
SPATIAL STATISTICS FROM HYPERPLEXED

IMMUNOFLUORESCENCE IMAGES: TO

ELUCIDATE TUMOR MICROENVIRONMENT, TO

CHARACTERIZE INTRATUMOR

HETEROGENEITY, AND TO PREDICT

METASTATIC POTENTIAL

by

Daniel M. Spagnolo

B.S. in Engineering, Swarthmore College, 2013

Submitted to the Graduate Faculty of

the School of Medicine in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2018



UNIVERSITY OF PITTSBURGH

SCHOOL OF MEDICINE

This dissertation was presented

by

Daniel M. Spagnolo

It was defended on

February 2, 2018

and approved by

D. Lansing Taylor PhD, Distinguished Professor of Computational & Systems Biology,

Director of Drug Discovery Institute

S. Chakra Chennubhotla PhD, Associate Professor of Computational & Systems Biology

Jeffrey Fine MD, Assistant Professor of Pathology, Magee-Womens Hospital of UPMC

Adrian V. Lee PhD, Professor of Pharmacology and Chemical Biology, Pittsburgh

Foundation Chair in Precision Medicine

Ge Yang PhD, Associate Professor of Biomedical Engineering and Computational Biology,

Carnegie Mellon University

Dissertation Advisors: D. Lansing Taylor PhD, Distinguished Professor of Computational

& Systems Biology, Director of Drug Discovery Institute,

S. Chakra Chennubhotla PhD, Associate Professor of Computational & Systems Biology

ii



SPATIAL STATISTICS FROM HYPERPLEXED

IMMUNOFLUORESCENCE IMAGES: TO ELUCIDATE TUMOR

MICROENVIRONMENT, TO CHARACTERIZE INTRATUMOR

HETEROGENEITY, AND TO PREDICT METASTATIC POTENTIAL

Daniel M. Spagnolo, PhD

University of Pittsburgh, 2018

The composition of the tumor microenvironment (TME)–the malignant, immune, and stro-

mal cells implicated in tumor biology as well as the extracellular matrix and noncellular

elements–and the spatial relationships between its constituents are important diagnostic

biomarkers for cancer progression, proliferation, and therapeutic response. In this thesis,

we develop methods to quantify spatial intratumor heterogeneity (ITH). We apply a novel

pattern recognition framework to phenotype cells, encode spatial information, and calculate

pairwise association statistics between cell phenotypes in the tumor using pointwise mutual

information. These association statistics are summarized in a heterogeneity map, used to

compare and contrast cancer subtypes and identify interaction motifs that may underlie

signaling pathways and functional heterogeneity.

Additionally, we test the prognostic power of spatial protein expression and association

profiles for predicting clinical cancer staging and recurrence, using multivariate modeling

techniques. By demonstrating the relationship between spatial ITH and outcome, we advo-

cate this method as a novel source of information for cancer diagnostics. To this end, we

have released an open-source analysis and visualization platform, THRIVE (Tumor Hetero-

geneity Research Image Visualization Environment), to segment and quantify multiplexed

imaging samples, and assess underlying heterogeneity of those samples. The quantification

of spatial ITH will uncover key spatial interactions, which contribute to disease proliferation

and progression, and may confer metastatic potential in the primary neoplasm.
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1.0 INTRODUCTION

Tumor heterogeneity is observed in many different types of solid tumors and blood cancers [1].

In the thesis therein we define tumor heterogeneity as the presence of malignant cells within

the tumor exhibiting varied morphology or phenotype, possibly as a consequence of clonal

evolution. The topic of tumor heterogeneity has been burgeoning in recent years, under the

hypothesis that heterogeneity may be used as a potential biomarker for cancer progression

and response to therapy [2]. Furthmore, there are many efforts to better understand the

effect of the cellular environment surrounding tumors, including the nearby immune cells,

stromal cells, vasculature, and extracellular matrix. This so-called tumor microenviroment

has already been shown to have an effect on tumor evolution [2, 3].

There are many challenges to overcome when describing the diversity inherent in het-

erogeneous tumors. Many different data types and analysis techniques are already in use,

each with their own merits and demerits, with the potential for multi-platform integration.

My work specifically uses bioimages of tissue microarray data to quantify heterogeneity and

study its potential. In this chapter I will discuss why this problem is difficult and unique,

and in particular why the spatial organization of malignant cells and the tumor microenvi-

ronment is important. Then I will discuss the way I will address these challenges, and where

my research fits in this growing field. The following sections reflect these goals.

1.1 THE CHALLENGE OF SPATIAL HETEROGENEITY

It has long been observed that tumor cells exhibit phenotypic diversity. More recently

evidence has suggested that tumors progress in a process akin to Darwinian evolution, con-

1



Figure 1: Depiction of the tumor microenvironment in the case of a carcinoma.

Tumor cells invade the surrounding epithelium and its environment, comprised of immune cells
(e.g. lymphocytes, neutrophils, macrophages), stromal cells (e.g. fibroblasts), endothelial cells,
and other co-conspirators. Adapted by permission from Springer Nature: Nature Reviews Cancer,
Microenvironmental regulation of metastasis, Johanna A. Joyce, Jeffrey W. Pollard, 2009 [4].
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tributing to the diversity of malignant cells within the tumor [5, 3]. Many envision tumor

growth under a trunk-branch model, with the trunk representing ubiquitous driver events,

and branches representing heterogeneous mutations, as opposed to more linear expansion

models [6]. As a consequence of this progression, the resulting tumor may exhibit a high

degree of intratumor heterogeneity (ITH), which can further promote tumor progression,

enable drug resistance, and develop niches prone to metastasis. Intratumor heterogeneity, in

this way, may impede the discovery of impactful biomarkers and the development of effective

cancer therapies.

Intratumor heterogeneity as a phenomenon applies not only to the tumor cells, but also

includes the tumor microenvironment (TME). Similar to how normal tissue is instructed to

grow through paracrine signaling from neighboring cells or via systemic (endocrine) signals,

human tumors likely also recieve instructions in this cell-to-cell manner (although they can

also generate their own growth signals) [2, 5]. In metastatic regions, as within the primary

neoplasm, the TME can influence seeding of the cancer cells. A TME permissive to this

seeding, through supportive stroma or other means, can become a “metastatic niche” in

the body [7]. Figure 1 shows an example TME, including some of the potential cell types

that may be implicated in this system. For example, vasculature is necessary for cell sur-

vival (via the nutrients it delivers), such that neoplasias must develop angiogenic abilty to

survive. Bone marrow-derived cells may help contribute to this ability. Cancer-associated

fibroblasts may help build the extracellular matrix that supports advanced carcinomas. Im-

mune cells can have either tumor-promoting or tumor-antagonising effects, depending on the

circumstances. These are just a few examples of how the TME and tumor interact [5, 7].

Therefore the composition and spatial organization of the TME is as responsible as the sub-

clonal composition of the tumor cells themselves for tumor progression and propensity of

metastasis.

One of the many challenges encountered in the task of quantifying heterogeneity is a

sampling problem. Often in the case of preparing a tumor biopsy in a formalin-fixed paraffin-

embedded tissue block, cores are then extracted and assembled in a tissue microarray (TMA)

for further analysis. Although there is “no standard approach to TMA creation, usage, or in-

terpretation,” microarray cores are typically between 0.6-2.0mm in diameter [8]. Meanwhile,

3



whole tissue sections can be centimeters in length across. Thus, in an environment where

heterogeneity exists not just in overall composition but is also spatially distributed across

the tumor topology, it is possible that a given tumor core does not provide a complete story

for studying the dynamics of the tumor as a whole. When using TMAs, we must always

consider that our sampling may be imperfect. We must consider ways to compare and con-

trast tumor cores within a given patient. Finally, we must consider the way heterogeneous

populations are spatially organized, as not all samples are created equally.

In the clinic, pathologists rely on phenotypic traits to stratify patients into biologically

homogenous groups. The success of these classifications, and thus the potential for ther-

apeutic benefit, is limited by the degree of intratumor heterogeneity. This is because the

characteristics of the most abundant cell type may no longer be predictive of the tumor en

masse [3]. Sampling can help in this regard, but not to the extent that I hypothesize accurate

spatial models can assist in patient stratification and diagnosis. Intratumor heterogeneity

also impedes drug delivery, and give tumors the ability to develop resistant phenotypes.

Certain therapies may only target the dominant cell subpopulation [9], leaving behind qui-

escent tumor subpopulations which can then cause recurrence after the treatment period

has ended. In the future, perhaps a measure for intratumor heterogeneity will be used by

clinicians and the like to make informed patient decisions, as outlined in the hypothetical

intelligent computer system of the 21st century digital pathology workflow [10].

In the following section we will discuss the current state of affairs for the study of intra-

tumor heterogeneity.

1.2 HISTOPATHOLOMICS: AN OVERVIEW

Figure 2 outlines the array of information that can be used to characterize and quantify sev-

eral factors that affect function or dynamics in normal-to-pathological human tissue samples.

Here I define histopatholomics, a confluence of fields aspiring to understand the manifesta-

tions of disease, incorporating the microanatomy of tissue with the molecular elements of

that tissue. These molecular elements include the genome (genes and noncoding DNA),

4



Figure 2: Quantifying spatial intratumor heterogeneity.

(a) The current state-of-the-art uses genomics, epigenomics, proteomics, and/or metabolomics to
study heterogeneity on either ground up tissue samples or single cells. These approaches do not
account for the spatial organization of the tumor microenvironment. (b) We present a method
using multiplexed immunofluorescence imaging, which incorporates spatial distribution of
biomarkers, in addition to their intensities, to characterize spatial intratumor heterogeneity. As
shown in regions 1-4, the spatial organization of biomarker signals varies across the sample. Our
method can capture this variation in a whole slide sample and is applicable to single-protein,
multiplexed (up to 7 biomarkers), and hyperplexed (>7 biomarkers) immunofluorescence images.
Furthermore, our method may be applied beyond the realm of cellular constituents, where we can
study spatial interactions between cells and noncellular components (e.g., secretory elements,
extracellular matrix)
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epigenome (e.g. DNA methylation and histone modification patterns), metabolome, and

the proteome. It is through this lens that I study spatial intratumor heterogeneity to eluci-

date spatial networks of proteins that may have unique consequences on cancer progression,

metastasis, and/or response to therapy.

Several studies also seem to characterize cancers through this lens. Janiszewska et al.

quantified intratumor heterogeneity of HER2 amplification and PIK3CA mutations in HER2-

positive breast cancers, using STAR-FISH (specific-to-allele PCR-FISH), “a novel method for

combined detection of single-nucleotide and copy number alterations in single cells in intact

archived tissues”[11]. The sequencing of single cancer cells overcomes the challenge of detect-

ing minor subclones (which may lead to therapy resistance) and predicting which mutations

occur in individual cells, both of which hinder bulk tumor sequencing. With STAR-FISH,

PCR products are visualized by hybridization with fluorescently labeled probes, allowing

further study of the intratumoral topology. In patients with HER2-positive breast cancer

undergoing neoadjuvant chemotherapy followed by adjuvant treatment with trastuzumab,

a significant change in diversity across different areas of the same tumor (before and after

chemotherapy) was associated with shorter disease free survival. The spatial dispersion of

different cell types (wild-type PIK3CA signal, mutant PIK3CA signal, HER2 amplified cells,

and all combinations) into clusters was also tracked pre- and post-treatment [11].

Another unique histopatholomic approach to studying intratumor heterogeneity was pre-

sented by Gerlinger et al. Using exome sequencing, chromosome aberration analysis, and

ploidy profiling on pretreatment biopsy of a primary renal neoplasm and chest-wall metasta-

sis, as well as nine post-treatment primary-tumor regions and several post-treatment metas-

tases, they revealed a branched evolutionary pattern across the treatment timeline. On

average, a single biopsy revealed approximately 55% of all mutations detected in the tu-

mor, indicating that single biopsies were not representatitive of the mutational landscape

of the bulk tumor. They also determined that intratumor heterogeneity was not solely a

consequence of the everolimus treatment. Additionally chromosomal aberrations were found

to contribute to the genetic intratumor heterogeneity. Observing the mTOR pathway in

their specimens, they were also able to link the functional heterogeneity of kinase activity

to genetic intratumor heterogeneity [12].
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Another multiregional sequencing approach by Hoefflin et al. combines precision quan-

titative imaging with regional whole-exome sequencing in primary clear cell renal cell carci-

nomas (ccRCC) [13]. One finding from this study was the discovery of intratumoral niches,

notably in the tumor peripheral zone, which drive ITH via unique functional properties and

mutations. Exome sequencing confirmed periphery-specific mutations, compared to the tu-

mor center. They also found that for ccRCCs, functional ITH exists at the lowest staging,

and does not increase with malignant progression. This implies that ITH is a feature of

malignant growth, but not a necessarily a result of malignant progression.

Tirosh et al. used single-cell RNA sequencing (RNA-seq) to profile the cellular ecosys-

tem of metastatic melanoma. By using t-distributed stochastic neighbor embedding and

density clustering on the RNA-seq data, they “uncovered intra- and interindividual, spatial,

functional, and genomic heterogeneity in melanoma cells and associated tumor components

that shape the microenvironment, including immune cells, CAFs [cancer-associated fibrob-

lasts], and endothelial cells” [14]. In doing so, they identified a dormant drug-resistant

subpopulation, and discovered a subset of genes expressed by CAFs that influenced T cell

proportion, which illustrates an example of intercellular communication effecting tumor phe-

notype. Similarly, Puram et al. use single-cell RNA-seq paired with immunohistochemistry

to characterize the tumor microenvironment in head and neck cancer. Notably, they es-

tablished partial epithelial-to-mesenchymal transition (p-EMT) as an independent predictor

of nodal metastasis, grade, and other pathological features [15]. They found this p-EMT

program to be spatially localized to the leading edge of primary tumors.

There exist many other studies in histopatholomics, focusing on quantifying heterogene-

ity. While it may not be prudent to summarize them all here, I will briefly mention a

few others of note. One popular approach involves measuring population averages from

core samples of tumoral regions of interest via whole exome sequencing [16, 17, 18], epi-

genetics [19], proteomics [20, 21], or metabolomics [21]. Another approach uses single cell

analyses, either by the methods listed above [22, 23], RNASeq [24], imaging [25], or flow

cytometry [26]. A third approach uses light microscopy, which maintains the spatial organi-

zation of the TME, and uses molecular-specific labels for measuring the abundances of TME

constituents [27, 28, 29].
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While the methodology of each of these studies differs, the common thread lies in the

holistic approach to studying intratumor heterogeneity, combining genetic and nongenetic

factors with bioimaging, functional studies, and spatial information (including signal local-

ization, cell-cell communication, and tissue architecture). The contributions of the tumor

microenvironment have been found to be both tumor-antagonizing and tumor-promoting,

and microenvironmental niches both in the primary neoplasm and metastases may be linked

to tumor progression and treatment resistance. My research focuses on studies using multi-

to-hyperplexed immunofluorescence, which has the benefit of single-cell resolution, spatial

information, and potential for tracking a large number of tumor-affecting agents.

1.3 MULTI-TO-HYPERPLEXED IMMUNOFLUORESCENCE

Multiplexed immunofluorescence (MxIF) methods have the advantage of detecting several

antigens (proteins or DNA probes, e.g.) simultaneously, while preserving the tumor archi-

tecture and the spatial organization of the individual cells and architectural elements [31].

This is essential for obtaining the morphological context of structures within the tissue (e.g.

epithelium, vasculature, ducts and lobules, crypts and villi) [32]. With proper resolution

and structural biomarkers, single-cell analysis can be achieved. MxIF methods, and other

high-dimensional imaging methods, are uniquely positioned to model the tumor microenvi-

ronment and the spatial heterogeneity of this environment. Throughout this thesis, we will

distinguish multiplexed from hyperplexed immunofluorescence by the image dimensionality

(D), where each unique biomarker measured counts as an additional dimension. We delineate

multiplexed images as 2D-to-7D images, and hyperplexed images as > 7D images.

One MxIF method, developed by GE allows for the “subcellular characterization of mul-

tiple analytes in formalin-fixed, paraffin-embedded cancer tissue” [30]. Using chemical inac-

tivation to quench fluorescent dyes after each image acquisition round, multi-to-hyperplexed

images can be obtained using a co-staining of common dyes in iterative imaging cycles (see

Figure 3). Images obtained from these iterative cycles are registered by aligning elements of

a DAPI nuclear counterstain. Other structural biomarkers allow for cellular and subcellular
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Figure 3: Data acquisition and image processing workflow for multiplexed immunofluores-

cence.

For the acquisition, the background immunofluorescence is captured, followed by images
co-stained using Cy5 and Cy3. The co-stained dyes are quenched and restained for a different
biomarker pair until the target anitgen is exhausted. The stack of co-stained immunofluoresce
images is registered, with autofluorescence removed, before single cell segmentation and
quantification is applied. Adapted by permission from the Proceedings of the National Academy
of Sciences of the United States of America: Highly multiplexed single-cell analysis of
formalin-fixed, paraffin-embedded cancer tissue, Michael J. Gerdes et al., 2013 [30].
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resolution within the tissue samples. Currently, this method allows for the quantification 60+

analytes, with minimal loss of target epitopes or tissue integrity. The novelty of this method

lies in the development and validation of a fluorophore inactivation solution, the ability for

combined analysis of nucleic acids and proteins from the same tissue sample, integration

with histological stains, and subcellular quantitation of highly multiplexed data [30].

The GE MxIF method has been adopted by many research labs in recent years. Nelson et

al. used this technology to study organ morphogenesis in the submandibular salivary gland

(SMG). By using single cell resolution to track 20 epithelial progenitor and differentiation

markers, they were able to quantify the spatiotemporal progression of multiple progenitor

cell populations and their role in SMG development and tissue homeostasis [33]. Clarke

et al. validated the GE MxIF method, showing concordance between IHC scoring and the

fluorescence data using the correlation scores of standard breast cancer biomarkers [32]. Uhlik

et al., in a radiogenomic study, discover distinictive stromal phenotypes for new therapeutic

hypothesis using RNA expression profiles, multiplexed IHC, and GE MxIF for vascular and

immune cell status [34]. Gerdes et al. also use this technology to study ductal heterogeneity

in carcinoma in situ of breast, using both epithelial and immune/stromal components [35].

While the GE MxIF method is perhaps the latest multiplexed fluorescence technology

to gain traction, other platforms have been developed to similarly map larger quantities

of analytes in tissues sections than standard multi-channel immunofluorescence. The To-

ponome Imaging System (TIS) precedes GE MxIF by several years, leveraging Schubert et

al.’s multiple-epitope-ligand cartography (MELC) technology to “map the location of sev-

eral proteins in the one sample [sic] of cells or tissue using sequential rounds of fluorescent

detection in situ” [36, 37]. It claims the capability of imaging over 100 different molec-

ular components at continuous intensity levels, to GE’s currently validated 60+ analytes

(although GE claims the upper limit of analytes in a single MxIF assay has not yet been

reached) [30, 36]. The main discernable difference in the methodology between the two

methods is in the fluorescence deactivation step, where MELC uses photobleaching via soft

multiwavelength excitation and GE uses chemical inactivation. Addtionally, MELC is not

compatible with formalin-fixed paraffin-embedded tissue [32]. There is some debate as to

whether photobleaching (TIS) or chemical inactivation (GE) results in a larger signal loss
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of fluorophores (and thus poorer signal-to-noise ratio) across staining rounds, and similarly

there are discussions about the reproducibility of both systems [32, 38, 39]. TIS has been

used to find an ALS motif–a spatial network code of proteins–surrounding a lead-protein

CD16, which can be used for early therapeutic decisions, and was confirmed clinically [40].

Another method, multiplexed ion-beam imaging (MIBI), also touts an 100 target limit for

simultaneous imaging [41]. This method uses secondary ion mass spectrometry to image anti-

bodies to circumvent spectral overlapping and other limitations encountered in fluorescence-

based flow cytometry, however remains burdened by throughput issues. Rost et al. show

a strong correlation between HER2 quantitation by MIBI analysis and pathologist derived

HER2 scoring in breast carcinoma tissue [42]. Lin et al.’s cyclic immunofluorescence (Cy-

cIF) claims to present a public-domain method for achieving high multiplicity using standard

reagents [43]. One difference I have noted is that CycIF seems to bleach all dyes in sequential

rounds, while GE MxIF leaves a control dye untouched across quenching rounds.

