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ABSTRACT 

This dissertation’s objective is to address methodological challenges in estimating the association 

of prepregnancy obesity with stillbirth and infant mortality. Our goal was to advance 

understanding of this topic of high public health importance to decrease the gap of high perinatal 

mortality between United States and other counties. Our focus was on the association of incident 

prepregnancy obesity with stillbirth and infant mortality. We constructed our analytic cohort of 

multiparous women who were non-obese in their first pregnancy from a population-based cohort 

study in Pennsylvania from 2003-2013 (n=1,551,919 singleton pregnancies).  

A visualization tool was developed for variable selection considering bias-variance 

tradeoff for inverse probability weights. Applying this tool to our study, we identified two high 

influential confounders which informed us to adjust for them carefully. 

Next, we examined the impact of parametric modeling assumptions on these associations 

by analytic methods with different reliance on parametric assumptions. Consistent, increased risk 

of stillbirth among women who became obese compared to those staying non-obese was observed 

with all methods. However, discrepancies in magnitude between methods were found: risk 

differences from semiparametric inverse probability weighting and nonparametric targeted 

minimum loss-based estimation (TMLE) were larger than those from parametric methods. 

Ashley I. Naimi, PhD 
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Ya-Hui Yu, PhD 
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Then, the analysis was constrained to those at normal first pregnancy weight, and we 

examined the effect of becoming overweight and obese on stillbirth and infant mortality in the 

second pregnancy. Nonparametric TMLE estimates showed that becoming overweight increased 

the risk of stillbirth (RD=1.4, 95% CI: 0.6, 2.2) while those becoming obese had increased risks 

of both stillbirth (RD=4.0, 95% CI: 1.4, 6.6) and neonatal mortality (RD=2.3, 95% CI: 0.1, 4.5) in 

the second pregnancy. A dose-response relationship was observed where increasing 

interpregnancy BMI change was associated with increased risk of stillbirth and infant mortality.  

Our findings provided the evidence that transitioning from normal weight to overweight or 

obese increases risk of stillbirth and infant mortality. Health care providers can communicate the 

importance of weight maintenance. These are important public health opportunities to prevent the 

onset of obesity and minimize fetal and infant risks, particularly since pregnancy is an important 

period to optimize maternal health.  
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1.0  INTRODUCTION 

1.1 BACKGROUND 

Perinatal mortality, infant mortality (neonatal mortality) and stillbirth, continue to burden 

families in the United States, with 2013 rates of 6 per 1000 live births and 5.96 per 1000 live births 

and fetal deaths, respectively1,2. The overweight (56%) and obesity (30%) epidemics among 

women of childbearing age3 continue to be important for further investigation. Evidence have 

linked pre-pregnancy obesity or inadequate or excessive gestational weight gain to an increased 

risk of infant death and stillbirth4,5. Additionally, a stark racial disparity exists for perinatal 

mortality1,2 as well as the prevalence of pre-pregnancy obesity and inadequate or excessive 

gestational weight gain6,7. Recent work found prepregnancy obesity explained 10% of the racial 

disparity in absolute scales of infant mortality and stillbirth 8.  

Existing research addressing the relationship between prepregnancy obesity and perinatal 

mortality is limited. First, a large majority of studies have examined the association between 

prevalent prepregnancy obesity and the risk of adverse birth outcomes. However, there is likely a 

critical difference between the effects of obesity among women who recently became obese 

(incident obesity), and the effects of longstanding obesity. Second, because body mass (and thus 

obesity status) varies over time, pre-pregnancy obesity may be subject to time-dependent 

confounding. This bias—often ignored in research when examining effects of pre-pregnancy 

obesity and adverse reproductive outcomes—can be properly and simply adjusted for by using 

inverse probability weighting.9  
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In theory, constructing inverse probability weights in complex longitudinal data requires 

adjusting for the high-dimensional vector representing an individual’s entire covariate history10. 

However, in practice, adjusting for high-dimensional covariate vectors can result in unstable 

weights, and thus problems with estimation. To date, only ad hoc bias-variance trade-off 

methods are available in literature (e.g., propensity score trimming or weight truncation)11,12 

which do not give information on the role of individual predictors in trading off bias and variance 

when the impact of a large number of covariates on the empirical performance of IPW methods is 

of interest. 

1.2 SPECIFIC AIMS 

Given these aforementioned issues, our objective is to (i) estimate the association of incident 

obesity with stillbirth and infant mortality, and (ii) explore the extent to which parametric models 

may have different estimates of the association of incident prepregnancy obesity with stillbirth and 

infant mortality when compared to more nonparametric methods. We will use inverse probability 

weighting, g Computation, and targeted maximum likelihood estimation to account for potential 

confounding of the effect of incident obesity. Additionally, to mitigate problems that would result 

from adjusting for the breadth of information available on each woman in the cohort, we will 

develop methods to optimize the bias-variance tradeoff when using inverse probability weighted 

marginal structural models in a wide range of settings. More specifically, we will: 

 

Aim 1: To develop an algorithm to visualize the impact of the bias-variance tradeoff for each 

confounder, and the effect on the estimate of interest and propensity score overlap 
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Aim 2: To explore the extent to which parametric models may have different estimates of the 

association of incident prepregnancy obesity with stillbirth and infant mortality when 

compared to more nonparametric methods. 

 

Hypothesis: The estimates from different methods will have different magnitudes. 

 

Aim 3: To evaluate the relation of newly-developed prepregnancy overweight and obesity with 

stillbirth and infant mortality of second pregnancies in a cohort of 212,889 pregnancies 

from PA, during 2003-2013.  

 

Hypothesis: newly-developed prepregnancy overweight and obesity will increase the risk 

of stillbirth and infant mortality  

1.3 EXPECTED OUTCOME 

This work will extend our understanding of the role that pre-pregnancy obesity plays in shaping 

the risk of stillbirth and infant mortaltiy. We will quantify the magnitude of the association of 

incident pre-pregnancy obesity on stillbirth and infant mortaltiy, as well as the impact of 

parametric modeling assumptions on estimating this association. In addition, the visual tools 

developed in this work will provide researchers in a wide range of settings with a valuable means 

of making informed bias-variance trade-off decisions when using inverse probability weighted 

estimators.  
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2.0  BACKGROUND 

2.1 OVERVIEW OF PERINATAL MORTALITY  

Perinatal mortality, defined as fetal death and neonatal death, is a commonly used indicator of 

a country’s overall health and well-being in relation to access to and quality of health care, 

maternal health, and socioeconomic conditions. Perinatal loss can have detrimental effects for 

maternal physical and mental health, in addition to having psychosocial consequences for 

the family13. After stillbirth, one in five women suffer from depression, anxiety or post-traumatic 

stress disorder14–16. Higher parental mortality is also observed after early loss of her children17. 

Furthermore, women experiencing perinatal loss have higher risk of the recurrence of adverse 

pregnancy outcomes and complications in subsequent pregnancies18–20.The impacts of perinatal 

death are long-term. It is therefore crucial to address perinatal loss to improve overall maternal 

health.  

Stillbirth is defined as an intrauterine fetal death that occurs at 20 or more weeks of 

gestation in United States (28 or more weeks in other countries). Antepartum stillbirths (fetal death 

before labor) mostly happen at later gestational ages, while intrapartum stillbirths (fetal death 

during labor) occur at earlier gestational ages. Stillbirth is thought to be mainly a result of placental 

pathology-related causes such as abruption or retroplacental hematoma. Some other causes include 

infection, maternal medical complication, congenital anomalies, cord abnormality and disorders. 

Around 30% stillbirths occurred without a specified cause 21.  

Infant mortality is formally defined as live-born babies who die within their first year of 

life. This outcome can be further divided as neonatal death (before 28 days of their life) and post-
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neonatal death (during 28- 364 days of their life). A 2013 National Vital Statistics report in United 

States showed that congenital malformation (20%), preterm or low birth weight-related disorder 

(18%), sudden infant death syndromes (SIDS) (7%), maternal complication (7%) and unintentional 

injuries are the leading causes of infant death. Neonatal death is mostly caused by congenital 

malformation and pre-term birth; post-neonatal death is mostly caused by SIDS (sudden infant 

death syndrome) and unintentional injuries. Effective interventions have decreased these leading 

cause-specific infant mortalities except preterm-related disorder, which increased or remained the 

same. Perinatal mortality is more prevalent in low-income countries but is still overlooked as a 

public health burden among families in high-income countries22,23. 

Perinatal mortality varies across different maternal characteristics. Women with the 

following characteristics are at higher risk: aged under 20 or 40-54 years, non-Hispanic Black race, 

having first pregnancy, having comorbidities, and multiple deliveries or those who are not 

married1. Among high-income countries, maternal obesity is one of the most important risk factors. 

Literature has shown maternal obesity can affect maternal and fetal health from many aspects: 

Women who are obese have increased the risk of maternal complication during pregnancy such as 

gestational diabetes and preeclampsia. The birthweight of the child is highly affected by maternal 

obesity, with outcomes such as macrosomia or small size for gestational age due to growth-

restriction. Obese women also have higher risk of having babies/fetuses with congenital 

anomalies24 However, these congenital anomalies are hard to detect via ultrasound in obese 

women, which might affect the decision for early pregnancy termination25. Maternal obesity is 

also related to inflammation which might affect placenta function. Overall, maternal obesity has 

potentially important impact on maternal and fetal health, as well as the process of delivery, clearly 

showing it is an important risk factor to prevent perinatal mortality.  
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Disparities are observed for perinatal mortality along with other health outcomes in high-

income countries. In these countries, race/ethnicity and socioeconomic status disparities are most 

apparent. These disparities originate from complex structural risk factors: underlying 

socioeconomic factors (low education levels, living in poor neighborhoods) and then reflect on the 

proximate factors related to perinatal outcomes, such as maternal factors (age, lifestyle, BMI), 

nutritional factors such as food availability, and health care factors such as care-seeking attitudes) 

26. These downstream factors provide opportunities for intervention on race/ethnicity and those 

with socioeconomic disadvantages. Understanding the mechanism of how these disparities affect 

perinatal outcomes is the promising way to diminish the health gap.  

Currently, the United States has an uncharacteristically high infant mortality rate of 6 per 

1000 live births and 5.96 stillbirth per 1000 live births and fetal deaths in 2013,2 relative to other 

high-income countries (2.8 infant deaths per 1000 live births in Japan, 3 infant deaths per 1000 

live births in Sweden27). Since the early 20th century, infant mortality in the U.S. dropped 

dramatically, but stabilized again in 2005, with only slightly decreased rates observed in recent 

years. Stillbirth has a similar trend although rates remained relatively similar since 200627.  

Socially-patterned disparities for both infant mortality and stillbirth might partially explain 

the limited decline23. Socially disadvantaged groups tend to have higher risks of infant mortality 

and stillbirths. Another plausible reason of infant mortality and stillbirths might due to the 

epidemic of women who are overweight (56%) and obese (30%), an identified risk factor for 

perinatal mortality3. Of note, maternal obesity may be one of mechanisms for socially-patterned 

disparities in perinatal mortality. To improve perinatal outcomes in U.S., we need to identify 

specific prevalent risk factors and understand the mechanisms of disparity on perinatal mortality.  
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2.2 MATERNAL OBESITY AND INCREASED RISK OF PERINATAL 

MORTALITY  

2.2.1 Prepregnancy obesity 

2.2.1.1 Measurement  

Body mass index (BMI), calculated as weight (in kilograms) divided by height (in meters) squared, 

is usually used to measure obesity status and approximate overall maternal nutritional status before 

pregnancy. BMI, a common measure in clinical and research settings, has been shown to reflect 

percent of body fat among pregnant women. The relationship between BMI and body fat is stronger 

at early gestational ages and therefore often used to study the association between pre-pregnancy 

obesity with adverse pregnancy outcomes28. Almost all current literature use BMI to define pre-

pregnancy obesity status by the World Health Organization (WHO) definition categories: 

underweight (<18.5 kg/m2), normal weight (18.5-25 kg/m2), overweight (25-30 kg/m2), class I 

obesity (30-35 kg/m2), class 2 obesity (35-40 kg/m2), class 3 obesity (>40 kg/m2) Most of the 

height and weight are self-reported or measured at the first perinatal visit. Though self-reported 

BMI tends to be lower due to overestimated height and underestimated weight, grouping women  

into appropriate BMI categories by self-reported BMI has an accuracy around 80% 29. 

Revised birth certificate data includes information for calculating maternal pre-conception 

BMI provides an opportunity for using large population-based data to evaluate maternal obesity 

and adverse pregnancy outcome30. Park et al.,31 examined the validity and reliability of BMI 

obtained from birth certificates by comparing with BMI values acquired from WIC program in 

Florida 2005. They showed BMI obtained from birth certificates are generally reliable and valid 

except for overestimating prevalence of underweight and obesity. Bodnar et al.,32 showed BMI 
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category of birth certificate is highly consistent with  medical record among normal weight/ 

overweight and obese women. However, the agreement of BMI category between birth certificate 

and medical records varies by race/ethnicity and gestational age at delivery. The bias introduced 

by misclassification of BMI categories needs to be carefully evaluated when using BMI values 

obtained from birth certificate. Overall, use of BMI values obtained from birth certificates is 

an imperfect but practical measurement to represent pre-pregnancy obesity status.  

2.2.1.2 Prepregnancy obesity and perinatal mortality  

There have been several studies focused on determining pre-pregnancy obesity and 

increased risk of perinatal mortality with odds ratios ranging from 1.1 to 2.7. Two meta-analyses 

provided summarized estimates for these relationships: Aune et al.,33 found per 5-unit increases in 

pre-pregnancy BMI increased risk of perinatal death by 16%, stillbirth by 24% and infant mortality 

by 18%. Non-linear relationships of BMI were observed in most of outcomes except stillbirth. 

Meehan et al., 34 showed 42% and 103% increased risk of infant death compared to normal weight 

women among all obese women and class 1 obese women, respectively. One population-based 

case control study using sister controls to better account for potential uncontrolled environmental 

and genetic confounders shared within family.  They found the association of obesity and stillbirth 

is stronger when it is compared to their non-obese sister (OR=4.04, 95%CI: 2.25, 7.25) than to 

population non-obese controls (OR=2.41, 95%CI: 1.83, 3.16)35. This study demonstrated pre-

pregnancy obesity itself increased risk of perinatal death after controlling for family-shared 

confounders.  

Prepregnancy obesity also synergistically increases the risk of adverse perinatal outcomes 

when some other known risk factors present, such as depressive symptoms36, advanced maternal 

age (>35 years)37 and inadequate gestational weight gain38. Gestational age is another important 



9 

contributor to perinatal death. When stratified by gestational age, the associations between 

maternal prepregnancy BMI and infant death/ stillbirth are more pronounced in terms 

birth/gestation periods (≥37 weeks) as shown in three large cohort studies5,39,40 Although 

biological mechanisms are not well understood, studies examining cause-specific mortality 

relative to reported pre-pregnancy overweight and obesity are related to birth asphyxia and other 

neonatal morbidities; grades 2 and 3 obesity are more related to congenital anomalies and sudden 

infant death syndrome5,39. In terms of cause-specific stillbirth, a case-cohort study in the US 

demonstrated that the association between BMI and stillbirth is stronger among antepartum 

stillbirth and obesity and is related to placental disease, hypertension, fetal anomalies and umbilical 

cord abnormalities41.  

2.2.1.3 Prepregnancy obesity across pregnancies  

Despite its prevalence and potential importance in shaping adverse birth outcomes, current 

literature on the relation between prepregnancy obesity and fetal / infant death are difficult to 

interpret from a policy standpoint. Among those studies, pre-pregnancy obesity is a left-truncated 

event because the timing of obesity onset is undetermined. Consequently, we cannot differentiate 

whether the relation between obesity and perinatal mortality is driven by long-standing obesity, 

newly-occurring obesity, or some combination of both. Population-level reductions of the 

prevalence of prepregnancy obesity can be accomplished by reducing the body mass of women of 

childbearing age or by preventing the onset of obesity in women without obesity of childbearing 

age (or both). These different obesity prevalence reduction strategies will likely have different 

impacts on stillbirth and infant mortality.  

One of the methods to approximately quantify the association of newly-occurring obesity 

is by examining prepregnancy BMI longitudinally. By considering the prepregnancy obesity status 
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of previous pregnancies, we can identify if pre-pregnancy obesity of current pregnancy is 

“incident” or “prevalent” obesity. Currently, only three studies have examined the association of 

pre-pregnancy obesity on adverse pregnancy outcomes across multiple pregnancies. Two studies 

focused on inter-pregnancy weight change42,43, which is defined as the difference of prepregnancy 

BMI of their first and second pregnancies (e.g. 2-4 unit of BMI increase) while other study looked 

at BMI category changes between first and second pregnancies44 (e.g. normal weight to 

overweight).  

A national Swedish study42 with 151,025 women examined the association of inter-

pregnancy weight changes between first and second pregnancies and risk of stillbirth of the second 

pregnancy. They found those women with a 3 or more unit increase in BMI had 1.63 (95% CI: 

1.20-2.21) times higher risk compared to those had stable BMI (-1.0 and 0.9 unit change). They 

indicated that the association of weight changes are independent from the association of being 

overweight or obese in the second pregnancy, since the result is consistent after they constrained 

their analysis to women whose BMI were less than 25 in both pregnancies. The other large Sweden 

population-based study43 of 456,711 women examined inter-pregnancy weight change and 

perinatal mortality stratified by BMI in their first pregnancy (less than or equal to/greater than 25). 

They demonstrated that among women who were underweight or normal weight in their first 

pregnancy, women with 4 or more BMI unit increase between first and second pregnancies have 

a 55% higher risk of stillbirth and a 29% higher risk of infant mortality, compared to women with 

stable BMI (changes within 1 unit). They also found there is dose-response relationship between 

risk of stillbirth increase in BMI. In addition, for those women who were overweight or obese in 

their first pregnancy, inter-pregnancy weight loss could reduce infant mortality.  Whiteman et al.,44 

showed that increased risk of stillbirth is associated with BMI gain between first and second 
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pregnancy as well in a Missouri maternally-linked birth cohort (N=218,389). The hazard ratios for 

stillbirth are from 1.2- 1.5 among the following subgroups of BMI category change between 

pregnancies: normal to overweight (1.2, 95% CI: 1.0-1.4), normal weight to obese (1.5, 95% CI: 

1.1-2.1), overweight to obese (1.4, 95% CI: 1.1-1.7), obese to obese (1.4, 95% CI: 1.2-1.7). 

