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NUMERICAL IMPLEMENTATIONS

OF THEORETICAL RESULTS

IN PARTIAL DIFFERENTIAL EQUATIONS

Luca Codenotti, PhD

University of Pittsburgh, 2018

In this work, we present two theoretical results in nonlinear partial differential equations and we

exploit both of them to produce novel visualizations of their solutions.

First, we show a proof of the existence and uniqueness of viscosity solutions to the p-Laplace

equation in the setting of the double obstacle problem. These solutions are built by adopting

the framework provided by so-called random tug-of-war games. Using the theoretical result, in

this context we employ a finite elements method to obtain visualizations of various approximate

solutions.

Second, we develop a proof of the density of C1,α solutions to the Monge-Ampère equation in the

set of continuous functions. This proof was obtained in the framework provided by the technique of

convex integration. The proof is written with all due details, which allowus to give explicit bounds

for every involved quantity.

By means of numerical computations, we construct approximations of anomalous solutions to

the Monge-Ampère equation, suitably guided by the bounds obtained by our theoretical results.

Finally, we use these approximations to give a graphical description of anomalous solutions.

The visualizations and the numerical results provide insight into the approximating constructions.
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1.0 GAME THEORETICAL INTERPRETATION OF THE OBSTACLE

PROBLEM FOR THE P -LAPLACE EQUATION

1.1 BACKGROUND IN PDE’S AND THE P -LAPLACE EQUATION

The foundation of modern analysis lies in set theory where we will begin the discussion. In this

work we only consider sets defined on the real line R or finite dimensional spaces RN . We omit

a formal definition of these well known and intuitive sets and their properties. A series of basic

definitions and theorems follow.

1.1.1 General theory

Definition 1.1.1 (Measurable space). A family Σ of subsets of a set X is called a σ-algebra if:

• it includes the empty set, i.e. ∅ ∈ Σ.

• it is closed under taking complement, i.e. A ∈ Σ⇒ X\A = Ac ∈ Σ.

• it is closed under taking countable union, i.e. {An}∞n=1 with An ∈ Σ⇒
⋃∞
n=1An ∈ Σ.

A pair (X,Σ) of a set and a σ-algebra is called a measurable space.

Definition 1.1.2 (Measurable function). Given measurable spaces (X,Σ) and (Y,Γ), a function

f : X → Y is called measurable if for all A ∈ Γ it holds f−1(A) = {x ∈ X; f(x) ∈ A} ∈ Σ. In

words, f is measurable if the preimage of any measurable set is measurable.

Definition 1.1.3 (Measure space). Given a measurable space (X,Σ), a function µ : Σ → R is a

measure if the following conditions hold:

• µ(∅) = 0.

• µ(A) ≥ 0 for every A ∈ Σ.

• {An}∞n=1 with An ∈ Σ pairwise disjoint ⇒ µ (
⋃∞
n=1An) =

∑∞
n=1 µ(An)
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A triple (X,Σ, µ) is called a measure space.

The above definitions were stated in the most general case. We will now turn to the actual

examples used in the rest of this work.

Definition 1.1.4 (Borel σ-algebra). The Borel σ-algebra B(RN ) on RN is formed by all sets that

can be obtained as countable unions of sets of the type
∏N
i=1(ai, bi) which are all the N -dimensional

rectangles.

Definition 1.1.5 (Borel measurable function). A function f : RN → RM is Borel measurable if

it is measurable with respect to the Borel σ-algebra. Note that for this to be true it is sufficient to

verify that for any rectangle R in RM we have f−1(R) ∈ B(RN ).

Lemma 1.1.6. Any Borel measurable function can be written as the increasing pointwise limit of

simple functions of the form:

f =

n∑
i=1

αiχAi where Ai ∩Aj = ∅ ∀i 6= j,

where each of the Ai is Borel measurable and αi ∈ R.

Proof. Given a positive Borel measurable function f : Ω → R where the domain Ω ⊂ RN is a

Borel set, consider a sequence of increasing sequences of numbers {α(n)
i }n

2

i=0 where α
(n)
i = i

n . For

i = 0 . . . n2 − 1, define the sets:

A
(n)
i = {x ∈ Ω; f(x) ∈ [α

(n)
i , α

(n)
i+1)} = f−1

(
[α

(n)
i , α

(n)
i+1)

)
,

and the set

A
(n)
n2 = {x ∈ Ω; f(x) ≥ n2}.

Since these are the preimage of intervals and f is measurable, each of the A
(n)
i must be a Borel set.

Define the sequence of functions

fn =

n2−1∑
i=1

α
(n)
i χ

A
(n)
i

+ χ
A

(n)

n2

n2 ≤ f.

For each x ∈ Ω, if f(x) is finite we have that eventually n > f(x), and there exists a sequence of α
(n)
in

converging from below to f(x) due to the density of rational numbers in R. Thus f(x) ≥ fn(x) ≥

α
(n)
in

guarantees that fn converge pointwise on the set where f is finite. If we admit f(x) = +∞ we

have that fn(x) = n2 → ∞. Thus we have shown pointwise convergence in the positive case and

when the image set is one dimensional. The construction can easily be extended to every Borel

measurable function f : RN → RM .
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Lemma 1.1.7. Let
{
un
}∞
n=1

be a sequence of Borel measurable functions pointwise converging to

a function u. The limit u is a Borel function.

Proof. Since the limit exists it is equal to the limit infimum and limit supremum. We note that:

(
inf
n≥l

un
)−1

([−∞, a)) =
∞⋃
n=l

(
u−1
n ([−∞, a))

)
,

(
sup
n≥l

un
)−1

([−∞, a)) =
∞⋂
n=l

(
u−1
n ([−∞, a))

)
.

Both are Borel measurable sets for all values of l as they are countable unions and intersections of

Borel sets obtained as preimages of Borel functions. We conclude by noting that:

lim inf
n→∞

un = sup
l≥1

inf
n≥l

fk,

lim sup
n→∞

un = inf
l≥1

sup
n≥l

fk.

Definition 1.1.8 (Lebesgue measure). The Lebesgue measure λ is defined on rectangles as the

volume given by the product of the length of sides. For a generic set A we define the inner and

outer Lebesgue measures as:

λ(A) = inf
{ n∑
i=1

Vol(Ri); Ri are N -dimensional rectangles, A ⊂
n⋃
i=1

Ri

}
.

λ(A) = sup
{ n∑
i=1

Vol(Ri); Ri are N -dimensional rectangles, A ⊃
n⋃
i=1

Ri

}
.

Clearly for any set A we have that λ(A) ≤ λ(A). On Borel sets the two will coincide due to the

fact that any Borel set may be written as the countable union of rectangles. We may thus define

the Lebesgue measure on Borel sets as λ(A) = λ(A) = λ(A).

Consider any Ω ⊂ RN open.

Definition 1.1.9 (Lebesque integral). We begin by defining the integral on simple functions, and

will extend this definition to all Borel measurable functions.

f =

n∑
i=1

αiχAi ,

ˆ
fdλ(x) =

n∑
i=1

αiλ(Ai).

For an arbitrary function f we define the lower and upper Lebesgue integrals:ˆ ∗
fdλ(x) = inf

{ˆ
gdλ(x); f ≤ g simple function

}
,

ˆ
∗
fdλ(x) = sup

{ˆ
gdλ(x); f ≥ g simple function

}
.

3



If the upper and lower Lebesgue integrals coincide we define the Lebesgue integral of f as:

ˆ
fdλ(x) =

ˆ ∗
fdλ(x) =

ˆ
∗
fdλ(x).

Given a Borel measurable function, the Lebesgue integral is always well defined. A function f is

called integrable if
´
|f |dλ(x) <∞.

Lemma 1.1.10 (Fatou’s Lemma). Let un be a sequence of positive Borel measurable functions.

Then: ˆ
lim inf
n→∞

undλ ≤ lim inf
n→∞

ˆ
undλ.

Proof. Consider any simple function v =
∑∞

i=1 αiχAi with positive αi and disjoint Borel measurable

Ai such that u ≤ lim infn→∞ un. Taking some constant t ∈ (0, 1), we may decompose each set as

follows:

Ai =
∞⋃
j=1

Bi,j where Bi,j = Ai ∩ {x ∈ Ω; un(x) > taj}.

Clearly Ai ⊃ Bi,j+1 ⊃ Bi,j for all i and j. Thus:

ˆ
Ω
undλ ≥

∞∑
i=1

ˆ
Ai

undλ ≥
∞∑
i=1

ˆ
Bi,j

undλ ≥ t
∞∑
i=1

aiλ(Bi,j).

Thus:

lim inf
n→∞

ˆ
undλ ≥ t

∞∑
i=1

aiλ(Ai) = t

ˆ
Ω
vdλ.

But this holds for all t and v, and thus:

lim inf
n→∞

ˆ
undλ ≥

ˆ
∗

lim inf
n→∞

undλ =

ˆ
lim inf
n→∞

undλ.

Theorem 1.1.11 (Monotone convergence theorem). Let un be a sequence of positive Borel mea-

surable functions such that un ≤ un+1 for all n. Then:

lim
n→∞

ˆ
Ω
undλ =

ˆ
Ω

lim
n→∞

undλ.

Proof. It is immediate to see that for all n:

ˆ
Ω
undλ ≤

ˆ
Ω

lim
n→∞

undλ.

It follows that:

lim
n→∞

ˆ
Ω
undλ ≤

ˆ
Ω

lim
n→∞

undλ.

4



The opposite direction inequality:

lim
n→∞

ˆ
Ω
undλ ≥

ˆ
Ω

lim
n→∞

undλ,

follows immediately from Fatou’s Lemma when we note that for monotone sequences the concepts

of limit and limit infimum coincide.

Definition 1.1.12 (Norm on a space). Given a vector space V we define a norm on it as any

function:

‖ · ‖ : V → R

which satisfies the following properties for any u, v ∈ V and any positive constant c ∈ R+:

(i) ‖u‖ ≥ 0.

(ii) ‖u‖ = 0 implies u = 0.

(iii) ‖cu‖ = c‖u‖.

(iv) ‖u+ v‖ ≤ ‖u‖+ ‖v‖ (the triangle inequality).

A vector space equipped with a norm will be called a normed space and denoted by (V, ‖ · ‖) If we

drop condition (ii) we have a seminorm for which we will use the notation [ · ].

Definition 1.1.13 (Convergence in norm). Given a sequence un in a normed space (V, ‖ · ‖) we

say that un converges in norm to u as n goes to ∞, namely:

un
n→∞−−−→ u,

if for all ε > 0 there exists an N such that for all n > N we have:

‖un − u‖ < ε.

Next we define some crucial function spaces. These are all to be considered as subset of the set

of all Borel functions.

Definition 1.1.14 (Continuous functions). A function u is continuous if for all x0 ∈ Ω, given any

ε > 0 there exists a δ > 0 such that

|x0 − x| < δ ⇒ |u(x0)− u(x)| < ε.

The space of all continuous functions is called C0(Ω), and if Ω is bounded may be equipped with the

norm ‖u‖0 = supx∈Ω |u|.

5



Definition 1.1.15 (Differentiable functions). Given a function u : Ω→ RM where Ω ⊆ RN is an

open set, we define its derivative at a point x ∈ Ω if it exists as the linear operator ∇u(x) which

satisfies:

lim
|h|→0

|u(x+ h)− u(x)−∇u(x) · h|
|h|

→ 0.

If such a linear operator exists we say that u is differentiable at the point x. If u is differentiable

at every point x ∈ Ω and the function x 7→ ∇u(x) is a continuous function, we say that u is

continuously differentiable on Ω. A function u is continuously differentiable up to the boundary

of Ω if there exists a differentiable function ū : RN → RM such that u(x) = ū(x) for all x ∈ Ω. We

define the space C1(Ω) as the space of all differentiable functions on Ω. If Ω is bounded we may

equip this space with the norm ‖u‖1 = supx∈Ω |u|+ supx∈Ω |∇u|.

Definition 1.1.16 (Lipschitz continuous functions). A function u is Lipschitz continuous if there

exists a constant L > 0 such that:

∀x, y ∈ Ω, |u(x)− u(y)| < L|x− y|.

Definition 1.1.17 (Lp spaces). For any p ∈ (0,∞) we define Lp(Ω) the space of all Lebesgue

measurable functions for which ‖ · ‖Lp(Ω) is finite, where:

‖u‖Lp(Ω) =

(ˆ
Ω
|u|p
) 1

p

.

This in fact defines a norm on the space Lp(Ω).

Definition 1.1.18 (Weak derivative). Given a measurable function u : Ω→ R we define its weak

partial derivative in the i-th coordinate if it exists as the function ∂iu which satisfies:

ˆ
Ω
u(∂iφ) = −

ˆ
Ω

(∂iu)φ ∀φ ∈ C∞0 (Ω).

Definition 1.1.19 (W 1,p spaces). W 1,p(Ω) is the subspace of Lp(Ω) comprised of all functions with

weak derivatives which also lie in Lp(Ω). This space is equipped with the natural norm:

‖u‖W 1,p(Ω) = ‖u‖Lp(Ω) +
N∑
i=1

‖∂iu‖Lp(Ω).

1.1.2 The p-Laplace operator

The p-Laplacian and the p-Laplace equation are defined as:

the operator: ∆pu := div
(
|∇u|p−2∇u

)
and the equation: ∆pu = 0. (1.1)

6



Where p ∈ (1,∞) The equation is the Euler-Lagrange equation for the potential energy:

Ep(u) =

ˆ
Ω
|∇u|p dx. (1.2)

That is, solutions of the p-Laplace equation minimize Ep(u).

In this work we consider three separate concepts of generalized solutions to the p-Laplace

equation. As we shall see, these solutions coincide under appropriate conditions.

Definition 1.1.20 (Weak solutions to the p-Laplacian). A function u ∈W 1,p
loc (Ω) is a weak super-

solution to the p-Laplacian if for all positive test functions φ ∈ C∞0 (Ω,R+):

ˆ
Ω
|∇u|p ≤

ˆ
Ω
|∇u+∇φ|p.

It is a weak subsolution to the p-Laplacian if for all negative test functions φ ∈ C∞0 (Ω,R−):

ˆ
Ω
|∇u|p ≤

ˆ
Ω
|∇u+∇φ|p.

It is a weak solution if it is both a subsolution and a supersolution.

Remark 1.1.21. It is a classical result in calculus of variations that an equivalent definition of

weak supersolution is given by:

ˆ
Ω
〈|∇u|p−2∇u,∇φ〉 ≥ 0 ∀φ ∈ C∞0 (Ω,R+).

This remark is justified by the following inequality:

|∇(v + φ)|p ≥ |∇u|p + p〈|∇u|p−2∇u,∇φ〉

Definition 1.1.22 (p-superharmonic function). A function u : Ω → R ∪ {∞} is p-superharmonic

if it is lower-semicontinuous, not identically ∞ on any connected component of Ω and for all

subdomains D b Ω and weak solutions v ∈ C(D̄) ∩W 1,p(D), it satisfies the comparison principle:

v(x) ≤ u(x) ∀x ∈ ∂D =⇒ v(x) ≤ u(x) ∀x ∈ D.

It is a p-subharmonic function if it is upper-semicontinuous and for all subdomains D b Ω and

weak solutions v ∈ C(D̄) ∩W 1,p(D), it satisfies the comparison principle:

v(x) ≤ u(x) ∀x ∈ ∂D =⇒ v(x) ≤ u(x) ∀x ∈ D.

A p-harmonic function is continuous and both p-subharmonic and p-superharmonic.

7



Definition 1.1.23 (Viscosity supersolution to the p-Laplacian). We define a lower-semicontinuous

function u : Ω̄ → R which is not identically ∞ on any connected component of Ω as a viscosity

supersolution on the set Ω if it satisfies the following property: for every x0 ∈ Ω and every φ ∈ C2(Ω)

such that:

φ(x0) = u(x0), φ < u in Ω\{x0}, ∇φ(x0) 6= 0,

there holds: ∆pφ(x0) ≤ 0.

Similarly, an upper-semicontinuous function u : Ω̄→ R which is not identically∞ on any connected

component of Ω is a viscosity subsolution on the set Ω if it satisfies the following property: for every

x0 ∈ Ω and every φ ∈ C2(Ω) such that:

φ(x0) = u(x0), φ > u in Ω\{x0}, ∇φ(x0) 6= 0,

there holds: ∆pφ(x0) ≥ 0.

Finally a viscosity solution is a function which satisfies both properties.

Observation 1.1.24 (Averaging property). A useful averaging property of viscosity solutions to

the p-Laplacian is stated without proof. The calculation which provides the proof can be found in

the proof of Theorem 1.1.30. Given u a viscosity solution to the p-Laplace equation, we have:

u(x) =
α

2
sup
Bε(x)

u+
α

2
inf
Bε(x)

u+ β

 
Bε(x)

u+ o(ε2),

with α =
p− 2

N + p
, β =

2 +N

N + p
.

(1.3)

This property provides the inspiration for the connection to tug-of-war games used in this work.

Note that in the case of p = 2 this becomes the well known averaging property for harmonic

functions. In which case the proerty holds for all ε without the error term.

Theorem 1.1.25. Let v be in C0(Ω) and in W 1,p
loc (Ω). Then v is p-superharmonic if and only if it

is a weak supersolution.

Proof. Assume: ˆ
Ω
〈|∇u|p−2∇u,∇φ〉 ≥ 0 ∀φ ∈ C∞0 (Ω,R+).

Consider any open set D ⊂⊂ Ω, and a p-harmonic function h ∈ C0(D̄) such that h ≤ u on ∂D.

Consider the test function φ = max{h− v, 0}, and evaluate:

ˆ
v<h
|∇v|p ≤

ˆ
v<h
〈|∇u|p−2∇u,∇φ〉 ≤

(ˆ
v<h
|∇v|p

)1− 1
p
(ˆ

v<h
|∇h|p

) 1
p

.
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This implies: ˆ
v<h
|∇v|p ≤

ˆ
v<h
|∇h|p.

On the boundary of the set though, v = h, and by the fact that v is a weak supersolution we

have that v is a minimizer. This contradiction implies that the set v < h must have measure

zero, but since v and h are both continuous, this set must be empty. Thus v ≥ h proving it is

p-superharmonic.

The converse statement was proven by Heinonen and Kilpeläinen in 1988 [10].

We finish the discussion of the theory of weak solutions to the p-Laplace equation by stating

the following Theorem proven by Juutinen, Lindqvist and Manfredi in 2001.

Theorem 1.1.26. [12] Let v be a viscosity solution on a domain Ω. Then v is in W 1,p
loc (Ω) and v

is p-harmonic.

1.1.3 The two obstacle problem

Definition 1.1.27 (Two obstacle problem). The two obstacle problem for the p-laplacian is defined

by two obstacles Ψ1 ≤ Ψ2 : Ω → R and a boundary value F : ∂Ω → R. The solution to the two

obstacle problem is a function u which satisfies:

Ψ1 ≤ u ≤ Ψ2 in Ω

u = F on ∂Ω

−∆pu = 0 in {x ∈ Ω s.t. Ψ2(x) > u(x) > Ψ1(x)}

−∆pu ≥ 0 in {x ∈ Ω s.t. u(x) = Ψ1(x)}

−∆pu ≤ 0 in {x ∈ Ω s.t. u(x) = Ψ2(x)} .

(1.4)

Note that this general definition may be weakened to include weaker definitions of solutions.

Definition 1.1.28 (Viscosity solution to the double obstacle problem). We define a viscosity

solution to the double obstacle problem on the set Ω defined by the boundary condition F : ∂Ω→ R,

and obstacles Ψ1,Ψ2 : Ω̄→ R as a continuous function u : Ω̄→ R which satisfies the following:

(i) u = F on ∂Ω and Ψ1 ≤ u ≤ Ψ2 in Ω.

(ii) For every x0 ∈ Ω such that u(x0) < Ψ2(x0) and every φ ∈ C2(Ω) such that:

φ(x0) = u(x0), φ < u in Ω\{x0}, ∇φ(x0) 6= 0,

there holds: ∆pφ(x0) ≤ 0.
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(iii) For every x0 ∈ Ω such that u(x0) > Ψ1(x0) and every φ ∈ C2(Ω) such that:

φ(x0) = u(x0), φ > u in Ω\{x0}, ∇φ(x0) 6= 0,

there holds: ∆pφ(x0) ≥ 0.

By discretizing the averaging property we obtain the following useful definition.

Definition 1.1.29 (ε-p-harmonious solution to the double obstacle problem). Define constants

α+ β = 1 as in the averaging property (1.3). Consider the expanded domain X = Ω∪Γ defined by

adding a fattened boundary to Ω. The fattened boundary Γ is defined as a set such that Ω +Bε(0) \

Ω ⊂ Γ, and X is an open set.

uε(x) =


max

{
Ψ1(x),min

{
Ψ2(x), α2 supBε(x) uε + α

2 infBε(x) uε +
ffl
Bε(x) uε

}}
in Ω,

F (x) in Γ.

(1.5)

The main result discussed in this section will regard the definition and uniqueness of viscosity

solutions.

Theorem 1.1.30. Given F , Ψ1 and Ψ2 bounded Lipschitz continuous functions on a domain

Ω ⊂ RN open and bounded, there exists u : Ω̄ → R the unique viscosity solution to the double

obstacle problem (1.4).

The viscosity solution will be found as the limit of ε-p-harmonious solutions to the problem.

Proposition 1.1.31. Given F , Ψ1 and Ψ2 bounded Lipschitz continuous functions on a domain

Ω ∩ Γ = X ⊂ RN open and bounded, for every ε > 0, there exists uε : Ω̄ → R ε-p-harmonious

solution to the double obstacle problem. Such a solution is unique.

The construction from the proof of this Proposition was used in the numerical implementation

which allow us to view some ε-p-harmonious solutions.

The proof of Theorem 1.1.30 was the work of the author in collaboration with Lewicka and

Manfredi, and may be found in [5]. It will be presented in more detail in this work. The proof

follows the structure of a similar result for the single obstacle problem found in [14]. The double

obstacle problem is an extension of the single obstacle problem, and the proof of the latter was

used in a non trivial way to obtain the proof of the former.

In the proof of uniqueness of the viscosity solution we will need to use a similar result for weak

solutions to the two obstacle problem. We provide the statement without proof.
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Theorem 1.1.32. Define p, F,Ψ1,Ψ2 as in Theorem 1.1.30. Define the set of functions:

KF,Ψ1,Ψ2(Ω) =
{
u ∈W 1,p(Ω)

∣∣u = F on ∂Ω, ψ1 ≤ u ≤ ψ2 in Ω
}
. (1.6)

(i) There exists a unique u ∈ KF,Ψ1,Ψ2(Ω) such that:

∀v ∈ KF,Ψ1,Ψ2(Ω)

ˆ
Ω
|∇u|p ≤

ˆ
Ω
|∇v|p.

(ii) The unique minimizer u is continuous up to the boundary: u ∈ C(Ω̄).

(iii) Let ū be the unique minimizer for a new problem defined by F̄ , Ψ̄1, Ψ̄2, then

F̄ ≥ F, Ψ̄1 ≥ Ψ1, Ψ̄2 ≥ Ψ2 =⇒ ū ≥ u

This result was proven by Farnana [8] in 2009. In this paper, the existence and uniqueness of

the minimizer were proven using the convexity of the operator
´

Ω |∇u|
p.

1.2 BACKGROUND IN PROBABILITY

We lay out the fundamental concepts in probability theory used in this work. Note that these

definitions and theorems will not be stated in the most general setting possible.

Definition 1.2.1 (Probability measure). A measure P on a measurable space (Ω,Σ) is a probability

measure if P(Ω) = 1. A triple (Ω,Σ,P) is called a probability space

We present two important probability measures on a measurable space (Ω,Σ) which will be

used in this thesis.

Example 1.2.2 (Uniform probability). For any A ⊂ Ω ⊂ RN define the probability UΩ as:

UΩ(A) =

´
A 1dλ´
Ω 1dλ

=
λ(A)

λ(Ω)

Example 1.2.3 (Dirac probability). For any x ∈ Ω, for A ⊂ Ω define the probability δx(A) as:

δx(A) =


1 x ∈ A

0 x /∈ A.

Definition 1.2.4 (Random variable). We define a random variable on the space (Ω,F ,P) as an

F measurable function X : Ω→ R ∪ {−∞,∞}.
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Definition 1.2.5 (Expectation). The expectation of a random variable X written E[X] is the

integral in dP:

E[X] =

ˆ
Ω
XdP.

A random variable X is called integrable if:

E[|X|] =

ˆ
Ω
|X|dP <∞.

Definition 1.2.6 (Conditional Expectation). Consider a probability space (Ω,F ,P) and a sub

σ-algebra G ⊂ F . Given X an integrable random variable on (Ω,F ,P), define the conditional

expectation of X with respect to G as the G-measurable random variable Y = E[X|G], integrable

with respect to P|G, such that:

ˆ
A
XdP =

ˆ
A
Y dP ∀A ∈ G.

The following property is evident from the definition:

E[E[X|G]] = E[X].

Definition 1.2.7 (Filtration). Given a probability space (Ω,F ,P) we define a filtration on F as a

sequence of σ-algebras {Fn}∞n=0 ⊂ F with the following inclusion property:

Fn−1 ⊂ Fn.

The collection (Ω,F , {Fn}∞n=0,P) is called a Filtered space if F is the smallest σ-algebra containing

the union of all Fn.

Definition 1.2.8 (Stopping time). Given a filtered space (Ω,F , {Fn}∞n=0,P), define a stopping

time on the filtration as a function

τ : Ω→ N ∪ {0},

such that the following sets have the property:

Aτn = {ω ∈ Ω; τ(ω) ≤ n} ∈ Fn ∀n ≥ 0.

Definition 1.2.9 (Random variable on a filtered space). We define a random variable on the

filtered space (Ω,F , {Fn}∞n=0,P) as a sequence of of random variables {Xn}∞n=0 where each:

Xn : Ω→ R

is Fn-measurable. A random variable will be integrable if each of the Xn is integrable in Fn.
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Definition 1.2.10 (Martingales). On a filtered space (Ω,F , {Fn}∞n=0,P), a random variable X =

{Xn}∞n=0 is a martingale if for every n > 0 we have:

E[Xn|Fn−1] = Xn−1.

It is a submartingale if:

E[Xn|Fn−1] ≤ Xn−1.

It is a supermartingale if:

E[Xn|Fn−1] ≥ Xn−1.

Theorem 1.2.11 (Doob’s optional stopping theorem). This famous Theorem is presented here in

the particular case used in this work. Let X = {Xn}∞n=0 be a random variable on (Ω,F , {Fn}∞n=0,P)

such that for all i ∈ N there holds |Xi| ≤ C. Let τ : Ω → N be a stopping time such that

P({τ = ∞}) = 0. Then, the random variable Xτ on (Ω,F ,P) defined by Xτ (ω) = Xτ(ω)(ω) is

integrable and:

• if X = {Xn}∞n=0 is a submartingale, then E[Xτ ] ≥ E[X0],

• if X = {Xn}∞n=0 is a martingale, then E[Xτ ] = E[X0],

• if X = {Xn}∞n=0 is a supermartingale, then E[Xτ ] ≤ E[X0].

Proof. The fact that Xτ is integrable follows from Fatou’s Lemma applied to the integrable se-

quences of random variables Xτ∧n defined by

Xτ∧n(ω) =


Xn(ω) if n < τ(ω),

Xτ (ω) if n ≥ τ(ω).