Overall, these imaging methods show much promise but still have many barriers to

entry. The cost of instruments and reagents can be prohibitive, image scanning can be

too slow for large samples, reproducibility can be challenging from lab-to-lab, and “complete

removal of antibodies often requires treatments deleterious to the sample” [31]. Additionally,

there are no standardized protocols for preprocessing multiplexed images, either via image

normalization across imaging slides, accounting for fluorophore signal loss, or controlling the

varying dynamic range of fluorescence across multiple antigens. Yet, much like the early ages

of DNA sequencing, there are bound to be obstacles and a certain degree of uncertainty on

the route to revolutionary forms of data for biological research.

1.4 THESIS CONTRIBUTIONS AND OUTLINE

The use of multiplexed immunofluorescence, and other high-dimensional imaging modalities,

facilitates unprecedented insights into disease states via protein-protein interactions and

localizations [44, 45]. In this thesis, I study the potential for discovering molecular ITH

through these imaging modalities. An area I seek to innovate is the encoding of spatial
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information of the TME into ITH metrics. I hypothesize that measures of spatial ITH

will provide unique insights in the study of disease progression and response to treatment.

Incorporating the TME is of utmost importance because signaling between the cells in the

TME allows tissue to achieve phenotypes that cannot be achieved by any cell type in isolation.

In this way, we view cancer as an emergent heterocellular phenotype [46].

The first contribution of this thesis is to present a novel method to quantify spatial

intratumor heterogeneity. Our method elucidates the spatial relationships between TME

constituents, which can be preferentially expressed in different tumor architectural elements

or biological processes. In our approach, each cell is phenotyped by its biomarker inten-

sity vector, using a sparse overcomplete pattern recognition paradigm. Pointwise mutual

information (PMI), computed over the spatial cellular network, uncovers key spatial inter-

actions between cell phenotypes in the tumor sample. PMI scores are compared and con-

trasted for patients belonging to several disease cohorts, as defined by pathologists. PMI,

as a spatial heterogeneity measure, is compared to previous heterogeneity quantification ap-

proaches, such as quadratic entropy (QE), Shannon entropy, and Simpson index. Spatial

ITH poses a major challenge for cancer treatment since tumor biopsies used to inform diag-

nosis may not be representative of the tumor at large, and thus may skew decision-making

processes [47, 48]. Furthermore, the spatial complexity of the TME–the interactions be-

tween the TME constituents–may contribute significantly to treatment resistance [49]. By

characterizing spatial ITH, we are providing novel approaches for understanding spatial re-

lationships in the TME, improving accessibility of multiplexed imaging data, and potentially

providing a key element of future cancer diagnostic tools.

The second contribution of this thesis is to test measures of the spatial cell-cell com-

munications between TME constituents with correlation to clinical outcome (e.g. cancer

recurrence, staging, progression to metastasis). Since spatial ITH impedes therapy, the de-

gree of ITH and the spatial composition of the TME is found to affect the progression of

disease. A variety of spatial metrics are tested for prognostic potential using univariate

survival models, and a robust combination of spatial features is shown to affect outcome

using a multivariate Cox Proportional Hazards model. Efforts are also made to interrogate

how disease risk is spatially organized within tissue microarray cores. Kaplan-Meier curves
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show how spatial metrics can be used to segregate a patient cohort into low and high risk

groups, which can assist in the development of personalized cancer patient management. If

we find a strong association between spatial heterogeneity and outcome, then we can provide

clinicians with previously inaccessible information related to disease progression and prolif-

eration. Additionally we can use these statistical tests to identify biomarker panels ideally

suited for their prognostic ability in the clinic.

The culmination of these contributions is the development and deployment of THRIVE

(Tumor Heterogeneity Research Interactive Visualization Environment), a software suite for

interacting with multiplexed/hyperplexed IF images and visualizing spatial ITH. THRIVE

displays ITH data in a meaningful format, allowing end users to visualize key features of

ITH that may evolve as prognostic biomarkers of progression and therapeutic response and

point to underlying molecular mechanisms. Soon, THRIVE will include functionality to

identify potential associations between heterogeneity and clinical features of interest. An

open-source prototype has already been disseminated to the cancer research community,

and a mechanism by which others can contribute capabilities, including new algorithms and

visualizations, will be added to the next update. The main goal of THRIVE is to reduce intra-

and inter-observer variability in quantifying heterogeneity at diagnostic laboratories, and to

enable a variety of heterogeneity quantification methods to be evaluated and compared in a

consistent framework. THRIVE is a user-friendly interface to a robust and flexible analysis

engine that will co-evolve with imaging technology. This is a desperate need to advance

cancer research.

Overall, my work leverages high-dimensional imaging modalities to quantify spatial in-

tratumor heterogeneity, and demonstrate the prognostic power of spatial metrics. Spatial

interactions within the tumor microenvironment are identified as disease-related motifs in

a heterocellular system. “If malignant phenotypes supervene upon heterocellular signaling,

then perturbing heterocellular nodes and/or edges could present a powerful approach to treat

cancer” [46]. With this in mind, we demonstrate how spatial heterogeneity may be used as

a cancer biomarker and wielded as a tool for understanding disease progression rather than

viewed as a hindrance toward effective treatment. In Chapter 2 we begin by describing a tool

for interrogating the TME of high-dimensional tumor images, to quantify ITH and cell-cell
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interactions.

1.5 LIST OF PUBLICATIONS

Journal papers

1. D.M. Spagnolo, Y. Al-Kofahi, P. Zhu, T.R. Lezon, A. Gough, A.M. Stern, A.V. Lee, F.

Ginty, B. Sarachan, D.L. Taylor, and S.C. Chennubhotla. Platform for quantitative eval-

uation of spatial intratumoral heterogeneity in multiplexed fluorescence images. Cancer

Res, 77(21):e71e74, 2017.

2. D.M. Spagnolo, R. Gyanchandani, Y. Al-Kofahi, A.M. Stern, T.R. Lezon, A. Gough,

D.E. Meyer, F. Ginty, B. Sarachan, J. Fine, A.V. Lee, D.L. Taylor, and S.C. Chen-

nubhotla. Pointwise mutual information quantifies intratumor heterogeneity in tissue

sections labeled with multiple fluorescent biomarkers. J Pathol Inform, 7:47, 2016.

Peer-reviewed conference/workshop papers

1. D.M. Spagnolo, L. Nguyen, J. Bauer, A. Palekar, M. Pejchal, J. Fine, D.L. Taylor, S.C.

Chennubhotla. Determining histological tissue image origins with convolutional neural

networks International Conference on Machine Learning Workshop on Computational

Biology, June 24, 2016, NY.

Manuscripts in progress

1. D.M. Spagnolo, S. Uttam, A.M. Stern, Y. Sui, C. Sevinsky, F. Ginty, D.L. Taylor, and

S.C. Chennubhotla, and co-authors. The combination of protein biomarkers and their

spatial correlations from hyperplexed IF in colon cancer tissue samples enables predic-

tions of recurrence. 2018.

14



2.0 VISUALIZATION OF SPATIAL INTRATUMOR HETEROGENEITY

2.1 ABSTRACT

We introduce THRIVE (Tumor Heterogeneity Research Interactive Visualization Environ-

ment), an open-source tool developed to assist cancer researchers in interactive hypothesis

testing. The focus of this tool is to quantify spatial intratumoral heterogeneity (ITH), and

the interactions between different cell phenotypes and non-cellular constituents. Specifically,

we foresee applications in phenotyping cells within tumor microenvironments, recognizing

tumor boundaries, identifying degrees of immune infiltration and epithelial/stromal sepa-

ration, and identification of heterotypic signaling networks underlying microdomains. The

THRIVE platform provides an integrated workflow for analyzing whole slide immunoflu-

orescence images (WSFIs) and tissue microarrays, including algorithms for segmentation,

quantification, and heterogeneity analysis. THRIVE promotes flexible deployment, a main-

tainable code base using open-source libraries, and an extensible framework for customizing

algorithms with ease. THRIVE was designed with highly multiplexed immunofluorescence

images in mind, and, by providing a platform to efficiently analyze high-dimensional im-

munofluorescence signals, we hope to advance these data toward mainstream adoption in

cancer research.

2.2 INTRODUCTION

Spatial intratumoral heterogeneity (ITH), quantified as the number and variation of cell

phenotypes, as well as the spatial relationships between cells and extracellular molecules
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Figure 4: Tumor Heterogeneity Research Interactive Visualization Environment (THRIVE).

(A) For a given panel of images, a cell segmentation algorithm is run to obtain single-cell
resolution. Then, biomarker intensity statistics (e.g. mean, median) are computed for each cell
from the segmentation results. These statistics are used to discover cell phenotypes via pattern
recognition. Heterogeneity metrics are used to quantify the spatial relationships between cell
phenotypes. The bar graph shows the heterogeneity of cell phenotypes discovered from ER
expression for two different tumor ROIs (shown in red and blue). Phenotype heterogeneity is
quantified by quadratic entropy summarized over the whole slide and statistics from ROIs. (B)
Pointwise mutual information (PMI) maps capture the relative spatial co-occurrences of cell
phenotypes (denoted by various cell colors) in a multiplexed IF image (1). The diagonal elements
of the PMI map denote globally heterogeneous and locally homogenous interactions, while
off-diagonal elements capture locally heterogeneous interactions. PMI is scaled from -1 (negative
association) to 1 (positive association) where 0 is the background co-occurrence of cell phenotypes.
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within a tumor microenvironment (TME), is of high prognostic and diagnostic value [50,

51, 11]. The acknowledgement of spatial ITH as a key factor in tumor progression has

identified a need for new informatics tools to quantify spatial heterogeneity in cancer research

applications.

Toward this end, we have created an open source tool, THRIVE (Tumor Heterogeneity

Research Interactive Visualization Environment), which 1) permits visualization of large

cohorts of whole slide images and tissue microarrays; 2) performs interactive image analysis

tasks such as cell segmentation, cell phenotyping, and tumor microdomain discovery via ITH,

and 3) contains statistical inference tools to aid in cancer-specific hypothesis testing. We

adopt the term tumor microdomain to describe phenotypically distinct regions of the TME,

which represent a fundamental unit of spatial heterogeneity [52]. This software platform

encapsulates a workflow for quantifying ITH in immunofluorescence (IF) images ranging from

a single biomarker to standard multiplexed biomarkers (up to 7) to emerging hyperplexed

(>7) images [30, 53]. Each additional biomarker in IF images allows for more insight into

cellular and disease mechanisms, but increases cost and data acquisition complexity, so it

was important to develop a platform applicable to a range of imaging modalities. Existing

image analysis tools such as CellProfiler [54], ImageJ/Fiji [55], and BioimageXD [56], while

useful, are very general tools and thus contain only several of the required features necessary

for analyzing spatial ITH, especially from multiplexed and hyperplexed IF images. While

some of these contain colocalization pipelines for measuring spatial coincidence of biomarkers

within single cells, THRIVE incorporates novel information theoretic measures (pointwise

mutual information) and current ecological diversity metrics (quadratic entropy) to enhance

insights into the spatial organization of tumors by looking at interactions between cells in the

TME [50, 57]. We provide the added benefit of designing algorithms with high dimensional

image data in mind, collected through multiplexed immunofluorescence, mass spectrometry,

or other data collection methods that allow for a large array of molecular probes. THRIVE

allows for the creation of custom workflows with plug-in architecture for new functions, can

potentially link to genomic and clinical data, and provides multiple spatial and population

based heterogeneity metrics, for ease of use by cancer biologists and clinicians alike.
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2.3 THRIVE PLATFORM DESCRIPTION

A computational cancer researcher will find THRIVE to be 1) extensible such that cancer

researchers can easily add new experimental tumor heterogeneity algorithms and datasets;

2) maintainable within the research community by leveraging existing open-source libraries,

therefore minimizing custom code; and 3) flexible to deploy in a variety of environments,

from local research lab installations to cloud deployments shared by the research community.

THRIVE uses Docker, which has the advantage of consistent behavior and easy deployment

on laptops, computer workstations, and on cloud services.

THRIVE’s file structure is very general, and can easily import files from a variety of

microscope platforms. The top-level contains each microscope slide directory; the second

level stores directories for each imaged regions in a particular slide, the third level contains

both the source image directory and results directories for each region. Under the source

image directory are folders for each acquired channel, and under the results directory are

folders for each algorithm’s (e.g. segmentation, quantification) output.

Ease of integrating new analysis methods has been an overriding requirement in our

design of THRIVE. The straightforward steps that an algorithm developer needs to follow

are detailed in THRIVE’s technical documentation. Briefly, the developer would write a

short script which pulls input files from data storage, launches the algorithm, stores result,

checks for errors, and returns status information. This script is then packaged with the

generic THRIVE code in a Docker container. Additionally, the inputs, parameters, outputs,

and UI display choices need to be explicitly described, and a Docker Compose file is needed

to alert THRIVE that a new algorithm is available. Any programming language can be

used to develop heterogeneity algorithms, identified and vetted by the research community,

and added to THRIVE. Source code will be available on GitHub, and through the ITCR

webpage. THRIVE’s project website is located at http://ith.csb.pitt.edu.
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2.4 THRIVE CAPABILITIES

THRIVE provides a user interface that enables the researcher to browse and review multi-

channel WSFIs, request single cell segmentation and quantification, and review results. The

researcher can then run a variety of tumor heterogeneity algorithms, and review and com-

pare those results (Fig. 4A). Our platform enables any number of alternate segmentation,

quantification, and heterogeneity algorithms to be integrated into the image processing work-

flow, both algorithms that we plan to include with THRIVE (e.g. single cell segmentation

vs. subcellular-resolution segmentation) and algorithms to be developed and shared by the

research community.

THRIVE was developed for the analysis of the spatial distributions of biomarkers, typ-

ically using immunofluorescence labeling, and typically in tissue sections on slides. Other

methods such as mass spectrometry imaging could also be used to generate compatible im-

ages of multiple biomarkers. The following three classes of imaging systems can generate IF

images compatible with THRIVE: commercial slide scanning systems, high content screening

(HCS) systems, and general purpose microscopy systems. Commercial slide scanning systems

with multichannel fluorescence capability include the PerkinElmer Vectra, Leica Aperio FL,

Hamamatsu Nanozoomer, and others. In general, these are the fastest and most efficient, as

they are optimized for slide scanning. Most HCS systems including the Perkin Elmer Opera,

Molecular Devices ImageXpress, ThermoFisher Arrayscan, GE INCell, and others have slide

holders and can collect multichannel fluorescence images. HCS systems are also fast and

efficient for high volume imaging. General-purpose fluorescence microscope systems from

Olympus, Nikon, Zeiss, Leica and others can be used to acquire images from slides, using

software packages from the manufacturer, or open-source solutions like Micromanager with

the Slide Explorer plug in. These systems are less efficient, but more cost-effective than slide

scanners or HCS systems. In all cases, images can be easily saved as TIF files and imported

for analysis.

A typical workflow, as demonstrated in Video 1, starts with a cell segmentation step,

allowing single-channel and two-channel segmentation of individual cells. If only a cell nuclei

channel is available, a single-channel segmentation algorithm delineates the individual nuclei
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in the image (e.g. [58]), and then extracts synthetic cell boundary approximations using

Voronoi tessellation. When a membrane cell-marker channel is also available, first the cell

nuclei are segmented and cell boundary approximations are extracted as described above, and

then a watershed algorithm refines the cell boundaries using the additional cell-marker chan-

nel data. Each cell is assigned a unique ID, and each sub-cellular pixel is assigned into one

of two compartments: nuclear or extra-nuclear. Video 1 can be accessed at http://movies.

aacrjournals.org/video/10.1158/0008-5472.CAN-17-0676/supplementary-video-s1.

In the biomarker quantification step, cell and subcellular-level statistics (e.g. mean,

std-dev, mode, etc.) are computed for each available biomarker, as are cell morphometric

features (location, area and cell radius). These measurements can be used to calculate

the Pittsburgh Indices [59] and other measures of cell-level phenotypic heterogeneity. Once

each cell is described as a single point in a multivariate feature space, phenotypes can be

identified through standard clustering techniques. We define phenotypes in this context as

the combinations of biomarkers and expression levels in sub-populations of cells. Currently,

THRIVE uses basic k-means clustering for cell phenotyping by finding k groups of similar

cells in an N dimensional space (where N is the number of biomarkers in the image), and will

soon incorporate k-SVD [60] phenotyping used in our previous work [50]. The benefit of k-

SVD is that it finds a lower dimensional space with which to group cells into phenotypes, and

seeks a sparse representation of the cell data where there is less ambiguity about phenotyping

cells that border on two potential phenotypes.

Spatial heterogeneity is characterized by microdomains, which we define as subpopula-

tions of cells clustered together considering not only by the relative populations of the cellular

phenotypes within it, but by their spatial distribution. The toolkit contains a starter set

of methods to quantify spatial heterogeneity, such as our own technique based on pointwise

mutual information (PMI) [50]. Using these methods, users can compare microdomains to

one another or to the whole tumor (Fig 4B).
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2.5 APPLICATION IN TUMOR HETEROGENEITY

Using the THRIVE cell quantification algorithms, tumor cells, as well as an array of differ-

ent immune cell types, can be identified. THRIVE can quantify the statistically significant

co-occurrences between various cell types within tumor microdomains and at microdomain

interfaces which are often associated with known intratumor phenomena. For example,

THRIVE can measure the degree to which epithelial and stromal cells are intermixed or spa-

tially separated [49] and can determine the amount of immune infiltration (i.e. the degree to

which immune cells invade the TME) within a tumor sample or region of interest (ROI) [61],

both of which have prognostic potential. The predictive power of the spatial relationships

between various immune cells and tumor cells can be applied as a cancer biomarker for im-

mune infiltration. Additionally, the identification of tumor and non-tumor cells can be used

to locate microdomains such that the interfaces between dissimilar microdomains can iden-

tify tumor boundaries. This tool will be useful in automating ROI discovery, and assisting

pathologists in a computational pathology digital slide workflow.

Notably, THRIVE can be used to identify microdomains containing spatial clusters

of network signatures contributed by oncogenic signaling pathways. For example, in the

phosphatidylinositol-3-kinase (PI3K) pathway, genetic alterations are found in most inva-

sive breast cancers and PIK3CA mutations are hypothesized to drive carcinogenesis in the

breast. Using THRIVE workflows, one can assess the emerging spatial heterogeneity in the

PI3K pathway and identify microdomains containing common signatures, e.g. the epithelial-

stromal interface PI3K/MAPK signature [62]. Similar efforts to study the MTOR pathway

in colorectal cancer [30] could also be assisted by using THRIVE.

We envision that THRIVE will enable the determination of a mechanistic link between

spatial intratumoral heterogeneity quantification and cancer progression. It has been shown

that neoadjuvant chemotherapy for cancer results in changes in spatial heterogeneity that

correlate with poor long-term outcome following adjuvant therapy [11]. Since long-term

survival is largely defined by progression to metastatic disease, these results suggest that

particular microdomains within the primary tumor impart metastatic potential to a sub-

population of treatment-resistant tumor cells. Implementation of our platform presents a
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unique opportunity to identify the heterotypic signaling networks within these metastasis-

conferring domains that can lead to robust biomarkers mechanistically linked to disease

progression and optimized therapeutic strategies for individual patients.

2.6 CONTRIBUTIONS

The core elements of THRIVE as shown in Fig. 4 and Video 1 are the built-in algorithms

for identifying elements of the TME and quantifying spatial ITH, as well as visualizing

spatial statistics of high-dimensional bioimages. Toward this end, my contributions to this

work are manifold. I led the development of the cell phenotype identification algorithm,

and implemented the diversity metrics used for measuring ITH, including quadratic entropy,

Shannon entropy, and Simpson’s diversity index. More details on these metrics can be

found in Section 3.8.2. Additionally, I implemented many of the visualization tools used by

THRIVE, including the diversity heatmap where individual cells were displayed in a color

relative to the degree of diversity of their immediate neighborhoods. I also contributed to

the original concept of THRIVE, as well as conceiving of the potential applications of the

toolbox, which developed through weekly meetings with our U01 collaborators at University

of Pittsburgh and GE Global Research. GE Global Research was largely responsible for the

software development effort as well as the cell segmentation algorithms.

