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SIMULATIONS

Akash Parvatikar, M.S.

University of Pittsburgh, 2018

Anharmonicity in time-dependent conformational fluctuations is noted to be a key feature

of functional dynamics of biomolecules. While anharmonic events are rare, long timescale

(µs − ms and beyond) simulations facilitate probing of such events. However, automated

analysis and visualization of anharmonic events from these long timescale simulations is

proving to be a significant bottleneck. Traditional analysis tools for biomolecular simulations

have focused on spatial second order statistics. Previous work involved resolving higher order

spatial correlations through quasi-anharmonic analysis (QAA). In this thesis, we extend

this analysis to spatio-temporal domain in the form of anharmonic conformational analysis

(ANCA).

We demonstrate ANCA on a publicly available millisecond long trajectory data of the

protein Bovine pancreatic trypsin inhibitor (BPTI) using cartesian coordinates of the indi-

vidual atoms selected for analysis. To overcome the limitation of finding a good reference

structure through trajectory alignment, we propose ANCA in the dihedral space to make use

of the internal angles derived from the backbone of a fluctuating biomolecule. We test this

dihedral angle extension of ANCA on a microsecond long simulation of Drew-Dickerson Do-

decamer B-DNA data. Our results indicate that ANCA provides a biophysically meaningful

organizational framework for long timescale biomolecular simulations.

We have additionally built a scalable Python package for ANCA, namely pyANCA, with

modules that can: (1) measure for anharmonicity in the form of higher order statistics and

show its variation as a function of time, (2) output a story board representation of the simula-
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tions to identify key anharmonic conformational events, and (3) identify putative anharmonic

conformational substates and visualize transitions between these substates. ANCA is avail-

able as an open-source Python package under the BSD 3-Clause license. Python tutorial

notebooks, documentation and examples can be downloaded from http://csb.pitt.edu/anca.
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1.0 INTRODUCTION

1.1 PROTEIN MOTIONS

Proteins are complex macromolecules consisting of single and/or multiple chains of amino

acids. They are also called the building blocks of the body and are the second most abundant

molecules behind water. Proteins play a critical role in several vital processes that span from

tissue repair and maintenance to energy production, and from hormone creation to antibody

formation for fighting diseases. The process by which a linear sequence of amino acids

fold into a functional three-dimensional structure or conformation is a big open problem in

molecular biophysics. A well-known paradigm is that the sequence determines structure and

that structure determines function.

Proteins undergo large scale conformational fluctuations due to inter and intra-molecular

interactions. Different conformational activities of proteins can be identified at different spa-

tial and temporal scales as illustrated in Figure 1.1. Richard Feynman’s statement on the

science of ‘understanding’ being highly correlated to jiggling and wiggling of atoms has been

widely accepted by the scientific community [1]. Due to the recent advancements in experi-

mental techniques and computational modeling, we are beginning to infer the functionality

of biomolecules based on the nature of their motions. An emerging paradigm is that the

structure leads to dynamics and dynamics determines function.

Let us now investigate the internal proteins motions at different timescales. As shown

in Figure 1.1, bond vibrations occur on a femtosecond to picosecond timescale [2]. These

vibrations involve a small number of atoms in a spatially narrow region of the protein.

These rapid motions involve bond stretching, angle bending, and twisting motions between

planes formed by adjacent groups of atoms. Furthermore, at the nanosecond timescale we
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can experimentally observe flexible vibrations of loops and rotations of side chains. Only

when we go beyond microsecond timescale, the motions involve fluctuations in secondary

structure elements comprising of α-helices, β-sheets and flexible loops or changes in the

entire shape of a protein. These rather slow motions have attracted significant interest

due to their possible linkage to biological function. A collective ensemble of conformational

fluctuations involving multiple regions of a protein is more commonly referred to as breathing

motions. In the following section, we will talk about different experimental and state-of-the-

art computational methods that have evolved to measure and interpret protein dynamics.

Figure 1.1: Temporal scales for internal protein motions. The internal motions of a
protein range from femtoseconds (10−15s) to microseconds and beyond (> 10−6s).

1.2 METHODS TO STUDY PROTEIN MOTIONS

The following sections give an overview of the experimental techniques and molecular dy-

namics (MD) simulations that can provide insights into the dynamic fluctuations of proteins.

1.2.1 Experimental Techniques

Several experimental techniques have been useful in generating snapshots of protein trajec-

tories and improving our understanding of the protein motions relevant to function. One

such technique is to perform neutron-scattering experiments to provide measures of thermal

vibrations and their associated frequencies [3]. With this technique fast thermal motions

spanning from 1 - 100 picoseconds can be monitored.
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Nuclear Magnetic Resonance (NMR) technique has certain merits which allows molecular

level analysis of proteins. It has the ability to compute quantitative dynamics at a greater

detail and is used to sample protein conformations at nanoseconds and longer timescales [4].

Spin-echo neutron scattering is another technique to probe the motions of macromolecules

[5]. It can monitor motions from microsecond to millisecond timescale.

Another addition to the set of experimental techniques is exploring conformational land-

scape of proteins through hydrogen-deuterium exchange (HDX) monitored by NMR spec-

troscopy or mass spectrometry [6]. It can measure slow conformational changes in the order

of milliseconds. X-ray crystallography has been beneficial to understand the characteristics

of protein conformational substates that can relate to the biological function [7].

A common problem with experimental techniques is the inability to effectively analyze

protein motions at an atomic scale. One of the reasons being short lifetime and low proba-

bility of the energetic conformers. Thus, molecular dynamics (MD) simulations that bridge

theory and experiments can provide a fresh path to understand microscopic interactions

between sub-units of biomolecules under physiologically relevant environmental conditions.

1.2.2 Molecular Dynamics (MD) simulations

Molecular Dynamics (MD) simulation refers to the science of simulating atomistic scale

motions of biomolecules which can provide granular details about the nature of each particle

in motion while the molecule is sampling a complex energy landscape [8]. They can be

considered as a remarkable tool to explore the underlying geometry and functional roles

of the macromolecules. However, the starting three-dimensional structure used by MD is

generated from previously mentioned experimental techniques such as X-ray crystallography,

NMR spectroscopy or formulated theoretical models. Further, an appropriate molecular

mechanics (MM) forcefield is chosen to set the structure in action by modeling a suitable

environment and ambient temperature [9]. In order to determine the behavior of this system

temporally, we solve Newton’s equations of motion at each time step as the molecule traces

a rugged potential energy surface while assuming different conformations. This complex

energy landscape can be thoroughly analysed to infer biologically relevant motion.
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Force fields in MD describe atomic interactions that govern the overall fluctuations of

biomolecule. They are commonly known as empirical force fields which are derived from ab-

initio quantum mechanical calculations and fit into thermodynamic observations obtained

from experiments to describe the dynamics of atoms of interest. Given a force field for a

conformation (~r), the potential energy VMM(~r) is given by the equation:

VMM(~r) = Vb + Vnb, (1.1)

where, Vb gives bonded interactions and Vnb provides non-bonded interactions. The

bonded interactions includes sum of three interactions namely Vstretch, Vangle, Vdihedral as

reflected by the first three terms of the following equation respectively:

Vb =
∑
i,j

Kb(b− bo)2 +
∑
angles

Kθ(θ − θo)2 +
∑

dihedrals

Kφ[1− cos(nφ)]. (1.2)

Vstretch indicates the harmonic potential of covalently bonded atomic pairs. Vangle provides

a measurement for a shift of angle from ideal angle θo. The last term Vdihedral tries to replicate

the steric barrier between four atoms separated by three covalent bonds. The corresponding

motion associated with the previous term is the rotation along dihedral angle.

The non-bonded interactions given by Vnb comprises of two terms defined by the equation:

Vnb =

∑
non-bonded

[
Aik
r12ik

+
Cik
r6ik

]
+

∑
non-bonded

[
qiqj
Drik

]
. (1.3)

The first term from the above equation describes Lennard-Jones potential giving a sense

of van der Waals interactions. A and C are influenced by atom type and estimated through

scattering experiments. rik is a measure of distance between atoms. This is important

because van der Waals is heavily involved in attaining conformer’s stability [9]. The second

term in the equation represents Coulombic forces in which, qi gives the charge of the atom

and D is the dielectric function of the surrounding medium.

The total potential energy function from Eq. 1.2 and Eq. 1.3 is a differentiable equation

which gives force acting on atoms which can be further used to integrate Newton’s laws of

motion. This is the underlying theory behind simulating motions of biomolecules through

molecular dynamics. It extracts set of conformers/ ensemble for a given time frame. For
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example, if a protein is simulated for 1 ms and conformers are sampled every 1 ns, then we

can have a dataset with 1,000,000 conformers.

