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Water desalination with nanofiltration (NF) and reverse osmosis (RO) membranes presents an 

excellent solution to meet the ever–increasing water demand. NF membranes can achieve higher 

permeability at lower operating pressures and hence are energetically favorable compared to RO 

membranes. As such the overall motivation of this study was to improve the fundamental 

understanding of separation potentials for NF membranes and provide sound guidance for the 

selection of NF membranes for particular applications.   

 

The first objective of this study was to explain the importance of different separation potentials 

for the rejection of inorganic ions by two most commonly used active layers of NF membranes – 

polyamide (PA) and poly(piperazineamide) (PP). Effective pore size measurements, zeta 

potential and crossflow ion rejection were used to establish that both Donnan (charge) and steric 

exclusion are important for ion rejection with PP membranes and that steric exclusion was the 

dominant mechanism for PA membranes. Specific studies with barium and strontium ions 

confirmed the dominance of steric exclusion for PA membranes. Experimental studies were 

conducted to unravel the impact of chemical cleaning on physicochemical characteristics and 
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performance of PA and PP membranes. In general, chemical cleaning with HCl and NaOH 

increased membrane permeability and decreased ion rejection due to the increase in effective 

pore sizes and changes in zeta potential but PP membranes were affected significantly more than 

PA membranes. The second objective of this study was to evaluate the use of NF membranes for 

treatment of abandoned mine drainage (AMD). Laboratory–scale optimization followed by 

pilot–scale testing demonstrated that polymeric NF membranes could achieve >98% removal of 

total dissolved solids without significant decrease in permeate flux. Polymeric NF membrane 

achieved higher permeability and ion rejection than ceramic NF membrane. This study 

demonstrated that AMD can be treated with polymeric NF membranes to recover high quality 

permeate and highlighted the need for improving ceramic NF membranes. The results obtained 

in this study provide new insights into NF separation mechanisms and their use for the treatment 

of AMD and contribute to further improvements in current membrane technologies to provide 

solutions for significant environmental problems and meeting the ever–increasing demand for 

clean water.  
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1.0  INTRODUCTION 

1.1 BACKGROUND AND MOTIVATION 

Alarming increase in population growth, global warming and contamination of natural 

freshwater sources pose a significant threat to clean water supply in many parts of the world. A 

dramatic increase in water scarcity has been predicted in the coming decade in many regions 

including China, Southeast and Southwest Asia, India, Middle East, North Africa, South Africa 

and the western United States [8]. Water scarcity is the focus of the work presented in this thesis. 

As of 2015, it was estimated that 660 million people lack access to adequate drinking water 

source [9] and an unbelievable 3.5 billion people are expected to live in water stressed areas by 

2050 [10]. Majority of people in rural communities rely on water sources such as rivers, lakes, 

groundwater and rainwater that are often contaminated with bacteria and chemicals, which may 

be dangerous for human consumption [11]. In addition to remote rural communities, water 

concerns are also wide–spread in industrial areas, where water demand is higher and where 

shrinking groundwater resources are becoming increasingly brackish as withdrawals continue to 

increase. The increasing withdrawal of water can be clearly seen from Figure 1.1. Thus, research 

efforts towards desalination of brackish groundwater and seawater are thriving [12]; however, 

increase in performance and decrease in energy demand for desalination by novel technologies, 

such as building more efficient membranes, are at the forefront [13]. Also, securing water in new 
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ways has added importance to the recovery of water from different sources including wastewater, 

abandoned mine drainage, etc. because water recovery from sources that are less saline is more 

energetically favorable (less osmotic pressure) as compared to desalination of seawater or 

brackish groundwater. 

 

Figure 1.1. Water withdrawal in 1995 and 2025 (projected) [10] 

1.2 ABANDONED MINE DRAINAGE 

Management of water from the mining industry is becoming increasingly scrutinized and there is 

a growing need to treat, discharge and reuse mine water [14]. Treatment of abandoned or acid 

mine drainage (AMD) or acid rock drainage (ARD) has been a major research focus for over 50 

years [15] because these contaminated streams represent a pervasive environmental problem for 

both working and abandoned mines. Natural oxidation of sulfide minerals like pyrite (FeS2), 
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chalcocite (Cu2S) and mackinawite (FeS) when exposed to water and oxygen contribute most of 

the contaminants in the AMD [16]. Typically, it is characterized by high acidity (pH 2–4), high 

sulfate concentrations (1–20 g/l), and high concentrations of potentially toxic elements (PTEs) 

such as Al, As, Ca, Cd, Cu, Fe, Mg, Mn, Ni, Pb and Se [17]. Generation of AMD can be 

explained by the following set of equations [16, 17]: 

 

 FeS2 + 7/2 O2 + H2O  Fe+2 + 2 SO4
2– + 2H+  (1-1) 

 Fe2+ + 1/4 O2 + H+  Fe3+ + 1/2 H2O (1-2) 

 FeS2 + 14 Fe3+ + 8 H2O  15 Fe2+ + 2 SO4
2– + 16 H+ (1-3) 

 Fe3+ + 3 H2O  Fe(OH)3 (s) + 3 H+ (1-4) 

 FeS2 + 15/4 O2 + 7/2 H2O  Fe(OH)3 (s) + 2 SO4
2– + 4 H+ (1-5) 

 

Equation (1-1) describes the direct oxidation of pyrite in an oxic environment and equation 

(1-2) shows the oxidation of ferrous ions to ferric ions, which occurs depending on the 

availability of a sufficiently acidic and oxidizing environment that is supported by 

microorganisms. Ferric ions can oxidize to pyrite (Equation (1-3)) or form insoluble ferric 

hydroxide (Equation (1-4)). Both of these reactions produce acidity that can assist in leaching 

metals from other ambient rocks. Equation (1-5) summarizes equations (1-1), (1-2) and (1-4), 

thereby showing the acidity generation, pyrite oxidation, and precipitation of Fe(OH)3 [18]. 

Outflow from an abandoned coal mine in southwestern Pennsylvania is shown in Figure 1.2.  
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Figure 1.2. Outflow from an abandoned coal mine in southwestern Pennsylvania [19] 

 

Traditionally, lime or limestone neutralization has been used to mitigate the effects of AMD. 

Lime or limestone is added to increase the pH and to precipitate the sulfate as gypsum and other 

metals as hydroxides which is followed by gravity separation of the solid product [20-22]. This 

process generates large quantities of sludge contaminated with PTEs. Another important 

disadvantage of this process is that the sulfate concentration can only be reduced to about 1,440 

mg/l (considering gypsum solubility) [17] while Environmental Protection Agency (EPA) and 

World Health Organization (WHO) stipulate a sulfate limit of 250 mg/l as one of the criteria for 

unrestricted discharge [23]. 

1.3 MEMBRANE TECHNOLOGY 

Conventional water treatment technologies including a combination of coagulation, flocculation, 

clarification, filtration and disinfection are effective for some chemical contaminants but less for 
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others [24]. Advanced water treatment technologies include methods such as advanced 

oxidation, ultraviolet disinfection, membrane processes and achieve better performance along 

with being economically and energetically favorable. The focus of this work is on membrane 

processes, which collectively refers to different types of membrane technologies, namely reverse 

osmosis (RO), nanofiltration (NF), ultrafiltration (UF) and microfiltration (MF). These are 

essentially selective barriers that separate different solutes in water to varying degrees and differ 

depending on the size of solute or particle that passes through the membrane (i.e., pore size of 

the membrane) and the operating pressure. Figure 1.3 shows different membrane types and their 

general attributes. Since the primary interest in this work was to remove dissolved inorganic 

salts, the following discussion is focused on RO and NF. RO membranes almost completely 

remove mono– and multivalent ions while NF membranes have a slightly more open structure 

than RO and can reject most of the multivalent ions and some monovalent ions. NF membranes 

achieve higher flux but lower rejection compared to RO membranes. RO membranes were 

originally developed for seawater desalination in the 1960s and were made of cellulose acetate 

[25], however, they required high operating pressures and had high energy consumption (> 10 

kWh.m-3) [26]. Numerous improvements lead to the development of NF membranes in the late 

1980s to achieve higher water permeability and reduced energy consumption [27, 28]. The focus 

in this work will be on nanofiltration membranes for the rejection of dissolved inorganic salts. 
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Figure 1.3. Schematic of membrane types 

1.4 NANOFILTRATION MEMBRANES 

NF membranes can be manufactured as thin film composites (TFC) or could also be made of 

various ceramics. TFC polymeric membranes include the ultrathin active layer (20 – 200 nm) 

responsible for the rejection, permeability, hydrophilicity, and roughness of the composite 

membrane, followed typically by polysulfone support matrix (20 – 50 m) and a non–woven 

polyester fiber backing (300 m) for mechanical stability and strength [29]. Figure 1.4 shows a 

typical polymeric TFC NF membrane. The active layer can be made of different polymers 

including but not limited to polyamide, poly(piperazineamide), combination of polyamide and 

poly(piperazineamide), polyether sulfone, cellulose acetate, etc. [30]. Interfacial polymerization 

(IP) is the most commonly used technique for synthesizing these TFC membranes. The amine 

monomers in water are brought into contact with acid chloride monomers in solvent to form a 

thin film of polyamide on the substrate [31-34]. Two of the most commercially successful 

recipes to make the polyamide films are: 1) 1,3-benzenediamine (m-phenylenediamine) (MPD) 

with trimesoyl chloride (TMC) and piperazine (PIP) with TMC [29]. Molecular weight cut–off 
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(MWCO) (defined as molecular weight of a neutral organic molecule corresponding to 90% 

rejection by a particular membrane) is usually used to describe the tightness of a particular NF 

membrane. With polymeric membranes, MWCO’s between 200 – 1000 can easily be established 

by varying the active layer chemistry, reaction times during IP, reaction temperature, etc. [35]. 

Ceramic membranes have recently been gaining prominence due to better resistance to fouling, 

easier cleaning, lower maintenance, better thermal resistance and greater mechanical strength 

[36, 37]. Ceramic NF membranes are commonly made using the sol–gel technique with Al2O3, 

ZrO2 or TiO2 as the active layer, with the latter two preferred due to greater stability [38]. They 

are typically available with molecular weight cut–off (MWCO) close to 1000 Da and have been 

applied to remove organic molecules and natural organic matter (NOM) [39, 40]. Newer 

manufacturing techniques like atmospheric pressure atomic layer deposition (APALD) [41] and 

DNA template technology [42] are being studied to manufacture ceramic NF membranes with 

MWCO below 500 Da that could effectively reject multivalent ions. One ceramic membrane 

manufactured using DNA template technology and several polymeric TFC membranes were 

selected for this study because they were commercially available. 

 

Figure 1.4. A typical thin film composite nanofiltration membrane 
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NF membranes utilize a number of different mechanisms to create separation between 

water and dissolved solutes. Specific separation mechanisms include steric (size) exclusion, 

charge (Donnan) exclusion, dielectric exclusion [43, 44] and are dependent on the type of 

membrane, feed composition, pH, temperature, etc. [45]. In addition to these separation 

mechanisms, precipitation, dehydration, and sorptive interactions may also be important in 

specific cases  [46-48]. Size or steric exclusion is an important separation mechanism that is 

based on the physical hydrated size of a solute. However, the separation is a bit more complex 

compared to simple sieving because neither the size of the solutes nor the pores are uniform [49]. 

Charge exclusion may be a dominant rejection mechanism in cases where the solute size is 

smaller than the effective pore size of the membrane [50]. NF membranes are usually negatively 

charged because of the dissociation of the carboxylic acid groups at the active layer surface at pH 

above the iso–electric point (IEP) of the membrane [51]. The negatively charged membrane 

surface interacts with ions in the feed solution to increase repulsion of the anions in the feed. The 

equilibrium established as a result of these interactions is called the Donnan equilibrium and is 

characterized using the Donnan potential [52]. The Donnan potential is impacted by surface 

charge and chemsistry of the membrane surface and pH and specific ion concentration and ionic 

strength of the feed. Dielectric exclusion occurs due to: (1) Born effects that occur by changes to 

the equilibrium and dynamic properties of the solvent in the confined geometry of the nanopores, 

and (2) image forces due to the difference in dielectric constants between the membrane matrix 

and the solution [53]. The transport of ions as a result of these different separation potentials can 

be described by diffusion, convection and electromigration [54]. Hindered diffusion occurs in 

membrane processes as solute moves from a more concentrated side (i.e., feed) to the less 

concentrated side (i.e., permeate). Convective transport is directly related to the permeate flux 
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and thus to the applied operating pressure and concentration while electromigration is directly 

related to the charge interactions involving both Donnan and dielectric exclusion mechanisms. 

The importance of the exclusion mechanisms with respect to the active layer chemistries will be 

the focus of this study. 

 A membrane’s capability to deliver stable performance depends not only on the 

characteristics of its active layer but also how easily can it be cleaned and restored to achieve its 

original performance. All membrane processes are affected by membrane scaling or fouling at 

high water recoveries. Membrane scaling or fouling is caused by the deposition of organic and 

colloidal matter as well as precipitation of inorganic salts on the membrane surface, which 

increases mass transfer resistance and affects membrane performance. It is dependent on the type 

and composition of the feed solution, process flow conditions, antiscalants use, etc. [55] Thus, 

periodic chemical cleaning to recover the permeate flux and solute rejection is an inevitable step 

in NF/RO membrane applications and is considered a major drawback of NF/RO filtration 

processes [56]. Typically, chemical cleaning is initiated when there is a 10% drop in the 

normalized permeate flow or a 15% increase in the normalized pressure drop (feed pressure 

minus concentrate pressure) or when the normalized salt passage increases by 5 – 10% [57, 58]. 

Several studies have addressed the impacts of different cleaning chemicals on various types of 

foulants [59-61] with acidic and basic cleaning strategies being most commonly applied. 

Interestingly, a particular cleaning chemical can have different effects on the performance of 

different NF membranes. Understanding the effects of cleaning chemicals on the ion rejection 

characteristics of different active layers of NF membranes will also be the focus of this study.  
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1.5 THESIS ORGANIZATION 

Overall, there is a great need for improved water treatment solutions to meet the ever–increasing 

water demand. NF membranes present an excellent treatment option because of their ability to 

remove ionic impurities while achieving higher permeability at lower operating pressures (hence, 

energetically favorable) compared to RO membranes. However, there are still several 

improvements to be made with NF membranes including finding newer materials for active 

layers, integration of renewable energy, better mechanistic understanding of separation by 

different active layer types, influence of chemical cleaning agents, etc. Hence, this makes NF an 

exciting research area with the potential for tackling current real challenges presented by the 

water crisis.  

The overall aim of this study was to provide better understanding of the NF process with 

a view of applying the technical knowledge to find solutions for the water shortage problem. 

Accordingly, this study was divided in two segments:  

(A) Understanding the separation mechanism of different active layers in nanofiltration 

membranes. This section can be divided into 3 main parts: 

• Unravelling the underlying separation potentials for the rejection of dissolved inorganic ions 

for two commonly used active layer NF membranes – polyamide and poly(piperazineamide) 

with a view of realizing new potential applications for the recovery of water from different 

sources. This was achieved by (i) Characterizing effective membrane pore radii (ii) 

Measuring zeta potential under different feed conditions and (iii) Conducting crossflow 

rejection experiments at low and high ionic strength to determine the relative importance of 

steric and charge (Donnan) exclusion for the two types of active layers. (CHAPTER 2.0) 
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• Elucidating the effects of chemical cleaning on the physicochemical characteristics and 

performance of two commonly used active layers of NF membranes – polyamide and 

poly(piperazineamide). This was studied by (i) Characterizing effective membrane pore radii 

(ii) Measuring zeta potential, (iii) Characterizing the chemical changes and elemental 

compositions of NF membranes with chemical cleaning and (iv) Conducting crossflow 

rejection experiments with single divalent ions and mixture of salts to illustrate the relative 

importance of exclusion mechanisms for the two types of active layers. (CHAPTER 3.0)  

 

• Understanding the rejection of barium and strontium ions using a polyamide NF membrane 

with a view of testing the results obtained in the first two studies. This was achieved by (i) 

Measuring zeta potential, (ii) Studying the rejection characteristics of barium and strontium 

as a function of pH and (iii) Influence of crossflow velocity, feed pressure and concentration 

of ions on rejection was also studied and an equation was developed using the Spiegler–

Kedem model to predict the rejection behavior of barium and strontium over a hundred–fold 

feed concentration range. (CHAPTER 4.0) 

 

(B) Application of nanofiltration membranes for treatment of abandoned mine drainage (AMD). 

This section can be divided into 2 main parts: 

• Testing the ability of polymeric NF membranes to treat AMD at pilot–scale for complete 

reuse. This was done by (i) Selection of an optimized (high rejection and high permeability) 

commercially available NF membrane based on laboratory–scale screening, (ii) Testing the 

optimized NF membrane at laboratory–scale using real AMD, (iii) Pilot–scale testing of the 
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optimized membrane and (iv) Fouling analysis of NF membranes used in pilot–scale testing. 

(CHAPTER 5.0) 

 

• Comparing the performance of polymeric and ceramic NF membranes for treatment of 

AMD. This was achieved by (i) Testing the effect of permeate recovery on ion rejection with 

polymeric and ceramic NF membranes, (ii) Elucidating the effects of chemical cleaning with 

the two membranes, (iii) Studying the effect of fouling mitigation strategies (iv) Studying the 

fouling characteristics with and without the use of antiscalant and (v) Testing a tight 

polymeric NF membrane to produce permeate that meets drinking water standards. 

(CHAPTER 6.0) 

 

Chapter 7.0 discusses all the key findings and provides insights into several NF related aspects 

that were studied in this work as future recommendations. 
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2.0  INFLUENCE OF ACTIVE LAYER ON SEPARATION POTENTIALS OF 

NANOFILTRATION MEMBRANES FOR INORGANIC IONS 

This work has been published as: 

S.S. Wadekar, R.D. Vidic, Influence of Active Layer on Separation Potentials of 

Nanofiltration Membranes for Inorganic Ions, Environmental Science & Technology, 51 (2017) 

5658–5665. 

 

Active layers of two fully aromatic and two semi–aromatic nanofiltration membranes 

were studied along with surface charge at different electrolyte composition and effective pore 

size to elucidate their influence on separation mechanisms for inorganic ions by steric, charge 

and dielectric exclusion. The membrane potential method used for pore size measurement is 

underlined as the most appropriate measurement technique for this application owing to its 

dependence on the diffusional potentials of inorganic ions. Crossflow rejection experiments with 

dilute feed composition indicate that both fully aromatic membranes achieved similar rejection 

despite the differences in surface charge, which suggests that rejection by these membranes is 

exclusively dependent on size exclusion and the contribution of charge exclusion is weak. 

Rejection experiments with higher ionic strength and different composition of the feed solution 

confirmed this hypothesis. On the other hand, increase in the ionic strength of feed solution when 

the charge exclusion effects are negligible due to charge screening strongly influenced ion 
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rejection by semi–aromatic membranes. The experimental results confirmed that charge 

exclusion contributes significantly to the performance of semi–aromatic membranes in addition 

to size exclusion.  The contribution of dielectric exclusion to overall ion rejection would be more 

significant for fully aromatic membranes. 

 

 

Figure 2.1. Abstract art illustrating the influence of active layer on separation potentials of nanofiltration 

membranes for inorganic ions 

2.1 INTRODUCTION 

Application of membrane technologies for water purification gained greater attention in 

recent years due to population boom and worldwide industrialization [62]. Major technological 

advancement and cost reduction lead to increased use of reverse osmosis (RO) and nanofiltration 

(NF) membranes in desalination, wastewater treatment and reclamation [13, 29]. Modern NF 

membranes are predominantly thin film composite (TFC) membranes consisting of three layers: 

the topmost layer is the selective active layer followed by the microporous polysulfone support 
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layer and a non–woven fabric layer for mechanical strength [29]. Of these, the topmost dense 

layer with thickness of about a few hundred nanometers is the most important layer responsible 

for permeability, ionic selectivity, fouling resistance, roughness and hydrophilicity of the 

composite membrane [63]. Ion rejection by this active layer is due to three different separation 

potentials: Steric hindrance (pore size effects), Donnan exclusion (by fixed surface charge) and 

dielectric exclusion (by Born effect and image forces) [64, 65]. Modeling efforts have attempted 

to explain these effects and predict the rejection behavior of NF membranes [66-68]. The 

separation by NF membranes was initially modeled using the Donnan steric partitioning pore 

model (DSPM) [66] but the steric, electric and dielectric model (SEDE) [67, 68] was developed 

later due to the inability of DSPM to predict the rejection of divalent cations. SEDE model is a 

four parameter (i.e., membrane’s effective pore size, thickness to porosity ratio, volume charge 

density and the dielectric constant of solution inside the membrane pores) model and is able to 

predict the rejection performance of NF membranes reasonably well. 

Interfacial polymerization (IP) is the most commonly used technique for synthesizing these 

TFC membranes. The amine monomers in water are brought into contact with acid chloride 

monomers in solvent to form a thin film of polyamide on the substrate [31-34]. Two of the most 

commercially successful recipes to make the polyamide films are: 1) 1,3–benzenediamine (m–

phenylenediamine) (MPD) with trimesoyl chloride (TMC) and piperazine (PIP) with TMC [29]. 

In the first reaction scheme, both monomers (i.e., MPD and TMC) are aromatic and hence the 

membrane can be designated as fully aromatic (FA) while the membranes prepared using the 

second scheme can be designated as semi–aromatic (SA) because PIP is an aliphatic monomer. 

These membranes are often coated with different groups to alter membrane properties [69]. For 

example, it has been found that a neutral hydrophilic coating can affect surface charge, surface 
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roughness, permeability and salt rejection of TFC membranes [70]. Thus, understanding the role 

of active layers in achieving ion rejection by a particular separation mechanism is of utmost 

importance to understand the potential use of these membranes for specific application.  

Tang et al. [63, 70] characterized seventeen commercially available RO and NF membranes 

and have shown how the active layer chemistries and coatings affect hydrophilicity, surface 

roughness and permeability of these membranes. Verissimo et al. [31] evaluated the effect of 

combining different aliphatic monomers (i.e., PIP, 1,4–bis(3–aminopropyl)–piperazine (DAPP), 

N,N’–diaminopiperazine (DAP) and N,N’–(2–aminoethyl) –piperazine (EAP)) with TMC on the 

performance, surface morphology and charge of composite semi–aromatic membranes. They 

found that water permeability was the highest for DAP–TMC membrane but that PIP–TMC 

membrane performed better in terms of salt rejection. In a similar study, Li et al. [32] evaluated 

the effect of other aliphatic monomers on salt rejection and anti–fouling properties of thin–films. 

Ahmad et al. [33] found that permeate flux and separation capabilities of polyamide NF 

membranes greatly depend on the diamine ratio and the IP reaction times while effects of 

polyamide chemistry on amino acid separation have also been compared [34]. Other studies have 

also evaluated the ionization behavior of functional groups [71-73]  and surface heterogeneity 

[74, 75] of active layer towards understanding the rejection by these membranes. However, the 

underlying separation mechanisms of NF membranes with different active layers have not yet 

been fully unraveled because none of the previous studies attempted to fully characterize all 

three separation potentials as a function of active layer chemistry. 

Since semi–aromatic poly(piperazineamide) and fully aromatic (polyamide) membranes 

are the most commonly used NF membranes, the aim of this study was to investigate the 

separation potentials of these active layer types in different applications. Separation potentials 
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(i.e., steric, Donnan (charge) and dielectric exclusion) of these active layers were characterized 

to elucidate their relative contribution to rejection of inorganic ions in an effort to develop new 

applications and to improve membrane selection process for the separation of inorganic ions. 

Sulfate was the key ion selected for this study since it is found in many wastewaters, surface and 

ground waters at widely different concentrations [76] and since it is one of the contaminants of 

concern in abandoned mine drainage, which is a pervasive problem in many parts of the US [77, 

78]. All membranes used in this study are commercially available and hence the information 

about their separation potential and performance is relevant to their application in practice. 

2.2 EXPERIMENTAL 

2.2.1 Membranes and chemicals 

Four commercially available flat sheet NF membranes were used in the study. NF90 and 

NF270 membranes were purchased from DOW Filmtech (Edina, MN); TS40 and TS80 were 

purchased from Sterlitech Corporation (Kent, WA). Key properties of these membranes reported 

in the literature and those provided by the manufacturers are shown in Table 2.1 and the 

chemical structures of the polymers forming the two types of active layers are shown in Figure 

A.4 in Appendix A.1. Deionized (DI) water used for water permeability experiments (resistivity 

= 18 kohm.cm-1) was obtained using MilliQ water system (Millipore, Billerica, MA). All 

chemicals used were analytical grade and were purchased from Fisher Scientific (Pittsburgh, 

PA). 
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Table 2.1. Membranes used in this study 

 
a[76], b[79], cProvided by manufacturer 

2.2.2 Apparatus and filtration process 

All experiments were carried out in the laboratory–scale SEPA–CFII test cell (GE 

Osmonics, Minnetonka, MN) shown in Figure A.3 (Appendix A.1) with usable membrane area 

of 140 cm2 and has been described in detail elsewhere [6]. Pump power (Hydra–cell diaphragm 

pump, Wanner Engineering, MN), feed control valve and concentrate control valve were used to 

adjust the desired feed pressure (20 bar) and flow rate (1 GPM), which were held constant 

throughout the study. All experiments were performed in total recirculation mode at a constant 

feed pH of 5.6  0.1. Temperature was maintained at 22  1C using an immersed cooling coil 

connected to a chiller (6500 series, Polyscience, Niles, IL). Prior to the experiment, each 

membrane was immersed in DI water for at least 24 hours to ensure complete wetting. Each 

membrane was first compacted with DI water at 50 bar and then used to filter DI water until a 

stable flux (LMH/bar) was reached (typical stabilization times ranged between 20–24 hours). 

Once, a stable flux had been established, the feed was adjusted to the required composition and 

the system was allowed to equilibrate for two hours. The permeate flux was measured over the 

next two hours during which samples were collected every 15 min for chemical analysis. 

 Sulfate, magnesium and calcium were introduced as Na2SO410H2O, CaCl22H2O and 

MgCl26H2O salts. The filtration experiments were carried out at dilute (low) and high 
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electrolyte concentrations to evaluate the relative importance of the Donnan (charge) exclusion 

effects. Experiments with dilute feed were performed at sulfate concentration of 96 mg/L with 

calcium and magnesium concentrations up to 40 mg/L and 24 mg/L (i.e., 1 mM each), 

respectively. For experiments at high ionic strength, sulfate concentration was adjusted to 650 

mg/L and magnesium and calcium ions were introduced at 1,000 mg/L each. This feed 

composition was chosen for two reasons: it assured that the surface charge is screened at high 

concentrations and it also represents abandoned mine drainage [17], which is a pervasive 

environmental concern in many areas of the US [78]. All cations and anions were analyzed using 

inductively coupled plasma–optical emission spectroscopy (ICP–OES) system (5100 ICP–OES, 

Agilent Technologies, Santa Clara, CA) and ion chromatography (IC) system (Dionex ICS–1100 

with IonPac AS22 carbonate eluent anion–exchange column, Dionex, Sunnywale, CA), 

respectively. 

