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Keratin-75, originally identified as a hair follicle specific keratin, was recently discovered 
in enamel tissue. Individuals carrying a K75 A161T mutation presented with altered enamel 
structure and increased susceptibility to dental caries. The first objective of this dissertation is to 
verify the existence of K75 in enamel tissue and to study its distribution, especially the 
subcellular localization in ameloblasts. We confirmed the existence the K75 in ameloblasts, 
stratum intermediate and enamel matrix through in situ hybridization, immunofluorescence(IF), 
and mass spectrometry. K75 expression in forming rodent teeth was confined to the secretory 
stage ameloblasts in IF studies. Unlike other cytokeratins, such as K14, which forms fibrillar 
networks, K75 was found in large granular bodies and diffuse signal in ameloblast cell body and 
Tomes’ processes. Consistent with IF observations, immuno-gold transmission electron 
microscopy(IG-TEM) studies detected K75 in large and small membrane-delineated vesicles 
located in ameloblast cell body and Tomes’ processes. Moreover, the majority of K75 signal 
overlapped with enamel matrix proteins(EMPs) ameloblastin and amelogenin in both types of 
vesicles. 

IF and IG-TEM data strongly indicate that K75, traditionally regarded as a component of 
cytoskeleton, is secreted by ameloblasts together with other EMPs. Since K75 does not have a 
signal peptide, how K75 is transported out of the cell is intriguing. The second objective of this 
dissertation is to obtain insights into the trafficking pathway of K75. To address this objective, 
co-localization studies of K75 with organelle markers and conventional trafficking inhibition 
experiments were done. Under physiological conditions, K75 showed limited overlap with ER 
and lysosome markers, however it was highly co-localized with ER-Golgi-Intermediate-
Compartment(ERGIC) and Golgi markers. When ER-Golgi trafficking was inhibited, 
ameloblastin was detained in rER lumen and isolated from Golgi apparatus whereas K75 still 
managed to translocate into the Golgi. 

In summary, we demonstrate that localization of K75 in ameloblasts is different from 
typical cytokeratins. It is secreted extracellularly with EMPs by secretory stage ameloblasts. 
Moreover, our results suggest that K75 utilizes a novel unconventional protein secretion pathway 
which involves ERGIC and Golgi. This is the first time a secretory pathway for a cytosolic 
cytokeratin, lacking signaling peptide, was revealed. 

Unconventional Protein Secretion of Keratin 75 by Ameloblasts in vivo 

Xu Yang, DDS/Master 

University of Pittsburgh, 2018
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PREFACE 

I had laughter, I had joy, I had all the seasons in the sun, 

I had tears, I had sorrow, I had all the nights in the moon. 

I had a group of huckleberry friends sharing one the best time in my life, 

I had a painful maturation making me realize who I am. 

May the past belong to the past, 

I still have the future in my hand. 
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1.0  INTRODUCTION 

1.1 GENERAL 

Enamel is the hardest tissue in mammals, and mature enamel comprises 95% carbonated 

hydroxyapatite mineral and approximately 1% organic matrix. Enamel formation (amelogenesis) 

is carried out by specialized epithelial cells, ameloblasts, in a highly coordinated multistep 

process. Enamel matrix deposition begins at the surface of forming dentin by presecretory 

ameloblasts. They differentiate into secretory ameloblasts, which are polarized cells with their 

nuclei located at the basal (proximal) pole and the Tomes' processes, specialized cellular 

secretory apparatus responsible for the enamel rod formation, at the apical (distal) pole (Figure 

1). The majority of enamel matrix proteins (EMPs), of which amelogenin (AMELX) and 

ameloblastin (AMBN) account for more than 90%, are secreted extracellularly by ameloblasts at 

the secretory stage1. Rods and interrods are characteristic structures of enamel. The rod is a 

bundle of aligned crystals running wavily through the whole thickness of enamel, whereas 

interrod is a structure located in spaces between the rods, in which crystals are oriented 

differently from those of rods. They are formed in the secretary stage due to the unique 

morphology of Tomes’ process2-4. Rods are woven into a very complex 3D structure, which is 

responsible for the unique mechanical resilience of this material5-8. Once the full thickness of 

enamel is deposited, the maturation stage begins, during which the majority of EMPs are 
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degraded and recycled. It is accompanied by active ion transportation and most importantly 

prominent hydroxyapatite crystallization. During enamel formation, mineral content rises from 

30%(w/w) in the secretory stage to over 95%(w/w) in the mature form. Only a small fraction of a 

heavily crosslinked fibrous material remains in the mature enamel9. This material comprises rod 

sheaths, enveloping enamel rods, and enamel tufts, protein rich structures in the inner 

enamel10,11. 

Secretory stage amleloblasts are polarized cells with extensive ER and Golgi networks 

throughout the cell body. A scheme of ameloblast ultrastructure early ultrastructural studies3,4,12-

15, is shown in Fig. 1. A large cylindrical Golgi complex aligned with the long axis exists in the 

central portion of ameloblast2,4. The cis face of this central Golgi complex is mainly oriented 

towards the plasma membrane and the trans face towards the core of the cell, rich in vesicles. 

The space between the cis Golgi and plasma membrane is lined with the ER network. The very 

distal end of the ameloblast cell body, bordering the Tomes' process, is free of Golgi and rich in 

ER and secretory vesicles4. Small secretory/recycle vesicles are also full of Tomes process. 
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Figure 1. Ultra-structure of secretory stage ameloblasts. 

(A-D) Ultra-structure of secretory stage ameloblasts under routine TEM. Boxes in panel A were magnified in panel 

B-D. (E) A scheme of secretary stage ameloblasts. N- nucleus; Tp-Tomes’ process; EEM-extracellular enamel 

matrix; rER- rough endoplasmic reticulum; GA- Golgi apparatus; LSV- large secretory compartment. 

1.2 INSOLUBLE PART OF ENAMEL 

Organic matrix proteins play crucial roles in building up the hierarchical mineral structure of 

enamel16. Early researchers conducted several biochemical studies of the organics in forming 

mature teeth. They identified a fraction of the enamel matrix that is insoluble in both EDTA and 

hydrochloric acid17-21. This insoluble fraction was thought to form enamel tufts22,23, 
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histologically recognizable structures protruding from dentin-enamel junction (DEJ) into enamel 

matrix, like tufts of grass. It was hypothesized that the tuft proteins exists at the beginning of 

enamel secretion and are highly cross-linked10 and related to keratins24,25 based on the amino 

acid composition of the mature enamel matrix26, its high insolubility and the fact that enamel 

forming cells, ameloblasts, are of epithelial origin. In 1989, rabbit antisera against tuft extract 

was shown to react with some multivesicular structures in stratum granulosum layer of the rat 

foot pad, hinting toward a possibility that keratins might be present in enamel24. In 2011, 

Robinson et al.10 showed by using antibodies to γ-glutamyl cross-linking peptide that tuft 

residues were heavily cross-linked via isopeptide bonds. However, due to the small quantities of 

EMPs in the tissue and their insolubility, the presence of keratins in enamel was never clearly 

established until recent discovery of keratin 75 (K75) in mature enamel26. 

1.3 K75 AND TEETH 

Among 54  keratins currently identified in humans, about half are restricted to various 

compartments in hair follicles27. K75 is a type Ⅱ hair follicle-specific epithelial keratin. Winter 

et al.28 first described its expression in the companion layer of anagen follicles. It was previously 

named K6hf because of its co-migration with K6 in gel and its specific expression pattern 

associated with hair follicles28. Later, studies revealed it also existed in the upper matrix and 

medulla of anagen hair follicle, secondary hair germ, non-cornified cells surrounding the 

cornified club of the telogen hair, nail bed epithelium and fungiform papillae of tongue29,30. 

Although some authors believe it belongs to K6 family, K75 shares the highest homology with 

K5 in its primary structure31. To date, at least three K75 genetic variants were studied. Chen et 
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al.32 introduced a deletion of the highly conserved asparagine residue (N159) of K75 in mice. 

This deletion mimics the mutation of human K6A(N172), which leads to pachyonychia 

congenita. The affected mice showed impaired keratin cytoskeleton, abnormal anagen hair 

follicles, prominent hair shaft rupture and hypertrophic nails32. Lin et al.33 described a K75 

mutation in chicken with frizzle feather phenotype. The mutation is a deletion at exon 5 and 

intron 5 junction area, which caused cryptic splicing in exon 5, resulting in deletion of amino 

aicd 311-333. Winter et al.34 reported a single-nucleotide polymorphism (SNP) of A161T that is 

associated with pseudofolliculitis barbae (PFB). PFB is a common disorder characterized by 

inflammation induced by ingrowing of hair into the adjacent skin region after regular shaving. It 

was shown that 76% of the regularly shaving men who carry A161T SNP have developed PFB35. 

Carriers of this SNP have a risk factor 6.12 times higher than the normal group. Together with 

curly hair, this K75 SNP act synergistically to increase the risk of PFB36.  

In 2014, Duverger et al.37 provided the first direct evidence that K75 might exist in 

ameloblasts and enamel matrix. Importantly, they found that A161T SNP was associated with 

high prevalence of caries in humans. The effect of this polymorphism is dose dependent with 

carriers of two mutated alleles having highest caries score, followed by heterozygotes; and 

individuals who did not have this SNP had the lowest caries score. Carriers of A161T SNP 

presented with a dose dependent decrease in the inner enamel hardness and structural 

organization of enamel rods, rod sheaths and tufts. Another prominent feature of teeth associated 

with this SNP are long and narrow channels running from enamel surface to the DEJ. Taken 

together, these findings indicate that K75 plays an important role in amelogenesis and in mature 

enamel. At the same time, it remains unclear how K75 ends up in enamel. 
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1.4 CONVENTIONAL AND UNCONVENTIONAL PROTEIN SECRETION 

Conventional protein secretion pathway requires a hydrophobic signal peptide at a N-terminus, 

which is essential for the synthesized protein to be translocated into the rough endoplasmic 

reticulum (rER) lumen 38,39.  Transmembrane proteins are targeted ER membrane via the  C-tail 

anchoring mechanism40. In rER, nascent proteins undergo folding, oligomerization and N-linked 

glycosylation and sorting before transferring out of ER through specific regions called ER exit 

sites (ERES). Secreted proteins are transported in COPⅡ  coated vesicles which bud from  

ERES41. The budding process is guided by a synergetic activity of several cage protein 

complexes, such as Sec16/Sec12, Sar1, Sec23/Sec24 and Sec13/Sec3142,43. COPⅡ  coated 

vesicles are then fused with ER-Golgi-Intermediate-compartment (ERGIC) and the Cis-Golgi 

network. After entering Golgi apparatus, proteins undergo further posttranslational 

modifications, such as glycosylation and phosphorylation, etc. In the meantime, proteins travels 

through mid and trans-Golgi stack and trans-Golgi network (TGN), where they exit Golgi 

apparatus in secretory vesicles44. Departing from TGN, clathrin coated vesicles either fuse with 

plasma membrane and release their contents, or they are merged with the lysosome for 

degradation or secretion.  

