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More than 140 million people permanently live in regions of high altitude. Due to the deficiency 

of atmospheric oxygen, the inhabitants of these high mountains are subject to compromised 

physiology and High Altitude Renal Syndrome (HARS). Symptoms of HARS include systemic 

hypertension, microalbuminuria, polycythemia, and hyperuricemia. While it has been reported 

that low levels of oxygen result in renal malformations during development, including decreased 

nephron number, glomerular filtration rate (GFR) is preserved in patients with HARS. This study 

investigated the roles of hypoxia and metabolism as environmental regulators of kidney 

development and as driving mechanisms of the disease state HARS. High altitude hypoxia (12% 

O2) exposure during development alone did not introduce any significant pathology, as 

evidenced by unchanged proximal tubular morphology and tubular bioenergetic expression. 

However, the high altitude hypoxia did have a subpathological role in exacerbating kidney 

injury. As seen through cisplatin-induced AKI, kidneys previously exposed to hypoxia had 

dilated proximal tubules and proteinaceous casts. Moreover these kidneys were physiologically 

impaired as seen through significantly upregulated toxic levels of BUN and creatinine. Based on 

the results of the present study, people living in high altitudes may be more susceptible to 

secondary insults later in life due to hypoxia’s subpathological role in renal disease progression.  
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1.0 INTRODUCTION 
 

More than 140 million people (2% of the world’s population) permanently live in regions of high 

altitude (which is defined as exceeding 2400 meters above sea level and has ~15% O2) [1]. The 

three major populated high altitude regions include the Ethiopian Summits, Himalayan 

Mountains, and the Andean Mountains. Due to the deficiency of atmospheric oxygen, the 

inhabitants of these high mountains are subject to compromised physiology and High Altitude 

Renal Syndrome (HARS) [1]. Symptoms of HARS include systemic hypertension, 

microalbuminuria (moderate increase in the protein albumin in urine), polycythemia (increased 

concentration of hemoglobin), and hyperuricemia (excess of uric acid in blood) [2]. While it has 

been reported that low levels of oxygen result in renal malformations during development, 

including decreased nephron number [3], glomerular filtration rate (GFR) is preserved in patients 

with HARS. This would suggest that fewer nephrons in a hypoxia-adapted kidney receive 

increased workload to maintain normal GFR, and that this would cause a deleterious effect in the 

kidneys.  

HARS is a recently identified disease, and therefore its etiology and molecular mechanisms are 

poorly understood. While adaptive responses to a variety of oxygen concentrations is a critical 

process during kidney development, its roles in gene signaling and cellular metabolism rates are 

largely unknown. Moreover, the effects of hypoxia on kidney function and hypertension have not 

been studied at altitudes that patients suffering from HARS live in. The major objective of this 

project was to interrogate the roles of hypoxia-induced signaling and hypoxia as environmental 

regulators of kidney development and as driving mechanisms of the disease state HARS.  



 

	 13	

 
 
 
 

2.0 IMPACT OF HIGH ALTITUDE HYPOXIA ON KIDNEY DEVELOPMENT AND 
FUNCTION 

 
 

2.1 KIDNEY DEVELOPMENT AND HYPOXIA 

 

The nephron is the functional unit of the kidney and is responsible for blood filtration, removal 

of toxic wastes, and regulation of several 

important physiological functions. Nephron 

endowment, or the number of functional 

nephrons in a developed kidney, is 

contingent on proper regulation of oxygen 

concentration in the developing metanephric 

kidney [3, 4]. As the ureteric bud grows 

towards the metanephric mesenchyme, 

which condenses around the ureteric bud tip, 

creating caps of nephron progenitor cells, 

and crosstalk between the nephron 

progenitors and ureteric bud tips signals for 

their self-renewal and branching, 

respectively [5]. The self-renewing nephron 

progenitor cell population is defined by 

Cited1+ and Six2+ signaling. As these cells mature, nephron progenitors sequentially lose Cited1 

 

 

 

 

 

 

 

 

 

Scheme 2-1: Overview of kidney development: As 

development progresses, nephron progenitors condense 

around the ureteric bud tips to form the cap mesenchyme. 

This process is genetically defined by the expression of 

Cited1 (self-renewing), Six2 (self-renewing/poised for 

differentiation), and Wnt4 (differentiated). 

K. Cargill, unpublished 

Ureteric Bud 

Renal Stroma 

Renal  
Vesicle 

Figure 1: Basic kidney development 
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and Six2 expression, then start expressing differentiation markers, such as Wnt4 (Figure 1). 

Progenitors that commit to differentiation undergo mesenchymal-to-epithelial transition and 

form the renal vesicle (first differentiated developing nephron structure), which then further 

develops into a functional nephron [5]. In humans, nephrogenesis results in 200,000 to 2,500,000 

nephrons at birth [6]. This 10-fold range in nephron endowment has significant implications in 

an individual’s susceptibility to disease because once nephrogenesis is complete; no new 

nephrons are formed [5]. For an individual who is endowed with fewer nephrons at birth, the loss 

of nephrons drastically increases their susceptibility to certain diseases such as chronic kidney 

disease and diabetes, compared to individuals with higher nephron endowment.  

 

Oxygen concentration regulation is a critical process during kidney formation because the 

nephron progenitor cells develop under physiological hypoxia (~1-9% O2) [7]. The hypoxia 

inducible factor (HIF) family of transcription factors regulates the major cellular oxygen sensing 

pathway [5]. Under hypoxic conditions, HIFs are upregulated to activate numerous target genes 

that are responsible for generating new vessels and regulating metabolism [4, 8]. However, once 

ingrowth, maturation and perfusion of the vasculature is complete, there is an increased oxygen 

concentration in the tissues, resulting in the degradation of HIFs by the E3 ubiquitin ligase von 

Hippel Lindau (VHL) protein [5, 8].  

 

Although temporal changes in oxygen tension during kidney development are normal, and even 

necessary, chronic hypoxia can be detrimental to fetal development. For example, intrauterine 

hypoxia is an environmental stressor that is seen in cases of high altitude and can also result from 

environmental pollution and placental insufficiency [7]. Placental insufficiency is one of the 
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main causes of intrauterine growth restriction [9, 10], and is known to cause low birth weight 

with low nephron endowment in the babies born at high altitude [2]. Since the placenta is 

responsible for delivering nutrients to the fetus, an impaired placenta can restrict fetal growth. In 

response to hypoxia and decreased nutrients, blood flow in the fetus is preferentially redirected 

to the brain, heart, and liver, preventing the robust growth of other organs, including the kidney 

[11]. This redirection of blood flow is suggested to cause the observed low nephron endowment.  

