
 

DESIGN OF STATE PLANE TRAJECTORY CONTROL  
 

FOR A SOFT SWITCHING AC-LINK DC-DC CONVERTER 
 
 
 
 
 
 
 
 

by 

Jacob Friedrich 

B.S. in Electrical Engineering, Gannon University, 2016 

 
 
 
 
 
 
 
 
 

Submitted to the Graduate Faculty of 

Swanson School of Engineering in partial fulfillment  

of the requirements for the degree of 

Master of Science 
 
 
 
 
 
 
 
 

University of Pittsburgh 

2018 

 



 ii 

UNIVERSITY OF PITTSBURGH 

SWANSON SCHOOL OF ENGINEERING 
 
 
 
 
 
 
 
 

This thesis was presented 

 
by 

 
 

Jacob Friedrich 
 
 
 

It was defended on 

May 29, 2018 

and approved by 

Dr. Brandon Grainger, PhD., Assistant Professor, Department of Electrical and Computer 

Engineering 

Dr. Alexis Kwasinski, PhD., Associate Professor, Department of Electrical and Computer 

Engineering 

Dr. Gregory Reed, PhD., Professor, Department of Electrical and Computer Engineering 

Thesis Advisor: Dr. Brandon Grainger, PhD., Assistant Professor, Department of Electrical 

and Computer Engineering 

 

 



 iii 

Copyright © by Jacob Friedrich 

2018 



 iv 

 

 

 

The objective of this work is to present the controller operation and mathematical analysis of the 

AC-link dc-dc converter, a parallel resonant converter, for which state plane trajectory control 

(SPTC) is proposed.  The contribution is an autonomous control technique achieving the benefits 

of bidirectional power flow, soft switching, and converter switching at its natural resonant 

frequency as opposed to conventional forced control operations. The switching sequence is 

implemented using an autonomous state machine triggered by the voltage and current state 

variables of the resonant LC tank, transitioning between modes of operation strategically to 

achieve said benefits. By using state plane analysis techniques, the dynamics of the resonant tank 

can be seen visually, and the trajectories can serve as information to control the converter. All 

results were simulated in MATLAB/Simulink utilizing the PLECS blockset. In addition, an 

electrical characteristic study was performed in ANSYS Simplorer on the electrical components 

to measure the efficiency and thermal response of the semiconductor devices. 
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1.0  INTRODUCTION 

This chapter presents the main motivation and background material for this work. The dc-dc AC-

link converter is investigated, as well as, similar bidirectional circuit topologies. The benefits and 

challenges of resonant converters and soft switching characteristics are described. A literature 

review of the details of the research conducted is provided.  

1.1 BACKGROUND OF AC-LINK CONVERTER 

In this thesis, the topology AC-link converter is introduced with a specialized controller while 

using state-plane analysis. This converter was first introduced through [1] and [2] and it contains 

many benefits that are valuable for renewable energy applications, electric vehicles, and 

microgrids. These benefits include, but are not limited to, the ability to operate at high switching 

frequencies, soft switching, and bidirectional power flow. With the increasing presence of smart 

electrification in every day appliances, the need for better circuit topologies and control methods 

are proliferating.  

The evolution of the bidirectional converters generally comes from isolated unidirectional 

power converts, such as the flyback, buck-boost, half-bridge, and full-bridge converters [3]. This 

is because the basis of these structures can withstand high and low voltages, which make the 
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topologies considerable candidates for bidirectional capabilities. Many dc-dc converters are 

available on the market that can provide exceptional results.  

One popular bidirectional converter is the dual active bridge (DAB) converter. From [3] 

it is found in general, when the voltage and current ratings of semiconductors are the same, the 

transmission power of the converter is proportional to the number of switches. This gives the 

DAB converter the advantage compared to several other similar topologies due to its eight 

switches. This converter normally operates with a phase shift modulation control. By utilizing a 

transformer with phase shifting the eight switches, a considerable voltage conversion ratio can be 

produced [3].  The DAB converter can also achieve soft switching using a series resonant circuit 

placed before the high-frequency transformer. To achieve this merit requires complex control 

using natural switching surface trajectories along with phase shift modulation techniques [4].  

This converter is a suitable option for bidirectional capabilities that require a high voltage 

conversion ratio. However, if there is a need for a converter without a high-frequency 

transformer and a simple control technique that can achieve bidirectional power flow and soft 

switching, this converter is not the recommended option. 

Another similar bidirectional dc-dc converter is the bidirectional buck-boost converter 

[5], [6]. This non-inverting four-switch converter has the ability to be bidirectional and achieve 

up to 97% efficiency in a 500 W system [7]. The converter is able to operate with  fixed 

frequency using pseudo sliding mode control, which provides a robust controller and allows the 

converter to still achieve high efficiency in a dynamic environment [8]. This converter is 

extremely adaptable to low voltage systems that is connected to a varying DC bus. Although this 

converter can operate at high efficiencies and able to achieve bidirectional power flow, it would 

be challenging to make this circuit adaptable to medium or high voltage scenarios. This is 
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primarily due to the circuit’s topology configuration that does not allow the voltage switching 

stress to be shared among multiple switches. In addition, without being able to achieve zero 

voltage switching, the longevity of the semiconductor switches could be lessened.   

The AC-link design, shown in Figure 1.1, was based on the idea of a DC-link circuit. DC-

link circuits are mainly used to couple two different circuits for one common voltage level. 

These circuits allow for a quick transfer of power, due to the high capacitance of the link 

capacitor. Additionally, another merit of these DC-links is the ability to transfer power even if 

large current spikes are present. However, creating an oscillating ac signal in the link permits the 

circuit to achieve soft switching thus increasing efficiency and improving the reliability and 

availability of the converter while keeping the added benefits of a circuit using a large dc 

electrolytic capacitor, but only having to use a less rated capacitor. 