These studies have provided an indication of the relation between obesity onset and adverse 

pregnancy outcomes by examining BMI status across pregnancies. However, the studies are 

limited for several reasons: First, due to different purposes of their studies, they examined the 

association between inter-pregnancy weight change and perinatal mortality. Those results were 

presented as the range of BMI changes and we cannot determine if prepregnancy BMI reaches the 

range for being defined as obese for current pregnancy. Therefore, we cannot differentiate whether 

the association is from a large weight change between pregnancy or prepregnancy obesity status 

of current pregnancy. Furthermore, these studies excluded women with stillbirth or infant death in 

their first pregnancy. This opens the door to potential selection bias, and results in poor 

generalizability for women at high risk of adverse pregnancy outcomes in second and higher order 

pregnancies. Second, these studies only include first and second pregnancies. Parity might modify 

these relationships. Finally, (and arguably most importantly) these studies did not control for prior 

pregnancy characteristics (e.g. GWG, preterm birth, mortality). It is well known that prior adverse 

pregnancy outcomes are strongly associated with subsequent adverse pregnancy outcomes. This 

lack of adjustment for prior pregnancy characteristics introduces the potential for strong 

confounding. We will address all these issues in the current work.   
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2.2.2 Gestational weight gain (GWG) during pregnancy 

2.2.2.1 Current gestational weight gain recommendations  

Weight gain during pregnancy affects pregnancy outcomes45 (e.g. birthweight46, infant mortality7), 

post-partum weight retention47 and long-term health of mother48 and offspring49. Outcomes often 

used to evaluate optimal GWG are fetal growth [includes small for gestational age (SGA) and 

large for gestational age (LGA)], gestational age (preterm or term birth), mode of delivery 

(emergency C-section), infant death, post-partum weight retention and childhood obesity. 

However, the optimal GWG to prevent adverse health outcomes is still yet to decide. Current 

recommendations are based on the 2009 Institute of Medicine (IOM) guideline which suggested 

the ranges of total GWG (lb) in 40th week specific to different maternal pre-conception BMI 

categories: 28-40 (underweight), 25-35 (normal weight), 12-25 (overweight) and 11-20 (obese). 

The recommended rate of weight gain in 2nd and 3rd trimester (lbs/ week) are: 1 (underweight or 

normal weight), 0.6 (overweight) and 0.5 (obese)50. Due to lack of evidence, GWG 

recommendation for subgroups, such as race or severity of obesity were not provided in current 

version of the recommendations. In addition, the IOM committee noted that more research is 

warranted, to evaluate effective dietary or physical activity interventions for achieving optimal 

GWG for better health outcome.  

Unfortunately, measurements of total GWG and rate of weight gain provided in this 

guideline is inappropriate to be applied to research for two reasons: first, total GWG is inherently 

related to gestation duration which is also an important contributor for adverse pregnancy 

outcomes (e.g. perinatal death, child development due to preterm birth etc.). Failing to control for 

gestation duration would bias the results. Second, current recommendations only addressed weight 

gain rate during 2nd and 3rd trimester, ignoring weight gain rates across different trimesters are 
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differnet50. Also, studies showed trimester-specific weight gain has different impacts on health 

outcomes. Weight gain during 1st trimester is related to the cardiometabolic profile of offspring51 

and their risk of gestational diabetes,52 while weight gain during 2nd and 3rd trimesters is related 

mainly to maternal body mass and neonatal size53. 

Two studies quantified biases by using three different GWG measurements- total GWG, 

average GWG (total GWG/ gestational age at delivery) and IOM adequacy ratio (total GWG/ 

recommended total GWG from the IOM guideline). Hutcheon et al. 54applied these three 

measurements to examine the association between GWG and preterm birth by using a simulated 

dataset with null association (true odds ratio=1). They found that all three measurements 

introduced bias to the results and magnitudes were non-negligible from odds ratio of 4.4 (95% CI 

3.6-5.4) to 1.6 (95% CI 1.3-2.0). Bodnar et al.55 compared results of using these three GWG 

measurements with results of using GWG z-score (a method controlling for effect of gestation 

duration) in examining associations with pregnancy outcomes (pre-term birth, SGA, and LGA). 

Results showed discrepant magnitudes of association between three traditional measurements and 

z-score in preterm birth but not in SGA or LGA. Overall, using these three measurements will 

introduce bias when the outcome of interest is related to gestational length. To address the bias, it 

is important to use a gestation duration-independent GWG measurement to provide valid results 

for future guideline updates. 

2.2.2.2 Methods to improve gestational weight gain measurement  

Several methods have been used to mitigate limitations in measuring GWG. Regression-based 

adjustment for gestational duration is as simple, appealing, and often used technique to account 

for its effect. Nevertheless, it may introduce collider bias when we include gestation duration in 

the model since it may be a mediator between total GWG and pregnancy outcomes56. Hinkle et 
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al., 57provided a different view that there is no direct relation between total GWG and pregnancy 

outcome (e.g. neonatal death) but rather their work was subject to  potentially strong confounding 

by unmeasured factors (longitudinal interactions between GWG and gestational age). Under this 

strong assumption, they demonstrated model-based adjustment for gestation duration can provide 

an unbiased and precise estimate of total GWG and neonatal death.  

Inspired by the concept of fetal growth curve58,59, gestational-age-specific z-score chart 

was created by using serial weight measurements at different gestational ages among healthy 

women with healthy pregnancy outcomes. Currently, five studies established gestational age-

specific z-score charts: two specific to different prepregnancy BMI (normal weight60, overweight 

or class 1-3 obese61), one generated from Malawi population62 and one generated from a 

population-based Swedish cohort and stratified by early pregnancy BMI categories (6 levels)63 and 

one international standard generated from eight countries64. By using these charts, total gestational 

weight gain can be expressed as gestation age-adjusted z-score for gestational age at delivery to 

provide a valid GWG measurement independent of gestation duration. Most currently existing 

gestational age-specific z-score charts are from small populations or another country. If the 

population used to generate charts is discrepant from the study population, the z-score-generated 

estimates might be biased and imprecise57. A gestational-age-specific z-score chart from a 

nationally representative population is warranted.  

GWG patterns and trajectories provide an overall picture of the relationship between GWG 

in each trimester and health outcomes. Different analytic methods were proposed to clarify these 

relationships such as using the conditional percentile approach to isolate independent effect of 

GWG in each trimester65; SITAR model (Super-Imposition by Translation and Rotation) to 

classify GWG pattern by biologically meaningful parameter (e.g. absolute GWG amount, timing, 
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and acceleration)66. Better knowledge of the relationship of GWG trajectories and health outcomes 

can inform clinicians to tailor trimester-specific GWG recommendation. 

2.2.2.3 Pre-pregnancy BMI as an effect modifier  

Pre-pregnancy BMI is known for modifying the association of GWG and pregnancy outcome. 

Studies suggested obese women would benefit from lower GWG while underweight women have 

a wider range of increase in GWG to achieve healthier outcomes67. The 2009 IOM guideline 

therefore defined optimal GWG by prepregnancy BMI levels: underweight, normal weight, 

overweight and obesity, but not by obesity severity. Some studies demonstrated that effects of 

GWG on pregnancy outcomes differed by severity of obesity as well. A study68 using Belgian 

cohort with 500,000 pregnancies showed weight loss in obese women decreased perinatal risks of 

LGA, macrosomia for all obese classes but risk of emergency cesarean delivery only in classes 1 

and 2. Two other studies defined optimal GWG by severity of obesity: Bodnar et al.,69 used 

gestational-age-specific z-score to examine GWG and adverse pregnancy outcomes among women 

in obesity classes 1-3 . They suggested optimal total GWG (kg) at 40 weeks is −4.3 to 9 for class 

1, −8.2 to 5.6 for class 2, and −12 to −2.3 for class 3 obese women. Faucher et al.,70 included 10 

articles summarized optimal total GWGs (kg): 5-9 for class 1,1-5 for class 2 and no weight gain 

for class 3 obesity, in order to minimize combined risk of SGA, LGA, and cesarean. Among 

overweight and obese women, excess GWG is related to increasing maternal fat rather than lean 

body mass; increasing fat increases risk of post-partum weight retention and long-term maternal 

obesity71. In addition to prepregnancy BMI, parity was shown to be a modifier in a study72 which 

suggests multiparous women should have lower GWG compared to nulliparous women in the same 

prepregnancy BMI category but this was not seen in other study73. There is not enough evidence 

to show that age, race/ethnicity, height, smoking status are effect modifiers for GWG72,73.  
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2.2.2.4 Joint association between prepregnancy BMI and GWG with perinatal mortality 

Few studies investigated joint associations of prepregnancy BMI and GWG and perinatal 

mortality, one of the most critical pregnancy outcomes. A population-based cohort study74 using 

Missouri birth certificate data (1990-2004) showed no association of GWG and risk of neonatal 

death among overweight women with term birth. David et al.,7 found that among non-obese 

women, insufficient GWG increased risk of infant death compared to women with adequate GWG 

in the same BMI category with odds ratios of 6.18, 1.47, 2.11 for underweight, normal weight, and 

overweight women respectively. Of note in this study, among obese women, excess GWG was 

protective for infant death with 49% decreased risk. A case-control study75 using the 1998 US 

National Maternal and Infant Health Survey data (with 4265 infant deaths and 7293 controls) 

showed obese women with GWG≧0.45 kg/week have highest odds of infant death (2.87, 95% CI: 

1.98-4.16) compared to non-obese women with GWG of 0.33-0.44 kg/week. Also, non-obese 

women have higher risk at very low GWG. Most of the studies defined insufficient, adequate and 

excessive GWG by compared GWG to 2009 IOM recommendations. When adjusting for the effect 

of gestational age, some constrained study samples to term births or included gestational age into 

regression models. Their results might be biased since infant death is related to gestational age-

related pregnancy outcomes (such as preterm birth or SGA)76. To better control for gestational age, 

one population-based cohort study38 investigated gestational-age-specific z-score of GWG and 

infant death by using linked birth-infant death records (2003-2011) in Pennsylvania (n=1,232,346). 

They found U-shaped associations between GWG and infant death among all prepregnancy BMI 

categories except in women with class 3 obesity, where both insufficient and excessive GWG had 

higher risk of infant death. Obese women, even with adequate GWG, still have higher risk of infant 

death compared to normal-weight women. They suggested avoiding very low or very high GWG 
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to lower risk of infant death. In terms of stillbirth, there are very few studies examining joint 

associations of pre-pregnancy BMI and GWG on stillbirth. The associations of GWG and 

stillbirths77,78(antepartum79 or intrapartum80) are still uncertain.  

2.3 RACIAL DISPARITY IN MATERNAL OBESITY AND PERINATAL DEATH  

2.3.1 Racial disparity in perinatal mortality  

There have been persistent racial disparity gaps in perinatal mortality. From 1960 to 2014, infant 

mortality among Non-Hispanic Black (NH-Black) decreased from 44.3 to 11.4 per 1000 live 

births, while for Non-Hispanic White (NH-White), the rate went from 22.9 to 4.8 per 1000 live 

births. Although infant mortality is decreasing in both groups, the racial disparity gap is wider: the 

rate ratios of NH-Black to NH-White are 1.9 (1960), 1.8 (1970), 2.1 (1987), 2.2 (2011) and 2.4 

(2014)81,82. This gap might continue to increase in 2020 as one study83 projected infant mortality 

in 2020. They showed infant mortality will decrease to 5.6 (95% CI: 5.4.0-6.5) for overall 

population, 5.5 (95% CI: 5.1-5.7) for NH-White and 12.8 (95% CI: 11.8-13.4) for NH-Black. The 

highest infant mortality rate will be observed among NH-Black with less than high school 

education (12.5, 95% CI: 12.4-13.0). Causes of infant mortality differ by race as well, specifically 

for neonatal but not in post-neonatal mortality84. The main causes of neonatal mortality are 

congenital malformations, low birth weight and maternal complications in NH-Black, as shown 

by Black-White differences of 1.3, 3.9 and 2.8 (per 1000 live births) respectively.  

Similarly, overall stillbirth rates decreased from 7.49 (1990) to 6.22 (2005) and was 5.96 

per 1,000 stillbirths and live births in 2013. Substantial declines were seen in late fetal death rate 
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(≧28 weeks). Racial disparity gaps in stillbirth have remained for decades; NH-Black had around 

2.2 times higher rate compared to NH-White. Although stillbirth rates are improving over time 

among NH-Black, rates are declining slowly from 12.8 (1990), 11.3 (2005) to 10.53 (2013) 

compared to NH-White: 5.9 (1990), 4.79 (2005) to 4.88 (2013)2,85,86.  

Racial disparity can be related to several factors: genetics, as well as individual and 

community-level social determinants87–89. Some of the risk factors are disproportionally 

distributed between NH-Black and NH-White, and it is also possible that some risk factors have 

more prominent effects among NH-Black84. Targeting these risk factors through community or 

individual-level interventions or earlier medical interventions are potential solutions to mitigate 

the disparity in perinatal mortality.  

2.3.2 Racial disparity in maternal obesity  

Maternal obesity may serve as a potential risk factor explaining racial disparity in perinatal 

mortality. First, pre-pregnancy BMI is higher among NH-Black with 34.8% obese and 26.9% 

overweight compared to NH-White with 22.7% obese and 24.1% overweight90. NH-Black also 

showed lower adherence to GWG recommendation and they tend to have less GWG compared to 

NH-White91–93.Headen et al. found racial disparity on inadequate GWG was modified by pre-

pregnancy BMI. NH-Black women have higher risk of GWG below IOM guidelines compared to 

NH-White and associations were only observed among pre-pregnancy underweight and normal 

weight groups with RR of 1.38 (95% CI: 1.07, 1.79) and 1.34 (1.18, 1.52) respectively91. 

Furthermore, several studies showed NH-Black have higher post-partum weight retention 

compared to NH-White94.  
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Second, the association of prepregnancy BMI and infant mortality may have a stronger 

association in NH-Blacks. One study95 using Missouri linked cohort dataset (n=1,577,082 birth 

from 1978 to 1997) found increased risk of neonatal mortality among women who were obese pre-

pregnancy. This was only seen among NH-Black: RR=1.8 (95% CI: 1.6, 2.0) but not in NH-White. 

Also, the association of pre-pregnancy obesity and stillbirth was stronger among NH-Black women 

(RR: 1.9 (95% CI:1.7, 2.1)) compared to NH-White women (1.4 (95% CI: 1.3, 1.5))96. Access and 

quality of perinatal care might be the plausible explanation to this discrepancy in neonatal 

mortality, while for stillbirth, higher prevalence of chronic hypertension might explain why NH-

Black women have higher prevalence of placental dysfunction increasing risk of stillbirth. In 

addition to these factors, GWG might be another reason why the effect of pre-pregnancy obesity 

on perinatal death varied by race/ethnicity groups. It is known pre-pregnancy BMI modifies the 

association between GWG and perinatal mortality. Discrepancies by race are shown in pre-

pregnancy BMI and GWG as well. The joint association of GWG and pre-pregnancy BMI might 

explain racial disparity on perinatal mortality. However, none of the studies have examined these 

complex interrelationships between racial disparity, pre-pregnancy BMI, GWG and perinatal 

mortality.  

While research identified plausible risk factors explaining racial disparity in perinatal 

death, it is important to prioritize interventions to target these risk factors. Quantifying the burden 

can be reduced if we could have eliminated certain risk factor from population is of public health 

significance. There has been a recent focus on quantifying the extent of racial disparity on perinatal 

mortality that is explained by pre-pregnancy obesity. Lemon et al.8 used a population-based cohort 

in Pennsylvania (n=1,058,461) and found pre-pregnancy obesity may explain 10% of racial 

disparity in stillbirths and infant death, while severe obesity may explain 5%. In other words, 6 of 
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61 excess infant deaths and 5 of 44 excess stillbirths in NH-Black may be a result of pre-pregnancy 

obesity. It is crucial to know the role of GWG in explaining racial disparity in perinatal mortality. 

Since it is relatively easier to intervene on GWG, we can take advantage of opportunities during 

regular perinatal visits by motivating mothers to maintain healthy behaviors during pregnancy. 

However, conventional methods to quantify the extent of racial disparity explained by GWG might 

fail to meet the assumptions. Prepregnancy BMI is modified the effect of GWG on perinatal 

mortality and it is disproportionally distributed among different race/ethnic groups. A more 

appropriate method is required to explain this complex relationship to determine valid estimates.  

2.4 GAPS OF CURRENT LITERATURE  

There are several critical issues that need to be addressed after reviewing current literature 

examining maternal obesity and perinatal mortality:  

First, among most of the literature studying prepregnancy obesity and adverse pregnancy 

outcomes, the timing of obesity onset is undetermined. Consequently, we cannot differentiate 

whether the relation between obesity and perinatal mortality is driven by long-standing obesity, 

newly-occurring obesity, or some combination of both. It is important to quantify this association 

since from a policy perspective, we can reduce prevalence of obesity in population by focusing on 

preventing onset of obesity among non-obese women, or by weight reduction among obese 

women. 

Second, there are few studies examining pre-pregnancy BMI longitudinally to investigate 

the association between prepregnancy BMI change between first and second pregnancies and 

perinatal mortality of second pregnancy. These studies further stratified analyses by prepregnancy 
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BMI at first pregnancy. By using this method, it is assumed the onset of obesity can fall between 

first and second pregnancy and the measured effect is close to newly obese. However, these studies 

are limited, in generalizability and potentially introduced collider stratification bias since they 

excluded women who had event (stillbirths or infant mortality) in their first pregnancy and did not 

control for the characteristics of last pregnancy.  