Although MD simulations make atomistic level analysis feasible, it has certain limita-

tions. One such drawback being the effect of insufficient sampling due to all-atom simulations

of biomolecules. Structural changes in protein ranges from nanoseconds to milleseconds and

even longer. In order to achieve quantitative stability, simulations require time-steps of the

range femto-pico seconds (10−15 − 10−12). Only recently, due to the advancements in paral-

lel computing and custom made hardware types such as Field Programmable Gate Arrays

(FPGAs) [10] and Application-Specific Integrated Circuits (ASICS) [11] have tremendously

increased simulation speed. Active research for algorithmic improvements is also being pur-

sued by scientists world-wide to enable longer timescale simulations.

1.3 CONFORMATIONAL SUBSTATES OF PROTEIN ENSEMBLE

Proteins are not static structures, but are complex systems that are kinetically active at var-

ious spatial and temporal scales [12]. They take the form of several conformations within a

short timescale that is difficult to probe. However, in the previous section we discussed about

few experimental techniques, X-ray crystallography and Nuclear Magnetic Resonance spec-

troscopy in particular, which provides us information about three-dimensional organization of

atoms that make-up a protein macromolecule and possibly understand the structure-function

relationship. Emerging evidence claims that, protein conformation in its native/folded state

(functioning structure) is not singular, but assumes multiple conformations in relation to the

environment encompassing the molecule.

Proteins while undergoing dynamic conformational fluctuations samples multiple minima

free-energy landscape that can be imagined to consist of hills and valleys comprising of

certain number of conformers. These undulations can be thought of energy wells separated

by barriers. Each well consists of certain conformers that share similar properties like internal

energies, structure, and others. Such protein structures that have similar properties or

conformations within a well is referred to as a substate. Transitions between these substates
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can be coupled to biological function of the macromolecule as illustrated in Figure 1.2 [13].

Obtaining insights into how a native structure of protein samples free-energy landscape is

necessary to provide in-depth description of the functioning mechanism. In order to achieve

this, we should address the challenge of precise characterization of substates and extract

conformers within these substates and later derive knowledge about pathway of protein

function.

Figure 1.2: Energy landscape of protein conformations.

Experimental data obtained from X-ray crystallography and NMR spectroscopy doesn’t

reveal details that is necessary to relate transition between substates to the function. While

X-ray crystallography performed at ambient temperature characterizes conformational en-

sembles, it fails to give quantitative information about infrequent states and transition be-

tween them [14]. Alternately, NMR spectroscopy requires specific inputs such as number of

substates. Due to these limitations, and growing computation power, atomistic scale MD

simulations has been instrumental in efficient characterization of substates [15]. Collection
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of conformations from MD simulation is referred to as an ensemble.

1.4 OUTLINE OF THE THESIS

In this thesis, we lay emphasis on the statistical analysis of conformational fluctuations that

are important for biological function. As a means to achieve this goal, we have developed a

toolbox to address the following two broad questions:

• How to characterize protein dynamics by considering spatio-temporal information?

• How to identify putative conformational substates and visualize the transition between

them?

The first chapter of this thesis motivates the readers to understand the relationship

between structure-motion-function of biomolecules. Second chapter illustrates the analysis

of protein motions using a publicly available MD simulation data of Bovine pancreatic trypsin

inhibitor (BPTI). We account for the non-Gaussian behavior of trajectory fluctuations and

motivate the idea of chasing high-order statistics to resolve spatio-temporal correlations.

In the third chapter, we provide an alternate analysis of macro-molecules by considering

dihedral angles and elucidate its advantage over using Cartesian coordinate system which is

considered in the previous chapter. In the final chapter, we describe the open-source Python

package pyANCA that serves as a toolkit to quantitatively analyze biomolecular simulations.
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2.0 SPATIAL AND TEMPORAL CORRELATION ANALYSIS TOOLS

Molecular dynamics (MD) simulation generates data which are highly correlated in spa-

tial and temporal domain. Analysis of protein motions obtained from such simulations is

observed to exhibit anharmonicity. This non-Gaussian behavior can be attributed to the

dense conformational fluctuations as a result of constant interplay with surrounding en-

vironment (solvent, ions and other proteins) and the inter-residue force fields within the

globule. Among protein fluctuations observed at different temporal resolution, the motions

happening beyond micro-second (10−6) time-scales is significant due to it’s possible role in

protein function. Such movements are often referred to as breathing motions. In this chapter,

we discuss several tools to resolve spatial (SD2 and SD4) and temporal dependencies (TD2

and TD4) using second and fourth-order statistics to enable characterizing long time-scale

protein fluctuations.

2.1 INTRODUCTION

Anharmonicity in time-dependent conformational fluctuations is noted to be a key feature

of functional dynamics of biomolecules [16]. In this chapter, the primary focus is to resolve

spatial and temporal dependencies observed from the analysis of molecular data. Previously,

much of the work has been focussed on applying spatial statistics. Traditional tools such

as Principal component analysis (PCA) [17] and Quasi-anharmonic analysis (QAA) [18] has

been successfully tested to spatially resolve data in second and fourth-order. However, the

correlations in temporal domain also needs to be resolved to improve probing of anharmonic

behavior. In this chapter, we discuss several tools to decorrelate MD simulated milli-second
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long trajectory data of the small globule Bovine pancreatic trypsin inhibitor (BPTI).

A data matrix (Xorig) is constructed with 412497 observations (conformers) spanned

across 1.031 milli-seconds for the 58 residues of BPTI protein which was generated on the

Anton supercomputer by D.E. Shaw Research group. Data is organized as 3N × t matrix,

where 3N represents (x,y,z) coordinates from individual atom selections and t represents

conformations. The large matrix is passed through decorrelation modules (SD2, SD4, TD2

and TD4) for resolving anharmonic dependencies. Before supplying trajectory coordinates

to these modules, the data is structurally aligned.

Understanding the flexible nature of proteins is essential to obtain insights about its

activity. Different experimental conditions can generate conformations which are not identi-

cal. Thus, protein structures needs to be superimposed for identifying functionally relevant

protein domains [19]. In order to achieve this, firstly rigid and flexible residues are identified

through application of Gaussian-weighted RMSD superpositions. It translates and rotates

the structures to minimize the arithmetic mean of positions of atoms in subsequent struc-

tures, that is, reducing root mean square deviations (RMSD) of ensembles. Rigid residues

are used as an underlying structure to iteratively align the MD ensemble. After alignment,

the data is processed through different modules to obtain uncorrelated components to gain

an understanding of protein dynamics.

2.2 BOVINE PANCREATIC TRYPSIN INHIBITOR (BPTI): STRUCTURE

AND STATISTICAL INSIGHTS INTO THE NATURE OF

BIO-MOLECULE

Bovine pancreatic trypsin inhibitor is a three-dimensional small globular protein which forms

the drug Aprotinin that suppresses the action of protein digestion. It is one of the most

extensively studied protein whose structure was determined with a high resolution of 1.9 Å

[20]. BPTI is also the first protein to be analysed experimentally through NMR spectroscopy

in the late 20th century in Kurt Wuthrich’s lab [21]. Due to its relatively stable structure

comprising of 58 amino acids, BPTI was the first macromolecule to be simulated using
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Molecular Dynamics (MD) simulation by Karplus and group [22].

BPTI performs its function of suppressing protein digestion by breaking down the macro-

molecules into their respective peptide blocks through restraining the action of trypsin en-

zyme produced in the bovine pancreas. The enzyme was first isolated independently in

1936 from active pancreatic extract [23]. Apart from studying the protein’s structure, both

experimentally and computationally, extensive research has been carried out to understand

the dynamics and develop insights about its folding pathway. Due to its innate nature of

forming complexes with several other enzymes, it has been chosen as an example study for

investigating protein-protein interactions. In the following section, we will try to visualize

BPTI’s structure and dynamics by employing statistical measures.

As illustrated in Figure 2.1, the BPTI protein comprises of 58 amino acid residues.

Amino acids are the monomers which are bonded together to form multiple chains of polypep-

tides collectively termed as proteins. BPTI takes the form of a tertiary fold comprising of

two anti-parallel β sheets and short segments of two α helices.

2.2.1 Statistical insights of trajectory fluctuations

In our studies, we used the one millisecond trajectory of BPTI generated by D.E. Shaw

Research group on the Anton supercomputer [24]. For simplicity and efficiency, we consider

only the backbone atoms (Cα) over 1.1 ms trajectory generating about 412497 conformers.