A crucial next step for THRIVE is to incorporate some of the more sophisticated pheno-

typing algorithms and diversity metrics I have used to study spatial ITH. Notably, in [50],

I argue that pointwise mutual information (PMI) can be particularly helpful in quantifying

the spatial cooccurrences of cells within the TME, allowing for network-based measures of

ITH. By constructing a cell network for each tumor image, the cell-cell interactions that

promote tumor diversity can be visualized and displayed by THRIVE. Additionally the k-

SVD pheynotyping approach used in [50] may provide better results as image dimensionality

scales. In Chapter 3, we explore these methods in greater depth.
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3.0 QUANTIFICATION OF SPATIAL INTRATUMOR HETEROGENEITY

IN BREAST CANCER

3.1 ABSTRACT

Background: Measures of spatial intratumor heterogeneity are potentially important di-

agnostic biomarkers for cancer progression, proliferation, and response to therapy. Spatial

relationships among cells including cancer and stromal cells in the tumor microenvironment

(TME) are key contributors to heterogeneity. Methods: We demonstrate how to quantify

spatial heterogeneity from immunofluorescence pathology samples, using a set of 3 basic

breast cancer biomarkers as a test case. We learn a set of dominant biomarker intensity pat-

terns and map the spatial distribution of the biomarker patterns with a network. We then

describe the pairwise association statistics for each pattern within the network using point-

wise mutual information (PMI) and visually represent heterogeneity with a two-dimensional

map. Results: We found a salient set of 8 biomarker patterns to describe cellular pheno-

types from a tissue microarray cohort containing 4 different breast cancer subtypes. After

computing PMI for each pair of biomarker patterns in each patient and tumor replicate,

we visualize the interactions that contribute to the resulting association statistics. Then,

we demonstrate the potential for using PMI as a diagnostic biomarker, by comparing PMI

maps and heterogeneity scores from patients across the 4 different cancer subtypes. Es-

trogen receptor positive invasive lobular carcinoma patient, AL13-6, exhibited the highest

heterogeneity score among those tested, while estrogen receptor negative invasive ductal car-

cinoma patient, AL13-14, exhibited the lowest heterogeneity score. Conclusions: This

paper presents an approach for describing intratumor heterogeneity, in a quantitative fashion

(via PMI), which departs from the purely qualitative approaches currently used in the clinic.
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PMI is generalizable to highly multiplexed/hyperplexed immunofluorescence images, as well

as spatial data from complementary in situ methods including FISSEQ and CyTOF, sam-

pling many different components within the TME. We hypothesize that PMI will uncover

key spatial interactions in the TME that contribute to disease proliferation and progression.

3.2 INTRODUCTION

For many malignancies, molecular and cellular heterogeneity is a prominent feature among

tumors from different patients, between different sites of neoplasia in a single patient and

within a single tumor [64]. Intratumor heterogeneity involves phenotypically distinct cancer

cell clonal subpopulations and other cell types that include local and bone marrow-derived

stromal stem and progenitor cells, subclasses of immune inflammatory cells that are either tu-

mor promoting or tumor-killing, cancer-associated fibroblasts, endothelial cells, and pericytes

that comprise the tumor microenvironment (TME) or “tumor tissue system” [59, 27, 65, 7].

The TME can be viewed as an evolving ecosystem where cancer cells engage in heterotypic

interactions with these other cell types and use available resources to proliferate and sur-

vive [66, 67]. Consistent with this perspective, the spatial relationships among the cell types

within the TME (i.e. spatial heterogeneity) appear to be one of the main drivers of disease

progression and therapy resistance [51, 11, 68, 69, 70]. Thus, it is imperative to define the

spatial heterogeneity within the TME to properly diagnose the specific disease subtype and

identify the optimal course of therapy for individual patients.

To date, intratumor heterogeneity has been explored using three major approaches (Fig.

2). The first approach is to take core samples from specific regions of tumors to measure

population averages. Heterogeneity is measured by analyzing multiple cores within the tu-

mor. The specific analyses include whole exome sequencing [12, 16, 17, 18], epigenetics [19],

proteomics [20, 21], and metabolomics [21] (Fig. 2b). The second approach involves “sin-

gle cell analyses” using the above methods [22, 23], RNA-Seq [24], imaging [25], or flow

cytometry [26] after separation of the cells from the tissue. The third approach uses the

spatial resolution of light microscope imaging to maintain spatial context and is coupled
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Figure 5: Multiplexed immunofluorescence image of a tissue microarray spot.

(a) Pseudocolored multi-channel fluorescence image is shown for the ER(+) IDC spot 55 of the
tissue microarray (Tab. 1). HER2 is shown in red, ER in blue, and PR in green (see legend in the
top left corner). Areas of PR/ER co-expression will appear in cyan, HER2/ER co-expression in
magenta, and PR/HER2 co-expression in yellow. Arrows point to three different heterogeneous
regions in the tumor sample, with varying populations of ER(+), PR(+), and ER(+)/PR(+)
cells. The upper arrow indicates a tumor microdomain with higher than average ER(+)/PR(+)
phenotyped cells. The middle arrow indicates a microdomain probably best representative of the
tumor sample en masse, containing mostly ER(+) cells. In the third microdomain, indicated by
the lower arrow, there is a higher than average population of PR(+) cells. (b, c, d) Individual
pseudocolored fluorescence images are shown for HER2, ER, and PR.
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with molecular-specific labels to measure biomarkers in the cells in situ [27, 28, 29, 71].

Spatial analyses using light microscope imaging facilitate analysis of large areas of tissue

sections and/or multiple tumor microarray sections at the cellular and subcellular levels.

Subcellular resolution, for example, permits the identification of the activation state of spe-

cific biomarkers (e.g., translocation of transcription factors into the nucleus) [53]. In addition,

recent developments in mass spectrometry imaging permit many cellular constituents to be

measured across a tissue section but at a lower resolution than optical microscopy [72].

Several light microscopy imaging platforms have been developed to characterize cellular

biomarker expression levels within tumors including transmitted light and fluorescence [73].

Multivariate information based on fluorescence has been acquired from images of large area

tissue sections and tissue microarrays (TMAs) based on DNA, RNA, and protein biomark-

ers, usually from 1 up to 7 fluorescently labeled biomarkers in the same sample (multiplexed

fluorescence) [53, 74]. Multiple commercial platforms can now be used to acquire, process,

segment and perform some basic analyses of biomarker signal levels in tissue samples (e.g.,

PerkinElmer Vectra, Waltham, MA, USA; Genoptix, Carlsbad, CA, USA; Olympus, Cen-

ter Valley, NJ, USA; Carl Zeiss, Inc., Thornwood, NY, USA; Hamamatsu Photonics, K.K.,

Hamamatsu City, Japan; Leica Biosystems, Inc., Buffalo Grove, IL, USA). Recently, plat-

forms have been demonstrated permit up to 60 fluorescently labeled antibodies and a few

DNA or RNA hybridization probes to be acquired in an iterative cycle of labeling, imaging,

and quenching fluorescence [30, 37]. It is now possible to “map” the location of specific cell

types, states of cell activations, cell biomarker expression levels, and localizations, as well as

extracellular constituents in tissue sections and TMAs.

A major challenge is to develop algorithms that can quantify key spatial relationships

(interactions and lack thereof) within the TME based on panels of biomarkers. Initial ef-

forts in measuring heterogeneity in tissue sections applied diversity metrics from ecological

studies, such as Shannon entropy and Rao’s quadratic entropy (QE) [11, 75, 76, 77, 78].

However, these methods have not been adapted for multiplexed (up to 7 biomarkers) or

hyperplexed (> 7 biomarkers) immunofluorescence (IF) data [59]. Other methods that

account for high-dimensional data may not have sophisticated cell phenotyping methods,

allowing each biomarker to be only “on” or “off” [79]. Furthermore, a few of these meth-
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ods incorporate the spatial relationships between biomarker patterns in their heterogeneity

scores [11, 77]. Indeed, the spatial organization of the TME has been hypothesized to be an

important diagnostic biomarker in addition to the expression levels of selected biomarkers

from both cancer and noncancer cells.

We have designed a method to quantify spatial intratumor heterogeneity (Fig. 2). The

method can work with single biomarker, multiplexed, or hyperplexed IF data (Fig. 5). Other

heterogeneity characterization methods, although insightful, may not incorporate spatial in-

formation or employ multiplexed methods, which implicate a larger number of biomarkers.

One such method uses region of interest sampling to add spatial resolution, but this approach

does not study spatial relationships between cell phenotypes, nor does it look at more than

a single biomarker in its model of heterogeneity [76]. Another method does look at linear

relationships among different biomarkers using multiplexed/hyperplexed IF data, but does

not incorporate any spatial information, nor does it consider nonlinear associations [32]. Yet

another looked at multiplexed phenotypic associations, in contrast to [32] which looked at

biomarker associations, but also neglected spatial information [80]. Our method is holistic

in its approach, using both the expression and spatial information of an entire tumor tissue

section and/or spot in a TMA to characterize spatial associations. In addition, most other

methods report intratumor heterogeneity as a single score, thus potentially mapping two

spatially different organizations of the TMEs incorrectly to the same score. In comparison,

we generate a two-dimensional (2D) heterogeneity map to explicitly elucidate spatial asso-

ciations of both major and minor subpopulations. We hypothesize that the characterization

of spatial intratumor heterogeneity will be an important diagnostic biomarker for cancer

progression, proliferation, and response to therapy.

In this paper, the spatial intratumor heterogeneity measure we developed uses data pro-

cessed on a TMA. We introduce these methods as a proof-of-concept, where we demonstrate

the ability to quantify spatial heterogeneity using replicate cores of patient tumors and three

breast cancer biomarkers (estrogen receptor [ER], human epidermal growth factor 2 [HER2],

and progesterone receptor [PR]) combined with biomarkers for segmentation including the

nucleus, plasma membrane, cytoplasm, and epithelial cells (see below). The impact of our

method, using pointwise mutual information (PMI) to quantify spatial intratumor hetero-
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geneity, will be extended in future studies to the analysis of whole-slide IF images, labeled

with increasing numbers of cancer and stromal biomarkers.

3.3 METHODS

3.3.1 Tissue microarray preparation

A TMA of 99 spots (plus orientation cores) consisting of triplicate, 1 mm diameter cores from

24 invasive breast tumor tissues was constructed by the Tissue and Research Pathology Core

Facility at the University of Pittsburgh Cancer Institute. Formalin-fixed paraffin-embedded

(FFPE) tumor blocks were obtained from the University of Pittsburgh Health Sciences Tis-

sue Bank under the Institutional Review Board approved protocol (PRO13080285). Im-

munohistochemical expression levels for ER, PR, and HER2 were assessed according to the

American Society of Clinical Oncology/College of American Pathologists guidelines. In total,

three cases of ER(+) invasive ductal carcinoma (IDC), five cases of ER(+) invasive lobular

carcinoma (ILC), eight cases of ER(-) IDC, and eight cases of HER2(+) IDC were each cored

in triplicate for a total of 72 tumor tissue spots. The remaining 27 spots consisted of 1 mm

cores from cell pellets made from MCF7, MCF10A, MDA-MB-231, and MDA-MB-468 breast

cancer cell lines (Breast Cancer Panel, ATCC, Manassas, VA, USA), which were included as

staining controls for the multiplexed IF study. Locations of all cores within the array were

randomized. As an additional positive staining control, we also purchased a commercial

breast cancer tissue array (BRC482 from Pantomics, Inc., Richmond, CA, USA).

3.3.2 Multiplexed immunofluorescence staining and imaging

Multiplexed IF staining and imaging of the study and control microarray slides were con-

ducted as described previously [30]. Two sequential 5 m sections of the study array on

positively charged glass microscope slides and one BRC482 control slide were taken through

the process in parallel. The methods for slide preparation and iterative rounds of staining and

imaging were described in detail by Gerdes et al. [30] and issued patents referenced therein.
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Briefly, slides were cleared of paraffin, subjected to a 2-step antigen retrieval protocol, and

blocked with donkey serum and bovine serum albumin solution. A total of four rounds of

staining, imaging, and dye deactivation were completed: Round 1: ribosomal protein S6

(Cy3 conjugate of rabbit anti-phospho-40S ribosomal protein S6 [Ser-240/244], #2215, cell

signaling, used at 10 g/mL), ER (Cy5 conjugate of mouse anti-ER-, clone 1D5, #M7047,

DAKO, used at 10 g/mL); Round 2: PR (Cy3 conjugate, 13095, used at 5 g/mL), HER2

(Cy5 conjugate of rabbit anti-HER2 clone D8F12.#4290, cell signaling, used at 5 g/mL);

Round 3: pan-cytokeratin (pan-CK) (Cy3 conjugate, 13010/13421, 2.5 g/mL), Na+/K+-

ATPase (plasma membrane) (Cy5 conjugate of rabbit anti-sodium-potassium-ATPase, clone

EP1845Y, #2047-1, epitomics, used at 5 g/mL); and Round 4: pan-cadherin (PCad) (Cy3

conjugate of rabbit anti-pan cadherin [RB-9036; Thermo Scientific], stained at 5 g/mL), epi-

dermal growth factor receptor (EGFR) (Cy5 conjugate of rabbit-anti-EGFR clone D38B1

[4267; cell signaling], used at 1 g/mL). These eight primary antibodies were conjugated

using NHS-ester dye chemistry as previously described, and each lot was revalidated on con-

trol tissue sections before used in this study. Background images were collected before the

first round and following each dye deactivation step and subsequently used for subtraction

of background autofluorescence, as described below. 4’,6-diamidino-2-phenylindole (DAPI)

staining of nuclei was collected for all rounds of imaging, and DAPI stain was recharged

before each antibody staining round. Imaging was on Olympus I 81 inverted fluorescence

microscope with a 20 0.75 NA objective outfitted as described by Gerdes et al [30].

3.3.3 Image processing and cell quantification

The biomarker images, acquired in different rounds, were first aligned. Alignment of the

different channels was achieved by registering each DAPI image from successive rounds of

imaging to the DAPI image of the first round using rigid transformation (i.e., only translation

and rotation) [81]. After registration, autofluorescence, which is typical in FFPE tissue, was

separated from the fluorophore signals. To do this, an autofluorescence removal process [82]

was applied, in which an image of the unstained sample was acquired, normalized, and then

subtracted from the corresponding normalized-stained image.
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The subsequent step in the workflow was image segmentation, which consisted of several

steps (Supplementary Fig. 11). First, DAPI-stained nuclei were segmented using a wavelet-

based segmentation algorithm, followed by applying shape-based watershed (Supplementary

Fig. 11a,b) [58]. Second, an epithelial segmentation algorithm was used to identify the ep-

ithelial cells in the image using a biomarker that is known to be specific to the epithelial

cells or at least with known subcellular localization patterns in the epithelial cells (e.g.,

pan-CK). Third, the cell cytoplasm and membrane were segmented using an algorithm that

detects tubular structures in the image based on computing Frangi vesselness (Supplemen-

tary Fig. 11c,d) [83]. In parallel, a multi-level watershed algorithm was applied on the

membrane segmentation marker to extract initial cell contours [84]. In the final step, initial

cell segmentation results were combined with the three individual compartment segmenta-

tions (i.e., nuclear, cytoplasm, and membrane) as well as the epithelial mask to generate

final cell segmentation mask.

The last step of the workflow was image quantification. Given the segmentation masks

and any number of biomarker images, a large number of measurements were computed.

These measurements include different cell morphological features (e.g., cell size and shape)

and several statistics (e.g., mean, variance, and kurtosis) of each biomarker at the image,

cell, and subcellular levels. Although the subcellular measurements for biomarker intensity

were available, for this study we used only the mean biomarker intensity at the cellular level.

We experimented using the median biomarker intensity as well but observed qualitatively

similar results.

3.3.4 Data preparation and automated quality control

After the quantification, two automated quality control (QC) steps were applied. The first

QC step detected damaged or lost tissue from round-to-round imaging and artifacts such as

light saturation or poor focus, by producing image masks that differentiate between good-

and poor-quality regions within each image. The poor-quality regions were subsequently

masked out and excluded from downstream analysis. Properly sectioned and imaged cells

are expected to fall within a specific size range, and the majority of their nuclei should remain
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in the section with minimal fragmentation. Thus, the second QC step filtered out cells based

on size and the number of enclosed nuclei fragments. For this work, we used minimum and

maximum cell size thresholds of 100 and 3000 pixels (37 and 1110 µm), respectively. In

addition, we rejected cells with zero or more than three nuclei fragments [30, 85, 86].

3.3.5 Partitioning cells into two subpopulations to account for the distinct

regimes in biomarker intensity distributions

Fig. 6 shows our strategy of quantifying heterogeneity, which is to describe the spatial or-

ganization of expression patterns in a tumor sample. To enable this description, we observe

that the probability distributions of the mean cellular biomarker intensity values (ER, HER2,

PR) can be partitioned into two subpopulations. We will refer the two populations as high-

and low-intensity regimes, L1 and L2, respectively (Fig. 7a).

A threshold was defined using the knee observed in the probability distribution plots

for each of the biomarkers (shown as vertical lines in Fig. 7a). Since the data had already

gone through several stages of QC (as described in the Methods), it was assumed that both

the low-intensity and high-intensity populations were unique properties of the data, separate

from nonspecific fluorescence. A given cell was assigned to the high-intensity subpopulation

if any one of its mean biomarker values was greater than its respective threshold. A cell

was assigned to the low-intensity subpopulation if and only if all of its mean biomarker

values were below their respective thresholds. Biomarker patterns were then learned for

each subpopulation of the data separately.

3.3.6 Learning dominant biomarker intensity pattern set from each cell sub-

population

We aimed to discover a set of biomarker intensity patterns that adequately describe the high-

and low-intensity subpopulations (L1 and L2) of IF data. While we could have imposed a

predefined set of biomarker intensity patterns (for example, ER high/HER2 low/PR low and

ER low/HER2 high/PR low), it was more compelling to learn the dominant patterns from

the data, via machine learning (see Methods). The number of patterns needed to describe
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Figure 6: Canonical pointwise mutual information maps depicting various forms of spatial

intratumor heterogeneity.

(a) Cartoon representation of eight different cellular phenotypes based on high-dimensional
biomarker intensity patterns acquired via pattern recognition algorithms (see Figure 7 for more
details). (b) A pointwise mutual information map with strong diagonal entries and weak
off-diagonal entries describes a globally heterogeneous but locally homogeneous tumor. In this
example, the pointwise mutual information map highlights locally homogeneous tumor
microdomains containing cells of only one type each, phenotypes 2, 4, and 8 respectively. (c) On
the contrary, a pointwise mutual information map with strong off-diagonal entries describes a
tumor that is locally heterogeneous. In this example, locally heterogenous tumor microdomains
exist as portrayed by the off-diagonal entries. One domain contains phenotypes 1 and 6, another
contains phenotypes 2 and 4, and yet another containing phenotypes 3 and 8. (d) Pointwise
mutual information maps can also portray anti-associations (e.g., if phenotype 1 never occurs
spatially near phenotype 3, see Figures 8 and 9). The ensemble of associations and
anti-associations of varying intensities along or off the diagonal represents the true complexity of
tumor images in a format that can be summarized and interrogated.
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Figure 7: Learning a dictionary of cellular expression patterns.

(a) Thresholds drawn as vertical lines for partitioning dataset into high-signal and low-signal
subpopulations (L1 and L2, respectively). (b) Linear approximations of the L1 (high signal) and L2 (low
signal) data matrices by the overcomplete dictionaries D and the sparse coding matrices W . Data matrix
D ×W is a reconstruction of the dataset, X. The rows of X and D correspond to ER, HER2, and PR
biomarker intensities, as labeled. The columns of X and W correspond to each individual cell. The
columns of D correspond to the unique dictionary elements and the rows of W correspond to their weights.
(c) Each cell is phenotyped to a single pattern in dictionary D. A three-dimensional representation of the
L1 matrix is shown, where each cell is color coded by its phenotype. (d) Subspace selection of overcomplete
dictionaries D, for L1 and L2, leads to a pattern size of 11 for each subpopulation. (e) Each pattern in the
dictionary is shown as a colored stem plot and refers to (from left to right) the ER, HER2, and PR
intensity levels. It is convenient to describe these intensities as high, medium, and low as we will do in the
main text. For example, the cyan-colored pattern 2 in the L1 dictionary (left), which accounts for the
cyan-colored cloud in panel c, may be described as ER high, HER2 high, and PR low. Next, using k-means
clustering, we consolidate the L1 and L2 dictionaries into a final dictionary set of size 8. To denote the
outcome of k-means clustering, we draw a colored box around each pattern in the L1 and L2 dictionaries,
corresponding to the eight different consolidated clusters and show the mean patterns of the consolidated
dictionary to the right.
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the data is likely to be greater than its dimensionality. This formulation is known as an

overcomplete representation (see Supplementary Material for a glossary of machine learning

and information theory terms). For example, if ER, HER2, and PR biomarker intensities

were binarized into high and low signals, there would be eight potential combinations to

describe the biomarkers intensities in three dimensions. In addition, we sought to develop

methods that were applicable to single biomarker expression data, multiplexed co-staining

methods (< 7 biomarkers), and emerging hyperplexed technologies (> 7 biomarkers). To

prescribe a predefined set of patterns on high-dimensional data, one would have to enumerate

all potential combinations of biomarker intensities for that dataset: an exponentially complex

endeavor. Machine-learning methods have the added benefit of scalability to these higher-

dimensional problems.

