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The evolution of computers is driven by advances not only in computer science, but also in 

materials science. As the post-CMOS era approaches, research is increasingly focusing on 

flexible and unconventional computing systems, including the study of systems that incorporate 

new computational paradigms into the materials, enabling the computer and the material to be 

the same entity.  

In this dissertation, we design a coupled oscillator system based on a new hybrid material 

that can autonomously transduce chemical, mechanical, and electrical energy. Each material unit 

in this system integrates a self-oscillating gel, which undergoes the Belousov-Zhabotinsky (BZ) 

reaction, with an overlaying piezoelectric (PZ) cantilever. The chemo-mechanical oscillations of 

the BZ gels deflect the piezoelectric layer, which consequently generates a voltage across the 

material. When these BZ-PZ units are connected in series by electrical wires, the oscillations of 

these coupled units become synchronized across the network, with the mode of synchronization 

depending on the polarity of the piezoelectric. Taking advantage of this synchronization 

behavior, we demonstrate that the network of coupled BZ-PZ oscillators can perform specific 

computational tasks such as pattern matching in a self-organized manner, without external 

electrical power sources. The results of the computational modeling show that the convergence 

time for stable synchronization gives a distance measure between the “stored” and “input” 
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patterns, which are encoded by the connection and phases of BZ-PZ oscillators. In addition, we 

demonstrate two methods to enrich the information representation in our system. One is to 

employ multiple BZ-PZ oscillator networks in parallel and to process information encoded in 

different channels. The other is to introduce capacitors into a BZ-PZ network that modify the 

dynamical behavior of the systems and increase the information storage. We analyze and 

simulate the proposed coupled oscillator systems by using linear stability analysis and phase 

models and explore their potential computational capabilities. Through these studies, we 

establish experimentally realizable design rules for creating “materials that compute”. 
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1.0  INTRODUCTION 

1.1 MOTIVATION 

Although the performance and size of computing systems have been continuously improving for 

decades, the traditional use of stored-program architecture and integrated circuits based 

composition has not changed too much. As the CMOS technology approaches the limits of 

scaling, computers based on high performance processors and monolithic memory is coming to 

the end of its usefulness due to the power consumption and the need to provide more human-

centric interfaces for sensing and actuation [1][2]. Especially in the field such as wearable 

device, robotics, or biomedical applications, more compliant and flexible computing systems are 

in demand because of inconvenience of deploying traditional computer.  

From the standpoint of materials, material and robotic scientists also share a similar 

vision from the material perspective. They propose the development of a new generation of truly 

smart material systems that can change their appearance and shape autonomously by tightly 

integrating sensing, actuation, and computation into composites [3]. For example, these artificial 

intelligent materials can be applied to airfoils that change their aerodynamic profile, vehicles 

with camouflage abilities, bridges that detect and repair damage, or robotic skins and prosthetics 

with a realistic sense of touch [3]. Currently, the most promising approach for these materials is 

to embed sensors, actuators, and microprocessors with certain density into the continuous 



 2 

material systems, and the integrated digital hardware locally enable the function of signal 

processing, computing, and communication [3].  

However, the massive implantation of microprocessors with high density in material 

systems may cause large power consumption and high manufacturing cost. Thus, thinking from 

the perspective of the computer science domain, we can imagine new computing platforms, or 

“fabrics”, in the future that may not be similar to the current hardware that consists of multiple 

electronic components, but rather, will resemble actual fabrics that lie in close contact with the 

human body or other flexible surfaces. Furthermore, these “soft” computing platforms will also 

be capable of integrating functions of sensing, computing, and communication.  

Clearly, this requests the development of new materials that are lightweight and 

mechanically compliant or deformable, and also be sensitive and responsive to applied force like 

touch and motion.  Meanwhile, these materials can perform a certain degree of computing, which 

potentially enrich the life of the human wearing this fabric. Thus, the future vision is to transform 

computing platforms away from desktops or even mobile devices, to computational fabrics built 

with new material systems that implementing new computational paradigms. 

Other paradigms such as “fabrics” of electronic computing devices have been studied for 

decades, from programmed logic arrays, seas-of-gates, field-programmable-gate-arrays to “smart 

pixels.” These computing fabrics can be viewed as networks of combinational logic with 

periodic restoring storage that are interconnected by communications channels. Recently, 

researchers have looked at the coupled arrays of oscillators as replacements for Boolean logic to 

perform pattern matching and image recognition tasks [4]. This work has shown very positive 

early results, while also limited by the system I/O problems of gathering sensory data (light, 

temperature, pressure) from external environment. 
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Concurrently, with this evolution in computing, materials scientists invented a new type 

of soft oscillating material called Belousov–Zhabotinsky (BZ) gel [5][6], and developed an 

understanding of its unique abilities of autonomously oscillate, couple, and communicate with 

each other  [7][8][9]. Moreover, these gels are responsive to environmental conditions which can 

enable the sensing of light [10], heat [11], and pressure [12]. Although with a limited speed, the 

material systems based on BZ gel would not need external transduction to receive information 

from environment. Therefore, there exists a unique opportunity to combine the BZ gel based 

material systems and oscillator based computing into a new thrust into materials that compute.  

1.2 PROBLEM STATEMENT 

The main issue that this dissertation addresses is the development of integrated sensing, 

computing, and communicating systems by using non-linear oscillating chemical materials to 

perform spatio-temporal processing and recognition tasks. The detailed questions we address are 

the following: 

• From the perspective of material science, how to design the basic structure of this 

material based computing system? If we use a chemical oscillating material like BZ-PZ 

gel, how can we connect and couple the basic components? How should we organize the 

material system components so that it would be capable of computing? What periphery 

components are necessary for our design?  

• From the computer engineering aspect, which computing paradigm can be used to create 

our material system? If we follow our previous experience on oscillator based computing, 

what is the architecture that implements the computing task suitable for this problem?  
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• The chemical reaction tends to be very slow, how can we speed up the processing of 

information and simultaneously strengthen the coupling between oscillators? What is the 

input and output of encoded information? Furthermore, how is information represented 

inside the system? 

• It is important that we simulate and analyze the system since the dynamics model of 

nonlinear chemical reaction is complicated and time-consuming for computer-based 

simulation. Which mathematic tool or method can we use to reduce the computational 

complexity? 

• From the algorithmic level, how can we define the computational task to demonstrate the 

capability of the new material system? What types of data set can we used for 

demonstration? 

1.3 RESEARCH CONTRIBUTIONS 

The contribution that our work makes to the area of the “materials that compute” can be 

summarized as the following: 

• We propose a new material system that can compute based on coupled hybrid chemo-

mechanical oscillators. In this system, we design coupled oscillator networks with 

programmable dynamic stable states that can be used to store binary patterns. This system 

can perform pattern recognition tasks by measuring synchronization time of coupled 

oscillator networks [13]. 

• We study the mathematics methods for the analysis of nonlinear coupled oscillators and 

provide phase model of the hybrid material oscillators utilized in our system. This phase 
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model reduces the complexity of the theoretical model and simplifies the behavioral 

analysis of oscillators [14]. 

• We conduct computational experiments and simulation of our system on the pattern 

recognition tasks. The experiment results indicate that this new material system 

composed of the BZ-PZ oscillator networks are capable of performing pattern recognition 

tasks. The convergence time to the stable synchronization provides a robust measure of 

the degree of match between the input and stored patterns [13].  

• We propose a multi-channel BZ-PZ device that employs multiple BZ-PZ oscillator 

networks. Such a system can perform pattern matching on complex multi-dimensional 

data, such as colored images. By decomposing a colored image into sets of binary 

vectors, we use each BZ-PZ network, or “channel”, to store distinct information about the 

color and the shape of the image and detect defects in different features. Our simulations 

reveal that the proposed system can detect remarkably subtle differences in spatial 

features between the input and stored patterns and showed its potential in cryptography or 

steganography [15]. 

• We introduce capacitors into a single BZ-PZ network. Our numerical simulation indicates 

that the capacitors modify the strength of coupling between the oscillators in the network, 

modify the modes of synchronization, and results in additional stable states. We notice 

the splitting of phases in the synchronization modes caused by the capacitors can 

significantly enrich the information representation and storage [16]. 

• We analyze the proposed BZ-PZ oscillator network with capacitors by formulating the 

phase dynamics equations and performing linear stability analysis. The combined 

theoretical analysis tool can be used to predict and validate both modes and rate of 
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synchronization under complex system configurations. We applied BZ-PZ oscillator 

network with capacitors to the recognition task on a grayscale image dataset, COIL 

(Columbia Object Image Library), with ten object categories and demonstrate that the 

sum of convergence time from different oscillator groups can be used as the distance 

metric for this dataset. 

1.4 DISSERTATION ORGANIZATION 

The remainder of this dissertation proposal is organized as follows: In Chapter 2, we provide the 

theoretical background for this dissertation. We introduce the previous works on oscillator based 

computing and oscillator neural networks, which inspired our design in this work. Then we give 

a short introduction to BZ gels and provide relative mathematic models. In Chapter 3, we study 

the phase models of coupled oscillators, which can be used to describe the oscillation behavior 

effectively and accelerate the simulation of coupled oscillator systems. In Chapter 4, we describe 

the design of our new material computing system in detail, including the hybrid BZ-PZ oscillator 

and coupled networks. We discuss the storage and input of patterns with BZ-PZ network and 

focus on the application in pattern recognition. In Chapter 5, we propose the multiple BZ-PZ 

Networks in parallel and apply it in detecting defects of colored patterns. We demonstrate the 

multi-channel mechanism and apply the proposed system to the defects detection of colored QR-

code. In Chapter 6, we introduce the BZ-PZ oscillator network with capacitors. We discussed the 

theoretical analysis and numerical simulations of our system in detail and test it in the pattern 

recognition task with the COIL dataset. 
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2.0  BACKGROUND 

In this chapter, we provide background information from both computer science and material 

science related to this work -- oscillator based computing and the Belousov–Zhabotinsky (BZ) 

gel. 

2.1 OSCILLATOR BASED COMPUTING 

Pursuing high-density, low-power, high-speed computing systems for the post-CMOS era drives 

researchers to exploit the potential of emerging nano-device technologies. Nonetheless, with the 

constraint of building computing systems with traditional Boolean logic, it is difficult for these 

new technologies to outperform prevailing CMOS technology in computing speed or power 

dissipation [2][17]. Thus, investigations of nanotechnology to replace the CMOS transistor for 

Boolean computing structures with a more energy efficient device have been largely 

unsuccessful. However, because some of these devices possess characteristics of multi-state 

response that differ from traditional CMOS transistors, it is possible to effectively utilize them in 

non-Boolean information processing systems for applications like neural computing, computer 

vision, and pattern recognition.  

Based on recent advances in emerging nano-devices such as spin torque oscillators (STO) 

[18][19], resonate body transistor oscillators (RBO) [20], and vanadium oxide oscillators (VO2) 
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[21], systems built from coupled nano-oscillators have become promising candidates for next 

generation computing structures used in intelligent information processing [22]. Inspired by the 

interaction between neural oscillation that occurs at different time scales in biological systems, 

Hoppensteadt and Izhikevich developed an associative memory model of coupled oscillators 

using phase locked loops and provided examples of how this dynamic system performs 

recognition by forming attractor basins at the minima of a Lyapunov energy function [23]. 

Locally coupled oscillator arrays inspired by visual cortex can also perform image segmentation 

and scene grouping [24]. 

Besides biologically inspired systems, pattern matching or nearest neighbor searching is 

another effective and useful application of oscillator based computing. Similar to an associative 

or content addressable memory, pattern matching is performed between an input vector and a 

pool of stored vectors, where one or several closest vectors are required to be retrieved. The 

distance metric for vector comparison in pattern matching can be obtained by observing how 

well oscillators synchronize with each other.  

The essential idea of utilizing coupled oscillator systems to perform computation lays in 

the energy transfer in a dynamical system. Initialized with input information, a number of 

oscillators interact and exchange energy with each other, making the whole dynamical system 

converge from a perturbed state to a stable state. This process brings several advantages to 

oscillator based pattern matching. First, it provides a higher level multi-dimension norm like the 

Euclidean distance between sets of input vectors, compared to the Hamming distance computed 

with exclusive-OR Boolean operations. Second, it is suitable for high dimension large data sets 

due to its scalability and the fact that the degree of match spans all of the dimensions of an input 

vector without any arithmetic calculations [25]. Third, with the high frequency of new devices 
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like STOs, the systems can converge quickly. Although systems built from these nano-devices 

have not been realized to date, prototypes using traditional circuits have been built and simulated 

[26]. Further, simulations of systems using nano-oscillators have shown promising results [27]. 

In general, the configuration of oscillator based computing systems, such as network 

topology, input pattern representation, detection of output results and “degree of match”, has 

numerous varieties; and, the design of these circuits can be tailored by specifications from 

system designers. Recently, research has been conducted not only from the perspective of 

devices and circuits [26][28], but also at the level of algorithms and architectures [25][27].  

In this section, we give a brief introduction to Izhikevitch’s Oscillator Neural Network 

and the oscillator computing paradigm of pattern matching for image processing as an example. 

2.1.1 Oscillator Neural Network 

Hoppensteadt and Izhikevich study weakly connected networks of neural oscillators that behave 

as an associative memory [31]. They propose a canonical model for oscillatory dynamic systems 

represented by the equation below: 

 
𝒅𝒅𝒛𝒛𝒊𝒊
𝒅𝒅𝒅𝒅

= (𝝆𝝆𝒊𝒊 + 𝒊𝒊𝝎𝝎𝒊𝒊)𝒛𝒛𝒊𝒊 + 𝒅𝒅𝒊𝒊𝒛𝒛𝒊𝒊|𝒛𝒛𝒊𝒊|𝟐𝟐 + 𝜺𝜺∑ 𝑪𝑪𝒊𝒊𝒊𝒊𝒏𝒏
𝒋𝒋=𝟏𝟏 𝒛𝒛𝒋𝒋  (2-1) 

Where: 

• 𝑧𝑧 = 𝑥𝑥 + 𝑖𝑖𝑖𝑖 Complex oscillator variable 

• 𝜌𝜌𝑖𝑖 Damping of oscillators 

• 𝜔𝜔𝑖𝑖 Natural frequencies of oscillators 

• 𝑑𝑑𝑖𝑖 Nonlinear factor, ensures stable amplitude 

• 𝜀𝜀 Coupling parameter, typically small (weakly coupled) 
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• 𝐶𝐶𝑖𝑖𝑖𝑖 Coupling matrix, represent coupling strength between two oscillators similar to 

the weight matrix in previous models 

This dynamic model was proven to be able to form attractor basins at the minima of a 

Lyapunov energy function by adjusting the coupling matrix though a Hopfield rule [32]. In other 

words, a network that consists of oscillators described by this canonical model can learn patterns 

as represented by phase difference and perform the functions of an associative memory. The 

memorized patterns are programmed by the coupling matrix. The initial phase is determined by 

an input pattern. When the system converges to stable state, the phase differences among 

oscillators represent the output pattern of associative memory. The structure of network is 

depicted in Figure 2.1. 

 

Figure 2.1 Oscillatory Neural Network Structure 
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The oscillator cluster (OSC1, OSC2, OSC3, …, OSCn) are coupled by a matrix of 

multipliers and adders that contain the coupling coefficients, shown as the Cij box. From the list 

term of the equations above, the outputs are fed back to the network for the recurrent evolution 

process until the network state is completely stabilized at an attractor.  

 

Figure 2.2 Associative Memory Model for Handwritten Digits 

2.1.2 Pattern Matching 

Pattern matching is basically a nearest neighbor search operation and the patterns can be images, 

features, or vectors, depending on different applications. Figure 2.2 shows an abstract view of a 

“content addressable” associative memory [33]. Here, a set of associative storage words 

constitute a single large memory. The set of pattern vectors to be matched (e.g., handwritten 

digits) are first stored in the memory as template pattern vectors. In this paper, we define 

“templates” as the stored pattern vectors of associative memory. Depending on the application, 
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codes that correspond to the templates are also stored. Matching operations proceed by 

broadcasting (on a bus) input vectors to all words in the memory. Then, each word performs a 

local comparison or match operation. This local match operation is relative, generating a “degree 

of match” between the input pattern vector and the local template stored in the word. Next, the 

degree of match from each word is compared by a global resolution function, and the best 

matching result is output. 

 

Figure 2.3 Coupled oscillator based associative memory module. 
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 Figure 2.3 shows the architecture of a single Associative Memory module composed of 

coupled oscillators. The module contains multiple clusters of oscillators connected to each other 

with a “star” structure around a summing node. Each cluster has a template memory, 𝑇𝑇𝑗𝑗, that 

holds a vector of 𝑡𝑡𝑖𝑖
𝑗𝑗values (j is the index of the template vectors). The template memory can be 

either digital or analog. For digital memories we would need D/A converters to provide the 

template values to the oscillator clusters for comparison. Once the templates are loaded, 

comparisons happen between every oscillator cluster and the input pattern vector, 𝑋𝑋 . This 

process starts from initializing the frequencies or phases of each oscillator with the difference 

between element values of 𝑋𝑋 and 𝑇𝑇𝑗𝑗. The degrees of match (DoM) between the input pattern and 

the stored templates are then determined by how well a cluster of oscillators synchronizes. If 𝑋𝑋 

and 𝑇𝑇𝑗𝑗 are similar to each other, the oscillators’ final frequencies or phases are the same or close 

to each other. Otherwise, the oscillator cluster will generate a more chaotic desynchronized 

signal.  In other words, the coupled oscillator system behaves like a kernel that gives the distance 

measure between two vectors, which is very similar to squared Euclidean distance. In the other 

chapters, we will see the way of measuring DoM is various depends on different oscillator 

systems. For example, it may not only be the voltage from the common node, but also the 

convergence time of the whole network. 

 This oscillator based associative memory system is compatible with different types of 

oscillators. For instance, recently a low power design for this computing paradigm was 

implemented with Spin Hall Effect STO CMOS and interface circuits [34]. Here we use ring 

oscillators for demonstration because they can be efficiently implemented with CMOS 

techniques and their behavior was analyzed in previous work [35]. Figure 2.4(a)(b) gives an 

example of the circuit design of a coupled ring oscillator cluster for pattern matching. For these 
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oscillators, the frequency of each oscillator is adjusted by two input control voltages and the 

coupling node is the output node of the third inverter. The frequency control voltages, 𝑉𝑉, and 𝑉𝑉�  

are the pair-wise difference of vectors, �𝑋𝑋 − 𝑇𝑇𝑗𝑗� . The oscillators are coupled to each other 

through a common node, where the coupling components could be resistor or capacitor, where 

larger resistors would give weaker coupling strength. The output signal of the common node is 

amplified and rectified to form a DoM detection circuit. Other DoM detection techniques and 

circuits can be found in [26]. In general, the design of the DoM detection circuit is a function of 

the frequency and wave-shape of the oscillators and the coupling circuit. Fig. 2.4(c) shows how 

close the distance metric is to the squared Euclidean distance for an optimized design. In this 

three-oscillator system, one oscillator’s frequency, F3, is swept while the other two remain fixed. 

The scatter plot of (1 − 𝐷𝐷𝐷𝐷𝐷𝐷) is generated by the DoM detection circuit in Fig. 2.3(b). It is 

compared against the quadratic curve fit model (1-F3)2. In this diagram, frequencies are 

normalized to 1. 
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In an image processing pipeline for object recognition, pattern matching can serve as the 

nearest neighbor search classifier in the back-end. Experiment results of matching operation 

performed by oscillator clusters on the classification of MNIST dataset are provide in one of my 

journal papers [4]. There are also other oscillator computing paradigms that had been designed to 

play different roles in image processing applications. For example, oscillators can be used to 

perform the convolution operation [36], which is widely exerted in object recognition models 

like convolutional neural networks [29] and the HMAX model [30]. Another oscillator 

computing paradigm for image segmentation can be applied in the image preprocessing [37]. 

(b) 

Figure 2.4 Coupled oscillator system. (a) 
Voltage controlled ring oscillator; (b) 
Oscillators coupled together through one 
common node with DoM detection circuit; 
(c) Simulation of a three-oscillator cluster 
by sweeping one frequency, the scatter plot 
of 1-DoM is against the curve fit of a 
quadratic model. 

(a) 

(c) 
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2.2 CHEMICAL MATERIAL OSCILLATORS 

In this section, we give a brief introduction of the Belousov–Zhabotinsky (BZ) gel oscillators, 

which is a vital component in the hybrid material system designed in our work. Such type of 

hydrogel can periodically swell and de-swell, driven by the BZ oscillating chemical reaction. 

This self-powered chemo-mechanical oscillation enable BZ gel to actuate. 

2.2.1 Belousov–Zhabotinsky Reaction 

 

Figure 2.5 Pattern formed by the concentric waves in BZ reaction (Source: Flickr; Photo by Stephen Morris; 
Chemistry by Michael Rogers) 

Belousov–Zhabotinsky (BZ) reaction is a family of oscillating chemical reactions that exhibit 

constantly periodic change in the concentration of some reactants, resulting oscillation in non-
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equilibrium thermodynamics [38][39]. During these reactions, transition-metal ions (e.g. Ce+3) 

catalyze the oxidation of itself and some organic reductants by bromic acid. When the 

concertation of oxidized catalyze ions (e.g. Ce+4) reach a threshold, the bromic acid starts to 

decompose and the oxidized catalyze is reduced. These oxidation reactions and reduction 

reactions dominate alternatively, arising the oscillation of the concentration of multiple ions (Br+, 

BrO2
+, Ce+4).  The BZ reaction can last several thousand oscillatory cycles without constantly 

refueling reactant, and thus makes it much easier for human eyes to observe the formation of 

temporal and special complex patterns in chemical reactions. In BZ reaction, concentration 

waves can propagate in reaction-diffusion systems with oscillatory or excitatory local chemical 

kinetics [40][41]. Figure 2.5 shows the pattern formed by the concentric waves. 

2.2.2 BZ Oscillating Gel 

Ryo Yoshida developed a type of self-oscillating polymer gels by converting the chemical 

oscillation of the BZ reaction to automatic swelling–deswelling mechanical changes of gels 

[5][6]. This self-oscillating polymer is created by attaching the catalyze Ru(bpy)3
2+ to the 

polymer chains of NIPAAm. The poly(NIPAAm- co - Ru(bpy)3
2+) gel has a phase transition 

temperature because of thermosensitive constituent NIPAAm, while the oxidation and reduction 

of Ru(bpy)3
2+ change both the temperature and diameter of poly gel particles. In the presence of 

the reactants, this polymer gel undergoes spontaneous cyclic swelling–deswelling changes 

without any on–off switching of external stimuli. 