To complement insights from harmonic measures of conformational changes, such as the

root-mean squared deviation (RMSD), we have used higher-order anharmonic measures,

namely kurtosis (κ) [15]. κ measures the peakiness of the probability distribution of a

random variable. κ is calculated from either the Cartesian coordinates or dihedral angle

selections specified by the user. For unimodal distributions, κ quantifies the proportion

of weights on the tails. A distribution with κ = 3 is called mesokurtotic or mesokurtic.

A Gaussian distribution with zero mean, unit variance is mesokurtotic. A value of κ >

3 indicates a super-Gaussian distribution that is more peaked and heavier tailed than the

baseline Gaussian. Such a distribution which has positive excess kurtosis is called leptokurtic
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Figure 2.1: Three-dimensional conformation of BPTI. The cartoon representation of
BPTI has been created using VMD software.

or leptokurtotic. Conversely, a distribution that is less peaked than the baseline Gaussian

has kurtosis κ < 3 which is generally referred to as sub-Gaussian. Such a distribution with

negative excess kurtosis is termed as platykurtic or platykurtotic. The statistical significance

of κ is assessed through the kurtosis test, which rejects the hyposthesis of normality when

the p-value < 0.005. Using κ, we quantify which parts of the protein exhibit anharmonic

motions as illustrated in Figure 2.2 and for how long as seen in Figure 2.3. In the case

of BPTI, we can observe that a majority of the Cα atoms spend at least 5% of their time

exhibiting anharmonic motions. However, the interface formed by helices 1 and 2 is mostly
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harmonic, because of the strong hydrophobic interactions and Cys-disulfide bonds.

Figure 2.2: Residues painted by individual kurtosis (κ) values. Two residues Asp3−
Phe4, show the largest κ values while sampling anharmonic motions infrequently.

Further, we analyzed the variation of κ at each Cα coordinate (x,y,z), using an exponen-

tial sliding window with a half-life of 1µs from the trajectory [18]. Almost all the individual

residues exhibit some degree of anharmonicity, while κ is more pronounced along individual

coordinate directions. These conformational changes constitute events within the trajectory

that may be of interest to the user for further analysis. Using κ, the user can identify confor-

mational events that occur at distinct timescales and organize a conformational storyboard

for the entire simulation(s). Figure 2.4 shows the variation of kurtosis over time using an

12



Figure 2.3: Residues are colored by the time spent sampling anharmonic fluctua-
tions.

exponential window with a half-life of 1µs. The filtering procedure is described in detail in

[18]. Using a user-defined threshold (green line in Figure 2.4), a total of 17 conformational

events are detected (labeled E1−E17). Select events from this are organized as a story board

in Figure 2.5.

These events summarize the time-points at which the BPTI loops L1 and L2 open/close.
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Figure 2.4: Time evolution of kurtosis (κ) values seen through an exponential slid-
ing window of 1 µs half-life. Using a threshold of four standard deviations (green dotted
lines) above and below the mean κ (black dotted line) identifies a total of 17 conformational
events labeled E1 − E17.

The storyboard provides a means to quickly summarize large MD trajectories, while allowing

the user to visually interact with events of interest and simultaneously track other quantities

of interest (e.g. RMSD,Rg, etc) over the course of long simulations. In addition to using κ,

conformational events can be detected with information theoretic measures such as mutual

information [25]. However, these techniques are compuutationally expensive. Trajectory

segments from the story board can be further analyzed to identify putative conformational

substates.

As an additional feature, we also provide storyboards to analyze the fluctuations of

individual residues as shown in Figure 2.6.

14



Figure 2.5: Five selected events E5, E6, E7, E8andE15 as ensembles, with gray cartoon
representing the previous event and the orange cartoon representing the current
event. Arrows are used to highlight the opening/ closing of the flap regions of
BPTI in each event.

2.3 SPATIAL DECORRELATION IN SECOND-ORDER (SD2)

SD2 module exploits the established methods of PCA to remove dominant second-order

spatial correlations. The practical application for smart computing through PCA was first

proposed by H. Hotelling [26]. PCA tries to reduce a larger dimensional dataset of correlated

variables into small number of transformed uncorrelated variables. The underlying assump-

tion in applying PCA lies in the assumption that described observations can be explained by

variances and computed covariances of data matrix. While considering the analysis of MD

simulation data, PCA provides visualization of residues that are harmonically resolved.
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(a) Asp-3 residue fluctuations (b) Phe-4 residue fluctuations

Figure 2.6: Residue-based event detection for Asp-3 and Phe-4 in BPTI using
kurtosis measured with an exponential sliding window of 1 µs half-life, captures
significant conformational changes.

2.3.1 Performing second-order decorrelation in space

Prior to resolving spatial dependencies through SD2 module, data needs to be centered

by subtracting mean of positional observations for each residue. The mean removed data

matrix (Xorig) undergoes transformation to compute a spatial covariance matrix followed by

principal component analysis. The covariance matrix is defined by:

Cy = 〈Xorig(t)Xorig(t)
T 〉 (2.1)

Principal component analysis is then performed by doing an eigenvalue decomposition

of the covariance matrix:

Cy = U Σ UT , (2.2)

where, Σ and U indicate eigenvalues and eigenvectors respectively. Eigenvectors are an

indication of the direction of dominant atomic displacements, whereas eigenvalues provide

a numerical measure to assess frequency of corresponding fluctuations. The principal com-

ponents (PCs) provides a measure to describe protein conformational distribution along the

dominant eigenvectors. The eigenvalues are typically arranged in descending order such that

ith value corresponds to ith eigenvector also referred to as loadings of principal components.
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Low eigenvalues correspond to large-scale global motions (slow modes) whereas large values

reflect frequently occurring localized protein motions (fast modes) [27]. Significant contribu-

tion of slow modes in relevance to protein function has been a motivation factor to choose

a lower dimensional subspace. The subspace number during protein analysis indicates a

number which explains for the most variance in the dataset. We observe from Figure 2.7

that, each eigenvalue index doesn’t contribute equally to the amount of variance in the data.

This lower value of subspace m is determined by the inflection point observed in the scree

plot as illustrated in Figure 2.7.

Figure 2.7: Scree plot of BPTI data. An illustration of the trend in cumulative variance
of the motions with respect to the eigen value index. 28 PCA modes is sufficient to explain
90.38% of the total variance. This helps us to choose the value of subspace m that quantifies
the amount of variance preserved.

SD2 module removes dominant second-order spatial correlations. The function diagonal-

izes covariance matrix Ry to obtain the projection matrix Y = BTXorig (3N × t), where m

is subspace dimensionality and B (3N × 3N) are the dominant eigenvectors. PCA although

holds merit in finding projection vectors with maximal variance, it fails to differentiate

between slow vibrational modes since large variance need not account for the temporal cor-
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relations that exists in the molecular data. Hence, we test the 2nd order spatially resolved

BPTI data matrix Y to spatially resolve in fourth-order (SD4) to find components which are

energetically separate.

In this section, we tried to understand about doing PCA on high-dimensional molecular

data, its implications and drawbacks. In the following section, we will examine projections

of the modes obtained from SD2 and test if that alone is sufficient to characterize the

conformational landscape of a millisecond long MD simulated molecular data.

2.3.2 SD2 modes of motion in BPTI

The BPTI protein data used for analysis has 58 residues (N) which is sampled over 1.1 ms

generating 412497 conformers considering only the backbone atoms. The 178 observations

(3 × N) is projected onto the rotation matrix B to obtain a second-order spatially resolved

data Y . Further, for the sake of visualization we have considered top 3 dominant SD2 modes

as seen in Figure 2.8.

Figure 2.8: SD2: removing second-order spatial correlations using principal com-
ponent analysis (PCA). Interestingly, the top three modes of SD2 capture the open and
closed state of BPTI, it is not able to identify the separation between the two flap regions
formed by L1 and L2 which is represented in Figure 2.3. The movie like representations in
Figure 2.9. and the supporting movies highlight the differences in the motions captured by
SD2.
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SD2 reveals two clusters after projecting the BPTI data onto top 3 dominant modes to

collectively characterize the atomistic fluctuations as a result of removing any second-order

spatial correlations that might exist in the conformational ensemble. Each conformation is

represented by a dot in the 3-dimensional scatter plot as seen in Figure 2.8. To quantify

the motions, we use a reaction coordinate based on the distances between residues Proline-9

(Pro9) and Phenylalanine-33 (Phe33). Further, movie like representation can be seen from

Figure 2.9 in order to gain biophysical insights about the data after performing SD2.

