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REGRESSION MODELS FOR DYNAMIC TREATMENT REGIMENS AND

QUANTILE ASSOCIATION OF BIVARIATE SURVIVAL DATA

Ling-Wan Chen, PhD

University of Pittsburgh, 2018

In this dissertation we propose two new regression models under different types of survival

data, including regression analysis for cumulative incidence functions (CIFs) under two-stage

randomization, and quantile association regression for bivariate survival data.

The first topic concerns dynamic treatment regimens (DTRs) which are sets of rules

for choosing effective treatments for individual patients based on their characteristics and

intermediate responses, and have drawn considerable attention in the field of personalized

medicine. Sequential Multiple Assignment Randomized Trial (SMART) design is often used

to gather data on different DTRs. In this dissertation, we focus on finding personalized

optimal DTRs from a two-stage SMART by regressing covariates on CIFs for competing risks

outcomes. To our best knowledge no regression is readily available for analyzing competing

risks outcome data from a SMART. Thus, we extend existing CIF regression models to

handle covariate effects for DTRs. Asymptotic properties are established for our proposed

estimators. We show the improvement provided by our proposed methods through simulation

studies, and illustrate its practical utility through an analysis of a two-stage neuroblastoma

study, where disease progression is subject to competing-risk censoring by death.

In the second project, we focus on local association in bivariate survival times, which

is often of scientific importance. The local association measures capture the dynamic pat-

tern of association over time, and it is desirable to quantify local association for different

characteristics of the population. In this work, we adopt a novel quanitle-based local asso-

ciation measure, which is free of marginal distributions, and propose a quanitle association
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regression model to allow covariate effects on the local association under the copula frame-

work. Estimating equations for the quantile association coefficients are constructed via the

relationship between this quanitle-based measure and the copula model. To avoid estimat-

ing density functions in variance estimation, we extend the induced smoothing idea to our

proposed estimators in obtaining the covariance matrix. The asymptotic properties for the

resulting estimators are studied. The proposed estimators and inference procedure are evalu-

ated through simulation, and applied to an age-related macular degeneration (AMD) dataset

in studying risk factors on the association between AMD progression in two eyes.

Keywords: Bivariate survival data; Competing risks; Conditional association; Copula; Fine

and Gray; Induced Smoothing; Inverse probability weighting; Odds Ratio; Quantiles

regression; Scheike model; Sequential Multiple Assignment Randomized Trial.
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1.0 INTRODUCTION

This dissertation consists of two projects, which address methodological challenges in an-

alyzing different types of survival data via the regression framework. In the first project,

we focus on univariate competing risks data that are collected from a two-stage randomized

trial. The other project is to establish an association regression model for bivariate survival

data. The following two chapters detail methodological developments for these two specific

topics.

In Chapter 2, we focus on finding the optimal dynamic treatment regimen (DTR). A

DTR is a sequence of decision rules that one makes at each stage of intervention or treat-

ment. An optimal DTR is to personalize treatments based on patients’ past treatments,

response status and key covariates, in order to achieve long-term optimal outcomes. When

an event-type of outcome is of interest, the problem becomes identifying the best DTR for

which patients have the smallest (or largest) probability of developing the target adverse

(or beneficial) event. A sequential multiple assignment randomized trial (SMART) design

has been proposed specifically for the purpose of developing optimal DTRs (Murphy, 2003).

In this chapter, we focus on evaluating DTRs from a two-stage randomized trial, when the

outcome of interest is subject to competing-risk censoring. As the competing events exist,

researchers often use the cumulative incidence function (CIF) to quantify the cumulative risk

of the target event by a specific time point. However, the standard nonparametric estima-

tors of the CIF and the CIF regression models cannot be directly applied to SMART data.

Recently, Yavuz et al. (2018) extended the nonparametric estimators for the CIFs to a two-

stage randomization setting, without using the information on patients’ characteristics. To

personalize treatments based on patients’ unique characteristics and history, it is crucial to

incorporate covariates into the CIF estimation, which subsequently allows the optimal DTRs
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to vary for heterogeneous patients. Therefore, we propose to extend some existing CIF re-

gression models to the two-stage randomization setting. If the regression model is correctly

specified, the resulting CIF estimators are shown to be consistent and can be approximated

by a Gaussian process using empirical process theories. The finite-sample performance and

the robustness of the CIF estimators under mis-specified models are evaluated through ex-

tensive simulations. We apply our proposed methods to a two-stage neuroblastoma study.

Based on the estimated CIFs given covariates, an optimal DTR is recommended for patients

with different risk factors, in order to minimize their risks of disease progression.

In Chapter 3, we focus on exploring the association between two event times. The asso-

ciation analyses are useful, since understanding how two events are related helps scientists

to develop strategies to prevent or promote the occurrence of an event, when they observe

the associated event. For bivariate survival data, several global association measures were

proposed, such as Kendall’s tau and the correlation between two cumulative variates. How-

ever, they cannot capture the dynamic local association pattern over time. Various local

association measures have been proposed via a copula framework (Oakes, 1989; Anderson

et al., 1992; Shih and Louis, 1995; Nan et al., 2006; Hu and Nan, 2011), because the cop-

ula model allows time-dependent association between two failure times, and the estimation

of the copula parameters is independent of marginal distributions. Furthermore, assessing

the potential risk factors in the association analysis is of scientific importance, where the

conditional association is adjusted for confounder effects and potential predictors. Many

studies have been proposed to allow covariate effects on marginal distributions only (Zeng

et al., 2009; Li et al., 2016). In practice, risk factors may affect the local association di-

rectly, in addition to their effects on the marginal distributions. To handle this challenge,

we adopt a novel quantile-specific association measure as proposed in Li et al. (2014), which

is independent of the marginal distributions, and establish a quantile association model to

allow covariate effects on this quantile-based association measure between two failure times.

However, Li et al. (2014) only dealt with completely observed bivariate data. Thus in this

chapter, we develop an estimating equation for the quantile association coefficients via the

relationship between this quanitle-based measure and the copula. The asymptotic properties

of the proposed estimator are established using the counting process approach under some
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mild regularity conditions and the univariate censoring setting. The further challenge in this

work is the covariance estimation in the analyses of quantile regression and quantile associ-

ation due to non-smooth objective functions. To address this issue, we adapt the induced

smoothing technique (Pang et al., 2012) to our quantile association analysis setting, and

show that the estimated covariance is consistent. We apply the proposed estimators and

the covariance procedure to numerical simulations and the data from an age-related macular

degeneration (AMD) study to investigate the association of developing AMD in both eyes.

The rest of the dissertation is organized as following. Chapter 2 details various regression

models for the CIF that are adapted to the SMART setting. Chapter 3 focuses on quantile

association models for the association between two event times. We conclude this dissertation

with some discussions of future directions in Chapter 4.
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2.0 CUMULATIVE INCIDENCE REGRESSION FOR DYNAMIC

TREATMENT REGIMENS

2.1 INTRODUCTION

Dynamic treatment regimens (DTRs) are sets of decision rules for choosing effective treat-

ments for individual patients, based on their characteristics and intermediate responses. Of-

ten practitioners are interested in finding the optimal DTR that leads to the most desirable

outcome in the end. An efficient randomization design is the Sequential Multiple Assignment

Randomized Trial (SMART), where patients are randomly assigned to the initial treatments

and then randomized to available treatments in subsequent stages, as they become eligible.

In this chapter, we focus on competing risks data from a two-stage randomization design

that was motivated by a neuroblastoma study. Children in this study were first randomized

to two initial treatments, and those who responded to the initial treatment were further

randomized to receive one of the two maintenance options. Meanwhile, the event of interest,

disease progression, cannot be observed after death.

If there were no competing-risk events, existing nonparametric methods could have

been used. They either modeled a mean restricted survival time for a treatment regimen

by using the inverse probability weighting (IPW) method (Lunceford et al., 2002; Wahed

and Tsiatis, 2006), or generated various weighted Kaplan-Meier (KM) estimators (Guo and

Tsiatis, 2005; Miyahara and Wahed, 2010), or proposed pattern-mixture estimators of the

survival function of a DTR (Tang and Wahed, 2015b). However, competing-risk events,

such as death, commonly occur when subjects are exposed to multiple failures, and the

event of interest cannot be experienced with the occurrence of competing events. In the

competing-risk literature, the cumulative incidence function (CIF) from a specific event is
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often of interest and widely used, because it is easily interpretable and is non-parametrically

identifiable. In a SMART design with competing risks endpoints, the objective generally is

to find a regimen which results in a reduced probability of occurrence of the target event.

Recently, Yavuz et al. (2018) proposed four weighted nonparametric estimators of the CIF

for a specific DTR without accounting for patient heterogeneity (covariates). Thus, the focus

of this study is to model covariate effects on the CIFs of different DTRs.

The Cox regression model (Cox, 1972) and the accelerated failure model (Wei et al., 1990)

are two popular methods of modeling covariate effects on survival. Fine and Gray (1999)

extended Cox regression to competing risks data, and proposed a proportional hazards model

for CIFs. Klein and Andersen (2005) developed a parametric regression model on pseudo

values of the CIF. Scheike et al. (2008) proposed a direct binomial regression to model the

time-varying effects of covariates on the CIF, which is more flexible than the fixed-effect

Fine and Gray model. Recently Gerds et al. (2012) proposed a multinomial logistic model

that handles multiple competing causes, providing another flexible alternative to the Fine

and Gray model. However, these approaches are not readily applicable to a SMART study.

In SMART literature, Murphy (2003) proposed a backward searching algorithm to mini-

mize the regret function at each step and find the best DTR at K steps, considering previous

history and decisions. Zhao et al. (2009) used reinforcement learning and Q-learning to dis-

cover personal optimal therapies on cancer trials. Henderson et al. (2010) proposed the

regret-regression to predict outcomes based on the estimated regression coefficients, and to

use the resulting residuals for model diagnostics. Goldberg and Kosorok (2012) introduced

a novel approach on a multistage-decision problem with censored data by using Q-learning.

Tang and Wahed (2015a) proposed a fixed weight estimator for the cumulative hazard func-

tion in a two-stage design, under a proportional hazards assumption. However, none of the

above methods can be used directly for competing risks outcomes.

Hence, we extend some existing regression models from the competing risks literature

to SMARTs, particularly to two-stage randomization settings, adopting the IPW idea to

account for the second-stage randomization. Our proposed methods perform an unbiased

estimator for the CIF under the two-stage randomization design, while considering the co-

variate effects and the presence of the competing risk. In addition, no computational cost in
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the estimation is a benefit for the research which includes a complex treatment strategy. The

rest of this chapter is organized as follows. We introduce two regression models in Sections

2.2.2 and 2.2.3, and extend the methods to the situation where subjects may develop the

event before the second randomization in Section 2.2.4. To relax the assumption of Fine and

Gray’s model, we further apply our idea to Scheike’s model in Section 2.2.5. Asymptotic

properties of the methods are discussed in Section 2.3. Results from finite-sample simula-

tions are given in Section 2.4 and the analysis of the Neuroblastoma study is given in Section

2.5. Finally we conclude with some remarks in Section 2.6.

2.2 METHOD

2.2.1 Setting and data

We consider a two-stage SMART as depicted in Figure 2.1. Subjects are first randomly as-

signed to an initial treatment, either A1 or A2. Subjects who respond to the initial treatment

are randomly assigned to either treatment B1 or B2, and non-responders are randomized to

treatments B′1 or B′2. This results in eight DTRs AmBkB
′
l with m, k, l = 1, 2, where subjects

will start with the initial treatment Am, and receive Bk if they respond to Am, or B′l, oth-

erwise. Define TR as the time to the intermediate response since the initial randomization.

The response to the initial treatment, R(= 1, 0), is often determined if the response time is

shorter than a pre-specified time period (e.g., achieving remission within 6 months). Let Z1

and Z2 be the second treatment indicators for the responders and for non-responders to the

initial treatment. The long-term outcome of interest is subject to competing-risk events.

Let T be the time to the first failure from K competing causes since the first randomization,

and let ε ∈ (1, ..., K) be the corresponding cause of failure, where ε = 1 denotes the event of

interest. In practice, the first failure might happen before the subjects respond to their first

treatment. If death is the primary outcome of interest, for example, patients may die before

they manage to achieve remission. Thus, we use S to denote randomization status, where

S = 0 for subjects who only have the first randomization, and S = 1 for subjects whose
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response to the first treatment can be observed and who enter the second randomization.

Non-
responder

Non-
responder

Responder

Responder

Subject

A1

A2

𝐁1

B2

𝐁1
′

B2
′

𝐁1

B2

𝐁1
′

B2
′

Figure 2.1: A two-stage SMART setup

Without any loss of generality, we focus on the regimens starting with the initial treat-

ment A1. For a particular DTR, A1BkB
′
l, k, l = 1, 2, we define the event time as TA1BkB

′
l

and the corresponding cause of failure as εA1BkB
′
l
. Let TA1 and εA1 be the event time and

the cause indicator when a subject following A1BkB
′
l has developed the event of interest

before the second randomization. If the subject proceeds to the second randomization, and

is further randomized to Bk, we define the corresponding event time and the cause indi-

cator as TA1Bk and εA1Bk . TA1B′l
and εA1B′l

are similarly defined for the treatment path

A1B
′
l. Thus, TA1BkB

′
l

= I(S = 0)TA1 + I(S = 1, R = 1)TA1Bk + I(S = 1, R = 0)TA1B′l
, and

εA1BkB
′
l

= I(S = 0)εA1 + I(S = 1, R = 1)εA1Bk + I(S = 1, R = 0)εA1B′l
.

Note that TA1 , εA1 , TA1Bk , εA1Bk , TA1B′l
, and εA1B′l

are all counterfactuals, since a subject

who is assigned to the DTR A1BkB
′
l can only follow one of the three potential paths. Here

we adopt the consistency assumption (Hernan and Robins, 2010) in that if a subject follows a

particular path, e.g., S = 0, the observed event time and the cause indicator for this subject

are the same as the counterfactuals TA1 and εA1 . Under the random assignment of treatments,
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“no unmeasured confounders” and “positivity” assumptions are satisfied (Orellana et al.,

2010). Here we consider a more general setting where some subjects have developed the

event of interest before the second randomization, as in our neuroblastoma example. If

none of the events occur during the first stage of randomization, TA1 and εA1 , which are the

counterfactuals for those subjects without proceeding to the second randomization, would

become irrelevant and should be dropped off from the definition of TA1BkB
′
l

and εA1BkB
′
l

to

ensure positivity. As we are considering SMART studies, exchangeability naturally follows

as the probability of subsequent assignment is independent of potential outcomes given

covariates and treatment history up to this point.

Let X be a p × 1 time-independent covariate vector. We are interested in evaluating

covariate effects on the cause-1 CIF of a DTR A1BkB
′
l. That is,

F1,A1BkB
′
l
(t; X) = pr(TA1BkB

′
l
≤ t, εA1BkB

′
l

= 1 | X), k, l = 1, 2. (2.1)

With the definition of counterfactuals, we then further define the ith patient’s event

time as Ti = (1 − Si)TA1i + SiRi

∑2
k=1 I(Z1i = k)TA1Bki + Si(1 − Ri)

∑2
l=1 I(Z2i = l)TA1B′li

,

and the corresponding cause of failure as εi = (1 − Si)εA1i + SiRi

∑2
k=1 I(Z1i = k)εA1Bki +

Si(1−Ri)
∑2

l=1 I(Z2i = l)εA1B′li
. Since we adopt the consistency assumption (Rubin, 1974) to

relate the uncensored survival time Ti to the counterfactual outcomes, for the i subject who is

assigned to Regimen A1BkBl, we have that the observed uncensored outcome is equal to the

corresponding counterfactual outcome, i.e. Ti = TA1BkBli, for k, l = 1, 2. Under the random

assignment of treatments, the “no unmeasured confounders” and “positivity” assumptions

are satisfied in this counterfactual model. In general, there may be right censoring C before

we observe T , and we assume that C and T are conditionally independent given baseline

covariates. Let C be the potential censoring time with G(t) = pr(C > t). In the presence of

conditionally independent censoring, one observes V = min(T,C), ∆ = I(T ≤ C) and ε.

Competing risks data from a two-stage SMART trial consist of n independent and identically

distributed copies of {Si, SiRi, SiRiZ1i, Si(1−Ri)Z2i, Vi, ∆i,∆iεi,Xi}ni=1.
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2.2.2 The Fine and Gray Model with Fixed Weights

Fine and Gray (1999) proposed a semiparametric proportional hazards model for the sub-

distribution of a competing risk, and assumed that

g{F1(t;X)} = h0(t) + XTβ0,

where g(u) = log(− log(1− u)), and h0(·) is a completely unspecified, invertible, and mono-

tone increasing function. If we define the hazard function for the CIF (or subdistribution)

λ1(t) = d logF1(t)/dt, the above model has the proportional hazards interpretation for the

subdistribution hazards, where λ1(t; X) = λ10(t) exp(XTβ0), with λ10(t) being the baseline

hazard function at time t. For a particular DTR A1BkB
′
l in Fine and Gray’s model, the

CIF in (2.1) can be formulated as

F1,A1BkB
′
l
(t; X) = 1− exp

{
−
∫ t

0

λ10,A1BkB
′
l
(u) exp(XTβ0,A1BkB

′
l
)du

}
, k, l = 1, 2. (2.2)

where λ10,A1BkB
′
l
(t) is the baseline subdistribution hazard function at time t in A1BkB

′
l DTR,

and β0,,A1BkB
′
l
is the coefficient vector in A1BkB

′
l DTR. To simplify the notation, we use λ10(t)

to denote λ10,A1BkB
′
l
(t) and refer to β0,A1BkB

′
l
as β0 in the rest of paper, if there is no confusion.

For data from two-stage randomized trials, if we apply the Fine and Gray method directly

to estimate the CIF for A1BkB
′
l, only the data from subjects following treatment sequences

A1Bk or A1B
′
l are included in the estimation of (2.1). The estimated CIF is often biased, since

this naive Fine and Gray method weighs each subject consistent with A1BkB
′
l equally in the

estimation. To see the potential bias, let us consider a hypothetical example. Suppose 100

subjects are randomized to follow the DTR A1BkB
′
l, and 40 subjects respond to the initial

treatment A1 and the rest do not. If there were no second-stage randomization, we would

expect the 40 responders to follow the treatment sequence A1Bk and the 60 non-responders to

follow A1B
′
l. An unbiased estimate of the CIF for A1BkB

′
l will include the information from

these 40 responders and 60 non-responders. Now with the second randomization, suppose 20

responders are assigned to the second-stage treatment Bk and 18 non-responders are assigned

to B′l. The sub-sample used by the naive Fine-Gray method consists of these 20 responders

and 18 non-responders, which has a higher proportion of responders as compared to the

9



original sample without the second-stage randomization. Therefore, if we treat responders

and non-responders in this subsample equally, we tend to have a biased estimate of the CIF.

To account for the bias, we follow a similar IPW approach as in Guo and Tsiatis (2005),

Miyahara and Wahed (2010), and Yavuz et al. (2018). Since the proportion of responders in

the sub-sample, which is used in the naive Fine and Gray method, is not the same as that in

the original sample before second-stage randomization, we assign the responders and non-

responders in the sub-sample weights that are inversely proportional to their probabilities of

being assigned to Bk or B′l. In the created pseudo sub-sample, the sizes of responders and

non-responders are about the same as the original sample. More specifically, let πBk and πB′l

be the true probabilities of being assigned to Bk for responders and being assigned to B′l for

non-responders, where πBk = pr(Z1i = k | Ri = 1) and πB′l = pr(Z2i = l | Ri = 0). Define

QA1BkB
′
l,i

= RiI(Z1i = k)/πBk + (1−Ri)I(Z2i = l)/πB′l

as the weight for subject i in the A1BkB
′
l regimen. Due to randomization, the observed

proportions of being assigned to sequences A1Bk and A1B
′
l are not exactly equal to the true

probabilities, and consequently, they may provide more information about the randomization

process. Thus, we consider using the estimated probabilities, π̂Bk and π̂B′l , from the sequences

A1Bk and A1B
′
l, instead of the true probabilities, to obtain the estimated fixed weight,

Q̂A1BkB
′
l,i

= RiI(Z1i = k)/π̂Bk +(1−Ri)I(Z2i = l)/π̂B′l , for subject i. As a result, the pseudo

sample that this estimated fixed weight Q̂A1BkB
′
l

creates, has the exactly same number of

subjects and the same mixture of responders and non-responders as the original sample.

Here we extend Fine and Gray’s model to the two-stage randomized trials with estimated

fixed weights. For subject i, similar to Fine and Gray (1999), we defined the weight as

wi(t) = I(Ci ≥ Ti∧ t)Ĝ(t)/Ĝ(Vi∧ t), where Ĝ(·) is the Kaplan-Meier estimate of the survival

function for censoring C. To avoid the same potential bias of using the sub-sample after

second randomization, we construct Ĝ based on the weighted counting and at-risk processes

Nw
1i(t) = I(Vi ≤ t, εi = 1)Q̂A1BkB

′
l,i

and Y ∗wi (t) = {1−I(Vi ≤ t, εi = 1)}Q̂A1BkB
′
l,i

. Combining

their weighted vital status to handle censored observations and our estimated fixed weights
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to let the sub-sample represent all related responders and non-responders, we define the fixed

weight score function for the A1BkB
′
l regimen as

UA1BkB
′
l
(β) =

n∑
i=1

∫ ∞
0

{
Xi −

∑n
j=1wj(u)Y ∗wj (u)Xj exp(XT

j β)∑n
j=1wj(u)Y ∗wj (u) exp(XT

j β)

}
wi(u)dNw

1i(u). (2.3)

Let β̂ be a solution to the above score equation (2.3). In our study, the estimator of the

CIF is of greater interest. Based on the estimated β̂, we evaluate the CIF at time t0 with

covariates x0 by using the formula in (2.2), namely,

F̂1,A1BkB
′
l
(t0; x0) = 1− exp{−Λ̂1(t0; x0)},

where Λ̂1(t0;x0) is the cumulative subdistribution hazard function at time t0 with covariates

x0 estimated as

Λ̂1(t0;x0) = n−1

n∑
i=1

∫ t0

0

exp(xT0 β̂)

n−1
∑n

j=1wj(u)Y ∗wj (u) exp(XT
j β̂)

wi(u)dNw
1i(u).

The limiting distribution of estimators and the inference are shown in Section 2.3.

2.2.3 The Fine and Gray Model with Time-Varying Weights

The weighted Fine and Gray method described in Section 2.2.2 does not utilize the informa-

tion on time to response. Considering that subjects are consistent with all of the regimens

before they have the intermediate response, we modify the above model using time-varying

weights that incorporate those subjects with weights of 1 until their response status is ob-

served. After obtaining their response status, subjects receive the weights according to their

second randomization as in Section 2.2.2. More specifically, the weight for subject i at time

t is

Q̂A1BkB
′
l,i

(t) =

 1, if TRi > t

RiI(Z1i=k)
π̂Bk

+ (1−Ri)I(Z2i=l)
π̂B′

l

, if TRi ≤ t.
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This idea has been used in Guo and Tsiatis (2005), Miyahara and Wahed (2010) and Yavuz

et al. (2018) for the nonparametric setting. The corresponding time-varying weight score

function for the A1BkB
′
l regimen under Fine and Gray’s model is

U tw
A1BkB

′
l
(β) =

n∑
i=1

∫ ∞
0

{
Xi −

∑n
j=1w

tw
j (u)Y ∗twj (u)Xj exp(XT

j β)∑n
j=1 w

tw
j (u)Y ∗twj (u) exp(XT

j β)

}
wtwi (u)dN tw

1i (u), (2.4)

where wtwi (u) = {Ĝtw(u)/Ĝtw(Vi ∧ u)}I(∆i = 1) + I(Vi > u), Y ∗twi (t) = {1 − I(Vi ≤ t,

εi = 1)}Q̂A1BkB
′
l,i

(t), and N tw
1i (t) = I(Vi ≤ t, εi = 1)Q̂A1BkB

′
l,i

(t), with Ĝtw using the time-

varying weighted counting and at-risk processes. Again the solution for (2.4), β̂tw, can be

obtained via the Newton-Raphson algorithm. Hence, the time-varying weight estimator of

the CIF, based on the estimated β̂tw, at time t0 with covariates x0 is

F̂ tw
1,A1BkB

′
l
(t0; x0) = 1− exp{−Λ̂tw

1 (t0; x0)},

where

Λ̂tw
1 (t0; x0) = n−1

n∑
i=1

∫ t0

0

exp(xT0 β̂
tw)

n−1
∑n

j=1w
tw
j (u)Y ∗twj (u) exp(XT

j β̂
tw)

wtwi (u)dN tw
1i (u).

The asymptotic properties of estimators and the inference are discussed in Section 2.3.

2.2.4 An extension to subjects without second-stage randomization

In Sections 2.2.2 and 2.2.3, our discussions have focused on the situations that all subjects

enter the second randomization. In practice, it is likely that some subjects develop the event

of interest before they respond to the initial treatment. These subjects are excluded from the

analyses in the above models. However, if we assign all subjects to a specific regimen, e.g.,

A1BkB
′

l , those subjects who have developed the event of interest before the second-stage

randomization are following this regimen. Hence we expand our definition of “consistency”

with the regimen, and now treat those subjects who have developed the target event before

they meet the response criteria as consistent with the regimen. Consequently, we extend our

methods by redefining the weights. If a subject has developed an event before their response

status is determined, we assign the weight as 1 and record the event time. Such a subject
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is denoted as S = 0 in Section 2.2.1, and the extended time-varying weight for subject i at

time t is written as

Q̂∗A1BkB
′
l,i

(t) =

 1, if TRi > t and S = 1; or S = 0

RiI(Z1i=k)
π̂Bk

+ (1−Ri)I(Z2i=l)
π̂B′

l

, if TRi ≤ t and S = 1.