2.2.3 Attenuated total reflection – Fourier transform infrared spectroscopy (ATR–FTIR) 

FTIR was used to determine the chemical composition of the active layer for all four 

nanofiltration membranes selected for this study. Infrared spectra were obtained using Nicolet 

6700 (Thermo Scientific, Pittsburgh, PA) FTIR spectrometer with the active layer of the 

membrane pressed tightly against the crystal. At least two replicates were obtained for each 

membrane type and each spectrum was averaged from 256 scans collected from 1800 cm-1 to 

800 cm-1. 
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2.2.4 Membrane pore size measurements 

Membrane potential technique [80] was used to measure the effective pore sizes of the NF 

membranes. The membrane sample (exposed area of 12.5 cm2) was held between two acrylic 

half–cells (700 cm3 each) filled with NaCl solutions at different concentrations but identical pH, 

temperature and hydrostatic pressure. The ratio of ion concentrations in the two half cells, 

, was maintained at a constant value of 2, with the active layer always facing towards the 

half-cell with higher concentration. NaCl concentrations ranged between 3 – 250 mM. Each 

experiment was repeated at least twice and the electrodes were also interchanged between the 

two compartments to cancel the asymmetric potential effect [80]. Prior to each experiment, the 

membrane was immersed in solution of lower concentration for at least 24 hours to ensure 

saturation of the support layer and to avoid any interference from the concentration gradient in 

the support layer. All the experiments were carried out at ambient temperature of 22C with 

continuous stirring of each cell using magnetic stirrers. The output from Ag/AgCl electrodes 

(RE–5B, BASi Electronics, West Lafayette, IN) submerged in each cell was amplified 

(INA826EVM, Gain = 97.76, Texas Instruments, Dallas, TX) and measured by a multi–meter 

(Fluke 21 Series II, Fluke Corporation, Everett, WA). The membrane pore radius was calculated 

using the procedure described Table A.1 and the apparatus used for the measurement of the 

membrane potential is shown in Figure A.1 in Appendix A.1. 
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2.2.5 Zeta potential measurements 

Zeta potential of the membranes was analyzed using Surpass 3 Electro–kinetic Analyzer (EKA) 

equipped with the Adjustable Gap Cell (AGC) (Anton Paar, Ashland, VA). For each 

measurement, two 10 mm  20 mm membrane samples were inserted into the AGC and 1 mM 

KCl solution was used as electrolyte to obtain the isoelectric point of each membrane. An 

automatic pH sweep from ~5.6 to 2 was accomplished by the addition of 0.05 M HCl solution 

and from ~5.6 to 10 using 0.05 M NaOH. Following the isoelectric point determination, the 

membranes were also tested with the following electrolyte solutions at pH 5.6  0.1: 1 mM 

Na2SO4, 1 mM Na2SO4 + 1 mM CaCl2 and 1 mM Na2SO4 + 1 mM MgCl2. These experiments 

were designed to determine the change in zeta potential of these NF membranes with the 

addition of divalent cations using sulfate as the base anion. Each of these experiments was 

repeated at least four times with a maximum standard deviation of 4 mV. 

2.3 RESULTS AND DISCUSSION 

2.3.1 ATR–FTIR 

ATR–FTIR spectra of the four NF membranes in the range 1800 – 800 cm-1 are shown in 

Figure 2.2. This range would reflect both the active layer and the polysulfone support layer as the 

FTIR signal has relatively deep penetration (> 300 nm) [63]. Since the focus of this study is to 

differentiate between fully and semi–aromatic membranes, only the relevant peaks are discussed 

here and information about all other peaks is included in Appendix A.1.  
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As seen from Figure 2.2, the peaks at 1664, 1610 and 1545 cm-1 are present only for NF90 and 

TS80 membranes and are absent for NF270 and TS40 membranes. The peak at 1664 cm-1 can 

be assigned to C=O stretching (dominant contributor), C–N stretching and C–C–N deformation 

vibration in a secondary amine group [81, 82]. The peak at 1610 cm-1 is due to N–H 

deformation vibration for the aromatic amide [83] while the peak at 1545 cm-1 is due to amide 

II band for the N–H in–plane bending and N–C stretching vibration of CO–NH group [63]. 

These three peaks are clearly seen to be absent from the spectra obtained for the semi–aromatic 

membranes (NF270 and TS40). On the other hand, the peak at 1630 cm-1 is observed only in 

the case of NF270 and TS40 and is absent for NF90 and TS80 membranes. This peak is due to 

amide I band (poly(piperazineamide)) [84]. Tang el al. [63] have shown that NF90 and NF270 

are uncoated NF membranes by comparing the FTIR and XPS spectra of several commercially 

available NF membranes. Figure 2.2 shows that the spectra for TS80 is identical to NF90 and 

that of TS40 is identical to NF270. Based on these results, it can be concluded that TS80 and 

NF90 are uncoated fully aromatic polyamide membranes and TS40 and NF270 are uncoated 

semi–aromatic poly(piperazineamide) membranes. Therefore, this study included two 

membranes that are truly representative of each category of membrane chemistry (i.e., full 

aromatic (MPD–TMC) and semi–aromatic (PIP–TMC)) without any coating or any 

modifications of the polyamide and poly(piperazineamide) active layers. 
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Figure 2.2. ATR–FTIR spectra of NF270, TS40, TS80 and NF90 nanofiltration membranes 

2.3.2 Effective pore size measurements 

Variation of membrane potential ( ) with chloride concentration is shown in Figure 

2.3. Each point on this figure represents a mean of at least four measurements at each 

concentration of the single salt (NaCl). As can be seen from Figure 2.3, the membrane potential 

first increases with an increase in chloride concentration and then plateaus, which corresponds to 

the diffusion potential (i.e., limiting value at high concentration) where both the image forces 

and the Donnan (charge) effects are screened [80]. A maximum standard deviation of  0.6 mV 

was observed for membrane potential values when chloride concentration in solution was below 

0.1 M and it was only  0.1 mV at the plateau of membrane potential. The asymmetry potential 

was below  0.1 mV. 
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The effective mean pore sizes of the four NF membranes were evaluated using plateau 

levels of the membrane potential (i.e., diffusion potential) where the diffusion potentials of 6.14 

mV, 6.0 mV, 5.66 mV and 5.45 mV were measured for NF90, TS80, TS40 and NF270 

membranes, respectively. Using the procedure described in Appendix A.1, the effective mean 

pore radii of 0.68  0.02 nm, 0.71  0.02 nm, 0.80  0.03 nm and 0.87  0.02 nm were 

calculated for NF90, TS80, TS40 and NF270 membranes, respectively. Thus, the calculated 

effective pore sizes of these four membranes differed only slightly (i.e., 0.19 nm difference 

between NF90 and NF270). Also, it was noted that the two semi–aromatic membranes (TS40 

and NF270) had larger effective pore sizes as compared to the two fully aromatic membranes 

(NF90 and TS80). Lo et al. [85] used Density Functional Theory (DFT) analysis to suggest that 

the reaction between MPD and TMC (i.e., FA membranes) is much facile as compared to the 

reaction between PIP and TMC (i.e., SA membranes), which explains the greater crosslinking 

and smaller effective pore size for fully aromatic membranes. 

 

 

Figure 2.3. Membrane potential as a function of chloride concentration in solution 

 



 25 

 The mean pore size of NF membranes can been measured using three different 

techniques: 1) atomic force microscopy (AFM) [86, 87], 2) retention of neutral organic solutes of 

different molecular weights [66, 88] and 3) membrane potential analysis (used in this study) [68, 

80]. Selection of a particular method should be based on specific application because NF 

membranes behave differently in different feed solutions. This study is focused on the rejection 

of inorganic ions and hence membrane potential technique is more suitable for pore size 

measurements because it is based on the diffusional potential of ionic species through the 

membrane pores. Hilal et al. [87] used AFM technique and reported the membrane pore radii of 

NF90 and NF270 membranes to be 0.257 nm and 0.341 nm, respectively. Nghiem et al. [88] 

reported the pore radii of NF90 and NF270 membranes as 0.34 nm and 0.42 nm, respectively, by 

modelling the retention data of organic solutes of different molecular weights. Mean pore sizes 

determined in this study differ for both membranes but they agree that pore size of NF90 is 

smaller than the pore size of NF270 membrane. Similarly, by modelling the retention data of 

neutral organic solute, mean pore radius of TS80 membrane ( 0.52 nm) has been reported to be 

smaller than that of TS40 membrane (0.65 nm) [89].  

AFM provides a semi–visual determination of the pore size since only the membrane 

surface is evaluated and no transport of species takes place through the membrane. It is known 

that the pores in the NF membranes are non–homogeneous and hence surface evaluation of pores 

cannot accurately determine the mean effective membrane pore radius. In case of modeling the 

retention data of neutral organic solutes of different molecular weights, actual retention 

experiments have to be carried out in order to measure the rejections, which involves introducing 

a convective factor in these experiments. Hence, in addition to the dependence of the effective 

membrane pore radius on the steric partitioning coefficient, it is now also dependent on the 
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convective hindrance factor. In the case of membrane potential technique, the effective pore 

radius is dependent on only the diffusive hindrance factor or the steric partitioning coefficient 

since there are no convective forces at play. This difference in the convective and diffusive 

hindrance factors contributes to the observed differences in the measured effective membrane 

pore radii between the membrane potential technique and neutral organic molecule retention 

technique. 

Apart from the membrane pore size measurements, the results in Figure 2.3 can also be used to 

determine the approximate solute concentration where the Donnan (charge) separation potential 

becomes negligible. As can be seen from this figure, the Donnan (charge) separation potential 

has already canceled out at chloride concentration of 0.09 M for all four membranes as 

evidenced by the leveling of the membrane potential. This observation indicated that hindered 

diffusion and convection are the only relevant transport mechanisms in NF systems where the 

ionic strength of the feed is above about 0.1 M. 

2.3.3 Zeta potential measurements 

Figure 2.4 (a) shows zeta potential of the four nanofiltration membranes in the pH range 

between 2 – 10 using 1 mM KCl as the electrolyte. It can be seen from this figure that the 

isoelectric points (IEPs) for NF90, TS80, NF270 and TS40 membranes are 4.60, 2.54, 2.43 and 

2.40, respectively. An IEP in the neighborhood of pH 4 typically indicates that the surface is 

either neutral or inert [51]. Hence, the zeta potential for NF90 suggests that it has similar 

concentrations of dissociable acidic carboxylic groups and basic amine groups. The remaining 

three membranes have low IEP, which indicates dominance of dissociable acidic carboxylic 

groups over dissociable basic amine groups. Artug et al. [79] and Tu et al. [90] have reported the 
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IEP’s of NF90 and NF270 at 4.2 and 2.8 and 4 and 2.8, respectively. Since the reaction between 

MPD and TMC (i.e., FA membranes) is much facile as compared to the reaction between PIP 

and TMC (i.e., SA membranes) [85], there will be more unreacted acyl chloride in the active 

layer in the case of PIP–TMC (i.e., SA type) and the charged carboxylic entities will impart more 

negative surface potential to these membranes. TS80 membrane has IEP very close to that of the 

SA type membranes even though it has been confirmed to be a FA type membrane (Figure 2.2). 

The excess carboxylic groups on TS80 membrane suggests that this membrane may have been 

immersed in the TMC solution for a longer time during the interfacial polymerization process as 

compared to NF90. 

 

 

Figure 2.4. (a) Isoelectric Point (IEP) determination (with 1 mM KCl) (b) Zeta potentials with different solution 

composition (1) 1 mM Na2SO4; (2) 1 mM Na2SO4 + 1 mM MgCl2; (3) 1 mM Na2SO4 + 1 mM CaCl2, pH = 5.6  

0.1) for NF90, TS80, NF270 and TS40 membrane 
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Zeta potentials of the selected membranes were also measured using three different 

electrolytes at pH = 5.6  0.1 as shown in Figure 2.4 (b).  The results in this figure suggest that 

both SA type membranes (i.e., NF270 and TS40) have a more negative zeta potential than both 

FA type membranes (i.e., NF90 and TS80), which suggests that the contribution of Donnan 

(charge) exclusion towards the separation by SA type membranes would be greater than for FA 

type membranes. Figure 2.4 (b) also shows an increase in zeta potential with the addition of 

divalent cations to the electrolyte solution for all four membranes. Childress et al. [91, 92] 

proposed that the complex formation or electrostatic interactions between the divalent cations 

and the negatively charged membrane surface lead to adsorption of cations on membrane surface 

and an increase in zeta potential, which was also supported by other studies [93, 94]. It can also 

be observed from Figure 2.4 (b) that the relative increase in zeta potential is about the same for 

TS80, TS40 and NF270 membranes but is less pronounced for NF90 membrane, which is due to 

the fact that NF90 is less electronegative than the other three membranes (Figure 2.4 (a)). Also, 

the similar zeta potential values measured with the addition of Ca2+ and Mg2+ can be explained 

by the fact that both Ca2+ and Mg2+ have similar diffusivity and Stokes radii (Table A.2, 

Appendix A.1) and hence have a similar impact on the membrane surface. The main conclusion 

from the zeta potential study is that the semi–aromatic membranes are more electronegative and 

have more fixed charges on the membrane surface compared to the fully aromatic membranes. 

2.3.4 Membrane performance 

Membrane permeability was measured with DI water where the permeate flux was 

monitored for two hours and is shown in Figure 2.5. Figure 2.5 (a) shows linear dependence of 

measured permeate flux on operating feed pressure and hence provides evidence that the 
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effective pore sizes of the four membranes reflect their pure water permeability values. Also, the 

selected operating feed pressure of 20 bar for all crossflow rejection experiments in this study, 

was in between the linear ‘pure water flux – operating feed pressure’ range. In addition, pure 

water permeability values correlate well with the membrane pore radii measured using 

membrane potential method (Figure 2.5 (b)). An increase in the permeate flux of 143% (4.7 

LMH/bar for NF90 to 11.4 LMH/bar for NF270) was measured with an increase in the effective 

pore radii of 28% (0.68 nm for NF90 to 0.87 nm for NF270). Similar values have previously 

been reported by Hilal et al. [95] and Santafe–Moros et al. [96] for NF90 and NF270 

membranes. The membrane potential technique is new and not usually used in literature where 

the method employing MWCO’s to determine the membrane pore radius has been used 

frequently. Hence, it is very difficult to compare the pure water permeability and membrane pore 

radii values of other commercial NF membranes available in literature. It would be interesting to 

investigate the scope of linearity of the curve shown in Figure 2.5 (b) as a function of the 

effective pore radii, however, such an investigation was beyond the scope of this thesis. 

 

 

Figure 2.5. (a) Pure water flux as function of operating feed pressure and (b) Pure water permeability as a function 

of effective membrane pore radii 
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Figure 2.6 shows rejections of various ions for both dilute (Figure 2.6 (a), (b)) and 

concentrated (Figure 2.6 (c), (d)) feed strengths. These experiments were conducted to determine 

the dominant separation mechanism knowing that the surface charge is screened at high ionic 

strength and that the contribution of Donnan effect to separation potential would be negligible.  

 

 

 

Figure 2.6. Rejection of ionic species with feed solutions: (a) 96 mg/l sulfate + 24 mg/l magnesium and (b) 96 mg/l 

sulfate + 40 mg/l calcium, (c) 650 mg/L sulfate + 1000 mg/L magnesium and (d) 650 mg/L sulfate + 1000 mg/L 

calcium 

 

 Figure 2.6 shows that sulfate rejection was always greater than 98% and that the 

FA type membranes performed better than SA type membranes in all cases. High sulfate 

rejection can be explained by negative surface charge of all four membranes for all solution 
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compositions investigated in this study (Figure 2.4). The rejection order of the ionic species 

observed in these experiments is: R(SO4
2–) > R(Cl–) (for anions) and R(Mg2+) > R(Ca2+) > 

R(Na+) (for cations); rejection of magnesium being marginally more or equal to the rejection of 

calcium. According to the Donnan exclusion theory for single salt solutions and negatively 

charged membrane surfaces, the sequence of rejection of cations should be in the order R(Na+) > 

R(Mg2+)  R(Ca2+) [97]. With single salt solutions, the effect of single valence cations on the 

electronegativity of the negatively charged membrane surface will be less drastic as compared to 

that of multi–valence cations [98] and hence, the rejection of Na+ is expected to be greater than 

Mg2+ and Ca2+.  The rejection order of R(Mg2+) > R(Ca2+) > R(Na+) observed in Figure 2.6 with 

multiple ions in the feed can be explained by ionic diffusivity and Stokes radii of magnesium, 

calcium and sodium ions. With multiple ions in the feed, the rejected sulfate will be largely 

electro–neutralized by divalent cations that will also experience greater steric rejection potential 

than the monovalent cations owing to their larger Stokes radii (Table A.2, Appendix A.1). 

Hence, rejection of Mg2+ and Ca2+ will be greater than Na+. When comparing the rejection of 

Mg2+ and Ca2+, the ionic diffusivity and Stokes radii play a major role. Because Mg2+ has lower 

ionic diffusivity and larger stokes radius than Ca2+ (Table A.2, Appendix A.1), it will be rejected 

more than Ca2+. In the case of anions, SO4
2– with a valence of –2 will experience greater 

electronegative repulsion from the negatively charged membrane surface as opposed to Cl–. In 

addition, SO4
2– has larger Stokes radius and lower ionic diffusivity than Cl– (Table A.2, 

Appendix A.1), which will also contribute towards greater rejection of SO4
2– than Cl–. 

 In the case of dilute feed composition (Figure 2.6 (a) and (b)), both Donnan 

(charge) and steric effects would contribute to ion rejection [98]. FA type membranes achieved > 

98% rejection of calcium and magnesium ions while the SA type membranes achieved 92 – 94% 
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rejection of these cations. Also, FA membranes achieved > 95% rejection of sodium and chloride 

ions in each case while the rejection of these ions by SA membranes ranged between 62 – 73%. 

The fact that SA membranes achieved lower ion rejection despite having more electronegative 

surfaces than FA membranes (Figure 2.4) clearly suggests that the steric rejection potential can 

be more dominant in determining the overall rejection by a particular membrane. Lower rejection 

by SA type membranes is explained by their larger effective pore size compared to FA type 

membranes. Comparison between two membranes of the same category (i.e. FA membrane type) 

shows that both FA membranes achieved similar rejection of all ions although TS80 membrane 

is more electronegative than NF90 membrane (Figure 2.4). Such behavior suggests that the 

contribution of charge effects (Donnan potential) towards rejection by FA type membranes is 

weak. Slightly better rejection of sodium and chloride ions by NF90 membrane is due to smaller 

pores compared to TS80 membrane.  

For high feed ionic strength (i.e., addition of 1,000 mg/L of calcium or magnesium to the 

feed), the rejection of divalent ions (i.e., sulfate, magnesium and calcium) changed only slightly 

(3% or less) for both FA and SA type membranes (Figure 2.6 (c) and (d)). However, the rejection 

of sodium and chloride ions was affected by the elevated ion concentrations in the feed (Figure 

2.6 (c), (d)) as compared to those achieved with dilute feed (Figure 2.6 (a), (b)). The decrease in 

the rejection of sodium with an increase in feed concentration was significant for SA membranes 

where it decreased by at least 30% compared to the dilute feed conditions while it changed by 

5% or less for FA membranes. This decrease in rejection for semi–aromatic membranes occurs 

when the Donnan separation potential has been screened out and is no longer assisting the 

separation, which suggests that Donnan potential contributed significantly to separation at dilute 

feed conditions for SA membranes. Additional ion rejection experiments were also carried out at 
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low and high ionic feed strengths with different feed composition. The results from these 

experiments also support the conclusion of dominant dependence of fully aromatic membranes 

on steric exclusion potential and that of semi–aromatic membranes on both steric and Donnan 

exclusion potential and are discussed in the Appendix A.1 (Figure A.2). It is also important to 

note that the addition of cations to the feed is accompanied by the increase in chloride 

concentration because all cations were added as their chloride salts. The quantum of chloride 

ions diffusing to the permeate side is dependent on the sodium ions diffusing through the 

membrane to maintain electroneutrality because the divalent cations are effectively rejected by 

all membranes. Hence, there is a relative increase in chloride rejection with an increase in the 

ionic strength of the feed.  

Crossflow rejection experiments with dilute feed indicated that fully aromatic membranes 

achieved similar rejection despite the differences in surface charge and suggest that the rejection 

by FA membranes is predominantly dependent on the pore size effects (i.e., size exclusion) and 

that the contribution of Donnan (charge) effects is rather weak. Also, rejection experiments with 

high ionic strength feed confirmed the weak contribution of Donnan (charge) exclusion effects 

on the rejection of inorganic ions by these membranes. On the other hand, increase in the ionic 

strength of the feed solution when the Donnan exclusion effects are negligible due to charge 

screening strongly influenced ion rejection by semi–aromatic membranes, which confirmed that 

the Donnan (charge) exclusion contributes significantly to the performance of SA membranes in 

addition to steric hindrance. These results suggest that the fully aromatic nanofiltration 

membranes would be preferred over semi–aromatic nanofiltration membranes in applications 

that require complete removal of inorganic ions (e.g., desalination) while the later would be 

better suited for applications requiring fractional rejections of ionic species (e.g., dairy industry). 
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2.3.5 Other mechanisms 

Another important mechanism for the separation by nanofiltration membranes is by 

dielectric exclusion, which is explained in terms of: (1) Born effects that occur by changes to the 

equilibrium and dynamic properties of the solvent in the confined geometry of the nanopores, 

and (2) image forces due to the difference in dielectric constants between the membrane matrix 

and the solution [53]. Comparison of dielectric exclusion potential for the two membrane types 

(i.e., fully aromatic and semi–aromatic) is difficult because dielectric exclusion occurs by several 

concomitant factors and only a qualitative discussion is possible. When considering only the 

effect of image forces, the contribution of dielectric exclusion to rejection is expected to decrease 

with an increase in the ionic strength of the feed because each ion will interact not only with its 

own polarization charge (i.e., image force) but also with the polarization charges induced by 

neighboring ions, which screens the image forces. Both membrane materials have similar 

dielectric constants of  3 [47, 99] and the contribution of image force to the overall dielectric 

exclusion can be expected to be similar for both membrane types. In addition to screening of 

interactions by polarization charges induced by neighboring ions, polarization charges are also 

induced by fixed membrane charges. This screening will be stronger in the case of semi–

aromatic nanofiltration membranes than that for fully aromatic nanofiltration membranes 

because they have greater fixed surface charge (Figure 2.4). Considering the Born effects, the 

structural changes of water in a confined medium affect the free energy of ion transfer from 

external solution into nanopores of the NF membranes [100]. Yaroshchuk [53] showed that the 

rejection by dielectric effects is more prominent for smaller pores. Because fully aromatic 

membranes have narrower pores than semi–aromatic membranes, the contribution of Born 
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effects to rejection by dielectric exclusion would be higher for FA membranes than SA 

membranes. The screening by fixed membrane charges is expected to be greater in the case of 

semi–aromatic membranes and it is reasonable to expect that the contribution to the overall 

rejection by dielectric exclusion would be more prominent in the case of fully aromatic 

nanofiltration membranes. 

2.4 CONCLUSIONS 

This study contributes significantly to understanding the separation mechanisms of two types of 

commonly used nanofiltration membranes with a view of realizing new potential applications. 

We first analyze the active layer chemistries of four commercially available nanofiltration 

membranes with two different active layer chemistries: fully aromatic or polyamide (1,3–

benzenediamine (m–phenylenediamine) (MPD) with trimesoyl chloride (TMC) and semi–

aromatic or poly(piperazineamide) (piperazine (PIP) with TMC) to prove that these membranes 

are representative of the respective categories with no coatings or modification of the active 

layer. Effective membrane pore size and zeta potential characterization of the four membranes 

suggests that semi–aromatic membranes have relatively larger pore sizes and that they are more 

electronegative for all feed compositions tested. Crossflow rejection experiments at low and high 

feed ionic strength suggest that Donnan (charge) exclusion is significant for semi–aromatic 

membranes and that these membranes should be preferred in applications requiring partial ion 

removal (e.g., dairy industry) or charged based separations (e.g., charged organic separations), 

while fully aromatic membranes should be considered in desalination applications. Qualitative 

analysis suggests that the contribution of dielectric exclusion to overall rejection by fully 
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aromatic membranes would be more significant than semi–aromatic membranes. This study 

offers additional insights into how the separation potentials of polyamide and 

poly(piperazineamide) active layer chemistries vary even with a very small difference in the 

effective membrane pore size. 
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3.0  INFLUENCE OF CHEMICAL CLEANING ON PHYSICOCHEMICAL 

CHARACTERISTICS AND ION REJECTION BY NANOFILTRATION MEMBRANES 

This work is under review as: 

 S.S. Wadekar, Y. Wang, O. R. Lokare, R.D. Vidic, Influence of chemical cleaning on 

physicochemical characteristics and ion rejection by thin film composite nanofiltration 

membranes, (2018), under review with Journal of Membrane Science. 

 

The impact of chemical cleaning on the rejection of inorganic ions by different 

nanofiltration membranes was determined to be dependent on the physicochemical 

characteristics and separation potentials of their active layers. The active layers underwent no 

chemical changes after cleaning with HCl or NaOH. Cleaning with NaOH decreased the negative 

zeta potential values for membranes with greater concentration of carboxylic acid groups on the 

membrane surface rendering the zeta potential to be always negative. Effective membrane pore 

radii increased post cleaning, especially for poly(piperazineamide) membranes. Exposure to 

NaOH was found to cause an increasing swelling of the membrane active layer after each 

cleaning, which was clearly evident for poly(piperazineamide) membranes. Rejection of sulfate 

decreased only slightly even for poly(piperazineamide) membranes despite their appreciable 

increase in pore radii.  Such behavior can be explained by the impact of charge exclusion on ion 

rejection that was enhanced by the reduction in zeta potential after NaOH cleaning. A 23% 
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increase in the effective pore radii for the poly(piperazineamide) membranes after NaOH 

cleaning for 18 h lead to 25, 36, 53 and 62% decrease in the rejection of magnesium, calcium, 

sodium and chloride ions, respectively.   However, only a 7% decrease in the rejection of sulfate 

ions was observed. This behavior can be explained by the 16% decrease in zeta potential. The 

increase in permeability after chemical cleaning is in agreement with a decrease in the rejection 

of inorganic ions. The effective pore radii measured using the membrane potential technique 

correlated well with DI water permeability for all membranes before and after cleaning. The 

importance of charge exclusion in rejection of inorganic ions was highlighted by the observed 

differences in rejection and permeability values when testing membranes after chemical cleaning 

with NaOH for 9 and 18 h.  

3.1 INTRODUCTION 

The use of nanofiltration (NF) and reverse osmosis (RO) membranes for desalination 

purposes, wastewater treatment and recovery has been continuously escalating owing to the cost 

reduction and technological advancements [13, 62]. Typical modern NF membranes are thin film 

composite (TFC) membranes made of three layers: topmost is the ultrathin active layer (20 – 

200 nm) responsible for the rejection, permeability, hydrophilicity, and roughness of the 

composite membrane, followed by a polysulfone support matrix (20 – 50 m) and a non–

woven polyester fiber backing (300 m) for mechanical stability and strength [29]. A 

membrane’s capability to deliver stable performance not only depends on the characteristics of 

its active layer but also how easily can it be cleaned to restore its original performance. All 

membrane processes are affected by membrane scaling or fouling at high water recoveries. 
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Membrane scaling or fouling that is usually caused by the deposition of organic and colloidal 

matter as well as precipitation of inorganic salts on the membrane surface increases mass transfer 

resistance and greatly affects membrane performance. It is dependent on the type and 

composition of the feed solution, process flow conditions, antiscalants use, etc. [55] Thus, 

periodic chemical cleaning to recover the permeate flux and solute rejection is an inevitable step 

in NF/RO membrane applications and is considered a major drawback of NF/RO filtration 

processes [56]. Typically, chemical cleaning is initiated when there is a 10% drop in the 

normalized permeate flow or a 15% increase in the normalized pressure drop (feed pressure 

minus concentrate pressure) or when the normalized salt passage increases by 5 – 10% [57, 58]. 

  Several studies have addressed the impacts of different cleaning chemicals on 

various types of foulants [59-61] with acidic and basic cleaning solutions being most common. 

However, effects of cleaning chemicals on the membrane performance have only been more 

recently addressed. A need for extensive research on cleaning of NF membranes [55, 56, 101] 

addressed studies on the effects of chemical cleaning on NF membrane performance [102-111]. 