During the past decade, a large number of proteins, both cytosolic and secretory, were 

found to travel to the plasma membrane and extracellular space without entering ER-Golgi 

pathway. This alternative trafficking is called unconventional protein secretion (UPS). According 

to Nickel45 and Rabouille46, three types of pathways are described for cytosolic (leaderless) 

proteins to travel across plasma membrane, and secretory proteins (with a signal peptide) use two 

categories of unconventional secretion.  
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Type Ⅰ UPS pathway for leaderless proteins involves a pore-mediated translocation 

mechanism. Typical examples of this type include translocation of FGF2 and HIV TAT. FGF2 

and TAT are recruited by phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) which is located in 

the leaflet of plasma membrane, and pass through a lipid membrane pore created by 

oligomerization47-50. Type Ⅱ pathway involves ATP-binding (ABC) based secretion, however its 

mechanism is not fully understood51,52. Type Ⅲ is autophagosome/endosome-based secretion. A 

typical example of this UPS type is IL-1β secretion53,54. IL-1β precursor is translocated across 

the secretory lysosome membrane together with caspase-1, which activates IL-1β by cleavage of 

the precursor and mature IL-1β is secreted out of the cell.  

For proteins with signal peptides, two categories of UPS include COPⅡ vesicle bypass 

and Golgi bypass. Hsp150, a soluble yeast glycoprotein, is a typical example of secretory protein 

bypassing COPⅡ vesicles55. It exits rER through a specific ER site (ERES in yeasts) that is 

different from typical ERES, which is mediated by COPⅡ vesicles associated with Sec13 and 

Sec24. The best described example of secretory protein bypassing Golgi is cystic fibrosis 

transmembrane conductance regulator (CFTR), which is a membrane protein regulating chloride 

channel function. CFTR is believed to reach the plasma membrane by direct transport from ER 

by COPⅡ vesicles56. The trafficking is not affected by syntaxin 5 absence, which is a critical 

component of ER-Golgi pathway in all eukaryotes57-59. Moreover, by inducing an 

unconventional Golgi reassembly stacking protein(GRASP)-dependent secretion pathway, the 

disease-causing mutated CFTR which has impaired exocytosis could regain its surface 

expression.  

As of now, the UPS is found in both stress-induced and constitutive circumstances. 

Although travelling in an unusual way, many UPS proteins seem to utilize the existing molecules 
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in the conventional trafficking pathway for their secretion. Some well-established molecules 

involved in UPS are from GRASP family, which are Golgi resident proteins helping to maintain 

the cisternae stacking organization. GRASP55/GRASP65 are found to play important roles in 

IL-1β secretion through autophagosome60 and mutated CFTR secretion bypassing Golgi56. It is 

still not fully understood the reasons why such UPS pathways exist in all eukaryotes organisms, 

however there are potential benefits in utilizing these pathways. For example, UPS can provide a 

faster route of protein secretion in response to stress, extracellular stimulus or inflammation61. It 

is also a backup mechanism for normal secretion function when certain impairment (like ER 

stress) occurs in conventional trafficking. As more and more examples have been discovered as 

UPS, “one is tempted to speculate that what is termed unconventional protein secretion may not 

be that unconventional after all”62. The reason why it is termed unconventional may be merely 

because ER-Golgi pathway drew our attention in the first place. 

1.5 SPECIFIC AIMS 

A recent discovery of K75 in enamel tissue is the first clear evidence of keratins being a part of 

the enamel organic matrix37. The fact that a single amino acid substitution in this protein affects 

structural and mechanical properties of enamel, and is associated with the higher caries risk 

suggest that it plays important roles in enamel formation and function. At the same time, the 

expression pattern and localization of K75 in enamel tissue is still unclear. Furthermore, how 

K75, as a cytosolic protein lacking signal peptide, gets secreted extracellularly becomes an even 

more interesting mystery to uncover. This dissertation focuses on these important research 

questions which will be addressed in flowing specific aims. 
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Aim 1. To identify the expression and distribution pattern of K75 in forming enamel organ. 

It is hypothesized that K75 is expressed in ameloblasts at least in secretory stage of 

amelogenesis, and is associated with enamel tufts and rod sheaths in the enamel matrix. The 

experiments outlined below are designed to test this hypothesis. 

1) To study K75 mRNA and protein expression by in situ hybridization (ISH) and immuno-

staining in rodent incisors at histological and ultrastructural levels in constantly growing 

rodent incisors. 

2) To corroborate the existence of K75 in the enamel matrix by western blot and mass 

spectrometry. 

Aim 2. To gain insights into the trafficking pathway of K75. 

Our IF and IG-TEM studies conducted in Aim 1 show K75 in vesicles of different sizes, and 

being secreted from ameloblasts into the enamel matrix. This is a paradoxical observation, since 

keratins are normally considered as components of cytoskeleton, forming intermediate filament 

networks in epithelial cells. Moreover, keratins lack a signal peptide to guide them into ER. The 

site at which K75 enters ER-Golgi secretory pathwaysecretory pathway and routes in which it 

travels are mysteries. Thus, the second part of this thesis study will focus on the trafficking of 

K75 in ameloblasts. It’s hypothesized that K75 is transported out of cytoplasm through UPS. Co-

localization of K75 with three trafficking markers will be studied. Also, an ER-Golgi trafficking 

inhibition experiment by Brefeldin A (BFA), Monesin and H-89 will be used to provide more 

insights regarding the K75 secretory pathway. 

1) To conduct co-localization studies of K75 with the secretory pathway markers, and 

determine at which stage it enters the secretory pathway. Specifically, co-localization of K75 

with ER marker, ERGIC marker, Golgi marker and lysosome marker will be assessed in this 
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aim.  

2) It will also be assessed if K75 secretion is ER-Golgi dependent by applying BFA, Monesin 

and H-89, inhibitors of conventional trafficking. 
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2.0  MATERIALS AND METHODS 

2.1 RODENT MANSIBLE SAMPLES PREPARATION 

All procedures described were approved by the University of Pittsburgh IACUC. Four-week old 

Sprague Dawley rats (Charles River, MA) and 4-week old mice (C57BL/6J, Jackson Laboratory, 

ME) were euthanized with CO2. Mandibles were dissected out quickly and immediately 

submersed in large volume of 4% paraformaldehyde in 10mM PBS, for IF or TEM, or 

Karnovsky fixative (2% glutaraldehyde, 2% formaldehyde in 10mM PBS), for TEM at 4℃. 

After 24 hours of fixation at 4℃, samples were placed into the demineralization solution, 

containing 0.1 M EDTA (pH 7.2-7.4) for one to two weeks. The demineralization solution was 

changed every other day. In some IG-TEM experiments, animals were anesthetized with 

isoflurane and perfused through the left ventricle first with cold PBS for 30 seconds then with 

cold 4% paraformaldehyde in 0.1M phosphate buffer or cold 1% Glutaraldehyde in 0.1M 

phosphate buffer for 15-20 minutes. The mandibles were dissected and further fixed in the same 

fixative solution for another 8-12 hours at 4℃, followed by demineralization, as described.  

For IF, whole demineralized jaws were dehydrated using Leica ASP 300S automatic 

processer (Leica Biosystems, Buffalo Grove, IL) and paraffin embedded according to a standard 

protocol.  
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For TEM studies, after demineralization, mandibular bone around the incisors was 

trimmed and the molars were removed. The distal fragments of the jaws containing apical 

portions of the incisors were further cross-sectioned into 1-1.5 mm thick pieces, processed and 

embedded in LR White or Embed 812 ( cat# 14381 and 14120, EMS, Hatfield, PA) according to 

published protocols63. In brief, for Embed 812 processing, incisor pieces were post-fixed in 1% 

ferrocyanide reduced osmium tetroxide for one hour, washed in PBS, dehydrated in graded 

ethanol and infiltrated with propylene oxide. The samples were embedded in Embed-812 and 

cured at 65℃ for 2 days. For LR White processing, some of the samples were post-fixed in 

osmium tetroxide while others were not. Incisor pieces were washed in PBS, dehydrated in 

graded ethanol, embedded in LR White and cured at 60℃ for 1-2 days. 

For ISH, one-day postnatal mice were euthanized with CO2 and fixed with 4% 

paraformaldehyde in 10mM PBS for 24 hours and embedded in paraffin according to standard 

procedures. 

For IF and ISH, the paraffin blocks were sectioned using a Leica RM 2225 microtome 

(Leica Biosystems, Buffalo, IL) into 8 or 10 µm thick sections using a stainless-steel microtome 

knife (Leica 818, Leica, Germany). The sections were mounted on 3-Triethoxysilylpropylamine 

(440140, Millipore-Sigma, MO) coated glass slides. For TEM the resin blocks were sectioned 

into 70 nm thick sections using Leica EM UC7 ultramicrotome (Leica Biosystems, Buffalo, IL) 

equipped with diamond knife (EMS, Hatfield, PA). The sections were mounted on carbon coated 

Ni grids (EMS, Hatfield, PA). 
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2.2 IN SITU HYBRIDIZATION 

Digoxin (DIG) conjugated probes targeted at the sense and antisense strands of mouse Krt75 

partial cDNA (421 bp) corresponding to exon 9 including the c-terminal tail domain and part of 

the 3’ noncoding region (1494 to 1996 bp of Ref Seq NM 133357.3) were kindly provided by 

Maria Morasso (NIAMS/NIH, Bethesda, MD). 

The ISH was performed according to a published protocol64,65. In brief, 10μm thick 

sections were used for in situ hybridization. Sections underwent de-paraffinization, rehydration, 

post-fixation, digestion, pre-hybridization in the first day, then were blocked in 10% sheep serum 

for 2 hours, incubated with 1:2000 anti-DIG ALP Antibody in 1% sheep serum mixture 

overnight at 4℃ at the second day, washed and incubated in developing solution (#1681451, 

Boehringer) at the third day. The reaction was stopped by PBS washing when signals showed up, 

then mounted in toluene (#4112, Thermo fisher). 

 

2.3 IMMUNOFLUORESCENCE 

Eight-μm paraffin sections were used for IF studies66. After de-paraffinization, sections were 

incubated with trypsin for 5-30 min at 37℃ or heated in citrate buffer for 10min for antigen 

retrieval, followed by blocking with 10% serum from secondary antibody host animal for 1 hour. 

