. 
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A.4 BACKGROUND 

Chronic kidney disease (CKD) is the ninth leading cause of death in the United States. An 

estimated 26 million adults or 13% of the US population is expected to have CKD. About 

500,000 CKD patients are classified as having end stage renal disease (ESRD) with an estimated 

glomerular filtration rate (eGFR) of less than 15 mL/min/1.73 m
2
. Kidney transplantation is the 

treatment of choice for the patients diagnosed with ESRD. About 16,000 kidney transplants are 

performed in the US every year. Renal allografts are subjected to a unique set of injurious 

conditions such as prolonged cold ischemia (CI) before being transplanted into the recipient, 

warm-reperfusion injury immediately after transplantation, exposure to nephrotoxic calcineurin 

inhibitor (CNI) based immunosuppression therapy, acute/chronic rejection of the organ, and 

bacterial/fungal/viral infections post-transplantation. The cold ischemic injury and nephrotoxic 

CNI therapy that the renal transplant recipients receive have been shown to lead to progressive 

loss of renal function with a five-year recipient survival of 84% for deceased donor kidney 

transplantations as compared to 91% for living donor kidney transplantations.  

Cold Ischemic Injury: 

Kidneys from deceased donors are typically preserved in University of Wisconsin preservation 

solution at 4C until a recipient is available for transplantation. This process of hypothermic 

preservation causes vasoconstriction and endothelial damage leading to cold ischemic injury to 

the graft. Cold ischemic injury is a non-specific renal tissue injury mediated by the release of 

hydroxyl radicals and cytosolic calcium. The renal proximal epithelial cells, which are primarily 

involved in the secretion of various drugs are also affected in a non-specific manner and we 

would expect this cold ischemic injury to alter the secretory capacity of the kidney.  
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Calcineurin Inhibitor Mediated Nephrotoxicity: 

Calcineurin inhibitors (CNI) are the most effective class of immunosuppressants available in 

transplant medicine for maintenance of immunosuppression and their use has dramatically 

improved short-term graft survival in solid organ transplant recipients. Currently 94% of all renal 

transplant recipients are on CNI based maintenance immunosuppressive regimen. However CNI 

therapy is riddled with an acute and chronic nephrotoxicity profile and is a major contributing 

factor in allograft damage and graft loss beyond 5 years post-transplantation. CNI nephrotoxicity 

is thought to involve a decrease in vasodilation factors such as prostaglandin E2 and nitric oxide 

along with an increase in vasoconstriction factors such as thromboxane, endothelin and renin-

angiotensin system. CNI inhibition of prolyl isomerase is also thought to cause protein synthesis 

impairment and accumulation of unfolded proteins, leading to endoplasmic reticulum 

enlargement.  

Change in Secretory Capacity of a Kidney Alters Drug Exposure: 

The tubular damage caused by cold ischemia and CNI could lead to alteration in the expression 

and activity of renal drug transporters and eventually affect the clearance of drugs that are 

predominantly cleared by renal secretion. 

Total renal excretion function of a drug is a combination of glomerular filtration, tubular 

secretion and tubular reabsorption. Most drugs that are eliminated by tubular secretion primarily 

undergo active transport into the lumen of the proximal tubule. Different adenosine triphosphate 

binding cassette (ABC) or solute carrier (SLC) uptake and efflux transporters are located in the 

proximal tubules of the kidneys. Organic cationic transporters (OCTs) and organic anion 

transporters (OATs) are examples of SLC uptake transporters that are located on the basolateral 

membrane of renal proximal epithelial cells pumping drug substrates from the blood side into the 
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cells. Multi-drug resistance proteins (MRPs), and multidrug and toxin extrusion proteins 

(MATEs) are examples of efflux transporters that are located on the apical side of the proximal 

epithelial tubular cells pumping drugs specific for them out of the cell and into the tubular 

lumen. For a drug to be successfully cleared it has to be a substrate of an uptake and efflux pair 

(eg. Cefoxitin: OAT1/3 and MRP2, respectively). Progressive kidney disease, acute kidney 

injury, or administration of transporter inhibitors can alter the activity of specific renal 

transporters and ultimately alter exposure of drugs that are cleared by those renal transporters.  

Renal dysfunction and CKD have also been shown to decrease rat Oct2, Oat1, Oat3 and Mate1 

mRNA and protein expression levels. MRP2 (part of ABC superfamily) efflux transporter levels 

have been shown to be regulated by inflammatory cytokines such as TNF-α, IL-6, and IL-1β and 

the vasoactive hormone endothelin-1 (ET-1). Since renal allografts undergo prolonged CI, warm 

reperfusion injury and nephrotoxic CNI therapy, it is important to characterize the anticipated 

change in secretory capacity of renal allografts to ensure an optimal exposure of the drugs in 

transplant recipients. 

Tacrolimus therapy in Combination with 24 hrs prolonged Cold Ischemia Reduces Selected 

Renal Transporter mRNA Expression in Transplanted Rat Kidneys: 

Our recent work on the mRNA expression of Slc22a6 (Oat1), Slc22a8 (Oat3), Slc22a2 (Oct2), 

Slc47a1 (Mate1), and Abcb1a (Mdr1a/Pgp) renal transporters in the male Lewis rats showed that 

24 hr Cold Ischemia in the presence of tacrolimus treatment has a significant down-regulatory 

effect on mRNA expression (3-14.5 fold decline) of the above mentioned 5 important renal 

transporters that are highly expressed in human renal tissues. This effect was reproduced after 

allogeneic transplantation. Interestingly, tacrolimus treatment mediated down-regulation of the 

selected transporters was absent in kidneys that were not subjected to 24 hrs of CI. These results 
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show that the tacrolimus mediated down regulation of renal transporter expression ooccurs only 

in the presence of prolonged cold ischemia. We expect to see similar results in the deceased 

donor renal transplant recipients who are also on tacrolimus based nephrotoxic calcineurin 

inhibitor maintenance therapy. 