Each of these is bounded and integrable, and for every ω ∈ Ω we have that Xτ∧n(ω)→ Xτ (ω).

We now prove the result for submartingales. For a supermartingale {Xn} the result will follow

by applying the submartingale result to the submartingale {−Xn}. The result for martingales

follows because martingales are both sub and super martingales.

Let {Xn} be a submartingale. We show that Xτ∧n ≥ E[X0] for every n. Consider any A ∈ Fnˆ
A
E
[
Xτ∧n+1

∣∣Fn]dP =

ˆ
A
Xτ∧n+1dP

=

ˆ
A∪{τ≤n}

Xτ∧ndP +

ˆ
A∪{τ>n}

Xn+1dP

≥
ˆ
A∪{τ≤n}

Xτ∧ndP +

ˆ
A∪{τ>n}

XndP

=

ˆ
A∪{τ≤n}

Xτ∧ndP +

ˆ
A∪{τ>n}

Xτ∧ndP =

ˆ
A
Xτ∧ndP.
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We may thus prove by induction that:

E[Xτ∧n+1] = E
[
. . .E

[
Xτ∧n+1

∣∣Fn]∣∣ . . . ∣∣F0

]
≥ E

[
. . .E

[
Xτ∧n

∣∣Fn−1

]∣∣ . . . ∣∣F0

]
≥ . . . ≥ E

[
X0

]
.

Finally we show that:

lim
n→∞

E[Xτ∧n] = E[Xτ ].

Fix ε > 0 and consider the sets:

Ai =
∞⋃
n=i

{
|Xτ∧n −Xτ | > ε

}
.

We have that:
∞⋂
i=1

Ai ⊂ {τ =∞} =⇒ P
( ∞⋂
i=1

Ai
)

= 0.

Thus for i large enough we may write:

ˆ
Ω
|Xτ∧n −Xτ |dP ≤

ˆ
Ω\Ai

|Xτ∧n −Xτ |dP +

ˆ
Ai

|Xτ∧n|+ |Xτ |dP ≤ ε+ 2CP(Ai) ≤ 2ε.

1.3 THE LAPLACE EQUATION AND BROWNIAN MOTION

The connection between the p-Laplace equation and game theory was recently discovered. The

field was established in 2008 with the publishing of the seminal paper by Peres, Schramm, Sheffield

and Wilson [21]. In this paper they showed the connection of solutions to the ∞-Laplace equation

to the expected outcome of a zero-sum-game. Around the same time, a similar game was connected

to solutions of the p-Laplace equation in the case of 1 < p < ∞ [22]. In 2012 in [16] the template

for the tug-of-war game used in this result was used to show existence of viscosity solutions in the

case of 2 ≤ p <∞.

1.4 TUG-OF-WAR GAMES WITH NOISE

Consider the following setting for a tug-of-war game with noise. The game is played by two Players

whom we will refer to as Player I and Player II, on a game board defined by the set X from 1.1.29.

14



The set X consists of set Ω and its fattened boundary Γ. No point of the set Ω can be within ε of

any point outside the set X. The game starts from an initial position x0 ∈ Ω, and at each turn a

new position for the token is chosen within distance ε of the previous position. Depending on the

outcome of a random event, the token will be moved by one of the Players or to a random point

within the ball of radius ε. The probability of the token being moved randomly is β = 1 − α, the

probability of each Player moving the token is α
2 . The game ends when the token exits Ω or when

either of the Players decides to stop the game. When the game ends, Player II pays Player I a

certain payoff. This payoff is calculated using three functions: Ψ1 ≤ Ψ2 : X → R and F : Γ → R.

If the game ends with the token exiting Ω, the payoff is determined by the value of F at the last

position of the token. Otherwise, if Player I ends the game the payoff is given by Ψ1 at the spot,

and by Ψ2 if Player II ends it.

1.4.1 The probability space

We begin the discussion by defining the set of all possible playthroughs of the game. These are the

infinite sequences of points in the set X starting with x0:

X∞,x0 = {ω = (x0, x1, x2, . . . ); xi ∈ X} .

On this set we define a filtration of σ-algebras {Fx0n }∞n=0. Each Fx0n is the smallest σ-algebra

containing all the sets of the form:

A ⊂ X∞,x0 such that A = A1 × · · · ×An ×X ×X × . . . with Ai ∈ X Borel measurable.

For simplicity of notation we will refer to sets A×X×X... ∈ Fx0n as A ∈ Xn and omit the coda. We

define Fx0 as the smallest σ-algebra on X∞,x0 containing the union of all Fx0n . We show that Fx0n
forms a filtration over (X∞,x0 ,Fx0) by noting that Fx0n ⊂ F

x0
n+1. Given a set A ∈ Fx0n consider the

set A×X ⊂ Xn+1, clearly this new set is in Fx0n+1, but the two are the same set when considered

as subsets of X∞,x0 . We further define a very important set of functions xn : X∞,x0 → X. Given

ω = (x0, x1, ...) we set xn(ω) = xn.

Lemma 1.4.1. For all n, the function xn is Fx0n -measurable.

Proof. Given a Borel set B ⊂ X, the set A = X × · · · ×X ×B×X . . . with B at the n’th position

in the series is Fx0n -measurable. Given ω ∈ A, we have that xn(ω) ∈ B. On the other hand, if

xn(ω) ∈ B, then ω ∈ A. Thus we have that A = f−1(B) is in Fx0n and thus xn is measurable.
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1.4.2 The strategies

We formalize the notion of strategies that the two Players follow during the game. We define as

strategies the sequences of functions σI = {σnI : Xn → X}∞n=0 and σII = {σnII : Xn → X}∞n=0.

These functions follow the rule:

∀n > 0, σnI (x0, . . . , xn) ∈ Bε(xn), and σnII(x0, . . . , xn) ∈ Bε(xn),

that is, every move made by a Player must have length less than ε.

Next, we define the relevant stopping times. The first stopping time stops the game at the first

exit time from Ω, given ω ∈ X∞,x0 :

τ0(ω) = min {n ≥ 0; xn(ω) ∈ Γ}

The two Players respectively choose stopping times τI and τII subject to the condition that τI ≤ τ0

and τII ≤ τ0.

For any stopping time τ and number n, define the sets:

Aτn = {ω ∈ X∞,x0 ; τ(ω) ≤ n}.

To show that Aτn is Fx0n measurable we note that given ω1 ∈ Aτn, any ω2 such that xi(ω1) = xi(ω2)

for all i ≤ n must also be in Aτn. Furthermore, we define the sets:

AτI<τIIn =
n⋃
k=1

(
AτIk \A

τII
k

)
These sets are also Fx0n measurable, as each Aτk is measurable and by definition σ-algebras are

closed under countable unions, intersections and complements. Note that A\B = A ∩ Bc. These

sets comprise of all game plays ω for which Player I stops the game before the n’th turn and

before Player II stops it. Finally for simplicity of notation we define the total stopping time

τ = τ0 ∧ τI ∧ τII .

1.4.3 The probability measures

Given parameters α ≥ 0, β > 0 such that α + β = 1, and strategies and stopping times as above,

we define the following family of probability measures. For every n ≥ 0, and every finite sequence

(x0, . . . , xn) of points in X define the transition probabilities:

γn[x0, . . . , xn] =


α
2 δσnI (x0,...,xn) + α

2 δσnII(x0,...,xn) + βUBε(xn) (x0, . . . , xn) /∈ Aτn,

xn (x0, . . . , xn) ∈ Aτn.
(1.7)
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with the Dirac delta δx and the uniform probability U measures as defined in (1.2.3), and (1.2.2).

Lemma 1.4.2. Given a Borel set A ⊂ X and n ≥ 1, the function

(x0, . . . , xn) 7→ γn[x0, . . . , xn](A)

is Borel measurable. This function represents the probability that xn+1 will lie in A given the history

(x0, . . . , xn). This property means that this family of probabilities is jointly measurable

Proof. The function f : (x0, . . . , xn) 7→ δσnI (x0,...,xn)(A) which only takes values 0 or 1 is Borel

measurable as:

f−1(1) = (σnI )−1(A), f−1(0) = (σnI )−1(Ac).

Likewise, the function g : (x0, . . . , xn) 7→ δσnII(x0,...,xn)(A) is Borel measurable as:

g−1(1) = (σnII)
−1(A), g−1(0) = (σnII)

−1(Ac).

The function h : x 7→ UBε(x)(A) is Borel measurable as it is continuous:

|h(x)− h(y)| = |λ(A ∩Bε(x))− λ(A ∩Bε(y))|
λ(Bε(x))

≤ |λ(Bε(y)\Bε(x))− λ(Bε(x)\Bε(y))|
λ(Bε(x))

≤ C|x− y|.

The sum of Borel measurable functions is Borel measurable, thus the Lemma is proven.

We may now define for every n ≥ 1 probability measures Pn,x0σI ,σII ,τ on the σ-algebra Fx0n by:

Pn,x0σI ,σII ,τ
(A1 × · · · ×An) =

ˆ
A1

· · ·
ˆ
An

1dγn−1[x0 . . . xn−1] . . . dγ0[x0]

This probability measure is the probability that when playing a game with initial position x0, the

first n positions x1, . . . , xn each lie in the corresponding A1, . . . , An. These probabilities satisfy

Kolmogoroff’s consistency conditions:

Pn+k,x0
σI ,σII ,τ

(A1 × · · · ×An ×Xk) = Pn,x0σI ,σII ,τ
(A1 × · · · ×An).

This holds because:

ˆ
X
· · ·

ˆ
X

1dγn+k−1[x0 . . . xn+k−1]dγn[x0 . . . xn−1] = 1.

Lemma 1.4.3 (Kolmogoroff’s consistency theorem). The Theorem exists in a more general setting

but we will state it and prove it in this particular case. Given the sequence Pn,x0σI ,σII ,τ , there exists a

probability Px0σI ,σII ,τ such that for every n and A ∈ Fx0n :

Px0σI ,σII ,τ (A) = Pn,x0σI ,σII ,τ
(A).
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Proof. Let A ∈ Fx0 , then A is formed by the countable union or intersection of sets of the type

A = A1 × · · · ×An × . . .

The probability Px0σI ,σII ,τ needs only be defined on such sets and may be extended to the whole of

Fx0 by the rules of measures. Given the set A = A1 × · · · ×An × . . . we define:

Px0σI ,σII ,τ (A) = lim
n→∞

Pn,x0σI ,σII ,τ
(A1 × · · · ×An).

Such a limit always exists as the sequence is bounded below by 0 and decreasing:

Pn,x0σI ,σII ,τ
(A1 × · · · ×An) = Pn+1,x0

σI ,σII ,τ
(A1 × · · · ×An ×X) ≥ Pn+1,x0

σI ,σII ,τ
(A1 × · · · ×An ×An+1).

We must now show that Px0σI ,σII ,τ is a probability measure. The first two conditions are easily

satisfied:

Px0σI ,σII ,τ (∅) = lim
n→∞

0 = 0,

Px0σI ,σII ,τ (X) = lim
n→∞

1 = 1.

We need to show countable disjoint additivity on a set of generator elements of Fx0 . Consider any

sequence of pairwise disjoint sets:

{
A(i) = A

(i)
1 × · · · ×A

(i)
n × . . .

}∞
i=1

Consider the sum of the probabilities of each set:

∞∑
i=1

Px0σI ,σII ,τ (A(i)) = lim
k→∞

k∑
i=1

lim
n→∞

Pn,x0σI ,σII ,τ

(
A

(i)
1 × · · · ×A

(i)
n

)
.

Since the argument of the sum is bounded and the sum is finite we may switch the sum and the

limit, and since the sum is bounded we may switch the two limits:

∞∑
i=1

Px0σI ,σII ,τ (A(i)) = lim
n→∞

lim
k→∞

k∑
i=1

Pn,x0σI ,σII ,τ

(
A

(i)
1 × · · · ×A

(i)
n

)
= lim

n→∞

∞∑
i=1

Pn,x0σI ,σII ,τ

(
A

(i)
1 × · · · ×A

(i)
n

)
= lim

n→∞
Pn,x0σI ,σII ,τ

( ∞⋃
i=1

(
A

(i)
1 × · · · ×A

(i)
n

))
= Px0σI ,σII ,τ

( ∞⋃
i=1

A(i)
)

The second to last equality is justified by the fact that each of the Pn,x0σI ,σII ,τ is in fact a probability

measure. Thus Px0σI ,σII ,τ is well defined and for A ∈ Fx0 we have that Px0σI ,σII ,τ (A) = Pn,x0σI ,σII ,τ (A).
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Observation 1.4.4. Let v : X → R be a bounded Borel function. Given n ≥ 1, the conditional

expectation Ex0σI ,σII ,τ{v ◦ xn|F
x0
n−1} of the random variable v ◦ xn is a Fx0n−1-measurable function on

X∞,x0. Using the definition of conditional expectation, we write:

Ex0σI ,σII ,τ{v ◦ xn|F
x0
n−1} =

ˆ
X
vdγn−1[x0 . . . xn − 1].

This follows from the definition:

ˆ
Xn

ˆ
X
vdγn−1[x0 . . . xn − 1]dPn−1,x0

σI ,σII ,τ
=

ˆ
Xn+1

vdPn,x0σI ,σII ,τ

Next we need to prove a crucial result that guarantees that the game will end almost surely.

To do so we will need to lay out some preliminary theory.

Definition 1.4.5. Redefine the game on the extended game board Y = RN . The initial token

position will be x0 ∈ Ω and τ0 will be the time of first exit from Ω as before. The strategies are

modified in the following way:

σ̄I(x0 . . . xn) =


σI(x0 . . . xn) (x0 . . . xn) ∈ Xn,

xn otherwise.

σ̄II is defined in an analogous manner. Since τI , τII ≤ τ0, these need no redefinition. The transition

probabilities γ̄n and the probabilities Px0τ,σ̄I ,σ̄II are redefined using these strategies.

Given this definition we have:

(x0 . . . xn) ∈ Xn =⇒ γ̄n[x0 . . . xn] = γn[x0 . . . xn].

In fact this holds for any (x0 . . . xn) /∈ Aτ0n . This allows us to state a crucial result.

Lemma 1.4.6. Let A ∈ Fx0n be such that for any ω = (x0 . . . xn . . . ) ∈ A, it holds that γ̄n[x0 . . . xn] =

γn[x0 . . . xn], then:

Px0τ,σ̄I ,σ̄II (A) = Px0τ,σI ,σII (A).

Proof. The Lemma is proven by induction on n. The base case is trivial as

Px01,σI ,σII
= γ0[x0] = γ̄0[x0] = Px01,σ̄I ,σ̄II

.

Let A ⊂ {x0} × Y n be a Borel set. For an arbitrary η > 0 take a covering A ⊂
⋃∞
i=1(Ai1 × Ai2)

where each Ai1 ⊂ {x0} × Y n−1 and Ai2 ⊂ Y are pairwise disjoint Borel sets, and:

0 ≤

( ∞∑
i=1

Px0n,σI ,σII (A
i
1 ×Ai2)− Px0n,σI ,σII (A)

)
+

( ∞∑
i=1

Px0n,σ̄I ,σ̄II (A
i
1 ×Ai2)− Px0n,σ̄I ,σ̄II (A)

)
≤ η.
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Define Ai = A ∩ (Ai1 × Ai2) and π(Ai) = {(x0, . . . xn−1); ∃xn ∈ Y, (x0, . . . xn) ∈ Ai} for every i.

Note that π(Ai) is not necessarily a Borel set, but it is an analytic set. This means that there exist

Borel sets Bi
1 and Ci1 such that Bi

1 ⊂ π(Ai) ⊂ Ci1 and:

Px0n−1,σI ,σII
(Ci1\Bi

1) = Px0n−1,σ̄I ,σ̄II
(Ci1\Bi

1) = 0

Thus by the induction hypothesis we have that Px0n−1,σI ,σII
|Ci1 = Px0n−1,σ̄I ,σ̄II

|Ci1 , and we conclude:

Px0n,σI ,σII (B
i
1 ×Ai2) =

ˆ
Bi1

γn−1[x0...xn−1](A
i
2)dPx0n−1,σI ,σII

=

ˆ
Bi1

γ̄n−1[x0...xn−1](A
i
2)dPx0n−1,σ̄I ,σ̄II

= Px0n,σ̄I ,σ̄II (B
i
1 ×Ai2).

Furthermore we have that

Px0n,σI ,σII ((C
i
1\Bi

1)×Ai2) = Px0n,σ̄I ,σ̄II ((C
i
1\Bi

1)×Ai2) = 0.

Putting these together we obtain that:∣∣∣∣∣
∞∑
i=1

Px0n,σI ,σII (B
i
1 ×Ai2)− Px0n,σI ,σII (A)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
i=1

Px0n,σI ,σII (C
i
1 ×Ai2)−

∞∑
i=1

Px0n,σI ,σII (A
i)

∣∣∣∣∣
≤

∣∣∣∣∣
∞∑
i=1

Px0n,σI ,σII (A
i
1 ×Ai2)−

∞∑
i=1

Px0n,σI ,σII (A
i)

∣∣∣∣∣ ≤ η.
The same estimate holds with the overline probabilities, and thus:

Px0n,σI ,σII (A)− Px0n,σ̄I ,σ̄II (A) ≤ 2η,

where η was arbitrarily small.

Lemma 1.4.7. In the given setting the probability that the game will continue for infinite turns is

zero:

Px0σI ,σII ,τ
(
{ω ∈ Xx0,∞; τ0(ω) =∞}

)
= 0.

Proof. 1. In this first part we redefine the game on the extended game board Y = RN as defined

in (1.4.5). We apply Lemma 1.4.6 to show that Px0τ,σ̄I ,σ̄II ({τ < ∞}) = Px0τ,σI ,σII ({τ < ∞}). This

claim is proven by writing {τ <∞} =
⋃∞
n=0{τ = n} where the union is disjoint, and we note that

{τ = n} ∈ Fx0n . Thanks to Lemma 1.4.6 we may write Px0τ,σ̄I ,σ̄II (τ = n) = Px0τ,σI ,σII (τ = n) for all n.

Thus we obtain:

Px0τ,σ̄I ,σ̄II ({τ <∞}) =
∞∑
n=0

Px0τ,σ̄I ,σ̄II ({τ = n}) =
∞∑
n=0

Px0τ,σI ,σII ({τ = n}) = Px0τ,σI ,σII ({τ <∞}).
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Having shown this the overline notation will be dropped for simplicity of reading.

2. Next we show that the probability of {τ <∞} is greater than the probability of an interesting

set Sx0 . We note that since τ ≤ τ0, it holds that Px0τ,σI ,σII ({τ < ∞}) ≥ Px0τ,σI ,σII ({τ0 < ∞}). Next

we define a subset of the ball

A0 =
{
x ∈ Bε(0); |x| ∈

( ε
2
, ε
)
, x · e1 ∈

(
− π

8
,
π

8

)}
.

Figure 1: The set A0 inside the ball of radius ε

Clearly there exists K large enough that if the token is moved by a vector in A0 consecutively

K times, it will exit Ω. Define the set of all game plays such that the token is moved in such a

manner:

Sx0 = {ω ∈ Y∞,x0 ; ∃i0 s.t. ∀i = i0, . . . , i0 +K, xi+1 − xi ∈ A0}.

Clearly, Sx0 ⊂ {τ0 <∞}, and thus Px0τ,σI ,σII ({τ0 <∞}) ≥ Px0τ,σI ,σII (Sx0).

3. All that is left to prove is that Px0τ,σI ,σII (Sx0) = 1.

We begin by noting that for any chosen strategies and any turn n, we have that

Px0τ,σI ,σII ({xn − xn+1 ∈ A0}) ≥ β
|A0|
|Bε(0)|

= θ > 0.

That is the probability that xn+1 is chosen randomly and the random choice lands in A0.

Considering the set S0
x0 = {ω ∈ Y∞,x0 ; ∀i = 0, . . . ,K, xi+1 − xi ∈ A0}, we have

Px0τ,σI ,σII (S
0
x0) ≥ θK .
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This implies that:

Px0τ,σI ,σII ({τ > K}) ≤ 1− θK .

Taking this as a base case we prove by induction that

Px0τ,σI ,σII ({τ > nK}) ≤ (1− θK)n.

For the inductive step we calculate:

Px0τ,σI ,σII ({τ > nK}) = E[χ{τ>nK}] = E[E[χ{τ>nK}|F(n−1)K ]].

By the same argument used to prove the base step we have that:

E[χ{τ>nK}|F(n−1)K ] =

ˆ
X
· · ·

ˆ
X
χ{τ>nK}dγ(n−1)K [x0, . . . , x(n−1)K ] . . . γnK [x0, . . . , xnK ]

We note that this integral is zero if x0, . . . , x(n−1)K are such that the game has already ended, and

is equal to the probability of the game ending after the next K turns otherwise. If the game has

not ended after (n− 1)K the probability of it ending within the next K is greater than θK . Thus

we obtain that:

E[χ{τ>nK}|F(n−1)K ] ≤ (1− θK)χ{τ>(n−1)K}.

By taking the expectation of this and using the inductive step we obtain:

Px0τ,σI ,σII ({τ > nK}) ≤ (1− θK)n.

Clearly since {τ =∞} ⊂ {τ > n} we have that for all n ≥ 1:

Px0τ,σI ,σII ({τ =∞}) ≤ Px0τ,σI ,σII ({τ > nK}) ≤ (1− θK)n.

Thus Px0τ,σI ,σII ({τ =∞}) = 0.

Lemma 1.4.8. Let u : X → R be a bounded Borel function. Fix δ, ε > 0. Then there exist Borel

functions σsup, σinf : Ω→ X such that:

∀x ∈ Ω σsup(x), σinf (x) ∈ Bε(x) and u (σsup(x)) ≥ sup
Bε(x)

u− δ, u (σinf (x)) ≤ inf
Bε(x)

u+ δ

Proof. We show only the existence of σsup as the other proof is identical. The proof will proceed

in three steps where we prove existence for increasingly complex classes of functions.

1. Consider a function u = χA the indicator function for a Borel set A ⊂ X, and assume

δ < 1
3 . Write A + Bε(0) =

⋃∞
i=1Bε(xi), the union of countably many balls. This can be done as
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A + Bε(0) =
⋃
x∈ABε(x) and any such covering has a countable subcovering. Note that every xi

center of the balls must be a point in A and therefore u(xi) = 1. For every x ∈ X, define:

σsup(x) =


x if x /∈ A+Bε(0),

xi if x ∈ Bε(xi)\
⋃∞
j=iBε(xj).

This function selects the smallest i for which x ∈ Bε(xi), in this case supBε(x) u = 1 = u(xi) =

u(σsup(x)). If x /∈ Bε(xi) for any i then

sup
Bε(x)

u = 0 = u(x) = u(σsup(x)).

2. Now we consider simple functions, that is u of the form u =
∑n

k=1 αkχAk where Ak are

pairwise disjoint Borel sets and αk are increasing numbers. We assume that δ < αi+1−αi
3 for all i.

For each k we write Ak +Bε(0) =
⋃∞
i=1Bε(x

k
i ), as before we have xki ∈ Ak and u(xki ) = αk. Define:

σsup(x) =


x if x /∈ Ak +Bε(0) ∀k,

xki if x ∈ Bε(xki )\
(⋃∞

j=iBε(x
k
j )
⋃
l>k

(
Al +Bε(0)

))
.

Similarly to the earlier argument we have that if x /∈ Bε(xki ) for any i, k then

sup
Bε(x)

u = 0 = u(x) = u(σsup(x)).

Otherwise we take the largest k for which x ∈ Bε(xki ) for some i, and consider the smallest such i.

In this case we have that

sup
Bε(x)

u = αk = u(xki ) = u(σsup(x)).

3. Finally we consider any Borel measurable function u. Then we have that there exists a

simple function us as in point 2 such that |us − u| < δ
2 . Then we consider σsup chosen for the

simple function us. We obtain:

u(σsup(x)) ≥ us(σsup(x))− δ

2
= sup

Bε(x)
us −

δ

2
≥ sup

Bε(x)
us − δ.

1.4.4 The payoff function

Let β > 0, α ≥ 0 and α+β = 1, and let bounded Borel functions Ψ1 ≤ Ψ2 : X → R and F : Γ→ R

satisfy Ψ1 ≤ F ≤ Ψ2 on Γ. Given two stopping times τI , τII ≤ τ0 as above, define the payoff
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function GτI ,τII : X∞,x0 → R as a random variable:

GτI ,τII (ω) = GτI ,τIIτ (x0(ω), . . . , xn(ω)),

where we define:

GτI ,τIIn (x0, . . . , xn) =


F (xn) xn ∈ Γ

Ψ1(xn) xn ∈ Ω, (x0, . . . , xn) ∈ AτI<τIIn

Ψ2(xn) otherwise.

We are interested in this function as a tool to define the actual payoff function for every ω =

(x0, . . . ) ∈ Xx0,∞. That is, for every ω we evaluate the payoff function at the turn when the game

is stopped.

Lemma 1.4.9. The function GτI ,τII is Fx0-measurable.

Proof. Take any interval I ⊂ R. If the preimage of this set is in Fx0 then the Lemma is proven.

We consider the following covering of X∞,x0 :

X∞,x0 =
( ∞⋃
n=1

{n = τ0(ω)}
)
∪
( ∞⋃
n=1

{n = τI(ω), n < τ0(ω)}
)

∪
( ∞⋃
n=1

{n = τII(ω), n < τI(ω), n < τ0(ω)}
)
.

Each of the sets in this covering is Fx0-measurable by definition of stopping time. Thus we need only

show that the payoff function is Fx0-measurable when restricted to each of these sets. But on these

sets GτI ,τII is equal to one of the Borel measurable functions F,Ψ1,Ψ2, and thus is measurable.

1.4.5 Connection to ε-p-harmonious solutions

Theorem 1.4.10. Let u be the unique ε-p-harmonious solution to the double obstacle problem

defined in 1.1.29. Define two functions:

uI(x0) = sup
σI ,τI

inf
σII ,τII

Ex0σI ,σII ,τI∧τII
[
GτI ,τIIτI∧τII

]
, uII(x0) = inf

σII ,τII
sup
σI ,τI

Ex0σI ,σII ,τI∧τII
[
GτI ,τIIτI∧τII

]
,

Then:

uI = uII = uε ∈ Ω
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Proof. 1. We begin by noting that uI ≤ uII . This follows from the fact that for any function

f(σI , σII , τI , τII), if we fix any σII = σ̄II and τII = τ̄II we have:

sup
σI ,τI

f(σI , σ̄II , τI , τ̄II) ≥ sup
σI ,τI

inf
σII ,τII

f(σI , σII , τI , τII),

and thus when we take the inf of the left hand side over σII , τII the inequality will still hold. Thus

what we will prove in the next two points will be that uII ≤ uε and uI ≥ uε.

2. We now prove the inequality uII ≤ uε. Fix η > 0 and any admissible strategy σI and

stopping time τI for Player I. Choose a strategy σ̄II such that σ̄nII(x0, . . . , xn) = σ̄nII(xn). That

is, the strategy only depends on the last position of the token. Furthermore using Lemma 1.4.8,

ensure:

∀n ≥ 0 ∀xn ∈ X uε(σ̄
n
II(xn)) ≤ inf

Bε(xn)
u+

η

2n+1
. (1.8)

Also, choose the following stopping time:

τ̄II = inf {n ≥ 0; u(xn) = Ψ2(xn) or xn ∈ Γ} .