The sections were incubated with primary antibodies at 4℃ overnight, washed in TBS and 

incubated with secondary antibodies for 45 min at room temperature. After final washes in TBS 

sections were incubated with 1.5% Sudan Black B (199664, Sigma, MO) in 70% Ethanol to 
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eliminate autofluorescence and counter-stained with DAPI. Primary antibodies used include 

rabbit anti-amelogenin, 1:1000 (ABT260, Abcam, MA), rabbit anti-amelogenin pS16 (a kind gift 

from Henry Margolis, Forsyth Institute, Boston, MA), goat anti-ameloblastin, 1:100 (sc-33102, 

Santa Cruz, CA), rabbit anti-ameloblastin, 1:100 (sc-50534, Santa Cruz, CA), goat anti-

enamelin, 1:100 (sc-33107, Santa Cruz, CA), monoclonal rabbit anti calreticulin peptide 1, 

4μg/ml (CP1, CPTC-CALR-1-s, Developmental Studies Hybridoma Bank, IA),  mouse anti-PDI, 

1:100 (NB300-517, Novusbio, CO), rabbit anti-GOLGA5, 1:100 (NBP1-83352, Novusbio, CO), 

goat anti-clathrin, 1:50 (sc-6579, Santa Cruz, CA), rabbit anti-ERGIC53, 1:100 (sc-66880, Santa 

Cruz, CA), rat anti-LAMP1, 4μg/ml (1D4B-s, DSHB, IA), rat anti-LAMP2, 4μg/ml (GL2A7-s, 

DSHB, IA), rabbit anti-GM130, 1:100 (Ab-52649, Abcam, MA), rabbit anti-Keratin 5, 1:2000 

(905501, Biolegend, MA), rabbit anti-Keratin 14, 1:1000 (905301, Biolegend, MA), guinea pig 

anti-Keratin 75, 1:100 (20R-2647, Fitzgerald, MA), guinea pig anti-Keratin 27, 1:100 (20R-

2639, Fitzgerald, MA), guinea pig anti-Keratin 25, 1:100 (20R-2637, Fitzgerald, MA). 

Secondary antibodies used include AlexaFlour-555/Cy3/Cy5 conjugated donkey anti-guinea 

pig/goat/rabbit/mouse/rat IgG(H+L), 1:400 purchased from Jackson Immunoresearch, PA. 

Co-localization was calculated based on the number of pixels in a confocal z-stack which 

contain two channels. The % overlap was calculated as a ratio of overlapping pixels to the total 

number of pixels in each channel. For background adjustment adjacent sections were treated with 

naïve sera (isotype control) and signal intensity from these sections was used to determine the 

background fluorescence. The co-localization analysis was conducted using a proprietary Nikon 

software NIS Elements (Nikon, Melville, NY). The quantitative co-localization analysis was 

conducted on sections from 3 animals. The data was analyzed using t-test assuming unequal 

variance in OriginPro 2015 software package (Origin Labs, Northampton, MA). 
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2.4 POST-EMBEDDING IG-TEM 

Seventy nm LR White or Embed 812 sections were used. Primary antibodies were 10 times more 

concentrated compared with immunofluorescence assay. Secondary antibodies include 6 nm 

colloidal gold conjugated donkey anti-guinea pig IgG, 1:30 (706-195-148, Jackson 

Immunoresearch, PA), 12 nm colloidal gold conjugated donkey anti-rabbit IgG, 1:30 (711-

205152, Jackson Immunoresearch, PA). Sections were counter-stained with 2% Uranyl acetate 

for 10min. Other regents include normal guinea pig serum (88R-1015, Fitzgerald, MA) and 

rabbit serum (011-000-001, Jackson Immunoresearch, PA) as iso-type control. 

 

2.5 CONVEENTIONAL TRAFFICKING INHIBITION EXPERIMENTS 

Stock solution of BFA was prepared by dissolving BFA powder (B-8500, LC Laboratories, MA) 

in in DMSO at 25mg/ml. Twenty microliter of BFA was further dissolved in either 250µl 

DMSO, 30% ethanol or PBS for intraperitoneal (I.P.) injection. Each 4 weeks-old mouse 

received 0.5mg BFA and was sacrificed after 1, 3 and 5 hours (DMSO) or 1, 2, 3 hours (ethanol) 

or 15min, 30min, 1 hour (PBS).  

Stock solution of Monesin (MNS) was prepared by dissolving MNS powder (M5273, 

Sigma, MO) in pure ethanol at 10 mg/ml. Half milligram MNS was further dissolved in 250µl 

30% ethanol for I.P. injection. Each 4 weeks-old mouse received 0.5mg MNS and was sacrificed 

after 1 hour. 
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H-89 powder (H-5239, LC Laboratories, MA) was dissolved in DMSO at 100mg/ml and 

was used as stock solution. Half or 5mg of H-89 was further dissolved in 250µl 30% ethanol for 

I.P. injection. Each 4 weeks-old mouse received 0.5 or 5mg H-89 and was sacrificed after 1 hour. 

 

2.6 MASS SPECTROMETRY 

For mass spectrometry, healthy third molars were collected from clinics the School of Dental 

Medicine, University of Pittsburgh. Molars were fixed in 4% paraformaldehyde (PFA) for 3 

days, washed with PBS, then subjected to demineralization in 10% EDTA (pH 7.4) for at least 2 

weeks. Enamel tufts were collected by clean tweezers, and kept in fresh EDTA solution for 

another day, then washed in deionized water 3 times. Tufts were lyophilized using FreeZone 4.5 

(Labconco, MO), milled into powder and processed according to a published procedure67. Five 

mg sample was incubated overnight at 37℃ in 0.4 mL 2% SDS/0.1 M sodium phosphate/25 mM 

DTE. Iodacetamide was added to the final volume of 50 mM and sample was stirred for 30 

minutes at room temperature. Soluble and in-soluble parts were separated by centrifugation. For 

the soluble part, add 2.5×(volume) 100% ethanol, mix and collect the precipitates, rinse the 

precipitate from twice with 67% ethanol. For insoluble part, wash with 67% ethanol for four 

times and rinse with 0.1 M ammonium bicarbonate three times. Proteins were digested at room 

temperature with reductively methylated bovine trypsin (1% by weight) in 0.1 M ammonium 

bicarbonate-10% acetonitrile-1 mM CaCl2 for 1 day (Previous soluble part, Fraction Ⅰ) and 2 

days (Previous insoluble part) (add 40 µg trypsin again for the second day). Centrifuge and 

collect the supernate (Fraction Ⅱ ) and still undissolved part. Undissolved part underwent 



 17 

endoproteinase digestion (10µg in 200µl 0.1 M ammonium bicarbonate) at 37 ℃ for 1 day. 

Samples were centrifuged and supernate (Fraction Ⅲ) were collected. Finally, samples were 

submitted for mass spectrometry. 

 

2.7 STATISTICAL ANALYSIS 

For AMBN, K75 and AMELX IF co-localization experiments, three rats were utilized. Each rat 

has two to three stacks (around 10-slices each) measured for the overlap rate. For AMBN, K75 

and AMELX IG-TEM co-localization experiments, three rats were utilized. One hundred to three 

hundred vesicles were taken into analysis for each rat. For BFA inhibition experiments in ethanol 

solvent, three mice were included for each group. Two sample paired t-test (SPSS, IBM, IL) was 

utilized to analyze the overlap differences between vehicle control and BFA treatment group.  
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3.0  DISTRIBUTION OF K75 IN ENAMEL RELATED TISSUE 

3.1 EXPRESSION OF K75 MESSNGER RNA IN MOUSE ENAMEL RELATED 

TISSUE 

The expression pattern of Krt75 mRNA in the mouse head on the day 18 of the embryonic 

development was highly specific. Krt75 was only expressed in hair/whisker follicles, and dorsal 

lingual papilla, in agreement previous reports28,29 (Fig. 2C,D). In un-erupted incisor and molar 

teeth Krt75 mRNA signal was located in ameloblasts and adjacent stratum intermedium of 

enamel organ (Fig. 2A,B). Quite surprisingly, odontoblasts, which are ectoderm mesenchymal 

cells, also expressed Krt75. 

3.2 DETECTION OF K75 IN DEVELOPING PIG ENAMEL BY WESTERN BLOT 

Western blot assay demonstrated the presence of K75 in forming pig enamel matrix (Fig. 2E). 

Strong bands were detected at both secretory and maturation stages was detected at ~60 KDa. In 

addition 2 weaker high molecular weight bands were detected at ~100 and 120 KDa, potentially 

corresponding to complexes of K75 with other proteins. Importantly, the no low molecular 

weight degradation products were detected in the maturating enamel, suggesting that K75 does 

not undergo proteolytic degradation as other EMPs. 
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Figure 2. Localization of K75 in rodent and human teeth structure. 

 (A-D) ISH of Krt75 in the craniofacial region of P1 mouse. (A, B) Expression of Krt75 in the AB, SI and OD of P1 

mouse molar and incisor. (C) Krt75 is enriched in skin hair follicles. (D) Krt75 is enriched in lingual papillae of P1 

mouse tongue. (E) Western blot of un-erupted pig enamel matrix from secretory (s) and maturation (m) stages, K75 

positive bands were detected around 60kDa. Two weaker bands at 100k and 120kDa were also observed. IgGs from 

naïve serum were used as an isotype control (F) K75 signal is present in mouse secretory ameloblasts as granules 

and diffuse band, diffuse signal is also detected in Tomes processes. (G) K14 signal is present in mice secretory 

ameloblasts in as tonofilament networks. K75 was also found in mouse EEM (H) and rat early forming enamel-

dental junction (I, white triangles). P, pulp; OD, odontoblast; AB, ameloblast; D, dentin; E, enamel; SI, stratum 

intermedium; TM, tongue muscle; EEM, extracellular enamel matrix. 

3.3 EXPRESSION OF K75 PROTEIN IN AMELOBLASTS AND FORMING 

ENAMEL 

In order to determine when during tooth development K75 is expressed, IF study was conducted 

on constantly growing rodent incisors. Expression of two major enamel matrix proteins AMELX 
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and AMBN with known protein expression profiles were also assessed in the same sections. 

According to Katchburian and Holt 3, rat early ameloblast development could be divided into 

five regions (Fig. 3): Ⅰ , un-differentiation; Ⅱ , early differentiation; Ⅲ , intermediate 

differentiation; Ⅳ, late differentiation;Ⅴ, secretion without Tomes process; Ⅵ, secretion with 

Tomes process.  

 

Figure 3. A section of cervical loop area from a 3-day-old rat’s first molar. 

The successive stages of differentiation of ameloblasts are indicated by regions Ⅰ to Ⅵ: Region Ⅰ undifferentiated 

ameloblasts, region Ⅱ early differentiating ameloblasts, region Ⅲ intermediate ameloblasts, region Ⅳ late 

differentiating ameloblasts, region Ⅴ secretory ameloblasts without Tomes’ process, region Ⅵ secretory ameloblasts 

with Tomes’ process. Cited from Katchburian and Holt3. b, basal cytoplasm of ameloblasts; fe, distal cytoplasm of 

ameloblasts; ce, enamel; d, dentin; pd, predentin. 

The onset of AMELX expression occurred as early as the intermediate to late differentiation 

stages, in both ameloblasts and opposing odontoblasts (Fig. 4B upper left,4C). Strong AMELX 

expression was observed in ameloblasts throughout the secretory stage and ceased at the 
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transition to maturation stage. A week AMBN signal appeared around region Ⅴ to Ⅵ, and 

continued throughout the secretory stage as well as the maturation stage (Fig. 4B lower). 