Renal Function and Calcidiol metabolism: 

Vitamin-D is an essential steroidal hormone that has been associated with various functions 

including, calcium absorption, calcium, phosphate, and PTH homeostasis, modulation of cell 

growth, and immunomodulation. Recently Vitamin D has been studied for its potential utility in 

conditions that affect the immune system such as multiple sclerosis, type 1 diabetes, systemic 

lupus erythematosus, and solid organ transplantation. In animal kidney transplant models, 

supplementation with active vitamin D has shown beneficial with prolonged allograft survival. 

Kidneys are responsible for metabolizing majority of systemic calcidiol or inactive vitamin-D to 

its biologically active form Calcitriol (1,25-dihydroxycholecalciferol) by renal CYP27B1 

enzymes in renal proximal epithelial cells. Clinically plasma concentrations of calcidiol are 

normally measured for monitoring vitamin-D levels due to its prolonged half-life compared to 

calcitriol. However, in renal transplant recipients the metabolic capacity of a transplanted kidney 

might be significantly reduced secondary to prolonged cold ischemic injury and tacrolimus 

mediated nephrotoxicity. Therefore, by studying calcitriol to calcidiol concentration ratio at 

different time-points post-LDRT and DDRT we can get a better understanding of changes in 

vitamin-D metabolic capacity of the transplanted kidney. 
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A.5 SIGNIFICANCE 

Need for Optimal Pharmacotherapy of Secreted Drugs in Renal Transplant Recipients:  

Renal transplant recipients are susceptible to various infections derived from the kidney donor 

and infectious complications of the surgical procedure in the immediate post-transplantation 

period (about 1-month post-Tx). Donor derived infections in the immunosuppressed host are 

cytomegalovirus (CMV), herpes simplex virus (HSV), varicella zoster virus (VZV), 

meningococcus, syphilis, candida, and aspergillus. Pneumocystic carinii, protozoal diseases, 

fungal infections, and mycobacteria (tuberculosis) are some other pathogens that may cause 

infections in the immunosuppressed recipients in the first 6 months post-transplantation. 

Prophylactic regimens of anti-bacterial, anti-fungal, and anti-viral agents are routinely prescribed 

to renal transplant recipients to prevent these above mentioned infections. Most of these drugs 

such as acyclovir (OAT1), valacyclovir (PEPT1), cidofovir (OAT1), 

trimethoprim/sulfamethoxazole(OATs/OCTs), ciprofloxacin (OATs/MRPs) are secreted by 

various uptake and efflux renal transporters in addition to being filtered. Currently, the dose and 

frequency of administration of these drugs are adjusted based on the filtration capacity rather 

than taking in to consideration the secretory capacity of the transplanted kidney. CI, warm 

reperfusion injury, stress due to transplantation surgery, and nephrotoxic immunosuppressive 

drugs (tacrolimus) may affect the renal secretory capacity and possibly leave these patients at an 

increased risk for anti-infective drug toxicity or sub-therapeutic anti-infective coverage. 

Additionally, transplant recipients may also see significant pharmacodynamic changes or drug 

toxicities due to increased exposure of drugs prescribed to treat co-morbidities. For example, 

diabetic transplant recipients may experience increased exposure to metformin due to OCT2 and 

MATE1 inhibition leading to abnormal decline of blood glucose levels. 
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Importance of Studying the Activity of Organic Anion Transporters (OATs) in Renal Transplant 

Recipients: 

OAT1, OAT2, OAT3, and OAT4 are the 4 organic anionic transporters of the solute carrier 

superfamily expressed in human renal proximal tubular epithelial cells (RPTEC). OAT1, OAT2 

and OAT3 are involved in taking-up substrate drugs and endogenous compounds from the 

basolateral side facing the blood into the RPTEC cells. OAT4 is expressed on the apical side of 

the RPTEC cells and helps efflux its substrates from the cell into the tubular lumen. OAT1 and 

OAT3 renal uptake transporters are considered to be the most important by the Federal Drug 

Administration (FDA) and European Medicines Agency (EMA) for their role in drug disposition 

and drug-drug interactions. OAT1 is selective for smaller amphiphilic substrates whereas OAT3 

is selective for larger amphiphilic substrates. BCRP, MRP2, MRP4 and OAT4 are thought to be 

the efflux partners for OAT1 and OAT3. Since prolonged cold ischemia, transplantation, and 

calcineurin inhibitor therapy have been shown to cause considerable damage to the overall 

function of a transplanted kidney, we expect that the OAT1, OAT3 and MRP2 mediated organic 

anion substrate (eg. Cefoxitin) clearance would be altered. Studying the mRNA and protein 

expression as well as the secretory activity in renal transplant recipients would give us a better 

understanding to optimally dose OAT/MRP substrate drugs in renal transplant recipients. 
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A.6 RESEARCH DESIGN AND METHODS 

This is longitudinal, prospective, open-label, non-randomized, pharmacokinetic study in 

deceased donor and living donor renal transplant recipients. 

Subjects who have provided consent to participate in this study will undergo the following 

research related activities: 

Renal transplant recipients will participate in the study at 3 different time-points: immediately 

prior to transplantation (baseline), approximately '1-2 week post-transplantation' (when the 

Serum Creatinine level stabilizes) and at approximately '3 months follow-up visit following 

transplantation'. 

During the pre-transplantation time-point: 

Medical history, physical examination, biochemical parameters that are collected in the routine 

standard care of the subjects will be collected. A single blood sample collected from the patient 

for routine clinical care (biochemical parameters) will be used to assay for proinflammatory 

cytokines, calcidiol, calcitriol and FGF23 levels. A protocol needle biopsy will be obtained as 

per UPMC renal transplant guidelines prior to transplantation for routine clinical monitoring. A 

part of the biopsy that is not used for clinical monitoring will be used to quantitate mRNA and 

protein expression of OAT1, OAT3 and MRP2 transporters as well as VDR and CYP27B1. 