We will consider the sequence of random variables
{
u ◦ xn + η

2n

}∞
n=0

and show that it is a

supermartingale with respect to the filtration {Fx0n }
∞
n=1.

Use Observation 1.4.4 along with the definition of γn (1.7), the choice from (1.8) and the

definition of uε from (1.1.29) to compute:

∀(x0, . . . , xn−1) 6∈ AτI∧τ̄IIn−1 Ex0σI ,σ̄II ,τI∧τ̄II
{
u ◦ xn +

η

2n
| Fx0n−1

}
(x0, . . . , xn−1)

=

ˆ
X
u dγn−1[x0, . . . , xn−1] +

η

2n

=
α

2
u(σn−1

I (x0, . . . , xn−1)) +
α

2
u(σ̄n−1

II (xn−1)) + β

 
Bε(xn−1)

u+
η

2n

≤ α

2
sup

Bε(xn−1)
u+

α

2
inf

Bε(xn−1)
u+ β

 
Bε(xn−1)

u+
η

2n
α

2
+ 2

η

2n+1

≤ max
{

Ψ1(xn−1),
α

2
sup

Bε(xn−1)
u+

α

2
inf

Bε(xn−1)
u+ β

 
Bε(xn−1)

u
}

+
η

2n
(
α

2
+ 1)

≤ u(xn−1) +
η

2n−1
=
(
u ◦ xn−1 +

η

2n−1

)
(x0, . . . , xn−1).

(1.9)

The last inequality follows from the fact that for (x0, . . . , xn−1) 6∈ AτI∧τ̄IIn−1 , we have u < Ψ2. If

(x0, . . . , xn−1) ∈ AτI∧τ̄IIn−1 then

Ex0σI ,σ̄II ,τI∧τ̄II
{
u ◦ xn +

η

2n
| Fx0n−1

}
(x0, . . . , xn−1) = u(xn−1) +

η

2n
≤ u(xn−1) +

η

2n−1
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as γn−1(x0, . . . , xn−1) = δxn−1 . Thus we have that {u◦xn+ η
2n }n≥0 is a supermartingale as required.

Using Doob’s optional stopping time Theorem (1.2.11), with the supermartingale property and

uniform boundedness of u ◦ xn∧τ + η
2n∧τ we evaluate:

uII ≤ sup
τI ,σI

Ex0σI ,σ̄II ,τI∧τ̄II
{
GτI ,τ̄IIτI∧τ̄II ◦ xτI∧τ̄II +

η

2τI∧τ̄II

}
≤ Ex0σI ,σ̄II ,τI∧τ̄II

{
u ◦ xτI∧τ̄II +

η

2τI∧τ̄II

}
≤ u(x0) + η.

The second inequality follows from the fact that for every ω ∈ X∞,x0 such that n = (τ0 ∧ τI ∧

τ̄II)(ω) <∞, we have:

GτI ,τ̄IIτI∧τ̄II (ω) = GτI ,τ̄IIn (x0, . . . , xn) ≤ u(xn).

We show this by cases on the stopping time that was activated:

If n = τ0, then xn ∈ Γ and thus GτI ,τIIτI ∧̄̄τII (ω) = F (xn) = u(xn).

If n = τ̄II , then by the choice of τ̄II we have that xn is such that u(xn) = Ψ2(xn) = GτI ,τ̄IIτI∧τII (ω).

Otherwise we have that GτI ,τ̄IIτI∧τ̄II (ω) = Ψ1 ≤ u(xn) by definition of u.

Thus we have shown that uII ≤ uε+η for arbitrarily small η concluding the proof of the inequality.

3. We now reverse the argument to prove the inequality uI ≥ uε. Fix η > 0 and any admissible

strategy σII and stopping time τII for Player II. Choose a strategy σ̄I such that σ̄nI (x0, . . . , xn) =

σ̄nI (xn). That is, the strategy only depends on the last position of the token. Furthermore using

Lemma 1.4.8, ensure:

∀n ≥ 0 ∀xn ∈ X uε(σ̄
n
I (xn)) ≥ sup

Bε(xn)
u− η

2n+1
. (1.10)

Also, choose the following stopping time:

τ̄I = inf {n ≥ 0; u(xn) = Ψ1(xn) or xn ∈ Γ} .

We will consider the sequence of random variables
{
u ◦ xn − η

2n

}∞
n=0

and show that it is a

submartingale with respect to the filtration {Fx0n }
∞
n=1.

Use Observation 1.4.4 along with the definition of γn from (1.7), the choice from (1.10) and the
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definition of uε from (1.1.29) to compute:

∀(x0, . . . , xn−1) 6∈ Aτ̄I∧τIIn−1 Ex0σ̄I ,σII ,τ̄I∧τII
{
u ◦ xn −

η

2n
| Fx0n−1

}
(x0, . . . , xn−1)

=

ˆ
X
u dγn−1[x0, . . . , xn−1]− η

2n

=
α

2
u(σ̄n−1

I (xn−1)) +
α

2
u(σn−1

II (x0, . . . , xn−1)) + β

 
Bε(xn−1)

u− η

2n

≥ α

2
sup

Bε(xn−1)
u+

α

2
inf

Bε(xn−1)
u+ β

 
Bε(xn−1)

u− η

2n
α

2
− 2

η

2n+1

≥ min
{

Ψ2(xn−1),
α

2
sup

Bε(xn−1)
u+

α

2
inf

Bε(xn−1)
u+ β

 
Bε(xn−1)

u
}
− η

2n
(
α

2
+ 1)

≥ u(xn−1)− η

2n−1
=
(
u ◦ xn−1 −

η

2n−1

)
(x0, . . . , xn−1).

(1.11)

If (x0, . . . , xn−1) ∈ Aτ̄I∧τ̄IIn−1 then

Ex0σ̄I ,σII ,τ̄I∧τII
{
u ◦ xn −

η

2n
| Fx0n−1

}
(x0, . . . , xn−1) = u(xn−1)− η

2n
≥ u(xn−1)− η

2n−1

as γn−1(x0, . . . , xn−1) = δxn−1 . Thus we have that {u ◦ xn − η
2n }n≥0 is a submartingale as re-

quired. Using Doob’s optional stopping time Theorem (1.2.11), with the submartingale property

and uniform boundedness of u ◦ xn∧τ − η
2n∧τ we evaluate:

uI ≥ inf
τII ,σII

Ex0σ̄I ,σII ,τ̄I∧τII
{
Gτ̄I ,τIIτ̄I∧τII ◦ xτ̄I∧τII −

η

2τ̄I∧τII

}
≥ Ex0σ̄I ,σII ,τ̄I∧τII

{
u ◦ xτ̄I∧τII −

η

2τ̄I∧τII

}
≥ u(x0)− η.

The second inequality follows from the fact that for every ω ∈ X∞,x0 such that n = (τ0 ∧ τ̄I ∧

τII)(ω) <∞, we have:

Gτ̄I ,τIIτ̄I∧τII (ω) = Gτ̄I ,τIIn (x0, . . . , xn) ≥ u(xn).

We show this by cases on the stopping time that was activated:

If n = τ0, then xn ∈ Γ and thus Gτ̄I ,τIIτ̄I∧τII (ω) = F (xn) = u(xn).

If n = τ̄I , then by the choice of τ̄I we have that xn is such that u(xn) = Ψ1(xn) = Gτ̄I ,τIIτ̄I∧τII (ω).

Otherwise we have that Gτ̄I ,τIIτ̄I∧τII (ω) = Ψ2 ≥ u(xn) by definition of u.

Thus we have shown that uI ≥ uε − η for arbitrarily small η concluding the proof.
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1.5 THE MAIN ANALYTICAL RESULT

We begin the discussion of the proof of Theorem 1.1.30 by proving the intermediate step of Propo-

sition 1.1.31. The desired solution stated in the Theorem will be obtained by taking the limit of

the ε-p-harmonious solutions. For simplicity we restate the Proposition:

Proposition 1.5.1. Given F , Ψ1 and Ψ2 bounded Borel functions on a domain Ω ⊂ RN open and

bounded, for every ε > 0, there exists uε : Ω̄ → R ε-p-harmonious solution to the double obstacle

problem. Such a solution is unique.

Proof. The proof will be articulated in three parts. First we will construct a sequence of functions

which converge pointwise to the solution. Next we show the convergence to be uniform and the

limit to be in fact the solution. Finally we will prove uniqueness.

1. Define an operator T on the space of Borel functions of X by defining for any Borel function

v : X → R:

Tv(x) =


max

{
Ψ1(x),min

{
ψ2(x), α2 supBε(x) v + α

2 infBε(x) v +
ffl
Bε(x) v

}}
in Ω,

F (x) in Γ,

A crucial property of this operator is that given functions v and w for which v(x) ≤ w(x) for

all x in X, then Tv(x) ≤ Tw(x) for all x in X. This is easily seen by noting:

x ∈ Γ =⇒ Tv(x) = Tw(x) = F (x),

x ∈ Ω =⇒ sup
Bε(x)

v ≤ sup
Bε(x)

w, inf
Bε(x)

v ≤ inf
Bε(x)

w,

 
Bε(x)

v ≤
 
Bε(x)

w.

We may now define a sequence of functions
{
un
}∞
n=0

recursively with:

u0 = χΓF + χΩΨ1 and un+1 = Tun.

We show by induction that this sequence of functions is non decreasing. The fact that u0 ≤ u1

is given by the fact that the functions coincide on Γ and Ψ1(x) ≤ Tv(x) ≤ Ψ2(x) in Ω for any

function v. The inductive step follows from the statement above giving:

un−1(x) ≤ un(x) =⇒ Tun−1(x) ≤ Tun(x) =⇒ un(x) ≤ un+1(x).

Thus the sequence is non decreasing and bounded above by Ψ2 and therefore converges pointwise

to a function uε. We have that Ψ1(x) ≤ uε(x) ≤ Ψ2(x) in Ω, uε(x) = F (x) and such a function

must be a Borel function.
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2. We now show that the convergence is uniform by contradiction. Assume the convergence is

not uniform and thus M = limn→∞ supX(uε − un) > 0. Fix δ > 0 and take n > 1 large enough to

guarantee the following two conditions:

sup
X

(uε − un) < M + δ,

β

|Bε(0)|

ˆ
Bε(x)

(uε − un) ≤ β

|Bε(0)|

ˆ
X

(uε − un) ≤ δ.

The existence of such an n is guaranteed by the monotone convergence theorem. Select x0 ∈ Ω

such that uε(x0)− un+1(x0) > M − δ > 0. Such a point must exist by the hypothesis. Because of

monotonicity we may state that uε(x0) > Ψ1(x0), and un+1(x0) < Ψ2(x0) otherwise:

uε(x0) = Ψ1(x0) =⇒ un(x0) = Ψ1(x0) ∀n > 1,

un+1(x0) = Ψ2(x0) =⇒ um(x0) = Ψ2(x0) = uε(x0) ∀m > n+ 1.

Consider m > n such that um+1(x0)−un+1(x0) > M −2δ, by similar arguments, um(x0) > Ψ1(x0).

We may now write:

M − 2δ < um+1(x0)− un+1(x0)

≤ α

2

(
sup
Bε(x)

um − sup
Bε(x)

un + inf
Bε(x)

um − inf
Bε(x)

un

)
+ β

 
Bε(x)

(um − un)

≤ α sup
Bε(x)

(um − un) + β

 
Bε(x)

(um − un)

≤ α sup
Bε(x)

(um − un) + β

 
Bε(x)

(u− un)

≤ α
(
M + δ

)
+ δ.

This implies that M ≤ αM + 3δ which is a contradiction due to the fact that α < 1 and δ is

arbitrarily small. The third inequality in the above calculation follows from the fact that on any

domain Ω for any two functions v and w:

sup
Ω
u− sup

Ω
v ≤ sup

Ω
(u− v), and inf

Ω
u− inf

Ω
v ≤ sup

Ω
(u− v).

Consider sequences of points:

{xn}∞n=1 such that u(xn)→ sup
Ω
u,

{yn}∞n=1 such that v(yn)→ sup
Ω
v.
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Then:

sup
Ω
u− sup

Ω
v = lim

n→∞
u(xn)− lim

n→∞
v(yn) ≤ lim

n→∞

(
u(xn)− v(xn)

)
≤ sup

Ω
(u− v).

Next to prove the second statement, consider:

{zn}∞n=1 such that u(zn)→ inf
Ω
u,

{tn}∞n=1 such that v(tn)→ inf
Ω
v.

Then:

inf
Ω
u− inf

Ω
v = lim

n→∞
u(zn)− lim

n→∞
v(tn) ≤ lim

n→∞

(
u(tn)− v(tn)

)
≤ sup

Ω
(u− v).

3. All that is left is to prove uniqueness. Assume u and ū to be distinct solutions with:

M = sup
Ω

(u− ū) > 0.

Take a sequence of points
{
xn
}∞
n=1

such that limn→∞(u− ū)(xn) = M . By the compactness of the

set Ω̄ we therefore have that there exists a subsequence of
{
xn
}∞
n=1

which converges to some point

x0 ∈ Ω̄. For n large enough it must hold that Ψ1(xn) < u(xn) and Ψ2(xn) > ū(xn), otherwise the

sequence would not be approaching the supremum. We may therefore compute:

(u− ū)(xn) =
α

2

(
sup
Bε(x)

u− sup
Bε(x)

ū+ inf
Bε(x)

u− inf
Bε(x)

ū
)

+ β

 
Bε(xn)

(u− ū)

≤ α sup
Ω

(u− ū) + β

 
Bε(xn)

(u− ū).

By passing to the limit we obtain that:

M ≤ αM + β

 
Bε(x0)

(u− ū)⇒M ≤
 
Bε(x0)

(u− ū).

Given that u− ū ≤M , it must hold that the set where (u− ū)(x) = M is dense in Bε(x0). Define

the set:

G =
{
x ∈ X|(u− ū)(x) = M

}
.

Then, G∩Bε(x0) is dense in Bε(x0), by the same argument it can be shown that for every x ∈ G∩Ω

we have that G∩Bε(x) is dense in Bε(x). By repeating finitely many steps we will obtain that for

some x ∈ Γ we have (u− ū)(x) = M which cannot hold as u(x) = ū(x) = F (x).

We now come to the main result of this section which is the existence of a viscosity solution.

Such a solution will be found as the limit of the uε defined in (1.1.29) as ε goes to zero. These

functions are not generally continuous and the proof will require showing that the discontinuities

of these solutions disappear.

The proof is based on the following alternative version of the Ascoli-Arzelà Lemma.
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Lemma 1.5.2. [16] Given a family of functions uε : Ω̄→ R which satisfy:

(i) There exists a constant C such that for all values of ε the norm ‖uε‖L∞(Ω̄) ≤ C.

(ii) For all η > 0 there exist positive r0 and ε0 such that for all ε < ε0 and for all x0, y0 ∈ Ω̄:

|x0 − y0| < r0 =⇒ |uε(x0)− uε(y0)| < η.

Then there exists a subsequence of uε which converges uniformly in Ω̄ to a continuous function u.

Proof. We begin the proof by finding a candidate for the uniform limit u. Consider a countable

dense subset X ∈ Ω̄ written as X = {xi}ni=1. We show the existence of a pointwise converging

subsequence on X through a standard diagonal argument. Define a subsequence u
(1)
ε of uε such

that u
(1)
ε (x1) converges to a value we call u(x1). Next we recursively define u

(n)
ε as a subsequence

of u
(n−1)
ε such that u

(n)
ε (xn) converges, and call the limit u(xn). The intersection of such sequences

will provide a subsequence which converges pointwise on X to u : X → R. By hypothesis, for any

η > 0, there exists r0, ε0 > 0 such that for all x, y ∈ X:

|x− y| ≤ r0 =⇒ |uε(x)− uε(y)| ≤ η

3
,

∃ε̄ ≤ ε0 such that ε ≤ ε̄ =⇒ |uε(x)− u(x)|, |uε(y)− u(y)| ≤ η

3

=⇒ |u(x)− u(y)| ≤ |u(x)− uε(x)|+ |uε(x)− uε(y)|+ |uε(y)− u(y)| ≤ η.

Thus we may continuously extend u to all of Ω̄ by defining:

u(z) = lim
X3x→z

u(x).

We may now prove that the convergence is uniform. Choose a finite covering Ω̄ ⊂
⋃N
i=1Br(xi) with

r small enough that there exists ε0 which guarantees:

∀ε ≤ ε0, ∀x ∈ Br(xi), ∀i = 1, . . . , N |uε(x)− uε(xi)|, |u(x)− u(xi)| ≤
η

3
.

Furthermore we may request that ε0 be small enough that for i = 1, . . . , N and ε < ε0 there holds

|uε(xi)− u(xi)| ≤ η
3 . This last is guaranteed by the fact that we are considering only finitely many

points. Finally we use the triangle inequality to show that there exists ε0 > 0 such that for all

ε < ε0 and for any x ∈ Ω̄:

|uε(x)− u(x)| ≤ |uε(x)− uε(xi)|+ |uε(xi)− u(xi)|+ |u(xi)− u(x)| ≤ η.
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Lemma 1.5.3. Let ūε be the solutions to the ε-p-harmonious obstacle problem with lower obstacle

Ψ, upper obstacle Ψ2(x) = C with C > max{supX Ψ, supX F} and boundary values F on X.

Then, for all η > 0 there exist positive r0 and ε0 such that for all ε < ε0, for all x0 ∈ Ω̄ and y0 ∈ ∂Ω:

|x0 − y0| < r0 =⇒ ūε(x0)− ūε(y0) < η.

Proof. This proof follows closely the construction in [14], and uses heavily the identification between

the expected value of the tug-of-war game and the ε-p-harmonious solutions. There will be several

constants used throughout this proof, which are called C,CΨ, CF , CΨ,F . The constant C depends

only on the dimension N , the domain Ω, and constants p, α, β, the other constants depend on their

subscripts.

1. Take x0 ∈ Ω̄, y0 ∈ ∂Ω. We begin from the case when uε(x0) = Ψ(x0). In this case we have:

uε(x0)− uε(y0) = Ψ(x0)− F (y0) ≤ Ψ(x0)−Ψ(y0) ≤ CΨ|x0 − y0|

We therefore only need to consider the case when uε(x0) > Ψ(x0). Assume a particular strategy

σ0,II and stopping time τII = τ0 for Player II has been chosen.

The stopping time for Player II is in fact the optimal stopping time as the upper contact set is

empty. In this case we can write Gn = G = χΓF + χΩΨ. Then by Proposition 1.4.10 we have:

uε(x0)− uε(y0) ≤ sup
τ,σI

Ex0τ,σI ,σ0,II [G ◦ xτ − F (y0)].

Furthermore we have that for all x ∈ X:

G(x)− F (y0) ≤ χΓ(x)(F (x)− F (y0)) + χΩ(x)(Ψ(x)−Ψ(y0)) ≤ CΨ,F |x− y0|.

Combining the two equations we obtain:

uε(x0)− uε(y0) ≤ CΨ,F sup
τ,σI

Ex0τ,σI ,σ0,II [|xτ − y0|]. (1.12)

We need to show

Claim 1.5.3.1. With an appropriate choice of σ0,II , for all 0 < δ � 1 and ε < min
{ β

2Cδ
, δ3
}

:

sup
τ,σI

Ex0τ,σI ,σ0,II [|xτ − y0|] ≤ Cδ + Cδ(|x0 − y0|+ ε).

Clearly if this claim is proven the proof of the Lemma is concluded.
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2. Proof of 1.5.3.1: Take z0 ∈ RN\Ω such that Bδ(z0) ∩ Ω̄ = {y0}. Define the strategy for

Player II by:

σn0,II(x0, . . . , xn) =


xn + (ε− ε2) z0−xn

|z0−xn| xn ∈ Ω,

xn xn ∈ Γ.

(1.13)

Again, the stopping time for Player II may be taken τII = τ0. Consider any strategy and stopping

time for Player I.

Set ε < δ
3 , Consider the smooth function f(x) = |x− z0| on the set Ω +B δ

2
(0). By writing f as

a second order Taylor’s polynomial for any x ∈ Ω we obtain:

 
Bε(x)

f(w)dw =

 
Bε(x)

f(x)dw +

 
Bε(0)

∇f(x) · wdw +
N∑

i,j=1

 
Bε(0)

∂i∂jf(x)wiwjdw + o(ε2)

=

 
Bε(x)

f(x)dw + 0 + 2
N∑
i=1

 
Bε(0)

∂2
i f(x)w2

i dw + o(ε2)

= f(x) +
ε2

2(N + 2)
∆f(x) + o(ε2).

This yields:  
Bε(x)

|w − z0|dw ≤ |x− z0|+ Cδε
2. (1.14)

We consider a value C = Cδ + 1. By definition of expected value we write:

∀(x0, . . . ,xn−1) /∈ Aτn−1 Ex0τ,σI ,σ0,II
[
|xn − z0| − Cε2n|Fx0n−1

]
(x0, . . . , xn−1)

≤ α

2
|σn−1
I (x0, . . . , xn−1)− z0|+

α

2
|σn−1

0,II (xn−1)− z0|+ β

 
Bε(x)

|w − z0|dw − Cε2n

≤ α

2

(
|xn−1 − z0|+ ε

)
+
α

2

(
|xn−1 − z0| − (ε− ε2)

)
+ β

(
|xn−1 − z0|+ Cδε

2
)
− Cε2n

≤ |xn−1 − z0| − Cε2n− (
α

2
+ Cδβ)ε2) ≤ |xn−1 − z0| − Cε2(n− 1).

∀(x0, . . . , xn−1) ∈ Aτn−1 Ex0τ,σI ,σ0,II
[
|xn − z0| − Cε2n|Fx0n−1

]
(x0, . . . , xn−1)

= |xn−1 − z0| − Cε2n ≤ |xn−1 − z0| − Cε2(n− 1).

This shows that the variable |xn − z0| − Cε2n is in fact a supermartingale, and we may conclude

by Doob’s optional stopping time theorem:

Ex0τ,σI ,σ0,II
[
|xτ − z0|

]
− Cε2Ex0τ,σI ,σ0,II

[
n ∧ τ

]
≤ |x0 − z0|.

Finally we may write:

Ex0τ,σI ,σ0,II
[
|xτ − y0|

]
≤ Ex0τ,σI ,σ0,II

[
|xτ − z0|

]
+ δ ≤ |x0 − z0|+ 2δ + Cε2Ex0τ,σI ,σ0,II

[
n ∧ τ

]
. (1.15)
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3. All that is left in the proof is to find an appropriate bound for Ex0τ,σI ,σ0,II
[
τ
]
. To this end we

consider a new game board.

Definition 1.5.4. Redefine the game on a new game board Y = BR(z0) with R taken large enough

that X ⊂ Y . The initial token position will be x0 ∈ Ω and τ0 will be the time of first exit from Ω

as before. The strategies are modified in the following way:

σ̄nI (x0, . . . , xn) =


σnI (x0, . . . , xn) (x0, . . . , xn) ∈ Xn+1,

xn otherwise.

σ̄n0,II(x0, . . . , xn) =


xn + (ε− ε2) z0−xn

|z0−xn| xn ∈ Ω,

xn xn /∈ Ω.

We consider a new stopping time τ0 ≤ τ̄0 = min
{
n ∈ N

∣∣|xn− z0| < δ
}

. The transition probabilities

γ̄n are redefined:

γ̄n[x0, . . . , xn] =


α
2 δσ̄nI (x0,...,xn) + α

2 δσ̄n0,II(x0,...,xn) + βUBε(xn)∩Y (x0, . . . , xn) /∈ Aτn,

xn (x0, . . . , xn) ∈ Aτn.

The probabilities Px0τσ̄I σ̄0,II are defined from the transition probabilities as before.

Given this definition we have:

(x0 . . . xn) ∈ Xn =⇒ γ̄n[x0 . . . xn] = γn[x0 . . . xn].

In fact this holds for any (x0 . . . xn) /∈ Aτ0n . We thus extended the game board in a way that satisfies

the hypothesis of Lemma 1.4.6, and may state:

∀A ⊂ X∞,x0 , P̄x0σ̄I σ̄0,II (A) = Px0σIσ0,II (A).

We now evaluate:

Ex0σI ,σ0,II [τ ] =

∞∑
n=0

nPx0σIσ0,II
(
{τ(ω) = n}

)
=

∞∑
n=0

nPx0σI ,σ0,II
(
{τ(ω) = n}

)
≤
∞∑
n=0

nPx0σI ,σ0,II
(
{τ̄(ω) = n}

)
= Ex0σI ,σ0,II [τ̄ ] = Ex0σI ,σ0,II [τ̄0].

We thus need to find an appropriate bound for Ex0σI ,σ0,II [τ̄0]. To this end we define an auxiliary

function v0 : (0,+∞)→ R taken from the theory of fundamental solutions of the Laplace equation.

v0(s) =


−as2 − bs2−N + c for N > 2,

−as2 − b log(s) + c for N = 2.
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The parameters a, b, c are chosen in such a way that the function v = v0(|x0 − z0|) satisfies the

following conditions: 
∆v = −2(N + 2) in BR(z0)\Bδ(z0),

v = 0 on ∂Bδ(z0),

∂v
∂−→n = 0 on ∂BR(z0)

We may rewrite explicitly the system:

For N > 2 :


−2aN = −2(N + 2),

−aδ2 − bδ2−N + c = 0,

−2aR+ b(N − 2)R1−N = 0,

For N = 2 :


−4a = −8,

−aδ2 − b log(δ) + c = 0,

−2aR+ bR−1 = 0,

These system have explicit solutions from which we can draw some conclusions. The constants

a, b, c are always positive. The function v0 is increasing and concave in the interval (δ,R) and

achieves it’s only maximum for s = R. We now want to evaluate for any x ∈ Y \Bδ−ε the average:

 
Bε(x)∩Y

v(y)dy =

 
Bε(x)∩Y

v(x)dy +

 
Bε(x)∩Y

∇v(x) · (y − x)dy

+

 
Bε(x)∩Y

∇2v(x) · (y − x)⊗ (y − x)dy + o(ε2).

We look at this integral term by term. Firstly:

 
Bε(x)∩Y

v(x)dy = 0.

