
PRECISION CALCULATIONS IN UNIVERSAL

EXTRA DIMENSIONS

by

Daniel Wiegand

Bachelor of Science, Ruprecht-Karls University, Heidelberg (2011)

Master of Science, Ruprecht-Karls University, Heidelberg (2013)

Submitted to the Graduate Faculty of

the Kenneth P. Dietrich School of Arts and Sciences in partial

fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2018



UNIVERSITY OF PITTSBURGH

DIETRICH SCHOOL OF ARTS AND SCIENCES

This dissertation was presented

by

Daniel Wiegand

It was defended on

May 10th 2018

and approved by

Ayres Freitas, University of Pittsburgh

Adam Leibovich, University of Pittsburgh

Joseph Boudreau, University of Pittsburgh

Arthur Kosowsky, University of Pittsburgh

Ira Rothstein, Carnegie Mellon University

Dissertation Director: Ayres Freitas, University of Pittsburgh

ii



PRECISION CALCULATIONS IN UNIVERSAL EXTRA DIMENSIONS

Daniel Wiegand, PhD

University of Pittsburgh, 2018

The Standard Model of particle physics, despite its amazing success, is in need of an extension

to describe nature at high scales. One class of proposals for such an extension are field

theories with extra dimensions. Many of these models have attractive features like stable

dark matter candidates, promising at least partial answers to natures questions.

Our focus lies with investigating the impact radiative corrections have on the phenomenology

of the Universal Extra Dimensions (UED) model and the subsequent discovery potential

at e.g. Hadron colliders. We study in detail the Next-to-Leading-Order corrections to

the pair production of heavy vector color-octets, as they typically appear in such models.

Additionally, we discuss how a variation of the cutoff scale influences this result. This

is of particular importance since this a priori unknown scale represents a large source of

uncertainty.

Subsequently we investigate radiatively induced operators for the entire Standard Model

formulated in UED, particularly the impact they have on the degenerate mass spectrum and

KK-number violating decays. This allows us to derive bounds from both indirect searches

and directly detectable new physics signals.
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1.0 INTRODUCTION

The Standard Model (SM) of particle physics manages to describe the data we collected

on the electroweak and strong interactions of matter with astonishing precision. Although

highly successful it cannot be regarded as a complete description of nature for a number of

reasons.

From a purely theoretical point of view it has to be noted that the Standard Model can

only be an effective model for a UV-complete theory, which emerges above some a priori

unknown cutoff scale. This picture is supported by evidence [1–3] that a theory containing a

fundamental scalar, like the Higgs within the Standard Model, becomes trivial at very high

scales. The UV-completion of the theory might additionally be able to unify the Standard

Model forces and thus bring down the unsatisfactorily large number of unfixed parameters

which so far could only be determined through measurement.

On the phenomenological side is the Standard Model unable to address the observed matter-

antimatter asymmetry in the universe or the existence of massive neutrinos. Additionally,

we do not currently understand how to incorporate gravity into the existing framework at

a fundamental level. Perhaps the biggest phenomenological caveat relates to the Standard

Model not containing a viable dark matter candidate. Over the years there has been an

abundance of observational evidence for the existence of dark matter, like the discrepancy

between measured and predicted orbital velocity of disk galaxies [4] or the observed gravita-

tional lensing exhibited by galaxy clusters [5]. Based on say the ΛCDM cosmological model,

dark matter represents about a quarter of the energy content of the universe, whereas the

matter described by the Standard Model accounts for only about five percent:

Ω0 = Ωb + Ωc + ΩΛ = (1.00± 0.009), (1.1)

1



with the fractional density parameters measured [6] for baryonic matter Ωb = (0.049±0.001),

dark matter Ωc = (0.259± 0.006), and ΩΛ = (0.692± 0.006), describing the vacuum energy

of space.

Even though the microscopic structure of dark matter has been a mystery for some time,

a compelling explanation would be the existence of new elementary particles, that are only

interacting through gravity and the weak nuclear force, or new dynamics comparable to the

weak force. These so-called WIMPs (weakly interacting massive particles) would be required

to be stable (or at least sufficiently long-lived) and have a mass O(TeV) to explain the dark

matter relic abundance we observe in the universe today.

Countless models for physics beyond the Standard Model (BSM) have been constructed in

an effort to resolve some or all of these problems. However, only experiment can shed light

on what is and is not realized in nature. We have to rely on clues from direct discoveries and

indirect constraints. It is very difficult to draw conclusions from indirect searches, since the

decoupling theorem [7] states that the specifics of UV physics contributing to SM operators

- once integrated out - cannot be reconstructed from the low-energy effective operators in

details. Our goal therefore is to develop a set of tools and techniques that lead to robust

and precise predictions to compare with experimental data. Going beyond the leading order

in perturbation theory is an integral part in doing so: Radiative corrections can represent

sizable contributions to observables, reduce unphysical scale dependencies and shape the

phenomenology of a model considerably.

One attractive set of BSM theories is based on the idea that our four dimensional space-

time is only a subspace of a more complicated higher-dimensional spacetime; postulating

the existence of one or more Extra Dimensions in addition to the typical four. A number of

models impose a parity on their particle content, which helps the predictions they make to

evade the strong electroweak precision constraints. Additionally it forces new states to be

pair produced, leading to rather weak bounds from the direct searches conducted so far. The

same parity usually leads to the lightest new particle in the spectrum being stable and thus

representing a possible dark matter candidate. An extensive review of dark matter within

the Extra Dimensions context can be found in [8].

The idea to formulate field theory in a higher dimensional space dates back to the 1920s. The

2



first serious attempt was made by Theodor Kaluza [9], who equipped General Relativity with

an additional space-like dimension in an effort to find a unified description of gravity and

electromagnetism, the only fundamental forces known at the time. He additionally assumed

that the components of the 5D metric tensor are constant across the fifth dimension and

then parametrized that metric tensor as

GMN =


e

1√
3
φ
gµν + e

− 2√
3
φ
AµAν e

− 2√
3
φ
Aµ

e
− 2√

3
φ
ATµ e

− 2√
3
φ


(1.2)

with gµν , Aµ and φ all being functions of the four original spacetime coordinates. Our

conventions are such that lowercase greek indicees refer to the first four dimensions µ ∈

{0, 1, 2, 3}, while uppercase latin ones denote all five dimensions M ∈ {0, 1, 2, 3, 5}. The

fifth coordinate x5 we will occasionally call y.

Calculating the 5D Einstein-Hilbert action for this particular metric allowed him to show

that the 5D curvature scalar R(5) factorizes into a 4D one R(4) built from gµν , an abelian field

strength tensor for the field Aµ and a kinetic term for the scalar field φ minimally coupled

to the metric

S5 ∼
∫
d5x
√
−GR(5) = V5

∫
d4x
√
−g
[
R(4) − 1

4
e−
√

3φFµνF
µν − 1

2
∂µφ∂

µφ

]
, (1.3)

where V5 is the volume of the fifth dimension, that can be absorbed into the definition of

the 4D Newton’s constant.

He thus showed that General Relativity in five dimensions describes gravity as well as free

electromagnetism in four dimensions and an additional massless scalar, called the Dilaton.

This is not entirely surprising since the general 5D coordinate invariance of R(5) can be

separated into 4D diffeomorphism invariance and a U(1) symmetry, forcing Aµ to appear

only as part of Fµν = ∂µAν − ∂νAµ.

The aesthetically unpleasing ad hoc assumption that none of the fields depend on the fifth

coordinate was improved upon by Oskar Klein [10], who instead imposed a cylindricity

condition on them, such that the two points y and y + 2πR were identified, giving the 5D
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space-time the geometry of the cylinderM4×S1, withM4 being regular 4D Minkowski space.

Making R, the so-called radius of compactification, sufficiently small then also resolves the

phenomenological issue of the apparent absence of a fifth spatial dimension from everyday

life - for conventional energy scales, the fifth dimension is not resolved and we observe an

effectively 4D world. In modern terminology we refer to the 4D encasing subspace of the

compactified volume as the Brane, and the higher dimensional enclosed space as the Bulk.

Klein’s postulate leads to a number of interesting features. The 5D energy-momentum

relation

E2 = p2
x1

+ p2
x2

+ p2
x3

+ p2
y +m2 (1.4)

now also links the energy of our particles to their momenta along the fifth dimension py. At

the same time we know, due to de Broglie, that the wavelengths of those particles need to

be multiple integers of the circumference of the extra dimension

λ =
2πR

n
. (1.5)

Or in other words, that the momentum along the fifth dimension needs to be quantized in

units of 1
R

:

py =
2π

λ
→ py =

2πn

2πR
=
n

R
. (1.6)

Plugging this quantization condition back into original 5D energy-momentum relation, we

now see that every 5D field actually posseses an infinite amount of excitations of energy En

E2
n = p2

x1
+ p2

x2
+ p2

x3
+m2 +

n2

R2
≡ ~p2 +M2

n. (1.7)

If we define Mn =
√
m2 + n2

R2 we can alternatively say in the 4D compactified theory every

particle is accompanied by a tower of Kaluza-Klein (KK)-modes with identical quantum

numbers but increasingly heavier masses Mn.

Even though it is possible to induce non-Abelian Yang-Mills theories through more involved

compactification procedures in higher dimensions, the original Kaluza-Klein model is not

suited to reproduce all SM physics. It is particularly not possible [11] to introduce chiral

fermions, necessary for the weak interaction, into the original theory.
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There is however a plethora of modern iterations of models with extra dimensions inspired

by those historic attempts. Generally speaking they fall into two categories: those where

the underlying 5D metric is intrinsically curved (warped geometry) and those where the

metric is flat. Those models can be further classified as to how many of the fields in the

model are localized on a Brane and how many get to penetrate the Bulk. Examples for a

warped geometry include Randall-Sundrum models [12,13], that confine all particles except

the graviton to the Brane, and more recent attempts [14, 15] which also allow for SM fields

to penetrate the Bulk. Large Extra dimensions [16, 17] constitute an example with a flat

geometry but only gravity propagating inside Bulk, whereas Universal Extra Dimensions

[8, 18] do not confine any fields to the Brane. A more detailed discussion can be found

in [19], which we use as a general reference point. Many of these theories share a universal

set of fundamental features, while some of the phenomenological details might differ from

model to model. We chose the minimal setup of one Universal Extra Dimension (mUED) as

a concrete framework for our studies.

In this thesis we try to shed light on the influence loop corrections have on the discovery

potential of Universal Extra Dimensions scenarios along with how they help to shape their

phenomenology, which in turn can serve as the base on which to build a search strategy. The

thesis is structured in the following way:

In Chapter 2, we review the concrete theoretical models this work is based on. Our main

focus is on the minimal Standard Model extension with one Universal Extra Dimension.

We introduce the general concepts by the example of a Φ4 toy model and give the full

SM Lagrangian in Appendix A. Additionally, we describe the construction of the two-site

Coloron model equipped with an exchange symmetry. It can be regarded as the low-energy

effective theory of mUED, in which all KK-modes heavier than level-1 have been integrated

out. This distinction becomes necessary since truncated mUED violates gauge invariance,

making it ill-equipped for some of our later calculations. The Coloron model we present

respects the full gauge symmetry, albeit non-linearly, making it a better suited framework.

In Chapter 3, we describe the next-to-leading order (NLO) QCD corrections to the pair

production of heavy color-octet vector bosons as they appear in the aforementioned Coloron

model (or as the level-1 KK-gluons in the mUED version of QCD). We elaborate on several
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subtleties concerning the gauge fixing and renormalization procedure, which are inherent

to the production of heavy colored Vectors. The soft divergencies are treated through the

two-cutoff phase-space slicing method, which we describe before utilizing it for the process

at hand. We present the full NLO production cross section, discuss its scaling behavior, and

the corresponding κ-factor.

In Chapter 4, we extend the analysis from the lowest KK-mode running in the loops, in

order to quantify how much the previously truncated modes change the Coloron predictions.

We apply and compare a number of approaches designed to extract meaningful results for

the formally infinite sums of vertex diagrams. The most straightforward approach is an

analytic summation over all modes in the compactified theory up to a hard cutoff scale Λ.

Additionally, we present a general prescription on how to extract the asymptotic behavior

of the vertex functions consistent with dimensional regularization. Finally we compare our

results with those obtained from the exact functional renormalization group equation, applied

to uncompactified QCD in 5D.

In Chapter 5, we investigate the impact that radiatively induced operators, localized on the

boundary, have on the phenomenology of mUED. This is a twofold process. In step one

we consider two-point functions that give rise to mass corrections of the KK-modes. These

mass corrections significantly shape the decay channels of interest since the mass spectrum

is almost degenerate at tree level. Secondly, we consider the KK-number violating coupling

of a single level-2 mode into two SM modes within the complete mUED SM. The literature

reports results for the logarithmic contributions to number of such mass corrections and

couplings, while we present the full one-loop results, as well as some completely new, finite

operators.

Through those couplings it would be possible to produce a single level-2 mode at say a collider

and then detect the successive decay into a pair of SM modes without anything escaping.

This represents an attractive search strategy (even though the modes under consideration

are heavier than the level-1 modes discussed in Chapter 3), because even-parity modes are

not bound by the pair production requirement that parity odd modes are limited by. We

then discuss the phenomenological implications that come along with our findings.

In Chapter 6 we summarize our main results and provide an outlook that places them into
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perspective.
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2.0 THEORETICAL CONCEPTS

This chapter serves as a review of established theoretical concepts that are the foundation

of the work this dissertation presents.

We begin by constructing Φ4 theory in the mUED model and discuss important features that

are relevant to our work. Additionally we describe how to implement the Standard Model

in this framework, particularly the inclusion of chiral fermions and then present the final 4D

Lagrangian in Appendix A.1.

In the second part we discuss the so-called two-site Coloron model as a low-energy ap-

proximation of QCD in mUED. The Coloron is a non-linear sigma model, that describes

the infrared behavior of a number of extra dimensional models, in energy regimes where all

heavy modes but the first one are integrated out. The distinction between Coloron and UED

models becomes necessary, however, since the truncated mUED version of QCD breaks 5D

gauge invariance and is therefor not suited for the NLO calculation we present in Chapter 3.

2.1 UNIVERSAL EXTRA DIMENSIONS

The minimal UED scenario consists of one additional flat space-like dimension that is popu-

lated by all SM fields. The compactification procedure (shown in Fig. 1) initially follows the

original one by Kaluza and Klein by confining the extra dimension to a finite volume and

periodically identifying its ends. Therefore all fields that are functions of the fifth coordinate

y are invariant under y → y + 2πR.

However, to accommodate the chiral SM fermions, an additional breaking of 5D Lorentz in-

variance is necessary. This achieved through so-called orbifold boundary conditions. Specif-
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ically, the Lagrangian is required to be invariant under the Z2 transformation y → −y. The

Figure 1: UED orbifolding. (A) periodic boundary conditions leading to M5 = M4×S1. (B)

Mapping out a Z2 symmetry by identifying two opposite sides of the circle. Leading to (C)

two fixed points on the boundaries of the essentially flat bulk.

extra dimension in this setup can be visualized as being curled up on a circle which is then

pinched at two fixed points y = 0, πR and subsequently the upper and lower half circle

are identified, leading to a mild topological defect in the resulting spacetime. The resulting

space-time structure is, defects aside, still flat and described by the 5D metric tensor

ηMN =

ηµν 0

0 −1

 , (2.1)

with the regular 4D Minkowski metric ηµν = diag{1,−1,−1,−1}.

2.1.1 Φ4 in 5D - A Toy Example

After the qualitative description of the philosophy of minimal Universal Extra dimensions

we now move on to summarizing the technical implementation within a field theoretical

framework. As a first example we consider Φ4 theory with the previously described single

extra dimension compactified on an S1/Z2 orbifold and how to move from the 5D theory to

the 4D effective theory.
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The periodicity condition imposed on the fifth space-time coordinate implies that there exists

a Fourier expansion of the field into discrete modes

Φ (x, y) =
1√
πR

[
φ0 (x) +

√
2
∞∑
n=1

(
φ+
n (x) cos

ny

R
+ φ−n (x) sin

ny

R

)]
. (2.2)

The appearance of a zero mode in the expansion is enabling us to account for the Standard

Model modes, since the zero modes do not receive a mass contribution proportional to 1
R

.

They are however an obstacle when describing fields that do not appear in the Standard

Model and whose modes therefore all need to be heavy enough to evade detection. For this

work, that is of particular importance for the fifth component of the vector fields, A5, which

is identified as the Goldstone boson stemming from the breaking of 5D Lorentz invariance

through the compactification.

By introducing suitable boundary conditions at the fixed points we can project out the modes

that are even/odd under the Z2 symmetry and control which fields retain SM modes (which

are even, since they are independent of y). This can be accomplished by demanding that

Neumann B.C. ∂5Φ+ = 0 for even fields

Dirichlet B.C. Φ− = 0 for odd fields, (2.3)

on the boundary y = 0, πR.

The corresponding field expansion for the even/odd fields then becomes

Φ+ (x, y) =
1√
πR

[
φ0 (x) +

√
2
∞∑
n=1

φn (x) cos
ny

R

]

Φ− (x, y) =

√
2

πR

∞∑
n=1

φn (x) sin
ny

R
(2.4)

Now we can construct an effectively 4D Lagrangian by integrating the 5D Φ4 theory over

the fifth coordinate y, where for simplicity we assume Φ to be Z2 even

L =

∫ πR

−πR
dy

{
1

2
∂MΦ (x, y) ∂MΦ (x, y)− m2

2
Φ (x, y)2 − λ̃

4!
Φ (x, y)4

}
. (2.5)
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Next we substitute the expansion of the field in terms of modes into the Lagrangian and

perform the integration over y. In the process it is useful to define a dimensionless coupling

constant through

λ =
λ̃

πR
. (2.6)

We arrive at an effectively 4D Lagrangian that firstly contains a kinetic piece, describing the

dynamics of the the modes propagating in our flat space:

Lkin =
1

2
∂µφ0∂

µφ0 −
m2

2
φ2

0︸ ︷︷ ︸
SM mode

+
∞∑
n=1

{
1

2
∂µφn∂

µφn −
1

2

(
m2 +

n2

R2

)
φ2
n

}
︸ ︷︷ ︸

level-n KK mode

(2.7)

The particle content of this theory is simply a scalar zero mode of mass m and an infinite

tower of scalar fields with mass
√
m2 + n2

R2 , as the less rigorous argument made in the intro-

duction suggested.

The second part of the Lagrangian, arising from the quartic interaction of the original 5D

Lagrangian is then

Lint = − λ
4!

{
φ4

0 + 6φ2
0

∞∑
n=1

φ2
n + 2

√
2φ0

∞∑
k,l,m=1

φkφlφm∆
(1)
klm +

1

2

∞∑
k,l,m,n=1

φkφlφmφn∆
(2)
klmn

}
(2.8)

where the ∆ symbols are permutations of the Kronecker delta function δij, that we define in

Appendix A. The tree-level vertices of this 4D compactified theory are shown in Fig. 2. The

defining phenomenological features of our model, relevant to our projects are in summary:

Infinite KK towers Every 5D field gives rise to an infinite tower of increasingly heavy

modes in the 4D compactified theory. The zero modes then acquire a mass through elec-

troweak symmetry breaking (EWSB), which in turn also shifts the mass of the higher KK-

modes. All fields in the effective theory inherit the quantum numbers from the 5D field,

despite the difference in mass.

KK parity is an exact symmetry After breaking 5D Lorentz invariance through the

compactification a residual parity is still a good symmetry of the system. Geometrically

this can be visualized as a reflection about the midpoint y = πR/2 of the orbifold combined

with application of the Z2 transformation, rendering even-numbered field modes invariant
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Figure 2: φ4 tree-level vertices as they appear in the compactified theory. (A) pure SM

vertex, (B) two SM modes and two KK modes, (C) one SM mode and three KK modes and

(D) pure KK vertex. All Feynman diagrams in this thesis are produced using JaxoDraw

2.0 [20].

while odd-numbered modes change sign. In our specific model this statement is true at any

loop order, so even radiatively induced processes cannot violate KK-parity. The lightest

particles in the spectrum can therefore only be pair produced in experiments (cf. Chapter 3)

as a direct consequence. Furthermore does the parity lead to KK contributions to low energy

observables being at least loop-suppressed (cf. Chapter 4).

KK number violation The tree-level Lagrangian also conserves KK-number, which means

that for all tree-level vertices appearing in the 4D effective theory (here especially (C) and

(D) in Fig. 2) the mode numbers of the modes participating in the interactions obey

l ±m± n = 0 for 3-point vertices

k ± l ±m± n = 0 for 4-point vertices. (2.9)

Loop-induced processes however violate these conditions, as shown in Fig. 3. The left side

is built from vertices that appear in the original tree-level Lagrangian and shrinks into the

non-derivative, effective diagram shown on right, if we expand the loop integral in the region

where the momentum transfer is small in comparison to the mass Mn.

Since extra dimension theories are non-renormalizable, there can be additional operators

generated at a cut-off scale Λ. These are typically small, since the cut-off scale is estimated
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Figure 3: Loop induced process that produces a four-point operator that violates KK-number

but conserves parity (A) loop process set up of KK-number conserving tree-level vertices (B)

the effective vertex breaks KK-number conservation by 2n units. Note that there also exist

similar S and U channel contributions to the effective vertex, which we omit here.

to be Λ ∼ few × 10R−1 [18, 22]. However, in general, the list of UV-induced operators

could also include the boundary-localized KK-number violating interactions, and since they

compete with loop-induced boundary terms, they can be phenomenologically relevant [85].

In the MUED scenario it is assumed that KK number is approximately conserved by the UV

theory, so that the UV boundary terms are negligible.

The 5D operators corresponding to KK-number violating processes are localized on the

boundaries, while the Bulk operators obey the rules 2.9. An operator leading to KK-number

violating vertices would for example be

LBoundary ⊃
1

2

∫ πR

−πR
dyCN [δ(y) + δ(y + πR)]Φ (x, y)N , (2.10)

with some dimensionful coefficient CN .

We can substitute the field for its Fourier expansion into modes as we did before, and

performing the integration over y we find the 4D Lagrangian

LBoundary ⊃
CN

2(πR)N

(φ0(x) +
√

2
∞∑
n=1

φn(x)

)N

+

(
φ0(x) +

√
2
∞∑
n=1

(−1)nφn(x)

)N


(2.11)
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Expanding the binomials into their power series we see how the KK-parity violating operators

explicitly cancel

LBoundary ⊃
CN

(πR)N/2

[
φ0(x)N +

N

2
φ0(x)N−1

∞∑
n=1

φn(x) (1 + (−1)n) + · · ·

]
, (2.12)

leaving us with a set of operators that violate the number conservation but continue to

respect KK-parity

LBoundary ⊃
CN

(πR)N/2

[
φ0(x)N +Nφ0(x)N−1

∞∑
n=1

φ2n(x) + · · ·

]
. (2.13)

Notice that the second term in the expansion reproduces the non-deriavtive operator, radia-

tively induced in Fig. 3.

How these radiatively induced operators shape the phenomenology for the mUED SM and

the mass corrections they can induce is discussed in Chapter 5.

2.1.2 The Standard Model in 5D

The construction of an mUED model that reproduces the Standard Model at lowest order

follows the same principle as our toy model, but exhibits some subtleties.

We promote all SM fields to 5D fields and from the usual SM interactions, one can construct

the MUED Lagrangian and Feynman rules, see e. g. Refs, [8,24–26]. It is however not possible

to construct an equivalent of γ5 in 5D, so we have to induce SM fermions chiral under SU(2)

in a different way [27]. We introduce two 5D fermion fields Ψ and ψ that are doublets and

singlets under SU(2) respectively. Their Fourier expansion then reads

Ψ (x, y) =
1√
πR

{
ΨL(x) +

√
2
∞∑
n=1

[
P−Ψn

L(x) cos
ny

R
+ P+Ψn

R(x) sin
ny

R

]}
,

ψ (x, y) =
1√
πR

{
ψR(x) +

√
2
∞∑
n=1

[
P+ψ

n
R(x) cos

ny

R
+ P−ψ

n
L(x) sin

ny

R

]}
. (2.14)

Their zero modes are massless fermions that can be used to define chiral SM fermion through

ψSM = PLΨL + PRψR (2.15)
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with the usual 4D projection operators PL/R = 1
2

(1± γ5). Whereas the higher KK-modes

combine to two sets of vector-like fermions, that are doublets/singlets under SU(2).

After having constructed chiral fermions the ingredients of our mUED version of the Standard

Model are complete. We summarize the quantum numbers of all fields involved in Tab. 1.

