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The organized armies of the world all have their own hand signal systems to deliver commands 

and messages between combatants during operations such as search, reconnaissance, and 

infiltration. For instance, to command a troop to stop, a commander would lift his/her fist next to 

the his/her face height. When the operation is carried out by a small unit, the hand signal system 

plays a very important role. However, obviously, there is an aspect of limitation in this method; 

each signal should be relayed by individuals, which while waiting attentively for a signal can 

cause soldiers to lose attention on the front observation and be distracted. Another limitation is, it 

takes a certain period to convey signals from the first person to the last person. While the 

limitations above are related to a short moment, that can be fatal in the field of battle. 

Gesture recognition has emerged as a very important and effective way for interaction 

between human and computer (HCI). An application of inertial measurement unit (IMU) sensor 

data from smart devices has lead gesture recognition into the next level, because it means people 

don’t need to rely on any external equipment, such as a camera to read movements. Especially 

wearable devices can be more adequate for gesture recognition than hand-held devices because 

of its distinguished strengths. If soldiers can deliver signals using an off-the-shelf smartwatch, 

without additional training, it can resolve many drawbacks of the current hand signal system. 

In the battlefield, cameras to record combatants’ movement for image processing cannot 

be installed nor utilized, and there are countless obstacles, such as tree branches, trunks, or 

valleys that hinder the camera to observe movements of the combatants. Because of unique 

characteristics of battlefield, a gesture recognition system using a smartwatch can be the most 
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appropriate solution for making troops mobility more efficient and secure. For the system to be 

used successfully in combat zone, the system requires high precision and prompt processing; 

although accuracy and operating speed are inversely proportional in most of cases.  

This paper will present a gesture recognition tool for army hand signals with high 

accuracy and fast processing speed. It is expected that the army hand signal recognition system 

(AHSR) will assist small units to carry-out their maneuver with higher efficiency. 
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1.0  INTRODUCTION 

In this thesis I demonstrate how a gesture recognition system read army combatants’ hand signal. 

The system is an optimum solution for current army hand signal protocol, because Army Hand 

Signal Recognition (AHSR) system is a robust real-time system that requires only a wrist-worn 

wearable device and doesn’t require any further training nor external equipment. This chapter 

contains a motivation for this study, my own contributions, and a description of the structure of 

the entire paper. 

After World War Ⅱ, the aspect of modern warfare (aerial, intelligence, network-centric, 

and nuclear etc. [1]) appeared accompanied by the evolution of technology; however, small unit 

maneuvers are still considered as a fundamental aspect of warfare and the significance should not 

be underestimated. During a maneuver operation, combatants rely on agreed communication 

method among themselves which can be voice, radio, or hand signal. The hand signal is needed 

when sound should be limited because the unit is too close to the enemy or the distance of 

individual each soldier is not close enough. The hand signal, which is necessary to some 

battlefield environments, shows some inevitable limitations; each signal should be relayed by 

individuals, which while focusing attentively for a signal can cause some soldiers to lose 

attention on the front observation and be distracted. Another limitation is, it takes a certain 

period of time to convey signals from the first person to the last person. Lastly, the signals itself 

can be missed in the process of being conveyed; in other words, the successful conveyance of 
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command to the last soldier may not be guaranteed. While the limitations above are related to a 

short moment, that can be fatal in the field of battle. 

During recent years, within computer engineering, pattern recognition has made 

remarkable growth. The pattern recognition refers to the automatic detection of regularities in 

input data by using algorithms, and the conduction of further works such as categorizing the data 

into different classes with the use of former regularities [2]. Gesturing is a means of 

communication that people feel very natural and do in their daily life. If the gestures can be used 

to control something using pattern recognition, such as a system or movement of the object, it is 

very efficient and its application range is and unmeasurable wide way for human-computer 

interaction (HCI). Vision based pattern recognition has realized many imaginative things in our 

life, for instance air mouse, virtual personal trainer [3]–[6]. The vision based system is very 

powerful; however, it also has inevitable limitations and thus its availability is restricted under 

some conditions. The vision based system is not tolerant to environment, such as illumination, 

surrounding objects, the orientation of camera and subject. One method to overcome this 

limitation is to use the sensing data of the device on which sensors are mounted; a typical 

example is the Wii remote controller.  

Nowadays, the smartwatch is one of the most popular personal devices along with the 

smartphone. It is as light as a usual analog watch and relatively cheap, but it provides a wealth of 

functionality (such as microphone, speaker, camera, and IMUs) and does not restrict, force, or 

change a user’s movement. Further, the smartwatch worn on user’s wrist is always ready to be 

used and to communicate wirelessly with other devices [7], but user does not have to touch the 

device or even need to look at it. These features imply that the smartwatch is very suitable 

equipment to be used for analyzing human hand or arm movement. 
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The combination of pattern recognition and wearable device technology produces a 

boundless synergy. How can the strength of each technology be integrated for robust and 

accurate gesture recognition system? Pattern recognition using wearable device has been 

primarily used for fitness, sport medicine, rehabilitation, health monitoring, and so on. But this 

paper shows another application of pattern recognition for military purpose. Chapter 2 describes 

the growth of pattern recognition in more detail and highlights studies already done by other 

researchers.    

Of course, there were a few restrictions and obstacles in developing a gesture recognition 

system to be used in the battlefield. First, gesture recognition is a different concept than activity 

recognition supported by most current smart devices. Activity recognition is aimed at 

recognizing a specific activity by detecting the repeated movement or status change over a 

certain period of time. For example, Android provides five types of APIs for activity recognition; 

driving, bicycling, running, still, and walking1. On the other hand, a gesture recognition system 

has a difficulty in detecting gestures that are performed in a relatively short period and may not 

be repeated.  

Second, there are several difficulties in converting signals into identifiable input gesture. 

Signaling movements are 3 dimensional gestures, not 2 dimensional, and each soldier has 

different ways of drawing the same signal. For instance, the angle of his/her arm or the path to 

reach one point to another will be slightly different from soldier to soldier. One of the well-

known gesture control application is a music player control system which only requires four 

kinds of gesture to play, stop, forward, and backward. On the other hand, an army hand signal 

                                                 

1 https://developer.android.com/training/gestures/detector.html?q=activity%20recognition 
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system has relatively higher number of gesture types. And some gestures are not distinguishable 

enough to find differences at a glance. 

Lastly, extra ordinary characteristics of a battle field produce more restraints. There is no 

guarantee of reliable network or pre-built technological infrastructure. These environmental 

aspects imply that the system to be used in the field must have both a certain level of accuracy 

and speed; although accuracy and operating speed are inversely proportional in the majority of 

cases.  

It is hoped that this research serves as a foundation for future development of a system 

which can recognize combatant’s every single movements of hands and fingers. This study 

concentrates on 14 kinds of one-hand signal for maneuver operation. The reason this start with 

maneuver operation first is because, during a maneuver, each combatant is likely to be far away 

from each other and close to an enemy area where sound is not suitable for communication. 

Based on the experimental results in this paper, the system shows the high possibility of 

expansion to be applied to further various gestures. 

1.1 MOTIVATION 

Korea is the only divided nation in the world. The Korea peninsula is divided by a Demilitarized 

Zone (DMZ) that is 248km long and traverses the entire peninsula 4km along the Military 

Demarcation Line (MDL) which is near by 38th parallel. Many soldiers carry out search and 

reconnaissance operations every night in the DMZ. Further, Korea has more mountainous 

regions than flat regions and the DMZ is no exception. When a small unit maneuvers under these 

circumstances, various obstacles, like tree branches, trunks, bushes and valleys, block the view 
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of each combatant. This environment makes it difficult for combatants to use hand signals. It is 

even more unreasonable to use voice or radio to communicate in the DMZ where enemy forces 

and friendly forces are coexisting so closely. Careless sounds can expose the unit’s position and 

make it possible to be in the enemy’s surveillance area. The current alternative is to use hand 

signals or connect a headset or earphone to the radio. However, the biggest blind spot of this 

resolution is that it also cuts off valuable sounds which may come from the surrounding area, 

such as the enemy’s approaching sound. So, in order to make this precarious situation better, I 

suggest AHSR that can improve the current hand signal system.  

Important initial condition of the system was that it should not require any additional 

training nor external equipment. In modern warfare, combat can occur everywhere, so the system 

must be independent of the environment. Further training means a lot of potential confusion and 

time to adjust to the new method. Also, any additional body attachment equipment may reduce 

the soldiers’ combat performance. Therefore, the hand signal recognition system using 

smartwatch sensors can be an optimum answer to improve the current analog hand signal system. 