The kinetics of the BZ reaction can be described by a modification of the Oregonator 

model [42], formulated in terms of the dimensionless concentrations of the key reaction 
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intermediate u  ( 2OBrH , the activator), and the oxidized metal-ion catalyst v  ( +3Ru  in the case 

considered here). The modified model [7][43] accounts for the dependence of the BZ reaction 

rates on the volume fraction of polymer φ , and on the total concentration of catalyst grafted to 

the network. The reaction rates BZF  and BZG  are determined as follows: 

 2
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The reaction rates depend on the dimensionless concentrations of the reduced catalyst 

+2Ru  and the radical ∗
2BrO  denoted by r  and w , respectively. The concentration r  is 

calculated as vcr Ru −= − φφ 1
0  , where Ruc  and 0φ  are the catalyst concentration and volume 

fraction of polymer in the undeformed gel, respectively. The concentration of the radical w  is 

found as rurw BZ
2/1

BZ
2

BZ )/2( µµµ −+=  , where BZµ  is a dimensionless parameter. Finally, 

the stoichiometric factor f  and the dimensionless parameters q  and BZε  have the same 

meaning as in the original Oregonator model [42]. 

We assume that the chemical composition of the BZ substrate and the volume fraction of 

polymer in the undeformed gel are the same as used in the experiments described in [7], so the 

corresponding dimensionless parameters are estimated to be 212.0BZ =ε , 51052.9 −×=q , 

2107×≈µ , and 16.00 =φ . The stoichiometric parameter f  and the catalyst content Ruc  are 

the adjustable parameters in the study, and we assume them to be 1=f  and 3=Ruc . 

 The osmotic pressure of the polymer in gel is calculated according to the Flory-Huggins 

theory, 
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 ])()1log([ 2
FH φφχφφπ +−+−=  (2-5) 

Here, )(φχ  describes the polymer-solvent interactions. It is calculated as φφχ 518.0338.0)( += , 

which is known to describe the PNIPAAm-water interaction at C20 [44].  

2.3 DISCUSSION 

This Chapter first introduces the background of previous work in oscillator-based computing, 

including the oscillator neural network and a computing paradigm for pattern matching in our 

preliminary work. Then we provide a brief introduction to the BZ reaction and the mathematic 

model of the BZ oscillating gel.  
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3.0  PHASE MODELS FOR COUPLED OSCILLATORS 

The simulation and analysis of these oscillator computing paradigms are usually difficult and 

time-consuming. In this Chapter, we try to address the problem by studying the phase models of 

oscillators, which can be used to effectively describe the oscillator behavior and efficiently 

speedup the simulation of systems. 

3.1 MATHEMATIC MODEL 

In this section, we try to address the problem by studying the phase models of oscillators, which 

can be used to effectively describe this behavior. We first review phase models proposed in 

previous work, including the PPV model [45][35], Winfree’s and Malkin’s approaches 

summarized by Izhikevich [46]. By discussing the relation between these models and combining 

their advantages, we develop our own phase model for the simulation oscillator-based computing 

systems. 
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3.1.1 PPV Model 

We start with the Phase Projection Vector (PPV) model, since it is derived from the demand for a 

theoretical analysis of oscillator circuits perturbed by noise and therefore is easier to understand 

from an electrical engineering perspective compared to the other models [45].  

The PPV model starts with the general differential equation of an oscillator, 

 𝒙̇𝒙(𝒕𝒕) = 𝒇𝒇�𝒙𝒙(𝒕𝒕)� + 𝑷𝑷(𝒕𝒕) (3-1) 

where x(t) is the vector of oscillation states and ẋ(t) is their derivatives. In real circuits, these 

states are usually the voltages or currents of nodes. 𝑃𝑃(𝑡𝑡) represents an external perturbation on 

the oscillation, which can be noise, signal injection, or in this case, a coupling term from other 

oscillators. 𝑓𝑓 is the nonlinear function that describes the oscillation and t is time. We assume the 

perturbation is small and it only changes the phase of the oscillators. Then, the response solution 

from this equation can be written as, 

 𝒙𝒙𝒄𝒄(𝒕𝒕) = 𝒙𝒙𝒔𝒔(𝒕𝒕 + 𝜶𝜶(𝒕𝒕)) (3-2) 

where 𝑥𝑥𝑠𝑠(𝑡𝑡)  is the oscillator’s natural response without any perturbation, namely 𝑃𝑃(𝑡𝑡) = 0 , 

while 𝑥𝑥𝑐𝑐(𝑡𝑡) is the response with perturbation.  𝛼𝛼(𝑡𝑡) represents the time shift of phase that is 

caused by the perturbation. Hence equation (3-1) reveals the phase relation between the natural 

response and the perturbed response of the oscillator. According to the PPV model,  𝛼𝛼(𝑡𝑡) can be 

obtained by solving the equation, 

 𝜶̇𝜶(𝒕𝒕) = 𝜞𝜞(𝒕𝒕 + 𝜶𝜶(𝒕𝒕))𝑷𝑷(𝒕𝒕) (3-3) 

where Γ(𝑡𝑡) is the perturbation projection vector (PPV) that describes the perturbation response of 

the oscillator. The PPV can be thought of as the time-varying sensitivity of the induced time shift 

to the given injected perturbation [35]. The theoretical derivation and proof of the PPV method 
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can be found in [45].  The PPV, Γ(𝑡𝑡), is usually a periodic function that can be obtained either 

numerically or analytically. After acquiring Γ(𝑡𝑡), we know the time shift of phase 𝛼𝛼(𝑡𝑡) from the 

solution of equation (3-3) and thus can solve equation (3-2). This model is referred as analytical 

PPV in this paper.  

 This model actually does not predict the “phase change” but a time shift function of 

oscillation response. Thus, it is difficult for us to use this model to directly predict the frequency 

shift in a coupled oscillator system. The next models we introduce provide us further insight. 

3.1.2 Izhikevich’s Model 

In [46], the phase model of weakly coupled nonlinear oscillators is explored from an abstract 

view by unifying some earlier models. Differing from the PPV model, this model assumes all the 

oscillators share the same free-running frequency, so the “phase” of nonlinear coupled oscillators 

can be normalized and defined as, 

 𝜽𝜽(𝒕𝒕) = 𝒕𝒕 + 𝝋𝝋(𝒕𝒕) (3-4) 

Taking the derivative of both sides, we have, 

 𝜽̇𝜽(𝒕𝒕) = 𝟏𝟏 + 𝝋̇𝝋(𝒕𝒕) (3-5) 

In equations (3-4,5), 𝜃𝜃(𝑡𝑡) is the defined phase, a periodic function with period T = 1. 𝜑𝜑(𝑡𝑡) is 

called the phase deviation, caused by the coupling from other oscillators. We can notice that 

when there is no coupling term, the phase term is simply time, t, and the free-running frequency 

is normalized to 1. The derivative 𝜑̇𝜑(𝑡𝑡) represents the change of phase deviation, namely the 

frequency shift, due to the coupling effect. 

In order to map this model to various nonlinear oscillators, the key point lies in the phase 

deviation 𝜑𝜑(𝑡𝑡), described by: 
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 𝝋̇𝝋(𝒕𝒕)  = 𝑸𝑸�𝜽𝜽(𝒕𝒕)�𝑷𝑷(𝒕𝒕) (3-6) 

which has a similar form to equation (3-3).  𝑃𝑃(t) is the same external injection signal to the 

oscillators (i.e., the coupling term). The function 𝑄𝑄(𝜃𝜃) is called the phase response curve or 

phase resetting curve (PRC), representing how sensitive the phase deviation is in response to P(t) 

at a specific phase 𝜃𝜃(𝑡𝑡). Thus (3-5) can also be written as, 

 𝜽̇𝜽(𝒕𝒕) = 𝟏𝟏 + 𝑸𝑸�𝜽𝜽(𝒕𝒕)�𝑷𝑷(𝒕𝒕) (3-7) 

The mechanisms of phase and frequency interactions of coupled oscillators revealed by this 

equation was discovered multiple times in the early studies of oscillator phase models and some 

researchers named it PRC in different ways and exploited different methods to derive and utilize 

it.  A theorem first proposed by Malkin in 1949 and later abstracted by Hoppenstead in 1997 

indicates that Q(θ) can be computed by solving the linear adjoint equation, 

 𝑸̇𝑸(𝒕𝒕) = −𝓙𝓙[𝒇𝒇�𝒙𝒙(𝒕𝒕)�]𝑻𝑻𝑸𝑸 (3-8) 

where 𝒥𝒥[𝑓𝑓�𝑥𝑥(𝑡𝑡)�]𝑇𝑇 is the transposed Jacobian matrix of the oscillation function f. This theorem 

is identical to Kuramoto’s approach [47], where the gradient of phase plays the role of PRC. In 

Winfree’s work [48], PRC was experimentally approached by applying a pulse stimulus with 

amplitude A. Then a function called the linear response or sensitivity function 𝑍𝑍 (𝜃𝜃 ) was 

measured by observing the phase shift caused by the stimuli, and PRC is 𝑍𝑍(𝜃𝜃) divided by 

amplitude A.  

 𝑷𝑷𝑷𝑷𝑷𝑷(𝜽𝜽) ≈ (𝒁𝒁(𝜽𝜽))/𝑨𝑨 (3-9) 

This method is flexible and intuitive. However, being experimental, it suffers from more 

variation and inaccuracy. Nonetheless, it is useful when the nonlinear oscillator equations is not 

differentiable or continuous. 
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3.1.3 Combined Simplified Model 

From the previous models discussed above, if we pair equations (3-1,4), (3-2,5), and (3-3,6) and 

compare them, we can notice that they have the same pattern because the intrinsic method behind 

these models is the same, which is to quantify how the oscillation is affected by the external 

perturbation. However, these models use different methods to calculate this term, either an 

analytical derivation or a numerical measurement. In addition, the PPV model studies the 

oscillation variables themselves while Izhikevich’s model focuses on the “phase” of nonlinear 

oscillators. 

From the view of solving the practical problem we are addressing, the pattern matching 

operation is performed by frequency shifting or frequency locking of oscillators caused by 

coupling. The elements of the pattern vectors are represented by frequencies and the degree of 

match is evaluated by how well the oscillators synchronize. Thus, for the purpose of predicting 

the frequencies of coupled oscillators, we introduce the phase definition idea from Izhikevich’s 

model into the PPV model.  

We assume we have n oscillators with different frequencies: ω0,ω1,ω2 …ωn−1. Since 

equations (3-4) and (3-5) require that oscillators run at the natural frequencies normalized to 1, 

we scale these frequencies to 1, λ1, λ2 … λn−1, where λi = ωi
ω0

= T0
Ti

. So for an arbitrary oscillator i, 

in the PPV model, equation (3-2) can be changed into the phase form similar to (3-4): 

 𝜽𝜽𝒊𝒊(𝒕𝒕) = 𝝀𝝀𝒊𝒊�𝒕𝒕 + 𝜶𝜶(𝒕𝒕)� = 𝝀𝝀𝒊𝒊𝒕𝒕 + 𝝋𝝋𝒊𝒊(𝒕𝒕) (3-10) 

with 

 𝝋𝝋𝒊𝒊(𝒕𝒕) = 𝝀𝝀𝒊𝒊�𝜶𝜶(𝒕𝒕)� (3-11) 
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which indicates the relation of phase deviation in Izhikevich’s model and time shift of phase in 

the PPV model. Taking the derivative of (3-10) we get,  

 𝜽𝜽𝒊𝒊̇ (𝒕𝒕) = 𝝀𝝀𝒊𝒊 + 𝝀𝝀𝒊𝒊 𝜶̇𝜶(𝒕𝒕) (3-12) 

substituting with (3-3) we have, 

 𝜽𝜽𝒊𝒊̇ (𝒕𝒕) = 𝝀𝝀𝒊𝒊 + 𝝀𝝀𝒊𝒊 𝜞𝜞(𝜽𝜽𝒊𝒊(𝒕𝒕))𝑷𝑷𝒊𝒊(𝒕𝒕) (3-13) 

where Γ(θi(t)) is still the PPV in (3-3) but determined by the phase, instead of time. This 

equation transfers the PPV from a time domain to the phase domain and replaces the simulation 

time span into the number of oscillation cycles. 𝑃𝑃𝑖𝑖(𝑡𝑡) is the coupling term here in this model, 

defined as: 

 𝑷𝑷𝒊𝒊(𝒕𝒕) = ∑ 𝒈𝒈𝒊𝒊𝒊𝒊𝒙𝒙𝒔𝒔(𝜽𝜽𝒋𝒋(𝒕𝒕))𝒏𝒏
𝒋𝒋=𝟎𝟎  (3-14) 

where 𝑔𝑔𝑖𝑖𝑖𝑖  is the pair-wise coupling coefficient and j is the index of other oscillators in the 

system. Therefore, solving (3-13) can provide the frequency and phase response of a coupled 

oscillator system. In our simplified model, the PPV function is also equivalent to the PRC 

function obtained from other methods. In the next section we give examples of these methods. 

We note that it is useful to have several methods available because some methods might prove 

inaccurate or fail to converge for specific nonlinear oscillator systems. 

3.1.4 Oscillator Examples 

In this section we use ideal ring oscillators as an example and demonstrate three different 

methods to obtain their PPV/PRC function. A simple ring oscillator consists of three inverters 

and RC circuits, shown in Figure 3.1(a) with its analytical model given in [35], presented as 

below. The voltage derivatives of the three nodes are, 
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 𝒗𝒗𝒊𝒊̇ (𝒕𝒕) = 𝒇𝒇�𝒗𝒗𝒊𝒊𝒑𝒑(𝒕𝒕)�−𝒗𝒗𝒊𝒊(𝒕𝒕)
𝑹𝑹𝑹𝑹

, 𝒊𝒊 = 𝟏𝟏,𝟐𝟐,𝟑𝟑 (3-15) 

where 𝑖𝑖𝑝𝑝 is the previous node of i and f(v(t)) is the simplified response of an inverter: 

 𝒇𝒇(𝒗𝒗) = � +𝟏𝟏,   𝒊𝒊𝒊𝒊 𝒗𝒗 > 𝟎𝟎
−𝟏𝟏,𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐  (3-16) 

By normalizing the standard frequency and period to 1, we can write the voltage state response 
of three nodes as, 

  

𝒗𝒗𝟏𝟏(𝒕𝒕) = �
𝟏𝟏 − 𝝍𝝍𝒆𝒆−𝜸𝜸𝜸𝜸,   𝟎𝟎 ≤ 𝒕𝒕 ≤ 𝟏𝟏/𝟐𝟐

−𝟏𝟏 + 𝝍𝝍𝒆𝒆−𝜸𝜸�𝒕𝒕−
𝟏𝟏
𝟐𝟐�,𝟏𝟏/𝟐𝟐 ≤ 𝒕𝒕 ≤ 𝟏𝟏    

 

 𝒗𝒗𝟐𝟐(𝒕𝒕) =  𝒗𝒗𝟏𝟏 �𝒕𝒕 −
𝟐𝟐
𝟑𝟑
� ,𝒗𝒗𝟑𝟑(𝒕𝒕) =  𝒗𝒗𝟏𝟏 �𝒕𝒕 −

𝟏𝟏
𝟑𝟑
� (3-17) 

where 𝜓𝜓 = 1+√5
2

, 𝛾𝛾 = 6𝑙𝑙𝑙𝑙 (𝜓𝜓).  Because the frequency here is 1, RC = 1/γ. Similarly, the PPV 

equation can be analytically solved as, 

𝜞𝜞𝟏𝟏(𝒕𝒕) = 𝜞𝜞𝟑𝟑 �𝒕𝒕 −
𝟐𝟐
𝟑𝟑
� ,𝜞𝜞𝟐𝟐(𝒕𝒕) = 𝜞𝜞𝟑𝟑 �𝒕𝒕 −

𝟏𝟏
𝟑𝟑
� 

 𝜞𝜞𝟑𝟑(𝒕𝒕) = 𝜸𝜸−𝟏𝟏 𝟏𝟏+𝝍𝝍𝟑𝟑

𝟒𝟒−𝟐𝟐𝝍𝝍𝟑𝟑
(𝝍𝝍 + 𝟐𝟐 �−𝒖𝒖(𝒕𝒕) + (−𝟏𝟏 + 𝟐𝟐𝝍𝝍−𝟏𝟏)𝒖𝒖(𝒕𝒕 − 𝟏𝟏

𝟐𝟐
)�)𝒆𝒆𝜸𝜸𝜸𝜸 (3-18) 

 Figure 3.1(b) shows the waveform of oscillation response and PPV of node v3. From this 

plot we see that the PPV function for ring oscillators is periodic and non-linear.  
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Figure 3.1 Ring oscillator model. (a) Simple schematic model; (b) Output waveform and (PPV) at node v3. 

Sometimes it is difficult to obtain the state response and PPV function directly from the 

ODE. For these cases we can obtain the corresponding PRC by applying Malkin’s approach 

numerically. Solving equation (3-8) is actually very similar to the analytically derivation of PPV 

in [49]. However, when the analytical method does not work, we can use a technique called 

backward integration to obtain the Jacobian matrix [46]. Figure 3.2 shows the results of PRC 

from this method with a backwards integral of 4 cycles. The last cycle of PRC curve is 

inaccurate due to the special integral technique and usually should be discarded. The PRC in the 

first cycle is the one used.  

(a) 

(b) 
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Figure 3.2 Malkin’s approach for PRC. (x-axis: phase, y-axis: amplitude) and output waveform at node v3 and PRC 
obtained from backwards integral.  

In a few cases when a system’s Jacobian matrix does not exist, Winfree’s approach can 

be the only choice, especially for those nonlinear oscillators with complex mathematical models, 

even though this method is “experimental” and tends to be inaccurate. As an example, we apply 

Winfree’s method for the ring oscillator by adding a pulse stimulus with small amplitude and 

measuring the phase resetting curve step by step. Figure 3.3 illustrates the PRC generated by 

Winfree’s method with different stimuli amplitudes. The glitches in the curve show the problems 

of this approach. 
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Figure 3.3 Winfree’s approach for PRC, (a) Stimuli Amplitude=0.1, PRC Amplitude=0.2; (b) Stimuli 
Amplitude=0.05, PRC Amplitude=0.1. 

However, it is worth noting that the PRC amplitude here is proportional to the stimuli 

amplitude by factor of 2, which not only corresponds to equation (3-9), but also fits the 

PPV/PRC amplitude of the previous two methods in Figure 3.1 and Figure 3.2. These three 

examples for phase deviation of the ring oscillator indicate that PPV and PRC functions are 

identical to each other and enhance the foundation of our model.  

3.2 EXPERIMENTS AND SIMULATION 

In this section, we apply our simplified phase model to coupled oscillator systems and analyze 

their synchronization behavior. We also compare the performance and efficiency of the models 

obtained by the different approaches as well as accuracy and speedup compared to the direct 

simulation of the oscillator systems. 

(b) (a) 
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As we discussed in the previous section, a weakly coupled system, such as shown in 

Figure 2.4, can be simply described by equations (3-13) and (3-14). In this structure the coupling 

strengths between oscillators are identical. Thus, for each oscillator at node v3 in Fig. 4 we have, 

 𝜽𝜽𝒊𝒊̇ = 𝝀𝝀𝒊𝒊 + 𝜺𝜺𝝀𝝀𝒊𝒊 𝜞𝜞𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏(𝜽𝜽𝒊𝒊)∑ 𝒗𝒗𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏�𝜽𝜽𝒋𝒋�𝒏𝒏
𝒋𝒋=𝟎𝟎 , 𝒊𝒊, 𝒋𝒋 ∈ [𝟏𝟏,𝒏𝒏] (3-19) 

where ε is the coupling coefficient.  

3.2.1 Oscillator Behavior Analysis 

 

Figure 3.4 Comparing simulations of three coupled oscillators with natural frequencies λ = [1.0, 0.95, 1.05], ε=0.4 
and 0.2. (a) Wrapped phase waveform of final stage; (b) Evolution of phase differences between oscillators. 

We start with a three oscillator system (n = 3). It is convenient for us to predict the final 

frequency of each oscillator by solving (3-19) numerically . If θ1̇ = θ2̇ = θ3̇ , the system is 

synchronized and frequency locked. We use Matlab to run a simulation of equation (3-19).  

Figure 3.4 illustrates an example of locking and non-locking systems. For these examples, we set 

the initial frequencies to be: λ = [1, 0.95, 1.05] but use two different ε, 0.2 and 0.4. In the left 

(a) (b) 
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diagram Fig 3.4(a), we give a zoom-in observation of wrapped phases in the final steps of 

simulation, where ε = 0.4 results the locked final frequencies [0.8717, 0.8717, 0.8717] while ε =

0.2 generates desynchronized final frequencies [0.9644, 0.9298, 1.0263]. Figure 3.4(b) shows the 

phase differences between three oscillators. In the first case, the phase difference is constant 

while it is unstable in the second case.  

From these simulation results, it is worth noting that the conditions for frequency locking 

are determined by the coupling coefficient ε and the scaling ratio between each oscillators’ free 

running frequency λi, not the absolute value of the frequencies. This interesting phenomenon is 

important for the design of future oscillator based computing systems. It implies that devices 

with high frequencies can provide wider bandwidth for information coding.  Also, even when the 

oscillators fail to lock with each other, their frequencies are pulled closer to each other. It is 

based on this observation that we say that the degree of synchronization can provide a metric to 

measure the distance or similarity of each oscillator’s initial frequency (and thus input) as 

discussed below. 

To verify this point, we run the simulation multiple times by fixing the first oscillator’s 

frequency and sweeping the frequency of the other two from 0.8 to 1.2. We use degree of 

synchronization, 1 − {(f2 − f1)2 + (f3 − f1)2} , as the function to evaluate how well the 

oscillators synchronize. With this function, we measure how close these final frequencies are to 

the reference oscillator for comparison between the phase model and direct simulations, and thus 

to verify the capability of our phase model in simulation of oscillator based computing. Note that 

𝑓𝑓1,𝑓𝑓2,𝑓𝑓3 here are the coupled frequencies based on normalized phase. In this test, we use the 

three different methods to obtain the PPV/PRC, as we did in Section 3. In addition, we directly 

simulate the coupled oscillator with oscillator equation (3-15) as a performance standard. Figure 
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3.5 demonstrates all the models with 3D plots of the degree of synchronization for the two cases 

of  ε = 0.4 and ε = 0.2. When the coupling strength is weak, the surface is smooth and the initial 

frequencies are easier to differentiate, while stronger coupling gives us more nonlinear features 

and a wider locking range. The flat area on the top of the surface indicates the highest degree of 

synchronization, giving us the frequency locking range for the simulation sweeps. Hence, a very 

strong coupling system may lack differentiation for pattern matching or nearest neighbor 

searching. But for clustering operations like image segmentation, stronger coupling strength can 

provide better resistance to noise. Due to the fast simulation speed, our model is also very 

suitable for simulating systems with large numbers of coupled oscillators. To understand how the 

number of oscillators can influence the synchronization, we run the simulations with the same 

two dimensional frequency sweeping but different numbers of oscillators. Since we cannot show 

a plot of higher dimensional frequency sweeping, we keep the frequencies of all but two of the 

oscillators fixed to 1 and sweep the last two.  