During the 1-2 week and 3 months post-transplantation time-points: 

Biochemical parameters that are collected in the routine standard care of the subjects will be 

collected. For the cefoxitin pharmacokinetic assessment, a single dose of 200 mg of Cefoxitin 

will be administered intravenously and 4 ml of blood will be collected at approximately 0, 15 

min, 30 min, 1hr, 1.5hr, 2hr, 3hr and 4hrs time-points post administration. Total urine voided 

over 8 hours from the time of administration of the drug will also be collected in 2 hour intervals. 
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The concentrations of cefoxitin in plasma and urine will be measured using a HPLC method. 

Proinflammatory cytokines, Calcidiol, calcitriol and FGF23 levels will also be quantitated from 

the 0 min time point blood sample. A total of 36 ml (about seven teaspoonful) of blood will be 

collected for each study. A total of 72 ml (about 14 teaspoonful) of blood will be collected 

during the entire study. 

A protocol needle biopsy will be obtained as per UPMC renal transplant follow-up care 

guidelines at the 3 months follow-up visit. A part of the biopsy that is not used for clinical 

monitoring will be used to quantitate mRNA and protein expression of OAT1, OAT3 and MRP2 

transporters as well as VDR and CYP27B1. 

In patients with unresolved delayed graft function as determined by the transplant care team, the 

cefoxitin pharmacokinetic study will be rescheduled to another date/time within the first 2 weeks 

post-transplantation when the serum createnine improves and stabilizes as determined by the 

clinicials. If the renal function remains to be unstable or is not improving beyond 2 weeks post-

transplantation, we will not be performing cefoxitin pharmacokinetic studies in these patients. 

Patients who experienced an acute rejection episode in the first 3 months following 

transplantation will not undergo cefoxitin pharmacokinetic studies as acute rejection may alter 

the expression and activity of renal OAT/MRP transporters and may interfere with the 

interpretation of the study results. 

The baseline blood samples from these patients will still be used for proinflammatory cytokines, 

calcitriol, calcidiol, and FGF-23 concentration measurements and baseline biopsy sample will 

still be used for mRNA and protein expression of OAT1, OAT3 and MRP2 transporters as well 

as VDR and CYP27B1 in these patients. 
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Personnel performing the procedures: 

Study staff and staff at clinic or physician’s office will perform the procedures. 

Location of procedures: Montefiore Hospital and clinics. 

Duration of procedures: Each study period will last a maximum of 8 hrs. The total duration of the 

entire study will be about 2 year. 

Blood samples collected for quantitation of cefoxitin, calcitriol and calcidiol (before and during 

pharmacokinetic studies) may be used to quantitate other biomarker and drug levels. 
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A.7 HUMAN SUBJECTS 

Subgroups 
Number to undergo 

research procedures 

Number to undergo 

screening 

procedures 

Deceased donor renal transplant recipients with kidneys 

that underwent more than 12 hours of cold ischemia 
10 20 

 

Deceased Donor Renal Transplant Recipients with Kidneys 

that underwent less than 12 hours of cold ischemia 
10 20 

 

Living Donor Renal Transplant Recipients 10 20 
 

 

Statistical justification: 

The KDIGO 2012 CKD classification and corresponding cefoxitin secretory clearance+/- 

standard deviation reported by Kampf el al following IV Cefoxitin administration are G1: 237+/-

108 ml/min; G3a: 171+/-51 ml/min; G4: 97+/-72 ml/min; G5: 29+/-13 ml/min. We performed 

our sample size calculation based on magnitude and variability observed in cefoxitin tubular 

secretory clearance in the above patients with varying degrees of renal function. We need 10 

renal transplant recipients in each of the 3 groups (1 LDRT control and 2 DDRT groups) with 2 

measurement time-points in each group to detect a change of at least 30% in tubular secretory 

clearance of cefoxitin between the deceased donor comparator groups and corresponding living 

donor control group. The Alpha and beta errors are set at 5% and 20% respectively. This 

calculation was based on ANOVA: Repeated measures, within-between interaction tests 

performed on G*Power software. 
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Inclusion Criteria:  

1. Have been scheduled for living or deceased donor renal allograft transplantation at UPMC 

2. Men and women aged between 18-65 years 

3. Subjects who are scheduled to receive de novo kidney transplant 

4. Subjects willing to sign informed consent form 

5. Be treated in accordance with the standard care protocols currently in effect for living and 

deceased donor renal transplant patients including immunosuppressants use and other elements 

of pre and post surgery 

Exclusion Criteria:  

1. Subjects receiving UNOS ECD organs 

2. Pregnant or breastfeeding women 

3. Re-transplantation 

4. Subjects with HIV or Hepatitis B/C 

5. Active tuberculosis 

6. Body mass index > 35 kg/m2 

7. Subjects who have developed malignancy or any medical condition that, in the investigator’s 

opinion, should not be treated with cefoxitin 

8. Subjects who can't undergo anti-thymocyte globulin based induction therapy 

9. Subjects allergic to tacrolimus or cefoxitin 

10. Subjects with unresolved delayed graft function by 14 days post-transplantation 

11. Subjects with a hemoglobin of 8 g/dl or less. 
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We want to exclude patients with the above-mentioned characteristics as we think patients with 

these factors would add additional variability to the transporter activity and Vitamin D metabolic 

capacity studies. The above-mentioned criteria such as hepatitis, greater BMI, etc are not 

exclusion criteria for renal transplantation at UPMC but are exclusion criteria specifically for this 

study. 
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A.8 POTENTIAL RISKS AND BENEFITS OF STUDY PARTICIPATION 

Research Activity: Cefoxitin  

Common Risks: Cefoxitin will be administered at 1/5th FDA approved dose (200 mg) and so 
the risk of common and serious adverse effects associated with cefoxitin is 
anticipated to be much lower. Diarrhea is most common adverse reaction 
reported with cefoxitin use (1-10%).   

Infrequent Risks: Hypersensitivity reaction to cefoxitin or any components of the formulation 
may lead to an allergic reaction.   