The score function in this case is given by replacing Q̂A1BkB
′
l,i

(t) with Q̂∗A1BkB
′
l,i

(t) in (2.4).

Estimation and inferences are very similar and hence the details are left out for brevity.

2.2.5 Extensions of the Scheike Model

Fine and Gray’s model is popular and convenient in practice with the available software.

If the proportionality for sub-distribution is satisfied, the results are accurate and easy to

interpret. However, this assumption may be too restrictive for a two-stage randomization

study, because the covariate effects on the CIF may change when subjects switch from the

initial treatment to the second-stage treatment. Though the weighted Fine and Gray model

in Sections 2.2.3 and 2.2.4 can still provide reasonable estimates of the CIF as shown in

our simulation studies, we now consider extending a more flexible binomial regression model

proposed by Scheike et al. (2008) to the two-stage randomization setting in order to capture

potential time-varying covariate effects for a particular DTR. The additive Scheike model

assumes that

F η,γ
1 (t,X) = h{XT

1 η(t) + g(γ,X2, t)},

where η(t) are the time-varying effects of X1, a subset of covariates, on the CIF at time t,

and γ are the fixed-effect coefficients for the rest of covariates, X2. The h and g are known

link functions. If h(x1) = 1 − exp(−x1) and g(γ, x2) = exp(γTx2), the Scheike model will

become the proportional hazards model for subdistributions as in Fine and Gray (1999).

As before, we extend the original Scheike model to the fixed weight Scheike model for

a two-stage randomization setting. Let F η,γ
1,A1BkB

′
l,i

(t; Xi) denote the cause-1 CIF at time t

for subject i with covariates Xi following the regimen A1BkB
′
l. The estimating equation for

A1BkB
′
l at time t can be written as U∗(η, γ, Ĝ) = {U∗1 (η, γ, Ĝ)(t), U∗2 (η, γ, Ĝ)}, where

U∗1 (η, γ, Ĝ)(t) =
n∑
i=1

D∗Tη,iui(t)

{
∆iN1i(t)

Ĝi(Vi | Xi)
− F ∗1i(t; η, γ)

}
Q̂A1BkB

′
l,i
,
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U∗2 (η, γ, Ĝ) =
n∑
i=1

∫ τ

a

D∗Tγ,iui(t)

{
∆iN1i(t)

Ĝi(Vi | Xi)
− F ∗1i(t; η, γ)

}
Q̂A1BkB

′
l,i
dt,

with F ∗1i(t; η, γ) denoting F η,γ
1,A1BkB

′
l,i

(t; Xi) for brevity, D∗Tη,i = ∂F ∗1i(t; η, γ)/∂η(t), D∗Tγ,i =

∂F ∗1i(t; η, γ)/∂γ denoting partial derivatives, and ui(t) being some possibly random weights.

We use binomial regression as in Scheike et al. (2008), coupled with the Newton-Raphson

iteration, to obtain the estimator η̂(t) for the time-varying coefficients at each time point t,

and the estimator γ̂ for the time-independent coefficients. The estimation of the CIF for given

covariates can be carried out similar to the extended Fine and Gray models. Furthermore,

we can establish the Scheike model with time-varying weights by using the estimated time-

varying weights in Section 2.2.3
(
Q̂A1BkB

′
l
(t)
)
, and also extend this model so that subjects

without the second stage randomization are included by using the weights defined in Section

2.2.4
(
Q̂∗A1BkB

′
l
(t)
)
.

However, the inferences of these estimators are much more involved. In Appendix C, we

give the influence functions for η̂ and γ̂ under the simplified setting where all events occur

only after second-randomization. We implement the fixed-weighted Scheike model and the

time-varying weight Scheike model by treating all covariates with time-varying coefficients.

The implementation is rather complicated. Therefore, we also propose an approximation

based on the idea of augmenting the data for the fixed weight Scheike model. To illustrate

our idea, we continue to consider the hypothetical example for A1BkB
′
l in Section 2.2.2,

where 100 subjects are assigned to the initial treatment A1, and 40 of them respond to

A1. During the second-stage randomization, 20 of the 40 responders are assigned to Bk,

and 18 of the 60 nonresponders are assigned to B′l. According to Section 2.2.2, the fixed

weight for subjects in the sequence of A1B1 is 2, and that for subjects following A1B
′
1 is

3.333̄. We create an augmented data by repeating each subject in A1B1 20 times, and each

subject following A1B
′
1 33 times. This augmented data contains 400 responders and 594

non-responders, approximately the same mixture of responders and non-responders as the

original sample. Thus, a well-implemented R function, “comp.risk”, in the package timereg

for the Scheike et al. (2008), can be directly applied to the augmented data, resulting in a

consistent, though slightly less accurate, estimator of the CIF for A1B1B
′
1. Since the size of

the augmented data is about 10 times of the original sample, the standard deviation from
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the R function needs to be multiplied by the squared root of the ratio of the augmented

data sample size to the original sample size. In general, the augmented data approach can

be applied to other models, such as the fixed weight Fine and Gray method.

2.3 ASYMPTOTIC PROPERTIES

In this section, we establish asymptotic properties of our proposed estimators. Because the

fixed weight Fine and Gray method is a special case of the time-varying weight Fine and

Gray model, we focus on time-varying weight Fine and Gray model in this section.

In the inference on the estimation of CIFs, we use the weights included the true prob-

abilities, πBk and πB′l . Let QA1BkB
′
l,i

(t) be 1 if TRi < t and be QA1BkB
′
l,i

, otherwise. Define

Ñ tw
1i (t) = QA1BkB

′
l,i

(t)N1i(t) as a counting process and M̃ tw
1i (t, β0) = Ñ tw

1i (t) − Ãtwi (t, β0) as

a martingale, where Ãtwi (t, β) =
∫ t

0
Ỹ ∗twi (s)λ10(s) exp(XT

i β)ds and Ỹ ∗twi (s) = {1−N1i(s−)}

QA1BkB
′
l,i

(s). We replace Q̂A1BkB
′
l,i

(t) by QA1BkB
′
l,i

(t) in the time-varying weighted score func-

tion, and recast this score function in terms of martingale integration, under the true β0.

To simplify the score equation, denote Stw(p)(β, u) = n−1
∑n

i=1w
tw
i (u)Ỹ ∗twi (u)X⊗pi exp(XT

i β),

p = 0, 1, 2, and X̄tw(β, u) = Stw(1)(β, u)/Stw(0)(β, u), where Stw(1)(β, u) = ∂Stw(0)(β, u)/∂β

and Stw(2)(β, u) = ∂2Stw(0)(β, u)/∂β∂βT . The time-varying weight score function for the

A1B1B
′
1 regimen, under the true β0, is

U tw
A1BkB

′
l
(β0) =

n∑
i=1

∫ ∞
0

{
Xi − X̄tw(β0, u)

}
wtwi (u)dM̃ tw

1i (u, β0).

Theorem 1. Under mild regularity conditions, the n−1/2U tw
A1BkB

′
l
(β0) converges in distri-

bution to a Gaussian process with covariance matrix Σtw. Then, the asymptotical distri-

bution of n1/2(β̂tw − β0) is normally distributed with mean zero and the covariance matrix

Ωtw−1
ΣtwΩtw−1

, where

Ωtw = lim
n→∞

1

n

n∑
i=1

∫ ∞
0

{
S(2)(β0, u)

S(0)(β0, u)
− X̄(β0, u)⊗2

}
wi(u)dÑ tw

1i (u).
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The proof of Theorem 1 and the form of Σtw are included in Appendix A. Consistent

estimators of Ωtw and Σtw are

Ω̂tw =
1

n

n∑
i=1

QA1BkB
′
l,i

(Vi)

{
Stw(2)(β̂tw, Vi)

Stw(0)(β̂tw, Vi)
− X̄tw(β̂tw, Vi)

⊗2

}
∆iI(εi = 1), and

Σ̂tw = n−1

n∑
i=1

(
η̂twi + ψ̂twi

)⊗2

,

where

η̂twi =

∫ ∞
0

{
Xi − X̄tw(β̂tw, u)

}
wtwi (u)dM̂ tw

1i (u, β̂tw), and

ψ̂twi =

∫ ∞
0

q̂tw(s, β̂tw)

π̂tw(s)
dM̂ c,tw

i (s).

We use QA1BkB
′
l,i

(u) in computing the weighted vital status, wtwi (u) = {G̃tw(u)/G̃tw(Vi ∧

u)}I(∆i = 1) + I(Vi > u), where G̃tw(u) is the Kaplan-Meier estimator with the sub-sample

re-represented using QA1BkB
′
l,i

(u). More specifically,

G̃tw(u) =
∏
Vj≤u

[
1− {

n∑
i=1

QA1BkB
′
l,i

(u)I(Vi = u,∆i = 0)}/{
n∑
i=1

QA1BkB
′
l,i

(u)I(Vi ≥ u)}
]
.

Also,

M̂ tw
1i (u, β̂tw) = QA1BkB

′
l,i

(u)I(Vi ≤ u, εi = 1)

−
∫ u

0

QA1BkB
′
l,i

(t){1− I(Vi < t, εi = 1)} exp(XT
i β̂

tw)dΛ̂tw
10 (t)

is the estimated Martingale for the cause-1 event, where

Λ̂tw
10 (t) = n−1

n∑
i=1

∫ t

0

{
wtwi (u)/Stw(0)(β̂tw, u)

}
dÑ tw

1i (u).

In ψ̂twi , q̂tw(s, β̂tw) = −n−1
∑n

j=1

∫∞
0

[
Xj − X̄tw(β̂tw, u)

]
wtwj (u)dM̂ tw

1j (u, β̂tw)I(Vj < s ≤ u),

π̂tw(s) = n−1
∑n

m=1 QA1BkB
′
l,m

(s)I(Vm ≥ s), and M̂ c,tw
i (s) = QA1BkB

′
l,i

(s)I(Vi ≤ s, εi = 0) −∫ s
0
QA1BkB

′
l,i

(t)I(Vi ≥ t)dΛ̂c,tw(t) is the estimated martingale for censoring, where Λ̂c,tw(t) =∫ t
0

∑n
i=1 QA1BkB

′
l,i

(u)/
{∑n

j=1 QA1BkB
′
l,j

(u)I(Vi ≥ u)
}
dI(Vi = u,∆i = 0).
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Theorem 2. If a consistent estimator β̂tw exists and n1/2(Λ̂tw
1 (t0,x0)−Λ1(t0,x0)) converges

in distribution to a Gaussian process on an interval [0, c), where pr(X ≥ c) > 0, then

n1/2{F̂ tw
1,A1BkB

′
l
(t0; x0)− F1,A1BkB

′
l
(t0; x0)} has the same limiting distribution as

Ktw(t0; x0) = n−1/2 exp {−Λ1(t0,x0)} ×

{
n∑
i=1

∫ t0

0

exp(xT0 β0)

Stw(0)(β0, u)
w̃i(u)dM̃ tw

1i (u, β0)

+
n∑
j=1

∫ ∞
0

vtw(s, t0,x0, β0)

πtw(s)
dM̃ c,tw

j (s) + htw
T

(t0,x0)Ωtw−1
n∑
i=1

(ηtwi + ψtwi )

}
+ op(1), (2.5)

where

vtw(s, t0,x0, β0) = − lim
n→∞

1

n

n∑
i=1

∫ t0

0

exp(xT0 β0)

stw(0)(β0, u)
w̃i(u)I(Vi < s ≤ u)dM̃ tw

1i (u, β0),

πtw(s) = lim
n→∞

1

n

n∑
m=1

QA1BkB
′
l,m

(s)I(Vm ≥ s),

and

htw(t0,x0) =

∫ t0

0

{x0 − x̄tw(β0, u)} exp(xT0 β0)dΛ10(u).

The detailed proofs of Theorem 2 are given in Appendix B. However, it is complicated

to evaluate the exact limiting distribution of the CIF estimator in (2.5). Hence we follow

Fine and Gray (1999) and adopt an approximation based on random perturbation. More

specifically, let {Wi}ni=1 be a random sample from the standard normal distribution and

K̂tw(t0, x0) = n−1/2 exp
{
−Λ̂tw(t0,x0)

}
×

{
n∑
i=1

∫ t0

0

exp(xT0 β̂
tw)

Ŝtw(0)(β̂tw, u)
wtwi (u)dM̂ tw

1i (u, β̂tw)Wi

+
n∑
i=1

∫ ∞
0

v̂tw(s, t0,x0, β̂
tw)

π̂tw(s)
dM̂ c,tw

i (s, β̂tw)Wi + ĥtw
T

(t0,x0)Ω̂tw−1
n∑
i=1

(η̂twi + ψ̂twi )Wi

}
.

To obtain the estimated variance at t0 with covariates x0, we generate B samples {Wbi, i =

1, ..., n}, b = 1, ..., B, and compute K̂tw
b (t0,x0) for b = 1, ...B. Then the standard deviation

for the CIF estimator at time t0 can be estimated by

σ̂tw(t0,x0) =
{

(nB)−1

B∑
b=1

K̂tw2

b (t0,x0)
}1/2

.

We further discuss the extension of models with Q̂A1BkB
′
l,j

(t). Several studies have shown

that the inference results remain similar as before, even when QA1BkB
′
l,j

(u) is replaced by a
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consistent estimator (Yavuz et al., 2018, e.g.). Thus, we simply replace QA1BkB
′
l,j

(t) with

Q̂A1BkB
′
l,j

(t) in the estimation of the CIFs and the inference procedures. All the above

discussions can be applied to the fixed weight Fine and Gray model.

2.4 SIMULATION

We conduct extensive simulations to study the finite-sample performance of our proposed

methods. Subjects are assumed to be randomized to the initial treatments A1 and A2.

Thus, we focus on only subjects who are assigned to A1. The following three scenarios

are considered to mimic a general setting: 1) subjects have developed the event of interest

before they respond to A1; 2) subjects who have responded to A1 within a specific time, say,

3 months (0.25 year), and have not developed either the target event or the competing event,

are further randomized to treatments B1 or B2; and 3) subjects who have not responded

to A1 and have not developed any event within 3 months, are randomized to treatments

B′1 or B′2. Two covariates X = (X1, X2) are considered, where X1 is a standard normal

variate and X2 is from Bernoulli(0.5). To create the three scenarios, we introduce T1 as the

time in years to either the first event (a cause-1 or competing event) or the intermediate

response from the initial randomization. The subjects whose T1 exceed 0.25 are treated

as non-responders to the initial treatment A1. They are further randomized to B′1 or B′2

following a Bernoulli distribution with p2 = pr(Z2 = 1 | S = 1, R = 0), and S = 1

and their response times T1 are truncated at 0.25. Assume that T1 is independent of the

covariates and follows an Exponential distribution with rate λ. Here λ is determined by

ps = pr(S = 0) and pr = pr(R = 1 | S = 1). Since pr(T1 ≥ 0.25 | S = 1) = 1 − pr,

then λ = − log{(1 − pr)(1 − ps)}/0.25. For those with T1 < 0.25, they can either have

developed an event or responded before 0.25, whichever occurring first. Given T1 < 0.25,

we simulated S = 0, 1 following a Bernoulli distribution, where pr(S = 0 | T1 < 0.25) =

ps/{1 − (1 − pr)(1 − ps)}. When S = 0, subjects are assumed to have developed an event

before the second randomization, where the event cause indicator ε1 is further simulated

from a Bernoulli distribution with pr(ε1 = 1 | S = 0) = 0.75. When S = 1, those subjects are
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deemed as responders with R = 1, and further randomized to B1 or B2 following a Bernoulli

distribution with p1 = pr(Z1 = 1 | S = 1, R = 1). In our simulations, we let ps = 0.1,

pr = 0.4 or 0.7, and p1 = p2 = 0.3.

For those subjects proceeding to the second randomization, we let T seq and εseq denote

the time to the first event and the corresponding cause indicator in a specific treatment

sequence since the second randomization, where seq = A1B1, A1B2, A1B
′
1 and A1B

′
2. Assume

that T seq and εseq follow the Fine and Gray Model:

pr(T seq ≤ t, εseq = 1 | S = 1, R, Z1, Z2,X) = 1− {1− p(1− e−t)}eγ1X1+γ2X2 , (2.6)

where p = 0.4, γ1 = R{Z1β11 + (1−Z1)β13}+ (1−R){Z2β12 + (1−Z2)β14}, γ2 = R{Z1β21 +

(1−Z1)β23}+(1−R){Z2β22 +(1−Z2)β24}. It is not trivial to simulate T seq from (2.6), as the

CIFs involved are improper. Here we adopt the simulation strategy used in Fine and Gray

(1999), Cheng et al. (2009), and Beyersmann et al. (2012), Sec 5.3. A random variable U is

first drawn from Uniform[0,1]. If U is smaller than the asymptote of the CIF, we generate

T seq by inverting the CIF. Otherwise, the CIF is not invertible, implying that the cause 2

event occurs first. We assume that the conditional distribution of T seq, given covariates X

and the occurrence of type 2 event, follows pr(T seq ≤ t | εseq = 2, S = 1, R, Z1, Z2,X) =

1− exp{−t exp(γ1X1 + γ2X2)}, and simulate T seq from this conditional distribution and let

εseq = 2. The true regression coefficients were set as (β11, β12, β13, β14) = (0.4, 0.7, 0.5, 0.9)

and (β21, β22, β23, β24) = (0.3, 0.8, 0.4, 1.2).

Assuming that there is no delay between time to the intermediate response and time to

the second randomization, the overall survival time is T = T1+ST seq with the corresponding

cause indicator ε = (1−S)ε1+Sεseq. The CIF for cause 1 event at time t for regimen A1BkB
′
l,

where k, l = 1, 2, can be written as

pr(TA1BkB
′
l
≤ t, εA1BkB

′
l

= 1)

= pspr(T1 ≤ t, ε1 = 1 | S = 0) + (1− ps)pr(T1 + T seq ≤ t, εseq = 1 | S = 1). (2.7)

Based on these assumptions and the Bayes rule, the first part in (2.7) has the form

pr(T1 ≤ t, ε1 = 1 | S = 0) =


0.75(1−e−λt)

1−(1−pr)(1−ps), if t < 0.25,

0.75, if t ≥ 0.25.
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For the second part in (2.7),

pr(T1 + T seq ≤ t, εseq = 1 | S = 1) = prpr(T ≤ t, ε = 1 | A1Bk, R = 1, S = 1)

+ (1− pr)pr(T ≤ t, ε = 1 | A1B
′
l, R = 0, S = 1).

Thus, we have simulated a cause-1 event time T from subjects following the aforementioned

three scenarios with the CIF given in (2.7). Finally, the censoring time, C, was generated

from the Exponential distribution with rate 0.1. The observed time V = min(T,C) and the

observed event type indicator ∆ε = I(T < C)ε.

We generated samples with size 400 and repeated 2000 times. For each simulated data, we

implemented six models, including the original Fine and Gray model (FG), the fixed weight

Fine and Gray model (WFG), the time-varying weight Fine and Gray model (TWFG), the

original Scheike Model (SC), the fixed weight Scheike Model (WSC), and the time-varying

weight Scheike Model (TWSC). We implemented the WFG and TWFG by solving the score

functions as discussed in Sections 2.2.2 and 2.2.3, and then computed the estimated CIF as

well as standard deviation based on the influence functions given in Section 2.3. The FG was

simply a special case by setting all weights to be 1. For the Scheike models, we assumed time-

varying effects for both covariates, and used the cloglog link function to have a proportional

hazards model. The implementation of the WSC and TWSC can be completed by solving

the score functions for both models, and then using the functional delta method to estimate

the variance of CIFs. The naive Scheike model can be simply run by using the R function

“comp.risk”. In order to compare all models, the weights for subjects with S = 0 were set

equal to 1 for the FG and SC.

For each model, we computed the averages of the CIF estimates at different time points

with covariates (X1, X2) = (1.5, 1). The true CIF values were computed based on (2.7)

through numerical integration. We considered two probabilities of response, pr = 0.4 or 0.7,

and presented the results for A1B1B
′
1 and A1B1B

′
2 regimens in Figure 2.2 over a range of

time points. In Tables 2.1 and 2.2, we also listed the mean of estimates (est), the empirical

standard deviation (σ̃), the mean of estimated standard deviations (σ̂), and the coverage

rate of 95% confidence intervals (Cov) along with the true values at time points 0.225, 0.3,

0.5, 0.75, and 1.
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Figure 2.2: The estimated CIFs over time using six models. The black solid line is the true

function. Gray lines for Fine-Gray-related models. Black stepwise curves for Scheike-related

models. The native methods are dashed lines, the fixed weight methods are dotted lines and

the time-varying weight are long dashed lines.
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Table 2.1: Simulation results for A1B1B
′
1 and A1B1B

′
2 with n=400 and pr=0.4. The time

point (time), the method for estimate (method), the true cumulative incidence (true), mean

of estimates (est), empirical standard deviation (σ̃), mean of estimated standard deviations

(σ̂), coverage rate of 95% confidence intervals (Cov).

A1B1B
′
1 A1B1B

′
2

pr time method true est σ̃ σ̂ Cov true est σ̃ σ̂ Cov

0.4 0.225 FG 0.11 0.33 0.06 0.06 0.01 0.11 0.29 0.05 0.05 0.01

WFG 0.19 0.04 0.04 0.61 0.21 0.05 0.04 0.37

TWFG 0.19 0.04 0.04 0.57 0.21 0.04 0.04 0.34

SC 0.21 0.07 0.07 0.78 0.13 0.05 0.05 0.96

WSC 0.10 0.05 0.04 0.88 0.10 0.05 0.04 0.87

TWSC 0.10 0.04 0.04 0.88 0.10 0.04 0.04 0.88

0.3 FG 0.20 0.39 0.07 0.07 0.11 0.25 0.39 0.05 0.05 0.27

WFG 0.26 0.06 0.06 0.86 0.31 0.06 0.06 0.87

TWFG 0.26 0.06 0.06 0.86 0.31 0.06 0.06 0.86

SC 0.29 0.09 0.08 0.86 0.27 0.07 0.07 0.93

WSC 0.19 0.08 0.07 0.87 0.23 0.08 0.07 0.86

TWSC 0.19 0.08 0.07 0.87 0.23 0.08 0.07 0.86

0.5 FG 0.42 0.5 0.07 0.07 0.82 0.55 0.6 0.06 0.06 0.87

WFG 0.43 0.08 0.08 0.95 0.52 0.07 0.07 0.91

TWFG 0.43 0.08 0.08 0.94 0.52 0.07 0.07 0.92

SC 0.45 0.10 0.10 0.93 0.59 0.08 0.08 0.92

WSC 0.41 0.11 0.11 0.89 0.53 0.09 0.09 0.92

TWSC 0.41 0.11 0.11 0.90 0.53 0.09 0.09 0.92

0.75 FG 0.58 0.58 0.08 0.08 0.94 0.7 0.73 0.06 0.06 0.89

WFG 0.56 0.08 0.08 0.93 0.67 0.07 0.07 0.93

TWFG 0.56 0.08 0.09 0.93 0.67 0.07 0.07 0.93

SC 0.58 0.10 0.10 0.93 0.75 0.07 0.07 0.85

WSC 0.56 0.11 0.11 0.93 0.69 0.09 0.09 0.93

TWSC 0.56 0.11 0.11 0.93 0.69 0.09 0.09 0.93

1 FG 0.67 0.64 0.07 0.08 0.94 0.76 0.8 0.05 0.05 0.85

WFG 0.64 0.08 0.09 0.93 0.75 0.07 0.07 0.94

TWFG 0.64 0.08 0.09 0.93 0.74 0.07 0.07 0.94

SC 0.66 0.09 0.10 0.95 0.83 0.07 0.06 0.76

WSC 0.66 0.10 0.11 0.94 0.77 0.08 0.08 0.91

TWSC 0.66 0.10 0.11 0.94 0.77 0.08 0.08 0.91

22



Table 2.2: Simulation results for A1B1B
′
1 and A1B1B

′
2 with n=400 and and pr=0.7. The

time point (time), the method for estimate (method), the true cumulative incidence (true),

mean of estimates (est), empirical standard deviation (σ̃), mean of estimated standard de-

viations (σ̂), coverage rate of 95% confidence intervals (Cov).