A previous study suggests using mixtures of Gaussians to model high-dimensional biomarker

distributions [80]. However, the formulation we describe below promotes interpretability via

the mapping of cells to specific biomarker patterns. In addition, we are making no assump-

tions about the Gaussianity or distribution of cellular biomarker intensity profiles.

For our pattern recognition, we learned an overcomplete dictionary where the number of

biomarker patterns used to represent the data is larger than its dimensionality (number of el-

ements comprising each pattern). For example, we used eight biomarker patterns to describe

IF data in three dimensions (ER, HER2, PR). Hereafter, we will refer to an overcomplete

dictionary with m patterns as being m-overcomplete. Because the representation was over-

complete, we forced the cells to have a sparse coding, i.e., each cell is phenotyped with only

one or few of the biomarker patterns. A sparse coding of the data improves interpretability

for both cancer biologists and pathologists.

We used K-SVD, an iterative k-means derived method for designing overcomplete dic-

tionaries with various sparsity constraints, to represent the IF data [60]. Each cell, in the

high- or low-intensity subpopulation was approximated by the following linear equation

~xi ≈ w1
i
~d1 + w2

i
~d2 + . . .+ wm

i
~dm (3.1)

with the contraint

card(~wi) = 1
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where ~wi = [w1
i , . . . , w

m
i ], and is the pattern coefficient vector for the ith cell, ~d1, . . . , ~dm

represent the patterns in an m-overcomplete dictionary, wj
i is the pattern coefficient for the

jth pattern of the ith cell, and card(~wi) is the cardinality (the number of nonzero elements) in

pattern coefficient vector ~wi. By constraining the cardinality of the pattern coefficient vector

to 1, we have explicitly set up the K-SVD algorithm to build a sparse representation such

that each cell in a given dataset was phenotyped to only a single pattern in the dictionary

(Fig. 7b,c).

The biomarker pattern dictionary was learned using the logarithm of biomarker intensi-

ties for each cell in the TMA, for numerical stability. Since K-SVD is an iterative algorithm,

we set it to run for 25 iterations well after it had reached a steady state result.

3.3.7 Determine best dictionary size, m

A priori, it is not evident that how many elements should comprise the biomarker pattern

dictionary. Representation error of the biomarker intensity data for each cell will tend to

decrease as the number of patterns in the vocabulary increases. For example, if the number

of patterns is equal to the number of cells in the TMA dataset, the representation error will

be zero. However, the representation error of our dataset, given the linear approximations for

different vocabulary sizes, decreased at smaller intervals as the vocabulary size approached

the number of cells. Thus, we chose a vocabulary size where the representation error was

low, but further increases to the vocabulary size had minimal returns. For each potential

biomarker pattern dictionary size, m, the error of the linear representation was computed

as:

em =
∑
i

∣∣∣∣~xi − (w1
~d1 + w2

~d2 + . . .+ wm
~dm

)∣∣∣∣ (3.2)

To determine the best dictionary size, m, we performed a 10-fold cross-validation on the

linear reconstruction for each IF data subpopulation. The data were split into ten equal but

distinct groups, and the algorithm was trained on nine parts of the split and tested on the

remaining one part. This procedure was repeated to cycle through each of the ten possible

testing sets, with both the mean reconstruction error and the variance of the error reported

at completion. An elbow criterion was used to choose the best subspace representation,
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where the allowance of another pattern in the dictionary was not found to decrease the error

significantly (Fig. 7d).

3.3.8 Construct spatial networks to describe the organization of biomarker pat-

terns in a tumor

To represent the spatial organization of the biomarker patterns in a tumor, a network was

constructed for each spot in the TMA. The construction of spatial networks for tumor sam-

ples intrinsically couples cellular biomarker intensity data (in the nodes of the network) to

spatial data (in the edges of the network). The assumptions in the network construction

were that cells have the ability to communicate with nearby cells up to a certain limit, up to

250 µm as described by Francis and Palsson [87], and that the ability for cells to communi-

cate within that limit depends on cellular distance. Therefore, the probability distribution

was computed for the distance between a cell in the TMA and its ten nearest neighbors. A

hard limit was chosen based on the median value of this distribution times 1.5 (to estimate

the standard deviation), where cells in the network were connected only within this limit.

This limit was consistent with the 250 µm limit proposed by Francis and Palsson [87]. Then,

the edges between cells in the network were weighted by the distance between the adjacent

cells.

3.3.9 Using pointwise mutual information to quantify spatial biomarker pattern

relationships

PMI was used to measure the association between each pair of biomarker patterns in the

dictionary and thus different cell phenotypes, for a given sample of the data. This metric

captures general statistical association, both linear and nonlinear, where previous studies [32]

have used linear metrics such as Spearman’s rho coefficient. PMI may be computed for an

individual spot in the TMA, a single patient in the trial (using all of the spots sampled

from that patient), a specific cancer cohort in the TMA, or the entire TMA. Once computed

for each pair of biomarker patterns, a measure of all associations in the data is displayed

in a PMI map. This map describes relationships between different cell phenotypes within
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the microenvironment, where differences may be compared from spot-to-spot and patient-

to-patient.

Given a linear deconstruction of an IF dataset X, where each column of X is a cell xk ,

into an overcomplete dictionary D, where each column of D is a distinct pattern di, and a

sparse coding matrix W which assigns each cell to only a single biomarker intensity pattern,

we assign each cell to have a phenotype fi , where i is the nonzero index in column wk of

W . A potential pitfall of the algorithm is that high- and low-signal intensity cells can be

assigned to the same cell phenotype (more discussion of this in the Results section).

PMI between a pair of biomarker phenotypes
(
fi, fj

)
for a given network or network set

S is defined as:

PMIs
(
fi, fj

)
= log

P
(
fis , fjs

)
P
(
fit
)
P
(
fjt
) (3.3)

where P
(
fis
)

is the probability of phenotype fi occurring in network set s, and P
(
fit
)

is

the background probability distribution of phenotype fi derived from the complete ensemble

of networks. Note that the background distributions are based on the entire dataset, to

compare individual networks to the distribution of the TMA as a whole. This construction

is similar to the position-specific scoring matrices for either DNA or protein sequences, where

the background distributions denote the probability of finding any particular nucleotide or

amino acid over the dataset of sequences, for any given position [88]. A PMI map consists of

the PMI score for every possible pair of patterns in the vocabulary for a given network set s.

While we advocate the interpretation of the 2D PMI map for a thorough understanding of

heterogeneity, we also derive a one-dimensional heterogeneity score value from the PMI map,

for convenience of the reader interested in comparing with other one-dimensional scores in

the literature. The information-deficient one-dimensional heterogeneity score is defined as:

HETPMIs =
∑
i,j

∣∣∣∣ log
P
(
fis , fjs

)
P
(
fit
)
P
(
fjt
)∣∣∣∣ (3.4)

where higher scores denote a larger difference from the background distribution. The one-

dimensional scores can incorrectly map two spatially different organizations of the TMEs, as

seen by their PMI maps, to the same scale.
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3.3.10 Visualize spatial networks for specific relationships

After computing the PMI map for a given tumor sample or patient and identifying significant

interactions or interaction motifs, it is necessary to interrogate the cells which contributed

to this significant association. A significant interaction would be considered when the PMI

value is close to ±1. PMI values close to 1 signify that this particular spatial interaction

of biomarker patterns occurs more frequently than observed in the background distribution.

PMI values close to −1 signify that when one pattern is observed in the network, the other

pattern is found to be observed less frequently than expected from the background distribu-

tion. PMI values close to zero signify interactions that may adequately be described by the

background distribution.

For a given interaction, a simple linear search through the network can extract the

spatial connections in the network that contribute to the associations computed by PMI.

These connections may then be superimposed onto the IF image to be examined in more

detail by a pathologist (Fig. 8).

3.3.11 Software

We used MATLAB (version R2015a, The MathWorks, Inc., Natick, MA, USA) to im-

plement the analysis pipeline. We applied the segmentation algorithm developed by GE

to output the cellular data into a comma separated value file containing the spatial lo-

cation and the biomarker intensity for each cell in the TMA (Fig. 5) [30, 86]. To par-

tition the data into high- and low-intensity signals (L1 and L2, respectively (Fig. 7a)),

we applied a threshold value as determined by the elbow found in the probability distri-

bution of the intensities of each biomarker channel. For biomarker pattern recognition

via K-SVD, we used Ron Rubenstein’s MATLAB implementation from http://www.cs.

technion.ac.il/~ronrubin/Software/ksvdbox13.zip (Fig. 7b,c). This toolbox also re-

quires the use of an orthogonal matching pursuit implementation in MATLAB from http:

//www.cs.technion.ac.il/~ronrubin/Software/ompbox10.zip. We selected the optimal

subspace by performing multiple K-SVD trials at different subspace sizes and chose the

ideal subspace dimension when the reconstruction error stopped decreasing (Fig. 7d). To
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Figure 8: Visualizing networks of spatial interactions from pointwise mutual information

maps.

The pointwise mutual information (PMI) map in the middle denotes the relative probability of finding two
co-occurring phenotypes i and j in reference to a background distribution. In the colorbar above the PMI
map, red/blue indicates highest/lowest possible co-occurrence, and black indicates an absence of
interactions. The stem plots to the right describe the eight phenotypes learned from the data, where each
stem plot represents the relative ER, HER2, and PR intensities of the phenotype (left to right). The labels
for each stem plot (1-8) correspond to the rows and columns of the PMI map. This map allows us to probe
any tumor sample for networks of spatial interactions that contribute to the pointwise mutual information
calculation. We display representative networks of spatial interactions for three different PMI map entries.
The two networks shown in yellow are examples where phenotype 6 spatially co-occurs with itself more
frequently than expected from the background distribution. The two networks shown in green indicate two
spatial networks where phenotype 5 spatially co-occurs with itself as would be expected from a random
phenotyping of cells, given phenotype background probabilities. The two networks shown in blue portray
interactions between cells of phenotypes 2 and 3 spatially co-occurring, which happens less than is
expected from the background distribution. In each of these cases, the nodes in these graphs are the
spatially co-occurring cells of a specific phenotype, and edges are only drawn to cells in spatial proximity.
Depending on individual tumor graph statistics, these spatial relationships may be localized or ubiquitous
throughout the tumor.
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consolidate the biomarker pattern sets learned from the L1 and L2 partitions, we used k-

means in MATLAB, where the number of clusters k was chosen using the silhouette function

in MATLAB, which provides a graphical representation of cluster membership confidence

(Fig. 7e) [89].

To construct cell networks, we computed the median distance, dm , of the ten near-

est neighbors for each cell and derived the standard deviation, s, from the median value,

s = 1.5dm such that the connections between neighboring cells were Gaussian weighted. To

keep the network sparse, cells separated by a distance > 3s were not connected. PMI was

calculated by Equation 3.3, using 2D histograms to compute the joint probabilities. We

observed that the distribution of PMI values was concentrated around 0, ranging between

−10 and 10, with an additional population of extremely large negative values. After it was

determined that the extremal values were the result of a lack of co-occurrences in combina-

tion with small smoothing coefficients used to calculate numerically stable logarithms, we

suppressed these extremal values and focused only on the values around zero. PMI maps

were normalized between −1 and 1 for ease of visualization, and the extrema were saturated

to a normalized PMI value of −1. To visualize a specific interaction that contributes to the

construction of the PMI map, a linear search may be executed on the tissue data to look for

the specific pairwise interactions of cell phenotypes requested (Fig. 8).

3.4 DATASET

Table 1 provides a summary statistics for the TMA with cohorts from (a) ER(+) IDC, (b)

ER(+) ILC, (c) ER(-) IDC, and (d) HER2(+) IDC. Three biopsy cores were taken from each

patient. For each tumor sample, we consider cells that passed QC (see the Methods section

for more details) and divide them into two distinct sets, high and low, based on biomarker

intensities.

41



Table 1: Tissue microarray (TMA) data with cohorts from various breast cancer subtypes.

(a) ER(+) IDC
Spot # Patient ID # Cells

000 AL13-1 23 (1181)
031 AL13-1 222 (382)
026 AL13-2 72 (376)
055 AL13-2 604 (641)
060 AL13-2 420 (624)
005 AL13-3 433 (589)
046 AL13-3 327 (1629)
086 AL13-3 164 (600)

(b) ER(+) ILC
Spot # Patient ID # Cells

001 AL13-4 712 (249)
043 AL13-4 882 (192)
066 AL13-4 1065 (112)
011 AL13-5 2589 (166)
061 AL13-5 3339 (26)
080 AL13-5 2975 (52)
006 AL13-6 297 (621)
025 AL13-6 269 (458)
076 AL13-6 348 (246)
045 AL13-7 260 (192)
030 AL13-8 20 (125)
056 AL13-8 1062 (165)
096 AL13-8 479 (182)

(c) ER(-) IDC
Spot # Patient ID # Cells

002 AL13-9 0 (1032)
039 AL13-9 43 (779)
079 AL13-9 1 (1084)
012 AL13-10 0 (1173)
052 AL13-10 0 (185)
091 AL13-10 0 (1779)
024 AL13-11 0 (849)
049 AL13-11 28 (831)
089 AL13-11 0 (895)
007 AL13-12 3 (381)
034 AL13-12 1 (482)
062 AL13-12 52 (917)
017 AL13-13 17 (84)
036 AL13-13 4 (1055)
072 AL13-13 44 (1219)
020 AL13-14 1 (1322)
044 AL13-14 0 (2296)
071 AL13-14 8 (1414)
032 AL13-15 12 (764)
057 AL13-15 65 (532)
029 AL13-16 118 (876)
067 AL13-16 4 (804)
095 AL13-16 4 (1771)

(d) HER2(+) IDC
Spot # Patient ID # Cells

003 AL13-17 147 (53)
038 AL13-17 209 (36)
068 AL13-17 276 (39)
015 AL13-18 69 (39)
041 AL13-18 771 (184)
078 AL13-18 319 (678)
013 AL13-19 245 (215)
053 AL13-19 824 (123)
090 AL13-19 970 (178)
023 AL13-20 1044 (757)
063 AL13-20 799 (229)
088 AL13-20 669 (101)
008 AL13-21 39 (162)
033 AL13-21 194 (44)
065 AL13-21 97 (7)
018 AL13-22 677 (6)
048 AL13-22 890 (2)
073 AL13-22 521 (5)
021 AL13-23 86 (57)
058 AL13-23 439 (8)
083 AL13-23 1048 (28)
028 AL13-24 126 (1724)
070 AL13-24 64 (1440)
093 AL13-24 309 (2079)

Spot number refers to the location on the TMA. The two numbers reported in the cell count column refers
to the number of cells in the high signal and low signal populations, respectively, where the data was
partitioned based on biomarker signal intensities (see Figure 7a for more details). (c) Spots 91 and 89 in
ER(-) IDC are anomalous in that the ER staining was observed in the normal epithelium, and not in the
cancer cells. These spots were erroneously assigned the category of ER(-) IDC by the automated image
processing algorithms. These errors could be avoided by having pathologists manually determine regions of
interests.
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3.5 RESULTS

3.5.1 Preprocessing of multiplexed/hyperplexed immunofluorescence image data

A cellular segmentation algorithm was previously developed and applied to IF data taking

advantage of the selectivity of segmentation biomarkers, DAPI, Na+/K+-ATPase, S6, and

pan-cadherin [30]. The output of the segmentation algorithm includes cellular masks and

subcellular masks for each cell at nuclear, cytoplasmic, and membrane resolution (Supple-

mentary Fig. 11, Fig. 5). Using this segmentation, we extracted biomarker intensity at single

cell resolution such that each cell was represented by its spatial coordinates and biomarker

intensities, from which interaction networks were be built and biomarker intensity patterns

were identified.

Fig. 5 shows a pseudocolored IF image where ER signal is colored in blue, HER2 signal

in red, and PR signal in green. The pseudocolored image makes colocalizations of biomarker

signals within cells explicit and further helps assess heterogeneity. For example, the cyto-

plasm of a cell will appear either as cyan if ER (blue) colocalizes with PR (green) or as blue

if ER (blue) localizes by itself. For spot 55 (shown in Fig. 5), we concluded that a significant

degree of heterogeneity is apparent. For demonstration, we highlighted three groups of cells

shown by arrows in Fig. 5. In the first group of cells (middle arrow), ER and HER2 were dom-

inant in their respective cellular compartments and did not colocalize. In the second group

of cells (top arrow), ER and PR colocalized to produce cyan, with HER2 signal localizing in

the membrane. In the final group of cells (bottom arrow), PR and HER2 were dominant in

their respective cellular compartments and did not colocalize, with a much smaller portion

of ER(+) cells. This visualization example exemplifies a qualitative approach to describing

heterogeneity, which was formalized and made quantitative with the PMI measure.

3.5.2 A strategy for quantifying heterogeneity

Our strategy for quantifying heterogeneity has three components (Fig. 6). First, we learn a

small set of dominant biomarker intensity patterns, for example, ER high/HER2 high/PR

off; from the IF data based on biomarker intensity composition of each cell, we assign it
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to one of the dominant patterns. Fig. 6a shows a cartoon representation of possible cell

phenotypes. Second, we construct a spatial network to describe the organization of biomarker

patterns in a tumor (see Methods). Finally, we quantitate heterogeneity in the form of a

PMI map, where the entries measure how frequently a particular spatial interaction between

two phenotypes (referenced by the row and column number) occurs in the dataset when

compared to the interactions predicted by a random (or background) distribution over all

phenotypes. In Fig. 6b-d, PMI entries in red denote a strong spatial association between

phenotypes while entries in black denote a lack of any colocalization. PMI entries colored

green denote associations that are no better than a random distribution of cell phenotypes

over the entire dataset. In addition, PMI maps can portray anti-associations denoted by

blue (e.g., if phenotype 1 rarely occurs spatially near phenotype 3) as shown in Fig. 6d.

A PMI map with strong diagonal entries and weak off-diagonal entries describes a globally

heterogeneous but locally homogeneous tumor. To illustrate this, we show a canonical PMI

map in Fig. 6b where the associations in the diagonal entries for phenotypes 2, 4, and 8 are

strong. This implies that these phenotypes are spatially associated with cells of the same

phenotype as shown by the composition of the individual microdomains in the tumor sample

in Fig. 6b.

On the contrary, a PMI map with strong off-diagonal entries can describe a tumor that

is locally heterogeneous. In the canonical PMI map shown in Fig. 6c, the associations

between the cellular phenotypes 1 and 6, 2 and 4, and 3 and 8 are spatially localized. In

Fig. 6d, we find associations between all phenotypes in the tumor image, and hence, the

PMI is thoroughly intermixed. The benefit of PMI maps over existing measures is that the

maps evoke a spatial relationship between phenotypes. These provide not only a summary

of cellular composition but also an approximation of the tumor topology. For the sake of

brevity, we have not included more complicated PMI map examples, but all maps are built

off of these simple interactions.
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3.5.3 Building a dictionary of biomarker expression patterns

We segregated the data into two partitions based on the distribution of signal intensity

for each biomarker, under the assumption that signal intensity indicates true biomarker

expression (Fig. 7a). Notice that each of these log-occurrence distributions may be modeled

by two or more linear equations. The notch where these two different models would meet

is set to be the threshold for that particular biomarker channel and is drawn as vertical

lines in the biomarker intensity distribution graphs. For any given cell, if one or more of its

biomarker intensities is above threshold, then that cell is classified as Level 1 (L1). If all of

the biomarker intensities for any given cell are below the thresholds in their corresponding

biomarker channels, then that cell is classified as Level 2 (L2). These two partitions can

be interpreted in terms of their signal-to-noise ratio, where L1 has a higher signal-to-noise

ratio and L2 has a lower signal-to-noise ratio in comparison. Each partition of cells is used

to learn its own set of biomarker patterns. This approach seems particularly judicious given

that the distribution of pattern coefficients for L1 and L2 data has different Gaussianity in

general (Supplementary Fig. 12). As shown in Fig. 7a, the studied biomarker intensities have

long-tailed distributions, so we chose a log-intensity representation to derive a numerically

stable pattern recognition algorithm.

For each partition of the data, L1 and L2, we arrived at a sparse signal representation

(Fig. 7b). A given data matrix X, where the columns represent each cell in the dataset and

the rows represent the log biomarker intensities of each cell (top to bottom, ER, HER2, PR,

respectively), can be approximated by the product of matrices D and W . D represents a

dictionary of potential biomarker intensity patterns learned from the ensemble of cells in

the dataset X, where each column represents one of the patterns learned from the data

and each row represents the respective biomarker intensities of each pattern. W is a sparse

matrix, which phenotypes each cell in X to a specific pattern in D with a particular scaling

coefficient. Thus, each cell (column in W ) is represented by only one cell phenotype, which

corresponds to the biomarker pattern (column in D) where the sparse code lies. The color

spectrum for each matrix varies from blue (low intensity) to yellow (high intensity).