2.5 METHODOLOGY TO ADVANCE KNOWLEDGE OF CURRENT LITERATURE  

2.5.1 Bias-variance trade-off for inverse probability treatment weighting (IPTW)  

Properly adjusting for all plausible confounders between exposure and outcome allows for 

calculations of valid estimates. Theory-based causal graph approach97 is preferred over traditional 

modeling strategies for covariate selection, such as stepwise or change in estimate approaches 

which rely heavily on statistical significance testing9899. However, issues arise when including all 

covariates along with exposure variable to model the outcome of interest. High-dimensional 

covariates will lead to two problems (1) data sparsity especially when outcome is rare; (2) 

multicollinearity with exposure variable98. In addition, conventional regression methods cannot be 

used for adjusting time-varying confounders which are affected by prior exposure. This would 

introduce collider bias if time-varying confounders are included in regression along with exposure 

variable100.  

Inverse probability treatment weighted-regression9 is an alternative approach applied for 

controlling high-dimensional or time-varying confounders. It is a two-staged modeling strategy: 

First, we model exposure by using all the covariates and exposure history and generate weight for 
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each participant which is the inverse probability of receiving exposure; Second, we use these 

weights to create a pseudo-population and examine the relationship between exposure and 

outcome to acquire accurate estimate101. By doing this, we can assume in this pseudo-population 

that there is no association between exposure and other covariates but we also need to be aware 

other required assumptions: consistency, exchangeability, positivity and correct model 

specification to be able to make this inference. To better control for confounders, we would include 

all the plausible confounders and exposure history to get unbiased estimate with the price of losing 

precision of our estimate. This is because of high dimensional covariates will generate unstable 

weight. Covariate selection in constructing IPTW is a process of bias-variance trade-off11.  

There are several diagnostic tools used to examine those assumptions for constructing 

IPTW: covariate balanced diagnostics tool for time-fixed102 and time-varying103 to examine 

exchangeability and diagnostic tool for examining bias due to violation of experimental treatment 

assignment. In terms of bias-variance trade-off, weight truncation with different percentiles11 or 

using AIC and cross-validation methods for overall marginal structure model fitting104,105 are 

available. However, there are no published tools available to evaluate the impact of each variable 

on bias and variance of the estimate. Developing an easy-to use tool can help with examining these 

assumptions while constructing IPTW is warrant since it will encourage more researchers to 

accurately use IPTW through step-by-step evaluations.  

2.6 SIGNIFICANCE  

This proposed study will advance knowledge of the associations of maternal obesity on perinatal 

mortality from a policy decision-making perspective. First, we will establish our analytic cohort 
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by using a large population-based cohort in Pennsylvania to synchronize and quantify association 

of becoming pre-pregnancy obese and stillbirth and infant mortality. First, we will apply and 

compare four different approaches with different reliance on the parametric modeling assumption 

to estimate the effect of interest. Second, we will further explore the effect of transiting from 

normal weight to overweight or obese on the risk of stillbirth and infant mortality. Third, the 

visualization tool developed in this study will assist researcher in variable selection to construct 

inverse probability weights. Our goal is to use practice-based study designs and analytic methods 

to provide evidence for the association of maternal obesity and perinatal mortality and to help 

clinicians and policy experts with decision making.  
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3.0  VISUALIZATION TOOL OF VARIABLE SELECTION IN BIAS-VARIANCE 

TRADEOFF FOR INVERSE PROBABILITY WEIGHTS 

3.1 ABSTRACT 

The main advantage of inverse probability weighted (IPW) method is how it adjusts for time-fixed 

or time-varying confounder issues, compared to conventional regression methods. However, high-

dimensional covariates may cause a positivity violation resulting in unstable weights. Our 

objective was to develop a SAS macro to generate plots demonstrating the impact of each 

confounder on the bias and variance of IPW estimates, as well as the propensity score overlap. We 

show how this SAS macro can be used to visualize the impact of problematic confounders of the 

relation between obesity and stillbirth in a study of 363,610 pregnancies from Pennsylvania, 

between 2006 and 2013. Our results suggest careful consideration of the analytic impact of all 

confounders should be made when fitting IPW estimators. 

3.2 INTRODUCTION 

The proper controlling of confounding is essential for consistently estimating exposure effects in 

observational studies. Directed acyclic graphs (DAGs)106 have generally been preferred over 

statistical modeling strategies for confounder identification (such as stepwise or change in estimate 

approaches)107,108. However, while DAGs are an improvement, issues may arise when the 

minimally sufficient adjustment set is large relative to the sample size. Adjusting for all 
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confounding variables identified by a DAG may incur a variance penalty such that the overall 

mean squared error of the estimator is greater. This well-known bias-variance tradeoff can have 

an important impact on the quality of an inference from any study109. 

Inverse probability weighting (IPW) is one of the approaches often used in confounding 

adjustment, particularly in the presence of time-varying confounding affected by prior exposure110. 

Provided all confounders are properly accounted for, weighting creates a “pseudo-population” in 

which no confounding is present111. Weights for each study subject are constructed by taking the 

inverse probability of receiving their observed exposure. However, when the probability of being 

exposed or unexposed is close to zero or one, IPW estimators are known to suffer from problems 

due to highly variable weights112,113.These problems are worsened in the presence of high-

dimensional covariates114. 

To date, a limited number of diagnostic tools are available that signal problems with IPW 

estimators. These include simply taking the mean of the stabilize IPWs,115 evaluating the 

maximum IPW value, and visualizing the overlap in the propensity score between exposed and 

unexposed groups. To date, all such tools have relied on evaluating some function of the propensity 

score116.  Here, we propose an algorithm that extends this evaluation to the point estimate of 

interest. We develop a software program that will allow researchers to visualize the bias-variance 

tradeoff incurred by including or excluding a confounder from the propensity score model. 
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3.3 METHODS 

3.3.1 Empirical Setting 

We applied our SAS macro %bais_var to an empirical study using data from a population-based 

cohort from linked birth-infant death records and fetal death records in Pennsylvania, 2006-2013 

to investigate the association between incident obesity and stillbirth. Our analytic cohort consisted 

of second or third pregnancies from a group of women who were non-obese (defined as body mass 

index (BMI) less than 30 kg per m2) in their first pregnancy (363,610 pregnancies). Details on the 

process of constructing our analytic cohort were described in previous studies117. This study has 

been approved by the Institutional Review Board at University of Pittsburgh. Women with incident 

obesity were those who were normal weight at conception of the previous pregnancy and were 

obese (BMI ≧30 kg/m2) at conception of the index pregnancy. The outcome of interest was 

stillbirth, defined as fetal death at 20 or more weeks gestation. Because the outcome is rare, we 

refer to all odds ratios as risk ratios.  

We used causal diagrams to identify all potential confounders of the current pregnancy as 

well as those from their prior pregnancy (Appendix A). Several confounders were selected 

including maternal race and height as well as the maternal characteristics of prior and current 

pregnancy: pregnancy order, inter-pregnancy interval, age, maternal education, urban residence, 

percent Black residents, pre-pregnancy diabetes mellitus, pre-pregnancy hypertension, smoking 

status, and health insurance type. We also adjusted for prior pregnancy characteristics, including 

gestational weight gain, gestational diabetes, gestational hypertension, smoking status during 

pregnancy, gestational age, birth weight, birth facility level of neonatal care, neonatal intensive 



27 

care units (NICU) admission, use of the Special Supplemental Program for Women, Infants, and 

Children (WIC), breast feeding, mode of delivery, Apgar score, stillbirth, and infant death. Details 

on variable collection can be found in the previously mentioned study117.  

3.3.2 Analytic Methods 

Propensity score models for binary exposure were constructed by logistic regression to predict the 

probability of being exposed given adjusting for confounders. For those who were exposed, the 

denominator of IPW is the predicted probability of being exposed; for those who were not exposed, 

we used one minus the probability of being exposed in the denominator. To stabilize the weights, 

the marginal probability of being exposed/unexposed was used as the numerator for those who 

were exposed/unexposed.  

We used the mean squared error (MSE) as a summary statistic for bias and variance of the 

IP-weighted estimate. We presumed the estimate from the fully adjusted model (as determined via 

our DAG) was the unbiased (true) estimate. We calculated bias as the deviance between this 

“unbiased” estimate with the estimate from model excluding a certain confounder. In addition, we 

also showed impact of on bias-variance tradeoff from two-sided IPW truncation at 1st or 5th 

percentiles of the distribution as a comparison to the approach of removing certain confounders. 

Propensity score overlapping plots between exposed and unexposed groups were also generated 

to evaluate the impact of potential positivity violations on overall results.  

In total, we adjusted 30 categorical variables and 6 continuous variables, and estimated 

marginal risk ratios for the relation between incident pre-pregnancy obesity and stillbirth. 

%bias_var was used to generate plots and we input the following required parameters: dataset, list 

of categorical variables, list of continuous variables, binary exposure variable, binary outcome 
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variable, and unique identifier for each observation. The output of this macro consisting of two 

plots: the first plot displayed the odds ratios with 95% confidence interval from models that 

exclude the variable shown on the y-axis. The second plot shows the distribution (min, 25th, 50th, 

75th percentile, mean and max) of propensity score of obese and non-obesity pregnancies from the 

corresponding models. These plots were both sorted by ascending values of mean squared errors 

of the outcome model. 

3.4 RESULTS  

Graphs of adjusted risk ratios obtained after excluding each confounder are provided Figure 1a. In 

our example, we identified two confounders (prior pre-pregnancy BMI and prior gestational 

weight) to have an important impact on the point estimate. Excluding one of them greatly improved 

overall MSE. As shown in Figure 1(left panel), the much larger MSE value for the model that 

included prior pregnancy BMI was largely the result of a severe lack of propensity score overlap 

(Figure 1: right panel). Based on these findings, we further modified our propensity model by 

excluding the BMI of prior pregnancy (Figure 2) or excluding both prior pregnancy BMI and prior 

gestational weight gain (Figure 3) and running the visualization tool again. Once these variables 

were removed, all models had a smaller MSE, and the propensity score plots for the exposed and 

unexposed suggested good overlap.  
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3.5 DISCUSSION 

We developed a tool to visualize the impact of each confounder on characteristics of the point 

estimate of interest and applied it to estimating the IP-weighted association between prepregnancy 

obesity and stillbirth in a cohort of 363,610 pregnancies from Pennsylvania. Our results 

demonstrated the advantages of adopting this visualization tool for identifying highly influential 

confounders based on the bias and variance of the point estimate, and the overlap in the propensity 

score of the exposure of interest. Based on extensive prior research, it is reasonable to assume that 

prior pre-pregnancy BMI and prior gestational weight gain act as important confounders of the 

relation between current pre-pregnancy obesity and stillbirth. However, our findings suggest that 

the degree of association between these confounders and pre-pregnancy obesity makes it such that 

adjusting for them leads to sub-optimal estimation.  

When presented with a problematic confounder, a handful of options exist to manage its 

impact. One option is to simply remove the confounder from the model. Provided the actual 

confounding impact is negligible, this is the simplest approach. For a true confounder, however, 

one may use doubly robust collaborative targeted minimum loss-based estimation (cTMLE)118. 

With cTMLE, one may adjust for the confounder in the outcome model but exclude it from the 

propensity score model. In doing so, confounding is adjusted for without sub-optimal performance 

caused by non-overlapping propensity scores 119.   

An important limitation of our tool is that it is designed to only exclude one confounder at 

a time. We simplified the algorithm without imposing a functional form on these covariates or 

including interaction terms in the propensity score models. Importantly, we are also aware that the 

incentive of using propensity scores is to create balanced groups between exposed and unexposed 

groups in terms of covariates. Our assessment of the impact of each confounder on the point 
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estimate might conflict with the purpose of the propensity score as a “design” phase tool120. 

However, our tool addressing the issue of selection of variables for propensity scores plays 

important roles in obtaining unbiased and efficient estimates121.  

This user-friendly macro can serve as the first step to visually diagnose the impact of each 

confounder on the point estimates as well as propensity score distributions. It is especially useful 

for identifying extreme violations of the positivity assumption.  

3.6 FIGURES 
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Figure 1. Risk Ratios and propensity score overlap for stillbirths among obese vs. non-obese pregnancies by models with full model of adjusting all the 
confounders 
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Figure 2. Risk Ratios and Propensity Score Overlap for stillbirths among obese vs. non-obese pregnancies by models with full model of adjusting all the 
confounders excluding prepregnancy BMI of last pregnancy 
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Figure 3. Risk ratios for stillbirths among obese vs. non-obese pregnancies by models with adjusting for different confounder sets all the confounders 
excluding prepregnancy BMI and gestational weigh gain of last pregnancy 
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4.0  NONPARAMETRIC ESTIMATION OF THE ASSOCIATION OF INCIDENT 

PREPREGNANCY OBESITY WITH STILLBIRTH AND INFANT MORTALITY IN A 

POPULATION-BASED COHORT 

4.1 ABSTRACT 

Prepregnancy obesity increases risk of perinatal mortality; few studies have evaluated whether 

estimates are from longstanding obesity or newly-developed obesity. Additionally, researchers 

relied exclusively on parametric models, requiring correct assumptions for consistent estimation. 

Our study explored the impact of parametric assumptions on the association of prepregnancy 

obesity with stillbirth and infant mortality. We focused on incident obesity by analyzing a cohort 

of women who were non-obese at first pregnancy from linked birth and death records in 

Pennsylvania (2003-2013). Incident obese pregnancies were from women whose body mass index 

became ≥30 kg/m2. We used parametric g computation, semiparametric inverse probability 

weighting (IPW), and parametric/nonparametric targeted minimum loss-based estimation (TMLE) 

to estimate the association of incident prepregnancy obesity with each outcome. Compared to non-

obese pregnancies, incident obese pregnancies had 1.8 (95% CI: -0.7, 4.3) more stillbirths per 

1,000 pregnancies using parametric g computation. Parametric TMLE generated similar findings. 

However, for IPW and nonparametric TMLE, the risk differences were 2.4 (95% CI: 0.7, 2.7) and 

3.3 (95% CI: 1.5, 5.0) excess stillbirths, respectively. Only weak associations were found in infant 
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mortality. Our results suggest incident obesity increased risk of stillbirth. Parametric assumptions 

can play an important role in influencing estimates of this relationship. 

4.2 INTRODUCTION 

Relative to other wealthy countries, women of childbearing age in the U.S. are subject to a higher 

risk of stillbirth and infant mortality122,123. Perinatal death can have important effects on mental 

and physical heath, as well as a family’s psychological, emotional, and social wellbeing 124–126. As 

such, a better understanding of the etiology of perinatal death is central. Evidence suggests a strong 

association of prepregnancy obesity with higher risk of stillbirth 127 and infant mortality 128. In 

light of the overweight (56%) and obesity (30%) epidemics among women of childbearing age in 

the United States 129, maternal obesity may be a particularly important driver of the excess stillbirth 

and infant mortality in the US. 

Despite the importance of this relationship, two major challenges have limited our ability 

to identify and estimate the causal effect of prepregnancy obesity on stillbirth and infant mortality. 

First, because obesity status cannot be assigned via randomization, cause-effect interpretations rely 

more heavily on parametric assumptions about the nature of the exposure-outcome relation 130. 

Indeed, such assumptions are commonplace, and often involve distributional (e.g., normal or 

binomially distributed outcome), functional form (e.g., identity or logit link, linear or polynomial 

terms for continuous independent variables), and no interaction (e.g., no exposure-confounder or 

confounder-confounder interactions) components. Second, the onset of obesity is unknown in most 

studies. As a result, it is unclear whether estimated associations are the result of longstanding 

obesity, obesity that recently developed, or some combination of the two. The causal effect of 
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obesity on stillbirth and infant mortality is likely to be different if a woman became obese in the 

previous year versus in the previous decade 131–134.  

In this study, we use data from a population-based Pennsylvania cohort to estimate the 

association of obesity with stillbirth and infant mortality in a way that overcomes two major 

obstacles in prior research. First, we explore the extent to which parametric models can alter the 

association of prepregnancy obesity with stillbirth and infant mortality when compared to more 

nonparametric methods. Second, we focus on incident obesity by restricting all analyses to a subset 

of women whose obesity onset time is bounded.  

4.3 METHODS 

4.3.1 Conceptual framework  

The perfect (albeit impossible) study for quantifying the effect of prepregnancy obesity on stillbirth 

and infant mortality would be an ideal randomized trial among fully compliant reproductive-aged 

women who are not obese and not pregnant at baseline. Women would be randomized into 

exposure groups (e.g., remain non-obese or become obese), and would be followed until their 

terminal event (stillbirth, infant mortality, or a competing event) or the end of study follow up 

(whichever came first). The effect of prepregnancy obesity could then be estimated by simply 

contrasting the proportion of events in each group. 

Were such a study possible, several challenges in defining and estimating the effect of 

obesity on stillbirth and infant mortality could be handled with relative ease. These include: 1) The 

ability to define cause-effect relations using the counterfactual modeling framework and, 
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importantly, to articulate what compliance with the study protocol would precisely entail 134; 2) 

The ability to properly account for competing risks, including infertility (i.e., no pregnancy) and 

miscarriage 135 3) The absence of confounding (in expectation), which would enable effect 

estimation without resorting to statistical (namely parametric) adjustment for a (possibly) high-

dimensional set of covariates; 4) The ability to clearly define the onset of the risk period in each 

group, which corresponds to the onset of the obesity status in the exposed group. 

As with all observational studies examining the relation between obesity and health 

outcomes, the information of our study is insufficient to fulfill first and second criteria.  Here, we 

evaluate the impact of unnecessary parametric assumptions on the relation of prepregnancy obesity 

with stillbirth and infant mortality in a cohort of women who were non-obese in their first 

pregnancy. 

4.3.2 Study population 

We use data from a population-based cohort study linking birth and infant/fetal death records in 

Pennsylvania from 2003-2013 (n=1,551,919 singleton pregnancies). We confirmed birth-death 

matching and plurality for all data and created a unique identifier for each woman to link 

consecutive pregnancies by using a sequential, deterministic linkage strategy 117,136,137.  Details of 

the linkage process are described in the Appendix B. Pennsylvania used revised birth certificates 

in 2003 and fetal death certificate in 2006 which included body mass index (BMI) information. 

Therefore, we excluded women with stillbirths before 2006 (4,006 women, 5,168 pregnancies) 

due to unavailable BMI measurements, and restricted stillbirth analysis to records from 2006-2013. 