Interestingly, a particular cleaning chemical can have different effects on the performance of 

different NF membranes. For instance, Fujioka et al. [109] reported a permeability increase of 

54% for NF270 membrane with caustic cleaning at pH 12 while Tu et al. [110] reported a 

permeability increase of 5% with caustic cleaning with ESPA2 membrane. In several cases, even 

contradictory results have been reported. Liikanen at el. [59] reported a 15 – 20% decrease in 

conductivity rejection as a result of caustic cleaning with NF255 membrane and on the contrary, 

Al–Amoudi et al. [107] reported an increase in NaCl rejection with the DK and DL membranes 

with after cleaning. In general, the impact of chemical cleaning on the rejection of inorganic salts 

remains rather inconclusive in the literature.  
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NF membranes have been shown to achieve rejection of ionic species by three important 

mechanisms: size (steric), charge (Donnan) and dielectric exclusion [65, 112]. These 

mechanisms vary with different NF active layers and feed composition. We have shown that 

semi–aromatic poly(piperazineamide) (PP) (i.e., piperazine – trimesoyl chloride type chemistry) 

NF membranes rely on both charge and size exclusion to achieve rejection of ionic species as 

opposed to fully aromatic polyamide (PA) (i.e., 1,3–benzenediamine – trimesoyl chloride type 

chemistry) NF membranes where size exclusion is the dominant separation mechanism [1]. In 

addition, Freger et al. [86]  have also found that PA membranes were more rigid and presumably 

more regularly packed than PP membranes. Most of the studies to understand the impacts of 

chemical cleaning on the performance of NF/RO membrane have used organic molecules [102-

105] and only few studies have used magnesium sulfate [107, 111] as solute. No study has used a 

mixture of salts to explain the effects of chemical cleaning, which may explain the dearth of 

knowledge related to the effect of chemical cleaning on the rejection of inorganic salts. In order 

to understand the role of charge (Donnan) exclusion in addition to the normally studied size 

exclusion phenomenon it is important to study the rejection characteristics with divalent salts or 

a mixture of salts. 

 The aim of this study was to investigate the impact of acidic and caustic chemical 

cleaning on separation characteristics of two types of commonly used nanofiltration active layer 

membrane types – polyamide (PA) and poly(piperazineamide) (PP). Chemical cleaning was 

simulated by exposing pristine membrane samples to analytical grade HCl (pH 2) and NaOH (pH 

12) solutions for different cleaning times. Chemical changes to the active layer chemistry post 

cleaning were monitored using ATR–FTIR and XPS, surface charge characteristics were studied 

by measuring zeta potentials and any conformal changes were monitored by measuring the 
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effective membrane pore radii using the membrane potential method. Performance changes were 

quantified by ion rejection and permeability measurements carried out using a variety of feed 

solutions to understand size and charge exclusion mechanisms for the two types of active layers 

post chemical cleaning. 

3.2 EXPERIMENTAL 

3.2.1 Membranes and chemicals 

Four commercially available flat sheet NF membranes, two each of fully aromatic polyamide 

(PA) and semi–aromatic poly(piperazineamide) (PP) active layer chemistry were selected for the 

study. All membranes were thin film composites with a polysulfone support layer followed by a 

fabric for mechanical support. These membranes have been tested elsewhere and it has been 

confirmed that they are truly representative of each category of membrane chemistry (i.e., fully 

aromatic PA and semi–aromatic PP) without any coating or any modifications of the PA and PP 

active layers [1, 113]. NF90 and NF270 membranes were purchased from DOW Filmtech 

(Edina, MN); TS40 and TS80 were purchased from Sterlitech Corporation (Kent, WA) and key 

properties of these membranes are shown in Table 3.1. MilliQ deionized (DI) water (resistivity = 

18 kohm.cm-1, Millipore, Billerica, MA) was used to prepare all test solutions. Analytical grade 

Na2SO4.10H2O, CaCl2.2H2O, MgCl2.6H2O, HCl and NaOH were purchased from Fisher 

Scientific (Pittsburgh, PA). 
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Table 3.1. Characteristics of membranes used in this study 

 
a[79], b[76], cProvided by manufacturer, d[1] 

3.2.2 Filtration and chemical cleaning process 

All rejection experiments were carried out in the laboratory–scale SEPA–CFII test cell (GE 

Osmonics, Minnetonka, MN) with a usable membrane area of 140 cm2 [6, 114]. New membrane 

was immersed in DI water for 24 hours to allow for complete wetting. Considering a typical 

membrane life of 4 – 5 years with chemical cleaning applied once every 3 – 4 months [115, 116], 

a membrane encounters a total of 15 – 18 h of contact with the chemical cleaning solution. 

Hence, 9 and 18 h were selected to simulate repetitive membrane cleaning cycles over average 

half and full life of the membrane. Chemical cleaning was performed by soaking the membranes 

in HCl (at pH 2) or NaOH (at pH 12) in aluminum foil covered Pyrex glass bottles with PTFE 

(polytetrafluoroethylene) caps and the contents were mixed on a shaker for 9 or 18 h at 23C. 

Post cleaning, each membrane was gently rinsed with flowing DI water and tested in the SEPA–

CFII crossflow unit after compaction at 50 bar for 1 h to avoid any compression effects during 

testing. The feed pressure was adjusted to 20 bar and the system was operated until stable 

permeate flux was established. The feed solution was adjusted to a desired composition and the 

system was monitored for 2 – 3 h until stable permeability and feed/permeate conductivities were 

verified. Samples were then collected to determine ion rejections. Rejection experiments were 
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conducted with both pristine and chemically cleaned NF membranes with 1 mM sulfate in the 

feed. Sulfate was selected as target ion instead of commonly used sodium chloride because NF 

membranes are primarily used to reject divalent ions. Crossflow rejection tests were also 

performed with 1 mM sodium sulfate + 1 mM calcium chloride + 1 mM magnesium chloride as 

feed in order to elucidate the relative importance between steric and charge exclusion 

mechanisms. All experiments were conducted in total recirculation mode (i.e., circulating the 

permeate, concentrate and reject back to the feed tank to maintain constant feed concentration) at 

a constant feed pH = 5.6  0.1, temperature = 23  1C, feed flow rate = 1 GPM (corresponding 

crossflow velocity = 0.77 m/s) and feed pressure = 20 bar. All rejection experiments were 

performed in duplicate within 2 hours after chemical cleaning. 

3.2.3 Membrane characterization 

3.2.3.1 Attenuated total reflection – Fourier transform infrared spectroscopy (ATR–FTIR) 

Infrared spectra were obtained using VERTEX–70LS FTIR spectrometer (Bruker, 

Billerica, MA) with the active layer of the membrane pressed tightly against the ZnSe crystal to 

determine the chemical composition of the active layer before and after chemical cleaning. At 

least two replicates were obtained for each membrane type and each spectrum was averaged 

from 256 scans collected from 1800 cm-1 to 800 cm-1. 

3.2.3.2 X–ray photoelectron spectroscopy (XPS) 

X–ray photoelectron spectroscopy (XPS) analysis was performed to quantify elemental 

composition before and after chemical cleaning using ESCALAB 250Xi instrument (Thermo 
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Scientific, Pittsburgh, PA) with a monochromatic Al Kα X–ray source (1486.7 eV, 650 m spot 

size). High resolution scans with a step size of 0.1 eV were collected for carbon (C 1s), oxygen 

(O 1s), nitrogen (N 1s), chloride (Cl 2p) and sodium (Na 1s). A minimum of three replicate 

analysis was performed for each membrane sample that was vacuum dried for  12 h. 

3.2.3.3 Membrane pore size measurements 

Effective membrane pore sizes were measured using the membrane potential technique 

[80] to quantify the effect of chemical cleaning using the experimental protocol developed 

previously [1, 80]. Briefly, a membrane sample with an exposed area of 12.5 cm2 was inserted 

between two acrylic half cells (700 cm3 each) filled with NaCl solutions at different 

concentrations but identical hydrostatic pressure, pH and temperature. NaCl concentrations in the 

two half cells were adjusted to 3 – 250 mM with the active layer always facing towards the half 

cell with higher concentration and the potential difference was measured using Ag/AgCl 

electrodes (RE–5B, BASi Electronics, West Lafayette, IN). Each experiment was repeated at 

least twice and the electrodes were interchanged between the two compartments to cancel the 

asymmetric potential effect [80]. Prior to each experiment, the membrane was immersed in 

solution of lower concentration for at least 24 hours to ensure saturation of the support layer and 

to avoid any interference from the concentration gradient in the support layer. All experiments 

were performed at ambient temperature of 23C with continuous stirring. The membrane pore 

radius was calculated using the measured membrane potential and diffusion coefficients and 

Stokes radii for sodium and chloride ions. 
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3.2.3.4 Zeta potential measurements 

Surpass 3 Electro–kinetic analyzer equipped with the Adjustable Gap Cell (AGC) (Anton 

Paar, Ashland, VA) was used for zeta potential measurements with 1 mM KCl solution as 

electrolyte. An automatic pH sweep from ~5.6 to 2 was accomplished by the addition of 0.05 M 

HCl solution and from ~5.6 to 10 using 0.05 M NaOH. These experiments were designed to 

determine the change in surface charge characteristics post chemical cleaning. Each of these 

experiments was repeated at least three times with a maximum standard deviation of 3.6 mV. 

3.3 RESULTS AND DISCUSSION 

3.3.1 Membrane characterization 

Several membrane characterization techniques were used to evaluate the effects of chemical 

cleaning. ATIR–FTIR and XPS were used to determine any changes in the chemical composition 

of active layers. Changes in the surface charge were analyzed using zeta potential measurements 

and any conformal changes were evaluated based on the effective membrane pore radii. Also, 

membrane surface and cross section were imaged using scanning electron microscope (SEM) 

and are discussed in Appendix A.2.   

3.3.1.1 ATR–FTIR analysis 

ATR–FTIR spectra of the four NF membranes before and after chemical cleaning are 

shown in Figure 3.1. To investigate interactions between the cleaning chemicals and active layer, 

the scan was performed in the range of 800 – 1800 cm-1 to capture all peaks corresponding to the 
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polyamide and poly(piperazineamide) active layers [63]. However, FTIR signal has relatively 

deep penetration (> 300 nm) and peaks corresponding to the polysulfone support layer were also 

detected. Since the main focus of this study is to characterize the membranes before and after 

chemical cleaning tests, only relevant results will be discussed. Full peak characterization [63] 

and evidence showing that NF90 and TS80 membranes correspond to uncoated PA and that 

NF270 and TS40 membranes correspond to uncoated PP can be found elsewhere [1, 113]. 

Important characteristic peaks to differentiate between the two types of active layer chemistries 

are highlighted in Figure 3.1. 
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Figure 3.1. ATR–FTIR spectra of (a) fully aromatic polyamide, i.e., TS80 and NF90 and (b) semi–

aromatic poly(piperazineamide), i.e., TS40 and NF270 membranes before and after chemical cleaning 

 

As can be seen in Figure 3.1, ATR–FTIR scans had identical characteristic peaks for 

virgin and chemically cleaned membranes indicating that these membranes are chemically 

resistant to HCl (pH 2) and NaOH (pH 12) solutions even after 18 h of exposure at 23C. 

Recently, Kallioinen et al. [111] reported minor changes in the chemical structure of 

nanofiltration membranes as observed by IR spectra with commercial membrane cleaning 

solution. However, these changes were observed at 70C while these results are in agreement 

with those observed in other cleaning studies at lower temperatures [105].  

ATR–FTIR analysis can also be used to determine the relative active layer thickness of 

these four NF membranes based on the intensity ratio between the characteristic peaks 

corresponding to the active layer and that corresponding to the polysulfone support layer [117]. 

Peaks at 1545 and 1630 cm-1 that correspond to the Amide II band for N–H bending in PA 

membranes and Amide I band in PP membranes respectively [63] were chosen to quantify PA 

and PP in the active layers, respectively. Peaks at 1488, 1504 and 1587 cm-1 correspond to the 
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aromatic in–plane ring bend stretching vibration assignable to the polysulfone support matrix 

[118] and the peak at 1587 cm-1 was chosen to quantify the active layer thicknesses. Table 3.2 

shows relevant intensity ratios (i.e., I1545/1587 for PA and I1630/1587 for PP) for the four membranes 

tested in this study. The intensity ratios are ranked in the following order: NF90 > TS80 > TS40 

> NF270, which means that the active layer thicknesses of these membranes will also be in the 

same order. Generally, the active layer thickness of PA membranes were greater than PP 

membranes, which can be explained by the much facile reaction between MPD and TMC in PA 

membranes compared to that between PIP and TMC in PP membranes) [85]. For reference, the 

active layer thickness of NF270 membrane was reported to be around 15 – 40 nm [105]. 

 

Table 3.2. Intensity ratios between the bands at 1545 and 1587 cm-1 (I1545/1587) for pristine fully aromatic polyamide 

(NF90, TS80) membranes and between the bands at 1630 and 1587 cm-1 (I1630/1587) for pristine semi–aromatic 

poly(piperazineamide) membranes (TS40, NF270) 

 

3.3.1.2 XPS analysis 

Because the penetration depth in XPS analysis is < 10 nm [119], this technique provides 

quantitative analysis of just the active layers of NF membranes and can be used to approximate 

the degree of crosslinking in their active layer. Figure 3.2 shows elemental composition of active 
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layers of the four NF membranes before and after chemical cleaning. No discernible changes in 

the elemental composition were detected for any cleaning procedure, which is consistent with 

ATR–FTIR findings. Fully crosslinked and fully linear PA membranes can be represented as 

C6H4ON and C15H10O4N2, respectively while PP membranes can be represented as C5H5ON and 

C13H12O4N2, respectively [63]. The corresponding carbon content in fully crosslinked and fully 

linear PA membranes is 75 and 71.4% and 71.4 and 68.4% for PP membranes, respectively (H 

was excluded from calculation since XPS is not suitable for analyzing hydrogen atoms). The 

carbon content of the active layers in NF90 and TS80 membranes was 74.3%  0.4% and 73.0% 

 0.2%, respectively indicating that NF90 membrane had relatively higher crosslinking than the 

TS80 membrane. The carbon content in the active layer of TS40 and NF270 membranes was 

70.7%  0.1% and 69.6%  0.3%, respectively indicating that the degree of crosslinking was 

relatively higher for TS40 membrane than NF270 membrane. Representative XPS survey spectra 

and high resolution scans for carbon (C 1s), oxygen (O 1s), nitrogen (N 1s), chloride (Cl 2p) and 

sodium (Na 1s) are included in Appendix A.2 (Figures A.7 and A.8). 
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Figure 3.2. Percent atomic compositions of active layers determined using XPS for fully aromatic polyamide i.e., 

NF90, TS80 and semi–aromatic poly(piperazineamide) i.e., TS40, NF270 membranes before and after chemical 

cleaning 

3.3.1.3 Zeta potential measurements 

Figure 3.3 shows zeta potential of the four membranes in the pH range between 2 and 10 

using 1 mM KCl as electrolyte. The iso–electric point (IEP) (i.e., pH at which there is an equal 

surface concentration of dissociated carboxylic acid and amine groups) for the pristine NF90, 

TS80, TS40 and NF270 membranes was measured as 4.60, 2.54, 2.43, and 2.40, respectively. 

These values are close to those reported in the literature [79, 90, 113]. An IEP in the 
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neighborhood of 4 typically indicates that the surface is either inert or neutral and an IEP close to 

3 indicates dominance of dissociable acidic carboxylic groups over dissociable basic amine 

groups [51]. The results of this study suggest that NF90 membrane had similar concentrations of 

dissociable acidic and basic groups at the membrane surface while the dissociable carboxylic 

acid groups dominated in the remaining three membranes, i.e., TS80, TS40 and NF270.  

 

 

Figure 3.3. Zeta potential with 1 mM KCl as electrolyte for fully aromatic polyamide i.e., (a) NF90, (b) TS80 and 

semi–aromatic poly(piperazineamide) i.e., (c) TS40, (d) NF270 membranes before and after chemical cleaning 

 

 Cleaning with HCl had no significant impact on zeta potential of all four 

membranes because the observed changes were between 0.5 – 5%.  Furthermore, NaOH cleaning 

of NF90 membrane (Figure 3.3 (a)), which was shown to have equal concentration of dissociable 

carboxylic and amine groups on the membrane surface, also had negligible impacts (< 3% 
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change). Discernible changes in the zeta potential of NF90 membrane were reported after 

cleaning with commercial cleaning solutions [105]. These commercial cleaning solutions 

included MC11 (a caustic cleaning formulation at pH 11.2 with blended detergent builders, pH 

buffer and chelating agents including ethylenediaminetetraacetic acid (EDTA), sodium 

tripolyphosphate (SDP) and trisodium phosphate (TSP)), MC3 (an acidic cleaning formulation at 

pH 3 consisting of organic acids, detergent builders and chelating agent SDP) and PC98 (a 

caustic cleaning formulation at pH 11 containing amphoteric surfactants and the chelating agent 

EDTA), which may explain the difference in the observed effects. On the other hand, zeta 

potential of TS80, TS40 and NF270 membranes (Figure 3.3 (b), (c) and (d)) became slightly 

more negative after cleaning with NaOH solution. Figure 3.4 shows zeta potential for the four 

membranes at pH = 5.6  0.1 with 1 mM KCl as electrolyte before and after chemical cleaning. 

With NaOH cleaning, the decrease in zeta potentials ranged between 10 – 16% with the 

maximum decrease corresponding to NF270 membrane where the zeta potential decreased (i.e., 

became more negative) from –43.8  1.6 mV for the pristine membrane to –50.6 mV  2.7. 

Moreover, the IEP’s of TS80, TS40 and NF270 membranes could not be detected after cleaning 

with NaOH as the zeta potential remained negative over the entire pH range from 2 – 10. These 

results indicate that there is a correlation between the relative concentration of carboxylic and 

amine groups on the membrane surface and cleaning with NaOH. Simon et al. [103] reported no 

significant changes in zeta potential of NF270 membrane after cleaning with NaOH while Tian 

et al. [120] suggested that NaOH could react with hydrophilic surface functional groups, thereby 

leading to a surface charge modification as observed in our study. Al–Amoudi et al. [108] also 

reported changes in the measured zeta potential for three different poly(piperazineamide) NF 

membranes post chemical cleaning with HCl, NaOH, SDS and EDTA. 
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Figure 3.4. Zeta potentials at pH = 5.6  0.1 with 1 mM KCl as electrolyte for fully aromatic polyamide i.e., NF90, 

TS80 and semi–aromatic poly(piperazineamide) i.e., TS40, NF270 membranes before and after chemical cleaning 

3.3.1.4 Membrane pore size measurements 

Membrane potential technique was chosen to determine the effective pore radii of NF 

membranes because it is based on the diffusion potentials of ionic species [1] and can be used to 

explain changes in the ion rejection characteristics post chemical cleaning. Figure 3.5 (a) shows 

the measured membrane potential and Figure 3.5 (b) shows the calculated effective pore radii of 

the four tested NF membranes before and after chemical cleaning. As can be seen in these 

figures, the effective membrane pore radii of all membranes increased due to chemical cleaning 

with the PP membranes being affected more than the PA membranes. 
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Figure 3.5. (a) Measured membrane potential and (b) Calculated effective pore radii of fully aromatic polyamide 

i.e., NF90, TS80 and semi–aromatic poly(piperazineamide) i.e., TS40, NF270 membranes before and after chemical 

cleaning 

 

Cleaning the PA membranes with NaOH increased the effective membrane pore radii by 

3 – 6% and minimal changes were measured with increasing NaOH cleaning time. The increase 

in the effective pore radii in the case of PP membranes was more severe and a further increase 

with longer exposure time is evident from the results shown in Figure 3.5 (b). Pore radii of 

NF270 membrane increased after NaOH cleaning for 9 h from 0.87  0.02 nm to 0.98  0.04 nm 

(an increase of 12.6%) and that for TS40 membrane increased by 7.5% from 0.8  0.02 nm to 

0.86  0.03 nm. When cleaning with NaOH for 18 h, a total pore radii increase of 23% and 11% 

for NF270 and TS40 membranes, respectively was measured. The repulsive electrostatic 

interactions between deprotonated (negatively charged) carboxylic acid groups that dominate on 

the active layer surface at high pH that lead to swelling of the membrane polymer matrix [105] 

might explain the observed greater increase in the effective pore radii with NaOH cleaning when 

compared to HCl cleaning. As shown in Sections 3.3.1.1 and 3.3.1.3, the PP membranes had 

lower active layer thickness and higher concentration of carboxylic acid groups compared to PA 

membranes, which can explain the higher impact on the effective pore radii by chemical cleaning 



 55 

with NaOH solution. Although TS80 membrane has higher concentration of carboxylic acid 

groups (like the case with PP membranes) on the active layer (Section 3.3.1.3), it was not 

significantly affected by NaOH cleaning. Such behavior might be explained by the greater active 

layer thickness of this membrane and possibly a higher degree of crosslinking that helps to 

counteract the conformational changes induced by the repulsive negatively charged carboxylic 

acid groups as compared to the PP membranes. The observed impact of NaOH cleaning time on 

the effective pore radii is novel and very interesting. It provides evidence that NaOH has 

capability to cause significant swelling of the membrane active layer, which is more pronounced 

at longer cleaning times. This effect was clearly seen with PP membranes and suggests that 

membranes with lower active layer thicknesses might be severely affected.  

 Also, cleaning with HCl at pH 2 affected all four membranes similarly and the 

effective membrane pore radii increased by 3 – 5%. For instance, the effective pore radii of 

NF90 membrane after exposure to HCl for 9 hours increased by 3% while the corresponding 

increase for NF270 membrane was 4.6%. It is important to note that extending the cleaning time 

with HCl did not further increase the measured effective pore radii for all membranes as opposed 

to the case with NaOH cleaning. 

3.3.2 Membrane performance 

Most of the studies explaining the effects of different cleaning chemicals have been quantified 

based on the rejection of organic molecules [102-105, 109] and very few have used MgSO4 

rejection characteristics [107, 111]. Considering that both size and charge (Donnan) exclusion 

effects are important for the performance of NF membranes [64, 65], it is important to establish 

the impact of chemical cleaning on the rejection of different ionic species to explain the 



 56 

importance of size and charge (Donnan) exclusion effects. Therefore, permeability and rejection 

characteristics before and after chemical cleaning were evaluated with 1 mM Na2SO4 and also 

with a mixture of 1 mM Na2SO4 + 1 mM MgCl2 + 1 mM CaCl2. 

3.3.2.1 Ion rejection 

Sulfate rejection for all four membranes before and after chemical cleaning is shown in 

Figure 3.6. As can be seen in this figure, all pristine membranes achieved more than 98% sulfate 

rejection and both PP and PA membranes achieved similar sulfate rejections despite their 

differences in pore radii, which can be explained by the higher negative zeta potential of PP 

membranes (Figure 3.4). 

 

 

Figure 3.6. Rejection of sulfate by fully aromatic polyamide (i.e., NF90 and TS80) and semi–aromatic 

poly(piperazineamide) (i.e., TS40 and NF270) membranes before and after chemical cleaning (feed Na2SO4 = 1 

mM, operating pressure = 20 bar, temperature = 23C, pH = 5.6, crossflow velocity = 0.77 m/s) 

 

Sulfate rejection decreased after HCl and NaOH cleaning and the cleaning time had 

almost no impact on the measured sulfate rejection. Marginal decrease in sulfate rejection (< 

2.5%) was observed for PA membranes after HCl and NaOH cleaning. These minimal changes 

can be explained by very small increase in membrane pore radii as shown in Section 3.3.1.4. 
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While the exposure of PP membranes to NaOH lead to an increase in pore radii that was more 

pronounced with longer cleaning time, these changes were not reflected in sulfate rejection. The 

decrease in sulfate rejection after NaOH cleaning for 9 h (4 – 5%) was similar to that observed 

for HCl cleaning ( 4%) even though the increase in their effective pore sizes were higher after 

cleaning with NaOH (Figure 5 (b)). In addition, cleaning of TS40 and NF270 membranes with 

NaOH for 18 h increased their effective pore radii by 11 and 23%, respectively but sulfate 

rejections decreased by only 4.7 and 6%, respectively (Figure 3.6). These changes can be 

explained by the increased negative zeta potential with PP membranes as observed in Figures 3.3 

(c), (d) and 3.4. PP membranes rely on both charge (Donnan) and size exclusion for separation of 

inorganic ions at ionic strengths < 0.09 M [1] and the importance of charge exclusion for ion 

rejection is highlighted by the observed sulfate rejection after chemical cleaning with NaOH. 

Interestingly, no decrease in rejection of a negatively charged organic molecule 

sulfamethoxazole by NF270 membrane was reported after chemical cleaning with NaOH [103]. 

This further emphasizes the importance of charge exclusion for PP membranes and suggests that 

permeate flux measurements and/or rejection experiments with monovalent ions may not always 

be a correct approach to evaluate the impact of chemical cleaning on NF membranes. 

 Experimental results with a salt mixture (i.e., 1 mM Na2SO4 + 1 mM MgCl2 + 1 

mM CaCl2) are illustrated in Figure 3.7. Rejection achieved by the four pristine membranes for 

all ions were in the order NF90 > TS80 > TS40 > NF270 and correlated well with their measured 

effective pore radii (Section 3.3.1.4) [1]. The observed rejection order of cations, i.e., R(Mg2+) > 

R(Ca2+) > R(Na+) and that of anions, i.e., R(SO2–) > R(Cl–) can be explained by ion diffusivities 

[47] and Stokes radii with lower ionic diffusivity and higher Stokes radii corresponding to higher 

rejection. Rejection of all ionic species decreased after chemical cleaning. However, the type of 



 58 

cleaning chemical or the time of cleaning did not impact ion rejection by PA membranes. 

Rejection of divalent and monovalent ions by both PA membranes decreased by < 2% and < 4%, 

respectively. On the other hand, performance deterioration for PP membranes was more 

pronounced after cleaning with NaOH than after cleaning with HCl. For example, rejection of 

divalent ions decreased by 3 – 4% for TS80 membrane and 6 – 9% for NF270 membrane after 

cleaning with HCl. Rejection of divalent ions is dependent on charge (Donnan) exclusion [97, 

98] and the impact of changes in the effective pore sizes due to chemical cleaning is illustrated 

by the rejection of monovalent ions. Similar zeta potential was measured for TS40 and NF270 

membranes after cleaning with HCl (Figure 3.4) and the decrease in the rejection of divalent ions 

was similar even with a slightly higher effective pore radii of the NF270 membrane (Figure 3.5). 

The effect of higher pore radii can be readily seen in the rejection of monovalent ionic species 

where the rejection of sodium decreased by 16% for TS40 and by 23% for NF270 membrane. 

The impact of NaOH cleaning on PP membranes was similar to that of HCl cleaning 

when considering sulfate rejection (i.e., decrease by 5 – 7%). However, the decrease in the 

rejection of all other ions was dependent on the duration of cleaning. For instance, when cleaning 

TS40 membrane with NaOH for 9 h, the rejections of magnesium, calcium, sodium and chloride 

ions decreased by 5, 10, 29 and 25%, respectively while the corresponding decrease after 

cleaning for 18 h was 9, 14, 43 and 38%, respectively. On the other hand, the 23% increase in the 

effective pore radii for the NF270 membrane after NaOH cleaning (Section 3.3.1.4) lead to a 

decrease in the rejection of magnesium, calcium, sodium and chloride ions by 25, 36, 53 and 

62%, respectively.  Relatively small decrease in the rejection of sulfate ions (7%) can be 

explained by the 16% increase in zeta potential after NaOH cleaning (Figure 3.4). The observed 

further performance deterioration with longer NaOH cleaning time suggests that NaOH has a 
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capability to slowly interact with the membrane surface leading to extensive conformal changes 

in the active layer of PP membranes as detected by the increase in the effective membrane pore 

sizes. NF membranes are often cleaned with an acid after cleaning with a base to achieve pore 

tightening [55, 106]. However, extensive conformal changes leading to swelling of the 

membrane polymer matrix with longer NaOH cleaning times may be difficult to reverse with 

HCl cleaning. 