A1B1B
′
1 A1B1B

′
2

pr time method true est σ̃ σ̂ Cov true est σ̃ σ̂ Cov

0.7 0.225 FG 0.14 0.33 0.06 0.06 0.08 0.14 0.32 0.05 0.05 0.05

WFG 0.20 0.05 0.05 0.84 0.21 0.05 0.05 0.77

TWFG 0.20 0.05 0.05 0.83 0.21 0.05 0.05 0.75

SC 0.24 0.07 0.08 0.83 0.19 0.06 0.06 0.94

WSC 0.14 0.06 0.06 0.88 0.14 0.06 0.06 0.89

TWSC 0.14 0.05 0.05 0.89 0.14 0.05 0.05 0.89

0.3 FG 0.21 0.38 0.07 0.07 0.28 0.24 0.39 0.06 0.06 0.29

WFG 0.26 0.06 0.06 0.92 0.28 0.06 0.06 0.93

TWFG 0.26 0.06 0.06 0.92 0.28 0.06 0.06 0.91

SC 0.30 0.08 0.08 0.88 0.29 0.08 0.08 0.93

WSC 0.21 0.08 0.08 0.89 0.23 0.08 0.08 0.88

TWSC 0.21 0.08 0.08 0.89 0.23 0.08 0.08 0.88

0.5 FG 0.38 0.47 0.07 0.07 0.80 0.45 0.53 0.07 0.07 0.79

WFG 0.39 0.07 0.08 0.95 0.43 0.07 0.07 0.93

TWFG 0.39 0.07 0.08 0.94 0.43 0.07 0.07 0.93

SC 0.43 0.09 0.09 0.93 0.51 0.09 0.09 0.89

WSC 0.37 0.1 0.1 0.91 0.43 0.1 0.10 0.91

TWSC 0.37 0.1 0.1 0.92 0.43 0.1 0.10 0.91

0.75 FG 0.51 0.54 0.08 0.08 0.93 0.57 0.63 0.07 0.07 0.85

WFG 0.5 0.08 0.08 0.95 0.55 0.08 0.08 0.93

TWFG 0.5 0.08 0.08 0.94 0.55 0.08 0.08 0.93

SC 0.53 0.09 0.10 0.94 0.65 0.09 0.09 0.84

WSC 0.50 0.11 0.11 0.93 0.56 0.10 0.10 0.93

TWSC 0.50 0.11 0.11 0.93 0.56 0.10 0.10 0.93

1 FG 0.59 0.59 0.08 0.08 0.95 0.64 0.69 0.07 0.07 0.85

WFG 0.57 0.08 0.09 0.94 0.62 0.08 0.08 0.94

TWFG 0.57 0.08 0.09 0.94 0.62 0.08 0.08 0.94

SC 0.60 0.09 0.10 0.94 0.72 0.08 0.08 0.81

WSC 0.58 0.10 0.11 0.94 0.64 0.10 0.10 0.93

TWSC 0.58 0.10 0.11 0.94 0.64 0.10 0.10 0.93
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The simulation results show that the naive estimators, FG and SC, tend to overestimate

the CIF at early time points but not at later time points. This is as expected because

the naive methods assign equal weights to those subjects who failed before the second-

randomization (with quick failure) and to those subjects who were further randomized to

second-stage treatments. In other words, the naive methods include more subjects who failed

earlier. In contrast, the weighted estimators, WFG, WSC, TWFG and TWSC, have much

better performance in estimating the CIF, since they all properly up-weigh those subjects

going through the second-stage randomization. The Scheike model has better performance

than the Fine and Gray model, especially when the CIF is relatively low. However, the

WFG and TWFG model still perform reasonably well across time. Moreover, though none

of the models are exactly the true models, the WFG, TWFG, WSC and TWSC still provide

reliable estimation of the CIF. Consequently, the fixed and time-varying weight estimators

are more reliable methods than the naive ones in finding an optimal DTR from a two-stage

randomized trial.

2.5 ANALYSIS OF CHILDREN’S NEUROBLASTOMA STUDY

We now revisit our motivating example of the neuroblastoma study that was conducted by

the Children’s Cancer Group between 1991 and 1996. Neuroblastoma is a type of cancer that

starts in early nerve cells of the sympathetic nervous system and occurs most often in in-

fancy and young children. Children with high-risk neuroblastoma have high recurrence and

poor survival rates (www.cancer.org/cancer/neuroblastoma). Thus, an important clinical

question is how to stop or delay disease progression and thus improve survival, by providing

an optimal regimen to patients according to their states. In this section, we apply our meth-

ods to evaluate the preventive effect on disease progression of myeloablative chemotherapy

and radiotherapy plus purged autologous bone marrow transplantation (ABMT) over in-

tensive chemotherapy (Chemo) alone, followed by subsequent treatment with 13-cis-retinoic

acid (cis-RA) or no further treatment (no RA) for children with high-risk neuroblastoma

(Matthay et al., 2009). The study adopted a two-stage SMART design. After receiving
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an induction chemotherapy, 379 eligible children without progressive disease participated in

the first-stage randomization, where 189 children were assigned to AMBT and 190 children

were assigned to Chemo. Those children, who did not develop progressive disease after the

initial treatment and were willing to be further randomized, were defined as Responders and,

subsequently randomized to receive either cis-RA or no RA. At the second stage, 50 of 98

ABMT responders and 52 of 105 Chemo responders received cis-RA. For simplicity, we re-

ferred to those children who did not have the second stage randomization as non-responders.

Thus, four possible regimens could be constructed for this study: (i) treating with ABMT

followed by cis-RA if subjects responded and no further therapy if subjects did not respond

(ABMT/cis-RA); (ii) treating with ABMT followed by no RA if subjects responded and no

further therapy if subjects did not respond (ABMT/no RA); and (iii) Chemo/cis-RA and

(iv) Chemo/no RA were defined similarly.

During the study a total of 269 children developed progressive disease, with 134 occurring

in non-responders, a total of 23 children died before they developed the disease, with 22 in

non-responders, and a total of 87 children were right censored, with 20 in non-responders.

Therefore, the event of interest, the time to disease progression, could not be observed after

death, which is a competing event, and the CIF is used to describe cumulative risks of disease

progression in the presence of death. Furthermore, an interesting feature of the data is that

the response was defined as no disease progression, and the time to response was closely

related to our event of interest which is disease progression. As a result, the time-varying

weight methods are not applicable; see Yavuz et al. (2018) for more details. Therefore, only

the fixed weight methods WFG and WSC can be applied to this dataset.

Following Matthay et al. (2009), we considered five potential risk factors, age (Age), dis-

ease stage (Stage4dx), ferritin (Ferritindx), MYCN status (MYCNdx) and bone metastases

(Bonesdx). Tumor pathology was not considered due to a very unbalanced sample size (6

vs.120 in ABMT and 9 vs.128 in Chemo). In the analysis, we treated Age as a continuous

variable, and included the rest of covariates as dichotomous variables using Matthay et al.

(2009)’s definition. Following Matthay et al. (2009), we excluded the missing values and

used the complete data with a total of 260 children, with 120 in ABMT and 140 in Chemo.

In the complete data, a total of 177 children developed progressive disease, with 95 occurring
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in non-responders, a total of 14 children died before they developed the disease, with 14 in

non-responders, and a total of 69 children were right censored, with 17 in non-responders.

In order to compare with Matthay et al. (2009), we illustrated our methods by focusing

on the AMBT/cis-RA regimen, and applying the WSC model to examine if any time-varying

effect exists. The estimated time-varying coefficients are given in Figure 2.3. The formal

Kolmogorov-Smirnov test and the Cramer-von Mises test for time-varying coefficients are

summarized in Table 2.3, which suggest that none of the covariates have a time-varying

effect. Therefore, presenting the fixed-weight Fine and Gray model as the final model for

the AMBT/cis-RA regimen is reliable.

Moreover, to compare with other regimens, we examined the time-varying effects of the

five covariates using the Scehike model for the rest of three regimens. Only Age is significant

with p-value=0.02 in the Chemo/No RA regimen by the Cramer-von Mises test. However,

Age is not significant with p-value=0.07 by using the Kolmogorov-Smirnov test. Considering

multiple comparisons involved in testing five covariates for four regimens, it is reasonable to

assume constant covariate effects, and thus to apply the fixed-weight Fine and Gray model

to each of the four DTRs. The p-values for testing the significance of covariate effects in

the final models are given in Table 2.4. The results show that Ferritindx, MYCNdx and

Age are significant in three of the four regimens, Stage4dx is significant in only one of the

four regimens, and Bonedx is not significant for all regimens. The estimated coefficients

suggest that higher levels of ferritin and MYCN amplification are associated with faster

disease progression. Despite that the outcomes in Matthay et al. (2009) are not the same as

our outcome of interest, and the subgroups included in the two analyses are different, our

method has identified the same set of important covariates as those listed in Matthay et al.

(2009).

To compare the CIFs of progressive disease over time of the four regimens with various

covariate effects, we present the CIF estimates obtained by fitting the WFG model for the

four regimens in Figure 2.4, for Ferritindx = 0 or 1, and MYCNdx = 0 or 1, while setting Age

= 3 (the median age in the data), Stage4dx = 0 and Bonedx = 0. From Figure 2.4, patients

with higher level of Ferritindx or MYCN gene copy were more likely to experience progressive

disease across the four regimens, which is consistent with the estimated coefficients in Table
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Figure 2.3: The estimated coefficient for regimen ABMT/cis-RA using the fixed weight

Scheike model. The solid lines are estimates along with their confidence intervals (dashed

lines) and confident bands (dotted lines).
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Table 2.3: P-values for testing “time-varying effect” for each variable, using the Kolmogorov-

Smirnov test and the Cramer-von Mises test.

P-value of testing time-varying coefficient

Test Age Stage4dx Ferritmdx MYCNdx Bonedx

Kolmogorov-Smirnov 0.661 0.307 0.566 0.090 0.735

Cramer-von Mises 0.174 0.777 0.276 0.334 0.287

Table 2.4: The estimated coefficients from the WFG model for the four regimens. The

estimate β̂, the estimate of standard deviation (σ̂(β̂)) and the P-value for testing β = 0.

Covariate

Regimen Estimates/p-value Age Stage4dx Ferritindx MYCNdx Bonedx

ABMT/cis-RA β̂ (σ̂(β̂)) 0.17(0.06) 0.97(0.45) 0.97(0.33) 0.51(0.32) 0.12(0.35)
p-value 0.005 0.031 0.003 0.110 0.737

ABMT/no RA β̂ (σ̂(β̂)) 0.19(0.05) 0.46(0.45) 0.07(0.31) 0.79(0.38) 0.22(0.35)
p-value <0.001 0.312 0.828 0.039 0.532

Chemo/cis-RA β̂ (σ̂(β̂)) 0.12(0.05) 0.67(0.42) 0.55(0.26) 0.73(0.27) 0.51(0.26)
p-value 0.034 0.113 0.037 0.007 0.053

Chemo/no RA β̂ (σ̂(β̂)) 0.06(0.05) 0.37(0.44) 0.68(0.26) 1.11(0.27) 0.02(0.24)
p-value 0.287 0.407 0.009 < 0.001 0.942

2.4. Figure 2.4 also suggests that the Chemo/no RA regimen seems to be the worst regimen

for children with high risk Neuroblastoma, whereas the AMBT/cis-RA regimen may be the

optimal regimen among the four. For children with high ferritin level and no MYCN gene

copy, ABMT/cis-RA and ABMT/no RA regimens seem to be comparable with negligible

differences, and they both appear to perform better than the other two.
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Figure 2.4: The estimated CIFs for the four regimens obtained by using the WFG method

with four cases while controlling for Age=3 years, Stage4dx=0 and Bonedx=0. The plots

in the upper row are for Ferritindx=0 and the plots in the lower row are for Ferritindx=1.

The plots in the left column are for MYCNdx=0 and the plots in the right column are for

MYCNdx=1.
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2.6 DISCUSSION

Patient heterogeneity is of great clinical importance from a clinical trial perspective. If

subjects were to follow a specific DTR, they may wonder how well they would fare from

this specific treatment strategy given their own clinical characteristics. In this chapter,

we have focused on the direct modeling of covariate effects on a specific DTR. We have

demonstrated that the inverse-probability-weighting method can be used to extend some

commonly used regression models for competing-risk data to a two-stage randomization

setting. The Fine and Gray and Scheike models were used as examples, though our methods

can be readily applied to other models, such as the multinomial logistic model (Gerds et al.,

2012). Our simulations show that the resulting weighted estimators of the CIF are still

reasonably accurate, even though the underlying Fine and Gray or Scheike model may be

misspecified. Therefore, we provide convenient and reliable methods to evaluate covariate

effects on the CIF. The proper modeling of covariate effects on various DTRs will facilitate

selection of the optimal treatment strategy for a subject with specific characteristics.
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3.0 QUANTILE ASOCIATION MODEL FOR BIVARIATE SURVIVAL

DATA

3.1 INTRODUCTION

The association between two failure times is often of interest in familial studies, finance

and biomedical research. For example, in an atherosclerosis study, two diseases, myocar-

dial infarction and stroke, are probably associated with each other. Understanding their

association may help prevent the occurrence of one event, once the other event is observed.

Another example is age-related macular degeneration (AMD), which is a leading cause of vi-

sion loss in developed countries (Swaroop et al., 2009). A patient who was identified to have

AMD in one eye may have a higher risk of developing AMD in the other eye. Several global

dependence measures have been developed to measure the strength of association between

the dependent pairs. Oakes (1982, 2008) proposed a nonparameteric estimator of Kendall’s

tau under the presence of the censoring. Wang and Wells (2000) further introduced other

estimators of Kendall’s tau using V-statistics. Lakhal et al. (2009) adopted the inverse prob-

ability censoring weighted method in the estimation of Kendall’s tau. In addition, Hsu and

Prentice (1996) proposed an estimator for the correlation between two cumulative variates

using a nonparameteric method.

Global association measures are appealing for their ease of interpretation. However,

they cannot capture the local association structure which may vary over time. There are

extensive works on local associations. One approach to quantifying local association is to

analyze the bivariate survival data by a frailty model, or more generally, under the cop-

ula framework, where copula models allow time-dependent association between two failure

times. Oakes (1989) showed that the Clayton model (Clayton, 1978) can be cast under
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the frailty framework. Anderson et al. (1992) considered the time-dependent conditional

expected residual life and conditional probability to quantify time-dependent association in

bivariate survival data under the proportional hazard frailty model. Shih and Louis (1995)

proposed two two-stage estimation procedures for the association parameters in copula mod-

els. Other time-varying measures include a martingale covariance function for two failure

times (Prentice and Cai, 1992), a piecewise constant cross hazard ratio (Nan et al., 2006),

and a time-dependent cross ratio (Hu and Nan, 2011), among others.

In the analysis of association, it is of interest to investigate how risk factors are related

to the local association structure between two event times. Conditional association tends

to be more reasonable because it can evaluate the important factors, as well as eliminate

potential confounders. In the AMD example, age, family history and smoking status are

considered as possible risk factors for the development of AMD. They may also influence

how the onset times of the AMD are related with one another from the same subject. By

identifying those patients with stronger local association, researchers may provide effective

treatments for them once they have developed AMD in one eye to prevent the development of

AMD in the other eye. In decades, much research focuses on adjusting for covariate effects

on marginal distributions, but not directly on the association. For instance, Zeng et al.

(2009) formed a general transformation for the cumulative hazard function in a gamma

frailty model, while considering covariates for the marginal cumulative hazard functions.

Li et al. (2016) proposed an association model based on the odds ratio for quantiles, and

considered the covariate effects on the marginal distributions only. However, few works target

conditional association, as it is challenging to evaluate covariate effects on the strength of

local association. Yan and Fine (2005) proposed a functional association regression model

on a temporal process with time-varying coefficient effects, though the temporal association

may be affected by the assumed marginal distributions.

In this work, we propose a conditional association model for bivariate survival data, by

adopting a novel quantile-specific association measure – quantile odds ratio (qor) as pro-

posed in Li et al. (2014). The qor is independent of the marginal distributions, invariant

to monotone transformations, and insensitive to outliers. Li et al. (2014) utilized existing

quantile regression models to allow covariate effects on marginal quantiles, and developed
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regression models for the qor for completely observed bivariate outcomes. For bivariate sur-

vival data, Li et al. (2016) successfully explored the quantile association through the qor

in the copula framework, and proposed two estimators of the quantile association by using

nonparametric and semi-parametric methods, respectively. Although Li et al. (2016) con-

sidered the covariate effects in the estimation of the quantile association, they assumed that

covariate effects influence the quantile association via marginal quantiles only, which may

not be true in bivariate survival data. Therefore, we propose a quantile association model

for censored pairs and allow covariate effects on both marginal distributions and the local

association structure. More specifically, we adopt the censored quantile regression models

for marginal quantiles, and construct a quantile-based regression model for the transformed

qor in bivariate survival data.

Quantile regression (Koenker and Bassett, 1978) is attractive in studying dynamic effects

of covariates on an outcome, because it allows researchers to assess covariate effects across

different quantiles of the outcome, and regression coefficients are easy to interpret. Quantile

regression has been well extended to univariate survival data under different scenarios, such

as survival data with independent censoring (Portnoy, 2003; Peng and Huang, 2008; Koenker

et al., 2008), competing risks data (Peng and Fine, 2009), left-truncated semi-competing risks

data (Li and Peng, 2011), among others. Meanwhile in the past decade, several censored

quantile models were developed for correlated survival data. For example, Yin and Cai (2005)

proposed a quantile regression model for multivariate failure times with an independent

working covariance matrix, and estimated parameters by generalized estimating equations.

Ji et al. (2014) developed quantile models for marginal failure times and handled dependent

censoring times through a copula model for the joint distribution. Li and Peng (2015)

further proposed quantile regression approaches to deal with dependent censoring and semi-

competing risks censoring. Compared to the abundant extensions of quantile regression for

univariate survival data, there is very limited work studying covariate effects on quantile

association for bivariate survival data.

Therefore, we propose a conditional quantile association model that allows covariate ef-

fects on both the marginal distributions and the association structure. Under the random

censoring assumption, we first adopt the censored quantile regressions for marginal condi-
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tional quantiles. We then propose a model to estimate the effects of the covariates on the

conditional qor, through the relationship between qor and the conditional copula function.

The estimation of covariance matrices is often tricky for quantile regression and quantile

association analyses due to the unsmooth objective functions in the optimization process.

We thus extend an idea of the induced smoothing procedure (Brown and Wang, 2005) to

estimate the influence functions for our proposed estimators, and propose an algorithm to

obtain a consistent estimator for the covariance matrix of the proposed estimators. Our

proposed method explicitly addresses the presence of right censoring and greatly expands

the application of the method in Li et al. (2014) to time-to-event types of data. The rest of

this chapter is organized as follows. We propose our conditional quantile association model

and estimating equations in Sections 3.2.1 and 3.2.2. The asymptotic properties for the

coefficient estimates and the covariance estimation are given in Sections 3.2.3 and 3.2.4. We

present numerical simulations for the proposed method and procedure in Section 3.3, and

apply to an AMD dataset in Section 3.4. Finally, some discussions are given in Section 3.5.

3.2 METHOD

3.2.1 Bivariate Survival Data and Models

To begin, we introduce necessary notation for bivariate survival data with covariates. Let

(T1, T2) be a vector of bivariate survival times, and (C1, C2) be the corresponding vector

of bivariate right censoring times. Define Yj = min(Tj, Cj), δj = I(Tj ≤ Cj), j = 1, 2. Let

Zj denote the covariate vector, which includes 1 as the first element and time-independent

covariates, that is relevant to Tj, j = 1, 2, and let Z3 denote the covariate vector that is

directly related to the association between T1 and T2. Define Z as a vector that consists

all p covariates in Z1, Z2, and Z3. In the presence of independent censoring, the observed

bivariate survival data consist of n i.i.d. replicates of {Y1i, Y2i, δ1i, δ2i,Zi}ni=1.

For j = 1, 2, define Fj(t|Zj) = Pr(Tj ≤ t|Zj) as the marginal conditional cumulative

function of Tj, and Qj(u|Zj) = inf{t : Fj(t|Zj) ≥ u}, u ∈ (0, 1) as the corresponding
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marginal conditional quantile function. Let H(t1, t2|Z) = Pr(T1 ≤ t1, T2 ≤ t2|Z) be the

conditional bivariate cumulative distribution function of (T1, T2). The conditional copula

function is defined as

C(τ |Z) := Pr(T1 ≤ Q1(τ1|Z1), T2 ≤ Q2(τ2|Z2)|Z) = H{Q1(τ1|Z1), Q2(τ2|Z2)|Z},

where τ = (τ1, τ2) ∈ (0, 1)2. To simply the notation, we simply use Fj(Tj|Z) to denote

Fj(Tj|Zj), for j = 1, 2, with the understanding that not all covariates in Z are significantly

related to Tj. Thus, H{Q1(τ1|Z), Q2(τ2|Z)|Z} d
= H{Q1(τ1|Z1), Q2(τ2|Z2)|Z}.

In this study, we adopt a novel quantile association measure, quantile-specific odds ratio

(qor), that was proposed by Li et al. (2014), where

qor(τ |Z) =
odds{T1 ≤ Q1(τ1|Z)|T2 ≤ Q2(τ2|Z)|Z}
odds{T1 ≤ Q1(τ1|Z)|T2 > Q2(τ2|Z)|Z}

=
odds{T1 > Q1(τ1|Z)|T2 > Q2(τ2|Z)|Z}
odds{T1 > Q1(τ1|Z)|T2 ≤ Q2(τ2|Z)|Z}

=
Pr{T1 ≤ Q1(τ1|Z), T2 ≤ Q2(τ2|Z)|Z} × Pr{T1 > Q1(τ1|Z), T2 > Q2(τ2|Z)|Z}
Pr{T1 ≤ Q1(τ1|Z), T2 > Q2(τ2|Z)|Z} × Pr{T1 > Q1(τ1|Z), T2 ≤ Q2(τ2|Z)|Z}

.

(3.1)

The qor represents the odds that the first event occurs before (after) its quantile Q1(τ1) given

that the second event occurred before (after) its quantile Q2(τ2), compared to the odds that

the first event occurs before (after) its quantile Q1(τ1) given that the second event occurred

after (before) its quantile Q2(τ2) (Li et al., 2014, 2016). Expressed as an odds ratio, it is

easy to interpret the relationship between two event times based on the qor. If there exists

a positive (negative) association between T1 and T2, the qor is greater (less) than 1. If they

are independent, then the qor is equal to 1. Under different copula models, the qor changes

with τ , except for the Plackett copula under which the qor stays constant; see Li et al. (2014)

for more details.

To connect the conditional copula function with the qor, we can express C(τ |Z) as a

function of the qor, χ(qor(τ |Z), τ ), where

χ(y; τ ) :=

 τ1+τ2
2

+
1−
√

(y−1)2(τ1−τ2)2+2(y−1)(τ1+τ2−2τ1τ2)+1

2(y−1)
if y 6= 1;

τ1τ2 if y = 1,
(3.2)
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and limy→0+ χ(y; τ ) = max(0, τ1 + τ2 − 1) and limy→∞ χ(y; τ ) = min(τ1, τ2). It is simple to

show that the conditional copula function has a monotone relationship with the qor.

In this study, we model the effects of Z on the marginal distributions, by adopting the

censored quantile regression model (Portnoy, 2003; Peng and Huang, 2008; Koenker et al.,

2008), which assumes that

Qj(τj|Z) = gj{ZTβj0(τj)}, τj ∈ (0, τUj), (3.3)

where βj0(τj) is a p × 1 vector of unknown coefficients, τUj is the maximum quantile level

that is estimable from the censored data, and gj(·) is a known monotone link function, for

j = 1, 2.

To model the local conditional association, we assume that

log qor(τ |Z) = ZTγ0(τ ), (3.4)

where γ0(τ ) = {γ(0)
0 (τ ), γ

(1)
0 (τ ), ..., γ

(p−1)
0 (τ )} is a p × 1 vector of coefficients. γ

(0)
0 (τ )

corresponds to the baseline log qor(·) when all covariates are set to zero. The absolute

value of γ
(k)
0 (τ ) and the sign of γ

(k)
0 (τ ) represent the magnitude and the direction of the

changes in the local association at the τ -th quantiles, when the kth covariate increases,

with k = 1, . . . , p − 1. Under this structure, the conditional copula function has a form,

C(τ |Z) = χ[exp{ZTγ0(τ )}; τ ]. Again in this study, we simply use the same Z for both

marginal models and the local association model for the brevity. In fact, different sets of

covariates are allowed in the models (3.3) and (3.4).

3.2.2 Estimating Equations

Before evaluating the association coefficients, γ0(τ ), we need to first estimate the unknown

parameters, βj0(τj), in the marginal censored quantile models. Without loss of generality,

we adopt Peng and Fine (2009)’s methods which uses the inverse probability of censoring
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weighting (IPCW) technique to modify the standard quantile regression model in the estima-

tion equation. More specifically, let Gj(t|Z) be the survival function of Cj given Z, j = 1, 2.

The estimating equation for the true parameters, βj0(τj), is,

Snj(bj; τj) = n−1

n∑
i=1

Zi

[
I{Yji ≤ gj(Z

Tbj)}δji
Ĝj(Yji)

− τj
]
,

where Ĝj(·) denotes a consistent estimator for Gj, such as the Kaplan-Meier estimator,

j = 1, 2. In practice, we focus on a pre-specified region of τ ∈ D, where D is a subset of

(0, τU1 ] × (0, τU2 ]. Under mild regularity conditions, it has been shown that Snj(bj; τj) is

asymptotically mean zero at the true parameters βj0, and solving the estimating equation

Snj(bj; τj) = 0 can be transformed into optimizing a L1-type convex function. Therefore,

despite that Snj(bj; τj) is not smooth, the solution to Snj(bj; τj) = 0 still can be obtained by

minimizing the L1-type convex function (Peng and Fine, 2009). We use the existing software

package, such as rq() function in R package quantreq, to obtain the estimators β̂j(τj) and

the corresponding quantile estimators Q̂j(τj|Z) = gj{ZT β̂j(τj)} for j = 1, 2.

We now consider the main objective of this study of evaluating the quantile association

effects, γ0(τ ), based on bivariate survival data. For complete data,

E{I(T1 ≤ Q1(τ1|Z), T2 ≤ Q2(τ2|Z)|Z)} = C(τ |Z).