To assess the relation between incident prepregnancy obesity and adverse pregnancy 

outcomes, we restricted our analysis to the sample of women with two or more pregnancies from 
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2003 to 2013 and a prepregnancy BMI of <30 kg/m2 in their first identified pregnancies during 

this period (332,357 women, 769,758 pregnancies). We further excluded women with questionable 

data (non-logical age: 1,167 women, 3,349 pregnancies; non-logical inter-pregnancy interval: 92 

women, 316 pregnancies), or prior twin gestation (5,359 women, 8,636 pregnancies). 

Our final analytic sample consisted of the second and/or third pregnancies among women 

who were not obese at their first pregnancy. Of note, for the women who became obese in their 

second pregnancies, their third pregnancies were not included in our analysis. Excluding 

pregnancies after the onset of obesity is consistent with our study objective, which was to examine 

this association among pregnancies without an obesity history. Overall, 394,072 pregnancies for 

the infant mortality analysis (2003-2013), and 363,610 pregnancies for the stillbirth analysis 

(2006-2013) were available (Figure 6). This study has been approved by the institutional review 

board at the University of Pittsburgh.  

4.3.3 Outcome, Exposure, and Confounders 

Stillbirth was defined as fetal death at 20 or more weeks gestation. Infant mortality was defined as 

the death of live-born infant at <365 days after delivery. Prepregnancy BMI was calculated as self-

reported weight (kg) divided by height (m) squared and categorized as non-obese (< 30 kg/m2) or 

obese (≥ 30kg/m2) 138.  

Confounders were identified as the minimally sufficient adjustment set of the causal 

diagram depicted in Appendix A 106. These confounders were maternal characteristics (age, 

race/ethnicity, height, education), parity, inter-pregnancy interval, urban residence, percent Black 

residents, prepregnancy diabetes, prepregnancy hypertension, smoking status, marital status and 

insurance. We also adjusted for characteristics of the prior pregnancy, including gestational weight 
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gain, gestational diabetes, gestational hypertension, smoking status during pregnancy, gestational 

age, birth weight, birth facility level of neonatal care, neonatal intensive care unit admission, 

Women, Infants, and Children program usage, breast feeding, mode of delivery, apgar score, 

stillbirth, and infant death. 

For all parametric models, categorical variables were grouped based on the levels outlined 

in Table 1 and 6, while continuous variables (inter-pregnancy interval, maternal height, gestation 

age, gestational weight gain, and birthweight of last pregnancy) were fit with 4 knot restricted 

quadratic splines 139.  

Details on variable collection have previously been published 140. Briefly, medical records 

were used to obtain information on maternal characteristics (race/ethnicity, age, education, marital 

status, smoking status), parity, delivery payment method (private, Medicare, other), prepregnancy 

diabetes or hypertension, the address of primary residence gestational age at delivery, and level of 

neonatal care available in the birth facility (three levels). We used county-level federal information 

processing standards codes of the primary residence address to compute a measure of urbanity and 

the proportion of Black residents by applying Urban-Rural Continuum Codes (U.S. Department of 

Agriculture, Economic Research Service) 141.Inter-pregnancy interval was calculated as the 

interval between delivery date of last pregnancy and conception date of current pregnancy. 

Gestational weight gain was calculated as z scores by applying a gestational-age- and -BMI 

specified z-score chart 142,143.  

4.3.4 Missing Data 

Our final analytic sample consisted of 394,072 pregnancies from 320,677 unique women. Of these, 

24% of the pregnancies had records with missing values on variables of interest. We imputed these 
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missing data 10 times using multiple imputation via chained equations 144.Our imputation models 

included variables of analytic interest without missing values (year of birth, infant death/stillbirths, 

breastfeeding intentions, smoking during pregnancy, neonatal level of care, infant admission into 

the neonatal intensive care unit) as well as several auxiliary variables (mother ID, county-level 

federal information processing standards codes, census tract, facility code, presence of a congenital 

malformation, mother being foreign born, whether labor was attempted, plans for adoption, 

infertility treatment, labor induction, and premature rupture of the membranes) to impute missing 

values on prepregnancy weight and height, weight at delivery, age, race/ethnicity, parity, smoking 

status prior to pregnancy, education, insurance, marital status, urban residence, enrollment in 

Women, Infants, and Children program, prepregnancy diabetes/hypertension, Apgar scores, birth 

weight, gestational age and infant sex. All analyses were conducted separately in each imputed 

dataset, and the results from each imputation were combined using standard equations 145. 

4.3.5 Statistical analysis 

4.3.5.1 Estimands 

Our interest lies in estimating the marginal association between incident obesity and adverse 

pregnancy outcomes on both the risk difference and risk ratio scales: 
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where the binary obesity status (X) was coded as 1 if obese and zero otherwise, the binary outcome 

status (Y) was coded as 1 if the event occurred and zero otherwise, and where C indexes all 

confounders outlined in the previous section. Events were stillbirth and infant death, analyzed as 

separate outcomes. These estimands can be interpreted as the association between obesity and 

pregnancy outcomes not attributable to the confounding variables listed above. 

4.3.5.2 Estimators 

To quantify the estimands defined above, we used parametric g-computation 146, semi-parametric 

inverse probability weighted (IPW) estimation 110, and parametric and nonparametric targeted 

minimum loss-based estimation (TMLE) 147. Each approach relies on the specification of an 

exposure and/or outcome model, defined nonparametrically as:  

 

 

where f ( ) and g ( ) are arbitrary functions of the confounders (C) and the exposure (X) defining 

the relationship between right- and left-hand side of each respective equation. These models are 

typically referred to as the propensity score model, and the outcome model, respectively, and are 

often assumed to be logistic regression models when the exposure and outcome are binary. 

However, as in any observational study, we do not know the true form of these relationships 

encoded in f() and g(). 

We first used parametric g computation to estimate the association of prepregnancy obesity 

with stillbirth and infant mortality. g Computation relies on correct parametric specification of the 

outcome model function . This can be achieved by (i) regressing the observed outcome 
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against the exposure and confounders 148 (ii) predicting outcomes for all pregnancies under 

exposed and unexposed settings, (iii) computing the average of each of these predicted outcomes, 

and (iv) contrasting these averages to quantify the estimand of interest. With a time-fixed exposure 

such as in our setting, the g computation estimator is equivalent to model-based standardization 

149. All listed confounders were included in the outcome model. Standard errors were obtained 

using the normal interval bootstrap with 100 resamples 150. 

Semiparametric IPW estimation was implemented by constructed IPWs using the quantile 

binning method 151 which specifies the propensity score functional  as a standard (i.e., 

parametric) logistic model. These models are semiparametric because they are obtained from the 

combination of a parametric (finite-dimensional) propensity score model with a nonparametric 

(infinite-dimensional) outcome model 152. All listed confounders were included in the propensity 

score model. Parameters corresponding to the risk difference and risk ratio from linear and log-

linear regression models were quantified via nonparametric maximum likelihood estimation, with 

each pregnancy’s contribution to the likelihood weighted by the inverse of the probability of being 

in their observed obesity category. Standard errors were obtained using the robust variance 

estimator 153. 

TMLE is obtained by updating the g computation estimator using information from the 

exposure model (via the “clever covariate”) to better target the estimand of interest 147. We 

implemented TMLE parametrically and nonparametrically. 

In the parametric approach, both the propensity score model and the outcome model were 

estimated via standard logistic regression. When implemented nonparametrically, both the 

propensity score and outcome models were specified using an ensemble machine learning method 

(SuperLearner) 154 to create an optimally weighted combination of predictions from a library of 
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algorithms. In our case, “optimal” was defined using a 5-fold cross-validated L2 loss function 155. 

Our SuperLearner library included the arithmetic mean, neural networks, multivariate adaptive 

regression splines, least absolute shrinkage and selection operator, generalized additive models, 

random forests, and gradient boosted machines. We also included generalized linear models with 

second order polynomials and two-way interactions of the main terms. A cross-validated search 

over the (hyper)parameter space was also conducted for random forests, gradient boosting, least 

absolute shrinkage and selection operator, and generalized additive models. All listed confounders 

were included in both the propensity score and outcome models. Standard errors were estimated 

by taking the variance of the efficient influence function.  

4.4 RESULTS 

In our analytic cohort comprised of second and third pregnancies, around 11% of the pregnancies 

developed obesity. Compared to pregnancies from women who were not obese prior to pregnancy, 

those with incident prepregnancy obesity were more likely to be Non-Hispanic Black, Hispanic, 

younger, with only a high-school education or less, and living in neighborhoods with higher 

percentage of Blacks. They were also subject to more prepregnancy diabetes and hypertension, 

had non-private insurance, were unmarried, and had shorter intervals between pregnancies (Table 

1and 7). In their last pregnancy, these women experienced more adverse pregnancy outcomes 

including infant death, fetal death and large for gestational age, as well as higher gestational weight 

gain, gestational diabetes, gestational hypertension (Table 6 and 8). 

As shown in Figure 4, among pregnancies from non-obese women, the adjusted stillbirth 

rate increased with pregnancy order, from 3.4 and 4.0 per 1,000 pregnancies for second and third 
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pregnancies respectively. Pregnancies from incident obese women had a higher adjusted stillbirth 

rate, which increased with pregnancy order as well: 5.5 and 7.7 per 1,000 pregnancies for second 

and third pregnancy respectively. Adjusted infant mortality patterns were similar, except infant 

mortality did not increase with pregnancy order among pregnancies from incident obese women.  

We found important differences in the estimated associations of incident obesity with 

stillbirth and infant mortality between parametric and semi- or nonparametric methods. When 

using parametric g computation to estimate the risk differences comparing pregnancy outcomes 

among obese and non-obese pregnancies, we found that women with incident prepregnancy 

obesity had 1.8 (95% CI: -0.7, 4.3) excess stillbirths per 1,000 pregnancies relative to women who 

were not obese before pregnancy. Parametric TMLE yielded a similar risk difference of 1.6 (95% 

CI: 0.2, 2.9) excess stillbirths. In contrast, when using semiparametric IPW or nonparametric 

TMLE, the corresponding risk differences nearly doubled to 2.4 (95% CI: 0.7, 2.7) and 3.3 (95% 

CI: 1.5, 5.0) excess stillbirths per 1,000 pregnancies, respectively. In terms of infant mortality, we 

observed a similar pattern between parametric and semi- or nonparametric methods. However, the 

magnitude of the associations between incident obesity and infant mortality were smaller (Table 

2). G computation and parametric TMLE yield similar results with 0.2 (95% CI: -1.1, 1.6) and 0.3 

(95% CI: -1.9, 2.7) excess infant deaths per 1,000 livebirths, respectively when comparing incident 

obesity pregnancies with non-obese pregnancies. Estimates from semiparametric IPW and 

nonparametric TMLE were both much higher with risk differences of 0.9 (95% CI: -0.5, 2.3) and 

1.0 (-1.1, 3.1), respectively (Table 2). A similar pattern was observed for risk ratios (Table 3). 
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4.5 DISCUSSION 

We used different analytic methods to quantify the association between prepregnancy obesity and 

the risk of stillbirth and infant mortality among women who were not obese in their prior 

pregnancies. While we found positive associations of incident prepregnancy obesity with stillbirth 

and infant mortality using all methods, meaningful differences were observed between methods 

that relied on parametric modeling assumptions (g computation, parametric TMLE) versus those 

that were more flexibly specified (semiparametric IPW, nonparametric TMLE). In particular, the 

magnitudes of association were smaller when estimated via parametric methods compared to those 

estimated via nonparametric methods.  

Because prepregnancy obesity cannot be assigned, the effect of prepregnancy obesity on 

stillbirth and infant mortality can only be studied using observational data. When randomizing the 

exposure is not possible, the counterfactual approach to causal modeling can be particularly useful 

in identifying deviations from the ideal (i.e., gold standard) randomized design.  

In our case, we were able to identify four key challenges to nonparametrically identifying 

and estimating the causal effect of prepregnancy obesity on stillbirth and infant mortality. One of 

these included the reliance on unnecessary parametric assumptions, which was shown to play an 

important role in influencing the estimated associations. However, the remaining challenges 

continue to have important implications on estimating the causal effect of obesity 134. These 

include 1) the inability to precisely articulate what it means for the relation between obesity and 

stillbirth and infant mortality to be “causal,” and 2) the problem introduced by competing risks.   

In order to interpret the associations estimated in this study as causal effects, the former 

complication would require assuming that the nature of the relation between changes across a 

particular threshold of a woman’s body mass index reflect physiologic alterations that lead to 
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material changes in the risk of stillbirth and infant mortality. While this may, in fact, be the case, 

empirically evaluating these beliefs would require data much more detailed than our population-

based cohort contains. In particular, there are many ways in which prepregnancy body mass index 

can be changed, each of which may induce a variety of physiologic changes, with different  effects 

on stillbirth and infant mortality 134. 

Interpreting the effects of prepregnancy obesity as causal would also require assuming that 

it plays a minimal to no role in influencing the probability of conception. This is unlikely, given 

existing evidence on the relation between obesity and fertility 156. However, this issue is not 

specific to prepregnancy obesity, but an important limitation of any research that examines the 

relation between pre-conception exposure status on post-conception outcomes 157. 

Despite these remaining challenges, we have accounted for two key issues that prevail in 

research examining the relation between prepregnancy obesity and perinatal outcomes. Indeed, 

adequate confounder control is a central challenge in observational studies. To address this, one 

can use outcome modeling approaches (e.g. parametric g computation) that require researchers to 

correctly model all aspects of the data generating distribution 148,158. One can also use inverse 

probability weighting which relies on correct specification of a propensity score model. The 

outcome model need not be correctly specified. In particular, one can avoid the need to include all 

exposure-confounder interactions, and still obtain a consistent estimator of the marginal exposure-

outcome association 110. 

When relying on parametric models, researchers must correctly specify the functional form 

of the relation between the confounders and the exposure (when adjustment is carried out via 

propensity scores) or the confounders and the outcome (when adjustment is carried out via 

outcome modeling). Correct model specification is an unverifiable assumption that usually 
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requires choosing the correct link function, including the correct set of exposure-confounder and/or 

confounder-confounder interactions, and appropriately modeling potential nonlinearities.  

Instead of relying exclusively on either a correctly specified outcome or exposure model, 

a doubly robust estimator may be used. With doubly robust estimation, one need only correctly 

specify one of the two models. Unfortunately, when the exposure and outcome are modeled 

parametrically, one must not only include all relevant confounders, but also include all relevant 

interactions, correctly model nonlinearities, and choose appropriate link functions. Thus, while the 

likelihood of correct double-robust specification is better, there are still many opportunities for 

misspecification to occur.  

However, use of double robust methods offer an opportunity to rely on nonparametric (e.g., 

machine learning) techniques 147,154. In doing so, researchers may entirely avoid relying on 

unwarranted assumptions about precisely how the exposure and confounders relate to the outcome, 

or how the confounders relate to the exposure 159. Indeed, in the presence of such uncertainty, 

numerous theoretical and simulation studies have shown that nonparametric TMLE has greater 

efficiency and less bias when compared with (mis-specified) parametric singly robust methods 160 

as well as nonparametric singly robust methods 159,161.       

In our study, we found meaningful differences in the magnitude of the relation of 

prepregnancy obesity and stillbirth and infant mortality when quantified using parametric versus 

less (semi, non) parametric methods. One other study examined stillbirth in the second pregnancy 

among women who became obese compared to women who maintained normal weight and found 

a hazard ratio of 1.5 (95% CI: 1.1, 2.1) 162.This magnitude is similar to our results estimated by 

parametric g computation, but different from our nonparametric TMLE estimates. In terms of 

infant mortality, to our knowledge there are no literature with a similar study design. The 
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differences between our study and previously published results might be due to parametric 

assumptions or some other phenomena (e.g., hazard versus risk ratios, additional adjustment of 

characteristics during prior pregnancy in our study). Our results suggest that parametric 

assumptions play an important role in influencing estimates of the relation of prepregnancy obesity 

with stillbirth and infant mortality and should be handled with caution. 