It not only solves the limitations of current hand signals but also has a wide range of utilization. 

The accumulated data retrieved from the AHSR system can be used for operation performance 

analysis after completion of the operation and for educational purposes through the use of case 

studies. Furthermore, soldiers can customize the system to add and train their own gestures, so 

that a small unit can make the team’s unique hand signal protocol. While presenting these 

strengths of the system, the smartwatch has its own benefits. Due to its rich functionality, the 

smartwatch is capable of a variety of tactical uses, not just for AHSR; it can be used as a map 

viewer, walkie-talkie, or statement delivery system. 
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1.2 CONTRIBUTION 

As mentioned above, several challenges surely appeared, however, in other words, those 

challenges lead to a contribution of the research in this paper. First, this paper suggests a new 

application of the gesture recognition. Many studies have caused numerous fields and areas, but 

not for military purpose. The computer-human interaction using gesture is a very important 

stream in the field of computer engineering in modern times. As military also has several areas 

where this trend can affect, this study is expected to be the starting point. 

The system in this paper used smartwatch which is considered as one of the most suitable 

equipment for gesture recognition at present. Due to the strength of the smartwatch, a soldier 

does not need to change the movements of his/her hands and arms in order to use the system. In 

other words, the system is ready to be used without any additional training. 

This study compared and evaluated many factors for recognizer design using a relatively 

large number of gestures; algorithm, variables, features and required optimal number of training 

data. This large amount of empirical experiment results guarantees the scalability of the system. 

Most of all, the accuracy and the operation speed of the system is high and fast enough to 

be used for tactical purpose. The accuracy was over 99% and the time delay for gesture 

recognition was less than 1 sec with entirely based on real-time operation. 

1.3 THESIS ORGANIZATION 

In chapter 2, literature review will be introduced and in chapter 3, the theoretical background for 

this study, which will help to understand the following content, will follow. Chapter 4, as a main 
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part of this paper, will explain every detail of experimental process, data collection, optimal 

modeling, and the Army Hand Signal Recognition system (AHSR). Finally, the last chapter will 

discuss limitations of this study and suggest potential prospective work. 
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2.0  RELATED WORK 

During recent years, within computer engineering, pattern recognition has made remarkable 

growth. As pattern recognition fused with the gesture, gesture recognition, it’s application range 

became very broad. Because of the development of smart devices, gesture recognition systems 

had become an important way to facilitate human-computer interaction (HCI). If the system can 

utilize sensor data from the smart device, it means people don’t need to rely on any external 

equipment, such as a camera to read movements or illumination to maintain constant brightness. 

Furthermore, gesture recognition has grown to a higher level along with the development of 

wearable devices. Chapter 2 follows the flow of the gesture recognition’s advancement. First is 

the previous work of the early stage of gesture recognition which was mostly vision based. 

Second is the convergence of the sensor data of hand-held smart devices and gesture recognition. 

Last is the recent skyrocketed interest in gesture recognition using the wearable smart devices. 

 During the early stage of gesture recognition, vision based recognizing systems ([3]-[6]) 

              (a)                                                                              (b) 

Figure 1 (a) A conceptual drawing for Virtual PAT; (b) A image filtered through a visible-block filter [4]. 
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were main stream and also can be categorized as a computer vision technology. Basically, 

several pieces of external equipment are required for a vision based system, such as a camera, 

projector, or illumination to guarantee minimum brightness. James W. Davis et al. presented a 

very practical vision based gesture recognition system in 1998, a virtual personal aerobics trainer 

(Virtual PAT) using a camera, video projector, IR light, IR emitters [4]. Figure 1a shows a 

conceptual drawing for Virtual PAT; a camera of the PAT system records images of a room and 

the subtracts silhouette of a user using optical blocking of specialized non-visible light, e.g. 

infrared light (Figure 1b). After the subtracted silhouette is compared with the system’s motion 

templates, if each aerobic movement is complete, positive comments (e.g. “good job!”, 

“fantastic!”) are provided, and if not, negative feedback (e.g. “get moving!”, “concentrate!”) are 

provided. James L. Crowley et al. introduced the digital desk utilizing a projector and video 

camera for finger tracking (Figure 2a) [5]. A computer screen is projected onto a physical desk 

using the projector, and the camera is set up to observe the work area. The system tracks some 

pointing devices, such as a finger, a pencil or an eraser, to determine the most likely location of 

the object at some moment. The authors suggested an application of their system, “finger-paint” 

(Figure 2b). The vision based system has suggested a new way for HCI, the ‘gesture’, which 

refers to means of communication that people feel very natural and do in their daily life, however, 

     (a)                                                                        (b) 

Figure 2 (a) The Digital Desk for finger tracking; (b) Drawing and placing with "finger-paint" [5]. 
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it still has some limitation. The vision based system is not tolerant to environments, with 

illumination issues, surrounding objects, varying orientation of camera and subject. Therefore, it 

can be very powerful only when it can be operated in a fully equipped space and with well-

prepared conditions 

 Later, the use of sensor (e.g. IMU) data from the hand-held device has greatly expanded 

the scope of application for gesture recognition. A typical example of the hand-held device, a 

smartphone is now an essential device to most people, and has a variety of built-in sensors, e.g. 

magnetometer, proximity sensor, barometer, gyroscope, and accelerometer. Use of a hand-held 

device solves the vision based gesture recognition’s limitation, which has a high dependency on 

external conditions [8]–[11]. In 2013, Sven Kratz et al. suggested a combining acceleration and 

gyroscope data for motion gesture recognition in their paper [8]. If the recognizer only uses 

acceleration data without gyroscope data, rotation data should be approximated using 

accelerometer and no tilt and rotation information can be obtained when the device is rotating on 

the plane perpendicular to gravity. Their hypothesis was to prove that the system can recognize 

more complex gestures with higher accuracy by using a combination of accelerometer and 

gyroscope data. They proposed detailed results with a comparison between different 

combinations of sensors and classifiers, by using data from accumulated experiments. As a result, 

the authors concluded that the combination of acceleration and gyroscope data can improve the 

gesture recognition rate up to 4% using 3 classifiers, Protractor3D, DTW (Dynamic Time 

Warping), and LR (Regularized Logistic Regression). Michael Hoffman et al. presented a 

systematic study on the recognition 3D gestures using Nintendo Wii Remote for the linear 

acceleration-sensing and Nintendo Wii Motion Plus for the angular velocity-sensing (Figure 3) 

[9]. In the paper, the experiments proceed to find how many gestures can each classifier 
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recognize, how many training samples are needed per gesture, proper classifiers to achieve some 

degree of accuracy, and also to assess user dependency of a recognizer. As a result, their 

developed system could recognize and classify simple gestures that can be used for gaming 

purposes with 99% of accuracy using linear and AdaBoost classifiers. The use of hand-held 

devices provided a significant improvement of the gesture recognition field; with this, the system 

became environmentally independent, so there were little spatial constraints. However, the hand-

held device still showed obvious restraints; the user had to continue to hold or grab a device, 

which meant that the results can vary significantly on the angle at which the user was holding the 

device. Furthermore, the hand-held device restrained or changed the user’s original movements.  

 Nowadays, the smartwatch is one of the most popular personal devices and can be used 

as an optimal device for gesture recognition due to its strengths; it is relatively cheap, providing 

a wealth of functionality, which is always ready to be used and communicate wirelessly with 

other devices. Furthermore, the wearable device provides a higher level of freedom to a user’s 

movements than the hand-held device. In other words, a smartwatch does not restrict, force, or 

change a user’s movements. There are a large number of research for gesture recognition using 

wearable devices, which are very practical and have distinct focuses; gaming [12], health care 

[13], [14], sports medicine [15], rehabilitation [16], interaction with other devices [7], [17]–[19], 

and handicapped aids [20]. There are also studies to improve the performance of gesture 

Figure 3. A user providing 3D gesture data using a Nintendo Wii hand-held device for [9] 
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recognition itself [21]–[25]. Furthermore, it is possible to use both the hand-held device and the 

wearable device together for a single purpose system [26], [27]. Keiko Katsuragawa et al. 

described the Watchpoint, a hands-free, smartwatch-based and mid-air pointing interaction 

system [7]. Their work demonstrated that an off-the-shelf smartwatch, not any other vision based 

or specialized device, can be used as an interaction device for pointing in ubiquitous display 

environments. Because the Watchpoint doesn’t require a vision-based tracking system, the 

occlusion problem, which is the major limitation of vision based gesture recognition systems, 

can be solved. It means that the user and display can interact even when there is an obstacle 

between them. The paper written by Lorenzo Porzi et al. also shows an example of gesture 

recognition’s practical application designed for people with visual impairments [20]. The user 

can make a gesture as an input to make the system recognize the gesture and activate a 

corresponding function. Their research demonstrates that the interaction between visually 

impaired people and wearable devices can be possible by utilizing gesture recognition. 