We also display matrix DW to portray the similarity between the actual data matrix
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and its reconstruction. By viewing matrices X and DW , which are column sorted by the

dictionary element they have the most consensus with, we can observe that each of the

biomarker patterns is present in the data. The benefit of this reconstruction of the data is

the ability to represent a large array of cell-level data with a small number of interpretable

biomarker patterns, describing highly clustered clouds inherent to the dataset as shown in

Fig. 7c. Each cell in the three-dimensional log biomarker intensity space is color coded by

its phenotype (see caption, Fig. 7c).

The reconstruction error of our linear representation of a given dataset X into dictionary

D and dictionary coefficient matrix W highly depends on the dimensionality of D, i.e., the

number of patterns that will be used to describe the dataset X. To choose the ideal dimen-

sionality of D, we perform a 10-fold cross-validation of the data reconstruction (Fig. 7d). As

is typical in these analyses, we note that as we increase the dimensionality, reconstruction

error and the variance of the error decrease until a certain point where the error variance

begins to increase with dimensionality. We found that a dictionary size of 11 patterns opti-

mizes both reconstruction error and variance of the error, for both data partitions, L1 and

L2.

Having learned a set of 11 patterns for each nonoverlapping partition of the data L1

and L2, we could merge the two dictionaries into a large single dictionary of biomarker in-

tensity patterns that can describe the entire dataset. However, since these patterns were

learned separately from partitions deriving from the same dataset, captured under the same

experimental conditions, we noted that there were some redundancies between the dictio-

nary learned from L1 data and the dictionary learned from L2 data. Thus, we used k-means

clustering to consolidate the large 22-pattern dictionary (with 11 patterns from each parti-

tion) into a smaller final dictionary containing only the unique patterns discovered from our

approach (Fig. 7e). In Fig. 7e, the 11 patterns learned from L1 and the 11 patterns learned

from L2 are shown to the left. Each biomarker pattern is represented as a stem plot of its

ER, HER2, and PR intensity, respectively. For convenience, we will describe the intensity

patterns in the stem plots as being high, medium, and low. For example, pattern 8 in the

L1 dictionary (shown to the left) may be described as ER high, HER2 medium, and PR low.

The outcomes of k-means clustering, shown to the right, result in a final dictionary
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dimensionality of 8 biomarker intensity patterns. The final dimensionality was chosen based

on the results of a silhouette criterion for clustering evaluation [89]. The boxes around each

of the initial patterns to the left signify their cluster membership and correspond to the color

of the pattern in the final pattern set on the right. Note that one pattern was unique to

partition L2, pattern 7 of the final pattern set, with low ER expression, intermediate HER2

expression, and high PR expression. This demonstrates the value of partitioning the data

into two groups, L1 and L2, where patterns dominant in one partition, but not the other,

may be elucidated.

3.5.4 Visualizing networks of spatial interactions from pointwise mutual infor-

mation maps

We generated PMI maps to summarize the relative probabilities of all pairwise spatial inter-

actions within a given tumor sample. In our reconstruction of the cellular IF data, each cell

was assigned a specific phenotype by its dominant pattern under sparse coding (see Meth-

ods). Each bin of the PMI plot represents the dependence of a cell phenotype upon other

phenotypes or itself, relative to the background distribution of the individual biomarkers over

the entire dataset. After identifying important spatial dependencies between phenotypes, we

can reference the tumor spots and their respective interactions which contribute to the PMI

score.

Fig. 8 displays an example PMI map for the entire dataset (Table 1), excluding the tumor

samples containing ¡100 cells. Each row and column are numbered from 1 to 8, representing

one of the 8 potential cell phenotypes displayed to the right (learned via the approach

described in Methods and Fig. 7). Each bin of the PMI map is colored from blue to red,

according to its PMI score. Scores close to red signify that a particular spatial interaction

between two phenotypes (referenced by the row and column number) occurs in the dataset

more frequently than a random distribution of all the phenotypes in the data would account

for. Scores close to blue signify that a particular spatial interaction between two phenotypes

occurs in the dataset much less frequently than a random distribution would account for. If

a bin is green, then it signifies that the background distribution of the phenotypes in the
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dataset adequately describes the spatial interaction between those two phenotypes. Bins

colored in black signify that this potential spatial interaction is not found in this sample of

the data.

In Fig. 8, we show networks of spatial interactions that contribute to any one entry

in the PMI map. The spatial dependencies shown in green for spots 46 and 25 signify

similarity to the background distribution in the co-occurrence of phenotype 5 (ER high,

HER2 medium, PR low) with itself. Note that these interactions can be either ubiquitous

throughout the tumor sample (spot 46) or localized to specific tumor structures (spot 25).

The spatial dependencies shown in light blue for spots 55 and 11 signify lower probability

than background distribution in the co-occurrence of phenotype 2 (ER high, HER2 medium,

PR medium) with phenotype 3 (ER high, HER2 high, PR low). In comparison, spatial

dependencies shown in yellow for spots 90 and 43 signify higher probability than background

distribution in the co-occurrence of phenotype 6 (ER high, HER2 low, PR low) with itself.

Note that these interactions are spatially localized. Observe that the PMI maps will change

when we evaluate the relative probabilities over different subpopulations.

3.5.5 Pointwise mutual information maps as potential diagnostic biomarkers

In Fig. 9, we show the construction of PMI maps for subpopulations of the dataset: patient

AL13-3 ER(+) IDC cores (spots) (Fig. 9a), patient AL13-6 ER(+) ILC cores (Fig. 9b), pa-

tient AL13-14 ER(-) IDC cores (Fig. 9c), and patient AL13-21 HER2(+) IDC cores (Fig. 9d).

For each panel of this figure, we display the PMI maps for the three replicate cores of a given

case, then combine the spatial networks for all three cores to build a patient-level PMI map,

and finally report scores for each PMI map.

For AL13-3 ER(+) IDC (Fig. 9a), we observe no interactions involving phenotype 7 (ER

low, HER2 medium, and PR high) or phenotype 8 (ER medium, HER2 medium, PR high),

denoting a lack of ER(-)/PR(+) cells for this patient. There are also a few interactions

that have negative PMI scores, denoting a lower likelihood for co-occurrence than predicted

by the background distribution (e.g., phenotype 3 [ER high, HER2 high, PR low] with

phenotype 4 [ER high, HER2 high, PR medium]). One particular spatial interaction with a
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Figure 9: Pointwise mutual information maps as potential diagnostic biomarkers.

PMI maps were constructed for individual cores using the background distributions of cell phenotypes in
the entire dataset, and were pooled together for patient-level PMI (entire tumor) to better assess
intratumor heterogeneity. A representative (a) ER(+) IDC patient, (b) ER(+) ILC patient, (c) ER(-) IDC
patient, and (d) HER2(+) IDC patient PMI map was shown, as well as PMI maps for the three cores taken
from each patient. A heterogeneity score was assigned to each core/patient based on the entries in each
PMI map (see Methods for the relevant equation). Based on this heterogeneity score, patients AL13-3
ER(+) IDC and AL13-6 ER(+) ILC show more heterogeneity (difference from background distribution)
than AL13-14 ER(-) IDC and AL13-21 HER2(+) IDC. The degree to which the core-level PMI maps
change with respect to each other and the patient-level map can elucidate how much or little intra-tumor
heterogeneity exists. For example, the core-level PMI maps for patient AL13-14 are very similar, signifying
that each core is a reasonable approximation for the patient-level analysis. As a contrary example, patient
AL13-21 has highly differing core-level PMI maps, signifying a high degree of intra-tumor heterogeneity in
this patient. The summary heterogeneity score can provide a simple low-level understanding of
heterogeneity between or within patient samples, while the PMI maps can provide a higher-level
understanding, providing insight into the spatial relationships of different cell types which brings about the
heterogeneity. We also propose visualization tools that can help elucidate these relationships in this
higher-level understanding (see Fig. 8).
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slightly higher likelihood for co-occurrence compared to the background distribution is that

between phenotype 5 (ER high, HER2 medium, PR low) with itself. The observation that

the replicate core PMI maps are similar to the combined patient-level PMI map suggests

that the cores are reasonably accurate representations of the entire tumor. However, larger

PMI values in spot 5 and 46, compared to spot 86, lead to higher heterogeneity scores.

The PMI map for AL13-3 ER(+) ILC (Fig. 9b) presents a high level of deviation from

the background distribution as noted by its array of colors. Phenotype 8 (ER medium,

HER2 medium, PR high), for example, presents a dynamic behavior, interacting with itself

heavily, in addition to phenotype 2 (ER high, HER2 medium, PR medium) and phenotype

7 (ER low, HER2 medium, and PR high), above background distribution. This example

suggests that PR(+) phenotypes co-occur spatially. There exists a certain degree of core-

level heterogeneity within the tumor. Notably, spots 25 and 76 contain no cells of phenotype

7 (ER low, HER2 medium, and PR high) while spot 6 exhibits phenotype 7 under specific

interactions with phenotype 2 (ER high, HER2 medium, PR medium), phenotype 5 (ER

high, HER2 medium, PR low), phenotype 6 (ER high, HER2 low, PR low), and phenotype 8

(ER medium, HER2 medium, PR high). Note that, for core 25, the interaction of phenotype

5 (ER high, HER2 medium, PR low) with itself changed from being slightly positive (when

the entire dataset was considered, Fig. 8) to slightly negative in the core-level PMI map. Lack

of interactions lessens the heterogeneity scores for spots 25 and 76 compared to spot 6. The

heterogeneity score for spot 6 is heightened due to stronger anti-associations (for example,

between phenotypes 3 and 5 and phenotype 3 with itself), which are then smoothed out by

the addition of the two remaining spots for the AL13-6 patient level PMI map.

AL13-14 ER(-) IDC (Fig. 9c) contains fewer PMI interactions than the previous two

examples, with 23 of the potential 36 interactions not occurring at all in the patient (shown

as black in the PMI map). Phenotype 1 (ER high, HER2 low, PR nearly off) cells, however,

co-occur with other phenotype 1 cells more frequently than is described in the background

distribution. It may seem counter-intuitive that ER high phenotype 1 occurs in the ER(-

) IDC data. However, ER(-) data may very well be captured by an ER high phenotype

because a given phenotype decision is made based on the angle between the pattern vectors

and the data point in 3D space, and not by the projection distance of the data point onto
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the pattern vectors (see Supplementary Fig. 13). The observation that the replicate core

PMI maps are similar to the combined patient-level PMI map suggests that the cores are

reasonably accurate representations of the entire tumor.

For AL13-21 HER2(+) IDC (Fig. 9d), phenotype 7 (ER low, HER2 medium, and PR

high) co-occurs at greater than background probability with phenotype 1 (ER high, HER2

low, PR nearly off), phenotype 2 (ER high, HER2 medium, PR medium), and phenotype 6

(ER high, HER2 low, PR low). In addition, phenotype 8 (ER medium, HER2 medium, PR

high) has a highly dependent interaction with itself. An interesting feature of this patient

is that the tumor cores taken from this patient are highly heterogeneous. Spot 8 is very

dynamic while spot 65 is completely homogenous, containing only phenotype 3 (ER high,

HER2 high, PR low) interacting with itself.

Comparing heterogeneity scores across patients, we observe that ER(+) ILC patient

AL13-6 has the highest degree of heterogeneity, followed by ER(+) IDC patient AL13-3,

HER2(+) IDC patient AL13-21, and finally ER(-) IDC patient AL13-14. Patient AL13-6

has the largest diversity of interactions (few black bins) and contains many strong positive

and negative PMI values. Patient AL13-3 has less phenotype co-occurrence diversity but

contains mostly strong negative association scores. Following this, AL13-21 contains many

interactions with low PMI values. Finally, AL13-14 has the lowest heterogeneity score,

containing very few co-occurrences with strong PMI values. Clearly, a breadth of information

pertaining to the dependencies between interactions of various cell types and various levels

of local and global heterogeneity can be gleaned from core-level PMI maps and comparisons

of these maps to their patient-level PMI.

3.6 DISCUSSION

With the ability to capture a growing number of biomarkers, IF and mass spectrometry

imaging techniques will play a major role in the quantification of spatial intratumor hetero-

geneity. These emerging hyperplexed imaging technologies will increase the need for scalable

algorithms. The output of these algorithms must remain interpretable and actionable for
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decision-making purposes in the diagnostic realm. Our method is flexible regardless of the

number of biomarkers imaged and can incorporate spatial and expression data together to

quantify spatial intratumor heterogeneity. The end product includes PMI maps, which rep-

resent spatial relationships between cell phenotypes and other constituents of the TME. In

addition, we provide a score based on PMI values to summarize intra- and inter-tumor het-

erogeneity. Finally, the PMI maps permit the end user to visualize its individual components

in the form of spatially interacting cellular networks.

PMI maps have the potential to be an innovative tool for the modern computational

pathologist. For example, if a tumor sample has a PMI map with strong diagonal entries and

weak off-diagonal entries, this describes a tumor with several highly localized self-interactions

of specific cell phenotypes, thus signifying a tumor sample exhibiting local homogeneity but

global heterogeneity. As a contrary example, a tumor sample with a PMI map having strong

off-diagonal entries describes a tumor with many localized interactions between different

cell phenotypes, signifying a tumor sample exhibiting strong local heterogeneity. Another

possibility is the presence of only a single dominant entry in the PMI map, which signifies

either global homogeneity if along the diagonal or global heterogeneity with two mixing

populations if off-diagonal. By looking at a patient’s PMI map, and comparing it to the

individual PMI maps for each tumor sample as well as cohort-summarized (e.g., for all

ER(+) IDC patients) PMI maps, unique interactions between biomarkers in the sample can

be identified and interrogated. HETPMIs scores (Equation 3.4) can be used to compare tumor

samples quickly. Using these measures, a clinician can arrive at highly specific conclusions

regarding the degree of heterogeneity within a single tumor sample or between different

samples of the same tumor. The level of information surmised from PMI includes spatial

elements that are not achievable by other methods that quantify intratumor heterogeneity,

including QE [76].
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Figure 10: Quadratic entropy implementation with patient and core-level results.

(a) The ER immunofluorescence image is shown for spot 5. Note different levels of ER signal intensity
throughout the tumor sample. (b) Regions of interest are selected via k-means clustering on the xy
coordinates of each cell (although one may also select regions of interests manually). (c) The frequencies of
each ER-intensity species (where 1 is lowest intensity and 4 is highest) are shown for spot 5 by the blue
bars. The species frequencies for spot 76 (immunofluorescence and regions of interests not shown) are
shown in red to provide another example of potential estrogen receptor-intensity distributions. Quadratic
entropy is reported for the entire tumor sample (HETslide), as well as mean, minimum, and maximum
quadratic entropy of each regions of interest (HETROI). (d and e) Quadratic entropy was calculated for
patients AL13-3 and AL13-14, from cohorts ER(+) IDC and ER(-) IDC, respectively. HETslide is
computed for each individual replicate core of each patient and then computed for the entire patient
(consolidating the cells from each core). HETROI is computed for each region of interest in the cores and
the mean, minimum, and maximum HETROI scores are reported for each core and patient.
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3.6.1 Comparing pointwise mutual information to quadratic entropy and clini-

cal standards

QE measures heterogeneity via species diversity (relative abundance) without explicitly

quantifying spatial interactions among species. To compare QE with PMI maps, we binned

ER signal intensities to define different “species” of cells in the TME. Following work in

ecological diversity [75], Potts et al. [76] introduced a distance matrix between these species

to penalize spatial interactions between disparate species (more heterogeneity) but reward

spatial interactions between similar species (less heterogeneity). High QE values denote

more heterogeneity, and low QE values denote less heterogeneity. We computed HETslide as

the QE of the entire tumor sample and HETROI as the QE of various regions of interests in

the tumor sample (Fig. 10a-c). We observed for our data that HETslide does not correlate

consistently with any of the statistics for HETROI (Fig. 10d,e). This is similar to our obser-

vations in Fig. 9 where patient-level PMI maps do not necessarily correlate to their replicate

core PMI maps, highlighting a degree of spatial heterogeneity between cores. Additionally,

HETslide can be similar for different tumor samples even though the samples have radically

different frequencies of ER expressing species (Fig. 10, e.g., panel d vs. panel e).

One feature of the QE model is the use of a distance matrix between species for character-

izing heterogeneity. Another feature of the model is the encoding of spatially heterogeneous

subregions in a tumor sample by the computation of both HETslide for the entire tumor sam-

ple and HETROIfor the subregions. Finally, the implementation of the QE model is simple

and elegant, where species can be defined using only the signal intensity of single biomark-

ers. However, QE does not quantify the probability of spatial interactions between two cell

phenotypes as done in PMI with its spatial network-based approaches. Currently, the QE

approach works with one channel at a time while PMI can elucidate spatial relationships

simultaneously in the space of all biomarkers. It may also be possible to develop a multichan-

nel QE algorithm to quantify heterogeneity. In addition, QE and PMI are complementary in

that a distance matrix can be incorporated into future implementations of PMI. Finally, we

intend to incorporate the scaling factor associated with the assignment of cell phenotypes

in the construction of PMI maps. It is important to emphasize that PMI maps should be
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interpreted in their entirety as 2D maps and not as one-dimensional information-deficient

heterogeneity scores.

3.7 CONCLUSION

This paper presents an approach for describing intratumor heterogeneity, in a quantitative

fashion, which departs from the purely qualitative approaches currently used in the clinic.

With access to larger data samples and clinical outcome data, we will be able to correlate

spatial relationships with disease progression and response to therapy. By increasing the

number of biomarkers imaged, we can select for cells in different states of activation, as

well as noncellular constituents (e.g., secretory elements, extracellular matrix), and quantify

relationships between previously unstudied determinants in the TME. In combination with

genomic, proteomic, and transcriptomic data, our PMI-based method for spatial intratumor

heterogeneity using high-dimensional imaging modalities may be used as part of a multimodal

approach to study the mechanisms of cancer.

Having demonstrated that quantification of spatial ITH via PMI can be used as a poten-

tial diagnostic biomarker, comparing and contrasting different cancer subtypes (Fig. 9), we

now seek the link between ITH and cancer progression, metastatic potential, and response

to therapy. Toward this end, in Chapter 4 we explore how spatial ITH measures and other

spatial biomarker statistics of high-dimensional tumor images have the ability to predict

cancer outcomes. Given patient recurrence and survival data over time, we find a strong

concordance between various image feature sets and 5-year recurrence. Additionally, differ-

ent cancer stages are found to exhibit different spatial statistics. Since metastasis is largely

responsible for cancer recurrence and patient mortality, the work presented in Chapter 4 is

a step closer toward understanding the mechanisms of cancer metastasis.
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Figure 11: Image segmentation results.

(a) Composite segmentation image is shown for ER(+) IDC spot 55 of the tissue microarray. The nuclear
mask is displayed in blue, and the membrane mask is displayed in red. Membrane masks are not shown for
stromal cells. (b,c,d) The individual binary masks for nuclear, cytoplasmic, and membrane segmentation
are also displayed. The segmentation algorithm is described in Methods.
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Figure 12: High and low signal subpopulation (L1 and L2) coefficient distributions.

Sparse coding is performed on each partition of the data (L1 and L2) with its respective biomarker pattern
dictionary D (patterns 1-11 for L1, patterns 12-22 for L2, see Fig. 7). The distribution of sparse codes
(pattern coefficients) is then plotted for each pattern in the L1 and L2 dictionaries, with the coefficient
value on the x-axis and log-probability on the y-axis. The variance and kurtosis of each distribution is
displayed above its respective plot.
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Figure 13: ER(-) IDC distribution in comparison to other cancer cohorts.