 

Mouse models for placental insufficiency are often use a chambered hypoxia devise, where 

pregnant dams are housed at 12% O2 [7]. As it so happens, 12% O2 is equivalent to the 

oxygenation that the majority of people living in high altitude receive (Table 1).  
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Table 2-1. Oxygen concentrations at varying altitudes 

ALTITUDE 

(m) 
EFFECTIVE O2 % 

ALTITUDE 

CATEGORY 
EXAMPLE CITY 

0 20.9 Low Boston, MA 

500 19.6 Low  

1000 18.4 Medium  

1500 17.3 Medium Boulder, CO 

2000 16.3 High  

  2500* 15.3 High  

3000 14.4 High  

3500 13.5 Very High  

4000 12.7 Very High Pikes Peak, CO 

4500 11.9 Very High Ethiopian Summits 

5000 11.2 Extreme  

5500 10.5 Extreme Kilimanjaro Peak 

   6000** 9.9 Extreme  

* Definition of high altitude living (lowest limit) 

** Upper limit of the MAG-20 (high altitude hypoxia stimulator) 
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2.2 KIDNEY DEVELOPMENT AND METABOLISM 

 

Changes in tissue oxygenation also affect rates of cellular metabolism in the kidney.  

The two main metabolic pathways 

activated during embryonic 

development are glycolysis and 

oxidative phosphorylation. 

Anaerobic respiration through 

glycolysis occurs in the cytoplasm 

and generates 2 ATP per glucose 

molecule. Glycolysis is the major 

metabolic process during early 

kidney development (embryonic 

day (E) 13.5) and appears to be a 

distinguishing metabolic feature of 

young nephron progenitors [12]. 

Nephron progenitors at stage E13.5 

are in a significantly higher energy 

state compared with the nephron 

progenitors at E19.5 due to their 

need to continuously self-renew [12]. As nephron progenitors begin to differentiate and exit the 

 

 

 

 

 

 

 

 

 

Schematic 2-2: Cellular respiration pathways: During glycolysis, 

glucose is converted into pyruvate yielding a net gain of 2 ATP per 

reaction. The pyruvate enters the mitochondria where it is converted 

into acetyl-coA (Ac-CoA) then is utilized in the TCA cycle. NADH 

and FADH2 are bi-products of the TCA and used by the ETC to 

generate a net gain of 26 ATP. In the absence of oxygen, pyruvate is 

converted to lactate, which cannot undergo further oxidation in the 

mitochondria. G6P (glucose-6-phosphate), F6G (fructose-6-

phosphate), FBP (fructose 1,6-bisphosphate). 

K. Cargill, unpublished 

Glucose 

Pyruvate 

Lactate 

Pyruvate 

Ac-CoA TCA 

ETC ATP Synthase 

G6P 
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Figure 3: Cellular respiration pathways 
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self-renewing cycle, they become more dependent on oxidative phosphorylation [12]. Oxidative 

phosphorylation is a process in which pyruvate, the product of glycolysis, is further oxidized in 

the mitochondria in the presence of oxygen [13]. Through aerobic respiration, mitochondria are 

able to generate approximately 26 ATP per glucose molecule, which is done through coupling a 

proton gradient with ATP synthesis. During this process, electrons are passed through the 

electron transport chain (ETC), a collection of five protein complexes. Complexes I, II, and IV 

contribute to the proton gradient and oxidation of the electron carriers while complex V (ATP 

synthase) uses the energy of the diffusing protons to convert ADP to ATP [13]. During kidney 

development, either of these two metabolic processes can preferentially be employed to induce 

nephron progenitor self-renewal or differentiation. For example, inhibiting glycolysis can 

facilitate the epithelialization of the metanephric mesenchyme, and conversely, inhibiting self-

renewal signaling can decrease glycolytic flux in young nephron progenitors [12].  

  

The switch from reliance on glycolysis to oxidative phosphorylation is crucial for proper kidney 

development because it dictates the differentiation process and ultimately nephron endowment 

[12]. In fact, failure of terminal differentiation causes renal pathologies such as defective 

nephron formation or function [14]. It is important to note that mitochondria are most often 

dysregulated in disease states because they generate the most energy under aerobic conditions 

[13]. Together, this suggests regulation of metabolism is essential for proper kidney 

development. 
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2.3 PROXIMAL TUBULE DEVELOPMENT 
 
 
The kidneys are the filtration units of the body, and the bulk of the filtration is the responsibility 

of the proximal tubules [15]. Proximal tubules are responsible for reabsorbing ~65% of the 

filtered load, and almost all of the filtered amino acids, glucose, solutes, and low molecular 

weight proteins [15]. These tubules also regulate acid-base balance by reabsorbing ~80% of 

filtered bicarbonate [15]. Proximal tubules are derived from nephron progenitor cells, which are 

a major type of kidney progenitor cell that gives rise to the glomerular and renal tubular epithelia 

[16]. As nephron progenitors epithelialize, the progenitor niche is depleted [17]. Near the end of 

nephrogenesis, remaining nephron progenitors undergo differentiation shortly after birth in the 

mouse (nephrogenesis is from E10-P3) and before birth in humans (nephrogenesis takes place 

from week 5-week 36) [16, 17]. The balance between progenitor self-renewal and differentiation 

is extremely important because no new nephrons are formed after the cessation of nephrogenesis, 

and the activity of nephron progenitors largely determined nephron number [17]. 
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2.4 PROXIMAL TUBULES AND HYPOXIA 

 

Physiological hypoxia is necessary for maintaining the nephron progenitor niche, however, 

hypoxia variably affects epithelial derivatives of the same progenitors. While proximal tubules 

are injured by hypoxia, glomeruli are relatively spared [18]. It is thought that proximal tubules 

are more susceptible to hypoxic injury because of their high aerobic energy demand for solute 

transport as well as low blood flow to the outer medullary region. Furthermore, obstruction of 

the tubules by sloughed dead cells and swelling of injured cells can also make them more 

susceptible to injury. The three different segments (S1, S2, and S3) of the proximal tubule are 

variably affected by hypoxia. Injury to the S1 and S2 segments of the proximal tubule is 

characterized by mitochondrial swelling, brush border alterations, and eventual disorganization 

of this region [19]. Morphologically, this is seen as accumulation of microvesicles just below an 

intact brush border and closely packed swollen mitochondria [19]. Meanwhile, hypoxic injury to 

the S3 segment is more severe and has two distinct markers of damage: cytoplasmic edema and 

tubular epithelial fragmentation [19]. Furthermore, the S3 segment of the proximal tubule, which 

is located in the outer medulla, is more susceptible to hypoxic injury than the collecting duct 