 The current research done on gesture recognition has caused many fields and areas. The 

gesture recognition suggested a way of human-computer interaction that can be used broadly for 

the general public. However, no attention has given to the application of gesture recognition for 

military purpose. With this regard, this paper suggests a very practical utilization of gesture 

recognition for military fields. 

Figure 4. A photo of demonstration of [7]. 
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3.0  THEORETICAL BACKGROUND 

3.1 PATTERN RECOGNITION 

The pattern recognition is related to the automatic detection of regularities in input data 

by using algorithms, with the use of these regularities, to do further work such as categorizing 

the data into different classes. One of the practical uses of pattern recognition is a handwriting 

recognizer (for letters and digits) used in post offices, banks, and smartphone apps [28]. The 

well-known pattern recognition theories are Bayesian Decision Theory, Probability Distribution, 

Dynamic Time Warping (DTW), Neural Networks, Support Vector Machines (SVM), Hidden 

Markov Models (HMM). 

In most case of practical use, the original input data or variables should be preprocessed 

to convert them into some new space of variables to make the pattern easier and faster to be 

recognized. This pre-processing stage can also be called feature extraction. In the handwriting 

(a)                                                           (b) 

Figure 5. Example of input for pattern recognition’s practical use for (a) handwriting 
recognition, (b) army hand signal recognition. 
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recognizer example above, the images of the writing (Figure 5a) are typically interpreted and 

scaled so that each digit can be contained within a box of a fixed size [2]. For AHSR, the human 

hand’s movements (Figure 5b) are translated and digitized to the acceleration and angular 

velocity using sensors of smartwatch.  

For the pattern recognition, there are two kinds of data sets, training data and test data; 

the training data set is a group of samples that will be used to build recognizer, and the test data 

set is a group of samples that are used to evaluate the performance after creating the recognizer. 

Both the training data and the test data should be preprocessed in the same way [28].  

The sensor data representing the hand’s movement for AHSR corresponds to the time-

continuous data like a seismic wave, voice, and the daily values of a currency exchange rate. 

These lists of data are usually called as sequential data. When analyzing sequential data, the 

temporal relationship must be considered significantly; if the order of the features change, the 

physical characteristics of the sequential data’s pattern can be distorted. Another important 

characteristic of sequential data is that each data has a different time length. The movements for 

the hand signal are performed at different speeds, therefore, each has a diverse time length for 

each person and even each trial. Among the pattern recognition theories mentioned above, most 

suitable theories for the sequential data would be Dynamic Time Warping (DTW) and Hidden 

Markov Models (HMM). While these two techniques share (partially) mutual concepts, the 

operations and the results were totally different. B.-H. Juang explains in-depth in his paper about 

the similarities and differences between the two algorithms in terms of speech recognition [29]. 

The following sections will address the theoretical basis of the two theories to support 

understanding of the remaining paper. 
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3.1.1 Dynamic Time Warping 

In order to analyze sequential data and recognize a pattern, a model that can appropriately 

express the temporal property contained in the data and deduce the desired information from the 

data is required. Dynamic Time Warping is one of the most popular algorithm with HMM for 

measuring similarities between two different sequence data which can have different time length 

or execution speed by warping them and calculating the costs to find the best match of them. 

Although DTW has been generally used for speech recognition [30][31], it can be applied to any 

pattern recognition problem of continuous data [8], [17], [20], [25], [32]. As mentioned above, 

the sequential data has its own characteristics; the order of features need to be considered most 

importantly and each data’s time length can be varied. Especially, hand signals, input data for 

AHSR, are relatively lengthy and compound movements; it implies that a lot of efforts can be 

required for preprocessing. DTW can solve these difficulties effectively. Figure 6a shows two 

sequential data that my look similar but not exactly same; the number of peaks and dips are 

identical but the distance between each bump are different. Grey lines are marked to enhance 

understanding about how DTW determines the best match. Figure 6b illustrates DTW calculated 

                     (a)                                                                                           (b) 

Figure 6. A graphical description of Dynamic Time Warping (DTW). (a) displays two different input 
signals desired to be classified to same class; (b) shows one of the candidates for the best match of two 
signals. 
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the sum of the length of the grey lines and the findings about the minimum value, which 

indicates optimal. 

The trend of transition from DTW to HMM occurred in the late 1980s because DTW is 

no longer powerful enough for stochastic signals that the large number of real-world data 

corresponds to. For alternative way for standard DTW, stochastic DTW was designed, which is 

closely related to HMM that will be introduced in the next section [30]. HMM-based methods 

show better performance when the training data is sufficient, however, DTW is still considered 

very effective especially when the number of training data is limited. 

3.1.2 Hidden Markov Model 

A hidden Markov Model (HMM) is the most representative and widely used model for 

sequential data. In general, HMM is a type of stochastic modeling suitable for nonstationary 

stochastic sequences whose statistical properties undergo distinct random transitions among a set 

of k different stationary processes [33]. HMM is a combination of ‘hidden’ and ‘Markov model’. 

Markov model uses first order Markov chain (Figure 7) invented by Andrey Markov and has 

been used for various applications. However, some limitations emerged when dealing with more 

complicate procedure, so the need of development of HMM was raised. If the model uses 

Markov chain, its size increases exponentially according to the order; the higher order could be 

Figure 7. 1st (above) and 2nd (below) order Markov chain 
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an indication of more accurate modeling but also realistically uncontrollable number of 

parameters.  

However, the order doesn’t need to be fixed for HMM, and the model will determine 

adaptively in the process. HMM is using ‘hidden states’ to make the model’s size affordable. 

Figure 8 is a transition diagram explaining the basic concept and showing two representative 

types of HMM; Figure 8a is called ergodic model and 8b is called left-right model. The ergodic 

model is used to express fully connected HMM, and left-to-right model is known to be suitable 

for speech recognition and can be extended to parallel left-to-right model. Determining which 

model should be used for a recognizer design can be done empirically.  

HMM can be defined as , when  is the transition matrix,  is the 

observation probability matrix and  is the vector of the initial probabilities. There are three 

basic problems for HMM - evaluation, recognition, and training. First, when the model is given, 

HMM will calculate the probability of the observation sequence ; the evaluation 

is used for recognizing some applications. For this study, the evaluation was used for the gesture 

Figure 8. Transition diagram showing a model and architecture of HMM for (a) a 3-state ergodic model. 
Aij denotes the elements of the transition matrix; (b) a 4-state left-to-right model. 
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classification. Second, the recognition is a problem that HMM to find optimal corresponding 

state sequence  (i.e., the  can explain the observations in the best way). Lastly, 

the training is process adjusting parameters of the model to maximize the probability of the 

observation,  using given observation sequence . Each problem has prominent 

algorithm; forward-backward algorithm for evaluation, Viterbi algorithm for recognition, and 

Baum-Welch algorithm for training problem. This study also used these most well-known 

algorithms.  

In the beginning, HMM was also used for speech recognition [34], [35], but the range of 

its application field has been gradually expanded; for gesture recognition [12], [21], [36]–[38], 

computer vision, data mining, bioinformatics [39] and etc.  
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4.0  ARMY HAND SIGNAL RECOGNITION SYSTEM (AHSR) 

Chapter 4 is a main part of this paper. First section displays detailed description of experimental 

setup including explanations of for 14 gestures from current hand signal system of Republic of 

Korea Army (ROKA), used device, data transmission method, software and comprehensive 

experimental procedure. Second section describes data collection with information of 

participants, data collection process and the results. The section 4.3 is for optimal modeling; the 

section introduces variables that the designer can adjust to build more adequate recognizer, result 

comparison from different variables and algorithms, comprehensive evaluation, and conclusions. 

