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Abstract

We investigate the role of the bulk eddy-viscosity variation on the well-known log-layer mismatch

problem. An analysis of the mean momentum-balance shows that the modeled stress term close to

the wall can dominate because of the bulk eddy-viscosity. Consequently, the momentum-balance

equation lacks a degree-of-freedom and the mean velocity conforms to an incorrect profile to sat-

isfy the momentum-balance. We show that zonal enforcement of the target mass flow-rate can

be an effective strategy to introduce an additional degree of freedom to the mean momentum-

balance, which led to a significant reduction in the log-layer mismatch. When the mass flow-rate

is enforced zonally, the filtered velocity field attains its own constant velocity-scale above the

Reynolds-averaged field, supporting the hypothesis that there exists an artificial boundary layer

above the Reynolds-averaged region. We simulate turbulent channel flows at friction Reynolds

numbers of 2000 and 5200 on coarse meshes that would put the first point away from the wall well

into the logarithmic layer. Second-order turbulence statistics and one-dimensional velocity spectra

agree well with the direct numerical simulation benchmark data when results are normalized by the

velocity-scale extracted from the filtered velocity field. Additionally, the error in the skin-friction

coefficient for friction Reynolds numbers of 2000 decreased from 14.1% to 2.5% when we enforced

the mass flow-rate zonally.
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I. INTRODUCTION

The computational cost of large-eddy simulation (LES) of wall-bounded flows at high

Reynolds numbers is expected to remain a challenge in the foreseeable future. The stringent

resolution requirements arise from the scales of turbulence diminishing drastically as the

wall is approached [1]. The computational burden of resolving the near-wall region can

be relaxed through wall-modeled LES (WMLES) [2, 3]. When the viscous sublayer is not

resolved, a shear stress boundary condition can replace the no-slip condition at the wall.

The shear stress at the wall is derived from flow variables with the help of the law-of-the-wall

[3].

One of the popular approaches to alleviate computational costs of LES is detached eddy

simulation (DES), first proposed by Spalart et al. [4] which was later refined in Spalart

[5] for high-Reynolds-number, massively-separated external aerodynamics where governing

equations in the thin boundary layer are solved in the Reynolds-averaged Navier-Stokes

(RANS) sense and LES is used away from the boundary layer where the grid size is adequate

for resolving turbulent motions. Nikitin et al. [6] applied DES as a sub-grid scale model in

an LES of turbulent channel flow. Turbulence was sustained but there was the appearance

of a “DES buffer layer” where too steep velocity gradients created a drastic mean profile

mismatch relative to the expected logarithmic velocity profile. The large velocity gradients

were deemed to be the result of diminishing eddy viscosity when transitioning from the RANS

near-wall flow to LES outer flow. Nikitin et al. observed that turbulent eddies did not form

during this transition. Large “super-streaks,” or eddies that are unrealistically large, have

been observed in the transition region [7]. This issue of an artificial overestimation of the

mean velocity profile in the LES region is later coined as the log-layer mismatch problem,

which is not specific to the DES model and has been reported in other wall-modeled LES

studies as well.

Shur et al. [8] proposed an idea to combine the delayed DES (DDES) approach of Spalart

et al. [9] for areas where grid resolution prevents resolving dominant eddies and WMLES

for grid resolutions that can resolve dominant eddies. The method, referred to as improved

DDES (IDDES), blends together these two approaches. IDDES performed just as well in

massively separated flows as DES or DDES (the latter improved upon DES by allowing

for more grid refinement and thicker boundary layers), and improved upon the log-layer

2



mismatch in plane channel flow. IDDES also performed very well in flows with both attached

and separated flow regions.

Renard and Deck [10] used zonal DES (ZDES) [11] for WMLES of a zero-pressure-gradient

turbulent boundary layer with an improved positioning for the RANS-LES interface by

placing the transition in the geometric center of the logarithmic layer. Good agreement was

achieved with skin friction correlations. ZDES differs from DDES or IDDES in that the user

determines the regions of RANS and LES as opposed to a length scale dependent on grid

resolution. As is a common challenge with user-defined zonal approaches, determining the

RANS-LES interface placement will become more involved with more complex geometries.