[20]. The heterogeneity in proximal tubule response to hypoxia is due to differences in the 

segment type function and exposure to vascular supply.  
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2.5 PROXIMAL TUBULES AND METABOLISM 

 

The kidney is an organ with a high-energy demand, and consequently has a high density of 

mitochondria. Proximal tubules contribute greatly to the bioenergetics of a functioning kidney, as 

sodium is primarily reabsorbed via an active transport process. The Na+-K+-ATPase is 

expressed on the basolateral membrane of the proximal tubule [15]. Consequently, proximal 

tubules mainly rely on aerobic metabolism and have a high density of mitochondria. Compared 

to distal tubules, proximal tubules also have a greater mitochondrial volume to nuclear ratio 

because their cells are larger [21].  Unlike their distal counterparts, proximal segments contain 

mitochondria with a more oxidized state, and so they have little ability to partake in glycolysis. 

In response to the stress of hypoxia, mitochondria in proximal tubules rapidly depolarize while 

mitochondria in distal tubules maintain their potential by reversing the activity of the ATPase, as 

seen through multiphoton imaging of the kidney [21]. One possible explanation for this is the 

higher glycolytic ATP production in distal tubules. The oxidized state of the proximal tubules, 

along with the lower membrane potential can be explained by its greater workload and ATP 

hydrolysis [21].  Consequently, proximal tubules are especially vulnerable to hypoxia exposure 

and kidney injury.  
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2.6 NOTE 
 
 
It is important to note that high altitude may generate complex responses which are not limited to 

HARS. Recent studies have actually shown that high altitude may exert beneficial effects. 

Specifically, high altitude (16% O2) was inversely associated with all-cause mortality and 

cardiovascular events, such as myocardial infarction, stroke, and cardiovascular death, among 

dialysis patients, an outcome that was attributed to constant HIF activation [22]. It is thought that 

the upregulation of Hif-1a stimulates erythropoietin production and increases intestinal 

absorption of iron and its subsequent availability to the bone marrow. The mechanism of 

protection is thought to be caused by a downregulation of a risk factor for atherosclerosis: 

hepcidin (a hormone that regulates the entry of iron into circulation) [22]. It is also important to 

note that altitude did not significantly alter the rates of non-cardiovascular death [22]. 
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2.7 SPECIFIC AIMS 

 
 
This chapter interrogates the formation and function of the kidney exposed to low levels of 

oxygenation that mimics high altitude exposure. At the early stages of the developing kidney, 

hypoxia is a normal state, prior to global kidney perfusion, and allows for abundant self-renewal 

of the nephron progenitors. Subsequent oxygenation allows the nephron progenitors to 

differentiate into mature renal structures. Therefore, environmental hypoxia during the later 

stages of nephrogenesis may hinder proper kidney formation. Since low nephron endowment is 

predictive of heightened susceptibility to disease, I hypothesized that the stress of chronic high 

altitude hypoxia would cause structural renal malformations and a decrease in renal fitness. Our 

laboratory has generated preliminary data from a genetic model of chronic physiological hypoxia 

indicating that the differentiation of nephron progenitors is highly dependent on oxygen 

concentrations and HIF expression, such that the progenitors that experience prolonged hypoxia 

do not differentiate properly. Additionally, we have found that progenitors experiencing hypoxia 

remain in a glycolytic state and are unable to switch to oxidative phosphorylation to drive 

differentiation. These led to my overarching hypothesis that mice exposed to low oxygen 

concentrations that simulate high altitude will have up-regulation of HIF signaling, causing 

structural kidney abnormalities. Two specific aims were proposed to test this hypothesis: 

Aim 1: Determine the structural and molecular alterations that occur in the developing kidney 

following exposure to low environmental oxygen concentrations in utero. 

Aim 2: Physiologically assess the renal fitness of animals exposed to the stress of high altitude 

hypoxia during nephrogenesis. 
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2.8 METHODOLOGY 
 
 

Experimental Mouse Models 

 

 

 

 

 

 

 

C57/b6 wildtype (WT) female pregnant mice (gestation age E10.5) were placed in a hypoxia 

chamber with a purge airlock system and CO2 and O2 control indicators designed for 

experiments in live rodents, with controlled and monitored humidity and gas composition. 

Exposure to hypoxia was initiated at embryonic day 11 (E11), which coincides with the 

induction of nephrogenesis, and continued until post-natal day 3 (P3), where there is the 

conclusion of nephrogenesis. The O2 level was set at 12% for the group of hypoxia treatment, 

whereas the group of normoxic controls remained in ambient air (21%) O2. For embryonic renal 

assessments, dams were sacrificed on E16 and E18 by cervical dislocation during isoflurane 

anesthesia. For the postnatal mice assessment, hypoxic pups were transferred to cages in ambient 

air at P3 and sacrificed at 7-weeks of age by cervical dislocation after isoflurane anesthesia. 

Kidney tissue was immediately collected and processed for analysis.  

 

7-weeks 

Harvest 

C57/b6 wildtype 
pregnant mouse 

(E10.5)  
E16 E18 P3 

End of 
nephrogenesis 

Hypoxia Normoxia 
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Tissue collection and histological assessment 

Renal histology was assessed at E16, E18, and 7-weeks of age. At the indicated time points, 

dissected kidneys were fixed in 4% paraformaldehyde in PBS and processed in paraffin. Samples 

were sectioned at 4 µm thickness and stained with hematoxylin and eosin (H&E) for histological 

examination. Samples were imaged using a Leica DM 2500 microscope (Leica) and LAS X 

software (Leica).      

 

Immunofluorescent staining and Real Time RT-qPCR 

Immunofluorescent staining was performed on samples processed as described above. Sectioned 

samples were probed using primary antibodies or lectins (1:100) against NCAM (Sigma-

Aldrich), Six2 (Proteintech), Phospho-histone H3 (Cell Marque), Endomucin (Santa Cruz 

Biotechnology), Tomm20 (Santa Cruz Biotechnology), Lotus tetragonolobus (LTL; Vector 

Laboratories), Oat1 (Alpha Diagnostic International), Dolichos biflorus agglutinin (DBA; Vector 

Laboratories), and Glut1 (Abcam). A Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-

End Labeling (TUNEL) assay was performed to detect apoptotic cells that undergo extensive 

DNA degradation during the late stages of apoptosis. Real time reverse transcriptase quantitative 

PCR (RT-qPCR) was used to assess mRNA expression (data normalized to Rn18s).  