Figure 2.9: The three principal modes of motion determined from the SD2 analy-
sis of the BPTI simulations (SD21 − SD23) shown in a movie like representation.
The light to dark transitions indicate direction of motion for the region in BPTI that are
highlighted in different colors along with arrows to depict the start and end-state of the pro-
tein. Notably, in all the three modes, the flap regions (L1 shown in salmon-red transition
and L2 shown in light-green to green transition) move in a concerted fashion towards each
other (SD21 and SD22) or move together in an outward manner (SD23). Additional fluc-
tuations are visible between the β1 − β2 loop (shown in cyan). In SD23 , the displacements
are larger, depicting displacements in both α1 (blue) and α2 (purple).

Notably, SD2 doesn’t characterize anharmonic fluctuations in conformational levels and

fails to separate out the conformational landscape based on its energetic homogeneity. Due

to the high intrinsic dimensionality of the data obtained from MD simulations and its an-

harmonic behavior, we progress towards higher order statistics and also deal with temporal

correlations later in this chapter.
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2.4 SPATIAL DECORRELATION IN FOURTH-ORDER (SD4)

While observing the probability distribution of positional deviations of atomistic fluctuations

of BPTI data, it is evident that it exhibits a non-Gaussian behavior as seen from Figure 2.10.

This anharmonic (non-Gaussian) behavior observed from the long-tails cannot be resolved by

SD2. Thus, in order to characterize such motions, we make use of the fourth-order moment,

kurtosis (κ), that measures the peakiness of the distribution. For a Gaussian distribution,

the value of kurtosis (κ) is equal to 3.0.

Figure 2.10: Positional deviation histogram reveals statistical diversity. Non- Gaus-
sian (anharmonic) behavior is observed from the 1.1 millisecond MD simulated BPTI data.
The overall fourth-order moment kurtosis (κ) is equal to 15.94. The value of κ for a Gaussian
distribution is equal to 3.0.

2.4.1 Performing fourth-order decorrelation in space

In order to characterize atomic fluctuations in terms of its anharmonic behavior, we have

developed SD4 module. This function attempts to resolve the intrinsic non-orthogonal de-

pendencies in atomistic fluctuations by reducing the fourth moment. The second-order

projections from SD2 are used to build a fourth-order spatially correlated cumulant tensor.

SD4 approximately diagonalizes this tensor to return an anharmonic mode matrix.
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The covariance matrix Ry obtained from SD2 module captures correlations in atomic

fluctuations derived from second-order with an assumption that the basis vectors be orthog-

onal. However, since we are dealing with trajectories with non-orthogonal basis vectors, SD4

uses independent component analysis [28] as a technique to extract anharmonic sources ~x,

such that:

~s = W~x. (2.3)

In this equation, W represents separating matrix which describes fourth-order correla-

tions between different residues of BPTI protein. The anharmonic modes can be quantified

through:

~x = W−1~s. (2.4)

In order to derive the basis matrix W which can comprise of non-orthogonality, we

compute fourth-order cumulant tensor given by the equation:

Qij = E
{
Y 4
}
− 3E2

{
Y 2
}
, (2.5)

where, Y is the second-order spatially resolved matrix obtained from SD2 module and Qij

∈ Rm×(m×k), where k = [m× (m+ 1)]/2 is the generalized cumulant matrix. This higher

order matrix is efficiently diagonalized using methods of Jacobian rotations [29] to compute a

rotation matrix G. The rotation matrix G is further transformed to calculate the separating

matrix W that resolves data in fourth-order. The spatially decorrelated matrix of fourth-

order is computed by obtaining:

ZSD4 = WXorig, (2.6)

where W attempts to separate sources from signal mixture Xorig by finding directions, such

that projections onto these directions have maximum statistical independence. The com-

puted parameter ZSD4 is fourth-order spatially resolved matrix.

To summarize, we describe anharmonic modes of motion by performing matrix operations

considering fourth-order statistics. In the following section, emphasis is laid on analyzing
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fourth-order spatially resolved data through projections and if the spatial resolution of data

is sufficient to group the conformations painted with reaction coordinates do exhibit similar

properties.

2.4.2 SD4 modes of motion in BPTI

SD4 modes are statistically ordered based on the kurtosis of the projected coordinates. This

strategy used for constructing the projected conformational space may not always reveal

biophysically meaningful information. However, in pursuit of establishing frameworks to

identify certain critical events that occur sparsely during the motion of proteins, we have

built models that support to discover rarely occuring important events. As a method to build

associations from SD4 modes, user can choose desired physical observables such as radius of

gyration (Rg), scaled internal energies, or pairwise distance between residues. We continue

to choose the residue distances between Pro9 and Phe33 to build the SD4 conformational

landscape as seen in Figure 2.11.

Figure 2.11: SD4: resolving fourth-order spatial correlations by minimizing kur-
tosis. The top three modes from SD4 identify the separation of the two loops clearly
identifying a putative conformational substate showing an open state of BPTI.
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SD4 performs better to group the conformations corresponding to the value of residual

distance that can be visualized from three clusters as seen in Figure 2.11. This helps to

identify putative conformational substates that could be biophysically relevant. The movie

like representations help to visualize the spatial anharmonic modes through cartoon like

representation of BPTI. By looking at the motions captured by SD43, we can clearly see an

increase in the distance between flap regions of BPTI which is illustrated in Figure 2.12.

Figure 2.12: The three principal modes of motion determined from the SD4 anal-
ysis of the BPTI simulations (SD41 - SD43) shown in a movie like representation.
The light to dark transitions are representative of the conformations within BPTI similar
to Figure 2.3. Arrows indicate the predominant directions of the motions. SD41 identifies
motions that enable the two flap regions (L1 and L2) to move together in a concerted fashion
leading to a closure of this region (i.e., both flaps come together closer). SD42 describes
motions that enable the flap regions to move apart from each other, however capturing only
an intermediate separation between the flap regions where by L2 stays relatively stable com-
pared to L1, which moves further apart. SD43 describes a motion which allows both the flap
regions L1 and L2 to separate, while simultaneously displacing the α1(blue) and α2(purple)
helices.
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2.5 TEMPORAL DECORRELATION IN SECOND-ORDER (TD2)

The trajectories extracted as a result of performing MD simulations are correlated at various

spatial and temporal scales [30]. In order to characterize the conformational fluctuations,

it’s necessary to be able to collectively summarize the spatio-temporal patterns with which

the protein residues are interactively moving. While SD2 module is beneficial to obtain

directions of dominant variance, no information can be derived about the temporality of the

simulation.

2.5.1 Performing second-order decorrelation in time

Temporal decorrelation (TD2) is performed on a second-order spatially resolved data Y to

find maximal autocorrelation for a given parameter lag time. This function removes dominant

second-order temporal correlations by computing a time-delayed (specified by a lag time τ)

covariance matrix and performing PCA. The time-lagged covariance matrix Cz is given by

the equation:

Cz(τ) = 〈Y (t)Y (t− τ)T 〉. (2.7)

The possibility of computational errors such as round-off errors can destroy the sym-

metricity of the covariance matrix. In order to make sure that the matrix is symmetric, a

mathematical computation is done:

Cz(τ) =
1

2

[
Cz(τ) + Cz(τ)T

]
. (2.8)

An eigenvalue decomposition is performed over this time-lagged symmetrized covariance

matrix,

Cz(τ) = Utd2 Σlag U
T
td2, (2.9)

to obtain spatially whitened and temporally decorrelated data. A matrix Z is obtained

by projecting the spatially resolved data matrix Y onto the dominant eigenvectors BTD2.

The eigendecomposition yields values for autocorrelations Σlag and temporal principal com-

ponents given by the eigenvectors Utd2.
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2.5.2 Harmonic double-well experiment

In order to estimate slow order parameters which might be of interest to analyze fluctuations

from biomolecular simulations, SD2 yields misleading results since it only finds directions

along which we can observe high variation. However, we are interested to find correlations

between same variables at a different time instance that occurs due to dependencies within

the data. TD2 precisely performs the operation of removing autocorrelations of the time

series data to obtain statistically independent components that can be classified to have

homogenous properties. To demonstrate the use of two approaches, i.e. passing the data

into SD2 and TD2 module, we generated a Hidden-Markov model (HMM) to obtain a two-

dimensional Gaussian data Xexperimental (x) with zero mean (µ) and unit variance (σ). A

Gaussian function is given by:

f(x;µ,σ2) =
1

σ
√

2π
exp−

(x− µ)2

2σ2
. (2.10)

In our experiment, we generated data from 50000 samples having two degrees of freedom

which can be seen in Figure 2.13. This is a representation of double harmonic well potential.