Baggett [12] performed numerical tests with a turbulent channel flow case to study the

artificial turbulent layer that forms between a Reynolds-averaged near-wall region and a

filtered velocity field above that region. Baggett argued that a Reynolds-averaged field is

effectively laminar and therefore cannot provide the turbulent fluctuations to the filtered

velocity field. To overcome this shortcomings, both Keating and Piomelli [13] and Davidson

and Billson [14] introduced a stochastic-type external forcing at the interface of Reynolds-

averaged and filtered velocity fields to generate fluctuations that mimick Reynolds stresses.

Keating and Piomelli [13] used a proportional controller to force the flow based on the dif-

ference between resolved and modeled Reynolds stress in the transition zone. This approach

generates enough Reynolds stress to correct the log layer mismatch and break up the so-

called “super-streaks” that occur in transition regions [7]. Radhakrishnan et al. [15] later

observed accurate results without stochastic forcing in unstable flows where the mean val-

ues tend to have perturbations. Davidson and Billson [14] introduced turbulent fluctuations

that were obtained from synthesized homogeneous turbulence.

Most recently, Yang et al. [16] revisited the log-layer mismatch problem and proposed

a local temporal filtering when calculating the wall shear stress. They argued that the

temporal filtering breaks the unphysical correlation between wall shear stress fluctuations

and the velocity fluctuations in WMLES. Their remedy reduced the log-layer mismatch.

However, the authors admitted that wall-shear stress fluctuations did not improve, and they

did not present any profiles of second-order statistics of turbulence across the channel height.

Yang et al. alluded to the potential role of bulk eddy-viscosity on the log-layer mismatch,

but they did not elaborate on it when explaining their remedy. This is most likely because

they use the scale-dependent Lagrangian dynamic Smagorinsky model [17] that does not
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create a significant variation in the bulk eddy-viscosity. In the current study, we follow the

same baseline formulation as Yang et al., but use the scale-independent Lagrangian dynamic

Smagorinsky model [18] and introduce the bulk eddy-viscosity variation into the formulation

by switching to a mixing-length model in close proximity of the wall. We enforce the target

mass flow-rate zonally, which partially decouples the filtered velocity field from the Reynolds-

averaged field. As an outcome of this partially decoupled approach, the log-layer mismatch

reduces substantially. Furthermore, the filtered velocity region attains its own velocity-scale,

supporting the argument of Baggett [12] that an artificial boundary layer forms when the

filtered velocity field is allowed to develop over a Reynolds-averaged field. Second-order

statistics of turbulence and velocity spectra show improvements when normalized by this

velocity-scale extracted from the filtered velocity region.

II. NUMERICAL FORMULATION

We solve the following filtered form of the governing equations for incompressible flows.

∂uj

∂xj

= 0, (1)

∂ui

∂t
+

∂

∂xj

(uiuj) = −
1

ρ

∂p

∂xi

+
∂

∂xj

(
2νSij − τij

)
+ fi, (2)

where

Sij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)

(3)

is the strain rate tensor, and

τij = uiuj − uiuj (4)

is the tensor for the SGS Reynold stresses, and fi is a body force term.

Yang et al. [16] used a scale-dependent Lagrangian dynamic Smagorinsky model with the

wall shear stress boundary condition determined from a logarithmic-law [3, 19]. Here, we

follow the same baseline formulation, except that we adopt the scale-independent Lagrangian

dynamic Smagorinsky eddy viscosity model [18] for LES. In the Reynolds-averaged region,

we use the mixing length model of Prandtl [20] as it is an adequate model for attached

flows. To introduce a significant bulk eddy-viscosity variation in the momentum equations,
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we combine the LES filter-size with the mixing-length scale as follows:

lmix = [1− exp (−y/hRL)]CS∆+ exp (−y/hRL)κy, (5)

νt = l2mix|S|, (6)

τij =νtSij, (7)

where hRL is the height that controls the extend of the Reynolds-averaged region in the

wall-normal direction. The current model is not intended to simulate turbulent flows over

complex geometry, but it is sufficient to investigate the role of the bulk eddy-viscosity on

the log-layer mismatch problem in a turbulent channel flow.