The Army Hand Signal Recognition system design based on former sections’ result will be 

introduced and evaluated in the last section, which will guide to the conclusions. 
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4.1 EXPERIMENTAL SETUP 

4.1.1 Army Hand Signal System 

 

ROKA use many kinds of hand signal, and sometimes each unit make its own signal as a method 

of communication. For this paper, 14 gestures that are considered as the most general and widely 

used by entire ROKA for maneuver operations were selected to train and test AHSR. The signals 

can be divided into posture(pose) and gesture(movement) in more detail. If a stopped action 

means a command, then the signal will correspond to a posture. On the other hand, if a sequential 

movement means a command, the signal will be categorized as gesture. Figure 9 contains 

pictures for each 14 gestures ((a) – (n)) and one basic pose (o); the first three pictures correspond 

to posture and the rest of them correspond to gesture.  For detailed description of each gesture, 

refer to Appendix A; each command description of each gesture was eliminated due to security 

Figure 9. Pictures of ROKA's hand signals for maneuver operations 

  (a)                                (b)                                   (c)                                 (d)                                 (e) 

  (f)                                (g)                                   (h)                                 (i)                                 (j) 

  (k)                                (l)                                   (m)                                 (n)                                 (o) 
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purpose and distinct ID number was imposed instead. A M16A12 replica toy rifle was used for 

this study to help users perform gestures as real as possible and each gesture took 2.5 to 3.5 

seconds in average to be performed. Figure 9o shows the posture of holding a rifle when soldiers 

are not aiming at a point. Therefore, in this study, the participants were required to take the 

default posture all the time except making hand signals.  

4.1.2 Inertial Measurement Unit Sensors of Smartwatch 

The Inertial Measurement Unit (IMU) is an electronic device that measures an object’s specific 

force, angular rate, and magnetic field using an accelerometer, gyroscope, magnetometer, or 

combination of these. IMUs are widely used as part of navigation equipment for the aircrafts, 

satellites, and unmanned aerial vehicles (UAVs). All experiments for AHSR were conducted 

with android smartwatch LG Watch Urbane (Figure 10). Urbane is equipped with IMUs 

supported by 9-Axis accelerometer, gyroscope, and compass; Urbane also has PPG (Heart rate 
                                                 

2 M16A1 rifle was developed in 1957 and adopted as a gun for the US Army in 1967. It is a representative 

rifle used in the Vietnam War and adopted as a rifle in Korea and other countries besides the United States. The 

length of M16A1 is 99cm, similar to the length of k-2, mainly used by Korea Army. 

                                                    (a)                                                                    (b) 

Figure 10. (a) Official picture of LG Watch Urbane (LG-W150); (b) Urbane worn on user's wrist. 

 

https://en.wikipedia.org/wiki/Aircraft
https://en.wikipedia.org/wiki/Unmanned_aerial_vehicle
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monitor), Barometer. 3 Using these hardware-based sensors, more than 10 kinds of software-

based sensors deriving data by mimicking hardware-based sensors are available, such as the 

linear acceleration sensor or the gravity sensor4. The hardware-based sensors used for this study 

are the accelerometer and the gyroscope, most widely used by IMU sensors. The detailed 

specifications of the accelerometer and the gyroscope are shown on Table 1 (these can be 

obtained by using SensorList API). Sensor API allows users the users the right to set the data 

delay; the data delay controls the interval between transmissions of sensor data. Four basic 

options (Table 2) are provided, and the user can also specify the delay as an absolute value (in 

microseconds) as of Android 3.0 (API Level 11). For this study, time delay was established for 

the game mode (20,000 microseconds), the empirically determined speed which is fast enough to 

measure changes of the values. 

 

 Table 1. Detailed specification of the accelerometer and the gyroscope 

 

Table 2. The time delay options provided by Sensor API 

Delay type Time delay (microsecond) 

SENSOR_DELAY_NORMAL 200,000 

SENSOR_DELAY_GAME 20,000 

SENSOR_DELAY_UI 60,000 

SENSOR_DELAY_FASTEST 0 

                                                 

3 http://www.lg.com/us/smart-watches/lg-W150-lg-watch-urbane# 
4 https://developer.android.com/guide/topics/sensors/sensors_overview.html 

Sensor Name Vendor Maximum Range Power Minimum Delay 

MPU6515 Accelerometer InvenSense 19.613297 0.4 5000 

MPU6515 Gyroscope InvenSense 34.906586 3.2 5000 
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 The accelerometer provides 3-axis acceleration force ( 2) including gravity. Therefore, 

when the user does not move his/her wrist, the accelerometer reads a magnitude of 

. Figure 11 shows the coordinate system of the smartwatch. The gyroscope 

measures the rate of rotation around each 3-axis (rad/s). The rotation in the counter-clockwise 

direction indicates positive values. And one more software-based sensor was used for this study, 

the linear accelerometer. Its concept is similar to the accelerometer, however, it excludes gravity. 

Same coordinate system used by accelerometer is also used for linear acceleration and gyroscope 

data. 

4.1.3 Software 

For this study, data was transferred in real time from the smartwatch to PC through the WIFI and 

saved as a .csv file with proper heading and format on the PC if needed. The application for 

smartwatch side used ‘onSensorChanged’ API to trigger the app to send the sensor data. A user 

can enter or change the IP address and port number of the server PC on the smartwatch screen. 

Also, the GUI support an on/off switch to start or stop the data transmission and text labels show 

Figure 11. Coordinate system of smartwatch 
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the change in the sensor data value in real time; the user can check the operating status of the 

sensor using the GUI (Figure 12). 

During the experiments for features and the algorithm selection, the part of Gesture 

Recognition Toolkit (GRT) designed by Nicholas Gillian and Joseph A. Paradiso of Responsive 

Environments Group, Media Lab, Massachusetts Institute of Technology was modified and used. 

The GRT is a cross-platform open-source C++ library that was developed to primarily make 

real-time machine learning and gesture recognition with emphasis on convenience and flexibility 

of users’ customization; there are GRT wiki5 and GitHub6 for further information. The GRT 

supports various stages for gesture recognition, such as preprocessing, feature extraction, 

classification, regression and so on. For this study, adapted code of DTW and HMM were used 

[40].  

When designing a model with HMM, several options were available for the engineer. 

First, there are two most popular architecture for HMM, ergodic and left-to-right model. The 

left-to-right model is often used for situations where a part of a pattern does not appear again 
                                                 

5 http://www.nickgillian.com/wiki/pmwiki.php?n=GRT.GestureRecognitionToolkit 

6 https://github.com/nickgillian/grt/wiki 

(a)                                                       (b) 

Figure 12. A screenshot of smartwatch when (a) data transmission is off; (b) data transmission is on.  
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after it has passed, for instance, the speech recognition. Experiments were conducted to 

determine which architecture is more appropriate for the system, and the results are discussed in 

chapter 4.3. Furthermore, the GRT provides users with more freedom in recognizer design 

aspects; values of sigma, down-sample size, committee number. In order for the sigma parameter 

to determine a good match with the model, it controls the necessity of the proximity of each 

input vector to the model. The down-sample size measures how much each training data is 

down-sampled using average value to create each state in the model. If a user set the down-

sample size as 10, the length of the input data will be changed into 1/10 of original length, and 

the data will be modified to calculated average values of each ten data. Lower down-sample size 

can speed up the training process, but if the value is too low, there is a risk of losing valuable 

data. Using the committee size, the designer can control the number of models that will be used 

to make a prediction. The experiments were operated to find optimal modeling with different 

combinations of these adjustable variables. The impact of each variable on this study and the 

optimal results will also be discussed in section 4.3. 

A server-side software to record input data on PC and the analysis of the result were 

implemented with C++. When the user had chosen a gesture ID before recording training dataset, 

the ID has become a part of name of each data file. After the completion of the recording the 

training data for all types of gesture by the user, a training process for the recognizer can be 

finished by one line of command including a type of algorithm, the values of tunable variable, 

and a list of selected features. 
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4.1.4 Experimental Procedure 

 

Figure 13 shows overall experiment procedure to find optimal recognizer design for AHSR. The 

blue line indicates training process, the red indicates recognition, and the black line refers to the 

designing process. After initial model is trained by input data, the test dataset evaluates the 

recognizer. Using the results from the first evaluation, the variables will be adjusted to improve 

recognition precision. The procedure shall be conducted repetitively to find an optimal design for 

the recognizer. Lastly, the recognizer with the optimal design would be verified with more 

participants’ data. 