4.6 FIGURES AND TABLES 
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Table 1. Characteristics of Non-obese vs. Incident Obese Pregnancies, Infant Mortality Analysis (2003-2013) 
  Non-obese 

N (%)  (n=354,079) 
Obese 

N (%)  (n=39,993) 
Maternal race         
   Non-Hispanic White 266,272 (75.2) 26,693 (66.7) 
   Non-Hispanic Black 43,282 (12.2) 8,054 (20.2) 
   Hispanic 28,303 (8.0) 4,255 (10.6) 
   Others 16,222 (4.6) 991 (2.5) 
Maternal age (year) 

    

   <= 20  12,313 (3.5) 1,451 (3.6) 
   20-29  175,184 (49.5) 23,182 (58.0) 
   >= 30 166,582 (47.0) 15,360 (38.4) 
Maternal education         
   Less than high school 53,518 (15.1) 6,807 (17.0) 
   High school or equivalent 87,317 (24.7) 13,287 (33.2) 
   Some college 86,375 (24.4) 11,929 (29.8) 
   College graduate 126,869 (35.8) 7,970 (19.9) 
Metropolitan area          
   >= 1mile 184,612 (52.1) 19,935 (49.9) 
   250,000- 1 mile 103,333 (29.2) 11,656 (29.2) 
   < 250,000 66,134 (18.7) 8,402 (21.0) 
Neighborhood (% of Black) 
   Lowest 123,142 (34.8) 12,453 (31.1) 
   Middle 124,053 (35.0) 11,793 (29.5) 
   Highest 106,884 (30.2) 15,747 (39.4) 
Prepregnancy diabetes         
   No 352,763 (99.6) 39,636 (99.1) 
   Yes 1,316 (0.4) 357 (0.9) 
Prepregnancy hypertension         
   No 351,508 (99.3) 39,071 (97.7) 
   Yes 2,571 (0.7) 922 (2.3) 
Prepregnancy smoking 

    

   Non-smoker  281,945 (79.6) 30,620 (76.6) 
   Very light 19,425 (5.5) 2,719 (6.8) 
   10-<20 21,160 (6.0) 2,688 (6.7) 
   >=20 31,549 (8.9) 3,966 (9.9) 
Insurance 

    

   Non-private  138,277 (39.1) 19,934 (49.8) 
   Private 215,802 (60.9) 20,059 (50.2) 
Marital status         
   Unmarried  114,519 (32.4) 17,603 (44.0) 
   Married 239,560 (67.7) 22,390 (56.0) 
 Inter-pregnancy interval 

    

   < 18 months 222,879 (63.0) 27,638 (69.1) 
   >= 18 months 131,200 (37.0) 12,355 (30.9) 
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Table 2. Risk Differences of Stillbirth and Infant Mortality by Incident Obesity Status, Various Methods 
  Population 

at risk 
 Risk difference (95% CI)a 

Outcomes Event  Unadjusted IPW G computation parametirc-TMLEb nonparametric-TMLEc 
Stillbirth         
  Obesity 226 37,432  2.6 (1.3, 4.0) 2.4 (0.7, 2.7) 1.8 (-0.7, 4.3) 1.6 (0.2, 2.9) 3.3 (1.5, 5.0) 
  Non-obesity 1,092 326,178  reference reference reference reference reference 
Infant death         
  Obesity 243 39,993  0.9 (-0.4, 2.3) 0.9 (-0.5, 2.3) 0.3 (-1.9, 2.7)   0.2 (-1.1, 1.6) 1.0 (-1.1, 3.1) 
  Non-obesity 1,782 354,079  reference reference reference reference reference 

Abbreviations: IPW: Inverse Probability Weighted; TMLE: Targeted Minimum Loss-based Estimation 
a. Risk difference: per 1000 live births (or pregnancies) 
b. TMLE with parametric regressions  
c. TMLE with SuperLearner with algorithms of SL.mean, SL.nnet, SL.earth, SL.ranger, SL.xgboost, SL.glmnet, SL.gam,  
  SL.glm.interaction
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Table 3. Risk Differences of Stillbirth and Infant Mortality by Incident Obesity Status From Various Methods 

  Population 
at risk 

 Risk difference (95% CI)a 
Outcomes Event  Unadjusted IPW G computation parametirc-TMLEb nonparametric-TMLEc 
Stillbirth         
  Obesity 226 37,432  2.6 (1.3, 4.0) 2.4 (0.7, 2.7) 1.8 (-0.7, 4.3) 1.6 (0.2, 2.9) 3.3 (1.5, 5.0) 
  Non-obesity 1,092 326,178  reference reference reference reference reference 
Infant death         
  Obesity 243 39,993  0.9 (-0.4, 2.3) 0.9 (-0.5, 2.3) 0.3 (-1.9, 2.7)   0.2 (-1.1, 1.6) 1.0 (-1.1, 3.1) 
  Non-obesity 1,782 354,079  reference reference reference reference reference 

Abbreviations: IPW: Inverse Probability Weighted; TMLE: Targeted Minimum Loss-based Estimation 
a. TMLE with parametric regressions  
b. TMLE with SuperLearner with algorithms of SL.mean, SL.nnet, SL.earth, SL.ranger, SL.xgboost, SL.glmnet, SL.gam,  
  SL.glm.interaction  



52 

 

A. Stillbirth 

 

 

B. Infant mortality 

 

 

Figure 4. IPW stillbirth rate and infant mortality by parity and obesity status 
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5.0  THE EFFECT OF INCIDENT PREPREGNANCY OBESITY ON STILLBIRTH 

AND INFANT MORTALITY IN A COHORT OF MULTIPAROUS WOMEN 

5.1 ABSTRACT 

Objective 

To identify the association of newly-developed prepregnancy overweight and obesity with 

stillbirth and infant mortality.   

Methods 

We studied subsequent pregnancies of mothers who were normal weight at conception of 

their first pregnancy, from a population-based cohort that linked the birth registry with death 

records in Pennsylvania, 2003-2013. Newly-developed overweight and obese pregnancies were 

identified from women whose prepregnancy body mass index (BMI) at second pregnancy was ≤ 

25 kg/m2 to <30 kg/m2 or ≥30 kg/m2. Our main outcomes of interest were stillbirth defined as in-

utero death ≥ 20 weeks of gestation and infant mortality: death <365 days after birth. Adjusted 

associations of both prepregnancy BMI categories and continuous BMI unit changes with each 

outcome were estimated by nonparametric targeted minimum loss-based estimation and inverse-

probability weighted dose-response curves, respectively.  

Results 

Compared with women who stayed normal weight in their second pregnancies, those 

becoming overweight had 1.4 (95% confidence interval [CI]: 0.6, 2.2) excess stillbirths per 1,000 

pregnancies. Mothers who became obese had 4.0 (95% CI: 1.4, 6.6) excess stillbirths per 1,000 

pregnancies as well as 2.3 (95% CI: 0.1, 4.5) excess neonatal deaths per 1,000 livebirths. There 
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was a dose-response relationship between a prepregnancy BMI increase of more than 2 units and 

increased risk of stillbirth and infant mortality. In addition, BMI increases were associated with 

higher risks of infant mortality among women with shorter interpregnancy intervals (less than 18 

months) compared with those with longer intervals. 

Conclusion 

Our results suggest that transitioning from normal weight to overweight or obese between 

the first and second pregnancy increases risk of stillbirth and neonatal mortality. Health care 

providers should monitor and provide weight counseling about proper gestation weight gain during 

pregnancy or postpartum weight loss for pregnant women to minimize risk of adverse outcomes 

for future pregnancies. 

5.2 INTRODUCTION 

The obesity epidemic has impacted millions worldwide, including 30% of adults in the U.S.163.  

Importantly, obesity has higher prevalence in women of childbearing age compared with general 

population estimates.  From 2007-2008 to 2015-2106, the prevalence of obesity among women 

aged 20-39 years increased from 31% to 36%164. Prepregnancy obesity is a common high-risk 

obstetric condition with wide-ranging health impacts, 165 including stillbirth127 and infant death.128 

Obesity is often defined via body mass index (BMI), which is correlated with body fat 

percent in women prior to conception166. However, obesity is a complex and heterogeneous 

disorder presenting with multiple sub-phenotypes. The effect of obesity sub-phenotypes such as 

with or without metabolic syndromes or other comorbidities, on adverse pregnancy outcomes can 

vary 167,168. The duration a woman is exposed to the obese phenotype may also impact her risk for 
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obstetrical and perinatal complications. For example, higher cardiometabolic risk is associated 

with longer duration and greater severity of obesity169,170. To date, however, there is little 

information regarding the timing of obesity onset relative to pregnancy outcomes171. Given this, 

in this study, we evaluated the relation between newly-developed pre-pregnancy overweight and 

obesity and stillbirth and infant mortality. 

5.3 MATERIALS AND METHODS 

The Penn MOMS study, which included fetal death records and linked birth-infant death records 

in Pennsylvania from 2003-2013 (n=1,551,919 singleton pregnancies), were used to construct our 

analytic cohort. Unique identifiers were used to link pregnancies from the same women. In 

Pennsylvania, fetal death records before 2006 did not contain information to calculate BMI; 

therefore, women with stillbirth before 2006 (4,001women; 5,168 pregnancies) were excluded. 

Details on data cleaning and linkage processes can be found in previous studies117,140.   

We established our study cohort by including women who had at least two pregnancies 

during the study period 2003-2013 and were normal weight at the start of the first identified 

pregnancy (215,706 women; 505,942 pregnancies). Women with questionable data (non-logical 

age: 654 women, 1,879 pregnancies; non-logical interpregnancy interval: 54 women, 188 

pregnancies) or prior twin gestations (1,064 women, 2,682 pregnancies) were excluded. We then 

limited our analytic sample to second pregnancies. Overall, there were 212,889 pregnancies for 

the infant mortality analysis (2003-2013), and 192,941 pregnancies for the stillbirth analysis 

(2006-2013) (Figure 7.). This study has been approved by the institutional review board at the 

University of Pittsburgh.  
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Outcomes of interest were stillbirth, which was defined as in-utero death at 20 or more 

weeks gestation and infant mortality, defined as the death of live-born infant before 1 year of age. 

We further divided infant mortality into two groups based on the timing of death:  neonatal death 

(< 28 days) and post neonatal death (28 to <365 days). 

Prepregnancy BMI was computed by using self-reported weight (kg) and divided by height 

(m) squared. We categorized BMI as underweight (<18.5 kg/m2), normal weight (18.5 ≤ BMI< 25 

kg/m2), overweight (25 ≤ BMI< 30 kg/m2) or obese (≥ 30kg/m2)138. Women who were normal 

weight in their first pregnancy and became overweight or obese in their second pregnancy were 

considered to have newly-developed overweight or obesity. Interpregnancy BMI changes were 

calculated as the difference in prepregnancy BMI units of first and second pregnancy. 

We used causal diagrams to identify confounders (Appendix A)106. We adjusted for 

maternal height and race/ethnicity as well as other characteristics during prior and current 

pregnancies including inter-pregnancy interval, maternal education, urban residence, percent 

Black residents in census tract, prepregnancy diabetes, prepregnancy hypertension, smoking 

status, marital status and payer status. In addition, we adjusted for prior pregnancy characteristics 

including gestational weight gain, gestational diabetes, gestational hypertension, smoking status 

during pregnancy, gestational age, birth weight, birth facility level of neonatal care, neonatal 

intensive care units (NICU) admission, use of the Special Supplemental Program for Women, 

Infants, and Children (WIC), breast feeding, mode of delivery, Apgar score, stillbirth, and infant 

death. When adjusting for confounding in our analysis, inter-pregnancy interval, maternal height 

as well as gestation age, gestational weight gain, and birthweight of last pregnancy were treated as 

continuous variables. Other confounders were categorized based on the groups listed in Table 4 

and Table 9.  
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Information on maternal characteristics (race/ethnicity, age, education, marital status, 

smoking status), delivery payment insurance, prepregnancy diabetes or hypertension, gestational 

age at delivery, and level of neonatal care available in the birth facility were acquired from hospital 

discharge records. Neighborhood socioeconomic status (urbanity and the proportion of Black 

residents) were computed based on the county-level federal information processing standards 

(FIPS) codes of the primary residence address. Inter-pregnancy interval was calculated as the 

months between delivery date of previous pregnancy and conception date of current pregnancy. 

Gestational weight gain was calculated as z scores by applying a gestational-age- and BMI- 

specified z-score chart142,143  . Roughly 20% of pregnancies were missing data on variables of 

interest, which were imputed using a Markov chain Monte Carlo approach144. Details on variable 

collection and imputation have been previously provided117,140. 

Our primary analysis aimed to determine the association between incident overweight and 

obesity before pregnancy and stillbirth and infant mortality. Nonparametric targeted minimum 

loss-based estimation (TMLE)147, was used to estimate risk differences and risk ratios for the 

relation between categorical prepregnancy BMI (underweight, overweight, obesity versus normal 

weight) and our outcomes of interest. TMLE is a “doubly robust” approach in that it combines 

both a propensity score model with a regression model for the outcomes (stillbirth, infant 

mortality), thus providing two chances to adjust for potential confounding172. Furthermore, unlike 

standard regression, it enables use of nonparametric machine learning techniques that do not rely 

on unverifiable modeling assumptions (e.g., linearity, additivity, no interaction). In our analyses, 

we used stacking154,155 to combine  several machine learning algorithms into one. We included the 

arithmetic mean, neural networks, multivariate adaptive regression splines, least absolute 

shrinkage and selection operator (LASSO), generalized additive models, random forests, and 
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gradient boosted machines. These algorithms were used to estimate both the propensity score 

model for BMI, and the outcome models (stillbirth, infant mortality).   

To examine the dose-response relation between the continuous interpregnancy BMI change 

and the risk of stillbirth and infant mortality, we further modeled interpregnancy BMI change using 

restricted cubic splines with 4 knots, and weighted by inverse of the propensity score to adjust for 

confounding.173 Knots were located at the 20th, 40th, 60th, and 80th percentiles of the distribution 

of BMI among the events139.  These curves were also stratified by interpregnancy interval length. 

We adopted the commonly used cut-points of less than 18 months to define short inter-pregnancy 

interval.174  

5.4 RESULTS  

Among women who were normal weight in their initial pregnancy, only 3%, 18% and 4% became 

underweight, overweight, or obese in their next pregnancy. The median interpregnancy interval 

was roughly 23 months (interquartile range: 24). Those mothers with incident prepregnancy 

overweight or obesity were more likely than women who remained normal weight to be Non-

Hispanic Black, younger, without college education, with prepregnancy diabetes and hypertension, 

smokers, and living in neighborhoods with higher percentage of Blacks. They also had larger 

percentages of having non-private insurance, were unmarried, and had shorter interpregnancy 

intervals (Table 4 and Table 9). During their previous pregnancy, these women had experienced 

more adverse pregnancy outcomes including infant death, stillbirth, large for gestational age birth, 

and infants with low APGAR score as well as higher gestational weight gain and lower prevalence 

of breast feeding (Table 10 and 11.). 
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The confounder adjusted association between BMI category change and the risk of 

stillbirth is provided in Table 5. Compared to women who remained normal weight in their second 

pregnancy, those who became overweight had 1.4 (95% confidence interval (CI): 0.6, 2.2) excess 

stillbirths per 1,000 pregnancies. The mothers who became obese had 4.0 (95% CI: 1.4, 6.6) excess 

stillbirth per 1,000 pregnancies. Becoming underweight at the second pregnancy also increased 

risk of stillbirth by 2.4 (95% CI: -0.1, 4.9) excess stillbirths per 1,000 pregnancies.  We did not 

find strong associations between different prepregnancy BMI categories and infant mortality. After 

dividing infant mortality into neonatal and post-neonatal categories, women with new-onset 

obesity had 2.3 (95% CI: 0.1, 4.5) excess neonatal mortality events per 1,000 births (Table 5) 

compared to those women who maintained normal weight. A similar pattern was observed for risk 

ratios (Tables 5).   

The adjusted dose response curve between interpregnancy BMI change and risk of stillbirth 

resembled a J-shape, with the lowest risks at BMI change of 0 to 2 units (Figure 5A). Stillbirth risk 

rose sharply as BMI increased beyond 2-kg/m2 (equivalent to an average weight gain of 5 kg for 

women with 160 cm height). In terms of infant mortality, the U-shaped dose-response curve 

identified the lowest risks at BMI values that were similar to previous pregnancy. The risk of infant 

mortality rose with increasing or decreasing BMI changes (Figure 5B). The dose-response curve 

for stillbirth did not vary according to interpregnancy interval (Figure 5C).  However, the 

association between BMI change and risk of infant death was stronger for women with short 

interpregnancy interval than those with a longer interpregnancy interval (Figure 5D). The curves 

for neonatal mortality showed similar patterns to infant mortality, but no association was observed 

between interpregnancy BMI changes and postneonatal mortality (Figure 8).          
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5.5 DISCUSSION 

Our study found that women who were normal weight at conception of the initial pregnancy and 

became overweight or obese at conception of the subsequent pregnancy had higher stillbirth and 

neonatal mortality rates than women who remained normal weight.  We identified a dose-response 

relationship between interpregnancy BMI changes and risk of stillbirth and infant mortality. This 

association between BMI changes and infant mortality was stronger among the subgroup of 

women with a short interpregnancy interval than those with a longer interval. Taken together, our 

results suggest that becoming obese within average of 2 years of a given pregnancy is associated 

with a higher risk of adverse pregnancy outcomes.  

One way to differentiate between the effects of recently-developed obesity versus long-

standing obesity is to measure BMI status repeatedly over the course of a woman’s reproductive 

history. Only three studies162,175,176 have examined maternal BMI status in relation to stillbirth and 

infant mortality across multiple pregnancies. One study using Missouri vital records162 found that 

compared with mothers who stayed at normal weight, normal weight mothers becoming 

overweight or obese had risks of stillbirth that were 20% (hazard ratio 1.2; 95% CI:1.0, 1.4) and 

50% (hazard ratio: 1.5; 95% CI: 1.1, 2.1) greater, respectively. The magnitude of these effects are 

smaller than those in our study. This difference may be explained by these authors adjustment for 

several variables (including preeclampsia and gestational diabetes in the second pregnancy) that 

may be impacted by pre-pregnancy obesity. It is increasingly recognized that controlling for such 

intermediates can result in overadjustment bias177, resulting in potentially misleading estimates.  

Two other studies using a Swedish population-based cohort attempted to answer questions 

about interpregnancy weight change. Villamor et al.,175 did not find an association between BMI 

changes and stillbirth in the subgroup of women without overweight. While Cnattingius et al.,176 
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found that among women whose BMI were less than 25 kg/m2 in the first pregnancy, gaining more 

than 2 units of BMI increased risk of stillbirth, infant mortality, neonatal mortality as well as 

postneonatal mortality. Our results were similar to their findings except for postneonatal mortality. 

Compared to their study, we adjusted for additional characteristics from the prior pregnancy which 

may explain away the association.  

Our findings should be interpreted in light of some key limitations. BMI values calculated 

from self-reported height and weight may result in misclassification of BMI categories178. 

However, our previous studies analyzing this cohort showed that after accounting for 

misclassification, the relations between prepregnancy obesity and infant mortality were not 

meaningfully different117. We are also aware that BMI measurements were only available at the 

start of each pregnancy. Women who were normal weight in their first pregnancy may have had a 

history of overweight or obesity, and we could not account for this. Furthermore, in order to 

identify newly-developed overweight/obesity, we restricted our analysis to those who had two 

pregnancies and were normal weight before the first pregnancy. We need to be mindful of 

generalizing our results to different populations. 