 

 

Figure 3.7. Ion rejection by fully aromatic polyamide i.e., (a) NF90, (b) TS80 and semi–aromatic 

poly(piperazineamide) i.e., (c) TS40, (d) NF270 membranes before and after chemical cleaning with feed 

composition: 1 mM Na2SO4 + 1 mM MgCl2 + 1 mM CaCl2 at operating pressure = 20 bar, temperature = 23C, pH 

= 5.6, crossflow velocity = 0.77 m/s 
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3.3.2.2 Permeability 

Experimentally measured permeability values for the four membranes before and after 

chemical cleaning are shown in Figure 3.8.  As would be expected from the analysis of the 

effective pore radii, pristine NF90 had the lowest permeability (4.7  0.02 LMH/bar) and NF270 

membrane had the highest (11.4  0.05 LMH/bar). As can be seen in Figures 3.8 (a) and (b), all 

membranes experienced an increase in permeability after chemical cleaning but the type of 

cleaning chemical or the cleaning time had very little impact on measured permeability values of 

PA membranes (i.e., NF90 and TS80). Cleaning time with HCl had no impact on permeability 

increase for PP membranes (i.e., TS40 and NF270) (Figures 3.8 (c) and (d)), but longer cleaning 

with NaOH lead to a further increase in membrane permeability. These changes corresponded to 

the measured effective membrane pore radii and the observed ion rejections. 
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Figure 3.8. Permeability of fully aromatic polyamide i.e., (a) NF90, (b) TS80 and semi–aromatic 

poly(piperazineamide) (c) TS40, (d) NF270 membranes before and after chemical cleaning with DI water, 1 mM 

Na2SO4 and 1 mM Na2SO4 + 1 mM MgCl2 + 1 mM CaCl2 at operating pressure = 20 bar, temperature = 23C, pH = 

5.6, crossflow velocity = 0.77 m/s 

 

Figure 3.9 shows that DI water permeability correlates well with the measured pore radii 

for all cleaning cases irrespective of the membrane type, degree of crosslinking and thickness of 

active layer. The measurement of the effective membrane pore radii using the membrane 

potential method relies on hindered diffusion across the membrane and inherently incorporates 

all relevant membrane parameters to obtain the effective pore radii. A maximum increase in 

permeability of 482% (4.70  0.02 LMH/bar for pristine NF90 to 27.4  0.3 LMH/bar for NF270 

cleaned with NaOH for 18 h) was measured with an increase in the effective pore radii of 57.4% 

(0.68  0.02 nm for pristine NF90 to 1.07  0.06 nm for NF270 cleaned with NaOH for 18 h).  
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Figure 3.9. DI water permeability as a function of effective pore radii for all membranes at all test conditions 

 

Another important phenomenon with PP membranes is that < 5% difference in their 

permeability values was measured with 1 mM Na2SO4 for 9 and 18 h of cleaning with NaOH, 

which was not the case when the feed contained a mixture of salts (i.e., 1 mM Na2SO4 + 1 mM 

MgCl2 + 1 mM CaCl2).  In that case, the permeability exhibited an increase from 10.9 to 12.4 

LMH/bar for TS40 membrane (13% increase) and from 18.2 to 24.3 LMH/bar for NF270 

membrane (33.5% increase) when NaOH cleaning time was extended from 9 to 18 h. At the 

same time, the effective pore radii increased from 0.86 to 0.89 nm for TS40 membrane (3.5% 

increase) and from 0.98 to 1.07 nm for the NF270 membrane (9.2% increase) (Section 3.3.1.4). 

When only Na2SO4 is present in the feed solution, electrostatic repulsion is the dominant 

rejection mechanism and it is increased by the lowering of zeta potential with NaOH cleaning 

(Figures 3.3 (c), (d) and 3.4). The increase in the pore radii had negligible effect on the rejection 

of sulfate and similar permeability values were measured. However, the increased effective pore 

radius was unable to effectively reject the monovalent ions when feed contained a mixture of 

salts as feed, which translated to increased permeability difference with PP membranes after 

NaOH cleaning for 9 and 18 h. This effectively highlights the role of charge exclusion in 
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addition to size exclusion as an important separation mechanisms for PP membranes both before 

and after cleaning. 

3.4 CONCLUSIONS 

The impact of chemical cleaning on physicochemical characteristics and separation 

performance of nanofiltration membranes was determined to be dependent on the type of active 

layer chemistry. ATR–FTIR and XPS analysis indicated no chemical changes to the membrane 

active layers after chemical cleaning with HCl or NaOH. The active layer thicknesses of the 

membranes selected for this study decreased in the order NF90 > TS80 > TS40 > NF270. The 

degree of crosslinking in the active layer was higher for NF90 membrane than TS80 membrane 

(PA membranes) and that for TS40 membrane was higher than NF270 membrane (PP 

membranes). Membrane cleaning with HCl did not have significant impact on zeta potential 

while cleaning with NaOH further reduced zeta potentials for membranes with high 

concentration of carboxylic acid groups on the surface (i.e., TS80, TS40 and NF270). The 

effective pore radii of all membranes increased as a result of chemical cleaning and 

poly(piperazineamide) membranes were more affected than polyamide membranes. HCl cleaning 

resulted in larger effective membrane pore radii for all membranes by 3 – 5%. Cleaning with 

NaOH had a much more pronounced impact on the effective pore radii and an increase of as high 

as 23% was observed for a PP membrane (NF270) after exposure for 18 h. This study offers 

evidence that NaOH can cause increased swelling of the active layer with an increase in cleaning 

time and this was particularly evident for poly(piperazineamide) membranes. The PP membranes 
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are particularly vulnerable when it comes to regaining the permeability and rejection 

characteristics of pristine membrane if NaOH is used as a cleaning solution.  

Ion rejection test with single salt (1 mM Na2SO4) and a mixture of salts (1 mM Na2SO4 + 

1 mM MgCl2 + 1 mM CaCl2) revealed that rejection of all ions decreased after chemical 

cleaning. Rejection of sulfate for poly(piperazineamide) membranes decreased only slightly 

despite a fairly significant increase in the effective pore radii, which can be explained by their 

dependence on charge exclusion mechanism for ion rejection that was actually enhanced by a 

decrease in zeta potential by NaOH cleaning. The impact of the increased effective pore radii 

was readily seen in the rejection of monovalent ions when the feed was adjusted to a mixture of 

salts. The 23% increase in the effective pore radii for the NF270 membrane after NaOH cleaning 

for 18 h lead to a decrease of 25, 36, 53 and 62% rejection of magnesium, calcium, sodium and 

chloride ions, respectively.  At the same time, only a 7% decrease in the rejection of sulfate ions 

was observed, which can be explained by the 16% decrease in zeta potential.  

The changes in permeability due to chemical cleaning were in agreement with the 

changes in rejection (i.e., a decrease in ion rejection corresponds to an increase in membrane 

permeability). The effective pore radii measured using the membrane potential technique 

correlated well with DI water permeability for all membranes before and after cleaning. The 

importance of charge exclusion in rejection of inorganic ions was highlighted by the observed 

differences in rejection and permeability values when testing these membranes post cleaning 

with NaOH for 9 and 18 h. This study significantly contributes to help understand the lesser 

known effects of chemical cleaning of the rejection behavior of inorganic ions and its 

dependence on the physicochemical characteristics and separation potentials of two commonly 

used active layers of nanofiltration membranes.  
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4.0  INSIGHTS INTO THE REJECTION OF BARIUM AND STRONTIUM BY 

NANOFILTRATION MEMBRANE FROM EXPERIMENTAL AND MODELING 

ANALYSIS 

This work is under review as: 

 S.S. Wadekar, R.D. Vidic, Insights into the rejection of barium and strontium by 

nanofiltration membrane from experimental and modeling analysis, (2018), under review with 

Journal of Membrane Science. 

 

 Better understanding of treatment approaches to remove barium and strontium from 

aqueous solutions is required to address potential drinking water risk from unconventional gas 

industry. A polyamide nanofiltration membrane was investigated to explain rejection of barium 

and strontium ions from single salt solutions at environmentally relevant conditions. Both ions 

did not specifically adsorb onto the membrane surface even with a hundred–fold feed 

concentration increase. Electrostatic effects and H+ rejection did not impact rejection. Size 

exclusion was determined to be most dominant in achieving very high ion rejections. 

Concentration polarization modulus decreased with increase in crossflow velocity, decrease in 

operating pressure and increase in feed concentration because of increase in shear mass transfer 

rate, decrease in permeate convection and increase in feed osmotic pressure, respectively. 

Increase in feed pressure resulted in higher permeate flux but ion rejection did not change at 
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pressures above 15 – 20 bar. Spiegler–Kedem model explained experimental data very well and 

permeability and reflection coefficients for these solutes indicate that both are equally rejected. 

Maximum rejection of 99.5% and minimum of 92% indicates exceptional rejection capability by 

this nanofiltration membrane while achieving appreciable permeability of 3.9 – 5.9 LMH/bar. 

4.1 INTRODUCTION 

Heavy metals including zinc, cadmium, arsenic, manganese, lead, nickel, chromium and 

copper are under much scrutiny owing to their toxicity to living organisms and problems 

associated due to their long persistence in the environment [121]. Major sources of heavy metals 

in the environment include industrial activities, such as, fuel industry, battery manufacturing, 

mining, electroplating, etc. [122] Their influence on human health has been well studied [123] 

and the main industrial sources of these heavy metals have been regulated.  

Unconventional (shale) gas extraction is a fast growing industry that is producing 48.28 

billion cubic feet per day of dry shale gas in the USA as of November 2017 [124]. However, 

apart from economic benefits from this industry, it is also important to consider potential adverse 

environmental impacts from shale gas extraction. Management of wastewater (i.e., flowback and 

produced water) generated by this process is one of the most important environmental concerns 

with this industry [125, 126]. Flowback and produced water contain total dissolved solids (TDS) 

as high as 200,000 – 300,000 mg/L [127] dominated by sodium, chloride, calcium, magnesium, 

barium and strontium ions in addition to organics [128]. Currently, this industry predominantly 

relies on deep underground injection to dispose this highly saline water [129] and the reuse of 

this water for hydraulic fracturing is limited to Marcellus Shale play. Direct treatment of this 
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wastewater with pressure–driven NF or reverse osmosis (RO) membranes is not feasible due to 

very high osmotic pressures [130]. Barium (Toxicity Characteristic Leaching Procedure (TCLP) 

listed heavy metal) and strontium are currently not found in fresh water resources at elevated 

levels but may become a major environmental concern because of extreme levels in this 

wastewater (Ba is present at 3,000 – 6,000 mg/L and Sr at 1,600 – 12,000 mg/L) [130]. In 

addition to unconventional gas wastewater, strontium can also be found in the nuclear waste 

streams [131-133]. The Primary Maximum Contaminant Level (P–MCL) for barium in drinking 

water is set at 2 mg/L and strontium has a health reference level set at 1.5 mg/L by US 

Environmental Protection Agency [134, 135]. Thus, barium and strontium may become an 

important concern in the future and their removal by nanofiltration was the major focus for this 

study. 

Traditional approach for treating heavy metal contaminated streams includes hydroxide 

precipitation, which leads to formation of a highly–contaminated solid waste [136]. Also, the 

metals are lost in waste streams and cannot be recovered. In recent years, nanofiltration (NF) 

membranes have been increasingly applied for the removal and/or recovery of metals from 

aqueous streams [137-144]. Several recent studies focused on understanding the separation 

mechanisms for metal ions in NF systems [66, 145, 146] and the role of the three different 

separation potentials: size, charge (Donnan) and dielectric exclusion [68, 99, 147]. None of these 

studies focused on the rejection of barium and very few evaluated the removal of strontium using 

NF membranes [131-133, 148].  

 We performed a systematic study to understand the rejection mechanism for barium and 

strontium from single salt solutions by a polyamide NF membrane in a crossflow system 

operated at varying feed pressures (5 – 30 bar) and feed concentrations (0.36 – 36.4 mM Ba/Sr). 
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Rejection of these ions was explained using Spiegler–Kedem model and the role of concentration 

polarization was also elucidated. 

4.2 MATERIALS AND METHODS 

NF90 membrane, a fully aromatic polyamide membrane with a polysulfone support, 

purchased from Dow Filmtech (Edina, MN) was used in this study. All reagents used were of 

analytical grade and were purchased from Fisher Scientific (Pittsburgh, PA). Barium chloride 

dihydrate (BaCl2.2H2O) and strontium chloride hexahydrate (SrCl2.6H2O) were used for all 

experiments and dilute HCl and NaOH were used for pH adjustment. All aqueous solutions were 

prepared with deionized (DI) water (conductivity < 1 S/cm, resistivity = 18.2 kohm.cm-1, pH = 

5.6  0.2) obtained in–house using MilliQ water system (Millipore, Billerica, MA). All cations 

and anions were analyzed using inductively coupled plasma–optical emission spectroscopy 

(5100 ICP–OES, Agilent Technologies, Santa Clara, CA) and ion chromatography (IC) (Dionex 

ICS–1100 with IonPac AS22 carbonate eluent anion–exchange column, Dionex, Sunnywale, 

CA), respectively. pH was monitored using Orion Versastar Pro (Thermo Scientific, Pittsburgh, 

PA). Zeta potential of the membranes was analyzed using Surpass 3 Electro–kinetic Analyzer 

(EKA), using the Adjustable Gap Cell (AGC) (Anton Paar, Ashland, VA). For each 

measurement, two 10 mm  20 mm membrane samples were inserted into the AGC and the 

automatic pH sweep was conducted with different concentrations of barium and strontium in the 
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aqueous solution. Each zeta potential analysis was repeated at least four times with a maximum 

standard deviation of 1.7 mV. 

All experiments were carried out in the crossflow laboratory–scale SEPA–CFII test cell (GE 

Osmonics, Minnetonka, MN) with usable membrane area of 140 cm2 [6, 114]. Prior to every 

experiment, membrane was immersed in DI water for at least 24 hours to ensure complete 

wetting. The membrane was first compacted with DI water in the crossflow module at feed 

pressure of 30 bar and flow rate of 1.5 GPM (highest pressure and flow rate used in this study) 

and then used to filter DI water until a stable flux (LMH/bar) was reached. The feed was then 

adjusted to the required composition and the system was allowed to equilibrate for two hours 

when the permeate flux was recorded and samples were collected for chemical analysis. For all 

experiments, the temperature was fixed at 23  1C while the operating feed pressure varied 

between 5 – 30 bar, feed flow rate between 0.5 – 1 GPM (corresponding to a crossflow velocities 

between 0.39 – 1.16 m/s), feed pH between 2 – 10 and feed concentration between 0.36 – 36.4 

mM barium or strontium. All crossflow experiments were conducted in duplicates. 

4.3 MODELING 

Observed rejection ( ) was measured by analyzing the bulk feed ( ) and permeate ( ) 

solute concentrations. Actual or intrinsic rejection ( ) was modeled using the film theory [44, 

149] by considering the effect of concentration polarization as shown below: 
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   (4-1) 

   (4-2) 

 

where,  is the solute concentration at the membrane surface determined using film 

theory (Equation (4-2)),  is the permeate flux and  is the mass transfer coefficient in the 

polarization layer.  is approximated using Sherwood ( ) relationship with Deissler correlation 

for flow in channels and tubes [44] as follows: 

 

   (4-3) 

  ;  ;   (4-4) 

 

where,  is the Reynolds number,  is the Schmidt number,  is the diffusion 

coefficient for the salt,  is the hydraulic diameter,  is the crossflow velocity,  and  are 

density and dynamic viscosity of the aqueous solution.  and  are taken to be equal to that of 

pure water and salt diffusion coefficient is calculated using the individual diffusion coefficients 

( , ) and valences ( , ) of the ions as shown below: 
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   (4-5) 

 

 Hydraulic diameter for a parallelogram type feed spacer (Figure 4.1) used in the 

study was calculated using the correlations developed for spacer filled membrane systems [149, 

150]: 

 

   (4-6) 

 where, porosity =   (4-7) 

 

 , ,  and  are the fiber thickness, spacer thickness, mesh size and angle in 

the direction of feed flow, respectively. 

 

 

Figure 4.1. Feed spacer dimensions 
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 The porosity of the spacer was calculated as 89.37% and the hydraulic diameter as 

1.0032 mm. The crossflow velocity can now be approximated knowing the feed flow rate (Q), 

flow area of the channel (A = 95 mm  1 mm) and spacer porosity (  = 0.8937). Three feed 

flowrates i.e. 0.5, 1 and 1.5 GPM were investigated in this study and correspond to 0.39, 0.77 

and 1.16 m/s crossflow velocities, respectively. 

 Spiegler–Kedem (S–K) equation [151] was used to predict rejection of barium 

and strontium over a hundred–fold variation in the feed salt concentration (i.e., 0.36 – 36.4 mM). 

This model considers the membrane as a black box (i.e., no consideration of membrane 

characteristics or separation mechanisms) and includes convective (because of the pressure 

gradient) and diffusive (because of the concentration gradient) fluxes. The S–K equation is given 

as follows [138, 151]: 

 

   where   (4-8) 

 

where,  is the actual or intrinsic rejection,  is the reflection coefficient for solute,  is 

the solute permeability (LMH) and  is the permeate volume flux (LMH). A non–linear 

parameter ( ) (i.e., error) was calculated to assess model validity based of the difference 

between actual rejection determined experimentally ( ) and that determined by the S–K 

model ( ) [152]: 
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   (4-9) 

 

 Concentration polarization (CP) was quantified using the CP modulus, which is 

the ratio of solute concentration at the membrane surface ( , i.e. modeled using the film theory) 

and solute concentration in the bulk feed ( ) [137, 153]: 

 

   (4-10) 

4.4 RESULTS AND DISCUSSION 

Rejection of heavy metal ions (i.e., barium and strontium) in crossflow experiments at 

different feed pH, concentration and pressure was used to develop a Spiegler–Kedem model for a 

fully aromatic polyamide (1,3–benzenediamine (m–phenylenediamine) with trimesoyl chloride 

i.e. MPD – TMC chemistry) [63, 113] NF membrane with a MWCO of about 200 [76]. A mean 

effective pore radius of 0.68  0.02 nm using the membrane potential method [1] and 0.34 nm by 

modeling the retention data of organic solutes of different molecular weights [88] for the NF90 

membrane has been reported previously and is higher than the Stokes radii of the main ions of 

interest in this study as shown in Table 4.1. 
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Table 4.1. Diffusion coefficient (Di) [47] and Stokes radii (ri,s) of ions used in this study 

 

4.4.1 Zeta potential measurements 

Membrane surface charge is due to dissociation of unreacted carboxylic and amine groups 

in the polyamide active layer or specific adsorption of different solutes and is a function of the 

composition and ionic strength of the electrolyte solution in contact with the membrane surface 

[51]. The membrane surface charge imparts electrostatic repulsion/attraction for ions in the feed 

and has been shown to affect their rejection [79, 92]. 

Figure 4.2 shows the change in zeta potential of NF90 membrane as a function of solution 

pH at different feed concentrations of barium or strontium. Amphoteric behavior of NF90 is 

governed by the presence of both amine (–NH2) and carboxylic acid groups (–COOH). Similar 

values of the zeta potential measured for NF90 with barium and strontium can be explained by 

their similar diffusion coefficients and Stokes radii as shown in Table 4.1. The iso–electric point 

(IEP) for NF90 was always in the vicinity of 4 for the fairly large range of barium and strontium 

concentrations (i.e., 0.36 to 36.4 mM). The IEP for this membrane measured using a non–

adsorbing salt like KCl was also close to 4 [79, 90], which suggests that barium and strontium do 

not adsorb strongly on the membrane surface. Specific adsorption of divalent cations has been 



 75 

attributed to electrostatic interactions between cations in solution and negatively charged 

carboxylic acid groups [91] and has been observed to change membrane characteristics [138, 

154]. Specific adsorption of cobalt ions, for example, has been shown to change the amphoteric 

nature of an NF membrane so that it is always positively charged [138]. The tests with NF90 

membrane also showed that cobalt adsorbs strongly on membrane surface so that the zeta 

potential is always positive (Figure A.9, Appendix A.3). Figure 4.2 indicates that increasing 

concentrations of barium or strontium lead to a slight upward shift in zeta potential at pH above 

IEP and an overlap of zeta potential curves at higher concentrations. 

 

 

Figure 4.2. Zeta potential curves for varying concentrations of (a) barium chloride (b) strontium chloride as a 

function of pH 

 

 These results indicate that the membrane surface was virtually saturated with 

these divalent ions once their concentration exceeded 18.2 mM, which can be explained by the 

compression of the electrical double layer at high ionic strength and can be quantified by the 

change in the characteristic Debye length [51]. As seen from Figure 4.3, the Debye length 

calculated at the respective feed concentrations, decreases exponentially and hence no relative 

change to the Debye length at high ionic strength would explain the absence of any change in the 

measured zeta potentials with increasing concentrations of barium and strontium [155]. These 
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results further support the conclusion that neither barium or strontium ions adsorbed on the NF90 

membrane surface. 

 

 

Figure 4.3. Characteristic Debye length with increasing feed concentration of barium or strontium 

4.4.2 Influence of pH on ion rejection 

pH plays a very important role in the rejection of ionic species [132, 141, 142, 144, 156]. 

The rejection characteristics of NF90 for barium and strontium ions were studied as a function of 

pH to help understand the underlying rejection mechanisms. The influence of pH on the rejection 

of barium and strontium was studied in the range of 2 – 10 at constant feed temperature of 23  1 

C, feed pressure of 20 bar, crossflow velocity of 1.16 m/s and feed concentration of 3.64 mM 

Ba/Sr (Figure 4.4). 
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Figure 4.4. Influence of pH on rejection characteristics of (a) barium, (b) strontium, (c) and (d) H+ rejection in case 

of barium and strontium, respectively. (Experimental conditions: Feed crossflow velocity = 1.16 m/s, feed 

concentration = 3.64 mM, T = 23  1C) 

 

 Electrostatic effects, steric exclusion and H+ permeation are the most important 

mechanisms for the rejection heavy metal ions [138, 141, 157, 158]. H+ rejection was calculated 

using the measured feed and permeate pH at steady state conditions. Each pH measurement was 

performed at least twice (maximum error in measurement =  0.2 pH unit) and an average was 

used for H+ rejection calculations. Figures 4.4 (a) and (b) show variation in barium and strontium 

rejection, respectively while (c) and (d) show rejection of H+ in each case as a function of feed 

pH. Rejection of both barium and strontium is the highest at low pH and decreases with pH 

increase until a plateau is reached at around pH 8. Ba2+ and Sr2+ rejection by NF90 was very 
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similar (99.5 – 97.5%), which can be explained by similar membrane surface charge in the 

presence of these ions (Figure 4.2) and similar diffusion coefficients and Stokes radii of these 

ions (Table 4.1).  

 Based on the zeta potential studies and rejection analysis as a function of pH, the 

rejection mechanism for Ba2+ and Sr2+ can be explained by dividing the pH range into 3 regions: 

(1) pH < IEP, where the membrane is positively charged (Figure 4.2) and H+ rejection is positive 

(Figures 4.4 (c) and (d)), (2) pH  IEP, where the membrane does not have any charge and (3) 

pH > IEP, where the membrane is negatively charged (Figure 4.2) and H+ rejection is negative 

(Figures 4.4 (c) and (d)). The observed high rejection of divalent ions at pH < 4 may be 

attributed to the electrostatic repulsion by the positively charged membrane surface. The fact that 

H+ ions are being concentrated in the feed at pH < 4 (i.e., strong positive rejection of H+ ions) did 

not affect rejection of barium or strontium. In some cases, increased rejection of heavy metal 

ions has been explained by a decrease in H+ rejection [138]. Because the membrane surface is 

neutral at IEP, ion rejection should decrease around the IEP if the electrostatic effects 

significantly contributed to rejection. However, that was not the case because observed barium 

and strontium rejections decreased only slightly ( 0.5 – 0.8%) and were still very high (98.4% 

for barium and 98% for strontium). Because H+ rejection was close to 0% at pH  4, neither the 

electrostatic effects nor the H+ permeation are relevant for the rejection of barium and strontium.  

 At pH > 4, the zeta potential was increasingly negative (Figure 4.2) and the H+ 

rejection decreased strongly (Figure 4.4). Because the decreased rejection of H+ ions did not 

increase the rejection of barium and strontium, we ascertain that H+ permeation is not relevant 

for the rejection of barium and strontium by NF90 in any pH range investigated in this study. In 

addition, increase in negative surface charge when pH increased from 4 to 10 resulted in a 
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marginal decrease (0.3 – 0.5%) in the rejection of barium and strontium. Increase in strontium 

rejection with an increase in pH was previously explained by the formation of Sr(OH)2 solids 

[131]. However, thermodynamic calculations (PHREEQC, Version 3.1.7, USGS) revealed that 

Sr(OH)2 formation is not possible at pH below 10. 

 Besides electrostatic interactions and H+ permeation, it is important to consider size 

exclusion, which is the dominant separation mechanism for fully aromatic polyamide 

nanofiltration membranes [1]. It is important to note that the positive surface charge arises from 

the dissociation of amine groups while the negative charge arises from the dissociation of 

carboxylic groups [51]. These changes affect the pore size characteristics by conformal changes 

to the polyamide active layer whereby the pore size increases at higher pH because of the strong 

electrostatic repulsive interactions between the hydrolyzed carboxylic acid groups on the 

membrane surface [102, 105]. Hence, an increase in the effective pore size is expected at higher 

pH (pH > IEP), which decreases barium and strontium rejection. Similar behavior was reported 

for cadmium, lead, copper, nickel, cobalt and manganese [137, 140, 141, 144, 159, 160]. 

4.4.3 Influence of crossflow velocity on ion rejection 

Figure 4.5 shows the permeate flux as a function of crossflow velocity (0.39, 0.77 and 

1.16 m/s) at two different feed concentrations (0.36 and 36.4 mM) of barium chloride. The 

permeate flux increased with an increase in crossflow velocity at all feed pressures evaluated in 

this study because of the increase in the shear rate at the membrane surface leading to decreased 

solute accumulation. This increase is more pronounced at lower feed concentration (i.e., 0.36 

mM, Figure 4.5 (a)), where the permeate flux at 30 bar feed pressure increased from 139.3 to 

177.9 LMH (i.e., a 28% increase) as compared to an increase from 109 to 122.6 LMH (i.e., a 
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12% increase) at 36.4 mM (Figure 4.5 (b)). Similar behavior was observed in the case of 

strontium chloride (Figure A.10 in Appendix A.3). Higher feed pressure increases the convective 

solute transport towards the membrane surface thereby increasing the concentration polarization 

(CP) modulus [138, 142]. This can be clearly observed in Figure 4.6, where CP modulus 

increased from 1.24 to 3.16 for a feed pressure increase from 5 to 30 bar at barium chloride feed 

concentration of 0.36 mM and crossflow velocity of 0.39 m/s. Also, the CP modulus is higher at 

lower ionic feed strength (Figure 4.6), which explains greater impact of crossflow velocity on 

permeate flux at lower feed concentration. 