We aim to place the first off-wall grid point in the logarithmic region (y+ > 30) to study

wall-modeled LES on coarse meshes. Direct application of the no-slip boundary condition

on such coarse meshes would not be adequate. Instead, we impose a shear-stress boundary

condition using the wall-model of Schumann[3], which was later modified to a more general

form by Grötzbach[19]. The essence of the Schumann-Grötzbach model is to provide an

instantaneous shear-stress boundary condition at the wall by providing components of the

total wall shear stress as follows:

τxy,w (x, z, t) =
u (x, y1, z, t)

〈u (y1)〉
〈τxy,w〉, (8)

v = 0, (9)

τ zy,w (x, z, t) =
w (x, y1, z, t)

〈u (y1)〉
〈τxy,w〉, (10)

where y1 is the first off-wall grid point. Schumann originally obtained the mean wall shear

stress from the momentum balance in a channel flow, 〈τxy,w〉 = −δ〈 ∂p
∂x
〉, where 〈 ∂p

∂x
〉 was

given a priori. Grötzbach generalized this wall-model by determining the stress from the

log-law:

〈u (y1)〉

uτ

=
1

κ
ln
(y1uτ

ν

)

+B, (11)

〈τxy,w〉 = ρu2

τ , (12)

where κ is the von Kármán constant, B is a constant, and ρ is the density, set to unity

in this study. While eliminating the need for an a priori 〈 ∂p
∂x
〉, Grötzbach’s modification
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requires knowledge of κ and B. For this study, we adopt the commonly used values of κ =

0.41 and B = 5.2, but various other possible values exist [1, 21–23].

To avoid contamination from discretization and SGS modeling errors near the wall [24–

26], Eq. 11 is solved at the third off-wall grid point at every time step such that y1 becomes

y3 [27]. The strain rate tensor in Eq. 6 requires the computation of wall-normal derivatives

and will be incorrect due to the coarseness of the grid if calculated explicitly. Therefore,

the eddy viscosity in the first off-wall grid cell is computed via linear extrapolation from the

second and third off-wall grid cells [24].

The governing equations are solved using a GPU-accelerated, three dimensional incom-

pressible flow solver [28–30]. The code uses the projection algorithm [31] on directionally-

uniform Cartesian grids with second-order central differences for spatial derivatives and a

second-order Adams-Bashforth scheme for time advancement. The pressure Poisson equa-

tion is solved by an amalgamated parallel 3D geometric multigrid solver designed for GPU

clusters [32].

A. Zonal Enforcement of the Mass Flow-rate

As periodic boundary conditions alone cannot sustain a constant mass flow-rate in the

channel, a body-force is needed to sustain the flow in the channel. There are two approaches

to achieve this: prescribe a constant body-force that would balance the target shear stress

at the wall, or dynamically adjust a uniform body-force to maintain a target mass flow-rate

through the channel. We, like numerous other studies, adopt the latter approach, which

is preferable when the wall shear stress is not known a priori. Turbulence statistics also

converge faster with the latter approach. It is commonly adopted in turbulent channel flow

simulations, including DNS studies [23]. The particular technique we use is that of Benocci

and Pinelli [33], which can be formulated as follows:

f t+1
x = f t

x −
2

∆t

(
ṁt+1

Ac

−
ṁ0

Ac

)

+
1

∆t

(
ṁt

Ac

−
ṁ0

Ac

)

, (13)

where the superscript t is the time-step level, ∆t is the physical time-step value (which needs

to be held constant throughout the simulation as per the original formulation), ṁ0 is the

prescribed mass flow-rate, and Ac is the constant cross-sectional area. Other formulations

to maintain constant mass flow-rate can be found in the literature [34, 35].
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FIG. 1. Split-forcing demarcations. (a) The normalized mean eddy viscosity profile obtained from

a RANS-LES simulation of Reτ = 2000 turbulent channel flow adopting the eddy viscosity model

given in Eq. 6. The dashed line represents the height of the RANS-LES interface, hRL, and the

first split-forcing demarcation. The dotted line represents the second split-forcing demarcation,

hsp. (b) Sketch of three forcing regions in a channel flow.