 

Cardiac Punctures and Blood Analysis 

Intraperitoneal injections were performed on 7-week old mice that were born in the normoxic 

and hypoxic conditions. The blood samples were collected and analyzed by Kansas State 
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University for creatinine and blood urea nitrogen (BUN) levels, which are commonly used 

markers of murine renal function.  

 

Statistical analyses  

A minimum of 3 biological replicates was used for each experiment and at least one technical 

duplicate. When comparing two sample groups, statistical significance was determined using a 

two-tailed Student’s t test (α = 0.05). Significance was defined as *P<0.05, **P<0.01, and 

***P<0.001. Where appropriate, data is presented as mean ± standard deviation analyzed and 

generated by GraphPad Prism. 
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2.9 RESULTS 
 
 
Previously it has been determined that individuals exposed to low levels of hypoxia throughout 

gestation develop HARS. However, whether this is due to an underlying developmental kidney 

defect has yet to be determined. To assess this, we subjected wildtype pregnant mice to hypoxic 

conditions and compared their kidney development and function to mice in normoxic conditions 

during kidney development. Here we find that the overall kidney architecture is maintained in 

the hypoxia exposed group in both embryogenesis and adulthood, as compared to the to the 

normoxia group (Figure 2-1).  
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Figure 2-1. Kidneys exposed to hypoxia in utero are histologically 

normal. A thorough histological assessment was taken of kidney tissue in 

order to examine for structural changes. Hematoxylin (purple, nuclei) and 

eosin (pink, cytoplasm) staining revealed no pathological difference 

between normoxic and hypoxic kidneys neither at embryonic nor post natal 

ages. There appears to be the same amount of developing glomerular 

structures (arrows). Additionally, the proximal tubules remain in proper 

form with intact brush borders and no vacuolization or loss of nuclei 

(arrow heads).  
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To characterize the intrauterine effects of hypoxia on fetal growth, we measured the lengths of 

kidneys and embryos at E18. While hypoxia exposure stunted kidney and embryo lengths 

slightly, there is no difference in kidney to body length ratio (Figure 2-2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-2. Kidney: Body Length ratio remains unaltered from 

exposure to high altitude hypoxia during nephrogenesis. E18 

embryos were harvested from normoxic and hypoxic conditions and 

kidney and body lengths were measured using ImageJ software. There 

is no significant reduction in growth from 12% O2 exposure in utero. 

(normoxia n=3, hypoxia n=6) 
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While there was no morphological difference from high altitude hypoxia exposure during 

nephrogenesis, we wanted to test for any functional differences from the intrauterine insult. We 

first weighed the adult mice from both normoxic and hypoxic conditions. Low body weights 

would support the idea of reduced nephron number in the setting of hypoxia, and thus make the 

mice exposed to hypoxic nephrogenesis more susceptible to kidney injury. However, we found 

that developmental high altitude hypoxia exposure did not affect nephron endowment (Figure 1-

3). We also assessed renal fitness by analyzing BUN and creatinine levels from blood samples. 

At baseline, it was found that there is no difference in kidney function from a mild, hypoxic 

developmental insult (Figure 2-3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-3. Kidneys exposed to in utero hypoxia function normally. 

Blood analysis of seven-week-old mice revealed no physiological 

abnormalities between normoxic and hypoxic conditions. Blood urea 

nitrogen and creatinine levels were normal under both treatment 

conditions. (normoxia n=3, hypoxia n=6) 



 

	 31	

High altitude hypoxia did not cause an overt phenotype in healthy mice in either embryogenesis 

or adulthood. However, this does not rule out the possibility of a subpathological role for 

hypoxia. Consequently, numerous tests were done to determine if there were any changes in the 

expression of genes relating to development, metabolism, and death. First, expression of nephron 

progenitors was stained for using Six2 immunofluorescence (Figure 2-4). An abnormality of this 

marker would indicate a misexpression of Six2 in non-progenitor, epithelialized portions of the 

developing nephron (marked by NCAM). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-4. Exposure to high altitude hypoxia during development does 

not reprogram nephrogenesis. Immunofluorescence staining against Six2 

(red, nephron progenitors) and NCAM (green, nephron progenitors and 

epithelialized structures) indicates that high altitude hypoxia exposure does not 

result in the misexpression of Six2, suggesting normal patterns of 

nephrogenesis in the maintenance of a nephron progenitor population.  
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Next we immunofluorescently co-stained for phospho-histone H3 (pHH3), a mitotic proliferation 

marker, and NCAM to visualize proliferation changes in the nephron progenitor region (Figure 

2-5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We also we investigated the severity of the high altitude hypoxia exposure by measuring 

apoptosis through a TUNEL assay (Figure 2-6).  

 

 

 

 

Figure 2-5. Exposure to high altitude hypoxia during development 

does not change proliferation patterns. Immunofluorescence staining 

with NCAM (green, nephron progenitors and epithelialized structures) 

and pHH3 (red, proliferating mitotic cells) reveals similar cell 

proliferation between normoxic and hypoxic kidneys.  
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Real-time RT-qPCR was then done on E18 whole kidneys from the normoxic and hypoxic 

conditions in order to evaluate mRNA abundance of genes related to hypoxia (Hif-1a), kidney 

injury (Kim1), and metabolism (Pfkfb3 for glycolysis, Glut1 for glucose transport, and Tomm20 

for mitochondrial density) (Figure 2-7). 

 

 

 

 

 

 

Figure 2-6. High altitude hypoxia exposure does not induce an 

apoptotic phenotype in the developing kidney. TUNEL staining 

reveals similar apoptosis levels between normoxic and hypoxic kidneys, 

suggesting normal cell death patterning. 
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We also performed a series of Real-time RT-qPCR assays to assess the dysregulation of genes in 

adult kidneys that were subject to high altitude hypoxia during nephrogenesis. Since these 

kidneys were subject to an insult during development but were then moved to ambient air after 

the cessation of nephrogenesis, we didn’t expect much dysregulation. First, we measured the 

expression of important markers of kidney injury (Kim1, Ngal), de-differentiation (Vimentin), 

and apoptosis (Bnip3, Bnip3L). As suspected from lack of morphological and functional defects 

from high altitude hypoxia exposure during development, we found no dysregulation of injury 

gene expression (Figure 2-8).  