We then performed SD2 and TD2 onto this data containing two wells.

The direction of arrow marked by SD2 doesn’t reveal any important information about

what event might be occuring. However, TD2 arrow deals with resolving the data by find-

ing directions where the autocorrelation is maximum. This might hint us about the rare

event that might be taking place in between two harmonic wells. Applying this strategy to

biomolecular data, in the next section we project spatially resolved data Y onto the rota-

tion matrix obtained from TD2 and visualize the temporal harmonic modes through cartoon

representations of BPTI.
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Figure 2.13: Two-dimensional Gaussian double-well.

2.5.3 TD2 modes of motion in BPTI

TD2 modes are arranged according to the temporal harmonic coordinates that tries to find

principal components having exclusive energetic properties. The conformational space is

built by projecting the spatially decorrelated data onto the top three dominant conforma-

tional coordinates that are temporally resolved. Each conformation is marked as a dot in

the three-dimensional scatter plot and is colored according to the positional displacements

observed between Pro9 and Phe33 as shown in Figure 2.14.

From the movie like visualization of BPTI protein by projecting onto the temporally

resolved conformational coordinates, we observe that in comparison to TD21 the conforma-

tional transitions are unable to pick the transition that involves a larger separation between

the flap regions since the projections from the simulations indicate the presence of both

closed and open states in this transition. TD22 describes the motion involving the move-

ment of the flap regions in a concerted fashion. This can be seen from the cartoon version

in Figure 2.15.
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Figure 2.14: TD2: removing dominant second-order temporal correlations using
time-delayed principal component analysis. We see the separation of open and closed
states of BPTI, however, the open state still consists of conformations that have closed state
as seen in Figure 2.9.

2.6 TEMPORAL DECORRELATION IN FOURTH-ORDER (TD4)

In the interest of resolving spatial and temporal anharmonic dependencies in the molecular

simulation trajectories, we have designed the TD4 module which performs joint diagonal-

ization of time-delayed cumulant matrices (a tensor of fourth-order time-delayed statistics

signifying kurtosis). TD4 is the counterpart of SD4, where fourth-order spatial correlations

are minimized, implying zero time lag.

2.6.1 Performing fourth-order decorrelation in time

Conceptually, the assumption we make is that a molecular simulation trajectory is a linear

combination of independent, anharmonically fluctuating protein motions. To discover these

anharmonic motions, we borrow a technique from signal processing literature, called Blind

Source Separation (BSS) [31], which attempts to extract or unmix independent non-Gaussian

sources from signal mixtures with Gaussian noise. To facilitate the extraction of anharmonic
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Figure 2.15: The three principal modes of motion described by TD2 analysis of
the BPTI simulations (TD21 − TD23) shown in a movie like representation. The
light to dark transitions are representative of the conformational within BPTI similar to
Figure 2.3. Arrows indicate the predominant directions of the motions. TD21 describes
the direction of motion that brings together the flap regions (L1andL2) involving a partial
motion of α1 region that is displaced.

modes of motion of the fourth-order, the trajectory data Xorig ∈ R3N×t, where 3N repre-

sents (x,y,z) coordinates from individual atom selections and t represents conformations is

decorrelated for second-order dependencies both spatially and temporally by transforming

it through the modules of SD2 and TD2.

Algorithmically, the method of unmixing temporally correlated signals of fourth-order

can be viewed as a symmetric eigenvalue problem of a generalized cumulant matrix Qij. As

a measure of statistical independence, we will consider the ’diagonality’ of a set of cumulant

matrices. The cumulant matrices are generated in a low-dimensional subspace denoted by

m, which is the best guess for the most compact summary of the fourth-order statistics. The

subspace dimensionality can be adjusted by examining the inflection points in the cumulative

variance plots generated from SD2 module as seen from Figure 2.7. In order to generate
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the cumulant matrices, a time-lagged covariance matrix is defined by:

Rz(τ) = E
{
ZZT

τ

}
, (2.11)

where Z ∈ Rm×t is second-order spatially and temporally resolved molecular simulation data,

τ is time delay and Zτ = Z(t− τ) is the time-lagged version of Z. A fourth-order cumulant

matrix Qij of this data matrix Z is defined by:

Qij = E
{
ZZTZT

τ Zτ
}
− E

{
ZZT

}
trE

{
ZτZ

T
τ

}
− 2E

{
ZZT

τ

}
E
{
ZτZ

T
}
, (2.12)

where Qij ∈ Rm×m computes a time-lagged cumulant matrix. The possibility of computa-

tional errors, such as round-off errors, can destroy the symmetricity of the cumulant matrix

which is restored by performing:

Qij =
1

2

[
Qij +QT

ij

]
. (2.13)

A time-lagged cumulant tensor Q ∈ Rm×(m×k), where k = [m× (m+ 1)]/2 is defined for

the storage of cumulant matrices computed by the symmetric Qij matrix. Joint diagonal-

ization of these time-lagged cumulant matrices reduces fourth-order temporal dependencies

leading to anharmonic modes of motion of the trajectory data. This is done through Ja-

cobi’s iterative method of finding solution to a system of linear equations. In particular, the

method uses successive transformations to calculate diagonal elements of the cumulant tensor

by decimating off-diagonal elements with each iteration. The spatio-temporally decorrelated

matrix of fourth-order is computed by obtaining:

ZTD4 = WXorig, (2.14)

where W attempts to separate sources from signal mixture Xorig by finding directions, such

that projections onto these directions have maximum statistical independence. The com-

puted parameter ZTD4 is fourth-order spatially and temporally resolved matrix.
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2.6.2 Harmonic triple-well experiment

While analyzing data from MD simulations, it’s essential to identify metastable states [15]

that can explain the behavior of protein’s motion and hence its function. Due to the com-

plexity of large datasets, it is challenging to be able to identify such states and second-order

statistics fails to resolve them correctly. Hence, we pursue fourth-order statistics as a method

to characterize anharmonic protein motions. In order to illustrate the application of TD4,

we generated a three well harmonic potential having 100000 samples as described in Figure

2.16.

Figure 2.16: Two-dimensional Gaussian triple-well.

The data from triple well was passed through modules SD2, TD2 and TD4 successively

to spatially and temporally resolve the dependencies in fourth-order. After obtaining har-

monic and anharmonic modes from decorrelation functions, data was projected onto the

second principal/independent component. From Figure 2.17 it is evident that SD2 and

30



TD2 doesn’t differentiate the three states while TD4 helps to achieve this. As a method to

improve identification of such metastable states, we project BPTI data onto three dominant

anharmonic modes in the following section.

Figure 2.17: Histogram projections of spatially and temporally resolved data.

2.6.3 TD4 modes of motion in BPTI

TD4 module constructs a time-delayed fourth-order kurtosis tensor, which is then approxi-

mately diagonalized to obtain anharmonic modes of motions once the second-order spatial

and temporal correlations are resolved. TD4 module is the temporal analog of the spatial

SD4 module. For BPTI, the projections from three TD4 modes (TD41− TD43) as depicted

in Figure 2.18 describe essential motions of the flap region along two distinct directions. To

quantify these motions, we use a reaction coordinate bases on the distances between Pro9

and Phe33.
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Figure 2.18: Multi-dimensional description of the simulation data using the top
three time-delayed anharmonic modes. Each conformation, represented by a dot,
is colored by the distance between the centers of mass of the flap regions. Three putative
conformational substates are demarcated by dotted ellipses depicting the closed (I) and open
(III) states that pass through an intermediate state (II), as seen by the colored distance
distribution. Arrows indicate how to reach the closed and open states by walking along
anharmonic modes TD41 and TD42 from the intermediate state.

In order to understand the motions seen from Figure: 2.18, we depict movies that capture

the conformational transitions in BPTI(see Figure: 2.19). In each case, the flaps open/close

albeit in distinct directions and in some cases even capturing rare transitions involved in the

exchange of the flaps. The ANCA modes enable us to quantitatively understand the extent

to which the relative motions between the flaps expose opening/closing of this region.

32



Figure 2.19: The three principal modes of motion determined from the TD4 anal-
ysis of the BPTI simulations (TD41 - TD43) shown in a movie like representation.
These motions are shown in an ensemble form, where the time evolution is highlighted with
loops L1 (red), L2 (green) and β1β2 (cyan) and the rest of the protein (gray) depicted from
light to dark colors, denoting start-to-end progression..