Note that every 4D vector field Aµ is accompanied by a Goldstone boson A5. For practical

Field SU(3)C SU(2)L U(1)Y Z2

GM ≡ (Gµ, G5) adj. – – (+,−)

WM ≡ (W µ,W 5) – adj. – (+,−)

BM ≡ (Bµ, B5) – – adj. (+,−)

(QL, QR) 3 2 −1/6 (+,−)

(uL, uR) 3 – +2/3 (−,+)

(dL, dR) 3 – −1/3 (−,+)

(LL, LR) – 2 −1/2 (+,−)

(eL, eR) – – −1 (−,+)

Φ – 2 +1/2 +

Table 1: Field content of the minimal universal extra dimension (MUED) model and their

gauge and Z2 quantum numbers.

calculations, one also needs to introduce gauge-fixing and ghost terms for the 5D gauge fields

V M (V = G,W,B). In this work, a covariant gauge fixing is employed, which has the form

Lgf =
1

2

∫ πR

−πR
dx5

[
− 1

2ξ

(
∂µV a

µ − ξ ∂5V
a

5

)2
]
, (2.16)

Lghost =
1

2

∫ πR

−πR
dx5

[
c̄a
(
−∂µ∂µ + ξ ∂2

5

)
ca + g(5)fabc

(
−∂µc̄aGc

µc
b + ξ ∂5c̄

aGc
5c
b
)]
. (2.17)

where ca and c̄a are 5D ghost and anti-ghost fields, respectively, a, b, c are adjoint gauge

indices, fabc is the non-Abelian structure constant, and g(5) denotes the 5D gauge couplings

for each of the three vector fields. For simplicity, the choice ξ ≡ 1 for the gauge parameter

is used throughout this work.

For the top quark, the SM Higgs Yukawa coupling cannot be ignored. It leads to mixing
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between the singlets un and first component of the Qn fields, which we call Un, to remain

consistent with notation of App. H of Ref. [26]. The mass matrix reads

(
Un un

)Mn mt

mt −Mn

Un
un

 , (2.18)

Diagonalizing this mass matrix leads to two degenerate mass eigenstates Tn and T ′n given byUn
un

 =

cos θTn γ5 sin θTn

sin θTn −γ5 cos θTn

Tn
T ′n

 (2.19)

with mass and mixing angle

MT =
√
M2 +m2

t , tan 2θT =
mt

M
. (2.20)

Even in the limit of massless SM quarks (θTn = 0) the diagonalized mass eigenstates do not

coincide with the original flavor eigenstates, due to the fact that the diagonal elements have

a relative sign between them. The transformation reduces in that case to un → −γ5un.

Similarly we have to diagonalize the mass matrix for the electroweak KK-bosons. We can

define the KK-photon Anµ and KK-Z Zn
µ through the Kaluza-Klein generalization of the

Weinberg angle Aµn
Zµ
n

 =

 cos θn sin θn

− sin θn cos θn

 Bµ
n

W µ
3,n

 . (2.21)

This redefinition is necessary to diagonalize the mass terms, which in the Bµ
n and W µ

3,n basis

take the form

(
Bµ
n W µ

3,n

) n2

R2 + δ̂m2
Bn

+ 1
4
g2

1v
2 1

4
g1g2v

2

1
4
g1g2v

2 n2

R2 + δ̂m2
Wn

+ 1
4
g2

2v
2

 Bµ,n

W3,n,µ

 , (2.22)

where δ̂m2 are the mass corrections stemming from the one-loop self-energies of the elec-

troweak gauge bosons in question.

Analogously we define the charged KK-W bosons as W µ
±,n = 1√

2

(
W µ

1,n ± iW
µ
2,n

)
.
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2.2 THE TWO-SITE COLORON MODEL

We now describe the construction of the two-site Coloron model as we will employ it in our

calculation in Chapter 3. It serves to describe the low-energy physics of mUED and other

extra dimensional models after all KK-modes heavier than n = 1 have been integrated out.

The two-site Coloron model is based on an extension of the strong gauge group to the product

group SU(3)1 × SU(3)2, which is broken down to SU(3)C by a non-linear sigma model. In

addition, invariance under the Z2 transformation P is imposed, which interchanges the two

SU(3) groups:

P : SU(3)1 ↔ SU(3)2. (2.23)

This exchange symmetry mimics the KK parity of UED. The Lagrangian of the model can

be divided into three parts,

L = Lgauge + Lferm + Lgf . (2.24)

The gauge part is given by

Lgauge = −1

4
G1µνG

µν
1 −

1

4
G2µνG

µν
2 +

f 2

4
tr{DµΣDµΣ†}. (2.25)

Here Giµν are the field strength tensors of SU(3)i (i = 1, 2), with gauge couplings g1 = g2 ≡ g.

Σ denotes the non-linear sigma field

Σ = exp(2iπATA/f), (2.26)

where A = 1, ..., 8 is implicitly summed over, TA are the SU(3) generators, f is a constant of

mass dimension, and πA are the Goldstone fields of the broken SU(3). Its covariant derivative

is given by

DµΣ = ∂µΣ− ig GA
1µT

AΣ + igΣGA
2µT

A. (2.27)

Under SU(3)1 × SU(3)2, the Σ field transforms as a bi-fundamental,

Σ→ U1 ΣU †2 . (2.28)
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The Σ field is responsible for the breaking of SU(3)1 × SU(3)2 to the vectorial subgroup

SU(3)C. The gauge mass eigenstates in the broken phase are

GA
µ = 1√

2
(GA

1µ +GA
2µ), CA

µ = 1√
2
(GA

1µ −GA
2µ). (2.29)

Here GA
µ is the (massless) gluon field of SU(3)C with coupling strength gs = g/

√
2, whereas

CA
µ is the massive Coloron field with mass M = gsf , which “eats” the Goldstone fields πA.

Eq. (2.25) has the same form as for the Coloron model in Ref. [28] with the additional

constraint that the two gauge groups have equal coupling strength. The latter requirement

is a consequence of the P parity, which was not considered in Ref. [28]. Under this parity

P : GA
1µ ↔ GA

2µ, GA
µ → GA

µ , CA
µ → −CA

µ , Σ→ Σ†. (2.30)

Since CA
µ is odd under P , the massive Colorons can only be produced in pairs.

The fermion part of the Lagrangian reads

Lferm = q̄1i��D1q1 + q̄2i��D2q2 + q̄′i��DVq
′ − Y

[
q̄1ξq

′ − q̄2ξ
†q′ + h.c.

]
+ ū1i��D1u1 + ū2i��D2u2 + ū′i��DVu

′ − Y
[
ū1ξu

′ − ū2ξ
†u′ + h.c.

]
(2.31)

+ d̄1i��D1d1 + d̄2i��D2d2 + d̄′i��DVd
′ − Y

[
d̄1ξd

′ − d̄2ξ
†d′ + h.c.

]
.

Here ψ1, ψ2 and ψ′ are quark fields in the fundamental representation of SU(3)1, SU(3)2

and SU(3)C, respectively (ψ = q, u, d). The ψ = q fields are chiral doublets under the weak

SU(2)W group, whereas ψ = u, d are singlets. The relevant quantum numbers and chirality

of the quark fields is summarized in Tab. 2. Their covariant derivatives read

D1µψ1 = ∂µψ1 − igGA
1µT

Aψ1 + ...,

D1µψ2 = ∂µψ2 − igGA
2µT

Aψ2 + ..., [ψ = q, u, d]

DVµψ
′ = ∂µψ

′ − ig√
2
(GA

1µ +GA
2µ)TAψ′ + ..., (2.32)

where the dots indicate electroweak interactions, which are ignored in this work. Further-

more, ξ is the “square root” sigma field according to the CCWZ construction [29],

ξ = exp(iπATA/f). (2.33)
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Field Chirality SU(2)W SU(3)1 SU(3)2 SU(3)C

q1 L 2 3 1 –

q2 L 2 1 3 –

q′ R 2 – – 3

u1 R 1 3 1 –

u2 R 1 1 3 –

u′ L 1 – – 3

d1 R 1 3 1 –

d2 R 1 1 3 –

d′ L 1 – – 3

Table 2: Quantum numbers and chirality of the quark fields in the two-site symmetric

Coloron model.

Under SU(3)1 × SU(3)2, these fields transform as

ψ1 → U1ψ1, ψ2 → U2ψ2, ψ′ → UVψ
′, ξ → U1ξU

†
V = UVξU

†
2 , (2.34)

where UV is the transformation matrix of the fundamental representation of the vectorial

subgroup SU(3)C. The effect of P parity on the fermion fields is

P : ψ1 ↔ ψ2, ψ′ → −ψ′, ξ → ξ†. (2.35)

The introduction of the ψ′ fields is necessary to be able to write down invariant Yukawa

terms (with coupling strength Y ) in eq. (2.31).

The physical quark mass eigenstates are

ψ = 1√
2
(ψ1 + ψ2), [ψ = q, u, d]

Ψ = 1√
2
(ψ1 − ψ2)PL + ψ′PR, [Ψ = Q,U,D] (2.36)
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where PL,R = 1
2
(1 ± γ5). Here the ψ fields are massless chiral P-even SM-like quark fields,

whereas the Ψ fields are P-odd fermion fields with a vector-like mass MΨ =
√

2Y . In general,

the Yukawa coupling Y is a free parameter, but for the sake of analogy to UED we impose

Y = M/
√

2, i.e. MΨ = M. (2.37)

The final component of the model is the gauge-fixing and ghost term. For a covariant gauge

it can be defined in the following P-symmetric form,

Lgf = −1
2
(FA1 )2 − 1

2
(FA2 )2 +

2∑
i,j=1

ūAi
δFAi
δαBj

uBj , (2.38)

where

FA1 =
1√
ξ
GA

1µ +
√
ξ
g

2
f πA,

FA2 =
1√
ξ
GA

2µ −
√
ξ
g

2
f πA, (2.39)

and δαAi is the parameter of an infinitesimal SU(3)i gauge transformation. For the calculation

presented in the following sections, the Feynman gauge ξ = 1 has been employed. In this

gauge, the unphysical Goldstone fields πA receive a mass M = gsf = gf/
√

2 from eq. (2.38).

The ghost fields mix to form a P-even massless gluon ghost ug = 1√
2
(u1 + u2) and a P-odd

Coloron ghost uC = 1√
2
(u1 + u2) with mass M . Thus one obtains

Lgf =− 1

2

[
(∂µGA

µ )2 + (∂µCA
µ )2
]
− M2

2
(πA)2 −M ∂µCA

µ π
A

− ūAg ∂2uAg − ūAC(∂2 +M2)uAC + gsfABC ū
A
g ∂

µ(uBg G
C
µ + uBCC

C
µ )

+ gsfABC ū
A
C∂

µ(uBg C
C
µ + uBCG

C
µ ) + gsMfABC(ūAg u

B
C − ūACuBg )πC . (2.40)

In summary, the two-site symmetric Coloron model defined in this way contains several

states with mass M in addition to the SM particle content. Besides the Coloron vector-

boson, heavy vector-like quarks are required to enforce the P-parity as an exact symmetry.

This model can be viewed as a low-energy approximation of the 5-dimensional minimal UED

model (mUED) with compactification radius R = M−1, where only the zero modes and first

KK excitations are kept as dynamical degrees of freedom. Note, however, that the Coloron

model is not identical to a simple truncation of mUED at the n = 1 level, since such a
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truncated UED model would violate gauge invariance [30], whereas the model presented

here respects the full gauge symmetry, albeit non-linearly. In fact, the Feynman rules for

the two-site Coloron model and the first KK excitation in mUED are mostly identical, but

there are a few differences, which are mentioned in Appendix A.2.

In a more general sense, the two-site symmetric Coloron model can be regarded as a low-

energy description of any model with massive color-octet vector bosons that are odd under

some (approximate) parity.
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3.0 COLORON PAIR PRODUCTION AT NLO

We now consider the pair production of heavy vector color octets at Hadron colliders, as

they appear in mUED as the level-1 KK-partner of the gluon, as described in [31]. QCD

corrections have been computed for a number of pair production processes of colored BSM

particles, including (but not limited to) squark and gluino production in the Minimal Super-

symmetric Standard Model (MSSM) [32–34], leptoquark pair production [35], production of

massive vector quarks [36], and pair production of scalar color octet bosons [37]. The cor-

rections were generically found to be sizeable and important to reduce the large dependence

of tree-level results on the renormalization scale. Thus, for a robust prediction of the pro-

duction of colored BSM particles at hadron colliders, the inclusion of next-to-leading order

(NLO) QCD corrections seems mandatory.

QCD corrections to production of single vector octets have been studied in Refs. [28, 38].

The Coloron model our analysis is based on (cf. chapter 2) is similar in spirit but equipped

with an exchange symmetry to mimic KK-parity.

3.1 OBTAINING THE CROSS SECTION THROUGH PHASE SPACE

SLICING

Massive Colorons can be pair produced at hadron colliders, such as the LHC. The tree-level

process pp → CC can be divided into two partonic sub-channels, qq̄ → CC and gg → CC,

with the relevant diagrams shown in Fig. 4. Note that at leading order this process is

identical to of KK gluon pair production in mUED.

At NLO, one needs to consider one-loop corrections to the subprocesses qq̄ → CC and gg →
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CC, as well as real emission of an extra gluon at tree-level, qq̄ → CCg and gg → CCg. A few

sample diagrams are shown in Figs. 5 and 6. Both the loop contributions and real emission

contributions are separately IR divergent, but the divergencies cancel in the combined result.

Additionally, the quark-gluon induced subprocesses qg → CCq and q̄g → CCq̄ appear for the

first time at NLO. At NLO, the predictions for Coloron pair production become sensitive to

assumptions about the UV completion. The renormalization procedure employed here takes

a bottom-up approach, assuming that the running couplings are defined at the mass scale

M of the Colorons†. In the next subsection, the renormalization scheme is discussed in more

detail.

3.1.1 Renormalization

In this work, the renormalization is performed by using the on-shell scheme for the wave-

function and mass renormalization of the physical states and MS renormalization for the

strong coupling constant. However, due to the fact that the two-site Coloron model is

fundamentally a non-renormalizable theory, there are several subtleties that need to be

addressed. These will be discussed in this section, together with a brief summary of the

remaining aspects of the renormalization.

For the external states the wave-function renormalization constants

δZψ
L = δZψ

R [ψ = q, u, d], δZg, δZC (3.1)

are introduced for the left- and right-handed (massless) SM quarks, the gluons, and the

massive Colorons, respectively. As usual, their values are determined through the residues

of the renormalized propagators, leading to

δZψ
L,R = −<e{Σψ

L,R(0)}, δZg = −<e
{

∂
∂(p2)

Σg(0)
}
, δZC = −<e

{
∂

∂(p2)
ΣC(M2)

}
, (3.2)

where Σψ
L,R(p2), Σg(p2) and ΣC(p2) are the left/right-handed quark self-energies, transverse

gluon self-energy and transverse Coloron self-energy, respectively.

†If instead the couplings are defined at a high scale Λ�M , this may lead to additional moderately-sized
contributions to the NLO result. This will be explored in the next chapter. However, experience from other
BSM calculations indicates that the numerically dominant part of the NLO QCD is generated by SM gluon
exchange contributions and thus does in this case not depend on the details of the UV completion.
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The masses of the Colorons and massive quarks are renormalized according to the on-shell

prescriptions

δM2
C = <e{ΣC(M2)}, δMΨ =

M

2
<e
{

Σψ
L(M2) + Σψ

R(M2) + 2Σψ
S (M2)

}
. (3.3)

The mass parameter in the gauge-fixing term gets renormalized in the same way as the

Coloron mass.

Note that, while we assume that the Colorons and massive quarks have the same mass M at

tree-level, as in mUED, they are technically independent parameters in the Coloron model

and thus receive different mass counterterms. In mUED, in fact, the degeneracy of the KK

masses is also broken at the one-loop level due to boundary terms [39], which we investigate

in Chapter 5.

Following the analogy to mUED, therefore, we assume that the mass difference between the

Coloron mass, MC , and the vector-like quark mass, MΨ, is small: |MC −MΨ|/M ∼ O(αs).

Within the contributions to O(αs) we thus set MC = MΨ = M but allow the masses to

deviate by a small numerical amount in the tree-level contribution, consistent with this

power counting.

The strong coupling constant is renormalized in the 5-flavor MS scheme. In this scheme,

only the gluons and five light quarks are included in the scale evolution of the αs, whereas

the scale dependence of the top quark, Coloron and heavy vector quark loops is accounted

for through explicit logarithms in the finite part of the counterterm. See e.g. Ref. [32] for

an application of this scheme in the context of supersymmetry. For the gψψ̄, ggg, gΨΨ̄ and

gCC gauge coupling, this leads to

gbare
s → gs(µ)

(
1 + δZg

)
(3.4)

δZg =
αs(µ)

4π

[
− β0

2

(
1

ε
− γE + log(4π)

)
− 1

3
log

m2
t

µ2
+

(
21

4
− 2

3
nq

)
log

M2

µ2
− 2

3
log

M2
T

µ2

]
, (3.5)

β0 = βL
0 + βH

0 =
(

11− 2

3
nq

)
+
(21

2
− 4nq + 6

3

)
, (3.6)

where nq = 5, and µ is the renormalization scale, which is taken equal to the regularization

scale for simplicity. Furthermore, ε = (4 − D)/2, where D is the number of dimensions in

24



dimensional regularization.

To be consistent at our order in perturbation theory requires the coupling of the Born

contribution to the cross section to run at two loop. The two-loop beta-function for nq-

flavor QCD reads

µ
∂αs
∂µ

= −
(

11

3
CA −

4

3
Tfnq

)
αs
2π
−
(

17

3
C2
A −

10

3
CATfnq − 2CFTfnq

)(αs
2π

)2

, (3.7)

and was taken from [40].

On the other hand, for the CψΨ and gCπ couplings (where π is a Goldstone boson), one needs

different coupling counterterms. This is not entirely surprising, since these couplings are not

SU(3)C gauge interactions, but are instead related to the larger non-linear SU(3)1 × SU(3)2

symmetry.

To determine the µ-dependence of these couplings, one may assume that all gluon and

Coloron coupling have the same value at µ = M , and the CψΨ and gCπ couplings do not

effectively run for µ < M . Thus one finds

CψΨ : δZ ′g =
αs(µ)

4π

[
−
(

10− 2

3
nq

)(
1

ε
− γE + log(4π)

)
+
βL

0

2
log

M2

µ2

]
, (3.8)

gCπ : δZ ′′g =
αs(µ)

4π

[
−
(

21

4
− nq

2

)(
1

ε
− γE + log(4π)

)
+
βL

0

2
log

M2

µ2

]
. (3.9)

In addition, one needs a counterterm for the vacuum expectation value of the sigma field, Σ.

This counterterm, denoted by the symbol δt, appears in the renormalization of the Goldstone

self-energy:

= iδAB
δt

M
. (3.10)

In a Higgs-like theory, this counterterm is usually determined from the requirement that the

renormalized tadpole terms of the Higgs field should vanish. For the Coloron model, however,

the symmetry breaking mechanism is left unspecified, and the radial degrees of freedom of the

sigma field (which correspond to the Higgs scalars in a weakly coupled symmetry breaking

sector) are assumed to be integrated out. Therefore the tadpole condition cannot be used

here.

On the other hand, as explained for example in Ref. [41], the counterterm for the vacuum
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expectation also appears in the Goldstone self-energy Σπ(p2). Thus one can impose the

renormalization condition

δt = −M Σπ(0), (3.11)

which in a Higgs-like theory is completely equivalent to the tadpole condition.

3.1.2 Infrared Divergencies and Phase Space Slicing

After removing the ultraviolet divergencies, that appear when the loop momentum goes to

infinity, through renormalization we now have to consider what happens at the opposite end

of the spectrum. Some loop functions develop infrared divergencies when a massless propa-

gator goes on-shell (soft divergence) or the momentum of two neighboring massless particles

align (collinear divergence). They manifest as poles in ε, analogous to the UV divergencies,

in dimensional regularization.

Those soft singularities luckily cancel order-by-order in perturbation theory between the vir-

tual contributions to the process and the bremsstrahlung corrections to the corresponding

Born-level process (Kinoshita-Lee-Nauenberg Theorem [42]). The real emission of a gluon

from an external leg is shown exemplary in Fig. 7 and we see that the singularity arises

through the propagator of the (massless) quark, either when the energy of the emitted gluon

reaches zero or the angle θ between the quark and the gluon closes. The initial state, collinear

divergencies of our process do not cancel through the real emission diagrams but are absorbed

into the redefinition of the parton density functions.

One way to carry out the cancelation described explicitly is the phase-space slicing with

two cutoffs, first described in [43]. We follow a more modern prescription, as summarized

in [44]. According to this scheme, the phase space integration of the 2→ N+1 real radiation

contribution is split into three categories

σA+B→N+1 =
1

2s

∫
dΓN+1 |MN+1|2

=
1

2s

[∫
S

dΓN+1 |MN+1|2 +

∫
C

dΓN+1 |MN+1|2 +

∫
H

dΓN+1 |MN+1|2
]
. (3.12)
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Here dΓN+1 is the N + 1-particle phase-space measure given by

dΓN+1 = (2π)DδD

(
p1 + p2 −

N+1∑
i=1

ki

)
N+1∏
n=1

dD−1kn
2(2π)D−1En

(3.13)

and MN+1 the 2→ N + 1 matrix element.

The integrals are over the regions of phase-space, where the gluon becomes soft (S), hard-

collinear (C) and hard-collinear (H). In those limits we can approximate the integrals

and analytically extract the divergencies that will cancel against those from the virtual

contributions, as we describe below. In a final step we integrate the divergence-free hard-

collinear region numerically and match it to the finite pieces left after all poles have been

canceled.

3.1.2.1 The Soft Limit The integration region denoted by S is the phase-space region

where the the gluon that has been radiated off becomes soft. This region is characterized

through

0 ≤ Eg ≤ δS

√
ŝ

2
(3.14)

by the cutoff parameter δS and a typical energy scale, here the partonic center-of-mass energy

ŝ. We can start by factorizing the N + 1 body phase-space into the N body one and one for

the gluon

dΓN+1

∣∣∣
soft

= dΓN
dD−1kg

2(2π)D−1Eg
. (3.15)

performing the D dimensional angular integral we arrive at simple factorization formula

dΓN+1

∣∣∣
soft

= dΓN
Γ[1− ε]
Γ[1− 2ε]

πε

8π3
dΓg, (3.16)

so all that needs to be performed is the integral over the gluons energy, inside the boundaries

3.14, given through

dΓg =

∫ δs
√
2/2

0

dEgdθ1dθ2E
1−2ε
g sin1−2ε θ1 sin−2ε θ2. (3.17)
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We similarly decompose the 2 → N + 1 matrix element into the Born-level matrix element

2→ N and an eikonal factor, by expanding for small energies Eg

|MN+1|2
∣∣∣
soft

= −g2µ2ε
R |MN |2

∑
i,j

−pi · pj
(pi · kg)(pj · kg)

, (3.18)

where in the case of dimensional regularization the renormalization scale µR enters to ensure

that both sides of the equation have the same mass dimension.

Finally we can combine the factorized phase-space and matrix element and arrive at an

expression for the soft contribution to the cross section

∫
S

dΓN+1 |MN+1|2 =

∫
dΓN |MN |2 ×

αs

2π

Γ(1− ε)
Γ(1− 2ε)

(4πµ2
R

s

)ε∑
i,j

∫
dΓg

−pi · pj
(pi · pg)(pj · pg)

.

(3.19)

The Eikonal factor can be integrated analytically and contains the relevant pole. They can

be found in the literature [44,45]. The integrals relevant for our calculation are listed in B.2.

3.1.2.2 The Collinear Limit The integration region denoted by C is the phase-space

region where the the gluon that has been radiated off becomes collinear to another massless

particle, but the energy remains in the hard region. This region is characterized through

δs

√
ŝ

2
< Eg, 1− cos θgi ≤ δc

√
ŝ

Eg
, (3.20)

where θgi is the angle enclosed between the gluon and quark, as it appears in 7.

Similarly to the soft case we can expand the phase-space measure and the 2 → N + 1 for

small values of θgi and find that they factorize into a finite Born-level term and a divergent

piece.

If we define the parton density function (PDF) for incoming partons A and B through

dσp+B→N+1 = fA(x)dxdσA+B→N+1 (3.21)
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where f(x)dx is the probability of getting parton A from the proton, carrying a momentum

fraction between x and x+ dx, we can write the factorized cross-section as

dσp+B→N+1 = fA

(x
z

)[αs
2π

Γ[1− ε]
Γ[1− 2ε]

(
4πµ2

s

)ε]
σA+B→N

(
−1

ε

)
δ−εc PA′A(z, ε)

dz

z

[
1− z
z

]−ε
dx,

(3.22)

where PA′A denotes the Altarelli-Parisi kernel [46], describing the probability of parton A

emitting a collinear gluon and continuing as parton A′. We ignore the initial state parton B

for notational convenience for now.

The collinear divergencies in the splitting functions can be absorbed into the renormalization

of the PDFs of the incoming partons. We do that in the MS scheme, with the renormalization

scale µR.