(a) ER(-) data plotted in log biomarker intensity space for patient AL13-14 data (spots 20, 44, 71). Note
that only patterns 1, 2, 4, 5, and 6 are present in the data cloud: orange, purple, blue, green, and cyan,
respectively. There is one blue data point among the purple data cluster. These cells are assigned to the
closest biomarker pattern vector based on their angle, but the scaling coefficient to that pattern is typically
below a log(6) value, corresponding to a linear value below 400. (b) 200 points were randomly sampled
from ER(-) IDC data (as displayed by unfilled triangles) and 200 points were randomly sampled from
ER(+) IDC data (as displayed by unfilled circles). This shows that cells from both data cohorts (ER(-)
IDC and ER(+) IDC) can be assigned to similar patterns regardless of their overall biomarker intensity,
and dependent only on the angle of their biomarker vector to the biomarker pattern dictionary. (c) It is
illustrative to compare ER(-) data with other cancer cohorts. ER(-) IDC shows a dominant cluster that is
ER high, HER2 medium, and PR low. Additionally, there is a low intensity cluster that has very low signal
value in HER2 and PR. For ER(+) IDC, there is a dominant cluster, similar to ER(-) IDC, as well as a
second cluster with larger intensity data. The ER(+) ILC data is organized into two main clusters,
separated across a boundary on log(HER2) = 6, in addition to several lower intensity outliers. HER2(+)
IDC is organized into three lobes, one of which contains PR(+) data. (d) The probability of each cell
phenotype for the various cancer cohorts. ER(-) IDC is mainly categorized as phenotype 5, with smaller
populations of cells in phenotypes 1 and 3. ER(+) IDC is mainly categorized as phenotype 5, with smaller
populations of cells in phenotypes 2, 3, and 4. ER(+) ILC is split fairly evenly between phenotypes 3, 4,
and 5. Finally HER2(+) IDC is largely categorized as phenotype 3.
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3.8 SUPPLEMENTARY MATERIALS

3.8.1 Information Theory & Machine Learning Glossary

Presented in order of appearance:

Rao’s Quadratic Entropy (QE) - a measure of ecological diversity (i.e. heterogeneity) for a

population divided into a finite number of species. The measure depends both on the relative

frequencies of each species, as well as a dissimilarity measure between each pair of species.

Shannon index - originally proposed by information theory founder Claude Shannon to

quantify the information content in text strings, the Shannon index has been used to describe

the diversity in a population. The more diverse a population is, the more uncertain a

prediction of its species frequencies would be. Unlike QE, this index does not account for

species dissimilarity.

Elbow criterion - the discontinuity of a plotted function, used to signify that different models

are necessary to approximate the function on either side of the discontinuity.

Overcomplete representation - a way to represent real-valued samples with a set of patterns

(basis functions) in which the number of patterns is greater than the dimensionality of the

input. E.g. our samples are 3D (ER, HER2, PR), and the representation we use to model

the structure of the data has a dimensionality of 8.

Overcomplete dictionary - a matrix containing each of the patterns learned in an overcom-

plete representation of some dataset. Each pattern (column in the matrix) may also be

referred to as a dictionary atom.

m-Overcomplete - an overcomplete representation of dimensionality m.

Sparsity - having few non-zero components (in a vector, matrix, etc.).

Sparse coding - a set of unsupervised methods for learning the best representation of a dataset
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from a dictionary of patterns. The sparsity of this representation resolves the degenerate

nature of an overcomplete representation.

Cardinality - the number of elements in a set. By enforcing a cardinality of 1 for our sparse

codes, each cell is assigned only a single cell phenotype.

Orthogonal matching pursuit - an algorithm used to efficiently find a valid sparse coding of

a given dataset.

Representation error - the difference (i.e. the information lost) between a dataset and a

model of that data.

Subspace - a vector space that is a subset of another higher-dimensional space.

Subspace selection - by observing the change in some metric (e.g. the representation error)

through the set of possible subspaces for a dataset, a favorable lower-dimensional subspace

may be chosen. Subspace selection is often used in clustering, where the number of clusters

needed to represent a dataset is not known a priori and must be chosen.

Cross validation - a model validation technique, which assesses the generalizability of the

model. A dataset is split into a training set upon which the model is learned, and a testing

set upon which the model is evaluated.

k-fold cross validation - A form of cross validation where the dataset is partitioned into k

subsamples. k-1 samples are used to train the model, while the remaining 1 sample is used

for validation. This process is repeated k times, where each time a different subsample is used

for the validation set. A common choice for k is 10, in the case of ten-fold cross validation.

Silhouette analysis - an analysis of clustering, specifically observing how closely samples

identify with their own cluster and how loosely they identify with other clusters. The number

of clusters, k, used to represent a dataset may be chosen by finding the k which maximizes

the average silhouette score.

Pointwise mutual information - a measure of association between two variables, which quan-
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tifies the discrepancy between their joint probability and their marginal probabilities. This

measure tells us how much our knowledge about the abundance of one variable informs our

knowledge about the other.

Spearman’s rho coefficient - a nonparametric measure of association between two variables.

This measure assumes a monotonic relationship between the variables, an assumption that

may or may not hold between different cell phenotypes.

3.8.2 Quadratic Entropy and Other Diversity Measures from Information The-

ory

Measurements of diversity have been studied extensively in ecology, where they are applied

to distributions of individuals or biomass among a finite number of species. These measures,

which are rooted in the theory of information, provide us with a starting point for quantifying

cellular heterogeneity. A simple method for quantifying diversity is the Shannon entropy,

S = −
∑

i pi log pi, where the sum is over species and the probabilities sum to one. If

we select a random individual from the population, the Shannon entropy measures how

uncertain we are about its species. It varies between zero for a homogenous population to

logN when the individuals are equally distributed among N species. The related Simpson

index, ∆ =
∑

i p
2
i , measures the probability that two randomly selected individuals are of the

same species. Hill [90] introduced the idea of “diversity of order q” which can be expressed

in terms of generalized entropies:

qD =

( s∑
i=1

pqi

)1/1−q

Note that 1D = exp(S) and 2D = ∆−1. By using this exponential form, the diversity

index provides effective numbers of species [91], enabling easy interpretation. The order

of the measure determines the relative weighting of abundant and rare species. For q = 0,

diversity is essentially a measure of the number of distinct species in the sample. In this limit,

rare events are considered important, and loss of rare species has a considerable influence on

the quantified diversity. In the limit of q going to infinity, rare species become unimportant
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because they lack abundance. The measure in this case is most sensitive to how individuals

are distributed among the species with large populations.

By introducing Z as a measure of similarity [57], we can construct a generalized measure

of diversity based on the Hill numbers:

qDZ =

(∑
i : pi > 0pi

(
Zp
)q−1

i

)1/1−q

The similarity matrix Z makes the diversity index sensitive to the extent of differences

between sub-populations; that is, it allows dissimilar species to contribute more to the diver-

sity than similar species. When Z is the identity matrix, the Hill indices above are recovered.

It can be seen that replacing
(
Zp
)q−1

i
with Dp1−q

i where D is a measure of diversity instead

of similarity, we recover the Rao quadratic entropy (QE) for q = 1 (see below).

There are differences in biodiversity within an ecosystem and intra-tumor heterogeneity.

The ecosystem consists of distinct species whereas the tumor is comprised of a continuum

of cellular phenotypes. Further, the distances between species can be measured through

phylogeny, but there is no established method for quantifying phenotypic differences within

a tumor. Another crucial point is that although biodiversity is well-studied in ecology,

less studied is the extent to which species diversity is affected by spatial patterning. The

diversity metrics described here were implemented into the THRIVE platform as described

in Section 2.4.

3.9 ACKNOWLEDGEMENTS

This work was a collaboration with Rekha Gyanchandani, Yousef Al-Kofahi, Andrew M.

Stern, Timothy R. Lezon, Albert Gough, Dan E. Meyer, Fiona Ginty, Brion Sarachan, Jef-

frey Fine, Adrian V. Lee, D. Lansing Taylor, and S. Chakra Chennubhotla [50]. In addition

to the Department of Computational and Systems Biology at Pitt, collaborators came from

the Department of Pharmacology and Chemical Biology, Department of Pathology, Drug

62



Discovery Institute, and Cancer Institute. At GE Global Research in Niskayuna NY, collab-

orators came from the Diagnostics, Imaging, and Biomedical Technologies Organization, as

well as the Software Science and Analytics Organization.

This work was supported in part by NRSA grant 5T32EB009403-07 (D.M.S), NIH-NCI

U01CA204826 (B.S., D.L.T., S.C.C.), PA Department of Health SAP #4100054875 (D.L.T.),

NIH Cancer Center-Chemical Biology Facility P30 CA047904 (D.L.T.), Breast Cancer Re-

search Foundation (A.V.L.), internal Pitt-GE grant (A.V.L. and D.L.T.), and U54HG008540

award from NHGRI through BD2K initiative (S.C.C.).

63



4.0 SPATIAL ANALYSIS OF BIOMARKER EXPRESSION PATTERNS

FOR PROGNOSTICATION OF OUTCOME IN COLON CANCER

4.1 ABSTRACT

Colon cancer is a heterogeneous disease, prone to recurrence as a result of metastasis to

distant sites. The progression of colon cancer is a result of heterocellular signaling, including

the transcriptional reprogramming of the tissue microenvironment into a supportive tumor

niche. Notably, many of the previous biomarkers associated with poor outcome have been

found to originate in the stroma surrounding malignant cells. We have a unique opportunity

to prognosticate outcome in colon cancer with multiplexed immunofluorescence, where we can

simultaneously measure a large number of proteins associated with colon cancer signaling up

to single cell resolution and map these unique cellular phenotypes spatially. It has been shown

that the spatial location of different tissue microarray constituents has different implications

for the disease. Using multiplexed immunofluorescence of colon cancer tissue microarray

data, we test several multivariate models of protein expression and correlation scores to

predict 5 year recurrence in colon cancer. Model building is based on univariate significance

of different biomarker features, and prediction is tested using a Cox Proportional Hazards

model. We also interrogate which regions of the tumor cores are responsible for high or low

risk prediction, potentially highlighting microdomains conferring metastatic potential.
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4.2 INTRODUCTION

4.2.1 Colon cancer biology

A 2012 survey named colorectal cancer (CRC) as the third most commonly diagnosed cancer

in males and the second in females worldwide, with nearly 700,000 deaths to occur in that

year [92]. A more recent US census finds 8% of estimated new cancer cases in men and

women to be colorectal, as well as 8% of estimated deaths in the year 2016 [93]. Notably,

35%-45% of colorectal patients with stage II and III cancer succumb to recurrence within 5

years, typically in the form of metastases caused by circulating tumor cells [94].

The heterogeneity of colorectal cancer confounds biological understanding of the disease

and results in a diversity of clinical behaviors under the same therapeutic treatment. As

a result, oncologists may struggle to decide whether adjuvant chemotherapy is the best

course of action for their patient. Notably, colon cancer pathological staging (stage I-IV)

does not accurately predict cancer recurrence [95], yet staging is often used as the standard

for patient stratification in the case of chemotherapy. After a complete resection of the

cancer, stage III patients are often chosen to receive adjuvant therapy (typically FOLFIRI:

folinic acid, 5-fluorouracil, irinotecan, or FOLFOX: folinic acid, 5-fluorouracil, oxaliplatin,

and previously 5-fluorouracil and levamisole), with increasing evidence supporting adoption

by stage II patients [96, 97, 94]. The increasing need for a better standard of care and more

effective disease subclassifiers led to a comprehensive molecular characterization effort for

cancers of the colon and rectum (similar except anatomically), led in part by The Cancer

Genome Atlas [98]. The goal of these works was to have a “fully integrated view of the

genetic and genomic changes and their significance for colorectal tumorigenesis.”

From 2012-2015 there were many parallel efforts to subtype colon cancer with unsuper-

vised analysis of exome and transcriptome sequencing, resulting in anywhere from three to

six distinct molecular phenotypes. These phenotypes were then post-hoc associated with

phenomena including stromal abundance, histology, microsatellite (in)stability, BRAF mu-

tation, KRAS mutation, epithelial/mesenchymal status, CpG island status, chromosomal

(in)stability, stem cell-like behavior, Wnt signaling, and DNA mismatch repair [99, 100, 101,

65



102, 95, 103, 104]. Fortunately, efforts have since been made to reconcile these numerous

subtyping schema [105, 106, 107]. An international colorectal cancer subtyping consortium

(CRCSC) was formed to interpret 18 CRC data sets (n=4,151), resulting in a four-group

consensus molecular subtype (CMS) classification. Although none of the subtypes can be

defined by an individual event, and no genetic aberration was limited to a subtype, the

taxonomy can be summarized as follows. CMS1 is the MSI immune group, with defining

features being microsatellite instability, high CpG island methylator phenotype (CIMP), hy-

permutation, BRAF mutations, immune infiltration and activation, and worse survival after

relapse. CMS2 is the canonical group, with high somatic copy number alterations (SCNA),

Wnt and Myc activation. CMS3 is the metabolic group, with mixed MSI status, low SCNA,

low CIMP, KRAS mutations, and metabolic deregulation. CMS4 is the mesenchymal group,

with high SCNA, stromal infiltration, TGF-β activation, angiogenesis, and worst relapse-free

and overall survival [106].

4.2.2 Tumor microenvironment

Healthy colonic epithelium is “organized into a repetitive crypt structure in which pluripo-

tent intestinal epithelial stem cells either self-renew at the crypt base or differentiate into

absorptive enterocytes and goblet cells along the crypt” [46]. Beneath the epithelium lies

the lamina propria, containing leukocyte lineages and mesenchymal fibroblasts. In both

healthy and malignant colons, epithelial-mesenchymal heterocellular interactions coopera-

tively achieve tissue-level phenotypes.

With the goal to better understand the “transcriptional reprogramming of stromal cells

within tumors,” Scherz-Shouval et al. studied gene programs in cancer-associated fibroblasts

(CAFs), the most abundant cells in the tumor microenvironment [108]. In breast cancer, they

reported that transcriptional regulator heat shock factor 1 (HSF1) enables malignancy in

CAFs, involving stromal signaling molecules TGF-β and SDF1, where high HSF1 activation

associates with poor disease outcome. Calon et al. first demonstrated this effect in CRC

in vivo, where mice treated with a pharmacological inhibitor of TGFBR1 were resilient

to metastatic formation [109]. An important finding regarding the role of stroma in CRC
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malignance was that gene subsets upregulated in poor-prognosis subtypes [101, 102, 95] “were

significantly upregulated in [the] microdissected tumor stroma in comparison to epithelial

tumor areas” [110, 111, 112]. CAFs were enriched among the cell types in the poor prognosis

gene set, and remarkably there was a linear association between average expression of the

CAF gene cluster and risk of relapse after therapy in patients with good-prognosis molecular

subtyping. Elevated TGF-β was common to all poor-prognosis subtypes, with TGF-β in

CAFs increasing the tumor initiating capacity of CRC cells [110]. These results reinterpret

the role of epithelial-to-mesenchymal transition (EMT) in CRC agressiveness, but do not

necessarily invalidate its occurrence in the epithelium [110, 111, 112].

While stromal elements are essential to regulation or disregulation of CRC tumors, espe-

cially in the development metastatic niches, immune cells also play a critical role to explore

further [113]. Galon et al. found the type, density, and location of immune cells within

tumor samples to be a better prognosticator of patient survival than CRC staging, with im-

munologic criteria correlating with survival regardless of tumor extent [114, 115]. Infiltration

of CD8+ T cells, referred to as cytotoxic lymphocyte (CTLs), are a factor for good prog-

nosis in CRC, with cancer nest invasion most significantly associating with better survival

in comparison to CTL accumulation in the stroma or along the tumoral invasive margin

(demonstrating the importance of the spatial organization of the TME) [114, 116]. An-

other example of the importance of density and location is in tumor associated macrophages

(TAMs), with peritumoral TMAs preventing tumor development while intratumoral TAMs

resulting in more aggressive cancer cell behavior [117].

The use of multi- to hyper-plexed immunofluorescence will allow quantitative measure-

ment of cellular and molecular signals to accurately portray TME elements and their het-

erocellular emergence. While previously cellular density and spatial location of these con-

stituents were estimated through microdissection or histology, MxIF will allow for single-cell

resolution and accurate characterization of spatial interactions. The importance of accurate

signaling localization can be demonstrated via the poor prognosis gene signatures in the

consensus molecular subtyping, where assumed epithelial localization led to the hypothesis

of EMT but microdissection studies elucidated the stromal origin of these signatures [110].

Another benefit of using MxIF is that morphological information can be harnessed for prog-
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nostic potential. The ability to accurately characterize the TME via MxIF provides new

opportunities for understanding cancer progression, often through metastasis, and improv-

ing patient treatment. “Based on the idea that CRC cells depend on particular stromal

factors to effectively disseminate, therapeutics that modulate the CRC ecosystem may be ef-

fective in treating or preventing metastasis. An additional advantage of targeting the TME is

its genetic stability, making drug resistance less likely to occur” [113]. Understanding the in-

terplay between TME constituents can potentially result in novel therapies, e.g. anti-TGF-β

therapies and other treatments for disrupting the metastatic niche.

4.3 DATA

4.3.1 Patient statistics

The patients studied in this chapter were collected from Clearview Cancer Institute of

Huntsville Alabama from 1993-2002. Of the 747 formalin-fixed paraffin-embedded tumor

cores archived (1 core per patient), 694 patients passed rudimentary quality control mea-

sures as determined by our collaborators at GE Global Research, and 604 patients passed

my additional quality control (including minimum cell number thresholds, and removing pa-

tients with non-varying fluorescence signals). The frequency of important clinical variables

are displayed in Table 2 as a factor of pathological cancer stage. Among the 604 patients

examined in this cohort, the distribution of patients across stages I-III is fairly even (29.5%,

40.7%, and 29.8% respectively). Most patients have grade II colon cancer across the three

staging levels. Other variables shown include median age, gender, median days to recur-

rence (capped at 13 years), median days to survival (capped at 13 years), and number of

patients positive for cancer recurrence. The number of lymph nodes positive for cancer cells

and the total number of examined nodes were also recorded. Of the 604 patients examined,

notably 409 were treated with complete resection alone, with the remaining patients under-

going adjuvant therapy of 5-fluorouracil administration. We are particularly interested in

the chemotherapy-naive patient set, as we will be studying the effect of the tumor microen-
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vironment on recurrence and survival, without additional intervention upon this niche. The

frequency of important clinical variables for the chemotherapy-naive patient set are found in

Table 3.

Pathologists assign each patient to a different cancer stage based on a variety of tests

and reports. T stage varies from 1 to 4 and refers to the size of the primary neoplasm

and invasion status, with T4 being the largest. N stage refers to the degree of spread to

regional lymph nodes, with N0 being no regional lymph node metastasis, N1 representing

nodal metastasis at some sites, and N2 representing metastasis to a larger extent. AJCC

staging was developed by the American Joint Committee on Cancer, and relies in part on

TNM staging (i.e the size of the primary tumor, nodal status, and metastatic spread). AJCC

stage I is a CRC that has invaded the muscular layer of the colon, past the mucosa, but

has not yet spread to lymph nodes (Stage I = T1 or T2, N0). AJCC stage II has grown

to a larger extent, either through the colon wall, rectum wall, or to the abdomen lining

(Stage II = T3 or T4, N0). AJCC stage III has spread to the lymph nodes, but has not

yet metastasized to distant organs (Stage III = T1-4, N > 0). Cancer grade refers to the

morphology of the cells, where G1 refers to healthy “well-differentiated” cells, G2 cells are

“moderately differentiated,” and G3 cells are“poorly-differentiated,” looking less like healthy

cells [118].

4.3.2 Imaging protocols and quality control

Formalin-fixed paraffin-embedded colon cancer tissue was arranged into three slides of 5 µm

sections and imaged using the workflow in Fig. 3, as detailed by Gerdes et al. [30]. The 56

biomarkers imaged with subcellular resolution are listed in Table 6, with functional sum-

maries of each. Images have been registered and autofluorescence removed, and were quan-

tified as described further in subsection 3.3.3. All expression values are log2 normalized,

and cells with low DAPI signaling are filtered out. Data across the three slides are median

normalized, such that the median values of each biomarker across these slides are equal, to

account for slide-to-slide staining and imaging variability.

One concern about the imaging protocol of note is that patients from stages I-III were
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Table 2: Frequency table for cancer stage vs. cohort variables for complete patient cohort.

Variable All (n = 604) Stage 1 (n = 178) Stage 2 (n = 246) Stage 3 (n = 180)

Age 68(12.3) 66.5(11.9) 70(12) 65(12.5)

Sex 313(51.8%) 90(50.6%) 127(51.6%) 96(53.3%)

Grade 1 87(14.4%) 43(24.2%) 32(13%) 12(6.7%)

Grade 2 444(73.5%) 120(67.4%) 193(78.5%) 131(72.8%)

Grade 3 63(10.4%) 10(5.6%) 17(6.9%) 36(20%)

Recurrence Time 1561.5(1107.2) 1888(1057.5) 1581(1122.1) 1175(1064.4)

Survival Time 1658(1078.2) 1888(1036.7) 1704.5(1115) 1353.5(1024.8)

# of Recurrences 114(18.9%) 13(7.83%) 36(14.6%) 65(36.1%)

# Chemotherapy 195(32.3%) 7(3.9%) 66(26.8%) 122(67.8%)

Age, recurrence in days, survival and days report median value and (standard deviation). Sex,
grade, and number of recurrences report total number and (percent). Total number counts for sex
are for male patients; female patients would be N - reported male count. Recurrence time and
survival time are in days. 1.7% of patients did not have a reported grade.
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Table 3: Frequency table for cancer stage vs. cohort variables for all chemotherapy-naive

patients.