The log-layer mismatch observed in turbulent channel flow simulations with eddy-

viscosity-based RANS-LES methods has been attributed to a lack of resolved Reynolds

shear stress provided to the LES zone near the RANS-LES interface [13, 14, 36]. Here, we

investigate the role of bulk eddy-viscosity variation on the log-layer mismatch and suggest

a split-forcing approach grounded in the mass conservation principle to reduce it.

For a fully-developed, statistically-stationary channel flow, the mean streamwise momen-

tum equation reduces to the following

dτ

dy
= −

dp

dx
. (14)

The driving mean pressure gradient is constant on the right hand side of Eq. 14 [1]. Inte-

grating Eq. 14 from the wall (y = 0) to some wall-normal distance y and solving for τw, we

obtain,
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τw =
dp

dx
y

︸︷︷︸

I

+ ν
dU

dy

∣
∣
∣
∣
y

︸ ︷︷ ︸

II

+ νt(y)
dU

dy

∣
∣
∣
∣
y

︸ ︷︷ ︸

III

− 〈uv〉|y
︸ ︷︷ ︸

IV

, (15)

where term I represents the driving pressure gradient, term II represents the viscous shear

stress, term III is the shear stress modeled with an eddy-viscosity approach, and term IV

represents the resolved Reynolds shear stress. In a wall-resolved LES at a wall-normal

distance sufficient to ignore viscous effects (i.e. ignore term II), we can argue that Eq.

15 has two degrees of freedom to achieve force balance through terms III and IV as dp

dx
is

constant ( dp
dx

is fx in Eq. 13).

We now evaluate Eq. 15 when the wall-normal variation of the bulk eddy-viscosity is

significant, taking on a large value in the RANS region and a small value in the LES region.

A typical eddy-viscosity profile that is relevant to the present analysis is shown in Fig. 6

We place the RANS-LES transition height sufficiently away from the wall to safely ignore

term II. In theory, the RANS turbulence model simulates the ensemble-averaged field, thus

approaching the interface from the RANS side means negligible resolved stresses, therefore

term IV is negligible within the RANS region. As a result, the previous two degrees of

freedom in a wall-resolved LES (terms III and IV) are now reduced to one (term III) when

the near-wall region is modeled with a RANS model.

The variation of the bulk eddy-viscosity, νt, in the wall-normal direction in term III can

be substantial as opposed to the sub-grid-scale (SGS) eddy-viscosity in a wall-resolved LES.

Consequently, the mean velocity profile can assume unphysical profiles to satisfy the force

balance within this single term. As numerous studies have shown, introducing an external

forcing term around the RANS-LES interface reduces the log-layer mismatch markedly. The

effectiveness of this approach becomes clear as this external forcing term introduces a second

degree of freedom to the force balance.

Loosely speaking, we can imagine a less viscous fluid (i.e. LES region) flowing over a

highly viscous fluid (i.e. RANS region) when a RANS-LES model is adopted. Based on this

analogy, we propose to impose the constant mass flow-rate through the channel zonally. Our

hypothesis is that by imposing the mass flow-rate in party, we can introduce a second degree

of freedom in Eq. 15) without the need for a separate forcing term. The shear stress that

arise between zones that are forced separately to maintain the target mass flow-rate would be
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sufficient to energize the scales that are damped by a large value of the eddy-viscosity. Our

proposal for the channel flow is straightforward as one can derive the mass flow-rates in each

zone from the logarithmic law-of-the-wall or benchmark data. However, extension to general

flow configurations is admittedly not easy and beyond the scope of current investigation to

understand the role of bulk eddy-viscosity variation on the log-layer mismatch.

We sketched the split-forcing approach as applied to a channel flow in Fig. 1(b). The

regions are reflected about the centerline to enforce symmetry. Figure 1(b) shows three

streamwise forcing regions, f1, f2 and f3. Each forcing region has its own target mass flow-

rate such that the mass flow-rate for the entire channel remains unchanged. We adjust Eq.