The soft and collinear contributions are combined with the virtual corrections to arrive at

dσ =
∑
i,j

∫
dx1dx2

{[
fi(x1, µF)fj(x2, µF) + (1↔ 2)

][
dσ̂

(0)
ij (ŝ) + dσ̂

(1)
ij (ŝ; δs)

]
+
[
f̃i(x1, µF)fj(x2, µF) + f̃j(x1, µF)fi(x2, µF) + (1↔ 2)

]
dσ̂

(0)
ij (ŝ)

}
(3.23)

with

f̃i(x, µF) =
∑
k

∫ 1−δs

x

dz

z
fk

(x
z
, µF

) αs

2π

[
Pik(z) ln

(
ŝ

µ2
F

1− z
z

δc

)
− P ′ik(z)

]
. (3.24)

Here fi(x, µF) is the proton PDF for the parton i with the factorization scale µF; dσ̂
(0)
ij is the

differential partonic Born cross-section for the incoming partons i and j; dσ̂
(0)
ij is the one-loop

corrected partonic cross-section including the soft radiation terms; Pik(z) and P ′ik(z) are the

finite and O(ε) pieces of the unregulated splitting kernels (see e.g. Refs. [44]), and ŝ = x1x2s.

Note that the form of eq. 3.23 changes slightly for the quark-gluon induced subprocesses,

which do not receive Born contributions.

The remaining hard radiation region, labeled “H”, is constrained by the conditions δs

√
ŝ

2
< Eg

and 1 − cos θgi > δc

√
ŝ

Eg
. It is finite and can be computed with numerical Monte-Carlo

integration methods. Both the hard contribution and the result in eq. 3.23 separately depend

on the choices for δs and δc. However, as long as the cutoff parameters are kept sufficiently

small, this dependence drops out in the combined total result.
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3.1.3 Notes on the Technical Implementation

The way the Coloron model has been implemented makes it necessary to decide on a scheme

in which to treat γ5 in dimensional regularization, even though the model is not chiral in

nature. Näıvely one expects γ5 to anticommute with all other Dirac matrices which is in

practice insufficient to unambiguously define traces that contain odd numbers of γ5. We

therefore need to pick an additional prescription to ensure that e.g.:

Tr [γ5γ
µγνγργσ] = 4iεµνρσ (3.25)

One possibility is the so-called Breitenlohner-Maison scheme [47] which assumes the anti-

commutator {γ5, γ
µ} to be non-vanishing in D = 4−2ε dimensions, corresponding to a term

proportional to ε in the Lagrangian that explicitly breaks chiral symmetry. Alternatively

one can choose the Larin scheme [48] in which γ5 remains anticommuting and chiral sym-

metry is conserved but one is required to treat the non-conservation of the chiral current

(Adler-Bardeen-Jackiw anomaly) separately. Both schemes lead to identical results in the

context of this and the following chapters, for technical reasons we utilized the ”$Larin”

option implemented in FeynCalc.

The calculation has been performed using several publicly available computing tools, but

additional components were specifically implemented by the authors. The Feynman rules

of the Coloron model (see Appendix A.2) have been incorporated into FeynArts 3 [49],

which was used for generating the relevant diagrams and amplitudes. The color, Dirac and

Lorentz algebra was performed with FeynCalc [50].

To simplify the treatment of tensor loop integrals, the one-loop amplitude was contracted

with the Born amplitude and the sum over the spins of external particles carried out be-

fore any tensor reduction. As a result, most tensor structures in the numerator of the loop

integrand can be canceled against propagator denominators. For the remaining tensor inte-

grals, Passarino-Veltman reduction has been used [51]. One thus arrives at a final result in

terms of standard one-loop basis functions. The IR-finite basis integrals have been evaluated

numerically using LoopTools 2 [52], whereas the IR-divergent basis integrals were taken

from Ref. [53], and are listed in Appendix B.1.
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For the qq̄ channel, two fully independent calculations have been carried out. One is based

on dimensional regularization for the UV singularities and gluon and quark mass regulators

for the soft and collinear divergencies, respectively. The other calculation has employed

dimensional regularization for all types of singularities. Perfect agreement between the two

results at the level of differential cross-sections was obtained. For the gg channel, the use of

a mass regulator is not suitable. Nevertheless, we have performed many independent checks

of partial contributions to the final result.

The numerical integration over the final-state phase space and initial-state PDFs is imple-

mented in the form of a Monte-Carlo generator in Fortran. This implementation is based on

Ref. [54] and produces weighted parton-level events.

3.2 NUMERICAL RESULTS

In the following, we present phenomenological results for Coloron pair production at the

LHC with
√
s = 14 TeV. Throughout this section, the CTEQ6.1M PDF set [55] have been

used, as incorporated in the LHAPDF framework [56].

As a first consistency check, the independence of the total NLO cross-section on the soft

and collinear slicing cut-offs, δs and δc is shown in Fig. 9. The figure depicts two separate

plots for the dependence on δs and δc, respectively. It can be seen that the combined virtual,

soft and collinear contributions (σS+V) and the hard real emission contribution (σ2→3) are

separately logarithmically dependent on δs and δc, but this dependence cancels in the sum

σNLO = σS+V +σ2→3. The remaining power contributions, proportional to δns and δnc , are neg-

ligibly small for all practical purposes if the cut-off parameters are smaller than about 10−3

and 10−4, respectively. Note that the plots in Fig. 9 are subject to statistical errors from the

Monte-Carlo integration over initial parton momentum fractions and final-state phase space.

However, the cancellation of soft and collinear logarithms happens already point-by-point

for the fully differential cross-section, after integration over only the one-particle phase-space

of the massless final-state parton in σ2→3. Therefore, the accuracy of the cancellation of the

δs and δc dependence is very high, as shown in the lower boxes of the Fig. 9.
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The optimal choice of the cut-off parameters needs to strike a balance between two con-

straints: (i) The non-logarithmic power contributions, proportional to δns,c, are minimized

by choosing each cut-off parameter as small as possible, whereas (ii) the statistical error for

the 2 → 3 phase-space integration increases if δs,c are too small. For the remainder of this

section, we use δs = 5× 10−4 and δc = 5× 10−5.

In Fig. 10, the LO and NLO total cross-sections are shown as a function of the Coloron mass

M . For this plot, the mass of the P-odd quarks has been fixed according to the mUED

prediction, i.e. MΨ = M −∆M , where ∆M is the mass splitting due to boundary terms in

mUED [39]. To show the qualitative behavior we restrict ourselves to employ the leading

logarithm of the mass splitting, the full one-loop result can be found in 5.1.2

∆M = M
11αs

16π
ln

Λ2

µ2
(3.26)

Since ∆M is a one-loop contribution itself, we neglect it inside the O(αs) corrections to the

cross-section and set MΨ = M there. For the UV cut-off of mUED we choose Λ = 20M .

In the lower part of the figure, the K-factor σNLO/σLO of the NLO and Born cross-sections

is shown. As evident from this plot, the K-factor depends only mildly on M and amounts

to about 0.88. It is interesting to note that the NLO contributions are negative in all three

subprocesses, qq̄ → CC + X, gg → CC + X, and qg/q̄g → CC + X, the latter of which

is only generated by 2 → 3 real emission diagrams and is turned negative due to the PDF

renormalization. While the overall correction is relatively modest, and of a typical mag-

nitude for high-energy QCD processes, it is nevertheless relevant for accurately evaluating

current limits and the discovery potential of the LHC for mUED and related models [23].

In addition, the computation of the NLO QCD corrections serves to reduce the theoretical

uncertainty from the renormalization and factorization scale dependence. This is demon-

strated in Fig. 11, where the two scales have been varied in parallel, µ = µF. Considering

the range 0.75 < µ/M < 1.5, the LO cross-section changes by about +15%
−17%, which is reduced

to +5%
−8% for the NLO cross-section. Note that the dominant source of uncertainty stems from

the renormalization scale, whereas the factorization scale by itself has a subdominant effect.

In Fig. 12, we also show how the cross-section changes when the mass splitting ∆M =

M−MΨ is modified from the mUED prediction. Note that the gg channel does not depend on
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this parameter at tree-level, and we neglect the mass splitting within the one-loop corrections.

Therefore, only the qq̄ channel is shown in Fig. 12.

We restrict ourselves to the mass ordering MΨ < M , to avoid the situation where the heavy

quarks may become resonant in the subprocess qg → CCq, i.e. qg → CΨ production with

the subsequent decay Ψ→ Cq. This would correspond to a different process than than the

one studied in this chapter and is left for future work.

As evident from Fig. 12, the qq̄ → CC subprocess depends very sensitively on ∆M . However,

since the gg channel is dominant, the total cross-section varies only by a few percent for

reasonable values of the mass splitting.

Finally, Fig. 13 displays the impact of the NLO corrections on the differential cross-section

in terms of the rapidity y ≡ 1
2

ln E+pL
E−pL

. Here E and pL are the energy and longitudinal

momentum of one of the final-state Colorons. Since, after summing over colors, we have

two identical Colorons in the final state, the rapidity distribution is symmetric. As one

can see from the figure, the effect of the NLO corrections results in a slight enhancement

of the tails of the rapidity distribution relative to the central region. This can be partially

understood from a simple kinematic effect, since the recoil against extra radiated partons

causes a broadening of the rapidity distribution.

3.3 SUMMARY AND CONCLUSIONS

The production of colored new physics particles at the LHC may be subject to sizeable

QCD corrections. In this article, results for the NLO corrections to the pair production of

color-octet vector bosons have been presented. Such new vector bosons appear, for example,

in Coloron models or models with extra space dimensions. There are characteristic versions

of these models where the single production of color-octet vector bosons is forbidden by a

parity symmetry, such as an exchange symmetry for Coloron models and Kaluza-Klein parity

for extra dimensional models. For concreteness, this chapter focuses on a two-site Coloron

model, which is based on two copies of a non-linear sigma model for the gauge sector. In

addition, the presence of the exchange symmetry requires the introduction of heavy partners
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to the SM quarks. This model can serve as a gauge-invariant low-energy effective description

of the minimal universal extra dimension (mUED) model.

The renormalization of the two-site Coloron model involves several peculiarities that do not

occur for models with colored particles of spin less than one. For instance, the couplings

of the SM gluon and the massive Coloron are identical at tree-level, but they receive differ-

ent counterterms at higher orders. In addition, the broken gauge symmetry of the massive

vector boson requires the introduction of a counterterm for the symmetry-breaking vacuum

expectation value. This may be surprising at first glance, given that the symmetry-breaking

mechanism is not specified in the non-linear sigma model, but in fact this counterterm can

be uniquely determined from the Goldstone self-energy.

The calculation of the NLO corrections presented in this chapter is based on a largely auto-

mated computer implementation, using publicly available packages supplemented by in-house

routines. For the combination of virtual loop corrections and real radiation contributions,

the phase-space slicing method has been employed. Several checks of the results have been

performed.

It is found that for the standard choice of the renormalization scale, µ = M , where M is

the Coloron mass, the NLO correction has a relatively modest impact on the Coloron pair

production cross-section. The total NLO cross-section is 11–14% smaller than the LO result

for values of M between 1 and 2 TeV. At the same time, the dependence of the cross-section

on the renormalization scale is significantly reduced, by a factor of 2–3. By studying the

rapidity distribution it is furthermore observed that the NLO contribution cannot be charac-

terized by a simple global K-factor, but instead the K-factor is slightly smaller in the central

rapidity region and slightly larger for large absolute values of rapidity.
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Figure 4: Born-level diagrams contributing to massive color-octet vector-boson pair produc-

tion. Here the spring–solid lines indicate massive color-octet vector-bosons, while the double

lines indicate massive P-odd quarks, and the dashed line indicates a P-odd Goldstone scalar.
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Figure 5: Sample one-loop diagrams contributing to Coloron pair production. See Fig. 4 for

the definition of the different propagator line types.

Figure 6: Sample real radiation diagrams contributing to Coloron pair production. See Fig. 4

for the definition of the different propagator line types.
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Figure 7: Real Emission of a soft/collinear gluon from a final state quark. The momentum

square (p− kg)2 = −2EpEg(1− cos θ) in the denominator of the propagator goes to zero for

either Eg → 0 or cos θ → 1.

Figure 8: Flowchart illustrating the additions made to the FeynCalc/FeynArts frame-

work. Yellow routines represent publicly available packages, while green are direct amends

to that code. White parallelograms represent external input and the red integrator is a set

of separate Fortran routines.
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Figure 9: Dependence of the NLO cross-section for the pp → CC on the soft cut-off δs

(left) and the collinear cut-off δc (right). Both plots are for a pp center-of-mass energy

of
√
s = 14 TeV, Coloron mass M = 1 TeV, and renormalization and factorization scales

µ = µF = M . Furthermore, in the left (right) panel, the fixed value δc = 10−5 (δs = 10−3.5)

has been used.

38



Figure 10: Total LO and NLO Coloron pair production cross-sections as function of the

Coloron mass M , for
√
s = 14 TeV and µ = µF = M . The mass splitting between the

Colorons and P-odd quarks in the Born contribution has been set to the value predicted by

mUED, see text and eq. (3.26), while the splitting has been neglected in the NLO corrections.

The lower panel shows the ratio between NLO and LO cross-sections.
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Figure 11: Dependence of the total LO and NLO Coloron pair production cross-sections on

the combined renormalization and factorization scale µ = µF. The plot is based on the pp

center-of-mass energy
√
s = 14 TeV, mass M = 1 TeV, and mass splitting M −MΨ in the

Born contribution as predicted by mUED, see text and eq. (3.26).
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Figure 12: Total LO and NLO Coloron pair production cross-sections as function of quark-

Coloron mass splitting ∆M = M − MΨ. The other input parameters have been set to
√
s = 14 TeV, mass M = 1 TeV, and µ = µF = M .

Figure 13: Differential cross-section for Coloron pair production in terms of rapidity at LO

and NLO accuracy, for
√
s = 14 TeV, mass M = 1 TeV, and µ = µF = M .
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4.0 THRESHOLD BEHAVIOR OF VERTEX FUNCTIONS

While the question of scale sensitivity of couplings in extra-dimensional theories has a long

history [58–63], a detailed analysis of the difference between the effective zero-mode gauge

bosons and their KK excitations is so far missing. Such an analysis is the topic of this

chapter, together with an extensive discussion of the influence of the UV cutoff scale on

both vertices.

The calculation in the previous section was performed in a model which truncates the KK-

tower for all modes heavier than n = 1. If this represents a valid approximation is the

subject of investigation in this chapter, based on Ref. [64]. Furthermore it is important to

discuss and quantify how big the uncertainty is that is being introduced into the calculation

by truncating after a certain mode number. To this end we evaluate the Wilson coefficients

stemming from increasingly heavier KK-modes in the loop for the three SM QCD-operators

as well as the a vertex with two KK level-1 modes and a SM mode.

The q0 −Q1 −G1 vertex receives infrared divergent contributions from diagrams containing

SM modes. We calculate the full one-loop decay width Γ[G1 → q0Q1] through two cutoff

phase space slicing to fix the IR physics. Considering the decay width instead of the naked

Wilson coefficient is not only helping us to put our results in perspective by considering a

physical observable, but also technically necessary, since the IR divergence appears in three

as well as four-point operators, prohibiting to us to define a universal Wilson coefficient.

The modes n ≥ 2 can be included straightforwardly. For every new level participating in

the loop we renormalize the vertex and report the change of the beta function, as well as the

resulting Wilson coefficient. We then extract the asymptotic behavior from the summed up

vertex functions and compare them. In a final step we analyze the behavior of the vertex

functions by perturbatively solving the exact Functional Renormalization Group Equation
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(FRGE).

4.1 INFRARED DIVERGENT CONTRIBUTIONS

Completely analogous to the procedure employed in chapter 3 we calculate the decay width

for the process G1 → q0Q1 (we obtain the same result for the decay into doublet quarks as

for singlets, since we are considering QCD corrections only).

Diagram (A) in Fig. 14 represents the only tree-level Feynman describing the Coloron decay.

Calculating the squared matrix element necessary for the decay width we find

|MBorn|2 =
g2

16M2
G1

NCCF
(
M2

G1
−M2

Q1

) (
2M2

G1
+M2

Q1

)
, (4.1)

which vanishes if the Coloron and KK-Quark masses are identical on kinematic grounds. We

therefore assume again a radiatively induced mass splitting as we did in section 3.2. Since

the mass splitting is small in comparison to the mass scale of the process we will perform

the calculation of the NLO corrected matrix element only to lowest order in M2
G1
−M2

Q1
.

The decay width for the two-body processes can be derived from the corresponding matrix

elements via

Γ2

(
G1 → q0Q1

)
=
M2

G1
−M2

Q1

16πM3
G1

|M2|2. (4.2)

The renormalization (example loop diagram (B) in Fig. 14) is performed in the same way

we described in section 3.1.1, with the exception that we also need a field renormalization

δZQ
L,R for the external KK-quark leg, which can be defined in the on-shell scheme through

δZQ
L,R = −<e

{
ΣQ

L,R(M2
Q1

)
}
−M2

Q1

∂

∂p2
<e
{

ΣQ
R(p2) + ΣQ

L (p2) + 2ΣQ
S (p2)

} ∣∣∣∣
p2=M2

Q1

. (4.3)

Furthermore we require the vertex renormalization constant defined in the MS scheme δZ ′g

from eq. (3.9). Also note that for our analysis we assume all quarks to be massless, including

the top, such that nq = 6.
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Figure 14: Sample diagrams the decay of the level-1 gluon decay G0 → q0Q0 within the

Coloron model. (A) Born-level decay (B) NLO correction to the Born vertex (C) real emission

contribution with an infrared divergence.

To remove the infrared divergencies we employ phase-space slicing with two cutoffs in the

way described in section 3.1.2. The soft divergencies from the real emission diagrams, (C)

in Fig. 14 exactly cancel the soft poles of the one-loop functions. Collinear divergencies only

arise from the diagram containing the final state gluon being emitted from the SM quark leg.

That case is described by the same Altarelli-Parisi splitting kernel we found for the initial

state radiation in eq. (3.22).

The three-body phase space integration in the hard, non-collinear regime can be performed

analytically. The phase space measure for that case reads

dΓ3 =
M2

G1
−M2

Q1
− 2E3MG1

2 (MG1 − E3(1− cos θ))

dE3d(cos θ)

64π3MG1

|M3|2 (4.4)

and is dependent on the energy of the final state gluon E3 and the angle θ between the gluon

and the SM quark. The integration range of these two variables is restricted by the soft and

collinear conditions expressed through

−1 ≤ cos θ ≤ 1−
M3

G1

E3

(
M2

G1
− 2MG1E3 −M2

Q1

)δc,
MG1

2
δs ≤ E3 ≤

M2
G1
−M2

Q1

2MG1

. (4.5)

After carrying out the integration over the three-body matrix element the cancelation of

cutoff parameters between the three and two-body processes is then checked explicitly. Due
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to the approximation in which we work the κ-factor is a constant, independent of any of

the masses, and turns out to be κ = 1.238. In Fig. 15 we plot the dependence of the LO

and NLO decay width on the cutoff scale Λ, that was introduced through the radiative mass

splitting between the KK-quark and gluon.

4.2 CONTRIBUTIONS FROM HIGHER MODES

In order to calculate the contributions from modes with n ≥ 2 to the previously described

process, we need to renormalize the vertex at any order n, that consists of modes containing

but not exceeding n. After introducing a counterterm that is dependent on renormalization

constants for the external legs with level-n modes in the loop we absorb the rest of the UV

divergence into a coupling renormalization of form

δZg = − g2
s

32π2
βx, (4.6)

from which we then can extract the contribution βn of the level to the overall beta function

∂α−1

∂ log µ
= − 1

α2

∂α

∂ log µ
=
βx
2π
. (4.7)

4.2.1 Standard Model Vertices

The three QCD tree-level vertices, the quark-gluon vertex as well as the pure Yang-Mills

vertices, within the Standard Model receive contributions from higher KK-modes running in

the loop (an example diagram for each is shown in Fig. 16). All modes within in the loop

have the same mode-number starting at n = 0, as a consequence of KK-parity.

The standard result for the QCD beta function is reproduced by the zero modes at one loop

and found to be

βSM =

(
11

3
CA −

4

3
nqTf

)
. (4.8)
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Figure 15: Full LO and NLO decay width for the level-1 KK-gluon decaying into a regular

quark and the level-1 KK-quark within the Coloron model. Both curves exhibit the same Λ

dependence, since the κ-factor is constant in our approximation.
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Figure 16: Sample diagrams for the KK-contributions to the SM vertices. (A) quark-gluon

vertex (B) three-point gluon vertex (C) four-point gluon vertex.

Now when allowing for KK-modes with n ≥ 1 in the loop, we acquire an additional contri-

bution to the beta function every time we cross the energy threshold n
R

βN =

(
7

2
CA −

8

3
nqTf

)
. (4.9)

These contributions to the beta function lead to a running of the strong coupling constant

that deviates from the Standard Model behavior, described for a renormalization scale be-

tween Λ ≤ µ ≤ Λ +R−1 by

α−1
S (µ) =α−1

S (Mz) +
βSM

2π
log

(
µ

MZ

)
+
βN
2π

ΛR∑
n=1

log
( µ

nR−1

)
=α−1

S (Mz) +
βSM

2π
log

(
µ

MZ

)
+
βN
2π

[
ΛR log

( µ

R−1

)
− log (ΛR!)

]
, (4.10)

where the sum over KK-modes extends up to a UV-cutoff scale Λ.

It has to be noted that the sum is strictly speaking only defined for an integer cutoff number.

We therefore write ΛR, as it appears in and from the summation, to be understood as

the argument of the Gauss floor function bΛRc, rounding down to the largest integer not

exceeding ΛR.

Since we take all external legs to be massless there is no dipole operator being generated

in the Lagrangian. We find that the vector coupling q0 − q0 − G0 as well as the three and
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four-point gluon couplings receive the same Wilson coefficient CSM. Summing over all modes

within the loop up to the cutoff-scale that coefficient then reads

CSM (µ) =
g3
s

192π2

ΛR∑
n=1

[
2CA − (21CA − 16nqTf ) log

(
n2

(µR)2

)]
. (4.11)

Notice the that the first term in the bracket is independent of the Renormalization Group

running and represents a threshold correction.

4.2.2 KK-Vertices

In the case of two external legs being KK-particles the one-loop corrections to the vertex

induce a dipole operator and the total interaction under consideration becomes

−iCq0Q1G1γ
µPL −Dq0Q1G1

σµν

2R−1
qνPL. (4.12)

If only Standard Model modes and the first KK-mode are allowed in the loop, the coupling

renormalization of eq. (3.9) contributes to the beta function with

βColoron =

(
(3 + 85C2

A)(CA − 2CF )

12
− 8

3
nqTf

)
. (4.13)

The contributions to the vertex function from higher modes are shown in Fig. 17 and can be

straightforwardly calculated for every new mode allowed in the loop. The renormalization

procedure is again done level by level and require the on-shell field renormalizations for

external legs.

The beta function resulting from the coupling renormalization at every level n ≥ 2 is identical

to the one we found for the SM vertices for n ≥ 1, reported in eq. (4.9).
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Figure 17: Sample diagrams for the KK-contributions to the vertex with two level-1 modes

as external legs.

For the Wilson coefficients appearing in front of the vector coupling of eq. (4.12) we separate

the NLO contribution into terms proportional to CA, CF and nq and find

CKK,1(µ) = − g3
s

64π2
CF

ΛR∑
n=1

[
10 + (1 + 5n) log

(
n2

(n+ 1)2

)]
, (4.14)

CKK,2(µ) =

=
g3
s

64π2
CA

ΛR∑
n=1

[
15 + 4n+ 4n2 + n

(
8 + 3n+ 2n2

)
log

(
n2

(n+ 1)2

)
− 7 log

(
(n+ 1)2

(µR)2

)]
,

CKK,3(µ) =

= − g3
s

12π2
nqTf

ΛR∑
n=1

[
13

6
+ 2n+ 2n2 +

n

2

(
3 + 3n+ 2n2

)
log

(
n2

(n+ 1)2

)
− log

(
(n+ 1)2

(µR)2

)]
.

Additionally we can calculate the dipole coefficient, which is finite and does not require

renormalization

Dq0G1Q1 =
g2
s

64π2

(
C2
A − 4

)
(CA − 2CF )

ΛR∑
n=1

[
2 +

1 + 2n

2
log

(
n2

(n+ 1)2

)]
. (4.15)
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4.2.3 Asymptotic Expansion

The analytic summation using elliptical Jacobi theta functions, that has been employed in

Ref. [58, 59], is not an accurate method for our case, since we are defining our coupling

renormalization within the MS scheme. We are however able to recover the same results in

the large ΛR limit, as the theta function method does within the on-shell scheme, using a

somewhat different approach.

We begin by performing the summation up to mode N = bΛRc analytically. The only

non-trivial sums appearing are of the form

N∑
n=1

log

(
n

n+ 1

)
= log

(
Γ[N + 1]

Γ[N + 2]

)
, (4.16)

which can be rewritten using the Euler Γ function as a generalization of the factorial, and

N∑
n=1

n log

(
n

n+ 1

)
= log (Γ[N + 2]) + ζ ′[−1, N + 1]− ζ ′[−1, N + 2], (4.17)

which can be carried out using the Riemann ζ function. The prime denotes a derivative with

respect to the first argument of the generalized ζ function ζ[s, a] =
∑∞

n=0(n + a)−s. One

solves the sums involving higher moments analogously, like e.q.:

N∑
n=1

n2 log

(
n

n+ 1

)
=

= −1

6
+ 2 log (A)− log (Γ[N + 2]) + ζ ′[−2, N + 1]− ζ ′[−2, N + 2] + 2ζ ′[−1, N + 2],

(4.18)

where A = 1.282427 · · · denotes the Glaisher-Kinkelin constant.