4.2 DATA COLLECTION 

4.2.1 Participants 

For the feature and the algorithm selection procedure, the dataset from an army soldier trained 

for 9 years was used. The army soldier conducted each 14 types of gestures over 70 times to 

 
Figure 13. Conceptual Diagram for Designing Process 
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cumulate abundant dataset. To collect data for validation of the selected features and the 

algorithm, 10 participants were recruited. Each participant had to spend about 40 minutes and 

were compensated for their time and effort. They were asked to fill in a brief survey (refer 

Appendix B) about their demographic information, agreements for information provision, and 

the feedback for the system’s sustainability. Summarized demographic information of 

participants are shown in Table 3 (Refer Appendix C for detailed information of each 

participant). 

Table 3. Demographic summary of participants 

The participants used their primary using hand, and 10 participants in total were involved 

in the experiment. There were 8 right-handed and 2 left-handed users. Before starting to make 

gestures, the participants were given a brief description of the experiment’s motivation, goal, and 

process, and an instruction was provided, including a table describing each hand gesture. Only 2 

participants were smartwatch users, and most of the participants were non-military people and 

non-expert in gesture recognition field. The army hand signals system is very unfamiliar gestures 

to participants with no experience in military training, and it varied each time they performed the 

gesture. They are also unware of the sensitivity of the smartwatch sensor, the detailed 

classification principles of the recognizer, and the process. It indicates that it was difficult for the 

participants to make any artificial effort to produce better results. In other words, the results from 

Sex # 
Mean 
age 

(years) 

Mean 
height 
(cm) 

Left-
hand 
user 

Smartwatch 
user 

Military 
trained 

Gesture 
recognition 

aware 
Male 4 34 174.03 - 1 3 - 

Female 6 28.3 165.8 2 1 - 1 
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the 10 participants are highly objective, as it is expected that higher accuracy will be obtained if 

a user is military-trained person and more education about the system can be done in advance. 

4.2.2 Data Recording Procedure 

Data was transferred in real time from the smartwatch to PC through the WIFI. The time 

delay for data transmission was 0.3 sec in average. The detailed programmatical part was 

introduced in section 4.1.3. This section focuses on the interaction between participants and the 

system. A footswitch7 (Figure 14) was used in order to provide convenience to participants and 

indicate the starting and the ending point of each gesture during data recording procedure. The 

participants were able to choose whether to manipulate the switch by themselves or by a 

researcher on behalf. 

A fairly large amount of data was needed to test various options for recognizer modeling 

during the experiments; all gestures were repeated 70 times and it took about 5 hours in total. On 

the other hand, the all 10 participants were required to repeat only 16 times per gestures (13 for 

training data and 3 for test data) for the evaluation of the recognizer, and it took 40 minutes in 

                                                 

7 www.pcsensor.com/usb-keyboard/one-switch-pedal-/usb-foot-switch.html 

Figure 14. A footswitch used for data recording 
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average; because the experiment for the optimal modeling proved that 13 training data can 

achieve sufficiently high accuracy. The participants had to abide by a rule not to adjust any 

circumstances of the watch including its position and angle, until they finish recording for at 

least one complete set of gesture. Because smartwatch is a relatively small device, it is quite 

sensitive to its position. 

The participants finished recording one type of gesture and then passed on to the other 

kind of gesture. A single gesture file stored in ‘.csv’ file named with each gesture’s unique ID 

number and a group of .csv file for training data was then merged into one ‘.ahsr’ file. Thus one 

‘.ahsr’ file was created per participant. To evaluate real-time AHSR system, each participant 

performed all 14 types of gesture in a random order, and the real-time recognition results were 

evaluated. 

As a result, when calculating the pure time of gesture data, more than 160 minutes of data 

was accumulated. 

4.3 OPTIMAL MODELING 

This section contains the process of finding the best conditions for optimal modeling of AHSR 

by conducting experiments with two most well-known algorithms for sequential data, DTW and 

HMM. The purpose of this study is to design a hand signal recognition system to be used in 

combat zone for more efficient and safer maneuver of small unit. Therefore, the 

commercialization of AHSR can be considered only if a certain level of accuracy and speed are 

satisfied; and the criteria should be relatively stricter than the other systems with intention to use 

in daily life. Therefore, the minimum criterion for accuracy was set at the level of 90%, and the 
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experimental results for cases that do not meet the minimum criterion are not discussed in detail. 

In order to find optimal recognizer design, experiments were conducted with dataset from one 

military trained soldier; the data from the other participants were used to verify the design. All 

experimental results are determined by the mean values of the results from 50 times of trial 

conducted under the identical conditions. However, as the training and test data set were 

dynamically configured, the composition of each data extracted from training and test data is 

irrelevant. 

The conditions that designer can choose for AHSR modeling are listed in Table 4. The 

following subsections will explain more details of each selectable and tunable condition and the 

experimental results based on that. According to each analysis, a section 4.3.6 will provide 

conclusions for optimal modeling. 

Table 4. Selectable or tunable conditions for optimal modeling 

Algorithm Feature Number of 
training data Model Modeling 

Variable 
DTW Accelerometer 

Gyroscope 
Linear Accelerometer 
Pre-processed data 
Combinations of above 

5~55 

- - 

HMM 
Left-to-Right 
Ergodic 

Sigma (  

Down-sampling 
Committee size  

4.3.1 Algorithm Selection  

The DTW (Dynamic Time Warping) and HHM (Hidden Markov Model) are for core techniques 

of this study. Although they look similar theoretically, they have much different operations and 

results. This section will compare the DTW and HMM, and discuss different results varied by 

each adjustable setting. To focus on different performance of two algorithms in depth, other 

variables were fixed or broadly considered; the number of training data was fixed as 616 (44 per 
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gesture), the maximum number of input data for this study. All results are the mean value 

calculated by repeating each experiment 50 times; i.e. the recognition accuracy is the mean value 

of 7700 times of test. At the end, the optimal decision in terms of algorithm will be suggested. 

 To start with conclusion, DTW didn’t work well with 14 types of hand signal gestures; 

the recognition precision for 14 types of gesture was 53.13% in average. A potential reason is 

that the gestures are very similar to each other. DTW uses the training data to generate a template 

and the template is compared with input data for the classification. If each gesture for hand 

signals is divided into smaller pieces, different gesture can share the same pieces. Due to the 

operation principle of DTW and the similarity of gestures, the time warping can transform two 

different gestures into mostly identical templates. In order to find intersectionality of AHSR 

system and DTW’s usability, the prediction accuracy was evaluated according to the number of 

gesture types. The number of gesture types was increased to 3, 5, 7, 10, 12, and 14, based on 

frequency of use. Each set of gesture types are summarized in Table 5.  

 

Table 5. The set of gesture for the different number of gesture types; The bold numbers indicate 

newly appeared gesture ID from the previous row. 

 

 

 

 

 

 

 

 

The number of gesture types Gesture ID 

3 1, 2, 3 

5 1, 2, 3, 4, 10 

7 1, 2, 3, 4, 5, 6, 10 

10 1, 2, 3, 4, 5, 6, 7, 8, 10, 12 

12 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13 

14 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
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Figure 15 shows the mean value of prediction accuracy with increasing number of the 

gesture types for each feature and feature set8. The highest value of precision was 88.0% for 3 

types of gesture with acceleration data, and the accuracy declined as the number of gestures 

increased. For the total set of 14 gesture, the maximum accuracy was only 61.039%, well below 

the minimum standard. 

However, it is noteworthy that the prediction of DTW time was much shorter than that of HMM 

(about 1/3 of HMM), although the training time of DTW was longer than the HMM was. The 

short prediction time is a great advantage under a sufficiently convincing assumption which 

states that the training for recognizer is completed before the performance of an operation and 

only recognition is used during the operation. The insufficient accuracy is the result of using raw 

data, and if another feature that specifically represent each hand signals can be defined, the use 

of DTW may be more beneficial. However, this study focuses on the use of raw sensor data, so 

more study for the availability of DTW for AHSR will be left for future the study.  
                                                 

8 From this section of this paper, acronym ‘Acc’ will indicate accelerometer, ‘Gyro’ for gyroscope, and 

‘LAcc’ for linear accelerometer for the feature types. 