AMELX and AMBN protein expression profiles were consistent with literature reports68-70. 

Expression of K75 is mainly associated with the secretory stage ameloblasts. It began in region 

Ⅵ, shortly after the onset of AMBN and ceased at the maturation stage (Fig. 4B middle). In a 

typical actively secreting ameloblast, K75 was primarily located in the cell body of ameloblast 

and Tomes’ process (Fig. 2F). A week signal of K75 was also observed in the stratum 

intermediate and occasionally in individual adjacent cells. K75 signal was present in either 

diffused form (potentially small aggregates) throughout the cell body and Tomes’ processes and 

large granules. Large granules were located primarily in the distal half of the cell body. The 

appearance was radically different from that of typical cytokeratin K14, which formed dense 

networks of tonofilaments (Fig. 2G).  
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Figure 4. K75 expression in developing rat incisor. 

 (A) A bright field image of rat incisor section used in the IF study of AMELX, K75 and AMBN expression. Boxed 

areas are shown in panel B. (B) IF images of AMELX, K75 and AMBN in a continuously growing rat incisor. 

AMELX was found early in the presecretory stage ameloblasts and adjacent odontoblasts (upper row, left column) 

and its expression continued through the secretory stage and ceased at maturation stage (upper row, right column). 

Expression of K75 and AMBN started at secretory stage ameloblasts (mid column), and AMBN was detected a little 
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bit earlier than K75. Both proteins existed throughout the secretory stage. K75 expression ceased at maturation stage 

while AMBN expression continued through the maturation stage (right column). (C, D) Enlarged images of 

AMELX in pre-secretory stage ameloblasts. (E-G) Enlarged images of secretory stage ameloblast showing K75 and 

AMBN. CL, cervical loop. 

K75 was also found in immature enamel matrix in the mouse samples. The signal 

appeared as chains of punctate following the direction of Tomes’ process (Fig. 2H). Furthermore, 

in un-erupted third molars of rat, K75 signal appeared as discrete aggregates, resembling enamel 

tufts, at the early DEJ next to the cervical loop during the early secretory stage (Fig. 2I). 

However, these structures disappeared at the later stages of amelogenesis, possibly due to the 

heavy cross-linking. 

Similar however more sophisticated results were obtained using IG-TEM. K75 was 

detected in ameloblasts, stratum intermedium and enamel matrix, but not in odontoblasts, dentin 

matrix, pulp tissue or periodontal ligament. In contrast to typical cytokeratin, no K75 was 

detected in association with tonofilaments of secretory ameloblasts. Instead, it was found in 

membrane delineated vesicles in the cell body and the Tomes’ processes (Fig. 5). Based on the 

size and localization three groups of K75 positive vesicles were identified (Fig. 5A). First group 

contained small size vesicles (102.3±34.9 nm) located throughout the cell body from nucleus to 

distal junction complex (Fig. 5C). Second group consisted of similar size vesicles (88.7±20.2 

nm) in Tomes’ process (Fig. 5E). There were no significant differences in size between these two 

groups, however it is not clear whether they are the same population of vesicles. Middle to large 

size vesicles of irregular shapes (790.4±556.4 nm) in the distal half of cytoplasm comprised the 

third group (Fig. 5D) 
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Figure 5. IG-TEM of K75 in rat incisor. 

 (A) Schematic image of secretory ameloblasts, the double-arrowed lines outline areas where K75 positive vesicles 

existed and the average diameter of the vesicles. (B) Small K75 positive vesicle around SI. (C) Small size K75 

positive vesicle in distal cytoplasm. (D) Large size K75 positive vesicle located in distal cytoplasm. (E) Small size 

K75 positive vesicles in Tp. Yellow arrows point to the Tp along the long axis of ameloblast cell body. Scale bars in 

the insets are 100nm. Tp-Tomes’ process; SI- stratum intermedium; Am- ameloblasts.  

K75 also existed in the large secretory comportments (LSC) (4295.3±1280 nm), which existed in 

the distal end of ameloblast body and were proximal to Tomes’ process, however at a much 

lower density (Fig. 6). All these results agreed with the results of the IF studies which also 

detected the larger granules in the distal portion of ameloblasts. The diffuse IF signal throughout 

the cell bodies and in the Tomes’ processes can be attributed to the small vesicles identified 
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under TEM, which cannot be resolved by conventional light microscopy due to the diffraction 

limit. 

 

Figure 6. Large secretory compartments in rat ameloblasts. 

(A-C) Ultra-structure of LSC in secretory ameloblasts. Black boxes in A and B were magnified in B and C. LSC 

was located in the distal end of ameloblast cell body, next to Tomes’ process. The contents of some LSC are seen 

directly connected with EEM. (D, G) Co-labelling of AMELX&K75 and AMBN&K75 in LSC. Black boxes were 

further magnified in panel (E, F). LSC contain abundant of AMLEX and lower amounts of AMBN and K75. 

3.4 MASS SPECTROMETRY OF HUMAN ENAMEL EXTRACTS 

Human enamel tufts (Fig. 7A, B) are highly cross-linked that even after repeated SDS and 

enzymatic treatment there is still undissolved material. All dissolved fractions were subjected to 
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mass spectrometry analysis. In total, 423, 286, and 303 proteins were identified relatively in the 

fraction Ⅰ, Ⅱ, and Ⅲ, respectively (Fig. 7G). Some of the protein signatures, such as K1, K2, 

and K10 as well as albumin are likely contaminants while Col Ⅳ and laminin are remnants of 

the degraded basement membrane between pre-ameloblasts and pre-odontoblasts. The existence 

of Col Ⅺ  was unexpected, because it usually appears in cartilage tissue71. Enamel matrix 

proteins, such as AMBN, ENAM, AMEL, MMP20, MMP14, KLK4, TIMPs16, as well as 

mineralized tissue related proteins like DSPP, cadherin and calbindin are also identified by MS 

in the extracts. Several keratins such as K5, 6, 9, 14, 17, and 19 existed in all three fractions. 

Many keratin proteins have very similar sequences, thus making the grouping ambiguous. 

Although, the Mass spectrometry analysis of human tufts was not able identify K75 

unequivocally, several sequences were identified which are shared between K75 and other hair 

follicle keratins, such as K5, K6A and K6C. Luckily, in the Mass Spectrometry of analysis of 

pig’s enamel matrix, K75 specific sequence was able to be identified (Fig. 6H). 
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Figure 7. Human enamel tufts and mass spectrometry analysis. 

(A) De-mineralized healthy human third molar crown, top view. Yellowish material covered on white dentin is the 

insoluble enamel matrix. (B) Insoluble enamel matrix peeled off from the crown. (C) A SEM micrograph of the 

insoluble organic fraction. Several large fibrils and multiple small fibrillar networks are apparent. (D-F) TEM 

micrographs of the insoluble enamel matrix. Panel D shows dense fibrillar networks of rod and rod sheath residues. 

White boxes are magnified in panel E and F. (G) Assorted proteins in different fractions of tufts. Proteins are 

grouped into four categories, shown in different colors. (H) K75 sequences detected in mass spectrometry are shown 
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in yellow frame. However, be noted they are overlapped with some other keratins. There is a K75 specific sequence 

shown in red font for pig enamel extractions. 

3.5 CO-LOCALIZATION OF K75 AND EMPS 

The intracellular localization pattern of K75, its presence in the membrane delineated 

compartments and in the extracellular space raise the possibility that it is secreted with the 

extracellular matrix proteins. To test this hypothesis, IF and IG TEM co-localization studies of 

K75 with two major EMPs, AMELX and AMBN were carried out. 

In IF study, AMBN and AMELX showed considerable overlap with K75 throughout the 

cell body and the Tomes’ processes, especially in the large vesicles, generally following the 

intracellular distribution pattern of K75 (Fig. 8). Triple labeling with K75, AMBN and AMELX 

antibodies revealed that in the ameloblast cell body, excluding the Tomes’ process, ~80% and 

~60% of K75 co-localized with AMBN and AMELX, ~50% of K75 co-localized with both 

AMBN and AMELX. Only ~10% of K75 did not overlap with AMBN nor AMELX. In contrast, 

more than 40% of AMBN and AMELX signal didn’t overlap with other two proteins (Fig. 8K). 
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Figure 8. Co-localization of AMBN and AMELX with K75 in IG-TEM and IF. 

(A) Schematic image of secretory ameloblasts. (B-D) IG-TEM co-localization of AMELX and K75 in the three 

groups of vesicles. (E-G) Co-localization of AMBN and K75 in the three groups of vesicles. (H-J) IF co-localization 

of AMELX, AMBN and K75 in secretory ameloblasts. (K) Pie chart showing the overlapping of K75 with AMELX 
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and AMBN based on the IF quantitative analysis of the incisal secretory amelobast cell bodies from 4-week-old rats 

(n=3). 

IG-TEM revealed that K75 frequently co-existed with AMBN and AMELX in the small 

and large vesicles in the ameloblast cell body and in small vesicles of the Tomes’ processes (Fig. 

8B-G). In contrast LSC primarily contained AMELX signal, whereas K75 and AMBN were in 

relatively low amounts (Fig. 6D-G). In complement to the cell body IF co-localization analysis, a 

quantitative co-localization analysis of K75 with AMBN and AMELX in small vesicles of 

Tomes’ process was carried out (Fig. 9B). More than 90% of the small K75-containing vesicles 

in the Tomes’ processes contained AMBN or AMELX, indicating that the majority vesicles in 

Tomes’ process contained more than one protein, which is consistent with earlier studies of 

AMBN and AMLEX.63  
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Figure 9. Co-localization of K75 and EMPs in Tomes’ process. 

(A) Co-labelling of AMBN and K75 in secretory ameloblasts. Please note that these two proteins are highly co-

localized in large granules and Tomes’ process. (B) Quantitative results of co-localization of AMELX and AMBN 

with K75 in Tomes’ process vesicles under IG-TEM (n=3). (C) Details of IF co-localization analysis in three rats. 

(D) Details of IG-TEM co-localization analysis in three rats. *AMELX/K75 represent percentage of AMELX signal 

overlapping with K75 signal, while K75/AMELX indicate percentage of K75 overlapping with AMELX. Similar 

format is used for AMBN/K75 overlap as well. 
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4.0  TRAFFICKING OF K75 IN SECRETORY AMELOBLASTS 

4.1 CO-LOCALIZATION STUFY OF K75 AND CELLULAR COMPARTMENTS BY 

IF AND IG-TEM 

The co-localization of K75 with AMBN and AMELX in secretory vesicles and in the 

extracellular space suggest that K75 is co-transported with the EMPs. To gain the insights into 

the trafficking of K75 in secretory ameloblasts a series of co-localization studies of K75 with 

different cellular compartment markers were conducted. For comparison, similar co-localization 

experiments with AMBN, which utilizes the conventional ER-Golgi secretory pathway, were 

conducted in mice.  