2.7 CONCLUSION

To summarize, we observe anharmonicity in the collective fluctuations of BPTI from the 1

milli-second long MD simulation. In order to provide a compact summary of its motions and

establish a grouping of conformations which are energetically similar, second-order decorre-

lations doesn’t provide insightful details. Thus, higher-order statistics is implemented for

discovering sub-states that can be clustered based on it’s characteristics. Even while doing

fourth-order computations, SD4 (previosuly QAA [15]) doesn’t provide details about tem-

poral correlations which needs to be resolved to be able to extract components that are

independent with respect to a specified biophysically relevant property. With the help of
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TD4 we observe, large inter-residue distances cluster together and the ones which tend be

farther away are clustered separately.
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3.0 DIHEDRAL ANHARMONIC CONFORMATIONAL ANALYSIS

For biomolecular simulations that can include both proteins and nucleotides, it is more

convenient to eliminate the sensitivity to Cartesian alignment to a reference structure and

perform anharmonic analysis in the dihedral space directly. We explore this new approach

on the dodecamer B-DNA (Deoxyribonucleic acid) molecule.

3.1 STRUCTURE OF DODECAMER B-DNA

The basic structural unit of a DNA is a nucleotide comprising of a nucleoside attached to

atleast one phosphate group. The DNA molecule is achiral and asymmetric. The nucle-

oside unit includes nitrogenous base and five-carbon sugar. Nitrogenous bases (molecule

containing nitrogen) can be further classified into four types: Adenine (A), Thymine (T),

Guanine (G) and Cytosine (C). The shape of the DNA is largely influenced by hydrophobic

interactions between bases and the allowed bond angles in the sugar-phosphate backbone.

They can assume the structure of either A, B or Z-DNA. Among the three forms, analyzing

conformations of B-DNA is popular due to its predominant occurence in the cells. B-DNA

is a three-dimensional right-handed helix structure with equal spacing of each base pair (20

base-pairs in total). For our studies, we have considered synthetic dodecamer DNA d(C-G-

C-G-A-A-T-T-C-G-C-G) whose individual crystal X-ray structure was confirmed by Drew

et al. [32]. Due to the limitations of experimental techniques to provide information about

the flexibility and complex movements of coupled bonds between individual units forming

strands of DNA, atomistic scale MD simulations have made it possible to perform confor-

mational analysis on this complex system. The structure of DNA derived from microsecond
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Figure 3.1: Structure of Dickerson-Drew dodecamer B-DNA. The molecule assumes
the shape of a right-handed double stranded B helix. It consists of 24 base-pairs. Each
strand S1 and S2 has 12 base pairs. Following the rule of base pairing, purine adenine
always pairs with pyrimidine thymine and pyrimidine cytosine always pairs with purine
guanine. Purines and Pyrimidines refer to the number of carbon nitrogen ring bases. The
former has two-carbon nitrogen ring base, whereas the latter has a single carbon nitrogen
ring base.

long simulation is visualized in Figure 3.1. The 1 µs simulation was performed by our

collaborators (agarwal-lab.org).
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3.1.1 Torsion angles of nucleic acid conformers

Classical molecular dynamics (MD) simulation has been an all-powerful tool to describe

three-dimensional structure, motion and function of macro-molecules such as proteins and

nucleic acids [33]. The data obtained from MD as an arrangement of 3N × t matrix has

attracted significant attention for analyzing functional dynamics. Dimensionality reduction

of the large input data matrix to fewer coordinates describing a majority of molecular dy-

namics has been an area of active research. Recent studies investigating reversible folding

and unfolding in water for a penta-alanine simulation [35] suggested that torsional angle

analysis might be more insightful than Cartesian coordinate analysis [34] in differentiating

the internal motions based on torsional angles from overall motions. An additional advantage

of using angular representation for analysis is that it does not require rigid-body alignment

of the conformer data with anyreference structure.

Due to the benefits of investigating in the dihedral angle space, several studies have been

reported analyzing the distribution of angles and the flexibility shown by the molecule as it

bends and twists during the simulation [36, 37, 38]. In this section, we describe six torsional

angles (α − ζ) present in the backbone of a nucleic acid that specify the conformation of a

nucleotide and an additional torsional angle (χ) which gives the orientation of an N-terminal

base with respect to the glycosidic bond. For ease of understanding, we will consider a single

nucleotide chain of B-DNA and illustrate how the angles are computed (Figure 3.2).

The nucleic acid backbone parameters involving seven torsion angles is computed by con-

sidering the angle between two adjacent planes formed by the x, y, z coordinates of successive

four atoms described below [32].

• α : O3’(i-1) - P - O5’ - C5’

• β : P - O5’ - C5’ - C4’

• γ : O5’ - C5’ - C4’ - C3’

• δ : C5’ - C4’ - C3’ - O3’

• ε : C4’ - C3’ - O3’ - P(i+1)

• ζ : C3’ - O3’ - P(i+1) - O5’ (i+1)

• χ− purines : O4’ - C1’ - N1 - C2
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Figure 3.2: Single nucleotide of B-DNA. A nucleic acid conformer is defined from one
phosphate group to the next. Conformation is described through six torsional angles namely
α, β, γ, δ, ε, ζ and the glycosidic torsion angle by χ.

• χ− pyrimidines : O4’ - C1’ - N9 - C4

We provide visualization tools to depict the distribution of torsional angles for both

strands (Figure 3.3). Before starting to analyze these angles, we need to understand the

circularity of data and modifications necessary to compute statistical parameters [38].

3.1.2 Circular Statistics

Unlike Cartesian coordinates, representing circular data is not straightforward. By observing

two angles φ1 = 40o and φ2 = 340o, the mean of the angles 〈φmean〉 = 190o. However, by

considering the boundaries of angles which are defined to be in the range −180o to 180o, we

have, φ1′ = 40o and φ2′ = −20o. Considering the new values for angles, we obtain 〈φmean′〉

= 10o. In order to avoid this problem, we convert each angle, say φ, into its Euclidean
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Figure 3.3: Density plots of the torsion angles considering strand-1 and strand-2.

representation with the following transformation:

x = cos(φ), (3.1)

y = sin(φ).

This linear transformation of angle φ into (x, y) makes it possible to establish the Euclidean

metric which is given by the equation:

∆ =
√

(x1 − x2)2 + (y1 − y2)2. (3.2)
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Thus, the problem associated with circularity is avoided. We make use of pycircstat package

[39] to compute circular statistical values such as circular mean, circular variance, circular

kurtosis, and others which will be discussed later in this chapter.

3.2 DATA EXTRACTION

For our analysis, we have obtained a 1 µs long simulation data of Drew-Dickerson dodecamer

B-DNA having the sequence [CGCGCAATTCGCG]2. Each frame is 100 ps apart, provid-

ing 10,000 conformers in the microsecond timescale. It is extracted using AMBER force

fields which gives a topology DNA sequence file and mdcrd trajectory file of Binary NetCDF

format. We use mdanalysis libraries [40] to capture and process trajectories. MDAnalysis

recognizes binary trajectories through .ncdf suffix and is read by the package function NCD-

FReader. Since we are interested in using torsion angles, we transform the AMBER force

fields generated data using CPPTRAJ [41] commands as given below for first base-pair of

strand-1 for all the 10,000 conformations:

• α - dihedral strand1-alpha :1@O3’ :2@P :2@O5’ :2@C5’ out alpha.dat

• β - dihedral strand1-beta :2@P :2@O5’ :2@C5’ :2@C4’ out beta.dat

• γ - dihedral strand1-gamma :2@O5’ :2@C5’ :2@C4’ :2@C3’ out gamma.dat

• δ - dihedral strand1-delta :2@C5’ :2@C4’ :2@C3’ :2@O3’ out delta.dat

• ε - dihedral strand1-epsilon :2@C4’ :2@C3’ :2@O3’ :3@P out epsilon.dat

• ζ - dihedral strand1-zeta :2@C3’ :2@O3’ :3@P :3@O5’ out zeta.dat

The keyword dihedral used above directs CPPTRAJ software to output dihedral angle

and it expects the user to input the symbolic names of four atoms preceeded by ‘:’ for

each torsion angle. out and filename.dat at the end specifies the type and name of the file

respectively. strand1-alpha that follows dihedral command is a reference name and can be

ommitted. By repeating these commands for rest of the base-pairs of strand-1 and strand-

2, we obtain 120 torsion angles (20 angles of each type) which can be broken down into

[6 (torsion-angle types)×10 (base-pairs in each strand)×2 (number of strands)]. These 120
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torsion angles are converted to Euclidean representation as described in Eq. 3.1 thereby

giving two equivalent vectors for each angle. A single conformation at a particular time-step

i is represented by a vector:

φi = (αS1, αS2, βS1, βS2, ... ..., ζS1, ζS2)i (3.3)

The data matrix (240× 10000) is provided as an input to the decorrelation modules. It

is constructed as follows:



α1
S1 α2

S1 α3
S1 . . . . . . α10000

S1

α1
S2 α2

S2 α3
S2 . . . . . . α10000

S2

β1
S1 β2

S1 β3
S1 . . . . . . β10000

S1

β1
S2 β2

S2 β3
S2 . . . . . . β10000

S2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ε1S1 ε2S1 ε3S1 . . . . . . ε10000S1

ε1S2 ε2S2 ε3S2 . . . . . . ε10000S2

ζ1S1 ζ2S1 ζ3S1 . . . . . . ζ10000S1

ζ1S2 ζ2S2 ζ3S2 . . . . . . ζ10000S2



(3.4)

In the following section, we will discuss resolving the data spatio-temporally in second

and fourth-order.