 

 

Figure 4.5. Permeate flux as a function of feed crossflow velocity for (a) 0.36 mM and (b) 36.4 mM barium chloride 

feed concentration (Experimental conditions: Feed pH = 5.6 ± 0.2, T = 23  1C 
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Figure 4.6. CP modulus as a function of operating feed pressure for (a) barium chloride and (b) strontium chloride 

(Experimental conditions: Feed pH = 5.6 ± 0.2, T = 23  1C) 

 

 The difference between the observed and actual (intrinsic) rejection for these 

divalent cations (Figure 4.7 for BaCl2 and Figure A.11 in Appendix A.3 for SrCl2) clearly 

illustrates the impact of crossflow velocity on membrane performance. The observed ion 

rejection increases with an increase in crossflow velocity for both barium and strontium but the 

increase is less pronounced at higher crossflow velocities because of much lower CP modulus 

(Figure 4.6). Also, the difference between the observed and actual rejection is less pronounced at 

higher ionic strength (i.e., 36.4 mM, Figure 4.7 (b)) because of the lower CP modulus (Figure 4.6 

(a)). The overlap of actual rejection values for all pressures at both feed concentrations suggest 

that the effects of crossflow velocity on concentration polarization phenomenon can be correctly 

accounted by the film theory.  
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Figure 4.7. Impact of operating feed pressure on the observed and actual (intrinsic) ion rejection for (a) 0.36 mM 

and (b) 36.4 mM barium chloride concentration (Experimental conditions: Feed pH = 5.6  0.2, T = 23  1C) 

4.4.4 Influence of feed pressure and concentration on ion rejection 

The effect of feed pressure and concentration on the rejection of barium and strontium 

was evaluated to establish the range of NF90 applicability for the removal of barium and 

strontium. Figure 4.8 shows the variation in permeate flux (J) (Figure 4.8 (a)), CP modulus 

(Figure 4.8 (b)) and barium rejection (observed and actual rejections are plotted in Figures 4.8 

(c) and (d), respectively) with increasing operating feed pressure at constant crossflow velocity 

(i.e., 1.16 m/s), pH (i.e., 5.6  0.2) and temperature (i.e., 23  1 C). The permeability measured 

at the lowest feed concentration used in this study (i.e., 0.36 mM) was very similar to pure water 

permeability of 6.14 LMH/bar. However, it decreased significantly with an increase in feed 

concentration (Figure 4.8 (a)) because of the increase in osmotic pressure [151]. A permeability 

decrease of 1.95 LMH/bar (i.e., from 5.88 to 3.93 LMH/bar) was observed for a 100–fold feed 

concentration increase from 0.36 to 36.4 mM salt. Ion rejection increased only slightly for more 

concentrated solutions compared to less concentrated solutions with an increase in feed pressure 

(Figure 4.8 (c)), which can be explained by the higher CP modulus values observed in the case of 
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less concentrated solutions (Figure 4.8 (b)). For instance, the observed rejection of 0.36 mM 

barium increased from 91.7 to 96.5% (i.e., a 5.2% increase) for an increase in feed pressure from 

5 to 30 bar while an increase of only 1.2% (i.e., from 98.2 to 99.5%) was observed with 36.4 mM 

barium in the feed (Figure 4.8 (c)). Also, observed barium rejection increased with an increase in 

feed pressure and leveled off beyond 15 – 20 bar for all salt concentrations evaluated in this 

study. Identical behavior was observed for strontium chloride (Figure A.12, Appendix A.3).  

 

 

 

Figure 4.8. Impact of operating feed pressure on (a) permeate flux, (b) CP modulus, (c) observed rejection, and (d) 

actual (intrinsic) rejection for barium chloride (Experimental conditions: Feed crossflow velocity = 1.16 m/s, pH = 

5.6  0.2, T = 23  1C)  

 The effect of feed concentration on the observed rejection and permeate flux is 

shown in Figure 4.9. The permeate flux decreased with an increase in the initial feed 
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concentration of solute at all feed pressures evaluated in this study (Figure 4.9 (a)). The osmotic 

pressure at the membrane surface increases with an increase in feed concentration, which reduces 

the driving force and the resulting permeate flux [140-142]. Osmotic pressure of 0.013 bar was 

calculated at the membrane surface (i.e., considering concentration polarization) for 0.36 mM 

barium concentration in the feed. It increased to 1.18 bar ( 2 orders of magnitude increase) at 

36.4 mM Ba concentration, which explains the decrease in driving force. Even more interesting 

is the observed ion rejection that increased with an increase in the initial feed concentration of 

solute (Figure 4.9 (b)), which is not commonly observed. Shielding of the membrane charge at 

high ionic strength is usually offered as the main reason for decrease in ion rejection with an 

increase in feed concentration [142, 144, 154]. However, increase in rejection with an increase in 

feed concentration has also been reported in some cases [132, 138, 159]. As described above, 

NF90 membrane is negatively charged at pH = 5.6  0.2 and this charge becomes less negative 

with increasing barium or strontium feed concentration (Figure 4.2).  It appears that the relative 

increase in zeta potential aids in the rejection of barium cations. Similar characteristics were 

observed with strontium ions (Figure A.13 in the Appendix A.3). Ding et al. have also reported 

an increase in strontium rejection with an increase in feed concentration [132]. 



 85 

 

Figure 4.9. Impact of feed barium chloride concentration on (a) permeate flux and (b) observed ion rejection 

(Experimental conditions: Feed crossflow velocity = 1.16 m/s, pH = 5.6  0.2, T = 23  1C) 

 

 Very high rejection (92 – 99.5%) of both barium and strontium along with an appreciable 

permeability (5.9 – 3.9 LMH/bar) measured with NF90 membrane suggests that this membrane 

is very effective in separating these divalent cations under very challenging conditions. Because 

the ion rejection did not change significantly once the feed pressure exceeded 15 – 20 bar (Figure 

4.8 (c) and (d)), it could be assumed that 20 bar is the optimal feed pressure when considering 

NF90 membrane for the rejection of barium and strontium ions. Recommended crossflow 

velocity is 1.16 m/s because of reduced concentration polarization modulus compared to other 

velocities evaluated in this study (Figure 4.6). 

4.4.5 Modeling ion rejection 

The Spiegler–Kedem (S–K) model provided an excellent fit to experimentally observed 

ion rejections for both barium and strontium (Figure 4.10). The evaluated concentration 

dependent transport parameters over a hundred–fold variation in feed concentration are given in 
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Table 4.2. The quality of fit or error ( ) (Equation (4-9)) was less than 10-3 for all feed 

concentrations investigated indicating that the S–K model describes the rejection behavior of 

NF90 for both barium and strontium very well. The model correctly describes the increase in 

rejection with an increase in feed pressure (Equation (4-8) indicates that the ion rejection 

increases with increasing permeate flux and reaches a limiting value R = at infinitely high flux) 

and with an increase in feed concentration.  

 

 

Figure 4.10. Spiegler–Kedem model prediction (lines) and actual (intrinsic) rejection of (a) barium and (b) 

strontium as a function of permeate flux (Experimental conditions: Feed crossflow velocity = 1.16 m/s, pH = 5.6  

0.2, T = 23  1C) 
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Table 4.2. Spiegler–Kedem reflection coefficient ( ) and solute permeability ( ) for barium chloride and strontium 

chloride 

 

 As can be seen in Table 4.2, the reflection coefficient ( ) increases while the 

solute permeability ( ) decreases with an increase in feed concentration. Comparison of 

concentration dependent S–K model parameters with those obtained for cobalt chloride at similar 

operating conditions [138] indicate that the reflection coefficient ( ) is lower and solute 

permeability ( ) is higher for cobalt, which explains lower rejection of cobalt compared to 

barium and strontium with a similar polyamide NF membrane. Very high reflection coefficient 

and low solute permeability coefficient of the S–K model provide further evidence that NF90 

membrane is very efficient in rejecting both barium and strontium. Figure 4.11 shows that both 

rejection and feed concentration are strongly correlated to solute permeability for barium 

chloride as evidenced by very high values of the correlation coefficient (R2). Very similar model 
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parameters and quality of fit were obtained for experimental results with strontium chloride 

(Table 4.2). This may be expected owing to the similar rejection characteristics, ionic 

diffusivities and Stokes radii for barium and strontium. However, identical values using the S–K 

model with very good quality of fit further support that electrostatic (Donnan/charge) exclusion 

had negligible impact on the rejection of these cations. 

 

 

Figure 4.11. Characteristics of observed rejection and feed concentration as a function of modeled solute 

permeability using Spiegler–Kedem model (Experimental conditions: Feed pressure = 20 bar, crossflow velocity = 

1.16 m/s, pH = 5.6  0.2, T = 23  1C) 

 

 Combining correlations shown in Figure 4.11 offers a very simple model (Eq 

(11)) to predict the rejection of barium and strontium by NF90 membrane over a hundred–fold 

variation in feed concentration:  

 …………………………………….……………….  (11) 

 Experimental and modeling results discussed above offer convincing evidence that 

Spiegler–Kedem model can accurately predict rejection of barium and strontium over a hundred–
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fold feed concentration range (i.e., 0.36 – 36.4 mM) by a tight polyamide nanofiltration 

membrane. 

4.5 CONCLUSIONS 

A polyamide nanofiltration membrane (NF90) was investigated for the rejection of 

barium and strontium ions from single salt solutions at relevant process conditions. Analysis of 

the zeta potential of NF90 membrane at varying concentrations of barium and strontium revealed 

that neither of these ions specifically adsorb onto the membrane surface as the iso–electric point 

of the membrane did not change even with a hundred–fold increase in solute concentration. 

Combining these results with the observed rejection performance at different feed pH lead to a 

conclusion that electrostatic effects and H+ rejection do not contribute to rejection of these 

cations and that size exclusion is the dominant separation mechanism. Increase in the effective 

pore size by conformal changes to the polyamide active skin layer were responsible for the 

marginal decrease in the observed rejection ( 1 – 2%) with increasing pH for both barium and 

strontium ions.  

 Concentration polarization modulus decreased with increase in crossflow velocity, 

decrease in feed pressure and increase in bulk feed concentration because of increase in shear 

mass transfer rate, decrease in permeate convection and increase in feed osmotic pressure, 

respectively. The permeate flux increased with increase in feed pressure but ion rejection 

stabilized at around 15 – 20 bar for both barium and strontium. Hence, feed pressure of 20 bar 

and crossflow velocity of 1.16 m/s are recommended as optimal operating conditions based on 

the observed ion rejection and concentration polarization modulus. Spiegler–Kedem model fitted 
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very well with the experimental data. The concentration dependent model transport parameters 

(i.e., permeability and reflection coefficient for solute) indicate that both barium and strontium 

are equally rejected by the NF90 membrane at all conditions. Maximum rejection of 99.5% and 

minimum of 92% indicate exceptional performance of NF90 membrane while achieving 

appreciable permeability between 3.9 – 5.9 LMH/bar. 
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5.0  LABORATORY AND PILOT–SCALE NANOFILTRATION TREATMENT OF 

ABANDONED MINE DRAINAGE FOR THE RECOVERY OF PRODUCTS SUITABLE 

FOR INDUSTRIAL REUSE 

This work has been published as: 

 S.S. Wadekar, T. Hayes, O.R. Lokare, D. Mittal, R.D. Vidic, Laboratory and Pilot–Scale 

Nanofiltration Treatment of Abandoned Mine Drainage for the Recovery of Products Suitable for 

Industrial Reuse, Industrial & Engineering Chemistry Research, 56 (2017) 7355–7364. 

 

 Because of the problems with sludge formation and inability to meet water reuse 

standards with traditional limestone neutralization, nanofiltration (NF) has been evaluated for 

treatment of abandoned mine drainage (AMD). This study contributes to the process of selecting 

NF membranes based on laboratory–scale studies that is validated in pilot–scale system with real 

AMD under relevant process conditions to recover: (1) treated water stream (NF permeate) that 

can serve as a substitute for fresh water in industrial applications, and (2) concentrated sulfate 

stream (NF reject) that is well–suited to control divalent cations in the produced water from 

unconventional gas extraction by sulfate precipitation and enable its reuse for hydraulic 

fracturing of subsequent wells. Eight commercially available NF membranes were tested with 

synthetic and real AMD in laboratory–scale dead–end and crossflow membrane filtration 

modules. NF90 membrane was selected for pilot–scale study that consisted of aeration and 
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sedimentation for iron control, bag filtration and ultrafiltration for particulate control and NF. 

The system was operated for 208 hours using real AMD at 10 bar and 3.5 GPM feed flow rate 

and consistently achieved more than 98% removal of TDS at 57% water recovery with a nominal 

pressure drop of 1.7 bar. Pressure drop monitoring and water permeability tests post pilot–scale 

study along with chemical equilibrium calculations indicated that no fouling/scaling of the 

membranes occurred. 

 

 

Figure 5.1. Abstract art illustrating the optimized treatment of abandoned coal mine drainage to 

recover products suitable for industrial reuse using nanofiltration membranes 
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5.1 INTRODUCTION 

Treatment of abandoned or acid mine drainage (AMD) or acid rock drainage (ARD) has 

been a major research focus for over 50 years [15] because these contaminated streams represent 

a pervasive environmental problem for both working and abandoned mines. Natural oxidation of 

sulfide minerals like pyrite (FeS2), chalcocite (Cu2S) and mackinawite (FeS) when exposed to 

water and oxygen contributes most of the contaminants in the AMD [16]. Both underground and 

open pit mines, as well as tunnels, mill tailings, waste rock dumps and concentrate stockpiles 

contribute to the AMD problem. The presence of microorganisms, temperature, geology of the 

mining region and the availability of water and oxygen affect the final composition of the AMD 

[22]. Typically, AMD is characterized by high acidity (pH 2 – 4), high sulfate concentrations (1 

– 20 g/l), and high concentrations of potentially toxic elements (PTEs) such as Al, As, Ca, Cd, 

Cu, Fe, Mg, Mn, Ni, Pb and Se [17].  

Traditionally, lime or limestone neutralization has been used to mitigate the effects of AMD. 

Lime or limestone is added to increase the pH and to precipitate the sulfate as gypsum and other 

metals as hydroxides which is followed by gravity separation of the solid product [20-22]. This 

process generates large quantities of sludge contaminated with PTEs. Another important 

disadvantage of this process is that the sulfate concentration can only be reduced to about 1,440 

mg/l (considering gypsum equilibrium) [17] while Environmental Protection Agency (EPA) and 

World Health Organization (WHO) stipulate a sulfate limit of 250 mg/l as one of the criteria for 

unrestricted discharge [23]. Use of sulfate reducing bacteria or cation exchange resin for sulfate 

removal have been ruled out because of the dependence on external carbon source and costs, 

respectively [161, 162]. 
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Nanofiltration (NF) has been investigated as a promising technology for AMD treatment 

[14, 23, 76, 156, 163-167]. Visser et al. [156] studied several commercially available NF 

membranes with AMD from a South African coal mine and found that NF membranes were 

capable of rejecting 95 – 99% of sulfate in the feed. The effects of pH, feed pressure, 

temperature and solution chemistries on sulfate removal have also been documented [14, 17, 76, 

165, 167]. Rieger et al. [23] concluded that the rejection of polyvalent ions by NF membranes 

was comparable to RO membranes and that precipitation of solutes had a significant scaling 

impact on the process efficiency of both membrane types. Krieg et al. [76] have shown that the 

rejection of sulfate was highly dependent on the counter ions in the feed. However, there still 

exists a knowledge gap for the application of this technology for AMD treatment at full–scale as 

there are very few long–term pilot–scale studies to validate the process parameters and long–

term system performance. Bertrand et al. [116] have discussed the product water quality and 

permeability during the first two years of operation of a NF plant treating water from an iron 

mine to drinking water standards. NF was preceded by lime softening, sand filtration and 

addition of an antiscalant. They reported water recovery of 65% with the permeate quality 

meeting drinking water standards for the entire period. Pilot–scale studies with NF membranes 

have been conducted for seawater softening [168], improving final drinking water quality [169], 

and treatment of recycled water [170] and industrial effluents [171].  

Along with the recovery of treated water from AMD discharge, the membrane concentrate 

(reject) produced by nanofiltration membranes can also be utilized for the recovery of flowback 

and produced water generated by the extraction of natural gas from unconventional (shale) 

reservoirs using hydraulic fracturing [172, 173]. Recent pilot–scale study showed that mixing 

AMD with flowback water results in effective removal of barium and strontium while the sulfate 



 95 

concentration in the effluent can be controlled below 100 mg/l by adjusting the mixing ratio of 

these waste streams. Also, it was shown that > 99% of radium in the flowback water can be 

efficiently removed in the form of barite sludge by mixing the sulfate containing AMD with 

flowback water [174]. 

In this study, commercial NF membranes were first tested in the laboratory–scale dead–end and 

crossflow systems using synthetic and real AMD samples to compare these membranes based on 

sulfate rejection and permeate flux. The selected NF membrane was then studied at a pilot–scale 

with real AMD to investigate its applicability for full–scale AMD treatment by monitoring the 

rejection of sulfate and other ions in the feed stream together with permeate flux and pressure 

drop. Permeability tests with used NF modules were conducted to determine if fouling/scaling 

had occurred.  This comprehensive study offers a protocol for screening NF membranes and 

provides further support for the use of NF in the recovery of AMD where the permeate stream 

can serve as a substitute for fresh water in industrial applications while the reject stream is well 

suited for the control of divalent cations in produced water from unconventional gas extraction to 

enable its reuse for hydraulic fracturing of subsequent wells. 

5.2 EXPERIMENTAL 

5.2.1 AMD collection and characterization 

AMD samples were obtained from two different locations in Pennsylvania that were 

considered as possible sources for pilot–scale testing and their characteristics are shown in Table 

5.1. AMD A was selected for pilot–scale testing because of easier accessibility while AMD B 
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was selected for laboratory–scale studies because its composition was similar to AMD A and 

because the use of different samples for the screening study expands the general applicability of 

the screening protocol and provides additional information about the ability of NF treatment to 

respond to natural variability of the source water.  

 

Table 5.1. Characteristics of AMDs selected for this study 

 

5.2.2 Membranes and chemicals 

Eight commercially available flat sheet NF membranes from four different manufacturers 

that represented three different active layer chemistries (i.e., polyamide, poly(piperazineamide) 

and cellulose acetate) with a molecular weight cut–off (MWCO) in the range of 200 – 800 

Daltons were used for the laboratory–scale study (Table 5.2). NF90 and NF270 membranes were 

purchased from DOW Filmtech (Edina, MN) while NF CK and NF HL (GE Osmonics, 

Minnetonka, MN), NFX, NFW and NFG (Synder Filtration, Vacaville, CA) and XN 45 (Trisep, 
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Goleta, CA) were all purchased from Sterlitech Corporation (Kent, WA). Water permeability 

tests were conducted with deionized (DI) water (resistivity = 18 kohm.cm-1) obtained in-house 

from MilliQ water system (Millipore, Billerica, MA). All chemicals used in this study were 

analytical grade and were purchased from Fisher Scientific (Pittsburgh, PA). 

 

Table 5.2. Characteristics of NF membranes used in this study 

 
          a[76], b[79] 

 

For the pilot–scale study, four NF90–400/34i spiral would membrane modules (nominal active 

area of 37 m2 per module) were purchased from DOW Filmtech (Edina, MN). Antiscalant 

RL9004 used in the pilot–scale study was purchased from ChemTreat (Glen Allen, VA). 

5.2.3 Apparatus and filtration process 

5.2.3.1 Laboratory–scale studies 

Laboratory–scale experiments were carried out in dead–end and crossflow filtration 

systems. The schematic of the dead–end system is shown in Figure 5.2. The dead–end module 
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capacity of 340 ml was extended with external 800–ml reservoir to facilitate longer filtration 

tests. The membrane with exposed area of 44 cm2 was supported by a porous metal plate and 

magnetic stirring was used to ensure feed concentration uniformity. Crossflow experiments were 

carried out in the laboratory–scale test cell SEPA–CFII (GE Osmonics, Minnetonka, MN) with a 

usable membrane area of 140 cm2 shown in Figure 5.3 and is explained in detail elsewhere [6]. 

Feed solution was pumped (Hydra–cell diaphragm pump, Wanner Engineering, MN) from the 

feed reservoir to the crossflow unit and the concentrate and feed control valves were used to 

adjust the pressure and flow rate for each experiment. Feed reservoir temperature was maintained 

using an immersed cooling coil attached to a chiller (6500 series, Polyscience, Niles, IL). 

 

 

Figure 5.2. Schematic of the dead–end NF system 

 

 

Figure 5.3. Schematic of the crossflow NF system 
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Pristine membrane used for each experiment was first immersed in DI water for at least 24 

hours to ensure that the membrane pores are completely wetted and then compacted with DI 

water at 50 bar for one hour to ensure that there would be no compaction effects during testing. 

The membrane was then used to filter DI water at experimental conditions until a stable flux 

(LMH/bar) was reached. Once stable flux had been established, the feed was changed to a 

desired composition and the permeate flux was measured over the next two hours during which 

samples were collected every 15 minutes for chemical characterization. All experiments were 

conducted at a constant pressure of 10 bar and temperature of 22  1C. pH was not altered 

during any of the experiments and remained at 5.6  0.1 at all times. The rejection of various 

ions was calculated as:  

R (%)  

where, R is the observed rejection and  and  are the concentrations of ion 

‘i’ in the feed and the permeate, respectively. Cations were analyzed using Inductively Coupled 

Plasma – Optical Emission Spectroscopy (ICP–OES) (Model 5100, Agilent Technologies, Santa 

Clara, CA) and anions were analyzed using ion chromatography (IC) (Dionex ICS–1100, 

Sunnywale, CA) with the IonPac AS22 carbonate eluent anion–exchange column after suitable 

dilutions with DI water.  

Initial experiments in the dead–end filtration system were carried to screen the eight 

commercial NF membranes obtained for this study with respect to sulfate rejection using the 

synthetic solution (AMD I) containing 650 mg/L of sulfate. The membranes shortlisted based on 
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these experiments were tested with real AMD B in the dead–end filtration system. Crossflow 

experiments with membranes selected from these tests were conducted with two solutions: 

synthetic solution containing 650 mg/L sulfate, 200 mg/L magnesium and 200 mg/L calcium 

(AMD II) and real AMD B. Prior to these tests, AMD B was subjected to aeration to precipitate 

iron and filtration through 0.22 m pore size membrane to remove the particulates that formed in 

the solution. All ions were added as Na2SO4.10H2O, CaCl2.2H2O and MgCl2.6H2O salts. 

5.2.3.2 Pilot–scale study 

The pilot–scale system consisted of aeration and sedimentation for iron control, followed 

by a bag filter and ultrafiltration membrane (QUA Pure Technology, Canonsburg, PA) with a 

total membrane area of 2 m2 for particulate control before treatment with a set of four spiral 

wound NF membranes connected in series. The process flow diagram of the pilot–scale system is 

shown in Figure 5.4.  
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Figure 5.4. Process flow diagram of the pilot–scale system 

 

AMD was shipped to the pilot plant location by water trucks and stored in 20,000 gallon frac 

tanks. Aeration was carried out in the frac tanks followed by sedimentation to separate the iron 

precipitates that formed in the tank. Treated AMD was first passed through four bag filters 

operated in parallel to remove large particles followed by UF as a final pre–treatment step prior 

to the NF system. Periodic backpulsing was required to clean the particles and sediments that 

accumulated in the UF membrane and maintain steady permeate flux. UF reject stream was 

recycled back to the frac tanks while the UF permeate stream was directed to 500–gal NF feed 

tanks A and B. These tanks served as blending tanks for pH adjustment and the addition of 

antiscalant prior to NF treatment. The NF system was operated continuously using the blended 

AMD from one feed tank while the other was being filled with UF permeate and NF reject. Four 

NF elements were connected in series with permeate streams from all four filters blended 

together into a single stream to represent the performance of commercial NF membrane elements 
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at full–scale. Selection of four NF elements in series was based on the calculations done with the 

Reverse Osmosis System Analysis software provided by Dow Filmtech. Figure 5.5 shows the 

pilot plant in operation. 

 

 

Figure 5.5. Pilot plant in operation. Top left: Four bag filters operating in parallel; Top right: Ultrafiltration module 

(UF membrane is the horizontal white filter); Bottom left: NF reject and UF permeate blending tanks; Bottom right: 

Four spiral wound NF module 

 

Operational parameters that were monitored throughout the study included pressure drop 

across the bag filters, UF and NF units, temperatures and flowrates. Nanofiltration system was 

operated at a pressure of 10 bar and inlet feed flow rate of 3.5 GPM due to feed pump constraints 
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thereby achieving 57% water recovery. With these input conditions, a permeate flow rate of 2 

GPM could be achieved at a nominal pressure drop of 1.7 bar across the NF system during the 

entire 208 hours of pilot–scale operation. The performance of the pilot plant was characterized 

by water quality at several locations as indicated on Figure 5.4. Onsite analysis of these samples 

was performed for pH, conductivity, sulfate, iron and hardness using methods listed in Table 5.3. 

Following the startup period, hourly monitoring of sulfate concentration was performed until a 

steady state had been achieved. The sulfate concentration in the feed was increased from about 

700 ppm to about 1,700 ppm by adding NF reject to the feed tanks to test the capability of the 

membrane system to treat more challenging AMD streams. Each batch of feed for the NF unit 

was prepared by blending 140 gallons of the NF reject stream with 325 gallons of the UF 

permeate. Six samples collected throughout the pilot–scale testing were sent to a commercial 

analytical laboratory (Test America, Pittsburgh, PA) for detailed chemical characterization that 

included sulfate and chloride, along with major and trace metals (Ag, Al, As, Ba, Be, Ca, Cd, Co, 

Cr, Cu, Fe, K, Mg, Mn, Ni, Pb, Sb, Se, Tl, V, Zn), total dissolved solids (TDS) and total organic 

carbon (TOC). 

 

Table 5.3. Instruments and methods used for onsite analytical determinations 
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5.3 RESULTS AND DISCUSSION 

5.3.1 Laboratory–scale optimization 

5.3.1.1 Dead–end experiments 

Figure 5.6 shows rejection and permeate flux from screening experiments using AMD I 

by eight NF membranes obtained in a dead–end test system. Sulfate rejection was selected as the 

primary screening factor because it is the most important AMD constituent that governs the 

usability of NF permeate and reject for industrial applications [18, 22, 77] and because ion 

rejection by NF membranes is most influenced by divalent ions [98]. As can be seen from Figure 

5.6 (a), all membranes were able to achieve between 80 – 92% sulfate rejection with NFG 

membrane being the only exception.  Low sulfate rejection by NFG (20%) can be explained by 

its MWCO of 600 – 800 Daltons (Table 5.2). Hence, the NFG membrane was eliminated from 

further consideration. NF CK membrane achieved the highest sulfate rejection of 92% despite 

having relatively high MWCO but it also exhibited the lowest permeate flux of only 1.2 

LMH/bar. Interactions of cellulose acetate with ionic solutions are different than those of 

polyamide or polypiperazine amide [175, 176], which may explain higher sulfate rejection by 

cellulose acetate membrane despite having slightly higher MWCO. However, because of very 

low permeate flux, NF CK membrane was also eliminated from further consideration. The 

remaining thin film composite (TFC) membranes can be broadly classified into two groups based 

on the active layer chemistry: polyamide (NF90, NFX and NFW) and polypiperazine amide 

(NF270, NF HL and XN 45). It has been shown that the rejection mechanisms of TFC 

membranes are influenced by the type of active layer chemistry [1, 33, 34]. Hence, NF90 

membrane was selected from the polyamide group for further study as it achieved better rejection 
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than NFW membrane and higher permeate flux than both NFX and NFW membranes. Also, 

NF270 membrane was selected from the polypiperazine amide group because it exhibited higher 

sulfate rejection and higher permeate flux than the other two membranes.  

 

 

Figure 5.6. (a) Sulfate rejection and (b) permeate flux for 8 commercial NF membranes with synthetic AMD I in 

dead–end module 

 

Dead–end filtration tests with these membranes using real AMD (i.e., AMD B) revealed 

that NF90 achieved 75% sulfate rejection while NF270 could only achieve about 45% sulfate 

rejection. It is important to note that the sulfate rejection decreased with real AMD when 

compared with the results obtained with synthetic solution shown on Figure 5.6 (a) because of 

the complex composition of real AMD that contains many other ions like Ca, Mg and Cl along 

with Ni, Se as well as some organic compounds. The membrane surface becomes more 

positively charged in the presence of cations because of preferential adsorption of these ions, 

which contributes to the reduced rejection of the negatively charged sulfate ions [91, 93, 177]. 