Figure 3.6 shows the results for n=3, 4, 8, and 16. In these simulations, we use the 

analytical PPV as the PPV/PRC function. From these results we can notice that larger numbers 

of oscillators with the same frequency gives a wider frequency locking range. Namely, the 

effective coupling strength to those oscillators with different frequencies becomes stronger 

because the system’s stable state is close to the state of the majority of the oscillators. This could 

either be an advantage or disadvantage in the design of oscillator based systems, depending on 

the application and computation required. 
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Figure 3.5 Degree of synchronization as inverted Euclidean distance, initial frequencies for a range λ2,3=[0.8 to 1.2]  
and a fixed frequency of  λ1=1.0, Left column:  ε=0.4, Right column:  ε=0.2; Row 1: Winfree’s approach, Row 2: 
Malkin’s approach, Row 3: Analytical PPV, Row 4: Direct simulation with oscillator equations. 

Winfree 

Malkin 

PPV 

Oscillator Equations 
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Figure 3.6  Simulations of different numbers of coupled oscillators. All oscillators but two are kept at frequency 1, 
while the last two are swept.  

3.2.2 Performance Speedup 

For performance comparisons of our phase model, we calculate the root mean square error 

between the direct simulation of the oscillators in each case of Figure 3.6 and the analytical PPV. 

As we can see in Table 1, the error is relatively small compared with the absolute value of degree 

of synchronization. This shows that our phase model is compatible with different methods for 

PPV/PRC and robust to the variations between these methods. Compared to the direct oscillator 

simulation, the analytical PPV generates the smallest error while Winfree’s experimental method 

gives the largest error, and Malkin’s numerical method lies in the middle.  
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Table 3.1 RMSE of simulations based on different methods 

Comparing Winfree’s Malkin’s Analytical PPV 

Oscillator, 

𝜀𝜀 = 0.2 
127e-04 133e-04 121e-04 

Oscillator, 

𝜀𝜀 = 0.4 
276e-04 297e-04 271e-04 

Analytical PPV, 

𝜀𝜀 = 0.2 
58e-04 63e-04 / 

Analytical PPV, 

𝜀𝜀 = 0.4 
128e-04 142e-04 / 

We next evaluate the efficiency of our model by comparing simulation speed to the direct 

simulation of the oscillator network. The speedup here is defined by the ratio of real time for 

simulation of two methods (both in Matlab) for the same length of simulation time. Since we 

always initialize the systems with random phases, we run the test of each configuration 100 times 

and average the speedup for evaluation. The results in Figure 3.7 only serve as an approximation 

of the efficiency of our model because the simulation of coupled oscillator systems is affected by 

multiple factors, such as the oscillator model, initial states, and the convergence process. 

Nevertheless, we still observe very promising speedups from our simplified phase model, similar 

to [35]. The speedup comes from the fact that the differential equations of the original oscillators 

are nonlinear but the simplified phase models are linear equations with much simpler periodic 

functions.  A second advantage is that in the phase domain, simulation is done by fractions of 

cycles, rather than time steps, so that run time is frequency invariant. This is an advantage in 
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simulation when compared to the regular PPV model where the user must optimize the time step 

for accurate simulation vs. performance.  

 

Figure 3.7 Speed-up (factor) of simplified phase model over direct simulation for different PPV/PRC methods. 

3.2.3 System Level Simulation 

In order to illustrate the utility of our model for system level evaluation, we give three examples 

of the oscillator computing paradigms discussed in Chapter 2. The first example application is a 

simple pattern matching task that we discussed in section 2.1.1. The goal is to recognize a 

handwritten digit image from the MNIST dataset, as illustrated in Figure 3.8. In this task, the 

stored templates are 10 averaged grayscale images from 10000 classified handwritten images in 

the training dataset of MNIST [50]. The image size is 784 pixels (28x28) and the pixel intensities 
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range from 0 to 1. Each template is the pixel-wise mean of all the images in the corresponding 

digits binarized with a threshold of 0.4. In our previous work, we directly used the square 

Euclidean distance rather than the simulation of oscillators [4]. The system was evaluated on the 

MNIST handwritten digit dataset and achieved 94% accuracy.  

 

Figure 3.8 Pattern matching simulation for handwritten digit recognition and DoM from oscillator clusters. 

For this simulation example, the test input pattern is a “7” randomly picked from the test 

dataset. We partition the 784 pixels of each image into 49 vectors of 16 pixels each and use our 

oscillator clusters to perform pattern matching based on these shorter vectors. The reason we 

partition the image vectors comes from our experiences with oscillator circuits and the challenge 

we foresee to practical implementations of large scale associative memories. By partitioning 

each vector, we can overcome the challenges of coupling a large number of oscillators in a 

symmetric network. For this task, we use a cluster of 17 ring oscillators like the model shown in 

Fig. 2.1, simulated with the analytic technique for our phase model. One oscillator that is 

initialized with frequency = 1 serves as the reference oscillator, meanwhile the remaining 
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oscillators are used to process the vector differences. The normalized oscillator frequencies range 

from 1 to 1.5 and the coupling coefficient is set to 0.01. Each oscillator cluster performs a 16-

pixel length matching operation. Each comparison between the test image and one template 

requires 49 such operations, thus the total number of operations for this task is 490. Figure 3.8 

gives the normalized degrees of match between the input image and the 10 templates with the 

correct classification. The average simulation speedup for each operation is about 780 compared 

to simulation with the original oscillator equations.  

The second system simulation example is the image segmentation mentioned in Section 

2.1.2 [37]. In this test, we generate a 16x16 grayscale image that is composed of 4 regions with 

different intensity ranges, as shown in Figure 3.9(a). The objective of this test is to separate each 

region from the others. Each region is composed of 64 randomly placed pixels with intensities 

from one quarter of the 0~1 range. All 256 pixels have unique intensities and thus the intensity 

histogram is a uniform distribution, which is difficult for those segmentation algorithms that are 

solely based on intensity histograms. We apply the oscillator structure given in Figure 2.4 to this 

task, setting the oscillator coupling strength to 0.2 and initializing the oscillator frequencies in 

the range of 1~2 with associated pixel intensities. When the system evolves to a stable state, the 

oscillators cluster into four groups by frequency, corresponding to four image regions. The 

central frequencies of the oscillators in these four regions shown in Figure 3.9(b) are [1.121 

1.367 1.634 1.891] and the frequency band of each group is around 0.2. Thus we can obtain each 

segmented region by band-pass filtering the output signals of the oscillators in an associated 

frequency range. Figure 3.9(b) shows the segmentation results of the four regions with 

corresponding region numbers. This result indicates that the oscillator network is clustering the 

pixels based on both intensity and locality. In this simulation, the estimated speedup is about 300 
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for each oscillator and its neighbors compared to using the direct simulation using oscillator 

equations.  

 

Figure 3.9 (a) Test image with four regions; (b) Segmentation results of each region from oscillator network. Each 
sub square is the original image with segmented region labeled as white pixels. 

Our third example is a convolution operation for image filtering [36]. Figure 3.10 

illustrates the process of our simulation. The test image is a 100x100 pixel grayscale “car” image 

(Figure 3.10 (a)). To test our oscillator based convolution model, we perform a 2-D convolution 

between the test image and a 5x5 Gabor filter bank with four directions (0, 45, 90, and 135 

degrees). Figure 3.10 (b) displays grayscale images of these filters. Gabor filters are commonly 

used for edge detection and feature extraction in image processing. As we discussed in Section 

2.2, the convolution of two vectors can be implemented by three oscillator clusters. In this case, 

each pixel in the output image is computed by the pair-wise multiplication between an image 

patch and a filter mask. We use three 26-oscillator clusters (each cluster has one oscillator for 

reference) to compute the values of (A-B)2, A2, and B2. The frequency range is 1~1.5 with a 

relatively small coupling coefficient of 0.002. The filtered images from the oscillator system and 

(a) (b) 
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a 2-D convolution function in Matlab are respectively depicted in Figure 3.10 (c) and (d). We 

can notice that the simulation result of oscillator based convolution is very similar to the result of 

the Matlab function. In this operation, the approximate speedup of each operation is about 1120 

compared to the direct simulation with oscillator equations.  

 

Figure 3.10 Using 5x5 Gabor filter to filter the “Car” image. (a) Test image; (b) Gabor filter bank; (c) Results from 
Oscillator Cluster; (d) Results from digital 2-D convolution. 

These three examples of system level simulation for oscillator based computing have 

demonstrated that our phase model can greatly improve the simulation efficiency for large 

oscillator networks, while maintaining acceptable accuracy for the evaluation of these 

applications.  

(a)  (b)  

(c)  (d)  
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3.3 DISCUSSION 

In this Chapter, we analyze previous oscillator phase models and propose a simplified phase 

model and apply this model to the analysis of coupled ring oscillators [14]. The results indicate 

that our model is capable of predicting the frequency and phase of coupled oscillator systems 

with small errors compared to the direct simulation of the oscillator model. We demonstrate that 

this model is particularly suitable for simulation and analysis for oscillator based applications 

such as pattern matching, segmentation, and convolution. The main contribution of our model is 

in simplifying the nonlinear equations and transferring simulation from the traditional time 

domain into the phase domain. This provides several orders of magnitude simulation speedup for 

large size systems.  
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4.0  PATTERN RECOGNITION WITH BZ-PZ OSCILLATORS 

In this Chapter, we introduce the theoretical model of coupled BZ-PZ oscillator network and 

demonstrate its capability of performing pattern recognition through phased model simulation 

results. We also discuss the performance and robustness of recognition and analyze the 

feasibility of this hybrid material oscillator-based computing system. 

4.1 THEORETICAL MODEL OF BZ-PZ OSCILLATOR NETWORK 

4.1.1 Overview 

 

Figure 4.1 Two BZ-PZ oscillator units connected with electrical wires. Each piezoelectric cantilever consists of 
two identical layers of a polarized piezoelectric material; the internal and external surfaces are covered with thin 
electrodes connected in parallel. Periodic volumetric changes in the self-oscillating BZ gels cause rhythmic bending 
of the piezoelectric plates. The vector of polarization in piezoelectric bending plates is oriented perpendicular to the 
plate surface (not shown). The colors orange and blue are used to distinguish the two parts of a bimorph 
piezoelectric plate. The red and black solid lines show the electric wires connected to the external and internal 
electrodes, respectively. The green-colored cubes depict the BZ gels. 
 

Gel Gel 

U   
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The fundamental unit in this system is composed of a polymer gel undergoing the Belousov-

Zhabotinsky (BZ) oscillatory reaction and an overlaying piezoelectric (PZ) bimorph cantilever 

(see Figure 4.1). In these studies, we exploited the inherent properties of the materials to achieve 

the desired autonomous functionality. Namely, the BZ gels oscillate periodically without the 

need for external stimuli; the rhythmic pulsations are fueled by the BZ reaction occurring within 

the polymer network [5]. Moreover, piezoelectrics spontaneously generate a voltage when 

deformed, and conversely, undergo a deformation in the presence of an applied voltage. By 

combining these attributes into a “BZ-PZ” unit and then connecting the units by electrical wires, 

we designed a device that senses, actuates, and communicates without an external electrical 

power source. Herein, we show that device can also be used to perform computation, ultimately 

enabling “materials that compute”. 

The operation of the simplest BZ-PZ oscillator network is illustrated in Figure 4.1, which 

depicts two units that are connected through electrical wires. In the course of the chemical 

oscillations, the BZ gels expand in volume and thereby cause the deflections  1ξ  and 2ξ  of the 

piezoelectric cantilevers, which give rise to an electric voltage U. Due to the inverse 

piezoelectric effect, the applied voltage will deflect the cantilevers, which act on the underlying 

BZ gels and thereby modify the chemo-mechanical oscillations in these gels. Thus, this coupling 

between the chemo-mechanical energy (from the BZ gels) and the electrical energy (from the 

deflected PZ cantilevers) enables the following functions: the components’ response to self-

generated signals (sensing), the volumetric changes in the gel (actuation), and the passage of 

signals between the units (communication). Importantly for computation, the communication 

also leads to the synchronization of the BZ gel oscillators [51]. 
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Using our theoretical and numerical models, we studied the synchronization behavior in 

BZ-PZ networks, and demonstrated that networks involving just a few of these hybrid oscillators 

could exhibit a variety of stable modes of synchronization [51]. With multiple BZ-PZ units, the 

oscillators can be wired into a network of arbitrary topology, formed, for example, from units 

that are connected in parallel or in series (see Figure 4.2). The resulting transduction between 

chemo-mechanical and electrical energy creates signals that propagate quickly over long 

distances, and thus, permits remote coupled oscillators to communicate and synchronize.  

 

Figure 4.2 Multiple BZ-PZ oscillator units connected in serial (left) and parallel (right). nεεε ,,, 21  are the 
force polarities of the n  connected units. The orange and blue rectangles depict the two layers of a bimorph PZ 
plate. The green rectangles depict the self-oscillating BZ gels. The red and black lines show the electrical 
connections to the respective external and internal electrodes in the PZ plates. 

4.1.2 Model Description 

 The dynamic behavior of the BZ-PZ circuits (such as those in Figure 4.1 and Figure 4.2) 

can be captured by coupling the equations for the volumetric oscillations of the BZ gels to the 

equations for the bending elasticity of piezoelectric beams [51]. Each BZ gel is assumed to be 
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immersed in a solution of BZ reactants under conditions required for the autonomous chemo-

mechanical oscillations of the gel. Notably, millimeter-sized pieces of the gel can pulsate 

autonomously for hours [52]. We emphasize that the chemical energy from the BZ reaction 

provides the external power source in this system. Namely, this energy powers the mechanical 

oscillations of the gel that, in turn, prompt the deflection of the PZ cantilever, which generates 

the electrical voltage. This process does not occur in the absence of the reagents necessary for 

the BZ reaction (e.g., the chemicals in the solution and the catalyst in the gel). Moreover, the 

process will stop when the reagents are consumed. Importantly, however, the system can be 

resuscitated by adding more BZ reagents to the solution [52]. The gel size is taken to be 

sufficiently small that the diffusion of dissolved reactants throughout the gel occurs faster than 

variations of the reactant concentrations in the course of the oscillatory BZ reaction. We use a 

modification of the Oregonator model to describe the kinetics of the BZ reaction in terms of the 

concentrations of activator, u , oxidized catalyst, v , and volume fraction of polymer, φ  [7][43]. 

In a system that consists of n  units, the reaction kinetics for the BZ gel in each unit is given by 

[53][54], 

 ),,(])1([)1( BZ
1

iiiiii vuFud/dt φφφ =−− −  (4-1) 

 ),,()( BZ
1

iiiiii vuGvd/dt φφφ =−  (4-2) 

where ni ,,2,1 =  labels the units, and BZF  and BZG  are the reaction rates that depend on the 

concentrations iu  and iv , and iφ  (see section 2.2.2).  

In a BZ gel, periodic variations in the concentration of oxidized catalyst, v , due to the BZ 

reaction affect the polymer-solvent interactions and drive the gel’s rhythmic expansion and 

contraction. Since small gels equilibrate in size faster than the time-scale for one oscillation of 

the BZ reaction, a gel’s dimensions are determined by a balance among the elasticity of the 
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network, osmotic pressure of the polymer, and force exerted by the cantilever; this balance is 

expressed as follows [51][55]:   

 iii
g

iii vFhc φχφπλφφλλ ∗−
⊥

−−
⊥ +=+− )()(])2([ FH

)(2
0

1
0

2
0  (4-3) 

The first term on the left-hand-side (l.h.s.) of (4-3) is the elastic stress within the gel that is 

proportional to the gel crosslink density, 0c , and depends on the gel’s degrees of swelling in the 

longitudinal, iλ , and transverse, ⊥λ , directions. The volume fraction of polymer is calculated as 

21
0

−
⊥

−= λλφφ ii , where 0φ  is the polymer volume fraction in the un-deformed gel. The second term 

in the l.h.s. of (4-3) is the pressure exerted on the gel by the cantilever, with )(g
iF  and 0h  being 

the compression force acting on the gel and the size of the un-deformed gel cube, respectively. 

For simplicity, in (4-3), we assumed that the gel deformations are uniaxial and thus, ⊥λ  is set to 

a constant value. Finally, the right-hand-side of (4-3) provides the osmotic pressure of the 

polymer that includes the contributions according to the Flory-Huggins theory, FHπ , and due to 

the hydrating effect of the oxidized catalyst. The strength of the hydrating effect is controlled by 

the interaction parameter ∗χ . 

The behavior of the piezoelectric cantilevers can be described by quasi-static equations 

because the frequency of the chemo-mechanical oscillations ( Hz10~ 2− ) is much lower than the 

eigen-frequency of a cantilever ( Hz10~ 4 ). Applied to the cantilever in the unit i , these 

equations provide the deflection, iξ , and the electric charge, iQ , of the piezoelectric plate as 

linear functions of the bending force, iF , exerted on the cantilever and the electric potential 

difference (voltage), iU , between the electrodes  [56] (see Figure 4.1): 

 iiii UmFm εξ 1211 +=  (4-4) 
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 iiii UmFmQ 2212 += ε  (4-5) 

The coefficients 11m , 12m , and 22m  depend on the cantilever dimensions, material’s properties 

of the piezoelectric, and structure of the plate, discussed in section 4.5.2. The cantilevers are 

considered to have a parallel bimorph structure, i.e., they consist of two identical layers of a 

polarized piezoelectric material with the internal and external surface electrodes connected in 

parallel (see Figure 4.1). The cantilevers are taken to be sufficiently thin that they are deflected 

by the relatively soft, expanding gels [51]. 

The vector of polarization in the piezoelectric bending plates is oriented perpendicular to 

the plate surface. The polarity of the voltage generated by the bending of the plate depends 

therefore on the mutual orientation of the vector of polarization and the bending force applied to 

the cantilever’s tip in the direction normal to the surface. Equations (4-4) and (4-5) capture the 

latter effect through the force polarity iε , which has a binary value: it is equal to 1+  if the 

direction of the vector of polarization coincides with that of the applied force, or 1−  if the 

polarization and force are in opposite directions.  

 Within a BZ-PZ unit, the chemo-mechanical oscillations in the BZ gel, (4-1,2,3), and 

bending of the piezoelectric cantilever, (4-4,5), are coupled through the forces and displacements 

since i
g

i FF =)(  and 0)( hii
∗−= λλξ , where 0h∗λ  is the spatial offset between the gel and 

cantilever. In an isolated unit, the force )(g
iF  acting on the gel depends only on the size of this 

gel, iλ . It is assumed that the cantilever remains in contact with the gel throughout the entire 

cycle of gel swelling and de-swelling so that 0≥iξ  in an isolated unit. Wiring multiple BZ-PZ 

units into a network leads to interactions among all the piezoelectric cantilevers and hence, the 

force acting on a given gel depends on the degrees of swelling (sizes) of all the gels in the system.  



 48 

We assume that the connected units are identical and differ only in their force polarity. 

Then, the interaction between the BZ-PZ units depends only on the network topology. The 

strength of interaction can be determined by using (4-4) and (4-5), as demonstrated in ref  [51] 

for the serial and parallel circuits in Figure 4.2.  

Given that iU is the voltage across the ith unit, then for units connected in series, the sum 

of the voltages over all n  units is equal to zero, i.e.,  01 =∑ =
n
i iU .  In addition, for the serial 

connection, the charge on each unit is equal to the total charge in the system, i.e., QQi =  . With 

these relationships, we calculate that bending force acting on the cantilever i  can be written as  

 ][
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Here, ii mF ξ1
11

)0( −=  is Hook’s law for a bending elastic plate, and 12
122211

2
12 )( −−= mmmmκ  is 

the coupling strength coefficient, which is small and depends only on material properties of the 

cantilevers [51]. 

For units connected in parallel, the system obeys the following constraints: UUi =  and 

01 =∑ =
n
i iQ . In this case, the bending force acting on each cantilever is 
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Equations (4-6,7) show that the bending force on a given cantilever contains 

contributions from all BZ-PZ units in the network. The cross-terms on the right-hand-sides of (4-

6,7) correspond to pairwise interactions, which depend on the force polarities, and are relatively 

weak since κ  is small. The pairwise interactions in the serial and parallel circuits have the same 

magnitudes but are opposite in signs.  
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4.1.3 Phase Dynamics 

To facilitate our investigation of the synchronization in the BZ-PZ oscillator networks, we 

employ the phase model described in section 2.3. This technique allows us to significantly 

simplify the analysis of the dynamics of the oscillator networks because the interaction between 

weakly coupled oscillators only results in the time-dependent deviation of phase in each 

oscillator. If known, the function that describes the oscillator phase response can be utilized to 

simulate a coupled oscillator system in the phase domain and thus, reduce the complexity of the 

simulation as compared to the original nonlinear oscillator equations, (4-1,2,3,4,5). For networks 

of identical BZ-PZ oscillators, this function was determined numerically in [51]. It was shown 

that the phase dynamics in the serially connected network (see Figure 4.2 and (4-6)) is described 

by the following equation 

 ∑
=

−− −−=
n

j
ijjii ndtd

1

11 )H()0H(/ ϕϕεεϕκ  (4-8) 

For the parallel connection (see Figure 4.2 and (4-6)) , the phase dynamics equation is 
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11 )H(/ ϕϕεεϕκ  (4-9) 

The oscillation phase normalization in (4-9) is such that 10 ≤≤ iϕ , ni ,,2,1 = The 

function )H( ij ϕϕ −  (connection function) characterizes the rate of the phase shift for the 

oscillator i  due to the interaction with the oscillator j  at their relative phase difference of 

ij ϕϕ − The connection function )H(θ  is periodic at ]1,0[∈θ , and determined by the intrinsic 

properties of the oscillators described by (4-1,2,3).  
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Figure 4.3 The connection function )H(θ  used in the equations of the phase dynamics, (4-8,9). The connection 
function is periodic at ]1,0[∈θ . 