The number of types of gesture:  

Figure 15. The mean value of prediction accuracy with increasing number of the gesture types 



 33 

 For the HMM, there are a set of tunable parameters that make the system to achieve 

better performance; a type of model (left-to-right or ergodic), sigma ( , committee size 

( , down-sample factor ( . There is no golden-standard 

for these parameters, because the impact of each parameter on the recognizer depends 

significantly on the type of input data. Even if the type of input data is narrowed from the 

‘pattern’ to ‘gesture’, there is still no golden-standard, because the outcome still can be varied by 

the types of gestures. Therefore, to find optimal value set of adjustable parameters, a large 

amount of experiment should be preceded.  

There is two mostly used models for HMM, the left-to-right and ergodic. Figure 16 

shows the comparison between two models for each feature, when  and not using 

down sampling. The left-to-right model showed 5.847% lower prediction accuracy than ergodic 

model in average; the maximum difference was 9.1039% for acceleration data and minimum 

difference was 3.8961% for linear acceleration data. Therefore, the ergodic model is considered 

to be more powerful than the left-to-right for all types of sensor data for this study.  

Figure 16. Mean recognition accuracy for left-to-right and ergodic model 
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The next tunable setting is sigma (  controlling how close each input vector needs to be 

to the model to be considered as a good match with the model. The  was also decided 

empirically; with ergodic model and without down-sampling. As Figure 17 illustrates, the 

changes in precision according to the value of  are different depending on the input feature; 

especially, gyro was particularly affected by . The acceleration and the angular speed have 

different range of value, as the movement of human arms, hands, and wrists present distinct 

bounds. Therefore, the  should be separately considered for each feature, because the  is 

affected by the range of dispersed value. As a result,  shall be determined according to a set of 

features to be included in the final model for the recognizer.  

The down-sample factor is used to get the gain in time cost, but always has the risk of 

data loss. The experimental results show that the accuracy was almost similar until the down-

sample factor had a value of 5, but the accuracy was sharply reduced when it became larger than 

Figure 17. Mean recognition accuracy according to value of  
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5. For this study, the benefit of time cost resulting from down-sampling was minor and 

insignificant. Using the the committee size to control the number of models for prediction also 

did not seem noteworthy for this study.  

 At this point, all features appeared to exhibit similar accuracy except Gyro. However, all 

features will be evaluated comprehensively with other elements using HMM in the following 

sections. 

4.3.2 Number of Training Data 

It is important to find the optimal size of required training data. Too small dataset can make the 

model difficult to achieve desirable accuracy, and too big dataset make hard for a user to use the 

system. Thus, deriving optimal size of data through experimentation is essential for both the 

system and the user. To evaluate only the effect of input data size on modeling, variables that 

were considered as irrelevant were fixed; the architecture of the recognition techniques, the value 

of , and the down-sample factor.  

The experiments started with the maximum number of training data, 55 for each gesture. 

To make smaller set, the sample data was randomly selected using random API supported by 

Java and each set has reduced by 5 for each experiment.  

Figure 18 shows recognition precision according to the number of sample data for each 

set of features with HMM. The error bars indicate standard deviation of each case and the 

patterned bars mean the number of data is not enough for reasonable results. As mentioned 

before, the minimum criterion of accuracy was set as 90%, however, the mean value is not 

enough to make an optimal decision for the quantity of input data. Although the mean precision 
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is greater than 90%, if the standard deviation is too big, the case should be examined 

considerably. For instance, for linear acceleration data with 10 training data (Figure 18c), the 

mean value of precision was 92.64% but standard deviation was 6.35. It means that the precision 

can be decreased significantly in worst case; the lowest precision among the 50 times of 

experiment with 10 LAcc data was 78.57%. With this respect, the system cannot be regarded as 

stable or robust system. All types of feature and feature set exhibited relatively sharp declining 

accuracy when the quantity of training data declined from 15 to 10. When the quantity of data 

was greater than 15, the precisions were not necessarily in direct proportion, and slightly 

fluctuated due to the quality of data set. Figure 19 shows the results of further exploration to find 

the most optimal number of data between 10 and 15. Repeating 10 to 15 times of gestures for the 

users is considered as affordable enough. However, it should be noted that the smaller number of 

data means the greater impact of training data’s quality. 
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(a)                                                                                            (b) 

(c)                                                                                            (d) 

(e)                                                                                            (f) 

(g) 

Figure 18. Mean recognition accuracy according to 

the number of training data with HMM for  

(a) Acc; (b) Gyro; (c) LAcc; (d) Acc+Gyro;  

(e) Gyro+LAcc; (f) Acc+LAcc; (g) Acc+Gyro+LAcc. 

The patterned bars indicate the number of sample 

data is not enough and the error bars represent the 

standard deviation of each results. 
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In Figure 19, the number of training data is further divided by the unit of 1, from 10 to 15. The 

Figure 19 provides some clear conclusions and more issues to be discussed. For example, in 

Figure 18 and 19, it firmly displays that the data from gyroscope only is not enough to represent 

each gesture. On the other hand, it should be discussed more in depth to decide the optimum 

combination of the number of training data and feature.  

4.3.3 Feature Selection 

Sensors that are frequently used in applications of gesture recognition are accelerometer and 

gyroscope. This study also concentrated on accelerometer and gyroscope, and the values of 

linear acceleration were additionally used to evaluate the effect of gravity on classification 

accuracy. At the early stage of this study, Fast Fourier Transform (FFT) of raw sensor data was 

also considered as a method for preprocessing. However, through reasonable amount of 

experiments, it appeared that the raw data is sufficient to represent each gesture and any other 

Figure 19. The mean value of accuracy according to the number of training data (10 to 15) for each feature 

The number of training data:  
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merits were not identified, but increase in time cost. Thus, three data types with three axes for 

each were recorded and evaluated.  

The Figure 19 in previous section displays a compared information of different feature 

and feature set, as well as the different number of training data. First, the independent data of 

angular speed and linear acceleration are not sufficient to classify 14 kinds of hand signals, 

because precision values are significantly lower than those of other features. Acceleration data 

itself is also not an optimal decision, because it shows a relatively sharp fall when the number of 

training data decrease from 15 to 10. Furthermore, assuming that the AHSR will be used to 

recognize and classify more types of gestures later, the angular speed should be included for the 

system’ robustness. With these regards, candidates for the optimal feature are the right 4 set from 

Figure 19, and the combination with the minimum number of the sample data are summarized in 

Table 6. Next sections will discuss with these four combinations. 

Table 6. The candidate set of feature and the number of sample data for optimal design 

Feature Number of training data 

Acc + Gyro 12 

Gyro + LAcc 13 

Acc + LAcc 12 

Acc + Gyro + LAcc 14 

4.3.4 Time Cost 

For the AHSR system, operation speed should be considered very significantly; the time cost can 

be categorized into two, training time and prediction time. When considering a sufficiently 

convincing assumption which states that the training for recognizer is completed before the 
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performance of an operation and only recognition is used during the operation, the prediction 

time is a obviously more significant.  

The time cost evaluation was conducted with four types of feature set determined from 

the previous section in this paper, and Figure 20 describes the training and the prediction time for 

each in milliseconds. Because each feature possesses 3 axes data, 2 types of feature require a 6-

dimensional recognizer and 3 types of feature require a 9-dimensional recognizer. Training and 

prediction with larger dimension are inevitably accompanied by longer operating time. As 

discussed in the feature selection part, as the accuracy are similar, using two types of feature is 

more advantageous in terms of the time cost than using three types of feature, even it is a very 

small difference (0.43 sec for training and 0.1 sec for prediction in average). In this situation, the 

linear acceleration data obtains one additional benefit. For the real-time recognition part of 

AHSR that will be introduced in the section 4.4 of this paper, the linear acceleration data can be 

intuitively used for gesture detection.  

 

Figure 20. Training and Prediction time for each combination of feature set and the number of 

sample data in milliseconds. The bar chart with left vertical axis indicates the training time and the 

line chart with right vertical axis describes the prediction time. 
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In conclusion, the optimal design for AHSR modeling refers to: 

 HMM with  = 1 

 Angular speed (Gyro) and linear acceleration (LAcc) data  

 13 training data for each gesture 

This conclusion will be evaluated in the next section with data from 10 participants. 

4.3.5 Evaluation 

The objective of this section is to validate an optimal recognizer design which is decided through 

previous sections with 10 participants’ data. Table 7 shows the results of accuracy, training time 

and prediction time for the designed recognizer. The value of accuracy and time cost was also 

calculated by 50 times repetitive process.  