To study the second and third term we refer to figure 2. The ball Bε(x) is divided into three

regions. The first is A3 = Bε(x)\Y . A2 will be the reflection of A3 across the hyperplane through

x perpendicular to the line defined by x− z0. Finally A1 = Bε(x)\(A2 ∪A3) will be the remainder

of the ball. We rewrite the second term in the integral with the variable y in coordinates given by

ēi where the origin is given by x, ē1 = x−z0
|x−z0| , and ēi ⊥ x − z0. In these coordinates we have that

∇v(x) = v′0(|x− z0|)ē1 is v is constant on the sphere. Furthermore v′0(|x− z0|) > 0, and ē1 · y < 0

for any y ∈ A2. Finally we note that ∇v(x) · y integrates to zero over the region A1 due to the fact

that it is an odd function integrated over a symmetric domain. By putting these considerations

together we obtain:

 
Bε(x)∩Y

∇v(x) : (y − x)dy =

 
A1

∇v(x) · y +

 
A2

∇v(x) · y ≤ 0.
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Figure 2: The three ses A1, A2 and A3

Lastly we may write:

 
Bε(x)∩Y

∇2v(x) · (y − x)⊗ (y − x)dy =

N∑
i,j=1

 
A1∪A2

∂i∂jv(x)yiyjdy =

N∑
i=1

 
A1∪A2

∂2
i v(x)y2

i dy

= ∆v(x)

 
A1∪A2

|y|2dy =
−2(N + 2)

|Bε(x) ∩ Y |

( ε2

2(N + 2)
|Bε(x)| − ε2|Bε(x)\Y |

)
≤ − ε

2

Thus we may write the crucial estimate for ε small enough:

 
Bε(x)∩Y

v(y)dy ≤ v(x)− ε2

2
. (1.16)

We may now define a set of auxiliary functions:

Qn(x) =


v(x) + β

3nε
2 |x− z0| > δ − ε,

v(x) δ − ε ≥ |x− z0| > δ − 2ε,

v0(δ − 2ε) |x− z0| ≤ δ − 2ε.

We want to show that Qn ◦ xn is in fact a supermartingale. To this end we need to compute:

Ex0σI ,σ0,II
[
Qn ◦ xn

∣∣Fx0n−1

]
(x0, . . . , xn−1) =

ˆ
Y
Qndγ̄n−1[x0, . . . , xn−1].
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We define the constant Cδ as the Lipschitz constant of v0 ∈ C2 on the interval [ δ6 , R+ δ]. We need

to split this calculation in three cases:

Case 1 xn−1 ∈ Y \B̄δ(z0). We use the fact that in this case |σ̄0,II(xn−1)− z0| > δ − ε, and the

concavity of v0 to compute:
ˆ
Y
Qndγ̄n−1[x0, . . . , xn−1] =

α

2
Qn
(
σ̄I(x0, . . . , xn−1)

)
+
α

2
Qn
(
σ̄0,II(xn−1)

)
+ β

 
Bε(x)∩Y

Qn

≤ α

2
v0

(
|xn−1 − z0|+ ε

)
+
α

2
v0

(
|xn−1 − z0| − ε+ ε3

)
+ βv0

(
|xn−1 − z0| −

ε2

2

)
+
β

3
nε2

≤ αv0(|xn−1 − z0|) + βv0(|xn−1 − z0|) + Cδε
2 − β ε

2

2
+ βn

ε2

3

≤ v0(|xn−1 − z0|) +
β

3
(n− 1)ε2 = Qn−1(xn−1).

Note that we used the previously discussed bound of ε ≤ β
6Cδ

.

Case 2 xn−1 ∈ Bδ(z0)\Bδ−ε(z0).

ˆ
Y
Qndγ̄n−1[x0, . . . , xn−1] = αQn(xn−1) + β

 
Bε(x)∩Y

Qn

≤ αv0(|xn−1 − z0|) + βv0(|xn−1 − z0|)− β
ε2

2
+ βn

ε2

3

≤ v0(|xn−1 − z0|) +
β

3
(n− 1)ε2 = Qn−1(xn−1).

Case 3 xn−1 ∈ Bδ−ε(z0).

ˆ
Y
Qndγ̄n−1[x0, . . . , xn−1] = Qn−1(xn−1).

Thus we may conclude that the random variable Q = Qn ◦ xn is in fact a supermartingale with

respect to the filtration Fx0n . Applying Doob’s optional stopping time Theorem 1.2.11 we obtain:

v0(|x0 − z0|) ≥ Ex0σI ,σ0,II
[
Qn ◦ xn∧τ

]
= Ex0σI ,σ0,II

[
v0(|xn∧τ − z0|)

]
+
β

3
ε2Ex0σI ,σ0,II [n ∧ τ ].

Taking the limit n→∞ we obtain:

β

3
ε2Ex0σI ,σ0,II [τ ] ≤ v0(|x0 − z0|) + Ex0σI ,σ0,II

[
v0(|xτ̄0 − z0|)

]
In light of the fact that v(δ) = 0 we obtain:

v0(|x0 − z0|) ≤ Cδ(|x0 − y0| − δ) = Cδ|x0 − z0|.

Which, together with (1.15), allows us to conclude that for any ε small enough we have:

Ex0σI ,σ0,II
[
|xτ − y0|

]
≤ Cδ + Cδ(|x0 − y0|+ ε).
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By inverting te sign of all the functions we may obtain the inverse inequality for the upper

obstacle.

Corollary 1.5.5. Let uε be solutions to the ε-p-harmonious obstacle problem with upper obstacle

Ψ, lower obstacle Ψ1(x) = C where C < min{infX Ψ, infX F} and boundary values F on X.

Then, for all η > 0 there exist positive r0 and ε0 such that for all ε < ε0, for all x0 ∈ Ω̄ and y0 ∈ ∂Ω:

|x0 − y0| < r0 =⇒ uε(x0)− uε(y0) > −η.

This allows us to prove the main result which we restate for ease of readership.

Theorem 1.5.6. Given F , Ψ1 and Ψ2 bounded Lipschitz continuous functions on a domain Ω ⊂ RN

open and bounded, there exists u : Ω̄→ R the unique viscosity solution to the double obstacle problem

(1.4).

We split the proof of this Theorem into two steps. First we prove the existence of the solution

and then we show that it must be unique.

Existence of viscosity solutions. 1. We begin the proof by providing a uniform continuity property

close to the boundary. Consider ūε solutions to the obstacle problem described in Lemma 1.5.3

with Ψ = Ψ1, and uε solutions to the obstacle problem described in (1.5.5) with Ψ = Ψ2. Then we

have uε ≤ uε ≤ ūε, and equality on the boundary. This follows from the fact that the obstacles for

uε are smaller than for the other two, and the obstacles for ūε are larger than the first two. Then

by Lemma 1.5.3 and its corollary 1.5.5, we have that for all η > 0 there exist positive r0 and ε0

such that for all ε < ε0, for all x0 ∈ Ω̄ and y0 ∈ ∂Ω:

uε(x0)− uε(y0) ≤ ūε(x0)− F (y0) = ūε(x0)− ūε(y0) ≤ η,

uε(x0)− uε(y0) ≥ uε(x0)− F (y0) = uε(x0)− uε(y0) ≥ −η.

2. We now extend this property to the whole domain so that we may use Lemma 1.5.2 to prove

uniform convergence. Fix η > 0, use the first part of the proof and the Lipschitz property of the

obstacle and boundary value functions to find r0 and ε0 such that:

∀ε < ε0, ∀x0 ∈ Ω̄, y0 ∈ ∂Ω |x0 − y0| ≤ r0 =⇒ |uε(x0)− uε(y0)| < η

4
,

∀x0, y0 ∈ Ω̄ ∀i = 1, 2 |x0 − y0| ≤ r0 =⇒ |Ψi(x0)−Ψi(y0)| < η

4
,

∀x0, y0 ∈ Γ ∀i = 1, 2 |x0 − y0| ≤ r0 =⇒ |F (x0)− F (y0)| < η

4
.

(1.17)
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We now consider the set

Γ̃ =
{
x ∈ Ω̄

∣∣∣dist(x, ∂Ω) ≤ r0

2

}
.

Using the triangle inequality it is easy to see that for any x0 in Γ̃ and y0 in Ω̄ such that |x0−y0| < r0
2

there exists z0 ∈ ∂Ω such that |x0 − z0|, |y0 − z0| < r0. Using (1.17) we see that for every ε ≤ ε0:

|uε(x0)− uε(y0)| ≤ |uε(x0)− uε(z0)|+ |uε(y0)− uε(z0)| < η

2
.

Fix x0, y0 ∈ Ω such that |x0 − y0| ≤ r0
2 . For every ε < ε0 define the following Borel functions:

F̃ : Γ̃→ R by: F̃ (z) = uε(z − (x0 − y0)) +
η

2
,

Ψ̃1 : X → R by: Ψ̃1(z) = Ψ1(z − (x0 − y0)) +
η

2
,

Ψ̃2 : X → R by: Ψ̃2(z) = Ψ2(z − (x0 − y0)) +
η

2
.

Now find the solution ũε to the ε-p-harmonious double obstacle problem defined on Ω̄ with boundary

condition F̃ in Γ̃ and obstacles Ψ̃1, Ψ̃2. The function ũε(z) = uε(z − (x0 − y0)) + η
2 satisfies:

ũε(z) =


max

{
Ψ̃1(z),min

{
Ψ2(z), α2 (supBε(z) ũε + infBε(z) ũε) + β

ffl
Bε(z)

ũε
}}

if x ∈ Ω\Γ̃,

F̃ (z) if x ∈ Γ̃,

and thus it is the unique solution to the equation. Furthermore:

∀z ∈ Γ̃, F̃ (z) = uε(z − (x0 − y0)) +
η

2
≥ uε(z),

∀z ∈ ω̄, Ψ̃1(z) = Ψ1(z − (x0 − y0)) +
η

2
≥ Ψ1(z),

∀z ∈ ω̄, Ψ̃2(z) = Ψ2(z − (x0 − y0)) +
η

2
≥ Ψ2(z).

Thus we have that ũε(z) ≥ uε(z) in Ω̄. We may further evaluate:

uε(x0)− uε(y0) ≤ ũε(x0)− uε(y0) = uε(y0) +
η

2
− uε(y0) =

η

2
< η.

By switching x0 and y0 we obtain:

uε(y0)− uε(x0) < η.

3. We note that uε are all bounded by the same constants as they are constrained between

the bounded functions Ψ1,Ψ2. Thus the family {uε}ε>0 satisfies the conditions of Lemma 1.5.2,

and has a uniformly converging subsequence. We finally show that the limit of any converging

subsequence of {uε}ε>0 must be a viscosity solution as defined in (1.1.28). The fact that the whole

sequence converges to the unique solution will follow when uniqueness is proven. Let u be one such

39



limit. Clearly it must hold that Ψ1(x) ≤ u(x) ≤ Ψ2(x) for any x ∈ Ω, and u(x) = F (x) for any

x ∈ ∂Ω. Thus point (i) in the definition is trivially satisfied. This is because every uε(x) satisfies

these inequalities. To prove point (ii), take a point x0 such that Ψ2(x0) > u(x0). Since both u

and Ψ2 are continuous functions there exists Bδ(x0) in which Ψ2 > u. By uniform convergence for

ε below some threshold we also have that Ψ2 > uε in Bδ(x0). Let φ be a test function as in the

definition, then x0 is the minimum for the function u− φ.

Claim 1.5.6.1. There exists a sequence of points xε converging to x0 as ε→ 0, such that:

uε(xε)− φ(xε) ≤ inf
Ω̄

(uε − φ) + ε3.

For every i ≥ 1, define ai = min
Ω̄\B1/i(x0)

(u− φ) > 0, and let εi > 0 be a threshold for which:

∀ε < εi ‖uε − u‖L∞(Ω) ≤
1

2
ai.

We may choose the εi in such a way that they converge to zero. For all ε ∈ (εi+1, εi] choose

xε ∈ B1/i(x0) such that:

uε(xε)− φ(xε) ≤ inf
B1/i(x0)

(uε − φ) + ε3.

We conclude the proof of this claim by noting that for any x ∈ Ω̄\B1/i(x0) we obtain:

uε(x)− φ(x) ≥ u(x)− φ(x)− ‖uε − u‖L∞(Ω) ≥
ai
2
≥ ‖uε − u‖L∞(Ω)

≥ uε(x0)− u(x0) = uε(x0)− φ(x0) ≥ uε(x0)− φ(x0)− ε3.

Using (1.5.6.1) we may therefore state that for any x ∈ Ω we have uε(x) ≥ uε(xε) − φ(xε) +

φ(x)− ε3. We may thus wrie:

uε(xε) ≥
α

2
sup
Bε(xε)

uε +
α

2
inf

Bε(xε)
uε + β

 
Bε(xε)

uε

≥ (uε(xε)− φ(xε)− ε3) +
(α

2
sup
Bε(xε)

φ+
α

2
inf

Bε(xε)
φ+ β

 
Bε(xε)

φ
)
.

We now consider a point x̄ε to be a point in which φ attains minimum on the closed ball B̄ε(xε).

Claim 1.5.6.2.

ε3 ≥
(α

2
sup
Bε(xε)

φ+
α

2
inf

Bε(xε)
φ+ β

 
Bε(xε)

φ
)
− φ(xε)

≥ βε2

2(N + 2)

(
(p− 2)

〈
∇2φ(xε)

x̄ε − xε
ε

,
x̄ε − xε

ε

〉
+ ∆φ(xε)

)
+ o(ε2).
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The justification for the second inequality in (1.5.6.2) comes from the Taylor expansion of φ at

the point xε:

min
B̄ε(xε)

φ = φ(x̄ε) = φ(xε) + 〈∇φ(xε), (x̄ε − xε)〉+
1

2
〈∇2φ(xε)(x̄ε − xε), (x̄ε − xε)〉+ o(ε2).

Similarly we write:

max
B̄ε(xε)

φ ≥ φ(xε + (xε − x̄ε)) ≥ φ(xε)− 〈∇φ(xε), (x̄ε − xε)〉+
1

2
〈∇2φ(xε)(x̄ε − xε), (x̄ε − xε)〉+ o(ε2).

Finally we obtain an estimate for the integral term by noting that the second term in the Taylor

expansion disappears when averaged as it is linear.

 
B̄ε(xε)

φ = φ(xε) +

 
B̄ε(xε)

〈∇φ(xε), (x− xε)〉dx+

N∑
i,j=1

∂2φ

∂ix∂jx
(xε)

 
B̄ε(0)

1

2
xixjdx+ o(ε2)

= φ(xε) +
N∑
i=1

∂2φ

∂ix2
(xε)

 
B̄ε(xε)

|xi|2dx+ o(ε2) = ∆φ(xε)
ε2

2(N + 2)
+ o(ε2).

We may thus write:

(α
2

sup
Bε(xε)

φ+
α

2
inf

Bε(xε)
φ+ β

 
Bε(xε)

φ
)
− φ(xε)

≥ α

2
〈∇2φ(xε)(x̄ε − xε), (x̄ε − xε)〉+ ∆φ(xε)

βε2

2(N + 2)
+ o(ε2).

The claim is finally proven by noting:

α

2
=

p− 2

2(N + p)
β
N + p

N + 2
=

βε2

2(N + 2)

p− 2

ε2
.

4. Dividing by ε2 we obtain:

ε ≥ β

2(N + 2)

(
(p− 2)

〈
∇2φ(xε)

x̄ε − xε
ε

,
x̄ε − xε

ε

〉
+ ∆φ(xε)

)
+
o(ε2)

ε2
.

We may thus pass this inequality to the limit to obtain:

lim sup
ε→0

(
(p− 2)

〈
∇2φ(xε)

x̄ε − xε
ε

,
x̄ε − xε

ε

〉
+ ∆φ(xε)

)
≤ 0.

Claim 1.5.6.3.

lim
ε→0

x̄ε − xε
ε

= − ∇φ(x0)

|∇φ(x0)|
.

To prove (1.5.6.3) we consider the sequence of functions φε(z) = 1
ε (φ(xε + εz) − φ(xε)). This

sequence converges uniformly on B1(0) to the linear map 〈∇φ(x0), z〉 by definition of gradient. For

every ε > 0 the function zε = 1
ε (x̄ε− xε) will be a minimizer on the ball of radius 1. Thus the limit
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of any converging subsequence of the zε must be a minimizer for the limit function 〈∇φ(x0), z〉.

Since the function is linear the only minimizer is in fact − ∇φ(x0)
|∇φ(x0)| , and the claim is proven.

We may thus write:

1

|∇φ(x0)|p−2
∆pφ(x0) = (p− 2)

〈
∇2φ(xε)

∇φ(x0)

|∇φ(x0)|
,
∇φ(x0)

|∇φ(x0)|

〉
+ ∆φ(xε) ≤ 0.

Condition (ii) is thus proven.

5. Condition (iii) is obtained analogously to condition (ii) by considering x0 such that u(x0) >

Ψ1(x0). We will have that at x0 the function u−φ attains maximum and define a sequence of quasi

maximisers xε. We then invert the direction of every inequality in the argument to obtain:

uε(xε) ≤ (uε(xε)− φ(xε)− ε3) +
(α

2
sup
Bε(xε)

φ+
α

2
inf

Bε(xε)
φ+ β

 
Bε(xε)

φ
)
.

And finally:

−ε ≤ β

2(N + 2)

(
(p− 2)

〈
∇2φ(xε)

x̄ε − xε
ε

,
x̄ε − xε

ε

〉
+ ∆φ(xε)

)
+
o(ε2)

ε2
.

Here x̄ε is taken to be the maximum over the closed ball and not the minimum. By the same

arguments as in step 5 we may conclude that ∇pφ(x0) ≥ 0.

We state an intermediate Theorem showing that variational solutions to this problem are unique.

This will be used by later proving that viscosity and variational solutions coincide under our

assumptions concluding the proof of Theorem 1.1.30.

Uniqueness of viscosity solutions. Consider a viscosity solution to the double obstacle problem u.

Consider any open Lipschitz set:

U ⊂⊂
{
x ∈ Ω

∣∣Ψ1(x) 6= Ψ2(x)
}

= A.

We show that u is the unique variational solution to the double obstacle problem defined on

Ku|∂U ,Ψ1,Ψ2(U) as in Theorem 1.1.32. Define the two sets:

U1 =
{
x ∈ U

∣∣Ψ1(x) < u(x)
}
, and U2 =

{
x ∈ U

∣∣Ψ2(x) > u(x)
}
.

By definition we have that on the set U2 the function u is a viscosity supersolution and a continuous

function. By Theorem 1.1.26 we have that u must therefore be p-superharmonic in U2 and therefore

of W 1,p
loc (U2) regularity. Similarly we have that on U1 the function u is a viscosity subsolution and

a continuous function. This implies that u must be p-subharmonic in U1 and in W 1,p
loc (U1). Thus

we have that u ∈ W 1,p
loc (U). We may actually apply the same reasoning to any Ũ ⊃ U giving that
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u ∈W 1,p(U). By Theorem 1.1.25 we have that p-superharmonic and p-subharmonic are weak super

and sub solutions if continuous and in W 1,p. Thus we may write:ˆ
U1
|∇u|p ≤

ˆ
U1
|∇(u+ φ)|p ∀φ ∈ C∞0 (U1,R+),

ˆ
U2
|∇u|p ≤

ˆ
U1
|∇(u+ φ)|p ∀φ ∈ C∞0 (U2,R−).

Now consider any test function φ ∈ C∞0 (U2,R) such that Ψ1 ≤ u+ φ ≤ Ψ2. We decompose it into

φ = φ+ + φ− the sum of its positive and negative parts. Clearly we have that:

D+ = {x ∈ U ; φ(x) > 0} ⊂ U1, and D− = {x ∈ U ; φ(x) < 0} ⊂ U2.

Thus we may now compute:ˆ
U
|∇(u+ φ)|p =

ˆ
D+

|∇(u+ φ)|p +

ˆ
D−
|∇(u+ φ)|p +

ˆ
{φ=0}

|∇(u+ φ)|p

=

ˆ
U1
|∇(u+ φ+)|p −

ˆ
U1\D+

|∇u|p
ˆ
U2
|∇(u+ φ−)|p −

ˆ
U1\D−

|∇u|p +

ˆ
{φ=0}

|∇u|p

≥
ˆ
U1
|∇u|p −

ˆ
U1\D+

|∇u|p
ˆ
U2
|∇u|p −

ˆ
U1\D−

|∇u|p +

ˆ
{φ=0}

|∇u|p =

ˆ
U
|∇u|p.

Thus we have proven that u is the unique weak solution to the two obstacle problem defined by

Ku|∂U ,Ψ1,Ψ2(U).

We now consider any two viscosity solutions to the double obstacle problem u and ū. We note

that for any x ∈ A ∪ ∂Ω these solutions coincide. Both functions u and ū must be uniformly

continuous as they are continuous on the compact set Ω̄. Fix ε > 0, then there exists δ > 0 such

that:

|u(x)− ū(x)| < ε ∀x ∈
(
A ∪ ∂Ω +Bδ(0)

)
∩ Ω̄

Consider an arbitrary Lipschitz set U such that:

Ω\
(
A ∪ ∂Ω +Bδ(0)

)
⊂⊂ U ⊂⊂ Ω\A.

Then we have that:

u is the unique weak solution to Ku|∂U ,Ψ1,Ψ2(U),

ū+ ε is the unique weak solution to Kū|∂U+ε,Ψ1,Ψ2(U).

By the comparison principle (iii) from Theorem 1.1.32 [8], the boundary condition to define u is

less then the boundary condition to define ū + ε implies that u ≤ ū + ε on the whole set U . If

we reverse the argument we have that u ≥ ū − ε on the whole set U . Thus we may conclude that

|ū− u| ≤ ε for all ε > 0. Thus the two solutions coincide.
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1.6 THE DYNAMIC PROGRAMMING PRINCIPLE AND THE

APPROXIMATING ALGORITHM

We consider the algorithm used to find the ε-p-harmonious solutions to the two obstacle problem.

In this section we will discuss how this theoretical algorithm was discretized and used to provide

visualizations of these solutions. As was shown in the proof, these solutions eventually converge to

the viscosity solutions to the p-Laplace equation. While the proof gives an estimate of the speed

with which the discontinuities of the uε converge to zero, it does not provide an estimate of the

convergence of the uε to u.

In the proof we constructed uε as the limit of the recursive sequence defined through the

operator:

Tv(x) =


max

{
Ψ1(x),min

{
Ψ2(x), α2 supBε(x) v + α

2 infBε(x) v +
ffl
Bε(x) v

}}
in Ω,

F (x) in Γ.

This operator is referred to as the dynamic programming principle (DPP) guiding our construc-

tion. Such an algorithm is easily discretized over a grid by substituting supremum and infimum

with maximum and minimum, and by defining the integral numerically.

We selected a domain Ω = (−1, 1) × (−1, 1), and extended it by ε0 = 0.2 to the extended

domain X = (−1.2, 1.2) × (−1.2, 1.2). Various examples were considered and will be detailed in

the next section. The domain was sampled on a square grid of step h = 1/100, and the algorithm

was studied for varying values of ε. The discretized version of the DPP will be referred to as T̄ and

it works as follows. Let v be a function sampled on all the grid points in X. Given obstacles and

boundary function Ψ1, Ψ2 and F we sample them on the grid as well. For any point p on the grid

inside Ω, let p1 . . . pk be all the grid points such that |p− pi| < ε. Then the function T̄ v is defined

at the point p by:

T̄ v(p) = max
{

Ψ1(p),min
{

Ψ2(p),
α

2
max
j=1...k

v(pj) +
α

2
min
j=1...k

v(pj) +
β

k

k∑
j=1

v(pj)
}}

.

For any point p ∈ X ∩ Ω, T̄ v is defined by:

T̄ v(p) = F (p).

The algorithm works by constructing two sequences of functions on the grid by recursive applica-

tion of the DPP. We build a lower sequence {un}Kn=0 by defining u0 = Ψ1χΩ +FχΓ, and recursively
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by un = T̄ un−1. The upper sequence is given by {un}Kn=0 by defining u0 = Ψ2χΩ + FχΓ, and

recursively by un = T̄ un−1. The first sequence is constructed following the exact construction from

the proof of Theorem 1.1.31. The second is constructed by noting that by the same argument that

guarantees that the lower sequence is monotone increasing, the upper sequence must be monotone

decreasing. Both sequences have been shown theoretically to converge to the solution, therefore we

continue the recursive construction until we reach a value K such that uK(p) − uK(p) < err for

all p ∈ X where err is the accepted error tollerance. The value K will be studied in each example

and will give a measure of the convergence rate of this algorithm. The algorithm works in the

presence of only one obstacle or with no obstacles, one must simply take the upper obstacle to be

the supremum of F and the lower obstacle the infimum of F . Once the algorithm converges the

solution is taken to be u(p) =
uK(p)+uK(p)

2 the average of the upper and lower solutions.

Various values of the radius ε were studied to choose the best compromise between speed and

precision. We considered values of ε given by 3h, 5h, 10h and 15h. The first test run was using two

examples with known solutions. We considered p = 2 and boundary values given by F1 = ex sin(y)

and F2 = x2 − y2 − y. Both these functions are harmonic functions, so we were able to calculate

the exact error in the algorithm, given in Table 1 respectively by Error 1 and Error 2. In the same

table we record k = points sampled which indicates the number of mesh points within the ball of

radius ε. Runtime is expressed in seconds, while Iteration No. records the number of applications

of the DPP necessary to obtain uK(p)− uK(p) < 10−3.

Radius k = Points Sampled Runtime Iteration No. Error 1 Error 2

15 709 555 335 8.62 · 10−6 8.22 · 10−11

10 317 617 876 6.17 · 10−6 8.51 · 10−11

5 81 652 3361 2.68 · 10−6 8.68 · 10−11

3 29 540 9255 3.15 · 10−7 4.73 · 10−7

Table 1: Errors in the ∆2 test cases

It was observed that runtime remained fairly constant in all these examples, due to the fact

that the reduced number of iterations was counterbalanced by the fact that larger radii required

more computations per iteration. There was however a change in precision moving from ε = 3h to

ε = 5h. In all following examples, we thus chose ε = 5h.

45



1.7 NUMERICAL RESULTS AND VISUALIZATIONS

Several examples were chosen to obtain visualizations. The visualizations in this section will have

two choices of obstacle, one parabolic and thus smooth and one Lipschitz continuous. For each of

these examples three boundary conditions were taken, one constant and two parabolic ones. Each

example was evaluated for values of p given by 2, 10 and 100. Before we explain the examples we

discuss an interesting effect which was noted when creating these visualizations. First, the presence

of obstacles significantly reduced the number of iterations needed for convergence. Second, it was

noted that as p increased the number of necessary iterations decreased. This second effect is caused

by the fact that the min-max averaging method tends to change a function much more than the

integral averaging. In Table 2 are the iterations needed for convergence for increasing values of p.

p 3 4 5 10 25 50 100

No Obstacle 5180 4806 4569 3790 3003 2707 209

One Obstacle 1637 1392 1249 975 825 777 166

Two Obstacles 1842 1933 1366 1108 992 967 178

Table 2: Convergence rate for increasing values of p

We may now begin discussing the visualizations, following is a definition of the obstacles and

boundary conditions used.

Obstacle type (a), smooth parabolic obstacles:

Ψ1(x, y) = max
{

2− 33(x+ 0.5)2 − 27(y + 0.1)2, 1.5− 40(x+ 0.3)2 − 34(y + 0.4)2,

2.5− 36(x− 0.6)2 − 51(y − 0.7)2, − 3
}
,

Ψ2(x, y) = min
{

33(x+ 0.6)2 + 27(y − 0.6)2 − 3, 33(x− 0.6)2 + 27(y + 0.6)2 − 3, 3
}
.

Obstacle type (b), Lipschitz continuous obstacles:

Ψ1(x, y) =


2− 17|x− 0.5| for y ∈ [−0.5, 0.5]

2− 17|x− 0.5| − 17|y + 0.5| for y ∈ (−1,−0.5)

2− 17|x− 0.5| − 17|y − 0.5| for y ∈ (0.5, 1)

Ψ2(x, y) = −4 + 12|y + 0.2|+ 15|x− 0.7|.
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Boundary condition type (i), constant 0 boundary value: F = 0.