The dc-dc AC-link converter’s main benefit is that it can achieve soft switching and has 

the capability to buck and boost the output voltage [9]. The AC-link topology is also referred to 

as “universal” because of its ability to achieve inputs and outputs as ac-ac, dc-ac, ac-dc, or dc-dc 

[2], [9], [10], given the correct topology. This power converter is able to achieve soft switching 

at the turn-on operation for each of its switches. This universal power converter can be 

considered state of the art for resonant converter designs and has been patented for its topology 

[1]. The AC-link topology is an extension of the buck-boost converter with the addition of a 

parallel resonant tank, which consist of a capacitor and an inductor. The inductor, being the main 

energy storage unit, resonates with the parallel capacitor to form a resonant circuit that will 

ensure soft switching for the converter. This idea of ensuring soft switching enables the buck-

boost circuit to operate at high frequencies (~15 kHz or greater) with nearly negligible switching 

losses. Because of the versatility of this converter, it can be applied to a large variety of 
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applications. The input and output filters of this design are used to reduce voltage and current 

harmonics [11]. This converter also has the ability to have bidirectional power flow, and behaves 

similarly to the dual active bridge converter [12]. This crucial feature will allow the converter to 

operate in a wide range of dynamic voltage scenarios, such as connecting to a battery and to a 

fluctuating dc bus.  

 

Figure 1:1 Bidirectional dc-dc AC-link topology [1] 

The AC-link’s resonant frequency is found by (1.1),  

 

 

(1.1) 

where Lr and Cr are the resonant tank’s capacitor and inductor. A resonant frequency is the 

frequency in which the reactance of the capacitor equals the reactance of the inductor. The 

switching frequency is less than the resonant frequency, which is found approximately by 

combining the filters with the resonant tank and resolving for the frequency using (1.1).  

This realization that the link current and inductor will be oscillating at a potentially high 

frequency mitigates the need for a large aluminum dc electrolytic capacitor within the link 
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because the smaller rated size of the capacitor the larger the resonant frequency will be [2]. The 

ability to reduce the overall capacitance of the converter, or to eliminate the need for electrolytic 

capacitors, is crucial for improving the reliability of the converter. This can be seen in Figure 1.2, 

where the comparison of aluminum electrolytic capacitors (Al-Caps), metallized polypropylene 

capacitors (MPPF-Caps), and high capacitance Multi-Layer Ceramic Capacitors (MLC-Caps) are 

shown [13].  

 

Figure 1:2: Evaluation of three common capacitors [13] 

In Figure 1.2, it can be seen that the Al-Cap can achieve a very high capacitance and is 

cost effective; however, it has a very poor reliability and does not perform well at high 

frequencies. Thus, the AC-link topology is able to reduce the capacitance enough that the need 

for Al-Caps will become unnecessary and a more robust capacitor such as a MPFF or MLC 

capacitor can be used.  

A popular way of lessening switching losses and improving reliability of power 

electronic devices is to introduce soft switching, or more specifically, zero voltage switching 

(ZVS) and/or zero current switching (ZCS). Soft switching, shown in Figure 1.3, is usually 

introduced through a type of resonant circuit, such as an inductor and capacitor (LC) circuit, and 

it takes place when the turn-on and turn-off of a semiconductor switching device overlaps with a 



 6 

zero crossing of the voltage or current waveform [14]. In general, for this application the focus is 

on zero voltage switching.   

In Figure 1.3, the red areas display the points in which loss, measured in watts, occurs 

when the semiconductor receives its gate input signal. In semiconductor switches like 

MOSFETs, soft switching typically eliminates the switching loss caused by diode recovery 

charge and the semiconductors parasitic capacitance. This is due to the diode recovery charge 

and semiconductor output capacitance being the major source of PWM switching losses [14].  

Like MOSFETs, IGBTs can lose a significant amount of energy because of the current tailing 

phenomenon. 

 

Figure 1:3: Hard switching vs soft switching in semiconductor 

In a parallel LC tank design, zero voltage switching is investigated. In this type of design, 

if the switching frequency is less than the resonant frequency the tank will appear inductive. This 

will relate the current lagging the voltage and introduces the ability for the switch to turn on at a 

zero-voltage crossing, thus eliminating a major amount of loss.  This concept of soft switching 

will be applied to this extension of a buck boost converter to reduce the amount of switching loss 
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created and allow the converter to operate at a higher switching frequency. Important equations 

for designing resonant systems are noted below [14].  

 
 

(1.2) 

 

 

(1.3) 

 

 

(1.4) 

 

 

(1.5) 

 

 

(1.6) 

Here XL is the inductive reactance, XC is the capacitive reactance, fo is the resonant frequency, wo 

is the angular frequency, and Zo is the systems impedance at resonant frequency.  
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Figure 1:4: AC-link parallel resonant tank’s characteristics at specific L and C values 
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The phenomenon for soft switching to occur happens from the resonant tank’s 

characteristics, as seen in Figure 1.4. Again, to achieve zero voltage switching, the switching 

frequency of the circuit operates below the resonant frequency to create an inductive circuit, i.e. 

the current lags the voltage. This allows the switches to turn-on when the voltage at a zero 

crossing and creates minimal losses for the device. This feature, along with a specific 

modulation, allows the converter to operate at reasonably high switching frequencies, which in 

turn can reduce the overall package of the device.  

1.2 RESONANT CONTROLLER TECHNIQUES 

Resonant circuits introduce many benefits for circuit operation from higher reliability to 

allowing operation at higher frequencies resulting in a more compact and smaller device. 

However, one of the most significant drawbacks of these types of circuits is the added 

complexity. This added complexity is due to the constant dynamic characteristics of parallel LC 

circuits. However, because of the merits of resonant topologies, extensive work has gone into the 

control, but focusing on series resonant topologies [15]. This led to the control techniques for 

series resonant tank converters which can be, but not limited to, frequency modulation control 

[15], energy feedback control [16], asymmetrical pulse width modulation [17], and sliding mode 

control [18]. However, even though these methods may work for a parallel resonant converter, 

control of the series resonant tank and parallel resonant tank still differ in a few ways.  

The main difference between the series resonant tank, other than the configuration of the 

LC circuit, is that the parallel tank allows for a constant input current from the incoming voltage 

source. This feature allows for less current stress on the switches because the current is not 
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changing abruptly [15]. Also, in parallel resonant circuits, the reactive power is what circulates 

within the resonant tank and only the real power is provided through the semiconductor switches, 

which allows for the ability to produce high current and voltage levels using low rated volt-

ampere switches and provides short circuit protection [15]. In this section, several popular 

control methods will be discussed on regulating the dynamic characteristics of parallel resonant 

tank circuits.  