Studies have shown reproductive history plays an important role in subsequent 

pregnancies179. Therefore, we adopted a reproductive life-based approach180 which considers 

potential impacts from prior pregnancies (Appendix A). Unlike previous studies that restricted 

analyses to women without experiencing events in the first pregnancy162,175,176, we adjusted for 

pregnancy outcome as well as other characteristics of the prior pregnancy. By doing so, we were 

able to account for confounding effects of reproductive history without introducing selection bias 

177. In addition, we avoided adjusting for obstetric complications or any variables on the pathway 

from prepregnancy BMI to stillbirth or infant mortality of second pregnancy. 
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Women of childbearing age experience a weight gain trajectory and may develop into 

obesity due their pregnancy181–183. Postpartum weight retention is one of the common reasons for 

women to transiting into overweight/obese; around 13-20% of women retain 5 kg or more of their 

prepregnancy weight at 1-year after delivery181. Health care providers should provide consultation 

of weight maintenance (e.g. adequate gestational weight gain184 or postpartum weight lost before 

next pregnancy) to pregnant women. The efforts should especially apply for those at the upper 

limits of normal weight categories185. In order to develop effective interventions for weight 

maintenance for the purposes of preventing stillbirth and infant mortality, future studies focusing 

on the cause of becoming obese are warranted. 
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5.6 FIGURES AND TABLES 
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Table 4. Characteristics of normal weight, incident overweight, and incident obese pregnancies for infant 
mortality analysis (2003-2013) 

 Normal weight 
N (%) 

(n=160,001) 

Overweight 
N (%) 

(n=39,011) 

Obesity 
N (%) 

(n=8,426) 
Maternal race           
   NH White 125,246 (78.3) 27,068 (69.4) 5,288 (62.8) 
   NH Black 15,527 (9.7) 6,163 (15.8) 1,834 (21.8) 
   Hispanic 11,089 (6.9) 4,151 (10.6) 1,051 (12.5) 
   Others 8,139 (5.1) 1,629 (4.2) 250 (3.0) 
Maternal age (year) 

  
  

  

   <= 20  6,024 (3.8) 1,772 (4.5) 461 (5.5) 
   20-29  74,788 (46.7) 21,379 (54.8) 5,303 (62.9) 
   >= 30 79,189 (49.5) 15,860 (40.7) 2,662 (31.6) 
Maternal education           
   Less than high school 19,750 (12.3) 5,996 (15.4) 1,739 (20.6) 
   High school or equivalent 35,196 (22.0) 11,428 (29.3) 3,027 (35.9) 
   Some college 37,649 (23.5) 10,934 (28.0) 2,421 (28.7) 
   College graduate 67,406 (42.1) 10,653 (27.3) 1,239 (14.7) 
Metropolitan area            
   >= 1mile 85,355 (53.4) 20,246 (51.9) 4,296 (51.0) 
   250,000- 1 mile 46,115 (28.8) 11,406 (29.2) 2,454 (29.1) 
   < 250,000 28,531 (17.8) 7,359 (18.9) 1,676 (19.9) 
Neighborhood (% of Black)       
   Lowest 57,283 (35.8) 12,728 (32.6) 2,459 (29.2) 
   Middle 59,299 (37.1) 12,668 (32.5) 2,376 (28.2) 
   Highest 43,419 (27.1) 13,615 (34.9) 3,591 (42.6) 
Prepregnancy DM           
   No 159,547 (99.7) 38,828 (99.5) 8,373 (99.4) 
   Yes 454 (0.3) 183 (0.5) 53 (0.6) 
Prepregnancy HTN           
   No 159,187 (99.5) 38,653 (99.1) 8,234 (97.7) 
   Yes 814 (0.5) 358 (0.9) 192 (2.3) 
Prepregnancy smoking 

  
  

  

   Non-smoker  131,100 (81.8) 30,592 (78.4) 6,282 (74.6) 
   Very light 7,852 (4.9) 2,495 (6.4) 612 (7.3) 
   10-<20 8,639 (5.4) 2,505 (6.4) 616 (7.3) 
   >=20 12,510 (7.8) 3,419 (8.8) 916 (10.9) 
Insurance 

  
  

  

   Non-private  53,279 (33.3) 16,849 (43.2) 4,734 (56.2) 
   Private 106,722 (66.7) 22,162 (56.8) 3,692 (43.8) 
Marital status           
   Unmarried  45,542 (28.5) 15,342 (39.3) 4,349 (51.6) 
   Married 114,459 (71.5) 23,669 (60.7) 4,077 (48.4) 
Inter-pregnancy interval 

  
  

  

   < 18 months 101,450 (63.4) 26,480 (67.9) 6,145 (72.9) 
   >= 18 months 58,551 (36.6) 12,531 (32.1) 2,281 (27.1) 
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Table 5. Risk difference and ratios of stillbirth and infant mortality by prepregnancy BMI category 

BMI category Event Population at risk Risk difference (95% CI)a Risk ratio (95% CI) 
Stillbirth 
  Under weight 28 4891 2.4 (-0.1, 4.9) 1.86 (1.15, 3.03) 
  Normal weight 388 144,366 reference reference 
  Overweight 160 35,834 1.4 (0.6, 2.2) 1.48 (1.21, 1.82) 
  Obesity 60 7,850 4.0 (1.4, 6.6) 2.40 (1.62, 3.56) 
Infant mortality 
  Under weight 30 5,451 -0.2 (-2.2, 2.2) 1.00 (0.62, 1.60) 
  Normal weight 719 160,001 reference reference 
  Overweight 189 39,011  -0.1 (-0.9, 0.7) 0.97 (0.82, 1.16) 
  Obesity 64 8,426   2.0 (-0.4, 4.5) 1.43 (0.99, 2.06) 
Neonatal mortality 
  Under weight 19 5451 0.4 (-1.5, 2.2) 1.13 (0.63, 2.02) 
  Normal weight 436 160,001 reference reference 
  Overweight 115 39,011 -0.1 (-0.7, 0.6) 0.97 (0.77, 1.22) 
  Obesity 48 8,426 2.3 (0.1, 4.5) 1.81 (1.18, 2.77) 
Postneonatal mortality 
  Under weight 11 5,432 -0.3 (-1.6, 1.0) 0.84 (0.38, 1.87) 
  Normal weight 283 159.565 reference reference 
  Overweight 74 38,896 -0.1 (-0.6, 0.4) 0.96 (0.73, 1.28) 
  Obesity 16 8,378 -0.2 (-0.0, 0.9) 0.85 (0.40, 1.79) 

a. Risk difference: per 1000 live births (or pregnancies) 
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Figure 5. Interpregnancy BMI changes and risk of stillbirth and infant mortality 
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6.0  SYNTHESIS 

6.1 SUMMARY OF FINDINGS 

The main objective of this dissertation is to advance our understanding and address methodological 

challenges in estimating this association of newly-developed obesity prior pregnancy on the risk 

of stillbirth and infant mortality. Our analytic cohort was constructed from a population-based 

cohort study linking birth and infant/fetal death records in Pennsylvania from 2003-2013 

(n=1,551,919 singleton pregnancies). All the analyses were performed in a cohort of multiparous 

women who were non-obese in their first pregnancy. 

 
Our findings for each specific aim were summarized as follows: 

 

Aim 1. To develop an algorithm to visualize the impact of the bias-variance tradeoff for each 

confounder, and the effect on the estimate of interest and propensity score overlap  

 

By applying our SAS macro to an empirical study examining the association of incident 

prepregnancy obesity and stillbirth, among 36 confounders, we identified two confounders (prior 

prepregnancy BMI and prior gestation weight gain) that had high impact on the MSE of the risk 

ratio of stillbirth. After removing these two high-impact confounders, MSE decreased and 

propensity score overlap was improved. Our results suggest careful consideration of the analytic 

impact of all confounders should be made when fitting inverse probability weighting estimators.  

 



68 

Aim 2.  To explore the extent to which parametric models may have different estimates of the 

association of incident prepregnancy obesity with stillbirth and infant mortality when compared to 

more nonparametric methods. 

 

We applied several methods with difference reliance on parametric assumptions (non-

parametric, semiparametric, and parametric) to estimate the relationship between incident obesity 

with stillbirth and infant mortality. We identified consistently increased risk of stillbirth among 

women who became obese compared to those who stayed non-obese. Discrepancies between 

methods in terms of magnitude were found: Risk differences from IPW and nonparametric TMLE 

were larger than those from parametric g computation method and parametric TMLE. Our results 

suggest incident obesity increased risk of stillbirth, while parametric assumptions can play an 

important role in influencing estimates of this relationship. 

 

Aim 3.  To evaluate the relation of newly-developed pre-pregnancy overweight and obesity with 

stillbirth and infant mortality of second pregnancies. 

 

We applied nonparametric TMLE to estimate the relationship of newly-developed 

overweight/obese with stillbirth and infant mortality of second pregnancies among a cohort of 

women who were normal weight at their first pregnancies. Our results showed women becoming 

overweight had increased risks of stillbirth while those became obese had increased risk of both 

stillbirth and neonatal mortality at the second pregnancy. A dose-response relationship showed 

that at values greater than 2 units of BMI change, increasing BMI change was associated with 
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increased risk of stillbirth and infant mortality. In addition, short interpregnancy interval and 

greater BMI changes between pregnancies synergistically increased risk of infant mortality. 

6.2 STRENGTHS AND LIMITATIONS 

Given all of the careful considerations in our approach, we were also aware that the findings should 

be interpreted with respect to the following limitations. 

6.2.1 Aim 1 

Our visualization tool was designed to only exclude one confounder at a time; we also did not 

impose a functional form on these covariates or include interaction terms in the propensity score 

models. We cannot guarantee that this simplified algorithm can reflect the true relationships 

between confounders and the exposure in the model. Furthermore, our assessment of the impact 

of each confounder on the point estimate might conflict with the purpose of the propensity score 

as a “design” phase tool15. However, our tool addressing the issue of selection of variables for 

propensity scores plays important roles in obtaining unbiased and efficient estimates16. Our tool is 

user-friendly for visually detecting the impact of each confounder on the point estimates as well 

as propensity score distributions. It is especially useful for identifying extreme violations of the 

positivity assumption.  
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6.2.2 Aim 2 and 3  

BMI measurements in our study were calculated from self-reported weight and height which may 

subject to misclassification. However, a previous study using the same cohort showed that after 

accounting for misclassification, the association between prepregnancy BMI and infant mortality 

did not have a meaningful difference. In addition, BMI were only available at the start of each 

pregnancy. Women who were normal weight in their first pregnancy may have had a history of 

obesity, for which could not be accounted.  

In order to estimate the effect of newly-developed obesity and bounded onset of obesity in 

a known interval, we restricted women who had at least two pregnancies and were normal weight 

at their first pregnancy. By doing so, we clearly defined our exposure of interest at the price of 

decreasing generalizability. Since obesity is associated with suboptimal fertility, women who 

became infertile due to obesity cannot be identified by our study design. Also, the risk factors for 

developing obesity after experiencing pregnancy may be different from those who became obese 

without experiencing pregnancy. We need to be mindful of generalizing our results to these 

different populations.  

Although we addressed two important challenges encountered when estimating the effect 

of obesity, the relationships identified in our study still may not be interpreted as causal effect. 

There are several approaches can alter women’s BMI status, such as diet, physical activity or 

bariatric surgery. Each of these methods may have different impacts on stillbirth and infant 

mortality. Our dataset did not have sufficient information in determining the cause of developing 

obesity, therefore, it limited our ability to interpret results as causation.  

Nevertheless, PennMOMs study provided a unique opportunity for us to explore this 

complex relationship of developing obesity with stillbirth and infant mortality. Using a 10-year 
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study period, we were able to study these rare outcomes. Linkage of women across pregnancies 

allowed us to observe BMI status changes over time and account for the potential confounding 

effects from prior pregnancies. Our utilization of causal diagrams in depicting our conceptual 

framework enabled us to identify sufficient confounders in estimating less-biased relationships. 

Our findings that becoming obese increased risk of stillbirth were based on robust estimates from 

different analytic approaches and generated consistent results.  

6.3 PUBLIC HEALTH IMPLICATIONS 

6.3.1 Clinical Application 

Relatively high stillbirth rate and infant mortality are still of public health concern in the United 

States, compared to other similar countries. Experiencing perinatal death casts substantial impacts 

on the well-being of families as well as increased risk of recurrent adverse pregnancy outcomes 

for mothers. It is essential to identify modifiable risk factors, such as maternal obesity, to explain 

excess stillbirth and infant mortality in the U.S. With the obesity epidemic among women of 

childbearing age in the U.S, this is an important and logical area of study. 

Our findings contribute to this important field by providing the further evidence that 

transitioning from normal weight to overweight or obese increases risk of stillbirth and infant 

mortality. The risk increased with average interpregnancy weight gain of, for example, 5 kg or 

more for women with a height of 160 cm.  Based on our findings, health care providers can 

communicate and emphasize the importance of weight maintenance with women at prepregnancy 

normal weight, especially for those who were on the upper limit of normal weight category.  These 
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are great and effective opportunities for preventing the onset of obesity, and particularly since 

women access health care more often during pregnancy, in addition to the added incentive for 

seeking healthy lifestyle at this time.  

6.3.2 Research application  

The perfect study for quantifying the effect of exposure would be a randomized trial with full 

compliance of participants. We would simply contrast the event rates between two groups as the 

effect of exposure. However, when randomizing an exposure is implausible, such as the case of 

obesity, several barriers need to be addressed in observational studies in order to estimate the effect 

of exposure. The study results demonstrated that using nonparametric approaches for controlling 

confounding generated different magnitude of associations, when compared to universally 

practiced parametric approaches. Providing unbiased effect estimates are crucial to inform clinical 

practice of health care providers, and which have overarching implications on policy development. 

The demonstration of our nonparametric results may contribute to the evidence for the importance 

of careful consideration of analytic method selections, and to show future investigations that the 

conventional method is not always most appropriate  

6.4 FUTURE RESEARCH  

The mechanisms of how prepregnancy obesity increases risks of stillbirth and infant mortality 

remain largely unknown. Therefore, more efforts are needed to identify potential pathways 

between prepregnancy obesity and both of these outcomes. Mediation analysis can be utilized to 
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examine the contributions from each potential mediator (e.g. fetal growth, gestational age) on 

explaining the association of prepregnancy obesity with stillbirth and infant mortality. Clarifying 

this mechanism will help us to develop effective interventions for preventing stillbirth and infant 

mortality among women with prepregnancy obesity. 

Studies focusing on the causes for transitioning from normal weight to overweight or 

obesity are needed for better preventing the onset of maternal obesity. Several plausible reasons 

can be examined, such as parity, excess gestational weight gain, or postpartum weight retention.  

Analyzing these factors would be especially beneficial in the long run since literature showed 

children born to mothers with obesity are at risk of developing future obesity. Preventing the onset 

of maternal obesity can break the intergenerational pattern of obesity. 

 Our study focused on quantifying the association of newly-developed prepregnancy 

obesity with stillbirth and infant mortality among multiparous women. However, the causes of 

becoming obese may be different between nulliparous and multiparous women.  In this case, future 

studies can further examine the impact of newly-developed prepregnancy obesity on pregnancy 

outcomes among nulliparous women. In addition, studies using longitudinal BMI measurements 

throughout reproductive age are needed for better definition and answering the impact of obesity 

duration on pregnancy outcomes. 

Finally, our research demonstrated the application of a complex machine learning 

algorithm with the purpose of minimizing residual confounding. With the increasing popularity of 

utilizing machine learning algorithms in the epidemiology field, we need to enhance our 

understanding on how these algorithms work. For example, there is a need for evaluation of the 

importance of each covariate to the prediction of an outcome; it is also crucial to diagnose whether 
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the algorithms perform well. It is of utmost importance to have more published studies focusing 

on the translating the knowledges between statistics, computer science with epidemiology. 

 

APPENDIX A: CONCEPTUAL FRAMEWORK 

 

Figure 5. Causal diagram representing the relationship of prepregnancy BMI with stillbirth and infant 
death at the ith pregnancy 
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APPENDIX B: PAPER 1 SUPPLEMENTARY MATERIALS 

Process of data linkage  

We extensively cleaned the data to eliminate duplicate records and to identify and correctly match 

up twins and higher order gestations from the same pregnancy. When potential duplicate records 

matched on several mother characteristics (including baby’s date of birth, mother’s name, mother’s 

date of birth, etc.) but had discrepant baby information (birthweight, sex, etc.), they were recoded 

as twins. We also created a unique maternal ID to identify repeat pregnancies from the same 

mother over time using a sequential, deterministic linkage strategy (Blakely & Salmond 2002; 

Herman et al. 1997). The records were separated into batches by delivery year and then further 

into sub-groups by year of last live birth. These subgroups were then merged with birth records 

from the year indicated as the year of the last live birth. For instance, the 2011 batch of delivery 

records with 2010 listed as year of last live birth could potentially link with the 2010 delivery 

records to identify the sibling. Special consideration was given to the potential for two babies 

delivered to the same mother in the same calendar year, either due to multiple births, or one sibling 

delivered early in the calendar year and one at the end. Several attempts at linking with maternal 

identifiers took place for each batch, and additional maternal variables were used to validate the 

matches, with discrepancies manually checked and corrected. Any false positive matches 

identified through discrepant validation variables were recoded as unmatched. At the end of the 

process, 57% of the birth and fetal death records were linked with at least one sibling. Among 

those who could not be linked, 58% were the first birth for the woman or were missing information 

on year of previous last live birth and 38% had a last live birth from prior to 2003, and thus could 

not be linked. 
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Example of output from SuperLearner algorithm 

Initial estimation of Q 

Procedure: SuperLearner 

Model: 

Y ~  SL.mean_All + SL.nnet_All + SL.earth_All + SL.ranger_All + SL.xgboost_All + 

SL.glmnet_0_All + SL.glmnet_0.25_All + SL.glmnet_0.5_All + SL.glmnet_0.75_All + 

SL.glmnet_1_All + SL.gam_3_All + SL.gam_4_All + SL.xgb.1_All + SL.xgb.2_All + 

SL.xgb.3_All + SL.xgb.4_All + SL.xgb.5_All + SL.xgb.6_All + SL.xgb.7_All + SL.xgb.8_All + 

SL.xgb.9_All + SL.xgb.10_All + SL.xgb.11_All + SL.xgb.12_All + SL.ranger_500_2_All + 

SL.ranger_1000_2_All + SL.ranger_500_5_All + SL.ranger_1000_5_All + 

SL.ranger_500_11_All + SL.ranger_1000_11_All + SL.glm.interaction_All 

 

  Coefficients:  

    SL.mean_All    0  

     SL.nnet_All    0  

     SL.earth_All    0  

    SL.ranger_All    0  

   SL.xgboost_All    0.2937091  
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  SL.glmnet_0_All    0.1466514  