For the asymptotic expansion of the first sum, in a region where ΛR becomes large we

simply utilize Stirling’s Formula

log (Γ[N ]) = N(log (N)− 1)− 1

2
log

(
N

2π

)
+

1

12N
+O

(
N−2

)
. (4.19)
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For the sums involving higher powers of n, the asymptotic expansion of the derivative of the

generalized Riemann ζ function can be performed according to

ζ ′[−1, N ] = −N
2

4
(1− 2 log (N))− N

2
log (N) +

1

12
(1 + log (N)) +

1

720N2
+O

(
N−3

)
,

ζ ′[−2, N ] = −N
3

9
(1− 3 log (N))− N2

2
log (N) +

N

12
(1 + 2 log (N))− 1

360N
+O

(
N−3

)
.

(4.20)

It is worth noting at this point that the Riemann ζ function is related to the elliptical Jacobi

theta function through

∫ ∞
0

dt

t
(ϑn(it)− 1)t

s
2 =

2

π
s
2

Γ
[s

2

]
ζ [s, 1] , (4.21)

making our order by order recovery of the results derived with the aide of the theta function

not entirely surprising.

The Wilson coefficients reported in eq. (4.11) and eq. (4.15) can therefore be asymptoti-

cally expanded for large values of the cutoff scale and we find

CSM (Λ) =
g3
s

192π2
[4 (11CA − 8nqTf ) ΛR− (21CA − 16nqTf ) log (ΛR)] +O

(
1

ΛR

)
, (4.22)

which agrees to leading order with

CKK (Λ) =
g3
s

192π2
[4 (11CA − 8nqTf ) ΛR− (42CA − 32nqTf + 9CF ) log (ΛR)] +O

(
1

ΛR

)
.

(4.23)

This serves to show, that they both exhibit the same leading order behavior in a regime

where the fifth dimension is being resolved.

For the dipole moment we find

Dq0Q1G1 =
g2

64π2
(C2

A − 4)(CA − 2CF ) (log(2π)− 2) +O
(

1

ΛR

)
. (4.24)

The dipole operator therefore stays finite even in the limit Λ→∞.
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4.2.4 Exact Renormalization Group Running

It is instructive to perform the same analysis by using the exact functional renormalization

group equation FRGE, which we will apply to the 5D uncompactified theory. To put our

findings in context we begin by briefly summarizing the derivation of the main tools used. In

the review we largely follow Ref. [65], which is based on the original renormalization group

work [66,67].

The Schwinger functional Wk[Ji] and the generating functional Z0[Ji] for an arbitrary theory

containing a number of fields Φi(x) in the presence of an external source J can be related in

the path-integral formalism via

exp {iWk [Ji]} =

∫
DΦi exp

{
iS [Φi(x)] + i∆Sk [Φi(x)] + i

∫
dDxJnΦn(x)

}
= Z0[Ji],

(4.25)

where we ignore an overall normalization, which is irrelevant for our argument. Additionally

we introduced an explicit regulator term ∆Sk, designed to suppress the low energy modes

below the some intermediate cutoff scale k. The regulator is usually defined as

∆Sk [Φi(x)] =

∫
dDp

2(2π)D
Φ̃j(p)Rk

(
p2
)

Φ̃j(−p), (4.26)

where Rk is the regulator shape function. For Rk to define a sensible IR cutoff it has

to monotonically interpolate between the the UV cutoff Λ (becoming infinite as we push

Λ→∞) and the IR regime (vanishing as k → 0).

We chose to work with Litim’s optimized regulator [68], given by

Rk(p
2) =

(
k2 − p2

)
Θ
(
k2 − p2

)
(4.27)

in terms of the Heaviside theta function. This regulator is optimized in the sense described

in [69] and allows us to perform the relevant integrals analytically.

We absorb the explicit regulator term into the tree-level action in the following derivation

and restore it in the final result.

Splitting the fields Φi(x) into classical parts φi, which solve their respective equations of
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motion, and quantum parts δφi(x), it is reasonable to assume that the classical piece will

change much more slowly than the quantum piece, such that

Φi (x) = φi + δφi(x)

⇒ Z0 [Ji] =

∫
Dδφi exp

{
iS [φi + δφi] + i∆Sk [φi + δφi] + i

∫
dDx (φn + δφn) Jn

}
, (4.28)

where the path integral over the classical field will only contribute a constant which can be

absorbed into the overall normalization.

We now expand the action around the classical solution, where its first derivative with respect

to the fields vanishes, marking its saddle point,

S [Φi] = S [φi] +
1

2

∫
dx1dx2

{
δφm

(
δ2S

δΦmδΦn

∣∣∣∣
Φi=φi

)
δφn

}
+ · · · , (4.29)

where we kept terms up to second order, which is consistent up to 1-loop order. The second

derivative in brackets signifies the Hessian matrix of the action S.

Inserting the expansion in our original definition of the Schwinger functional we find

iWk[Ji] = log

(
exp

{
iS [φi] +

∫
dDxJnφn

}∫
Dδφi exp

{
i

2

∫
dDx1d

Dx2δφm
δ2S

δΦmδΦn

δφn

})

=iS [φi] +

∫
dDxJnφn +

1

2
log

 (2π)D

det
∣∣∣ δ2S
δΦmδΦn

∣∣∣


=i

[
Γk [Φi] +

∫
dDxJnΦn

]
, (4.30)

where in the middle line we performed the path integral over the fields δφi making use of

the generalized Gauss integral

∫
Dϕ exp

{
− i

2

∫
dDx1d

Dx2ϕ(x1)Aϕ(x2)

}
=

√√√√ (2π)D

det
∣∣∣A∣∣∣ (4.31)

and in the last equality we defined the effective action as the Legendre transform of the

Schwinger functional.
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Absorbing all constant pieces into the bare action S we can read off the saddle point ap-

proximation for the effective action

Γk = S − 1

2
log
(

det
∣∣∣ δ2S
δΦmδΦn

+Rkδmn

∣∣∣) . (4.32)

Since we will be dealing with theories that contain two types of fields at a time it is useful

to note that the Hessian is a 2 × 2 block matrix. In order to solve the determinant inside

the logarithm it is necessary to make use of a general determinant identity

det

∣∣∣∣∣∣A B

C D

∣∣∣∣∣∣ = det
∣∣∣D∣∣∣ det

∣∣∣A− CD−1B

∣∣∣ (4.33)

and then apply the trace identity

log
(

det
∣∣∣A∣∣∣) = Tr 〈x| log (A) |x〉 (4.34)

to the pieces remaining inside the logarithm. Note that this identity is well defined through

the insertion of an arbitrary complete set of eigenstates |x〉.

Taking the derivative of the effective action with respect to the renormalization time pa-

rameter t = log
(
k
k0

)
we arrive at an one-loop exact integro-differential equation describing

the flow of the coarse-grained effective action between the two fixed points k = 0, where no

modes are integrated out, such that Γ0 represents the full quantum action Γ, and k = Λ,

where all modes are integrated out and we are left with the classical action ΓΛ = S. The

so-found flow equation that interpolates the two regimes, can schematically be written as

∂tΓk =
1

2
Tr

[
∂tRk

(
∂2S

∂Φ∂Φ

)
+R−1

k

]
. (4.35)

This procedure represents the one-loop approximation of the general concept found in Ref. [67].

We chose to solve the flow equation through the non-local heat kernel expansion [70–74],

which is based on the fact that the term under the trace on the right-hand-side of (4.35) is

generally of the form of a heat kernel

hk(∆, ω) =
∂tRk(∆)

∆ + ω +Rk(∆)
. (4.36)
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In all our considerations the heat kernel will depend on a second derivative Laplace type

operator ∆, that is related to the covariant derivative of the theory under consideration

through

∆ = −DMD
M + U, (4.37)

where U denotes the non-derivative part of the operator.

The trace over the heat kernel can be asymptotically expanded in terms of so-called non-local

structure functions [70–74]. We furthermore define the gauge connection ΩMN = i
g

[DM , DN ].

For a flat background metric the asymptotic form of the flow equation then becomes

∂tΓk =
1

2 (4π)
D
2

∫
dDx

[
Tr[1]QD

2
[hk] + Tr [UgUU ] + Tr

[
ΩMNgΩΩMN

]]
. (4.38)

The structure functions appearing in the expansion can be conveniently defined with the

help of a basis of ”Q-functionals” [87]

gU(z, k) =
1

2

∫ 1

0

dξQD
2
−1

[
h
zξ(1−ξ)
k

]
,

gΩ(z, k) =
1

2z
QD

2
−1 [hk]−

1

2z

∫ 1

0

dξQD
2
−1

[
h
zξ(1−ξ)
k

]
, (4.39)

where the Q functionals are in turn related to the original heat kernel of our theory in

question through

Qn [hak] =

∫ ∞
0

dss−nh̃k (s+ a, w) =

∫ ∞
0

dss−ne−sah̃k(s, w), (4.40)

where h̃k denotes the Laplace transform of hk. The second equality explains the short-hand

notation used to describe a heat kernel with a shifted argument.

It is possible to bring the Q-functionals into a more convenient form by applying a Mellin

transformation. This leads to

Qn [hk] =
1

Γ [n]

∫ ∞
0

dssn−1hk (s, w) for n > 0,

Q−n [hk] = (−1)n
∂n

∂sn
hk (s, w)

∣∣∣∣
s=0

for n ∈ Z ≤ 0. (4.41)
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From those identities we can calculate all special cases appearing in our analysis. Choos-

ing Litim’s regulator as mentioned earlier, we find the remaining relevant functionals not

explicitly stated in the literature, namely

Q 1
2
[hak] =

4√
π

√
k2 − a,

Q 3
2
[hak] =

8

3
√
π

(√
k2 − a

)3

. (4.42)

Furthermore it is useful to already mention the integrals over those two functionals with

shifted arguments, as they appear in the definition of the structure functions∫ 1

0

dξQ 1
2

[
h
zξ(1−ξ)
k

]
=

2k2

√
π(k2 + ω2)

(
k − (z − 4k2)

2
√
z

ArcTanh

√
z

4k

)
,∫ 1

0

dξQ 3
2

[
h
zξ(1−ξ)
k

]
=

k2

√
π(k2 + ω2)

(
5k3 − 3kz

4
− 3

8
√
z

(z − 4k2)2ArcTanh

√
z

4k

)
. (4.43)

4.2.4.1 QED-like Contributions To compare the results extracted from the FREG

with the explicit one-loop calculation performed earlier we analyze the contributions stem-

ming from QED-like interactions separately from the ones stemming from QCD-like inter-

actions. The general strategy on how to solve the flow equation at one loop for QED and

QCD can be found in Ref. [75].

It is sufficient to consider the QED contributions as they appear for the Yang-Mills term of

the theory. Through 5D gauge invariance all interaction terms in question acquire the same

Wilson coefficient.

The one-loop effective action for 5D quantum electrodynamics, containing a massless fermion,

can be found in the literature, e.g. [76]. We start from the classical action

SQED =

∫
dDx

{
1

2
AM

(
∂2ηMN −

(
1− 1

ξ

)
∂M∂N

)
AN + iψ /Dψ

}
. (4.44)

to which we apply the one-loop saddle point approximation (4.32). The resulting effective

action is then

Γ1-loop =SQED +
1

2
Tr

〈
x

∣∣∣∣ log

((
−∂2ηMN +

(
1− 1

ξ

)
∂M∂N

)
− g2ψγM

1

i /D
γNψ

) ∣∣∣∣x〉
− Tr 〈x| log

(
i /D
)
|x〉 . (4.45)
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Working from this general result we can bring the second term into the form of a heat kernel

by noting that

Tr
〈
x
∣∣ log

(
i /D
) ∣∣x〉 =

1

2
Tr
〈
x
∣∣∣ log

(
− /D2

) ∣∣∣x〉 =
1

2
Tr
〈
x
∣∣∣ log

(
−D2 − g

2
σMNFMN

) ∣∣∣x〉 †.

(4.46)

For simplicity we ignore the last term in the logarithm in eq. (4.45), since we are not interested

in operators with fermions as external legs at this point. Taking then the derivative of the

effective action yields

∂tΓk =
1

2
Tr

[
∂tRk(−∂2)MN

−∂2ηMN +Rk(−∂2)MN

]
− 1

2
Tr

[
∂tRk(∆)

−D2 + U +Rk(∆)

]
, (4.47)

which is the desired heat kernel form of the flow equation.

Next we identify the field monomials from which our non-local expansion is built

U = −1

2
σMNFMN and ΩMN = iFMN . (4.48)

The expansion of the flow equation then reads

∂tΓk = −Tf
2

1

(4π)
D
2

∫
dDx

[
Tr [1]QD

2
[hk] + FMN (2gU −DgΩ)FMN

]
.‡ (4.49)

To extract the the coefficients we wish to compare with our previous results we make the

well-motivated Ansatz for the effective action

Γk [A]

∣∣∣∣
F 2

=

∫
dDx

Zk
4
F a
MN

[
δab + Πab

k

(
−D2

)]
F b,MN , (4.50)

†The second equality holds, since /a/b = aMb
N − iaMσMNbN .

‡For the Dirac trace we used the facts that {ΓM ,ΓN} = 2ηMN , Tr
[
ΓMΓN

]
= 4ηMN and

Tr
[
ΓKΓLΓMΓN

]
= 4

(
ηKLηMN − ηKMηLN + ηKNηLM

)
as well as ΓMΓM = 5 and for the color trace

Tr
[
T a, T b

]
= Tfδ

ab
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of which we will take the derivative with respect to the renormalization scale and match to

the non-local expansion in eq. (4.49). This leads us to a differential equation for the scale

dependent polarization function and the field renormalization constant

∂t (Zk(1 + Πk(z))) = − Tf
(4π)D/2

∫ 1

0

dξQD
2
−2[hk] +

D

2z

(
QD

2
−1 [hk]−QD

2
−1

[
h
zξ(1−ξ)
k

])
,

(4.51)

where we use the short-hand notation z = −D2 and introduced the Dynkin index by taking

the color trace Tr[T aT b] = Tfδ
ab in our expansion.

We solve this equation firstly in the limit of zero momentum transfer z → 0, since we know

that the polarization function vanishes Πk (0) = 0. In that limit the right hand side of

eq. (4.51) changes like

1

2z

∫ ∞
0

dξ
[
QD

2
−1 [hk]−QD

2
−1

[
h
zξ(1−ξ)
k

]]
z→0
==⇒

∫ ∞
0

dξ

[
1

2
ξ(1− ξ)QD

2
−2 [hk]

]
=

1

12
QD

2
−2 [hk] . (4.52)

We arrive at a simple differential equation for the field renormalization

∂tZk =
Tf
3π
QD

2
−2 [hk] , (4.53)

which can be integrated to yield both the QED-contribution to the anomalous dimension of

the gluon field, as well as the beta function. We write them in terms of the 4D couplings

g(5) = g
√
πR

ηQED
k = −∂tZk

Zk
= Tf

g2

3π2
kR and ∂kα

−1
s = −2Tf

3π
R, (4.54)

where we used the identification Zk = 1

g(5)
2 .

With these results we can solve the original differential equation for the polarization function,

which now reads

∂tΠk(z) =ηQED
k (1 + Πk(z)) (4.55)

+
1

Zk

Tf
64π3z3/2

[
2k
(
4k2 − 3z

)√
z − (4k2 − z)(12k2 + 29z2)ArcTanh

(√
z

k

)]
,
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where we have to drop the term proportional to Πk on the right hand side, since it gives rise

to terms O(g4).

We can now integrate the flow down from the UV cutoff Λ to an infrared scale k. The theory

is well-behaved in the UV and the polarization function vanishes there, such that ΠΛ(z) = 0

for any z. This leaves us with

Πk(z) =
Tfg

2

768π3z3/2

[
−2k(12k2 + 13z)

√
z + 3(4k2 − z)(4k2 + 5z)ArcTanh

(√
z

k

)
+18z2

(
Li2

(√
z

2k

)
− Li2

(
−
√
z

2k

))]
, (4.56)

for nq flavors of quarks.

We cannot perform the limit k → 0, where the polarization function is badly divergent. This

signifies a breakdown of the validity of our perturbation theory in the regime where QCD

becomes strongly coupled.

4.2.4.2 QCD-like Contributions Similarly to the previous section we now construct

the effective action for QCD-like contributions. This is best done using background field

gauge [77]. We follow the spirit and notation of Ref. [78] and split the field in a classical

background field and a fluctuation as done in eq. (4.28)

AM = AM + δAM . (4.57)

The tree-level action then takes the form

SQCD =

∫
dDx− 1

4
F a
MNF

a,MN − 1

2ξ

(
D
ab

MδA
a,M
)2

−
(
Dab
Mc

b
)(

D
M,ac

cc
)
, (4.58)

where DM denotes the derivative with respect to the background field, while DM contains

the full field. ca is the corresponding Faddeev-Popov ghost.

The effective action Γ
[
A, c, c;A

]
is not only dependent on the full field AM but also explicitly

depends on the classical field, which enters through the gauge fixing. It is necessarily not

invariant under original gauge transformation, since the gauge fixing is necessary to perform

the path integral.

On the other hand it is invariant under an extended set of gauge transformations provided the
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classical field transforms simultaneously. The full set of infinitesimally gauge transformations

with local gauge parameter θ(x)

δAaM = −Dab
Mθ

b(x),

δA
a

M = −Dab

Mθ
b(x),

δcb = −igθa(x)(T aA)bccc, (4.59)

where T aA is the set of generator matrices in the adjoint representation.

The effective action takes its simplest form for AM = AM in which case the first two transfor-

mations in (4.59) become identical and the whole set is of the standard gauge transformation

form under which the newly constructed action Γ[A, c, c;A] is invariant.

Using the background field method one can construct the renormalization flow equation,

which we quote from [87]

∂tΓ
[
A
]

=
1

2
Tr

[
∂tRk

(
DT

)
− ηAkRk

(
DT

)
DT +Rk

(
DT

) ]
− Tr

∂tRk

(
−D2

)
− ηAkRk

(
−D2

)
−D2

+Rk

(
−D2

)
, (4.60)

with the covariant Laplacian (DT )abMN = (−D2)
ab
ηMN+Uab

MN . We can immediately determine

our building blocks for the non-local expansion, namely

Uab
MN = 2fabcF c

MN and Ωab
MN = −fabcF c

MN . (4.61)

Comparing the resulting flow equation with the derivative of our ansatz we arrive again at

a differential equation for field renormalization and polarization function

∂t (Zk(1 + Πk(z))) =
CA

(4π)D/2

∫
dξ4QD

2
−2

[
h
zξ(1−ξ)
k

]
+
D − 2

z

[
QD

2
−1

[
h
zξ(1−ξ)
k

]
−QD

2
−1 [hk]

]
.

(4.62)

In the limit z = 0 the polarization function again vanishes, Π(0) = 0, and the differential

equation simplifies to

∂tZk =
CA

(4π)D/2
26−D

6
QD

2
−2[hk], (4.63)

60



where we can extract the the QCD-contributions to the anomalous dimension and to the beta

function after evaluating the Q-functionals. In D = 5 we find in terms of the 4D coupling

constants

ηQCD
k = −∂tZk

Zk
= −7CA

g2

16π2
kR and ∂kα

−1
s =

7CA
4π

R. (4.64)

Substituting those results back into the full equation and solving for the polarization function

we find

∂tΠk(z) =ηQCD
k (1 + Πk(z)) (4.65)

− 1

Zk

CA
256π3z3/2

[
2k(12k2 − 29z)

√
z − (4k2 − z)(12k2 + 29z)ArcTanh

(√
z

k

)]
,

which can be integrated down from Λ to an IR cutoff scale k, at which we become non-

perturbative. Again we find ΠΛ(z)→ 0 as Λ reaches infinity, leaving us with a polarization

function dependent on k

Πk(z) =
CAg

2

1024π3z3/2

[
2k(12k2 + 53z)

√
z − (4k2 − z)(12k2 + 55z)ArcTanh

(√
z

k

)
−58z2

(
Li2

(√
z

2k

)
− Li2

(
−
√
z

2k

))]
. (4.66)

The limit k → 0 on the other hand is not save, marking a break down of our theory, and

remains regulated.
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4.3 PHENOMENOLOGICAL ANALYSIS

From eqs. (4.54) and (4.64) one finds that the cutoff dependence of the effective gauge

coupling is given by

1

gs(Λ)
− 1

gs(0)
=

g3
s

8π2

(
7

4
CA −

4

3
nqTf

)
ΛR . (4.67)

Since this was obtained in the framework of an uncompactified 5D theory, there is no dis-

tinction between couplings of zero modes and higher KK modes.

The result in eq. (4.67) is numerically close, but not identical to the linear ΛR terms in

eqs. (4.22) and (4.23). The difference stems from threshold corrections that contribute to

(4.22) and (4.23) at each KK level. Thus, even when we study the dependence of the effective

vertex coupling on Λ for ΛR � 1, i.e. at scales much beyond the compactification radius,

there is a non-vanishing impact of the compactification. In other words, when considering

mUED at large scales one does not trivially recover the uncompactified 5D theory.

This is illustrated in Fig. 18. In this plot it is assumed that the there is some fundamental

5D coupling at the scale Λ0 = 20R−1. The curves illustrate the effect of integrating out all

energy scales beyond ΛR−1 in different approximations. The solid blue line corresponds to

the result (4.67) from the flow equation. The solid green curve depicts the result from the

explicit calculation of the gqq̄ vertex diagrams, as in eq. (4.11) with µ = Λ, whereas the

solid orange curve is the approximation (4.22). The dotted green and orange curves are the

equivalent cases for the G1Q1q̄ vertex, eqs. (4.15) and (4.23). The vertical axis is normalized

such that the effective gqq̄ coupling at n = 1 is equal to its SM value.

First of all, the plot demonstrates that the large-ΛR expansions (orange) provide an excellent

approximation to the level-by-level calculations (green). Furthermore, it shows that all

approaches lead to similar results for the dependence of the effective gauge couplings on the

truncation scale. However, there are difference at the few-percent level, which stem from

the following two facts: The flow equation is insensitive to threshold corrections from the

compactification; and the G1Q1q̄ and gqq̄ vertices have different logarithmic dependencies on

Λ. Note that the plot also includes the running from the coloron contribution, see eq. (3.9).

From a low-energy perspective, on the other hand, the dependence of the gauge vertices on
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Figure 18: Running of the SM vertex function q0−q0−g0 (solid line) and the KK vertex q0−

Q1−G1 (dashed line). We compare the full summation up to the cutoff with the asymptotic

expansion as well as the results obtained from the FRGE running. The integration constants

have been fixed such that the couplings coincide at ΛR = 20.

the cutoff Λ is not directly observable. However, if KK gluons and KK quarks should be

discovered in the future, one can compare the strength of the SM gqq̄ coupling with the

G1Q1q̄ vertex. While the leading linear ΛR dependence drops out in this difference, there is

still some sensitivity to the cutoff scale from the logarithmic terms in eqs. (4.22) and (4.23):

Cg0Q1G1(Λ)− Cq0q0g0(Λ) = − g3
s

192π2
(21CA + 9CF − 16nqTf ) log (ΛR) +O

(
1

ΛR

)
. (4.68)

Including the contribution to the running from the lowest modes, see eq. (3.9), and assuming

that the gqq̄ and G1Q1q̄ couplings are identical at the scale µ = Λ, one finds that the

observable couplings depends on Λ as follows:

gg0Q1G1(R
−1)

gq0q0g0(R
−1)
≈ 23g2

s

192π2
log (ΛR) . (4.69)

For ΛR = 10 . . . 50, this amounts to an effect between 3.5% and 6%.

This means that the prediction of the decay rate for G1 → Q1q̄, including O(αs) corrections,
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depends on the unknown UV completion of mUED. At the same time, the impact of this

UV sensitivity is rather mild, at the level of a few percent, which may be negligible for most

practical purposes.

While a more complete analysis of different processes in mUED and larger classes of extra-

dimensional models is beyond the scope of this work, we expect that a similar conclusion

can be reached in these cases. This conjecture is based on our observation that the leading

UV sensitivity cancels when normalizing the KK gauge boson vertex to the SM gauge boson

vertex, as dictated by the renormalization flow equation. The cancellation still works when

including the threshold corrections at each KK level, and thus it should hold in any extra-

dimensional extension of the SM. The next-to-leading term, while enhanced by log(ΛR), is

nevertheless numerically rather modest.

4.4 SUMMARY AND CONCLUSIONS

As discussed in chapter 2 do models with extra dimensions generally feature infinite KK-

towers of new states that need to be considered when calculating loop corrections within

those models. KK-number conserving operators receive corrections from the full spectrum

of these modes. The corrections are in general dependent on a cutoff scale Λ at which the

model breaks down and some unspecified UV completion is required to describe the physics.