Frequency-modulation control (FMC) can be applied to parallel resonant circuits [15]. 

The idea behind this controller is similar to most, in that, it is used to regulate the output voltage 

and provide zero voltage switching for the circuit. This method is designed by creating the 

dynamic model of the open loop parallel circuit and obtain the small-signal model characteristics 

from the averaged model. The next step is to find the dynamic model for the closed loop system, 

which allow the control gains to be expressed. The actual frequency modulation (FM) portion of 

this controller is created by usually generating a saw-tooth waveform synchronized by the zero 

crossing detection of the resonant capacitor voltage [15]. It is then compared with the output 

signal of a controller in order to operate the corresponding switches. By combining this method 

with a proportional integral (PI) controller this method will allow for adaptability if components 

parameters change within the resonant tank, such as changes to the resonant tank’s inductor or 

capacitor values varying over time. For instance, the frequency will increase if the tank begins to 

become overly inductive and the opposite for an overly capacitive circuit. This method is robust 

since it is adaptable to changes within the circuit; however, without the ability to be able to 

control the ever adapting switching frequency, damaging effects can be caused to the switches 

and other components within the device. Resonant circuits are very sensitive, especially when 
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using frequency control. Miniscule variations within the load or other parts of the converter can 

cause large current or voltage spikes, stressing electronics within the circuit [19].  

Another method of controlling a parallel resonant converter is to use sliding-mode control 

[20]. This method operates with amplitude modulation, which leads to a robust form of control. 

The sliding-mode control is adaptable for transient prone systems and also systems that will 

obtain component value variations [21]. This method’s switching frequency acclimatizes 

automatically to fluctuations of component values while still preserving soft switching 

conditions. The control of this system uses feedforward control, which is a major contributor to 

why this system can adapt to abrupt load shifts. The main idea of this converter is to maintain the 

operation of the converter on the switching surface by developing multiple threshold values. 

Sliding mode control can be a simple method of controlling a converter, however, in this case 

with the AC-link converter, implementing this control would be rather complex. The complexity 

of this control comes from the many modes of the controller and the number of switches that 

need to be regulated. Developing the phase trajectory is very tedious, and can be extremely 

difficult in higher order systems like the AC-link topology [22].   

An additional method for controlling a parallel resonant circuit is to use a linear 

controller with fixed frequency control. This method uses a PI controller and analog control 

gates to regulate the input gate signal of the switches [9]. Analog control has a fast response time 

and is usually less costly than digital controllers like field programmable gate arrays (FPGA). 

This constant switching frequency method measures voltages and currents throughout the circuit 

to compare polarities of what the expected voltages and currents should be. By monitoring the 

state of the voltages and currents, the switches can achieve soft switching by allowing a zero 

potential difference between switches during different modes of operation [9]. With an 
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equilibrium voltage point on each side of a switch, the voltage across the switch at turn-on is 

zero. This is the general way of obtaining zero voltage switching (ZVS). However, this method 

does not handle the dynamics of the resonant circuit as well as would be desired. The resonating 

cycle of the parallel LC circuit oscillates rapidly. Using a fixed frequency control method while 

measuring the polarities of the resonant tank’s voltage and current and comparing those values to 

the voltages and currents on the filters, issues may arise such as incorrect gate signals being sent 

to trigger the semiconductors. 

The sensitivity of resonant circuit design led to the development of control methods 

depending upon state variable regulation within the resonant circuit. One of the first discoveries 

of implementing a state variable regulation controller is found in [23] where the term optimal 

trajectory control (OTC) originated. The OTC method shows a much better dynamic 

performance than just using linear control methods. This is due to the immediate transfer 

between operating points by using comparative techniques with voltage and current states 

measured continuously throughout the operation of the converter [24]. The control proposed 

within this work, state plane trajectory control (SPTC), is a method based on OTC without 

deriving the precise optimal trajectories for the various modes of a circuit. The idea of 

monitoring the state variables values (capacitor voltage and inductor current) to follow a desired 

set reference trajectory is beneficial for effectively eliminating unwanted over voltages and over 

currents. This creates near instantaneous transition between operating modes that would occur 

for load changes or other transient events. Adaptation of SPTC for parallel resonant circuits 

simply requires the dynamic resonant equations from the equivalent switching circuits to 

measure the radius of each trajectory for each corresponding mode. 
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This method uses a point-by-point control scheme that allows the converter to operate at 

its own resonant frequency. This method does not force artificial switching signals and can still 

achieve soft switched bidirectional power flow. The SPTC can adapt to load variations rapidly 

due to its instantaneous properties, similar to OTC.  In Figure 1.5, an example of SPTC is shown. 

State plane analysis and normalization will be discussed in the next section of this document. 

However, the basis of this control method is to continuously measure the current and voltage 

within the resonant tank and compare those values to reference values, which are predetermined. 

For example, R1a will start conducting at a certain current reference then follow the trajectory 

and conclude at R1b reaches a voltage reference. This control method will be further explained 

in upcoming sections. 

 

Figure 1:5: Example of SPTC on normalized current vs voltage plot with 1:1 voltage transfer 
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2.0  STATE PLANE TRAJECTORY 

The AC-link universal power converter can be considered state of the art for resonant converter 

designs. However, a comprehensive mathematical analysis for this structure is lacking and is 

provided in this work.  

For a pulse width modulation (PWM) controller, the state-space average method can be 

applied without inaccuracies when analyzing a converter. In addition, small signal models can be 

used to describe the dynamics of the system, but they only operate at a single operating point, so 

that method is not a comprehensive when dealing with transient events for an analysis 

standpoint. The average modeling method does not work, as well, for resonant tanks because this 

method will effectively remove information associated with the switching frequency. This means 

the dynamic characteristics of the tank will also be lost [24]. However, state-plane analysis can 

be used to understand the dynamic behavior of the parallel resonant tank. State plane trajectory 

methods are applied to circuits such as resonate tank circuits because the switching frequency 

will be close to the resonant frequency [24].  