13 by introducing a subscript, n, as an index for the forcing region as follows:

f t+1
n = f t

n −
2

∆t

(
ṁt+1

n

Ac

−
ṁ0

n

Ac

)

+
1

∆t

(
ṁt

n

Ac

−
ṁ0

n

Ac

)

, (16)

where ṁt
n now represents the mass flow-rate through a particular forcing region. We pre-

scribe the target mass flow-rate for each forcing region following a target mean profile,

usually obtained from benchmark data. Target mass flow-rate for the channel is ensured by

the following constraint:

ṁ0

T =

N∑

n=1

ṁ0

n, (17)

where ṁ0
T is the total mass flow-rate through the channel and N is the total number of

forcing regions.

By enforcing the mass flow-rate zonally under the constraint of the target mass flow-rate

for the entire channel, we induce stochastic shear stresses between the zones and energize the

scales of the motion without resorting to an explicit stochasting forcing term. The stochastic

forcing, which is implicit in our zonal mass flow-rate approach, can be viewed as follows:

f ξ
x,n = f t+1

n −
u2
τ,w

δ
, (18)

where the second term on the right hand side is the mean pressure gradient to sustain a flow

rate at a prescribed friction Reynolds number.

We found that the results are not very sensitive to the exact location of the forcing

regions. It is sufficient to inspect the mean eddy viscosity profile using a spatially-uniform

forcing, which we refer to as single-forcing, and split the domain based on the magnitude of

bulk eddy-viscosity. Fig. 1(a) shows the mean eddy viscosity profile from a single-forcing
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TABLE I. Simulation parameters. The superscript, +, indicates nondimensional quantities in wall

units. y+1 is the distance of the first off-wall streamwise velocity component.

Reτ Nx Ny Nz Lx Ly Lz ∆x+ ∆y+ ∆z+ y+1

2000 257 65 193 8πδ 2 δ 3 πδ 200 64 100 32

5200 513 129 513 8πδ 2 δ 3 πδ 250 82 100 41

RANS-LES for Reτ = 2000 channel flow. The simulation parameters for this case are given

in Table I. The dashed line in Fig. 1(a) is the RANS-LES interface. The mean eddy-

viscosity is normalized by its value in the LES region, which has a nearly constant profile.

Maximum value of eddy viscosity occurs near the RANS-LES interface, hRL, and is a logical

place for a split-forcing demarcation. We initially attempted using only two forcing regions

but the results did not show satisfactory improvement because the eddy viscosity is still

large above the RANS-LES interface relative to the LES value and has decreasing trend.

A second splitting height, hsp, is placed in the large eddy viscosity region approximately

where the eddy viscosity is 10 to 12 times that of the core value. The hypothesis is that one

more additional forcing region will introduce enough shear stress in the blending region to

provide satisfactory results. The use of three forcing regions is referred to as tri-split. We use

approximately the same splitting heights in nondimensional wall units for the Reτ = 5200

case (see Tab. I). Note that using more forcing regions than three may not be necessary as

the goal of this experiment is to force regions of high eddy viscosity independent of the LES

core where the eddy viscosity profile is nearly constant. Also, when eddy viscosity is nearly

uniform, splitting the mass flow-rate would run against the theory described by Eq. 15.

III. RESULTS AND DISCUSSION

Tables I and II present the simulation parameters and the split-forcing parameters for

each turbulent channel flow case, respectively. The friction Reynolds number is based on

friction velocity, uτ , and channel half-height, δ. We compare Reτ = 2000 channel flow to

the readily-available DNS data of Hoyas and Jimenez[37], and Reτ = 5200, to the recent

DNS data of Lee and Moser[23]. In all of our simulations, periodic boundary conditions were

applied in the streamwise and spanwise directions (x-direction and z-direction, respectively).
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TABLE II. Split-forcing parameters. The superscript, +, indicates nondimensional quantities in

wall units. hRL is the RANS-LES transition height and hsp is the splitting height applicable to

tri-split forcing.