3.3 RESOLVING SPATIAL AND TEMPORAL CORRELATIONS

THROUGH TORSION ANGLE ANALYSIS

We perform spatial and temporal decorrelations on a data that has been transformed into

its Euclidean representation from Cartesian coordinates. The theory behind resolving data

in space and time using second and fourth-order statistics has been described in 2.3, 2.4, 2.5

and 2.6.
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3.3.1 Dihedral Spatial Decorrelation

Dihedral spatial decorrelation (dSD2) is performed via PCA to represent correlated inter-

nal motions. PCA is carried out on the sin and cos transformed torsion angles through

eigenanalysis of the covariance matrix as proposed by Mu et. al [35]. The subspace di-

mensionality m is adjusted by examining the inflection points that dSD2 module returns as

shown in Figure 3.4. A subspace m = 24 is chosen which explains 70% of the cumulative

variance.

Figure 3.4: Scree plot of B-DNA data. 24 PCA modes explains 70.04% of the total
variance.

dSD2 removes dominant second-order spatial correlations. In addition to the simulation

data, it requires an input m. dSD2 module diagonalizes the covariance matrix and returns

the eigenvalues S (size m× 1), eigenvectors B and the projection matrix Y . Eigenvectors B

indicate the direction of dominant motions. Figure 3.5 reveals that the top three dominant

eigenvectors obtained from dSD2 captures correlated motions of ε and ζ in strands 1,2,3 and

9. The top three modes from this module is shown in Figure 3.6A and the corresponding

movies are shown in Figure 3.6B. From the movie like representation for dSD2, we observe
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that the first (top) and last three base-pairs (bottom) of two strands transits from a slightly

bent structure (I) to a vertical shape (II) which is approximately parallel to the surface.

Figure 3.5: Visualization of top three eigenvectors.

Dihedral spatial decorrelation in fourth-order (dSD4) attempts to resolve the intrinsic

non-orthogonal spatial dependencies in atomistic fluctuations. The second order projections,

Y from dSD2 are used to build a fourth-order spatially correlated cumulant tensor. dSD4

approximately diagonalizes this tensor to return an anharmonic mode matrix W (3N or

D ×m). To build associations between dSD4 modes and biophysically meaningful reaction

coordinates, we have used internal energy values from the simulations and have visual-

ized how the physical observable is mapped onto each of the dSD4 modes. For B-DNA

simulations, the top three modes from dSD4 are shown in Figure 3.7A. We capture the

conformational transition from state I to state II from the corresponding movies as shown

in Figure 3.6B, where state II undergoes an anticlockwise rotation. Here, we consider the

cartoon representation of state I as the reference structure. From both the movies of dSD2

and dSD4 modes, we observe that the motions are not pronounced.
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Figure 3.6: Dihedral spatial decorrelation in the second-order of a microsecond
long simulation of B-DNA. (A) Multi-dimensional description of the simulation data
using top three dSD2 modes and colored by the internal energy values of each conformer.
(B) Motions are shown in ensemble form, where the light to dark transition indicated by
two superimposing structures can be reached by walking along the cluster center from I to
II.

Figure 3.7: Dihedral spatial decorrelation in the fourth-order of a microsecond
long simulation of B-DNA. (A) Multi-dimensional description of the simulation data
using top three dSD4 modes and colored by the internal energy values of each conformer.
(B) Motions are shown in ensemble form, where the light to dark transition indicated by
two superimposing structures can be reached by walking along the cluster center from I to
II.
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3.3.2 Dihedral Spatio-temporal Decorrelation

Dihedral temporal decorrelation in second-order (dTD2) removes dominant second-order

temporal correlations by computing a time-delayed covariance matrix and performing PCA.

The inputs to this module are similar to dSD2, with an additional user specified parameter,

τ , that denotes the lag time over which the temporal correlations are to be resolved. In order

to choose a specific lag time, we computed the cosine similarity by comparing the absolute

value of the elements in square matrix of top six eigenvectors from dTD2 with lag = 1 and

lag = 1 to 100. From Figure 3.8, we can observe that at a lag time of 25 and above, the

cosine similarity value stabilizes at around 0.94 before it degrades during larger lags. Thus,

to perform temporal decorrelation, we choose a lag time of 25.

The outputs of this module include Z, a matrix obtained by projecting the simulation

data on the dominant time-delayed eigenvectors and the corresponding eigenvalues. The top

three modes from dTD2 module for B-DNA are shown in Figure 3.9A and the corresponding

movies are depicted in Figure 3.9B. Clearly, the plots obtained after resolving temporal

correlations is interesting. We observe from Figure 3.9B that the conformers are clustered

based on their internal energy values. Lowest energy conformers are clustered as state I and

high energy conformers as state II. The intermediate energetic conformers occupy clusters

III and IV. The structural deformation is more severe while observing the change from I to

IV. However, not much structural change is seen while transiting from I to II which is more

diffcult since transition happens from lowest energy to highest energy state. dTD2 fails to

capture these motions.

Dihedral temporal decorrelation in fourth-order (dTD4) constructs a time-delayed fourth-

order kurtosis tensor, which is then approximately diagonalized to obtain anharmonic modes

of motions once the second-order spatial and temporal correlations are resolved. dTD4

module is the temporal analog of the spatial dSD4 module. The input parameters to this

module include the matrix Z (from the dTD2 module), a user specified subspace m denoting

the number of desired anharmonic modes of motion, the lag time τ and the matrix V . The

output from the module includes the separating matrix W . For B-DNA, the projections from
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Figure 3.8: Choosing a lag time by computing cosine similarity between eigenvec-
tors obtained from dTD2 module with lag=1 and lag ranging from 1 to 100.

Figure 3.9: Dihedral temporal decorrelation in the second-order of a microsecond
long simulation of B-DNA. (A) Multi-dimensional description of the simulation data
using top three dTD2 modes and colored by the internal energy values of each conformer.
(B) Motions are shown in ensemble form, where the light to dark transition indicated by
two superimposing structures can be reached by walking along the cluster centers from I to
II, I to III and I to IV.

three principal modes (TD41 − TD43) is depicted in Figure 3.10. In order to quantify the

motions, we use a reaction coordinate based on the internal energy values of conformations

which was previously used in dSD2, dSD4 and dTD2. To understand these motions further,

we depict movies that capture the conformational transitions in B-DNA. From the movie
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representation, we see that structural modification is more prominent while walking along the

centers of clusters I to III. This is convincing by taking into account the fact that transition

from low to high energy state is more difficult than vice-versa.

Figure 3.10: Dihedral temporal decorrelation in the fourth-order of a microsecond
long simulation of B-DNA. (A) Multi-dimensional description of the simulation data
using top three dTD4 modes and colored by the internal energy values of each conformer.
(B) Motions are shown in ensemble form, where the light to dark transition indicated by
two superimposing structures can be reached by walking along the cluster centers from I to
II, I to III and I to IV.