For bivariate survival data, we adapt a commonly used technique based on the IPCW to ac-

count for censored observations. Under the assumption that the censoring Cj is conditionally

independent of Tj given Z, we have

E

{
I(Y1 ≤ t1, Y2 ≤ t2)δ1δ2

G(Y1, Y2)

∣∣∣∣Z}
= E

[
E

{
I(T1 ≤ t1, T2 ≤ t2)I(T1 ≤ C1)I(T2 ≤ C2)

G(Y1, Y2)

∣∣∣∣T1, T2,Z

}∣∣∣∣Z]
= E

{
I(T1 ≤ t1, T2 ≤ t2)G(T1, T2)

G(T1, T2)

∣∣∣∣Z}
= Pr(T1 ≤ t1, T2 ≤ t2|Z) = H(t1, t2|Z),
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where G(t1, t2) = Pr(C1 > t1, C2 > t2). Let Ĝ(t1, t2) be a consistent estimator of G(t1, t2).

We can show that

E

[
I{Y1 ≤ Q1(τ1|Z), Y2 ≤ Q2(τ2|Z)}δ1δ2

Ĝ(Y1, Y2)

∣∣∣∣Z] = Pr(T1 ≤ Q1(τ1|Z), T2 ≤ Q2(τ2|Z)|Z) + o(1)

= C(τ |Z) + o(1) = χ{qor(τ |Z), τ}+ o(1).

Along with the consistent estimators of Qj(τj|Z), Q̂j(τj|Z), from the marginal quantile re-

gression, and under the assumed conditional association effects model (3.4), we propose the

following estimating equation to estimate γ0(τ ):

WĜ
n (β̂1, β̂2,γ; τ )=

1

n

n∑
i=1

Zi

[
I{Y1i ≤ Q̂1(τ1|Z), Y2i ≤ Q̂2(τ2|Z)}δ1iδ2i

Ĝ(Y1i, Y2i)
−χ{exp(ZT

i γ); τ}
]
= 0,

where Q̂j(τj|Z) = gj{ZT β̂j(τj)} for j = 1, 2. For a fixed τ , WĜ
n (β̂1, β̂2,γ; τ ) is smooth in

γ. Let χ′(·; τ ) be the derivative of χ(·; τ ). χ′(y, τ ) can be shown to be positive for y ∈ R.

Then, ∂WĜ
n (β̂1, β̂2,γ; τ )/∂γ = −n−1

∑n
i=1 ZiZ

T
i exp(ZT

i γ)χ′{exp(ZT
i γ); τ} exists, and is a

negative definite matrix. This ensures a unique solution to WĜ
n (β̂1, β̂2,γ; τ ) = 0, which can

be found by using the Newton-Ralphson algorithm that is implemented by the multiroot()

function in the R package rootSolve. There are a variety of methods to estimating G(y1, y2).

In the AMD study, we assume the univariate censoring mechanism for both eyes, where

G(y1, y2) = Pr{C > max(y1, y2)}, and adopt the Kaplan-Meier estimator on the basis of

{max(Y1i, Y2i), 1− δ1iδ2i}ni=1. For the more general bivariate censoring, consistent estimators

such as the Prentice and Cai (1992) method can be used to estimate G(y1, y2) on the basis

of {Y1i, 1− δ1i, Y2i, 1− δ2i}ni=1.
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3.2.3 Asympotic Properties

In this subsection, we establish the uniform consistency and weak convergence of the pro-

posed estimator γ̂0(τ ) for τ ∈ D. We first state some notation and the regularity conditions.

For a vector u, define u⊗2 = uuT and ||u|| as its Euclidean norm. We use eigmin(A)

to denote the minimal eigenvalue of a square matrix A. Let fj(t|z) = dFj(t|z)/dt, and

hj(t1, t2|Z) = ∂H(t1, t2|Z)/∂tj, for j = 1, 2. Let Aj(bj) = E[Z⊗2fj{gj(ZTbj)|Z}] and

Pj(b1,b2) = E[Z⊗2 hj{g1(ZTb1), g2(ZTb2)|Z}g′j(ZTbj)], where g′j(u) = dgj(u)/du. Denote

J(γ; τ ) = E[Z⊗2 χ
′{exp(ZTγ)} exp(ZT

i γ)], where χ
′
(u) = dχ(u)/du. The required regularity

conditions are listed below:

C1. Z is uniformly bounded, that is, supi ||Zi|| <∞ for i = 1, . . . , n.

C2. There exists kj > 0 such that Pr(Cj = kj) > 0 and Pr(Cj > kj) = 0, for j = 1, 2.

Moreover, there exists δ > 0 such that Pr(C1 ≥ c1, C2 ≥ c2) > δ > 0 for any

cj ≤ kj, j = 1, 2.

C3. (i) fj(t|z) is bounded uniformly in t and z, for j = 1, 2; (ii) βj0(τj) is Lipschitz

continuous for τj, j = 1, 2, where τ = (τ1, τ2) ∈ D; (iii) there exists constants ρb >

0 and kb > 0 such that infbj∈B(ρb)eigminAj(bj) > kb, where B(ρb) = {bj ∈ Rp :

infτ∈D ||bj − βj0(τj) ≤ ρb||}, for j = 1, 2, τ = (τ1, τ2); (iv) the copula function is

differentiable with continuous partial derivatives with regard to τ1 and τ2 for any Z.

C4. (i) supτ∈D ||γ0(τ )|| is bounded above; (ii) there exists a constant kr > 0 such that

infτ∈Deigmin{J(γ0(τ ); τ )} > kr.

C5. (i) For j = 1, 2, fj(t|z) are continuously differentiable with bounded derivatives; (ii)

for j = 1, 2, ∂hj(t1, t2|Z)/∂tj are continuously differentiable with bounded derivatives.

Remarks: Condition C1 assumes the boundedness of covariates, which is often met in

practice. Condition C2 is satisfied in many clinical settings with administrative censoring.

Conditions C3 (i)-(iii) assume uniform boundedness of marginal densities and smoothness

of coefficient processes, which are standard assumptions for marginal quantile regression

methods with independent censoring data, and are usually reasonable in practice. Condition

C3 (iv) implies the boundedness of hj(t1, t2|z) in (t1, t2) and z. Condition C4 lists standard

assumptions for quantile association models, which include the boundedness of γ0(τ ) and the

39



identifiability of γ0(τ ). Condition C5 contains mild assumptions for adopting a consistent

covariance estimator.

Let M
Gj
i (s) = I(Yji ≤ s, δj = 0)−

∫∞
0
I(Yji ≥ u)dΛGj(u), where ΛGj(u) is the cumulative

hazard function for the censoring variable Cj. Define ξ1,ji(τj) = Zi(I[Yji ≤ g{ZT
i βj0(τj)}]δj

Gj(Yji)
−1 − τj) and ξ2,ji(τj) =

∫∞
0
w(βj0(τj), s)P (Yji ≥ s)−1dM

Gj
i (s), where w{βj0(τj), s} =

E{ZI(Yj ≥ t)I[Yj ≤ gj{ZTβj0(τj)}]δjGj(Yj)
−1}. Let ξji(τj) = ξ1,ji(τj) − ξ2,ji(τj). To ob-

tain the explicit form of the influence function, we here assume the univariate censoring

mechanism. Let Y ∗i = max(Y1i, Y2i) and δ∗i = 1 − δ1iδ2i. The univariate censoring function

G(·) can be estimated from {Y ∗i , δ∗i }ni=1, and we denote Ĝ(·) as the consistent estimator of

bivariate censoring function. Let y∗(t) = Pr(Y ∗ ≥ t), MG
i (t) = NG

i (t)−
∫∞

0
I(Y ∗i ≥ s)dΛG(s)

and ξ∗i (τ ) =
∫∞

0
w∗{β10(τ1),β20(τ2), s}P (Y ∗i ≥ s)−1dMG

i (s), where w∗{β10(τ1),β20(τ2), s} =

E[ZI(Y ∗ ≥ s)I{g−1
1 (Y1) ≤ ZTβ10(τ1), g−1

2 (Y2) ≤ ZTβ20(τ2)}δ1δ2G(Y ∗)−1].

Theorem 3. Suppose models (3.3) and (3.4) hold for τ ∈ D. Under conditions C1-C5,

supτ∈D ||γ̂(τ )− γ0(τ )|| p−→ 0.

Theorem 4. Suppose models (3.3) and (3.4) hold for τ ∈ D. Under conditions C1-C5,

n1/2{γ̂(τ ) − γ0(τ )} converges weakly to a zero-mean Gaussian process for τ ∈ D with a

limiting covariance matrix which equals

Ω(τ ′, τ ) = J{γ0(τ ′); τ ′}−1E{ψi(τ ′)ψi(τ )T}J{γ0(τ ); τ}−T , (3.5)

where

ψi(τ ) = Zi

I
{
g−1

1 (Y1i) ≤ ZT
i β10(τ1), g−1

2 (Y2i) ≤ ZT
i β20(τ2)

}
δ1iδ2i

G(Y1i, Y2i)
− Ziχ{exp(ZT

i γ0(τ )); τ}

− ξ∗i (τ )−
2∑
j=1

Pj{β10(τ1),β20(τ2)}A−1
j {βj0(τj)}ξji(τj). (3.6)

The proofs for Theorems 3 and 4 are detailed in Appendices D and E.
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3.2.4 Covariance Estimations

The covariance estimation under quantile regression models is often difficult, because the

asymptotic covariance matrix involves unknown conditional density functions due to the

unsmoothness of the corresponding estimating equations. In previous studies, several meth-

ods, such as using a nonparametric density estimator and resampling, have been considered.

These methods, however, have computational problems and poor performance with small

sample sizes. In this study, we employ the idea of the induced smoothing procedure that was

proposed by Brown and Wang (2005) to estimate the covariance matrices for both marginal

regression estimators and the conditional association coefficient estimators. The induced

smoothing method smooths the original estimating equation by using a “pseudo-Bayesian”

approach. This technique has been well extended to the quantile regression models (Brown

and Wang, 2007; Wang et al., 2009; Pang et al., 2012; Li et al., 2014).

In the following, we first estimate the influence functions for the marginal regression

estimators, and then further derive the influence function for the conditional association

estimator. Currently the univariate censoring scenario is considered to simplify the asymp-

totic representation. Peng and Fine (2009) extended the sampling-based technique proposed

by Huang (2002) to the estimation of the covariance matrix. Here, we propose to use the

induced smoothing technique, which is resampling-free and achieves better finite-sample per-

formances than boostrap-based’s estimators (Pang et al., 2012). The similar work can be

found in Pang et al. (2012), where they developed an induced smoothing procedure for Bang

and Tsiatis (2002)’s estimator.

It has been shown in Peng and Fine (2009) that, under regularity conditions, Snj(bj, τj)

converges weakly to a mean-zero Gaussian process with covariance Σj(τ
′
j, τj) = cov{ξj(τj)}

and the estimators, β̂j(τj), are consistent with the true values βj0(τj). The asymptotic

distribution for n1/2{β̂j(τj)−βj0(τj)} would be a mean-zero Gaussian process with covariance

Dj(βj0; τj) = Aj{βj0(τj)}−1Σj(τ
′
j, τj)Aj{βj0(τj)}−T ,

where Aj(bj) = E[Z⊗2fj{gj(ZTbj)}] = limn→∞ n
−1
∑n

i=1 Z⊗2
i fj{gj(ZT

i bj)}, for j = 1, 2. We

now adopt the induced smoothing approach to Snj(bj, τj) and obtain a consistent estimate
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of Aj{βj0(τj)}. First, by the asymptotic normality of β̂j(τj), we can approximately write

β̂j(τj) = βj0(τj) + B
1/2
j Vj, where Bj = n−1Dj, Vj ∼ N(0, Ip), and Ip is the p × p identity

matrix. We can regard β̂j(τj) as a random perturbation of βj0(τj). Hence, we define a

considerably smoother estimating function,

S̃nj(bj,Bj; τj) = EVj{Snj(bj + B
1/2
j Vj; τj,Bj)}

= n−1

n∑
i=1

Zi

[
δji

Ĝj(Yji)
Φ

{
ZT
i bj − g−1

j (Yji)√
ZT
i BjZi

}
− τj

]
,

where Φ(·) is the cumulative distribution function of the standard normal distribution.

Through the smoothed estimating function S̃nj(bj,Bj; τj), the estimator of Aj(bj) can be

achieved from the derivative of the smoothed estimating equation with respect to bj, which

has the form,

Ãj(bj,Bj) =
∂S̃nj(bj,Bj; τj)

∂bj
= n−1

n∑
i=1

δjiZ
⊗2
i

Ĝj(Yji)
√

ZT
i BjZi

φ

{
ZT
i bj − g−1

j (Yji)√
ZT
i BjZi

}
, (3.7)

where φ(·) is the probability density function of the standard normal distribution. Given

Bj, we can obtain the estimator β̃j by solving S̃nj(β̃j,Bj; τj) = 0 and then plug it into (3.7)

to get the estimator,

Ãj(β̃j,Bj) = n−1

n∑
i=1

δjiZ
⊗2
i

Ĝj(Yji)
√

ZT
i BjZi

φ

{
ZT
i β̃j − g−1

j (Yji)√
ZT
i BjZi

}
.

In general, the matrix Bj is unknown. Hence, we develop an iterative algorithm to achieve

the optimal solutions for both βj0(τj) and Bj. The procedure is given below:

Step 0. Set the initial B̃
(0)
j = n−1Ip and β̃

(0)
j = β̂j(τj), and let Σ̂j(τ

′
j, τj) = n−1

∑n
i=1 ξ̂

⊗2
ji .

Step 1. In the k-th iteration, update β̃
(k)
j by solving S̃n(β̃

(k−1)
j , B̃

(k−1)
j ; τj) = 0.

Step 2. Update B̃
(k)
j = n−1(Ã

(k)
j )−1Σ̂j(τ

′
j, τj)(Ã

(k)
j )−T , where

Ã
(k)
j = n−1

n∑
i=1

δjiZ
⊗2
i

Ĝj(Yji)
√

ZT
i B̃

(k−1)
j Zi

φ

ZT
i β̃

(k)
j − g−1

j (Yji)√
ZT
i B̃

(k−1)
j Zi

 .

Step 3. Repeat Steps 1-2 until convergence.

42



This algorithm is computationally efficient and leads to a consistent covariance estimator

D̃j = nB̃
(k)
j after the convergence of the iterations. More theoretical justifications and

arguments were discussed in Pang et al. (2012).

We next estimate the influence function for γ(τ ). In Section 3.2.3, the proposed asymp-

totic distribution of
√
n{γ̂(τ ) − γ0(τ )} is a mean-zero Gaussian process with covariance

Ω(τ ′, τ ) = J{γ0(τ ); τ}−1E{ψi(τ ′)ψi(τ )T}J{γ0(τ ); τ}−T . Define a consistent estimator of

J(γ0(τ ); τ ) as

Ĵ(γ̂; τ ) = n−1

n∑
i=1

Z⊗2
i χ

′{exp(ZT
i γ̂)} exp(ZT

i γ̂),

where χ
′
(u) = ∂χ(u)/∂u. To have a consistent estimator for E{ψi(τ ′)ψi(τ )T}, we firstly

estimate Pj{β10(τ1),β20(τ2)}, where,

Pj{β10(τ1),β20(τ2)} = E
(
Z⊗2hj[g1{ZTβ10(τ1)}, g2{ZTβ20(τ2)}]g′j{ZTβj0(τj)}

)
.

However, estimating Pj{β10(τ1),β20(τ2)} directly is difficult since Pj(·, ·) involves an un-

known partial density function hj(·, ·). To address this issue, we propose an induced-

smoothing type estimator for Pj{β10(τ1),β20(τ2)}, for j = 1, 2. For brevity, we simply

the notation, such as β̂j = β̂j(τj) and γ̂ = γ̂(τ ). Adapting the induced smoothing methods

for the marginal quantile effects, we obtain a smoothed estimating function, where

W̃Ĝ
nj(bj; β̂j∗ , γ̂, B̃j) = EVj{WĜ

n (bj + B̃
1/2
j Vj, β̂j∗ , γ̂; τ )}

= n−1

n∑
i=1

Zi

δ1iδ2iI{g−1
j∗ (Yj∗i) ≤ ZT

i β̂j∗}
Ĝ(Y1i, Y2i)

Φ

ZT
i bj − g−1

j (Yji)√
ZT
i B̃jZi

− χ{exp(ZT
i γ̂); τ}

 ,
where B̃j is the induced-smoothing type estimator for Bj from marginal quantile models,

and j∗ = 3− j, for j = 1, 2. Therefore, Pj{β10(τ1),β20(τ2)} can be estimated by

P̂Ĝ
j (β̂1, β̂2, B̃j) =

∂W̃Ĝ
nj(bj; β̂j∗ , γ̂, B̃j)

∂bj

∣∣∣∣
bj=β̂j

= n−1

n∑
i=1

Z⊗2
i δ1iδ2iI{g−1

j∗ (Yj∗i) ≤ ZT
i β̂j∗}

Ĝ(Y1i, Y2i)

√
ZT
i B̃jZi

φ

ZT
i β̂j − g−1

j (Yji)√
ZT
i B̃jZi

 ,

where j∗ = 3− j, for j = 1, 2.
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Coupled with these estimators, an estimation of the influence function ψi(τ ) can be

obtained by the following procedures:

Step A. For j = 1, 2, employ Steps 0-3 in the algorithm to assess B̃j.

Step B. For j = 1, 2, let j∗ = 3− j and define

P̂Ĝ
j (β̂1, β̂2, B̃j) = n−1

n∑
i=1

Z⊗2
i δ1iδ2iI{g−1

j∗ (Yj∗i) ≤ ZT
i β̂j∗}

Ĝ(Y1i, Y2i)

√
ZT
i B̃jZi

φ

ZT
i β̂j − g−1

j (Yji)√
ZT
i B̃jZi

 ,

and

Âj(β̂j) = n−1

n∑
i=1

δjiZ
⊗2
i

Ĝj(Yji)

√
ZT
i B̃jZi

φ

ZT
i β̂j − g−1

j (Yji)√
ZT
i B̃jZi

 .

Step C. Plug in β̂j, γ̂, ξ̂ji, ξ̂
∗
i , and the above estimates into (3.6). The resulting estimator

for ψi(τ ) is

ψ̂i(τ ) = Zi

I
{
g−1

1 (Y1i) ≤ ZT
i β̂1, g

−1
2 (Y2i) ≤ ZT

i β̂2

}
δ1iδ2i

Ĝ(Y1i, Y2i)
− Ziχ{exp(ZT

i γ̂); τ}

− ξ̂∗i −
2∑
j=1

P̂j{β̂1, β̂2, B̃j}Â−1
j {β̂j}ξ̂ji(τj).

By applying Steps A-C, we can further propose an estimator for the covariance matrix,

Ω̂(τ ′, τ ) = Ĵ{γ̂; τ ′}−1

{
n−1

n∑
i=1

ψ̂i(τ
′)ψ̂i(τ )T

}
Ĵ{γ̂; τ}−T ,

where

Ĵ(γ̂; τ ) = n−1

n∑
i=1

Z⊗2
i χ

′{exp(ZT
i γ̂)} exp(ZT

i γ̂),

which is a consistent estimator of J{γ̂; τ ′}. The details of the consistency of ψ̂i(τ ) are

provided in Appendix F.
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3.3 SIMULATION

In this section, numerical simulations are conducted to investigate the finite-sample per-

formance of our proposed models. Without loss of generality, we focus on the case that

τ1 = τ2 = τ . Two covariates are generated, Z1 and Z2, where Z1 is a standard normal

distributed variate and truncated at −2 and 2, and Z2 is a Bernoulli distributed variate with

p = 0.5. Denote Z = (Z1, Z2). For two event times T1 and T2, we generate the marginal

quantile regression models with the exponential link function, g1(t) = g2(t) = exp(t), and

logQ1(τ |Z) = 0.2Φ−1(τ) + 0.2Z1 + {0.4Φ−1(τ)− 0.2Φ−1(τ)}Z2,

logQ2(τ |Z) = 0.3Φ−1(τ)− 0.2Z1 + 0.5Z2,

where Φ−1(·) is the inverse function of the cumulative distribution function of the standard

normal distribution. From the above models, the effect of Z1 is constant across τ for both

logQ1(τ |Z) and logQ2(τ |Z). The effect of Z2 is constant on logQ2(τ |Z) but varies for

logQ1(τ |Z) by τ .

To generate the association structure, we consider that (T1, T2) follows a flipped-Clayton

model with parameter θ when Z2 = 1, and they are conditionally independent when Z2 = 0.

Specifically,

C(τ |Z2 = 1) = τ1 + τ2 − 1 + max[{(1− τ1)−θ + (1− τ2)−θ − 1}−1/θ, 0],

where θ = exp(1). We have that the underlying quanitle association models is generated by

log qor(τ |Z) = log[χ−1{C(τ |Z)}]Z2,

where χ−1(y) is the inverse function of χ and is monotone increasing in y. Note that Z2 is the

only covariate that affects the association, and the influence of Z2 on the association structure

is increasing by τ . Under this setting, the true value of γ0(τ ) is (0, 0, log[χ−1{C(τ |Z)}])T .

With the generated covariates Z, we now simulate two event times under the assumed

association structure. For subjects with Z2 = 1, the assumed copula function is the flipped-

Clayton model, which implies that the bivariate survival function S(t1, t2) = Pr(T1 > t1, T2 >

t2) follows a Clayton model. Hence, we simulate the Clayton event times via a frailty model
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with the frailty W ∼ gamma(1/θ, 1), θ > 0. The corresponding Laplace transformation

function for W is denoted as η(t) = E{exp(−tW )} = (1 + t)−1/θ with the inverse function

η−1(u) = u−θ−1. It is easy to show that the marginal survival functions Sj(tj) = 1−Fj(tj) =

η(tj), for j = 1, 2, and the bivariate survival function satisfies S(t1, t2) = η[η−1{S1(t1)} +

η−1{S2(t2)}], for subjects with Z2 = 1. That is, we can construct the assumed copula

model based on the frailty framework. We begin by generating two variates U1 and U2 from

Unif(0, 1), and draw W from the gamma(1/θ, 1) distribution. Define U∗j = (1−Z2)Uj+Z2[1−

{1 − log(Uj)/W}−1/θ], for j = 1, 2. We use U∗j to generate the event time Tj through its

underlying marginal regression model, for j = 1, 2. Without loss of generality, we assume the

univariate censoring setting, and generate C from a mixture distribution of Unif(0, cb) with

probability 0.8, and a point mass at cb with probability 0.2. With this mixture distribution,

the regularity condition for the censoring is satisfied. In practice, cb represents the endpoint

for the study. Therefore, the observed bivariate survival data are (Y1, Y2, δ1.δ2,Z), where

Yj = min(Tj, C) and δj = I(Yj ≤ C), for j = 1, 2.

We performed 2000 simulations with sample sizes n = 200 or 400 to examine the proposed

model and the estimation of covariance. We set cb = 6 or 4 so that the percentage of the

censoring is about 20% or 30%. For τ = 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, Tables 3.1 and 3.2 present

the results of the empirical bias (Bias), the empirical standard error (empSE), the average

estimated standard error (estSE) and the empirical coverage probability of 95% Wald-type

confidence intervals (COV) for (I) β̂1(τ), (II) β̂2(τ) and (III) γ̂(τ ), under different censoring

rates. From the top and middle parts of Table 3.1, we can see that, with 20% censoring rate,

the estimated marginal quantile coefficients are largely unbiased across all τs; the induced

smoothing standard errors agree well with the empirical ones, and the Wald-type confidence

intervals based on the induced smoothing standard errors are close to the nominal level

95%. The results for the conditional association coefficients are shown in Table 3.1 (III)

for 20% censoring and in Table 3.2 (III) for 30% censoring. The biases for the association

coefficients are noticeably larger than those for the marginal regression coefficients. This is

as expected, since the estimation of the association parameters depends on the estimation of

marginal effects. Nevertheless, the biases are largely negligible, suggesting that the proposed

estimator γ̂(τ ) provides accurate estimation of the true association effect across τs. The
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standard errors based on induced smoothing tend to be slightly larger than the empirical

standard errors. Consequently, the coverage rates of Wald-type confidence intervals are

greater than the nominal level 95%. Li et al. (2014) also reported an inflated coverage rate of

the confidence interval that was constructed based on the induced smoothing standard error

for uncensored pairs. However, as the sample size increases, we observe that the coverage

rates of Wald-type confidence intervals are closer to the nominal level 95%. This result

implies that our proposed procedure performs reasonably on the covariance estimation. With

30% censoring rate, the results in Table 3.2 give similar conclusions as under 20% censoring

rate, though the estimated standard deviations tend to be larger under 30% censoring than

those under 20% censoring. Again the coverage rates are getting closer to the nominal level

95% when the sample size increases.

The estimation of covariate effects on the local association depends on the marginal

quantile estimation. To understand how the strength of dependency may be affected by

the marginal models, we further simulate a scenario, where the association depends on both

covariates, and estimate the covariate effects on the quantile association while deliberately

leaving out one important covariate in the marginal models. More specifically, we generate

the marginal regression models using the previous setting, and introduce Z3 = I(Z1 > 0) to

the association model via

log qor(τ |Z) = log[χ−1{C1(τ |Z)}]Z3 + log[χ−1{C2(τ |Z)}]Z2

+
(

log[χ−1{C3(τ |Z)}]− log[χ−1{C2(τ |Z)}]− log[χ−1{C1(τ |Z)}]
)
Z2Z3

= γ(0)(τ) + γ(1)(τ)Z3 + γ(2)(τ)Z2 + γ(3)(τ)Z2Z3,

where

Ci(τ |Z) = τ1 + τ2 − 1 + max[{(1− τ1)−θi + (1− τ2)−θi − 1}−1/θi , 0],

with θ1 = exp(−1), θ2 = exp(0) and θ3 = exp(0.5). Under this scenario, the association

between two survival times is affected by the values of Z2 and Z3, and the bivariate survival

times are independent only when Z2 = Z3 = 0. Furthermore, the interaction term of Z2 and

Z3 has a very small effect on the association, as compared to the main effects, Z2 and Z3.