Boundary condition type (ii), first parabolic boundary value: F = 1− 2y2.

Boundary condition type (iii), second parabolic boundary value: F = 2− (x+ y)2.

Each obstacle boundary values pair was used to obtain visualizations for the three values of

p = 2, 10, 100. Before we show the visualizations it is important to note an expected effect that was

observed in these visualizations. From the theory we constructed the uε as Borel functions with no

guarantee of continuity. In fact we may observe that the functions obtained in these visualizations

for p = 10 and p = 100 are discontinuous step functions. This phenomenon is more evident for

p = 100 than p = 10. For p = 2 no steps are observed. The discontinuity size seems also to be

affected by the slopes of the obstacles, which again is expected from the theory. The case p = 2 is a

special case as it is well known from the theory of harmonic functions that the averaging property

1.3 holds not as a limit but for every value of ε. Thus as we interpolate between p = 2 and p =∞

we see the ε-p-harmonious functions change behavior.
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Figure 3: Results of tests for obstacle (a), boundary condition (i), for p = 2, 10, 100 respectively
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Figure 4: Results of tests for obstacle (a), boundary condition (ii), for p = 2, 10, 100 respectively
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Figure 5: Results of tests for obstacle (a), boundary condition (iii), for p = 2, 10, 100 respectively
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Figure 6: Results of tests for obstacle (b), boundary condition (i), for p = 2, 10, 100 respectively
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Figure 7: Results of tests for obstacle (b), boundary condition (ii), for p = 2, 10, 100 respectively
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Figure 8: Results of tests for obstacle (b), boundary condition (iii), for p = 2, 10, 100 respectively
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1.8 OPEN QUESTIONS AND FUTURE RESEARCH

There is value to the algorithm used to find numerical visualizations. It has similarities to certain

well established methods for the solution of infinity Laplacian equations developed by Oberman

[19]. A thorough study and refinement of our numerical algorithm could yield a very useful tool in

the study of the p-Laplace equation.

A first step that could be taken in simplifying the algorithm is to study the effect of changing the

shape of the region in which the Players may move the token. Could the algorithm be rewritten using

cubes instead of balls? This would simplify the code significantly. If this change is theoretically

justifiable, would it affect the rate of convergence? Would this change significantly modify the

ε-p-solutions?

More refined thechniques of integration could be used, as well as better estimates of the supre-

mum and minimum over the ball. One could envision defining the functions more accurately on

the grid by the use of splines or other more refined techniques.

A great point of interest of this study is to observe the behavior of solutions near the contact

set and accurately defining the contact set itself. Could adaptive mesh refinement techniques be

employed in this algorithm with a focus around the boundary?

The function F is currently defined arbitrarily on the set Γ. How do certain choices of F

affect the convergence rate? It should be noted that when testing the algorithm on problems with

known solution the ε-p-harmonious solution found was within machine error precision of the actual

solution. This is due to two facts. Firstly the examples were done with p = 2 where the averaging

property is true not just as a limiting property. Furthermore F on the boundary was defined as the

smooth extension of the actual solution to the equation. When F was defined in other ways, the

accuracy of the solution was diminished. Studying this effect could yield clues as to the convergence

rate as ε→ 0. It could also lead to algorithms to select better choices of F .

Finally it might be of interest to see if a machine could be taught to play the game and learn

to estimate the expected value of the payout by playing against itself. This could probably be

done for a simple version of the problem. It would only be useful if the knowledge obtained from

training on a certain double obstacle problem was transferrable to different setups of the problem.

Nevertheless it would be an interesting exercise.
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2.0 CONVEX INTEGRATION FOR THE MONGE-AMPÈRE EQUATION

2.1 BACKGROUND IN THE MONGE-AMPÈRE EQUATION

2.1.1 Hölder spaces

Definition 2.1.1 (Hölder continuous functions). A function u is Hölder continuous with exponent

0 < α < 1 if there exists a constant C > 0 such that:

∀x, y ∈ Ω, |u(x)− u(y)| ≤ C|x− y|α.

The space of all Hölder continuous functions with exponent α is called C0,α(Ω), and if Ω is bounded

it may be equipped with the norm:

‖u‖0,α = sup
x∈Ω
|u|+ sup

x,y∈Ω

|u(x)− u(y)|
|x− y|α

.

Furthermore we define the Hölder seminorm as:

[u]0,α = sup
x,y∈Ω

|u(x)− u(y)|
|x− y|α

.

Lemma 2.1.2. Given a function f ∈ C1(Ω̄) on a bounded domain, for any α ∈ (0, 1) we have:

‖f‖0,α ≤ C‖f‖1−α0 ‖f‖α1

The constant C depends on the geometry of the domain. In particular, we have C = 2 for a convex

domain.

Proof. The proof follows simply from the fact that:

|f(x)− f(y)|
|x− y|α

= |f(x)− f(y)|1−α |f(x)− f(y)|α

|x− y|α
≤ (2‖f‖0)1−α

(
|f(x)− f(y)|
|x− y|

)α
.

55



Now consider:

‖f‖0,α = ‖f‖0 + [f ]0,α ≤ ‖f‖0 + 2‖f‖1−α0

(
sup
x,y∈Ω

|f(x)− f(y)|
|x− y|

)α
≤ 2‖f‖1−α0

(
‖f‖α0 + C[f ]α0,1

)
≤ C‖f‖1−α0,1 ‖f‖

α
1 .

2.1.2 Mollification

Mollification is a standard technique in mathematical analysis which is widely used to provide a

smooth approximation to a function. We begin by defining the mollifier used in this work:

ϕ(x) =


1
Aexp

(
−1

1−|x|2

)
|x| ≤ 1

0 |x| ≥ 1.

(2.1)

The constant A is a parameter needed to ensure that ϕ integrates to 1, and it may be approximated

to any degree of precision. For the purpose of the bounds in Lemma 2.1.4 we took A to lie in the

interval between 4.66 and 4.67. For numerical calculations A was calculated to a higher degree of

precision. More generally we define:

Definition 2.1.3 (Standard Mollifier). A fuction ψ : RN → R is called a standard mollifier if it

has the following properties:

• ψ is a smooth function.

•
´
RN ψ = 1.

• ψ = 0 outside B1(0).

• ψ is radially symmetric.

• ψ ≥ 0.

It is clear from the construction that ϕ is in fact a standard mollifier. We now apply Lemma 4.3

from [15] to this choice in two dimensions to obtain explicit estimates. To evaluate the constants

in the Lemma we will need to note that:

‖ϕ‖L1 = 1, ‖∇ϕ‖L1 ≤ 3.1, ‖∇2ϕ‖L1 ≤ 15.9, ‖∇3ϕ‖L1 ≤ 210.

These values were obtained through numerical means, and verified by evaluating the integrals

in polar coordinates and evaluating the ensuing one dimensional integral numerically. Different

mollifiers will have different estimates on their derivatives.

56



Lemma 2.1.4. Taking ϕ defined as in (2.1) denote:

∀l ∈ (0, 1) ϕl(x) =
1

l2
ϕ
(x
l

)
.

Then for every f, g ∈ C0(R2) there holds:

‖∇j+kf ∗ ϕl‖0 ≤
1

lk
‖∇kϕ‖L1(R2)‖f‖j , for all j, k ≥ 0 (2.2)

‖f ∗ ϕl − f‖0 ≤
1

2
l2‖f‖2, ‖∇(f ∗ ϕl − f)‖0 ≤ l‖f‖2,

‖∇2(f ∗ ϕl − f)‖0 ≤ 2‖f‖2
(2.3)

‖f ∗ ϕl − f‖0 ≤ lα[f ]0,α, ‖∇(f ∗ ϕl)‖0 ≤
3.1

l1−α
[f ]0,α, ∀α ∈ (0, 1] (2.4)

∀α ∈ (0, 1] ‖(fg) ∗ ϕl − (f ∗ ϕl)(g ∗ ϕl)‖0 ≤ 2l2α[f ]0,α[g]0,α,

∀α ∈ (0, 1] ‖∇
(
(fg) ∗ ϕl − (f ∗ ϕl)(g ∗ ϕl)

)
‖0 ≤ 9.3l2α−1[f ]0,α[g]0,α,

∀α ∈ (0, 1] ‖∇2
(
(fg) ∗ ϕl − (f ∗ ϕl)(g ∗ ϕl)

)
‖0 ≤ 67l2α−2[f ]0,α[g]0,α,

∀α ∈ (0, 1] ‖∇3
(
(fg) ∗ ϕl − (f ∗ ϕl)(g ∗ ϕl)

)
‖0 ≤ 925.8l2α−3[f ]0,α[g]0,α.

(2.5)

Proof. The proof of (2.2) through (2.5) follows the proof in [15]. We begin by evaluating the

following useful equalities which hold for any value of k ≥ 0:

‖∇kϕl‖L1(R2) = l−k‖∇kϕ‖L1(R2), (2.6)

This is an immediate consequence of the chain rule of derivatives.

To show the (2.2) we prove the well known result that ‖f ∗ g‖0 ≤ ‖g‖L1‖f‖0:

|f ∗ g| =
∣∣∣∣ˆ

RN
f(x− y)g(y)dy

∣∣∣∣ ≤ ˆ
RN

∣∣f(x− y)g(y)
∣∣dy ≤ ˆ

RN
‖f‖0|g(y)|dy = ‖g‖L1‖f‖0.

If we set g as the appropriate derivative of ϕl and note that ∇f ∗ g = f ∗∇g = ∇(f ∗ g) we obtain

the required inequality.

The proofs of inequalities (2.3) are obtained using Taylor’s expansion.

• k = 0. Consider the fact that:

f(x− y)− f(x) = f(x) +∇f(x) · (−y) +
1

2
∇2f(ξ)(−y)⊗ (−y) ξ = x− ty for some t ∈ [0, 1].

Thus, considering that the integral of an odd function over all of R2 is zero we obtain:
ˆ
R2

φl(y)[f(x− y)− f(x)]dy ≤
ˆ
R2

φl(y)∇f(x)(−y)dy +
1

2
l2‖∇2f‖0‖φl‖L1 =

1

2
l2‖∇2f‖0.

• k = 1. using the intermediate value Theorem we have:

∇f(x− y)−∇f(x) =
1

2
∇2f(ξ) · (−y) ξ = x− ty for some t ∈ [0, 1].
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Thus we obtain:

ˆ
R2

φl(y)[∇f(x− y)−∇f(x)]dy ≤ l‖∇2f‖0‖φl‖L1 = l‖∇2f‖0.

• k = 2. Estimate:

ˆ
R2

φl(y)[∇2f(x− y)−∇2f(x)]dy =

ˆ
R2

φl(y)[|∇2f(x− y)|+ |∇2f(x)|]dy

≤ 2‖∇2f‖0‖φl‖L1 = 2‖∇2f‖0.

To prove the first inequality (2.4) we multiply and divide by |y|α when applying the convolution

and by noting that ϕl ∗ f(x) = f(x):

|(f ∗ ϕl − f)(x)| =
ˆ
ϕl(y)|y|α f(x− y)− f(x)

|y|α
dy ≤ lα‖ϕl(y)|L1‖f‖0,α.

The same procedure is used to prove the second inequality with some modifications. Note that ∇ϕ

is an odd function and therefore gives zero when convoluted with a constant. We thus obtain:

|f ∗∇ϕl(x)| = |f ∗∇ϕl(x)− f(x) ∗∇ϕl| =
ˆ
∇ϕl(y)|y|α f(x− y)− f(x)

|y|α
dy ≤ lα‖∇ϕl(y)‖L1‖f‖0,α.

Finally we come to the inequalities (2.5). We must compute the derivatives of h = (fg) ∗ ϕl −

(f ∗ ϕl)(g ∗ ϕl):

∇h =(fg) ∗ ∇ϕl − (f ∗ ∇ϕl)(g ∗ ϕl)− (f ∗ ϕl)(g ∗ ∇ϕl),

∇2h =(fg) ∗ ∇2ϕl − (f ∗ ∇2ϕl)(g ∗ ϕl)− 2(f ∗ ∇ϕl)(g ∗ ∇ϕl)− (f ∗ ϕl)(g ∗ ∇2ϕl),

∇3h =(fg) ∗ ∇3ϕl − (f ∗ ∇3ϕl)(g ∗ ϕl)− 3(f ∗ ∇2ϕl)(g ∗ ∇ϕl)− 3(f ∗ ∇ϕl)(g ∗ ∇2ϕl)

− (f ∗ ϕl)(g ∗ ∇3ϕl).

From which we evaluate, using triangle inequality and (2.4):

‖h‖0 ≤ l2α2‖f‖0,α‖g‖0,α

‖∇h‖0 ≤ 3l2α‖∇ϕl‖L1‖f‖0,α‖g‖0,α

‖∇2h‖0 ≤ l2α
(
3‖∇2ϕl‖L1 + 2‖∇2ϕl‖L1

)
‖f‖0,α‖g‖0,α

‖∇3h‖0 ≤ l2α
(
3‖∇3ϕl‖L1 + 6‖∇2ϕl‖L1‖∇ϕl‖L1

)
‖f‖0,α‖g‖0,α.

The desired constants are obtained by inserting the appropriate bounds on the derivatives.

The above inequalities are evaluated for functions defined over the whole plane. We now consider

two compact sets Ω ⊂ Ω̄ such that Ω + Bl(0) ⊂ Ω̄. Given a function f : Ω̄ → R, we may define
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the convolution f ∗ ϕl : Ω→ R since ϕl is compactly supported on the ball of radius l. Using this

notation every inequality from Lemma 2.1.4 may be rewritten with the norm of the convolution

taken over the smaller set being bounded by the norm of the original function taken over the larger

set.

2.1.3 The Monge-Ampère equation and its weak formulation

Given Ω ⊂ R2 and a function f : Ω→ R the Monge-Ampère equation reads:

f = det∇2v in Ω.

This is the classical formulation of the equation for which a solution v will be of C2 regularity.

A variety of results exist about the existence and flexibility of solutions to this equation, but

many questions remain unanswered.

Lemma 2.1.5 (Very weak determinant Hessian). Given a function v : R2 → R of regularity C3 we

have that:

det∇2v = −1

2
curl curl(∇v ⊗∇v).

We define the right hand side of this equation as the very weak Hessian of v which will be written

as Det∇2v.

Proof. The proof is obtained through the following straightforward calculation:

curl curl(∇v ⊗∇v) = curl curl

 ∂1v
2 ∂1v∂2v

∂1v∂2v ∂2v
2

 = curl

∂2(∂1v
2)− ∂1(∂1v∂2v)

∂2(∂1v∂2v)− ∂1(∂2v
2)


= ∂2

2

(
∂1v

2
)
− 2
[
∂1∂2

(
∂1v∂2v

)]
+ ∂2

1

(
∂2v

2
)

= 2
[
∂1∂

2
2v∂1v +

(
∂1∂2v

)2]
− 2
[
∂2

1∂2v∂2v + ∂2
1v∂

2
2v +

(
∂1∂2v

)2
+ ∂1∂

2
2v∂1v

]
+ 2
[
∂2

1∂2v∂2v +
(
∂1∂2v

)2]
= 2
[(
∂1∂2v

)2 − ∂2
1v∂

2
2v
]

= −2det

 ∂2
1v ∂1∂2v

∂1∂2v ∂2
2v

 = −2det∇2v.

By dividing by −2 we obtain the claimed formulation.

Thus we may define the very weak formulation of the Monge-Ampère equation as:

f = Det∇2v = −1

2
curl curl(∇v ⊗∇v) in Ω. (2.7)

Consider an auxiliary matrix valued function A : Ω→ R2×2
Sym which satisfies f = −curl curl(A).

The solutions to this problem are not unique:
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Lemma 2.1.6 (Auxiliary Matrix). Given a function f : Ω→ R let λ be any solution to the problem

−∆λ = f . Then the matrix A(x) = λ(x)id is a solution to the equation f = −curl curl(A).

Proof.

curl curl

λ(x) 0

0 λ(x)

 = curl

∂2λ(x)− 0

0− ∂1λ(x)

 = ∂2
2λ+ ∂2

1λ = ∆λ = −f.

If a function v satisfies 1
2curl curl(∇v ⊗∇v) = curl curl(A), then clearly it satisfies (2.7).

Lemma 2.1.7 (Symmetric term). Consider a function w : Ω → R2, then 1
2curl curl(∇v ⊗∇v) =

curl curl(1
2∇v ⊗∇v + sym∇w)

Proof. We show this by first noting that curl curl(f + g) = curl curl(f) + curl curl(g). We now

compute:

curl curl

 ∂1w1
∂2w1+∂1w2

2

∂2w1+∂1w2
2 ∂2w2

 = ∂1∂
2
2w1 − ∂1∂2(∂2w1 + ∂1w2) + ∂2

1∂2w2 = 0

This result has a very interesting physical interpretation. Consider a surface with an out of

plane displacement given by εv and an in place displacement of ε2w, then the metric of the surface

will be Id+2ε2(1
2∇v ⊗ ∇v + sym∇w). The curvature of the surface will be defined by −ε2curl

curl(1
2∇v ⊗∇v + sym∇w).

We conclude this preliminary discussion by stating the very weak Monge-Ampère equation:

A =
1

2
∇v ⊗∇v + sym∇w. (2.8)

We further note that such an equation requires only one degree of differentiability in v and w

to be well defined.

2.1.4 Decomposition

Consider three unit vectors:

η1 =

1

0

 , η1 =
1√
(5)

1

2

 , η1 =
1√
(5)

5

 1

−2

 .
Lemma 2.1.8. The matrices η1 ⊗ η1, η2 ⊗ η2 and η3 ⊗ η3 form a basis of R2×2

Sym.

Let B = [bij ] =
∑3

k=1 φkηk ⊗ ηk. Then:
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(i) φ1 = b11 − 1
4b22 and φ2 = 5

8(b22 + 2b12), φ3 = 5
8(b22 − 2b12).

(ii)
∑3

k=1 φk = Tr B and: |φk| ≤ 5
√

3
8 |B| for k = 1 . . . 3.

(iii) If φk ≥ d > 0 for k = 1 . . . 3, then B ≥ dId2.

(iv) The matrix B′ = B + αdiag
(√

2+9
4 , (

√
2 + 9

5)
)

for any α ≥ ‖B‖ has ‖B′‖ < 5.05α and if we

write B′ =
∑3

k=1 φ
′
k, then φ′k ≥

α
2 .

Proof. The formula in (i) is obtained through a straightforward calculation:b11 b12

b12 b22

 = φ1

1 0

0 0

+ φ2
1

5

1 2

2 4

+ φ3
1

5

 1 −2

−2 4

 .

b11 = φ1 + 1

5φ2 + 1
5φ3,

b12 = 2
5φ2 − 2

5φ3,

b22 = 4
5φ2 + 4

5φ3.

=⇒


φ1 = b11 − 1

4b22,

φ2 = 5
8(b22 + 2b12),

φ3 = 5
8(b22 − 2b12).

The first part of (ii) follows immediately from adding all the terms. The second part follows from

Cauchy-Schwartz inequality if we write B as a 4-dimensional vector:

φ1 =


b11

b12

b12

b22

 ·


1

0

0

−1
4

 , φ2 =
5

8


b11

b12

b12

b22

 ·


0

1

1

2

 , φ2 =
5

8


b11

b12

b12

b22

 ·


0

−1

−1

2

 .

We thus obtain: |φ1| ≤
√

17
4 |B|, |φ2| ≤ 5

√
3

8 |B| and |φ3| ≤ 5
√

3
8 |B|. Consequently, (ii) follows. For

(iii), observe that
∑3

k=1 φkηk⊗ηk =
∑3

k=1(φk−d)ηk⊗ηk +ddiag{7
5 ,

8
5} ≥ dId2. Lastly, (iv) follows

from applying the formulas in (i) to B′ and noting that bii ≤ ‖B‖ for i = 1, 2 and b12 ≤
√

2
2 ‖B‖.

φ′1 = b11 + α

√
2 + 9

4
− 1

4

(
b22 + α(

√
2 +

9

5
)
)
≥ −α− 1

4
α+

9

5
α ≥ α

2
,

φ′2,3 =
5

8

(
b22 + α(

√
2 +

9

5
)± 2b12

)
≥ α

2
.

Finally, we evaluate |B′| ≤ |B|+ α
((√

2+9
4

)2
+
(√

2 + 9
5

)2) ≤ 5.05α.

2.2 BACKGROUND IN CONVEX INTEGRATION

Convex integration originated as an independent field from a generalization of existing perturbation

techniques. Such formulation of convex integration is attributed to Gromov, who laid out its
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foundations in his 1986 seminal work [9]. In the next section We will see some of the perturbation

results that were early formulations of what eventually came to be called “convex integration”.

Convex integration provides the framework for the construction of solutions to partial differential

relations with topological constraints. In the field of Partial Differential Equations, these methods

have been employed to find useful anomalous solutions.

In simple terms the application of convex integration to find anomalous solutions to a partial

differential equation follows the steps below. First the equation is relaxed to an inequality. Solutions

of this inequality are called subsolutions. The set of subsolutions must be convex for the method

to work. Next a subsolution is chosen. The sought after solution will be required to be “close”

to the original subsolution through a topological condition. For example, in the cases we discuss

we will find solutions within ε to a subsolution in C0 norm. Finally, from this first subsolution a

sequence of subsolutions is constructed which approaches the boundary of the set of subsolutions

without breaking the topological condition. The validity of this construction must then be verified

through a “Baire category method”.

We now give a very simple and common example of an application of convex integration.

Consider the equation:

u : R→ R,
∣∣∣∣dudx

(x)

∣∣∣∣ = 1 a.e. x ∈ R.

We want to show some anomalous solutions to this equation. We begin by relaxing the equation

into an inequality and choose a subsolution:

ũ(x) =
x

2
then,

∣∣∣∣dudx
(x)

∣∣∣∣ ≤ 1.

We next look for a solution u to the equation such that |u(x) − ũ(x)| ≤ ε. This is in fact easily

done. Let us take for example ε = 0.1, Then we build u piecewise linear through:

u(0) = 0,

u(x) = x until x− x

2
=

1

10
thus in

(
0,

1

5

]
,

u(x) =
2

5
− x until

2

5
− x− x

2
= − 1

10
thus in

(1

5
,
1

3

]
,

u(x) =
−4

15
+ x until

−4

15
+ x− x

2
= 1

1

10
thus in

(1

3
,
11

15

]
,

u(x) . . .

The construction is symmetric for negative values and continued over all of R. It is clear that this

construction works for any value of ε. In figure 9 we see its implementation.
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Figure 9: The approximation u of the subsolution ũ

2.3 THREE EXAMPLES OF APPLICATION

2.3.1 Isometric immersion problem

The first and best known application of convex integration arises from differential geometry and

regards the existence of isometric embeddings of Riemannian manifolds. Nash and Kuiper in

1954 showed existence of C1 embeddings of any N − 1 dimensional manifold in RN . They used

a method of oscillatory perturbations of subsolutions which predates Gromov’s formalization of

convex integration by decades. We will define the problem and provide an overview of the convex

integration schema used in the solution of this problem.

Consider any M dimensional Riemannian manifold (Σ, g). A continuous map u : Σ → RN is

called isometric if it preserves the length of curves. This condition when written in coordinates of

Σ becomes the following set of equations:

∂iu · ∂ju = gij where g =
M∑
i,j=1

gijdxi ⊗ dxj , or ∇uT∇u = g.

This problem consists of M(M+1)
2 equations in N unknowns and becomes easier for larger values of
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N . In fact any smooth manifold has smooth isometric embedding for N large enough. Nash and

Kuiper provided examples of C1 solutions for any N ≥M + 1. Their arguments were then pushed

forward using convex integration techniques to show the existence of C1,α isometric embeddings

for α ≤ 1
5 in the case M = 2, N = 3. These convex integration techniques have a natural upper

boundary, and can never be expected to push this threshold beyond C1, 1
3 regularity.

The construction of a solution begins with a short embedding, that is an embedding which

shortens the length of any curve. In coordinates this condition is stated as:

0 ≤ gij − ∂iu · ∂ju ∀i, j = 1, . . . ,M.

We will be adding a series of oscillatory perturbations to define a sequence of short embeddings uk

which converge in the desired space, and gij − ∂iu · ∂ju→ 0.

We illustrate the application of convex integration in the simpler case N = M + 2 as built by

Nash [18]. The construction has been extended to the N = M + 1 case [13], but the calculations

provide little insight on the method itself and include technical details that are beyond the scope

of this overview.

We begin by describing what will be called a step of convex integration. Given an embedding

u : Σ → RN , a positive function a : Σ → R+ and a unit vector ξ ∈ RM , we seek a function

uλ : Σ→ RN such that for arbitrarily large λ:

‖u− uλ‖0 = O
( 1

λ

)
and ‖∇uT∇u+ a2ξ ⊗ ξ −∇uTλ∇uλ‖0 = O

( 1

λ

)
.

We write uλ = u+ w with ‖w‖0 = O
(

1
λ

)
, then we obtain:

∂iuλ · ∂juλ = ∂iu · ∂ju+ ∂iw · ∂ju+ ∂iu · ∂jw + ∂iw · ∂jw.

The second condition thus becomes:

∂iw · ∂ju+ ∂iu · ∂jw + ∂iw · ∂jw = a2ξ ⊗ ξ +O
( 1

λ

)
. (2.9)

In the case of N ≥ n+ 2 this condition may be greatly simplified by requesting w · ∂iu = 0 for

all i obtaining:

∂iu · ∂jw = ∂j(∂i · w)− ∂i∂ju · w.

Simplifying the condition to:

∂iw · ∂jw = a2ξ ⊗ ξ +O
( 1

λ

)
,
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this problem actually has closed form solution given by:

w(x) =
a(x)

λ

(
sin(λx · ξ)ζ(x) + cos(λx · ξ)η(x)

)
.

With ζ(x), η(x) two orthogonal vector fields such that at every point and for every i, ζ ·η = ζ ·∂iu =

η · ∂iu = 0, we may thus write:

∂iw = a(x)ξi
(

cos(λx · ξ)ζ(x)− sin(λx · ξ)η(x)
)

+O
( 1

λ

)
,

which gives:

∂iw∂jw = a2(x)ξiξj
(

cos2(λx · ξ) + sin2(λx · ξ)

+ cos(λx · ξ) sin(λx · ξ)ζ(x) · η(x)
)

+O
( 1

λ

)
= a2ξi ⊗ ξj +O

( 1

λ

)
.

In the case of N = M + 1 the vector fields ζ, η with the same properties do not exist, and thus

the costruction is modified. A solution to (2.9) can still be found, but the construction is very

complicated, although the structure of w remains similar.

We now want to discuss how to iterate convex integration steps to obtain a solution to the

isometric immersion problem. Define metrics:

gn = g − εnId,

where 1 > εn → 0 is some sequence which converges appropriately fast. We will define a sequence

of functions un recursively starting from the original short embedding u0, and un+1 is constructed

in such a way that it is a short embedding for the metric gn+1 by guaranteeing:

‖gn −∇uTn+1∇un+1‖0 ≤ εn − εn+1.