State-plane analysis ensures a very good understanding of dynamics and steady state 

characteristics of a resonant tank [25]. The state-plane analysis method takes less computational 

power than the simulation based method, extended described function, and multi frequency 

averaging [25]. In addition, besides the long computation, the mentioned control methods 

operate around a single operating point, which means they do not function properly in load 
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variation, or transient events. The graphical state plane of the resonating tank is a clear and 

informational tool that can represent the different states of the operation of the converter. From 

the benefits mentioned about using state plane analysis when observing a resonant converter, the 

clear method of controlling a converter when using state plane analysis is to use the optimal 

trajectory control or similar method.   

State plane trajectories display the normalized current and voltage for two state variables 

within the equivalent circuits of each mode. This means when creating the equivalent circuits 

there can only be one inductor and one capacitor because the state-plane trajectory can only be 

simply implemented on a two-dimensional plane [24]. Theoretically, the state plane can be three-

dimensional; however, this creates a much more complicated analysis. Normalization of the 

switching mode equations significantly simplifies the geometric analysis of the state plane 

trajectories by utilizing the characteristic impedance and base voltage conversions, shown in 

Table 1. This creates a unit less chart (similar to per unit method for power systems) to have a 

clearer analysis of the resonant circuit.  

For ease of analysis, the input and output filter inductors are assumed large enough to 

behave as current sources. Additionally, in order to avoid 3-dimensional trajectory analysis due 

to three energy storage elements (state variables) in the circuit in any given mode of operation, 

the resonant tank capacitance in parallel with the filter capacitance (𝐶𝐶𝐶𝐶𝐶𝐶//𝐶𝐶𝐶𝐶) will be considered 

as an equivalent network capacitance. With these assumptions, Figure 1.1 operates in eight 

modes to be explained in the forthcoming sections. The center of the state plane trajectory for 

each mode is found by determining the steady state dc value of the corresponding equivalent 

circuit.  
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Table 1: Normalization Conversion Chart 

Parameter Conversion 

Base Voltage (  
Vin 

Normalized Resonant Capacitor Voltage 
 

Normalized Load Voltage 
 

Base Current (  

 

Normalized Resonant Inductor Current 
 

Normalized Load Current 
 

Characteristic Impedance  

 

Tank Resonant Angular Frequency (rad/s) 
 

Angle in Trajectory ( ) 
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2.1 EQUIVALENT CIRCUITS FOR DC-DC AC-LINK CONVERTER 

To identify the ideal trajectories for this converter and visually explain the dynamics of 

the resonant tank, the state plane analysis method can be utilized [26]. This method looks at the 

equivalent circuit for each mode of operation to determine its natural voltage and current 

trajectory in a normalized form. The geometric analysis of the state plane trajectories are 

simplified significantly after normalizing the equations for each mode by a base impedance and 

base voltage. The conversions for the normalization are shown in Table 1. This involves solving 

for the equivalent circuits for each anticipated mode of operation for the converter. By solving 

these circuits, the voltage, current, and impedance can be normalized to develop the graphical 

state-plane trajectory tool. The circuits are solved by simply finding the voltage across the 

capacitor and current through the inductor in the AC-link.  

In order to solve for the state plane trajectory, there needs to be two state variables, which 

require the combination of capacitance from the input filter capacitor and the resonant capacitor 

for modes 1 and 5 and the combination of the output filter capacitor and the resonant capacitor 

for modes 3 and 7. The input and output filter inductors are large enough (much greater than 

resonant inductor) to be treated as a current source. For the sake of simplicity and avoiding 

redundancy, mode 1 (Figure 2.1 and Figure 2.2), mode 2 (Figure 2.3 and Figure 2.4), and mode 7 

(Figure 2.5 and Figure 2.6) are only shown to display the different trajectories. 
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2.1.1 Mode 1 – Charging with Positive Polarity   

 

Figure 2:1: Equivalent circuit for mode 1 

 

 

(2.1) 

 

 

(2.2) 

Here Vci is the voltage across the input filter capacitor combined with the resonant tank capacitor  

and iLr is the current through the resonant tank inductor.  

After deriving the voltage across the capacitor and current through the inductor, the 

following equations can be realized after normalizing the parameters from using Table 1. 

 

 

(2.3) 

 

 

(2.4) 

 

 

(2.5) 

Where A is the radius of the trajectory from the initial conditions regarding mode 1 and Mo and 

Jo are the initial normalized voltage and current within the variables.  
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(2.6) 

 
 

(2.7) 

 

 

(2.8) 

Where m( ) and j( ) are the solutions of the second-order system of linear differential equations. 

It can be noticed that the normalized current solution contains a dc term and both solutions 

contain a sinusoidal term that represents the ac ringing response of the tank. 

 

Figure 2:2: State plane trajectory for mode 1 

The center of the state plane trajectory for all of the modes are found by recognizing the 

dc steady state value of the equivalent circuit. The solutions provided above describe a circle in a 

normalized state plane. Figure 2.2, Figure 2.4, and Figure 2.6 are undamped, as the solutions are 

derived in ideal conditions. The diameter and radius of the circles are dependent on the initial 

conditions of the current and voltage within the LC circuit.  
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2.1.2 Mode 2, 4, 6, and 8 – Resonance  

Cr Lr

 

Figure 2:3: Equivalent circuit for mode 2 

 

 

(2.9) 

 

 

(2.10) 

Where Vcr is the voltage across the resonant tank capacitor and iLr is the current through the 

resonant tank inductor.  

After deriving the voltage across the capacitor and current through the inductor, the 

following equations can be realized after normalizing the parameters from using Table 1. 

 

 

(2.11) 

 

 

(2.12) 

 

 

(2.13) 
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Where A is the radius of the trajectory from the initial conditions regarding mode 1 and Mo and 

Jo are the initial normalized voltage and current within the variables.  

 
 

(2.14) 

 
 

(2.15) 

 

 

(2.16) 

 

Figure 2:4: State plane trajectory for mode 2 
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2.1.3 Mode 7 – Discharging with Negative Polarity  

 

Figure 2:5: Equivalent circuit for mode 7 

 

 

(2.17) 

 

 

(2.18) 

Where Vco is the voltage across the output filter capacitor combined with the resonant tank 

capacitor and iLr is the current through the resonant tank inductor.  

After deriving the voltage across the capacitor and current through the inductor, the 

following equations can be realized after normalizing the parameters from using Table 1. 