Figure 2-7. High altitude hypoxia exposure during development does 

not lead to dysregulation of genes in embryonic kidneys. Real Time RT-

qPCR indicates that there is no significant difference in gene expression 

genes related to kidney injury, HIF signaling, nor metabolism of glucose 

between E18 normoxic and hypoxic whole kidneys.  (normoxia n=3, 

hypoxia n=3)     
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We also assessed the expression of important genes implicated with mitochondrial function and 

metabolism (Figure 2-9). We specifically analyzed genes involved with mitochondrial density 

(Tomm20), glucose transport (Slc2a1/Glut1), and glycolysis (Ldha, Pfkfb3, and Pkm).  
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Figure 2-8. Developmental hypoxia treatment does not dysregulate 

markers of kidney injury in adults. Real Time RT-qPCR indicates 

that there is no significant difference in gene expression among 

markers of kidney injury (Kim1 and Ngal), de-differentiation (Vim), or 

apoptosis (Bnip3 and Bnip3L). (normoxia n=3, hypoxia n=6) 
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To thoroughly investigate morphological changes caused by exposure to high altitude hypoxia 

during nephrogenesis, we examined proximal tubule structure in adult kidneys. The fluorescent 

marker LTL was used to stain proximal tubule brush borders, while Oat1, a proximal tubule 

transmembrane protein, was used to stain the basal membrane in order to analyze the heath of 

proximal tubules (Figure 2-10) 
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Figure 2-9. High altitude hypoxia exposure during 

nephrogenesis does not significantly alter the metabolic gene 

expression of adult kidneys. Real Time RT-qPCR indicates that 

there is no significant difference in gene expression among 

glycolytic genes (Ldha, Pfkfb3, Pkm) or genes involved with 

mitochondrial density (Tomm20) and glucose transport (Slc2a1). 
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To assess changes in cell death after hypoxia exposure, an apoptotic stain was done on the adult 

kidneys as well. Analysis of the TUNEL assay indicates that there was actually less death in 

kidneys exposed to hypoxia during development (Figure 2-11). However, this is not a 

quantitative measure of apoptosis so nothing conclusive can be drawn from this. 

 

 

 

Figure 2-10. Proximal tubules in the adult kidney show no morphological 

differences after an in utero exposure to hypoxia. Immunofluorescence 

staining for Oat1 (red), a transmembrane protein on the basolateral side of the 

proximal tubule, serves as a marker for identifying proximal tubules. LTL 

staining (green) shows normal proximal tubule brush border formation.   
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To determine if in utero hypoxic exposure affects metabolic health of the adult kidney, we 

assayed for metabolism differences. First, we stained adult sections with Tomm20, a marker for 

mitochondrial density (Figure 2-12). 

Figure 2-11. There is decreased cell death in adult kidneys after 

exposure to a hypoxic insult during development. The TUNEL 

assay shows apoptotic cells in only the normoxic kidney. The 

hypoxic kidney shows no cell death in either the cortex or the 

medulla.  
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Figure 2-12. In utero high altitude exposure did not change mitochondrial 

density in the adult kidney. Immunofluorescence staining for Tomm20 (red), 

an outer-mitochondrial membrane protein, shows equivalent expression in the 

normoxic and hypoxic conditions. This trend was confirmed with real time RT-

qPCR. LTL staining (green) was done to show the localization of the 

mitochondrial protein in the proximal tubules. 
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Next we stained for Glut1, a glucose transporter gene, in order to see if the mechanism for 

glucose metabolism was altered (Figure 2-13). Since mitochondrial density remained the same 

for kidneys exposed to developmental hypoxia we didn’t expect to see a difference but wanted to 

be thorough in our metabolic assessment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2-13. Exposure to developmental hypoxia does not alter the 

expression of Glut1 in adult kidneys. Immunofluorescence staining for Glut1 

(red), a glucose transporter, shows equivalent expression in proximal tubules 

of the kidney. This trend was confirmed with real time RT-qPCR. DBA 

staining (green) for collecting ducts was done to reveal the expression of Glut1 

in the proximal tubules specifically (DBA-negative tubules). 
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2.10 DISCUSSION 
 
 
The data presented shows that exposure to in utero hypoxia that simulates high altitude during 

nephrogenesis does not overtly change the morphology or function of the kidneys. We assessed 

the kidneys using a myriad of assays including histology and real time PCR, but found no 

statistical differences in RNA or protein expression. We also assessed the blood urea nitrogen 

and serum creatinine (indicative of kidney function) and found these measures to be unchanged. 

This suggests that the 12% O2 environment is not sufficient to stress the mice into developing 

HARS-like symptoms such as hyperuricemia (excess of uric acid in blood).  

 

In attempts to characterize genetic changes from high altitude hypoxia exposure during 

nephrogenesis, we analyzed gene expression of kidney injury markers and apoptosis but found 

them to be largely unchanged after exposure to hypoxia.  

 

Exposure to high altitude hypoxia did not result in metabolic dysfunction either. Mitochondrial 

density appears to be the same between normoxic and hypoxic kidneys and so does expression of 

glycolytic genes.  

 

From this we can conclude that there is no overt tissue or functional pathology in kidneys that 

are exposed to hypoxic conditions in utero. However, we hypothesize that hypoxia may have 

sub-pathologically insulted these kidneys, reprogrammed them to be more susceptible to injury 

and this will be examined in Chapter 2. 
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3.0 EFFECTS OF IN UTERO HIGH ALTITUDE HYPOXIA EXPOSURE ON ACUTE 
KIDNEY INJURY 

 
 

3.1 RATIONALE 
 
 

Although clinical studies have shown that HARS occurs in resident populations at high altitude, 

we observed no morphological or pathological alterations in the kidneys of mice exposed to high 

altitude simulated hypoxia, compared to the normoxic group, as seen in Chapter 1. To address 

this we hypothesized that the mice exposed to 12% low oxygen concentrations in utero are 

susceptible to secondary insults later in life.  