Figure 4.3 shows the plot of the connection function obtained in [51]. It is evident that the 

phase response of a BZ-PZ oscillator to an external action is quite complicated. The interaction 

between the oscillators can cause both positive and negative phase shifts depending on the phase 

difference, and this results in a variety of stable phase synchronization modes exhibited by the 

BZ-PZ oscillator networks [51]. For any set of initial phases for the individual oscillators, the 

system dynamics converges to one of the stable synchronization modes. 
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4.2 SYSTEM CONFIGURATION FOR PATTERN RECOGNITION 

The coupled BZ-PZ oscillator networks can achieve both in-phase and anti-phase 

synchronization, depending on the initial phases, connection type, and force polarity of each 

oscillator unit [51]. By specifying these conditions, the network can exhibit particular modes of 

synchronization. Below, we discuss how the synchronization dynamics in the BZ-PZ could be 

employed for pattern recognition tasks. 

Inspired by the Oscillator Neural Network model [31], we propose a similar computing 

paradigm for networks of coupled BZ-PZ oscillators. We specifically focus on BZ-PZ oscillators 

that are connected in series. Figure 4.4 illustrates how we transcribe a black and white image into 

this serially connected network. Each oscillator unit represents one pixel of the image and we 

specify the polarity of the PZ cantilever in each unit according to the color of the image. In 

particular, we assign the polarity the value of +1 for a white pixel and -1 for a black pixel. 

Rastering through the n pixels in the image (going from left to right), we assign a value of the 

polarity to each of the n oscillators according to the color of the pixel. In the device, the desired 

force polarities can be achieved by flipping the connecting wires; this changes the sign of the 

voltage generated by a BZ-PZ unit. 
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Figure 4.4 Schematics indicating how to transpose a black and white image onto the serially connected 
network of the BZ-PZ oscillators. Here, we store a binary image of the digit ‘0’ that contains 60 pixels. The force 
polarity of an oscillator is set to 1+  for a white pixel and to 1−  for a black pixel. Note that assigning 13 −=ε  is 
achieved through flipping the red and black connector wires. 

Our rationale for the above procedure is based on our findings for the synchronization of 

three BZ-PZ oscillators connected in series [51]. For a serial circuit of three oscillators having 

different force polarities, e.g., }1,1,1{ −++ , the only stable mode of synchronization corresponds 

to the in-phase synchronization (no phase difference) of the +1 units, which, in turn, are 

synchronized anti-phase (phase difference 0.5) with the -1 unit. Note that all phases are 

normalized to vary between 0 and 1. Based on extensive numerical simulations and a linear 

stability analysis (section 4.4), we conjecture that multiple BZ-PZ units connected in series 

exhibit a stable synchronization mode characterized by the in-phase synchronization of all the 

oscillators that have the same polarity, and the anti-phase synchronization with oscillators of 

different polarity.  



 53 

There is an important difference between the ONN model and the BZ-PZ network shown 

in Figure 4.4. Namely, in the ONN model, the coupling weights of oscillators are real numbers 

assigned according to the Hebbian learning rule that makes storing multiple patterns possible 

[32]. In contrast, the force polarity factors in our oscillator network can only be a binary value, 

1+  or 1− , so that each oscillator network is expected to store a single pattern. Hence, in this 

work, we define the pattern recognition task as retrieving one pattern that is closest to the pattern 

stored in the system from multiple input patterns. 

To initiate the recognition process, an input pattern is used to initialize the phase ϕ  of 

each oscillator in the network, with 0=ϕ  for a black pixel and 5.0=ϕ  for a white pixel (see 

Figure 4.4). Notably, the dynamics of the BZ gels are chemo-, photo- and mechano-responsive  

[11][55] and hence, the initial variations in phase among the units can be introduced by local 

applications of chemical stimulation, light or pressure. 

After the initialization, the system evolves the phases into some stable state, transforming 

the input pattern to some other pattern. As detailed below, our simulations reveal that an input 

pattern evolves to the stored pattern, which is defined by the set of force polarities. Importantly, 

the rate of convergence of the input image to the stored image depends on the similarity between 

the two images. “Convergence” means that the oscillators representing the black pixels in the 

stored pattern establish the in-phase synchronization amongst themselves, and the anti-phase 

synchronization with the oscillators that represent the white pixels. As detailed in the SI, we 

confirm the stability of the state of synchronization imposed by the stored pattern by using a 

linear stability analysis.  

Figure 4.5 illustrates the pattern recognition task performed by three different BZ-PZ 

oscillator networks, which store the respective images for the digits ‘0’, ‘1’, and ‘2’. The 
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networks are simultaneously initialized with the same distorted ‘1’ test image. Namely, the test 

image is used to set the initial phases of the pixels, as noted above. In the panels on the left, we 

show the temporal evolution in the systems by plotting the phase differences between the first 

oscillator and all the other oscillators (in the given system) as a function of time. The phase 

differences are plotted in the range from 0 to 0.5, which correspond to the in-phase and anti-

phase synchronization, respectively. In the panels on the right, the first image represents the 

initial input pattern and the temporal evolution of the networks is displayed through a sequence 

of images for the first 60 units of time; the interval between the images is equal to 10 time units. 

The unit of time is min5~0
1T−κ , where 2.0≈κ is the strength of coupling (see eq. (6)) and 

min1~0T is the period of oscillation of the un-coupled oscillators. Figure 4.5 reveals two 

important results. First, all these three networks converge to their own stored pattern. Second, the 

network that stores the number ‘1’ converges faster than the other two systems. In other words, 

the network storing the image ‘1’ provides the best match between the input and stored pattern, 

and hence, is the “winner” in the recognition task.  
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Figure 4.5 Illustration of the pattern recognition task. The three different BZ-PZ oscillator networks, which store 
the respective images for the digits ‘0’, ‘1’, and ‘2’, are initialized with the same distorted ‘1’ input image. The 
phase differences of the oscillations in the networks converge to the respective stored patterns in the course of 
synchronization. The blue and red lines distinguish between the two groups of oscillators that converge to the phase 
difference of 0  and 5.0 , respectively. The convergence is the fastest in the network exhibiting the best match 
between the input and stored pattern, i.e., in the network that stores the digit ‘1’.  
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The results shown in Figure 4.5 suggest that the convergence time can serve as an DoM 

that measures the differences between the input pattern and each stored pattern. Hence, a system 

consisting of multiple BZ-PZ oscillator networks can recognize patterns by detecting the shortest 

convergence time among the networks [4][26]. To support this hypothesis, we conducted 

multiple computational tests discussed in the next section. 

As noted above, the initial input patterns can be introduced into the network by setting 

the phases of oscillation in the individual BZ gels through chemical, optical or mechanical 

techniques [11]. Another method for storing patterns is to take the advantage of the coupled 

oscillator network dynamics. Since each oscillator network evidently converges to the pattern set 

by the force polarities, we can set the oscillator force polarities with the input pattern vectors in 

the same way as we set the stored patterns. Once the network phases become stable to the phases 

corresponding to the input test pattern, we switch the force polarities to the stored pattern and 

then measure the convergence time to this stored pattern. 

4.3 PERFORMANCE AND ROBUSTNESS 

In this section, we discuss various computer simulations designed to analyze the synchronization 

of coupled BZ-PZ oscillators connected in series, and demonstrate that the convergence time of 

coupled oscillator networks does indeed provide a robust measure of pattern recognition.  

We conduct the following three sets of computer simulations focused on measuring and 

comparing the convergence times obtained with different test patterns and stored patterns. First, 

we explore how the convergence time of a network is related to the difference between the input 

pattern and the stored pattern (Test 1). Second, we test the capability of two independent 
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networks to discriminate between two stored patterns with the “cross-pattern” test (Test 2). 

Finally, we apply the coupled oscillator network to the recognition task for images of the digits 0 

to 9 and analyze the recognition performance and robustness (Test 3).  

For all these tests, we define the convergence time of synchronization as the number of 

time units, 0
1T−κ , needed for the coupled oscillators to reach the stable state of synchronization 

that represents the stored pattern. Specifically, in this stable state, the phase difference values of 

oscillators are separated into two groups representing the black and white pixels, with each 

oscillator’s phase being within 1% of the group average. 

4.3.1 Distance Metric and Convergence Time 

In Test 1, we first demonstrate that the time for convergence depends on the similarity between 

the stored and input patterns. For this purpose, we compare the convergence time to the 

Hamming distance, which is the sum of the element-wise differences between two binary vectors. 

This parameter is a quantitative measure of the total difference between given images of the 

same size. Note that the phase dynamics and synchronization mode for the mirror (bit 

complement) pattern are indistinguishable from those for the original pattern; this can be seen 

from (4-9), where the r.h.s. of the equation does not change when the sign of all the force 

polarities are altered simultaneously. Therefore, we effectively consider a stored pattern and its 

mirror pattern in a single network.  

To vary the Hamming distance between a given stored pattern and an input, we start with 

the copy of the stored pattern and generate input patterns by flipping an increasing number of 

pixels until the input pattern is transformed into the mirror pattern. In this procedure, the input 
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patterns are gradually less similar to the stored pattern and more similar to the mirror pattern, as 

illustrated in Figure 4.6. For the stored pattern shown in Figure 4.6, the Hamming distance 

between the stored and mirror patterns is 99. The Hamming distance between the input pattern 

and one of the stable states of the system changes consecutively as 1, 2,…, 49, 50, 49,…, 2, 1.  

 

Figure 4.6 The stored 10x10 pattern and an example of the input pattern set used in Test 1. The set is 
generated by flipping an increasing number of pixels until the input pattern is transformed into the mirror pattern. 
The difference between the stored pattern and an image from the set is characterized by the Hamming distance, 
which is the sum of the element-wise differences between two binary vectors. 

The images in Figure 4.6 represent only one particular sequence of input patterns 

characterized by the above set of Hamming distances to the stable states. In Test 1, for a given 

Hamming distance, the bits to be flipped are selected randomly, and the convergence time is 

averaged over 100 runs, so that 10099×  input patterns were tested for convergence. The 

comparison between the obtained convergence time and Hamming distance is shown in Figure 

4.7. Figure 4.7 clearly indicates that that the time for the coupled oscillator network to 
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synchronize follows the trend of the difference between input and stored patterns, so that the 

convergence time decreases with a decrease in the Hamming distance. (The convergence time 

decreases after 50 bits have been flipped because, as noted above, the phase dynamics and 

synchronization mode for the mirror and stored pattern are indistinguishable.) In other words, the 

convergence time provides a robust measure of the degree of match between the input and stored 

patterns. 

 

Figure 4.7 The average convergence time obtained in Test 1 (blue line), and the Hamming distance between 
the stored and input images (orange line) as functions of the number of flipped bits. The error bars show the 
range of convergence times obtained from 100 runs at a given number of flipped bits, which were selected at 
random from all the bits in the system. 



 60 

4.3.2 Cross-Pattern Test 

In the cross-pattern simulations, Test 2, we explore the ability of our system to discriminate 

between two distinct patterns. In this test, we choose the two patterns, 1p p1 and 2p p2 shown in 

Figure 4.8, and store them in two oscillator networks. They share some bit values at certain pixel 

positions and differ at the others. We label 0p pO as the set of pixels where 1p p1 and 2p p2 share 

the same values, and xp pX as the set of pixels where they differ from each other. To generate the 

input patterns, we employ the same strategy of flipping bits as in Test 1. Specifically, we select 

pixel positions from pX xp and set them to the value in 2p  p2so that the input pattern gradually 

evolves from 1p p1 to 2p p2. As in Test 1, for each number of pixels, the random selection is 

repeated 100 times.   

 

Figure 4.8 An example of the 1010×  stored and input patterns used in Test 2. The input patterns are generated 
using the same strategy of flipping bits as in Test 1. 
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Every input pattern is applied to both networks ( 1p  and 2p ) so that their convergence 

times can be compared. The number of different bits, the size of xp pX, is 32; thus, we generate 

31 sets of input patterns. Figure 4.9 presents the comparison of convergence times to the stored 

patterns 1p p1 and 2p p2. As the input patterns evolve from  1p p1 to 2p p2, the convergence 

time to 1p p1 increases while the convergence time to 2p p2 decreases. The results indicate that 

we can use the convergence time to determine which stored pattern is close to the input pattern. 

It is only when the input pattern is equally similar to both stored patterns (within a few bits) that 

the system fails to identify which one is closer.  

 

Figure 4.9 The average times of convergence to the stored patterns 1p  (blue line) and 2p  (orange line) obtained in 
Test 2 as functions of the number of flipped bits. The error bars are obtained as described in Figure 4.7. 
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In the cross-pattern test shown in Figure 4.9, the size of xp pX is less than half of the total 

number of pixels in the image. If we select 1p p1 and 2p p2 with a larger value of xp pX, the two 

stored patterns become more similar to each other’s mirror pattern and the convergence time 

should be affected. To demonstrate this point, we perform the cross-pattern test on two different 

stored patterns where the size of xp pX = 63. Figure 4.10 shows the images of the two chosen 

patterns, and the convergence times to both 1p p1  and 2p p2  as functions of the number of 

flipped bits. The latter plot reveals that as the pattern distances continue to increase, the curves 

are no longer monotonic. The reason for this behavior is due to the presence of the mirror pattern 

in each network. For example, the convergence time to 1p p1 increases monotonically as the 

input patterns become less similar to 1p p1. However, since the size of xp pX is large, after 45 

pixels have been flipped, the input patterns become increasingly similar to the mirror pattern of 

1p p1. Therefore, these input patterns actually converge to the mirror pattern of 1p ; this behavior 

was also observed in Figure 4.7, the result of Test 1. Importantly, however, even with the 

interference of the mirror patterns, the two stored patterns can be distinguished from each other 

because the convergence times are distinct for the two samples, except at a few points (between 

30 and 32 flips on the x-axis). 
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Figure 4.10 The average times of convergence to the stored patterns 1p  (blue line) and 2p  (orange line) obtained 
in Test 2 as functions of the number of flipped bits. The two stored patterns are more similar to each other’s mirror 
patterns than the stored patterns in Figure 4.8. The observed peaks are similar to the one in Figure 4.6, the result of 
Test 1. 

4.3.3 Recognition Performance Under Noise 

Finally, in Test 3, we examine the performance of our coupled oscillator network on a pattern 

recognition task that is expanded from the one shown in Figure 4.5. Now, the stored patterns are 

60 pixel binary images of digits ‘0’ to ‘9’ (see Figure 4.11). The input patterns are distorted 

images of each digit, with noise that is generated by randomly flipping bits. The degree of added 

noise increases gradually in the recognition tests, as 1, 5, 10, 15, 20, 25, and then 30 pixels are 

randomly selected and flipped from the original digit images; here we perform 100 simulations 

for each case. Figure 4.11 shows not only the stored patterns, but also provides examples of the 
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input patterns for distorted images of digits ‘3’ (Figure 4.11b) and ‘8’ (Figure 4.11c). In each 

convergence simulation, we impose an input pattern onto 10 networks of 60 coupled oscillators; 

each network stores one image of a digit. A network recognizes the input pattern yielding the 

shortest convergence time, which corresponds to the highest DoM. If the winner is the same digit 

as the original digit of the noisy input pattern, the recognition is a hit, otherwise it is a miss.  

 

Figure 4.11 The images used in Test 3. The top row (a) shows the 10x6 binary images of the ten digits used as 
the stored patterns. Rows (b) and (c) show the respective distorted image of the digit ‘3’ and ‘8’ that are obtained 
by flipping 1, 5, 10, 15, 20, 25, 30 pixels that are randomly selected. 

Figure 4.12 is a bar graph of the recognition accuracy for the cases of ten stored digit 

patterns. As the noise increases, the recognition accuracies decrease. The cases of 30 flipped bits 

are not shown because when half of the bits are flipped, the recognition accuracies drop to zero. 

The reason for the latter behavior is that the input patterns for these cases are actually further 
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from the original digit pattern than they are from the others. Among the four patterns shown here, 

‘3’ produces the worst recognition performance because this digitized image is very close to ‘6’, 

‘8’, and ‘9’ with very few different pixels.  

Further, each column in Figure 4.13 represents the difference between the convergence 

times for the winner and the runner-up for all the hit cases. The height of the column is a 

measure of the robustness of the recognition task; the data is plotted for the different degrees of 

noise. The results indicate that when the degree of noise is increased, the time lag between the 

runner-up and the winner becomes shorter and hence, it becomes more difficult for the oscillator 

system to differentiate the correct pattern in an efficient manner.  

 

Figure 4.12 The accuracies of the recognition Test 3 for the input patterns of all the digits that are distorted 
with various levels of noise. The bars are colored according to the noise level. The horizontal axis indicates the 
input patterns. 
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Figure 4.13 The difference between the average convergence times of the winner and of the runner-up in all the hit 
cases in Test 3 for the digits shown in Figure 4.12. The error bars show the standard deviation obtained for each bar. 
The results indicate how fast the correct, recognized winner leads the runner-up. The other notations are the same as 
in Figure 4.12. 

4.3.4 Effect of Gel Heterogeneities on Synchronization 

Within our model for the BZ-PZ system, it is assumed that all the BZ-PZ units are 

chemically and physically identical. The effect of variations in the properties of the individual 

oscillators, however, can be estimated within the phase dynamics approach. Specifically, we 

consider a network of BZ-PZ units where the periods of the free-running oscillations vary around 

0T  due to heterogeneities among the units. The dynamics of this system is described by the 

following generalization of (4-8) 
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where 0TTT ii −=∆  is the detuning of oscillator i . We assume that the relative variation of the 

period of oscillation, 0/TT∆ , is a uniformly distributed random value within the interval 

],[ σσ− , and perform simulations at various values of the distribution width σ . Figure 4.14 

shows the results of the simulation for the evolution of the input pattern corresponding to the 

distorted digit “1” towards the stored pattern “2” (see Figure 4.5, third row) at four values of σ . 

When σ  equals κ001.0  and κ002.0 , the synchronization dynamics is similar to that in the case 

of the identical oscillators. The only effect of the heterogeneity is a “widening” of the two final 

states of synchronization, i.e., the phases are grouped within narrow bands around the phase 

differences 0 and 0.5. A further increase of the distribution width to κσ 005.0=  makes the 

recognition problematic, and the recognition is impossible at κσ 01.0= . 
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Figure 4.14 The phase dynamics for the uniform distribution ],[/ 0 σσ−∈∆ TT  for various values of σ . 

The criterion of convergence used for the pattern recognition should be adjusted 

depending on the magnitude of variations in 0/TT∆ . The latter observation is evident from 

Figure 4.15, which shows an increase in the scattering of the convergence times resulting from 

an increase in the distribution width σ  from κ4101 −×  to κ3102 −× . Here, we set the 

convergence threshold to 0.1 (each oscillator’s phase is within 10% of the group average), which 

is 10 times greater than the value used for the studies described in the main text.  
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Figure 4.15 The convergence time at random ],[/ 0 σσ−∈∆ TT  as a function of the distribution width σ . The 
convergence threshold is 0.1. 

4.4 SYNCHRONIZATION MODE STABILITY  

In this section, we use the linearization approach to show that the synchronization mode 

used for the pattern recognition is stable. We consider a system of n  serially connected BZ-PZ 

oscillator units; 1n  of these units have force polarities of +1 and the remaining 12 nnn −=  units 

have force polarities of 1− . The equation of phase dynamics (4-8), is invariant under a 

renumbering of the units so we assign the polarity 1+  to the units 1,,2,1 ni = , and the polarity 

1−  to the units nnnj ,,2,1 11 ++= . The application of eq. (8) to the two groups of units gives 

the following equations of phase dynamics: 
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We assume that upon synchronization, the oscillators are synchronized in-phase within 

each group, and that the difference in phase of oscillation between these two groups is ψ . By 

substituting ti νϕ =  and ψνϕ += tj  to eqs. (4-11,12), we obtain the following equations for 

the constant shift in the frequency of oscillation ν  and the phase difference ψ  that characterize 

the state of synchronization: 

 )]H()0[H(2
1 ψνκ +=− nn  (4-13) 

 )]1H()0[H(1
1 ψνκ −+=− nn  (4-14) 

Equation (4-14) is written with taking into account that the connection function )H(θ  is periodic 

so )1H()H( ψψ −=− . Subtraction of (4-14) from (4-13) yields the equation for the phase 

difference: 

 0)1H()H()0H()( 1212 =−−+− ψψ nnnn  (4-15) 
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Figure 4.16 The phase difference ψ  between the two groups of oscillators obtained by numerical solution of 
(4-15) at n=46. 

The connection function )H(θ  is known (see Figure 4.3) so the phase difference ψ  can 

be found by numerical solution of (4-15). Figure 4.16 shows the calculated values of ψ  as a 

function of 1n  at 60=n .  

In order to study the stability of the synchronization state, we introduce the phase 

difference between the oscillator ni ,,2 =  and the oscillator 1, 1ϕϕθ −= ki , and use (4-11,12) 

to obtain the equations for iθ . For 1,,2 ni = , the equation is 
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and for nnnj ,,2,1 11 ++= , the obtained equation is 
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Linearization of (4-16,17) around the steady state, iii δθθθ += , where 0=iθ  for 

ni ,,2 =  and ψθ =j  for nnnj ,,2,1 11 ++= ,  yields the following two respective 

equations for the phase perturbations: 

 ii adtdn δθδθκ 1
1 / =−  (4-18) 
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In (4-18,19), cbaa ,,, 21  are the numerical coefficients defined as 

 )(H)0(H 211 ψ′−′= nna  (4-20) 

 )1(H)0(H 122 ψ−′−′= nna  (4-21) 

 )1(H)0(H ψ−′+′=b  (4-22) 

 )(H)0(H ψ′+′=c  (4-23) 

where the prime denotes the derivative of the connection function H with respect to phase. The 

synchronization state is stable if all the eigenvalues of the matrix M  

 



=

2
1

AB
0AM  (4-24) 

are negative. The matrix M  has a block structure, where 1A  is a )1()1( 11 −×− nn  diagonal 

matrix, ijij a δ][ 11 =A , 2A  is a ( 22 nn × ) matrix with the elements ca ijij −= δ][ 22A , B  is a 

)1( 12 −× nn  matrix with all elements equal to b , bij =][B , and 0  is a 21 )1( nn ×−  block filled 

with zeroes.  