Other Risks: No Value Entered  
 

 

Research Activity: Collection of Medical Record Information  

Common Risks: No Value Entered  

Infrequent Risks: No Value Entered  

Other Risks: Breach of confidentiality  
 

 

Research Activity: Intravenous Blood Draws  

Common Risks: Bruising, bleeding, swelling, pain associated with intravenous blood draws.  

Infrequent Risks: Fainting, infection  

Other Risks: No Value Entered  
 

 

Research Activity: Intravenous Drug Administration  

Common Risks: Bruising, bleeding, swelling, pain associated with intravenous route of 
administration  

Infrequent Risks: Fainting, infection   

Other Risks: No Value Entered  
 

 
 

 

Steps taken to prevent or to minimize the severity of the potential risks: 

Study involves administration of cefoxitin intravenously and obtaining blood and urine samples. 

Collection of blood samples may pose minimal risk in-terms of bearable pain and risk for 

infection at the blood drawing site. Collection of urine poses no risk. 

Biopsy sample will be obtained only as per standard clinical protocol outlines in the UPMC renal 

transplant guidelines. 

 

 



 214 

 

[CONSENT FORMS AND STUDY SHEETS] 
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A.9 CONSENT TO ACT AS PARTICIPANT IN A RESEARCH STUDY 

 
TITLE:    Effect of Prolonged Cold Ischemia in the Presence of Tacrolimus 
Therapy on the Renal Secretory and Vitamin-D Metabolic Capacity of 
Transplanted Kidneys  
 
PRINCIPAL INVESTIGATOR:  
Raman Venkataramanan, Ph.D. Professor of Pharmaceutical Sciences and Pathology  

718 Salk Hall, University of Pittsburgh School of Pharmacy, 3501 Terrace Street, Pittsburgh, PA 15261, 

Phone: 412-400-7027  

 

Co-investigators:  

 

Department of Pharmaceutical Sciences:  
Hari Varun Kalluri,  

731 Salk Hall, School of Pharmacy, 3501 Terrace Street, Pittsburgh, PA 15261  

Phone: 816-223-9360  

 

Thomas Starzl Transplantation Institute:  
Sundaram Hariharan; Abhinav Humar, Puneet Sood, Parmjeet Randhawa, Amit Tevar,  

Miah Md Kowser; Thanukrishnan Harisudan 

Montefiore Hospital, 3459 Fifth Avenue, Pittsburgh, PA 15213  

Common Phone: 412-647-9966  

 

SOURCE OF SUPPORT: Clinical Pharmacokinetics Laboratory Funds  

 

Who is being asked to take part in this research study?  
You are being invited to take part in this research study because you will receive either a kidney from a 

living donor or deceased donor. Female and male subjects, between the ages of 18 and 65 who are going 

to undergo living or deceased donor kidney transplantations are being asked to participate in this clinical 

study. This study will take place at the University of Pittsburgh Medical Center- Montefiore Hospital, 

Pittsburgh, PA, and will include approximately 30 kidney transplant recipients.  

 

Why is this research being done?  
Since kidney is the primary organ that clears various drugs from the body, changes in function of the 

kidney would significantly alter how drugs are removed from the body. A decrease in the ability of the 
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kidney to remove medications from the body may cause increased drug related adverse effects. Kidneys 

that are transplanted into the recipients normally undergo numerous insults due to storage in cold 

preservation solution and use of drugs such as tacrolimus (Prograf®), which is necessary to prevent 

rejection of the transplanted kidney.  

 

The primary objective of this study is to determine the effect of storing the kidney in cold preservation 

solution and use of a drug called tacroimus on the ability of the kidney to remove drugs that are normally 

removed by the kidney. We plan to study this by administering a FDA approved antibiotic called 

Cefoxitin and looking at how fast it is removed from the body at two different time points following your 

kidney transplantation. The secondary objective of this study is to determine changes in a transplanted 

kidney’s ability to chemically change Vitamin D in the body. The results of the study will provide 

valuable information to the physicians and pharmacists to help improve proper dosing of drugs prescribed 

to future kidney transplant recipients.  

 

How will the study be done?  
If you decide to participate in this study, you will undergo a screening procedure and participate in the 

study at two times (at about 7 -14 days following transplantation and at 3 months following 

transplantation). The duration of the study will be a maximum of 8 hours at each time point. The entire 

duration of your participation would be about 100 days following your transplantation. We will be 

collecting information on your medical and surgical history from your hospital as well as surgical and 

clinic records during your study participation. All information collected will be confidentially held and 

used only for the purposes of the research study.  

 

Procedures  
Before any study-related tests and procedures are performed, you will be asked to read and sign a consent 

document.  

 

Screening Visit  
The Screening Visit will determine if you are qualified to take part in this study. The screening visit will 

occur after you sign the informed consent following your selection as a recipient for living donor or 

deceased donor kidney transplantation. The doctor will review and collect information about your medical 

history including but not limited to your age, gender, weight, height, medical history, as well as clinical 

laboratory test results indicative of your liver and kidney function and infection status. You will also have 

a physical examination and your vital signs will be measured. If you meet all the study participation 

conditions, you are eligible to enter the study. Pregnancy testing is normally performed as part of the 

standard of care. This information will be used to make sure that only female subjects, who are not 

pregnant, to participate in this study.  

 

Baseline Study (pre-transplantation): On the day of transplantation  

 At this time, informed consent will be confirmed by your doctor. Your doctor will make a final 

decision if you are still eligible to participate in this study.  

 A small piece of the kidney tissue (biopsy) is normally collected prior to transplantation as a part 

of routine clinical practice. Following the use of this tissue for clinical monitoring, if available a 

small part of the tissue that is no longer needed for clinical evaluation or decision-making will be 

stored for analysis as part of this study.  

 Blood sample collected for your routine clinical care prior to transplantation will be used for 

additional analysis as part of this study.  