 

4.1.1 Co-localization with ER marker CP1 

A diffuse signal of ER marker CP1 was found throughout the ameloblast cytoplasm except for 

the Tomes’ processes (Fig. 10A,E). However, no significant overlap between K75 and CP1 was 

observed (5.9±1.0%, n=3). Similarly, no K75 label was found inside rER lumen by IG-TEM 

(Fig. 11A). AMBN, a conventional secretory protein with a signal peptide, had a fairly low level 

of overlap with CP1 (13.6±3.1%, n=3). While no significant overlap between K75 and CP1 is 

expected, since K75 is lacking the signal peptide, low co-localization levels of AMBN and CP1 
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can be due to a very short residence time of AMBN molecules in rER as previously reported68. 

As a result, the possibility that K75 was synthesized in rER cannot be excluded, as it may also 

have very short residency time in the rER. 

 

Figure 10. IF Co-localization of AMBN and K75 with different cellular organelle markers in the secretory 

ameloblasts from 4 weeks old mice. 

(A, E) Overlap with ER marker CP1. Note that the overlap is very low for both proteins. (B, F) Overlap with ERGIC 

marker E53. E53 signal was closely associated with large granules in the ameloblast cell bodies. Noticeably, it was 

also found in distal portions of ameloblasts, including Tomes' processes. Prominent overlap of K75 and AMBN with 

E53 was evidenced. (C, G) Overlap with Golgi marker G5. G5 signal appears as two well organized long strips 

roughly parallel to each other, flanking the core of ameloblast body. Both AMBN and K75 signals organized into 

bands between the two strips of Golgi complexes in the ameloblast core, partially overlapping with G5. 

Furthermore, large AMBN and K75 positive vesicles were closely attached to the Golgi, potentially translocating 

their contents into Golgi for further processing. (D, H) Overlap with lysosome marker LAMP1. LAMP1 signal was 

present throughout ameloblast cell bodies in the form granules of different shapes and sizes. There was a very 

limited overlap of K75 with LAMP1. AMBN was slightly more associated with LAMP1 than K75. 



 34 

4.1.2 Co-localization with ERGIC marker ERGIC53 

IF studies revealed that ERGIC marker ERGIC53 (E53) was present in in large granules in the 

ameloblast cell bodies and as a punctate signal in the cell bodies. Importantly high levels of E53 

signal was also observed in the membrane of Tomes’ processes (Fig. 10B,F). This observation is 

very interesting, since Tomes’ processes are highly specialized structure where secretory vesicles 

are released out of ameloblasts whereas ERGIC is thought to be a cellular compartment between 

rER and Golgi. Considerable degree of overlap was observed between K75 and E53 signal 

(29.7±6.8% n=3) in the cell body of ameloblasts. Similarly, 26.7±1.7% of AMBN co-localized 

with E53. In the IF image, almost all K75 containing vesicles co-localized with E53 whereas 

some E53 positive vesicles did not overlap with K75. Although E53 antibody did not work in 

IG-TEM experiments, irregularly shaped compartments in the size range of the E53-positive 

granules in IF images were observed (Fig. 11B,C). The localization of these compartments in the 

central section of ameloblast between ER and Golgi was also similar to the E53-positive 

granules. Taken together, these results hint toward the possibility that these are ERGIC. K75 in 

association with AMBN or AMELX was also found in these compartments by IG-TEM. 
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Figure 11. Distribution of AMBN and K75 in different compartments of ameloblasts under IG-TEM. 

(A) Under physiological conditions, no obvious labelling was detected in the lumen of rER. (B) An irregular shaped 

potentially ERGIC containing both AMBN and K75 was in close relationship with central Golgi complex, possibly 

translocating contents into Golgi complex. (C) A potentially ERGIC located between distal rER rich region and 

distal junction complex. (D) An un-identified dense vesicle in cytoplasm showing no signals of AMBN and K75 in 

it. (E, F) Under physiological conditions, central Golgi complex was manifest as two roughly parallel strips of Golgi 

stacks. Between the two strips of Golgi, abundant small vesicles are shown to contain both AMBN and K75. Some 

AMBN and K75 signals are also detected in the Golgi cisternae. AMBN and K75 signals are revealed by 12 and 6 

nm gold particles. 
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4.1.3 Co-localization with Golgi marker G5 and GM130 

GOLGA5 (G5) was used to track Golgi apparatus cisternae. IF signal of Golgi apparatus in 

ameloblasts can be elegantly depicted as two long strips roughly parallel to each other, located in 

the central portion of the ameloblast between the nucleus and the distal junctional complex (Fig. 

10C,G). This is in a good agreement with earlier TEM studies, describing the central Golgi 

complex as two parallel strips of Golgi cisternae running along the ameloblast long axis with 

rER located between the Golgi strips and the plasma membrane. Earlier ultrastructural studies 

provide evidence that cis-Golgi in the central portion of ameloblast faces plasma membrane and 

the trans-Golgi faces the interior3,13,14. IF double labeling revealed that both AMBN and K75 had 

their diffuse form signals streaming just between the two Golgi apparatus strips, and overlapped 

with the interior trans-Golgi layer. Moreover, AMBN and K75 positive granules, approved to be 

co-localized with E53, were closely attached to the cis-Golgi surface (Fig. 10C,G). The 

quantitative co-localization analysis revealed high degree of overlap of K75 (54±16%, n=3) and 

AMBN (45.3±8%, n=3) with G5. Another Golgi apparatus marker GM130 was also used in the 

co-localization studies, and it showed generally the same trend as G5. 

IG-TEM generally confirmed the IF observations but with more ultrastructural details. 

Two parallel strips of central Golgi complex are aligned along the long axis of ameloblasts. Each 

strip comprises several stacks of cisternae. The Golgi cisternae can be several microns long (Fig. 

11E). The trans-face of Golgi outlines the cell core, an internal space which is full of small 

vesicles containing AMBN, K75, and probably some other EMPs (Fig. 1, Fig. 11F). This internal 

space was associated diffuse signals in IF. Fig. 11B shows a large size compartment, presumed 

to be ERGIC, in a close proximity to the Golgi apparatus.  in the cis face of central Golgi 

apparatus. 
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4.1.4 Co-localization with lysosome marker LAMP1 and LAMP2 

LAMP1 and LAMP2 signals were found throughout the ameloblast cell bodies in irregular 

granules or in plaques. Double labeling studies revealed a negligible level (below 10%) of 

overlap between K75 and LAMP1 (Fig. 10D,H). AMBN overlap with LAMP1 was also low but 

slightly higher that of K75. 

 

In summary, considerable degrees of overlap were found for K75 and AMBN, with ERGIC and 

Golgi apparatus. The granular signals of K75 and AMBN showed preferable co-localization with 

E53 whereas the diffuse signals were more associated with G5 and GM130. Overlap of K75 and 

AMBN with rER and Lysosome in secretory stage ameloblasts was limited. 

4.2 TRAFFICKING INHIBITION STUDY USING BREFELDIN A 

BFA is a cellular trafficking inhibitor preventing protein transport from rER to Golgi72. Earlier 

studies of rat secretory ameloblasts treated with BFA revealed that AMBN and AMELX 

accumulated in rER and their trafficking to the Golgi was blocked73. To figure out whether K75 

also utilizes conventional trafficking pathway from rER to Golgi, similarly to AMBN, a number 

of BFA inhibition experiments were conducted. AMBN and K75 distribution in secretory 

ameloblasts and their co-localizations with rER, ERGIC and Golgi were studied. Animals were 

injected with BFA dissolved in different solvents intrapritoneally and were euthanized at 

different time points and processed for IF and IG-TEM studies of the secretory stage 

ameloblasts. 
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4.2.1 BFA delivery in DMSO 

DMSO is an organosulfur compound which dissolves both polar and nonpolar chemicals. In this 

study, 0.5mg BFA dissolved in 250 µl DMSO was injected intraperitoneally and the mice were 

euthanized 1h, 3h and 5h after injection. DMSO is a slow absorbing solvent that even after 5 

hours it was still present at the injection site when the mice were sacrificed. 

One hour after injection, granules positive for E53 and K75 could still be found, however 

with less defined boundaries and smaller quantities, which indicated these granules were 

disappearing (Fig. 12D). The distribution pattern of AMBN became less organized than in 

untreated ameloblasts, yet a considerable overlap with E53 could still be seen at this time point 

(Fig. 12A). Importantly, IF co-localization studies of K75 and AMBN with ER marker CP1 

revealed a significant overlap between CP1 and AMBN, while no obvious co-localization was 

observed between K75 and CP1 (Fig. 13A,D). The accumulation of AMBN in rER after BFA 

treatment is characteristic for conventional secretory proteins utilizing rER-Golgi pathway. In 

contrast, the low co-localization of K75 and CP1 after BFA treatment implied a different 

synthesis site of K75 other than rER. Golgi apparatus one hour after injection lost its typical 

double strip appearance and became dispersed in the cytoplasm (Fig. 14A,D). At this time point, 

both AMBN and K75 still showed some overlap with G5 signal, probably because the proteins 

produced previously were still transported through Golgi apparatus. 

Three hours after injection, no large E53 positive granules could be detected (Fig. 

12B,E). Instead, diffuse E53 signal was observed throughout the cell. AMBN still showed some 

overlap with E53 and CP1. Meanwhile K75 signal was isolated from both E53 and CP1. At three 

hours after injection, Golgi apparatus started to recover and regain its morphology (Fig. 14 B,E). 

An interesting phenomenon was found regarding the relative position of AMBN and Golgi 
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apparatus. We noticed that G5 was in the central region of the cytoplasm while high levels 

AMBN signal were detected in the peripheral space (Fig. 14B). The overlap between these two 

was very limited, which meant the newly synthesized AMBN was trapped in peripheral rER and 

could not make its way to Golgi apparatus. In contrast, K75 revealed a totally different 

distribution pattern. It was concentrated in the internal space between the double strips of Golgi 

apparatus and showed strong co-localization with G5 signal (Fig. 14E). This observation 

suggested that K75 entered Golgi apparatus via an unknown pathway when the conventional 

rER-Golgi trafficking route was blocked by BFA. 

Five hours after injection, the overall distribution pattern of all markers remained similar 

to those at three hours, whereas all signal strengths became weaker and more dispersed (Fig. 

12C,F, 13C,F, 14C,F). 

To test whether DMSO alone could cause changes in organelle and protein distribution, 

same amount of DMSO was injected as vehicle control, and the mice were sacrificed after 3 

hours. Substantial effects were observed in DMSO treated ameloblasts(Fig. 15,16B,F). Most of 

the E53 granules were disappeared, and distributions of AMBN and K75 were also dramatically 

changed. CP1 and G5 signals seemed to be just fine. 
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Figure 12. Effects of BFA dissolved in DMSO on ERGIC organization and AMBN and K75 distribution 1, 3 and 5 

hours after injection. 

(A-C) Co-labelling of E53 and AMBN at 1, 3 and 5-hour points. AMBN signal became diffused in all three time 

points, yet still showed considerable overlap with E53. (D-F) Co-labelling of E53 and K75 at 1, 3 and 5 hour points. 