  SL.glmnet_0.25_All    0  

  SL.glmnet_0.5_All    0  

  SL.glmnet_0.75_All    0  

  SL.glmnet_1_All    0  

     SL.gam_3_All    0  

     SL.gam_4_All    0  

     SL.xgb.1_All    0  

     SL.xgb.2_All    0  

     SL.xgb.3_All    0.1847042  

     SL.xgb.4_All    0.125794  

     SL.xgb.5_All    0  

     SL.xgb.6_All    0  

     SL.xgb.7_All    0  

     SL.xgb.8_All    0  

     SL.xgb.9_All    0  

    SL.xgb.10_All    0  

    SL.xgb.11_All    0  

    SL.xgb.12_All    0  

  SL.ranger_500_2_All    0.1219778  

  SL.ranger_1000_2_All    0  

  SL.ranger_500_5_All    0  

  SL.ranger_1000_5_All    0  
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  SL.ranger_500_11_All    0.1113301  

  SL.ranger_1000_11_All    0  

  SL.glm.interaction_All    0.0158334  

 

Estimation of g (treatment mechanism) 

Procedure: SuperLearner  

Model: 

A ~  SL.mean_All + SL.nnet_All + SL.earth_All + SL.ranger_All + SL.xgboost_All + 

SL.glmnet_0_All + SL.glmnet_0.25_All + SL.glmnet_0.5_All + SL.glmnet_0.75_All + 

SL.glmnet_1_All + SL.gam_3_All + SL.gam_4_All + SL.xgb.1_All + SL.xgb.2_All + 

SL.xgb.3_All + SL.xgb.4_All + SL.xgb.5_All + SL.xgb.6_All + SL.xgb.7_All + SL.xgb.8_All + 

SL.xgb.9_All + SL.xgb.10_All + SL.xgb.11_All + SL.xgb.12_All + SL.ranger_500_2_All + 

SL.ranger_1000_2_All + SL.ranger_500_5_All + SL.ranger_1000_5_All + 

SL.ranger_500_11_All + SL.ranger_1000_11_All + SL.glm.interaction_All  

 

  Coefficients:  

      SL.mean_All    0  

      SL.nnet_All    0  

     SL.earth_All    0  

    SL.ranger_All    0  

   SL.xgboost_All    1  

  SL.glmnet_0_All    0  

  SL.glmnet_0.25_All    0  



79 

  SL.glmnet_0.5_All    0  

  SL.glmnet_0.75_All    0  

  SL.glmnet_1_All    0  

     SL.gam_3_All    0  

     SL.gam_4_All    0  

     SL.xgb.1_All    0  

     SL.xgb.2_All    0  

     SL.xgb.3_All    0  

     SL.xgb.4_All    0  

     SL.xgb.5_All    0  

     SL.xgb.6_All    0  

     SL.xgb.7_All    0  

     SL.xgb.8_All    0  

     SL.xgb.9_All    0  

    SL.xgb.10_All    0  

    SL.xgb.11_All    0  

    SL.xgb.12_All    0  

  SL.ranger_500_2_All    0  

  SL.ranger_1000_2_All    0  

  SL.ranger_500_5_All    0  

  SL.ranger_1000_5_All    0  

  SL.ranger_500_11_All    0  

  SL.ranger_1000_11_All    0  
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  SL.glm.interaction_All    0  

 

 Estimation of g.Z (intermediate variable assignment mechanism) 

  Procedure: No intermediate variable  

 

 Estimation of g.Delta (missingness mechanism) 

  Procedure: No missingness  

 

 Bounds on g: (0.025 0.975) 
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Figure 6. Flow chart of analytic sample selection for paper 1 
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Table 6. Characteristics of Last Pregnancy in Non-obese vs. Obese, Infant Mortality Analysis (2003-2013) 

  Non-obese 
N (%) (n=354,079) 

Obese 
N (%) (n=39,993) 

Gestational weight gain z-score (percentile)         
  <= 20th 60,691 (17.1) 4,451 (11.1) 
  20th -80th  247,309 (69.9) 25,256 (63.2) 
  >= 80th  46,079 (13.0) 10,286 (25.7) 
Gestational diabetes 

    

  No 345,581 (97.6) 38,471 (96.2) 
  Yes  8,498 (2.4) 1,522 (3.8) 
Gestational hypertension         
  No 342,726 (96.8) 37,646 (94.1) 
  Yes 11,353 (3.2) 2,347 (5.9) 
Smoke during pregnancy 

    

  No 298,101 (84.2) 32,411 (81.1) 
  Yes 55,978 (15.8) 7,582 (19.0) 
Birth facility level of neonatal care 

    

  Level 1 67,735 (19.1) 8,908 (22.3) 
  Level 2 or 2A 57,769 (16.3) 5,923 (14.8) 
  Level 3 or 3A/3B/3C 228,575 (64.6) 25,162 (62.9) 
Women, Infants, and Children program usage     
  No 230,962 (65.2) 20,020 (50.1) 
  Yes 123,117 (34.8) 19,973 (49.9) 
Death          
  Live birth 350,464 (99.0) 39,411 (98.5) 
  Infant death  2,571 (0.7) 417 (1.0) 
  Fetal death 1,044 (0.3) 167 (0.4) 
Preterm birth 

    

  No 301,624 (85.2) 33,890 (84.7) 
  Yes  52,455 (14.8) 6,103 (15.3) 
Small for gestational age          
  No 332,438 (93.9) 37,890 (94.7) 
  Yes 21,641 (6.1) 2,103 (5.3) 
Large for gestational age 

    

  No 302,333 (85.4) 32,156 (80.4) 
  Yes 51,746 (14.6) 7,837 (19.6) 
Prepregnancy BMI 

    

  Underweight 23,905 (6.8) 523 (1.3) 
  Normal weight 251,501 (71.0) 9,732 (24.4) 
  Overweight 78,673 (22.2) 29,738 (74.4) 
Breastfeeding      
  No 113,725 (32.1) 15,915 (39.8) 
  Yes 240,354 (67.9) 24,078 (60.2) 
Delivery route      
 Vaginal  279,457 (78.9) 29,054 (72.7) 
 Planned cesarean 38,018 (10.7) 5,097 (12.7) 
 Unplanned cesarean 36,604 (10.3) 5,842 (14.6) 
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Table 7. Characteristics of Non-obese vs. Incident Obese Pregnancies for Stillbirth Analysis (2006-2013) 

  Non-obese 
N (%) (n=326,179) 

Obese 
N (%) (n=37,432) 

Maternal race         
   Non-Hispanic White 244,918 (75.1) 24,837 (66.4) 
   Non-Hispanic Black 39,912 (12.2) 7,643 (20.4) 
   Hispanic 26,171 (8.0) 4,012 (10.7) 
   Others 15,177 (4.7) 940 (2.5) 
Maternal age (year) 

    

   <= 20  10,531 (3.2) 1,270 (3.4) 
   20-29  160,717 (49.3) 21,615 (57.7) 
   >= 30 154,930 (47.5) 14,547 (38.9) 
Maternal education         
   Less than high school 47,574 (14.6) 6,179 (16.5) 
   High school or equivalent 80,504 (24.7) 12,456 (33.3) 
   Some college 80,448 (24.7) 11,273 (30.1) 
   College graduate 117,652 (36.1) 7,524 (20.1) 
Metropolitan area          
   >= 1mile 169,994 (52.1) 18,729 (50.0) 
   250,000- 1 mile 95,344 (29.2) 10,899 (29.1) 
   < 250,000 60,840 (18.7) 7,804 (20.9) 
Neighborhood (% of Black) 
   Lowest 111,964 (34.3) 11,470 (30.6) 
   Middle 115,208 (35.3) 11,076 (29.6) 
   Highest 99,006 (30.4) 14,886 (39.8) 
Prepregnancy diabetes         
   No 324,933 (99.6) 37,078 (99.1) 
   Yes 1,245 (0.4) 354 (0.9) 
Prepregnancy hypertension         
   No 323,724 (99.3) 36,548 (97.6) 
   Yes 2,454 (0.7) 884 (2.4) 
Prepregnancy smoking 

    

   Non-smoker  259,755 (79.6) 28,674 (76.6) 
   Very light 18,023 (5.5) 2,565 (6.9) 
   10-<20 19,591 (6.0) 2,510 (6.7) 
   >=20 28,809 (8.8) 3,683 (9.8) 
Insurance 

    

   Non-private  127,233 (39.0) 18,653 (49.8) 
   Private 198,945 (61.0) 18,779 (50.2) 
Marital status         
   Unmarried  106,304 (32.6) 16,625 (44.4) 
   Married 219,874 (67.4) 20,807 (55.6) 
 Inter-pregnancy interval 

    

   < 18 months 217,048 (66.5) 27,178 (72.6) 
   >= 18 months 109,130 (33.5) 10,254 (27.4) 
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Table 8. Characteristics of Last Pregnancy Among Non-obese vs. Obese for Stillbirth Analysis (2006-2013) 

  Non-obese 
N (%) (n=326,178) 

Obese 
N (%) (n=37,432) 

Gestational weight gain z-score (percentile)         
  <= 20th 55,694 (17.1) 4,176 (11.2) 
  20th -80th  228,027 (69.9) 23,681 (63.3) 
  >= 80th  42,457 (13.0) 9,575 (25.6) 
Gestational diabetes 

    

  No 318,319 (97.6) 36,007 (96.2) 
  Yes  7,859 (2.4) 1,425 (3.8) 
Gestational hypertension         
  No 315,613 (96.8) 35,217 (94.1) 
  Yes 10,565 (3.2) 2,215 (5.9) 
Smoke during pregnancy 

    

  No 247,937 (84.3) 30,370 (81.1) 
  Yes 51,241 (15.7) 7,062 (18.9) 
Birth facility level of neonatal care 

    

  Level 1 61,729 (18.9) 8,287 (22.1) 
  Level 2 or 2A 53,379 (16.4) 5,535 (14.8) 
  Level 3 or 3A/3B/3C 211,070 (64.7) 23,610 (63.1) 
Women, Infants, and Children program usage     
  No 211,911 (65.0) 18,575 (49.6) 
  Yes 114,267 (35.0) 18,857 (50.4) 
Death          
  Live birth 322,881 (99.0) 36,893 (98.6) 
  Infant death  2,224 (0.7) 368 (1.0) 
  Fetal death 1,073 (0.3) 171 (0.5) 
Preterm birth 

    

  No 276,990 (84.9) 31,598 (84.4) 
  Yes  49,188 (15.1) 5,834 (15.6) 
Small for gestational age         
  No 297,932 (91.3) 34,256 (91.5) 
  Yes 28,246 (8.7) 3,176 (8.5) 
Large for gestational age 

    

  No 291,942 (89.5) 32,323 (86.4) 
  Yes 34,236 (10.5) 5,109 (13.7) 
Prepregnancy BMI 

    

  Underweight 21,942 (6.7) 479 (1.3) 
  Normal weight 232,006 (71.1) 9,166 (24.5) 
  Overweight 72,230 (22.1) 27,787 (74.2) 
Breastfeeding      
  No 103,311 (31.7) 14,747 (39.4) 
  Yes 222,867 (68.3) 22,685 (60.6) 
Delivery route      
 Vaginal  256,401 (78.6) 27,087 (72.4) 
 Planned cesarean 35,609 (10.9) 4,826 (12.9) 
 Unplanned cesarean 34,168 (10.5) 5,519 (14.7) 
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APPENDIX C: PAPER 2 SUPPLEMENTAL MATERIALS 

 

Figure 7. Flow chart of analytic sample selection for paper2 
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Figure 8. Interpregnancy BMI changes and risk of neonatal and postneonatal death 
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Table 9. Characteristics of last pregnancy among normal weight, incident overweight and incident obese 
pregnancies for infant mortality analysis (2003-2013) 

   Normal weight 
N (%) (n=160,001) 

Overweight 
N (%) (n=39,011) 

Obesity 
N (%) (n=8,426) 

GWG z-score (percentile)           
  <= 20th 26,525 (16.6) 4,612 (11.8) 977 (11.6) 
  20th -80th  114,056 (71.3) 24,098 (61,8) 4,296 (51.0) 
  >= 80th  19,420 (12.1) 10,301 (26.4) 3,153 (37.4) 
Gestational DM 

  
  

  

  No 156,733 (98.0) 37,960 (97.3) 8,205 (97.4) 
  Yes  3,268 (2.0) 1,051 (2.7) 221 (2.6) 
Gestational HTN           
  No 155,161 (97.0) 37,312 (95.6) 7,969 (94.6) 
  Yes 4,840 (3.0) 1,699 (4.4) 457 (5.4) 
Smoke during pregnancy 

  
  

  

  No 137,745 (86.1) 32,536 (83.4) 6,648 (78.9) 
  Yes 22,256 (13.9) 6,475 (16.6) 1,778 (21.1) 
NICU level  

  
  

  

  Level 1 29,667 (18.5) 7,994 (20.5) 1,863 (22.1) 
  Level 2 or 2A 27,204 (17.0) 6,126 (15.7) 1,200 (14.2) 
  Level 3 or 3A/3B/3C 103,130 (64.5) 24,891 (63.8) 5,363 (63.6) 
WIC usage       
  No 111,481 (69.7) 22,153 (56.8) 3,682 (43.7) 
  Yes 48,520 (30.3) 16,858 (43.2) 4,744 (56.3) 
Death            
  Live birth 158,810 (99.1) 38,642 (99.1) 8,278 (98.3) 
  Infant death  951 (0.6) 285 (0.7) 105 (1.3) 
  Fetal death 240 (0.2) 84 (0.2) 43 (0.5) 
Preterm birth 

  
  

  

  No 136,979 (85.6) 33,206 (85.1) 7,108 (84.4) 
  Yes  23,022 (14.4) 5,805 (14.9) 1,318 (15.6) 
SGA           
  No 145,798 (91.1) 35,708 (91.5) 7,592 (90.1) 
  Yes 14,203 (8.9) 3,303 (8.5) 834 (9.9) 
LGA 

  
  

  

  No 145,232 (90.8) 34,771 (89.1) 7,489 (88.9) 
  Yes 14,769 (9.2) 4,240 (10.9) 937 (11.1) 
Breastfeeding        
  No 46,243 (28.9) 13,854 (35.5) 3,758 (44.6) 
  Yes 113,758 (71.1) 25,157 (64.5) 4,668 (55.4) 
Delivery route        
 Vaginal  127,135 (79.5) 29,835 (76.5) 6,331 (75.1) 
 Planned cesarean 14,760 (9.2) 3,835 (9.8) 892 (10.6) 
 Unplanned cesarean 18,106 (11.3) 5,341 (13.7) 1,203 (14.3) 
Low APGAR score       
 No 158,550 (99.1) 38,571 (98.9) 8,264 (98.1) 
 Yes 1,451 (0.9) 440 (1.13) 162 (1.9) 
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Table 10. Characteristics of normal weight, incident overweight and incident obese pregnancies for stillbirth 
analysis (2006-2013) 

 Normal weight 
N (%) 

(n=144,366) 

Overweight 
N (%) 

(n=35,834) 

Obesity 
N (%) 

(n=7,850) 
Maternal race           
   NH White 112,806 (78.1) 24,762 (69.1) 4,899 (62.4) 
   NH Black 13,958 (9.7) 5,737 (16.0) 1,720 (21.9) 
   Hispanic 10,063 (7.0) 3,800 (10.6) 990 (12.6) 
   Others 7,539 (5.2) 1,535 (4.3) 241 (3.1) 
Maternal age (year) 

  
  

  

   <= 20  5,087 (3.5) 1,500 (4.2) 405 (5.2) 
   20-29  67,211 (46.6) 19,562 (54.6) 4,940 (62.9) 
   >= 30 72,068 (49.9) 14,772 (41.2) 2,505 (31.9) 
Maternal education           
   Less than high school 16,828 (11.7) 5,194 (14.5) 1,538 (19.6) 
   High school or equivalent 31,726 (22.0) 10,560 (29.5) 2,857 (36.4) 
   Some college 34,493 (23.9) 10,190 (28.4) 2,294 (29.2) 
   College graduate 61,319 (42.5) 9,890 (27.6) 1,161 (14.8) 
Metropolitan area            
   >= 1mile 76,988 (53.3) 18,658 (52.1) 4,011 (51.1) 
   250,000- 1 mile 41,645 (28.9) 10,479 (29.4) 2,285 (29.1) 
   < 250,000 25,733 (17.8) 6,697 (18.7) 1,154 (19.8) 
Neighborhood (% of Black)       
   Lowest 50,885 (35.3) 11,476 (32.0) 2,247 (28.6) 
   Middle 54,060 (37.5) 11,745 (32.8) 2,219 (28.3) 
   Highest 39,421 (27.3) 12,613 (35.2) 3,384 (43.1) 
Prepregnancy DM           
   No 143,945 (99.7) 35,662 (99.5) 7,797 (99.3) 
   Yes 421 (0.3) 172 (0.5) 53 (0.7) 
Prepregnancy HTN           
   No 143,594 (99.5) 35,493 (99.1) 7,666 (97.7) 
   Yes 772 (0.5) 341 (0.9) 184 (2.3) 
Prepregnancy smoking 

  
  

  

   Non-smoker  118,285 (81.9) 28,093 (78.4)       5,863    (74.7) 
   Very light 7,114 (4.9) 2,305 (6.4) 574 (7.3) 
   10-<20 7,822 (5.4) 2,310 (6.5) 564 (7.2) 
   >=20 11,145 (7.7) 3,126 (8.7) 849 (10.8) 
Insurance 

  
  

  

   Non-private  47,795 (33.1) 15,391 (43.0) 4,400 (56.0) 
   Private 96,571 (66.9) 20,443 (57.1) 3,450 (44.0) 
Marital status           
   Unmarried  41,519 (28.8) 14,232 (39.7) 4,088 (52.1) 
   Married 102,847 (71.2) 21,602 (60.3) 3,762 (47.9) 
 Inter-pregnancy interval 

  
  

  

   < 18 months 97,857 (67.8) 25,898 (72.7) 6,053 (77.1) 
   >= 18 months 46,509 (32.2) 9,936 (27.7) 1,797 (22.9) 
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Table 11. Characteristics of last pregnancy among normal weight, incident overweight and incident obese 
pregnancies for stillbirth analysis (2006-2013) 