Due to the block structure of (4-24) the set of eigenvalues of the matrix M  consists of the 

eigenvalues of the matrices 1A  and 2A . The matrix 1A  is diagonal with all the elements equal 

to 1a ; hence, all the eigenvalues of 1A  are equal to 1a . The matrix 2A  is a circulant matrix.  
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The matrix M  has the three distinct eigenvalues },,{ 2221 cnaaa − , which depend on 

the connection function H , the number of oscillators in the system n , and on the set of force 

polarities 1n  and 12 nnn −=  (4-15~24). Numerical calculations show that all the eigenvalues 

are negative at 60=n  and 59,,2,11 =n . Therefore, the synchronization mode used for the 

pattern recognition is stable. 

4.5 MATERIALS AND FEASIBILITY 

4.5.1 BZ Gel Parameters 

The connection function )H(θ  shown in Fig. 4.3 was numerically obtained in [51] for the set of 

materials and model parameters specified below. We assume that the BZ gel is formed from 

poly(N-isopropylacrylamide) (PNIPAAm) chains containing grafted ruthenium metal-ion 

catalysts [5]. The model parameters are the same as in [51]. The volume fraction of polymer and 

the crosslink density in the undeformed BZ gel are 16.00 =φ  and 4
0 104 −×=c , respectively. 

The interaction parameter ∗χ , which accounts for the hydrating effect of the oxidized catalyst, is 

105.0=∗χ . The undeformed gel size is mm5.00 =h . The values of ⊥λ  and of the offset ∗λ  are 

65.1≈= ∗
⊥ λλ , which corresponds to the steady-state value for the isotropic (unrestricted) 

swelling of the BZ gel [51]. 
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4.5.2 Piezoelectric Cantilever Parameters 

The coefficients 11m , 12m , and 22m  in (4-4,5) that describe the behavior of a bending 

piezoelectric bimorph plate are given by the following equations [56]: 

 
Ew
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2
)/( 3

11 =  (4-25) 

 2
3112 )/(

4
3

pp hLdm =  (4-26) 

 )/)(4/1(2 2
3322 ppp hLkwm −= ε  (4-27) 

Here, pL , pw , and ph  are the respective length, width, and layer thickness of the 

piezoelectric bimorph plate; E , 31d , and 33ε  are the Young’s modulus, piezoelectric constant, 

and dielectric constant of the piezoelectric material, respectively. Finally, 2/1
33

2
31 )/( εEdk =  is 

the electromechanical coupling factor characterizing the piezoelectric material.  

The piezoelectric bimorph plate dimensions are taken to be mm1== pp wL , and

μm10=ph . The plate is assumed to be fabricated from polarized Lead-Zirconate-Titanate 

(PZT) ceramics. A typical PZT ceramic has a Young’s modulus of 50=E GPa; typical values 

for the other parameters are 110
31 Vm105.1 −−×−=d  and 0

3
33 108.1 εε ×= , where 

1
0 mpF85.8 −=ε  is the dielectric constant of the vacuum [57]. In our calculations, we use the 

latter values of E  and 33ε , and a twofold greater value for the piezoelectric constant (setting 

110
31 Vm103 −−×−=d ), which can be achieved in PZT through sophisticated processing 

methods [58][59]. 
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We assume that the piezoelectric cantilevers are fabricated using advanced processing 

methods [58][59], which yield a two-fold increase in the piezoelectric constant relative to a 

typical PZT. At the model parameter values used for the calculations, the strength of coupling is 

206.0≈κ . For the chosen model parameters, the period of oscillation of the un-coupled 

oscillators is min1~0T [51]. 

4.5.3 Feasibility of System Fabrication 

Recent advances in the fabrication of hybrid gel-piezoelectric systems indicate the feasibility of 

creating the BZ-PZ oscillator networks described here. In particular, studies have demonstrated 

that the deformation of a humidity-responsive polymer network on a piezoelectric film could 

generate measurable voltages [60]. It has also been shown that arrays of millimeter-sized 

piezoelectric actuator-sensor systems, which are laminated on soft biological materials, could 

monitor the mechanical properties of the underlying material [61]. Hence, current state-of-art 

manufacturing techniques allow researchers to fabricate millimeter-sized gel-piezoelectric 

elements, which generate strong electric signals. 

4.6 DISCUSSION 

In summary, we designed a materials system that can sense, actuate, communicate and 

compute in a self-organized manner. This functionality is enabled by the unique properties of the 

BZ gels, which do not require external power sources to drive their oscillatory motion. Moreover, 

these BZ gels are responsive to mechanical input from the overlying piezoelectric materials. The 
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piezoelectrics also play a crucial and distinctive role through their inter-conversion of 

mechanical and electrical energy, with the deformation of the cantilevers providing the voltage 

that flows through the system. We then employed these hybrid gel-piezoelectric units to couple 

local chemo-mechanical oscillations over long distances through electrical connections. This 

coupling allowed the oscillations of BZ-PZ units to become synchronized; in a network where 

the units are connected in series, the units with the same force polarity are synchronized in-phase 

and the ones with opposite force polarities are synchronized out-of-phase. Taking advantage of 

the distinct synchronization behavior of these chemo-mechanical networks, we leveraged 

concepts from oscillator-based computing in order to utilize our coupled BZ-PZ oscillators in 

performing pattern recognition tasks. In particular, we imposed a collection of input patterns 

onto different BZ-PZ networks, where each network encompassed a distinct stored pattern. The 

network encompassing the stored pattern closest to the input pattern exhibited the fastest 

convergence time to the stable synchronization behavior and could be identified as the “winner”. 

In this way, the networks of coupled BZ-PZ oscillators achieved pattern recognition. We 

demonstrated that the convergence time to the stable synchronization provides a robust measure 

of the degree of match between the input and stored patterns. Through these studies, we laid out 

fundamental and experimentally realizable design rules for creating “materials that compute”. 
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5.0  MULTIPLE BZ-PZ NETWORKS IN PARALLEL 

A single BZ-PZ network can only perform pattern matching on black and white images (binary 

patterns). This limitation arises from storing patterns by setting binary values of the force 

polarities, 1± , in the device. To store and process richer images, such as colored patterns, we 

employ several BZ-PZ networks simultaneously as depicted in Figure 5.1, so that one pattern is 

encoded by multiple binary vectors and processed using different “channels”.  

 

Figure 5.1 Schematics of the four BZ-PZ networks used for recognition of colored patterns. After decomposition of 
input image, the networks perform simultaneous matching operations in the corresponding information channels. 
The convergence time (given in number in cycles) is determined for each channel separately. 

 



 78 

5.1 MULTI-CHANNEL BZ-PZ NETWORKS 

The patterns that we consider here contain up to eight colors, which are represented in terms of 

the red-green-blue (RGB) color scheme [62]. As shown in Table 5.1, these eight colors are 

encoded into four binary value channels; the Red, Green, and Blue are the three fundamental 

color channels. The colors yellow, cyan and magenta are generated as combinations of the basic 

colors in RGB. Note that black and white could also be represented by RGB channels as )0,0,0(  

or )1,1,1( respectively. We, however, set these two colors as an independent channel to describe 

the shape of the pattern. In the original RGB model, any color can be obtained from the addition 

of different degrees of the RGB components. Because our color channel is binary and we assume 

that “0” and “1” represent the respective “none” and “full degree” of color, we are limited to 

eight colors in this case. Other colors can, however, be obtained with additional channels. For 

example, if the yellow, cyan, and magenta are defined as separate channels, more colors can be 

represented by through the combination of six, instead of three channels.  

Table 5.1 Channel Representation of Color 

Color Name 
Channels 

Black/
White Red Green Blue 

 

Black 0 0 0 0 
White 1 0 0 0 
Red 0 1 0 0 

Green 0 0 1 0 
Blue 0 0 0 1 

Yellow 0 1 1 0 
Cyan 0 0 1 1 

Magenta 0 1 0 1 
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To encode a specific color image (see Figure 5.1), we decompose the pattern into four 

binary vectors; each binary vector is stored in a single channel and there are four channels in 

total. In the black and white (B/W) channel, the pixel value is 1 only if the pixel is white. 

Namely, this channel marks the white background. For the remaining RGB channels, a value of 

‘1’ indicates that the corresponding color component is present in the pixel. For example, yellow 

is the combination of red and green; hence, it is coded as )0,1,1,0( .  

 

Figure 5.2 Pattern matching in color channels with multiple BZ-PZ networks. The first row shows the colored 
“smiley face” as the stored pattern, and its decomposed binary pattern images in the B/W, Red, Green and Blue 
channels, respectively. The second and third rows present the two test input patterns with different types of image 
variation, and their decomposed patterns in each channel. On the bottom of each row, the convergence time for each 
channel is shown. 

Each of the four channels in Figure 5.1 is a network of serially coupled BZ-PZ 

oscillators. The first BZ-PZ network represents the B/W channel, and the second, third and 
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fourth networks represent the Red, Green, and Blue channels, respectively. Figure 5.1 illustrates 

the decomposition of a stored pattern into these four networks. In Figure 5.1, the stored pattern is 

a colored version of the “smiley face”, which now has two green “eyes” and a yellow “mouth”. 

The vector patterns in each of the different channels are displayed as binary, black and white 

images. Figure 5.2 shows the comparable decomposition of two sample input patterns (For 

convenience, we repeat the decomposition of the stored pattern as the first row of Figure 5.2).  

These different channels capture different visual features of the original color pattern. For 

example, the network associated with the B/W channel discriminates the color pixels from the 

background. The pixels representing the green “eyes” are captured in the decomposed pattern in 

the Green channel, while the pixels representing the yellow “mouth” appear in both the Red and 

Green channels.  

The two examples of test input patterns shown in the second and third rows of Figure 5.2 

are deliberately designed to demonstrate two types of variations on the stored pattern. The first 

test pattern shows a variation in color; one of the green “eyes” in the stored pattern is switched to 

red. The location and total number of colored pixels remain unchanged, and thus, the shape of 

the “smiley face” is the same as the stored pattern. These features are effectively reflected in the 

decomposed patterns (Figure 5.2, second row). The decomposed pattern in the B/W channel still 

remains the same, but the “left eye” is moved from the Green channel to the Red channel, 

representing the color change. The second test pattern displays the same color scheme as the 

stored pattern, but the size of the left eye is enlarged. Namely, the shape of objects in the image 

is distorted. This change in image is captured in the decomposed patterns of both the B/W 

channel and the Green channel.  
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The pattern matching is performed simultaneously by the four BZ-PZ oscillator networks 

(i.e., the different channels). The networks contain the stored pattern according to the scheme in 

the top row of Figure 5.2. As in the previous example, the input patterns are used to initialize the 

phase of the oscillators in the network, following the scheme in row 2 or 3 of Figure 5.2. Once 

the BZ networks are initialized in this way, the decomposed binary images of the test pattern 

synchronize to the respective decomposed stored image.  

As expected, the convergence time is sensitive to any defect or variation between the 

input and stored images in the corresponding channel. When the first input pattern is imposed on 

the network, the convergence time in the B/W and Blue channels are both 0 (see Figure 5.2). The 

fact that the convergence time is 0 in the B/W channel indicates that the geometric shape of the 

input and stored patterns are the same. The convergence time of the Green and the Red channels, 

however, are non-zero, thus indicating a variation in color between the input and stored patterns.  

In the case involving the second test pattern, the non-zero convergence time in the B/W 

channel indicates that shape of the input and stored pattern are no longer identical. Of the color 

channels, it is only the Green one that exhibits a non-zero convergence time. Taken together, the 

information reveals that the variation in shape occurs in the green pixels. Hence, the 

measurements not only indicate a disparity in the shape of the test and stored patterns, but also 

pinpoint the region where the disparity is localized. 

To gain further insight into the effect of defects on the convergence time in multiple 

channels, we perform another two tests on the same stored pattern, as illustrated in Figure 5.3. In 

these two tests, a series of input patterns are generated by replacing the green pixels of the “right 

eye” one by one with blue pixels (Figure 5.3(a)) or with white pixels (Figure 5.3(b)), until all the 

pixels of the right eye are turned into blue (in (a)) or made to disappear (in (b)). In the former 
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case, we illustrate the effect of modifying color, while in the latter case we illustrate the effect of 

modifying the shape of the image. In Figure 5.3(c)-(e), we plot the convergence times in 

networks corresponding to the respective Blue, Green, and B/W channels. Consider the situation 

for case (a) where the green pixels are turned to blue. Here, the number of blue pixels increases, 

while the number of green pixels decreases relative to the stored pattern. Notably, the 

convergence times increase in both the blue and green channels. This increase in convergence 

time is correlated to the increase in the number of “defective” pixels, which depends on the 

difference between the decomposed patterns of the input pattern and stored pattern. Namely, the 

Hamming distance between input and stored patterns increases as the number of green bits are 

flipped to another color and hence, the image becomes more “defective”. This result confirms 

our prior conclusion [15] that the convergence time of a BZ-PZ oscillator network can serve as 

distance metric between input and stored binary patterns. 

The above conclusion also applies to case (b), where the convergence times in the Blue 

and the B/W channels are seen to increase. Again, the increase in convergence time is due to the 

accumulation of defects as the green pixels are replaced by white sites and the Hamming 

distance between the decomposed input and stored increases.  
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Figure 5.3 Pattern matching with varying input patterns. (a) Nine color image patterns show the process of turn 
green “left eye” into blue pixel by pixel. The first one is the stored pattern, and the rest eight patterns are the input 
patterns; (b) Similar test with the process that remove “left eye” object. We plot convergence time in each channel 
as a function of the number of changed pixels. (c) Convergence time in Blue channel in test (a). (d) Convergence 
time in B/W channel in test (b). (e) Convergence times in Green channel for both test (a) and (b). Note that the green 
channel responds in exactly the same manner to test (a) and (b), resulting in the same plot of the convergence time 
(e). 
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5.2 DETECTING DEFECTS IN QR CODE 

We now apply our system to an important practical application: the pattern matching of a Quick 

Response (QR) code. QR codes are the two-dimensional barcodes used to label a tremendous 

range of consumer goods. Read by a barcode scanner or cell phone, the label allows merchandise 

to be readily identified, tracked and marketed [21]. QR codes are also used to store sensitive 

information such as bank account numbers or credit card information, and can be used to make 

automatic payments. Hence, being able to distinguish a legitimate QR code from a counterfeit 

image is of significant commercial importance. 

A typical QR code pattern consists of a matrix of black and white pixels. Square patches, 

or “anchors”, fixed at three corners of the image are used to locate and center the position of the 

pattern. The pixels in the remainder of the image are arranged in a specific order to encode the 

desired information. We first generate a 2121×  sized QR pattern that encodes the text phrase 

“Hello World”. (The message is encoded with standard QR code algorithm.) We then convert 

this black and white image into a colored pattern by randomly converting all the black pixels into 

the colors in Table 2 to form a new pattern. Such a colored QR pattern can also be correctly 

decoded by a QR code scanner (if the grayscale threshold is set properly). Here, the encoded 

color pattern can be used to inscribe additional information [63]. Similar to the previous tests, we 

store the color QR pattern in four BZ-PZ oscillator networks, as illustrated in Figure 5.4. The 

network for each channel has the same number of BZ-PZ units as the number of pixels (

4412121 =× ).  

In the next step, we introduce defect pixels in the input patterns by randomly altering the 

colors in a number of pixels in the stored pattern. In this test, we add 1, 10, 20, 30, 40, 50 defect 

pixels in sequence and for each case, we repeat the simulation of pattern matching 100 times, 
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with different randomized defects in the input patterns. Figure 5.4 shows the stored QR pattern 

and an example of an input pattern with 10 defect pixels. The results from the simulations are 

plotted as bar graphs that contain averaged, minimum and maximum convergence times. The 

error bars for the minimum and maximum convergence times display a relatively broad range for 

the cases with one “defective” pixel; this is due to the large variations associated with the 

random selection and color change of just one pixel. Changing the colors of pixels into yellow, 

cyan, or magenta involves two channels and thus brings larger variations in the convergence time 

in cases that involve just a few defect pixels. These variations in convergence time are reduced 

as the number of defect pixels is increased.  

Importantly, the simulation results shown in Figure 5.4 indicate that the matching 

operation is very sensitive to the presence of defects, with even one defect producing an obvious 

delay in synchronization (above 30 oscillation cycles) as compared to perfect matching between 

the input and stored patterns. With respect to using the device for encryption or devising a 

security system, the test QR code information “Hello World” can be viewed as the “plain code”, 

while the codes in the RGB channels serve as a “password” (or a “watermark”) in the different 

“layers”. In other words, the password is encrypted in multiple channels. In this case, any test 

pattern where a colored pixel has been flipped from the original colorized pattern (on the left in 

Figure 5.4) would fail the verification test, even though the test image carries the correct plain 

code for a QR scanner. Hence, this QR code test exhibits the potential of our system to be 

applied in cryptography or steganography. In the latter case, our system can hide an encrypted 

message, where even if the encrypted message is deciphered (in this case the black and white QR 

code), the hidden message (encoded in the colored pattern) is not seen. 
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Figure 5.4 Pattern matching of QR code in multiple color channel. The black/white binary QR code pattern of 
“Hello World” and randomly colored version as stored pattern are shown in black frame. An example of test input 
patterns with 10 defect pixels (marked with “x”) are placed on the top right. The bar graph on the bottom gives the 
averaged convergence time of the repeated simulation of matching operations. The error bars give the maximum and 
minimum. Each input pattern is labeled at x-axis according to its number of defect pixels, with the three color bars 
corresponding to convergence time in RGB channels. Note that B/W channel detects no channel in this test and its 
convergence time is 0, which is not shown. 
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5.3 DISCUSSION 

Our overarching goal is to design a materials system where the inherent properties of the 

different components enable the system to perform a computational task: pattern recognition. 

This task is enabled by combining the unique behavior of self-oscillating BZ gels and 

piezoelectric (PZ) films in a system that undergoes continuous oscillations without external 

electrical input. We also built on advances in computer science to utilize the synchronization of 

oscillators to perform computation. In essence, the properties of the material and the computing 

paradigm are ideally matched. 

A particularly challenging task for these “materials that compute” is to detect defects in 

an input pattern relative to a stored image that encompasses information in both the shape and 

the color of the pattern. In effect, the device must encode and recognize a significant amount of 

specific structural detail. Here, we addressed this problem by employing a single BZ-PZ network 

as a distinct “channel” and utilizing multiple channels at once. By decomposing a colored image 

into sets of binary vectors, we used each channel to store distinct information about the color of 

the pattern and the shape of the image. By using multiple networks, we captured the spatial 

features of the entire image in this multi-channel system. 

Our simulations reveal that the proposed multi-channel BZ-PZ device can detect 

remarkably subtle differences in spatial features between the input and stored patterns. In 

particular, the device can detect a change in the color of just one pixel or a small change in the 

shape of an object in the image. We also applied our system to the task of recognizing a colored 

QR code and thereby showed its potential in cryptography or steganography.  

The multiple BZ-PZ oscillator networks recognize patterns by detecting the shortest 

convergence time among the networks [13]. The convergence time is a measure of how long it 
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takes for a set of oscillators to become phase-locked (i.e., synchronized to the final stable states). 

In the simulations, the latter condition is met if the phase differences among the units lie below a 

specified threshold value. In a physical realization of this system, peripheral circuitry would be 

necessary to detect the state of synchronization and measure the convergence time. Such 

synchronization detection circuits have been designed and implemented in prior studies of 

neuromorphic and oscillator-based computing [26][64][65]. 

It is worth emphasizing that the BZ gels are sensitive to light, pressure and chemical 

stimuli, and hence, the input pattern can be imposed onto the network through a number of 

physical or sensory means. In other words, the devices are responsive to external cues and thus, 

can be used to detect environmental changes. By using multi-channel BZ-PZ devices, we can 

significantly expand the functionality of these “materials that compute” since we can encode and 

recognize patterns with richer information content. Hence, the devices are practically suitable for 

pattern matching or recognition of images that encrypt information at different “layers” or spatial 

levels. Thus, the device can prove to be particularly valuable for security applications that 

require detection of counterfeit information, encoding of hidden information, and verification of 

multi-attribute passwords. 

In this section, we extend the information representation in our system by organizing 

multiple BZ-PZ network and encode complex patterns with basic binary patterns that can be 

processed in single BZ-PZ network. Despite the advantages we exploit in such a multi-network 

design, the limit of information capacity in a single network is not improved yet in this case. Ine 

the next chapter, we demonstrate a new method to enrich the information representation in a 

single BZ-PZ network. 
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6.0  BZ-PZ OSCILLATOR NETWORK WITH CAPACITORS 

One limitation of the previously proposed BZ-PZ oscillator network is that it can either 

only process patterns composed of binary values or need multiple networks for information 

representation. This restriction is due to the limited number of phase differences between groups 

of oscillators attained at steady state. The phase difference between oscillators in a given 

synchronization mode is determined by the direction of the polarization of the PZ cantilevers in 

the network. These polarities can only have one of two directions (labeled +1 or -1) and result in 

either in-phase or anti-phase synchronization between oscillators.  

In this chapter, we present a method for increasing the amount of information that can be 

represented by a given BZ-PZ network. We accomplish this task by introducing capacitors into 

the system (Figure 6.1) and using the capacitors to modify the interactions between the BZ-PZ 

units. We demonstrate that the introduction of capacitors alters the system dynamics and creates 

additional, stable synchronization modes. The availability of these new modes allows the BZ-PZ 

system to store additional information and thus, expands the utility of the device.  

Our inspiration for adding capacitors to the BZ network comes from the behavior of 

biological neural systems, where synapses, or neuronal junctions, play a vital role in the 

formation of memory. The strength of a synapse is determined by the strength of the coupling 

between neurons and facilitates the storage of information [66]. For decades, computer scientists 

model neural systems with artificial neural networks, where the synaptic strength between nodes 
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is represented by weight parameters [67]. By adjusting the weights with various learning 

algorithms [68], these artificial neutral networks can be made to store information. In recent 

research on neuromorphic computing, which mimics neuro-biological architectures in a 

computing hardware platform, the function of synapses can be implemented by introducing 

devices that display variable states, such as variable capacitance and resistance [69][70][71].  

In the BZ-PZ oscillator network, information about a particular pattern is stored by 

programming the coupling strength between BZ-PZ units (i.e., the binary values of the force 

polarities). We now show how this dynamical behavior can be controlled and augmented by the 

introduction of the appropriate passive components, i.e., the capacitors. As detailed herein, the 

capacitors effectively redistribute the charge and force within the system and thereby modify the 

strength of the interactions among the units. This modification in turn alters the system 

dynamics. Hence, these findings give fundamental insight into how certain physical factors affect 

the behavior of dynamical systems and how these factors can be used to tailor the functionality 

of the system. 