 

To test this, we utilized a cisplatin-induced kidney injury model that directly targets the proximal 

tubules, as these are derivatives of the nephron progenitors that have been shown to be hypoxia-

sensitive for normal development. Cisplatin is a platinum based nephrotoxin that is commonly 

utilized as an anti-cancer medication. However, cisplatin is highly damaging to proximal tubules, 

where it damages their DNA and mitochondria, thus causing cell death.  
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3.2 CISPLATIN-INDUCED ACUTE KIDNEY INJURY (AKI) 
 
 
Cisplatin is an antineoplastic drug used to treat many solid-organ cancers [23]. Despite its 

effectiveness, it results in severe nephrotoxicity, the most common of its presentations being 

acute kidney injury (AKI). AKI is defined as a sudden reduction in glomerular filtration rate 

[24]. While clinical care for AKI has improved over the years, it has a mortality rate of ~40-80% 

in the intensive care unit [25]. Moreover, AKI can accelerate the onset of end-stage renal disease 

(ESRD) [25]. Cisplatin is known to cause DNA damages by binding to nuclear DNA and also 

diminishes metabolic activity by damaging mitochondria [23]. Since cisplatin is hydrolyzed to a 

positively charged metabolite, it accumulates within negatively charged mitochondria and 

therefore disproportionately affects proximal tubule function, which requires high mitochondrial 

function [23]. Renal cisplatin toxicity is also associated with apoptotic and necrotic cell death 

predominantly in the S3 segment of the proximal tubules and inflammation.[26].  
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3.3 SPECIFIC AIMS 
 
 
This chapter investigates cisplatin-induced acute kidney injury (AKI) after hypoxia exposure 

during pregnancy. To our knowledge, no literature has reported on the effects from hypoxia 

during pregnancy on AKI susceptibility in the adult kidneys. Two specific aims were proposed to 

test our hypothesis: 

 

Aim 1: Determine the degree of secondary cisplatin injury on kidney morphology after in utero 

hypoxia exposure.  

Aim 2: Determine the effect of in utero hypoxia on renal functioning after secondary cisplatin-

induced injury.  
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3.4 METHODOLOGY 
 
 
Experimental Mouse Models 

 

C57/b6 wildtype (WT) female pregnant mice (gestation age E10.5) were placed in a hypoxia 

chamber with a purge airlock system and CO2 and O2 control indicators designed for 

experiments in live rodents, with controlled and monitored humidity and gas composition. 

Exposure to hypoxia was initiated at embryonic day 11 (E11), the induction of nephrogenesis 

and continued until post-natal day 3 (P3). The O2 level was set at 12% for hypoxic animals, 

whereas normoxic controls remained in ambient air (21%) O2. After P3, hypoxia-exposed pups 

were transferred to cages in ambient air. At 7 weeks of age, the pups were injected with 20mg/kg 

body weight of cisplatin (APP NDC 63323-103-64; working solution in normal saline). The pups 

were sacrificed three days later by cardiac puncture during isoflurane anesthesia. Kidney tissue 

was immediately collected and processed for analysis.  

Tissue collection and histological assessment 

Renal histology was assessed at 7-weeks of age in normoxic and hypoxic mice. At the indicated 

time points, dissected kidneys (7 weeks) were fixed in 4% paraformaldehyde in PBS and 

processed in paraffin. Samples were sectioned at 4 µm thickness and stained with hematoxylin 

7-weeks 

Cisplatin 
treatment 

C57/b6 wildtype 
pregnant mouse 

(E10.5)  
E16 E18 P3 

End of 
nephrogenesis 

Hypoxia Normoxia 

3 days  
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Harvest 



 

	 46	

and eosin (H&E) for histological examination. Samples were imaged using a Leica DM 2500 

microscope (Leica) and LAS X software (Leica).      

Immunofluorescent staining and Real Time RT-qPCR 

Immunofluorescent staining was performed on samples processed as described above. Sectioned 

samples were probed using primary antibodies or lectins (1:100) as follows: Lotus 

tetragonolobus (LTL) (Vector Laboratories), Oat1 (Alpha Diagnostic International), Dolichos 

biflorus agglutinin DBA (Vector Laboratories), Glut1 (Abcam), and Tomm20 (Santa Cruz 

Biotechnology). A Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling 

(TUNEL) assay was done to detect apoptotic cells that undergo extensive DNA degradation 

during the late stages of apoptosis. Real time reverse transcriptase quantitative-PCR (RT-qPCR) 

was used to measure mRNA expression (data normalized to Rn18s). 

Cardiac Punctures and Blood Analysis 

Intraperitoneal injections were performed on 7-week old mice that were injected with cisplatin 

working solution with and without hypoxia priming. The blood samples were collected and 

analyzed by Kansas State University for creatinine and BUN levels, which are commonly used 

markers of renal function.  

Statistical analyses  

A minimum of 3 biological replicates was used for each experiment and at least one technical 

duplicate. When comparing two sample groups, statistical significance was determined using a 

two-tailed Student’s t test (α = 0.05). Significance was defined as *P<0.05, **P<0.01, and 

***P<0.001. Where appropriate, data is presented as mean ± standard deviation analyzed and 

generated by GraphPad Prism. 

 



 

	 47	

 
 
 
 

3.5 RESULTS 
 
 
While we did not find any morphological or structural alterations in the adult kidney after a 

primary insult of hypoxia exposure during development, we anticipated that hypoxia plays a 

subpathological role in making kidneys more susceptible to secondary insult. Both normoxic and 

hypoxic mice were injected with cisplatin at 7-weeks of age in order to characterize a secondary 

stress phenotype. Histological assessment shows severe architectural differences between adult 

kidneys that developed in normoxic and hypoxic conditions (Figure 3-1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1. Adult kidneys exposed to 12% hypoxia in utero are more susceptible to 

cisplatin-induced AKI. Hematoxylin (purple, nuclei) and eosin (pink, cytoplasm) staining 

revealed renal pathology due to cisplatin treatment in both normoxic and hypoxic 

development conditions. Both kidneys show damage with dilated tubules and proteinaceous 

casts (arrow heads). However, the hypoxic kidney shows significantly more pathology with 

the presence of more casts and loss of nuclei in renal tubules.  
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Consistent with the morphological changes, developmental exposure to hypoxia decreased the 

filtration capacity of proximal tubules after cisplatin injury (Figure 3-2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We also performed a series of real-time RT-qPCR assays to assess the expression of genes in 

impaired adult kidneys that were previously subject to high altitude hypoxia during 

nephrogenesis. First we assessed the mRNA expression of important markers of kidney injury 

(Kim1, Ngal) and de-differentiation (Vimentin) (Figure 3-3). Since there were no morphological 

or functional defects from high altitude hypoxia exposure during development, we were curious 

to see what injury genes were dysregulated in the adult kidneys after a secondary stress model.  