In this article we investigated the numerical impact of this unknown cutoff parameter on

physical observables. As a concrete framework we considered QCD in a spacetime with one

additional universal extra dimension, which is compactified on a circle with a Z2 orbifold.

In the first half of this article, the problem was discussed from the viewpoint of the com-

pactified 4D effective theory. We computed the full one-loop QCD corrections to the SM

gauge-boson vertex gqq̄ as well as the vertex G1Q1q̄ (or, equivalently, G1Q̄1q), which con-

tains two level-1 KK modes. These include vertex diagrams, on-shell counterterms for the

external legs, and MS coupling counterterms generated by loops up to KK level n. The MS

scale dependence of the gqq̄ vertex can be described through the regular QCD beta function,

where the well-known SM result is supplemented by an extra term each time one of the KK
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thresholds is crossed. Additionally, the Wilson coefficient of the gq/q̄ vertex receives a finite

threshold correction from each KK level, which is not described by the beta function.

For the G1Q1q̄ (G1Q̄1q) vertex we proceeded similarly. For concreteness, we considered the

physical process G1 → q̄Q1. The NLO corrections to this decay exhibit soft divergencies

in the virtual vertex contributions, which can be canceled against the real radiation con-

tributions with the two cutoff phase-space slicing method. This part of the calculation is

identical to a 4D coloron model. Overall, the beta function for this vertex differs from the

SM gq/q̄ vertex, but the contribution from higher KK modes (n > 1) is identical for the

gqq̄ and G1Q1q̄ beta functions. Furthermore, the Wilson coefficient for the G1Q1q̄ vertex

receives KK threshold corrections, which differ from the ones found for the SM vertex.

The results for both vertices can be conveniently written in terms of an expansion for large

values of the cutoff scale Λ. It turns out that their leading terms, which are linear in ΛR,

are identical. The first difference between the two vertices appears at the subleading order

log (ΛR). Higher orders beyond the log term are numerically very small and can be ne-

glected.

In the second half, we studied the cutoff dependence within uncompactified 5D QCD, using

the functional renormalization group flow equation. To solve the equation and extract the

beta function we applied the saddle-point approximation and utilized the non-local heat

kernel expansion method. Through this approach we were able to find the flow equation

analogue of the one-loop beta function. Its coefficient coincides with the leading order be-

havior of the running of the coupling found for the explicit diagrammatic calculation in the

compactified theory. However, the uncompactified 5D framework is not able to reproduce

the contributions from the threshold corrections in the 4D framework.

When comparing the diagrammatic 4D calculations of the gqq̄ and G1Q1q̄ vertices, as well

as the 5D flow equation result, one finds that the NLO prediction for the decay G1 → q̄Q1 is

indeed sensitive to the choice of the UV cutoff and thus to the unknown high-scale physics.

However, the numerical impact of this uncertainty is numerically rather modest, since the

leading contributions cancel in the comparison.
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5.0 RADIATIVE CORRECTIONS TO MASSES AND VERTICES IN MUED

Having discussed the pair-production of level-1 modes we can now ask how that picture

changes for higher modes in the spectrum. Since those modes are heavier than the first

excitation one would näıvely assume their phenomenology plays a sub-leading role. As we

however discussed in Chapter 2 can radiative corrections induce KK-number violating cou-

plings, which for a number of level-2 modes means that they can couple to a pair of SM

modes through a one-loop process, conserving parity. Therefore the level-2 modes do not

need to be pair produced and lead to drastically different detector signatures than the level-1

modes did.

In [79] we calculate the full one-loop improved mass spectrum of the KK-modes and the

induced couplings. Generally speaking the resulting contributions are logarithmically di-

vergent and stem from 5D operators localized on the boundary, that violate KK-number.

The logarithmic pieces log ΛR for the mass corrections and a number of processes have been

reported in the literature. For typical values of ΛR ∼ 10 · · · 50, those logarithms are however

of similar magnitude as the non-logarithmic, finite contributions, and therefore might impact

the phenomenology considerably. The remaining finite terms are calculated and their phe-

nomenological impact is discussed. We additionally find previously unconsidered couplings,

that do not depend on log ΛR but are nevertheless non-zero.

5.1 MASS CORRECTIONS

The KK modes of fields propagating in a compactified extra dimension receive loop-induced

corrections to the basic geometric mass relation mn = n/R. These corrections stem from
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contributions where the loop propagators wrap around the extra dimension. They can be

separated into two categories: bulk and boundary mass corrections [39,80].

While the bulk corrections are present in extra-dimensional models with and without orb-

ifolding, and they lead to mass terms that are independent of x5 and conserve KK number,

the boundary terms are a consequence of the orbifolding condition, and they lead to mass

terms that are localized in the extra dimension. For example, for a scalar field, the boundary

mass correction has the form

L ⊃ πR

2

[
δ(x5) + δ(x5 + πR)

]
Φ†∂2

5Φ . (5.1)

These boundary terms break KK number.

Both the bulk and boundary corrections are induced first at one-loop order. Whereas the

bulk corrections are UV finite, the boundary contributions are UV divergent and must be

renormalized. We employ MS renormalization for this purpose, with the MS scale set to the

cut-off scale Λ.

5.1.1 Approach

To compute the mass corrections we choose to work in the effective 4D theory. Every self-

energy diagram contributing to the corrections of a given mode contains the infinite tower

of increasingly heavy KK-modes running in the loop and needs to be treated in a manner

similar to the one described in Ref. [80]. We will begin by describing the general procedure

employed on the example of diagram (A) in Fig. 19. For a vector boson the self-energy can

be decomposed into covariants according to

Πab
µν(p

2) = −
[
ηµν

(
p2Π

(1)
T (p2) +M2

nΠ
(2)
T (p2)

)
− pµpνΠ2(p2)

]
δab , (5.2)

where additionally to the usual transverse part Π
(1)
T a second contribution Π

(2)
T emerges as a

proportionality constant to the fifth momentum component.

The mass correction is then defined as

δM2
Vn = −M2

n <e
{

Π
(1)
T (M2

n) + Π
(2)
T (M2

n)
}
. (5.3)
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Both the self-energy and the resulting mass correction are dependent on an infinite sum

over all heavy modes running in the loop, which in turn is divergent. To find a sensible

regularization scheme we first make use of the Poisson summation identity

∞∑
n=−∞

f(n) =
∞∑

k=−∞

F {f} (k) (5.4)

where the Fourier transform F is defined as

F {f} (k) =

∫ ∞
−∞

dx e−2πikxf(x). (5.5)

By applying the identity to the divergent mass correction, the sum over KK-numbers is

transformed into a sum of winding numbers in position space about the fifth dimension.

The most straightforward way to define a physical observable is to subtract the (formally

infinite) contribution of the zero winding number from the sum, since it is equivalent to the

diagram in the 5D uncompactified theory.

For our example we restrict ourselves to the mass correction of the first vector mode; all

higher modes can be found by rescaling the mode number. The example diagram then

amounts to a mass correction described by

δM2
V1

=
g2

32π2
CA

34− 41d+ 11d2

(d− 3)(d− 1)
A0(M2)

+
g2

32π2(d− 1)
CA

∞∑
n=1

{
[n(3− 2d) + d− 1] A0(n2M2)

− [(n+ 1)(3− 2d)− d+ 1] A0

(
(n+ 1)2M2

)
+M2(d− 1)(5 + 2n+ 2n2)B0

(
M2, n2M2, (n+ 1)2M2

)}
, (5.6)

where d = 4− 2ε is the number of space-time dimensions in dimensional regularization, and

the term outside the sum stems from the diagram with a zero mode (massless SM vector

boson) in the loop.

The explicit form of the A0 and B0 functions appearing in the equation are well-known and

can be written as

A0(M2) = M2

(
1

ε
+ 1− ln

M2

µ2

)
, (5.7)

B0

(
M2, (n+ 1)2M2, n2M2

)
=

1

ε
+ 2− ln

M2

µ2
+ 2 [n log (n)− (n+ 1) log (n+ 1)] . (5.8)
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Splitting up the first term in order to extend the sum to include n = 0 and taking the the

limit d→ 4 yields

δM2
V1

=
23g2

96π2
CAM

2

(
112

69
+ ln

Λ2

M2

)
+

g2

8π2
CA

∞∑
n=0

n2 lnn (5.9)

where any polynomial terms under the sum have been dropped since their Fourier transform

only amounts to derivatives of delta functions. Note that we assumed the existence of a MS

UV-counterterm at the cut-off scale µ = Λ to cancel the divergence in the remainder.

The remaining sum is now treated as outlined above, starting from the Fourier transform∫ ∞
−∞

dx |x|2 ln |x| e2πikx =
1

4π2|k|3
+

γE

4π2
δ(2)(k) , (5.10)

where δ(n) denotes the n-th distribution derivative of the Dirac δ-function.

Dropping the zero winding number (k=0) piece, we can identify the finite rest in terms of

the Riemann ζ-function

∞∑
n=0

|n|2 ln |n| = 1

8π2

∞∑
k=−∞

(
1

|k|3
+ γE δ

(2)(k)

)
∼ ζ (3)

4π2
. (5.11)

The finite contribution to the mass correction stemming from diagram (A) then is given by

δM2
Vn =

g2M2
n

32π2
CA

(
23

3
Ln +

112

9
+
ζ (3)

π2

)
, (5.12)

where Ln = ln(Λ2/m2
n). The last term in parenthesis, proportional to ζ(3), can be identified

as a contribution to the bulk mass correction [80], so that the remaining two terms belong

to the boundary mass correction. In a similar fashion, the contribution from other diagrams

in Fig. 19 to the boundary corrections can be singled out.

Analogously we decompose the fermion self-energies displayed in Fig. 21 according to

Σij
f (p2) =

[
�pP+ΣR(p2) + �pP−(p2)ΣL(p2) +MnΣS(p2)

]
δij, (5.13)

with fundamental SU(N) indices i, j, and P± ≡ (1± γ5)/2. The fermion mass correction is

then given by

δMfn =
Mn

2
<e
{

ΣR(M2
n) + ΣL(M2

n) + 2ΣS(M2
n)
}
, (5.14)
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and similarly for the scalars in Fig. 20. In all cases, the relevant diagrams have been gener-

ated with the help of FeynArts 3 [49].

It is interesting to note that the boundary mass corrections can also be obtained by com-

puting KK-number violating self-energy corrections. In this case, the bulk contribution is

absent, and only one KK level contributes in the loop.

For instance, for the case of a vector boson, the KK-number violating Vn–Vn′ self-energy

(with n′ = n± 2) can be written as [80]

Πab
µν = −

[
ηµνp

2Π
(1)
T (p2) + ηµν

1
2
(n2 + n′

2
)Π

(2)
T (p2)− pµpνΠ2(p2)

]
, (5.15)

as a consequence of the 5D Lorentz symmetry. Thus from this self-energy one can extract

Π
(1)
T and Π

(2)
T and then compute the KK-number conserving mass correction from (5.3).

We have explicitly checked that both approaches lead to the same results for the boundary

mass corrections.

5.1.2 Results

In the following, results for the KK-mode mass corrections induced by boundary terms are

presented for a general theory with an unspecified non-Abelian gauge interaction. The one-

loop diagrams contributing to the masses of KK gauge bosons, KK scalars and KK fermions

are shown in Figs. 19, 20, and 21, respectively.

The mass corrections obtained with the methods described in the previous section read as

follows. As before, we use the abbreviation Ln ≡ ln(Λ2/m2
n).

δ̄m2
Vn = m2

n

g2

32π2

[
CA

(
23

3
Ln +

154

9

)
−

∑
i∈scalars

(−1)PiTf

(
1

3
Ln −

4

9

)]
, (5.16)

δ̄m2
S+n

= m2 +m2
n

1

32π2

[
CFg

2(6Ln + 16)−
∑

i∈scalars

(−1)Piλi(Ln + 1)

]
, (5.17)

δ̄mfn = mn
1

64π2

[
CFg

2

(
9Ln + 16

)
−

∑
i∈scalars

(−1)Pih2
i (Ln + 2)

]
. (5.18)

Here mVn denotes the mass of the n-th KK excitations of a generic gauge boson, where CA

is the quadratic Casimir invariants of the adjoint representation. Similarly, mfn and mS+n

are the masses of a KK-fermion and Z2-even KK-scalar, respectively, in the representation r
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with quadratic Casimir CF . In a SU(N) theory one has CA = N and CF = (N2−1)/(2N) for

the fundamental representation. The sums run over the different scalar fields in the theory,

with Z2-parity Pi, Dynkin index Tf , Yukawa coupling hi, and scalar 4-point coupling λi
†.

Note that the two components of a complex scalar field need to be counted separately in the

sum. As already pointed out in Ref. [80], fermion loops do not contribute to the self-energy

boundary terms of gauge bosons and scalars, due to a cancellation between Z2-even and -odd

fermion components.

A Z2-even scalar can also receive power-divergent contributions, which can be written as a

boundary mass term [80]

L ⊃ −πR
2

[
δ(x5) + δ(x5 + πR)

]
m2Φ†Φ . (5.19)

This term produces a mass correction of m2 for the zero mode, while the higher KK masses

are shifted by 2m2. Thus, relative to the zero mode, the masses of the KK excitations

receive a correction of m2, see eq. (5.17). While naive dimensional analysis would suggest

that m2 ∼ O(Λ2), this is not consistent with the presence of a light scalar in the spectrum,

as is the case in the SM. Instead, to generate the SM as a low-energy effective theory, one

has to assume that m2 is tuned to m2 � R−2.

The logarithmic parts ∝ Ln in eqs. (5.16)–(5.18) can be compared to Ref. [80], but we find

some discrepancies: The one-loop scalar mass corrections should be proportional to CF ,

instead of Tf in Ref. [80], and the fermion mass contribution from Yukawa couplings is a

factor 3 smaller than reported there‡.

As evident from the equations above, the non-logarithmic terms are smaller than the terms

proportional to Ln ∼ 4 · · · 8 (for n ∼ O(1)) by at most a factor of a few. Thus their

contribution is phenomenologically important.

The KK mass corrections in MUED can be determined by simply substituting the appropriate

SM coupling constants and group theory factors in the formulae above. For the gauge bosons

†The convention for the normalization of these couplings is the same as in appendix A.2.
‡Specifically, the b1 terms in line (b) of Tab. III in Ref. [80] should have opposite signs.
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this leads to

δ̄m2
Gn = m2

n

g2
3

32π2

(
23Ln +

154

3

)
, (5.20)

δ̄m2
Wn

= m2
n

g2
2

32π2

(
15Ln +

104

3

)
, (5.21)

δ̄m2
Bn = m2

n

g2
1

16π2

(
−1

6
Ln +

2

9

)
, (5.22)

while for the fermions one obtains

δ̄mQn = mn
1

16π2

[
g2

3

(
3Ln +

16

3

)
+ g2

2

(
27

16
Ln + 3

)
+ g2

1

(
1

16
Ln +

1

9

)]
, (5.23)

δ̄mQ3n = mn
1

16π2

[
g2

3

(
3Ln +

16

3

)
+ g2

2

(
27

16
Ln + 3

)
+ g2

1

(
1

16
Ln +

1

9

)
− h2

t

(
1

4
Ln +

1

2

)]
,

(5.24)

δ̄mun = mn
1

16π2

[
g2

3

(
3Ln +

16

3

)
+ g2

1

(
Ln +

16

9

)]
, (5.25)

δ̄mtn = mn
1

16π2

[
g2

3

(
3Ln +

16

3

)
+ g2

1

(
Ln +

16

9

)
− h2

t

(
1

2
Ln + 1

)]
, (5.26)

δ̄mdn = mn
1

16π2

[
g2

3

(
3Ln +

16

3

)
+ g2

1

(
1

4
Ln +

4

9

)]
, (5.27)

δ̄mLn = mn
1

16π2

[
g2

2

(
27

16
Ln + 3

)
+ g2

1

(
9

16
Ln + 1

)]
, (5.28)

δ̄men = mn
1

16π2
g2

1

(
9

4
Ln + 4

)
, (5.29)

where Q3n and tn denote the third generations of the KK excitations of the left-handed and

right-handed up-type quark fields, respectively. Finally, the mass correction to the KK Higgs

boson reads

δ̄m2
Hn = m2

H +m2
n

1

16π2

[
g2

2

(
9

4
Ln + 6

)
+ g2

1

(
3

4
Ln + 2

)
− λH(Ln + 1)

]
. (5.30)

In the above expressions, g1,2,3 are the couplings of the SM U(1)Y, SU(2)L and SU(3)C gauge

groups, respectively, while ht is the top Yukawa coupling and λH the Higgs self-coupling.

The numerical impact of these corrections will be discussed in section 5.3.
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5.2 KK-NUMBER VIOLATING INTERACTIONS

As is well-known, the Lorentz symmetry breaking from orbifolding leads to loop-induced

boundary-localized interactions which can break KK number [80]. From a phenomenolog-

ical point of view, 2–0–0 interactions between a level-2 KK mode and two zero modes are

particularly interesting, since they can mediate single production and decay of a level-2 KK

particle at colliders.

The logarithmically enhanced contributions, ∝ ln(ΛR), to these vertices have been consid-

ered in Refs. [80, 95]. Here, the non-logarithmic contributions are also computed, which

are important for two reasons. On one hand, they can be numerically of similar order as

the ln(ΛR) term and thus lead to sizable corrections of the known KK-number violating

couplings. On the other hand, there are additional vertices that are UV-finite but non-zero.

Since these do not contain any ln(ΛR) terms, they have not been considered before, but they

can lead to phenomenologically relevant new production and decay channels.

5.2.1 Approach

The calculation of the KK-number violating couplings can be relatively easily performed

by directly computing the X2–Y0–Z0 vertices in the 4D compactified theory. Here X, Y

and Z stand for any MUED fields. Since all leading-order vertices in MUED do conserve

KK-number, one needs to consider only level-1 KK modes inside the loop.

As before, the authors have used FeynArts 3 [49] for the amplitude generation, and Feyn-

Calc [50] was employed for part of the Dirac and Lorentz algebra manipulations. Similar

to the mass corrections discussed above, UV divergences have been renormalized in the MS

scheme with the scale choice µ = Λ.

Throughout this chapter, unless mentioned otherwise, contributions from electroweak sym-

metry breaking (EWSB) have been neglected, since these are suppressed by powers of vR. In

particular, mixing between the KK-Z boson and KK photon or between the KK-top doublet

and singlet has not been included for the particles running inside the loops.
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5.2.2 Results

Let us begin by writing the results for a generic theory with arbitrary non-Abelian gauge

group and an arbitrary number of fermionic and scalar matter fields. Detailed expressions

for the specific field content and interactions of MUED are listed in Appendix C.

5.2.2.1 ψ̄0–ψ0–V
µ
2 coupling: This vertex can be written in the form

−iCψ0ψ0V2γ
µT aP± . (5.31)

Here P± are right-/left-handed projectors and T a are the generators of the gauge group. For

a U(1) group (such as U(1)Y), T a is simply replaced by the charge (hypercharge Y ). The

coefficient Cψ0ψ0V2 receives contributions from the vertex and self-energy corrections shown

in Fig. 23 and reads

Cψ0ψ0V2 =

√
2g

64π2

[
g2CV

A

(
23

3
L1 +

157

9
− 2π2

)
+
∑
k

g2
k C

k
F

(
−9L1 − 13 +

7π2

4

)
+ g2

∑
i∈scalars

(−1)PiT Vf

(
−1

3
L1 −

2

9

)
+

∑
i∈scalars

(−1)Pih2
i

(
L1 − 1 +

π2

4
+ 2

Cφi0φi0V0
Cψ0ψ0V0

)]
, (5.32)

where CV
A is the adjoint Casimir of the gauge group of V , which has the gauge coupling g,

and T Vf is the Dynkin index for the representation of the scalar i under the same group. The

sum
∑

k runs over all gauge groups under which ψ is charged, with gauge couplings gk, and

Ck
F being the Casimir of the representation of ψ with respect to the gauge group k. For U(1)

groups, Tf and Ck
F get replaced by the corresponding charges. hi is the Yukawa coupling

between scalar i and ψ.

Finally, eq. (5.32) depends also on Cφi0φi0V0/Cψ0ψ0V0 , the ratio of the couplings of the scalar

i and the fermion ψ to the gauge field V . Some care must be taken when defining the signs

of these couplings. The signs of the ratio should be +1 (−1) if ψ0 and φi0 have the same

representation or the same charge sign for the gauge group of V , and they run in opposite

directions (the same direction) in Fig. 23.
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The logarithmic part of the first two lines in eq. (5.32) agrees with Ref. [80]. The logarithmic

part of the last line in eq. (5.32) has been computed in Ref. [95] for a U(1) group, but we

obtain a different result.

5.2.2.2 ψ̄2–ψ0–V
µ
0 coupling: There are two form factors that can facilitate the single

production and decay of a level-2 KK-quark. The first is a Dirac-type chiral interaction,

−iCψ2ψ0V0γ
µT aP± , (5.33)

whereas the second is a dipole-like interaction,

−D̃ψ2ψ0V0

σµνqν
2mKK

T aP± , (5.34)

where q is the momentum V µ
0 . Note that by only considering these two expressions, we

restrict ourselves to transverse polarization modes of the V µ
0 boson. If V µ

0 was a massive

W or Z boson, their longitudinal modes must be excluded when using eq. (5.33), since they

would receive contributions from an additional form factor proportional to (k2− k0)µ, where

k2 and k0 are the (incident) momenta of the ψ2 and ψ0 fermion, respectively. The restriction

to transverse gauge boson polarizations is justified since the contribution of the longitudinal

mode of W or Z bosons is suppressed by vR.

For the computation of the coefficient Cψ2ψ0V0 one needs to consider the diagrams in Fig. 24,

which yield

Cψ2ψ0V0 =

√
2g

64π2

[
g2CV

A

(
π2

4
L1 − 2

)
+ 4

∑
k

g2
k C

k
F

]
. (5.35)

The dipole-like interaction in eq. (5.34) is generated only by the vertex diagrams in Fig. 24 (A).

The result reads

Dψ2ψ0V0 =

√
2g

64π2

[
g2CV

A

(
π2 − 7

)
+
∑
k

g2
k C

k
F

(
3− 3π2

4

)
+

∑
i∈scalars

(−1)Pih2
i

(
π2

4
− 1 +

π2 − 8

2

Cφi0φi0V0
Cψ0ψ0V0

)]
. (5.36)

As evident from these expressions, both Cψ2ψ0V0 and D̃ψ2ψ0V0 are independent of ln(ΛR), and

have not been previously reported in the literature.
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5.2.2.3 V µ,a
2 (p)–V ν,b

0 (k1)–V
ρ,c
0 (k2) coupling: Restricting ourselves, as before, to trans-

verse polarizations for V ν,b
0 (k1) and V ρ,c

0 (k2), this coupling can be written in the form

fabc

{[
ηµν(p− k1)ρ + ηνρ(k1 − k2)µ + ηρµ(k2 − p)ν

]
CV2V0V0

+
[
−ηµνk1,ρ + ηρµk2,ν

]
DV2V0V0 + ηνρ(k1 − k2)µEV2V0V0

}
. (5.37)

Here fabc are the structure constants of the gauge group. Furthermore, p, k1 and k2 are the

vector boson momenta, which are all taken to be incoming.

The coefficient CV2V0V0 receives contributions from all diagrams in Fig. 25, whereas DV2V0V0

and EV2V0V0 are only generated by the first diagram in the figure. At one-loop level, they are

given by

CV2V0V0 =

√
2g3

64π2

[
CV
A

(
−157

9
+

7π2

6

)
−

∑
i∈scalars

(−1)PiT Vf

(
4

9
− π2

18

)]
, (5.38)

DV2V0V0 =

√
2g3

64π2

[
CV
A

(
91

6
− π2

)
+

∑
i∈scalars

(−1)PiT Vf
8− π2

12

]
, (5.39)

EV2V0V0 =

√
2g3

64π2
CV
A

(
38

3
− 3π2

4

)
. (5.40)

These results, which are also independent of ln(ΛR), are new.

5.2.2.4 T̄2–t0–Φ0 / t̄2–t0/b0–Φ0 coupling: Level-2 KK top quarks can have loop-

induced decays into zero-mode top or bottom and Higgs states, which are proportional to

the top Yukawa coupling. Here any component of the Higgs doublet can appear in the

final state, including the Higgs bosons as well as longitudinal W and Z bosons. The result,
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including strong and electroweak contributions, reads

t̄2−t0−h0 : + i
mt

v
P−Ct2t0Φ0 ,

t̄2−t0−ZL : − mt

v
P−Ct2t0Φ0 ,

t̄2−b0−W+
L : − i

√
2
mt

v
P−Ct2t0Φ0 ,

(5.41)

Ct2t0Φ0 =

√
2

64π2

[
g2

3

(
8

3
L1 +

40

3
− π2

)
+ g2

2

(
−3L− 3

2
+

3π2

8

)
+ g2

1

(
23

9
L1 +

83

18
− 5π2

24

)
− 2h2

tL1 + λ
3

2
(L1 + 1)

]
,

(5.42)

T̄2−t0−h0 : − imt

v
P+CT2t0Φ0 ,

T̄2−t0−ZL : − mt

v
P+ CT2t0Φ0 ,

(5.43)

CT2t0Φ0 =

√
2

64π2

[
g2

3

(
8

3
L1 +

40

3
− π2

)
+ g2

2

(
15

4
L1 + 9− 3π2

8

)
+ g2

1

(
−43

36
L1 +

1

9
+
π2

24

)
− 2h2

tL1 + λ
3

2
(L1 + 1)

]
.