At 1 hour, granules positive for E53 and K75 were becoming blur in their boundaries. At 3 and 5 hours, granules 

totally disappeared and K75 signal showed a central band form. 

 

Figure 13. Effects of BFA dissolved in DMSO on ER organization and AMBN and K75 distribution 1, 3 and 5 

hours after injection. 
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(A-C) Co-labelling of CP1 and AMBN at 1, 3 and 5 hour points. Diffuse AMBN signal showed considerable 

overlap with ER marker CP1. (D-F) Co-labelling of CP1 and K75 at 1, 3 and 5 hour points. The overlap of K75 and 

CP1 was always low from 1 to 5 hour points. 

 

Figure 14. Effects of BFA dissolved in DMSO on Golgi organization and AMBN and K75 distribution, 1, 

3 and 5 hours after injection. 

(A-C) Co-labelling of G5 and AMBN at 1, 3 and 5 hour points. At 1 hour, AMBN signal became diffuse throughout 

the cytoplasm. At 3 hour, AMBN signal was majorly located in the peripheral region, isolated from central Golgi 

complex. At 5 hour, same pattern as that in 3 hour still existed. (D-F) Co-labelling of G5 and K75 at 1, 3 and 5 hour 

points. Different from that of AMBN, K75 signal manifest considerable overlap with central Golgi complex. 
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Figure 15. Effects of DMSO on AMBN and K75 distribution after 3 hours. 

(A, D) Co-labelling of CP1 with AMBN and K75 at 3 hours. (B, E) Co-labelling of E53 with AMBN and K75 at 3 

hours. (C, F) Co-labelling of G5 with AMBN and K75 at 3 hours. 

 

Figure 16. Effects of BFA and MNS in DMSO solvent on AMBN and K75 distribution, co-labelled with G5 after 3 

hours. 

(A, E) Mice ameloblasts without any treatment. (B, F) Mice ameloblasts treated with only DMSO. (C, G) Mice 

ameloblasts treated with BFA in DMSO after 3 hours. (D, H) Mice ameloblasts treated with MNS in DMSO after 

2.5 hours. Compared with none-treated, DMSO Ctrl group had AMBN and K75 granules disappeared whereas the 

central band signal remained. 
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4.2.2 BFA delivery in ethanol 

Since DMSO alone could cause the disappearance of ERGIC (Fig. 15, 16B,F) and affect the 

trafficking of AMBN and K75, a harmless solvent is desired. In the next series of experiments, 

the mice were injected with BFA dissolved in 30% ethanol. Animals injected with 30% ethanol 

only (vehicle) were used as controls. As soon as one hour after injection, all injected solution 

was absorbed. No significant differences in distribution and localization of AMBN, K75 and 

organelle markers were observed between the vehicle controls and untreated samples. In contrast 

to DMSO, which absorbed slowly, the effects of BFA in 30% ethanol was manifested 

prominently just an hour after injection. 

One hour after injection, AMBN signal was enriched in the distal part, where rER rich 

zone was located, and periphery of ameloblasts (Fig. 17A, 18A, 19A, 20A, 21B, 22E,G). AMBN 

exhibited high degree of overlap with rER (Fig. 17A, 22E). In contrast, no obvious change in co-

localization of K75 and CP1 was observed (Fig. 17D, 22F). Although the morphology of Golgi 

apparatus was somewhat disturbed, parallel Golgi strips were still located in the central region of 

cytoplasm and exhibited a sizable overlap with K75 (Fig. 19D, 21D, 22H). Meanwhile, almost 

no overlap was detected between AMBN and G5 (Fig. 19A, 21B, 22G). These results were 

consistent with the results obtained when DMSO solvent was used, showing accumulation of 

AMBN in rER, and persistent existence of K75 in Golgi. 

Two hours after injection, the amount of AMBN signal appeared to be reduced compared 

to one hour. AMBN still showed limited overlap with Golgi apparatus (Fig. 19B). Three hours 

after injection, AMBN partially regained its normal distribution pattern. Some AMBN signal was 

relocated between the two Golgi strips and exhibited a substantial overlap with G5 (Fig. 19C); 

E53 and AMBN positive granules also started to reappear (Fig. 18C) and the co-localization with 
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CP1 decreased (Fig. 17C). These results indicated that between 2 and 3 hours after injection, the 

inhibitory effects of BFA diminished. rER to Golgi trafficking pathway began to recover, and 

AMBN accumulated in rER was able to translocate into Golgi apparatus again.  

In contrast, high degree of co-localization of K75 and Golgi was not affected by BFA 

treatment. One and two hours after injection, K75 was still located between the two strips of 

Golgi apparatus. However, instead of being a narrow band, K75 signal was slightly broadened 

(Fig. 19D,E). After three hours, trafficking of K75 was majorly back to normal (Fig. 19F). Large 

granules, presumably ERGIC, showed up again. 

 

Figure 17. Effects of BFA dissolved in ethanol on ER organization and  AMBN and K75 distribution, co-labelled 

with CP1 1, 2 and 3 hours after injection. 

(A-C) Co-labelling of CP1 and AMBN at 1, 2 and 3 hour points. Diffuse AMBN signal showed prominent overlap 

with ER marker CP1 at all three time points, although the tendency seemed decrease at 3 hour. (D-F) Co-labelling of 

CP1 and K75 at 1, 2 and 3 hour points. K75 showed limited overlap with CP1 in all time points. 
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Figure 18. Effects of BFA dissolved in ethanol on ERGIC organization and AMBN and K75 distribution, co-

labelled with CP1 1, 2 and 3 hours after injection. 

(A-C) Co-labelling of CP1 and AMBN at 1, 2 and 3 hour points. At 1 hour, E53 and AMBN positive granules were 

disappeared. At 2 and 3 hour, diffuse AMBN was still associated with E53 signal. At 3 hour, E53 and AMBN 

positive granules started to show up again. (D-F) Co-labelling of CP1 and K75 at 1, 2 and 3 hour points. 

 

Figure 19. Effects of BFA dissolved in ethanol on Golgi organization and  AMBN and K75 distribution, co-labelled 

with G5 1, 2 and 3 hours after injection. 

 (A-C) Co-labelling of G5 and AMBN at 1, 2 and 3 hour points. AMBN showed obvious isolation from G5 at 1 and 

2 hours. At 3 hour, AMBN was partially recovered, evidenced by more central distribution and re-appearance of 

AMBN granules. (D-F) Co-labelling of G5 and K75 at 1, 2 and 3 hour points. K75 positive granules disappeared at 

1 and 2 hours while central K75 signal still showed considerable overlap with G5. At 3 hour, K75 signal was back to 

normal. 
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Figure 20. Effects of ethanol dissolved BFA on AMBN and K75 distribution, co-labelled with PDI after 1, 2 and 3 

hours. 

(A-C) Co-labelling of PDI and AMBN at 1, 2 and 3 hour points. AMBN also showed elevated overlap with PDI, 

however not as prominent as CP1. (D-F) Co-labelling of PDI and K75 at 1, 2 and 3 hour points. Co-localization of 

K75 and PDI was always in a low level. 

 

Figure 21. Effects of ethanol dissolved BFA on AMBN and K75 distribution, co-labelled with GM130 after 1hour. 

(A, C) Co-labelling of AMBN and K75 with GM130 at 1 hour for vehicle control group. (B, D) Co-labelling of 

AMBN and K75 with GM130 at 1 hour for BFA group. 
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To better understand the changes in co-localization of K75 and AMBN with the organelle 

markers, a quantitative analysis was carried out at one hour time point. This analysis was carried 

out only on the ameloblast cell body region excluding the Tomes’ processes. The co-localization 

analysis in the control group showed that 14±2.5% of AMBN and 6±1% of K75 co-localized 

with rER (Fig. 22I). While no significant overlap between K75 and CP1 is expected, since K75 

is lacking the signal peptide, low co-localization levels of AMBN and CP1 can be due to a very 

short residence time of AMBN molecules in rER as it was previously reported68. In contrast 

substantial levels of co-localization of K75 (54±16%) and AMBN (45.3±8%) with G5 were 

found (Fig. 22J). In the BFA treated group, the co-localization pattern of AMBN changed 

dramatically. AMBN signal associated with the central Golgi complex decreased significantly 

(8.5±2%, p<0.01) while its overlap with the peripheral rER increased significantly (30±5%, 

p<0.01). These results demonstrated that the disruption of rER-Golgi transport by BFA leads to 

the accumulation of AMBN in rER and its depletion form Golgi, which is anticipated for an 

extracellular protein secreted via the classical rER-Golgi dependent pathway45,74. The treatment 

with BFA, however, had a more limited effect on the localization of K75. Co-localization of K75 

and CP1 in the treatment group remained at low levels comparable to the control (10±1%). In 

contrast, no significant changes existed in co-localization of K75 and G5 between the control and 

treatment groups (41±14% vs. 54±16%; p=0.34). In the untreated samples 22±2% of AMBN and 

30±7% of K75 overlapped with E53. One hour after the BFA injection, the overlap between E53 

and AMBN did not change significantly (22±2% vs. 27±11%, p=0.53), while a significant 

reduction in K75 co-localization with E53 was observed (30±7% vs. 10±2%; p<0.05) (Fig. 23). 

The fact that the overlap between AMBN and E53 did not change, while the E53 positive 

granules disappeared might indicate that E53 accumulates on the rER membranes, and since rER 
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contained large amounts of AMBN the overall co-localization percentages did not change. 

Nevertheless, the fact that the overlap between K75 and E53 significantly decreased while co-

localization of K75 and G5 remained statistically unchanged pointed toward the possibility that, 

in addition to ERGIC-Golgi trafficking route for K75, there is another unknown translocation 

mechanism.  

 

Figure 22. IF analysis of secretory ameloblasts from 4-week old mouse incisors after BFA treatment. 

(A-D) One hour after the vehicle injection. (E-H) One hour after BFA(ethanol) injection. (I, J) Overlap of AMBN 

and K75 with CP1 and G5 in vehicle control and BFA groups. Filled diamonds represent the values of the overlap 
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(%). Open squares represent mean and the central crossbars represent median values, the end crossbars represent 

SD. Significant differences (p≤0.05) existed between groups marked by different letters. N=3. 

 

Figure 23. Effects of BFA on the co-localization of AMBN and K75 with E53. 

Although ERGIC granules dispersed, the overlap percentage of AMBN and E53 did not change significantly after 

BFA treatment. However, the co-localization of K75 with E53 dropped significantly after BFA treatment. 

Significant differences (p≤0.05) existed between groups marked by different letters. N=3. 

4.2.3 BFA delivery in PBS 

The effects of BFA on the intracellular trafficking in the mouse secretory ameloblasts were also 

studied with PBS as the solvent. It is worth noting that when stock solution of BFA in DMSO 

was diluted in PBS, it became cloudy. However, based on the experimental results, the 

cloudiness did not seem to affect its absorption. The secretory ameloblasts were examined 15, 

30, and 60 min after BFA injection and the vehicle controls were examined 60 min after 
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injection. As early as 15 min after BFA injection, we could already see the accumulation of 

AMBN (Fig. 24C, 25C, 26B) and the decreased quantities of granules positive for E53 (Fig. 