Early Post-transplant study: around week 1 or 2 post-transplantation  
During the first week or two following transplantation, a 200mg or 1/5th regular dose of cefoxitin, an FDA 

approved antibiotic will be administered through a small tube inserted into your vein.  



 217 

 Blood samples (4 ml or approximately 1 teaspoonful) will be collected at approximately 0 min, 

15 min, 30 min, 1hr, 1.5hr, 2hr, 3hr and 4hr following administration of the drug. You will be 

asked to collect urine for 8 hours following the administration of the drug. Levels of cefoxitin and 

creatinine (a normal maker of your kidney function) will be measured. 

 Additionally 1 drop of blood following a finger-stick (similar to finger-stick obtained during 

blood glucose monitoring) at the identical time points mentioned above (0, 15 min, 30 min, 1hr, 

1.5hr, 2hr, 3hr and 4hrs) will be collected (total 8 blood drops). 

 

Late Post-transplant study: around 3 month post-transplantation  
This study will take place around your 3 month follow-up visit day. On this day the transplant clinical 

team will perform routine work-up. Female subjects will undergo a pregnancy test during this visit. 

Female subject will proceed with the study only if she is not pregnant.  

 

 As per UPMC renal transplant guidelines, a small piece of kidney tissue (biopsy) will be obtained 

for routine clinical care at 90 days post-transplantation. Following the use of the tissue for clinical 

monitoring, if available a small part of the biopsy that is no longer needed for clinical evaluation 

or decision-making will be stored for analysis for the purposes of this study.  

 Similar to the ‘early post-transplant study’, a 200mg dose of cefoxitin will be administered 

through a small tube inserted in to your vein.  

 Blood samples (4 ml or approximately 1 teaspoonful) will be collected at approximately 0 min, 

15 min, 30 min, 1hr, 1.5hr, 2hr, 3hr and 4hr following administration of the drug. You will be 

asked to collect urine for 8 hours following the administration of the drug. Levels of cefoxitin and 

creatinine (a normal maker of your kidney function) will be measured.  

 Additionally 1 drop of blood following a finger-stick (similar to finger-stick obtained during 

blood glucose monitoring) at the identical time points mentioned above (0, 15 min, 30 min, 1hr, 

1.5hr, 2hr, 3hr and 4hrs) will be collected (total 8 blood drops). 

 

The entire duration of the study is going to be about 100 days from the day of your transplantation.  

 

Blood samples collected during the study may be used for additional analysis as part of this study. 

 

Follow-up Procedures:  
The study staff will contact you via telephone within 24 hours of your discharge from the hospital (after 

the early post-transplant study). Study staff will also contact you within 24 hours following the 3 months 

follow-up visit (after the late post-transplant study). The purpose of the follow-up calls is to monitor and 

document any side effect that may occur due to cefoxitin (study drug). Diarrhea is the most commonly 

reported adverse effect. Allergic response, seizure, etc. are some of the rare but serious adverse reactions 

documented with cefoxitin use. Due to the nature of the drug, we do not anticipate any adverse-effects to 

persist beyond the follow-up call time frame.  
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Biological Samples for Future Research  
All biological samples already collected during your clinical visits may also be stored and used for future 

testing related to the study. The samples will be stored for a maximum of ten years in the Clinical 

Pharmacokinetics Laboratory at the University of Pittsburgh under the direct supervision of Investigator 

Dr. Raman Venkataramanan. Only members of the research team or laboratory personnel conducting the 

laboratory tests will have access to the samples. Samples will be labeled with the numerical code assigned 

to the subject in order to correlate with clinical data obtained during the study and only the study 

investigators will know to whom the sample belongs to. You will not be notified about any results from 

these tests, as they have no bearing on your medical management at this time.  

 

What are the possible risks, side effects, and discomforts of this research study?  
There may be certain risks associated with participation in this study. These may include the following:  

 

Risk associated with intravenous (through a catheter inserted into the vein of your arm) blood 

draws and drug administration:  
Bruising, bleeding, swelling, pain  

 

Risks associated with Cefoxitin:  
Cefoxitin will be administered at 1/5th FDA approved dose (200 mg) and so the risk of common and 

serious adverse effects associated with cefoxitin is anticipated to be much lower. Diarrhea is most 

common adverse reaction reported with cefoxitin use (1-10%). Allergic reactions to cefoxitin or any 

components of the formulation may occur. An allergic reaction may range from a rash to shortness of 

breath depending on the severity of the reaction. Your medical team at UPMC will be prepared 

appropriately treat any allergic episode.  

 

There is also a remote risk associated with breach of confidentiality  

 

What are possible benefits from taking part in this study?  

There is no direct benefit from participating in this study. However, your participation may help others in 

the future by what the doctors learn from your involvement in this study.  

 

What treatment or procedures are available if I decide not to take part in this research study?  

If you decide not to take part in this research study, you will undergo normal procedures associated with 

the living donor or deceased donor kidney transplantation.  

 

If I agree to take part in this research study, will I be told of any new risks that may be found during 

the course of the study?  

You will be promptly notified if, during the conduct of this research study, any new information develops 

which may cause you to change your mind about continuing to participate in this study.  

 

Will my insurance provider or I be charged for the costs of any procedures performed as part of this 

research study?  

Some of the procedures that you will undergo during this time are “research only services” that are being 

done only because you are in this study. These services will be paid for by the study and will not be billed 

to your health insurance company or you. Examples are measurement of cefoxitin in your blood and urine 

samples, biopsy analysis, etc.  

 

Some of the procedures that you will undergo during this study are considered to be “routine clinical 

services” that you would have even if you were not in the study. Examples are the actual kidney 

transplant surgery, other transplant related tests, immunosuppressive medications and routine care 
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medications, hospitalization and all associated care costs. These services will be billed to your health 

insurance company or you, if you do not have health insurance.  

 

You will be responsible for paying any deductibles, co-payments or co-insurance that are a normal part of 

your health insurance plan. If you have the Medicare Advantage Plan you could be billed as if you were a 

Fee-for Service patient. You may also be responsible for the total cost of the transplant under a 3rd party 

Medicare plan. You may want to get more detailed information about what “routine clinical services” 

your health insurance is likely to pay for. You may want to talk to a member of the study staff and/or a 

UPMC financial counselor to get more information.  