3.4 CONCLUSION

In this chapter, we studied theory behind performing analysis on circular data and necessary

transformations. We discuss the advantages that dihedral spatial and temporal decorrela-

tions have over Cartesian coordinate analysis. An example of microsecond long simulation

of Drew-Dickerson Dodecamer B-DNA is considered to test the dihedral extension. Through

three-dimensional projections of the modes and movie like representation, we make an at-

tempt to derive biophysically meaningful insights from the motions of conformers and their

transitions.
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4.0 PYANCA: A SCALABLE TOOLKIT TO ANALYZE HIGHER-ORDER

ANHARMONIC MOTION SIGNATURES FROM MOLECULAR

DYNAMICS SIMULATIONS

pyANCA is a python library to measure anharmonicity in Molecular Dynamics (MD) sim-

ulation data. The idea is to use higher order motion signatures in the simulation data for

organizing the conformational landscape into putative conformational substates. pyANCA

has modules which can: (1) measure for anharmonicity in the form of higher order statistics

and show its variation as a function of time, (2) output a story board representation of

the simulations to identify key anharmonic conformational events, and (3) identify putative

anharmonic conformational substates and visualize transitions between these substates.

4.1 INTRODUCTION

Traditional analysis tools for biomolecular simulations have focussed on second-order statis-

tics [42, 43, 38]. Anharmonicity in time-dependent conformational fluctuations is noted to

be a key feature of functional dynamics of biomolecules [44, 16, 45]. Although anharmonic

events are rare, long timescale (µs − ms and beyond) simulations facilitate probing their

behavior. However, automated analyses and visualization of anharmonic events from these

long timescale simulations is proving to be a significant bottleneck.

Anharmonicity as an organizing principle for conformational landscape of proteins and

other biomolecules is proposed in this thesis [46]. Previously, quasi-anharmonic analysis

(QAA) was built to resolve higher order spatial correlations [15, 47, 48, 18]. pyANCA was

built as an extension to the QAA toolbox to resolve higher order temporal correlations from
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long timescale simulations.

4.2 METHODS

pyANCA can process trajectories in many formats commonly used by the biophysics commu-

nity, including Protein Data Bank (PDB), CHARMM DCD, AMBER coordinates, Gromacs

xtc files. pyANCA uses mdanalysis [40, 49] and mdtraj [50] to capture and process coordi-

nate (or other feature) information from MD trajectory files. Further, user can specify which

features to select and process using an extensive set of coordinate and feature selection com-

mands within two packages. Using Python’s inbuilt capabilities to process memory-mapped

arrays, we can process large trajectories up to several terabytes.

4.2.1 Data Extraction

pyANCA makes use of the powerful MDAnalysis libraries to extract coordinates or angles

from molecular dynamics trajectories. The function used for data extraction is a generic

driver for obtaining coordinates of interest. We can use a variety of atom selections and the

results are returned as numpy arrays.

getCoordinates : Method used to extract MD trajectories when provided with the path

for topology and trajectory files. While performing analysis in the dihedral space, the (x,y,z )

coordinates can be transformed to compute the torsion angles.

4.2.2 Alignment

Alignment of the selected coordinates is done through this function. This is to ensure that

we have removed translations and rotations before analysing. pyANCA offers two rigid-body

alignment algorithms:

• Iterative alignment

• Standard Kabsch alignment
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IterativeMeansAlign: It takes the extracted coordinates as input and provides an aligned

trajectory free from rotational and translational degrees of freedom. While performing align-

ment, we assume that protein chains or independent molecules are put together. Differ-

ent softwares for performing simulation gives different ways for putting individual chains/

molecules. Input arrays are expected to be passed in the form of Ns × 3 × Na, where Ns

denotes number of snapshots, Na represents number of atoms and 3 indicates the x, y, z

directions.

4.2.3 Resolving spatial and temporal correlations

pyANCA provides four core modules for analyzing MD trajectories. These modules take as

input X, either Cartesian coordinates of dimensions 3N × t, where 3N represents the 3D

(x, y, z) coordinates of the individual atoms selcted for analysis, or cosine/sine transformed

dihedral angles, namely (φ, ψ, χ) resulting in a D × t, where D represents the total number

of transformed dihedral angle selections. In both cases t represents the conformations from

the simulations.

SD2 : This module removes dominant second-order spatial correlations by computing a

spatial covariance matrix and performing principal component analysis (PCA). In addition

to the simulation data, SD2 requires as input m, the subspace dimensionality. m can be

adjusted by examining the inflection points in the cumulative variance plots that this module

returns. SD2 diagonalizes the covariance matrix nd returns the eigenvalues S (size m× 1),

eigenvectors B (3N or D ×m) and the projection matrix Y = BTX(m× t).

SD4 : This module (previously QAA [15]) attempts to resolve the intrinsic non-orthogonal

spatial dependencies in atomistic fluctuations. The second order projections, Y , from SD2

are used to build a fourth order spatially correlated cumulant tensor. SD4 approximately

diagonalizes this tensor to return an anharmonic mode matrix W (3N or D×m). The default

ordering of the ANCA modes is based on the kurtosis of the projected coordinates. However,

this ordering may not always correspond to a biophysically relevant reaction coordinate [18].

This can be attributed to the fact that ANCA pursues rare conformational events and if

the projected coordinates correlate with such rare events, then ANCA can indeed provide
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biophysically meaningful projections.

TD2 : TD2 module removes dominant second-order temporal correlations by computing

a time-delayed covariance matrix and perfroming PCA. The inputs to this module are similar

to the SD2 module, with one additional parameter, τ , that denotes the lag time over which

the temporal correlations are to be resolved. The outputs of this module include Z, a matrix

obtained by projecting the simulation data on the dominant time-delayed eigenvectors and

the corresponding eigenvalues.

TD4 : TD4 module constructs a time-delayed fourth-order kurtosis tensor which is then

approximately diagonalized to obtain anharmonic modes of motions once the second-order

spatial and temporal correlations are resolved [31]. TD4 module is the temporal analog of the

spatial SD4 module. The input parameters to this module includes the matrix Z (from the

TD2 module), a user specified subspace value m denoting the number of desired anharmonic

modes of motion, the lag time τ and the matrix V . The outputs from the module includes

the separating matrix W.

The theory and interpretation of the four modules has been described in detail in Chapter

2.

4.2.4 Visualization

We provide the user with example iPython notebooks to visualize the results from the anal-

yses over a web-browser. In order to visualize structural data obtained from ANCA, we

provide scripts for generating anharmonic modes using PyMOL or VMD. Individual regions

in the protein can be colored using the output PyMOL files.

Following are some of the modules to obtain insights about the statistics of biomolecular

fluctuations. An example of BPTI ( as extensively detailed in Chapter 2) is used to illustrate

the functions.

getLongTails : This module takes as input the aligned coordinates and plots fourth-

order statistical profile for MD simulations. It gives insights about anharmonicity which

is quantified by fourth-order moment, kurtosis (κ). Plot derived from this module gives a

summary through histogram of Cα postional deviations of atoms. The tails observed from
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Figure 2.10 provides strong evidence for the existence of anharmonicity.

perResidueRMSF : The root mean square fluctuation (RMSF) provides a measurement of

deviation between positions of a residue and some reference position which is averaged over

time. Through this measurement, it provides an indication about the backbone flexibility

of biomolecules as illustrated in Figure 4.1. Since rmsf is computed per residue, it takes as

input the aligned trajectories and number of residues.

Figure 4.1: RMSF of the backbone Cα atoms of 1.1 ms trajectory of BPTI com-
prising of 58 residues and 412497 conformers.

perResidueAnharmonicityTime: Another approach towards quantifying anharmonicity

in atomic fluctuations is to represent the time spent by each residue in all three directions

in the tails of the distribution observed from Figure 2.10. Using this piece of information,

we can color code each residue of the three-dimenstional protein structure based on the time

spent sampling anharmonic fluctuations.

perResidueKurtosis : In order to understand the presence of higher-order moments in

each residue over the entire trajectory, we compute kurtosis of each residue averaged over

each of the (x, y, z) directions. This is shown in Figure 4.3
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Figure 4.2: Percentage time spent by residues sampling anharmonic conforma-
tional fluctuations.

Figure 4.3: Kurtosis values spread across different residues over the entire 1.1 ms
trajectory frame.
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4.3 CONCLUSION

Several applications support analyses of MD trajectories based on second-order statistics,

including MDAnalysis and mdtraj. To complement these tools, we have developed pyANCA

as a package for analyzing higher-order anharmonic motion signatures from MD simulations.

pyANCA provides a biophysically meaningful organizational principle for long timescale

biomolecular simulations and can be integrated with software such as PyEMMA [51] to

build Markov models of MD simulations, which we are pursuing as part of our future work.

pyANCA is available as an open-source Python package under BSD 3-Clause license. Python

tutorial notebooks, documentation and examples are available from http://csb.pitt.edu/anca

for download.
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