24C,D). Thirty minutes after injection, these ERGIC granules could not be found anymore. 

Instead, punctate E53 signal dispersed throughout the ameloblast and its overall strength 

decreased (Fig. 24E,F). It was also noticed that E53 in the Tomes’ process region remained 

relatively stable and AMBN was still trapped in the peripheral area at this time point. At 60 min 

point, the AMBN trafficking started to recover. In many ameloblasts, AMBN signal had become 

more concentrated in the central Golgi complex and a few granules resembling ERGIC could be 

seen again (Fig. 24G). Compared to 30 min when K75 had a more swollen central band, K75 

signal at 60 min point also restored its normal appearance. Meanwhile E53 manifest a slower 

manner to recover. The E53 signals at 60 min point was located in the central region, where 

presumably Golgi apparatus exists, and showed overlap with both AMBN and K75 (Fig. 24G,H), 

probably because the E53 translocated into Golgi had not been recycled yet. 
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Figure 24. Effects of BFA in PBS on AMBN and K75 distribution, co-labelled with E53. 

(A, C, E, G) Co-labelling of E53 and AMBN for vehicle control and BFA in PBS at 15, 30 and 60 minutes. At 

15min, the number of ERGIC granule decreased, and they completely disappeared at 30min. Partial recovery was 

seen at 1 hour. AMBN signal became diffuse after the treatment. (B, D, F, H) Co-labelling of E53 and K75 for 

vehicle control and BFA in PBS at 15, 30 and 60 minutes. Unlike AMBN, K75 signal did not become diffuse 
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Figure 25. Effects of BFA in PBS on AMBN and K75 distribution, co-labelled with G5. 

(A, C, E, G) Co-labelling of G5 and AMBN for vehicle control and BFA in PBS at 15, 30 and 60 minutes. (B, D, F, 

H) Co-labelling of G5 and K75 for vehicle control and BFA in PBS at 15, 30 and 60 minutes. 



 53 

 

Figure 26. Effects of BFA in PBS on AMBN and K75 distribution, co-labelled with G5 under higher magnification. 

(A-D) Co-labelling of G5 and AMBN for vehicle control and BFA in PBS at 15, 30 and 60 minutes. (E-H) Co-

labelling of G5 and K75 for vehicle control and BFA in PBS at 15, 30 and 60 minutes. 

Taken together these results indicate, BFA treatment successfully blocked the conventional rER-

Golgi trafficking pathway which is used by AMBN. However, K75 trafficking seemed to be in-

sensitive to the blockage by BFA, indicating that it might utilize a novel UPS pathway. Although 

three BFA solvents used in this section showed different rates of absorption and some other 

subtle differences, the same overall responses strengthened our hypothesis. 
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4.3 TRAFFICKING INHIBITION STUDY USING H89 

H-89 is a protein kinase A inhibitor commonly used in cellular trafficking studies in vitro. 

However, the actual role it plays is still not very clear75. Previous studies showed that H-89 could 

inhibit membrane budding from Trans-Golgi to cell surface76,77, Gβγ mediated Golgi 

breakdown78, ER to Golgi transport79,80, and induce Golgi disassembly81. To verify our previous 

hypothesis that K75 was not synthesized in rER, we therefore tried to use H-89 to block the 

conventional protein trafficking out of rER in vivo. To our surprise, the effects of H-89 seemed 

to be quite different from that of BFA regarding the blockage of ER-Golgi trafficking. While 

after BFA treatment CP1 signal became more diffuse, CP1 signal appeared as punctate spots in 

H-89 treated ameloblasts (Fig. 27A,C). At the same time, H-89 lead to a modest inhibition of 

AMBN trafficking when injected at 5 mg per mouse. In many ameloblasts AMBN signal was 

detected throughout the cell body (Fig. 27B). At a lower dose of 0.5 mg H-89 per animal, no 

obvious changes could be observed for AMBN at 1, 2 and 3 hour points (Fig. 28A-C). However, 

there were some differences in K75 distribution compared with control group one hour after 

injection. The large size granules positive for K75 and E53 disappeared whereas the central K75 

signal band was still present and highly associated with G5 (Fig. 29D). At the later time points 

K75 distribution was back to normal. Thus, H-89 seemed to partially inhibit AMBN trafficking 

out of ER at high concentration. It might also specifically inhibited translocation of K75 to 

ERGIC whereas AMBN translocation to ERGIC was not affected. If this is true, K75 was able to 

translocate into Golgi complex bypassing ERGIC, similar to what happened after BFA treatment. 

Another interesting finding when screening the early and late secretory ameloblasts of H-89 

treated mouse incisor was that early secretory ameloblasts seemed to have more number of E53 

positive granules than those of late secretory ameloblasts (Fig. 30), suggesting the effects of H-



 55 

89 might be stage dependent. It should be noted that only a limited number of experiments was 

performed with H-89 and they need to be repeated and verified. 

 

Figure 27. Effects of 5mg H-89 in ethanol on AMBN and K75 distribution. 

Five mg H-89 was injected for each mouse, the animal died after around 40m and mandibles were collected for IF 

staining. (A, C) Co-labelling of AMBN and K75 with CP1. (B, D) Co-labelling of AMBN and K75 with E53. 

Asterisk showed an ameloblast with partial AMBN trafficking inhibition and triangle pointed to adjacent ameloblast 

without diffuse AMBN signal in cytoplasm. 

 

Figure 28. Effects of 0.5mg H-89 in ethanol on AMBN and K75 distribution, co-labelled with CP1 after 1, 2 and 3 

hours. 
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(A-C) Co-labelling of CP1 and AMBN at 1, 2 and 3 hour points. (D-F) Co-labelling of CP1 and K75 at 1, 2 and 3 

hour points. 

 

Figure 29. Effects of 0.5mg H-89 in ethanol on AMBN and K75 distribution, co-labelled with G5 after 1, 2 and 3 

hours. 

(A-C) Co-labelling of G5 and AMBN at 1, 2 and 3 hour points. (D-F) Co-labelling of G5 and K75 at 1, 2 and 3 hour 

points. 

 

Figure 30. Early secretory stage ameloblasts showed more ERGIC granules compared with later ameloblasts. 

(A-C) Co-labelling of AMBN and E53 in early secretory stage ameloblasts (A) and successively later period 

ameloblasts (B and C). (D-F) Co-labelling of K75 and E53 in early secretory stage ameloblasts (D) and successively 

later period ameloblasts (E and F). 
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5.0  DISCUSSION 

In a recent study37, K75 was found in mature enamel and ameloblasts. Although a number of 

papers suggested the presence of keratins in enamel, this was the first study in which it was 

clearly shown24-26. Moreover, a single amino acid substitution A161T in K75 was found to be 

highly associated with higher susceptibility to dental caries in human population. The present 

study further elaborated these earlier findings and provided detailed insights into the expression 

pattern of K75. 

Our ISH studies of the craniofacial region of a mouse revealed a highly specific 

expression pattern of Krt75, with hair follicles, papillae of the tongue and developing teeth. 

While, Krt75 expression in hair follicles and papillae were previously described28,29, the 

discovery of Krt75 expression in developing teeth is novel. Interestingly, in addition to 

expression of Krt75 in ameloblasts and stratum intermedium, the expression was also observed 

in odontoblasts. Keratins are typically associated with epithelium27 and Krt75 expression in 

odontoblasts in unexpected, however considering that are ectomesenchymal cells of neural crest 

origin, it is not entirely impossible83. Western blot further confirmed the presence of K75 in 

forming pig enamel matrix.  

Our mass spectroscopy studies of mature human insoluble enamel matrix identified a 

handful of sequences present in K75, however since these sequences are shared with other hair 

follicle keratins an unambiguous positive identification of K75 was impossible. However, 
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according to a personal communication of our collaborator, Dr. Yasuo Yamakoshi (Tsurumi 

University, Japan), it was possible to unequivocally identify K75 in secretory and maturation 

stage enamel matrix of unerupted pig molars by mass spectroscopy.  

IF study of apical portions of constantly growing murine incisors revealed that K75 is 

expressed only during secretory stage of amelogenesis, at which the full thickness of enamel 

matrix is deposited. This is an important observation, as it suggests that K75 expression is 

associated with the enamel matrix deposition. K75 signal was also found in secretory enamel, 

and based on the signal pattern it was associated with enamel rod sheath and tufts, elements of 

the enamel matrix found in the mature enamel23.  

 There is a big difference in the strength of the signal between the ISH and IF, i.e. low 

mRNA vs. high protein expression. It is especially interesting, since while stratum intermedium 

had a very strong ISH signal, the protein expression was quite modest in this cell layer. 

Furthermore, while mRNA expression was detected in odontoblasts no protein expression was 

observed in these cells. The difference between mRNA and protein expression levels was also 

observed in other systems. For example, a similar trend could be found for K2 in gastrointestinal 

tract (esophagus) tissue (Fig. 31), reversed correlations with high mRNA level and low protein 

level were also seen in many fields84,85. In fact, as there are many processes to regulate the 

transcription and translation, a correlation factor of only 40-60% was observed between mRNA 

and corresponding protein levels of expression86,87. Another important factor affecting protein 

quantities are the stability and degradation variances among all the proteins. For example, a very 

stable protein (like cytoskeleton proteins) with extremely limited turnover will exist longer and 

will not need high mRNA to be transcribed, while a rapidly degraded protein might need 

relatively high amount of mRNA to maintain its protein level.  
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Figure 31. Expression of K2 in different human tissues. 

Left side bars are RNA expression levels and the right side bars are corresponding protein expression levels. Be 

noted that in gastrointestinal tract and female tissues, the RNA and protein levels are un-matched. This information 

is cited from Human Protein Atlas at www.proteinatlas.org. 

The IF distribution of K75 in secretory ameloblasts is dramatically different from that of 

typical cytokeratins, such as K5 or K14 which form dense networks of tonofilaments. In contrast 

K75 signal appears in two forms: large and small vesicles. Our IG-TEM revealed that K14 is 

strongly associated with tonofilaments (Fig. 32) while K75 is contained in membrane delineated 

vesicles of different sizes, which is highly unusual for a cytosolic protein, lacking a signal 

peptide. The presence of K75 containing vesicles in Tomes’ processes and the surrounding 

matrix strongly suggested that it is secreted from ameloblasts. Remarkably, our double and triple 

https://www.proteinatlas.org/
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labeling IF and IG-TEM studies demonstrated a strong overlap of K75 with AMBN and AMELX 

(Fig. 8, 9). These observations strongly indicate that K75, despite the lack of the signal peptide, 

is at least partially involved in the conventional secretory pathway. 

 

Figure 32. IG-TEM of a tonofilament (TF) in a rat secretory ameloblast labeled with antibodies against K14. 

BFA is a fungi-derived toxin that has shown broad effects on membrane trafficking, e.g. 