This construction is achieved through iterated steps of convex integration. Begin by decomposing:

gn −∇uTn∇un =

k∑
i=1

a2
i ηi ⊗ ηi,

where ηi are unit vectors. The crucial factor in determining the regularity of the solution found

will be the number k of rank one matrices we can decompose the defect into. To go from un to

un+1 we must apply k steps of convex integration, every step will make the norm of the second

derivative of un+1 larger. The convergence of the C1,α norm of the un is dominated by a geometric

sequence which converges when:

α <
1

1 + 2k
.
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The construction that leads to this result is very complex and will be omitted as it parallels closely

the one we will detail for the Monge-Ampère equation. In the case of a 2-dimensional manifold

embedded in R3 one may easily decompose any defect into k = 3 rank one matrices. This was done

in [3] to show the existence of solutions with Hölder exponent less than 1
7 . In fact in [6] it was

shown that through appropriate conformal changes of variables the number of convex integration

steps can be reduced to k = 2 pushing the threshold to 1
5 . The limit of this technique is that it

cannot provide solutions of regularity higher than 1
3 which would require reducing the process to

one step of convex integration. This hasn’t been achieved for the isometric immersion problem, but

it was achieved in the next example we mention.

2.3.2 Onsager’s conjecture

Another application of convex integration is found in the study of the Euler equation for incom-

pressible fluid flows. On a domain Ω ∈ RN , and a time interval [0, T ] the equations are written as:


∂tv + (v · ∇)v +∇p = 0,

div v = 0.

(2.10)

Solutions to the equations are the velocity of the fluid at each point and time v(x, t) : Ω×[0, T ]→ RN

and the pressure at each point and time p(x, t) : Ω × [0, T ] → R. In this theory the dimension is

taken to be N = 3, and the boundary conditions to be periodic. This means the problem is defined

on the torus Ω = T3.

Classical solutions to this problem are taken to be a pair of differentiable functions:

(v, p) ∈ C1
(
T3 × [0, T ],R3 × R

)
.

Little is known for these solutions, except for the crucial fact that such solutions conserve energy.

More formally we define the total energy for the flow at time t:

E(t) =
1

2

ˆ
T3

|v(x, t)|2dx. (2.11)

For classical solutions of (2.10) such energy will be constant in time.

Many definitions of weak solutions have been studied in connection to the study of turbulent

flows. Many of these solutions have been found to have anomalous properties. Of particular interest

is the fact that weak solutions do not generally satisfy conservation of energy. This is of relevance
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in the study of turbulent flows as it may model some anomalous phenomenons that have been

observed experimentally.

On the matter of energy conservation Onsager formulated the problem in 1949 [20] asking if

there exists a threshold of regularity between C0 and C1, above which energy is conserved and below

which it is not. He postulated the threshold to be 1
3 and himself provided a non rigorous proof of

energy conservation for solutions of Hölder regularity above 1
3 . This was formally resolved in 1994

in [7, 2]. In the other direction great progress was made in recent years by a group of researchers

including Buckmaster, De Lellis, Isset and Székelyhidi. De Lellis and Székelyhidi developed the

schema to apply convex integration to this problem.

There are two statements of the concept of dissipation of energy:

1. There exists a nonzero weak solution v ∈ L1
(
[0, 1], C0,α(T3)

)
with compact support in time.

2. For any smooth positive energy function E(t), there exists a nonzero weak solution

v ∈ L∞
(
[0, 1], C0,α(T3)

)
with:

1

2

ˆ
T3

|v(x, t)|2dx = E(t).

The exponent α has been pushed to 1
3 − ε for the first statement, and 1

5 − ε for the second.

We now show the relaxation of (2.10) that allows for the application of convex integration.

Consider a matrix valued function

u = v ⊗ v − 1

3
|v|2Id.

This matrix always has trace zero, and through direct calculation it results that in fact:

div u = (v · ∇)v.

Thus we may rewrite the system of equations as:
∂tv + div u+∇p = 0,

div v = 0,

v ⊗ v − u = 1
3 |v|

2Id.

(2.12)

We may now define subsolutions to (2.10) by relaxing the last equation in (2.12) to an inequality

yielding: 
∂tv + div u+∇p = 0,

div v = 0,

v ⊗ v − u ≤ 1
3 |v|

2Id.
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The last term will determine a defect which will be decomposed into simple matrices and reduced

through the application of convex integration steps. This construction again draws heavily on the

construction by Nash. The actual construction of the oscillatory perturbations is however highly

technical and will be omitted. We do however note that as before the threshold of regularity is

determined by the number of convex integration steps which were reduced to 2 to obtain the 1
5

bound [1]. Finally, Isset was able to reduce the schema to 1 step of convex integration providing

the best threshold of 1
3 in [11].

2.3.3 The Monge-Ampère equation

In this section we will discuss how convex integration is applied to the Monge-Ampère equation.

This application is possible due to the quadratic structure of the very weak formulation of the

equation. Given functions v : Ω→ R, w : Ω→ R2 and A : Ω→ R2×2
Sym, we may define the defect as:

D = A−
(1

2
∇v ⊗∇v + sym∇w

)
.

Clearly the Monge-Ampère equation is satisfied when the defect is zero. We consider a rank one

defect of the form a2η ⊗ η where a : Ω → R+ and η is a unit vector of R2. The goal is to find

functions vλ : Ω→ R and wλ : Ω→ R2 such that:(1

2
∇vλ ⊗∇vλ + sym∇wλ

)
−
(1

2
∇v ⊗∇v + sym∇w + a2η ⊗ η

)
≈ O

( 1

λ

)
, (2.13)

where λ is an arbitrarily large number. Furthermore we require ‖v − vλ‖0 + ‖w − wλ‖0 ≈ O
(

1
λ

)
.

We look for solutions to this problem by adding oscillatory functions of frequency λ to both v and

w. The ansatz is the following:

vλ = v +
1

λ
f(x, λc · η), wλ = w +

1

λ
g(x, λc · η)∇v +

1

λ
h(x, λc · η)η.

We further require that f(x, t), g(x, t) and h(x, t) all be oscillatory functions of period 1 in the

variable t. If we evaluate
(

1
2∇vλ ⊗∇vλ + sym∇wλ

)
and ignore order 1

λ terms we obtain:

1

2
∇vλ ⊗∇vλ + sym∇wλ =

1

2
∇v ⊗∇v + sym∇w +

1

2
(ft)

2η ⊗ η + (ft)Sym(η ⊗∇v)

+ (gt)Sym(η ⊗∇v) + (ht)η ⊗ η.

If we want (2.13) to be satisfied we need to guarantee that f = −g and 1
2(ft)

2 + (ht) = a2. There

are closed form solutions to the second equation given by:

f(x, t) =
a(x)

π
sin(2πt) and h(x, t) = −a(x)2

4π
sin(4πt).
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We formalize this in the following Lemma:

Lemma 2.3.1. Given a positive function a ∈ C∞(Ω̄), define the functions V,W ∈ C∞(Ω̄ × R,R)

as:

V (x, t) :=
a(x)

π
sin(2πt), W (x, t) := −a(x)2

4π
sin(4πt).

These functions are 1-periodic in t, and satisfy in Ω̄× R:

1

2
(∂tV )2 + ∂tW = a2, (2.14)

|V | ≤ a

π
, |∂tV | ≤ 2a, |∇xV | ≤

|∇a|
π

, |∇2
xV | ≤

|∇2a|
π

,

|W | ≤ a2

4π
, |∂tW | ≤ a2, |∇xW | ≤

a|∇a|
2π

.

(2.15)

Proof. The proof follows from straightforward derivatives calculations and the periodicity and

boundedness of the sin and cos function.

∂tV (x, t) = 2a(x) cos(2πt) ∇xV (x, t) =
∇a(x)

π
sin(2πt), ∇2

xV (x, t) =
∇2a(x)

π
sin(2πt),

∂tW (x, t) = −a(x)2 cos(4πt), ∇xW (x, t) = −a(x)∇a(x)

2π
sin(4πt).

Using these evaluations we compute:

1

2
(∂tV (x, t))2 + ∂tW (x, t) = 2a2(x) cos2(2πt)− a(x)2 cos(2 · 2πt)

= 2a2(x) cos2(2πt)− a(x)2 cos2(2πt) + a(x)2 sin2(2πt) = a2.

We may now provide the Lemma which justifies one step of convex integration. As in other

convex integration schemas several steps of convex integration will be applied subsequently to

reduce a defect which is not rank one.

Proposition 2.3.2. Let v ∈ C∞(Ω̄,R), w ∈ C∞(Ω̄,R2) and let a ∈ C∞(Ω̄,R) be a positive function.

For a unit vector η ∈ R2 and a frequency λ > 1, define vλ ∈ C∞(Ω̄,R), wλ ∈ C∞(Ω̄,R2) through:

vλ(x) = v(x) +
1

λ
V (x, λx · η),

wλ(x) = w(x)− 1

λ
V (x, λx · η)∇v(x) +

1

λ
W (x, λx · η)η.

Then we have the following pointwise estimates, valid in Ω̄:∣∣∣(1

2
∇vλ ⊗∇vλ + Sym∇wλ

)
−
(1

2
∇v ⊗∇v + Sym∇w + a2η ⊗ η

)∣∣∣
≤ 1

λ

(a|∇a|
2π

+
a|∇2v|
π

)
+

1

2λ2π2
|∇a|2,

(2.16)
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|vλ − v| ≤
a

λπ
, |wλ − w| ≤

a

λπ

(
|∇v|+ a

4

)
, (2.17)

|∇vλ −∇v| ≤
|∇a|
λπ

+ 2a, and

|∇wλ −∇w| ≤ 2a|∇v|+ a2 +
1

λ

( 1

π
|∇v||∇a|+ a

π
|∇2v|+ 1

2π
a|∇a|

)
,

(2.18)

|∇2vλ −∇2v| ≤ |∇
2a|
λπ

+ 4|∇a|+ 4λπa. (2.19)

Proof. We use (2.15) to show the estimates in (2.17):

|vλ − v| =
∣∣∣ 1
λ
V
∣∣∣ ≤ a

λπ
, |wλ − w| =

1

λ
|V∇v +Wη| ≤ a

λπ

(
|∇v|+ a

4

)
.

We now compute all appropriate derivatives of vλ and wλ:

∇vλ = ∇v +
1

λ
∇xV + η∂tV,

∇2vλ = ∇2v +
1

λ
∇2
xV + 2(Sym)(∂t∇xV ⊗ η) + λ∂2

t V η ⊗ η,

∇wλ = ∇w − 1

λ
∇xV∇v − ∂tV∇v ⊗ η +

1

λ
η ⊗∇xW + ∂tWη ⊗ η.

Using these evaluations, a straightforward calculation gives (2.18) and (2.19):

|∇vλ −∇v| ≤
1

λ
|∇xV |+ |∂tV | ≤

|∇a|
λπ

+ 2a,

|∇wλ −∇w| =
∣∣∣− 1

λ
∇v ⊗∇xV − (∂tV )η ⊗∇v − 1

λ
V∇2v +

1

λ
η ⊗∇xW + (∂tW )η ⊗ η

∣∣∣
≤ 2a|∇v|+ a2 +

1

λ

(
1

π
|∇v||∇a|+ a

π
|∇2v|+ 1

2π
a|∇a|

)
,

|∇2vλ −∇2v| ≤ 1

λ
|∇2

xV |+ 2|∇x∂tV |+ λ|∂2
t V | ≤

|∇2a|
λπ

+ 4|∇a|+ 4λπa.

Lastly, using (2.14) and the fact that (∂tV )∇xV +∇xW = 1
π sin(2πt)a∇a, we evaluate directly:

1

2
∇vλ ⊗∇vλ + Sym∇wλ =

1

2
∇v ⊗∇v +

1

2
(∂tV )2η ⊗ η + (∂tW )η ⊗ η + Sym∇w

+
1

λ

(
(∂tV )Sym(∇xV ⊗ η)− V∇2v + Sym(∇xW ⊗ η)

)
+

1

2λ2
∇xV ⊗∇xV

=
1

2
∇v ⊗∇v + a2η ⊗ η +

1

λ

(a
π

sin(2πλx · η)Sym(∇a⊗ η)− a

π
sin(2πλx · η)∇2v

)
+ Sym∇w +

1

2π2λ2
sin2(2πλx · η)∇a⊗∇a.
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We conclude the proof by setting τ = 2πλx · η and deriving the following estimate:

∣∣∣(1

2
∇vλ⊗∇vλ + Sym∇wλ

)
−
(1

2
∇v ⊗∇v + Sym∇w + a2η ⊗ η

)∣∣∣
≤
∣∣∣ 1
λ

(a
π

sin(τ)Sym(∇a⊗ η)− a

π
sin(τ)∇2v

)
+

1

2π2λ2
sin2(τ)∇a⊗∇a

∣∣∣
≤ 1

λ

(a|∇a|
2π

+
a|∇2v|
π

)
+

1

2λ2π2
|∇a|2.

We now present a similar Proposition which will be needed to obtain some stronger inequalities.

In particular this framework will provide some control on the second derivatives of vλ at the cost

of stronger assumptions.

Proposition 2.3.3. Let Ω ⊂ R2 be an open, bounded set. Let v ∈ C3(Ω̄), w ∈ C2(Ω̄,R2), and

a ∈ C3(Ω̄) be functions with a > 0. Take a unit vector η ∈ R2 and δ, l ∈ (0, 1) be two parameter

constants such that:

‖∇ma‖0 ≤
δ

lm
∀m = 0 . . . 3, and ‖∇m+1v‖0 ≤

δ

lm
∀m = 1, 2. (2.20)

Then for any λ > 1/l there exist approximating functions vλ ∈ C3(Ω̄) and wλ ∈ C2(Ω̄,R2) satisfying

the following bounds:

∣∣∣(1

2
∇vλ ⊗∇vλ + Sym∇wλ

)
−
(1

2
∇v ⊗∇v + Sym∇w + a2η ⊗ η

)∣∣∣ ≤ 3

π

δ2

λl
, (2.21)

‖∇m(vλ − v)‖ ≤ 2.4mπm−1δλm−1 ∀m = 0 . . . 3, (2.22)

‖∇m(wλ − w)‖ ≤ 2.4mπm−1δλm−1(1 + ‖v‖0) ∀m = 0 . . . 2. (2.23)

Proof. The first inequality (2.21) follows directly from (2.16) by applying (2.20). We compute each
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of the norms in (2.22) and (2.23) using (2.20).

‖v − vλ‖0 ≤
1

λ

‖a‖0
π
≤ 1

π

1

λ
δ,

‖∇(v − vλ)‖0 ≤
1

λ

‖∇a‖0
π

+ 2‖a‖0 ≤ 2.4δ,

‖∇2(v − vλ)‖0 ≤
1

λ

‖∇2a‖0
π

+ 4‖∇a‖0 + 4πλ‖a‖0 ≤ 16.9λδ,

‖∇3(v − vλ)‖0 ≤
1

λ

‖∇3a‖0
π

+ 6‖∇2a‖0 + 12πλ‖∇a‖0 + 8π2λ2‖∇a‖0 ≤ 123.0λδ,

‖w − wλ‖0 ≤
1

λ

‖a‖0
π
‖∇v‖0 +

1

λ

‖a‖20
4π
≤ 1

π

1

λ
δ(1 + ‖∇v‖0),

‖∇(w − wλ)‖0 ≤
1

λ

‖∇a‖0
π
‖∇v‖0 +

1

λ

‖a‖0
π
‖∇2v‖0 +

1

λ

‖a‖0‖∇a‖0
2π

+ 2‖a‖0‖∇v‖0 + ‖a‖20

≤ 2.4δ(1 + ‖∇v‖0),

‖∇2(w − wλ)‖0 ≤
1

λ

‖∇2a‖0
π

‖∇v‖0 +
2

λ

‖∇a‖0
π
‖∇2v‖0 + 4‖∇a‖0‖∇v‖0 +

1

λ

‖a‖0
π
‖∇3v‖0

+ 4‖a‖0‖∇2a‖0 + 4πλ‖a‖0‖∇v‖0 +
1

λ

‖∇a‖20
2π

+
1

λ

‖a‖0‖∇2a‖0
2π

+ 4‖a‖0‖∇a‖0

+ 4πλ‖a‖20 ≤ 21.9λδ(1 + ‖∇v‖0).

2.4 THE MAIN ANALYTICAL RESULTS

We may now state the main analytical result obtained using convex integration for the Monge-

Ampère equation. This result was obtained by Lewicka and Pakzad in [15]. The framework of this

proof was used by the author and Lewicka with modifications to obtain interesting visualizations

of anomalous solutions to the equation in [4].

Theorem 2.4.1. Let f ∈ L7/6(Ω) on an open, bounded, simply connected Ω ⊂ R2. Fix an exponent:

α <
1

7
.

Then the set of C1,α(Ω̄) solutions to:

Det∇2v = f in Ω (2.24)

is dense in the space C0(Ω̄). More precisely, for every v0 ∈ C0(Ω̄) there exists a sequence vn ∈

C1,α(Ω̄), converging uniformly to v0 and solving the equation (2.24). When f ∈ Lp(Ω) and p ∈

(1, 7
6), the same result is true for any α < 1− 1

p .
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This result follows from two intermediate results which will be proven using convex integration

techniques. First we show that there exists a C1 approximation for any continuous function. Next

we show the existence of a C1,α approximation under stricter conditions. The two intermediate

theorems will be used in sequence to prove Theorem 2.4.1.

We first restate the Theorem in terms of the very weak Hessian. The two statements are

equivalent in light of the arguments from section 2.1.3.

Theorem 2.4.2. Let Ω ⊂ R2 be an open and bounded domain. Let v0 ∈ C1(Ω̄), w0 ∈ C1(Ω̄,R2)

and A ∈ C0,β(Ω̄,R2×2
Sym), for some β ∈ (0, 1), be such that:

∃c0 > 0 A−
(1

2
∇v0 ⊗∇v0 + Sym∇w0

)
≥ c0Id2 in Ω̄. (2.25)

Then, for every exponent α in the range:

0 < α < min
{1

7
,
β

2

}
,

there exist sequences vn ∈ C1,α(Ω̄) which converge to v0 and wn ∈ C1,α(Ω̄,R2) which converge

uniformly to some function w ∈ C1(Ω̄,R2), and which satisfy:

A =
1

2
∇vn ⊗∇vn + Sym∇wn in Ω̄. (2.26)

Next we consider the existence of a C1 approximation.

Theorem 2.4.3. Let Ω ⊂ R2 be an open bounded domain. Let v0 ∈ C∞(Ω̄,R), w0 ∈ C∞(Ω̄,R2),

and A ∈ C∞(Ω̄,R2×2
Sym) be functions such that, with some constant d0 > 0, we have:

D0 = A−
(1

2
∇v0 ⊗∇v0 + Sym∇w0

)
=

3∑
k=1

φkηk ⊗ ηk, φk ≥ d0 in Ω̄. (2.27)

Then, for any ε > 0 there exist sequences {vk}∞k=1 ⊂ C∞(Ω̄), and {wk}∞k=1 ⊂ C∞(Ω̄,R2) such that:

‖v0 − vk‖0 ≤ ε for every value of k, vk → v in C1(Ω̄) and wk → w in C1(Ω̄,R2), where v and w

satisfy:

‖v0 − v‖0 ≤ ε and
1

2
∇v ⊗∇v + Sym∇w = A. (2.28)

Finally we state the C1,α result .

Theorem 2.4.4. Given a small constant δ0 ≤ 5.4 · 10−16, let Ω ⊂ Ωfat ⊂ R2 be open bounded

domains such that Ω +B2δ0(0) ⊂ Ωfat. Given three functions v ∈ C2(Ω̄fat), w ∈ C2(Ω̄fat,R2), and

A ∈ C0,α(Ω̄fat,R2×2
Sym) with a constant β ∈ (0, 1), assume:

D0 = A−
(

1

2
∇v ⊗∇v + Sym∇w

)
, 0 < ‖D0‖C0(Ωfat) < δ0 � 1. (2.29)
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0 < α < min

{
1

7
,
β

2

}
.

Then functions v̄ ∈ C1,α(Ω̄), and w̄ ∈ C1,α(Ω̄,R2) can be found such that:

1

2
∇v̄ ⊗∇v̄ + Sym∇w̄ = A, and ‖v − v̄‖C0(Ω) ≤ 0.02δ0.

Before proving each of the intermediate theorems we show how Theorems 2.4.3 and 2.4.4 are

used to prove Theorem 2.4.2.

Having taken a sufficiently small ε > 0, we will construct a sequence of functions vk ∈ C1,α(Ω̄)

and wk ∈ C1,α(Ω̄,R2) which converge in C1,α sense to functions v̄ and w̄ such that:

A0 =
1

2
∇v̄ ⊗∇v̄ + Sym∇w̄ in Ω̄ and ‖v̄ − v0‖0 < ε.

To this end we look to apply Theorem 2.4.4, but we have no estimate on the initial deficit. To

account for the initial deficit being too large we will utilise the construction in Theorem 2.4.3.

We begin by choosing functions ṽ0 ∈ C∞(Ω̄fat), w̃0 ∈ C∞(Ω̄fat,R2) and Ã0 ∈ C∞(Ω̄fat,R2×2
Sym)

such that:

‖ṽ0 − v0‖C0(Ω) + ‖w̃0 − w0‖C0(Ω) <
ε

3
,

‖Ã0 −A0‖C0(Ω) <
δ0

2
.

(2.30)

This is done using the density of C∞ in C0 and by finding appropriate smooth extensions of the

functions on Ωfat Furthermore we may assume without loss of generality that (2.27) holds on Ωfat

by using the arbitrariness of A and w0. Next we apply the construction from the proof of Theorem

2.4.3.

Following the Theorem we construct sequences {vi}∞i=1 ⊂ C∞(Ω̄fat), and {wi}∞i=1 ∈ C∞(Ω̄fat,R2)

such that: ‖vi − ṽ0‖C0(Ωfat) <
ε
3 . These sequences converge vi → v and wi → w in the C1(Ωfat)

sense where v and w satisfy Ã0 = 1
2∇v ⊗∇v + Sym∇w. This implies that the sequence of defects

defined by Di = Ã0 −
(

1
2∇vi ⊗ ∇vi + Sym∇wi

)
converges to zero, and thus there exists a k ≥ 1

such that the defect ‖D̃k‖C0(Ωfat) <
δ0
2 .

We thus define ṽk ∈ C∞(Ω̄fat) and w̃k ∈ C∞(Ω̄fat,R2) to which we may apply Theorem 2.4.4

with the original A0. We note that these functions satisfy the conditions of the Theorem as:

‖A0 −
1

2
∇ṽk ⊗∇ṽk + Sym∇w̃k‖C0(Ω) ≤ ‖A0 − Ã‖C0(Ω) + ‖D̃k‖C0(Ωfat) < δ0.

Thus we finally obtain v̄ ∈ C1,α(Ω̄) and w̄ ∈ C1,α(Ω̄,R2) which obey the desired equality, and such

that it holds:

‖v̄ − v0‖C0(Ω) ≤ δ0 +
2ε

3
< ε,
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if δ0 is taken small enough.

2.4.1 C1 approximation

Proposition 2.4.5. Let v ∈ C∞(Ω̄,R), w ∈ C∞(Ω̄,R2) and A ∈ C∞(Ω̄,R2×2
Sym) be such that, with

some constant d > 0, we have:

D := A−
(1

2
∇v ⊗∇v + Sym∇w

)
=

3∑
k=1

φkηk ⊗ ηk, φk ≥ d in Ω̄. (2.31)

Fix ε > 0 and ξ > 0 such that:

ξ ≤ ‖D‖0. (2.32)

Then, there exist ṽ ∈ C∞(Ω̄,R), w̃ ∈ C∞(Ω̄,R2) and a constant d̃ > 0 such that:

D̃ := A−
(1

2
∇ṽ ⊗∇ṽ + Sym∇w̃

)
=

3∑
k=1

φ̃kηk ⊗ ηk, φ̃k ≥ d̃ in Ω̄, (2.33)

‖D̃‖0 ≤ ξ, ‖ṽ − v‖0 ≤ ε, ‖w̃ − w‖0 ≤ Cε
(
‖∇v‖0 + ‖D‖1/20

)
, (2.34)

‖∇ṽ −∇v‖0 ≤ C‖D‖1/20 , ‖∇w̃ −∇w‖0 ≤ C
(
‖D‖1/20 ‖∇v‖0 + ‖D‖0

)
. (2.35)

Proof. 1. We construct three intermediate fields vk and wk, k = 1 . . . 3, between the given v0 = v,

w0 = w and the requested v3 = ṽ, w3 = w̃. To this end, define smooth, positive functions

ak : Ω̄→ R, k = 1 . . . 3, and a constant δ ≤ 1
2 by:

δ‖D‖0 =
ξ

2
, ak(x)2 = (1− δ(x))φk(x),

so that: δD = D −
∑3

k=1 a
2
kηk ⊗ ηk.

Given (vk−1, wk−1) ∈ C∞(Ω̄,R3), the successive corrections vk and wk are now constructed by

applying Proposition 2.3.2 to v = vk−1, w = wk−1, a = ak, η = ηk and an appropriate λ = λk ≥ 1

determined below. Observe that:

D̃ = A−
(1

2
∇ṽ ⊗∇ṽ + Sym∇w̃

)
= D +

(1

2
∇v ⊗∇v + Sym∇w

)
−
(1

2
∇ṽ ⊗∇ṽ + Sym∇w̃

)
= D −

3∑
k=1

a2
kηk ⊗ ηk −

3∑
k=1

((1

2
∇vk ⊗∇vk + Sym∇wk

)
−
(1

2
∇vk−1 ⊗∇vk−1 + Sym∇wk−1 + a2

kηk ⊗ ηk
))

= δD −
3∑

k=1

Bk,
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where (2.16) yields the following pointwise bound on the error quantities Bk:

|Bk| ≤
ak|∇ak|

2πλk
+
ak|∇2vk−1|

πλk
+
|∇ak|2

2π2λ2
k

in Ω̄, k = 1 . . . 3. (2.36)

To prove positivity of the decomposition in (2.33), we set:

d̃ =
ξd

4‖D‖0
=
δd

4

and use Lemma 2.1.8 to:

3∑
k=1

(φ̃k − δφk)ηk ⊗ ηk = D̃ − δD = −
3∑
i=1

Bi in Ω̄.

Namely, by (2.31) it follows that:

φ̃k ≥ δφk −
5
√

3

8

∣∣ 3∑
i=1

Bi
∣∣ ≥ δφk

2
>
δd

2
≥ d̃ in Ω̄, k = 1 . . . 3,

where the second inequality above is valid when:

5
√

3

8
|Bi| ≤

δφk
6

in Ω̄, i, k : 1 . . . 3. (2.37)

Note that the first estimate in (2.34) holds then as well, because:

|D̃| ≤ δ|D|+
∣∣ 3∑
i=1

Bi
∣∣ ≤ ξ

2
+

4

5
√

3
δφi ≤

ξ

2
+
δ

2
|D| = 3

4
ξ in Ω̄.

To ensure the validity of (2.37) we must thus request the following three conditions which may

be assured by choosing λk large enough:

5
√

3

8

ai|∇ai|
2πλi

≤ δd

18
and

5
√

3

8

ai|∇2vi−1|
πλi

≤ δd

18
and

5
√

3

8

|∇ai|2

2π2λ2
i

≤ δd

18
in Ω̄, i, k : 1 . . . 3.