Table 7 Evaluation results for an optimal recognizer model with data from 10 participants 

# 1 2 3 4 5 6 7 8 9 10 Avg. 

Accuracy 
(%) 

98.82 97.60 98.60 99.72 98.28 99.67 99.13 100.0 100 99.57 99.14 

Training 
time (sec) 

2.81 2.85 1.89 2.01 2.05 2.89 3.48 2.04 2.96 2.54 2.55 

Prediction 
time (sec) 

0.37 0.86 0.75 0.65 0.62 0.59 0.46 0.77 0.80 0.56 0.64 

            
As Table 7 describes, the result of accuracy was 99.14% in average; maximum accuracy 

was 100.00% and minimum accuracy was 97.60%. This result seems to be high enough but 

somewhat lower than the results from the modeling step (99.69%). The main reason for the 

decrease in accuracy is that users were very unfamiliar with the movements for army hand 

signal. For most of participants (even if they answered that they had military experience in the 

questionnaire), it was their first time to perform the hand signals in their life. The participants did 
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a little different gesture each time. They are also unware of the sensitivity of the smartwatch 

sensors, the detailed classification principles of the pattern recognition using HMM. Therefore, it 

is expected that higher accuracy will be obtained if a user is military-trained person and more 

tutoring about the system can be done in advance. Further experiments and evaluations with 

military-trained participants will increase validity of the statement. 

4.3.6 Conclusions 

The system showed an accuracy of 99.14% in average with mostly non-military trained people 

with limited knowledge in gesture recognition. With this restraint, accuracy of 99.14% and the 

time cost that does not deviate much from the expectation implies that the system is designed to 

be used for tactical purpose. In conclusion, this optimal design for recognizer can be applied to 

real-time AHSR. 
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4.4 ARMY HAND SIGNAL RECOGNITION SYSTEM 

4.4.1 System Overview 

Section 4.4 will introduce a real-time AHSR system. For the original purpose of this study, 

performance in a real-time environment is important. Figure 21 is a conceptual diagram 

including both steps of the training and the recognition of AHSR. The optimal design for the 

recognizer including algorithm and feature selection was discussed in previous section. To utilize 

these outcomes for the real-time system, some additional factors should be discussed; recording 

and managing of data in real-time, and extraction of proper gesture fragments from successive 

streaming data.  

When the system detect a meaningful movement, it extracts data of a certain length of 

time and stores it in a temporary ‘.ahsr’ file. The system classifies the gesture using the data file 

and reports the classification result (the predicted gesture ID). When the prediction is done, the 

file would be deleted for efficiency of a device’s memory space. The gesture detection technique 

will be discussed in the following section. 

Figure 21. A conceptual diagram for real-time AHSR 
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4.4.2 Gesture Detection 

It should be designed carefully for real-time gesture recognition that how the system determine 

which parts of the streaming data are to be extracted, analyzed and classified. A sophisticated 

algorithm for motion detection is not difficult to design and several respectable previous 

researches exist already. However, AHSR needs to handle short sequential data, which is 

different from a activity recognition, and it requires shorter operation time than normal, for the 

purpose of its usage. With this respect, the gesture detection and the extraction algorithm for 

AHSR should be fairly simple and take a relatively short time.  

Therefore, raw linear acceleration data was used for gesture detection for this study. As 

described in section 4.1.2, linear acceleration data is not including gravity. In other words, when 

a device is not moving, all three axes return zero values. However, because the sensor is 

sensitive enough to catch the vibration of a person’s hand that is not moving, it is very rare for all 

axes to exhibit zero values. So, the sum of squares of the values of the three axes can be used for 

gesture detection; in this part of paper the sum value would be referred as an ‘energy’.  

Furthermore, it is necessary to set two kinds of threshold for discriminating a meaningful 

gesture and insignificant small movements; an energy threshold and a time length threshold. First, 

an energy threshold is a criterion for determining how much the value of energy should be 

judged as meaningful motion. If the value of energy threshold is too small, the recognizer will be 

triggered too often or will not find the correct starting point of the gesture. On the other hand, if 

the value is too big, the system may not recognize a slow-running gesture, or may miss early data 

of a gesture. The value of threshold for energy determined to be 1.1 empirically.  

Second, the time length threshold is a standard to make a system to recognize a 

movement as a gesture only if the energy lasts for a certain time with exceeding certain value. 
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The average, minimum, and maximum time length of all types of gestures were obtained through 

analysis of accumulated data. The time length threshold was fixed as a constant by using these 

statistical values. Fixing the time threshold to a constant value can simplify the gesture detection 

of the system, but can have negative impact on the robustness of the system if the user’s 

movement speed largely varies each time. For this study, because the expected users of the 

system are trained combatants, the fixed value of time length threshold was judged to have more 

positive effects on the system and it was determined to be 15 data (meaning 0.3 seconds in 

average). The gesture detection procedure is summarized in Algorithm 1. 

Algorithm 1. Gesture Detection Algorithm for AHSR 

0: 

1: 

2: 

3: 

4: 

5: 

6: 

initialize all thresholds 

read streaming data of Gyro (x, y, z) and LAcc (x, y, z) from smartwatch 

energy = LAcc_x2 + LAcc_y2 + LAcc_z2 

if energy is > 1.1 

     if the time length threshold is >15: start to record data on a file 

               if the time length of recorded data is > 3.3 sec: trigger the recognizer 

initialize all thresholds 

4.4.3 Evaluation 

First of all, one more threshold had to be explored for real-time AHSR, an irrelevant gesture 

classification threshold. It is a threshold for preventing the system from classifying irrelevant 

hand signals as a significant movement. The value of likelihood for each class can be used for 

the irrelevant gesture classification threshold. If the threshold is set too high, there is a risk of not 

classifying valid hand signals; if set too low, meaningless movement can be classified as a signal. 

When the recognizer using HMM receives the data to analyze, it calculates likelihoods for each 

class, and the class number with the largest likelihood value is returned as the classification 
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result. At this time, if the likelihood value of each class is similar and the maximum value is not 

high enough, the input movement should not be classified as a meaningful gesture. Therefore, 

the irrelevant gesture classification threshold is the standard for this situation. 

Analyzing the results from optimal modeling step, when the recognizer correctly 

classified the input gesture, the maximum likelihood was distributed between 0.7 to 1.0 in 

average. Although the system rarely returned correct result with a likelihood less than 0.7, it was 

determined that it would make the system more sophisticated by discarding that kind of data and 

making the user to perform the same signal once again. The irrelevant gesture classification 

threshold was empirically decided as 0.68. In other words, when the system analyzes the input 

data, if the maximum likelihood value is less than 0.68, it discards the input data and do not 

return any result (for this study, it returned class ID 0 to check the result). 

To evaluate the real-time system, each participant was requested to conduct 14 types of 

gesture successively in random order and during this continuous gesturing, data was streamed 

continuously. Each participant performed a set of 14 gestures only once. For this evaluation, it is 

difficult to evaluate iteratively to obtain the average result of accuracy. Instead, Table 8 

summarizes the result. For 7 participants, the recognizer classified all 14 types of gesture 

correctly, but for 3 participants, there were 1 or 2 miss-classified gestures. In the cases that the 

system misclassified, two gestures were similar either the gesture’s characteristic was not distinct 

enough  
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Participant # 
Gesture # 1 2 3 4 5 6 7 8 9 10 

 1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 9 ✓ ✓ 

5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

7 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

9 ✓ 4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

11 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

12 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

13 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

14 ✓ ✓ ✓ ✓ - ✓ ✓ - ✓ ✓ 

Correct/False 14/0 13/1 14/0 14/0 13/1 14/0 14/0 12/2 14/0 14/0 

           

Table 8. Experiment results for real-time AHSR with 10 participants 
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4.4.4 Conclusions 

The operational process of AHSR should be simple because of many environmental restraints, 

while the system requires a high degree of accuracy. Through repetitive experiments, the settings 

were adjusted, and the real-time AHSR with fast enough operational speed and high accuracy 

was designed. However, if more repetitive experiments with a larger number of participants can 

be done, more precise assessments of system performance will be possible. 
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5.0  DISCUSSION 

5.1 LIMITATIONS 

This paper is an early stage study demonstrating the feasibility of use of gesture recognition for 

military purpose, so there are several performance and study limitations that must be discussed. 

The limitations are introduced in this section, and the prospective solutions will be suggested in 

the next section. 