Reτ h+RL h+sp hRL / δ hsp/δ

2000 250 440 0.127 0.222

5200 250 490 0.047 0.094

100 101 102 103

y+

0

5

10

15

20

25

30

U+

DNS benchmark

Single forcing

Tri-split forcing

10−1 100 101 102 103

y+

0

5

10

15

20

25

30

U+ Reτ = 2000

Reτ = 5200DNS benchmark

Hybrid RANS-LES

FIG. 2. Nondimensional mean velocity profiles. (a) Log-layer mismatch reproduced using the single

forcing approach. Reτ = 2000. (b) Reτ = 5200 (shifted up by 3.0) and Reτ = 2000 simulated with

the tri-split approach. All results are normalized by uτ,w obtained from the wall shear stress.

Spin-up time for turbulence was 200 δ/uτ and sampling for turbulence statistics took place

over an additional 200 δ/uτ .

The effect of split-forcing on the mean velocity profile is shown in Fig. 2(a) for Reτ =

2000. The single forcing of the channel flow reproduces the well-known log-layer mismatch

problem. The tri-split forcing significantly reduces the mismatch from the DNS mean ve-

locity, demonstrating a clear improvement over the single forcing approach. The effect of

split-forcing is to introduce shear stresses into the flow to compensate for the lack of resolved

shear stress in the RANS-LES interface region and enable the mean velocity field to match

the expected profile. In Fig. 2(b) we demonstrate the effectiveness of our tri-split forcing
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TABLE III. Comparison of computed skin friction coefficient with Dean’s correlation[38]. Reb is

bulk Reynolds number. Computed skin friction coefficient: Cf,comp = τw/
1

2
ρU2

b . Dean’s correlation

for skin friction coefficient Cf,Dean = 0.073Re−0.25
b .

Reτ Forcing Ub / uτ,w Reb Cf,comp Cf,Dean % error

2000 Single 23.44 87793 3.64 × 10−3 4.24 × 10−3 14.1

2000 Tri-split 21.99 87698 4.14 × 10−3 4.24 × 10−3 2.5

5200 Tri-split 24.26 250543 3.40 × 10−3 3.26 × 10−3 4.1

approach for an even higher Reynolds number flow, Reτ = 5200. The corresponding bulk

Reynolds number (based on channel height) for Reτ = 5200 is approximately 250,000. Both

profiles agree very well with the DNS benchmark data despite a mesh resolution that is

coarse in the wall normal direction (y+1 ≈ 30). For context, Lee and Moser [23] used roughly

121 billion mesh points for DNS of Reτ = 5200 whereas we used 33.9 million mesh points

without any stretching in the mesh.

Tri-split forcing improves skin friction estimates relative to the single forcing simulation.

Table III compares the skin friction coefficient, Cf , computed from the simulations and the

Dean’s correlation based on the bulk Reynolds number [38]. The bulk velocity, Ub, is the

averaged velocity through the channel cross section, and the bulk Reynolds number, Reb, is

based on the full channel height. The percent error presumes the Dean correlation as the

correct value. There is a notable reduction in percent error of tri-split forcing over single

forcing with skin friction coefficient calculations in the Reτ = 2000 case. The Reτ = 5200

also gives a small percent error. These values are much lower than the reported error values

found in early studies [6], which were approximately 10% and above.

Figures 3(a) and 3(b) show a time series of the forcing values for the tri-split for for

both Reτ = 2000 and Reτ = 5200, respectively, over a time lapse of two eddy turnover

times, δ/uτ,w. We plot the evolution of the forcing in each zone to better understand the

impact of split-forcing on the flow field. As will be discussed later, the wall shear stress can

be recovered by converting the mean forcing values to a shear stress by integrating along

channel height. The time series shows that the near-wall region and the middle forcing region

have much greater variations than the core forcing region, with the middle forcing region

being predominantly negative in value while the other two regions are positive in value.
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FIG. 3. Tri-split forcing time series for (a) Reτ = 2000 and (b) Reτ = 5200 normalized by δ and

uτ,w. Results are shown over two eddy turnover times, δ/uτ,w. The bottom time series in the

figure is the near-wall region and the topmost time series is for the core forcing region. The solid

horizontal line is the mean of the time series found over the entire statistical sampling period.

The other two tickmarks are one standard deviation above and below the mean found over entire

statistical sampling period.

The magnitude of the eddy viscosity explains this behavior. In the RANS region, the eddy

viscosity is dominantly defined by the mixing length model, exhibiting a positive gradient.