(2.38)

2. Observe that, by Lemma 2.1.8, we get:

3∑
i=1

ai ≤
√

3
( 3∑
i=1

a2
i

)1/2
=
√

3
(
(1− δ)Tr D

)1/2 ≤ 3|D|1/2 in Ω̄. (2.39)

Consequently, using (2.17), we obtain the second inequality in (2.34):

|ṽ − v| ≤
3∑
i=1

ai
λiπ
≤ 3|D|1/2

π min
k=1...3

{λk}
< ε in Ω̄, (2.40)

if only we assume that:

λk ≥
‖D‖1/20

ε
for k = 1 . . . 3. (2.41)
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Note that (2.38) and Lemma 2.1.8 easily imply that:

|∇ai|
πλi

≤

√
δ

16

5
√

3 18
φi ≤

1

3
|D|1/2 in Ω̄. (2.42)

Thus, by (2.39) and (2.18):

3∑
i=1

|∇vi −∇vi−1| ≤
3∑
i=1

( |∇ai|
λiπ

+ 2ai
)
≤ 7‖D‖1/20 in Ω̄,

so that the first bound in (2.35) follows explicitly in: ‖∇ṽ −∇v‖0 ≤ 7‖D‖1/20 . We also observe:

|∇vk| ≤ |∇v0|+ 7‖D‖1/20 in Ω̄, k = 1 . . . 3.

Using (2.41) and (2.39) again, we obtain the last inequality in (2.34):

|w̃ − w| ≤
3∑
i=1

ai
λiπ

(
‖∇vi−1‖0 +

ai
4

)
≤

3∑
i=1

ai
λiπ

(
‖∇v‖0 + 7‖D‖1/20 +

ai
4

)
≤ ‖D‖1/20

min
k=1...3

{λk}
(
‖∇v‖0 + 8‖D‖1/20

)
≤ ε
(
‖∇v‖0 + 8‖D‖1/20

)
in Ω̄,

whereas (2.42) is used to obtain the final bound in (2.35):

|∇w̃ −∇w| ≤
3∑
i=1

(
2ai|∇vi−1|+ a2

i +
2|∇vi−1||∇ai|+ 2ai|∇2vi−1|+ ai|∇ai|

2πλi

)

≤
3∑
i=1

(
2ai(‖∇v‖0 + 7‖D‖1/20 ) + a2

i +
2|∇ai|(‖∇v‖0 + 7‖D‖1/20 ) + ai|∇ai|

2πλi
+
ai|∇2vi−1|

πλi

)
≤ 7‖D‖1/20

(
‖∇v‖0 + 7‖D‖1/20

)
+ 11‖D‖0 in Ω̄,

where the last term in parentheses above is bounded by 1
2‖D‖0 by (2.38).

Proof of Theorem 2.4.3.

We will construct a sequence of approximations {vk}∞k=0 which converge in C1 to the required

solution in (2.28). Starting with v0, w0, we define recursively vk+1 ∈ C1(Ω̄,R) and wk+1 ∈ C1(Ω̄,R2)

by applying Proposition 2.4.5 to v = vk ∈ C∞(Ω̄,R) and w = wk ∈ C∞(Ω̄,R2), yielding the

corresponding defect Dk = A− (1
2∇vk ⊗∇vk + Sym∇wk), with ε = εk and ξ = ξk which satisfy:

∞∑
k=1

εk ≤ ε,
∞∑
k=1

ξ
1/2
k <∞ and ξk ≤ ‖Dk‖0 for all k. (2.43)

By construction, each Dk can be decomposed in the basis η1 ⊗ η1, η2 ⊗ η2, η3 ⊗ η3, with positive

coefficients by (2.33). By (2.34):

‖vk − v0‖0 ≤
k∑
i=1

‖vi − vi−1‖0 ≤
k∑
i=1

εi < ε, (2.44)
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while by (2.35) we get:

‖∇vk+m −∇vk‖0 ≤
k+m∑
i=k+1

‖∇vi −∇vi−1‖0 ≤ C
k+m∑
i=k+1

‖Di−1‖1/20 ≤ C
k+m∑
i=k+1

ξ
1/2
i .

We thus see that the sequence {vk}∞k=1 is Cauchy in C1, and consequently it converges to some

v ∈ C1(Ω̄,R). By (2.44), the first statement of (2.28) follows. In particular, {‖∇vk‖0}∞k=1 is a

bounded sequence. Similarly we compute:

‖wk+m − wk‖0 ≤
k+m∑
i=k+1

‖∇wi −∇wi−1‖0 ≤ C
k+m∑
i=k+1

εi−1

(
‖∇vi−1‖0 + ‖Di−1‖1/20

)
≤ C

k+m∑
i=k+1

εi−1,

‖∇wk+m −∇wk‖0 ≤
k+m∑
i=k+1

‖∇wi −∇wi−1‖0 ≤ C
k+m∑
i=k+1

‖Di−1‖1/20

(
‖∇vi−1‖0 + ‖Di−1‖1/20

)
≤ C

k+m∑
i=k+1

ξ
1/2
i−1.

Therefore, {wk}∞k=0 is Cauchy and hence it converges in C1 to some w ∈ C1(Ω̄,R2). Finally:

‖A−
(1

2
∇v ⊗∇v + Sym∇w

)
‖0 = lim

k→∞
‖Dk‖0 = 0,

proving the second statement in (2.28) by (2.43).

2.4.2 C1,α convergence

Proposition 2.4.6. Let Ω ⊂ Ωb ⊂ R2 be open, bounded sets such that Ω + Br(0) ⊂ Ωb for some

0 ≤ r ≤ 1. Given three functions v ∈ C2(Ω̄b), w ∈ C2(Ω̄b,R2), and A ∈ C0,α(Ω̄b,R2×2
Sym) with a

constant β ∈ (0, 1), assume:

D = A−
(

1

2
∇v ⊗∇v + Sym∇w

)
, 0 < ‖D0‖C0(Ωb) < δ0 � 1. (2.45)

Then, taking two constants M,σ > 0 which satisfy:

M > max

(
‖D‖1/2C0(Ωb)

r
, ‖∇2v‖C0(Ωb), ‖∇

2w‖C0(Ωb), 1

)
and σ > 1, (2.46)

there exist new functions ṽ ∈ C2(Ω̄) and w̃ ∈ C2(Ω̄,R2) such that:

‖D̃‖C0(Ω) =
∥∥∥A− (1

2
∇ṽ ⊗∇ṽ + Sym∇w̃

)∥∥∥
C0(Ω)

≤
‖D‖β/2C0(Ωb)

Mβ
‖A‖C0,β(Ωb)

+ 2.7 · 1015 1

σ
‖D‖C0(Ωb) =

‖D‖β/2C0(Ωb)

Mβ
‖A‖C0,β(Ωb)

+K
1

σ
‖D‖C0(Ωb), (2.47)
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‖ṽ − v‖C0(Ω) ≤ 1.4 · 107
‖D‖C0(Ωb)

M
.

‖w̃ − w‖C0(Ω) ≤ 1.4 · 107
‖D‖C0(Ωb)

M
(1 + ‖∇v‖C0(Ωb)) + 12.6‖D‖

1
2

C0(Ωb)
diam(Ωb).

(2.48)

‖∇(ṽ − v)‖C0(Ω) ≤ 1.1 · 108‖D‖
1
2

C0(Ωb)
= C1‖D‖

1
2

C0(Ωb)
,

‖∇(w̃ − w)‖C0(Ω) ≤ 1.1 · 108(1 + ‖∇v‖C0(Ωb))‖D‖
1
2

C0(Ωb)
= C2(1 + ‖∇v‖C0(Ωb))‖D‖

1
2

C0(Ωb)
, (2.49)

‖∇2ṽ‖C0(Ω) ≤ 7.3 · 108Mσ3 = C3Mσ3,

‖∇2w̃‖C0(Ω) ≤ 9.5 · 108(1 + ‖∇v‖C0(Ωb))Mσ3 = C4(1 + ‖∇v‖C0(Ωb))Mσ3.
(2.50)

Proof. The proof will proceed in three stages. We will begin with a mollification to control higher

derivatives, here the domain will be restricted from Ωb to Ω. Next we modify the w component

of the defect to ensure a positive decomposition of the defect into the desired basis. Finally three

consecutive steps of convex integration will be used to reduce the defect.

1. Mollification. Take ϕ as in (2.1) to be the standard mollifier. We may define the following

functions on the domain Ω:

v = v ∗ ϕl, w = w ∗ ϕl, A = A ∗ ϕl, with l =
‖D‖

1
2

C0(Ωb)

M
< r < 1.

Finally we define D = A −
(

1
2∇v⊗∇v + Sym∇w

)
. We use Lemma 2.1.4 to obtain the following

uniform error bounds.

‖v− v‖C0(Ω), ‖w− w‖C0(Ω) ≤
l

2
‖D‖

1
2

C0(Ωb)
,

‖∇(v− v)‖C0(Ω), ‖∇(w− w)‖C0(Ω) ≤ 1.6‖D‖
1
2

C0(Ωb)
,

‖A−A‖C0(Ω) ≤ lβ‖A‖C0,β(Ωb)
,

‖∇mD‖C0(Ω) ≤ ‖∇mD ∗ ϕl‖C0(Ω) +
1

2
‖∇m

(
(∇v ∗ ϕl)⊗ (∇v ∗ ϕl)− (∇v ⊗∇v) ∗ ϕl

)
‖C0(Ω).

(2.51)

The last inequality must be further developed for each value of m that will be needed in the proof:

‖D‖C0(Ω) ≤ ‖D‖C0(Ωb) + l2‖∇2v‖2C0(Ωb)
≤ 2‖D‖C0(Ωb),

‖∇D‖C0(Ω) ≤
3.1

l
‖D‖C0(Ωb) + 4.7l‖∇2v‖2C0(Ωb)

≤ 7.8
1

l
‖D‖C0(Ωb),

‖∇2D‖C0(Ω) ≤
15.9

l2
‖D‖C0(Ωb) + 33.5‖∇2v‖2C0(Ωb)

≤ 49.4
1

l2
‖D‖C0(Ωb),

‖∇3D‖C0(Ω) ≤
210

l3
‖D‖C0(Ωb) + 462.9

1

l
‖∇2v‖2C0(Ωb)

≤ 672.9
1

l3
‖D‖C0(Ωb).

(2.52)
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The following approximations are used to bound the C3 norm of v by the C2 norm of v, using

(2.2) and the definition of M and l:

‖∇2v‖C0(Ω) ≤ ‖∇2v‖C0(Ωb) ≤
1

l
‖D‖

1
2

C0(Ωb)
,

‖∇3v‖C0(Ω) ≤
1

l
‖∇ϕ‖L1(R2)‖∇2v‖C0(Ωb) ≤ 3.1

1

l2
‖D‖

1
2

C0(Ωb)
.

(2.53)

Finally we may observe one last simple inequality stemming from the Lemma 2.1.4:

‖∇2w‖C0(Ω) ≤ ‖∇2w‖C0(Ωb) ≤M. (2.54)

2. Modification and decomposition. The last manipulation that needs to be done before

we apply convex integration steps is to ensure that the deficit may be decomposed positively in the

desired basis. We use the last point of Lemma 2.1.8 to define:

w′ = w− (‖D‖C0(Ωb) + ‖D‖C0(Ω))

 √
2+9
4 x

(
√

2 + 9
5)y

 , D′ = A−
(

1

2
∇v⊗∇v + Sym∇w′

)
. (2.55)

From this definition and using (2.51) we obtain:

‖∇w′ −∇w‖C0(Ω) < 4.2 · (‖D‖C0(Ωb) + ‖D‖C0(Ω)) ≤ 12.6‖D‖C0(Ωb),

‖∇2w′ −∇2w‖C0(Ω) = 0.
(2.56)

Note that D′ − D is a constant matrix and therefore we have that ‖∇m(D′ − D)‖C0(Ω) = 0 for

any value of m ≥ 1. Furthermore this construction guarantees that when we decompose D′ =∑3
k=1 φkηk ⊗ ηk the we have that φk > (‖D‖C0(Ωb) + ‖D‖C0(Ω))/2. We want to find bounds on the

norms of the ak =
√
φk. Next we proceed to estimating derivatives of ak. Using the product rule

we obtain:

∇ak =
∇φk
2ak

,

∇2ak =
∇2φk
2ak

− ∇ak ⊗∇ak
ak

,

∇3ak =
∇3φk
2ak

− ∇
2φk ⊗∇ak

2a2
k

+
∇ak ⊗∇ak ⊗∇ak

a2
k

− 2Sym(∇2ak ⊗∇ak)
ak

=
∇3φk
2ak

− ∇
2ak ⊗∇ak

ak
− 2Sym(∇2ak ⊗∇ak)

ak
.

The last equality was obtained by noting that:

∇2φk = ∇2(a2
k) = 2∇(ak∇ak) = 2(∇a⊗∇a+ a∇2ak).
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We may now calculate the desired estimates using the following useful inequalities:

ak >
‖D‖

1
2

C0(Ωb)√
2

and ‖∇mφk‖C0(Ω) ≤
5
√

3

8
‖∇mD′‖C0(Ω).

‖∇ak‖0 ≤
‖∇φk‖C0(Ω)

2 minx∈Ω ak(x)‖0
≤ 5
√

3

8
√

2

‖∇D′‖C0(Ω)

‖D‖1/2C0(Ωb)

≤ 6
1

l
‖D‖

1
2

C0(Ωb)
,

‖∇2ak‖0 ≤
5
√

3

8
√

2

‖∇2D′‖C0(Ω)

‖D‖1/2C0(Ωb)

+
36
√

2‖D‖C0(Ωb)

l2‖D‖1/2C0(Ωb)

≤ 88.8
1

l2
‖D‖

1
2

C0(Ωb)
,

‖∇3ak‖0 ≤
5
√

3

8
√

2

‖∇3D′‖C0(Ω)

‖D‖1/2C0(Ωb)

+ 18
√

2
88.8

l3
‖D‖1/2C0(Ωb)

≤ 2775.6
1

l3
‖D‖

1
2

C0(Ωb)
.

We make note that the last inequality will be the main contributor to the necessity of a small

defect.

3. Iteration of convex integration. We define v0 = v and w0 = w′ and define recursively

vk ∈ C3(Ω̄), wk ∈ C2(Ω̄,R2) for k = 1, 2, 3. To obtain vk and wk we apply Proposition 2.3.3 to vk−1

and wk−1. We apply the Proposition with ak from the decomposition of D′ into the basis defined

by the usual ηk. Lastly, we need to define the parameters:

lk =
l

σk−1
< 1, λk =

1

lk+1
>

1

lk
,

and the nondecreasing parameters δk with the choice:

δ1 = max
m=1,2

{
lm‖∇m+1v‖C0(Ω)

}
+ max
m=0...3,k=1...3

{
lm‖∇mak‖C0(Ω)

}
. (2.57)

We will end the construction by setting ṽ = v3 and w̃ = w3, and claiming that these satisfy the

necessary error bounds. First we must check that the assumptions of the Proposition hold at every

step. The condition that lk ∈ (0, 1) is easily verified as l < 1 and σ > 1. Next we observe that

lm‖∇v‖m ≤ 3.1‖D‖
1
2
0 and lm‖ak‖m ≤ 2775‖D‖

1
2
0 , from which we obtain that δ1 ≤ 2779‖D‖

1
2
0 < 1 if

δ0 was taken small enough. The first condition in (2.20) is clearly satisfied for all k by the definition

(2.57) given that l > lk. Furthermore, by induction on k and using (2.22), we obtain:

‖∇m+1vk‖C0(Ω) ≤ ‖∇m+1vk−1‖C0(Ω) + ‖∇m+1(vk − vk−1)‖C0(Ω) ≤
δk
lmk

+ 2.4m+1πmδkλ
m
k

≤ δk
1 + 2.4m+1πm

lmk+1

≤ δk+1

lmk+1

∀m, k = 1, 2.

The last inequality is obtained with the appropriate choice of δk+1 = (124)δk for each k. This gives

us the last condition that δ0 < (2780(124)2)−2 < 5.4 · 10−16 must hold to ensure that each δk < 1.
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To prove the estimates in (2.49) and (2.50) we first note the following useful inequalities:

λ1 =
σ

l
, λ1 =

σ2

l
, λ3 =

σ3

l
,

δ1 ≤ 2778.7‖D‖
1
2

C0(Ωb)
,

δ2 ≤ 2778.7(124)‖D‖
1
2

C0(Ωb)
,

δ3 ≤ 2778.7(124)2‖D‖
1
2

C0(Ωb)
.

Using these estimates for the δk and λk we first calculate some useful bounds:

1 + ‖∇v0‖0 ≤ 1 + ‖∇v‖C0(Ω) + ‖∇v −∇v0‖C0(Ω)

≤ 1 + ‖∇v‖C0(Ω) + ‖D‖
1
2

C0(Ωb)
≤ (1 + 2.32 · 10−8)(1 + ‖∇v‖C0(Ω)),

1 + ‖∇v1‖C0(Ω) ≤ 1 + ‖∇v‖C0(Ω) + ‖∇v −∇v0‖C0(Ω) + ‖∇v0 −∇v1‖C0(Ω)

≤ 1 + ‖∇v‖C0(Ω) + ‖D‖
1
2

C0(Ωb)
+ 2.4δ1 ≤ (1 + 6.5 · 10−5)(1 + ‖∇v‖C0(Ω)),

1 + ‖∇v2‖C0(Ω) ≤ 1 + ‖∇v‖C0(Ω) + ‖∇v −∇v0‖C0(Ω) + ‖∇v0 −∇v1‖C0(Ω) + ‖∇v1 −∇v2‖C0(Ω)

≤ 1 + ‖∇v‖C0(Ω) + ‖D‖
1
2

C0(Ωb)
+ 2.4δ1 + 2.4δ2 ≤ (1 + 8.1 · 10−3)(1 + ‖∇v‖C0(Ω).
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Using these we may next evaluate:

‖ṽ − v‖C0(Ω) ≤ ‖v− v‖C0(Ω) +
3∑
i=1

‖vi − vi−1‖C0(Ω) ≤
l

2
‖D‖

1
2

C0(Ωb)
+

1

π

3∑
i=1

δk
λk

≤ 13710444.1l‖D‖
1
2

C0(Ωb)
≤ 13710444.1

M
‖D‖C0(Ωb),

‖w̃ − w‖C0(Ω) ≤ ‖w− w‖C0(Ω) + ‖w−w′‖C0(Ω) +

3∑
i=1

‖wi − wi−1‖C0(Ω)

≤ l

2
‖D‖

1
2

C0(Ωb)
+ 12.6‖D‖

1
2

C0(Ωb)
diam(Ωb) +

1

π

3∑
i=1

δk
λk

(1 + ‖∇vk−1‖C0(Ω))

≤ 13820610.3l‖D‖
1
2

C0(Ωb)
(1 + ‖v‖C0(Ωb)) + 12.6‖D‖

1
2

C0(Ωb)
diam(Ωb)

≤ 13820610.3

M
‖D‖C0(Ωb)(1 + ‖v‖C0(Ωb)) + 12.6‖D‖

1
2

C0(Ωb)
diam(Ωb),

‖∇(ṽ − v)‖C0(Ω) ≤ |∇(v− v)‖C0(Ω) +
3∑
i=1

‖∇(vi − vi−1)‖C0(Ω)

≤ ‖D‖
1
2

C0(Ωb)
+

3∑
i=1

2.4δk ≤ 103374310.3‖D‖
1
2

C0(Ωb)
,

‖∇(w̃ − w)‖C0(Ω) ≤ ‖∇(w −w)‖C0(Ω) + ‖∇(w−w′)‖C0(Ω) +

3∑
i=1

‖∇(wi − wi−1)‖C0(Ω)

≤ ‖D‖
1
2

C0(Ωb)
+ 12.6‖D‖

1
2

C0(Ωb)
+

3∑
i=1

2.4δk(1 + ‖∇vk−1‖C0(Ω))

≤ 104204955.9‖D‖
1
2

C0(Ωb)
(1 + ‖v‖C0(Ωb)),

‖∇2ṽ‖C0(Ω) ≤ ‖∇2v‖C0(Ω) +

3∑
i=1

‖∇2(vi − vi−1)‖C0(Ω)

≤ 1

l
‖D‖

1
2

C0(Ωb)
+ 16.9

3∑
i=1

δkλk

≤ 3M + 16.9
3∑
i=1

2778.7(124)k−1Mσk ≤ 727927426.1Mσ3,

‖∇2w̃‖C0(Ω) ≤ ‖∇2w‖C0(Ω) + ‖∇2(w −w)‖C0(Ω) +
3∑
i=1

‖∇2(wi − wi−1)‖C0(Ω)

≤M +
2

l
‖D‖

1
2

C0(Ωb)
+ 21.9

3∑
i=1

δkλk(1 + ‖∇vk−1‖C0(Ω))

≤ 3M + 21.9(1 + ‖v‖C0(Ωb))
(
δ1λ1(1 + 2.32 · 10−8) + δ2λ2(1 + 6.5 · 10−5) + δ3λ3(1 + 8.1 · 10−3)

)
≤ 3Mσ3 + 950870098.5(1 + ‖v‖C0(Ωb))Mσ3

≤ 950870101.5Mσ3(1 + ‖v‖C0(Ωb))
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We may finally compute the constant in (2.47). The calculation starts by noting:

D̃ = A− A + D′ +
(1

2
∇v0 ⊗∇v0 + Sym∇w0

)
−
(1

2
∇v3 ⊗∇v3 + Sym∇w3

)
= A− A−

3∑
k=1

((1

2
∇vk ⊗∇vk + Sym∇wk

)
−
(1

2
∇vk−1 ⊗∇vk−1 + Sym∇wk−1 + akηk ⊗ ηk

))
.

Which gives:

‖D̃‖C0(Ω) ≤ ‖A− A‖C0(Ω) +

3∑
k=1

3

π
·
δ2
k

λklk

≤ lβ‖A‖C0,β(Ωb)
+

3

π

1

σ
‖D‖C0(Ωb)(27802(1 + 1232 + 1234))

≤
‖D‖β/2C0(Ωb)

Mβ
‖A‖C0,β(Ωb)

+ 1.8 · 1015 1

σ
‖D‖C0(Ωb).

Proof of Theorem 2.4.4. The desired exact solution will be obtained by constructing a sequence

of approximations by the recursive application of stages of convex integration. These sequences

will be shown to converge in the C1,α sense to the desired solution. The proof is divided in four

sections: in the first the recursive sequence will be defined. In the second we show that the base

case of the sequence satisfies the necessary properties. In the third we justify the recursive step.

In the fourth we will show that the defect of this sequence converges to zero and that the sequence

actually converges in C1,α.

1. The recursive construction. Consider the sequence of sets defined recursively by Ω0 =

Ωfat with Ωk = Ωk−1 \
(
Ωc
k−1 +B δ0

2k
(0)
)
. Clearly Ω ⊂ Ωk for all values of k and thus Ω will lie inside

the intersection of the family Ωk. Set v0 = v and w0 = w defined on the set Ω0. Given vk ∈ C2(Ω̄k),

wk ∈ C2(Ω̄k,R2) and the restriction of A onto Ωk, define vk+1 ∈ C2(Ω̄k+1) and wk+1 ∈ C2(Ω̄k+1,R2)

by applying Proposition 2.4.6 taking Ωb = Ωk, Ω = Ωk+1. We need to define the constants σk and

Mk as in the Proposition. To do so we must define the constant s ∈ (0, 1), which must satisfy the

two following inequalities:

s <
6β

2− β
, s >

6α

1− α
=⇒ α(6 + s)− s < 0. (2.58)

The last inequality will be crucial in the proof of convergence.

We choose the values of σk in such a way that they form an increasing sequence converging to

a value σmax.

σs0 ≥
16

9
, σ1−s

max ≥ 3.6 · 1018 = 2K, σs−α(6+s)
max > Cα5 , (2.59)

where:

C5 = 2.1 · 108(1 + ‖∇v‖C0(Ω0)). (2.60)
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We will prove that the sequence σk = σmax for all k ≥ 0 will guarantee that the inductive hypothesis

are satisfied. We however note that lower values of σk may be chosen if the sequence of functions

they generate still satisfy the inductive hypothesis at every stage. We do however have to guarantee

that σk → σmax to ensure convergence of the sequence of functions. Next define:

Mk = M0C
k
5

k∏
j=1

σ3
j , with M0 =


N2

1
β σ

s
β
max‖A‖

1
β

C0,β(Ω0)
‖D‖

1
2
− 1
β

C0(Ω0)
if ‖A‖C0,β(Ω0) 6= 0,

N if ‖A‖C0,β(Ω0) 6= 0

(2.61)

Here we take N ≥ 1 to be some arbitrarily large constant.

We define the intermediate defects on the appropriate Ωk as:

Dk = A−
(1

2
∇vk ⊗∇vk + Sym∇wk

)
.

In the next sections we will prove by induction the following inequalities:

Mk > max

(
2k+1‖Dk‖

1/2
C0(Ωk)

δ0
, ‖∇2vk‖C0(Ωk), ‖∇2wk‖C0(Ωk), 1

)
, ∀k ≥ 0 (2.62)

The following will be shown for all k ≥ 1:

‖Dk‖C0(Ωk) ≤
‖D0‖C0(Ω0)∏k−1

j=0 σ
s
j

. (2.63)

‖vk − vk−1‖C0(Ωk) ≤ 1.4 · 107
‖Dk−1‖C0(Ωk−1)

Mk−1
,

‖wk − wk−1‖C0(Ωk) ≤ 1.4 · 107
‖Dk−1‖C0(Ωk−1)

Mk−1
(1 + ‖∇vk−1‖C0(Ωk−1))

+ 12.6‖Dk−1‖
1
2

C0(Ωk−1)
diam(Ωk−1).

(2.64)

‖∇(vk − vk−1)‖C0(Ωk) ≤ C1‖Dk−1‖
1
2

C0(Ωk−1)
,

‖∇(wk − wk−1)‖C0(Ωk) ≤ C2(1 + ‖∇vk−1‖C0(Ωk−1))‖Dk−1‖
1
2

C0(Ωk−1)
, (2.65)

C5 = 2.1 · 108(1 + ‖∇v‖C0(Ω0)) ≥ max
{
C3, C4(1 + ‖∇vk‖C0(Ω0))

}
∀k ≥ 0. (2.66)

‖∇2vk‖C0(Ωk) ≤ C3Mk−1σ
3
k−1 ≤ C5Mk−1σ

3
k−1 = Mk,

‖∇2wk‖C0(Ωk) ≤ C4(1 + ‖∇vk−1‖C0(Ωk−1))Mk−1σ
3
k−1 ≤ C5Mk−1σ

3
k−1 = Mk.

(2.67)
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Note that these conditions are not enough to guarantee the hypothesis of Proposition 2.4.6 at

every stage. The condition ‖Dk‖C0(Ωk) > 0 still needs to be considered. We will simply assume

that it holds at every stage as if it does not we have vk ∈ C2(Ω̄) and wk ∈ C2(Ω̄,R2) which satisfy:

A =
1

2
∇vk ⊗∇vk + Sym∇wk.

This implies that the Theorem is proven and the recursive construction need not be continued.

2. The base case. To guarantee the k = 0 case of (2.62) it suffices to take N large enough.

To prove (2.63) we note that we may apply Proposition 2.4.6 to v0, w0 and A as by definition they

satisfy the Proposition’s hypothesis. Furthermore M0 has also been shown to satisfy the hypothesis.