(5.44)

5.2.2.5 Φ2 decay couplings: The level-2 KK excitation of the SM Higgs doublet can

be decomposed into a neutral CP-even component h2, a neutral CP-odd component χ2, and

a charged pair φ±2 ,

Φ2 =

 φ+
2

1√
2
(h2 + iχ2)

 . (5.45)

They have a rich variety of loop-induced couplings to pairs of zero-mode particles. In this

work we do not attempt a comprehensive discussion of these channels, but only present a

few interesting aspects.

The leading decay channel of h2 and χ2 is into tt̄ pairs, which is dominantly induced through

QCD loops. The result is given by

t̄0t0h2 : − imt

v
Ct0t0h2 , (5.46)

t̄0t0χ2 : iγ5
mt

v
Ct0t0h2 , (5.47)

Ct0t0h2 =

√
2g2

3

64π2
CF

[
−4L1 − 4 +

π2

2

]
. (5.48)
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The logarithmic part of this expression agrees with Ref. [95].

h2 does not have any decays into gluon pairs since there is a cancellation between the Z2-

even and Z2-odd KK-tops inside the vertex loop. However, it can couple to electroweak

gauge boson pairs via loops involving level-1 KK-gauge and KK-Higgs bosons, although this

effective interaction is suppressed by vR. Nevertheless, this subdominant decay channel is

still interesting since it can lead to di-photon resonance signals. We find that it can be

written as

Lh2V0V0 ⊃
3∑

j,k=0

iCjkvR
2

64
√

2π2
h2F

j
0,µνF

k,µν
0 , (5.49)

where the j, k = 0 refers to the U(1) field Bµ
0 and j, k = 1, 2, 3 to the SU(2) gauge boson

W a,µ
0 . The coefficient Cjk are given by

C00 =
g2

1

128

[
g2

1(8π2 − 58) + 24g2
2(π2 − 10) + 48λ(2π2 − 27)

+ 3(41g2
1 + 93g2

2 − 120λ)L1

]
, (5.50)

Cjj = − g2
2

128

[
g2

1(122− 8π2) + 24λ(54− 4π2) + 24g2
2(10 + 3π2)

− 15
(
5g2

1 + 41g2
2 − 24λ

)
L1

]
, [j = 1, 2, 3] (5.51)

C03 = −g1g2

128

[
2g2

1(2π2 − 65)− 8λ(17− 2π2) + 8g2
2(35 + 3π2)

+ 3
(
5g2

1 + 81g2
2

)
L1

]
, (5.52)

C01 = C02 = C12 = C13 = C23 = 0 . (5.53)

In contrast to the CP-even component, the CP-odd χ2 can have a loop-induced coupling to

gluon pairs. The ga0,µ(k1)-ga0,ν(k2)-χ2 has the form

−i
v
Cg0g0χ2ε

µνk1k2 , Cg0g0χ2 =

√
2g2

3

64
mtR

2. (5.54)

As for the h2 decay into vector bosons, it is suppressed by vR, but may still be relevant for

the production of χ2 at hadron colliders.
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5.3 PHENOMENOLOGICAL IMPLICATIONS

In this section, we study the mass spectrum of KK particles with improved one-loop correc-

tions, including finite (non-logarithmic) terms, and their decays and collider implications of

KK-number violating interactions.

5.3.1 Mass Hierarchy

We begin our discussion with the mass spectrum of KK particles at level-1, which is shown

in Fig. 26 for R−1 = 1 TeV and ΛR = 20 without (left) and with (right) finite contributions,

respectively. KK bosons (either spin-0 or spin-1) are shown in the left column, while KK

fermions are in the middle (for first two generations) and right column (for third generation).

In general is the mass spectrum slightly broadened by the finite corrections. For example,

the mass splitting δ =
mQ1

−mγ1
mγ1

between KK quark (Q1) and KK photon (γ1) increases from

∼20% to ∼25% (for ΛR = 20), making the decay products harder in the cascade decays.

Since they become slightly heavier for a given value of R−1, their production cross sections

of KK quarks would decrease slightly. Therefore it is worth investigating the implications

of finite terms to see which effect between the increased efficiency and the reduced pro-

duction cross section would make a more pronounced difference. The dependence on ΛR

is logarithmic and we observe similar patterns in the mass hierarchy for a wide range in

(R−1, ΛR) space, with the exception of the KK Higgs and KK leptons. The KK Higgs

bosons masses (magenta in the left column) are highly degenerate with the SU(2)L-singlet

KK lepton masses (e1, red in the middle column), as shown in the left panel of Fig. 26,

but finite corrections increase the mass difference between the two, as shown in the right

panel. In particular, this can affect the hierarchy of the lightest and next-to-lightest level-1

KK particles, abbreviated as LKP and NLKP, respectively. The (LKP, NLKP) structure

has been studied in detail in Ref. [96], and we reproduce some of their findings as shown

in the left panel of Fig. 27. For a given value of ΛR, the NLKP is the SU(2)L-singlet KK

lepton if R−1 < R−1
◦ , while the NLKP is the charged KK Higgs for R−1 < R−1

◦ , where R−1
◦ is

determined by mH±1
(R−1
◦ ,ΛR) = meR1

(R−1
◦ ,ΛR). The red curve in the left panel of Fig. 27
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is the solution of this equation. To study this in detail, we plot the mass difference between

them as a function of R−1 for ΛR = 20. The corresponding result (red, solid) is labeled as

(a) in the right panel of Fig. 27. Fixing a typo in the Higgs mass correction of Ref. [80]

(3
2

should be 9
4
, as already mentioned in section 5.1.2), we obtain the (blue, dashed) curve,

labeled as (b). With this correction, KK leptons are always the NLKP, in contrast to what is

shown in the left panel. Including the finite terms in eq. (5.30), we find an even larger mass

splitting, shown by the (green, dotted) curve (labeled as (c)). This could have some impact

on the computation of the KK-photon relic abundance, since co-annihilation processes are

important in this degenerate mass spectrum [95]. Finally, we revisit the mass eigenstates of

the KK photon and KK Z boson. In the weak eigenstate basis, the mass matrix is found to

be  n2

R2 + δ̂m2
Bn

+ 1
4
g2

1v
2 1

4
g1g2v

2

1
4
g1g2v

2 n2

R2 + δ̂m2
Wn

+ 1
4
g2

2v
2

 , (5.55)

where δ̂ is the total one-loop correction, including both bulk and boundary contributions.

In Fig. 28, we show the dependence of the Weinberg mixing angle θn on R−1 for the first five

KK levels (n = 1, . . . , 5) for ΛR = 20, without (left) and with (right) finite contributions

respectively. As shown in the plots, the Weinberg angles are further suppressed by the finite

terms, sin2 θnewn

sin2 θoldn
. 0.55 for large R−1. Their dependence on ΛR is weak and similar to that in

Ref. [80].

5.3.2 Branching Ratios of Level-2 KK Excitations

The decay channels of level-1 KK particles are the same as before. Although there are minor

numerical changes due to the change in mass spectrum, including finite terms, the main

branching fractions remain the same as those in Ref. [83]. In this section, we focus on the

branching fractions of level-2 KK particles.

Unlike the decay of n = 1 KK particles, which always give rise to an invisible stable KK

particle in the decay, n = 2 decays do not necessarily produce such missing-particle signa-

tures. In fact, there are three decay channels of level-2 KK particles: (i) decay to two n = 0

modes (denoted as 200), (ii) decay to two n = 1 modes (211), and (iii) decay to one n = 2

and one n = 0 modes (220). Both the 220 and the 211 channels are phase space suppressed,
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since KK particles are more or less degenerate around mn ∼ n/R, while 200 decays are

suppressed by one loop. Therefore branching fractions of n = 2 KK particles are sensitive

to details of the coupling structure and mass spectrum, which illustrates the importance

of computing the finite corrections. In the case of the 211 decay channel, each level-1 KK

particle would then proceed through its own cascade decay and give one missing particle at

the end. Therefore single production of a level-2 KK particle followed by a 211 decay gives

two missing particles, while pair production of level-2 KK particles plus their subsequent 211

decay gives four missing particles at the end of their cascade decays. On the other hand, a

KK particle that decays via a 200 channel will appear as a resonance, if both SM particles

can be reconstructed.

5.3.2.1 ψ2 Decays We first consider the branching fractions of level-2 KK fermions,

which are shown in Figs. 29 and 30 for KK quarks and KK leptons, respectively. The

branching fractions for SU(2)L-doublet KK fermions are shown in the left panel, while those

for SU(2)L-singlet KK fermions are on the right. In Fig. 29 and the right panel of Fig. 30, re-

sults with finite corrections are shown in solid curves, whereas previous results from Ref. [97]

are shown in dotted curves. While one observes no significant changes in existing decay

channels, there are new ones based on our findings as explained in the previous section.

SU(2)L KK leptons have the new νW−, `Z, and `γ channels, which contribute with 0.1%

to 2%, while the branching fraction of u2 to ug is as big as 2.5%. In the case of KK lepton

decays, EWSB effects are important, i.e. a sizable mixing between KK photon and KK Z is

expected for low values of R−1 (see eq. 5.55). It turns out that m`2 −mγ1 −m`1 approaches

0 as R−1 → v, which is why the `γ2 branching fraction becomes larger. This effect is more

pronounced for the SU(2)L singlet lepton. This pattern does not appear for KK quarks, since

mass corrections to KK quarks are larger than those to KK gauge bosons (see Fig. 30).

Branching fractions of SU(2)L doublet quarks are rather complicated as shown in the left

panel of Fig. 30. New decay channels dW , ug and uZ, show branching fractions of 2.5–4.5%,

1.5–2.5% and 1–2%, respectively.

Branching fractions for neutral KK leptons and the down-type KK quarks are similar. For

example, looking at the d2 decay we find the dγ2 and d1γ1 channels to be dominant with BR
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∼ 45%, but the branching fraction into dg is slightly higher at about 8%. This is due to the

different hypercharge couplings between the up-type and the down-type quarks. Branching

fractions into dZ and dγ are negligible as before.

Finally we show the branching fractions of level-2 KK top quarks in Fig. 31. In this case

we find that the branching fractions of the SU(2)L doublet KK top into th or tZ are 3–6%

each. Other 200 decay modes into tg and bW+ show branching fractions of about 2–4% and

1–2%, respectively. The tγ branching fraction is below one percent, which implies that the

KK top decays directly to two SM particles ∼ 8–15% of the time. The SU(2)L singlet KK

top does not have decays to SU(2)L gauge bosons, and branching fractions for th and tg are

of order 1–5.5% and 2–12%, respectively, for 250 GeV < R−1 < 2 TeV. Due to the Yukawa

correction to the KK top mass, two-body decays of level-2 KK top into W+
1 B1, t1Z1 and tγ2

are suppressed for low values of R−1.

5.3.2.2 V2 Decays Fig. 32 shows the branching fractions of n = 2 KK gauge bosons as

a function of R−1. Overall, we find our results are similar to those in Ref. [97] with a few

notable changes.

Firstly we considered the new decay channels g2 → gg, Z2 → W+W−, W±
2 → ZW± and

W±
2 → γW±. Their rather moderate branching fractions contribute with 1–2%, 0.3%, 2–3%,

and 0.7%, respectively.

The leptonic branching fractions of Z2 and γ2 become smaller with finite corrections and are

now about 0.7%.

Due to larger mass corrections for strongly interacting particles (KK-gluon and KK-quarks),

only the n = 2 KK gluon can decay to KK-quarks (qq2 or q1q1), while two-body decays of

KK Z and W gauge bosons into KK quarks are kinematically closed. With finite corrections

and additional decay channels, the total decay widths of level-2 bosons increase by a factor

of ∼ 2 for electroweak gauge bosons and ∼ 5 for KK gluon as shown in Fig. 33. However,

their decay widths are still very small due to the phase space suppression of 220 and 211

decays and loop-suppression of 200 decays, as mentioned at the beginning. For electroweak

gauge bosons, ΓV2/mV2 . 10−3, and Γg2/mg2 ∼ 0.02 for KK gluons.
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5.3.2.3 Cross Sections and Signatures Single production of level-1 KK particles is

forbidden due to KK-parity and therefore they must be produced in pairs from collisions

of two SM particles or from the decay of level-2 KK particles. However, both single and

pair productions are possible for level-2 KK particles. Single production cross sections are

suppressed by a loop factor, while pair production cross sections are suppressed by phase

space.

All cross sections are calculated at tree level considering five partonic quark flavors in the

proton along with the gluon at the 14 TeV LHC. We sum over the final state quark flavors

and include charge-conjugated contributions. We used CTEQ6L parton distributions [57]

and chose the scale of the strong coupling constant to be equal to the parton-level center-

of-mass energy. All results are obtained using CalcHEP [98] based on the implementation

of the MUED model from Ref. [26]. Since the particle content and KK number conserving

interactions remain the same, we only modified the KK mass spectrum and KK number

violating interactions in the existing implementation which is based on Ref. [80]. We also

implemented the new interactions which are described throughout this chapter.

We summarize single production cross sections of n = 2 KK gauge bosons (left) and n = 2

KK quarks (right) in Fig. 34. While overall one observes a slight increase in production cross

sections for the KK-gauge bosons, the gg → g2 production channel has been computed for

the first time here and contributes at a sizable level. All KK-fermion single production cross

sections presented here had also not been considered previously.

Fig. 35 shows the pair production of KK quarks (left) and associated production of KK

quark and KK gluon (right), respectively.

Another interesting channel is associated production of KK top with SM top quark. pp →

T2t̄ + tT̄2 is shown as a (black, solid) curve, labeled as ‘T2t0’ in the left panel of Fig. 35.

Since T2 has a large branching fraction into th and a sizable branching fraction into tγ, bW

or tZ, this production could be constrained by cross section measurements of SM processes

such as tt̄γ, tt̄, tt̄h and tt̄.

Finally, we plot the total integrated luminosity L (in fb−1) required for a 5σ excess of signal

over background in the di-electron (red, dotted) or di-muon (blue, dashed) channel, as a

function of R−1 (in GeV). We have used the same backgrounds, basic cuts and detector
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resolutions as described in Ref. [97]. In each panel of Fig. 36, the upper set of lines labeled

‘DY’ only utilizes the single V2 productions from Fig. 34. The lower set of lines (labeled ‘All

processes’) includes in addition indirect γ2 and Z2 production from the cascade decays of

level-2 KK quarks to level-2 KK gauge bosons from Fig. 35. We do not include contributions

from single production of level-2 KK quarks, so as to compare more directly against results

in Ref. [97]. They would make a small contribution to the total luminosity as shown in the

right panel of Fig. 34.

For both di-electron and di-muon channel, we observe no significant change in the required

luminosity compared to results from Ref. [97], although we notice a slight reduction or

increase in the luminosity, depending on the value of R−1. This is due to the interplay

between improved results on cross sections and branching fractions. Overall, production

cross sections are increased as shown in Figs. 34 and 35, while branching fractions decrease

as shown Fig. 32. The high-luminosity LHC with 3 ab−1 would be able to probe the level-2

KK photon up to R−1 ∼ 1.2 TeV in the µ+µ− and R−1 ∼ 1.5 TeV in the e+e− channel.

The corresponding reach for the level-2 KK Z boson is lower due to the relevant branching

fractions.

5.4 SUMMARY AND CONCLUSIONS

In this article we presented the one-loop corrected mass spectrum and KK-number violating

decays of level-2 KK states into SM particles in models with universal extra dimensions.

As a concrete framework we chose to add one additional universal extra dimension to the

SM, which is compactified on a circle with a Z2 orbifold. Due to its non-renormalizability

the model is regarded as an effective low-energy theory with a hard cutoff scale Λ at which

an unspecified UV-completion is expected to describe the physics. This enables us to write

down sensible MS counterterms with a logarithmic sensitivity to the cutoff. All calculations

were performed in the 4D effective theory using publicly available software supplemented by

in-house routines.

The self energy diagrams giving rise to the mass corrections contain an infinite tower of states
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in the loop, whose summation requires additional regularization. To this end we employed

the Poisson summation identity to identify the divergent pieces in winding number space

and remove them. The results can be divided into logarithmically divergent boundary terms

and finite bulk contributions.

The low cutoff scale (ΛR . 50, considering perturbativity and unitarity [18,22]) implies that

the leading (logarithmic) terms in the one-loop corrections to KK masses are not as large as

those in supersymmetry, and finite contributions could play an important role phenomeno-

logically.

When including the new finite (non-logarithmic) corrections, the mass spectrum broadens

and each KK particle becomes heavier, which implies that the pair production cross sections

of level-1 KK particles at colliders would be reduced but their acceptance rate would increase.

We also examined the nature of the NLKP, and confirmed that it is always the right-handed

KK lepton, which is different from what has been stated in the literature, where the NLKP

was thought to be the KK-Higgs for a large KK scale. The KK Weinberg angles are further

reduced such that weak eigenstates are basically mass eigenstates.

Using the same methodology, we have calculated finite corrections to the decays of level-2

KK states into SM particles, including previously unknown couplings. Since the interactions

violate KK number, only a finite number of diagrams contribute to the vertices and no addi-

tional regularization is necessary. We then revisited the computation of branching fractions

for level-2 KK particles. For KK fermions the basic features remain the same as before with

the addition of new decay modes opening up at the few-percent level. The largest effects

appear in the decay of level-2 KK top quarks, i.e., the branching fraction of the left-handed

KK top quark into th is about 20–30%. Branching fractions of level-2 gauge bosons are also

updated. Overall, the decay widths of level-2 particles are observed to increase when these

effects are included, but they are still narrower than the detector resolution.

Finally, we would like to make a few comments about other potentially interesting collider

and dark matter phenomenology. In this chapter, we showed results for the production of

level-2 KK gauge bosons at the LHC. It is desirable to study these with a more detailed

simulation, including single and pair production of level-2 KK fermions, and set bounds on

(R−1, ΛR) from various resonance searches, such as V2 decays to `¯̀, jj, W+W−, W±Z, ZZ,
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tt̄. Here one can make use of boosted W , Z and t event topologies.

The collider phenomenology of singly produced level-2 KK fermions provides interesting sig-

natures. For instance, searches for excited quarks in various final states would constrain

level-2 decays such as pp→ Q2/q2 → q′V , where V = γ, Z, W or g. Q2 or q2 could appear

as a single three-jet resonance via q′V2 with V2 → f0f
′
0.

Other interesting topologies involve the top quark and the Higgs. They may not provide

the best sensitivity in a search for this particular model since certain signal-to-background

ratios may be small. However they could serve as a benchmark model for various searches

and provide useful search grounds. We list a few examples below.

• pp→ t2t̄2 with t2 → th, t2 → tg or t2 → tγ

• pp→ T2T̄2 with T2 → th, T2 → Zt, T → tg, T → tγ or T2 → tγ2 (γ2 → tt̄)

• pp → B2B̄2 with B2 → Zb or B2 → Wt (and small branching fractions to B2 → gb,

B2 → bγ)

• pp→ b2b̄2 with b2 → gb (and small branching fractions to b2 → γb, and b2 → Zb)

• pp→ Q2, q2, Q2Q̄2, q2q̄2 (both single and pair production) with Q2 → qg or Q2 → qγ

• T2T̄2 → tt̄h+X (inclusive tt̄h production)

As discussed earlier, level-1 KK particles are always produced in pairs due to KK parity

and lead to signals with missing transverse momentum. Final states with jets + leptons +

missing transverse momentum are known to provide stringent bounds on R−1 (see Ref. [23]).

It is worth revisiting these analyses with our improved mass spectrum, since the broader

mass pattern will lead to signal efficiency gains while at the same time the increased masses

will reduce the production cross sections.

The computation of the relic abundance of KK dark matter has a rather long history [21,

82, 95]. Ref. [95] includes both coannihilation and resonance effects, which play a crucial

role in increasing the preferred mass scale of the KK photon. Our results imply that a

slightly broader mass spectrum would reduce effective cross sections in the coannihilation

processes (which are suppressed by e
−x′f (m

′
1−m

′
γ1

)

e
−xf (m1−mγ1 ) ≈ e−xf (m′1−m1) where xf ≈ x′f is the freeze-

out temperature and m1 is the mass of the coannihilating particle, m′1 is the improved mass,

and mγ1 ≈ m′γ1 is the mass of KK photon), pushing mγ1 to a lower value. However, 11→ 20

86



processes with the level-2 particle decaying to two zero modes would increase the effective

annihilation cross section efficiently, increasing the preferred value for mγ1 . This is a highly

non-trivial and complicated exercise and we postpone it to a follow-up study.

We hope that our results will be useful for investigations of the phenomenology of universal

extra dimensions and also provide interesting event topologies for various collider searches

[86].
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Figure 19: Generic Feynman diagrams for the one-loop contributions to the self-energies of

KK vector bosons. Here wavy, dashed, dotted and solid lines indicate the KK modes of

vector bosons, scalars, ghosts and fermions, respectively. V5 denotes the scalar degree of

freedom from the fifth component of a 5D gauge field, whereas H stands for the contribution

from a genuine 5D scalar field.

Figure 20: Generic Feynman diagrams for the one-loop contributions to the self-energies of

KK scalars. See caption of Fig. 19 for further explanations.
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Figure 21: Generic Feynman diagrams for the one-loop contributions to the self-energy of

KK fermions. See caption of Fig. 19 for further explanations.

Figure 22: Contributions to the ψ̄0–ψ0–V2 vertex, where the blobs indicate one-loop cor-

rections. Zero-mode vector and fermion propagators are depicted through normal wavy

and solid lines, respectively, whereas level-2 vector and fermion propagators are shown as

wavy-solid and double-solid lines, respectively.

Figure 23: Vertex diagram contributing to KK-number violating vector-boson–fermion cou-

plings involving a KK-Higgs in the loop.
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Figure 24: Contributions to the ψ̄2–ψ0–V0 vertex. See caption of Fig. 23 for more explana-

tions.

Figure 25: Contributions to the V2–V0–V0 vertex. See caption of Fig. 23 for more explana-

tions.
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Figure 26: Mass spectrum of KK particles at level-1 for R−1 = 1 TeV and ΛR = 20 without

(left) / with (right) finite contributions.

Figure 27: Left: The phase diagram in the (R−1, ΛR) plane from Ref. [96] is reproduced

using the incorrect numerical factor (see text), which shows that the KK Higgs could be the

NLKP in MUED for a large value of R−1. Right: Fixing ΛR = 20, the old (incorrect) result

is shown in (red, solid) as a function of R−1. The correct result is shown in (blue, dashed),

while the curve in (green, dotted) includes finite terms. We find that KK leptons are always

the NLKP.
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Figure 28: Dependence of the Weinberg angle θn for KK levels (n = 1, · · · , 5) on R−1 for

ΛR = 20 with (right) / without (left) finite contributions.

Figure 29: Branching fractions of SU(2)L-doublet level-2 KK lepton (left) and charged

SU(2)L-singlet level-2 KK lepton (right). Solid curves include finite corrections and new

decay channels, while dotted curves are old results.
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Figure 30: Branching fraction of SU(2)L-doublet level-2 KK quark (left) and SU(2)L-singlet

level-2 KK quark (right) for the up-type.

Figure 31: Branching fraction of SU(2)L-doublet KK top quark (left) and SU(2)L-singlet KK

top quark (right).
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Figure 32: Branching fractions of γ2, Z2, W±
2 and g2 for ΛR = 20.
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Figure 33: The decay width of level-2 gauge bosons as a function of R−1 for ΛR = 20. Solid

curves include finite corrections, while dotted curves are old results.