In the estimation, we include Z2, Z3, and Z2Z3 in the association model, while excluding Z1
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Table 3.1: Simulation results for (I) marginal quantiles coefficients for the first event, (II)

marginal quantiles coefficients for the second event, and (III) covariate effects on the quantile

association under 20% censoring

(I) β̂1(τ) = (β̂
(0)
1 (τ), β̂

(1)
1 (τ), β̂

(2)
1 (τ))T

β̂
(0)
1 (τ) β̂

(1)
1 (τ) β̂

(2)
1 (τ)

n τ Bias empSE estSE COV Bias empSE estSE COV Bias empSE estSE COV

200 0.2 0 0.031 0.031 0.934 -0.001 0.034 0.033 0.933 0.004 0.070 0.066 0.924
0.25 0 0.029 0.030 0.940 0 0.033 0.032 0.927 0.002 0.067 0.064 0.926
0.3 0 0.029 0.029 0.944 0 0.031 0.031 0.940 0.001 0.064 0.062 0.929
0.4 0 0.028 0.028 0.941 0 0.031 0.030 0.939 0 0.062 0.062 0.930
0.5 0.001 0.028 0.029 0.936 0 0.030 0.031 0.938 -0.001 0.063 0.062 0.942
0.6 0.001 0.029 0.030 0.946 0 0.031 0.032 0.942 -0.002 0.065 0.065 0.940

400 0.2 0.001 0.021 0.022 0.942 0.001 0.025 0.023 0.923 0.004 0.047 0.047 0.942
0.25 0.001 0.020 0.021 0.942 0.001 0.023 0.022 0.927 0.002 0.045 0.045 0.942
0.3 0.001 0.020 0.020 0.944 0 0.022 0.021 0.935 0.003 0.044 0.044 0.938
0.4 0.001 0.019 0.020 0.942 0 0.021 0.021 0.937 0.002 0.044 0.043 0.944
0.5 0.001 0.019 0.020 0.944 0 0.022 0.021 0.943 0.001 0.044 0.044 0.940
0.6 0.001 0.020 0.021 0.949 0 0.023 0.022 0.938 0.002 0.046 0.046 0.948

(II) β̂2(τ) = (β̂
(0)
2 (τ), β̂

(1)
2 (τ), β̂

(2)
2 (τ))T

β̂
(0)
2 (τ) β̂

(1)
2 (τ) β̂

(2)
2 (τ)

n τ Bias empSE estSE COV Bias empSE estSE COV Bias empSE estSE COV

200 0.2 0.001 0.045 0.045 0.929 0 0.038 0.037 0.932 0.001 0.066 0.066 0.933
0.25 0.001 0.044 0.043 0.936 0.001 0.036 0.036 0.935 0 0.063 0.063 0.941
0.3 0.001 0.042 0.042 0.933 0.001 0.036 0.036 0.936 0 0.062 0.062 0.939
0.4 0.002 0.041 0.042 0.940 0.001 0.036 0.035 0.931 -0.001 0.061 0.061 0.951
0.5 0.002 0.042 0.042 0.936 0.002 0.036 0.036 0.938 -0.002 0.062 0.062 0.938
0.6 0.003 0.044 0.044 0.942 0.001 0.039 0.038 0.940 -0.002 0.066 0.066 0.943

400 0.2 0 0.032 0.032 0.938 0 0.027 0.026 0.935 0.004 0.046 0.046 0.936
0.25 0 0.030 0.031 0.936 0 0.026 0.025 0.930 0.003 0.044 0.045 0.946
0.3 0 0.030 0.030 0.946 0 0.026 0.025 0.933 0.003 0.043 0.044 0.946
0.4 0.001 0.029 0.029 0.934 0 0.025 0.025 0.932 0.002 0.043 0.043 0.944
0.5 0.001 0.030 0.030 0.941 0 0.026 0.025 0.934 0.002 0.044 0.044 0.947
0.6 0.001 0.030 0.031 0.949 0 0.027 0.026 0.934 0.001 0.045 0.046 0.945

(III) γ̂(τ ) = (γ̂(0)(τ), γ̂(1)(τ), γ̂(2)(τ))T

γ̂(0)(τ) γ̂(1)(τ) γ̂(2)(τ)

n τ Bias empSE estSE COV Bias empSE estSE COV Bias empSE estSE COV

200 0.2 0.014 0.722 0.797 0.976 -0.010 0.664 0.650 0.990 0.040 1.009 1.089 0.977
0.25 0.053 0.588 0.645 0.972 -0.008 0.554 0.557 0.984 -0.005 0.891 0.934 0.970
0.3 0.058 0.550 0.570 0.970 -0.013 0.511 0.508 0.970 -0.001 0.836 0.867 0.966
0.4 0.096 0.462 0.499 0.967 -0.010 0.469 0.466 0.961 -0.023 0.805 0.830 0.964
0.5 0.109 0.463 0.493 0.965 -0.001 0.472 0.474 0.958 -0.005 0.842 0.879 0.964
0.6 0.095 0.526 0.556 0.962 -0.001 0.541 0.548 0.966 0.053 1.011 1.034 0.964

400 0.2 -0.028 0.509 0.527 0.978 -0.016 0.422 0.426 0.973 0.072 0.711 0.720 0.964
0.25 -0.009 0.431 0.441 0.964 -0.014 0.378 0.376 0.958 0.057 0.627 0.634 0.962
0.3 0.014 0.386 0.390 0.957 -0.016 0.340 0.345 0.962 0.034 0.577 0.590 0.959
0.4 0.027 0.340 0.344 0.954 -0.007 0.316 0.318 0.952 0.028 0.561 0.566 0.956
0.5 0.040 0.329 0.341 0.958 -0.008 0.322 0.324 0.958 0.014 0.585 0.595 0.960
0.6 0.039 0.356 0.381 0.966 -0.008 0.372 0.370 0.954 0.038 0.665 0.683 0.962

48



Table 3.2: Simulation results for (I) marginal quantiles coefficients for the first event, (II)

marginal quantiles coefficients for the second event, and (III) covariate effects on the quantile

association under 30% censoring

(I) β̂1(τ) = (β̂
(0)
1 (τ), β̂

(1)
1 (τ), β̂

(2)
1 (τ))T

β̂
(0)
1 (τ) β̂

(1)
1 (τ) β̂

(2)
1 (τ)

n τ Bias empSE estSE COV Bias empSE estSE COV Bias empSE estSE COV

200 0.2 0 0.032 0.032 0.937 -0.001 0.035 0.034 0.936 0.004 0.072 0.069 0.924
0.25 0.001 0.030 0.031 0.934 0 0.034 0.033 0.939 0.002 0.068 0.066 0.935
0.3 0 0.030 0.030 0.942 0 0.033 0.032 0.936 0 0.066 0.065 0.930
0.4 0.001 0.029 0.030 0.944 0 0.032 0.032 0.940 0 0.064 0.065 0.939
0.5 0.001 0.029 0.031 0.944 0.001 0.032 0.033 0.946 -0.001 0.066 0.066 0.938
0.6 0.002 0.031 0.033 0.956 0.001 0.034 0.035 0.948 -0.002 0.069 0.070 0.946

400 0.2 0.001 0.022 0.022 0.944 0.001 0.025 0.024 0.920 0.003 0.049 0.048 0.937
0.25 0.001 0.021 0.022 0.936 0 0.024 0.023 0.923 0.002 0.047 0.047 0.942
0.3 0.001 0.021 0.021 0.941 0 0.023 0.022 0.931 0.003 0.046 0.046 0.942
0.4 0.001 0.020 0.021 0.941 0 0.023 0.022 0.938 0.002 0.046 0.045 0.950
0.5 0.001 0.021 0.021 0.948 0 0.023 0.023 0.938 0.001 0.047 0.046 0.942
0.6 0.001 0.021 0.023 0.946 0 0.024 0.024 0.936 0.002 0.049 0.049 0.944

(II) β̂2(τ) = (β̂
(0)
2 (τ), β̂

(1)
2 (τ), β̂

(2)
2 (τ))T

β̂
(0)
2 (τ) β̂

(1)
2 (τ) β̂

(2)
2 (τ)

n τ Bias empSE estSE COV Bias empSE estSE COV Bias empSE estSE COV

200 0.2 0.002 0.047 0.047 0.932 0.001 0.039 0.039 0.939 0 0.069 0.069 0.938
0.25 0.002 0.045 0.045 0.932 0.001 0.038 0.038 0.938 0 0.066 0.067 0.945
0.3 0.002 0.044 0.044 0.942 0.002 0.037 0.038 0.938 -0.001 0.065 0.066 0.942
0.4 0.003 0.042 0.044 0.948 0.002 0.039 0.038 0.942 -0.001 0.064 0.066 0.951
0.5 0.003 0.043 0.045 0.942 0.001 0.040 0.039 0.944 -0.001 0.066 0.068 0.948
0.6 0.003 0.046 0.048 0.946 0.001 0.043 0.043 0.946 -0.001 0.073 0.074 0.944

400 0.2 0 0.032 0.033 0.948 0 0.028 0.027 0.932 0.004 0.048 0.048 0.946
0.25 0 0.031 0.032 0.946 0 0.027 0.027 0.932 0.002 0.046 0.047 0.946
0.3 0 0.030 0.031 0.946 0 0.027 0.026 0.930 0.002 0.045 0.046 0.947
0.4 0.001 0.030 0.031 0.942 0 0.027 0.026 0.933 0.002 0.045 0.046 0.952
0.5 0.001 0.031 0.032 0.946 0 0.028 0.027 0.936 0.002 0.047 0.048 0.956
0.6 0.001 0.032 0.033 0.950 0 0.029 0.030 0.938 0.001 0.050 0.052 0.950

(III) γ̂(τ ) = (γ̂(0)(τ), γ̂(1)(τ), γ̂(2)(τ))T

γ̂(0)(τ) γ̂(1)(τ) γ̂(2)(τ)

n τ Bias empSE estSE COV Bias empSE estSE COV Bias empSE estSE COV

200 0.2 0.023 0.746 0.835 0.976 0.009 0.703 0.694 0.992 0.032 1.068 1.155 0.968
0.25 0.061 0.635 0.681 0.970 -0.006 0.608 0.602 0.982 0.004 0.950 1.004 0.964
0.3 0.059 0.573 0.600 0.969 -0.024 0.550 0.551 0.980 0.023 0.913 0.935 0.972
0.4 0.101 0.491 0.531 0.966 -0.003 0.515 0.513 0.964 0.019 0.899 0.914 0.962
0.5 0.115 0.499 0.534 0.962 -0.012 0.540 0.533 0.960 0.039 0.971 0.999 0.968
0.6 0.103 0.568 0.621 0.968 -0.002 0.619 0.630 0.978 0.060 1.169 1.206 0.967

400 0.2 -0.037 0.531 0.552 0.976 -0.017 0.449 0.454 0.973 0.086 0.740 0.761 0.966
0.25 -0.011 0.448 0.461 0.974 -0.014 0.410 0.403 0.967 0.074 0.667 0.675 0.963
0.3 0.013 0.401 0.410 0.956 -0.013 0.374 0.371 0.966 0.047 0.623 0.631 0.956
0.4 0.030 0.363 0.365 0.951 -0.010 0.349 0.347 0.958 0.039 0.609 0.615 0.956
0.5 0.043 0.349 0.368 0.957 -0.003 0.359 0.360 0.956 0.031 0.651 0.661 0.960
0.6 0.050 0.383 0.424 0.968 -0.004 0.426 0.421 0.960 0.054 0.769 0.783 0.965
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(Misspecified Marginal Models), or including both Z1 and Z2 (Corrected Marginal Models)

the marginal model fitting. Sample sizes n = 400 and 600 with censoring rate 20% or 50% are

considered. The results are given in Tables 3.3, 3.4, 3.5 and 3.6, which include the empirical

bias (Bias), the empirical standard error (empSE), the average estimated standard error

(estSE) and the empirical coverage probability (COV), as well as the empirical rejection rate

(ERR) of testing if γ(j)(τ) = 0, j = 0, 1, 2, 3. The results show that, when ignoring Z1 in the

marginal models, the association model tends to have biased estimates for the coefficient of

Z3, γ(1)(τ), and to have a more significant interaction effect, γ(3), which should be negligible.

From this discovery, we suggest that practitioners should include all important potential risk

factors in the marginal models to avoid spurious association effects due to residual effects of

covariates on the marginals.

3.4 DATA ANALYSIS

We illustrate our proposed method by using an age-related macular degeneration (AMD)

data from the Age-Related Eye Disease Study (ARDES-Group, 1999), which was designed

to assess the risk factors for the development and the progression of AMD. This cohort

study has collected data on several risk factors at baseline and times to progression of

AMD in both eyes. We want to explore the risk factors for the association between AMD

progression times in two eyes using the proposed quantile-based association model, while

adjusting for covariate effects on the marginals. Data from 630 Caucasian patients who had

at least one eye in moderated AMD stage at baseline are used in the current analysis. The

bivariate survival times are the time to progression of AMD in the left and right eyes. Three

potential risk factors, age, smoking status (Never, Former and Current), and the baseline

AMD severity score (SevereBL-L or SevereBL-R), are considered in the marginal model for

AMD progression in the left or right eye. For the conditional association model, instead

including both eyes AMD severity scores, we adopt the average of AMD severity scores

(AvgSevereBL) in both eyes at baseline to avoid the collinearity issue. The censoring rates

for the left and right eyes are 47% and 44%, respectively. Since each bivariate survival pair is
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Table 3.3: Simulation results for covariate effects on the quantile association when the

marginal models are misspecified with 20% censoring rate, n=400, and 2000 runs

Marginal models without Z1 Marginal models with both Z1 and Z2

(Misspecified Marginal Models) (Corrected Marginal Models)

τ γ(0)(τ) γ̂(0)(τ) Bias empSE estSE COV ERR γ̂(0)(τ) Bias empSE estSE COV ERR

0.2 0 -0.765 -0.765 0.682 0.939 1.000 0.000 -0.014 -0.014 0.737 0.816 0.983 0.017
0.25 0 -0.693 -0.693 0.684 0.770 0.971 0.029 0.015 0.015 0.645 0.696 0.983 0.017
0.3 0 -0.606 -0.606 0.625 0.668 0.904 0.096 0.037 0.037 0.600 0.635 0.973 0.027
0.4 0 -0.477 -0.477 0.567 0.599 0.892 0.108 0.036 0.036 0.573 0.596 0.964 0.036
0.5 0 -0.363 -0.363 0.604 0.636 0.932 0.068 0.021 0.021 0.614 0.635 0.968 0.032
0.6 0 -0.270 -0.270 0.765 0.795 0.993 0.007 0.017 0.017 0.753 0.778 0.985 0.015

(Misspecified Marginal Models) (Corrected Marginal Models)

τ γ(1)(τ) γ̂(1)(τ) Bias empSE estSE COV ERR γ̂(1)(τ) Bias empSE estSE COV ERR

0.2 0.400 -0.322 -0.722 0.938 1.445 0.995 0.000 0.490 0.089 1.105 1.219 0.989 0.025
0.25 0.427 -0.409 -0.836 1.015 1.207 0.953 0.014 0.497 0.070 1.012 1.073 0.977 0.048
0.3 0.456 -0.459 -0.915 0.987 1.056 0.898 0.042 0.498 0.042 0.958 1.007 0.975 0.056
0.4 0.525 -0.530 -1.055 0.895 0.956 0.841 0.060 0.575 0.050 0.959 0.992 0.960 0.076
0.5 0.612 -0.659 -1.271 0.995 1.049 0.789 0.069 0.662 0.050 1.054 1.087 0.963 0.079
0.6 0.725 -0.870 -1.595 1.390 1.477 0.871 0.019 0.764 0.038 1.305 1.331 0.976 0.059

(Misspecified Marginal Models) (Corrected Marginal Models)

τ γ(2)(τ) γ̂(2)(τ) Bias empSE estSE COV ERR γ̂(2)(τ) Bias empSE estSE COV ERR

0.2 0.916 0.546 -0.370 1.016 1.301 0.990 0.012 0.969 0.052 1.088 1.194 0.984 0.071
0.25 0.981 0.567 -0.414 0.975 1.078 0.961 0.037 1.026 0.045 0.981 1.068 0.980 0.114
0.3 1.050 0.564 -0.485 0.893 0.953 0.942 0.064 1.082 0.033 0.961 1.015 0.974 0.147
0.4 1.204 0.541 -0.663 0.824 0.881 0.895 0.069 1.258 0.054 0.964 1.016 0.971 0.194
0.5 1.386 0.541 -0.846 0.910 0.943 0.856 0.067 1.481 0.095 1.085 1.124 0.969 0.228
0.6 1.609 0.552 -1.057 1.137 1.160 0.852 0.050 1.734 0.124 1.314 1.378 0.980 0.179

(Misspecified Marginal Models) (Corrected Marginal Models)

τ γ(3)(τ) γ̂(3)(τ) Bias empSE estSE COV ERR γ̂(3)(τ) Bias empSE estSE COV ERR

0.2 0.008 1.075 1.067 1.494 1.963 0.976 0.024 -0.132 -0.139 1.719 1.879 0.971 0.028
0.25 0.012 1.225 1.213 1.484 1.687 0.939 0.062 -0.104 -0.116 1.639 1.747 0.970 0.030
0.3 0.014 1.289 1.275 1.436 1.536 0.899 0.101 -0.066 -0.080 1.623 1.709 0.969 0.031
0.4 0.009 1.443 1.433 1.382 1.478 0.862 0.141 -0.091 -0.100 1.704 1.788 0.967 0.032
0.5 -0.011 1.641 1.652 1.562 1.633 0.853 0.145 -0.103 -0.091 1.963 2.036 0.972 0.028
0.6 -0.056 1.950 2.005 2.012 2.125 0.891 0.104 -0.132 -0.076 2.393 2.523 0.984 0.015
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Table 3.4: Simulation results for covariate effects on the quantile association when the

marginal models are misspecified with 20% censoring rate, n=600, and 2000 runs

Marginal models without Z1 Marginal models with both Z1 and Z2

(Misspecified Marginal Models) (Corrected Marginal Models)

τ γ(0)(τ) γ̂(0)(τ) Bias empSE estSE COV ERR γ̂(0)(τ) Bias empSE estSE COV ERR

0.2 0 -0.951 -0.951 0.678 0.803 0.976 0.024 -0.080 -0.080 0.614 0.655 0.987 0.013
0.25 0 -0.805 -0.805 0.581 0.627 0.839 0.161 -0.038 -0.038 0.521 0.558 0.976 0.024
0.3 0 -0.690 -0.690 0.505 0.539 0.784 0.216 -0.010 -0.010 0.472 0.509 0.974 0.026
0.4 0 -0.512 -0.512 0.462 0.480 0.830 0.170 0.012 0.012 0.463 0.479 0.966 0.034
0.5 0 -0.397 -0.397 0.495 0.511 0.892 0.108 0.019 0.019 0.494 0.509 0.968 0.032
0.6 0 -0.270 -0.270 0.607 0.629 0.974 0.026 -0.003 -0.003 0.597 0.618 0.971 0.029

(Misspecified Marginal Models) (Corrected Marginal Models)

τ γ(1)(τ) γ̂(1)(τ) Bias empSE estSE COV ERR γ̂(1)(τ) Bias empSE estSE COV ERR

0.2 0.400 -0.364 -0.764 0.966 1.253 0.973 0.002 0.506 0.106 0.901 0.971 0.978 0.042
0.25 0.427 -0.427 -0.854 0.887 0.993 0.912 0.025 0.504 0.077 0.818 0.860 0.966 0.067
0.3 0.456 -0.466 -0.922 0.806 0.855 0.840 0.056 0.513 0.056 0.783 0.809 0.962 0.084
0.4 0.525 -0.534 -1.060 0.757 0.771 0.722 0.095 0.562 0.037 0.781 0.798 0.962 0.094
0.5 0.612 -0.640 -1.252 0.838 0.850 0.688 0.108 0.642 0.030 0.862 0.876 0.962 0.102
0.6 0.725 -0.873 -1.598 1.138 1.171 0.745 0.066 0.774 0.049 1.028 1.064 0.970 0.089

(Misspecified Marginal Models) (Corrected Marginal Models)

τ γ(2)(τ) γ̂(2)(τ) Bias empSE estSE COV ERR γ̂(2)(τ) Bias empSE estSE COV ERR

0.2 0.916 0.662 -0.254 0.952 1.086 0.974 0.039 1.001 0.084 0.920 0.955 0.970 0.142
0.25 0.981 0.622 -0.359 0.815 0.872 0.952 0.068 1.028 0.047 0.816 0.854 0.966 0.189
0.3 1.050 0.602 -0.447 0.723 0.768 0.924 0.092 1.089 0.039 0.760 0.811 0.968 0.238
0.4 1.204 0.554 -0.650 0.684 0.708 0.856 0.110 1.246 0.042 0.794 0.813 0.962 0.320
0.5 1.386 0.541 -0.846 0.741 0.758 0.798 0.104 1.440 0.053 0.886 0.896 0.963 0.350
0.6 1.609 0.530 -1.080 0.910 0.919 0.766 0.072 1.693 0.084 1.082 1.085 0.963 0.326

(Misspecified Marginal Models) (Corrected Marginal Models)

τ γ(3)(τ) γ̂(3)(τ) Bias empSE estSE COV ERR γ̂(3)(τ) Bias empSE estSE COV ERR

0.2 0.008 1.210 1.203 1.380 1.646 0.936 0.064 -0.108 -0.116 1.451 1.500 0.962 0.038
0.25 0.012 1.307 1.295 1.303 1.370 0.871 0.132 -0.065 -0.077 1.350 1.396 0.958 0.042
0.3 0.014 1.343 1.329 1.184 1.239 0.838 0.162 -0.067 -0.081 1.319 1.366 0.962 0.038
0.4 0.009 1.448 1.439 1.167 1.189 0.780 0.221 -0.056 -0.066 1.425 1.431 0.956 0.043
0.5 -0.011 1.637 1.648 1.309 1.314 0.762 0.234 -0.067 -0.055 1.616 1.622 0.960 0.040
0.6 -0.056 1.939 1.994 1.630 1.682 0.798 0.191 -0.134 -0.078 1.952 1.983 0.970 0.031
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Table 3.5: Simulation results for covariate effects on the quantile association when the

marginal models are misspecified with 50% censoring rate, n=400, and 2000 runs

Marginal models without Z1 Marginal models with both Z1 and Z2

(Misspecificied Model) (Corrected Model)

τ γ(0)(τ) γ̂(0)(τ) Bias empSE estSE COV ERR γ̂(0)(τ) Bias empSE estSE COV ERR

0.2 0 -0.735 -0.735 0.695 1.012 1.000 0.000 0.003 0.003 0.810 0.906 0.980 0.020
0.25 0 -0.687 -0.687 0.700 0.843 0.993 0.007 0.022 0.022 0.730 0.785 0.986 0.014
0.3 0 -0.610 -0.610 0.648 0.739 0.948 0.052 0.046 0.046 0.684 0.722 0.982 0.018
0.35 0 -0.535 -0.535 0.630 0.690 0.917 0.083 0.056 0.056 0.661 0.694 0.978 0.022
0.4 0 -0.472 -0.472 0.629 0.678 0.911 0.089 0.048 0.048 0.661 0.694 0.976 0.024
0.45 0 -0.412 -0.412 0.661 0.698 0.924 0.076 0.061 0.061 0.701 0.721 0.972 0.028

(Misspecificied Model) (Corrected Model)

τ γ(1)(τ) γ̂(1)(τ) Bias empSE estSE COV ERR γ̂(1)(τ) Bias empSE estSE COV ERR

0.2 0.400 -0.269 -0.669 0.922 1.543 0.997 0.000 0.498 0.098 1.183 1.364 0.992 0.015
0.25 0.427 -0.351 -0.778 1.018 1.312 0.978 0.005 0.507 0.080 1.098 1.220 0.983 0.025
0.3 0.456 -0.398 -0.855 0.985 1.164 0.942 0.019 0.532 0.076 1.056 1.156 0.977 0.037
0.35 0.489 -0.433 -0.922 0.953 1.088 0.904 0.029 0.567 0.078 1.064 1.140 0.976 0.044
0.4 0.525 -0.475 -1.000 0.978 1.076 0.880 0.045 0.617 0.092 1.101 1.166 0.977 0.054
0.45 0.566 -0.521 -1.087 1.070 1.117 0.851 0.051 0.655 0.089 1.174 1.228 0.976 0.052

(Misspecificied Model) (Corrected Model)

τ γ(2)(τ) γ̂(2)(τ) Bias empSE estSE COV ERR γ̂(2)(τ) Bias empSE estSE COV ERR

0.2 0.916 0.567 -0.349 1.083 1.448 0.993 0.013 0.949 0.033 1.309 1.414 0.986 0.043
0.25 0.981 0.586 -0.395 1.050 1.232 0.980 0.029 1.048 0.067 1.215 1.286 0.982 0.073
0.3 1.050 0.589 -0.460 0.984 1.106 0.959 0.042 1.104 0.054 1.201 1.243 0.970 0.089
0.35 1.124 0.562 -0.562 0.963 1.057 0.937 0.046 1.163 0.039 1.204 1.247 0.970 0.096
0.4 1.204 0.552 -0.652 0.987 1.056 0.919 0.059 1.278 0.074 1.230 1.297 0.973 0.101
0.45 1.291 0.530 -0.761 1.071 1.101 0.896 0.054 1.369 0.078 1.322 1.388 0.972 0.095

(Misspecificied Model) (Corrected Model)