 

I. BZ-PZ Oscillator Network with Capacitors 
 
Figure 6.1 shows that the capacitors are connected in parallel to the BZ-PZ units. Without 

the capacitors, the network is capable of storing binary patterns because the two different force 

polarities within the system give rise to in-phase and anti-phase oscillation upon synchronization. 

To augment the information storage capabilities of the BZ-PZ oscillator network, we must 

modify the system so that it can access a greater number of stable synchronization modes. As 

discussed below, the addition of capacitors to the network provides an expedient means of 

achieving the latter goal.  
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Figure 6.1 Schematics of the BZ-PZ oscillator network with capacitors connected to each unit. 

There are a few other reasons of choosing capacitors as the additional component in the 

network. First, the entire BZ-PZ system is self-powered; the chemical energy from the reaction 

fuels the pulsations of the gel and the PZ provides a means of transducing energy from the 

chemo-mechanical domain into the electrical domain. The ability to operate in a self-sustained 

manner is a distinctive feature of the system that can play a vital role in designing robotic 

systems performing in a relatively autonomous manner. To maintain this advantageous feature, 

we focused on the components that operate with the need of an external power supply; this 

constraint ruled out utilizing active devices like transistors. Second, resistors dissipate heat and 

thus, would decrease the energy efficiency of the device. Third, other passive device such as 

inductors might not provide the desired modifications to the system dynamics due to the large 

impedance of low frequency signals. Given Eq. (6-1), which describes the relationship between 

charge and voltage, we hypothesized that capacitors could serve as useful components, especially 

because they are passive devices that can be used to store and redistribute charge. In this section, 
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we derive the dynamical behavior and a phase model of BZ-PZ oscillator networks that contain 

capacitors. Using an analytical approach, we then determine the stability of the system. 

 

6.1 MODIFIED PHASE MODEL  

The effect of introducing capacitors on the interactions between the BZ-PZ units can be 

determined by following similar steps as discussed in previous section, using the same notation. 

The frequency of the gel’s chemo-mechanical oscillations is on the order of 0.01 Hz, which is 

much lower than the eigenfrequency of a PZ cantilever (~ 10 kHz). Hence, the behavior of PZ 

cantilevers that are modified with capacitors connected in parallel (as shown in Figure 6.1) can 

be described by the quasi-static equations. The deflection of the PZ plate in unit i , iξ , the 

electric charge on this plate, (1)
iQ , and the electric charge of the capacitor, (2)

iQ , are related to the 

force, iF , applied to the cantilever and the electric potential difference (voltage), iU , between 

the electrodes through the following equations: 

    11 12i i i im F m Uξ ε= +  

 (1)
12 22i i iiQ m F m Uε= +  (6-1) 

    (2)
i iiQ C U=  

Here, 11m , 12m , and 22m  are the coefficients determined by the properties of the 

piezoelectric material and the cantilever dimensions [51]. The parameter iε  is the force polarity. 

It specifies the polarity of the generated voltage, iU , and depends on the relative direction 

between the polarization of the PZ materials and the bending force applied on the tip of 
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cantilever. If the polarization and force lie in the same direction, 1iε = + ; otherwise, 1iε = − . 

Finally, iC  is the capacitance of the capacitor connected in parallel to the PZ plate (Figure 6.1). 

In order to derive the equations governing the behavior of the BZ-PZ network with 

capacitors, we re-write Eqs. (6-1) in the following form:  

 (0) 1
11 12i i iiF F m m Uε−= −  (6-2) 

 (0)
12 0( )i i i iiQ m F C C Uε= + +  (6-3) 

Here, (0) 1
11 iiF m ξ−=  is Hooke’s law for the cantilever without accounting for the effect of 

piezoelectricity, (1) (2)
i i iQ Q Q= +  is the total electric charge on the PZ plate and capacitor 

connected in parallel, and )1( 2
220 ζ−= mC  is the capacitance of the PZ plate. In the latter 

equation, 2 2 1
12 11 22( )m m mζ −=  is a dimensionless parameter that depends on the 

electromechanical coupling of the PZ material and does not depend on the PZ plate dimensions 

[51]. For the model parameters used in our previous calculations [51], 0.413ζ ≈ and the 

capacitance of the PZ plate is 0 2.96nFC ≈ . As all the BZ-PZ units modified with the capacitors 

are connected in series, iQ Q=  and 1 0n
ii U= =∑ . From Eq. (6-3), we determine the electric 

charge Q  

 (0)1
12

1

n
j j j

j
Q m N z Fε−

=
= ∑  (6-4) 

where  

 1
0(1 / )i iz C C −= +     ,    

1

n
l

l
N z

=
= ∑      . (6-5) 
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It is convenient to measure capacitance in units of 0C , so 0/i iC C C→  in what follows 

below. Finally, using Eq. (6-3) and (6-4), we find the voltage iU  and then substitute this 

expression into Eq. (6-2) to obtain  

 ( )(0) (0) (0)1
1

n
i i i i j ji i jjF F z F N z z Fκ ε ε−

== + − ∑  (6-6) 

where 2 2 1(1 )κ ζ ζ −= − .  

Eq. (6-6) is a generalization of Eq. (4-6) in Section II. Note that the effect of capacitor is 

eliminated (i.e., the capacitor is removed) if 0iC =  in Eq. (6-10). If 0iC =  for all ni ,,2,1 =  , 

then Eq. (6-6) is identical to Eq. (4-6).  

Because the coupling between the oscillating BZ-PZ units is weak, we can use the phase 

dynamics approach to describe the interactions between these oscillators in terms of the time-

dependent deviation of the phase of each oscillator, ( )i tϕ . This description of the system 

dynamics reduces the complexity of the problem and provides a tractable means of determining 

the time-dependent behavior of the weakly coupled oscillators [46]. In Section 4.1.3, we 

formulated the phase description for the BZ-PZ networks with no capacitors. We note that Eq. 

(4-6) is a generalization of the respective equation for the network at 0iC =  (no capacitors) to 

the network at 0iC ≥  (with or without capacitors), and the only difference between the two 

equations is in the numerical prefactors in front of the forces (0)
jF . Therefore, the phase 

dynamics equation derived in Section 4.1.3 can be immediately generalized to the case of 0iC ≥  

simply by changing the corresponding numerical coefficients and hence, we obtain 

 1 1

1
/ H(0) H( )

n
i i i i j j j i

j
d dt z N z zκ ϕ ε ε ϕ ϕ− −

=
= − −∑  (6-7) 
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Here, the function H( )j iϕ ϕ−  is referred to as the “connection function”, and 

characterizes the rate of the phase shift of oscillator i  due to its interaction with the oscillator j  

at a phase difference j iϕ ϕ− . The phases of oscillation in Eq. (6-7) are normalized such that 

0 1iϕ≤ ≤ , 1 i n≤ ≤ . The connection function H( )θ  is periodic at [0,1]θ ∈ . Figure 6.2(a) shows 

the connection function )H(θ  determined numerically in [51]. The plot demonstrates that the 

phase response of a BZ-PZ oscillator to an external action is quite complex. The interaction 

between a pair of oscillators can cause both positive and negative phase shifts depending on the 

phase difference (because H( )j iϕ ϕ−  can be positive or negative depending on the phase 

difference j iϕ ϕ− ), and on the force polarities of the two oscillators, i.e., on the sign of i jε ε . 

 

Figure 6.2 Connect Function and its derivative; (a) The connection function H( )θ  in phase model of BZ-PZ 
oscillator networks, Eq. (6-7). The function is periodic at [0,1]θ ∈ . (b) The plot of the derivative of H( )θ  in one 
period. 

The functional form of Eq. (6-7) indicates that the capacitors modify the coupling 

strength between the BZ-PZ units i  and j  because the prefactor i jz z  depends on the 
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capacitances iC  and jC  according to Eq. (8). Therefore, introduction of the capacitors into the 

BZ-PZ network could be used to create a controllable hierarchy of interactions within the 

network. Note also that 1iz ≤  and decreases with an increase in iC , i.e., the capacitors weaken 

the interaction between the BZ-PZ units. The latter behavior is not surprising because some part 

of the electrostatic energy generated by the PZ cantilevers is now spent on charging the 

capacitors. The limit iC →∞  ( 0iz →  in this case) corresponds to shorting unit i , so it does not 

interact with other BZ-PZ units. Below, we discuss how the introduction of the capacitors affects 

the synchronization behavior of the BZ-PZ networks [13]. 

6.2 THEORETICAL ANALYSIS 

Numerical solution of Eq. (6-7) reveals that the capacitors can induce qualitative changes in the 

synchronization behavior of the BZ-PZ networks. To demonstrate this point, we consider a 

system that consists of 100 serially connected BZ-PZ units, where 50 units have the force 

polarity 1+  and another 50 units have the force polarity 1− . For convenience, we label the 

oscillators in the first group with 1 50i≤ ≤ , and the second group is labeled with 51 100i≤ ≤ . 

We solve Eq. (6-7) at random initial phases, and plot the values 1iϕ ϕ− , 2 100i≤ ≤ , as functions 

of time t  measured in the number of cycles (Figure 6.3). 

 



 97 

 

Figure 6.3 The evolution of phase differences between all the BZ-PZ units and the first reference unit, initialized 
with random phases. The legends of plot show the colors that represent different group of units with corresponding 
parameters (a) original BZ-PZ network with no capacitors; (b)-(d) BZ-PZ networks consist of multiple groups of 
units with different capacitance.  

Without capacitors, the two groups of oscillators become synchronized anti-phase (Figure 

6.3a) as reported previously (Section 4.2). As seen in Figure 6.3a, the BZ-PZ units with the same 

force polarity exhibit the in-phase synchronization, whereas the units with opposite polarities are 

synchronization with the phase difference 0.5 .  

We then consider a network in which 25 units with 1iε = +  ( 26 50i≤ ≤ ) are modified 

with capacitors having a capacitance of 2iC = . Hence, the network now consists of three 

distinct groups of BZ-PZ oscillators. We denote the network configuration as { } {25,25,50}nα = , 

{ } { 1, 1, 1}αε = + + − , and { } {0,2,0}Cα = , where nα , αε , and Cα  are the respective number of 

units, force polarity and capacitance for group α ; here, 1,2,3α = . Figure 6.3b shows that after 
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initialization with random phases, the network achieves the state of synchronization that is 

different from the one in Figure 6.3a. The addition of the capacitors results in splitting the units 

having the polarity 1+  into two groups, which are synchronized with a phase difference. 

Specifically, groups 1 and 2 (polarity 1+ , without and with capacitors) are synchronized with a 

phase difference of about 0.1  (see the black- and blue-colored curves in Figure 6.3b). The 

groups 1 and 3 (polarities 1+  and 1− , no capacitors) are synchronized with the phase difference 

of about 0.5 , i.e., exhibit the synchronization behavior similar to that in Figure 6.3a (compare 

the black- and red-colored curves in Figure 6.3ab).  

Further modification of the network by adding the capacitors to some units with the 

polarity 1−  leads to splitting the latter oscillators into two groups, which are synchronized with a 

phase difference. Figure 6.3c shows the phase dynamics of the network with configuration 

{ } {25,25,25,25}nα = , { } { 1, 1, 1, 1}αε = + + − − , and { } {0,2,0,2}Cα = . The units in groups 3 and 

4, which have the force polarity 1− , are now synchronized with the phase difference about 0.1  

(the red- and magenta-colored lines in Figure 6.3c), i.e., their synchronization behavior is similar 

to that of the groups 1 and 2 (the black- and magenta-colored lines in Figure 6.3c).  

The value of the phase difference between the oscillation of units that have the same 

force polarity and differ due to the presence of capacitors depends on the capacitance. Figure 

6.3d shows the synchronization behavior of the BZ-PZ network that has the same { }nα  and 

{ }αε  as those in Figure 6.3c but with different { }Cα , namely { } {0,1,0,3}Cα = . Upon 

synchronization, the phase difference between groups 1 and 2 is smaller than that between 

groups 3 and 4, i.e., the phase difference increases with an increase in capacitance.  

Thus, the results of the calculations presented in Figure 6.3 clearly demonstrate that the 

introduction of capacitors, and the subsequent changes to the strength of interaction between the 
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individual units, leads an enrichment of the phase synchronization behavior of the system. 

Below, we analyze stability of the synchronization modes induced by the capacitors. 

6.2.1 Stability Analysis 

To validate the stability of the synchronization modes that encompass multiple phase differences, 

we apply the linear stability analysis to the system of equations, Eq. (6-7). Specifically, we 

analyze the BZ-PZ networks that contain three groups of units as in Figure 6.3b.  

We consider a system of n  connected BZ-PZ oscillator units that are separated into three 

groups, so the network configuration is 1 2 3{ } { , , }n n n nα = , where 1 2 3n n n n+ + = , 

1 2 3{ } { , , }αε ε ε ε= , and 1 2 3{ } { , , }C C C Cα = . The units are labeled with the index i  such that 

11 i n≤ ≤ , 1 1 21n i n n+ ≤ ≤ + , and 1 2 1n n i n+ + ≤ ≤  correspond to the respective groups 1, 2 and 

3. The application of Eq. (6-7) to the three groups of units gives the following equation for the 

phase dynamics group α , where 1,2,3α = : 

 1 1 2

1 1 2

1

1 1 2 2 3 3
1 1 1

/  H(0)

H( ) H( ) H( )

i
n n n n

p i q i r i
p q n r n n

N d dt N z

z z z z

α

α α

κ ϕ

ε ε ϕ ϕ ε ϕ ϕ ε ϕ ϕ

−

+

= = + = + +

=

 
 − − + − + −
  

∑ ∑ ∑
 (6-8) 

Here, 1(1 )z Cα α
−= +  and N  are defined according to Eq. (8). 

We assume that the trajectories of the equations approach a steady state where each group 

has a fixed phase, as we observed in numerical simulations. We set the phase of the first group as 

the reference 0, so the equilibrium point in terms of the phase differences is { }1 20, ,ψ ψ . The 

parameters 1ψ  and 2ψ  give the differences in the phase of oscillation between the first group and 
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the other two groups. The following nonlinear equations for 1ψ  and 2ψ  are obtained from Eq. 

(6-8) and can be solved numerically: 

 [ ] [ ]
[ ]

1 2 1 2 3 3 2 1 1 2 1 2 1 1 2 1

3 3 3 2 2 2 1 1 1 2

( ) ( ) H(0) H( ) H( )

H( ) H( ) 0

z z n n z n z z z z n n

n z z z

ε ε ψ ψ

ε ε ψ ψ ε ψ

− + − − − −

− − − =
 (6-9) 

 [ ] [ ]
[ ]

1 3 1 3 2 2 3 1 1 3 1 3 1 2 3 2

2 2 2 3 3 1 2 1 1 1

( ) ( ) H(0) H( ) H( )

H( ) H( ) 0

z z n n z n z z z z n n

n z z z

ε ε ψ ψ

ε ε ψ ψ ε ψ

− + − − − −

− − − =
 (6-10) 

Assuming that 1ψ  and 2ψ  are known, we carry out a linearization of Eq. (6-8) around the 

equilibrium point for the phase differences 1i iθ ϕ ϕ≡ − , 2 i n≤ ≤ . Namely, we take 

( ) ( )i i it tθ θ δθ= + , where 0=iθ  for group 1, 1iθ ψ=  for group 2, and 2iθ ψ=  for group 3, and 

( )i tδθ  is a small perturbation. This operation yields the following respective equation for the 

phase perturbations of oscillators in group α , where 1,2,3α = : 

 
1 1 2

1 1 2

1

2 1 1
/

n n n n
i i p q r

p q n r n n
N d dt a b c dα α α ακ δθ δθ δθ δθ δθ

+
−

= = + = + +
= + + +∑ ∑ ∑  (6-11) 

In the above equation, the numerical coefficients are 3
1a h nα αβ ββ == ∑  for 1,2,3α = , 

1 1 1 0b c d= = = , and 11 1b h hα α= − , 12 2c h hα α= − , 13 3d h hα α= −  for 2,3α = ; the values hαβ  

are the elements of the following matrix: 

2
1 1 2 1 2 1 1 3 1 3 2

2
1 2 1 2 1 2 2 3 2 3 2 1

2
1 3 1 3 2 2 3 2 3 1 2 3

H (0) H ( ) H ( )

H ( ) H (0) H ( )

H ( ) H ( ) H (0)

z z z z z

h z z z z z

z z z z z
αβ

ε ε ψ ε ε ψ

ε ε ψ ε ε ψ ψ

ε ε ψ ε ε ψ ψ

 ′ ′ ′
 
 ′ ′ ′= − −
 

′ ′ ′− −  

   , 

where H ( )θ′  is the first derivative of the connection function shown in Figure 6.3b. 
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The synchronization state is stable with respect to small perturbations if all iδθ  decay, 

which occurs when all eigenvalues of the coefficient matrix M  on the right-hand side of Eq. (6-

11) have negative real parts. The coefficient matrix has the following block structure: 

 
1

2 2 2

3 3 3

 
 =  
  

A 0 0
M B A D

B C A
 (6-12) 

Here, 1A  is a 1 1( 1) ( 1)n n− × −  diagonal matrix, 1 1[ ]ij ija δ=A , 2A  is a 2 2n n×  matrix with the 

elements 2 2 2[ ]ij ija cδ= +A , and 3A  is a 3 3n n×  matrix with the elements 3 3 3[ ]ij ija dδ= +A . 

Further, 2B  and 2D  are the respective 2 1( 1)n n× −  and 2 3n n×  blocks filled with 2b  and 2d , 

3B  and 3C  are 3 1( 1)n n× −  and 3 2n n×  blocks filled with 3b  and 3c , respectively. Finally, 0  

denotes the blocks filled with zeros.  

The eigenvalues of the block matrix M  can be determined analytically. This matrix has 

five distinct eigenvalues, namely,  

 k kaλ = , 1,2,3k = ;  4,5 ( ) / 2B Dλ = ±   , (6-13) 

where  

2 2 2 3 3 3B a n c a n d= + + + ,  

( )22 2 2 3 3 3 2 3 3 24D a n c a n d n n c d= + − − +   .  

The eigenvalues kλ  with 1, 2,3k =  have a respective multiplicity of ( 1kn − ).  All 

eigenvalues depend on the number of units, force polarity, capacitance, the derivative of the 

connection function for the given phase differences. Note that the eigenvalues with 1, 2,3k =  

could be associated with the respective groups of units since k kaλ = . The eigenvalues with 
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4,5k =  could be associated with the interaction between the second and third groups of 

oscillators because only numerical coefficients with the indices 2,3α =  contribute to 4,5λ . 

In the next section, we numerically solve Eqs. (6-9) and (6-10) to determine the phase 

differences in the state of synchronization at various model parameters, and numerically evaluate 

the eigenvalues to characterize the stability. 

6.2.2 Synchronization in the Three-group Networks 

To analyze further how the number of units in the groups, the force polarity, and the value of 

capacitance affect the synchronization mode in the BZ-PZ networks, we apply the stability 

analysis of the three-group case described in the previous section. Specifically, we consider the 

network having the configuration }50,,{}{ 21 nnni =  with variable 1n  and 2n , }1,1,1{}{ −++=iε , 

and }0,,0{}{ 2CCi =  with variable 2C .  
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Figure 6.4 Plots of final stable state 1ψ  and 2ψ  against 2C  at 2 10,30n = , and 50  represented in colors shown 
in plot legend. (a)(b): fixed 251 =n  (c)(d): 21 50 nn −= . The filled disk marks denote the stable state values 
obtained by the numerical simulations using the phase model, Eq. (6-11). The circle marks at the end of each curve 
indicate the boundary of the synchronization domain. 

First, we consider the networks at 251 =n , 503 =n , and various 2n , i.e., the number of 

oscillators in the groups with no capacitors ( 1n  and 3n ) is constant while the number of 

oscillators having the capacitors is varied. Figure 6.4ab show the respective phase differences 1ψ  

and 2ψ  as functions of the capacitance 2C  at 30,102 =n , and 50 . The curves in Figure 6.4ab 

are obtained through numerical solution of Eqs. (6-9) and (6-10), and represent the stable 

synchronization states, i.e., the real parts of all five eigenvalues of matrix M , Eq. (6-12), are 

negative at each point of the curves. Recall that the units in groups 1 and 2 have the same force 
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polarity ( 121 +== εε ) and oscillate in phase if the group 2 units have no capacitor, so 11 =ψ  at 

02 =C  as seen in Figure 6.4a. At 02 >C , the units in groups 1 and 2 oscillate with a phase 

difference, 1ψ , which increases with an increase in 2C  until the synchronization mode ceases to 

exist at some value of 2C  , as marked by the open circles at the ends of each curve in Figure 

6.4a. The upper limit of 2C  depends on 2n , the number of units in group 2, and increases from 

62 ≈C  to 8.5 with an increase in 2n  (see Figure 6.4a). 

Simultaneous with splitting the phase of oscillation into two groups in units having the 

same force polarity, the introduction of the capacitors affects the phase difference between 

oscillations of the units having the opposite force polarities. Figure 6.4b shows that the value of 

2ψ  changes with an increase in 2C , and that the variation is greater in networks with more units 

having the capacitor, i.e., at greater 2n . Note that the effect of capacitors on 2ψ  is weaker than 

that on 1ψ . As 2C  increases, the maximal variation of 2ψ  is observed at 502 =n  and is about 

0.1 (Figure 6.4b), whereas the variation of 1ψ  at 502 =n  is about 0.28 (Figure 6.4a).  

The effects of the capacitors on the synchronization in the BZ-PZ networks discussed 

above were investigated at a variable number of the units that are modified by the capacitors ( 2n

) and a constant number of the non-modified units ( 1n  and 3n ). We now consider the three-group 

networks with the configuration }50,,50{}{ 22 nnni −= , }1,1,1{}{ −++=iε , }0,,0{}{ 2CCi = , where 

2n  and 2C  are varied but the total number of units having the force polarity 1+  is fixed, 

5021 =+ nn , and is equal to that of the units with the force polarity 1− , 503 =n . For these 

networks, the phase differences 1ψ  and 2ψ  as functions of 2C  are displayed in the respective 

Figure 6.4c and 5d for 25,152 =n , and 35 . Comparison of Figure 6.4ab with Figure 6.4cd 
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shows that the effect of capacitors on the two networks is qualitatively similar. Figure 6.4cd 

show that at 02 =C  (no capacitors), the units having the force polarity 1+  are synchronized in-

phase between themselves, 11 =ψ , and anti-phase with the units having the force polarity 1− , 

5.02 =ψ . At 02 >C , the groups 1 and 2 oscillate with a phase difference 1ψ  that increases with 

an increase in 2C  (Figure 6.4c), and the effect of capacitors on 2ψ  is weaker than that on 1ψ . 