 

Will I be paid if I take part in this research study?  
For each study visit you will receive a sum of $50. For the two study visits you will receive a total of 

$100.  

 

Who will pay if I am injured as a result of taking part in this study?  
University of Pittsburgh investigators and their associates who provide services at UPMC recognize the 

importance of your voluntary participation in their research studies. These individuals and their staffs will 

make every reasonable effort to minimize, control and treat any injuries that may arise as a result of this 

research. If you believe that you are injured as the result of the research procedures being performed, 

please contact the Principal Investigator (Dr. Venkataramanan) or one of the co-investigator (Drs. Kalluri, 

Hariharan, Humar, Sood) listed on the first page of this form.  

 

Emergency medical treatment for injuries solely and directly related to your participation in this research 

study will be provided to you by the hospitals of UPMC. Your insurance provider may be billed for the 

costs of this emergency treatment, but none of those costs will be charged directly to you. If your 

research-related injury requires medical care beyond this emergency treatment, you will be responsible 

for the costs of this follow-up care.  

 

Who will know about my participation in this research study?  
Any information about you obtained from this research will be kept as confidential (private) as possible. 

All records related to your involvement in this research study will be stored in a locked file cabinet. Your 

identity on these records will be indicated by a case number rather than by your name, and the 

information linking these case numbers with your identity will be kept separate from the research records. 

You will not be identified by name in any publication of the research results.  

 

Will this research study involve the use or disclosure of my identifiable medical information?  
This research study will involve recording of current and/or future identifiable medical information from 

your hospital and/or other (e.g., physician office) records. This research study will result in identifiable 

information that will be placed into your medical records held at UPMC Presbyterian and Montefiore. 

Records of your participation in this study will be held confidential except as disclosure is required by 

law or as described in this informed consent document (under "Confidentiality" or "Authorization to Use 

and Disclose Protected Health Information"). The study doctor, the sponsor or persons working on behalf 

of the sponsor, and under certain circumstances, the United States Food and Drug Administration (FDA) 

will be able to inspect and copy confidential study-related records, which identify you by name. 

Therefore, absolute confidentiality cannot be guaranteed. If the results of this study are published or 

presented at meetings, you will not be identified.  

 

Who will have access to identifiable information related to my participation in this research study?  
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In addition to the investigators listed on the first page of this authorization (consent) form and their 

research staff, the following individuals will or may have access to identifiable information (which may 

include your identifiable medical information) related to your participation in this research study:  

 

Authorized representatives of the University of Pittsburgh Research Conduct and Compliance Office may 

review your identifiable research information (which may include your identifiable medical information) 

for the purpose of monitoring the appropriate conduct of this research study.  

 

Authorized representatives from the Food and Drug Administration may review and or obtain your 

identifiable (which may include your identifiable medical information) related to your participation in this 

research study for the purposes of monitoring the accuracy and completeness of the research data. While 

the U.S. Food and Drug Administration understands the importance of maintaining the confidentiality of 

your identifiable research and medical information, the UPMC and University of Pittsburgh cannot 

guarantee the confidentiality of this information after it has been obtained by the U.S. Food and Drug 

Administration.  

 

Authorized representatives of UPMC hospitals or other affiliated health care providers may have access to 

identifiable information (which may include your identifiable medical information) related to your 

participation in this research study for the purpose of (1) fulfilling orders, made by the investigators, for 

hospital and health care services (e.g., laboratory tests, diagnostic procedures) associated with research 

study participation; (2) addressing correct payment for tests and procedures ordered by the investigators; 

and/or (3) for internal hospital operations (i.e. quality assurance).  

 

In unusual cases, the investigators may be required to release identifiable information (which may include 

your identifiable medical information) related to your participation in this research study in response to an 

order from a court of law. If the investigators learn that you or someone with whom you are involved is in 

serious danger or potential harm, they will need to inform, as required by Pennsylvania law, the 

appropriate agencies.  

 

For how long will the investigators be permitted to use and disclose identifiable information related to 

my participation in this research study?  

The investigators may continue to use and disclose, for the purposes described above, identifiable 

information (which may include your identifiable medical information) related to your participation in 

this research study for a minimum of 7 years.  

 

May I have access to my medical information that results from my participation in this research study?  
In accordance with UPMC Notices of Privacy Practices document that you have been given, you are 

permitted access to information (including information resulting from your participation in this research 

study) contained within your medical records filed with your health care provider. A description of this 

clinical trial will be available on http://www.ClinicalTrials.gov as required by US Law. This website will 

not identify you. At most the Web site will include a summary of the results. You can search this site at 

any time.  

 

Is my participation in this research study voluntary?  
Your participation in this research study, to include the use and disclosure of your identifiable information 

for the purposes described above, is completely voluntary. (Note, however, that if you do not provide 

your consent for the use and disclosure of your identifiable information for the purposes described above, 

you will not be allowed to participate in the research study.) Whether or not you provide your consent for 

participation in this research study will have no effect on your current and future care at a University or 

Pittsburgh or UPMC hospital or affiliated health care provider or your current or future relationship with a 

health care insurance provider.  
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Your doctor may be an investigator in this research study, and as an investigator, is interested both in your 

medical care and in the conduct of this research. Before entering this study or at any time during the 

research, you may discuss your care with another doctor who is in no way associated with this research 

project. You are not under any obligation to participate in any research study offered by your doctor.  

 

May I withdraw, at a future date, my consent for participation in this research study?  
You may withdraw, at any time, your consent for participation in this research study, to include the use 

and disclosure of your identifiable information for the purposes described above. (Note, however, that if 

you withdraw your consent for the use and disclosure of your identifiable medical record information for 

the purposes described above, you will also be withdrawn, in general, from further participation in this 

research study.) Any identifiable research or medical information recorded for, or resulting from, your 

participation in this research study prior to the date that you formally withdrew your consent may 

continue to be used and disclosed by the investigators for the purposes described above. 