τ γ(3)(τ) γ̂(3)(τ) Bias empSE estSE COV ERR γ̂(3)(τ) Bias empSE estSE COV ERR

0.2 0.008 0.964 0.957 1.624 2.180 0.985 0.015 -0.124 -0.131 1.971 2.187 0.985 0.015
0.25 0.012 1.116 1.104 1.627 1.918 0.963 0.038 -0.154 -0.166 1.863 2.058 0.979 0.020
0.3 0.014 1.195 1.181 1.577 1.775 0.939 0.062 -0.131 -0.145 1.901 2.046 0.977 0.023
0.35 0.013 1.296 1.283 1.574 1.734 0.928 0.074 -0.131 -0.144 1.958 2.091 0.977 0.022
0.4 0.009 1.390 1.381 1.663 1.771 0.912 0.091 -0.142 -0.151 2.079 2.223 0.980 0.020
0.45 0.001 1.499 1.498 1.819 1.877 0.898 0.102 -0.139 -0.140 2.262 2.414 0.982 0.017
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Table 3.6: Simulation results for covariate effects on the quantile association when the

marginal models are misspecified with 50% censoring rate, n=600, and 2000 runs

Marginal models without Z1 Marginal models with both Z1 and Z2

(Misspecificied Model) (Corrected Model)

τ γ(0)(τ) γ̂(0)(τ) Bias empSE estSE COV ERR γ̂(0)(τ) Bias empSE estSE COV ERR

0.2 0 -0.882 -0.882 0.696 0.860 0.999 0.001 -0.055 -0.055 0.698 0.732 0.983 0.017
0.25 0 -0.776 -0.776 0.622 0.690 0.905 0.095 -0.011 -0.011 0.607 0.629 0.975 0.025
0.3 0 -0.668 -0.668 0.561 0.600 0.847 0.153 0.000 0.000 0.554 0.579 0.980 0.020
0.35 0 -0.580 -0.580 0.533 0.557 0.849 0.151 0.009 0.009 0.540 0.559 0.968 0.032
0.4 0 -0.529 -0.529 0.529 0.547 0.852 0.148 0.022 0.022 0.545 0.559 0.967 0.033
0.45 0 -0.467 -0.467 0.549 0.563 0.874 0.126 0.027 0.027 0.557 0.578 0.969 0.031

(Misspecificied Model) (Corrected Model)

τ γ(1)(τ) γ̂(1)(τ) Bias empSE estSE COV ERR γ̂(1)(τ) Bias empSE estSE COV ERR

0.2 0.400 -0.367 -0.767 0.966 1.338 0.982 0.005 0.518 0.118 1.009 1.090 0.979 0.041
0.25 0.427 -0.427 -0.853 0.963 1.089 0.930 0.017 0.497 0.070 0.929 0.972 0.966 0.052
0.3 0.456 -0.449 -0.905 0.882 0.948 0.871 0.049 0.513 0.057 0.880 0.922 0.964 0.066
0.35 0.489 -0.467 -0.956 0.843 0.881 0.828 0.065 0.544 0.055 0.877 0.912 0.962 0.072
0.4 0.525 -0.479 -1.005 0.835 0.869 0.809 0.069 0.568 0.042 0.911 0.932 0.962 0.084
0.45 0.566 -0.526 -1.092 0.885 0.902 0.785 0.078 0.613 0.048 0.949 0.981 0.962 0.082

(Misspecificied Model) (Corrected Model)

τ γ(2)(τ) γ̂(2)(τ) Bias empSE estSE COV ERR γ̂(2)(τ) Bias empSE estSE COV ERR

0.2 0.916 0.614 -0.302 1.034 1.211 0.976 0.023 1.000 0.084 1.088 1.125 0.973 0.113
0.25 0.981 0.625 -0.355 0.940 0.999 0.962 0.059 1.023 0.043 0.982 1.020 0.969 0.134
0.3 1.050 0.598 -0.451 0.859 0.894 0.933 0.072 1.108 0.058 0.947 0.986 0.971 0.166
0.35 1.124 0.580 -0.544 0.811 0.850 0.917 0.080 1.170 0.046 0.945 0.988 0.970 0.176
0.4 1.204 0.601 -0.603 0.822 0.851 0.899 0.089 1.249 0.045 0.990 1.023 0.971 0.187
0.45 1.291 0.580 -0.711 0.862 0.885 0.872 0.085 1.340 0.049 1.026 1.087 0.973 0.182

(Misspecificied Model) (Corrected Model)

τ γ(3)(τ) γ̂(3)(τ) Bias empSE estSE COV ERR γ̂(3)(τ) Bias empSE estSE COV ERR

0.2 0.008 1.134 1.126 1.546 1.826 0.957 0.044 -0.161 -0.169 1.678 1.731 0.969 0.031
0.25 0.012 1.222 1.210 1.476 1.558 0.913 0.089 -0.113 -0.125 1.569 1.627 0.962 0.038
0.3 0.014 1.271 1.257 1.377 1.429 0.877 0.126 -0.096 -0.111 1.556 1.615 0.963 0.037
0.35 0.013 1.330 1.317 1.319 1.391 0.861 0.143 -0.080 -0.094 1.593 1.657 0.962 0.038
0.4 0.009 1.369 1.360 1.366 1.418 0.857 0.144 -0.064 -0.073 1.686 1.748 0.964 0.036
0.45 0.001 1.482 1.481 1.456 1.499 0.855 0.145 -0.068 -0.070 1.815 1.888 0.971 0.029
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from the same patient, it is reasonable to assume the univariate censoring on the estimation

of the conditional association effects. The overall censoring rate for the univariate censoring

is 56%. Due to the heavy censoring, the quantile levels are restricted from 0.12 to 0.4.

The results for the marginal eyes are given in Figures 3.1 and 3.2. For marginal models,

age and baseline severity score are mostly significant across quantiles but the smoking status

is only significant in a small range. The results for the conditional association model are

shown in Figure 3.3. It suggests that only the average AMD severity score has a significantly

positive effect on the association at quanitle level between 0.15 and 0.35. Moreover, the

estimated coefficient for the average AMD severity score at baseline is gradually decreasing

but still positive, when the quantile increases. First, the positive coefficient means that the

odds of developing AMD in one eye given the developed AMD in the other eye is increasing,

when the average AMD severity score at baseline increases. The impact of the average AMD

severity score at baseline on the odds ratio is higher at short survival times (low quantiles)

than at long survival times (high quantiles) while conditioning on age and smoking status.

Thus, the dynamic effects of the average AMD severity score on the local association can

be captured by the proposed association model. This result recommends that, for a person

who has a large average AMD severity score at baseline, if she/he suffers the development of

the AMD in one eye in a short period, it is of importance to monitor the other eye as soon

as possible.

3.5 DISCUSSION

In this work, we propose a quantile-based regression model for the association between

two event times with independent right censoring. Our proposed method allows dynamic

covariate effects on the local association at different quantiles of event times. To have

an explicit form of the asymptotic distribution, we assume the univariate censoring when

evaluating the bivariate censoring function. In fact, the asymptotic distribution can still be

established without the univariate censoring assumption. However it will not lead to a nice

equation for the influence function, which has a consistent induced-smoothing type estimator.
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Figure 3.1: The estimated covariate effects for the left eye quantile. The solid bold line is

the estimated effect at each quantile level and the dotted line is the average effect across all

levels. The dash-dot line is the 95% pointwise confidence interval.
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Figure 3.2: The estimated covariate effects for the right eye quantile. The solid bold line is

the estimated effect at each quantile level and the dotted line is the average effect across all

levels. The dash-dot line is the 95% pointwise confidence interval.
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Figure 3.3: The estimated covariate effects on the association using the proposed model.

The solid bold line is the estimated effect at each quantile level and the dotted line is the

average across all levels. The dash-dot line is the 95% pointwise confidence interval.
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With the bivariate survival censoring, the covariance estimation can be achieved by using

the bootstrap technique. However, it may result in a larger estimated standard deviation

for the quantiled type estimator, which is a common issue in the quantile approaches.

As Li et al. (2014) mentioned, the recommended range of quantiles for a study is as-

sociated with its sample size and the number of covariates. In our study which is for the

bivariate survival data, the censoring rate also affects the range of quantiles, especially the

upper bound level. Thus, the quantile association effects in bivariate survival data may not

be estimated at large quantile levels, which are close to the proportion of observed events,

where the sample size is small and the number of covariates is large. The restriction, in fact,

is much acceptable and universal in any quantile regression analyses of censored data.
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4.0 REMARKS AND FUTURE WORKS

In this dissertation, we have proposed two sets of regression models under different types

of survival data. One is to examine covariate effects on dynamic treatment regimens for

competing risk outcomes. The other focuses on capturing dynamic covariate effects on the

local association between two event times in the presence of right censoring.

In the first topic, we propose different regression models for the CIF under a two-stage

SMART design. The proposed regression models help practitioners to select an optimal DTR

for a patient by taking into account their individual characteristics. Via the comparison of the

estimated coefficients in the DTR, practitioners would further appreciate which covariates

seem important for the occurrence of the target event. Recently, the SMART design and the

DTR have been drawing attention in health care and personalized medicine. Our proposed

methods would provide a ready-to-be-used tool for analyzing SMART data with competing

risks outcomes.

Our current method extends the existing regression models by properly weighting sub-

jects who are consistent with the DTR of interest. In Chapter 2, we have considered the

extensions of two popular models, Fine and Gray’s model (Sections 2.2.2, 2.2.3 and 2.2.4),

and Scheike’s model (Section 2.2.5). The proposed weighting method can be easily extended

to other regression frameworks for the CIF, such as the multinomial logistic model (Gerds

et al., 2012). Corresponding weight functions can be similarly added to the score functions as

used in the original model. It would also be of interest to consider double robust estimation

(Tsiatis, 2007) in the future to further improve the efficiency of our proposed models.

For the second topic, the proposed quantile-based association regression model for bi-

variate survival data enables the evaluation of the strength of the local dependency between

different quantiles of marginal survival times. More specifically, we use the idea of the copula
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to connect with the quantile-based local association qor, and estimate the coefficients for the

association at different quantile levels. Our proposed model is very flexible, since it does not

require any assumptions on the marginal distributions, and the form of the copula does not

need to be specified neither. We examine covariate effects on the quantile association directly

while adjusting for risk factors in the marginal distributions. The estimated coefficients can

be easily interpreted via the qor.

We notice that the strength of association in two event times may be affected by some

residual covariate effects that have not been properly taken into account in the marginal

models. For now we recommend considering all potential risk factors when evaluating the

marginal distributions. In the future, we plan to further study the connection between the

misspecified marginals and the association.

Finally, the dynamic association measurement is useful in capturing the local dependency.

However, it would be desirable if we can connect our quantile association model with some

commonly used global association measures, such as Kendall’s tau. Some weighted local

association across quantile levels may be considered. This will be a topic of future work.
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APPENDIX A

THE PROOF OF THEOREM 1

Denote Stw(p)(β, u) = n−1
∑n

i=1 w
tw
i (u)Ỹ ∗twi (u)X⊗pi exp(XT

i β), p = 0, 1, 2, where

Stw(1)(β, u) = ∂Stw(0)(β, u)/∂β and Stw(2)(β, u) = ∂2Stw(0)(β, u)/∂β∂βT .

Let X
tw

(β, u) = Stw(1)(β, u)/Stw(0)(β, u). We replace Q̂A1BkB
′
l,i

(t) with QA1BkB
′
l,i

(t) in the

time-varying weighted score function, and recast this score function in terms of martingale

integration, under the true β0. Under Fine and Gray’s model, the time-varying weighted

score function for A1BkB
′
l regimen with QA1BkB

′
l,i

(t) is

U tw
A1BkB

′
l
(β) =

n∑
i=1

∫ ∞
0

{
Xi −X

tw
(β, u)

}
wtwi (u)dÑ tw

1i (u),

where wtwi (u) = {ri(t)G̃tw(u)}/{G̃tw(Vi ∧ u)} and Ñ tw
1i (t) = QA1BkB

′
l,i

(t)N1i(t) . The ri(t)

is the vital status at time t for subject i and G̃tw(t) is a consistent estimate of the censor-

ing function at time t by using the data with time-varying weights. We apply the Taylor

expansion to the time-varying weighted score function and have that

√
n(β̂tw − β0) ≈ Ω−1

{
n−1/2U tw

A1BkB
′
l
(β0)

}
,
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where

Ω = lim
n→∞

− 1

n

∂U tw
A1BkB

′
l
(β)

∂β

∣∣∣∣
β=β0

= lim
n→∞

1

n

n∑
i=1

∫ ∞
0

Stw(2)(β0, u)Stw(0)(β0, u)T − Stw(1)(β0, u)Stw(1)(β0, u)T

Stw(0)(β0, u)Stw(0)(β0, u)T
wtwi (u)dÑ tw

1i (u)

= lim
n→∞

1

n

n∑
i=1

∫ ∞
0

{
Stw(2)(β0, u)

Stw(0)(β0, u)
−X

tw
(β0, u)⊗2

}
wtwi (u)dÑ tw

1i (u).

We rewrite the time-varying weight as wtwi (u) = G̃tw(u)I(4i = 1)/G̃tw(Vi ∧ u) + I(Vi >

u)I(4i = 0) and obtain a consistent estimator of Ω,

Ω̂tw =
1

n

n∑
i=1

QA1BkB
′
l,i

(Vi)

{
Stw(2)(β̂tw, Vi)

Stw(0)(β̂tw, Vi)
−X

tw
(β̂tw, Vi)

⊗2

}
4i I(εi = 1).

In order to derive the asymptotical distribution for n−1/2U tw
A1BkB

′
l
(β0), we reformulate the

score function U tw
A1BkB

′
l
(β) in terms of counting processes.

Define Ã∗twi (β, t) =
∫ t

0
Ỹ ∗twi (s)λ10(s) exp(XT

i β)ds and

M̃ tw
1i (t, β) = Ñ tw

1i (t)− Ã∗twi (β, t) = Ñ tw
1i (t)−

∫ t

0

Ỹ ∗twi (s)λ10(s) exp(XT
i β)ds.

Then, the time-varying weighted score function is equivalent to

U tw
A1BkB

′
l
(β) =

n∑
i=1

∫ ∞
0

{
Xi −X

tw
(β, u)

}
wtwi (u)dM̃ tw(u, β).

Let

X̃tw(β, t) =
1
n

∑n
i=1 w̃i(t)Y

∗tw
i (t)Xj exp(XT

j β)
1
n

∑n
i=1 w̃i(t)Y

∗tw
i (t) exp(XT

j β)

and

w̃i(u) =
ri(u)G(u)

G(Vi ∧ u)
.

We demonstrate that

n−1/2U tw
A1BkB

′
l
(β) = n−1/2

n∑
i=1

∫ ∞
0

{
Xi −X

tw
(β, u)

}
wtwi (u)dM̃ tw

1i (u, β)

= n−1/2

n∑
i=1

∫ ∞
0

{
Xi −X

tw
(β, u)

}
w̃i(u)dM̃ tw

1i (u, β)

+ n−1/2

n∑
i=1

∫ ∞
0

{
Xi −X

tw
(β, u)

}
{wtwi (u)− w̃i(u)}dM̃ tw

1i (u, β). (A.1)
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By the uniform convergence of G̃tw(·) to G(·), the second term in (A.1) is

n−1/2

n∑
i=1

∫ ∞
0

{
Xi −X

tw
(β, u)

}
{wtwi (u)− w̃i(u)}dM̃ tw

1i (u, β)

= n−1/2

n∑
i=1

∫ ∞
0

{
Xi − X̃tw(β, u)

}
{wtwi (u)− w̃i(u)}dM̃ tw

1i (u, β)

+ n−1/2

n∑
i=1

∫ ∞
0

{
X̃tw(β, u)−X

tw
(β, u)

}
{wtwi (u)− w̃i(u)}dM̃ tw

1i (u, β)

= n−1/2

n∑
i=1

∫ ∞
0

{
Xi − X̃tw(β, u)

}
{wtwi (u)− w̃i(u)}dM̃ tw

1i (u, β) + op(1)

= n−1/2

n∑
i=1

∫ ∞
0

{
Xi − X̃tw(β, u)

}{ G̃tw(u)

G̃tw(Vi ∧ u)
− G(u)

G(Vi ∧ u)

}
ri(u)dM̃ tw

1i (u, β) + op(1).

(A.2)

We represent the Kaplan-Meier estimator in a martingale form, which was introduced by

Gill (1980), and have that

G̃tw(u)

G̃tw(Vi ∧ u)
− G(u)

G(Vi ∧ u)
= −G(u)I(Vi < u)

G(Vi)

n∑
j=1

∫ u

Vi

dM̃ c,tw
j (s)∑n

m=1QA1BkB
′
l,m

(s)I(Vm ≥ s)
+ op(1),

where M̃ c,tw
j (s) = QA1BkB

′
l,j

(s)I(Vj ≤ s,4j = 0) −
∫ s

0
QA1BkB

′
l,j

(t)I(Vj ≥ t)dΛc(t) with

Λc being the cumulative hazard function for the censoring distribution. We can show that

M̃ c,tw
j (s) is a martingale by noting that I(Vj ≤ s,4j = 0)−

∫ s
0
I(Vj ≥ t)dΛc(t) is a martingale

with respect to the censoring filtration, Fc(s) = σ{I(Vi ≤ u,4i = 0), I(Vi ≥ u),Xi, u ≤

s, εi, i = 1, ..., n}. Under some regularity conditions, the second term in (A.1) is dominated

by the first term in (A.2). Thus,

n−1/2U tw
A1BkB

′
l
(β) = n−1/2

n∑
i=1

∫ ∞
0

{
Xi−X

tw
(β, u)

}
w̃i(u)dM̃ tw

1i (u, β)+n−1/2

n∑
i=1

Ri(β)+op(1),
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where

n∑
i=1

Ri(β)

= −
n∑
i=1

∫ ∞
0

{
Xi − X̃tw(β, u)

}G(u)I(Vi < u)

G(Vi)

{ n∑
j=1

∫ u

Vi

dM̃ c,tw
j (s)∑n

m=1QA1BkB
′
l,m

(s)I(Vm ≥ s)

}
× ri(u)dM̃ tw

1i (u, β)

= −
n∑
i=1

n∑
j=1

∫ ∞
0

{
Xi − X̃tw(β, u)

}G(u)I(Vi < u)

G(Vi)

{∫ u

Vi

dM̃ c,tw
j (s)∑n

m=1QA1BkB
′
l,m

(s)I(Vm ≥ s)

}
× ri(u)dM̃ tw

1i (u, β)

= −
n∑
j=1

∫ ∞
0

1∑n
m=1QA1BkB

′
l,m

(s)I(Vm ≥ s)
×

[ n∑
i=1

I(s > Vi)

∫ ∞
0

{
Xi − X̃tw(β, u)

}
I(u ≥ s)

G(u)I(Vi < u)

G(Vi)
ri(u)dM̃ tw

1i (u, β)

]
dM̃ c,tw

j (s)

= −
n∑
j=1

∫ ∞
0

[∑n
i=1

∫∞
0

{
Xi − X̃tw(β, u)

}
w̃i(u)I(Vi < s ≤ u)dM̃ tw

1i (u, β)

]
∑n

m=1 QA1BkB
′
l,m

(s)I(Vm ≥ s)
dM̃ c,tw

j (s).

Since Stw(p)(β, u), p = 0, 1, and ri(u)/G(Vi ∧ u) are not adapted with respected to F1(u) =

σ{I(Ti ≤ t, εi = 1), 1− I(Ti ≤ t, εi = 1),Xi, t ≤ u, i = 1, ..., n}, under regularity conditions,

we replace both X
tw

(β, u) and X̃tw(β, u) with

xtw(β, u) = stw(1)(β, u)/stw(0)(β, u),

where

stw(p)(β, u) = lim
n→∞

1

n

n∑
i=1

Y ∗twi (u)X⊗pj exp(XT
j β), p = 0, 1, 2.
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Therefore,

n−1/2U tw
A1BkB

′
l
(β0)

=n−1/2

n∑
i=1

∫ ∞
0

{
Xi − xtw(β0, u)

}
w̃i(u)dM̃ tw

1i (u, β0) + n−1/2

n∑
i=1

Ri(β0) + op(1)

=n−1/2

n∑
i=1

∫ ∞
0

{
Xi − xtw(β0, u)

}
w̃i(u)dM̃ tw

1i (u, β0)

+ n−1/2

n∑
i=1

∫ ∞
0

−
∑n

j=1

∫∞
0

{
Xj − xtw(β0, u)

}
w̃j(u)I(Vj < s ≤ u)dM̃ tw

1j (u, β0)∑n
m=1QA1BkB

′
l,m

(s)I(Vm ≥ s)
dM̃ c,tw

i (s)

+ op(1)

=n−1/2

n∑
i=1

[ ∫ ∞
0

{
Xi − xtw(β0, u)

}
w̃i(u)dM̃ tw

1i (u, β0) +

∫ ∞
0

qtw(s, β0)

πtw(s)
dM̃ c,tw

i (s)

]
+ op(1),

where

qtw(s, β0) = − lim
n→∞

1

n

n∑
j=1

∫ ∞
0

{
Xj − xtw(β0, u)

}
w̃j(u)I(Vj < s ≤ u)dM̃ tw

1j (u, β0),

and

πtw(s) = lim
n→∞

1

n

n∑
m=1

QA1BkB
′
l,m

(s)I(Vm ≥ s).

Thus, we can get

n−1/2U tw
A1BkB

′
l
(β0) = n−1/2

n∑
i=1

(ηtwi + ψtwi ) + op(1),

where

ηtwi =

∫ ∞
0

{
Xi − xtw(β0, u)

}
w̃i(u)dM̃ tw

1i (u, β0),

and

ψtwi =

∫ ∞
0

qtw(s, β0)

πtw(s)
dM̃ c,tw

i (s).

Therefore, by the multivariate central limit theorem, n−1/2U tw
A1BkB

′
l
(β0) is asymptotically

distributed normal with a covariance matrix

Σtw = E
{

(ηtwi + ψtwi )(ηtwi + ψtwi )T
}
.
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The estimate of Σtw,

Σ̂tw = n−1

n∑
i=1

(η̂twi + ψ̂twi )⊗2,

where

η̂twi =

∫ ∞
0

{
Xi −X

tw
(β̂tw, u)

}
wtwi (u)dM̂ tw

1i (u, β̂tw),

ψ̂twi =

∫ ∞
0

q̂tw(s, β̂tw)

π̂tw(s)
dM̂ c,tw

i (s),

q̂tw(s, β̂tw) = − 1

n

n∑
j=1

∫ ∞
0

{
Xj −X

tw
(β̂tw, u)

}
wj(u)dM̂ tw

1j (u, β̂tw)I(Vj < s ≤ u),

π̂tw(s) =
1

n

n∑
m=1

QA1BkB
′
l,m

(s)I(Vm ≥ s),

wtwi (u) =
G̃tw(u)

G̃tw(Vi ∧ u)
I(4i = 1) + I(Vi > u),

G̃tw(u) =
∏
Vj≤u

(
1−

∑n
i=1 QA1BkB

′
l,i

(u)I(Vi = u,4i = 0)∑n
i=1QA1BkB

′
l,i

(u)I(Vi ≥ u)

)
,

M̂ tw
1i (u, β̂tw) = QA1BkB

′
l,i

(u)I(Vi ≤ u, εi = 1)

−
∫ u

0

QA1BkB
′
l,i

(t){1− I(Vi < t, εi = 1)} exp(XT
i β̂

tw)dΛ̂tw
10 (t),

M̂ c,tw
i (s) = QA1BkB

′
l,i

(s)I(Vi ≤ s, εi = 0)−
∫ s

0

QA1BkB
′
l,i

(t)I(Vi ≥ t)dΛ̂c,tw(t),

Λ̂tw
10 (t) =

1

n

n∑
i=1

∫ t

0

1

Stw(0)(β̂tw, v)
wtwi (v)dÑ tw

1i (v),

and

Λ̂c,tw(t) =

∫ t

0

∑n
i=1QA1BkB

′
l,i

(v)I(Vi = v,4i = 0)∑n
i=1QA1BkB

′
l,i

(v)I(Vi ≥ v)
.