Figure 34: Single production cross section of level-2 KK gauge bosons (left) and level-2 KK

fermions (right) as a function of R−1. Dotted curves (left) are results from Ref. [97] and solid

curves are new results including finite terms. Level-2 fermion cross sections and σ(gg → g2)

have been computed first time. The cut-off scale has been set to ΛR = 20.
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Figure 35: Strong production of n = 2 KK particles at the 14 TeV LHC. The left panel

shows KK-quark pair production, while the right panel shows KK-quark/KK-gluon associ-

ated production and KK gluon pair production. Updated results (solid curves) are similar

to old results (in dashed curves from Ref. [97]). The cut-off scale has been set to ΛR = 20.
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Figure 36: 5σ discovery reach for γ2 (left) and Z2 (right). We show the total integrated

luminosity L (in fb−1) required for a 5σ excess of signal over SM backgrounds in the di-

electron (red, dotted) and di-muon (blue, dashed) channels. In each plot, the upper set of

curves labeled as ‘DY’ make use of the single production of γ2 or Z2 (from Fig. 34), while the

lower set of curves labeled as ‘All processes’ includes indirect γ2 and Z2 productions from

n = 2 KK quarks (see Fig. 35). We assumed the same signal and background efficiencies

used in Ref. [97] and combined with our updated cross sections and branching fractions.
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6.0 CONCLUSIONS AND OUTLOOK

In this dissertation I investigated the impact of radiative corrections and loop-induced pro-

cesses on our understanding of the Standard Model formulated with a Universal Extra Di-

mension compactified on a S1/Z2 orbifold. After giving a general introduction to the models

and techniques at work I then presented our findings in a number of projects:

• In Chapter 3 I presented our calculation of the NLO corrections to the pair production of

heavy vector color octets, as they appear in the two-site Coloron model. This served as

a low-energy approximation for the production of level-1 KK-gluons, similar to a model

where all higher modes were integrated out. The renormalization procedure involved

several subtleties, which were discussed in detail. Furthermore I described the two-cutoff

phase space slicing procedure, which was employed to remove the infrared divergencies

from our calculation.

The impact of the corrections to the cross section was found to be modest, as it reduced

the numerical value by 11 − 14%. The uncertainty introduced into the leading order

result through unphysical renormalization and factorization scales is largely reducedf in

the NLO result.

• In Chapter 4 I discussed the uncertainty introduced into mUED predictions (like the

ones in the previous chapter) through truncating the KK-towers at a UV-cutoff scale Λ.

To that end I reviewed our calculation of the vertex corrections contributing to the SM

QCD operators and the mUED operators containing two KK-1 modes as external legs.

To account for the infrared behavior of the q0 − Q1 − G1 vertex function we calculated

the full one-loop decay width Γ[G1 → q0Q1] using two cutoff phase-space slicing. The

contributions from higher modes were then treated through an analytic summation over
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the modes up to the cutoff. Afterwards we extracted the asymptotic behavior of the sums

with respect to Λ. As an additional independent method we also calculated the results

again by applying the exact functional renormalization group to the uncompactified

theory in 5D.

We found that the terms up to linear and logarithmic order of the direct summation

describe the vertex functions astonishingly well. Furthermore do the SM vertex function

exhibit the same leading order behavior as the KK vertex functions, causing them to

converge in the limit of large Λ. The functional renormalization group analysis revealed

that the same behavior is shown by the uncompactified theory. The numerical difference

between the methods considered is of the order of a few percent.

• In Chapter 5 I revisit our study of the impact that radiatively induced boundary op-

erators have on the phenomenology of mUED. The operators investigated were mass

corrections to the entire mUED particle spectrum and KK-number violating three-point

interactions. Results for a number of these have been scattered throughout the literature

but were constrained to the terms proportional to the logarithm of the cutoff scale. We

reported the finite pieces for each of these results and found them to be comparable

in size. Additionally we found a number of new operators that are not logarithmically

sensitive to Λ.

We found the mass spectrum to be considerably broadened by the new finite terms cal-

culated, and also that the right-handed KK-lepton is always the next-to-lightest particle

in the hierarchy. The KK-number violating couplings allow for level-2 KK modes to

decay radiatively into a pair of SM particles. We discussed the changes of the branching

fractions and discovery reaches in light of the new and updated results.

Even though chances are slim for a particular BSM model to ”correctly” describe nature, a

large number of models within a certain class share similar characteristic features. Therefore

it is not sensible to analyze ones favorite model, in hope of defying the odds and predict a

groundbreaking discovery. The best course modern phenomenology can take is to develop

universal tools and search strategies, covering as many of those distinguishing features as

possible. Once decisive discoveries pointing into the direction of new physics are made it

is of utmost importance to have a robust analysis machine ready to understand the results
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obtained and put them in context.

In this thesis I employed minimal Universal Extra Dimensions as a concrete framework but

focused to understand some of the features that many extra dimensional models generally

share, making our insights, results and developed tools applicable to many scenarios. I hope

to have made a contribution in terms of this philosophy, since this truly is an exciting time

for physics, where hints to what lies beyond the Standard Model may be lurking just around

the corner.
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APPENDIX A

LAGRANGIANS AND FEYNMAN RULES

A.1 MUED LAGRANGIAN

This appendix lists a complete set of Standard Model Lagrangian in a universal extra di-

mensions model in 5 dimensions with a S1/Z2 orbifold compactification. The conventions

are chosen such that Greek indices take values 0, 1, 2, 3, assigned to the uncompactified di-

mensions, while capital Latin indices describe the full 5D theory, where the extra spatial

dimension is denoted as x5 where necessary. The 5D coupling constants are labeled with a

superscript (5) and are related to the 4D effective couplings through

g =
g(5)

√
πR

, hi =
h

(5)
i√
πR

, λ =
λ(5)

πR
, (A.1)

for the gauge, Yukawa and Higgs self coupling respectively.

Furthermore we have to define the conventions for the extension of the Clifford algebra,

ΓM =
(
γµ, iγ5

)
, such that

{
ΓM ,ΓN

}
= 2ηMN , (A.2)

where ηMN is the flat 5D metric tensor

ηMN =

ηµν 0

0 −1

 , (A.3)
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and ηµν = diag{+ − −−} the usual 4D Minkowski metric. It is also helpful to define an

extended set of ∆ symbols [26]

∆1
mnl = δl,m+n + δn,l+m + δm,l+n ,

∆2
mnlk = δk,l+m+n + δl,m+n+k + δm,n+k+l + δn,k+l+m + δk+m,l+n + δk+l,m+n + δk+n,l+m ,

∆3
mnlk = −δk,l+m+n − δl,m+n+k − δm,n+k+l − δn,k+l+m + δk+l,m+n + δk+m,l+n + δk+n,l+m ,

∆4
mnl = −δl,m+n + δn,l+m + δm,l+n ,

∆5
mnlk = −δk,l+m+n − δl,m+n+k + δm,n+k+l + δn,k+l+m − δk+l,m+n + δk+m,l+n + δk+n,l+m .

(A.4)

A.1.1 The Gauge Sector

As a generic example, we show the gauge sector Lagrangian for a single vector field in the

adjoint representation of SU(N), which contains a four-component vector Vµ (x, x5) and a

fifth component V5 (x, x5), which takes the role of a Goldstone boson. Additionally we require

the ghost field c (x, x5). After compactification the Lagrangians read

LGauge =
1

2

∫ πR

−πR
dx5

{
−1

4
F a
MNF

a,MN

}
=

1

2

∫ πR

−πR
dx5

{
−1

4
F a
µνF

a,µν − 1

2
F a

5νF
a,5ν

}
,

LGF =
1

2

∫ πR

−πR
dx5

{
− 1

2ξ

(
∂µV a

µ

(
x, x5

)
− ξ∂5V

a
5

(
x, x5

))2
}
,

LGhost =
1

2

∫ πR

−πR
dx5

{
ca
(
x, x5

) (
−∂µ∂µ + ξ∂2

5

)
ca
(
x, x5

)
+g(5)fabc

(
−∂µca

(
x, x5

)
V c
µ

(
x, x5

)
cb
(
x, x5

)
+ ξ∂5c

a
(
x, x5

)
V c

5 c
b
(
x, x5

))}
, (A.5)

with ξ being the gauge parameter in the generalized Rξ gauge. After decomposing the 5D

fields into Fourier modes, according to

Vµ
(
x, x5

)
=

1√
πR

[
V 0
µ (x) +

√
2
∞∑
n=1

V n
µ (x) cos

nx5

R

]
,

V5

(
x, x5

)
=

√
2

πR

∞∑
n=1

V n
5 (x) sin

nx5

R
,

ca
(
x, x5

)
=

1√
πR

[
c0,a(x) +

√
2
∞∑
n=1

cn,a(x) cos
nx5

R

]
, (A.6)

102



and performing the integral over the fifth dimension one obtains the effectively 4D pure

Yang-Mills pieces, given by

1

2

∫ πR

−πR
dx5

(
F a

5νF
a5ν
)

= −
∞∑
n=1

( n
R
V n,a
µ + ∂µV

n
5 − gCabcV n,b

5 V 0,c
µ

)2

+
∞∑

m,n,l=1

√
2gCade

(m
R
V m,a
µ + ∂µV

m,a
5 − gCabcV m,b

5 V 0,c
µ

)
V n,d

5 V l,eµ∆4
mnl

− g2

2
CabcCade

∞∑
m,n,l,k=1

V m,b
5 V n,c

µ V l,d
5 V k,eµ∆5

mlnk , (A.7)

1

2

∫ πR

−πR
dx5

(
F a
µνF

aµν
)

= F 0,a
µν F

0,aµν + 2gCabc

∞∑
n=1

F 0,a
µν V

n,bµV n,cν +
∞∑
n=1

(
∂µV

n,a
ν − ∂νV n,a

µ

)2

+ 2gCabc

∞∑
n=1

(
∂µV

n,a
ν − ∂νV n,a

µ

) (
V 0,bµV n,cν + V 0,cνV n,bµ

)
+
√

2gCabc

∞∑
m,n,l=1

(
∂µV

m,a
ν − ∂νV m,a

µ

)
V n,bµV l,cν∆1

mnl

+
∞∑
n=1

g2(Cabc(V 0,b
µ V n,c

ν + V 0,c
ν V n,b

µ ))2

+
√

2g2

∞∑
m,n,l=1

CabcCade
(
V 0,b
µ V m,c

ν + V 0,c
ν V m,b

µ

)
V n,dµV l,eν∆1

mnl

+
∞∑

m,n,l,k=1

g2

2
CabcCadeV m,b

µ V n,c
ν V l,dµV k,eν∆2

mnlk, (A.8)

a gauge fixing part given by

LGF = − 1

2ξ

[(
∂µV 0

µ

)2
+
∞∑
n=1

(
∂µV n

µ −
ξn

R
V n

5

)2
]
, (A.9)

and finally the ghost piece

LGhost =− c0,a∂µ∂µc
0,a − gfabc∂µc0,aV 0,c

µ c0,b −
∞∑
n=1

[
cn,a∂µ∂µc

n,a + ξ
n2

R2
cn,acn,a

]
− gfabc

∞∑
n=1

[
∂µc0,aV n,c

µ cn,b + ∂µcn,aV 0,c
µ cn,b + ∂µcn,aV n,c

µ c0,b + ξ
n

R
cn,aV n,b

5 c0,c
]

− g√
2
fabc

∞∑
m,n,l=1

[
∂µcl,aV m,c

µ cn,b∆1
lmn + ξ

l

R
cl,aV m,c

5 cn,b∆4
lmn

]
. (A.10)
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A.1.2 The Fermion Sector

Analogously, we show the Lagrangian for a fermion in the fundamental representation cou-

pled to a generic SU(N) gauge field. The structure of the SM makes it necessary to dis-

tinguish between Fermions Ψ that transform as doublets under SU(2) and those that are

singlets ψ. Their respective decomposition is

Ψ
(
x, x5

)
=

1√
πR

{
ΨL(x) +

√
2
∞∑
n=1

[
P−Ψn

L(x) cos
nx5

R
+ P+Ψn

R(x) sin
nx5

R

]}
,

ψ
(
x, x5

)
=

1√
πR

{
ψR(x) +

√
2
∞∑
n=1

[
P+ψ

n
R(x) cos

nx5

R
+ P−ψ

n
L(x) sin

nx5

R

]}
. (A.11)

The generic Lagrangian for either of the Fermions coupling to VM (x, x5) can be written as

LΨ =
1

2

∫ πR

−πR
dx5

{
iΨ̄
(
x, x5

)
ΓM
[
∂M + ig(5)VM

(
x, x5

)]
Ψ
(
x, x5

)}
= iΨ̄Lγ

µ
(
∂µ + igV 0

µ

)
ΨL −

∞∑
n=1

n

R

[
Ψ̄n
RΨn

L + Ψ̄n
LΨn

R

]
+
∞∑
n=1

[
iΨ̄n

Rγ
µ
(
∂µ + igV 0

µ

)
Ψn
R + iΨ̄n

Lγ
µ
(
∂µ + igV 0

µ

)
Ψn
L − gΨ̄Lγ

µV n
µ Ψn

L + gq̄Liγ
5V n

5 Ψn
R

]
− g√

2

∞∑
m,n,l=1

[
Ψ̄m
L γ

µV n
µ Ψl

L∆1
mnl + Ψ̄m

Rγ
µV n

µ Ψl
R∆4

mln + Ψ̄m
L iγ

5V n
5 Ψl

R∆4
lnm

]
. (A.12)

A.1.3 The Higgs Sector

Due to the somewhat complicated structure of the four-point interactions between the Higgs

and electroweak gauge bosons, we here show the Higgs Lagrangian not just for a generic

gauge group, but write the explicit Lagrangian for a Higgs doublet coupling to the U(1)Y

field BM (x, x5) and the SU(2)L field WM (x, x5).

The Higgs doublet Φ (x, x5) is decomposed as

Φ
(
x, x5

)
=

1√
πR

{
Φ0(x) +

√
2
∞∑
n=1

Φn(x) cos
nx5

R

}
(A.13)

and inserted into the Lagrangian

LHiggs =
1

2

∫ πR

−πR
dx5

[(
DMΦ

(
x, x5

))† (
DMΦ

(
x, x5

))
+ µ2Φ†

(
x, x5

)
Φ
(
x, x5

)
− λ

(
Φ†
(
x, x5

)
Φ
(
x, x5

))2
]
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=

[(
∂µ + ig2W

0
µ +

ig1

2
B0
µ

)
Φ0

]† [(
∂µ + ig2W

0µ +
ig1

2
B0µ

)
Φ0

]
+
∞∑
n=1

[(
∂µ + ig2W

0
µ +

ig1

2
B0
µ

)
Φn

]† [(
∂µ + ig2W

0µ +
ig1

2
B0µ

)
Φn

]
+ ig2

∞∑
n=1

[
(∂µΦ0)†W n

µΦn + (∂µΦn)†W n
µΦ0 − Φ†nW

n
µ
†(∂µΦ0)− Φ†0W

n
µ
†(∂µΦn)

]
+ ig2

∞∑
m,n,l=1

[
(∂µΦm)†W n

µΦl − Φ†lW
n
µ
†(∂µΦm)

]
∆1
mnl

+
ig1

2

∞∑
n=1

[
(∂µΦ0)†Bn

µΦn + (∂µΦn)†Bn
µΦ0 − Φ†nB

n
µ(∂µΦ0)− Φ†0B

n
µ(∂µΦn)

]
+

ig1

2
√

2

∞∑
m,n,l=1

[
(∂µΦm)†Bn

µΦl − Φ†lB
n
µ(∂µΦm)

]
∆1
mnl

+ g2
2

∞∑
n=1

[
Φ†0W

0
µ
†
W nµΦn + Φ†nW

0
µ
†
W nµΦ0 + Φ†0W

nµ†W 0
µΦn + Φ†0W

nµ†W n
µΦ0 + Φ†nW

nµ†W 0
µΦ0

]
+

g2
2√
2

∞∑
m,n,l=1

[
Φ†mW

0
µ
†
W nµΦl + Φ†0W

m
µ
†W lµΦn + Φ†mW

n
µ
†W 0µΦl + Φ†mW

n
µ
†W lµΦ0

]
∆1
mnl

+
g2

2

2

∞∑
m,n,l,k=1

[
Φ†mW

n
µ
†W lµΦk

]
∆2
mnlk

+
g1g2

2

∞∑
n=1

[
Φ†0W

0
µ
†
BnµΦn + Φ†nW

0
µ
†
BnµΦ0 + Φ†0W

n
µ
†B0µΦn + Φ†0W

n
µ
†BnµΦ0 + Φ†nW

n
µ
†B0µΦ0

+ Φ†nB
nµW 0

µΦ0 + Φ†0B
nµW 0

µΦn + Φ†nB
0µW n

µΦ0 + Φ†0B
nµW n

µΦ0 + Φ†0B
0µW n

µΦn ]

+
g1g2

2
√

2

∞∑
m,n,l=1

[
Φ†mW

0
µ
†
BnµΦl + Φ†0W

m
µ
†BlµΦn + Φ†mW

n
µ
†B0µΦl + Φ†mW

n
µ
†BlµΦ0

+ Φ†lB
nµW 0

µΦm + Φ†nB
lµWm

µ Φ0 + Φ†lB
0µW n

µΦm + Φ†0B
lµW n

µΦm ] ∆1
mnl

+
g1g2

4

∞∑
m,n,l,k=1

[
Φ†mW

n
µ
†BlµΦk + Φ†kB

lµW n
µΦm

]
∆2
mnlk

+
g2

1

4

∞∑
n=1

[
2Φ†0B

0
µB

nµΦn + 2Φ†nB
0
µB

nµΦ0 + Φ†0B
n
µB

nµΦ0

]
+

g2
1

4
√

2

∞∑
m,n,l=1

[
2Φ†mB

0
µB

nµΦl + Φ†0B
m
µ B

lµΦn + Φ†mB
n
µB

lµΦ0

]
∆1
mnl

+
g2

1

4

∞∑
m,n,l,k=1

[
Φ†mB

n
µB

lµΦk

]
∆2
mnlk
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+ µ2

[
Φ†0Φ0 +

∞∑
n=1

Φ†nΦn

]
−
∞∑
n=1

( n
R

)2

Φ†nΦn

+
1√
2

∞∑
m,n,l=1

n

R
Φ†n

(
ig1

2
Bm

5 + ig2W
m
5

)
Φl∆

4
mnl

− 1√
2

∞∑
m,n,l=1

m

R
Φ†l

(
ig1

2
Bn

5 + ig2W
n
5

)
Φm∆4

mnl

− 1

2

∞∑
m,n,l,k=1

Φ†l

(
ig1

2
Bm

5 + ig2W
m
5
†
)(

ig1

2
Bn

5 + ig2W
n
5

)
Φk∆

5
mnlk

+
∞∑
n=1

[
Φ†0

(
g2W

n
5 +

g1

2
Bn

5

)2

Φ0 −
n

R
Φ†0

(
g2W

n
5 +

g1

2
Bn

5

)
Φn +

n

R
Φ†n

(
g2W

n
5 +

g1

2
Bn

5

)
Φ0

]
− 1√

2

∞∑
m,n,l=1

[
Φ†0

(
g2W

k
5 +

g1

2
Bk

5

)(
g2W

l
5 +

g1

2
Bl

5

)
Φm

+Φ†m

(
g2W

k
5 +

g1

2
Bk

5

)(
g2W

l
5 +

g1

2
Bl

5

)
Φ0

]
∆4
klm

− λ
(

Φ†0Φ0

)2

− λ
∞∑
n=1

[(
Φ†0Φn + Φ†nΦ0

)2

+ 2Φ†0Φ0Φ†nΦn

]
−
√

2λ
∞∑

m,n,l=1

Φ†mΦn

(
Φ†lΦ0 + Φ†0Φl

)
∆1
mnl −

λ

2

∞∑
m,n,l,k=1

Φ†mΦnΦ†lΦk∆
2
mnlk . (A.14)

A.1.4 The Yukawa Sector

To ensure that the SM Fermions acquire a mass through EWSB one has to consider the

Yukawa couplings to the Higgs field. For a down-type fermion they are described by

LYukawa =
1

2

∫ πR

−πR
dx5

{
h

(5)
i Ψ̄

(
x, x5

)
ψ
(
x, x5

)
Φ
(
x, x5

)}
= hiΨ̄LψRΦ0 + hi

∞∑
n=1

[
Ψ̄n
Lψ

n
RΦ0 + Ψ̄n

Rψ
n
LΦ0

]
+ hi

∞∑
n=1

[
Ψ̄Lψ

n
RΦn + Ψ̄n

LψRΦn

]
+

hi√
2

∞∑
m,n,l=1

[
Ψ̄n
Lψ

m
RΦl∆

1
mnl + Ψ̄n

Rψ
m
L Φl∆

4
mnl

]
. (A.15)

and for an up-type fermion they can be constructed in complete analogy.
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A.2 FEYNMAN RULES FOR THE TWO-SITE COLORON MODEL

A.2.1 Feynman Rules Involving Massless Quarks

−igsγ
µTAij (A.16)

−igsγ
µTAij (A.17)

−igsγ
µPLT

A
ij (A.18)

igsγ
µPRT

A
ij (A.19)

−gsPRT
a
ij (A.20)

gsPLT
a
ij (A.21)
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A.2.2 Vertices Involving the Top Quark

−igsγ
µ [sin θTPR + cos θTPL]T aij (A.22)

igsγ
µ [sin θTPL + cos θTPR]T aij (A.23)

gs [sin θTPL − cos θTPR]T aij (A.24)

−gs [sin θTPR − cos θTPL]T aij (A.25)

A.2.3 Three-Point Boson Vertices

gs [(pB − pA)ρ ηµν + (pA − pC)ν ηµρ + (pC − pB)µ ηνρ] fABC

(A.26)

gs [(pB − pA)ρ ηµν + (pA − pC)ν ηµρ + (pC − pB)µ ηνρ] fABC

(A.27)

−igsMηµνfABC (A.28)
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gs (pB − pC)µ fABC (A.29)

A.2.4 Feynman Rules Involving Ghosts

−gsp
µ
Bf

ABC (A.30)

−gsp
µ
Bf

ABC (A.31)

−gsp
µ
Bf

ABC (A.32)

−igsMfABC (A.33)

A.2.5 Four-Point Boson Vertices

−ig2
s

[
ηµνηρσ

(
fACEfBDE − fADEfCBE

)
+ηµρηνσ

(
fADEfCBE − fABEfDCE

)
+ηµσηνρ

(
fABEfDCE − fACEfBDE

)]
(A.34)
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−ig2
s

[
ηµνηρσ

(
fACEfBDE − fADEfCBE

)
+ηµρηνσ

(
fADEfCBE − fABEfDCE

)
+ηµσηνρ

(
fABEfDCE − fACEfBDE

)]
(A.35)

−ig2
s

[
ηµνηρσ

(
fACEfBDE − fADEfCBE

)
+ηµρηνσ

(
fADEfCBE − fABEfDCE

)
+ηµσηνρ

(
fABEfDCE − fACEfBDE

)]
(A.36)

ig2
s η

µν
(
fACEfBDE + fBCEfADE

)
(A.37)

ig2
s η

µν
(
fACEfBDE + fBCEfADE

)
(A.38)

Note that the Feynman rules in this appendix agree with those for KK-level–1 gluons and

quarks in mUED, with the exception of (A.36), which has an additional factor 3
2

in mUED.
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APPENDIX B

SPECIAL INTEGRALS AND FUNCTIONS

B.1 ONE LOOP FUNCTIONS AND IDENTITIES

In this appendix we summarize all scalar one-loop functions which exhibit UV or IR/collinear

divergencies. These integrals have been calculated in the literature in a variety of ways; we

simply summarize the ones important for the calculations in this thesis. Our main points

of reference have been [53, 100] as well as [99]. The finite loop functions that could not be

reduced to A0 functions were numerically calculated using LoopTools.

Since our calculations only concern NLO contributions is it sufficient to consider the real

parts of all loop functions up to order ε0, we therefore omit any imaginary parts in this

appendix.

To list the functions in their most compact form it is useful to define two variables

x1 =
1− β1

1− β1

and x2 =
1− β2

1− β2

, (B.1)

that themselves depend on

β1 =

√
1− 4m2

1

s
and β2 =

√
1− 4m1m2

s− (m1 −m2)2 . (B.2)
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B.1.1 Integrals with Ultraviolet Divergences

We begin with the scalar tadpole integral

A0

(
m2
)

= µ2ε

∫
dDq

iπ2

1

q2 −m2
= m2

[
1

ε
+ 1− log

(
m2

µ2

)]
(B.3)

and its generalization

TN0 (m2) = µ2ε

∫
dDq

iπ2

1

[q2 −m2]N
=

1

N !

(
D

2
− 1

)
· · ·
(
D

2
− 1

)
A0 (m2)

m2N
, (B.4)

which is useful as it allows us to calculate an arbitrary N-point integral in the special case,

where all external momenta are zero.

Furthermore we expect UV divergencies from all scalar bubble integrals, which we define as

B0

(
p2;m2

1,m
2
2

)
= µ2ε

∫
dDq

iπ2

1

[q2 −m2
1][(q + p)2 −m2

2]
. (B.5)

The most general form can be expressed analytically through

B0

(
p2;m2

1,m
2
2

)
=

1

ε
+ 2 + x+ log

(
1− 1

x+

)
+ x− log

(
1− 1

x−

)
− log

(
m2

1

µ2

)
x± =

p2 +m2
2 −m2

1

2p2
±

√(
p2 +m2

2 −m2
1

2p2

)2

− m2
2

p2
. (B.6)

Note that even though B0(0, 0, 0) vanishes identically, we only set it to zero at the very end

of the calculation. It is useful to write B0 (0, 0, 0) = 1
εUV
− 1

εIR
to distinguish between UV

and IR poles in our calculation.