 

 

(2.19) 

 

 

(2.20) 

 

 

(2.21) 
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Where A is the radius of the trajectory from the initial conditions regarding mode 1 and Mo and 

Jo are the initial normalized voltage and current within the variables.  

 
 

(2.22) 

 
 

(2.23) 

 

 

(2.24) 

 

 

Figure 2:6: State plane trajectory for mode 7 
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3.0  OPERATION OF DC-DC AC-LINK CONVERTER 

 

To obtain a deeper understanding of the behavior for the dc-dc AC-link converter, a 

visual aid for the modes of the circuit can be created for the LC tank within the converter. In 

order to create both positive and negative current directions, the switches must be organized in a 

specific order. This allows for a variation of the flow of currents to create oscillations within the 

resonant tank to institute ac-like characteristics.  

 The following images, Figure 3.1 and Figure 3.2, display the resonant tanks voltage and 

current during operation. 
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Figure 3:1: Theoretical output at AC-link converter neglecting resonant modes [2] 
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Figure 3:2: Theoretical output at AC-link with resonant modes in boost mode [2] 

In Figure 3.2, the theoretical output of the converter is shown. The modes of the 

converters operation are displayed in the top of the figure labeled 1 through 8. The figure 

displays the waveforms of the voltage across the capacitor and current through the inductor in 

the resonant tank. An important characteristic to note is the ac-like features of the current in the 

tank. This is what facilitates the ZVS in the converter. ZVS for this circuit will occur by 
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permitting the resonant tank to naturally oscillate from the charged voltage to the same voltage 

on the opposite end of the semiconductor switch. By having the same potential voltage on each 

side of the switch, essentially the switch will turn on with a zero voltage potential difference. In 

addition, it is important to mention when the converter is resonating from mode to mode, the 

voltage will rapidly increase or decrease to meet either source 1’s or source 2’s voltage. This 

feature permits the switches to close when the voltage is equivalent at the link and at the 

connecting source’s voltage, effectively having zero voltage potential difference. However, not 

shown in Figure 3.2, the voltage will have a Vmax value when transitioning from the odd number 

of modes, or from the resonant mode to the next mode. This occurs because when the converter 

resonates, a slight overshoot of voltage will occur in order to reach the desired source’s voltage.  

In Figure 3.1 and Figure 3.2, it can be seen that the current linearly charges and 

discharges. Figure 3.2 displays the expected behavior of the circuit while including the resonant 

modes. These modes allow the soft switching action to take place during the transition between 

power transfer modes, i.e. odd number modes, as mentioned earlier. Typically, the resonating 

time occurs so rapidly it can be neglected, but for a detailed analysis it is recommended to still 

solve for the peak current and voltage [2], [15]. This is found by (2.25) and (2.26). 

 

 

(2.25) 

 

 

(2.26) 
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To analytically predict the peak voltage for the resonant circuit in the even number of modes, 

(2.27) can be used.  

 
 

(2.27) 

Here Io and Vo are the initial conditions and Zo is the characteristic resistance.  

3.1 BEHAVIOR OF AC-LINK CONVERTER IN DIFFERENT MODES WITH 

TRAJECTORIES 

To further the analysis on the dc-dc AC-link converter, graphical models for the modes of the 

circuit with each associated trajectories, all for buck operation of the converter, are displayed in 

Figure 3.3, Figure 3.4, and Figure 3.5. In order to create both positive and negative current 

directions the switches must be organized to allow a variation of the flow of currents to create an 

oscillation within the resonant tank.  

A. Mode 1 

The first mode of operation for the dc-dc AC-link converter is to charge the 

resonant tank to a specified current reference. This mode is initiated by turning on 

switches S1 and S3 until the link voltage equals the input voltage to allow for zero 

voltage switching (ZVS). 
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Figure 3:3: Operation of mode 1 with corresponding trajectory 

B. Modes 2, 4, 6, & 8 

The even numbered modes correspond to the resonating state of the converter. 

During these modes, no switches conduct, and the LC tank oscillates passing the 

energy back and forth from the inductor to the capacitor. These interim modes 

facilitate the ZVS characteristics for the converter because the switches delay 

conduction until the link voltage matches the desired voltage reference, whether 

mode transitioning from charging to discharging or vice versa. 

 

 

Figure 3:4: Operation of modes 2, 4, 6, and 8 with corresponding trajectory 
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C. Mode 7 

During the seventh mode, the energy stored in the resonant tank is discharged to 

the output. This mode is initiated once the link voltage reaches the desired 

reference output voltage. This enables zero voltage switching because the voltage 

potential between the equivalent circuit at the resonant tank and the equivalent 

circuit at the output side is zero. Switches S6 and S8 close until the output current 

reaches its reference value. The reference current value ensures enough power is 

transferred from the resonant tank to the output source. This also allows the 

natural trajectory of the tank to switch from its previous positive polarity to a 

negative polarity to permit the desired operation of the AC-link.  

 

 

Figure 3:5: Operation of mode 7 with corresponding trajectory 

D. Mode 3 & 5 

Mode 5 is similar to mode 1 with the same equivalent circuit, except during this 

operation the current flows in the opposite direction by activating switches S5 and 

S7. This lets the resonant tank charge in a negative direction, which allows the 

tank to acquire AC current characteristics. Mode 3 is similar to mode 7, except 
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this mode permits the tank to discharge its current with a positive current by 

activating switches S2 and S4. This will also allow AC characteristics to generate 

within the resonant tank, ultimately facilitating zero voltage switching. 
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4.0  STATE PLANE TRAJECTORY SWITCHING SEQUENCE 

To properly control the transitions between the modes given in section 3.1, state plane trajectory 

control (SPTC) is utilized. The state plane analysis approach taken in this work is related to [27] 

where this method is applied to control a dual active bridge converter. This control technique, 

inspired from OTC, utilizes the natural resonance frequency generated by the LC tank for the 

converter to operate around specified coordinates, following a desired trajectory. Figure 4.1 and 