Hence, the asymptotical distribution of

√
n(β̂tw − β0) ≈ Ω−1

{
n−1/2U tw

A1BkB
′
l
(β0)

}
is normally distributed with covariance matrix Ω−1ΣΩ−1, and its estimate is Ω̂tw−1Σ̂Ω̂tw−1.
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APPENDIX B

THE PROOF OF THEOREM 2

By following the formula in § 2.2, we can estimate the CIF at time t0 with covariates x0,

F̂ tw
1,A1BkB

′
l
(t0;x0) = 1− exp{−Λ̂tw

1 (t0, x0)},

where Λ̂tw
1 (t0, x0) = n−1

∑n
i=1

∫ t0
0

exp(xT0 β̂
tw)Λ̂tw

10 (t) is the the cumulative subdistribution

hazard function for the cause 1 at time t0 with covariates x0. To construct the limiting dis-

tribution of n1/2{F̂ tw
1,A1BkB

′
l
(t0;x0)−F1,A1BkB

′
l
(t0;x0)}, we first establish that n1/2{Λ̂tw

1 (t0, x0)−

Λ1(t0, x0)} converges weakly to a Gaussian process on [0, τ), where P (X ≤ τ) > 0. Applying

the Taylor expansion around β0 to n1/2Λ̂tw
1 (t0, x0), we have

n1/2Λ̂tw
1 (t0, x0) = n−1/2

n∑
i=1

∫ t0

0

exp(xT0 β̂
tw)

Stw(0)(β̂tw, u)
wtwi (u)dÑ tw

1i (u)

= n−1/2

n∑
i=1

∫ t0

0

exp(xT0 β0)

Stw(0)(β0, u)
wtwi (u)dÑ tw

1i (u) + n−1/2

n∑
i=1

∫ t0

0

{
xT0

exp(xT0 β0)

Stw(0)(β0, u)

− Stw(1)T (β0, u) exp(xT0 β0)

Stw(0)(β0, u)2

}
wtwi (u)dÑ tw

1i (u)(β̂tw − β0) + op(1)

= n−1/2

n∑
i=1

∫ t0

0

exp(xT0 β0)

Stw(0)(β0, u)
wtwi (u)dÑ tw

1i (u)

+

∫ t0

0

{
xT0 −X

twT
(β0, u)

}
exp(xT0 β0)

1

n

n∑
i=1

wtwi (u)dÑ tw
1i (u)

Stw(0)(β0, u)

√
n(β̂tw − β0) + op(1)

= n−1/2

n∑
i=1

∫ t0

0

exp(xT0 β0)

Stw(0)(β0, u)
wtwi (u)dÑ tw

1i (u)

+

∫ t0

0

{
xT0 −X

twT
(β0, u)

}
exp(xT0 β0)dΛ10(u)

√
n(β̂tw − β0) + op(1).
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Thus, n1/2Λ̂tw
1 (t0, x0) is asymptotically equivalent to

n−1/2

n∑
i=1

∫ t0

0

exp(xT0 β0)

Stw(0)(β0, u)
wtwi (u)dÑw

1i(u) + hT (t0, x0)
√
n(β̂tw − β0), (B.1)

where

h(t0, x0) =

∫ t0

0

{x0 − x̄tw(β0, u)} exp(xT0 β0)dΛ10(u).

Furthermore, we write n1/2Λ1(t0, x0) as

n1/2

∫ t0

0

exp(xT0 β0)dΛ10(u, x0) = n−1/2

n∑
i=1

∫ t0

0

wtwi (u)Y tw
i (u) exp(XT

i β0)

Stw(0)(β0, u)
exp(xT0 β0)dΛ10(u).

(B.2)

Then, combining (B.1) and (B.2), n1/2{Λ̂tw
1 (t0, x0)−Λ1(t0, x0)} is asymptotically equivalent

to

n−1/2

n∑
i=1

∫ t0

0

exp(xT0 β0)

Stw(0)(β0, u)
wtwi (u)dÑ tw

1i (u) + hT (t0, x0)
√
n(β̂tw − β0)

− n−1/2

n∑
i=1

∫ t0

0

wtwi (u)Ỹ tw
i (u) exp(XT

i β0)

Stw(0)(β0, u)
exp(xT0 β0)dΛ10(u)

= n−1/2

n∑
i=1

∫ t0

0

exp(xT0 β0)

Stw(0)(β0, u)
wtwi (u)dM̃ tw

1i (u, β0) + hT (t0, x0)
√
n(β̂tw − β0), (B.3)

where

dM̃ tw
1i (u, β0) = dÑw

1i(u)− Ỹ tw
i (u) exp(XT

i β0)dΛ10(u).

We add and subtract w̃i(u), use the asymptotically equivalent form of n1/2(β̂tw − β0), and

replace Stw(0)(β0, u) with stw(0)(β0, u) to express (B.3) as

n−1/2

n∑
i=1

∫ t0

0

exp(xT0 β0)

stw(0)(β0, u)
{w̃i(u) + wtwi (u)− w̃i(u)}dM̃ tw

1i (u, β0)

+ hT (t0, x0)Ω−1n−1/2U tw
A1BkB

′
l
(β0) + op(1)

= n−1/2

n∑
i=1

∫ t0

0

exp(xT0 β0)

stw(0)(β0, u)
w̃i(u)dM̃ tw

1i (u, β0)

+ n−1/2

n∑
i=1

∫ t0

0

exp(xT0 β0)

stw(0)(β0, u)
{wtwi (u)− w̃i(u)}dM̃ tw

1i (u, β0)

+ hT (t0, x0)Ω−1n−1/2

n∑
i=1

(ηtwi + ψtwi ) + op(1). (B.4)
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Similar to the expression in (A.2), the second term in (B.4) can be written as

− n−1/2

n∑
j=1

∫ ∞
0

{∑n
i=1

∫ t0
0

exp(xT0 β0)

stw(0)(β0,u)
w̃i(u)I(Vi < s ≤ u)dM̃ tw

1i (u, β0)
}

∑n
m=1QA1BkB

′
l,m

(s)I(Vm ≥ s)
dM̃ c,tw

j (s) + op(1)

=n−1/2

n∑
j=1

∫ ∞
0

vtw(s, t0, x0, β0)

πtw(s)
dM̃ c,tw

j (s) + op(1), (B.5)

where

vtw(s, t0, x0, β0) = − lim
n→∞

1

n

n∑
i=1

∫ t0

0

exp(xT0 β0)

stw(0)(β0, u)
w̃i(u)I(Vi < s ≤ u)dM̃ tw

1i (u, β0),

and

πtw(s) = lim
n→∞

1

n

n∑
m=1

QA1BkB
′
l,m

(s)I(Vm ≥ s).

Based on these results, (B.4) and (B.5), n1/2{Λ̂tw
1 (t0, x0)−Λ1(t0, x0)} has an asymptotically

equivalent form such as

n−1/2

n∑
i=1

∫ t0

0

exp(xT0 β0)

stw(0)(β0, u)
w̃i(u)dM̃ tw

1i (u, β0) + n−1/2

n∑
j=1

∫ ∞
0

vtw(s, t0, x0, β0)

πtw(s)
dM̃ c,tw

j (s)

+ hT (t0, x0)Ω−1n−1/2

n∑
i=1

(ηtwi + ψtwi ) + op(1). (B.6)

The properties of empirical processes show that the first term in (B.6) is tight, and the second

term, which is a martingale integral with respect to v(s, t0, x0, β0)/π(s), is also tight. Finally,

the tightness for the third term can be obtained since the nonrandom function hT (t0, x0)

is the only term which is affected by time. Hence, the asymptotically equivalent form for

n1/2{Λ̂tw
1 (t0, x0) − Λ1(t0, x0)}, which is a sum of tight functions, converges to a Gaussian

process.

Finally, we apply the functional delta method to get the limiting distribution of

n1/2{F̂1,A1BkB
′
l
(t0;x0)− F1,A1BkB

′
l
(t0;x0)} on the interval [0, τ). Since

∂F1,A1BkB
′
l
(t0;x0)

∂Λ1(t0, x0)

[
n1/2

{
Λ̂tw

1 (t0, x0)− Λ1(t0, x0)
}]

= exp(−Λ1(t0, x0))
[
n1/2

{
Λ̂tw

1 (t0, x0)− Λ1(t0, x0)
}]
,
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the n1/2{F̂1,A1BkB
′
l
(t0;x0)− F1,A1BkB

′
l
(t0;x0)} converges weakly to a Gaussian process which

has the same limiting distribution as

exp{−Λ1(t0, x0)}
{
n−1/2

n∑
i=1

∫ t0

0

exp(xT0 β0)

stw(0)(β0, u)
w̃i(u)dM̃ tw

1i (u, β0)

+ n−1/2

n∑
j=1

∫ ∞
0

vtw(s, t0, x0, β0)

πtw(s)
dM̃ c,tw

j (s)

+ hT (t0, x0)Ω−1n−1/2

n∑
i=1

(ηtwi + ψtwi )

}
+ op(1). (B.7)

However, it’s complicated to evaluate the above form. Hence, we apply the same technique

in Fine and Gray (1999) to estimate the variance of F̂1,A1BkB
′
l
(t0;x0). First, we create B

copies, {Wbi, i = 1, ..., n}, b = 1, ..., B, from a standard normal distribution, and compute

K̂tw
b (t0,x0) for b = 1, ...B, where

K̂tw
b (t0, x0) = n−1/2 exp

{
−Λ̂tw(t0,x0)

}
×

{
n∑
i=1

∫ t0

0

exp(xT0 β̂
tw)

Ŝtw(0)(β̂tw, u)
wi(u)dM̂ tw

1i (u)Wbi

+
n∑
j=1

∫ ∞
0

v̂tw(s, t0, β̂
tw)

π̂tw(s)
dM̂ c,tw

j (s, β̂tw)Wbi + ĥtw
T

(t0,x0)Ω̂tw−1
n∑
i=1

(η̂twi + ψ̂twi )Wbi

}
.

Thus, the standard deviation for the CIF estimator at time t0 can be estimated by

σ̂tw(t0,x0) =

√√√√ 1

nB

B∑
b=1

K̂tw2

b (t0,x0).
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APPENDIX C

THE ASYMPTOTIC PROPERTIES FOR THE FIXED WEIGHT SCHEIKE

MODEL

Under Scheike’s model, we first construct the fixed weight estimating equation for the A1BkB
′
l

regimen. Let QA1BkB
′
l,i

= RiI(Z1i = k)/πBk + (1− Ri)I(Z2i = l)/πB′l , where πBk = P (Z1 =

k|R = 1) and πB′l = P (Z2 = l|R = 0). Define Ñw
i (t) = QA1BkB

′
l,i
Ni(t). It can be shown that

E

[
4iÑ

w
i (t)

G(Ti|Xi)

]
= E

[
E

{
4iÑ

w
i (t)

G(Ti|Xi)

∣∣∣∣Ti, Ri, Z1i, Z2i, εi,Xi

}]
= E

[
Ñu
i (t)

]
= E

[
QA1BkB

′
l,i
Ni(t)

]
= E

[
E{QA1BkB

′
l,i
Ni(t)|Ri, Ti,Xi, εi}

]
= E

[
Ni(t)E

{
RiI(Z1i = k)/πBk + (1−Ri)I(Z2i = l)/πB′l |Ri, Ti,Xi, εi

}]
= E

(
Ni(t)

[
Ri

πBk
E{I(Z1i = k)|Ri, Ti,Xi, εi}+

(1−Ri)

πBk
E{I(Z2i = l)|Ri, Ti,Xi, εi}

])
= E {Ni(t)}

= P (T ≤ t, ε = 1|X, A1BkB
′
l) = F1,A1BkB

′
l
(t; X).

Similar to Scheike et al. (2008), we focus on the interval [a, τ ], where G(τ |x) > 0 and

P (T ≤ a|x) > 0. Let Ĝ(·) be a consistent estimator of G(·) by using the data with fixed
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weights, and Q̂A1BkB
′
l,i

be a consistent estimator of QA1BkB
′
l,i

. Thus, in general, it can be

shown that

NQ̂

Ĝ
=
NQ

G
+

(
NQ̂

Ĝ
− NQ

G

)
=
NQ

G
+N

(
GQ̂− ĜQ

ĜG

)
=
NQ

G
+N

(
GQ̂−GQ+GQ− ĜQ

ĜG

)
=
NQ

G
+N

{
G(Q̂−Q) +Q(G− Ĝ)

ĜG

}
=
NQ

G
+ op(1).

In our method, we choose to use Q̂A1BkB
′
l,i

because it provides more information from the

data. Let Nw
i (t) = Q̂A1BkB

′
l,i
Ni(t) and denote F1,A1BkB

′
l
(t; X) , F ∗1i(t; η, γ). The fixed weight

estimating equation for the A1BkB
′
l regimen, at time t, can be written as U∗(η, γ, Ĝ) =

{U∗1 (η, γ, Ĝ)(t), U∗2 (η, γ, Ĝ)} where

U∗1 (η, γ, Ĝ)(t) =
n∑
i=1

DT
η,iui(t)

{
4iN

w
i (t)

Ĝi(Ti|Xi)
− F ∗1i(t; η, γ)

}
,

U∗2 (η, γ, Ĝ) =
n∑
i=1

∫ τ

a

DT
γ,iui(t)

{
4iN

w
i (t)

Ĝi(Ti|Xi)
− F ∗1i(t; η, γ)

}
dt,

and ui(t) are possibly random weights. To simplify the notation, we write η(t) as η in the

following demonstration. To solve the equations, a Taylor expansion around (γ0, η0) gives

U∗1 (η, γ, Ĝ)(t) ≈ U∗1 (η0, γ0, Ĝ)(t)+
n∑
i=1

DT
η,iui(t)Dη,i(η−η0)+

n∑
i=1

DT
η,iui(t)Dγ,i(γ−γ0) (C.1)

and

U∗2 (η, γ, Ĝ) ≈ U∗2 (η0, γ0, Ĝ) +

{ n∑
i=1

∫ τ

a

DT
γ,iui(t)Dγ,idt

}
(γ − γ0)

+
n∑
i=1

∫ τ

a

DT
γ,iui(t)Dη,i(η − η0)dt. (C.2)

Since U∗(η̂, γ̂, Ĝ) = 0 where η̂ and γ̂ are solutions, by (C.1) and (C.2), we have

η̂−η0 = −
[ n∑
i=1

DT
η,iui(t)Dη,i

]−1(
U∗1 (η0, γ0, Ĝ)(t)+

n∑
i=1

DT
η,iui(t)Dγ,i(γ−γ0)

)∣∣∣∣
η=η̂,γ=γ̂

(C.3)
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and{ n∑
i=1

∫ τ

a

DT
γ,iui(t)Dγ,idt

}
(γ̂ − γ0)

= −
(
U∗2 (η0, γ0, Ĝ) +

n∑
i=1

∫ τ

a

DT
γ,iui(t)Dη,i(η − η0)dt

)∣∣∣∣
η=η̂,γ=γ̂

. (C.4)

Let

Iη(t) =
n∑
i=1

DT
η,iui(t)Dη,i, Iγ(t) =

n∑
i=1

DT
γ,iui(t)Dγ,i,

Iη,γ(t) =
n∑
i=1

DT
η,iui(t)Dγ,i, Iγ,η(t) =

n∑
i=1

DT
γ,iui(t)Dη,i,

and

Cγ =

∫ τ

a

{Iγ(t)− ITγ,η(t)Iη(t)−1Iη,γ(t)}dt.

Combining (C.3) and (C.4) with these notations, we can show that

Ĉγ(γ̂ − γ0) = −
{
U∗2 (η0, γ0, Ĝ)−

∫ τ

a

Îγ,η(t)Î
−1
η (t)U∗1 (η0, γ0, Ĝ)(t)dt

}
, (C.5)

where Ĉγ, Îγ,η(t) and Îη(t) are consistent estimators for Cγ, Iγ,η(t) and Iη(t). Therefore,

γ̂ − γ0 = −Ĉ−1
γ

∫ τ

a

n∑
i=1

{
DT
γ,i − Îγ,η(t)Î−1

η (t)DT
η,i

}
ui(t)

{
4iN

w
i (t)

Ĝi(Ti|Xi)
− F ∗1i(t; η0, γ0)

}
dt

and

η̂ − η0 = −Î−1
η (t)

n∑
i=1

DT
η,iui(t)

{
4iN

w
i (t)

Ĝi(Ti|Xi)
− F ∗1i(t; η0, γ0) +Dγ,i(γ̂ − γ0)

}
.

Now we further derive the asymptotic distributions of
√
n(γ̂ − γ0) and

√
n{η̂(t) − η0(t)}.

First, the vector of fixed coefficients, γ, has a consistent estimator γ̂ by solving the score

functions. Then, we focus on the vector of time-varying coefficients η(t). Since Q̂A1BkB
′
l,i

,

which is a fixed weight random variable, does not associate with the event time, the regularity

conditions and Lemmas A1 and A2 in Scheike et al. (2008) still hold here. Similar to the

arguments in Theorem A1 in Scheike et al. (2008), η̂(t) is a uniformly consistent estimator

for η0(t). For the extension to the time-varying weight Scheike model, Q̂A1BkB
′
l,i

(t) involves

the time to response. It is considerably more complicated than the fixed weight Scheike

model. Hence, we do not derive the influence functions for the time-varying Scheike model

here. For the fixed weight Scheike model, to establish the influence function for the fixed
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and time-varying coefficients, we use Lemma A2 in Scheike et al. (2008), and coupled with

(C.3) and (C.5), we have

Ĉγ(γ̂ − γ0) = −
(
U∗2 (η0, γ0, Ĝ)−

∫ τ

a

Îγ,η(t)Î
−1
η (t)U∗1 (η0, γ0, Ĝ)(t)dt

)
= −

[ n∑
i=1

∫ τ

a

DT
γ,iui(t)

{
4iN

w
i (t)

Ĝi(Ti|Xi)
− F ∗1i(t; η0, γ0)

}
dt

−
∫ τ

a

Îγ,η(t)Î
−1
η

n∑
i=1

DT
η,iui(t)

{
4iN

w
i (t)

Ĝi(Ti|Xi)
− F ∗1i(t; η0, γ0)

}
dt

]
= −

n∑
i=1

∫ τ

a

(
DT
γ,i − Îγ,η(t)Î−1

η (t)DT
η,i

)
ui(t)

{
4iN

w
i (t)

Ĝi(Ti|Xi)
− F ∗1i(t; η0, γ0)

}
dt

= −
n∑
i=1

∫ τ

a

K̂i(t)ui(t)

{
4iN

w
i (t)

Ĝi(Ti|Xi)
− F ∗1i(t; η0, γ0)

}
dt,

where K̂i(t) =
(
DT
γ,i − Îγ,η(t)Î−1

η (t)DT
η,i

)
, and

Îη(t)(η̂ − η0) = −

[
n∑
i=1

DT
η,iui(t)

{
4iN

w
i (t)

Ĝi(Ti|Xi)
− F ∗1i(t; η0, γ0)

}
+

n∑
i=1

DT
η,iui(t)Dγ,i(γ̂ − γ0)

]
.

Let Wi = {Vi,4iεi,Xi, Ri, Z1i, Z2i},

A1
γ,η,G(t,Wi) = DT

η,iui(t)

{
4iN

w
i (t)

Gi(Ti|Xi)
− F ∗1i(t; η0, γ0)

}

A2
γ,η,G(Wi) =

∫ τ

a

K̂i(t)ui(t)

{
4iN

w
i (t)

Gi(Ti|Xi)
− F ∗1i(t; η0, γ0)

}
dt,

and

A3
γ,η,G(t,Wi) = A1

γ,η,G(t,Wi)−DT
η,iui(t)Dγ,iĈ

−1
γ A2

γ,η,G(Wi).

Also, denote

B̂1
γ,η,G(t,Wi) = −DT

η,iui(t)4i N
w
i (t)

{
Ĝi(Ti|Xi)−Gi(Ti|Xi)

Ĝi(Ti|Xi)Gi(Ti|Xi)

}
,

B̂2
γ,η,G(Wi) = −

∫ τ

a

K̂i(t)ui(t)4i N
w
i (t)

{
Ĝi(Ti|Xi)−Gi(Ti|Xi)

Ĝi(Ti|Xi)Gi(Ti|Xi)

}
dt,

and

B̂3
γ,η,G(t,Wi) = B̂1

γ,η,G(t,Wi)−DT
η,iui(t)Dγ,iĈ

−1
γ B̂2

γ,η,G(Wi).
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Hence, by Slusky’s theorem and Lemmas A1 and A2 in Scheike et al. (2008), we have

√
n(γ̂ − γ0) = −

√
n
[
C−1
γ {A2

γ,η,G(W ) +B2
γ,η,G(W )}

]
+ op(1),

and
√
n(η̂(t)− η0(t)) = −

√
n
[
I−1
η (t){A3

γ,η,G(W ) +B3
γ,η,G(W )}

]
+ op(1),

where B1
γ,η,G(t,W ) = E(B̂1

γ,η,G(t,W )) and B2
γ,η,G(W ) = E(B̂2

γ,η,G(Wi)). Then, the asymp-

totic covariance matrices of
√
n(γ̂ − γ0) and

√
n(η̂(t)− η0(t)) can be consistently estimated

by

Σ̂γ = nĈ−1
γ

(∑
i

(Â2
γ,η,G(Wi) + B̂2

γ,η,G(Wi))
⊗2

)
Ĉ−1
γ

and

Σ̂η = nÎ−1
η

(∑
i

(Â3
γ,η,G(Wi) + B̂3

γ,η,G(Wi))
⊗2

)
Î−1
η .
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APPENDIX D

THE PROOF OF THEOREM 3

The proposed estimating equation for γ0(τ ) is defined as

WĜ
n (β̂1, β̂2,γ; τ )

=
1

n

n∑
i=1

Zi

(
I[Y1i ≤ g1{ZT

i β̂1(τ1)}, Y2i ≤ g2{ZT
i β̂2(τ2)}]δ1iδ2i

Ĝ(Y1i, Y2i)
− χ{exp(ZT

i γ); τ}
)

= 0.

Let

WG
n (b1,b2,γ; τ )

=
1

n

n∑
i=1

Zi

(
I[Y1i ≤ g1{ZT

i b1(τ1)}, Y2i ≤ g2{ZT
i b2(τ2)}]δ1iδ2i

G(Y1i, Y2i)
− χ{exp(ZT

i γ); τ}
)
,

and W(b1,b2,γ; τ ) = E{WG
n (b1,b2,γ; τ )}.

By conditions C2 and the consistency of Ĝ(t1, t2), we have supt1<k1,t2<k2 ||Ĝ(t1, t2) −

G(t1, t2)|| = o(n−1/2+r), a.s. for every r > 0. This result implies that

sup
b1,b2,γ;τ∈D

||WĜ
n (b1,b2,γ; τ )−WG

n (b1,b2,γ; τ )|| = op(1).

Let F = {Zi(I[Y1i ≤ g1{ZT
i b1(τ1)}, Y2i ≤ g2{ZT

i b2(τ2)}]δ1iδ2i/G(Y1i, Y2i)− χ{exp(ZT
i γ); τ})

: Zi ∈ Z,b1,b2,γ ∈ Rp, τ ∈ D}. The class of indicator functions is Donsker, Zi and

G(Y1i, Y2i) are both uniformly bounded, and G(Y1i, Y2i) is assumed to be uniformly bounded
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away from zero. Hence, the class F is Donsker which has the Glivenko-Cantelli property.

That is,

sup
b1,b2,γ;τ∈D

||WG
n (b1,b2,γ; τ )−W(b1,b2,γ; τ )|| = op(1).

Coupled with those results, we have that

sup
b1,b2,γ;τ∈D

||WĜ
n (b1,b2,γ; τ )−W(b1,b2,γ; τ )|| = op(1). (D.1)

Notice that the estimating equation procedure and the model’s assumptions guarantee that

WĜ
n (β̂1, β̂2, γ̂; τ ) = 0 and W(β10,β20,γ0; τ ) = 0.

We further have that

W(β10,β20, γ̂; τ )−W(β10,β20,γ0; τ )

= W(β10,β20, γ̂; τ )−WĜ
n (β̂1, β̂2, γ̂; τ )

= W(β10,β20, γ̂; τ )−W(β̂1, β̂2, γ̂; τ ) + W(β̂1, β̂2, γ̂; τ )−WĜ
n (β̂1, β̂2, γ̂; τ ). (D.2)

The first two terms in (D.2) can be written as

W(β10,β20, γ̂; τ )−W(β̂1, β̂2, γ̂; τ )

= E{Wn(β10,β20, γ̂; τ )} − E{Wn(β̂1, β̂2, γ̂; τ )}

= E{Z(H[g1{ZTβ10(τ1)}, g2{ZTβ20(τ2)}|Z])} − E{Z(H[g1{ZT β̂1(τ1)}, g2{ZT β̂2(τ2)}|Z])}.

(D.3)

We take Taylor’s expansion of the last term in (D.3) at βj0(τj), j = 1, 2, and show that

W(β10,β20, γ̂; τ )−W(β̂1, β̂2, γ̂; τ ) = −
2∑
j=1

Pj{β10(τ1),β20(τ2)}{β̂j(τj)−βj0(τj)}+oDp (1),

where Pj(b1,b2) = E[Z⊗2hj{g1(ZTb1), g2(ZTb2)}|Z] and hj(t1, t2|Z) = ∂H(t1, t2|Z)/∂tj.

Under conditions C1, C2, and C3(i)-(iii), the β̂j(τj) uniformly converges to βj0(τj) (Peng and

Fine, 2009). Based on the condition C3(iv), the Pj{β10(τ1),β20(τ2)} is uniformly bounded

for τ = (τ1, τ2) ∈ D. Therefore, we further have the results that

sup
τ∈D
||W(β10,β20, γ̂; τ )−W(β̂1, β̂2, γ̂; τ )|| = op(1). (D.4)
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With those above results, (D.1), (D.2) and (D.4), it can be shown that

sup
τ∈D
||W(β10,β20, γ̂; τ )−W(β10,β20,γ0; τ )|| = op(1). (D.5)

Thus, under the condition C4, we use a first-order Taylor’s expression of W(β10,β20, γ̂; τ )

at γ0(τ ) to have that

γ̂(τ )− γ0(τ ) = J(γ0; τ )−1{W(β10,β20, γ̂; τ )−W(β10,β20,γ0; τ )}+ oDp (1),

where J(γ; τ ) = ∂E[Zχ{exp(ZTγ)}]/∂γ = E[Z⊗2χ′{exp(ZTγ)} exp(ZTγ)]. With the boun-

dedness of J(γ0; τ ) and (D.5), the consistency of γ̂(τ ) can be obtained, where

sup
τ∈D
||γ̂(τ )− γ0(τ )|| = op(1).
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APPENDIX E

THE PROOF OF THEOREM 4

To simplify the notation, we first define

VĜ
n (b1,b2; τ ) = n−1

n∑
i=1

Zi
I[Y1i ≤ g1{ZT

i b1(τ1)}, Y2i ≤ g2{ZT
i b2(τ2)}]δ1iδ2i

Ĝ(Y1i, Y2i)
,

VG
n (b1,b2; τ ) = n−1

n∑
i=1

Zi
I[Y1i ≤ g1{ZT

i b1(τ1)}, Y2i ≤ g2{ZT
i b2(τ2)}]δ1iδ2i

G(Y1i, Y2i)
,

and V(b1,b2; τ ) = E{VG
n (b1,b2; τ )}.