Krieg et al. [76] reported a decrease in sulfate rejection in the presence of sodium and chloride 

ions. Also, NF270 is a looser membrane [14] compared to NF90 (Table 5.2) and would therefore 
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be less effective in rejecting sulfate ions. These screening experiments suggested that NF90 

membrane would be preferred over NF270 for treatment of real AMD. 

5.3.1.2 Crossflow experiments 

Tests with NF90 and NF270 membranes in the crossflow module with synthetic and real 

AMD were performed for more than 4 hours at constant feed concentration (i.e., both permeate 

and reject were returned back to the feed tank) using AMD II (i.e., synthetic solution). Figure 5.7 

shows that NF90 achieved > 97% rejection of all ions with sulfate rejection above 99%. On the 

other hand, NF270 membrane achieved about 96% sulfate rejection, 91 – 94% rejection of the 

divalent cations and less than 70% rejection of monovalent ions. NF90 and NF270 membranes 

have isoelectric point (IEP) of 4.2 and 2.8, respectively [79]. Because these crossflow tests were 

conducted at pH of 5.6  0.1, which is above the IEPs of both these membranes, negative surface 

charge contributed to high sulfate rejection [165, 178, 179]. Along with high sulfate rejection, 

cations would also have to be rejected to balance the electroneutrality on both sides of the 

membrane [99]. Hence, cations are efficiently rejected in accordance to their diffusion 

coefficients and Stokes radii [97], so that the rejection order of cations was R(Mg+2) > R(Ca+2) > 

R(Na+). In addition, NF90 has smaller effective pore size than NF270 membrane  [88, 95, 113], 

which explains better rejection of monovalent ions by NF90 membrane. NF90 was previously 

shown to achieve higher rejection of calcium and magnesium [79, 95], boron and total dissolved 

solids [90] and nitrate [96] compared to NF270. It should also be noted that sulfate rejection 

achieved in the crossflow module (Figure 5.7) was much higher than in the dead–end module 

(Figure 5.6 (a)). It is argued that the shear force in the dead–end module is high and in the 

direction of flow, which may force the ions to shed hydration water (i.e., dehydrate) and 

permeate through the membrane as compared to the parallel flow in the crossflow module [46]. 
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Also, feed concentration in the dead–end module increases with time, thereby increasing the 

concentration polarization at the feed side and reducing the rejection of inorganic species with 

time. Although concentration polarization is also present in the case of a crossflow module, it is 

mitigated by the shear force caused by the horizontal feed flow, so that the rejection efficiency is 

less impacted than in the case of a dead–end module [180]. 

 

 

Figure 5.7. Ion rejection by NF90 and NF270 with AMD II solution in a crossflow module 

 

Results in Figure 5.7 clearly favor the use of NF90 membrane over NF270 for AMD 

treatment. Figure 5.8 shows rejection of various ions and permeate flux with NF90 membrane 

over the test period of four hours in the crossflow module using real AMD B. This membrane 

was able to achieve > 99% rejection of sulfate, while the rejection of divalent cations and 

monovalent ions was > 98% and > 88%, respectively. The observed performance is in agreement 

with the studies using synthetic AMD II (Figure 5.7). As seen from Figure 5.8 (b), the average 

permeate flux of 2.7 LMH/bar was virtually constant over the entire test period, which suggests 

that no appreciable scaling/fouling occurred under the experimental conditions used in this test 

with real AMD. 
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Figure 5.8. (a) Ion rejection and (b) permeate flux for NF90 membrane with AMD B in a 

crossflow module 

5.3.2 Pilot–scale study 

Based on these laboratory studies, NF90 membrane was selected for pilot–scale testing 

using real AMD A. Table 5.4 shows average composition of UF permeate that was blended with 

a portion of NF reject to achieve higher concentration of sulfate in the NF influent stream. Each 

value shown in Table 5.4 is an average of six samples collected after 20, 54, 89, 135, 170 and 

193 hours of the pilot–scale operation. 

 

Table 5.4. Chemical characteristics of different streams in the pilot–scale system 
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Rejection of sulfate, chloride, calcium, magnesium, selenium and nickel achieved in the 

pilot–scale system is shown in Figure 5.9 while TDS and TOC removal is shown in Figure 5.10. 

 

 

Figure 5.9. Rejection of sulfate, chloride, calcium, magnesium, selenium and nickel by NF90 in a pilot–scale test 

 

 

Figure 5.10. TDS and TOC rejection by NF90 in pilot–scale test 

The pilot plant was successfully operated for over 200 hours while achieving stable sulfate 

rejection of more than 99% over the entire period of study. In addition, more than 99% removal 

of calcium and magnesium was also achieved together with over 98% TDS removal. Other 

studies have also reported 95 to > 99% sulfate rejection along with 90 – 99% rejection of metal 

ions when treating AMD with NF membranes but at laboratory–scale [16, 17, 165, 167]. Ion 

rejection observed in laboratory–scale experiments corresponds very well to those observed in 
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the pilot–scale test. Divalent and monovalent ion rejection of > 98% and > 88%, respectively 

was observed in the laboratory–scale crossflow tests while in case of pilot–scale, rejections 

observed were > 99% and 90%, respectively. This agreement highlights the importance of the 

laboratory–scale screening protocol and the crossflow tests. In addition, it is also important to 

note that the NF90 membrane also achieved an average of 90% rejection of chloride ions. NF90 

is a tight polyamide membrane and hence can reject even the smaller monovalent ions effectively 

[1]. Water recovery of 57% was achieved during the pilot–scale operation, which adds credit to 

this study that demonstrated very high rejection of ions along with high water recovery that is 

comparable to full–scale operation. Mass balance calculations for all ionic species were close to 

100% (data not shown) indicating requisite pilot–scale monitoring and high quality analytical 

measurements. 

Trace and minor elements were also measured during the pilot–scale study to evaluate the 

feasibility of extending the results of this study to other applications. Among the trace elements 

analyzed in this study, selenium and nickel were present at an average concentration of 95  8.4 

g/l, 155  17.6 g/l and 2.83  0.7 mg/l respectively. Even at such low concentrations, the NF 

system was able to reject > 99% selenium (permeate concentration of 0.46  0.07 g/l) and > 

98% nickel (permeate concentration of 1.13  0.67 g/), which confirms a very good potential 

for the removal of trace constituents of interest for reusing AMD for many other applications. 

Figure 5.10 shows that average TOC removal of 90% (permeate concentration of 0.26  0.09 

mg/) was also achieved by the pilot–scale system, confirming that the NF90 membrane is also 

capable of efficiently rejecting both small ions and large organic molecules at very dilute 

concentrations. 
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5.3.3 Fouling analysis 

Fouling analysis of the membranes used in the pilot–scale study was carried out by 

monitoring the pressure drop across the NF system and conducting the clean water permeability 

tests with the spiral would NF modules used in the pilot–scale system in combination with 

chemical equilibrium calculations using PHREEQC (Version 3.1.7, USGS) software package. 

As seen in Figure 5.11, the pressure drop across the NF system during the pilot plant 

operation experienced some fluctuation initially but stabilized at about 1.7 bar after 50 hours of 

operation and remained constant for the remainder of the pilot plant operation. This low and 

stable pressure drop suggests that almost no membrane fouling occurred during the pilot plant 

operation (pressure drop increase of 10 – 15% suggests the need for membrane cleaning [57]). 

 

 

Figure 5.11. Pressure drop across the pilot–scale NF system 

 

After the completion of pilot–scale study, permeability test with DI water was conducted 

separately on the first and fourth NF module connected in series. The inlet feed pressure for 

these tests was adjusted to 10 bar, which is identical to the value used in pilot–scale study. 

However, feed flow rate of only 2.1 GPM could be achieved in the laboratory–scale testing 
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because of pump limitations. Under these conditions, a permeate flow rate of 0.7 GPM was 

measured for both NF modules. Because the NF modules were connected in series with the reject 

of the preceding module serving as the feed for the next module, the fourth module would have 

seen the most concentrated feed and hence would be the most vulnerable to fouling/scaling. 

However, a constant and equal permeate flow rate was measured for both module in these 

permeability tests, which confirms that no measurable fouling of NF membranes occurred during 

the 208 hours of pilot–scale operation. 

Thermodynamic calculations with PHREEQC chemical speciation software were also used to 

predict the saturation index (SI) for the salts that might precipitate during the pilot plant 

operation. These calculations revealed that none of the potential inorganic precipitates would 

form under the NF feed stream experimental conditions in the pilot–scale system (i.e., feed 

composition and pH). Gypsum (CaSO4.2H2O) had a slightly positive SI (i.e., 0.06) considering 

NF reject stream composition and pH. However, the pressure drop monitoring across the NF 

system (Figure 5.11) and DI permeability tests support the conclusion that gypsum scales did not 

form in sufficient quantity to cause a change in membrane performance. Al-Zoubi et al.[17] 

reported no membrane fouling even for a highly concentrated synthetic AMD with a SI of 0.16 

for gypsum. In addition, Colburn et al. [181] report no fouling/scaling issues with gypsum even 

at high calcium and sulfate concentrations, which they claim was because the formed gypsum 

particulates did not adhere to the membrane surface on account of the convective crossflow. 

Also, PHREEQC simulations suggest that Fe(OH)3 (SI = 4.58) and Geothite (FeOOH, SI = 

10.47) would have precipitated during the pilot–scale study if iron had not been removed in the 

pre–treatment step. Fouling by iron scales has been reported to impact the membrane permeate 
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flux [115], which thereby emphasizes the importance of pre–treatment for the removal of iron in 

a full–scale system. 

5.3.4 AMD reusability 

The pilot plant operated in this study recovered two separate streams (i.e., NF permeate ad NF 

reject/concentrate) from highly contaminated AMD stream. NF permeate had TDS < 50 mg/l 

with a sulfate concentration < 10 mg/l while calcium and magnesium were present at an average 

of about 1 mg/l and 0.3 mg/l respectively. The permeate quality exceeds the drinking water 

standard in terms of the TDS, TOC and individual ions [182, 183] and represents a new source of 

fresh water. This stream could be used for a number of different applications, like makeup water 

for cooling in power plants [184], irrigation [185, 186], dairy industry [187], construction 

industry, creating artificial wetlands and enhancing natural wetlands [188], groundwater 

replenishment and salt water intrusion control [189]. The NF reject/concentrate had TDS of 

about 6,500 mg/l with a very high sulfate concentration of 4,000 mg/l. This represents a viable 

source of sulfate for treating the produced and flowback water from unconventional gas industry 

to remove the scale causing cations (i.e. barium, strontium) by sulfate precipitation to enable its 

reuse for hydraulic fracturing. Barium and strontium are present in produced waters at 

concentrations as high as 6,000 and 12,000 mg/l, respectively [130] and the fast sulfate 

precipitation kinetics [190, 191] is particularly suitable for the recovery of huge quantities of 

these impaired waters. In addition to barium and strontium precipitation, the barite sludge has 

also been reported to co–precipitate radium resulting in > 99% radium removal [174], which 

ensures permanent sequestration of naturally occurring radioactive materials (NORM) from the 

radiogenic waters produced in Marcellus Shale region. 
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5.4 CONCLUSIONS 

This study was designed to optimize and validate the use of nanofiltration membranes for 

treatment of AMD at full–scale to produce two streams: treated water stream that can serve as a 

substitute for fresh water in industrial applications and a concentrated sulfate stream that is 

ideally suited for use in produced water treatment for sulfate precipitation to control divalent 

cations in the finished water and enable its reuse for hydraulic fracturing of subsequent wells.  

Laboratory–scale screening of eight commercially available NF membranes was performed 

with synthetic AMD solutions in a dead–end module and two membranes, i.e., NF90 and NF270, 

were selected for testing with real AMD solution based on sulfate rejection and permeate flux. 

These membranes were also tested in the crossflow module where NF90 membrane performed 

better than NF270 membrane in terms of rejection of all ions of interest. Hence, NF90 membrane 

was selected for pilot–scale study.  

The NF90 membrane exhibited impressive performance in the pilot–scale system by 

achieving very high removal of sulfate from the real AMD. The sulfate concentration in the feed 

solution of about 1,700 mg/l was reduced to less than 10 mg/l, representing more than 99% 

sulfate removal during 208 hours of continuous operation. In addition, more than 99% rejection 

of calcium, magnesium, nickel and selenium was observed in the pilot–scale tests with total 

dissolved solids and total organic carbon rejection of 98% and 90%, respectively. The NF system 

also achieved about 90% chloride removal which points towards a potential benefit in 

conditioning water for use in industries that are sensitive to corrosion issues.  

The pre–treatment comprised of aeration, sedimentation, bag filtration and ultrafiltration 

used in the pilot–scale study was highly effective in removing iron from the feed stream to 

facilitate stable operation of the NF system over the 208–hour period. A steady–state water 
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recovery of 57% was achieved with the feed pressure of 10 bar and feed flow rate of 3.5 GPM 

during the entire pilot plant operation. Chemical equilibrium calculations indicate a very small 

degree of gypsum supersaturation but a constant pressure drop of about 1.7 bar during pilot–

scale testing and DI water permeability tests on used NF modules confirmed that no measurable 

fouling/scaling occurred with this particular AMD. Thus, the goal of producing two valuable 

product streams, one of high quality (NF permeate with TDS < 50 mg/l) and the other with high 

sulfate concentration (NF reject with a sulfate concentration of about 4,000 mg/l, which can be 

used to recover flowback and produced water), was successfully accomplished in this study. 

In addition, laboratory–scale experiments clearly indicate that testing in a dead–end module can 

only be used for relative comparison of NF membranes while the crossflow system facilitates a 

detailed process study to optimize NF performance. The performance of NF membrane in a 

crossflow laboratory–scale system compares well with that observed in the pilot–scale system, 

which confirms the scalability of membrane filtration process and further emphasizes the value 

of laboratory–scale tests in a crossflow module to predict full–scale system performance. 
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6.0  COMPARISON OF CERAMIC AND POLYMERIC NANOFILTRATION 

MEMBRANES FOR TREATMENT OF ABANDONED COAL MINE DRAINAGE 

This work has been published as: 

 S.S. Wadekar, R.D. Vidic, Comparison of ceramic and polymeric nanofiltration 

membranes for treatment of abandoned coal mine drainage, Desalination, (2018), 440 (2018) 

135-145. 

 

 Performance of ceramic and polymeric nanofiltration membranes for treatment of 

abandoned mine drainage from a coal mine was investigated in this study. The increase in 

permeate recovery improved ion rejection but reduced the permeability for both membranes. 

Arsenic was poorly rejected by both membranes with maximum rejection being 33% for the 

polymeric membrane. Fouling occurred at 75% permeate recovery and was dominated by 

gypsum scales. Chemical cleaning improved permeability but reduced ion rejection indicating a 

slight increase in the effective membrane pore size for both membranes. When feed pH was 

adjusted to 4, ion rejection increased for the ceramic membrane and decreased for the polymeric 

membrane due to impacts on the charge of the active layer. Addition of antiscalant improved ion 

rejection for both membranes, especially for arsenic whose rejection improved by at least 141%, 

but resulted in about 40% decrease in permeability for both membranes and was attributed to the 

formation of a more complex and gel–like scale. A tighter polymeric nanofiltration membrane 
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achieved more than 99% rejection of all multivalent ions to meet all drinking water standards 

except for arsenic, which has to be removed prior to nanofiltration step. 

6.1 INTRODUCTION 

Membrane technology has been increasingly applied in wastewater treatment and 

desalination applications over the last few decades. Use of polymeric microfiltration (MF), 

ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) membranes has been growing 

exponentially owing to their wide set of separation characteristics for different applications [62]. 

Ceramic membranes have recently been gaining prominence due to better resistance to fouling, 

easier cleaning, lower maintenance, better thermal resistance and greater mechanical strength 

[36, 37]. Ceramic NF membranes are commonly made using the sol–gel technique with Al2O3, 

ZrO2 or TiO2 as the active layer, with the latter two preferred due to greater stability [38]. 

Ceramic membranes are typically available with molecular weight cut–off (MWCO) close to  

1000 Da and have been applied to remove organic molecules and natural organic matter (NOM) 

[39, 40]. Newer manufacturing techniques like atmospheric pressure atomic layer deposition 

(APALD) [41] and DNA template technology [42] are being studied to manufacture ceramic NF 

membranes with MWCO below 500 Da that could effectively reject multivalent ions. This study 

was designed to compare ceramic and polymeric NF membranes for treatment of abandoned or 

acid mine drainage (AMD) from a coal mine in terms of ion rejection and fouling behavior. 

 AMD has been a major environmental concern over the past five decades as it is a 

highly contaminated stream with high acidity (pH 2 – 4), high sulfate concentration (0.1 – 20 

g/L) and presence of potentially toxic elements (PTEs) such as Al, As, Ca, Cd, Cu, Fe, Mg, Mn, 
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Ni, Pb and Se [16]. Most of these contaminants occur from the natural oxidation of sulfide 

minerals like pyrite (FeS2), chalcocite (Cu2S) and mackinawite (FeS) when in contact with water 

and oxygen [17, 165]. Because the conventional AMD treatment with limestone addition cannot 

achieve requisite effluent standards [20], other techniques for sulfate removal, including sulfate 

reducing bacteria [161] or cation exchange resin [162] have been investigated; however, these 

techniques are not widely accepted as they depend on the external carbon source and have high 

cost, respectively. Polymeric NF membranes have been investigated to achieve effluent 

standards [16, 17, 23, 76, 116, 156, 167] or even drinking water standards [116]. Commercially 

available NF membranes can reject > 95% sulfate with real AMD [156] and their performance 

depends on pH, temperature, operational conditions and feed quality [76, 167]. Two recent 

studies successfully tested polymeric NF membranes at pilot–scale and offered information on 

operational and maintenance costs [114, 192] and concluded that AMD pre–treatment is essential 

prior to the use of NF membranes to treat AMD. 

  Ceramic NF membranes have been previously tested with simple synthetic 

solutions of NaCl, KCl and Na2SO4 [38, 193]. Chen et al. [193] found that ceramic NF 

membrane with a MWCO of 900 Da rejected 10% chloride and about 40% sulfate in addition to 

effectively rejecting various dyes. Gestel et al. [38] found that the rejection of simple monovalent 

and divalent ions was minimal at the iso–electric point (IEP) or point of zero charge (PZC) of the 

membrane. 85% rejection of NaCl and 95% rejection of Na2SO4 was reported at low and high 

pH. 

 Fouling has been a major concern with membrane treatment [55, 58, 107, 130, 

194] and chemical cleaning is typically applied when the permeability decreases by about 10% 

or when the pressure drop increases by about 10 – 15% [58]. Therefore, it is critically important 
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to understand both performance and fouling characteristics of ceramic NF membranes to ensure 

optimal performance for any application. 

 This study compared the performance and fouling characteristics of ceramic and 

polymeric NF membranes for AMD treatment. The performance was characterized by ion 

rejection and permeability as a function of permeate recovery rates. Fouling and fouling 

mitigation strategies were investigated in terms of the type of foulants and the effects of pH 

adjustment and antiscalant addition on performance of the ceramic and polymeric NF 

membranes. The efficiency of chemical cleaning procedures for recovery of membrane 

performance was also evaluated in this study. 

6.2 EXPERIMENTAL 

6.2.1 Membranes and AMD 

Ceramic nanofiltration membrane prototype (MWCO of 500 Da) comprised of fused 

alumina and active surface layer of amorphous titania (TiO2) and was provided by Cerahelix 

(Orono, ME). DNA template technology was used to make linear and identical pores with typical 

size of 1 nm [195]. Polypiperazine amide membrane (NF270) with MWCO of 200 – 300 Da 

(Dow Filmtech, Edina, MN) and polyamide membrane (TS80) with MWCO of 150 Da (Trisep, 

Goleta, CA) were also used in this study. Pore radii of 0.87  0.02 nm and 0.71  0.02 nm for 

NF270 and TS80 membranes, respectively have been measured using the membrane potential 

technique [1]. Water permeability tests were conducted with deionized (DI) water obtained from 

MilliQ water system (Millipore, Billerica, MA). Dilute NaOH, HCl and Na2SO4.10H2O were 
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purchased from Fisher Scientific (Pittsburgh, PA). Antiscalant RL9004 used for fouling 

mitigation was purchased from ChemTreat (Glen Allen, VA). Dilute NaOH and HCl were used 

for pH adjustment. 

 AMD was collected from a site in southwestern Pennsylvania. The actual AMD 

had about 60 mg/L of total dissolved iron, which had to be removed before nanofiltration to 

prevent severe fouling. Hence, 20 – 24 h of aeration followed by filtration through 0.22 m 

membrane preceded all NF tests. The composition of AMD post aeration and microfiltration is 

given in Table 6.1.  

 



 121 

Table 6.1. Characteristics of AMD post aeration and microfiltration 

 

6.2.2 Module and experiments 

All NF experiments with polymeric membranes were carried out in the laboratory–scale 

test cell SEPA–CFII (GE Osmonics, Minnetonka, MN) with a usable membrane area of 140 cm2 

[6]. Pristine polymeric membrane used for each experiment was immersed in DI water for at 

least 24 h to ensure complete wetting of membrane pores. Each polymeric membrane was first 

exposed to DI feed pressure of 50 bar for 1 h to ensure no compaction effects during testing and 
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DI water permeability was measured at experimental pressures for membrane integrity testing. 

Ceramic membrane tests were conducted in the same system except that the SEPA–CFII module 

was replaced with the housing designed for a single channel tubular membrane with diameter of 

6 mm and length of 500 mm (total nominal membrane area of 100 cm2). Unlike polymeric 

membranes, no compaction of ceramic membranes was necessary prior to testing with AMD. 

 Assessment of recovery rate: The first step in this study included the assessment 

of the effect of permeate recovery rate (i.e., 0%, 50% and 75%) on membrane performance 

followed by fouling analysis. The feed tank was filled with 20L of AMD and was allowed to 

stabilize for 2 h with total recirculation when samples corresponding to 0% recovery were 

collected. The system was monitored for the next 24 h to collect transient permeability and 

conductivity rejection data at 0% recovery. After that, 10L of permeate was collected to achieve 

a 50% recovery rate. The ceramic membrane was then chemically cleaned and the polymeric 

membranes were replaced.  Permeate samples were collected after 2 h of stabilization in total 

recirculation mode and transient permeability and conductivity rejection data were monitored for 

the next 24 h. After that, 5L of additional permeate (i.e., a total of 15L permeate) was removed 

from the system and membranes were either cleaned (ceramic) or replaced (polymeric) prior to 

collecting samples for 75% recovery after 2 h of stabilization period with total recirculation. 

Transient permeability and conductivity rejection data was also collected over the next 24 h. 

 Fouling analysis: Only one ceramic membrane was available and hence it had to 

be chemically cleaned prior to testing new process parameters. Unlike the ceramic membrane, a 

new polymeric membrane was employed each time since the used membrane underwent 

destructive analysis by scanning electron microscopy (SEM, JEOL JSM6510, Peabody, MA) and 

energy dispersive X–ray spectroscopy (EDS) to characterize the fouling layer. 
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 Assessment of chemical cleaning: The effect of chemical cleaning on membrane 

performance was evaluated using chemical cleaning procedures shown in Table 6.2. The 

performance data were compared at 75% AMD recovery to evaluate the efficiency of chemical 

cleaning. 

 Fouling mitigation strategies: Two fouling mitigation strategies, namely pH 

adjustment and antiscalant addition, were evaluated in this study. Membrane performance with 

no antiscalant addition or pH adjustment at 75% AMD recovery was compared with that when 

feed pH was adjusted to 4 or when 15 mg/L of antiscalant was added to the feed. In each case, 

the membrane was stabilized for 2 h followed by permeate sample collection to determine ion 

rejections and then measurement of transient permeability and conductivity data over the next 24 

h period. 

All experiments were conducted at a constant pressure of 35 bar, temperature of 25  1C 

and feed flow rate of 5.68 LPM unless otherwise indicated. This feed flow rate corresponds to a 

crossflow velocity of 1.16 m/s with the flat sheet polymeric membranes and 3.35 m/s with the 

tubular ceramic membrane. The rejection of various ions was calculated as:  

R (%)  

where, R is the observed rejection and  and  are the concentrations of ion ‘i’ in 

the bulk feed and the bulk permeate, respectively. Al, Ba, Ca, K, Mg, Mn, Na and Sr were 

analyzed using Inductively Coupled Plasma–Optical Emission Spectroscopy (ICP–OES) (Model 

5100, Agilent Technologies, Santa Clara, CA) and Se, As, and Ni were analyzed using 

Inductively Coupled Plasma–Mass Spectroscopy (ICP–MS) (Model 7700x with HEHe–mode 

octopole reaction cell, Agilent, Santa Clara, CA). Operating conditions for the ICP–MS were 
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optimized daily via the autotune function of the Agilent MassHunter software using 1000:1 

diluted Agilent tuning solutions [196]. All anions were analyzed using ion chromatography (IC) 

(Dionex ICS–1100, Sunnywale, CA) with the IonPac AS22 carbonate eluent anion–exchange 

column after suitable dilutions with DI water. Total iron concentration was measured using 

HACH method 8008 with FerroVer powder pillows (measurement range = 0.02 – 3.00 mg/L). 

All experiments to assess the recovery rate, effect of chemical cleaning and those with synthetic 

solutions were performed in duplicates. All the remaining experiments were performed only 

once because: (1) real AMD was available in limited quantities for testing, (2) the standard 

deviations for the experiments run in duplets were very small (maximum of  0.25 LMH/bar for 

permeability and  0.3% for ionic rejection) and (3) only one ceramic NF membrane was 

available for testing. 
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Table 6.2. Chemical cleaning steps employed for testing the cleaning efficiency with ceramic and polymeric 

(NF270) membrane 

 
High and low flow rates correspond to 9.46 and 1.89 LPM feed flow rates respectively. No feed 

pressure was applied during any cleaning procedure. 
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6.3 RESULTS AND DISCUSSION 

6.3.1 Effect of feed sulfate concentration on membrane performance 

Sulfate is the major contaminant in AMD that can be present at concentrations as high as 

20 g/L. Hence, the effect of sulfate concentration on the rejection and permeability was first 

tested with synthetic solution containing 500 – 10,000 mg/L sulfate prepared using 

Na2SO4
.10H2O in DI water. Figure 6.1 shows sulfate rejection and permeability with increasing 

sulfate concentration for ceramic and NF270 membranes. As can be seen in Figure 6.1 (a), 

sulfate rejection increased very slightly or did not change in the case of NF270 membrane but it 

increased from 17 to 68% with increasing sulfate concentration for the ceramic NF membrane. 

Adsorption of sulfate on the active layer of ceramic NF membrane that enhanced transport 

resistance due to increased electrostatic interactions might be one of the major mechanisms to 

explain more than 3–fold increase in sulfate rejection. The permeability decreased from 2.5 to 

1.4 LMH/bar in the case of ceramic and from 12.8 to 9.1 LMH/bar for NF270 membrane (Figure 

6.1 (b)). This can be attributed to the increase in the feed osmotic pressure, which increased from 

0.13 to 2.58 bar (neglecting concentration polarization) with an increase in sulfate concentration 

from 500 to 10,000 mg/L. The polymeric membrane achieved effective rejection of sulfate even 

at very high feed concentrations. It also achieved higher permeability than the ceramic 

membrane in spite of having a slightly lower MWCO. Such behavior may be due to the thickness 

of active layers of the two membranes with thicker active layer for maintaining the mechanical 

integrity of the ceramic membrane resulting in increased mass transport resistance. 
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Figure 6.1. Sulfate rejection and permeability of polymeric (NF270) and ceramic membranes 

with synthetic solution. Experimental feed pressure = 30 bar 

6.3.2 Influence of permeate recovery on ion rejection 

Full scale NF membrane treatment plants typically operate at 50 – 75% permeate 

recovery [116, 197] and recoveries of 0%, 50% and 75% were chosen in this study to investigate 

the effect of feed concentration on ion rejection and permeability of ceramic and polymeric NF 

membranes.  