Figure 4.2 provides a theoretical graphical state plane trajectory showing the normalized voltage 

against the normalized current for all of the described modes combined into one full switching 

cycle bucking or boosting the voltage. Each mode corresponds to a given radius (Rnx). For 

example, mode 1 begins at R1a when the link voltage equals the input voltage and ends at the tip 

of R1b when the link current reaches its desired reference. The converter will then resonate to 

the tip of R3a following the large outer half circle reaching the negative value of the desired 

output voltage value. The peak value of the outer circle can be solved using 2.27. 
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Figure 4:1: Theoretical combined state plane trajectory during boost mode of operation 
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Figure 4:2: Theoretical combined state plane trajectory during buck mode of operation 

In reference to Figure 4.1 and Figure 4.2, the system will operate counter clockwise. The 

resonant tank charge modes, 1 and 5, will have a slight curvature because the inductive load of 

the tank is being charged in each case. After the tank is charged, either mode 2 or 6 occurs 

respectively, where the converter tank will resonate. This is represented by the larger outer half 

circle in figures. The discharging modes, 3 and 7, will appear linear because the energy stored 

within the resonant tank will merely discharge into an infinite bus (source). The middle half 
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circle, modes 4 and 8, corresponds to resonant modes for when the system is transitioning from 

the discharge modes to the charging modes. The tank, at this point, has less power and therefore 

lowers its initial conditions that reduces the size of the trajectory. This converter can operate both 

voltage step-up and step-down conversions, similar to the dual active bridge converter.  

4.1 SWITCH SEQUENCE LOGIC 

A state machine, as shown in Figure 4.3, was programmed in PLECS by incorporating 

the logic design as demonstrated in the sequence diagram in Figure 4.4. The control block senses 

the desired direction of power flow, reference voltage, PI controlled link reference current, link 

voltage, link current, and both source voltages. Once each condition to trigger the next mode of 

operation is met, the gate signals associated with that next mode are then sent to the correct set of 

switches. 

Figure 4:3: State machine for SPTC for AC-Link converter 
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Figure 4:4: System logic for buck and boost modes of operation for state machine controller 

To fully explain Figure 4.4, a systematic procedure of operations will be discussed. The boost 

mode is explained here.  First, the logic senses which direction the user wants the power to flow 

by toggling a numerical value. Once the state machine recognizes it is sending power from 

source 2 (right side in Figure 1.1) to source 1 (left), it will begin to charge the resonant tank in a 
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positive current direction by switching on IGBTs S6 and S8.  The resonant tank’s current value 

will begin to increase linearly while the voltage remains equal to the secondary source. Once the 

current reaches its target, Iref, it transitions to a resonating mode where no switches are closed. Iref 

is chosen based upon the power rating of the converter. Then the actual power is calculated at the 

terminals of the absorbing end of the converter; in the boost case, source 1 is absorbing energy.  

The converter will stay in the resonant state until the link voltage equals the reference voltage. 

This reference voltage is either source 1 or source 2 voltage, depending upon whether in buck or 

boost mode respectively. In boost mode, the reference voltage is source 1. The reasoning for this 

is to allow the switches on source 1’s side to be the same voltage across the AC-link. This 

permits ZVS by letting the potential voltage between the AC-link and the filters on source 1 to 

be zero. Once the AC-link voltage reaches source 1’s voltage level, IGBTs S5 and S7 close, 

initiating the discharge mode. This mode continues until the link current reaches the discharge 

reference current, Idis_ref. This reference is designated to leave enough energy within the resonant 

tank in order to transition from the discharge mode to the charge mode as well as to ensure 

enough power is delivered to the load. This value is derived simply by dividing the power 

reference by the reference voltage value. The power reference is the power capacity of the 

converter. 

After the discharge mode, the converter resonates again to facilitate soft switching on source 

2’s side. The rest of the diagram in Figure 4.4 follows the same guidelines as the logic already 

discussed. Once the voltage at the resonant tank and the filters on source 2’s side are equal and 

the potential voltage difference between the two equivalent circuits are zero, switches S2 and S4 

close. With this action, the converter charges the resonant tank in a negative direction. 
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Subsequent modes follow the same principles as for previous modes, however, the polarities of 

the current and voltage values are reversed.  

It is imperative for the modulation switching sequence to charge and discharge the resonant 

tank in a way that the AC-link current oscillates positive and negative. This is executed with 

continuous monitoring of the tank’s voltage and current, to then compare these values to the 

references as discussed earlier. This ensures that the tank acquires the AC-like dynamics. This 

point-by-point operating method benefits from instantaneous transfer between operating 

conditions, which makes it a very strong method for dealing with transient event-prone systems.  

The AC-link circuit adapts instantaneously to the direction of power flow by continuously 

monitoring the terminals of the converter where the power is being consumed. That value is 

compared to a reference power value and from that error, a current reference is chosen within the 

link to optimally close and open specific switches. By monitoring the current through the 

resonant tank and comparing it with its reference value, the proper amount of energy will be 

distributed from the tank to the infinite bus. The tank then can transition from the discharge 

mode to the charge mode.  

The logic for the system lets the converter operate in both directions, but to physically permit 

bidirectional power flow; two IGBT switches are paired together with antiparallel diodes. Unlike 

the dual active bridge converter, the AC-Link topology requires the additional switch to block 

current during the resonating cycles. This is to ensure no power is distributed to any of the 

branches in the converter during any of the modes unless the switches are activated. The logic 

monitors which direction the user wants the converter’s power to flow at the end of each cycle.  

When the direction changes, so does the switching sequence to allow for a streamlined 

adjustment of directional current flow. 
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5.0  SIMULATION RESULTS AND DISCUSSION 

This section discusses the results of the bidirectional dc-dc AC-link converter in both modes of 

operation utilizing state plane trajectory control. It also shows the response of the converter 

during both buck and boost modes during load induced transients. The parameters of the system 

are listed in Table 2. The resonant LC tank parameters were adapted from [11]. The control for 

the bidirectional power flow simulation is purely based off the logic from Figure 4.4.  

Table 2: Converter parameters for bidirectional simulations 

Symbol Quantity Value 

Vsource 1 Voltage Source 1 380 Vdc 

Vsource 2 Voltage Source 2 100 Vdc 

fres Resonant Frequency 41.1 kHz 

C1 and C2 Voltage Source 1 and 2 Capacitor Filters 100 µF 

L1 and L2 Voltage Source 1 and 2 Inductor Filters 1 µH 

Lr Resonant Inductor 150 µH 

Cr Resonant Capacitor 0.1 µF 

Pref Power Reference 1 kW 

Since the converter operates around specific points in accordance with the resonant tank, 

it is essential to explain Figure 5.1. Shown in Figure 5.1, the IGBTs input gate signals are shown 
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along with the voltage and current waveforms from the AC-link. The modes of operation are 

shown at the bottom of the graphic. For this scenario, power is flowing from source 2 to source 

1, in reference to the circuit in Figure 1.1. 