It remains to show that there exists σ0 ≤ σmax which guarantees the inequality. We have:

σs0
‖D1‖C0(Ω1)

‖D0‖C0(Ω0)
≤ σs0

‖A‖C0,β(Ω0)‖D0‖β/2−1
C0(Ω0)

Mβ
0

+K
1

σ1−s
0

.

We ask that each of the terms be less than 1
2 . By taking σ1 = σmax the second term is verified.

For the first term we note that if ‖A‖C0,β(Ω0) = 0 it is zero, otherwise:

σs0
‖A‖C0,β(Ω0)‖D0‖β/2−1

C0(Ω0)

Mβ
0

≤ 1

2N

σs0
σsmax

≤ 1

2
.

Next we note that (2.64), (2.65) and the first inequalities in (2.67) also follow from the application

of the Proposition. The second inequalities of (2.67) follow from (2.66) with k = 0 which is satisfied

as 2.1 · 108 > C3, C4. The last equalities follow from the definition of Mk.

3. The inductive step. Assume that (2.66), (2.62) and (2.63) hold for a value k. Then we

have that:

‖D̃k+1‖C0(Ωk+1) ≤
‖Dk‖

β/2
C0(Ωk)

Mβ
k

‖A‖C0,β(Ω0) +K
1

σk
‖Dk‖C0(Ωk),

And thus using the inductive hypothesis we have that:

‖Dk+1‖C0(Ωk+1) ≤
‖Dk‖

β/2
C0(Ωk)

Mβ
k

‖A‖C0,β(Ω0) +K
1

σk
‖Dk‖C0(Ωk)

≤ 1

Ckβ5

1∏k−1
j=1 σ

sβ
2

+3β

j

1

2N

1

σsmax
‖D0‖C0(Ω0) +

K

σk

‖D0‖C0(Ω0)∏k−1
j=1 σ

s
j

.

From this we evaluate:

σsk

k−1∏
j=1

σsj
‖Dk+1‖C0(Ωk+1)

‖D0‖C0(Ω0)
≤ 1

Ckβ5

1∏k−1
j=1 σ

sβ
2

+3β−s
j

1

2N

σsk
σsmax

+
K

σ1−s
k

≤ 1.
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Similarly to the base case, this holds for σk = σmax although lower values of σ might also satisfy

the hypothesis.

Next we consider:

Mk >
2k+1‖Dk‖

1/2
C0(Ωk)

δ0
=⇒ Mk+1 > C5σ

3
k

2k+1‖Dk‖
1/2
C0(Ωk)

δ0
>

2k+2‖Dk‖
1/2
C0(Ωk)

δ0
.

Thus from the construction of Proposition 2.4.6 we obtain (2.64), (2.65) and the first inequalities

of (2.67). We may also compute:

1 + ‖∇vk‖C0(Ωk) ≤ 1 + ‖∇v0‖C0(Ω0) + C1δ
1
2
0

k∑
j=0

j∏
i=1

1

σ
s
2
i

≤ 1 + ‖∇v0‖C0(Ω0) + C1δ
1
2
0

k∑
j=0

(3

4

)j
≤ 1 + ‖∇v0‖C0(Ω0) +C1δ

1
2
0

∞∑
j=0

(3

4

)j
≤
(
1 + 2.2C1

)
(1 + ‖∇v0‖C0(Ω0)) ≤ 2.1 · 108(1 + ‖∇v0‖C0(Ω0)).

This concludes the proof of (2.67) and (2.66).

3. Convergence. All that is left to see is that the sequence of functions actually converges to

a solution in the desired space.

We need to show that the sequences {vk} and {wk} are Cauchy in C1,α(Ω). We begin by showing

that the sequences converge in C0. Using (2.64) we write:

‖v − v̄‖0 ≤ 13710445

∞∑
n=0

‖Dn−1‖C0(Ωn−1)

Mn
≤ 13710444.1δ0

∞∑
n=0

C−n5 ≤ 0.21δ0.

To show convergence of wk, ∇vk and ∇wk we only need to show summability of ‖Dk‖
1
2

C0(Ωk)
:

∞∑
i=0

‖Di‖
1
2

C0(Ωi)
≤ δ

1
2
0

∞∑
i=0

i∏
j=0

1

σ
s
2
j

≤ δ
1
2
0

∞∑
i=0

(3

4

)i
≤ 4δ0.

Finally we must compute ‖∇(vk+1−vk)‖C0,α(Ωk+1) and ‖∇(wk+1−wk)‖C0,α(Ωk+1). We note that

being supremum norms the norm taken over a smaller set will be smaller than the norm taken on

a larger one. If we can prove that these sequences of norms are summable we will have the desired

convergence. The fact that the limit is the desired solution is given by the fact that the defect

converges to zero thanks to (2.63).

We will use Lemma 2.1.2 to evaluate the norms:

‖∇(vk+1 − vk)‖C0,α(Ωk+1) ≤ 2
(
C1‖Dk‖

1
2

C0(Ωk)

)1−α(
C3Mkσ

3
k

)α
≤ 2C1−α

1 Cα3 C
kα
5 ‖D0‖

1−α
2

C0(Ω0)

 2∏k
j=1 σ

s−αs
2

j

σ3α
k

k∏
j=1

σ3α
j Mα

0


≤ 2Cα

k∏
j=1

σ
6α+αs−s

2
j Ckα5 ,
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and:

‖∇(wk+1 − wk)‖C0,α(Ωk+1) ≤ 2(1 + ‖∇vk‖C0(Ωk))
(
C2‖Dk‖

1
2

C0(Ωk)

)1−α(
C4Mkσ

3
k

)α
≤ 2(1 + ‖∇vk‖C0(Ωk))C

1−α
2 Cα4 C

kα
5 ‖D0‖

1−α
2

C0(Ω0)

 2∏k
j=1 σ

s−αs
2

j

σ3α
k

k∏
j=1

σ3α
j Mα

0


≤ 2KαM

α
0 σ

3α
max

k∏
j=1

σ
6α+αs−s

2
j Ckα5 .

With constants:

Cα = Mα
0 σ

3α
maxC

1−α
1 Cα3 ‖D0‖

1−α
2

C0(Ω0)
,

Kα = Mα
0 σ

3α
maxC

1−α
2 Cα2 ‖D0‖

1−α
2

C0(Ω0)
(1 + ‖∇v0‖C0(Ω0) + 2.4 · 10−7).

Both these sequences converge to zero as geometric series if the exponent 6α+αs−s
2 is negative

and the values of σk increase to become larger that Cα5 . For any value α ≤ max
{

1
7 ,

β
2

}
, there

exists s < 1 and s < 6β
2−β such that the exponent is indeed less that zero. Thus these sequences

are summable, and thus the functions are Cauchy in C0,α and therefore converge. Thus we have a

converging sequence of functions with defect decreasing to zero which implies that the limit u,w

of these sequences are C1,α function which solve the very weak formulation of the Monge-Ampére

equation.

Note that the exponent 6α+αs−s
2 may be written as 2Kα+αs−s

2 where K is ne number of steps

of convex integration in every stage. If there were only two steps, α could be pushed to 1
5 .

2.5 NUMERICAL RESULTS AND VISUALIZATION

In this section we discuss how the theoretical results were used to construct numerical approxi-

mations of stages of convex integration. In certain cases we were able to obtain interesting visu-

alizations of anomalous solutions to the Monge-Ampére equation. This section is articulated in

two parts, in the first we implement Proposition 2.4.5 and in the second we implement Proposition

2.4.6.

2.5.1 C1 stage visualization

In this section we consider two examples. In case study (i) we consider the Monge-Ampére equation

with f(x, y) = 1 and we approximate the non-convex function v0(x, y) = x2−y2. In case study (ii)
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we will have f(x, y) = −1 and approximate the convex function v0(x, y) = x2 + y2. In both cases

the domain is taken to be Ω = (−0.5, 0.5)× (−0.5, 0.5). We then look to approximate these initial

functions with solutions v such that ‖v − v0‖0 < ε with ε = 0.2. To this end we ask that at the

k–th stage we have that ‖ṽ − v‖0 < 0.1
2k

. This means that in the first stage which we will simulate

we ask ‖v1 − v0‖0 < 0.1.

In each of the examples we construct three corrugations. MatLab was used to perform the

necessary computations. All calculations were performed by evaluating functions on fine meshed

grids. For the first two corrugations we used a mesh with step size h = 0.001, but for the third

corrugation it was necessary to consider a mesh with step size h = 0.0001. These step sizes

were chosen because we required h < 0.1 1
λk

to obtain smooth visualizations and to obtain precise

numerical derivatives. The derivatives were evaluated numerically using the following formula:

∂f

∂x
(x, ·) =

2

12h

(
f(x− 2h, ·)− 8f(x− h, ·) + 8f(x+ h, ·)− f(x+ 2h, ·)

)
+O(h5).

The initial auxiliary function w0, and matrix A were chosen in both examples in such a way

that the defect:

D = A−
(
∇v0 ⊗∇v0 + Sym∇w0

)
,

may be decomposed as in Lemma 2.1.8:

D =
3∑
i=1

φkηk ⊗ ηk with φk > 0.4 ∀k = 1, 2, 3.

In the construction from Proposition 2.4.5 we take δ = 0.5 to guarantee that the defect will decrease

by a factor of 3
4 . We begin the construction by defining ak =

√
φk
2 , and the quantities:

Bk =
1

2
∇vk ⊗∇vk + Sym∇wk −

(1

2
∇vk−1 ⊗∇vk−1 + Sym∇wk−1 + a2

kηk ⊗ ηk
)
.

To guarantee the correctness of the construction these Bk will need to satisfy the following condi-

tions:

‖Bk‖0 ≤
‖D‖0

12
, and |Bk| <

8

15
√

3

(
φi − 0.1

)
in Ω ∀i = 1, 2, 3. (2.68)

The first of these conditions will guarantee that:

‖D̃‖0 ≤
1

2
‖D‖0 +

3∑
i=1

‖Bk‖0 ≤
3

4
‖D‖0.

The second condition guarantees that D̃ may be decomposed with φ̃k > d̃ = 0.1.
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The condition ‖v3 − v0‖0 ≤ 0.1 is in fact satisfied for very small values of λ, and the condition

on the gradients is disregarded for the purposes of this visualization as it contains an arbitrarily

large constant C.

The choice of the values of λk was done in the following way. We used (2.16) to choose an upper

bound on the λk which would guarantee (2.68). For the λ1 and λ2 we then reduced the values

and evaluated the Bk until we found the smallest values which satisfied (2.68). In the case of λ3

we used the values obtained theoretically as we only ran the calculations on a smaller domain and

could not justify the smaller values of λ3 from a theoretical point of view.

Example 2.5.1. We approximate the function v0(x, y) = x2 − y2 with a solution v to:

Det∇2v = 1.

We choose w0(x, y) = (xy2, x2y) to ensure that the defect is diagonal, and take:

A(x, y) =
(
c− x2 + y2

4

)
Id2

where c = 5 is chosen to make the defect positive definite. We then obtain:

∇v0(x, y) =

 2x

−2y

 , ∇w0(x, y) =

 y2 2xy

2xy x2

 ,
1

2
∇v0(x, y)⊗∇v0(x, y) + Sym∇w0(x, y) =

2x2 + y2 0

0 x2 + 2y2

 .
and the defect takes the form:

D(x, y) =

5− 9x2+5y2

4 0

0 5− 5x2+9y2

4

 .
The original function v0 and the two subsequent corrugations are shown in Figure 10. Next we

show a more detailed picture of the second corrugation in Figure 11; the red area is the area on

which we applied the third corrugation shown in Figure 12.
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(a) The function v0 on Ω̄ (b) One corrugation

(c) Two corrugations

Figure 10: Construction in Example 2.5.1
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Figure 11: Two corrugations in Example 2.5.1: the red detail is shown in Figure 12
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Figure 12: Detail of the three corrugations in Example 2.5.1

Example 2.5.2. We approximate the function v0(x, y) = x2 + y2 with a solution v to:

Det∇2v = −1.

In this example we chose w0(x, y) = (−xy2,−x2y) to ensure that the defect is diagonal and take:

A(x, y) =
(
c+ x2+y2

4

)
Id2, where c = 5 is chosen to make the defect positive definite, namely:

D(x, y) =

5− 7x2−3y2

4 0

0 5 + 3x2−9y2

4

 .
We plot three images starting from v0 and subsequently adding the first and the second corrugation
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in Figure 13. As before, we provide a more detailed picture of the second and third corrugations in

Figures 14 and 15.

(a) Original function v0 (b) One corrugation

(c) Two corrugations

Figure 13: Construction in Example 2.5.2
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Figure 14: Two corrugations in Figure 13; the red detail shown in Figure 15
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Figure 15: Detail of the three corrugations in Example 2.5.2

We conclude the discussion with a table listing some of the numerical results and implementation

choices. The values of {λk} are obtained experimentally. The value ‖v−v0‖0 gives an upper estimate

of the uniform distance of the function obtained through three steps of convex integration. The

value (‖B1‖0 + ‖B2‖0)/‖D‖0 needs to be below 1
6 as it does not take the third corrugation into

account. The contribution of the last corrugation is guaranteed to be less than 1
12‖D‖0 through the

a priori estimates. Lastly, minφk are the minimum of each of the coefficients in Ω̄, in the defect

after two corrugations. The a priori estimates once again guarantee that the third step will not

make these less than the 1
10 value required.
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Example 2.5.1 Example 2.5.2

f(x, y) 1 -1

v0(x, y) x2 − y2 x2 + y2

w0(x, y) (xy2, yx2) (−xy2,−yx2)

λ1 5 5

λ2 50 57

λ3 1000 1100

‖v − v0‖0 0.0995 0.999

(‖B1‖0 + ‖B2‖0)/‖D‖0 0.1339 0.1246

minφ1 0.79 0.94

minφ2 1.14 1.29

minφ3 1.14 1.28

Table 3: Examples 1, 2 of the C1 approximation

2.5.2 C1,α stage numerics

Visualizations relevant to the C1,α construction are much harder to obtain. The main difficulties

come from the smallness of the values in play, and the fact that the ratio σ between the frequency

of subsequent corrugation is by necessity very large. The first problem was solved through the use

of the Python package mpmath [17] which allows the user to define floating point arithmetics up

to an arbitrary precision.

The approach taken in studying this problem numerically was significantly different from the

case of C1 convergence. In each of the examples the problem was solved explicitly through symbolic

calculations. This was done by defining symbolic variables and parameters in MatLab and defining

functions of these variables. MatLab is capable of evaluating the derivatives of the functions

involved in the calculations. The only calculation which could not be done symbolically was the

mollification step at the beginning of the calculation. This step was therefore omitted from the

computations. The justification for this choice is twofold. Firstly, standard mollifiers are well

studied and their theory is well established, and this work does not add to the theory but merely
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Test ‖D̃‖0 ‖v3‖0 ‖∇w3‖0

1 0.64 · 10−11 0.114 · 10−23 0.53 · 10−8

2 0.57 · 10−11 0.118 · 10−23 0.58 · 10−8

3 0.62 · 10−11 0.119 · 10−23 0.54 · 10−8

4 0.61 · 10−11 0.115 · 10−23 0.49 · 10−8

5 0.66 · 10−11 0.119 · 10−23 0.54 · 10−8

6 0.70 · 10−11 0.116 · 10−23 0.56 · 10−8

7 0.65 · 10−11 0.104 · 10−23 0.62 · 10−8

8 0.61 · 10−11 0.118 · 10−23 0.67 · 10−8

9 0.61 · 10−11 0.111 · 10−23 0.50 · 10−8

10 0.58 · 10−11 0.108 · 10−23 0.76 · 10−8

Table 4: Repetition of tests

uses them as a tool. Secondly, the functions studied are very smooth, and the inequalities defined

in Lemma 2.1.4 thus provide very bad estimations.

Once the symbolic calculations are computed through MatLab, the symbolic functions are saved

in text files. These text files are modified through a script to make the syntax compatible with

the mpmath package. Then the functions were sampled at 1000 randomly selected points on the

square domain (−1, 1)× (−1, 1), and the maximum value attained by each function was recorded.

The main purpose of these calculations was to study how the results of convex integration varied

by changing the value of σ. We argue that the maximum sample value, while not being the exact

supremum of these functions on the domain, is a good approximation of the order of magnitude. In

fact when the process was repeated over different sets of 1000 randomly selected points the variation

in the values obtained was negligible when considering the order of magnitude as illustrated in the

table below.

In this table we show the results of running our code 10 times on the same example with the

same parameters, the only change was the choice of the 1000 random points. In each test we

evaluated the maximum defect recorded, the maximum value of v and the maximum gradient of

w. As can be seen the order of magnitude of all these functions remains the same. Similar results

98



were obtained with different examples, functions and parameters, but are omitted as they do not

add particular insight.
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We may now begin discussing the three examples used in this section:

Example 2.5.3. In this example we considered f(x, y) = −10−18 < 0 and functions v0 = 0 and

w0 = (0, 0). This results in the matrix A = −10−18(x2 + y2)Id2 which is the actual original defect.

The initial defect in the domain Ω = (−1, 1)×(−1, 1) is thus bounded by ‖D‖0 = −10−18
√

2. When

we evaluated the defect for σ = 35 we obtained a new defect of ‖D3‖0 ∼ 9.7 · 10−19. Below we show

a visualization of v on the subdomain [1− 10−19, 1]× [1− 10−19, 1]

Figure 16: Visualization from Example 2.5.3
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Example 2.5.4. In this example we considered f(x, y) = 10−18 > 0 and functions v0 = 0 and

w0 = (0, 0). This results in the matrix A = 10−18(x2 + y2)Id2 which is the actual original defect.

The initial defect in the domain Ω = (−1, 1)× (−1, 1) is thus bounded by ‖D‖0 = 10−18
√

2. When

we evaluated the defect for σ = 35 we obtained a new defect of ‖D3‖0 ∼ 9.1 · 10−19. Below we show

a visualization of v on the subdomain [1− 10−19, 1]× [1− 10−19, 1]

Figure 17: Visualization from Example 2.5.4
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Example 2.5.5. In this example we considered f(x, y) = 0 with matrix A = 0 and functions

v0 = 10−9(x2 + y2) and w0 = (0, 0). The initial defect in the domain Ω = (−1, 1)× (−1, 1) is thus

given by:

D = 10−18

2x2 2xy

2xy 2y2

 with: ‖D‖0 = 4 · 10−18.

When we evaluated the defect for σ = 35 we obtained a new defect of ‖D3‖0 ∼ 9.5 · 10−19. Below

we show a visualization of v on the subdomain [1− 10−19, 1]× [1− 10−19, 1]

Figure 18: Visualization from Example 2.5.5

As we can see each of these examples satisfies the conditions of Proposition 2.4.6. In each of the

examples a value of λ1 = 1019 was chosen and sigma was increased exponentially from 101 . . . 1016

which covers the orders of magnitude between the theoretical minimum of σ and σmax. We then

applied the modification of w and three steps of convex integration and evaluated the maximum of

the new defect, the norm of v, it’s gradient and Hessian and did the same for w.

The tables we see confirm the expectations from the theory. The defect decreases with σ, the

gradients are indifferent of the choice of sigma and the Hessians increase significantly with sigma.
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2.6 OPEN QUESTIONS AND FUTURE RESEARCH

In the context of the Monge-Ampère equation, the next step concerns a possibility of increasing

the Hölder exponent. A result might be forthcoming which will increase the threshold exponent to

1
5 as in the case of the isometric immersion [6]. The construction would be fairly similar to the one

presented in [15]. The main change would be in the modification step in the stage construction.

Instead of the current choice of w′, the choice should be made in such a way as to make the defect

have rank 2 or 1. This will be done according to the following schema. Given the defect:

D = A−
(
∇v ⊗∇v + Sym∇w

)
,

one chooses w′ = w + w̄ such that:

D − Sym∇w̄ = D̄,

where:

D̄ = gId or D̄ = h

1 0

0 0

 .
The first case is justified by taking:

g such that ∆g = curl curlD, h such that ∂2h = curl curlD.

In both cases we have that:

curl curl(D − gId) = curl curl(D − hη1 ⊗ η1) = 0.

Thus ensuring that an appropriate w̄ exists. This reasoning would have to be formalised, and

estimates on the norms of w̄ should be worked out to verify that this construction works.

On the numerical side, it would be interesting to study subsequent stages of convex integra-

tion. There are two approaches which could be taken, symbolic and numerical calculations. The

numerical calculations would have to be defined on decreasing domains as stages progress, and thus

would lose the global nature of the results. The symbolic approach quickly becomes very complex,

and the evaluation of functions very slow. By approaching the problem through random sampling,

however, one can still obtain some convincing global estimates.
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σ Example 2.5.3 Example 2.5.4 Example 2.5.5

101 0.332 · 10−17 0.393 · 10−17 0.327 · 10−17

102 0.316 · 10−18 0.364 · 10−18 0.319 · 10−18

103 0.318 · 10−19 0.376 · 10−19 0.332 · 10−19

104 0.318 · 10−20 0.396 · 10−20 0.318 · 10−20

105 0.320 · 10−21 0.401 · 10−21 0.316 · 10−21

106 0.336 · 10−22 0.400 · 10−22 0.325 · 10−22

107 0.326 · 10−23 0.375 · 10−23 0.330 · 10−23

108 0.332 · 10−24 0.367 · 10−24 0.335 · 10−24

109 0.329 · 10−25 0.366 · 10−25 0.329 · 10−25

1010 0.328 · 10−26 0.382 · 10−26 0.339 · 10−26

1011 0.338 · 10−27 0.399 · 10−27 0.326 · 10−27

1012 0.329 · 10−28 0.371 · 10−28 0.327 · 10−28

1013 0.317 · 10−29 0.396 · 10−29 0.333 · 10−29

1014 0.320 · 10−30 0.388 · 10−30 0.325 · 10−30

1015 0.311 · 10−31 0.384 · 10−31 0.336 · 10−31

1016 0.324 · 10−32 0.366 · 10−32 0.321 · 10−32

Table 5: Values of the defect ‖D3‖0
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σ Example 2.5.3 Example 2.5.4 Example 2.5.5

101 0.941 · 10−8 0.101 · 10−7 0.106 · 10−7

102 0.937 · 10−8 0.105 · 10−7 0.102 · 10−7

103 0.920 · 10−8 0.102 · 10−7 0.102 · 10−7

104 0.936 · 10−8 0.994 · 10−8 0.104 · 10−7

105 0.953 · 10−8 0.101 · 10−7 0.104 · 10−7

106 0.935 · 10−8 0.101 · 10−7 0.105 · 10−7

107 0.946 · 10−8 0.102 · 10−7 0.103 · 10−7

108 0.936 · 10−8 0.101 · 10−7 0.103 · 10−7

109 0.942 · 10−8 0.100 · 10−7 0.104 · 10−7

1010 0.934 · 10−8 0.101 · 10−7 0.101 · 10−7

1011 0.931 · 10−8 0.102 · 10−7 0.103 · 10−7

1012 0.926 · 10−8 0.101 · 10−7 0.104 · 10−7

1013 0.939 · 10−8 0.102 · 10−7 0.104 · 10−7

1014 0.940 · 10−8 0.995 · 10−8 0.103 · 10−7

1015 0.945 · 10−8 0.986 · 10−8 0.102 · 10−7

1016 0.920 · 10−8 0.103 · 10−7 0.104 · 10−7

Table 6: Values of the defect ‖∇v3‖0
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σ Example 2.5.3 Example 2.5.4 Example 2.5.5

101 0.730 · 10−16 0.432 · 10−16 0.844 · 10−16

102 0.728 · 10−16 0.445 · 10−16 0.857 · 10−16

103 0.687 · 10−16 0.430 · 10−16 0.813 · 10−16

104 0.712 · 10−16 0.458 · 10−16 0.835 · 10−16

105 0.754 · 10−16 0.424 · 10−16 0.848 · 10−16

106 0.727 · 10−16 0.422 · 10−16 0.873 · 10−16

107 0.716 · 10−16 0.444 · 10−16 0.773 · 10−16

108 0.723 · 10−16 0.444 · 10−16 0.859 · 10−16

109 0.727 · 10−16 0.420 · 10−16 0.833 · 10−16

1010 0.721 · 10−16 0.431 · 10−16 0.752 · 10−16

1011 0.698 · 10−16 0.478 · 10−16 0.808 · 10−16

1012 0.672 · 10−16 0.431 · 10−16 0.843 · 10−16

1013 0.692 · 10−16 0.449 · 10−16 0.785 · 10−16

1014 0.733 · 10−16 0.414 · 10−16 0.789 · 10−16

1015 0.739 · 10−16 0.430 · 10−16 0.800 · 10−16

1016 0.687 · 10−16 0.442 · 10−16 0.779 · 10−16

Table 7: Values of the defect ‖∇w3‖0
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σ Example 2.5.3 Example 2.5.4 Example 2.5.5

101 3.37 · 1013 3.05 · 1013 3.26 · 1013

102 3.30 · 1015 3.00 · 1015 3.22 · 1015

103 3.27 · 1017 2.98 · 1017 3.28 · 1017

104 3.26 · 1019 2.98 · 1019 3.27 · 1019

105 3.27 · 1021 2.99 · 1021 3.29 · 1021

106 3.25 · 1023 2.99 · 1023 3.27 · 1023

107 3.28 · 1025 2.99 · 1025 3.23 · 1025

108 3.21 · 1027 2.99 · 1027 3.28 · 1027

109 3.26 · 1029 2.98 · 1029 3.28 · 1029

1010 3.30 · 1031 2.99 · 1031 3.30 · 1031

1011 3.25 · 1033 2.99 · 1033 3.23 · 1033

1012 3.28 · 1035 2.99 · 1035 3.24 · 1035

1013 3.23 · 1037 2.99 · 1037 3.25 · 1037

1014 3.26 · 1039 2.98 · 1039 3.25 · 1039

1015 3.25 · 1041 2.99 · 1041 3.27 · 1041

1016 3.29 · 1043 2.98 · 1043 3.20 · 1043

Table 8: Values of the defect ‖∇2v3‖0
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σ Example 2.5.3 Example 2.5.4 Example 2.5.5

101 3.11 · 105 2.80 · 105 2.12 · 105

102 3.12 · 107 2.82 · 107 2.05 · 107

103 3.20 · 109 2.87 · 109 2.23 · 109

104 3.17 · 1011 2.60 · 1011 2.18 · 1011

105 3.12 · 1013 2.85 · 1013 2.15 · 1013

106 3.18 · 1015 2.80 · 1015 2.08 · 1015

107 3.12 · 1017 2.79 · 1017 2.18 · 1017

108 3.17 · 1019 2.73 · 1019 2.18 · 1019

109 3.27 · 1021 2.74 · 1021 2.18 · 1021

1010 3.31 · 1023 2.75 · 1023 2.10 · 1023

1011 3.21 · 1025 2.65 · 1025 2.13 · 1025

1012 3.25 · 1027 2.69 · 1027 2.19 · 1027

1013 3.10 · 1029 2.79 · 1029 2.08 · 1029

1014 3.08 · 1031 2.71 · 1031 2.21 · 1031

1015 3.29 · 1033 2.79 · 1033 2.20 · 1033

1016 3.39 · 1035 2.72 · 1035 2.22 · 1035

Table 9: Values of the defect ‖∇2w3‖0
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