Figure 3-2. Kidneys exposed to high altitude hypoxia are more impaired 

functionally. Blood analysis of 7-week-old mice revealed severe physiological 

problems as indicated by high levels of urea nitrogen and creatinine in normoxic 

and hypoxic mice. Despite both treatment groups of mice showing decreased 

renal fitness, the mice in the hypoxic condition had further exacerbated damage 

than those in the normoxic condition. (normoxia n=7, hypoxia n=4) 
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We also assessed the expression of important genes associated with metabolism. We specifically 

analyzed genes involved with glycolysis, an anaerobic form of respiration (Hk2, Ldha, Pfkfb3, 

and Pkm) (Figure 3-4). 

 

 

 

 

 

Kim1 Vim Ngal
0

50

100

150

200

250

R
el

at
iv

e 
m

R
N

A
 e

xp
re

ss
io

n

Normoxia
Cisplatin

Hypoxia
Cisplatin

Figure 3-3. Kidney injury markers were not significantly 

different in impaired adult kidneys with previous exposure to 

high altitude hypoxia during development. Real Time RT-qPCR 

indicates that there is no significant difference in gene expression 

among kidney injury (Kim1 and Ngal) and de-differentiation (Vim) 

markers. (normoxia n=3, hypoxia n=3) 
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To further characterize morphological changes caused by exposure to high altitude hypoxia 

during nephrogenesis, we examined proximal tubule structure in adult kidneys. LTL was used to 

stain proximal tubule brush borders and the sections were co-stained with Oat1, a proximal 

tubule transmembrane protein, in order to analyze proximal tubule health (Figure 3-5). 

 

 

 

 

 

Figure 3-4. Primary high altitude hypoxic insult during 

development significantly reduces the metabolic gene expression 

of cisplatin-impaired adult kidneys. Real Time RT-qPCR indicates 

that glycolytic genes (Hk2, Ldha, Pfkfb3, and Pkm) are trending 

downregulated in cisplatin-induced AKI with hypoxia 

preconditioning. (normoxia n=3, hypoxia n=3) 

Hk2 Ldha Pfkfb3 Pkm
0

50

100

150

200

R
el

at
iv

e 
m

R
N

A
 e

xp
re

ss
io

n

Normoxia
Cisplatin

Hypoxia
Cisplatin



 

	 51	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since the proximal tubules were dilated in kidneys exposed to hypoxia during development, we 

wanted to assess whether there was excess cell death in these kidneys. To measure this we used a 

TUNEL assay to stain cells in late-stage apoptosis (Figure 3-6). However, we observed 

decreased apoptotic cell death in kidney exposed to in utero hypoxia, which is consistent with 

results reported above in kidneys without cisplatin treatment (Figure 2-6). 

 

 

Figure 3-5. High altitude hypoxia exposure during development causes 

proximal tubule dilation in cisplatin impaired adult kidneys. 

Immunofluorescence staining for Oat1 (red), a transmembrane protein on the 

basolateral side of the proximal tubule, serves as a marker for identifying 

proximal tubules of the kidney. LTL staining (green) shows tubular dilation in 

the hypoxic kidney compared to the normoxic one, and the dilation is specific 

to the proximal tubules of the kidney.   
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In order to elucidate a mechanism for tubular dilation in the hypoxic condition, we decided to 

assay for metabolism protein expression differences due to in utero hypoxia exposure. First, we 

stained adult sections with Tomm20, a marker for mitochondrial density (Figure 3-7).  

 

Figure 3-6. Kidneys previously exposed to hypoxia during 

development do not have as much nuclear cell death from cisplatin 

injury. The TUNEL assay shows apoptotic cells in both normoxic and 

hypoxic conditions. However, the normoxic condition treated with 

cisplatin shows sporadic apoptotic cells with more death localized to 

nuclear cells, suggesting DNA fragmentation. Meanwhile, the hypoxic 

condition has a clustered pattern of apoptosis with less death seen in 

nuclear cells.   
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Figure 3-7. High altitude hypoxia exposure during development reduces 

mitochondrial density after cisplatin-induced AKI. Immunofluorescence 

staining for Tomm20 (red), an outer-mitochondrial membrane protein shows 

decreased expression in the hypoxic condition. This trend was confirmed with 

real time RT-qPCR. LTL staining (green) was done to show the localization of 

the mitochondrial protein in the tubules of the kidney.  
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Additionally we stained for Glut1, a glucose transporter gene, in order to see if the mechanism 

for glucose metabolism was altered (Figure 3-8). Since mitochondrial density was decreased for 

kidneys exposed to developmental hypoxia we expected to see a reduction in glucose 

transporters as well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-8. High altitude hypoxia exposure during development reduces 

glucose transport after cisplatin-induced AKI. Immunofluorescence 

staining for Glut1 (red), a glucose transporter, shows decreased expression in 

proximal tubules of the kidney. This trend was confirmed with real time RT-

qPCR. DBA staining (green) for collecting ducts was done to reveal the 

downregulation of Glut1 in the proximal tubules specifically (DBA-negative 

tubules).  
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3.6 DISCUSSION 
 
 
Histological assessment of kidney formation showed severe tubular injury due to cisplatin in 

both normoxic and hypoxic conditions. However, the degree of injury was significantly 

exacerbated in kidneys that were exposed to high altitude hypoxia during nephrogenesis, as seen 

by the cyst formation and tubular dilation that was not seen in normoxic mice. As a result, this 

study shows high altitude simulation exacerbates cisplatin-induced acute kidney injury. Mice that 

were raised in high altitude-like conditions for the duration of nephrogenesis had significantly 

higher levels of BUN and creatinine after cisplatin administration, suggesting that these mice 

were more susceptible to injury.  

 

While hypoxia exposure during development was not protective against renal fitness, it may be 

protective against nuclear fragmentation (as measured by TUNEL). Cisplatin injury normally 

targets proximal tubular cells and is known to cause nuclear fragmentation; however this 

phenotype was predominantly only seen in kidneys formed in normoxia. Hypoxia exposure 

during nephrogenesis seems to have a protective effect against nuclear fragmentation, as there 

were very few nuclei that stained for late stage apoptosis. However, compared to the normoxic 

kidneys suffering from AKI, the hypoxic ones showed patchy, non-nuclear patterns of apoptosis. 