Variable All (n = 409) Stage 1 (n = 171) Stage 2 (n = 180) Stage 3 (n = 58)

Age 70(12.3) 66(11.8) 73(11.6) 69(13.7)

Sex 207(50.6%) 86(50.3%) 94(52.2%) 27(46.6%)

Grade 1 70(17.1%) 41(24%) 24(13.3%) 5(8.6%)

Grade 2 293(71.6%) 115(67.3%) 141(78.3%) 37(63.8%)

Grade 3 38(9.3%) 10(5.8%) 12(6.7%) 16(27.6%)

Recurrence Time 1636(1139.7) 1899(1062.4) 1562.5(1171) 1046(1080.2)

Survival Time 1668(1136.7) 1899(1051.5) 1651(1186.9) 1146.5(1060.8)

# of Recurrences 57(13.9%) 10(5.8%) 26(14.4%) 21(36.2%)

Age, recurrence in days, survival and days report median value and (standard deviation). Sex,
grade, and number of recurrences report total number and (percent). Total number counts for sex
are for male patients; female patients would be N - reported male count. Recurrence time and
survival time are in days. 2% of patients did not have a reported grade.
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not properly randomized across the three slides. As it stands, most stage I patients were

placed on slide AGA 260-3, most stage II patients were placed on ATGA 264-3, and most

stage III patients were placed on ATGA 269-3. Therefore, a certain degree of speculation

must be placed on any result that shows measurable difference between the three stages as

this may involve a contribution from slide variability. Median normalization should diminish

this effect, but the degree to which it does so is uncertain. Another way we combat the effect

of slide variability is by focusing on correlation features over expression features. Protein

expression features measure the amplitude of intensity, which may be effected by stain quality

and imaging as well, where protein correlation is measuring the angle between two different

expression vectors, and should not be effected by staining and imaging variability overall. In

this way, correlation features are more robust to intensity changes from potential confounding

factors.

4.3.3 Experimental evidence of modeling potential

Before we decided to proceed further with developing multivariate models for predicting CRC

recurrence, we needed to assess the modeling potential of our data, including the degree of

heterogeneity under various feature sets. In many cases we look at the ability to cluster on

cancer staging, as probability of recurrence increases with cancer stage.

The two matrices shown in Fig. 14 represent biomarker expression data for two different

tumor cores in the tissue microarray. The columns of each matrix delineate the number of

cells in the respective core, while the rows delineate the number of biomarkers. Each cell

is represented by a vector of 56 biomarkers cell-level expression values where low expression

is displayed as blue and high expression is displayed by yellow. The color bar shows the

range of expression values as varying from 0 to 12 (with the maximum log expression being

16 for 16-bit image data). Both epithelial and stromal cells are plotted, epithelial first and

stromal second, with the separation point fairly noticeable ( near row 1600 in the left matrix,

and row 2300 in the right matrix). Both matrices exhibit similar expression vectors across

all cells of the same origin (epithelial or stromal), resulting in a row-wise banding effect

and representing intra-patient homogeneity. Additionally, both matrices are fairly similar
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Figure 14: Spatial homogeneity in colon cancer tissue microarray data under biomarker

expression features.

On the left is a stage I patient from slide AGA 260-3 core 208, with no recurrence in 5 years. On
the right is a stage III patient from slide AGTA 264-3 core 006, undergoing disease recurrence
within the first 5 years.

Figure 15: Comparison of scatter plots for expression features vs. correlation features.
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Figure 16: Comparison of t-distributed stochastic neighborhood embedding for expression

features vs. correlation features.
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to each other, representing inter-patient homogeneity. This is striking, especially since we

are comparing a stage I patient with no 5-year recurrence (left) and a stage III patient

with 5-year recurrence (right). This suggests that either there is not a significant degree of

cellular heterogeneity at the protein expression level, or we may need to explore other modes

of representing the potential underlying heterogeneity that leads to differences in disease

outcome across patients. The following two figures (Fig. 15 and 16 ) support the latter

hypothesis.

We decided to explore the potential for modeling recurrence using biomarker correlations

between pairs of proteins rather than expression values alone. Several benefits of correlations

over expression values suggest that this may be a valuable avenue to explore. First, we were

concerned about slide-to-slide variability (as discussed earlier), and correlations are more

robust to this variability since they measure the angles between expression vectors rather

than their intensities. Second, correlation can arguably be interpreted as a spatial feature.

With correlation, we are measuring the potential interaction between TME constituents (e.g.

CD3 and EpCAM) in the same locale. We can further model the spatial interactions in a

tumor core by measuring correlation across a group of cells confined to a certain radius.

Third, correlation is a higher order feature compared to expression (a low order feature),

and more heterogeneity may exist in this space.

Fig. 15 compares expression features (left) with correlation features (right). For each

2D plot, we are looking at the second and third most significant features for the respective

expression and correlation modalities. Each patient is plotted at the mean value of these

two features, across all of their cells. Stage I patients are colored in red, stage II in green,

and stage III in blue, with a Gaussian density fit to each stage subpopulation. A two-

dimensional Kolmogorov-Smirnov test, as described by Fasano & Franceschini [119], was

performed against each pair of stages under the expression and correlation features. For the

test statistic, values closer to 1 signify rejecting the null hypothesis that the two populations

are from the same distribution, and values closer to 0 signify accepting this hypothesis. For

expression-based features, stages I and II had a test statistic of 0.2705, stage I vs. III was

0.3408, and stage II vs. III was 0.1586. For correlation-based features, stages I and II had

a test statistic of 0.2556, stage I vs. III was 0.3825, and stage II vs. III was 0.2673. Each
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of these statistics had a p-value < 0.05. Thus, for correlation features there was a greater

ability to distinguish stages I from III and stage II from III, than with expression features.

Note that the scale for expression features is 0-16, while the scale for correlation features is

-1 to 1. Also note that the major axis for the three Gaussians under the correlation features

are all angled differently, while the three Gaussians for the expression features all fall on the

same axis.

Fig. 16 is perhaps most striking in the comparison of expression against correlation fea-

tures. For each of the 604 patients, a mean expression vector is computed for cell-level

features, and a correlation vector is also computed. Then a t-distributed stochastic neigh-

borhood embedding (t-SNE) uses these feature sets to map each sample to a 2D space where

similar samples are nearby, and dissimilar samples are distant. For expression features (top

left) stage II seems to separate out from stages I and III which are relatively indistinguishable

in this space. For the correlation features (top right), all three features are well separated.

An interesting feature is that stage I is closer in this embedding to stage III than stage

II. However, note that AJCC stage III colon cancers can be T1-4 as long as they have an

N stage > 0, and AJCC stage I cancers are T1 or T2. Thus, AJCC stage I cancers and

AJCC stage III cancers can both be T1 and T2, potentially resulting to similarity in this

embedding. On the other hand, AJCC stage II cancers must be T3 or T4. It is plausible

that stage III is between stages I and II in terms of similarity as stage III can consist of

any of the four T stages. When we compute expression and correlation features separately

for epithelial and stromal cells (2x the number of features), the banding effect for stages

I-III under correlation features is even more noticeable (bottom right). Meanwhile, the same

trend persists for expression features, where only stage II separates out (bottom left).

4.4 METHODS

Fig. 17 outlines the steps taken toward the application of biomarker expression and corre-

lation features for predicting recurrence and metastatic propensity. In short, a feature set

is generated from the biomarker data, and each feature is tested independently for prog-
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nostic power. A salient subset of features is chosen based on this univariate testing, and

a subspace selection routine determines the ideal size of a multivariate model from these

features. Finally, the multivariate model is used to predict recurrence, and segregate the

patient cohort into low-risk and high-risk groups. A more in depth description may be found

in the following subsections.
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Figure 17: Analysis workflow for recurrence prediction using biomarker features.
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4.4.1 Feature sets

Several different feature sets have been tested using the workflow in Fig. 17. Clinicopathol-

ogy features are the first to consider, because they are the current standard for patient care.

This feature set includes patient age, sex, cancer grade (cell morphology score), and AJCC

stage (includes tumor extent, nodal spread, and metastatic spread). This feature set will

be the baseline against which all others are measured. Next are biomarker expression fea-

tures, which have gained in popularity in clinic (e.g. Immunoscore [120]). For each patient,

we compute the mean expression across all epithelial cells within each of the subcellular

compartments. Each biomarker is characterized in terms of mean nuclear intensity, mean

cytoplasmic intensity, mean membrane intensity, and mean cell-level intensity. Addition-

ally, nuclear ratio, cytoplasmic ratio, and membrane ratio are also computed, where ratios

are computed as mean subcellular location of interest over the average of the other two

subcellular means (resulting in 6 epithelial features from each biomarker). Mean stromal

expression in the 56 biomarkers are also computed as features, but notably there is only

cell-level resolution for these features so only 1 feature is computed here for each biomarker.

Correlation features have been used in localization studies but to our knowledge have

not been tested against CRC recurrence, as we have here. For each patient we compute

correlation across each pair of the 56 biomarkers in each of the 3 subcellular compartments

(nucleus, cytoplasm, membrane) using the epithelial cell set. Correlations are computed

separately for stromal cells resulting in a 56 x 56 correlation matrix. Notably we tested three

different combination of correlation features under the following two steps of the analysis

workflow: univariate testing, feature filtering, and subspace selection (Fig. 17). First we

tried exclusively using cell-level features (ignoring subcellular localization). This resulted

in suboptimal predictive results. Then we tried using all subcellular localizations for our

epithelial correlation matrix (168 x 168). This performed well, but inhibited multivariate

model development as exhaustive subspace tests were computationally untenable, and often

multiple, likely redundant, features from the same marker ranked among the best features.

Finally a compromise was reached by picking one subcellular feature from each biomarker

based upon expected subcellular localization (gleaned from GeneCards, PhosphositePlus,
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and assorted literature). Thus both the epithelial and stromal correlation matrices were

56x56 but with more specific information retained from our subcellular localization. This is

the correlation feature set used going forward. Note, we are using Pearson correlation, but

rank correlation or Spearman’s Rho can also be used, if one wanted to capture nonlinear

dependencies.

4.4.2 Univariate modeling

Of the 56 biomarkers imaged, we decided to drop our DAPI signal since this is strictly a

segmentation marker, with no known significance in CRC. The remaining 55 biomarkers,

listed in Table 6 result in 2970 correlation features (55 x 55 subtracting the diagonal) for

each cell set, leading to 5940 correlation features overall (2970 epithelial features and 2970

stromal features). For the biomarker expression features, there are 330 epithelial features (6

features for each of the 55 markers) and 55 stromal features, 385 total.

Each feature was individually tested for its ability to predict 5-year recurrence with a

univariate Cox Proportional Hazards model. A Cox Proportional Hazards model tests how

one or several covariates influences the rate of a particular event (e.g. survival, recurrence).

This model is linear for log-hazards (or multiplicative for hazard) with an unspecified baseline

hazard, and is defined as:

hi(t) = h0(t) exp
(
β1xi1 + β1xi1 + . . .+ βkxik

)
(4.1)

where h0(t) is the baseline hazard, and x1, . . . , xk are the covariates. For two observations i

and j the hazards ratio is

hi(t)

hj(t)
=

exp
(
β1xi1 + β1xi1 + . . .+ βkxik

)
exp

(
β1xi1 + β1xi1 + . . .+ βkxik

) (4.2)

. For each univariate model, we record concordance index, and p-value. Concordance index

(C-ind) measures the concordance between the model prediction and the observed event. For

each pair of patients with opposing recurrence events, concordance is added if the predicted

risk is higher for the recurrent patient over the non-recurring patient [121]. The p-value is

computed from a Wald Test, which tests how likely the beta coefficients in the hazards ratio
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are different from zero, thus contributing to the prediction of hazard. We also record the

p-value under a logrank test, although the two tests are asymptotically equivalent.

4.4.3 Feature selection

Of the 5940 correlation features and 385 expression features, we need to discover which

features perform well for potential inclusion in a multivariate model.

Features are filtered out based on two performance criteria, concordance index and false

discovery rate. In hypothesis testing, the false discovery rate is the rate of significant pre-

dictions that are actually null, i.e. it is the expected value of the ratio of false positives to

the total number of predictions (false positives and true positives). The Benjamin Hochberg

method was used to correct the obtained p-values, decreasing the false discovery rate (q-

values). Features were filtered out (removed) from downstream analysis if they had a con-

cordance index lower than 0.6 and a q-value greater than 0.01.

After arriving at a smaller subset of predictive feature, we must determine how many

different features are ideal for a multivariate Cox model for predicting 5-year recurrence in

CRC. With too many features one can overfit the data, but with too few features performance

can potentially be improved. Starting from single feature models and then increasing in

dimensionality, all features in this filtered subset are tested exhaustively. For each feature (or

combination of features) tested, concordance index is recorded, as is the Akaike information

criterion (AIC). The AIC measures the quality of a statistical model by its goodness of fit

(from log-likelihood) and simplicity (by number of parameters). Then, ∆AIC scores between

subspace sizes are used to decide the stop point for a salient model, in terms of # dimensions.

For our correlations features, we found a 7 feature model to be appropriate, and chose the

best 7 feature model using the concordance index.

4.4.4 Multivariate modeling

To properly evaluate our multivariate model, we must split the data into a training set (using

70% of the chemotherapy-naive patient cohort), and a testing set (using the remaining 30%).

It is important to use the chemotherapy-naive patients since adjuvant therapy will have a
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potential effect on recurrence beyond the population statistics and spatial interactions of the

tissue microenvironment. Once the data is split into a training and testing set, we learn the

beta coefficients of the Cox model, i.e. the contribution of each covariate toward the risk.

Then we use those learned coefficients to test the predictive power of the covariates in the

test set for assessing patient recurrence. For both the training and testing set, we record

concordance index, hazards ration, and p-values under the Wald and logrank tests.

4.4.5 2-level cox model

Additionally, we can use the risk from our Cox models to partition our patient cohort into

low-risk and high-risk subsets, assessing the predictive power of our models for each sub-

set [122]. First, risk is computed for each chemotherapy-naive patient. Then Youden’s J

statistic is computed for each patient based on risk. Youden’s J balances the sensitivity and

specificity based on the receiver operating characteristic. The risk value associated with the

lowest J statistic is then used as a cutoff between low and high risk patients. For each risk

subset, we can compute concordance and significance values.

4.5 RESULTS

4.5.1 Comparison of 11 models

After the model building workflow (as described in Fig. 17), we report results from nine

different prognostic models.

1. Clinicopathology features

2. Correlation model (7 biomarker pairs)

3. Correlation model (7 biomarker pairs) + clinical

4. Enhanced correlation model

5. Enhanced correlation model + clinical

6. Biomarker intensities (best 7 features)

7. Biomarker intensities (best 7 features) + clinical

82



8. Biomarker intensities (best 12 features)

9. Biomarker intensities (best 12 features) + clinical

Model 1 includes the patient features of age, sex, AJCC stage, and cancer grade. Model 2 was

optimized based on the colon workflow, specifically in terms of the number of features (chosen

via ∆AIC) and the optimal model (chosen via exhaustively testing C-ind for all 7 feature

models). Model 3 contains all of the model 2 features plus the model 1 clinicopathology

features. Skipping ahead to models 6 and 7, we are testing expression features, using a

comparable number of expression features to the correlation features in model 2. Model 6 is

just using the 7 best expression features from univariate testing, where model 7 also includes

clinicopathology features. Models 8 and 9 are to be compared to the best correlation model

based on the number of unique biomarkers (12) implicated in the 7 feature correlation model.

Thus model 8 uses the 12 best expression features, and model 9 also includes clinical features.

We also tested an expression based model using the exact 12 biomarkers implicated in the

correlation model but this model did not perform well enough to report. Expression features

and the correlation features that may implicate the same biomarkers as cofactors are not

necessarily both significant.

The remaining models, 4 and 5 were an experiment. Instead of using the 55 x 55 correla-

tion matrix, where each biomarker was only quantified in its expected subcellular compart-

ment, we used the full 165 x 165 correlation matrix and handpicked features in the following

way. We chose the best 7 features model based on concordance index, and then we added

biomarker features based on plots of the p-value and concordance index as one more feature

was added. We added each feature that resulted in a significant jump in the evaluative

score. Although this isn’t an automated model building schema, if it performs better, it

demonstrates that our automated models can improve even further. Model 4 contains these

handpicked correlation features, and model 5 also includes clinical features.

Concordance index, coefficient of determination R2, hazards ratio, and confidence inter-

vals are recorded for each of the nine prognostic models in Tables 4 and 5. The gray row

signifies a model using only clinicopathology features, while red rows signify models con-

taining correlation-based features. Green rows represent expression-based models with an

analogous feature dimensionality to the correlation model. Blue rows represent expression-
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based models with a feature dimensionality based on the number of biomarkers implicated

in the correlation model. Table 4 reports these evaluation measures on the training dataset.

The beta coefficients for each of the covariates (e.g. AJCC stage, correlation of CD79 and

PCNA) was learned on a 70% partition of the chemotherapy-naive patient cohort, and the

prognostic ability of these covariates toward 5-year recurrence is evaluated here. Table 5

uses the same model parameters but on the remaining 30% partition of the cohort upon

which these parameters weren’t learned, and the predictive power against 5-year recurrence

is again evaluated.

For the training data (Table 4) the correlation models have the best performance. Com-

paring correlation to expression (no clinical variables), model 2 has a higher concordance

index on 5-year recurrence than both models 6 and 8 (7 expression features and 12 expres-

sion features). Model 2 also outperforms clinical features by a significant margin. Notably,

the two expression models (6 and 8) do not outperform the clinical model 1. Adding clinical

features to the correlation model (as in model 3) results in a performance boost. Clinical

features also improve performance of both expression based models (7 vs. 6, and 9 vs. 8).

The handpicked correlation models (4 and 5) slightly outperform the automated models (2

and 3) outlining that we can improve performance by examining correlation features in all

subcellular compartments.

Similarly for the test data (Table 5), correlation features (model 2 and 4) outperform

both clinical features (model 1) and expression features (model 6 and 8). Notably for the

test data, expression features (model 6 and 8) perform worse than clinical features alone.

The feature sets learned in these 9 models are displayed below.
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Correlation Features

1. Epithelial cyt-S6 vs. memb-CD163

2. Epithelial memb-NaKATPase vs. nuc-FOX03a

3. Stromal Claudin 1 vs. cMET epitomics

4. Epithelial memb-NaKATPase vs. cell-pGSK3beta

5. Epithelial cyt-panCK 26 vs. cyt-p4EBP1

6. Epithelial memb-CD79 vs. nuc-PCNA

7. Epithelial memb-Claudin 1 vs. cyt-Cleaved Caspase 3

Expression Features

1. Epithelial memb-CD8

2. Epithelial ratio cyt-EPCAM

3. Stromal nuc-CD3

4. Epithelial memb-COX2

5. Epithelial memb-CD3

6. Epithelial ratio memb-NaKATPase

7. Epithelial cyt-Beta Catenin

8. Epithelial ratio nuc-MSH2

9. Stromal nuc-CD8

10. Epithelial ratio nuc-P53

11. Epithelial ratio nuc-P4EBP1

12. Epithelial ratio cyt-Claudin 1

4.5.2 Patient stratification

Using the risk associated with the Youden’s J statistic, we are able to partition the chemotherapy-

naive patient cohort into low and high risk groups for the clinical, expression based, and cor-

relation based feature sets (Fig 18). Comparing models 1, 2, 6, and 8 (clinical, correlation,

and both expression sets), model 2 has the largest difference in recurrence between the low

and high risk groups. This signifies that correlation is the best metric of the three for segre-

gating patients into different groups as related to 5-year recurrence, potentially resulting in
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Table 4: Performance metrics on training data for prognostic feature sets.

Model C R2 HR 95% CI P(HR) P-val

1 0.754 ± 0.0184 0.0839 ± 0.0198 1.41 1.26 1.58 2e-07 6.2e-08

2 0.818 ± 0.0182 0.0883 ± 0.0199 1.15 1.11 1.2 7.21e-10 4.4e-13

3 0.832 ± 0.0144 0.13 ± 0.0316 1.1 1.08 1.13 4.44e-8 0

4 0.835 ± 0.0139 0.117 ± 0.0196 1.12 1.09 1.16 3.53e-12 6.51e-15

5 0.853 ± 0.0194 0.125 ± 0.0346 1.04 1.03 1.06 6.12e-7 0

6 0.755 ± 0.0205 0.0713 ± 0.013 1.23 1.15 1.31 1.15e-8 8.59e-11

7 0.805 ± 0.0216 0.11 ± 0.017 1.15 1.11 1.2 3.75e-13 0

8 0.75 ± 0.023 0.0587 ± 0.0142 1.11 1.07 1.14 3.62e-7 3.07e-12

9 0.805 ± 0.019 0.0873 ± 0.0257 1.09 1.06 1.11 2.25e-6 0

Concordance index, R-squared measure, hazards ratio, and confidence intervals are recorded for each of the
nine prognostic models. The gray row signifies a model using only clinicopathology features, while red rows
signify models containing correlation-based features. Green rows represent expression-based models with
an analogous feature dimensionality to the correlation model. Blue rows represent expression-based models
with a feature dimensionality based on the number of biomarkers implicated in the correlation model.
These measure were computed on the testing partition of the patient cohort.