The core forcing region, above hsp, the eddy viscosity is dominantly defined by the sub-grid

scale model and does not vary significantly. However, the second forcing region between hRL

and hsp has a negative gradient in eddy viscosity, as the model is decreasing from a RANS

value to an LES value, leading to the middle forcing region being predominantly negative

in value. The opposite signs of the forcing help energize the interface between each zone

stochastically.

Tuerke and Jimenez[39] proposed to use the “local” friction velocity to collapse Reynolds

stress profiles in their inverse RANS (IRANS) study where mean velocity profiles were

prescribed as a forcing term to a DNS. We follow the same approach and calculate the local

friction velocity as follows:

uτ (y) =

√

〈τ(y)〉

1− y/δ
. (19)

The variation of the friction velocity along the wall normal distance is shown in Fig. 4 for

Reτ 2000 and 5200. A consistent feature in both friction velocity profiles is that a constant
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FIG. 4. Attainment of a constant velocity scale in the LES region. Profiles of local friction velocity

normalized by the friction velocity at the wall are shown. Both Reτ = 2000 and Reτ = 5200 are

simulated with the tri-split forcing approach. Dashed vertical lines, hRL; dotted vertical lines, hsp.

value emerges above the RANS-LES split height, hsp. We refer to this constant value in

the core LES region as uτ,c. We study the implications of a constant uτ,c in the LES core

by assessing the second-order statistics of turbulence. In Figs. 5(a) and 5(b), we compare

normalized RMS velocity fluctuations with the scaling factors of uτ,c and uτ,w. For Reτ =

2000 in Fig. 5(a), the normalization by uτ,c shows a clear improvement over scaling by uτ,w

for the spanwise and wall-normal components, matching the DNS benchmark data very well.

The agreement with the streamwise component u′

rms is slightly worse. However, the u′

rms

profile normalized by uτ,c does not overestimate the DNS data, which makes sense as this is

a filtered quantity obtained from a coarse mesh. Also for Reτ =5200, u′

rms results scaled by

uτ,c are closer to the DNS normalized values than they are when scaled by uτ,w. Turbulent
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FIG. 5. Profiles of rms velocity fluctuations and the effect of velocity scale choice on the results.

(a) Reτ = 2000 and (b) Reτ = 5200. Streamwise and spanwise components shifted up by 2.0 and

1.0, respectively. Dashed vertical lines, hRL; dotted vertical lines, hsp.

motions are damped by the large bulk eddy-viscosity as expected, therefore we do not seek

any agreement with DNS data near the wall. Relative to the streamwise component, the

spanwise and wall-normal components of the RMS velocity fluctuations take some distance

past hsp before agreeing with the DNS benchmark data in the core region of the channel,

suggesting that the three-dimensionality of turbulence emerges at some distance away from

the RANS-LES interface. The lack of agreement below y/δ < 0.4 for Reτ = 2000 and y/δ <

0.2 for Reτ = 5200 in second-order statistics is not unexpected as it is an outcome of adopting

a Reynolds-averaging approach close to the wall. We note that our focus in this work to

investigate the role of bulk eddy-viscosity variation on the log-layer mismatch problem and

not to develop a new turbulence model.

One-dimensional normalized streamwise velocity spectra shown in Fig.6 further supports

our arguments about using uτ,c to scale turbulent fluctuations. Fig.6 presents E+
uu, for Reτ =

2000 at the channel centerline for both streamwise and spanwise directions. The simulations

capture well the large eddies as well as a portion of the inertial subrange at the lower

wavenumbers. Note that it is not realistic to expect capturing the spectra at higher wave

numbers because of the coarse mesh at hand. The simulation with tri-split forcing when
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FIG. 6. Streamwise velocity spectra. Streamwise velocity spectra for Reτ = 2000 (a) in streamwise

direction (b) in spanwise direction.

scaled with uτ,c agrees better with the normalized DNS spectra than both the single forcing

and the tri-split forcing when scaled with uτ,w.