Golgi tubulation with ER72, trans-Golgi network (TGN) tubulation with early endosomes88,89, 

disruption of microtubule and actin dynamics90. Meanwhile, its function seems to vary a lot 

when testing in different cell types, with different drug concentrations and duration time91. 

Pharmacological evidence suggests BFA as an uncompetitive inhibitor to retrograde COP1 

vesicle formation by favoring the formation of a ARF-BFA-Sec7 complex92,93. Apparently, more 

investigations will be necessary to explain the complex effects of the drug. Nevertheless, BFA 

shows a very stable effect in most tested cell types, the inhibition of ER to Golgi trafficking. Our 

co-localization studies and BFA treatment experiments provide insights into the unconventional 

secretion of K75, a cytosolic protein lacking signal peptide, in ameloblasts. Unlike other 
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nonclassical secretory pathways of cytosolic proteins, which are independent from the rER-Golgi 

canonical secretory pathway45, K75 is the first known cytosolic protein that utilizes part of the 

conventional ER-Golgi pathway. Specifically, it is present in secretory vesicles together with two 

major EMPs AMELX and AMBN, which possess the signal peptide and are secreted via 

classical secretory pathway63,68. K75 is also present in ERGIC and Golgi apparatus, cellular 

compartments associated with the classical secretory pathway, but not in the rER (Fig. 22,33,34). 

Furthermore, BFA treatment, which disrupts rER-Golgi transport (Fig. 35), did not significantly 

affect the presence of K75 in Golgi. Based on these results we propose a novel, unconventional 

secretory pathway for K75 (Fig. 34H). According to our model, K75 enters the classical 

secretory pathway not via rER, as the majority secreted proteins do, but it is translocated into the 

secretory system from the cytoplasm. Once in the ERGIC it is co-transported with other 

secretory cargo through the Golgi apparatus and secreted from the Tomes’ processes. At the 

same time, the fact that the BFA treatment, which leads to dispersion of ERGIC (Fig. 36), does 

not significantly affect K75 co-localization with G5 suggests that another ERGIC independent 

mechanism of K75 translocation into the Golgi exists. To the best of our knowledge this is the 

first observation of a trafficking route for a cytosolic protein which utilizes portions of 

conventional rER-Golgi secretory pathway and it is very different from other unconventional 

pathways utilized by cytosolic proteins45,94. 
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Figure 33. IG-TEM image showing AMELX and K75 are co-transported t together. 

Note that abundance of AMELX translocate from what appears to be rER while K75 is not. 
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Figure 34. IG-TEM of mice ameloblasts after BFA treatment and schematic model for UPS of K75. 

 (A, B) IG-TEM for AMBN and K75 in vehicle controls. (C) AMBN was enriched in rER after BFA treatment. Note 

the dilated rER lumen, and the Golgi cisternae    became widened, potentially due to the cessation of the retrograde 

transport, however, the overall organization of the Golgi apparatus remained unaffected. IF co-localization of K75 

with GM130 and E53 (D, E) in the central portions of ameloblasts and IG-TEM micrographs (F, G) of the similar 

region. (D) High magnification IF image of co-localization of K75 and GM130 reveals two parallel strips of central 

Golgi complex and the K75 positive bands between them. Large K75 positive granules (white arrowheads) were 
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closely associated to the peripheral region of the Golgi strips and were present in the distal portions of ameloblasts 

(black arrowheads). (E) High magnification IF image of co-localization of K75 and E53. K75 overlapped with E53 

in large granules in the central (white arrowheads) and distal (black arrowheads) portions of ameloblasts. (F) IG-

TEM for K75 (6 nm) and AMBN (12 nm) of the central portion of ameloblast, revealed two strips of Golgi complex, 

outlining the cell core, filled with small secretory vesicles containing K75 and AMBN label (arrowheads). A large 

vesicle (presumably ERGIC) located at the periphery of the cell, was in a close proximity to the Golgi strip. Both 

types of vesicles contained label. (G) IG-TEM of the distal portion of the ameloblast. The area contains extensive 

rER and large granules, containing AMBN and K75 label, similar to those found in the central portion of ameloblast 

in F. K75, 6 nm gold particles; AMBN, 12 nm gold particles. Scale bars is 200 nm for inset. DJC – distal junctional 

complex; GA – Golgi apparatus; rER – rough endoplasmic reticulum; TP– Tomes’ process. (H) Schematics of the 

proposed model for unconventional trafficking of K75 in ameloblasts, based on our IF co-localization studies and 

BFA treatment experiments. Under normal conditions K75 is synthesized in the cytoplasm and enters ERGIC, where 

it joints EMPs, i.e. AMBN, synthesized in the rER. The ERGIC cargo is transported to Golgi where it is packed into 

secretory vesicles and delivered to the secretory sites at the distal end of ameloblast. BFA treatment inhibits ER to 

Golgi transport, leading to accumulation of AMBN in the dilated rER lumen and depletion of AMBN in Golgi. At 

the same time, the BFA treatment does not affect translocation of K75 into Golgi, despite the fact that ERGIC is 

disrupted by BFA. This suggests that K75 utilizes an alternative ERGIC-independent trafficking pathway in addition 

to the ERGIC-Golgi route. 
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Figure 35. Comparison of ameloblast ultrastructure before and after BFA treatment. 

(A, C) Ultrastructure of rER and Golgi before BFA treatment. (B, D) Ultrastructure of rER and Golgi after BFA 

treatment. Note the dilated ER lumen and vacuolization of Golgi cisternae. 

Our observation of E53, in association with K75 and AMBN, in the distal rER rich zone 

of ameloblast and in the Tomes’ processes raises the possibility that some elements of the 

ERGIC system can be involved in a secretory pathway that bypasses Golgi. One potential 

scenario is that some of these ERGIC structures are produced in the distal rER rich zone (34G) 

and transported into the Tomes’ process directly. This hypothesis can provide a potential 

explanation to why there is a rER rich zone in the very distal end of ameloblast cell body. 
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Because it would be rather inexplicable if the proteins synthesized in distal rER zone are 

transported to the proximal Golgi complex and then travel back to the distal secretory apparatus. 

The presence of ERGIC signal in the distal ameloblast and Tomes’ processes hints toward the 

possibility that another UPS mechanism, i.e. Golgi bypass by ERGIC coated vesicles exists in 

ameloblasts. It appears that, in ameloblasts, secreted proteins can simultaneously be transported 

via the conventional rER-Golgi pathway, as well as through the Golgi bypass mechanism45,95,96 

in E53-positive vesicles. 

Another interesting question is the origin of LSCs. LSC could be several microns in 

diameter, while small secretory vesicles are 100-200 nm. There is no intermediate size of 

vesicles except the potential ERGIC, which could be over one micron in size. It is unclear 

whether LSC originates from small vesicles of Golgi or through ERGIC bypassing Golgi. 

 

Figure 36. Changes in distribution of E53 signal in the BFA (PBS carrier) treated samples overtime. 
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(A) 15 min after injection the number of large ERGIC labeled granules was slightly less than in the vehicle control 

(D). (B) 30 min after the injection the ERGIC signal in the cytoplasm became dispersed, the large granules totally 

disappeared, (C) 60 min after the injection the ERGIC in cytoplasm started to recover, but ERGIC signal in the 

Tomes’ processes were noticeably weaker than in the vehicle control or at the earlier time points. 

 

 Another issue regarding the trafficking in ameloblasts is concerned with the central 

Golgi complex. In general, evidence showed that trans-Golgi was facing the interior of 

ameloblast central Golgi complex and cis-Golgi was facing the cell membrane13,14,97. We also see 

a lot of secretory vesicles located in the internal space between the Golgi strips, indicating a 

major trafficking direction from outside to inside and from proximal to distal portions of 

ameloblasts. However, quite a few rER could also be seen inside the central Golgi complex (Fig. 

11B,E,F). Considering the loose cylindric structure of Golgi complex and the existence of the 

intercellular accumulations15, it is a reasonable to propose that there might be some reversed 

regions in the central Golgi complex which have their trans sides facing outward. 

It is important to emphasize that ameloblasts are highly specialized super secretor cells 

and so far their secretory pathways can only be studied in vivo. In tissue cultures, ameloblast 

derived cells never attain their secretory phenotype. The vast majority of cell trafficking studies 

are conducted in tissue culture systems, and often the data obtained in vitro are not in agreement 

with in vivo observations, potentially because cells in vitro are not able to differentiate properly. 

We anticipate, that the mechanisms of secretions revealed in this study are not unique to 

ameloblasts but are much more universal and other cell types with high secretory activity might 

utilize them as well. Further in vivo studies conducted in other systems will be necessary to 

assess the relevance of this secretory pathway and to obtain better insights into the molecular 

mechanisms of this process. 
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Dental caries is the most prevalent chronic infectious disease in human population, with the 

prevalence of around 40% in children and around 90% in adults, according to data from NIH. 

Etiology of caries is complex and involves majorly four factors including microorganisms, oral 

environment, host susceptibility and time. While dental hygiene and healthy lifestyle would help 

to control microorganisms and improve oral environment, genetic factors determining caries 

susceptibility cannot be modified easily at the current state of science and technology. Earlier 

studies37,82 revealed clear associations of certain polymorphisms in K75, K6, K16 and K17 with 

higher dental caries rate in human population. Knowing the genetic markers associated with the 

higher dental decay risks may lead to more individualized and effective preventions, especially 

when personalized or precision medicine era is approaching. Specifically, the carriers of these 

polymorphisms might require more aggressive prophylactics and more thorough monitoring and 

diagnostics. In addition to the caries prevention, understanding the basic biology of keratins in 

enamel formation, and their functional roles in mature enamel will inform the future design of 

novel restorative materials. 
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6.0  CONCLUSION 

In conclusion, our studies provide a strong support to the previous observations of K75 in 

ameloblasts and enamel based on the evidence from ISH, IF, IG-TEM and Mass spectrometry 

studies. We determined that the expression of this protein is restricted in secretory stage 

ameloblasts. Furthermore, we found that K75 is co-transported together with other EMPs and is 

secreted from the Tomes’ processes. We further established that under physiological conditions, 

K75 is present in ERGIC, central Golgi complex and secretory vesicles of the cell body and 

Tomes’ processes but not in rER, using IF co-localization in vivo experiments, using cell 

compartment markers. These results suggest that K75 might enter the classic secretory pathway 

via ERGIC. BFA trafficking inhibition in mice further suggest that K75 could directly 

translocate in Golgi, bypassing both rER and ERGIC. Importantly, our results for the first time 

show cytosolic protein can utilize portions of the classical ER-ERGIC secretory pathway. 

However, the mechanism of this novel UPS pathway is currently unknown. Nevertheless it is 

clear that this mechanism is radically different from the previously reported UPS of cytosolic 

proteins45,46. Taken together, our results provide novel insights into the K75 secretion processes 

and raise questions regarding basic cellular trafficking mechanisms in ameloblasts and 

potentially other systems. This study also highlights potential novel roles of keratins, beyond 

cytoskeleton. 
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