 

To formally withdraw your consent for participation in this research study you should provide a written 

and dated notice of this decision to the principal investigator of this research study at the address listed on 

the first page of this form.  

 

If I agree to take part in this research study, can I be removed from the study without my consent?  
It is possible that you may be removed from the research study by the researchers if, for example, your 

pregnancy test proves to be positive. You may be removed from the study if you experience unexpected 

conditions and in the opinion of the investigators that it is in your best interest. The study may also be 

stopped by the investigators or the sponsor if they felt that it is in the best interest of the patients. 
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VOLUNTARY CONSENT 

All of the above has been explained to me and all of my current questions have been answered. I 

understand that I am encouraged to ask questions about any aspect of this research study during the 

course of this study, and that such future questions will be answered by the researchers listed on the first 

page of this form.  

 

Any questions which I have about my rights as a research participant will be answered by the Human 

Subject Protection Advocate of the IRB Office, University of Pittsburgh (1-866-212-2668). By signing 

this form I consent to participate in this research study and provide my authorization to share my medical 

records with the research team. A copy of this consent form will be given to me. 

 

  

___________________________________  

Participant’s Printed Name  

 

 

 

________________________________     __________________  

Participant’s Signature       Date/Time  

 

 

CERTIFICATION of INFORMED CONSENT  
I certify that I have explained the nature and purpose of this research study to the above-named 

individual(s), and I have discussed the potential benefits and possible risks of study participation. Any 

questions the individual(s) have about this study have been answered, and we will always be available to 

address future questions as they arise.  

 

I further certify that no research component of this protocol was begun until after this consent form was 

signed.  

 

 

___________________________________   ________________________  

Printed Name of Person Obtaining Consent                         Role in Research Study  

 

 

 

_________________________________    ________________________  

Signature of Person Obtaining Consent    Date/Time 

 

Appendix section’s first paragraph. 

Second paragraph. 



 223 

A.10 PHYSICIAN’S ORDER SHEET 

 

    
 

 

 

   PHYSICIAN'S ORDER SHEET 

        PRO15010155 

 

 

 
AUTHORIZATION IS GIVEN TO PHARMACY TO DISPENSE AND 

TO THE NURSE TO ADMINISTER THE GENERIC OR CHEMICAL 

EQUIVALENT WHEN THE DRUG IS FILLED BY THE PHARMACY  

OF PRESBYTERIAN UNIV HOSPITAL OR MONTEFIORE UNIV  

HOSPITAL - UNLESS NAME IS CIRCLED 

 

DATE      TIME                 ***IDS***   PRO15010155 
 

TITLE: Effect of Prolonged Cold Ischemia in the Presence of Tacrolimus Therapy on 

the Renal Secretory and Vitamin-D Metabolic Capacity of Transplanted Kidneys 

 

IRB#:  PRO15010155 

 

PRINCIPAL INVESTIGATOR: Raman Venkataramanan, Ph. D. 

 

CO-INVESTIGATORS: Sundaram Hariharan, MD; Abhinav Humar, MD; Hari Varun 

Kalluri, Pharm D; Parmjeet Randhawa, MD; Bodhisatwa Sengupta, MD;  

Ilango Sethu, MD; Puneet Sood, MD; Amit Tevar, MD; Raman Venkataramanan, Ph.D. 

 

COORDINATOR: Hari Varun Kalluri, Pharm D. 

 

FAX ORDER TO IDS @ (412)647-9651 M-F 6:30AM to 3PM 

 

PATIENT CONSENT SIGNED: YES or NO (circle one) 

 

DISPENSE:   Cefoxitin 200mg/2ml for injection in syringe 

 

DIRECTIONS:  Inject Cefoxitin 200 mg (2ml) intravenously as bolus.  

 

 

 

PHYSICIAN SIGNATURE:____________________________DATE:________                

 

Subject Name:______________________________ 

 

 

Subject ID:_________________________________ 

 

 

Date/Time Due:_____________________________ 

 

 

Deliver to:_________________________________ 
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INVESTIGATIONAL DRUG SERVICE 

PATIENT ENROLLMENT SHEET 
 

 

Study Title: Effect of Prolonged Cold Ischemia in the Presence of Tacrolimus Therapy on the 

Renal Secretory and Vitamin-D Metabolic Capacity of Transplanted Kidneys 

 

IRB#:  PRO15010155 

 

PI: Raman Venkataramanan, Ph. D. 

 

Patient Name:_________________   ____   ___________________ 

                                   first                  mi                 last 

 

Patient Address:___________________________________________ 

                ___________________________________________ 

                ___________________________________________ 

 

Patient Phone number: (_______)  __________________________ 

 

Social Security Number: ___________________________________ 

 

Date of birth:_____________________________________________ 

 

Allergies:_________________________________________________ 

 

Patient signed informed consent on file:YES / NO(circle one) 

 

Scheduled first day of therapy:____________________________ 

 

Enrollment completed by:___________________________________ 

 

Phone number for questions:________________________________ 

 

Fax completed form to the IDS Office at 647-9651   

Please call to IDS Office with any questions at  

   647-4958 or 647-3178 (pharmacists) or  647-9065 (technician) 

--------------------------------------------------------------------- 

DOSE MODIFICATION 

  Date       DRUG              MODIFICATION         REASON 

1)_________  ________________  ___________________  ___________________ 

 

2)_________  ________________  ___________________  ___________________ 
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A.11 CEFOXITIN PHARMACOKINETIC SAMPLING FORM 

IRB #:  PRO15010155                                              PI: Dr. Raman Venkataramanan  
 

Title: Effect of Prolonged Cold Ischemia in the Presence of Tacrolimus Therpay on Renal 
Secretory and Vitamin-D Metabolic Capacity of Transplanted Kidneys            

 

CEFOXITIN– PHARMACOKINETIC SAMPLING 

Subject I.D.     FOX                                                                     Date:  