From the profiles of first-order and second-order statistics of turbulence, we observe two

distinct velocity scales to nondimensionalize the results: uτ,w and uτ,c. We emphasize that

this duality in velocity scale is an artifact of the zonal enforcement of the constant mass

flow-rate through the channel, and it does not come from the actual physics of turbulent

channel flows. The only aspect that is consistent with expected flow physics is that uτ,c

attains a constant value in the LES core above the Reynolds-averaged zone. It then makes

sense to use uτ,c to scale the fluctuations in the LES region, as this region develops above a

RANS region with its own forcing. But a worthy question comes up: Why is uτ,w a better

velocity scale for the mean velocity profile? To answer this question we further analyze the

mean force balance.

As the split regions evolve under the constraint of maintaining the target mass flow-rate,

a global force balance is satisfied as follows

〈f1〉h1 + 〈f2〉h2 + 〈f3〉 h3) = τw =
u2
τ,w

δ
δ = fxδ, (20)

where h1 = hRL, h2 = hsp − hRL, and h3 = δ− hsp. From the above relationship, we clearly

see that uτ,w is an average velocity scale for the entire channel flow when it is forced zonally.

Table IV presents the normalized values that can be used to verify the above equation.
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TABLE IV. Normalized values for verification of Eq. 20. Each subscript represents a forcing region.

All forcing values are normalized by uτ,w and δ. All heights are normalized by δ. Mean forcing

values can be found in Figs. 3(a) and 3(b).

Reτ h1 h2 h3 < f1 > < f2 > < f3 >
∑

3

i=1
< fi > hi

2000 0.127 0.095 0.778 3.502 -4.873 1.312 1.001

5200 0.047 0.047 0.906 7.496 -2.445 0.841 1.000

Therefore, it is not surprising that mean velocity profiles across the channel agree well with

the DNS benchmark when normalized by the uτ,w. It is also evident why we cannot use uτ,c

to scale the entire velocity profile, because it does not satisfy the global force balance as

written in Eq. 20.

The formation of the so-called “super-streaks” near the RANS-LES interface has been

mentioned in earlier studies as a modeling artifact [7, 13]. We observe that the current

split-forcing approach is able to break up these “super-streaks” as shown in Fig. 7 where

y / δ ≈ 0.13 - 0.18. The coarseness of the current mesh does not accommodate formation

of physical streaks, but the ability for the split-forcing to reduce the size of the unphysical

streaks relative to single forcing simulation is encouraging. Away from the RANS-LES

interface, both the tri-split forcing and the single forcing produced similar flow structures.

IV. CONCLUSIONS

In this study, we showed that bulk eddy-viscosity variation can also contribute to log-

layer mismatch by reducing the degrees of freedom in the mean momentum-balance equation.

Unlike other studies where additional degrees of freedom were introduced through explicit

stochastic terms, we imposed the target mass flow-rate through the channel zonally without

resorting to an external forcing term. As a result, we have observed a significant reduc-

tion in the log-layer mismatch despite the coarseness of the computational mesh at hand.

Unphysical streaks at the RANS-LES interface have diminished in size, and skin friction

coefficients have improved markedly as well.

The zonal enforcement of the mass flow-rate through the channel allowed a distinct

velocity-scale to emerge in the LES core above the Reynolds-averaged region as a constant
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FIG. 7. Visualization of instantaneous streamwise velocity for Reτ = 2000 at wall-normal heights

of: (a) and (b) y / δ ≈ 0.13; (c) and (d) y / δ ≈ 0.18; (e) and (f ) y / δ ≈ 0.27. Reτ = 2000. Single

forcing results are shown in the left column and tri-split forcing results are shown in the right

column. All velocities and lengths are normalized by the bulk velocity and channel half-height,

respectively.

value. Both the second-order statistics and the one-dimensional velocity spectra agreed

better with the DNS benchmark data when normalized by this constant velocity scale ex-

tracted from the LES core. The existence of a constant velocity scale supports the formation

of an artificial boundary layer above the Reynolds-averaged region as originally suggested

by Baggett [12].

The current approach to enforce the mass flow-rate zonally is limited to the turbulent

channel flow problem, but it could be used to study the nature of turbulent fluctuations in

the outer layer for very high Reynolds numbers without taxing computational resources.
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