First, this study deals only with the movement of one hand. However, for unrestricted 

expansion of the study, the classification and recognition of the movement of the other hand is 

suggested.  

Second, proper compensation method for walking speed was not considered. It is 

legitimate to say that, in most case, a commander performs signaling in a stationary state for 

better visualization. However, the system will become more robust if hand signals performed 

during moving can take into. 

Third, there was not enough evaluation with military trained participants. The statement 

that trained people will show higher accuracy with AHSR is still a hypothesis until more 

experiments are actually performed by them and the results to be come out. Furthermore, if this 

study can be obtained after the combatants have used the hand signals in actual reconnaissance 

operations, it will be great for the improvement of the system. 
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Currently, the AHSR requires data transmission from smartwatch to PC using WIFI. 

However, taking into a consideration on using it in the battlefield, the smartwatch to smartphone 

data transfer using Bluetooth can be more appropriate. Or, if all recognition and classification 

can be done on the smartwatch itself, it would be the best scenario. 

Lastly, more efforts can be made to make the AHSR more user-friendly. The current 

version of the system is executed by using command lines, so it is difficult for non-expert to use 

it alone. If this study leads to development for practical use, efforts for the user interface must be 

accompanied. 

5.2 FUTURE WORK 

In this part, several aspects to complement limitations mentioned above and other 

predictable future work are introduced. Obviously, if further experiment and evaluation can be 

executed with military trained soldiers, that would be helpful to improve the performance of 

AHSR for the purpose of military use.  

First, a small IMU sensors can be attached to non-dominant hand to recognize and 

classify the movements of both hands. Then the system can be used for more complex hand 

signals with both hands. However, as the dimension of the model to be analyzed increases, the 

time cost increases together. Therefore, efforts to create elaborate design for the system is 

required. 

In terms of functionality, there are a few areas of improvements. An algorithm to 

compensate for walking speed can make the system more sophisticated. Also, there can be a 

specific gesture as a delimiter to cancel an already performed signal in order to prepare for an 
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immediate situation change or to prepare for a combatant’s mistake. For example, [25] suggested 

gesture delimiter for wrist-worn devices which is easy to perform and uncommon in most 

people’s everyday lift; double Rotate. This kind of gesture which is unique and distinct from the 

hand signals can be used for AHSR. After sufficient functional improvement of AHSR, more 

efforts can be made to make the system more user-friendly. 

There are many benefits if all of the functions of AHSR can be implemented in a 

smartwatch’s stand-alone app. First, the data transfer is not required. Then time cost will 

decrease and the system can be more environment independent. If this is difficult due to some 

limited capabilities of smartwatch, communication between smartwatch and smartphone using 

Bluetooth can be an alternative way the successful implementation. 

There was a cross-participants experiment to determine if a system can be provided with 

a rich gesture library that allows each user to skip the training procedure of a recognizer; in other 

words, a gesture library that can be used by anyone and the reasonable accuracy can be achieved. 

However, the value of precision was very different according to the combination of training data 

and test data; accuracy was wide ranging from 35% to 90%. Therefore, more study is needed to 

find user independent gesture library for AHSR.  

The summary of the limitations and future work displayed in this paper is that there are 

still several questions to be asked and answered, but also prospective solutions. The derivation of 

these future work is another achievement of this study. 
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6.0  CONCLUSIONS 

In this paper, a gesture recognition system, Army Hand Signal Recognition (AHSR) 

system, to be used for reading and classifying a combatant’s hand signal was introduced. 

Through numerous repetitive experiments, the elaborate recognizer was designed. The optimal 

recognizer design has been validated with the experimental data from 10 participants. By 

showing high accuracy and fast operating speed, the AHSR presented a successful early stage for 

military purpose applications of gesture recognition.  

Specifically, the AHSR maximized the benefits of the system in restricted battlefield 

situations by using smartwatch. And the AHSR classified 14 types of complex and compound 

hand movements rapidly and accurately. Although, for real-time use in field of battle, the system 

had to be somewhat simplified, this study shows that the power of the IMU sensors of the 

smartwatch and the HMM can be sufficient to overcome such limitations. It means that there are 

many possible applications in the future. This study is expected to be the foundation point of 

such applications.  
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APPENDIX A 

HAND SIGNALS FOR MANEUVER OF REPUBLIC OF KOREA ARMY 

Below table shows detailed description for ROKA’s each hand signal for maneuver operation. 

Each command meant by each gesture was eliminated due to security purpose and distinct ID 

number was imposed instead. 

Category ID  Description 

Posture 

1 Holding a fist, raise one arm to the shoulder level, and bend it to 
make 'L' shape 

13 Sit down as low as possible while putting both hands on the helmet  

14 Put up one palm on the muzzle of a gun while holding the gun 
muzzle faxing up straight  

Gesture 

2 With a palm facing up, stretch one arm from back toward front 
drawing a semicircle 

3 Holding a fist, raise one arm up above shoulder height and go down 
to shoulder height repeatedly 

4 
Stretch a palm on the side, facing a palm horizontally to the ground. 
Then lower it down to 45 degrees, raise up to 90 degrees repeatedly 

5 
With the right palm facing forward, stretch one are above head height 
and draw a small horizontal circle overhead several times 
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6 Bend one arm so that a palm faces toward the face of oneself and 
move a palm toward back and forth repeatedly 

7 Bend one arm so that a palm faces forward and move it back and 
forth repeatedly 

8 Holding the right fist, stretch right arm from the shoulder and pull 
repeatedly 

9 With the palm facing the ground, stretch one arm backward and 
move it up and down repeatedly 

10 Put a palm on the helmet and spread the arms horizontally 

11 Bend one arm and point fingertips downward and draw a small 
horizontal circle at the waist height repeatedly 

12 With a stretched hand, stretch an arm toward the direction one wants 
to leap 
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APPENDIX B 

DEMOGRAPHIC SURVEY AND CONSENT FORM 

The next page is the demographic survey and consent form that participants were asked to fill 

out.  
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School of Engineering 
Department of Electronical and Computer Engineering 

 

Weonji Choi 
Master of Science Candidate 
412-452-3301 

Thank you for your participating.  
This research is for my master thesis, tentatively titled “Army Hand Signal 

Recognition System using Smartwatch Sensors”. The organized armies of the world all 
have their own hand signal systems to deliver commands and messages between combatants 
during operations such as reconnaissance, and infiltration. For instance, to command a troop to 
stop, a commander would lift his/her fist next to the his/her face height. This study is aiming to 
develop a system that converts analog hand signal to digital signal, recognize and classify the 
signal to do further work. The smartwatch you’ve been asked to wear will send the data 
containing acceleration and angular velocity of your hand movement to the server. 

You will be asked to fill up short questionnaire, and conduct 14 types of gesture 
repetitively. You can find a table describing each motion on the next page. After you finish 
this, please feel free to provide any comment to researcher for the system’s sustainability. The 
whole experiment is expected to take about 0.5 - 1 hour. All information will be used only for 
research purpose and kept confidential. 

Thank you for your time and efforts.  
 

Please fill out following questionnaire. 

   Sex      : Male / Female 

   Age      :    

   Height     :   cm 

   What is your dominant hand?  : Right / Left 

   Do you use a smartwatch?   : Yes / No / In the past 

   Do you have military training experience? : Yes / No 

- If yes, how long?     month / year 

   Do you have ever studied gesture recognition? : Yes / No 

- If yes, please rate your experience from 1 (never) to 10 (very experienced):    

 

By signing below, I agree to provide my information for this study. 

(Date)                          (Signature)      
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APPENDIX C 

 DEMOGRAPHIC INFORMATION OF PARTICIPANTS 

Below table explains demographic information of each participant collected by using the form of 

appendix B. 

# Sex Age Height 
(cm) 

Dominant 
Hand 

Smartwatch 
User 
(Y/N) 

Military 
Trained 
(Y/N) 

Perceived 
awareness of 

Gesture 
recognition 

(0-10) 

1 Female 25 164.0 Right N N N 

2 Male 38 170.0 Right N Y (2.2 years) N 

3 Male 30 175.1 Right N N N 

4 Female 30 172.0 Right N N N 

5 Male 30 175.0 Right Y Y (2.1 years) N 

6 Female 28 168.0 Right Y N N 

7 Female 25 167.2 Left N N N 

8 Female 35 163.1 Right N N N 
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9 Male 38 176.0 Right N Y (2.2 years) N 

10 Female 27 160.5 Left N N Y (4) 
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