Lemma 1. For any sequence {β̃1n(τ1), β̃2n(τ2), τ = (τ1, τ2) ∈ D}∞n=1 satisfying sup ||β̃jn(τj)−

βj0(τj)|| = op(1), for j = 1, 2, we have

sup ||VG
n (β̃1n, β̃2n; τ )−VG

n (β10,β20; τ )−V(β̃1n, β̃2n; τ ) + V(β10,β20; τ )|| = op(n
−1/2).

To prove this lemma, we follow the results in ? and the arguments of Lai and Ying

(1988). With the boundedness of Z, it is sufficient to show that

sup
τ∈D
||var(G(Y1, Y2)−1I[Y1 ≤ g1{ZT β̃1n(τ1)}, g−1

2 (Y2) ≤ g2{ZT β̃2n(τ2)}]δ1δ2

−G(Y1, Y2)−1I[Y1 ≤ g1{ZTβ10(τ1)}, g−1
2 (Y2) ≤ g2{ZTβ20(τ2)}]δ1δ2)|| = op(1).

(E.1)
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The variance form in (E.1) can be written as

var(G(Y1, Y2)−1δ1δ2[I{g−1
1 (Y1) ≤ ZT β̃1n(τ1), g−1

2 (Y2) ≤ ZT β̃2n(τ2)}

− I{g−1
1 (Y1) ≤ ZTβ10(τ1), g−1

2 (Y2) ≤ ZTβ20(τ2)}])

≤ E(G(Y1, Y2)−1δ1δ2[I{g−1
1 (Y1) ≤ ZT β̃1n(τ1), g−1

2 (Y2) ≤ ZT β̃2n(τ2)}

− I{g−1
1 (Y1) ≤ ZTβ10(τ1), g−1

2 (Y2) ≤ ZTβ20(τ2)}])2

= E|G(Y1, Y2)−2δ1δ2[I{g−1
1 (Y1) ≤ ZT β̃1n(τ1), g−1

2 (Y2) ≤ ZT β̃2n(τ2)}

− I{g−1
1 (Y1) ≤ ZTβ10(τ1), g−1

2 (Y2) ≤ ZTβ20(τ2)}]|

≤ E|G(Y1, Y2)−2δ1δ2[I{g−1
1 (Y1) ≤ ZT β̃1n(τ1)} − I{g−1

1 (Y1) ≤ ZTβ10(τ1)}]|

+ E|G(Y1, Y2)−2δ1δ2[I{g−1
2 (Y2) ≤ ZT β̃2n(τ2)} − I{g−1

2 (Y2) ≤ ZTβ20(τ2)}]|

≤ E|G(Y1, Y2)−2[I{g−1
1 (Y1) ≤ ZT β̃1n(τ1)} − I{g−1

1 (Y1) ≤ ZTβ10(τ1)}]|

+ E|G(Y1, Y2)−2[I{g−1
2 (Y2) ≤ ZT β̃2n(τ2)} − I{g−1

2 (Y2) ≤ ZTβ20(τ2)}]|.

With conditions C1 and C3, we have that

E|I{g−1
j (Yj) ≤ ZT β̃jn(τj)} − I{g−1

j (Yj) ≤ ZTβj0(τj)}| = oDp (1) for j = 1, 2

Due to the boundedness of G(t1, t2) and condition C2, we further can show that

E|G(Y1, Y2)−2[I{g−1
j (Yj) ≤ ZT β̃jn(τj)} − I{g−1

j (Yj) ≤ ZTβj0(τj)}]| = oDp (1).

This result implies the equation (E.1) which completes the proof of Lemma 1.

Proof of Theoem 4: We began with the proposed estimating equation along with true

parameters and formulated that

WĜ
n (β10,β20,γ0; τ )

= WG
n (β10,β20,γ0; τ ) + VĜ

n (β10,β20; τ )−VG
n (β10,β20; τ )

= WG
n (β10,β20,γ0; τ )

+ n−1

n∑
i=1

ZiI{g−1
1 (Y1i) ≤ ZT

i β10(τ1), g−1
2 (Y2i) ≤ ZT

i β20(τ2)}δ1iδ2i
G(Y1i, Y2i)− Ĝ(Y1i, Y2i)

Ĝ(Y1i, Y2i)G(Y1i, Y2i)

(E.2)
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To express the asymptotic distribution of censoring, we here assume the univariate cen-

soring to obtain the explicit form in equation (E.2). Let Y ∗i = max(Y1i, Y2i) and δ∗i =

1 − δ1iδ2i. The univariate censoring function G(·) can be estimated from {Y ∗i , δ∗i }ni=1, and

we denote Ĝ(·) as the consistent estimator. Follow the Peng and Fine (2009)’s argu-

ments that supt∈[0,v) ||n1/2{Ĝ(t) − G(t)} − n1/2
∑n

i=1G(t)
∫ t

0
y∗(s)−1dMG

i (s)|| → 0, where

y∗(t) = Pr(Y ∗ ≥ t) and MG
i (t) = NG

i (t) −
∫∞

0
I(Y ∗i ≥ s)dΛG(s). Along with these results,

the last part in equation (E.2) can be approximated by

n−1

n∑
i=1

ZiI{g−1
1 (Y1i) ≤ ZT

i β10(τ1), g−1
2 (Y2i) ≤ ZT

i β20(τ2)}δ1iδ2i
G(Y1i, Y2i)− Ĝ(Y1i, Y2i)

Ĝ(Y1i, Y2i)G(Y1i, Y2i)

= n−1

n∑
i=1

ZiI{g−1
1 (Y1i) ≤ ZT

i β10(τ1), g−1
2 (Y2i) ≤ ZT

i β20(τ2)}δ1iδ2i
G(Y ∗i )− Ĝ(Y ∗i )

Ĝ(Y ∗i )G(Y ∗i )

≈ −n−3/2

n∑
i=1

ZiI{g−1
1 (Y1i) ≤ ZT

i β10(τ1), g−1
2 (Y2i) ≤ ZT

i β20(τ2)}δ1iδ2i

×
n−1/2

∑n
j=1 I(Y ∗i ≥ s)y∗(s)−1dMG

j (s)

G(Y ∗i )

≈ −n−1

n∑
i=1

∫ ∞
0

( n∑
j=1

ZjI(Y ∗j ≥ s)I{g−1
1 (Y1j) ≤ ZT

j β10(τ1), g−1
2 (Y2j) ≤ ZT

j β20(τ2)}δ1jδ2j

nG(Y ∗j )

)
× dMG

i (s)

y∗(s)

≈ −n−1

n∑
i=1

n∑
j=1

∫ ∞
0

w∗{β10(τ1),β20(τ1), s}dM
G
i (s)

y∗(s)

= −n−1

n∑
i=1

ξ∗i (τ ),

where w∗{β10(τ1),β10(τ1), s} = E[ZI(Y ∗ ≥ s)I{g−1
1 (Y1) ≤ ZTβ10(τ1), g−1

2 (Y2) ≤ ZTβ20(τ2)}

δ1δ2G(Y ∗)−1]. We then have that

WĜ
n (β10,β20,γ; τ ) ≈WG

n (β10,β20,γ; τ )− n−1

n∑
i=1

ξ∗i (τ )

≈ 1

n

n∑
i=1

Zi
I[Y1i ≤ g1{ZT

i β10(τ1)}, Y2i ≤ g2{ZT
i β20(τ2)}]δ1iδ2i

G(Y ∗i )
− Ziχ{exp(ZT

i γ); τ} − ξ∗i (τ ).

(E.3)
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With this explicit form, we now further formulate the asymptotical distribution of n1/2(γ̂ −

γ0) via n1/2
{
WĜ

n (β̂1, β̂2, γ̂; τ )−WG
n (β10,β20,γ0; τ )

}
. Let

Cn(γ; τ ) = n−1

n∑
i=1

Ziχ{exp(ZT
i γ); τ}.

We start with showing that

n1/2
{
WĜ

n (β̂1, β̂2, γ̂; τ )−WĜ
n (β10,β20,γ0; τ )

}
=n1/2

{
VĜ
n (β̂1, β̂2; τ )−VĜ

n (β10,β20; τ )
}
− n1/2

{
Cn(γ̂; τ )−Cn(γ0; τ )

}
= (I) − (II) ,

where (I)=n1/2{VĜ
n (β̂1, β̂2; τ )−VĜ

n (β10,β20; τ )} and (II)=n1/2{Cn(γ̂; τ )−Cn(γ0; τ )}. First

note that with (I) we have

n1/2{VĜ
n (β̂1, β̂2; τ )−VĜ

n (β10,β20; τ )}

= n1/2{VĜ
n (β̂1, β̂2; τ )−VG

n (β̂1, β̂2; τ ) + VG
n (β̂1, β̂2; τ )}

− n1/2{VĜ
n (β10,β20; τ )−VG

n (β10,β20; τ ) + VG
n (β10,β20; τ )}

= n1/2{VG
n (β̂1, β̂2; τ )−VG

n (β10,β20; τ )}+ n1/2{VĜ
n (β̂1, β̂2; τ )−VG

n (β̂1, β̂2; τ )}

− n1/2{VĜ
n (β10,β20; τ )−VG

n (β10,β20; τ )}

= n1/2{VG
n (β̂1, β̂2; τ )−VG

n (β10,β20; τ )}+ n−1/2

n∑
i=1

Ziδ1iδ2i

{
1

Ĝ(Y ∗i )
− 1

G(Y ∗i )

}
×
[
I{g−1

1 (Y1i) ≤ ZT
i β̂1(τ1), g−1

2 (Y2i) ≤ ZT
i β̂2(τ2)}

− I{g−1
1 (Y1i) ≤ ZT

i β10(τ1), g−1
2 (Y2i) ≤ ZT

i β20(τ2)}
]
.

Since supi ||Ĝ−1(Y ∗i )−G−1(Y ∗i )|| = op(n
1/2+r), for any r > 0, and E|I{g−1

j (Yj) ≤ ZT β̂j(τj)}−

I{g−1
j (Yj) ≤ ZTβj0(τj)}| = oDp (1) for j = 1, 2, the equation (I) is dominated by the term of

n1/2{VG
n (β̂1, β̂2; τ )−VG

n (β10,β20; τ )}. Coupled with Lemma 1, we have

(I) = n1/2{VĜ
n (β̂1, β̂2; τ )−VĜ

n (β10,β20; τ )}

≈ n1/2{VG
n (β̂1, β̂2; τ )−VG

n (β10,β20; τ )}

= n1/2{V(β̂1, β̂2; τ )−V(β10,β20; τ )}+ op(1).
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Using Taylor’s expansion of V(β̂1, β̂2; τ ) at βj0(τj), j = 1, 2,

V(β̂1, β̂2; τ )} = V(β10,β20; τ ) +
2∑
j=1

∂V(β10,β20; τ )

∂βj0
(β̂j − βj0) + op(n

−1/2).

Thus,

n1/2{VG
n (β̂1, β̂2; τ )−VG

n (β10,β20; τ )} ≈ n1/2{V(β̂1, β̂2; τ )−V(β10,β20; τ )}

≈
2∑
j=1

Pj(β10,β20)n1/2
(
β̂j − βj0

)
,

where Pj(β10,β20) = ∂V(β10,β20; τ )/∂βj0 = E[Z⊗2hj{g1(ZTβ10), g2(ZTβ20)}|Z]. Accord-

ing to Peng and Fine (2009), it has been shown that, under regularity conditions, the esti-

mating equation for βj, Snj(βj0, τj) = n−1
∑n

i=1 ξji(τj), where ξji(τj) = ξ1,ji(τj) − ξ2,ji(τj),

ξ1,ji(τj) = Zi(I[Yji ≤ g{ZT
i βj0(τj)}]I(δj = 1)Gj(Yji)

−1 − τj) and ξ2,ji(τj) =
∫∞

0
w(βj0(τj), s)

P (Yji ≥ s)−1dM
Gj
i (s). Let w{βj0(τj), s} = E(ZI(Yj ≥ t)I[Yj ≤ gj{ZTβj0(τj)}]I(δj =

1))Gj(Yj)
−1 and M

Gj
i (s) = I(Yji ≤ s, δj = 0) −

∫∞
0
I(Yji ≥ u)dΛGj(u), where ΛGj(u) is the

cumulative hazard function for the censoring variable Cj. Thus,

n1/2(β̂j − βj0) ≈ −n1/2Aj(βj0)−1Snj(βj0, τj) = −n−1/2Aj(βj0)−1

n∑
i=1

ξji(τj),

where Aj(bj) = E[Z⊗2fj{gj(ZTbj)}] = limn→∞ n
−1
∑n

i=1 Z⊗2
i fj{g(ZT

i bj)}, for j = 1, 2.

Along with those results, we have that

(I) ≈ n1/2{V(β̂1, β̂2; τ )−V(β10,β20; τ )} ≈
2∑
j=1

Pj(β10,β20)n1/2
(
β̂j − βj0

)
≈ −n−1/2

n∑
i=1

2∑
j=1

Pj(β10,β20)Aj(βj0)−1ξji(τj). (E.4)

Next, we derive (II), where

(II) = n1/2{Cn(γ̂; τ )−Cn(γ0; τ )} = n−1/2

n∑
i=1

Zi[χ{exp(ZT
i γ̂); τ} − χ{exp(ZT

i γ0); τ}].

We use a first-order Taylor’s expression of n1/2{Cn(γ̂; τ )−Cn(γ0; τ )} at γ0(τ ) to have that

n1/2{Cn(γ̂; τ )−Cn(γ0; τ )} ≈ Ĵ(γ0; τ )n1/2(γ̂ − γ0)
d≡ J(γ0; τ )n1/2(γ̂ − γ0), (E.5)
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where J(γ0; τ ) = ∂E[Zχ{exp(ZTγ0)}]/∂γ0 = E[Z⊗2χ′{exp(ZTγ0)} exp(ZTγ0)] has a con-

sistent estimator, Ĵ(γ0; τ ) = n−1
∑n

i=1 Z⊗2
i χ

′{exp(ZT
i γ0); τ} exp(ZT

i γ0), by the empirical

process theory.

Finally, we combine (E.4) and (E.5) to get

n1/2
{
WĜ

n (β̂1, β̂2, γ̂; τ )−WĜ
n (β10,β20,γ0; τ )

}
≈ −n−1/2

n∑
i=1

2∑
j=1

Pj(β10,β20)Aj(βj0)−1ξji(τj)− J(γ0; τ )n1/2(γ̂ − γ0). (E.6)

From (E.3), (E.6) and WĜ
n (β̂1, β̂2, γ̂; τ ) = 0, we derive that

J(γ0; τ )n1/2(γ̂ − γ0)

≈ n1/2WĜ
n (β10,β20,γ0; τ )− n−1/2

n∑
i=1

2∑
j=1

Pj(β10,β20)Aj(βj0)−1ξji(τj)

= n−1/2

n∑
i=1

Zi
I{g−1

1 (Y1i) ≤ ZT
i β10, g

−1
2 (Y2i) ≤ ZT

i β20}δ1iδ2i

G(Y1i, Y2i)
− Ziχ{exp(ZT

i γ0); τ} − ξ∗i (τ )

− n−1/2

n∑
i=1

2∑
j=1

Pj(β10,β20)Aj(βj0)−1ξji(τj)

= n−1/2

n∑
i=1

[
Zi
I{g−1

1 (Y1i) ≤ ZT
i β10, g

−1
2 (Y2i) ≤ ZT

i β20}δ1iδ2i

G(Y1i, Y2i)
− Ziχ{exp(ZT

i γ0); τ} − ξ∗i (τ )

−Pj(β10,β20)Aj(βj0)−1ξji(τj)

]
= n−1/2

n∑
i=1

ψi(τ ).

Due to the boundedness of J(γ0; τ )−1, we have that

n1/2(γ̂ − γ0) ≈ n−1/2

n∑
i=1

J(γ0; τ )−1ψi(τ ).

Under Lipschitz’s transformations, the functional class Fr = {ψi(τ ) : τ ∈ D} is Donsker.

Hence, by applying Donsker’s theorem, we can show that n1/2(γ̂ − γ0) converges weakly to

a zero-mean Gaussian process with covariance matrix,

Ω(τ ′, τ ) = J{γ0(τ ′); τ ′}−1E{ψi(τ ′)ψi(τ )T}J{γ0(τ ); τ}−T .
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APPENDIX F

JUSTIFICATION FOR THE CONSISTENCY OF THE PROPOSED

INFLUENCE FUNCTION

Let fj(t|z) = dFj(t|z)/dt, and hj(t1, t2|Z) = ∂H(t1, t2|Z)/∂tj, for j = 1, 2. Denote Aj(bj) =

E[Z⊗2fj{gj(ZTbj)|Z}] and Pj(b1,b2) = E[Z⊗2hj{g1(ZTb1), g2(ZTb2)|Z}g′j(ZTbj)], where

g′j(u) = dgj(u)/du. The proposed smoothing estimating functions for βj and γ are defined

as

S̃nj(bj,Bj; τj) = n−1

n∑
i=1

Zi

[
δji

Ĝj(Yji)
Φ

{
ZT
i bj − g−1

j (Yji)√
ZT
i BjZi

}
− τj

]
,

and

W̃Ĝ
nj(bj; β̂j∗ , γ̂, B̃j)

= n−1

n∑
i=1

Zi

δ1δ2I{g−1
j∗ (Yj∗i) ≤ ZT

i β̂j∗}
Ĝ(Y1i, Y2i)

Φ

ZT
i bj − g−1

j (Yji)√
ZT
i B̃jZi

− χ{exp(ZT
i γ̂); τ}

 .
Via the smoother estimating equations S̃nj and W̃Ĝ

nj, we then have

Ãnj(bj,Bj) = n−1

n∑
i=1

δjiZ
⊗2
i

Ĝj(Yji)
√

ZT
i BjZi

φ

{
ZT
i bj − g−1

j (Yji)√
ZT
i BjZi

}
,

and

P̃Ĝ
nj(b1,b2,Bj) = n−1

n∑
i=1

Z⊗2
i δ1δ2I{g−1

j∗ (Yj∗i) ≤ ZT
i bj∗}

Ĝ(Y1i, Y2i)
√

ZT
i BjZi

φ

{
ZT
i bj − g−1

j (Yji)√
ZT
i BjZi

}
,

for j∗ = 3− j.
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In the proposed covariance estimation procedure, we estimate Aj(bj) and Pj(b1,b2) via

smoothing functions Ãnj(bj,Bj) and P̃Ĝ
nj(b1,b2,Bj). Therefore, to show the consistency of

ψ̂i(τ ), it is sufficient to show that

Ãnj(βj0,Bj)
p−→ Aj(βj0) and P̃Ĝ

nj(β10,β20,Bj)
p−→ Pj(β10,β20),

for any Bj satisfying Bj = O(n−1) and eigmin(Bj)> 0, with the consistency of β̂j(τj),

Ĝj(·) and Ĝ(·). For the consistency of Ãnj(βj0,Bj), the proof has been established by Pang

et al. (2012) in the proof of Theorem 1(ii). We then only need to show the consistency of

P̃Ĝ
nj(β10,β20,Bj). Without loss of generality, we treat j = 1 and prove P̃Ĝ

n1(β10,β20,B1)
p−→

P1(β10,β20). Let

P̃G
n1(β10,β20,B1) = n−1

n∑
i=1

Z⊗2
i δ1δ2I{g−1

2 (Y2i) ≤ ZT
i β20}

G(Y1i, Y2i)
√

ZT
i B1Zi

φ

{
ZT
i β10 − g−1

1 (Y1i)√
ZT
i B1Zi

}
.

With condition C2 and the consistency of Ĝ, we have

sup
b1,b2,γ;τ∈D

||P̃Ĝ
n1(b1,b2,B1)− P̃G

n1(b1,b2,B1)|| = op(1), (F.1)

which implies that P̃Ĝ
n1(β10,β20,B1)− P̃G

n1(β10,β20,B1)
p−→ op(1). To complete the proof, we

then want to show that

P̃G
n1(β10,β20,B1)

p−→ P1(β10,β20).

Let σi =
√

ZT
i B1Zi and P̃G

n1(β10,β20,B1) be written as

P̃G
n1(β10,β20,B1) = n−1

n∑
i=1

Z⊗2
i δ1δ2I{g−1

2 (Y2i) ≤ ZT
i β20}

G(Y1i, Y2i)σi
φ

{
ZT
i β10 − g−1

1 (Y1i)

σi

}
.

Following the arguments in Pang et al. (2012) and Li et al. (2014), the proof can be accom-

plished by verifying two conditions,

E

[
δ1δ2I{g−1

2 (Y2i) ≤ ZT
i β20}

G(Y1i, Y2i)σi
φ

{
ZT
i β10 − g−1

1 (Y1i)

σi

}∣∣∣∣Zi

]
−→ h1{g1(ZT

i β10), g2(ZT
i β20)|Zi}g′1(ZT

i β10), (F.2)

and

Var

[
δ1δ2I{g−1

2 (Y2i) ≤ ZT
i β20}

G(Y1i, Y2i)σi
φ

{
ZT
i β10 − g−1

1 (Y1i)

σi

} ∣∣∣∣Zi

]
= O(n1/2). (F.3)
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We begin with

E

[
δ1Iδ2II{g−1

2 (Y2i) ≤ ZTi β20}
G(Y1i, Y2i)σi

φ

{
ZTi β10 − g−1

1 (Y1i)

σi

} ∣∣∣∣Zi]
= E

(
E

[
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2 (T2i) ≤ ZTi β20}
G(T1i, T2i)σi

φ
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1 (T1i)

σi

} ∣∣∣∣T1i, T2i,Zi
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= E

(
E

[
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φ

{
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1 (T1i)

σi

} ∣∣∣∣T1i, T2i,Zi

]∣∣∣∣Zi)
= E

[
I{g−1

2 (T2i) ≤ ZTi β20}
σi

φ

{
ZTi β10 − g−1

1 (T1i)

σi

} ∣∣∣∣Zi]
=

∫
t1

∫
t2

I{t2 ≤ g2(Z
T
i β20)}

σi
φ

{
ZTi β10 − g−1

1 (t1)

σi

}
h12(t1, t2|Zi)dt2dt1

=

∫
t1

h1(t1, g2(Z
T
i β20)|Zi)}
σi

φ

{
ZTi β10 − g−1

1 (t1)
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}
dt1,

where h12(t1, t2|Z) = ∂2H(t1, t2|Z)/∂t1∂t2 and h1(t1, t2|Z) = ∂H(t1, t2|Z)/∂t1. Via the

variable transformation, we let x = {g−1
1 (t1)− ZT

i β10}/σi and have that

∫
t1

h1{t1, g2(ZT
i β20)|Zi}

σi
φ

{
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1 (t1)
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}
dt1

=

∫
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]
dx

= h1{g1(ZT
i β10), g2(ZT

i β20)|Zi}g′1(ZT
i β10) + (III).

By the assumption that g1(·) is a monotone function, there exists s1 and sx such that

s1 = g1(ZT
i β10) and s1 + σisx = g1(ZT

i β10 + σix). Since ∂H{g1(u), g2(ZT
i β20)|Z}/∂u =

h1{g1(u), g2(ZT
i β20)|Zi}g′1(u), we express that h1{g1(ZT

i β10 + σix), g2(ZT
i β20)|Zi}g′1(ZT

i β10

+σix) = h1{s1 + σisx, g2(ZT
i β20)|Zi}, and h1{g1(ZT

i β10), g2(ZT
i β20)|Zi}g′1(ZT

i β10) = h1{s1,

88



g2(ZT
i β20)|Zi}. Coupled with Condition C5(ii) that ∂h1(t1, t2|Z)/∂t1 are continuously dif-

ferentiable with bounded derivatives, we obtain that

|(III)| =
∣∣∣∣ ∫

x

φ(−x)[h1{s1 + σisx, g2(ZT
i β20)|Zi} − h1{s1, g2(ZT

i β20)|Zi}]dx
∣∣∣∣

=

∣∣∣∣ ∫
x

φ(−x)
h1{s1 + σisx, g2(ZT

i β20)|Zi} − h1{s1, g2(ZT
i β20)|Zi}

σisx
σisxdx

∣∣∣∣
= σi

∣∣∣∣ ∫
x

φ(−x)sx∂h1{t1, g2(ZT
i β20)|Zi}/∂t1

∣∣
t1=s1+σisx

dx

∣∣∣∣
≤Mσi

∫
x

φ(−x)|sx|dx = O(n−1/2),

where M is the upper bound for ∂h1(t1, t2)/∂t1. Therefore, the (F.2) condition is satisfied.

For the (F.3) condition, with the assumption on the censoring in Condition C2 and the

boundedness of f1(t|z) in Condition C3(i), it is straightforward to show that

Var

[
δ1iδ2iI{g−1
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[
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= δ−1σ−2

i

∫
x

φ2(−x)f1{g1(ZT
i β10 + σix)|z}g′1(ZT

i β10 + σix)σidx

≤ δ−1σ−1
i Mf1

∫
x

φ2(−x)dx = O(n1/2),

where Mf1 is the upper bound for supt1,z f1(t1|z). By the results in (F.1) and the conditions

(F.2) and (F.3), we complete the proof of the consistency of P̃Ĝ
nj(β10,β20,Bj), which implies

that ψ̂i(τ ) is a consistent estimator for ψi(τ ).
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