 

Figure 5:1: Switching Schemes for IGBTs with resonant tank voltage and current waveforms for boost 

operation 
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During mode 1, the converter is charging the resonant tank in a positive direction by 

closing switches S6 and S8. The resonant tank’s capacitor voltage equals source 2’s voltage and 

the current begins to linearly increase until it reaches its reference value, which will initiate the 

first resonant operation, mode 2.  

While in the resonating mode, the AC-link oscillates and the LC tank transfers energy 

from the inductor to the capacitor, causing a build-up of voltage on the capacitor. This 

phenomenon relates to (2.27). Once the voltage across the resonant capacitor reaches source 1’s 

voltage, the switches on source 1’s side (S5 and S7) close with zero volts across the switches, 

initiating mode 3. During mode 3, the voltage on the resonant capacitor remains equal to source 

1, and the current is discharged in the negative direction into the infinite bus.  

Once the AC-link is fully discharged, the next resonant cycle begins, mode 4. As seen in 

Figure 5.1, the absolute-value voltage peak during mode 4 is much less than for mode 2 or mode 

6. This occurs because the initial conditions for the resonant capacitor and inductor after the 

discharging cycle begin with less contained energy than the initial conditions after the charging 

cycle.  

During the charging modes, 1 and 5, the gate inputs for the switches have a longer duty 

cycle than for the discharging modes 3 and 7. The longer duty cycle for the charging modes is 

attributed to source 2 naturally requiring a longer duration to reach its current reference point.  

Figure 5.2 shows source 1’s voltage and current, and source 2’s voltage and current 

during operation. From 0 seconds to 0.03 seconds the converter is sending power from source 1 

to source 2, which means the converter is in buck mode. Since it is now operating in buck mode, 

the converter must maintain the proper power value at source 2’s terminals. The current and 

voltage at source 2 adjusts to maintain the power reference, while source 1 also adjusts to 
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support the load conditions. At 0.03 seconds, the converter switches the direction of the power 

flow, where the power is now flowing from source 2 to source 1, boost mode. Now, the 

converter adjusts the current and voltage at source 1 to maintain the reference power level, while 

source 2 adapts to the new change in load conditions. 

 

Figure 5:2: Source 1 and source 2 RMS voltage and current waveforms with different directions of power 

flow 

Figure 5.3 displays the state plane trajectories for the converter during the same 

operation. The trajectories match the theoretical prediction shown in Figure 4.1 and Figure 4.2. 

The important characteristic in this trajectory to note is the change of the current value for each 

graphic. This is critical because it shows the circuit adapting to the change for the new power 

flow direction. The state plane trajectories for each direction of power flow complement each 

other in shape. This is expected as the same voltage requirements and power reference are the 

same for each condition.  
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Figure 5:3: State plane trajectories for buck and boost modes of operation 

The resonant modes enable the converter to achieve soft switching. The resonant 

transitions for the AC-Link shown in Figure 5.3, display that the modes of operation for the 

converter transition at source 1 and source 2’s voltage values. This allows the converter to close 

the corresponding switches with zero voltage potential across the devices, effective ZVS. This 

feature equips the converter to operate at high switching frequencies. 

5.1 SIMULATIONS FOR TRANSIENT EVENTS IN BOOST MODE 

This section discusses the results of the dc-dc AC-link converter in boost mode during 

different load and input variations utilizing state plane trajectory control. The component 

parameters are the same as Table 2. The transient induced test parameters are listed below in 

Table 3.  
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Table 3: Simulation conditions for boost mode in transient events 

 Condition 1 (0s – 0.03s)  

Vsource 1 Voltage Source 1 380 Vdc 

Vsource 2 Voltage Source 2 100 Vdc 

 Condition 2 (0.03s – 0.05s)  

Vsource 1 Voltage Source 1 380 Vdc 

Vsource 2 Voltage Source 2 150 Vdc 

 Condition 3 (0.05s – 0.07s)  

Vsource 1 Voltage Source 1 400 Vdc 

Vsource 2 Voltage Source 2 150 Vdc 

These test conditions adjust the voltages on the two sources at three different instances. 

This will show the quick dynamic response of SPTC for sending power from source 2 to source 

1 in the AC-link converter. It is important to display these conditions to validate SPTC functions 

properly in more than one scenario.  

For this simulation, the converter starts out in Condition 1. This condition creates the 

initial startup. Then once Condition 2 occurs, the sending source side, source 2, increases to 150 

Vdc. After this occurs the AC-link converter adapts abruptly to the source value adjustment. 

However, when Condition 3 occurs, the absorbing source, source 1, shifts to 400 Vdc. This load 

adjustment is corrected through an adjustment for the PI controller to meet the desired power 

reference at the absorbing source end. Nevertheless, the SPTC method is able to regulate the 

converter instantaneously to bring the measured values back to its anticipated ratings. This is the 

merit of using a control method like SPTC. By measuring the circuit’s values and having specific 
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points of operation the converter operates around, creates a fast acting control system, especially 

in transient events.  