Table 5: Performance metrics on testing data for prognostic feature sets.

Model C R2 HR 95% CI P(HR) P-val

1 0.746 ± 0.0472 0.081 ± 0.0366 1.53 1.23 1.91 0.00587 0.00485

2 0.792 ± 0.0451 0.0533 ± 0.0317 1.15 1.05 1.26 0.0302 0.0262

3 0.811 ± 0.0347 0.101 ± 0.0594 1.13 1.07 1.19 0.00159 0.000545

4 0.806 ± 0.041 0.0785 ± 0.056 1.11 1.06 1.17 0.00918 0.00616

5 0.805 ± 0.0536 0.109 ± 0.0496 1.05 1.03 1.07 0.00141 0.000585

6 0.702 ± 0.0571 0.0483 ± 0.0353 1.27 1.09 1.5 0.0826 0.0791

7 0.748 ± 0.0572 0.0442 ± 0.0247 1.13 1.05 1.22 0.0306 0.0249

8 0.673 ± 0.0607 0.0411 ± 0.024 1.13 1.03 1.24 0.024 0.0182

9 0.69 ± 0.0905 0.0283 ± 0.0233 1.08 1.01 1.16 0.174 0.166
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different strategies of care for the two groups. Additionally, correlation features improve the

most upon the addition of clinical features (model 3), compared to the two expression-based

models with clinical features (models 7 and 9). This demonstrates that correlation features

are largely independent of the clinical features. All survival models reach significance. Ad-

ditionally the ROC curve for model 2 is shown, where the black curve is the average ROC,

and the other curves show the 20 individual runs.

4.5.3 Spatial organization of risk, via quadrant analysis and cell neighborhood

analysis

An important goal of this study is to examine how risk is spatially organized within tumor

cores. The discover of high risk microdomains within tumor cores can potentially reveal

tumor microenvironmental signatures associated with disease progression and CRC metas-

tasis. Towards this end we have two strategies, computation of quadrant-based risk and

computation of cell-level risk.

Fig. 19A represents the strategy associated with quadrant-based risk. The tumor core is

split into four (or more) quadrants. Correlation features for each quadrant are then computed

individually and the associated risk scores for each quadrant (from their respective Cox

models) are binarized into low and high risk groups using the Youden’s J statistic. Then the

correlation feature matrices can be further interrogated to identify biomarker correlations

resulting in high risk scores. A GUI was developed to interrogate quadrant-based risk for

a tumor core of interest. The tumor core is displayed in its four quadrants in this GUI.

Each cell is colored by the distance between its local correlation measure (for the three most

significant features, in the R,G,B channels respectively) and the mean correlation for that

core, with epithelial cells denoted as circles and stromal cells denotes as squares. Core-level

information such as name, AJCC stage, and 5-year recurrence status are displayed in a text

box. Different commands allow for the epithelial, stromal, and total correlation matrix to

be observed for each quadrant. Additionally, one can switch between showing the entire

correlation matrix, and the 12 biomarkers associated with the 7 correlation feature model

that makes risk-based decisions. Overall risk and quadrant level risk are also displayed in a
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Figure 18: Kaplain-Meier Survival Curves for CRC 5-Year Recurrence Models.
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text box (0 for low risk, 1 for high risk).

In Fig. 19A, AJCC stage III patient 216 in slide AGTA 269-3 undergoes 5-year recurrence,

although only one quadrant (top left) is associated with high risk. The correlation matrices

associated with the high risk quadrant and a low risk quadrant are displayed, with the rows

and columns being represented by biomarkers of the top 7 correlation features as delineated

in subsection 4.5.1. Notably, the high risk quadrant has a large stromal population that

is relatively separate from the epithelial cell population. The low risk quadrant with the

correlation matrix displayed has a notably lower stromal cell population. The remaining

two low risk quadrant have large stromal populations but they are more intermixed with the

epithelial cells.

Fig. 19B displays the results of cell-level risk scoring. Under this strategy, a correlation

matrix is generated for each cell, based on a neighborhood of radius 200 pixels around the

cell. All neighboring cells in that radius contribute to the correlation matrix, and thus the

features that predict risk in the Cox model. A risk score is assigned to each cell in the tumor

core. Risk values much greater than the low/high risk threshold are shown in bright red, risk

values much less than the threshold are shown in bright green, and cells at the threshold are

shown much dimmer, approaching black. In Fig. 19B, the leftmost tumor core is for slide

AGA 260-4 patient 176, with AJCC stage II and 5-year recurrence. The middle core is slide

AGA 260-3 patient 211, with AJCC stage I and no recurrence. The right core is slide AGTA

264-3 patient 131, with AJCC stage II and 5-year recurrence. Both examples exhibiting 5-

year recurrence contain high risk cells contained to specific microdomains within the tumor

core. The non recurring patient contains only a few high risk cells but contains several cells

at the risk threshold that could potentially lead to higher risk if left unmonitored.

4.6 DISCUSSION

In this chapter we first described the current state of the art for colon cancer patient strati-

fication through molecular subtyping, highlighting some of the gene signatures and pathway

information that may be useful for monitoring disease progression. Then, using a MxIF
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Figure 19: Spatial organization of risk using correlation features.
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setup, we imaged a panel of protein biomarkers potential related to CRC biology and tumor

microenvironment signaling. Biomarker expression feature and spatial correlation features

were tested in univariate and multivariate models for predicting 5-year recurrence. A com-

plete workflow for predicting clinical outcome, e.g. recurrence, survival, or metastasis, was

described in the text and Fig. 17. These feature sets were also tested for efficacy in patient

stratification, using Kaplan-Meier survival analysis.

Furthermore, we explored how risk was spatially organized within tumor cores, using

quadrant-level analytics and cell-level analytics. We observed that risk typically localizes

into microdomains, which we hypothesize may be regions of the tumor responsible for cancer

progression, treatment resistance via cancer stem cell quiescence, and/or metastasis via

development of a metastatic niche which can travel to distant sites much like circulating

tumor cells.

There are several limitations of our analysis. Similar to genome-wide studies, we can

only observe the set of biomarkers that we have chosen for the study a priori. However, un-

like standard immunofluorescence studies, with multi- to hyper-plexed immunofluorescence

we can simultaneously study many more covariates. Another issue is with the size of our

tumor cores. To accurately study the effect of intratumor heterogeneity and the spatial

distribution of risk, ideally we would be working with whole-slide tissue sections, or at least

the largest microarray core size possible. We would like to capture as much of the potential

tumor microenvironment as possible in our analyses. However, this study has adequately

demonstrated the assembly of risk into spatial microdomains within the tumor core, which

will only be ameliorated with larger data samples. The lack of randomization of AJCC

staging across tissue microarray slides remains a large concern in our analysis, but many

precautionary steps in the downstream analysis have been incorporated. However, we must

retain some skepticism that slide-to-slide variation may account for some of the intratumor

heterogeneity and variation across cancer staging that we observe.

There are many future directions that can be taken. For starters, there are many other

feature selection routines that can be tested, to bring our correlation features down from 5940

correlation features and 385 expression features. Additionally, a dimensionality reduction

step could always be added between the feature selection step and multivariate model step, as
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is often done with genome wide association studies (although here the number of covariates

is still much larger). A combination of expression and correlation features were tested in a

combined model (not reported here), and although we did not achieve better results than

with correlation alone, this could be explored further. For cell-based risk, more exhaustive

testing could be done to find the ideal pixel radius for defining cell-cell contact. The increased

performance of models 4 and 5 over models 2 and 3 signifies that even more prediction gains

in terms of concordance index can be had, if we could exhaustively or intelligently try all

combinations of biomarker correlations across all three subcellular components.

One goal that was originally in my thesis proposal was to test pointwise mutual informa-

tion (PMI) and other diversity metrics, as described in Chapter 3, for prognostic potential

(for recurrence, survival, etc.). However due to the expression level homogeneity, as shown

in Fig. 14, we could not arrive at a solid cell phenotyping result upon which to compute cell

phenotype co-occurrences. We did test a 2D PMI result using just epithelial and stromal

labeling but the results did not reach significance. However, our collaboration with GE has

also brought about supervised labeling software for phenotyping cells, which has been used

and validated on a similar data set. This software would potentially allow for an accurate

phenotyping step upon which PMI could be computed and tested against recurrence.

A very lofty future aim would involve samples of the primary neoplasm (which we have) as

well as biopsies of metastases over the progression of the disease. This data would currently

be expensive to obtain, and require at least five years of data collection, with more time

needed to gain a sizable cohort of patient samples. However this would allow us to compare

and contrast high risk microdomains in the primary neoplasm to elements of the metastatic

niche in distant organs. This use of our methodology would allow for unprecedented studying

of the tumor microenvironment of metastases, potentially pointing toward factors in the

primary neoplasm that directly result in cancer recurrence and patient mortality. If this

link was made, treatments could be developed to specifically counteract these high-risk

microdomains, potentially to much success given the relative clonal stability of the tumor

microenvironment constituents in relation to the malignant cells.
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4.7 APPENDIX

4.7.1 Abbreviations

Presented in order of appearance:

CRC - colorectal cancer

FOLFIRI - adjuvant chemotherapy treatment of FOLFIRI: folinic acid, 5-fluorouracil, and

irinotecan

FOLFOX -adjuvant chemotherapy treatment of FOLFIRI: folinic acid, 5-fluorouracil, and

oxaliplatin

CTL - cytotoxic lymphocyte (CD8+ T cells)

TCGA - The Cancer Genome Atlas

CRCSC - colorectal cancer subtyping consortium

CMS -consensus molecular subtyping

CIMP - CpG island methylator phenotype

SCNA - somatic copy number alterations

CAF - cancer associated fibroblast

TAM - tumor associated macrophage

TIL - tumor infiltrating lymphocyte

EMT - epithelial-to-mesenchymal transistion

4.7.2 Colon cancer biomarkers
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Table 6: Colon cancer biomarkers.

pERK 1/2 Mitogen activated protein kinase 1/2: central hub of mitogenic-progrowth
signaling/this phosphorylation on the residues targeted here is indicative of
kinase activity

CD31 Endothelial cell:cell junctions/immune cell transendothelial migration

BetaCatenin Adherens junctions/Wnt signaling

S6 Ribosomal Protein S6: phosphorylation is associated with mitogens and
growth factors and may regulate selective translation of particular classes of
mRNAs defined by consensus sequences in untranslated regions

pS6 Ribosomal Protein S6: phosphorylation is associated with mitogens and
growth factors and may regulate selective translation of particular classes of
mRNAs defined by consensus sequences in untranslated regions.

Fibronectin Secreted cell adhesion protein involved in basement membrane function

BetaActin Microfilament protein: structure and motility

CK1,5,6,8 (pck26) Pan-cytokeratin: recognizes most basal and luminal epithelial cell subtypes

GLUT1 Facilitated glucose/aldose uptake: upregulated in cancer cells/aerobic glycol-
ysis/Warburg effect

Na+/K+-ATPase Sodium potassium antiporter - ATP dependent: regulates membrane potential
polarization/constitutive expression in all known cell types

SMA Smooth muscle actin alpha: cytoskeletal protein of smooth muscle and vascu-
lar pericytes

Albumin Extracellular transport: binds drugs and small metabolites

CK19 Cytokeratin 19: unpaired with basic cytokeratin

EGFR Epidermal growth factor receptor: receptor tyrosine kinase/ binds epithelial
growth factor/ homo or heterodimerization/ activates signal transduction

p4EBP1 Eukaryotic initiation factor 4E binding protein one: inhibits mRNA transla-
tion intitiation/phosphorylation relieves inhibition of mRNA translation ini-
tiation

WNT5a Wnt signaling secreted glycoprotein 5a: signals through canonical and non-
canonical Wnt pathways/may affect cell motility and metastasis

pNDRG1 nMyc Downstream Regulated One: involved in cytoskeletal dynam-
ics/adherens junctions/metabolism/poorly characterized/phosphorylation of
this residue is downstream of mTORC2

FOXO3a Forkhead Box-O3a: transcription factor involved in regulating intermediary
metabolic enzymes and cell survival

MLH1 MutL homolog one: mismatch repair enzyme

E-cadherin Epithelial specific homotypic adherens junctions/Wnt signaling/epithelial-
mesenchymal transition/calcium dependent cell-cell adhesion/E7 integrin lig-
and

pGSK3a Glycogen sythase kinase alpha: probable component of the destruction com-
plex (-catenin degradation)/phsophorylation on the residue targeted here in-
activates the kinase though the creation of a pseudosubstrate

Lamin A/C Nuclear lamin protein: involved in organizing nuclear pores and chromatin

pGSK3beta Glycogen sythase kinase beta: known component of the destruction complex (-
catenin degradation)/phsophorylation on the residue targeted here inactivates
the kinase though the creation of a pseudosubstrate
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EZH2 Polycomb repressor complex two methyltransferase: inactivates gene expres-
sion through histone acetylation on H3K9 and H3K27

ALDH1 Cytosolic aldehyde dehydrogenase / retinoic acid metabolism / alcohol
metabolism

p21 Cyclin dependent kinase inhibitor.

Claudin1 Epithelial and endothelial tight junction protein/epithelial barrier func-
tion/homo and heteropolymers and zona occludins protein binding. Neu-
trophil expression in CRC. Colocalizes with neutrophil specific elastase

CD20 B-lymphocyte protein of unknown function

Indian Hedge Hog Hedgehog/pathced/smoothened signaling: involved in regulating bone
metabolism (ossification).

pEGFR Epidermal growth factor receptor: receptor tyrosine kinase/ binds epithelial
growth factor/ homo or heterodimerization/ activates signal transduction

NDRG1 nMyc Downstream Regulated One: involved in cytoskeletal dynam-
ics/adherens junctions/metabolism/poorly characterized

CD68 Tissue macrophage scavenger receptor / endosomal-lysosomal glycoprotein /
selectin-dependent migration

TKLP1 Transketolase-like protein 1: transfers 2 carbon ketol groups to aldose acceptor
molecules (TKTL1)

CD8a Antigen recognition/class I MHC binding/T-lymphocyte mediated killing

CD79 B-lymphocyte antigen receptor complex - mediates antigen dependent B-
lymphocyte activation and signal transduction

PTEN Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity
protein phosphatase PTEN: tumor suppressor/opposes PI3K function by de-
phosphorylating the insoitol 3’OH group/emerging nuclear functions related
to DNA repair and apoptosis

pMET Met Proto-Oncogene (Hepatocyte Growth Factor Receptor): instigates signal-
ing through prosurvival and EMT signaling pathways/expression is required
for gastrulation and deregulated overexpression is common in many cancers
/Y1349 phosphorylation serves as a Gab1 binding site (a scaffold for activation
of PI3K, PLC, and SHP2)

pMAPKAPK2 Mitogen-Activated Protein Kinase-Activated Protein Kinase 2:
p38MAPK substrate motif/ active MAPKAPK2 stabilizes TNF and
IL6 mRNA/destabilizes HSP27 complexes

FOXO1 Forkhead Box-O1: transcription factor involved in regulating intermediary
metabolic enzymes and cell survival

AKT Signal transduction:cell survival/anabolic metabolism

CA9 Membrane associated carbonic anhydrase: Hypoxia response/pH modulation

Cleaved Caspase 3 Cysteine peptidase - active form: activation of apoptosis/possible role in lipid
metabolism through activation of SREBP

ERK Mitogen activated protein kinase 1: central hub of mitogenic-progrowth sig-
naling

p-p38MAPK Mitogen-Activated Protein Kinase 14: integrates stress signals from environ-
mental and cytokine stimuli/phosphorylation indicates the kinase is active.

EPCAM Epithelial cell adhesion molecule: homotypic calcium independent cell adhe-
sion molecule/ cell cycle modulation (myc, cyclin A and E)
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CD3e T-lymphocyte antigen recognition and signal transduction

MSh2 MutS homolog two: mismatch repair enzyme

CD163 Scavenger receptor cysteine rich family type B protein thought to be expressed
in M2 polarized macrophages

cMET- zenon, epito-
mics clone

Met Proto-Oncogene (Hepatocyte Growth Factor Receptor): instigates signal-
ing through prosurvival and EMT signaling pathways/expression is required
for gastrulation and deregulated overexpression is common in many cancers

PI3Kp110a Phosphatidylinositol-4,5-Bisphosphate 3-Kinase, Catalytic Subunit Alpha:
major lipid signaling transducer/activates PH domain proteins including
Akt1/2/3/mutated in all large proportion of many solid tumor types

4EBP1 Eukaryotic initiation factor 4E binding protein one: inhibits mRNA transla-
tion intitiation/phosphorylation relieves inhibition of mRNA translation ini-
tiation

COX2 Inducible prostaglandin-endoperoxide synthase: key enzyme in prostaglandin
syntesis/inflammatory function

PCNA Proliferating cell nuclear antigen: home trimeric clamp function feeds ssDNA
to various polymerases and DNA repair enzymes

p53 Tumor protein 53: transcription factor involved in DNA damage responses
resulting in repair and/or induction of apoptosis/ emerging functions in lipid
metabolism through positive regulation of mevalonate pathway enzymes

DAPI Nuclear counterstain - texture and intensity may indicate cell cy-
cle/apoptosis/DNA dynamics

Collagen IV Secreted basement membrane protein: type IV collagen network/angiogenesis
inhibition/11 integrin ligand
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5.0 CONCLUSIONS

As discussed in Chapter 1, spatial heterogeneity is a phenomenon that confounds consis-

tent and effective cancer treatment, but is also overdue for closer scrutiny. Indeed, the

composition of the tumor microenvironment and its spatial interactions beget heterocellular

emergence of the malignant phenotype at the primary neoplasm, and may also be responsible

for forming a hospitable niche at potential metastatic sites. While many different forms of

analysis, especially genome wide association studies, have shown promise in characterizing

intratumor heterogeneity, multiplexed immunofluorescence is uniquely positioned to model

the spatial interactions between heterogeneous cell types through maintaining the tumor

architecture. In this thesis, I have demonstrated that a characterization of spatial hetero-

geneity in the tumor microenvironment can have huge implications for better understanding

the pathways that bring about cancers, and for predicting metastasis using only biopsy of

the primary neoplasm.

In Chapter 2 we released a multiplexed image analysis tool, THRIVE, to assist in

community-wide adoption of MxIF for heterogeneity analysis and other cancer-related stud-

ies. THRIVE contains an entire workflow for analyzing MxIF images and other high-

dimensional images, from image segmentation and quantitation, to biomarker statistics and

diversity scoring. THRIVE is open source, and its modular design allows researchers and

developers to include their own algorithms within this workflow. Among other merits else,

THRIVE will improve reproducibility of results across labs, allow for easy comparison of

metrics and algorithms, and provide ease in the visualization of these types of images.

In Chapter 3, we described a method for quantifying spatial intratumor heterogeneity,

using a standard breast cancer biomarker panel. Using pointwise mutual information as a

diversity metric, we uncovered salient cell-cell cooccurences, while accounting for the base-
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line rarity of different cell phenotypes (analogous to the use of background distributions in

genomic analyses). Heterogeneity maps can be used to discover cell-cell interaction motifs

associated with different cancer subtypes.

In Chapter 4 we tested several biomarker expression features and spatial feature sets for

predicting recurrence in colon cancer. We used spatial features to segregate patient cohorts

into high risk and low risk regimes, potentially allowing clinicians to provide better care

through patient stratification (especially in stage II CRC). Patient stratification is only the

first step in the larger objective of personalized medicine. Additionally, we explored how

patient risk is organized spatially with tumor core samples, paving the way for the discovery

of microdomains within the tissue that are associated with metastatic potential.

Throughout my graduate career, I have been privileged to work with some of the best

cancer researchers in the field, and gained early access to a promising and emerging imaging

technology through my collaborations with GE Global Research. I believe that the work

described in this thesis may provide a modest yet critical step toward a better understanding

of the mechanisms that allow cancer to progress and eventually metastasize, typically leading

to patient mortality [50, 63]. My work, and the work of future members of the Chennubhotla

and Taylor labs, is just beginning.
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