 Figure 6.2 shows the rejection of all ions as a function of permeate recovery using 

real AMD as feed. Rejection of all ionic species increased with an increase in recovery rate in the 

case of the ceramic membrane (i.e., Figure 6.2 (a)). Rejection of divalent cations ranged between 

55 – 67% at the highest recovery rate (i.e., 75%). The observed rejection order of Mg2+  Ni2+ > 

Mn2+ > Sr2+ > Ca2+ > Ba2+ can be explained by the diffusion coefficients and Stokes radii of 

these divalent cations. The diffusion coefficient for these ions are in the order Ba2+ > Ca2+ > Sr2+ 

> Mn2+ > Mg2+ > Ni2+ where lower diffusion coefficient corresponds to larger Stokes radii and 

results in better rejection [47]. Greater rejection of sulfate (i.e., 49.4 – 62.8%) than chloride (i.e., 

5.4 – 6.7%) can be explained by the necessity to maintain electroneutrality on both sides of the 
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membrane [99, 147] and larger Stokes radii and lower diffusivity of sulfate compared to chloride 

[47].  The rejection of all monovalent ions (i.e., sodium, potassium and chloride) along with 

aluminum, arsenic and selenium was always below 50% with minimum rejection for chloride 

(i.e., 5.4 – 6.7%), indicating that the ceramic membrane offered minimal resistance to 

monovalent ions.  

In the case of NF270, rejection of all ionic species except the monovalent ions changed 

slightly or did not change with an increase in permeate recovery (i.e., Figure 6.2 (b)). Marginal 

increase was measured as compared to that with the ceramic membrane (e.g., the overall 

conductivity rejection with NF270 membrane increased from 91.2 to 92.5%). The increase in 

rejection with increasing feed concentration in the case of polymeric membranes is typically 

attributed to the preferential permeation of like charged ions, thereby adding resistance for the 

transport of solute through the membrane [138, 158].  

 NF270 is a semi–aromatic NF membrane and the charge effects (Donnan 

exclusion) contribute to the overall ionic separation along with steric exclusion effects [1], 

especially at the ionic strength of 0.027 M used in this study.  The increase in feed concentration 

eliminates charge effects (they are typically screened out at ionic strength above 0.1 M [1]) and 

the rejection of monovalent ions decreases. Chloride rejection, for instance, decreased from 61 to 

44% with increase in permeate recovery from 0 to 75%, which is partially also the result of 

electroneutrality requirements on both sides of the membrane because the rejection of sulfate 

ions increased as explained above. In addition to achieving > 97% rejection of sulfate, Ba, Ca, 

Mg, Mn, Na, Ni and Sr, NF270 membrane also achieved 95 – 96.1% rejection of Se, whose 

release to environment from mining, oil refineries, manufacturing and agricultural drainage has 

been a major concern [198]. 
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 NF270 rejected 33% of arsenic while the ceramic membrane only achieved 20% 

arsenic rejection at 75% recovery. Such low rejections suggest that arsenic might be present as 

an uncharged species. As (III) present as H3AsO3 below its pKa = 9.22 is poorly rejected by NF 

membranes [199, 200] while the rejection of As (III) and As (V) is influenced by Donnan 

(charge) exclusion [157]. 

 

 

Figure 6.2. Ion rejections with (a) Ceramic and (b) NF270 membranes as a function of increasing recovery rates 

with real AMD 
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 It is important to note that even though the two membranes had similar nominal pore 

sizes, NF270 membrane achieved much higher rejections compared to the ceramic membrane. 

This provides significant evidence that charge (Donnan) exclusion might be a dominant 

separation mechanism in addition to size exclusion and dielectric exclusion phenomenon [64, 

201]. Thus, active layer surface modification of the ceramic membrane to introduce charged 

groups could help to improve the overall rejection of ionic species under the conditions that were 

investigated in this study. 

6.3.3 Membrane fouling 

To evaluate membrane fouling, filtration experiments were carried out for 24 h in total 

recirculation mode while monitoring the transient permeability and the feed and permeate 

conductivity. Figure 6.3 shows the measured transient permeability and overall conductivity 

rejection over 24 h for the ceramic and NF270 membranes at different permeate recoveries. 
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Figure 6.3. Permeability ((a) and (c) for ceramic and NF270 membrane, respectively) and overall conductivity 

rejection ((b) and (d) for ceramic and NF270 membrane, respectively) as a function of permeate recovery with real 

AMD over 24 h 

 

 Maximum decrease in permeability was observed at 75% recovery for both 

membranes. Ceramic membrane permeability decreased by 13.6% (i.e., from 0.81  0.01 

LMH/bar to 0.70  0.03 LMH/bar, Figure 6.3 (a)) while NF270 permeability decreased by 

16.2% (i.e., from 8.78  0.11 LMH/bar to 7.36  0.23 LMH/bar, Figure 6.3 (c)). The 

conductivity rejection on the other hand remained unchanged in the case of NF270 membrane 

(i.e., < 0.1%, Figure 6.3 (d)) or increased as much as 8% in the case of ceramic membrane (i.e., 

from 47.62%  0.12% to 51.45%  0.28% at 75% recovery, Figure 6.3 (b)). The increase in 

rejection with a decrease in permeability suggests that scaling/fouling has occurred in these tests.  
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 At these conditions, thermodynamic equilibrium calculations (PHREEQC version 

3.1.7, USGS) indicate that BaSO4, CaSO4.2H2O (gypsum), KAl3(SO4)2(OH)2 and Al(OH)3 scales 

may be formed on the feed side. The scales that were formed on the membrane surface at 75% 

recovery in tests with the polymeric NF270 membrane were analyzed (Figure 6.4) for 

morphology and elemental composition using SEM and EDS respectively. Figure 6.4 indicates 

non-homogeneous scale with distinct crystal structures. Gypsum was identified as the most 

dominant component and the average elemental analysis of the scale from five different areas by 

EDS revealed the following composition: O = 52.76  5.7%, S = 21.44  4.2% and Ca = 25.8  

6.1% and Mn = 1.62  0.1%. 

 

 

Figure 6.4. SEM micrograph of scales formed on NF270 membrane after 24 h of testing at 75% 

recovery rate with real AMD (a) at 70X magnification and (b) at 2,500X magnification 

6.3.4 Impact of chemical cleaning on membrane performance 

Chemical cleaning procedures shown in Table 6.2 were applied after 24 h of filtration in 

total recirculation mode at 75% permeate recovery of real coal mine drainage. Figure 6.5 
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compares ionic rejection while Figure 6.6 compares permeability for pristine and chemically 

cleaned membranes. The rejection of all ions after chemical cleaning decreased (except arsenic 

rejection by ceramic membrane) while the permeability increased for both membranes. Overall 

conductivity rejection in the case of ceramic membrane decreased by about 18% while it 

decreased by only 0.4% in the case of NF270 membrane. The order of rejection of various ions 

remained the same as shown in Section 6.3.2 and can be explained by the diffusion coefficients 

and Stokes radii of these ions. Increased permeability and decreased ion rejection indicate that 

the membrane pores might be slightly enlarged by the chemical cleaning step. Enhanced 

electrostatic repulsion between the carboxylic groups with acidic and basic cleaning agents is 

expected to affect the pore size of the polymeric membrane, thereby affecting the performance 

[105]. Increase in permeability with caustic cleaning has been reported for NF270 membrane 

[102]. Even though the overall conductivity rejection decreased only slightly in the case of 

NF270 membrane, the decrease in rejection of monovalent ions and arsenic was not insignificant 

(i.e., chloride rejection decreased by 8.2% while that of arsenic decreased by about 6%). The 

smallest changes in pore dimensions would be most reflected in the rejection of monovalent ions, 

which provides further evidence for the proposed slight enlargement of NF270 membrane pores 

by chemical cleaning. Unlike, chemical cleaning of polymeric membranes, cleaning of ceramic 

NF membranes has not yet been completely explored. In this study, conductivity rejection 

decreased from 51 to 42% for the ceramic membrane, which indicates that chemical cleaning 

affected the physicochemical characteristics of the active layer of the ceramic membrane. 

Contrary to all other ions, rejection of arsenic by the ceramic membrane increased from 20 to 

37.9%. It has been shown that the rejection of arsenic can be approximately quantified by its 

accumulation through adsorption on the membrane surface [141], which is dependent on the 
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membrane surface roughness. Hence, it can be concluded that the surface roughness of the 

ceramic membrane was affected during the chemical cleaning step, which led to this unexpected 

increase in rejection of arsenic as compared to other ions.  

 

 

Figure 6.5. Ion rejections with (a) Ceramic and (b) NF270 membranes pre– and post–chemical cleaning with real 

AMD at 75% recovery rate 
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Figure 6.6. Permeability of ceramic and NF270 membranes pre– and post–chemical cleaning 

with real AMD at 75% recovery rate 

6.3.5 Fouling mitigation strategies 

Fouling of nanofiltration membranes has been a major concern [30, 202] and was also 

observed with the AMD selected for this study. Bertrand et al. reported that chemical cleaning 

had to be used every 6 – 8 weeks in a full–scale NF membrane plant treating highly sulfated and 

hard water despite a pre–treatment step to remove calcium and reduce CaSO4 fouling, which was 

identified as the major foulant [116]. Sulfate and calcium concentrations reached 2,500 and 665 

mg/L, respectively at 75% recovery with AMD used in this study, which are similar to those 

reported for the full–scale plant in [116]. 

 Two fouling mitigation strategies, namely pH adjustment and addition of 

antiscalant were investigated in this study. The feed pH was adjusted to 4 to investigate pH 

adjustment as a fouling mitigation strategy and to understand NF performance in the case of 

AMD with low pH. Figure 6.7 shows ionic rejections and Figure 6.8 shows permeability with pH 

adjustment and antiscalant addition as compared to unaltered feed conditions. 
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Figure 6.7. Ionic rejections with (a) Ceramic and (b) NF270 membranes due to pH adjustment and antiscalant 

addition with real AMD at 75% recovery rate 

 

 

Figure 6.8. Permeability of ceramic and NF270 membranes due to pH adjustment and antiscalant addition with real 

AMD at 75% recovery rate 
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Rejection of all ions increased or remained constant in the case of ceramic membrane and 

decreased or remained constant for the polymeric NF270 membrane when the feed pH was 

adjusted to 4 (Figure 6.7). The order of rejection of various ions remained the same as shown in 

Section 3.2 and can be explained by their diffusion coefficients and Stokes radii. Largest increase 

in ion rejection in the case of ceramic membrane was observed for selenium (45%) and arsenic 

(81.5%). Along with this increase in ion rejection, the permeability also increased from 0.8 to 1.5 

LMH/bar for the ceramic NF membrane (Figure 6.8). Usually, an increase in rejection is 

accompanied with a decrease in permeability, which is explained by the increase in the feed side 

osmotic pressure thereby decreasing the driving force. However, a contradictory observation was 

made with the ceramic membrane. Because size exclusion cannot explain the changes in the 

ionic rejection, it can be concluded that charge (Donnan) exclusion contributed to ionic rejection 

at low pH. Membrane manufacturer indicated an isoelectric point (IEP) for the active titania 

layer of the ceramic NF membrane between 6 – 7, which means that the active layer is positively 

charged at pH 4. This positive surface charge would lead to an increased rejection of cations, 

which would also increase the rejection of anions in order to maintain electroneutrality on both 

sides of the membrane. Gestel et al. [38] also reported an increased rejection for divalent and 

monovalent salts at lower pH with a ceramic NF membrane. However, it is not clear what 

mechanism is responsible for the increased rejection of arsenic (III), which is present as 

uncharged H3AsO3 at pH 4 [199]. 

 In the case of polymeric NF270 membrane, rejection of all ionic species except 

arsenic decreased slightly or remained constant (about 17% for chloride, 5% for monovalent 

cations and less than 2% for divalent ions) at pH 4 (Figure 6.7). NF270 has an IEP of 2.8 – 3 [79, 

90] and the zeta potential at pH 4 is only slightly negative compared to a very high negative 
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value at pH = 7.8 [1]. Therefore, the contribution of charge (Donnan) exclusion decreases with a 

pH decrease, which can explain the decrease in the observed ion rejection. Decrease in ion 

rejection was accompanied by a corresponding increase in permeability from 8.8 to 10.8 

LMH/bar (Figure 6.8) and can be explained partly by the decrease in the feed–side osmotic 

pressure and also by the possible increase in the effective pore size of NF270 membrane at pH 4. 

Irrespective of the membrane type, arsenic rejection increased with a decrease in the feed 

pH to 4. Urase et al. [199] reported a decrease in arsenic rejection with decreasing pH but Al-

Rashdi et al. [141] reported an increase in arsenic (III) rejection with decreasing pH. The 

increased arsenic rejection observed in this study might be attributed to its increased 

deposition/adsorption on the membrane surface [141]. 

 Addition of antiscalant increased the rejection of all ions by the ceramic 

membrane (Figure 6.7) with a maximum increase observed for chloride (282%) and arsenic 

(200%), followed by 80 – 90% increase for sodium and potassium. Also, an average of 30% 

increase in rejection of Ba, Ca and sulfate was observed in these experiments while the rejection 

of all other ions increased by about 15 – 20%. The increase in rejection due to antiscalant 

addition in the case of NF270 membrane was marginal (0 – 2%) except for the smaller ions 

(i.e., sodium and potassium rejection increasing by about 9% and that of chloride by about 72%).  

However, a large increase in the rejection of arsenic (i.e., 141%) was observed when antiscalant 

was added to the feed. This overall increase in rejection was accompanied by a corresponding 

decrease in permeability as seen in Figure 6.8. Permeability decreased by 43% for the ceramic 

NF membrane (0.81 to 0.46 LMH/bar) and by 38% for NF270 membrane (8.78 to 5.47 

LMH/bar) with addition of antiscalant.  
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 The antiscalant used in this study was a polymer of 2–phosphono–1,2,4–butane 

tri–carboxylic acid. This tri–carboxylic acid deprotonates at pH of 7.8 and contributes to 

enhanced charge exclusion and increased rejection of ionic species. However, the large 

antiscalant molecules also reduced membrane permeability. The SEM images (Figure 6.9) of the 

polymeric NF270 membrane after 24 h of testing with AMD at 75% permeate recovery with 

added antiscalant reveal the scale that appears to be more gel–like and compact as compared to 

that formed without the use of antiscalant (Figure 6.4). Average elemental composition of the 

scale based on EDS analysis at 5 different locations is: O = 38.2  4.8%, C = 31.5  6.3%, Ca = 

20.8  4.3%, P = 5.4  1%, Mg = 1.9  0.2%, S = 1.5  0.2%, Mn = 0.8  0.2%. This indicates 

that a complex scale is formed on the membrane surface consisting of the tri-carboxylic acid 

(i.e., carbon and phosphorus) along with sulfate and divalent cations calcium, magnesium and 

manganese. Scale formation improved the rejection of monovalent ions and uncharged As (III) 

species by both membranes but at the expense of reduced permeability. 

 

 

Figure 6.9. SEM micrograph of scales formed on NF270 membrane after 24 h of testing at 75% recovery rate with 

real AMD + antiscalant (a) at 70X magnification and (b) at 2,500X magnification 
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 Figure 6.10 shows the permeability at 75% recovery over a 24 h period with two 

fouling mitigation strategies. Adjusting the feed pH to 4 worked very well not only in terms of 

improving the permeability but also in terms of keeping it fairly constant over a 24 h period. For 

instance, the permeability of ceramic membrane decreased by 3.4% (from 1.47 to 1.42 LMH/bar) 

while it decreased by 2.8% (from 10.81 to 10.5 LMH/bar) in the case of NF270 membrane. 

However, when antiscalant was used as a fouling mitigation strategy, the permeability of ceramic 

membrane decreased by about 32.6% (from 0.46 to 0.31 LMH/bar) and by 27.3% (5.5 to 4 

LMH/bar) for NF270 membrane. This huge decrease in permeability within 24 h can be 

attributed to the gel–like and compact scale formed on the membrane surface as shown in Figure 

6.9. The complexity of the antiscalant action depends on three most important factors: threshold 

effect, metal ion sequestration capacity and particle dispersion capacity [194]. However, it is 

very difficult to predict which type of antiscalant would work well and how much of it would be 

required. For full–scale plant operation, intensive pilot–scale tests are performed to determine the 

best antiscalant and the optimum dose. Such investigation was outside the scope of this study. 

 

  

Figure 6.10. Transient permeability of (a) Ceramic and (b) NF270 membranes over 24 h period with pH 

adjustment and antiscalant addition as fouling mitigation strategies with real AMD at 75% recovery rate 
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 Overall, feed pH adjustment to 4 as a fouling mitigation step worked well. It led 

to an increase in both ion rejection and permeability for the ceramic membrane. With NF270 

membrane, the rejection of monovalent ions decreased along with a marginal decrease in the 

rejection of the multivalent ions but the permeability increased by 22.7%. Lower feed pH 

appears to be an attractive option for longer term flux behavior, which is particularly relevant for 

many acidic streams from abandoned coal mines. 

6.3.6 Achieving drinking water standards 

This study also investigated the ability of the NF permeate to meet drinking water 

standards when using real AMD as feed. Since the ceramic and NF270 are relatively loose NF 

membranes, a tighter NF membrane, namely TS80, was investigated with the same AMD at 0%, 

50% and 75% recovery rates. Table 6.3 shows the permeate quality at different recovery rates for 

all three NF membranes where gray color filled boxes indicate the concentrations above the 

drinking water standards [134]. 

 TS80 membrane is a tight polyamide NF membrane with a MWCO of 150 Da 

and pore radius of 0.71  0.02 nm [1]. It was able to achieve > 98% overall conductivity 

rejection with multivalent ions being rejected above 99% except for arsenic, which was rejected 

close to 70%. Among the monovalent ions, sodium and potassium were rejected at about 97% 

while the rejection of chloride was close to 90%. Such high ion rejection by TS80 membrane has 

been previously reported and explained by the dominant steric exclusion mechanism [1, 113]. 

High ion rejections were accompanied by reduced permeability (i.e., 4.3 – 3.8 LMH/bar) 

compared to the NF270 membrane, which can be largely explained by lower MWCO and pore 

size of the TS80 membrane [1].  
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Table 6.3. Permeate quality for ceramic, NF270 and TS80 membranes at 0%, 50% and 75% recovery rates 

 
 

*Permeability measured at time = 0 min post 2 h stabilization period. 
1Primary Maximum Contaminant Level (P-MCL) by EPA [134]. 
2Secondary Maximum Contaminant Level (S-MCL) by EPA. 
3Taste threshold by EPA. 
4Taste threshold by [203]. 
5Health reference level set by EPA. There is no current drinking water standard set at this time [135]. 
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 As seen from Table 6.3, TS80 was able to achieve drinking water standards for all 

ions except arsenic, whose regulatory level is 10 g/L. The permeate from ceramic membrane 

violated these standards for many different ions but the permeate from NF270 membrane was in 

violation only in the case of manganese at 50% and 75% recovery in addition to arsenic. It is 

obvious that arsenic has to be removed in a separate treatment step as none of the membranes 

could meet the drinking water standard for arsenic. If manganese can also be removed before the 

NF step, a relatively looser (i.e., NF270) membrane could be utilized instead of the tight (i.e., 

TS80) membrane because it will provide higher permeate flux (permeability with NF270 was 5 

LMH/bar higher than with TS80 membrane at 75% recovery). Addition of antiscalant resulted in 

a dramatic increase in arsenic rejection and the permeate concentrations at 75% recovery for the 

ceramic and NF270 membranes were measured at 17.2 and 16 g/L, respectively. These 

concentrations are only slightly above the allowable limits for drinking water. Hence, it is 

reasonable to expect that the addition of antiscalant with a tighter membrane like TS80 could 

bring the arsenic concentration in the permeate below the allowable limit. However, increased 

rejection would be accompanied by a loss in permeability by membrane fouling as observed in 

the case of the ceramic and NF270 membranes and hence would not be recommended. Even 

though the drinking water standards were not met by any of the NF membranes, the permeate 

stream could be used for a number of non-potable applications including irrigation [186, 204], 

construction industry, make-up cooling water in power plants [184], enhancing natural wetlands 

[188] and saltwater intrusion control [189]. 



 144 

6.4 CONCLUSIONS 

This study compared performance and fouling characteristics of ceramic and a polymeric 

nanofiltration membranes for treatment of abandoned mine drainage from an actual site in 

southwestern Pennsylvania. Several potentially toxic elements including aluminum, arsenic, 

barium, iron, manganese, nickel, selenium and strontium were present in the AMD along with 

about 650 mg/L of sulfate. Also, about 60 mg/L total iron was present, which had to be removed 

by aeration and microfiltration prior to testing AMD with the NF membranes to avoid severe 

membrane fouling.  

 Both ceramic and polymeric membranes were screened with increasing 

concentrations of sulfate in the synthetic feed to determine their capacity to reject sulfate as the 

major constituent in AMD. NF270 membrane achieved > 99% rejection in all cases while the 

rejection increased more than 3–fold for the ceramic NF membrane (i.e., from 17.2 to 67.5%) 

when the sulfate feed concentration increased from 500 to 10,000 mg/L. In addition, NF270 

membrane also achieved higher permeability than the ceramic NF membrane (i.e., 12.9 – 9.1 

LMH/bar vs. 2.5 – 1.44 LMH/bar) in all cases.  

 The impact of permeate recovery on ion rejection and permeability of both 

membranes was tested with real AMD at recoveries of up to 75%. Ion rejection increased with an 

increase in percent recovery, with NF270 achieving higher rejection than the ceramic membrane 

for all ions under all experimental conditions. NF270 rejected more than 96% of all multivalent 

ions while the ceramic membrane achieved rejections between 55 – 67%. Arsenic was not 

effectively rejected by either membrane (i.e., NF270 achieved 33% rejection and ceramic 

membrane achieved 20% rejection). Fouling of both membranes occurred at 75% permeate 
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recovery over the 24 h period. The fouling layer consisted mostly of gypsum, which was in 

agreement with the thermodynamic predictions.  

The efficiency of chemical cleaning techniques specified by manufacturers were tested 

for their ability to restore permeability and ion rejection after membrane fouling. The 

permeability increased and ion rejection decreased after chemical cleaning indicating a slight 

enlargement of the effective membrane pores for both membranes. pH adjustment and addition 

of antiscalant were investigated as fouling mitigation strategies for the scaling that occurred at 

75% recovery. Interestingly, feed pH adjustment to 4 caused an increase in ion rejection by the 

ceramic membrane and a decrease in ion rejection in the case of NF270 membrane. Such 

behavior can be explained by the changes in the charge characteristics of these membranes. 

Addition of antiscalant to the feed increased rejection of all ions by both membranes and was 

particularly significant for monovalent ions and arsenic. Arsenic rejection by ceramic and 

polymeric membrane increased by about 200 and 141%, respectively. This increase in rejection, 

however, occurred with a significant decrease in permeability of 43 and 38% for ceramic and 

NF270 membranes, respectively. The gel–like and compact scale formed on the membrane 

surface consisting of the tri–carboxylic acid (i.e., carbon and phosphorus) along with sulfate and 

divalent cations calcium, magnesium and manganese was identified as the main reason for the 

decrease in permeability and an increase in ion rejection, especially in the case of arsenic that is 

present as an uncharged species at these feed conditions.  

 This study also investigated a relatively tight NF membrane (i.e., TS80) for the 

possibility of producing the permeate from AMD that can serve as a drinking water source. TS80 

membrane achieved > 98% rejection of overall conductivity with > 99% rejection of all 

multivalent ions.  The only exception was arsenic, which was present in the permeate above the 
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allowable drinking water level. The permeate from the ceramic membrane was in violation of 

these standards for many different ions but the permeate from NF270 membrane was in violation 

only in the case of manganese (at 50% and 75% recovery) and arsenic (at all recovery rates). The 

use of antiscalant increased arsenic rejection and its addition in the case of TS80 membrane 

could help to meet the drinking water standard; however, the issue of intensive fouling observed 

with the use of antiscalant makes this approach infeasible. It is obvious that arsenic has to be 

removed in a separate treatment step as none of the membranes evaluated in this study could 

meet the drinking water standard. If manganese can also be removed before the NF step, a 

relatively looser (i.e., NF270) membrane could be utilized instead of the tighter (i.e., TS80) 

membrane because it will provide higher permeability. 
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7.0  CONCLUSIONS AND FUTURE OUTLOOK 

7.1 CONCLUSIONS 

In summary, the overall aim of the work presented in this thesis was to improve the 

understanding of nanofiltration processes so that the technical knowledge obtained could help 

contribute to solutions addressing the world water crisis. The work had a total of five subparts: 

(1) To examine the influence of active layers on separation potentials of nanofiltration 

membranes for inorganic ions, (2) To investigate the impact of chemical cleaning on 

physicochemical characteristics and ion rejection by nanofiltration membranes, (3) To gain 

insights into the removal of barium and strontium ions using nanofiltration membrane by 

experimental and modeling analysis, (4) Optimization of nanofiltration membranes at 

laboratory–scale and then testing at pilot–scale for complete recovery of abandoned mine 

drainage, and (5) Comparing ceramic and polymeric nanofiltration membranes for the treatment 

of abandoned mine drainage. A brief of the conclusions obtained in each of these areas is as 

follows: 

 

(1)  Chapter 2.0 contributes significantly to understanding the separation mechanisms of two 

types of commonly used nanofiltration membranes with a view of realizing new potential 

applications. We first analyzed the active layer chemistries of four commercially available 
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nanofiltration membranes with two different active layer chemistries: polyamide (1,3–

benzenediamine (m-phenylenediamine) (MPD) with trimesoyl chloride (TMC) and 

poly(piperazineamide) (piperazine (PIP) with TMC) to prove that these membranes were 

representative of the respective categories with no coatings or modification of the active 

layer. Effective membrane pore size and zeta potential characterization of the four 

membranes suggested that poly(piperazineamide) membranes had relatively larger pore sizes 

and that they were more electronegative for all feed compositions tested. Crossflow rejection 

experiments at low and high ionic strength feed suggested that Donnan (charge) exclusion 

was significant for poly(piperazineamide) membranes and that these membranes should be 

preferred in applications requiring partial ion removal (e.g., dairy industry) or charged based 

separations (e.g., charged organic separations), while polyamide membranes should be 

considered in desalination applications since steric exclusion was the most dominant 

separation potential. Qualitative analysis suggests that the contribution of dielectric exclusion 

to overall rejection by polyamide membranes would be more significant than that for 

poly(piperazineamide) membranes. This study offered additional insights into how the 

separation potentials of polyamide and poly(piperazineamide) active layer chemistries vary 

even with a very small difference in the effective membrane pore size. 