Another important test is to ensure the converter’s LC circuit drives the voltage to zero 

across the switch before closing the semiconductor in boost mode. Figure 5.4 shows the 

corresponding IGBTs along with the switches gate inputs in Condition 3. By observing the 

figure, it is shown that the voltage falls to zero volts, or is at zero volts, before the gate input 

turns on. By relating back to Figure 1.3, referring soft switching, the converter is operating with 

ZVS in ideal conditions. This is important because this is the first step to ensure the converter 

can operate at high frequencies in real-world applications without damaging the devices from 

heat, at least when switching losses are concerned. However, section 6.0 will display the non-

ideal voltage and current waveforms on the switches with thermal models of the semiconductors 

implemented to further prove ZVS.  
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Figure 5:4: Switching Schemes for IGBTs displaying ZVS in condition 3 during boost mode 

Figure 5.5 shows the state plane trajectory for boost mode with the different 

corresponding transient conditions. It is important to note the change in current and voltage when 

the conditions take place. When the voltage rating drops (cond. 1 to cond. 2) the current reduces 

from about 27 A to 20A. This is to maintain the power rating on source 1 (absorbing end).  The 

voltage can be seen to adjust with the different conditions. Cond. 2 and Cond. 3 maintain the 

same current levels because source 2 remains the same, while when source 1 adjusts to a higher 
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value, the voltage level also adjusts, as seen in Figure 5.5.  The same test was compiled for the 

buck scenario, or power flowing from source 1 to source 2. This is shown in Figure 5.6, where 

the same three different case scenarios are shown. These descriptive trajectories prove that 

SPTC, or the point-to-point logic, is working as expected.  

 

Figure 5:5: State Plane Trajectory for AC-Link resonant tank’s recovery after transient events during boost 

mode (green – cond. 1, red – cond. 2, black – cond. 3) 
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Figure 5:6: State Plane Trajectory for AC-Link resonant tank’s recovery after transient events during buck 

mode (green – cond. 1, red – cond. 2, black – cond. 3) 
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6.0  THERMAL RESPONSE IN DC-DC AC-LINK CONVERTER USING SPTC 

 

To further validate the AC-link converter can be constructed without damaging semiconductor 

and passive elements, a detailed thermal analysis for the converter and the control technique 

need to be simulated. The results shown are from the buck test case due to the similarity of both 

directions of power flow. The boost modes results are similar to the buck mode of operation.  

These simulations will also be able to show if the converter is achieving zero voltage 

switching and the temperature the semiconductors operate around.  The simulation took place 

using ANSYS Simplorer. This simulation tool is accurate due to the ability to select real 

components through finding appropriate data sheet information and implementing thermal curves 

from the data sheet into ANSYS Simplorer. The corresponding information for the simulations 

are presented in Table 5 where the thermal information for the IGBT is from Infineon.  

It is equally important to see if there are large temperature swings within the 

semiconductor devices. Temperature swings can have devastating effects on the semiconductor 

devices. When it comes to temperature, the longevity of switches can expanded if the 

temperature remains constant, even if it is a high temperature, compared to an ever-fluctuating 

temperature across the switch [28]. An analogy of this can be compared to asphalt in a climate 

that has all four seasons compared to a constant warm climate. The expanding and contracting of 
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the asphalt (expanding and contracting of physical material on device) will cause defects in the 

road (semiconductor).  

Table 4: Converter parameters for thermal analysis for AC-link converter 

Parameter Description Values 

Vsource 1 Voltage Source 1 380 Vdc 

Vsource 2 Voltage Source 2 100 Vdc 

fres Resonant Frequency 41.1 kHz 

C1 and C2 Voltage Source 1 and 2 Capacitor Filters 100 µF 

L1 and L2 Voltage Source 1 and 2 Inductor Filters 1 µH 

Lr Resonant Inductor 150 µH 

Cr Resonant Capacitor 0.1 µF 

Pref Power Reference 1 kW 

Sn Main Switches (IKW50N60DTP) IGBT, 50 A, 600V, VCE(sat) = 1.6 V 

6.1 THERMAL MODELING OF CONVERTER IN BUCK MODE 

Because operation of the converter is very similar in buck and boost modes, this section will only 

discuss certain cases for the buck mode, or power flowing from source 1 to source 2. To further 

validate the operation of the SPTC logic proposed in this literature, zero voltage switching needs 

to be proven in a realistic case with non-ideal components. The logic from Figure 4.4 is 

implemented in ANSYS along with the same circuit from Figure 1.1. The simulation tool is also 

able to provide realistic thermal data. The thermal information from the semiconductor devices is 
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useful in determining the overall effectiveness of the control logic in response to losses in the 

system.  

 Figure 6.1, Figure 6.2, Figure 6.3, and Figure 6.4 provides the voltage, current, and gate 

input waveforms. These waveforms are crucial to validating the operation of the converter with 

zero voltage switching at the closing point of the switch. If there were any significant amount of 

voltage remaining on the switch, large current spikes would be present in the aforementioned 

figures at the closing point of the switch. Current spikes can be prevalent in resonant circuits 

especially if the resonant circuit is abruptly interrupted. This is because a tremendous amount of 

energy can be stored in the LC circuit and when disturbed in a non-controlled fashion, the energy 

is discharged rapidly from the capacitor.  

Figure 6.5 shows the temperature plot of the recorded switches. This shows the switches 

remain at a normal operating temperature throughout utilizing SPTC. The temperature plot’s Y 

axis is in Celsius where 25 C is considered room temperature. The maximum point of 

temperature at steady state is recorded at switches 2, 4, 6, and 8 at 26.50 C. Even though that is 

the highest point of stress for the switches, the switches all operate within approximately 1 C of 

each other. SPTC proves to keep the temperature of the switches considerably low instead of 

high with large fluctuations, which will effectively increase the longevity of the semiconductor 

devices. 
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Figure 6:1: Switch 1 and Switch 3’s voltage, current, and gate input waveforms in buck mode 

 

Figure 6:2: Switch 2 and Switch 4's voltage, current, and gate input waveforms in buck mode 
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Figure 6:3: Switch 5 and Switch 7's voltage, current, and gate input waveforms in buck mode 

 

Figure 6:4: Switch 6 and Switch 8's voltage, current, and gate input waveforms in buck mode 
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Figure 6:5: Temperature plots for the IGBTs during buck mode 
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7.0  CONCLUSION 

This document provides sufficient background information on the dc-dc AC-link converter and 

similar topologies and control methods. In addition, this paper provides the mathematical 

analysis for the AC-link converter utilizing state plane analysis. The SPTC logic proposed for 

this converter was developed utilizing knowledge from state plane analysis to lower voltage 

stress on the devices using soft switching techniques. The proposed SPTC was implemented by 

use of a state machine, supporting bidirectional power flow, simply requiring the voltage and 

current state variable measurements of the resonant tank. A detailed thermal analysis study for 

this converter was conducted to prove zero voltage switching was achieved. It also provides the 

framework for prototyping the converter for real-world test scenarios.  
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