This either suggests that these cells are necrotic or that previous hypoxia exposure is protective 

against nuclear cell death.  
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Developmental exposure to hypoxia coupled with cisplatin-induced acute kidney injury had 

detrimental effects on the bioenergetics of the kidney. First of all, there was a severe reduction in 

mitochondrial density, which makes sense because cisplatin damages mitochondria, which are 

abundant in proximal tubules. This would suggest that aerobic respiration is limited in cisplatin-

injured kidneys, thus anaerobic respiration should be upregulated. However, previous hypoxia 

exposure resulted in decreased expression of glucose transporters and significant down 

regulation of glycolytic genes, suggesting a compounding dysregulation of metabolism with 

cisplatin injury and hypoxia. This may be in part due to cisplatin-induced DNA damage 

preventing proper RNA transcription. If hypoxic mice cannot efficiently use oxidative 

phosphorylation or glycolysis, then the question remains how they can be energetically active 

and not yet dead.  
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4.0 OVERALL DISCUSSION 
 
 

This study is one of the few analyses of High Altitude Renal Syndrome (HARS) using a 

mouse model. The idea behind using 12% O2 was to recapitulate environmental conditions to 

stimulate the disease state that humans living in high altitudes suffer from. The study of high 

altitude disease states has not been extensively examined since the 1970s and needs to be 

updated. The present study attempted to establish a mouse model for HARS and characterize the 

stress of 12% O2 tensions on kidney development and adult function.  

At the embryonic level, intrauterine high altitude hypoxia did not introduce any 

significant pathology. This is most likely due to the fact that nephrogenesis normally occurs 

under hypoxia, so a mild maternal hypoxic stress did not reprogram fetal nephrogenesis. 

Furthermore, pups that were exposed to high altitude hypoxia during nephrogenesis did not show 

any problems with renal function. In terms of human disease and babies born at high altitude, 

this suggests that stress from low oxygen tensions is not sufficient to cause any significant 

pathology. However, since nephron endowment has a 10-fold range in human kidneys, these 

babies could still be at risk for developing kidney disease later in life if they were born with 

fewer nephrons.  

Hypoxia exposure during development alone did not alter normal nephron function, as 

evidenced by unchanged tubular morphology and tubular bioenergetic expression. Although 

humans living at altitudes with 12% O2 develop HARS, it is likely that mice are more robust 

animals and can survive with more hypoxic stress. However, despite the fact that mice do not 

show symptoms of HARS, it is likely that this mild environmental hypoxia exposure is 
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subpathological and can have implications upon a secondary renal insult. In fact, as seen in this 

study, hypoxia exposure during development exacerbated cisplatin-induced kidney injury by 

causing dilation of proximal tubules and accumulation of proteinaceous casts. This consequently 

severely hindered physiological renal fitness, as seen through significantly upregulated toxic 

levels of BUN and creatinine, and eliminated two major forms of bioenergetics.  

A new clinical study published in the Journal of Nephrology in April 2018 characterized 

the higher prevalence of HARS in human patients at altitudes equivalent to 12% O2  tensions. 

This cross-sectional study investigated differences in the prevalence of kidney function among 

healthy high altitude and sea level dwellers without any known history of hypertension, diabetes, 

or chronic kidney disease. It was found that high altitude dwellers who were previously healthy 

had worse kidney function, a higher prevalence of proteinuria, and a lower prevalence of 

metabolic syndrome compared to people living at sea level. This study is interesting for two 

major reasons. Firstly, it shows a growing interest in studying disease states, specifically HARS, 

caused by decreased oxygen tensions at high altitudes—a field of study, which has largely been 

abandoned since the 1970s from the anthropological perspective. Secondly, this study serves as 

validation for the secondary stress model established in this thesis. The patients analyzed in the 

clinical study were 40-60 years of age, which suggests that HARS symptoms don’t manifest until 

later in life. This bolsters the idea that a 12% hypoxia environment plays a subpathological role  

Based on the results of the present study, people living in high altitudes may be more 

susceptible to cisplatin-induced AKI later in life because exposure to high altitude hypoxia (12% 

O2) plays a subpathological role in renal disease progression. There are a significant number of 

people living at high altitude worldwide and characterization of disease states correlated with 

high altitude are necessary to ensure the well-being of these populations.  
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4.1 CAVEATS/ALTERATIONS 
 
 

The effects of high altitude hypoxia seen at embryonic ages are hard to differentiate from 

normal tissue hypoxia. To better assess the renal consequences of high altitude hypoxia, renal 

fitness measurements must be taken of adult mice that were born and raised in hypoxia. 

Regarding the hypoxia exposure, it did not seem like the level of oxygenation was hypoxic 

enough to cause any significant morphological or functional differences as a primary insult. 

However, that was intentional for this project since we wanted to recapitulate the stress of living 

in high altitude. In order to truly characterize the disease state of HARS it would be necessary to 

create a mouse model that actually presented with HARS symptoms. 

Furthermore, the assessments for this project were all done on whole kidney as this was a 

preliminary phenotypic assessment for the HARS mouse model. One caveat of whole kidney 

analysis was that any significant differences in relative mRNA expression or protein presence 

might have been diluted. As a result, isolated analysis of nephron progenitors and proximal 

tubules, for embryonic and adult analyses respectively, would have given more accurate results. 

Another limitation of this study is that we did not assess the relationship between HIF protein 

levels and 12% environmental hypoxia. While relative mRNA expression among HIF isoforms 

were not significantly different between normoxic and hypoxic conditions, HIFs undergo post-

transcriptional modifications and therefore evaluating protein expression would be a better 

assessment of their function. Finally, this study attempted to characterize metabolic gene 

dysregulation through relative mRNA expression and immunofluorescence staining. However, 
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no characterization of metabolic function was done. As a result, an exciting future direction 

would be to test metabolic activity of these kidneys through Seahorse Extracellular Flux.  
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4.2 FUTURE DIRECTIONS 
 
 
Understanding the molecular, cellular and structural renal adaptations to low oxygen 

environments is essential for providing therapies for patients suffering from HARS. One of the 

most pressing future direction for this project is assessing nephron endowment after 12% 

environmental hypoxia exposure. While this study was approached from a phenotypic 

standpoint, it was limited by the fact that no mechanism of the subpathological role of high 

altitude hypoxia exposure in secondary injury was ever established. A reduction in glomeruli 

number after high altitude hypoxia exposure would be a start to elucidating a mechanism for this 

phenotype. Secondly, more manipulations of environmental oxygen concentrations need to be 

tested to see if a mouse model portraying HARS symptoms can be established. A model of 

symptomatic HARS would be critical for assessing drug therapies for this disease state. Finally, 

all of the analyses for this project were conducted in male mice and one mouse strain, to reduce 

variability. Therefore, an important future direction for characterizing HARS would be to 

analyze sex differences in this model because female mice are more prone to cisplatin-induced 

injury. 
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