Time of 200 mg iv Cefoxitin Administration: 

Volume of blood samples: 4 ml 

Expected time of collection – Before and after 
iv Cefoxitin Administration 

Actual time of 
collection (hour) 

Status 

0 min/hr   

5-10 min   

20-30 min   

1 hr   

1.5 hr   

2 hr   

3 hr   

4 hr   

Expected time of Urine Sample collection 
(hours) – Before and after iv Cefoxitin 

Administration 

Actual time of 
collection (hour) 

Status 

0 min/hr   

End of 2 hrs post iv cefoxitin (1-2 hrs period)   

End of 4hrs post iv cefoxitin (2-4 hrs period)   

End of 8hrs post iv cefoxitin (4-8 hrs period)   

 
Drug Administration: 
Name:______________________________________   
Designation:_________________________ 
 
Date/Time:_______________________________ 
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IRB #:  PRO15010155                                               
 
Title: Effect of Prolonged Cold Ischemia in the Presence of Tacrolimus Therapy on Renal 
Secretory and Vitamin-D Metabolic Capacity of Transplanted Kidneys            

 
PI: Dr. Raman Venkataramanan 
Co-PI: Dr. Puneet Sood 
Co-PI: Dr. Hari V Kalluri (816-223-9360) 
Research Coordinator: Megan Basch 
 

CEFOXITIN– PLASMA PHARMACOKINETIC SAMPLING 

Subject ID: FOX 
 
Date: 
 

Sample for Cefoxitin:      Blood          

 
 
Time sample to be taken:  
 
 
Actual time sample taken: 
 
 
Please collect sample (4 ml) and keep it in the refrigerator for pick-up by investigators 
 
Sample Collection: 
 
Name:______________________________________   
 
 
For Research Investigators: 
 
Time blood sample is centrifuged: 
 
 
Duration of centrifugation: 
 
 
Triple aliquot of plasma samples: 
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IRB #:  PRO15010155                                               
 
Title: Effect of Prolonged Cold Ischemia in the Presence of Tacrolimus Therapy on Renal 
Secretory and Vitamin-D Metabolic Capacity of Transplanted Kidneys            

 

PI: Dr. Raman Venkataramanan 

Co-PI: Dr. Puneet Sood 

Co-PI: Dr. Hari V Kalluri (816-223-9360) 

Research Coordinator: Megan Basch 

CEFOXITIN– URINE PHARMACOKINETIC SAMPLING 

Subject ID: FOX 
 
Date: 

 

Sample for Cefoxitin:     Urine          

 
Immediately before iv cefoxitin 2 hrs after iv cefoxitin 4 hrs after iv cefoxitin 
 
 
Volume of Urine:  
 
 
Time sample to be taken:  
 
 
Actual time sample taken: 
 
 
 
Please collect sample (8 ml) and keep it in the refrigerator for pick-up by investigators 
 
Sample Collection: 
 
Name:______________________________________   
 
 
For Research Investigators: 
 
 
Triple aliquot of Urine samples: 
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A.12 CONCOMITANT MEDICATIONS LIST 

IRB #: PRO15010155           PI: Dr. Raman Venkataramanan                         

Title: Effect of Prolonged Cold Ischemia in the Presence of Tacrolimus Therapy on Renal Secretory and Vitamin-D Metabolic 

Capacity of Transplanted Kidneys  

Subject ID: FOX              

CONCOMITANT MEDICATIONS 

Circle one:  Donor  /  recipient (pre-transplant)  /  recipient (post-transplant) 

Medication Indication for Use Dosage/Regimen Start Date Stop Date Comments 
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A.13 PRE-TRANSPLANTATION CHECKLIST 

CHECK LIST - BASELINE PHASE (Pre-Transplantation) 

IRB: PRO15010155 

Title: Effect of Prolonged Cold Ischemia in the Presence of Tacrolimus Therapy on the Renal      

          Secretory and Vitamin-D Metabolic Capacity of Transplanted Kidneys 

 

Check the 

box 

below 

CHECKLIST 

 Informed Consent  

 

 Assessment of eligibility criteria for enrollment 

 

 Complete medical history 

 

 Physical examination / vital signs 

 

 Availability of biopsy sample 

 

 Clinical laboratories 

 

 Part of routine monitoring blood sample set aside for Vitamin D quantitation 

 

 Recipient demographics (including indication for transplantation) 

 

 Review current medications 

 

 Cadaver donor demographics 

 

 Cytotoxic cross match 

 

 

 

Signature:         Date: 
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A.14 ADVERSE EVENTS/ UNANTICIPATED PROBLEMS LOG 

IRB #:   PRO15010155                     Title:   Effect of Prolonged Cold Ischemia in the Presence of Tacrolimus Therapy on Renal PI: Dr. Raman 
Venkataramanan                        Secretory and Vitamin-D Metabolic Capacity of Transplanted Kidneys            

              
 

 

 

 

Subject ID 

 

 

 

 

Description 

 

 

 

Start Date 

 

 

 

Stop Date 

Is the AE also 

an 

Unanticipated 

Problem 

YES/NO 

(see footnote) 

Causality 

 

1 - Related 

2 - Possibly 

Related   

3 - Not Related 

 

 

 

Treatment / 

Comments 

 

 

Sponsor  

Notification  

Date or NA 

 

 

IRB  

Notification 

Date or NA 

 

 

FOX 

 

        

 

 

 

 

        

 

 

 

 

        

Unanticipated Problem Criteria:  

 Is the adverse event unexpected? 

 Is the adverse event related or possibly related to participation in the research? 

 Does the adverse event suggest that the research places subjects or others at a greater risk of harm than was previously known or recognized? 

 

If the answer to all three questions is yes, then the adverse event is an unanticipated problem and must be reported to appropriate entities under the HHS 

regulations at 45 CFR 46.103(a) and 46.103(b)(5) 

NOTE: Some sponsors may require reporting of all adverse event. 
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