The only notable difference in the synchronization behavior of the two types of networks (Figure 

6.4a,b versus Figure 6.4c,d) is seen at sufficiently high values of 2n . Namely, the second 

network exhibits stable synchronization at the values of the capacitance 2C  exceeding the 

synchronization domain of the first network (compare the green-colored curves in Figure 6.4c,d 

with the red-colored curves in Figure 6.4a,b). 

Figure 6.4 reveals that the results of the analysis of the stable synchronization modes are 

in agreement with the numerical solutions of the phase dynamics equations, Eq. (6-8). 

Specifically, the red points at 302 =n  in Figure 6.4a,b and at 252 =n  in Figure 6.4c,d are 

obtained by solving Eq. (6-8) for 1ψ  and 2ψ  at several values of the capacitance 2C  . The fact 

that the red points line directly on the red lines indicates the agreement between the phase 

dynamics calculations and the stability analysis (Eqs. (6-9,10,11)). Thus, Eqs. (6-9,10,11) 

provide an effective approach to determine the phase differences and stability of synchronization 

modes exhibited by the BZ-PZ networks for various configurations.  
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6.2.3 Co-existence of Three-group Synchronization Modes 

The synchronization behavior discussed in the previous section exists at 2 0C =  and evolves 

continuously as 2C  increases. This stable mode of syncronization is characterized by the phase 

differences 1ψ  and 2ψ , and our calculations show that the mode is unique at sufficiently low 

values of 2C . To demonstrate the latter observation, we plot the solutions of Eqs. (6-9) and (6-

10) for the configuration { } {25,25,50}nα = , { } { 1, 1, 1}αε = + + − , { } {0,1,0}Cα =  as the lines in 

coordinates 1ψ  and 2ψ  (Figure 6.5a). The intesections of these two lines correspond to the 

steady states of the system. Figure 6.5a shows that the system exhibits four steady states, and the 

displayed streamlines reveal that only one of them, 1 0.96ψ =  and 2 0.48ψ = , is stable (see also 

Figure 6.4). 

 

Figure 6.5 Solutions of Eq. (6-9) and (6-10) plotted as the respective blue- and red-colored lines in coordinates 1ψ  

and 2ψ  at { } {25,25,50}nα = , { } { 1, 1, 1}αε = + + − , and (a) 2 1C =  and (b) 2 10C = . The streamlines are 

displayed in grey. At point 1 2{ , }ψ ψ , the streamline shows direction of the vector 1 1 2 2 1 2{ ( , ), ( , )}ψ ψ ψ ψΦ Φ , 

where 1Φ  and 2Φ  are the left-hand-sides of Eqs. (6-9) and (6-10), respectively.  
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At high values of 2C , when the interaction between the units modifided with capacitors 

and the rest of the network is weak, the three-group synchronization does not exist. As an 

example, Figure 6.5b shows that at { } {25,25,50}nα = , { } { 1, 1, 1}αε = + + − , and { } {0,10,0}Cα = , 

Eqs. (6-9) and (6-10) do not have have a solution as the two lines do not intersect.  

Further inspection of Eqs. (6-9) and (6-10) at elevated values of 2C  and various { }nα  

revealed the existence of another stable mode of the three-group synchronization in addition to 

that discussed above. This new (second) synchronization mode exists only within a narrow 

interval of 2C , and the latter interval strongly depends on the number of units having the 

capacitors, 2n , as shown in Figure 6.6. Stability of the second mode of synchronization was 

verified by calculating the eigenvalues as described above; all of the eigenvalues were found to 

have negative real parts within the mode existence domain. 

Figure 6.6a presents the phase differences 1ψ  and 2ψ  for the two stable modes of 

synchronization obtained by solving Eqs. (6-9) and (6-10) at { } {25,1,50}nα =  and 

{ } { 1, 1, 1}αε = + + − , i.e., when only one BZ-PZ unit contains a capacitor. The solid lines 

correspond to the stable synchronization mode, which exists at 2 0C =  and evolves continuouly 

with an increase in 2C  until the maximal value of 2 6C ≈  is reached, then the mode disappears. 

The second synchronization mode, which is shown by the dashed lines, exists only within the 

interval of capacitance 25 6.6C< <  (Figure 6.6a). Note that the domains of the two modes of 

synchronization overlap, i.e., they co-exist within a certain interval of capacitance ( 25 6C< < ). 
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Figure 6.6 The two co-existing stable modes of synchronization in the three-group system with the number of the 
BZ-PZ units containing the capacitors (a) 2 1n =  , (b) 2 10n = , and (c) 2 25n = . The first mode (solid lines) is 
typically found when Eq. (6-8) is solved under random initial conditions. The second mode (dashed lines) is found 
when the initial conditions for Eq. (6-8) are chosen in the vicinity of the synchronization state Figure 6.7.  

Adding more BZ-PZ units with capacitors to the system reduces the interval of 2C  where 

the second mode of synchronization exists. The latter behavior is shown in Figure 6.6b and c for 

2 10n =  and 25, respectively. Figure 6.6b and c also show that the second mode domain (dashed 

lines) is now located within the first mode domain (solid lines). 

  

Figure 6.7 Evolution of the three-group system towards the second mode of synchronization as obtained by solving 
Eq. (6-8) with the initial conditions corresponding to the synchronization state perturbed by adding a random phase 
shift within [ 0.1,0.1]− . As in Figure 6.6, the number of the BZ-PZ units containing the capacitors (a) 2 1n =  , 

(b) 2 10n = , and (c) 2 25n = . 

We confirmed that the second stable mode of synchronization found by solving the 

steady state equations, Eqs. (6-9) and (6-10), could also be obtained by solving the phase 
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dynamics equations, Eq. (6-8). Specifically, we took 1ψ  and 2ψ  for the second mode obtained 

from the steady state equations, and solved Eq. (6-8) using 1 20, ,ψ ψ  with added random noise 

(within [ 0.1,0.1]− ) as the initial conditions for units in the respective groups 1, 2, 3 . Figure 6.7a-

c show the phase dynamics for the same network configurations as in Figure 6.6a-c, respectively, 

at the values 2C  indicated in the individual fugures. It is seen in Figure 6.7 that the considered 

systems evolve towards the stable state of synchronization with the final phase differences 

corresponding to the second mode. 

6.2.4 The Rate of Synchronization 

Besides the phase differences, the synchronization modes are also characterized by the rate of 

convergence of an initial state of the network to the final stable steady state (rate of 

synchronization). We begin the analysis of the effects of the configuration of the BZ-PZ network 

on the rate of synchronization by considering the situation when the initial state is only slightly 

different from the steady state. In this case, the rate of synchronization can be estimated using the 

eigenvalues calculated in the course of the stability analysis, Eq. (6-13), because the value 

1| Re( ) |k kT λ −=  is the relaxation time of the relaxation mode k , 1, 2, ,5k = 
.  

Figure 6.8 shows the relaxation times kT  as functions of the capacitance 2C  for the three-

group networks with the configuration 2{ } {25, ,50}n nα = , { } { 1, 1, 1}αε = + + − , and 

2{ } {0, ,0}C Cα =  at 2 1,10,n =  and 25 . In order to calculate kT , we used Eq. (6-13) and the 

phase differences 1ψ  and 2ψ  as functions of 2C  presented in Figure 6.6. Figure 6.8 indicates that 

with an increase in the capacitance 2C  starting from 2 0C = , the two relaxation times, 2k =  
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(solid red) and 4  (solid green), increase drastically, whereas other relaxation times ( 1,3,5k = ) 

exhibit very weak or no dependence on 2C . Hence, the introduction of the capacitors into the 

system slows down the relaxation of the network towards the state of synchronization.  

 

Figure 6.8 The relaxation times kT , 1, 2, ,5k = 
, as functions of the capacitance 2C  for the three-group 

networks with the number of BZ-PZ units containing the capacitors (a) 2 1n =  , (b) 2 10n = , and (c) 2 25n = . 
The solid and dashed lines mark the two modes of synchronization. The line colors label the relaxation modes: 
{ } {cyan,red,blue,green,magenta}kT = . 

The increase in the relaxation times 2T  (solid red) and 4T  (solid green) with an increase 

in 2C  is not monotonic as seen in Figure 6.8. Namely, these two largest relaxation times exhibit 

local maxima, which are more pronounced at fewer numbers of the BZ-PZ units having the 

capacitors. Note also that 2T  and 4T  are very close to each other at 2 1n =  (Figure 6.8a) and 

2 4T T>  if several units contain the capacitors (Figure 6.8b and c).  

It was demonstrated in the previous section that the networks containing capacitors might 

have two co-existing synchronization modes. In Figure 6.8, the dashed lines show the relaxation 

times for the second synchronization mode, which exists only within specific intervals of the 

capacitance 2C . Similar to the first synchronization mode, the relaxation times 2T  (dashed red) 

and 4T  (dashed green) are greater than other relaxation times , 1,3,5k = . As functions of 2C , 2T  
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and 4T  for the second synchronization mode have a minimum in the middle of the interval of 2C  

where it exists, and increase close to the ends of the interval. Finally, unlike the first mode, the 

relaxation time 4T  is greater than 2T  for the second mode (see the green- and red-colored 

dashed lines in Figure 6.8). 

 

Figure 6.9 The times of synchronization as functions of 2C  obtained by simulations of the three-group networks 

with the configuration (a) 2{ } {25, ,50}n nα = , (b) 2 2{ } {50 , ,50}n n nα = − . In all cases, { } { 1, 1, 1}αε = + + − , 

2{ } {0, ,0}C Cα = . (c) and (d): The normalized relaxation times (lines) and synchronization times (symbols) for 
the same network configurations as in (a) and (b), respectively.  

The characterization of the rate of synchronization based on calculating the eigenvalues 

is, strictly speaking, applicable only to the case of small deviations from a known state of 

synchronization. The more practical but computationally expensive way to probe the 
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synchronization behavior of a network of coupled oscillators is to run multiple simulations of the 

phase dynamics starting from random initial phases. The network is said to be synchronized if 

the phases of all oscillators (calculated relative to that of some reference unit) evolve to the state 

where they change only within a narrow range; the width of this range is taken 0.02 in our 

studies. The time to converge to a state of synchronization, ST , is taken as the measure of the 

rate of synchronization. 

We applied the above computational procedure to determine the synchronization time, 

ST , for the three-group networks discussed in Section IIIB. Namely, we varied the number of the 

BZ-PZ units that contain the capacitors, 2n , in the configurations 2{ } {25, ,50}n nα =  and 

2 2{ } {50 , ,50}n n nα = −  with the distributions of force polarities { } { 1, 1, 1}αε = + + −  and that of 

capacitors 2{ } {0, ,0}C Cα = . For each network configuration, we performed 100 simulations 

starting from the random initial phases, and the averaged results are plotted for the two types of 

networks in the respective Figure 6.9a and b. It is important to note that the simulations 

according to the applied procedure detected only the mode of synchronization presented in 

Figure 6.4 and did not detect the synchronization mode presented in Figure 6.6 by the dashed 

lines.  

Figure 6.9a and b show that the synchronization time, ST , increases tremendously with 

an increase in capacitance 2C , and that the latter increase is not monotonic in the networks 

having fewer units modified with the capacitors. It is remarkable that ST  depends on the 

capacitance 2C  in a qualitatively similar manner as the relaxation times 2T  and 4T  plotted with 

the solid lines in Figure 6.8. Furthermore, we demonstrated that after a proper normalization, a 

quantitative similarity could be established between ST  and the results of linear stability 
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analysis. For this purpose, we defined the relaxation time as the maximal kT , max({ })R kT T= , 

and normalized both ST  and RT  by their respective values at 2 3C = . As shown in Figure 6.9c 

and d, after the normalization, the data on ST  presented in the respective Figure 6.9a and b are in 

a qualitative agreement with the relaxation times, RT . Therefore, the linear stability analysis 

could be used to assess the rate of synchronization. Note that the choice of 2C  for normalization 

is quite arbitrary. It is only required that at the chosen 2C , some kT  is distinctively greater than 

all other.  

6.2.5 States of Partial Synchronization 

We discussed above how the introduction of capacitors affects the existence and properties of the 

states of perfect synchronization, when all the BZ-PZ units oscillate with some phase 

differences, which do not change with time. We showed that an increase in the capacitance 

weakens the interactions between the units with and without capacitors, so the state of perfect 

synchronization does not exist if the capacitance is greater than the threshold value specific for 

the network configuration.  

Here, we briefly discuss the phase dynamics in the BZ-PZ networks with no the perfect 

synchronization. For this purpose, we first consider the network configuration { } {25,25,50}nα =

, { } { 1, 1, 1}αε = + + − , and 2{ } {0, ,0}C Cα =  at 2 10C = . As shown in Figure 6.5b, the perfect 

synchronization does not take place in this system since the steady state equations, Eqs. (6-9) and 

(6-10), do not have a solution. Instead, the phase dynamics of this network converges to the state 

of partial synchronization. Figure 6.10a shows the phase dynamics obtained from a single run of 

simulations starting from the random phases. In this figure, all phases are shown relative to the 
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phase of the oscillator with 1i = , i.e., the values 1( ) ( )i t tϕ ϕ−  are plotted with 2 50i≤ ≤ . It is 

seen in Figure 6.10a that the oscillators belonging to group 1 (black lines) and group 3 (red lines) 

are synchronized with the phase difference of about 0.5, whereas the units containing the 

capacitors (group 2, blue lines) are desynchronized from the latter two groups. The blue-colored 

lines in Figure 6.10a have a negative slope meaning that the phases of the group 2 units 

progressively lag behind that of groups 1 and 3. 

The phase dynamics pattern shown in Figure 6.10a is not the only one observed in this 

network. Under some realizations of the random initial conditions, the BZ-PZ units in group 3 

(force polarity 1− , no capacitors) form two unequal groups of units that are synchronized with a 

phase difference between themselves as shown by the red-colored lines in Figure 6.10b. As 

indicated in Figure 6.10b, one of the latter groups contains most of the units with 1iε = −  (48 in 

the shown case), and they are synchronized with the group 1 at the phase difference of about 0.5. 

The second group of contains only a few units with 1iε = −  (2 in the shown case) and is 

synchronized with the group 1 at the phase difference of about 0.7.  
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Figure 6.10 The two types of partial synchronization behaviors observed in the numerical simulations of the 
network with configuration { } {25, 25, 50}nα = , { } { 1, 1, 1}αε = + + − , and { } {0,10, 0}Cα = . In (a) and (b), all phases 

are plotted relative to the unit 1, 1( ) ( )i t tϕ ϕ− . In (c) and (d), all phases are plotted relative to the unit 26, 

26( ) ( )i t tϕ ϕ− . 

After the initial fast dynamics, the phases of groups 1 and 3 in Figure 6.10a and b (see the 

black- and red-colored lines) look time-independent at later times. A closer inspection of the 

presented data revealed that the latter phases exhibit long time periodic deviations. To 

demonstrate this observation, we plot the phases relative to the phase of oscillator 26i = , i.e., 

relative to the first unit in group 2 (force polarity 1+ , with capacitors). It is seen in Figure 6.10c 

and d that the slopes of the black- and red-colored lines, which represent the respective groups 1 

and 3, slowly vary. The phases of units in group 2 (blue lines) also exhibit a periodic long-time 

dynamics. The observed long-time dynamics in the state of partial synchronization is the result 
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of the interaction between the units with and without capacitors that is sufficiently strong to 

affect the dynamic patterns. 

Finally, at some network configurations, the partial synchronization behavior was 

observed to co-exist with the state of perfect synchronization. As an example, Figure 6.11 

presents one instance of simulations of the phase dynamics for the same network configuration 

as in Figure 6.10 but with the capacitance 2 6.5C = . Similar to Figure 6.10c and d, Figure 6.11 

shows that group 2 (force polarity 1+ , with capacitors) is desynchronized from groups 1 and 3, 

and that group 3 (force polarity 1− , no capacitors) is split in two. Note that at 2 6.5C = , the state 

of perfect synchronization also exists in this system as shown in Figure 6.6c.  

 

Figure 6.11 The state of partial synchronization observed in the numerical simulations of the network with 
configuration { } {25, 25, 50}nα = , { } { 1, 1, 1}αε = + + − , and { } {0,10, 0}Cα = . In (a) and (b), all phases are plotted 

relative to the unit 1, 1( ) ( )i t tϕ ϕ− . In (c) and (d), all phases are plotted relative to the unit 26, 26( ) ( )i t tϕ ϕ− . 
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6.3 PATTERN RECOGNITION 

6.3.1 Pattern Matching Experiments on Grayscale Images 

Beside the phase relations in the synchronization mode, we are also interested in how fast the 

synchronization can be achieved in the evolution of a BZ-PZ network. In Section 4.3.1, we 

define the convergence time of synchronization as the number of time units, 0
1T−κ , needed for 

the coupled oscillators to reach the stable state of synchronization. Such a measurement can 

serve as the distance metric to measure the difference between the input pattern represented by 

the initial phase and the store pattern represented by the final synchronization mode (Section 

4.2).  

 In our previous simulations, we noticed that the BZ-PZ units with capacitor spent longer 

time to reach the stable state than those units without capacitors. This can be well explained by 

Eq. (6-11). For an arbitrary BZ-PZ unit, the increase of iC will decrease iz  and scale down 

/ϕid dt  all the time, regardless of the phase and the value of connection function. However, we 

wonder how the group of units with capacitors influence the overall convergence time of a BZ-

PZ network initialized with a given pattern. Hence, we conduct more experiments to explore the 

impact of capacitors on the convergence time. Figure 6.12 illustrates a pattern matching 

operation with a BZ-PZ network. We use the four-group network configuration, which is 

{ }1 2 3 4 25n n n n= = = = , { }1 2 3 41, 1ε ε ε ε= = + = = −  , { }1 2 3 40, 4, 0, 4C C C C= = = = . Here we 

assume the store pattern is a 100-pixels four-level grayscale image that consists of four 25-pixel 

blocks in different color (black, dark gray, white, light gray). The selection of colors is designed 

for the convenience of demonstration but not limited to these four colors. These blocks are 
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respectively represented by the four groups of BZ-PZ units (G1, G2, G3, G4) with different 

parameters. Each unit represents one pixels. Table 6.1 summary the relations between the pixels 

of store pattern and different groups. As we expect, the network will synchronize into the stable 

state with the corresponding phase relations we note in the plot of Figure 6.12. The input pattern 

with two distorted pixels determine the initial phase of each BZ-PZ unit based on the grayscale 

level of each pixel. The initial phases of color of (G1, G2, G3, G4) is assigned by ( )1 2 3 4, , ,ϕ ϕ ϕ ϕ , 

shown in Figure 6.12. The method of introducing distortion into a pattern here is to flip the color 

of pixels, between black and white, light gray and dark gray. The convergence time of G2 and 

G3 are respectively 75 and 424, due to these two noise pixels. 

Table 6.1 Configuration and Representation of Different Groups of BZ-PZ units 

Group G1 G2 G3 G4 

Force Polarity ε  +1 +1 -1 -1 

Capacitance C  0 4 0 4 

Color represented Black Dark Gray White Light Gray 

Phases (Stable State) 0 0.83 0.5 0.33 
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Figure 6.12 Matching operation of grayscale image pattern by using a BZ-PZ network with capacitors. 

In order to observe how the group with BZ-PZ units affect the convergence of the group 

of units without capacitors, we perform the experiment in the following method. In the first 

experiment, for the store patterns, we only keep the black and white blocks ( )1 3,n n  fixed, 30 

pixels for each of them, while, the number of pixels in dark and shallow gray blocks ( )2 4,n n

gradually increases from 1 to 30 as the extra pixels of the pattern. On the other hand, for the 

input pattern, we increasingly flip the color of pixels inside the black and white blocks but keep 

the gray blocks intact. This means there exists intra-group mismatch of initial phases of units in 

G1 and G3 because of the flipped pixels, while the phases of units in G2 and G4 remain 

consistent all along the evolution of the system. Thus, only G1 and G3 contribute to the 

convergence time of network. in this experiment. The increase of the flipped pixels in black and 

white blocks in the input pattern and the enlarge of gray blocks in the stored pattern are 

independent, thus generate different combination. We run 100 simulations for each combination 
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by randomly pick the pixels to be flipped. The average convergence times in these simulations 

are given in Figure 6.13. 

 

Figure 6.13 Average convergence time of the BZ-PZ network that perform pattern matching on the distorted 
black/white image pattern with extra gray pixels. 

In the second experiment, conversely, we repeat the process of the first experiment but 

switch the roles of the black/white blocks and the gray blocks. In this situation, the sizes of gray 

blocks are fixed in the store pattern while the black/white blocks are added as extra pixels. Also, 

the flipped pixels are selected from the gray blocks in the input pattern. In the BZ-PZ network, 

convergence time are yielded from G2 and G4, which are the two groups with capacitors. The 

statistics of convergence times are shown in Figure 6.14. 
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Figure 6.14 Average convergence time of the BZ-PZ network that perform pattern matching on the distorted gray 
image pattern with extra black white pixels. 

From the two experiments above, we first notice that the convergence time of the groups 

without capacitors (experiment 1) is shorter than the groups with capacitors (experiment 2), as 

we expected. Additionally, the overall convergence time are both reduced as the total number of 

unit increases. Second, the increases as the number of flipped pixels increases for the first 

experiments, due to the difference between input pattern and stored pattern enlarges. This is 

consistent as we observed in the pattern matching operation of the BZ-PZ network without 

capacitors. The introduction of more units with capacitors does not influence such a trend. 

However, in the experiment 2, the increase of flipped pixels in gray image pattern does not result 

in longer convergence time when enough extra black/white pixels are introduced. This means 

that the units without capacitors speed up the rate of synchronization of the unit with capacitors. 

Although these groups of units (G1, G3) keep an intra-group synchronization state, their 
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common phase still vary during the evolution process of the network. Thus, we can draw the 

conclusion that when the capacitors are introduced into the BZ-PZ network, the global 

convergence time of the network cannot be used as the distance metric to measure the difference 

between input patterns and stored patterns any more.  