 

(2) The impact of chemical cleaning on physicochemical characteristics and separation 

performance of nanofiltration membranes was determined to be dependent on the type of 

active layer chemistry in Chapter 3.0. ATR–FTIR and XPS analysis indicated no chemical 

changes to the membrane active layers after chemical cleaning with HCl or NaOH. The 

active layer thicknesses of the membranes selected for this study decreased in the order NF90 
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> TS80 > TS40 > NF270. The degree of crosslinking in the active layer was higher for NF90 

membrane than TS80 membrane (PA membranes) and that for TS40 membrane was higher 

than NF270 membrane (PP membranes). Membrane cleaning with HCl did not have 

significant impact on zeta potential while cleaning with NaOH further reduced zeta potentials 

for membranes with high concentration of carboxylic acid groups on the surface (i.e., TS80, 

TS40 and NF270). The effective pore radii of all membranes increased as a result of 

chemical cleaning and poly(piperazineamide) membranes were more affected than 

polyamide membranes. HCl cleaning resulted in larger effective membrane pore radii for all 

membranes by 3 – 5%. Cleaning with NaOH had a much more pronounced impact on the 

effective pore radii and an increase of as high as 23% was observed for a PP membrane 

(NF270) after exposure for 18 h. This study offered evidence that NaOH can cause increased 

swelling of the active layer with an increase in cleaning time and this was particularly 

evident for poly(piperazineamide) membranes. The PP membranes are particularly 

vulnerable when it comes to regaining the permeability and rejection characteristics of 

pristine membrane if NaOH is used as a cleaning solution. Ion rejection test with single salt 

(1 mM Na2SO4) and a mixture of salts (1 mM Na2SO4 + 1 mM MgCl2 + 1 mM CaCl2) 

revealed that rejection of all ions decreased after chemical cleaning. Rejection of sulfate for 

poly(piperazineamide) membranes decreased only slightly despite a fairly significant 

increase in the effective pore radii, which can be explained by their dependence on charge 

exclusion mechanism for ion rejection that was actually enhanced by a decrease in zeta 

potential by NaOH cleaning. The impact of the increased effective pore radii was readily 

seen in the rejection of monovalent ions when the feed was adjusted to a mixture of salts. The 

23% increase in the effective pore radii for the NF270 membrane after NaOH cleaning for 18 
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h lead to a decrease of 25, 36, 53 and 62% rejection of magnesium, calcium, sodium and 

chloride ions, respectively.  At the same time, only a 7% decrease in the rejection of sulfate 

ions was observed, which could be explained by the 16% decrease in zeta potential. The 

changes in permeability due to chemical cleaning were in agreement with the changes in 

rejection (i.e., a decrease in ion rejection corresponded to an increase in membrane 

permeability). The effective pore radii measured using the membrane potential technique 

correlated well with DI water permeability for all membranes before and after cleaning. The 

importance of charge exclusion in rejection of inorganic ions was highlighted by the 

observed differences in rejection and permeability values when testing these membranes post 

cleaning with NaOH for 9 and 18 h. This study significantly contributed to help understand 

the lesser known effects of chemical cleaning of the rejection behavior of inorganic ions and 

its dependence on the physicochemical characteristics and separation potentials of two 

commonly used active layers of nanofiltration membranes.  

 

(3) A polyamide nanofiltration membrane (NF90) was investigated for the rejection of barium 

and strontium ions from single salt solutions at relevant process conditions in Chapter 4.0. 

Analysis of the zeta potential of NF90 membrane at varying concentrations of barium and 

strontium revealed that neither of these ions specifically adsorbed onto the membrane surface 

as the iso–electric point of the membrane did not change even with a hundred–fold increase 

in solute concentration. Combining these results with the observed rejection performance at 

different feed pH lead to a conclusion that electrostatic effects and H+ rejection did not 

contribute to rejection of these cations and that size exclusion was the dominant separation 

mechanism. Increase in the effective pore size by conformal changes to the polyamide active 
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skin layer were responsible for the marginal decrease in the observed rejection ( 1 – 2%) 

with increasing pH for both barium and strontium ions. Concentration polarization modulus 

decreased with increase in crossflow velocity, decrease in feed pressure and increase in bulk 

feed concentration because of increase in shear mass transfer rate, decrease in permeate 

convection and increase in feed osmotic pressure, respectively. The permeate flux increased 

with increase in feed pressure but ion rejection stabilized at around 15 – 20 bar for both 

barium and strontium. Hence, feed pressure of 20 bar and crossflow velocity of 1.16 m/s are 

recommended as optimal operating conditions based on the observed ion rejection and 

concentration polarization modulus. Spiegler–Kedem model fitted very well with the 

experimental data. The concentration dependent model transport parameters (i.e., 

permeability and reflection coefficient for solute) indicate that both barium and strontium 

were equally rejected by the NF90 membrane at all conditions. Maximum rejection of 99.5% 

and minimum of 92% indicate exceptional performance of NF90 membrane while achieving 

appreciable permeability between 3.9 – 5.9 LMH/bar. 

 

(4) The study presented in Chapter 5.0 was designed to optimize and validate the use of 

nanofiltration membranes for treatment of AMD at full–scale to produce two streams: treated 

water stream that can serve as a substitute for fresh water in industrial applications and a 

concentrated sulfate stream that is ideally suited for use in produced water treatment for 

sulfate precipitation to control divalent cations in the finished water and enable its reuse for 

hydraulic fracturing of subsequent wells. Laboratory–scale screening of eight commercially 

available NF membranes was performed with synthetic AMD solutions in a dead–end 

module and two membranes, i.e., NF90 and NF270, were selected for testing with real AMD 
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solution based on sulfate rejection and permeate flux. These membranes were also tested in 

the crossflow module where NF90 membrane performed better than NF270 membrane in 

terms of rejection of all ions of interest. Hence, NF90 membrane was selected for pilot–scale 

study. NF90 membrane exhibited impressive performance in the pilot–scale system by 

achieving very high removal of sulfate from the real AMD. The sulfate concentration in the 

feed solution of about 1,700 mg/l was reduced to less than 10 mg/l, representing more than 

99% sulfate removal during 208 hours of continuous operation. In addition, more than 99% 

rejection of calcium, magnesium, nickel and selenium was achieved in the pilot–scale tests 

with total dissolved solids and total organic carbon rejection of 98% and 90%, respectively. 

The NF system also achieved about 90% chloride removal which points towards a potential 

benefit in conditioning water for use in industries that are sensitive to corrosion issues. The 

pretreatment steps of aeration, sedimentation, bag filtration and ultrafiltration used in the 

pilot–scale study were highly effective in removing iron from the feed stream to facilitate 

stable operation of the NF system over the 208–hour period. A steady–state water recovery 

of 57% was achieved with the feed pressure of 10 bar and feed flow rate of 3.5 GPM during 

the entire pilot plant operation. Chemical equilibrium calculations indicate a very small 

degree of gypsum supersaturation but a constant pressure drop of about 1.7 bar during pilot–

scale testing and DI water permeability tests on used NF modules confirmed that no 

measurable fouling/scaling occurred with this particular AMD. Thus, the goal of producing 

two valuable product streams, one of high quality (NF permeate with TDS < 50 mg/l) and the 

other with high sulfate concentration (NF reject with a sulfate concentration of about 4,000 

mg/l, which can be used to recover flowback and produced water), was successfully 

accomplished in this study. In addition, laboratory–scale experiments clearly indicate that 
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testing in a dead–end module can only be used for relative comparison of NF membranes 

while the crossflow system facilitates a detailed process study to optimize NF performance. 

The performance of NF membrane in a crossflow laboratory–scale system compares well 

with that observed in a pilot–scale system, which confirms the scalability of membrane 

filtration process and further emphasizes the value of laboratory–scale tests in a crossflow 

module to predict full–scale system performance. 

(5) The study in Chapter 6.0 compared the performance and fouling characteristics of a ceramic 

and a polymeric nanofiltration membrane for treatment of abandoned coal mine drainage 

from an actual site in southwestern Pennsylvania. Several potentially toxic elements 

including aluminum, arsenic, barium, iron, manganese, nickel, selenium and strontium were 

present in the AMD along with about 650 mg/L of sulfate. Also, about 60 mg/L total iron 

was present, which had to be removed by aeration and microfiltration prior to testing AMD 

with the NF membranes to avoid severe membrane fouling. Both ceramic and polymeric 

membranes were screened with increasing concentrations of sulfate in the synthetic feed to 

determine their capacity to reject sulfate as the major constituent in AMD. NF270 membrane 

achieved > 99% rejection in all cases while the rejection increased more than 3–fold for the 

ceramic NF membrane (i.e., from 17.2 to 67.5%) when the sulfate feed concentration 

increased from 500 to 10,000 mg/L. In addition, NF270 membrane also achieved higher 

permeability than the ceramic NF membrane (i.e., 12.9 – 9.1 LMH/bar vs. 2.5 – 1.44 

LMH/bar) in all cases. The impact of permeate recovery on ion rejection and permeability of 

both membranes was tested with real AMD at recoveries of up to 75%. Ion rejection 

increased with an increase in percent recovery, with NF270 membrane achieving higher 

rejection than the ceramic membrane for all ions under all experimental conditions. NF270 
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membrane rejected more than 96% of all multivalent ions while the ceramic membrane 

achieved rejections between 55 – 67%. Arsenic was not effectively rejected by either 

membrane (i.e., NF270 achieved 33% rejection and ceramic membrane achieved 20% 

rejection). Fouling of both membranes occurred at 75% permeate recovery over the 24 h 

period. The fouling layer consisted mostly of gypsum, which was in agreement with the 

thermodynamic predictions. The efficiency of chemical cleaning techniques specified by 

manufacturers were tested for their ability to restore permeability and ion rejection after 

membrane fouling. The permeability increased and ion rejection decreased after chemical 

cleaning indicating a slight enlargement of the effective membrane pores for both 

membranes. pH adjustment and addition of antiscalant were investigated as fouling 

mitigation strategies for the scaling that occurred at 75% recovery. Interestingly, feed pH 

adjustment to 4 caused an increase in ion rejection by the ceramic membrane and a decrease 

in rejection in the case of NF270 membrane. Such behavior can be explained by the changes 

in the charge characteristics of these membranes. Addition of antiscalant to the feed 

increased rejection of all ions by both membranes and was particularly significant for 

monovalent ions and arsenic. Arsenic rejection by ceramic and polymeric membrane 

increased by about 200 and 141%, respectively. This increase in rejection, however, occurred 

with a significant decrease in permeability of 43 and 38% for ceramic and NF270 

membranes, respectively. The gel–like and compact scale formed on the membrane surface 

consisting of the phosphono tri–carboxylic acid (i.e., carbon and phosphorus) along with 

sulfate and divalent cations calcium, magnesium and manganese was identified as the main 

reason for the decrease in permeability and an increase in ion rejection, especially in the case 

of arsenic that is present as an uncharged species at these feed conditions. In addition, this 
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study also investigated a relatively tight NF membrane (i.e., TS80) for the possibility of 

producing the permeate from AMD that can serve as a drinking water source. TS80 

membrane achieved > 98% rejection of overall conductivity with > 99% rejection of all 

multivalent ions.  The only exception was arsenic, which was present in the permeate above 

the allowable drinking water level. The permeate from the ceramic membrane was in 

violation of these standards for many different ions but the permeate from NF270 membrane 

was in violation only in the case of manganese (at 50% and 75% recovery) and arsenic (at all 

recovery rates). The use of antiscalant increased arsenic rejection and its addition in the case 

of TS80 membrane could help to meet the drinking water standard; however, the issue of 

intensive fouling observed with the use of antiscalant makes this approach infeasible. It is 

obvious that arsenic had to be removed in a separate treatment step as none of the membranes 

evaluated in this study could meet the drinking water standard. If manganese can also be 

removed before the NF step, a relatively looser (i.e., NF270) membrane could be utilized 

instead of the tighter (i.e., TS80) membrane because it will provide higher permeability. 
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7.2 KEY CONTRIBUTIONS 

Chapter 2. Influence of active layers on separation potentials on NF membranes 

for inorganic ions

Key Results:

• Poly(piperazineamide) membranes have a slightly open structure (bigger pore

size) as compared to polyamide membranes.

• Poly(piperazineamide) membranes are more negatively charged (lower zeta

potential) than polyamide membranes.

• Polyamide NF membranes rely dominantly on size exclusion mechanism for

ion rejection while for poly(piperazineamide) membranes both size and charge

(Donnan) exclusion contribute to ion rejection.
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Chapter 3. Influence of chemical cleaning on the physicochemical characteristics 

and ion rejection by nanofiltration membranes

Key Results:

• No changes in elemental composition measured with HCl (at pH 2) or NaOH

(at pH 12) cleaning.

• Effective pore radii of all membranes increased post chemical cleaning and

poly(piperazineamide) membranes were more affected than polyamide

membranes. Time dependent changes were measured with

poly(piperazineamide) membranes with NaOH cleaning.

• Poly(piperazineamide) membranes achieved high rejection of sulfate even with

a 23% increase in the effective pore radii with NaOH cleaning owing to their

dependence on charge exclusion mechanism in addition to size exclusion.

Chapter 4. Insights into the rejection of barium and strontium by nanofiltration 

membrane from experimental and modeling analysis

Key Results:

• Barium and strontium ions did not specifically adsorb at the membrane surface.

• Size exclusion was the dominant separation mechanism. Electrostatic effects

and H+ rejection did not influence rejection of barium and strontium.

• Spiegler–Kedem model fitted very well with the experimental data and a

concentration dependent equation was developed to approximate the rejection

of barium and strontium over the concentration range of 0.36 – 36.4 mM.
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Chapter 5. Laboratory and pilot–scale nanofiltration treatment of abandoned 

mine drainage for the recovery of products suitable for industrial reuse

Key Results:

• Laboratory–scale screening of eight commercially available polymeric NF

membranes was performed and NF90 membrane was selected based on

optimized rejection and permeability.

• Pilot–scale study comprised of aeration, bag filtration, UF and NF. >98% TDS

and >90% TOC was removed with no fouling at 57% water recovery.

• Reusability of AMD was established by using both the permeate (TDS<50

mg/L) for industrial processes, irrigation and reject (sulfate – 4000 mg/L) for

treating produced and flowback water to remove the scale causing cations by

sulfate precipitation to enable its reuse for hydraulic fracturing.

Chapter 6. Comparison of ceramic and polymeric nanofiltration membranes for 

treatment of abandoned coal mine drainage 

Key Results:

• Polymeric NF membrane achieved both better rejection and permeability than

the ceramic NF membrane in all cases.

• At 75% recovery, fouling was dominated by gypsum precipitation and arsenic

was not rejected effectively in any case.

• Addition of antiscalant formed a gel–like and compact scale owing to complex

interactions between calcium, magnesium, manganese and the phosphono tri–

carboxylic acid antiscalant molecules.
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7.3 FUTURE OUTLOOK 

The work presented in this thesis has successfully answered very interesting questions, 

which have also raised many more other questions and research directions to be explored.  

It was successfully shown in Chapter 2.0 that steric exclusion is the dominant separation 

mechanism for polyamide membranes and that poly(piperazineamide) membranes depended on 

both steric and Donnan exclusion for ion rejection. This points towards the use of 

poly(piperazineamide) membranes for potential applications involving the selective separation of 

charged species. Since commercial membranes were used in this study, nanofiltration membrane 

fabrication to further study the dependence of Donnan exclusion mechanism and the related 

changes in ion rejection and permeability with poly(piperazineamide) active layer thickness, 

surface modifications, etc. would be essential to enhance the use of these membranes for 

applications involving selective separation of charged species. (Experimental) 

Chapter 3.0 confirmed that ion rejection decreased and permeability increased for both 

polyamide and poly(piperazineamide) nanofiltration membranes owing to conformal changes in 

the active layer structure as explained by the increased effective pore radii with no changes 

observed in the elemental composition of the active layer after chemical cleaning. Interestingly, 

poly(piperazineamide) membranes were affected more and time dependent changes were 

observed with NaOH cleaning. Usual industrial chemical cleaning procedures employ an acid 

cleaning step post alkali cleaning, which helps in regaining the lost membrane performance 

characteristics. The time dependent behavior observed with poly(piperazineamide) membranes 

indicates that difficulties could be observed with regaining membrane performance in the case of 

poly(piperazineamide) membranes and is subject to further enquiry. Insights related to the degree 
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of membrane performance regained would be instrumental in extending the average membrane 

life. (Experimental, pilot–scale) 

Effective removal of barium and strontium ions with the polyamide membrane was 

shown in Chapter 4.0 and the role of steric exclusion was highlighted. All tests were run with 

single salt solutions. Elucidating the dependence of membrane performance on feed chemistry 

would be interesting given the relevance to actual scenario. (Experimental) 

Chapter 6.0 showed the comparison of polymeric and ceramic NF membranes for 

treatment of abandoned mine drainage and polymeric membrane achieved both higher rejection 

and permeability than the ceramic nanofiltration membrane. This illustrates the need for 

improving ceramic nanofiltration membranes that have superior mechanical characteristics as 

compared to the currently used polymeric membranes. As of today, only a handful of ceramic 

nanofiltration membranes are commercially available partly because of the unavailability of 

competing fabrication technologies to make ceramic nanofiltration membranes with low 

molecular weight cut-off’s. There exists a plethora of fundamental (mechanism of separation, 

specific ion rejection, permeability, impact of chemical cleaning) as well as applied (pilot–scale 

testing) aspects that are yet to be explored and can provide valuable contributions for the 

development of ceramic nanofiltration membranes. (Experimental, Modeling, pilot–scale) 

Another interesting aspect observed in Chapter 6.0 was the compact gel–like scale 

formed with the use of antiscalant during treatment of abandoned mine drainage at 75% 

recovery. Understanding the complex interactions of calcium and sulfate ions with the 

phosphono tri–carboxylic acid groups on the antiscalant molecules could provide valuable 

insights for the development of newer antiscalants that are much more effective with high 

concentrations of calcium ions. (Experimental) 
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In conclusion, this thesis has successfully provided novel insights into understanding the 

separation mechanisms of two commonly used active layers of polymeric nanofiltration 

membranes as well as treatment of abandoned mine drainage using ceramic and polymeric 

nanofiltration membranes. It is hoped that this evaluation will be a valuable contribution in the 

bid to improve the crisis related to the global need for safe drinking water.  
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APPENDIX A 

A.1 SUPPORTING INFORMATION FOR CHAPTER 2.0 

A.1.1 Results and discussion for ATR–FTIR section 

Among various observed peaks in Figure 2.2, those at 1584, 1503, 1486, 1385 – 1365, 

1350 – 1280, 1235, 1180 – 1145 and 830 cm-1 are common for all four membranes (i.e., 

NF90, TS80, NF270 and TS40). These peaks can be attributed to the common polysulfone 

support layer. Kwon and Leckie [118] have attributed the peaks at 1584, 1503 and 1486 

cm-1 to the aromatic in–plane ring bend stretching vibration. The peaks in the range of 1385 – 

1365 cm-1 are due to the C–H symmetric vibration and those in the 1350 – 1280 and 1180 – 1145 

cm-1 range are due to the asymmetric SO2 stretching vibration and symmetric vibration, 

respectively. Also, the prominent peaks at 1235 and 830 cm-1 are due to C–O–C stretching 

vibration in polysulfone and in–phase out–of–plane hydrogen deformation of para–substituted 

phenyl groups [205]. 
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A.1.2 Membrane pore size measurement 

Measurement of pore size is based on the membrane potential that is created between two 

half–cells of the same electrolyte(s) at identical temperature and hydrostatic pressure but at 

different concentrations. The difference between the electric potential in the bulk solution of the 

higher concentration and that in the bulk solution of the lower concentration half–cell is called 

the membrane potential. The steric, electric and dielectric exclusion (SEDE) model, which is an 

improved version of the Teorell–Meyer–Sievers (TMS) model is used to describe the membrane 

potential that can be used to determine the pore sizes of NF membranes. It has been shown that 

the diffusion potential (high concentration limit of the membrane potential) in solutions of single 

binary electrolyte is only affected by the membrane pore size and does not depend on either the 

dielectric constant inside the pores or the membrane fixed charge [67, 80, 206]. Thus, membrane 

potential measurements carried out at high concentrations with binary electrolyte are used to 

assess the pore sizes of NF membranes. 

Since a full theoretical description of the SEDE model is available elsewhere [68, 80, 99], 

just a brief description of the equations used for the calculation of pore size (expression for 

membrane potential at high concentration of binary electrolyte) is given below. The apparatus for 

the measurement of the membrane potentials is shown in Figure A.1 and all the equations are 

listed in Table A.1. 

Within the scope of SEDE and TMS models, the membrane potential ( ) can be shown 

as the sum of two components, namely the difference in the Donnan potentials at opposite 

membrane/external solution interfaces (  – ) and the diffusion potential ( ) arising 

from the membrane pores as shown in Eq 1 [207]. However, the membrane potential for binary 
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electrolyte at high concentrations equals only the contribution from diffusion potential while the 

Donnan potential contribution is zero, which is shown in Eq 2. In the formalism of the SEDE 

model, the diffusion and membrane potential reads as shown in Eq 3. For the sake of simplifying 

Eq 3, the concentration of electrolyte in the high concentration half–cell is chosen to be twice the 

concentration of electrolyte in the lower concentration half–cell (Eq 4). Also, within the scope of 

the SEDE model, the partitioning coefficient accounts for steric effects, the Donnan exclusion 

and the dielectric exclusion and can be calculated as shown in Eq 5. Escoda et al. [80] have 

shown that at high salt concentration,  =  and . Thus, writing Eq 5 for both 

membrane interfaces (int = 0 and ) and considering the electrolyte concentrations in the bulk 

phase at these interfaces (Eq 4), we can derive Eq 6 that describes the ratio of the concentration 

of ion ‘i’ at the interface between the membrane and the most diluted solution to its 

concentration at the interface between the membrane and the most concentrated solution equal to 

half (both inside the membrane and in the bulk). Combining Eq 6 and Eq 3 gives the final 

expression for the membrane potential developed at high concentration of single salt (MA) as 

shown in Eq 7. 

 can be measured using two half–cell membrane potential measurement setup 

(Figure A.1) and   can be calculated using Eq 8, which considers the concentration potential 

resulting from the difference in solution concentrations. Knowing the membrane potential 

( ), effective pore radius of the membrane can be calculated by iteration using Eq 7 and the 

equation for the steric hindrance factor ( ). 
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Figure A.1. Apparatus for measurement of effective membrane pore radii 
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Table A.1. SEDE model equations for binary electrolyte at high concentration to calculate the pore size of 

membrane 
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Table A.1. (Continued) 
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A.1.3 Additional ion rejection experiments 

 

 

Figure A.2. Rejection of ionic species with feed solutions: (a) 96 mg/l sulfate + 24 mg/l magnesium + 40 mg/l 

calcium (b) 650 mg/l sulfate + 200 mg/L magnesium + 1000 mg/l calcium, (c) 650 mg/L sulfate + 1000 mg/L 

magnesium + 200 mg/l calcium and (d) 650 mg/L sulfate + 1000 mg/L magnesium + 1000 mg/L calcium  

 

Figure A.2 provides additional evidence for the impact of separation potentials of active 

layers (i.e. polyamide/fully aromatic and poly(piperazineamide)/semi–aromatic) on the rejection 

performance of nanofiltration membranes. Results on Figure A.2 (a) were obtained using dilute 

feed ionic strength (i.e., 96 mg/l sulfate + 24 mg/l magnesium + 40 mg/l calcium) where both 

Donnan (charge) and steric effects would contribute to ion rejection [98]. Polyamide membranes 

achieved > 98% rejection of calcium and magnesium ions while poly(piperazineamide) 
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membranes achieved 91 – 93% rejection of these cations. Also, polyamide membranes achieved 

> 94% rejection of sodium and chloride ions in each case while the rejection of these ions by 

poly(piperazineamide) membranes ranged between 60 – 70%. This further provides evidence 

that poly(piperazineamide) membranes achieved lower ion rejection despite having more 

electronegative surfaces than polyamide membranes and clearly supports that the steric rejection 

potential can be more dominant than Donnan potential in the overall rejection by a particular 

membrane. Such behavior suggests that the contribution of charge effects (Donnan potential) 

towards ion rejection by polyamide membranes is weak.  

Rejection of divalent ions (i.e., sulfate, magnesium and calcium) changed only slightly 

(3.5% or less) for both PA and PP membranes at high feed ionic strength (i.e., Figure A.2 (b), (c) 

& (d)). However, the rejection of sodium and chloride ions was affected by the elevated ion 

concentrations in the feed as compared to those achieved with dilute feed (i.e., Figure A.1 (a)). 

The decrease in the rejection of sodium with an increase in feed concentration was significant for 

PP membranes where it decreased by at least 35% while it changed by 5% or less for PA 

membranes. This decrease in rejection for poly(piperazineamide) membranes occurs when the 

Donnan separation potential has been screened out and is no longer assisting the separation, 

which suggests that Donnan potential contributed significantly to separation at dilute feed 

conditions for PP membranes.  

These additional experiments support the conclusion that rejection by polyamide 

membranes is predominantly dependent on the pore size effects (i.e., size exclusion) and that the 

contribution of Donnan (charge) effects is rather weak. On the other hand, increase in the ionic 

strength of the feed solution when the Donnan exclusion effects are negligible due to charge 

screening strongly influenced ion rejection by poly(piperazineamide) membranes, which 
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confirmed that the Donnan (charge) exclusion contributes significantly to the performance of 

poly(piperazineamide) membranes in addition to steric hindrance. 

A.1.4 Schematic of the crossflow NF filtration system 

 

Figure A.3. Schematic of the crossflow NF filtration system 

A.1.5 Ionic diffusivity and Stokes radii of ions used in this study 

Table A.2. Ionic diffusivity [47] and Stokes radii of ions used in this study 
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Figure A.4. Reaction schemes for synthesis of polyamide TFC NF membranes. Fully aromatic based on trimesoyl 

chloride (TMC) and 1,3-benzenediamaine (MPD) (left), Semi-aromatic based on trimesoyl chloride (TMC) and 

piperazine (PIP) (right) [63] 

A.2 SUPPORTING INFORMATION FOR CHAPTER 3.0 

A.2.1 SEM characterization 

Membrane surface and cross section were characterized using SEM and the average overall 

membrane and the support thickness were measured (Table A.3). Each value shown in Table A.3 

represents an average of more than 9 measurements made with 3 membrane samples. The 

poly(piperazineamide) membranes (i.e., NF270 and TS40) were relatively smooth as compared 

to polyamide membranes (i.e., NF90 and TS80) and hence were hard to focus with the SEM 

(Figure A.5). Also, cross section view showed similar average polysulfone support layer 

thickness for all the four membranes tested (Figure A.6 and Table A.3). 
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Figure A.5. SEM characterization of NF membrane surfaces at 20,000X magnification. 
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Figure A.6. SEM characterization of NF membrane cross section at 500X magnification. 

 

Table A.3. Characteristics of membranes used in this study. 

 
Active layer thicknesses: NF90 > TS80 > TS40 > NF270; a[79], b[76], cProvided by manufacturer, d[1] 
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A.2.2 XPS characterization 

a  

Figure A.7. Survey spectra showing O (1s), N (1s) and C (1s) peaks using XPS for all four tested membranes pre– 

and post–chemical cleaning
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Figure A.8. High resolution peaks for Na (1s), O (1s), N (1s), C (1s) and Cl (2p) using XPS for NF90 membrane pre– and post–chemical cleaning. Peaks for Na 

(1s) were not detected and that for Cl (2p) were not quantifiable. Identical characteristics were observed with TS80, NF270 and TS40 membranes
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A.3 SUPPORTING INFORMATION FOR CHAPTER 4.0 

A.3.1 Zeta potential analysis 

 

Figure A.9. Zeta potential analysis with 1000 mg Co/L with NF90 membrane  
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A.3.2 Influence of crossflow velocity on ion rejection 

 

Figure A.10. Permeate flux as a function of feed crossflow velocity for (a) 0.36 mM and (b) 36.4 mM strontium 

chloride feed concentration (Experimental conditions: Feed pH = 5.6  0.2, T = 23  1C) 

 

 

Figure A.11. Impact of operating feed pressure on the observed and actual (intrinsic) ion rejection for (a) 0.36 mM 

and (b) 36.4 mM strontium chloride concentration (Experimental conditions: Feed pH = 5.6  0.2, T = 23  1C) 
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A.3.3 Influence of feed pressure and concentration on ion rejection 

 

Figure A.12. Impact of operating feed pressure on (a) permeate flux, (b) CP modulus, (c) observed rejection, and (d) 

actual (intrinsic) rejection for strontium chloride. (Experimental conditions: Feed crossflow velocity = 1.16 m/s, pH 

= 5.6  0.2, T = 23  1C) 
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Figure A.13. Impact of feed strontium chloride concentration on (a) permeate flux and (b) observed ion rejection. 

(Experimental conditions: Feed crossflow velocity = 1.16 m/s, pH = 5.6  0.2, T = 23  1C) 
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