B.1.2 Integrals with Soft Divergencies

We continue to quote all necessary three and four-point integrals that exhibit infrared diver-

gencies.
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B.1.2.1 Triangle Functions The general triangle integral is of the form

C0(p2
1, p

2
2, (p1 + p2)2;m2

1,m
2
2,m

2
3) =

=µ2ε

∫
dDq

iπ2

1

[q2 −m2
1][(q + p)2 −m2

2][(q + p1 + p2)2 −m2
3]
. (B.7)

All infrared divergent triangle diagrams can be expressed through a set of 6 linearly indepen-

dent basis functions if one makes use of the symmetry identities, expressing the cyclicality

of the triangle functions

C0(p2
1, p

2
2, p

2
3;m2

1,m
2
2,m

2
3) = C0(p2

1, p
2
3, p

2
2;m2

2,m
2
1,m

2
3), (B.8)

C0(p2
1, p

2
2, p

2
3;m2

1,m
2
2,m

2
3) = C0(p2

2, p
2
3, p

2
1;m2

2,m
2
3,m

2
1). (B.9)

The relevant functions in that base are then

C0 (0, 0, s; 0, 0, 0) =
1

s

[
1

ε2
− 1

ε
log

(
s

µ2

)
+

1

2
log2

(
s

µ2

)
− 7π2

12

]
, (B.10)

for the s-channel as well as

C0(0, p2
2, t; 0 , 0,m2) = (B.11)

=
1

p2
2 − t

[
1

ε
log

(
m2 − t
m2 − p2

2

)
+ Li2

(
p2

2

m2

)
− Li2

(
t

m2

)
+ log2

(
m2 − p2

2

m2

)
− log2

(
m2 − t
m2

)
− log

(
m2 − t
m2 − p2

2

)
log

(
m2

µ2

)]
, (B.12)

C0(0,m2, t; 0, 0,m2) =

=
1

t−m2

[
1

2ε2
+

1

ε
log

(
m2

m2 − t

)
+ log2

(
m2

m2 − t

)
+ Li2

(
t

m2

)
+
π2

24

]
, (B.13)

for which it is useful to quote the special case in which t→ m2, which yields

C0

(
0,m2,m2; 0, 0,m2

)
=

1

m2

[
− 1

2ε
+ 1− log

(
m2

µ2

)]
, (B.14)

and finally

C0(m2
2, s,m

2
3; 0,m2

2,m
2
3) =

=
x2

m2m3 (1− x2
2)

{
− 1

ε
log (x2) + Li2

(
1− x2

m2

m3

)
− π2

4

+ Li2

(
1− x2

m3

m2

)
+ Li2

(
x2

2

)
+

1

2
log2

(
m2

m3

)
+ log (x2)

[
−1

2
log (x2) + 2 log

(
1− x2

2

)
+ log

(
m2m3

µ2

)]}
. (B.15)
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B.1.2.2 Box Functions The general scalar box integral is of the form

D0(p2
1; p2

2, p
2
3, (p1 + p2 + p3)2, (p1 + p2)2, (p2 + p3)2,m2

1,m
2
2,m

2
3,m

2
4) = (B.16)

= µ2ε

∫
dDq

iπ2

1

[q2 −m2
1][(q + p)2 −m2

2][(q + p1 + p2)2 −m2
3][(q + p1 + p2 + p3)2 −m2

4]
.

There exists a set of 16 linearly independent basis functions for infrared divergent box in-

tegrals. All other divergent box functions are can be expressed through the base when

exploiting the cyclic symmetry relations

D0(p2
1, p

2
2, p

2
3, p

2
4, s, t;m

2
1,m

2
2,m

2
3,m

2
4) = D0(p2

2, p
2
3, p

2
4, p

2
1, t, s;m

2
2,m

2
3,m

2
4,m

2
1), (B.17)

D0(p2
1, p

2
2, p

2
3, p

2
4, s, t;m

2
1,m

2
2,m

2
3,m

2
4) = D0(p2

4, p
2
3, p

2
2, p

2
1, s, t;m

2
1,m

2
4,m

2
3,m

2
2). (B.18)

The relevant functions for our calculations are

D0(0, p2
2, p

2
3, p

2
4, s, t; 0, 0, 0, 0) = (B.19)

=
1

p2
2p

2
4 − st

[
− 2

ε2
+

1

ε

(
log

(
s

µ2

)
+ log

(
− t

µ2

)
+ log

(
p2

4

p2
2

))
+ log2

(
p2

2

µ2

)
+ log2

(
p2

3

µ2

)
− 1

2
log2

(
p2

3p
2
4

sµ2

)
− log2

(
s

µ2

)
− 1

2
log

(
−p

2
2p

2
3

tµ2

)
− log2

(
− t

µ2

)
− 2Li2

(
1− p2

2

s

)
− 2Li2

(
1− p2

4

s

)
+ 2Li2

(
1− p2

2p
2
4

2t

)
− log

(
−s
t

)
+

2π2

3

]
,

D0(0, 0,m2,m2, s, t; 0, 0, 0,m2) = (B.20)

=
1

s (t−m2)

[
2

ε2
− 1

ε

(
2 log

(
m2 − t
µ2

)
+ log

( s

m2

))
+ log

(
s

µ2

)
log

(
(m2 − t2)

2

m2µ2

)

+ log

(
s

µ2

)
log

(
(m2 − t2)

2

m2µ2

)
− 2π2

3

]
,

D0(0, 0,m2,m2, s, t;m2,m2,m2, 0) = (B.21)

=
1

s (t−m2) β2

[
1

ε
log (x1)− 2 log (x2) log (β2)− 2 log (x2) log

(
(m2 − t)2

m2µ2

)

− 2Li2(x2) + 2Li2(−x2)− π2

2

]
,
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D0(0,m2, 0,m2, t, u;m2,m2, 0, 0) = (B.22)

=
1

(t−m2) (u−m2)

[
1

ε2
− 1

ε

(
log

(
m2 − t
µ2

)
+ log

(
m2 − t
m2

))
− 7π2

12

+
1

2
log

(
(m2 − t)2

m2µ2

)
log

(
(m2 − u)

2

m2µ2

)]
,

and finally

D0(0, 0,m2
1,m

2
1, s, t; 0, 0, 0,m2

2) = (B.23)

=
1

s (t−m2
2)

[
1

ε2
− 1

ε

(
log

(
s

µ2

)
+ 2 log

(
m2

2 − t
m2

2 −m2
1

))
− 4Li2

(
1 +

m2
2 −m2

1

t−m2
2

)
− Li2

(
1 +

(m2
2 −m2

1)
2

sm2
2

)
+

1

2
log2

(
s

µ2

)
− 1

2
log2

(
s

m2
2

)
+ 2 log

(
s

m2
1

)
log

(
m2

2 − t
m2

2

)
+ 2 log

(
m2

1

µ2

)
log

(
m2

2 − t
m2

2 −m2
1

)
− 2 log

(
m2

2 −m2
1

m2
1

)
log

(
m2

2 −m2
1

m2
2

)
− π2

4

]
.

B.1.3 Derivatives of One-Loop Functions

It is furthermore important to summarize the first derivatives of the B0 functions, since the

field renormalization constants in the on-shall scheme are obtained through the derivatives of

the self-energy functions with respect to the momentum of the external leg they are stemming

from.

For derivatives with zero external momentum it is useful to note, that

∂2

∂pµ∂pµ
B0(p2,m2

1,m
2
2)

∣∣∣∣
p2=0

=

(
∂2B0

∂(p2)2
4p2 + 2D

∂B0

∂(p2)

)∣∣∣∣∣
p2=0

= 2D
∂B0

∂(p2)

∣∣∣∣∣∣
p2=0

, (B.24)

since the calculation of the derivatives are considerably simplified if one utilizes partial

integration with respect to the loop momentum.

The only two cases for zero momentum derivatives are given by B0 functions with different

masses

B′0(0,m2
1,m

2
2) = (B.25)

=
1

(m2
1 −m2

2)
3

[(
m2

2A0

(
m2

1

)
−m2

1A0

(
m2

2

))
+

4−D
D

(
m2

1A0

(
m2

1

)
−m2

2A0

(
m2

2

))]
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and the degenerate case with equal masses in the loop

B′0(0,m2,m2) = −1

6

(
D

2
− 1

)(
D

2
− 2

)
A0(m2)

m4
. (B.26)

Notice, that in the both cases the derivatives are UV finite.

For external momentum not equal to zero we similarly perform the derivative and arrive

at the general formula

B′0(p2,m2
1,m

2
2) = (B.27)

=
1

2p2

[
B0(0,m2

2,m
2
2)−B0(p2,m

2
1,m

2
2) + (m2

1 −m2
2 − p2)C0(0, p2, p2,m2

2,m
2
2,m

2
1)

]
,

which can be further simplified by splitting and partially integrating the C0 function.

It is important to note that the special case

B′0(m2, 0,m2) = −D − 2

D − 3

A0(m2)

4m4
(B.28)

represents a soft divergence, even though A0 functions are UV-divergent, and therefore war-

rants to be kept and treated separately. This relates to the fact that the threshold p2 → m2

exhibits an IR divergency.

B.1.4 Useful Identities and Special Cases

Additionally we would like to quote a handful of special cases and finite functions that appear

in our calculations and have played a special role.

These are the B0 function that lies exactly on the energy threshold, as it appears in the

self-energies of the level-1 KK particles

B0(m2, n2m2, (n± 1)2m2) =
1

ε
+ 2− log

(
m2n2

µ2

)
± (n± 1) log

(
n2

(n± 1)2

)
, (B.29)

as well as the corresponding C0 functions describing the KK-contributions to SM operators

C0(0, 0, s,m2,m2,m2) =
1

2s

[
log

(
1− β1

1 + β1

)2

− π2

]
, (B.30)

which holds in the case that s ≥ 4m2, and to operators with two level-1 KK modes as

external legs

C0(0,m2,m2, n2m2, n2m2, (n± 1)2m2) = − 1

m2

[
± 1

n
+ log

(
n

n± 1

)]
. (B.31)
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B.2 SOFT ANGULAR INTEGRALS

In this appendix we quote the soft angular integrals as they appear in our description of

the real emission processes in Chapter 3 and Chapter 4. The integrals left in question are

generally of the form

Ikl =

∫ π

0

dθ1 sin1−2ε θ1

∫ π

0

dθ2 sin−2ε θ2
(a+ b cos θ1)−k

(A+B cos θ1 + C sin θ1 cos θ2)l
, (B.32)

after the integration over the gluons energy Eg has been performed.

These integrals have been reported in the literature and we restrict ourselves to listing the

ones useful for our calculations. It should however be noted that some of these have only

been reported up to O(ε0), which is insufficient since in a few cases the linear term gives a

non-vanishing contribution. These cases have been calculated by us and are included. The

remaining integrals follow [44,45].

To report the most compact form of the integrals it is helpful to define

XS = (aA− bB)2 −
(
A2 −B2 − C2

) (
a2 − b2

)
. (B.33)

We furthermore separate the integrals into classes based on how their coefficients relate to

each other.

I00 = 2π + 2πε

(
ψ0

(
3

2

)
− ψ0

(
1

2

))
, (B.34)

where ψ0 (z) = Γ′(z)
Γ(z)

is the digamma function.

I01 =
π√

B2 + C2

{
log

(
A+
√
B2 + C2

A−
√
B2 + C2

)

+ 2ε

[
Li2

(
2
√
B2 + C2

A+
√
B2 + C2

)
+

1

4
log2

(
A+
√
B2 + C2

A−
√
B2 + C2

)]}
, (B.35)

I02 =
2π

A2 −B2 − C2

[
1 + ε

A√
B2 + C2

log

(
A+
√
B2 + C2

A−
√
B2 + C2

)]
, (B.36)
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I11 =
π√
XS

log

(
aA− bB +

√
XS

aA− bB −
√
XS

)
, (B.37)

I12 = π

[
2a (B2 + C2 − 2bAB)

(A2 −B2 − C2)XS

+
b (bA− aB)

X
3
2
S

log

(
aA− bB +

√
XS

aA− bB −
√
XS

)]
. (B.38)

I10 = − π
aε
, (B.39)

I20 = − π
a2

1

1 + ε
, (B.40)

I11 =
π

a (A+B)

{
− 1

ε
+ log

(
(A+B)2

A2 −B2 − C2

)
− ε
[

log2

(
A−
√
B2 + C2

A+B

)
(B.41)

− 1

2
log2

(
A+
√
B2 + C2

A−
√
B2 + C2

)
+ 2Li2

(
−B +

√
B2 + C2

A−
√
B2 + C2

)

− 2Li2

(
B −

√
B2 + C2

A+B

)]}
, (B.42)

I11 = − 2π

a (A+B)

[
1

ε
− log

(
A+B

2A

)
+ ε

(
Li2

(
A−B

2A

)
+

1

2
log2

(
A+B

2A

))]
, (B.43)
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APPENDIX C

KK-NUMBER VIOLATING COUPLINGS IN MUED

In this appendix, the KK-number violating couplings discussed in section 5.2 are shown for

the MUED extension of the SM. Here g1,2,3 are the couplings of the SM U(1)Y, SU(2)L and

SU(3)C gauge groups, respectively, while ht is the top Yukawa coupling and λH the Higgs

self-coupling. The Ln is defined as Ln ≡ ln(Λ2/m2
n).

−iCψ0ψ0V2γ
µT aP±

CQ0Q0G2 =

√
2g3

64π2

[
g2

3

(
11L1 + 35− 11π2

3

)
+ g2

2

(
−27

4
L1 −

39

4
+

21π2

16

)
+ g2

1

(
−1

4
L1 −

13

36
+

7π2

144

)] (C.1)

CtL0tL0G2 = CbL0bL0G2

=

√
2g3

64π2

[
g2

3

(
11L1 + 35− 11π2

3

)
+ g2

2

(
−27

4
L1 −

39

4
+

21π2

16

)
+ g2

1

(
−1

4
L1 −

13

36
+

7π2

144

)
+ h2

t

(
L1 − 1 +

π2

4

)] (C.2)

Cu0u0G2 =

√
2g3

64π2

[
g2

3

(
11L1 + 35− 11π2

3

)
+ g2

1

(
−4L1 −

52

9
+

7π2

9

)]
(C.3)

CtR0tR0G2 =

√
2g3

64π2

[
g2

3

(
11L1 + 35− 11π2

3

)
+ g2

1

(
−4L1 −

52

9
+

7π2

9

)
+ h2

t

(
2L1 − 2 +

π2

2

)] (C.4)

Cd0d0G2 =

√
2g3

64π2

[
g2

3

(
11L1 + 35− 11π2

3

)
+ g2

1

(
−L1 −

13

9
+

7π2

36

)]
(C.5)
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CQ0Q0Z2 =

√
2g2

64π2

[
g2

3

(
−12L1 −

52

3
+

7π2

3

)
+ g2

2

(
33

4
L1 +

299

12
− 43π2

16

)
+ g2

1

(
−1

4
L1 −

13

36
+

7π2

144

)] (C.6)

CtL0tL0Z2 = CbL0bL0Z2

=

√
2g2

64π2

[
g2

3

(
−12L1 −

52

3
+

7π2

3

)
+ g2

2

(
33

4
L1 +

299

12
− 43π2

16

)
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1

(
−1

4
L1 −

13

36
+

7π2

144

)
+ h2

t

(
L1 − 3 +

π2

4

)] (C.7)

CL0L0Z2 =

√
2g2

64π2

[
g2

2

(
33

4
L1 +

299

12
− 43π2

16

)
+ g2

1

(
−9

4
L1 −
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4
+

7π2

16

)]
(C.8)

CQ0Q0B2 =

√
2g1

64π2

[
g2

3

(
−12L1 −
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3
+

7π2

3

)
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2
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+

21π2
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)
+ g2

1

(
− 7
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L1 −

7
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+

7π2
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)] (C.9)

CtL0tL0B2 = CbL0bL0B2

=

√
2g1

64π2

[
g2

3

(
−12L1 −

52

3
+

7π2

3

)
+ g2

2

(
−27

4
L1 −

39

4
+
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)
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1

(
− 7

12
L1 −

7
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+

7π2

144

)
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t

(
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π2

4

)] (C.10)

Cu0u0B2 =

√
2g1
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[
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3

(
−12L1 −
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3
+

7π2

3

)
+ g2

1

(
−13

3
L1 − 6 +

7π2
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(C.11)

CtR0tR0B2 =

√
2g1

64π2

[
g2

3

(
−12L1 −
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3
+

7π2

3

)
+ g2

1

(
−13

3
L1 − 6 +

7π2

9

)
+ h2

t

(
2L1 − 5 +

π2

2

)] (C.12)

Cd0d0B2 =

√
2g1

64π2

[
g2

3

(
−12L1 −
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3
+

7π2
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)
+ g2

1

(
−4

3
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+

7π2
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(C.13)

CL0L0B2 =

√
2g1

64π2

[
g2

2

(
−27

4
L1 −

39

4
+

21π2

16

)
+ g2

1

(
−31

12
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36
+

7π2
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(C.14)

Ce0e0B2 =

√
2g3

1

64π2

(
−28

3
L1 −

119

9
+

7π2

4

)]
(C.15)

−iC̃ψ2ψ0V0γ
µP± [V0 transverse]

Note that C̃ is defined without T a, in contrast to eq. (5.33). In the expressions below, A is
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an SU(3) color index.

C̃Q2Q0G0 =

√
2g3

64π2
TA
[
g2

3

(
−2

3
+

3π2

4

)
+ 3g2

2 +
g2

1

9

]
[including Q = T,B] (C.16)

C̃u2u0G0 =

√
2g3

64π2
TA
[
g2

3

(
−2

3
+

3π2

4

)
+

16

9
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]
[including u = t] (C.17)
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√
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64π2
TA
[
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+

3π2

4

)
+

4

9
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1

]
(C.18)
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√
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128π2
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)
(C.19)

[including Q = T,B]

C̃Q2Q0γ0 =

√
2(±1

2
g2sW + 1

6
g1cW)

64π2

[
16

3
g2

3 + 3g2
2 +

g2
1

9

]
±
√

2g3
2sW

128π2

(
π2

2
− 4

)
(C.20)

[including Q = T,B]

− 1

sW

C̃u2u0Z0 =
1

cW

C̃u2u0γ0 =

√
2g1

96π2

[
16

3
g2

3 +
16

9
g2

1

]
[including u = t] (C.21)

− 1

sW

C̃d2d0Z0 =
1

cW

C̃d2d0γ0 = −
√

2g1

192π2

[
16

3
g2

3 +
4

9
g2

1

]
(C.22)

C̃L2L0Z0 =

√
2(±1

2
g2cW + 1

2
g1sW)

64π2

[
3g2

2 + g2
1

]
±
√

2g3
2cW

128π2

(
π2

2
− 4

)
(C.23)

C̃L2L0γ0 =

√
2(±1

2
g2sW − 1

2
g1cW)

64π2

[
3g2

2 + g2
1

]
±
√

2g3
2sW

128π2

(
π2

2
− 4

)
(C.24)

− 1

sW

C̃e2e0Z0 =
1

cW

C̃e2e0γ0 = −
√

2g3
1

16π2
(C.25)

In eqs. (C.19) ff., the ± signs indicate the upper/lower entry of a fermion doublet.

−D̃ψ2ψ0V0
σµνqν
2mKK

P±

Note that D̃ is defined without T a, in contrast to eq. (5.34). In the expressions below, A is
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an SU(3) color index.

D̃Q2Q0G0 =

√
2g3

64π2
TA
[
g2

3(−17 + 2π2) + g2
2

(
9

4
− 9π2

16

)
+ g2

1

(
1

12
− π2

48

)]
(C.26)

D̃T2tL0G0 = D̃B2bL0G0 =

√
2g3

64π2
TA
[
g2

3(−17 + 2π2) + g2
2

(
9

4
− 9π2

16

)
+ g2

1

(
1

12
− π2

48

)
+ h2

t

(
π2

4
− 1

)]
(C.27)

D̃u2u0G0 =

√
2g3

64π2
TA
[
g2

3(−17 + 2π2) + g2
1

(
4

3
− π2

3

)]
(C.28)

D̃t2tR0G0 =

√
2g3

64π2
TA
[
g2

3(−17 + 2π2) + g2
1

(
4

3
− π2

3

)
+ h2

t

(
π2

2
− 2

)]
(C.29)

D̃d2d0G0 =

√
2g3

64π2
TA
[
g2

3(−17 + 2π2) + g2
1

(
1

3
− π2

12

)]
(C.30)

D̃Q2Q0Z0 =

√
2(±1

2
g2cW − 1

6
g1sW)

64π2

[
g2

3(4− π2) + g2
2

(
9

4
− 9π2

16

)
+ g2

1

(
1

12
− π2

48

)]
±
√

2g3
2cW

128π2
(−14 + 2π2) (C.31)

D̃T2tL0Z0/D̃B2bL0Z0 =

√
2(±1

2
g2cW − 1

6
g1sW)

64π2

[
g2

3(4− π2) + g2
2

(
9

4
− 9π2

16

)
+ g2

1

(
1

12
− π2

48

)]
±
√

2g3
2cW

128π2
(−14 + 2π2)

+

√
2h2

t

64π2

[
±g2cW

2

(
3− π2

4

)
− g1sW

6

(
−13 +

7π2

4

)]
(C.32)

D̃Q2Q0γ0 =

√
2(±1

2
g2sW + 1

6
g1cW)

64π2

[
g2

3(4− π2) + g2
2

(
9

4
− 9π2

16

)
+ g2

1

(
1

12
− π2

48

)]
±
√

2g3
2sW

128π2
(−14 + 2π2) (C.33)

D̃T2tL0γ0/D̃B2bL0γ0 =

√
2(±1

2
g2sW + 1

6
g1cW)

64π2

[
g2

3(4− π2) + g2
2

(
9

4
− 9π2

16

)
+ g2

1

(
1

12
− π2

48

)]
±
√

2g3
2sW

128π2
(−14 + 2π2)

+

√
2h2

t

64π2

[
±g2sW

2

(
3− π2

4

)
+
g1cW

6

(
−13 +

7π2

4

)]
(C.34)
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− 1

sW

D̃u2u0Z0 =
1

cW

D̃u2u0γ0 =

√
2g1

96π2

[
g2

3(4− π2) + g2
1

(
4

3
− π2

3

)]
(C.35)

− 1

sW

D̃t2tR0Z0 =
1

cW

D̃t2tR0γ0 =

√
2g1

96π2

[
g2

3(4− π2) + g2
1

(
4

3
− π2

3

)
+ h2

t

(
−π

2

4

)]
(C.36)

− 1

sW

D̃d2d0Z0 =
1

cW

D̃d2d0γ0 = −
√

2g1

192π2

[
g2

3(4− π2) + g2
1

(
1

3
− π2

12

)]
(C.37)

D̃L2L0Z0 =

√
2(±1

2
g2cW + 1

2
g1sW)

64π2

[
g2

2

(
9

4
− 9π2

16

)
+ g2

1

(
3

4
− 3π2

16

)]
±
√

2g3
2cW

128π2
(−14 + 2π2) (C.38)

D̃L2L0γ0 =

√
2(±1

2
g2sW − 1

2
g1cW)

64π2

[
g2

2

(
9

4
− 9π2

16

)
+ g2

1

(
3

4
− 3π2

16

)]
±
√

2g3
2sW

128π2
(−14 + 2π2) (C.39)

− 1

sW

D̃e2e0Z0 =
1

cW

D̃e2e0γ0 = −
√

2g3
1

64π2

(
3− 3π2

4

)
(C.40)

In eqs. (C.31) ff., the ± signs indicate the upper/lower entry of a fermion doublet.

fabc

{[
ηµν(p− k1)ρ + ηνρ(k1 − k2)µ + ηρµ(k2 − p)ν

]
CV2V0V0

+
[
−ηµνk1,ρ + ηρµk2,ν

]
DV2V0V0 + ηνρ(k1 − k2)µEV2V0V0

}
[all momenta incoming]

CG2G0G0 =
3
√

2g3
3

64π2

(
−157

9
+

7π2

6

)
(C.41)

DG2G0G0 =
3
√

2g3
3

64π2

(
91

6
− π2

)
(C.42)

EG2G0G0 =
3
√

2g3
3

64π2

(
38

3
− 3π2

4

)
(C.43)

CZ2W
+
0 W

−
0

=
1

cW

CW−2 W
+
0 Z0

= − 1

sW

CW−2 W
+
0 γ0

=
i
√

2g3
2

64π2

(
−316

9
+

85π2

36

)
(C.44)

DZ2W
+
0 W

−
0

=
1

cW

DW−2 W
+
0 Z0

= − 1

sW

DW−2 W
+
0 γ0

=
i
√

2g3
2

64π2

(
92

3
− 49π2

24

)
(C.45)

EZ2W
+
0 W

−
0

=
1

cW

EW−2 W
+
0 Z0

= − 1

sW

EW−2 W
+
0 γ0

=
i
√

2g3
2

64π2

(
38

3
− 3π2

4

)
(C.46)
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C. Borschensky, R. Heger, M. Krämer, A. Kulesza and E. Laenen, JHEP 1605, 153
(2016) [arXiv:1601.02954 [hep-ph]].
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