6.3.2 Pattern Recognition Test on COIL Dataset 

Based on our theoretical analysis and numerical simulations in the previous sections, we note 

that the BZ-PZ oscillator networks with capacitors have complicated dynamical behaviors and 

rich phases in the synchronization modes that result in the mismatch between the convergence 

time and the chosen distance measurement of input and output patterns. Therefore, the global 

convergence time might not be a useful metric used for pattern recognition tasks. In this section, 

we propose another method to evaluate the distance metric of patterns. We apply our system to a 

practical recognition task, which is the classification of grayscale images that contain real 

objects. We still use the similar four-group BZ-PZ networks with capacitors for experiments;   

however, instead of using the global convergence time, we measure the convergence time of 

each group of oscillators and use the sum of convergence times as the criterion for classification. 

As we discussed in Section 6.2, different groups of BZ-PZ oscillators have different 

configurations and exhibit convergence times that are distinct from each other. Nevertheless, 

these convergence times depend on the variation between the input pattern and stored pattern. 

Thus, we conjecture that they might serve as the distance metric of different channels that are 

similar to the multi-network systems we discussed in Chapter 5.0 Note, however, that such a 

distance metric is also highly data dependent. To demonstrate the capability of our system in 
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grayscale image pattern matching, we select an image dataset that contains object categories that 

are quite different from each other. 

The dataset we use is the COIL (Columbia Object Image Library), which contains many 

grayscale images for different objects in which the background has been discarded (and each 

picture consists of the smallest square that contains the object) [72]. For each object, 72 pictures 

are taken from all perspectives by rotating the object 360 degrees. We pick ten objects from the 

dataset for our pattern recognition task and their images are shown in Figure 6.15.  

 

Figure 6.15 Images of objects selected from COIL dataset. (a) Ten object categories; (b) Example images of one 
object. The grayscale images are pictures taken after every 5-degree rotation. Each object has 72 pictures. 

Before the storage or input of the COIL image with BZ-PZ oscillator networks, we 

perform several steps of preprocessing, shown in Figure 6.16. First, we resize all the images 

from 128x128 to 40x40. Second, since the synchronization mode of the network we use has four 

levels of phase, we quantize the grayscale of images from 8-bit (256 scales) to 2-bit (four scales). 

Finally, we separate an image into four 20x20 quadrant patches and use one BZ-PZ oscillator 
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network to store one patch. Hence, a pattern matching operation of one image requires four 

networks. The segmentation of images is performed to reduce the convergence time of the 

pattern matching process since this allowed us to use multiple small BZ-PZ networks and 

decrease the number of capacitors in each network. The entire preprocessing steps for pattern 

storage are illustrated in Figure 6.16. 

 

Figure 6.16 The preprocessing stages for pattern storage 

For the pattern recognition task, we set the unrotated first image of each object as the 

stored pattern for one category. As we described above, the stored pattern is segmented into four 

patches and stored in four independent BZ-PZ networks with the configuration given in Table 

6.1, except setting capacitance C=1. Therefore, we have ten grayscale image patterns stored in 

40 BZ-PZ oscillator networks with 400 units in each network.  
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In the recognition stage, we use a similar configuration as in Section 4.3.3. For one run of 

the recognition operation, we select ten images of different categories as the test input pattern 

and broadcast them to all the networks (Figure 6.17). In other words, each input pattern will be 

compared to 10 stored patterns and there are a total of 100 pattern-matching operations (10x10) 

in one run. For these 100 operations, we measure the sum of the convergence times of each one 

and plot them in a 10x10 color matrix (Figure 6.17). In Figure 6.17, the x-axis is the label of the 

stored pattern and the y-axis represents the input pattern. Thus, each row of a convergence time 

matrix gives the degree of match between one input pattern and ten stored patterns equal to the 

sum of the convergence times in each pattern matching operation, indicated by colors that vary 

from blue to red. The correct recognition is on the diagonal of the matrix, where the input pattern 

and stored pattern are the same objects. Meanwhile, the incorrect recognition is labeled by the 

red triangle, which has the lowest convergence time on the row, but deviates from the diagonal. 

 

Figure 6.17 The convergence time matrices of pattern matching on COIL dataset. 
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In the first test, we make the input pattern and the stored patterns precisely the same 

images. Figure 6.17 illustrates the convergence matrix in such a scenario; the diagonal elements 

of the convergence time matrix are all zero (dark blue), in contrast to the other elements with a 

much higher value of convergence time. The results shown in Figure 6.17 indicate that the sum 

of the convergence times of different oscillator groups can effectively discriminate the stored 

patterns in this test. 

 In the following three tests, we select the test images in the same object categories but 

demonstrate rotations of objects as the input patterns. The rotations of objects are respectively 

15°, 25°, 50° in each test. The convergence matrices of these tests are plotted in Figure 

6.18(a)(b)(c). We notice that as the variation of pattern (rotation) increases, the values of the 

non-diagonal elements of each row become closer to the diagonal elements. As the input patterns 

increasingly differ from the correct template patterns the difficulty of pattern recognition 

increases and eventually results in errors in the case of the 25° and 50° rotations. This trend is 

observed through the color distribution in each matrix in Figure 6.18.  

The results and observations in this section are similar to the results shown in Figure 4.12 

of Section 4.3.3. Thus, we demonstrate that the BZ-PZ networks with capacitors are capable of 

performing pattern recognition on grayscale images, providing the sum of the convergence times 

of each oscillator groups as a distance metric.   
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Figure 6.18 The convergence time matrices of pattern matching on COIL dataset with object rotation. Objects are 
rotated in the input patterns for (a) 15°, (b) 25°, (c) 50° respectively. 
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6.4 DISCUSSION 

Overall, our study in this chapter reveals the rich dynamical behavior that can be achieved by 

combining responsive materials so that each component can harness the distinctive properties of 

the other (e.g., the oscillating properties of the BZ gels and the electromechanical properties of 

the PZ cantilevers) to perform such functions as sensing and actuation. For the BZ-PZ system, 

the network of interacting materials units can also communicate and achieve synchronization. 

The modes of synchronization represent a means of coding and storing information in the system. 

In our previous studies of the BZ-PZ system, the oscillators in the network showed two distinct 

modes of synchronization. To enrich the level of information that could be stored in the device, 

we introduced capacitors in parallel to the PZ plates. We focused on capacitors because they are 

passive units that still enable the system to operate in a relatively self-sustained, autonomous 

manner (converting chemical energy from the BZ reaction into the mechanical motion in the 

system). Moreover, by deriving Eq. (7) and (8), we found that the capacitors will lead to a 

redistribution of charge in the system and alteration of the force acting on the PZ cantilevers. 

Hence, the capacitors modify the strength of coupling between the oscillators in the network. We 

hypothesized that the changes in the coupling strength would affect the modes of 

synchronization and potentially lead to the appearance of additional stable states.  

To test the above hypothesis, we formulated the phase dynamics equations to analyze the 

synchronization modes in this new system, where groups of oscillators encompass the capacitors. 

With this phase dynamics approach, we varied the number and capacitance of the capacitors in 

the system and performed detailed studies to analyze the rich dynamical behavior in the system. 

In particular, through numerical simulation and analytical calculations, we determined the impact 

of the capacitors on the existence of the synchronization modes, their stability, and the rate of 
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synchronization within the networks. We validated our conjecture that the introduction of 

capacitors can split a single mode of synchronization into two distinct modes and thus, augment 

the information storage capabilities of the device. The extent of level splitting can be 

significantly enhanced by considering networks that encompass four or more distinct groups 

(where the capacitors in the different groups can take on different values of capacitance). Hence, 

the information storage can be significantly enriched with the introduction of more complex 

configurations. 

Importantly, we also showed that the rate of synchronization can be estimated using the 

eigenvalues calculated in the course of the stability analysis and thereby showed a non-

monotonic dependence between the synchronization rate and the value of the capacitance in 

certain configurations of the network. This non-monotonic dependence hints at the complexity 

that is inherent in these weakly coupled systems. 

More generally, the findings also provide insight into the complex dynamics that can be 

exhibited by weakly coupled oscillators and how these dynamics can be tuned by tailoring the 

strength of interaction between the oscillators. Notably, there is an increasing demand for 

“robotic materials” that harness the intrinsic properties of the materials to perform such functions 

as sensing, actuation and information storage. Ideally, these robotic materials should be 

lightweight and compliant so that they could be worn or be readily interfaced with human 

activities. Hence, it becomes important to design materials systems whose inherent behavior 

provides a route to the “robotic” activities and to establish means to expand the functionality of 

these materials. 

 
 



 130 

7.0  CONCLUSION AND FUTURE WORK 

In this chapter, we first present a summary of this dissertation and present essential conclusions 

we can draw from this research. Finally, in the section of future work, we introduce some 

remaining problems in this area and a few ideas to extend our work. 

7.1 SUMMARY 

In this dissertation, we propose the new concept of “materials that compute”. We explore this 

topic by designing and modeling new computing systems based on coupled hybrid material 

oscillators, which are composed of self-oscillating gels and piezoelectric films. Here, we 

summarize our work in this dissertation. 

In Chapter 2, we provide the theoretical background for this dissertation. We explore the 

previous work on oscillator-based computing. In particular, we examine the computing paradigm 

in visual pattern matching. We also briefly discuss oscillator neural networks, which inspired our 

design in this work. Then we give a short introduction to BZ gels and provide relevant 

mathematic models.  

In Chapter 3, we study the phase models of coupled oscillators that can be used to 

describe the oscillation behavior and speed up the simulation of oscillator-based systems. We 

demonstrate three methods to obtain the phase response curve or connection function of coupled 
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oscillators and use CMOS ring oscillators as examples. Then we simulate three oscillator-based 

computing paradigms with phase models and show the acceleration in the simulation. 

In Chapter 4, we describe the design of our new material computing system in detail, 

including the hybrid PZ-BZ oscillator and coupled networks of these units. We present a new 

method for storing patterns in coupled oscillator networks and initialization of input patterns and 

how the pattern recognition is performed. We provide design guidelines and simulation results 

that show the system performance and robustness. Finally, we analyze the stability of the 

synchronization modes and the feasibility of fabricating these devices. 

In Chapter 5, we present the architecture of multiple BZ-PZ Networks in parallel and the 

encoding channels of colored patterns. We discuss how the colored patterns are decomposed in 

multiple channels and processed by BZ-PZ networks. We use a simple colored pattern to 

demonstrate the detection of defects in different channels and then apply the proposed system to 

the detection of defects in colored QR-codes. 

In Chapter 6, we propose the BZ-PZ oscillator networks with capacitors. We illustrate the 

structure of this modified network and derive the dynamical equations for the force acting on the 

units in the network. Then, we derive the corresponding equations in the phase domain and 

demonstrate the splitting of phases in the final stable state. By using the phase equation, we find 

the equilibrium solution for the system and perform linear stability analysis to verify the 

existence of synchronization modes and the rate of synchronization. We take the BZ-PZ 

oscillator networks with three groups of configurations as an example and compare the 

theoretical analysis and numerical simulation. Through the investigation, we found the co-

existence of synchronization modes and the states of partial synchronization. Finally, we test the 

proposed network in the pattern recognition task with COIL, a dataset of grayscale pictures. 
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7.2 CONCLUSIONS 

Based on the research described herein, a set of important conclusions can be drawn: 

• Phase models are effective and efficient in predicting the frequency or phase of coupled 

oscillator systems with small errors compared to the direct simulation of the oscillator 

model. The key element of the phase model is the phase response curve, or connection 

function, which represents the intrinsic properties of the coupling between oscillators. 

Phase models can reduce the computation cost of simulation and are particularly suitable 

for simulation and analysis for oscillator-based applications, such as pattern matching, 

segmentation, and convolution. 

• BZ-PZ hybrid material system can sense, actuate, communicate, and compute in a self-

organized manner. The self-oscillating BZ gel can serve as both actuator and sensor. Its 

chemo-mechanical oscillation can be sensed and perturbed through the overlaying 

piezoelectric film. The piezoelectric film serves as an efficient interface for the coupling 

BZ oscillators and enabling the information processing capabilities of the system. These 

properties and the feasibility of fabrication make the BZ-PZ oscillator a good candidate 

for “materials that compute”. 

• The oscillation of coupled BZ-PZ oscillators synchronizes either in-phase or anti-phase, 

depending on the force polarizes. Therefore, a binary pattern can be stored in a BZ-PZ 

oscillator network by configuring the force polarizes. The synchronization of BZ-PZ 

units in the oscillator network performs a pattern matching operation.  

• The convergence time represents the rate of synchronization and can be used as a 

distance metric to measure the difference between stored pattern and input patterns. BZ-
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PZ oscillator networks can perform a nearest neighbor search by comparing the 

convergence time and achieve pattern recognition. 

• We can process more complicated patterns than binary vectors by utilizing multiple BZ-

PZ networks in parallel. This can be achieved through employing a single BZ-PZ 

network as a distinct “channel” and decomposing patterns into sets of binary vectors.  

• Multiple BZ-PZ networks can detect subtle defects in an input pattern relative to a stored 

image that encompasses information in different features. 

• The proposed multi-channel network system can also be applied in cryptography or 

steganography. For example, the device can be used as an authentication system with a 

plain code and a multi-level password, or for storing images pattern with hidden 

information. 

• To enrich the level of information that could be stored in the BZ-PZ network, we can 

introduce capacitors in parallel to the PZ plate of each unit. The modes of 

synchronization represent a means of coding and storing information in the system. The 

capacitors modify the strength of coupling between the oscillators in the network and 

thus, affect the modes of synchronization, resulting in additional stable states. 

• In the group of BZ-PZ oscillators with the same force polarity, adding capacitors to some 

oscillators results in the splitting of final phases and the slowing down of the 

synchronization. The phases in the final stable state depend on the number of oscillators, 

force polarity, and capacitance. 

• Equilibria in phase equations and linear stability analysis can be used to predict the 

synchronization modes efficiently and to estimate the rate of synchronization near the 

stable state.  
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• It is challenging to locate all the synchronization modes in a BZ-PZ network that consists 

of multiple groups of oscillators with various configurations due to the complex dynamic 

behaviors, co-existence of synchronization modes, and the states of partial 

synchronization. It is equally challenging to determine the rate of synchronization from 

an arbitrary initial state; this leads to the failure of measuring distance between stored 

patterns and input patterns by using the convergence time. 

• Although the global convergence time is no longer useful for evaluation of the degree of 

match (DoM), according to our experiments, the sum of convergence times of each 

oscillator group still works for the grayscale pattern recognition task on the COIL dataset. 

7.3 FUTURE WORK 

My PhD research work in “materials that compute” is an initial exploration of this new topic. 

Here, we list some thoughts and ideas for potential future work: 

• The current design of BZ-PZ networks with capacitors is relatively inefficient in pattern 

recognition task, mostly because the introduction of capacitors increases the convergence 

time and complicates the dynamical behavior of systems. One direction of future 

innovation could be new computing paradigms that do not rely on the convergence time 

as the critical measurement. We may borrow ideas and concepts from other 

unconventional computing paradigms, such as brain-inspired/neuromorphic computing. 

For example, using spikes as the information representation, instead of phases. In such a 

case, we might design an event-based computing system built on our materials. 
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• Another idea for future work would be introducing stochastic properties into our 

computing system, considering that most of our applications are focused on computer 

vision and machine learning. One potential direction is the stochastic oscillation of the 

BZ gel and the other direction would be the signal sensed from the external environment, 

which randomly perturbs the oscillation of gels. 

• Based on the ideas we mention, we can introduce light as a new input to our system since 

the gel is sensitive to the light in oscillating frequency. Using light as the input or 

controlling signal, we can change the way of information processing in our system. 

However, this might require new structures of BZ-PZ networks. 

• Designing new interfaces between BZ-PZ units is another possible future work. The 

current design of the connection is merely two electrodes that convey both input and 

output signals. It has the advantage of energy conservation, but also limits the new design 

of network architectures. Namely, for synchronization, the BZ-PZ oscillators can only be 

connected in a serial loop. Designing circuits of new interfaces may address this problem 

and might a route for providing external power for signal amplification. 
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	Figure 4.6 The stored 10x10 pattern and an example of the input pattern set used in Test 1. The set is generated by flipping an increasing number of pixels until the input pattern is transformed into the mirror pattern. The difference between the stored pattern and an image from the set is characterized by the Hamming distance, which is the sum of the element-wise differences between two binary vectors.
	Figure 4.7 The average convergence time obtained in Test 1 (blue line), and the Hamming distance between the stored and input images (orange line) as functions of the number of flipped bits. The error bars show the range of convergence times obtained from 100 runs at a given number of flipped bits, which were selected at random from all the bits in the system.
	Figure 4.8 An example of the  stored and input patterns used in Test 2. The input patterns are generated using the same strategy of flipping bits as in Test 1.
	Figure 4.9 The average times of convergence to the stored patterns  (blue line) and  (orange line) obtained in Test 2 as functions of the number of flipped bits. The error bars are obtained as described in Figure 4.7.
	Figure 4.10 The average times of convergence to the stored patterns  (blue line) and  (orange line) obtained in Test 2 as functions of the number of flipped bits. The two stored patterns are more similar to each other’s mirror patterns than the stored patterns in Figure 4.8. The observed peaks are similar to the one in Figure 4.6, the result of Test 1.
	Figure 4.11 The images used in Test 3. The top row (a) shows the 10x6 binary images of the ten digits used as the stored patterns. Rows (b) and (c) show the respective distorted image of the digit ‘3’ and ‘8’ that are obtained by flipping 1, 5, 10, 15, 20, 25, 30 pixels that are randomly selected.
	Figure 4.12 The accuracies of the recognition Test 3 for the input patterns of all the digits that are distorted with various levels of noise. The bars are colored according to the noise level. The horizontal axis indicates the input patterns.
	Figure 4.13 The difference between the average convergence times of the winner and of the runner-up in all the hit cases in Test 3 for the digits shown in Figure 4.12. The error bars show the standard deviation obtained for each bar. The results indicate how fast the correct, recognized winner leads the runner-up. The other notations are the same as in Figure 4.12.
	Figure 4.14 The phase dynamics for the uniform distribution  for various values of .
	Figure 4.15 The convergence time at random  as a function of the distribution width . The convergence threshold is 0.1.
	Figure 4.16 The phase difference  between the two groups of oscillators obtained by numerical solution of (4-15) at n=46.
	Figure 5.1 Schematics of the four BZ-PZ networks used for recognition of colored patterns. After decomposition of input image, the networks perform simultaneous matching operations in the corresponding information channels. The convergence time (given in number in cycles) is determined for each channel separately.
	Figure 5.2 Pattern matching in color channels with multiple BZ-PZ networks. The first row shows the colored “smiley face” as the stored pattern, and its decomposed binary pattern images in the B/W, Red, Green and Blue channels, respectively. The second and third rows present the two test input patterns with different types of image variation, and their decomposed patterns in each channel. On the bottom of each row, the convergence time for each channel is shown.
	Figure 5.3 Pattern matching with varying input patterns. (a) Nine color image patterns show the process of turn green “left eye” into blue pixel by pixel. The first one is the stored pattern, and the rest eight patterns are the input patterns; (b) Similar test with the process that remove “left eye” object. We plot convergence time in each channel as a function of the number of changed pixels. (c) Convergence time in Blue channel in test (a). (d) Convergence time in B/W channel in test (b). (e) Convergence times in Green channel for both test (a) and (b). Note that the green channel responds in exactly the same manner to test (a) and (b), resulting in the same plot of the convergence time (e).
	Figure 5.4 Pattern matching of QR code in multiple color channel. The black/white binary QR code pattern of “Hello World” and randomly colored version as stored pattern are shown in black frame. An example of test input patterns with 10 defect pixels (marked with “x”) are placed on the top right. The bar graph on the bottom gives the averaged convergence time of the repeated simulation of matching operations. The error bars give the maximum and minimum. Each input pattern is labeled at x-axis according to its number of defect pixels, with the three color bars corresponding to convergence time in RGB channels. Note that B/W channel detects no channel in this test and its convergence time is 0, which is not shown.
	Figure 6.1 Schematics of the BZ-PZ oscillator network with capacitors connected to each unit.
	Figure 6.2 Connect Function and its derivative; (a) The connection function  in phase model of BZ-PZ oscillator networks, Eq. (6-7). The function is periodic at . (b) The plot of the derivative of  in one period.
	Figure 6.3 The evolution of phase differences between all the BZ-PZ units and the first reference unit, initialized with random phases. The legends of plot show the colors that represent different group of units with corresponding parameters (a) original BZ-PZ network with no capacitors; (b)-(d) BZ-PZ networks consist of multiple groups of units with different capacitance. 
	Figure 6.4 Plots of final stable state  and  against  at , and  represented in colors shown in plot legend. (a)(b): fixed  (c)(d): . The filled disk marks denote the stable state values obtained by the numerical simulations using the phase model, Eq. (6-11). The circle marks at the end of each curve indicate the boundary of the synchronization domain.
	Figure 6.5 Solutions of Eq. (6-9) and (6-10) plotted as the respective blue- and red-colored lines in coordinates  and  at , , and (a)  and (b) . The streamlines are displayed in grey. At point , the streamline shows direction of the vector , where  and  are the left-hand-sides of Eqs. (6-9) and (6-10), respectively. 
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	Figure 6.8 The relaxation times , , as functions of the capacitance  for the three-group networks with the number of BZ-PZ units containing the capacitors (a)  , (b) , and (c) . The solid and dashed lines mark the two modes of synchronization. The line colors label the relaxation modes: .
	Figure 6.9 The times of synchronization as functions of  obtained by simulations of the three-group networks with the configuration (a), (b). In all cases, , . (c) and (d): The normalized relaxation times (lines) and synchronization times (symbols) for the same network configurations as in (a) and (b), respectively. 
	Figure 6.10 The two types of partial synchronization behaviors observed in the numerical simulations of the network with configuration , , and . In (a) and (b), all phases are plotted relative to the unit 1, . In (c) and (d), all phases are plotted relative to the unit 26, .
	Figure 6.11 The state of partial synchronization observed in the numerical simulations of the network with configuration , , and . In (a) and (b), all phases are plotted relative to the unit 1, . In (c) and (d), all phases are plotted relative to the unit 26, .
	Figure 6.12 Matching operation of grayscale image pattern by using a BZ-PZ network with capacitors.
	Figure 6.13 Average convergence time of the BZ-PZ network that perform pattern matching on the distorted black/white image pattern with extra gray pixels.
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	Figure 6.15 Images of objects selected from COIL dataset. (a) Ten object categories; (b) Example images of one object. The grayscale images are pictures taken after every 5-degree rotation. Each object has 72 pictures.
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