 Normal weight 
N (%) (n=144,366) 

Overweight 
N (%) (n=35,834) 

Obesity 
N (%) (n=7,850) 

GWG z-score (percentile)           
  <= 20th 23,672 (16.4) 4,241 (11.8) 897 (11.4) 
  20th -80th  103,037 (71.4) 22,163 (61.9) 4,033 (51.4) 
  >= 80th  17,657 (12.2) 9,430 (26.3) 2,920 (37.2) 
Gestational DM 

  
  

  

  No 141,387 (97.9) 34,857 (97.3) 7,645 (97.4) 
  Yes  2,979 (2.1) 977 (2.7) 205 (2.6) 
Gestational HTN           
  No 139,923 (96.9) 34,224 (95.5) 7,416 (94.5) 
  Yes 4,443 (3.1) 1,610 (4.5) 434 (5.5) 
Smoke during pregnancy 

  
  

  

  No 124,466 (86.2) 29,950 (83.6) 6,196 (78.9) 
  Yes 19,900 (13.8) 5,884 (16.4) 1,654 (21.1) 
NICU level  

  
  

  

  Level 1 26,483 (18.3) 7,271 (20.3) 1,722 (21.9) 
  Level 2 or 2A 24,699 (17.1) 5,622 (15.7) 1,130 (14.4) 
  Level 3 or 3A/3B/3C 93,184 (64.6) 22,941 (64.0) 4,998 (63.7) 
WIC usage       
  No 100,130 (69.4) 20,191 (56.4) 3,363 (42.8) 
  Yes 44,236 (30.6) 15,643 (43.6) 4,487 (57.2) 
Death            
  Live birth 143,339 (99.3) 35,504 (99.1) 7,714 (98.3) 
  Infant death  778 (0.5) 243 (0.7) 92 (1.2) 
  Fetal death 249 (0.2) 87 (0.2) 44 (0.6) 
Preterm birth 

  
  

  

  No 123,732 (85.7) 30,462 (85.0) 6,620 (84.3) 
  Yes  20,634 (14.3) 5,372 (15.0) 1,230 (15.7) 
SGA           
  No 131,479 (91.1) 32,787 (91.5) 7,072 (90.1) 
  Yes 12,887 (8.9) 3,047 (8.5) 778 (9.9) 
LGA 

  
  

  

  No 131,197 (90.9) 31,961 (89.2) 6,996 (89.1) 
  Yes 13,169 (9.1) 3,873 (10.8) 854 (10.9) 
Breastfeeding        
  No 40,973 (28.4) 12,557 (35.0) 3,446 (43.9) 
  Yes 103,393 (71.6) 23,277 (65.0) 4,404 (56.1) 
Delivery route        
 Vaginal  114,145 (79.1) 27,258 (76.1) 5,861 (74.7) 
 Planned cesarean 13,418 (9.3) 3,573 (10.0) 849 (10.8) 
 Unplanned cesarean 16,803 (11.6) 5,003 (14.0) 1,140 (14.5) 
Low APGAR score       
 No 143,060 (99.1) 35,429 (98.9) 7,699 (98.1) 
 Yes 1,306 (0.9) 405 (1.1) 151 (1.9) 
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APPENDIX D: PAPER 3 SUPPLEMENTARY MATERIALS 

SAS Macro  

 
*******bias and variance trade-off for binary variabls (stablized weight and 
single time point)*********; 
 
%macro bias_var(data= ,catevar= ,convar= , exp= , outcome= ,id= ); 
*************************STAGE 1: Exclude one categorical variable per 
time*************************** 
*STEP 1: Create macro variables for model; 
/*Keep this output and merge back to the final result by varnum, later we can 
add label too*/ 
data &data.pre ;set &data; 
 keep &catevar; 
run; 
 
proc contents data=&data.pre 
 out = vars (keep = varnum name) 
 noprint; 
run; 
 
proc sort data=vars; by varnum; run; 
 
/*calculate the total number of categorical variables and save it as a global 
macro variable*/ 
/*symputx can convert variable to string before assigning macro variable*/ 
/*when assigning file name, we need to use string*/ 
data _null_; 
  set vars; by varnum; 
  if last.varnum; 
  call symput('number_cate',varnum); 
  call symputx('number_cate2',varnum); 
run; 
 
%do i= 0 %to &number_cate; 
%global var&i.; 
Proc SQL noprint ; 
 select distinct name into:var&i. separated by " " 
 from vars  
 where varnum^= &i; 
Quit; 
 
*STEP 2: IPW model (stablized weight for binary exposure and single time 
point); 
/*Marginal probability of being exposed*/ 
proc logistic data= &data desc noprint; 
 model &exp= / maxiter=100;  
 output out=&data.1 prob=m;run; 
run;quit;run; 
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/*Propensity score*/ 
proc logistic data= &data.1 desc noprint; 
 class &&var&i; 
 model &exp= &&var&i &convar/ maxiter=100;  
 output out=&data.1 prob=p;run; 
run;quit;run; 
 
/*Calculated stablized weights*/ 
data &data.1; set &data.1; 
 if &exp=0 then do; 
  weight=1/(1-p); 
  sw=(1-m)/(1-p); 
 end;  
 else if &exp=1 then do ; 
  weight=1/p; 
    sw=m/p; 
 end; 
run; 
 
*STEP 3: Creat dataset for PS overlapped plots (weight dataset: swvar&i, ps 
dataset: pvar&i); 
data swvar&i ;set &data.1; 
 varnum=&i.; 
 keep &exp p sw varnum; 
run; 
 
proc univariate data= &data.1 noprint; 
 class &exp; 
 var p; 
 output out=psvar&i mean=mean median=median Q1=q1 Q3=q3 max=max min=min; 
run; 
 
data psvar&i ;set psvar&i; 
 varnum=&i.; 
run; 
 
*STEP 4: outcome model; 
*Outcome model (RD); 
ods select none; 
proc genmod data= &data.1 desc; 
 ods output Estimates=RDvar&i; 
 class &outcome &exp(ref="0")  &id ; 
 model &outcome=  &exp / dist=bin link=identity; 
 weight sw; 
 repeated subject = &id / type=ind; 
 estimate "overall"  &exp 1 -1  ; 
run; 
ods output close; 
 
data RDvar&i; set RDvar&i; 
 where Label="overall"; 
 Varname="var&i"; 
 keep Varname LBetaEstimate LBetaLowerCL LBetaUpperCL; 
 rename LBetaEstimate=RD; 
 rename LBetaLowerCL=LCI; 
 rename LBetaUpperCL=UCI; 
run; 



92 

 
*Outcome model (RR); 
ods select none; 
proc genmod data=&data.1 desc; 
 ods output Estimates=RRvar&i; 
 class &outcome  &exp(ref="0")  &id ; 
 model &outcome= &exp / dist=bin link=logit; 
 weight sw; 
 repeated subject = &id / type=ind; 
 estimate "overall"    &exp 1 -1 /EXP ; 
run; 
ods output close; 
 
data RRvar&i; set RRvar&i; 
 where Label="Exp(overall)"; 
 Varname="var&i"; 
 keep Varname LBetaEstimate LBetaLowerCL LBetaUpperCL StdErr ; 
 rename LBetaEstimate=RR; 
 rename LBetaLowerCL=LCI; 
 rename LBetaUpperCL=UCI; 
 rename StdErr=SE; 
run; 
 
%end; 
 
*Step 5: Generate a dataset of combined estimates for plots; 
*For outcome models; 
data &outcome._RR;  
 format varname $32.; 
 set RRvar0-RRvar&number_cate2.;  
run; 
data &outcome._RD;  
 format varname $32.; 
 set RDvar0-RDvar&number_cate2.; 
run; 
 
*For IPW distribution; 
data &outcome._SW;  
 set swvar0-swvar&number_cate2.; 
 varname=cats('var',varnum); 
run; 
 
*For PS distribution; 
data &outcome._PS;  
 set psvar0-psvar&number_cate2.; 
 varname=cats('var',varnum); 
run; 
 
*Merge with variable names; 
data vars1;set vars; 
   length varname $32; 
   varname=cats('var',varnum); 
   drop varnum; 
run; 
 
proc sort data=vars1;by varname; run; 
proc sort data= &outcome._rd;by varname;run; 
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proc sort data= &outcome._rr;by varname;run; 
proc sort data= &outcome._sw;by varname;run; 
proc sort data= &outcome._ps;by varname;run; 
 
data &outcome._rd; merge vars1 &outcome._rd; by varname;if varname="var0" 
then name="full";run; 
data &outcome._rr; merge vars1 &outcome._rr; by varname;if varname="var0" 
then name="full";run; 
data &outcome._sw; merge vars1 &outcome._sw; by varname;if varname="var0" 
then name="full";run; 
data &outcome._ps; merge vars1 &outcome._ps; by varname;if varname="var0" 
then name="full";run; 
 
 
****************STAGE 2: Exclude one continuous variable per 
time******************* 
*STEP 1: Create macro variables for model; 
/*Keep this output and merge back to the final result by varnum, later we can 
add label too*/ 
data &data.pre2 ;set &data; 
 keep &convar; 
run; 
 
proc contents data=&data.pre2 
 out = cvars (keep = varnum name) 
 noprint; 
run; 
 
proc sort data=cvars; by varnum; run; 
 
/*calculate the total number of categorical variables and save it as a global 
macro variable*/ 
data _null_; 
  set cvars; by varnum; 
  if last.varnum; 
  call symput('number_con',varnum); 
  call symputx('number_con2',varnum); 
run; 
 
%do m=1 %to &number_con; 
%global cvar&m.; 
Proc SQL noprint ; 
 select distinct name into:cvar&m. separated by " " 
 from cvars  
 where varnum^= &m.; 
Quit; 
 
*STEP 2: IPW model (stablized weight for binary exposure and single time 
point); 
/*Marginal probability of being exposed*/ 
proc logistic data= &data desc noprint; 
 model &exp= / maxiter=100;  
 output out= &data.2 prob=m;run; 
run;quit;run; 
 
/*Propensity score*/ 
proc logistic data= &data.2 desc noprint; 
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 class &catevar.; 
 model &exp= &&cvar&m. &catevar./ maxiter=100;  
 output out= &data.2 prob=p;run; 
run;quit;run; 
 
/*Calculated stablized weights*/ 
data &data.2; set &data.2; 
 if &exp=0 then do; 
  weight=1/(1-p); 
  sw=(1-m)/(1-p); 
 end;  
 else if &exp=1 then do ; 
  weight=1/p; 
    sw=m/p; 
 end; 
run; 
 
*STEP 3: Creat dataset for PS overlapped plots; 
data swcvar&m ;set &data.2; 
 varnum=&m.; 
 keep &exp p sw varnum; 
run; 
 
proc univariate data= &data.2 ; 
 class &exp; 
 var p; 
 output out=pscvar&m mean=mean median=median Q1=q1 Q3=q3 max=max 
min=min; 
run; 
 
data pscvar&m ;set pscvar&m; 
 varnum=&m.; 
run; 
 
*STEP 4: outcome model; 
*Outcome model (RD); 
ods select none; 
proc genmod data= &data.2 desc; 
 ods output Estimates=RDcvar&m.; 
 class &outcome &exp(ref="0")  &id ; 
 model &outcome= &exp/ dist=bin link=identity; 
 weight sw; 
 repeated subject = &id / type=ind; 
 estimate "overall"  &exp 1 -1  ; 
run; 
ods output close; 
 
data RDcvar&m.; set RDcvar&m.; 
 where Label="overall"; 
 Varname="cvar&m"; 
 keep Varname LBetaEstimate LBetaLowerCL LBetaUpperCL ; 
 rename LBetaEstimate=RD; 
 rename LBetaLowerCL=LCI; 
 rename LBetaUpperCL=UCI; 
run; 
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*Outcome model (RR); 
proc genmod data=&data.2 desc; 
 ods output Estimates=RRcvar&m; 
 class &outcome  &exp(ref="0")  &id ; 
 model &outcome= &exp / dist=bin link=logit; 
 weight sw; 
 repeated subject = &id / type=ind; 
 estimate "overall"    &exp 1 -1 /EXP ; 
run; 
ods output close; 
 
data RRcvar&m; set RRcvar&m; 
 where Label="Exp(overall)"; 
 Varname="cvar&m"; 
 keep Varname LBetaEstimate LBetaLowerCL LBetaUpperCL StdErr; 
 rename LBetaEstimate=RR; 
 rename LBetaLowerCL=LCI; 
 rename LBetaUpperCL=UCI; 
 rename StdErr=SE; 
run; 
%end; 
 
*Step 5: Generate a dataset of combined estimates for plots; 
*For outcome models; 
data &outcome._cRR;  
 format varname $32.; 
 set RRcvar1-RRcvar&number_con2; 
run; 
data &outcome._cRD;  
 format varname $32.; 
 set RDcvar1-RDcvar&number_con2; 
run; 
 
*For IPW distribution; 
data &outcome._cSW;  
 set swcvar1-swcvar&number_con2; 
 varname=cats('cvar',varnum); 
run; 
 
*For PS distribution; 
data &outcome._cPS;  
 set pscvar1-pscvar&number_con2; 
 varname=cats('cvar',varnum); 
run; 
 
 
*Merge with variable names; 
data cvars1;set cvars; 
   length varname $32; 
   varname=cats('cvar',varnum); 
   drop varnum; 
run; 
 
proc sort data=cvars1;by varname; run; 
proc sort data= &outcome._crd;by varname;run; 
proc sort data= &outcome._crr;by varname;run; 
proc sort data= &outcome._csw;by varname;run; 
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proc sort data= &outcome._cps;by varname;run; 
 
data &outcome._crd; merge cvars1 &outcome._crd; by varname;run; 
data &outcome._crr; merge cvars1 &outcome._crr; by varname;run; 
data &outcome._csw; merge cvars1 &outcome._csw; by varname;run; 
data &outcome._cps; merge cvars1 &outcome._cps; by varname;run; 
 
*****************STAGE 3: Truncated weight based on percentiles 
****************; 
/*Default: we show results of truncated 1% and 5%, as well as customized 
percentlile if present*/ 
/*NOTE: do we need to add the features of customized percentiles? also how to 
present truncated weight in  
PS overlap model? present weight or PS? */ 
/*Obtain weight from full model*/ 
proc logistic data= &data desc noprint; 
 model &exp= / maxiter=100;  
 output out= &data.3 prob=m;run; 
run;quit;run; 
 
/*Propensity score*/ 
proc logistic data= &data.3 desc noprint; 
 class &catevar.; 
 model &exp= &catevar. &catevar./ maxiter=100;  
 output out= &data.3 prob=p;run; 
run;quit;run; 
 
/*Calculated stablized weights*/ 
data &data.3; set &data.3; 
 if &exp=0 then do; 
  weight=1/(1-p); 
  sw=(1-m)/(1-p); 
 end;  
 else if &exp=1 then do ; 
  weight=1/p; 
    sw=m/p; 
 end; 
run; 
 
/*Truncate weight*/ 
proc univariate data=&data.3 noprint; 
 var sw;  
 output out=pt pctlpts=1 5 95 99 pctlpre=sw 
run; 
 
data &data.3; 
 set &data.3; 
 if _n_ eq 1 then do; 
 set pt; 
 end; 
run; 
 
data &data.3;set &data.3; 
 if sw > sw99 then tsw1 = sw99; 
 else if . < sw < sw1 then tsw1 =sw1; 
 else tsw1=sw; 
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 if sw > sw95 then tsw2 = sw95; 
 else if . < sw < sw5 then tsw2 =sw5; 
 else tsw2=sw; 
 
run; 
 
/*Outcome models*/  
*Outcome model (RD); 
%do i= 1 %to 2; 
ods select none; 
proc genmod data= &data.3 desc; 
 ods output Estimates=RDtsw&i; 
 class &outcome &exp(ref="0")  &id ; 
 model &outcome=  &exp / dist=bin link=identity; 
 weight tsw&i; 
 repeated subject = &id / type=ind; 
 estimate "overall"  &exp 1 -1  ; 
 run; 
ods output close; 
 
data RDtsw&i; set RDtsw&i; 
 where Label="overall"; 
 Varname="tsw&i"; 
 keep Varname LBetaEstimate LBetaLowerCL LBetaUpperCL; 
 rename LBetaEstimate=RD; 
 rename LBetaLowerCL=LCI; 
 rename LBetaUpperCL=UCI; 
run; 
 
*Outcome model (RR); 
ods select none; 
proc genmod data=&data.3 desc; 
 ods output Estimates=RRtsw&i; 
 class &outcome  &exp(ref="0") &id ; 
 model &outcome= &exp / dist=bin link=logit; 
 weight tsw&i; 
 repeated subject = &id / type=ind; 
 estimate "overall" &exp 1 -1 /EXP ; 
run; 
ods output close; 
 
data RRtsw&i; set RRtsw&i; 
 where Label="Exp(overall)"; 
 Varname="tsw&i"; 
 keep Varname LBetaEstimate LBetaLowerCL LBetaUpperCL StdErr ; 
 rename LBetaEstimate=RR; 
 rename LBetaLowerCL=LCI; 
 rename LBetaUpperCL=UCI; 
 rename StdErr=SE; 
run; 
 
%end; 
 
/*Generate a dataset of combined estimates for plots*/ 
*For outcome models; 
data &outcome._tRR;  
 format varname $32.; 
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 set RRtsw1-RRtsw2; 
 if varname='tsw1' then name='Truncated 1 %'; 
 if varname='tsw2' then name='Truncated 5 %'; 
run; 
data &outcome._tRD;  
 format varname $32.; 
 set RDtsw1-RDtsw2; 
 if varname='tsw1' then name='Truncated 1 %'; 
 if varname='tsw2' then name='Truncated 5 %'; 
run; 
 
*****************STAGE 4: merge output from stage 1-3 and calculated 
MSE****************; 
*Count number of obeservation in the dataset (for calculating MSE); 
%global obscount; 
proc sql noprint; 
 select count(*) 
 into :obscount 
 from out2.sample; 
quit; 
 
*Save point estimates from full model as the true value of point estimate; 
data _null_; 
  set RRvar0; 
  call symput("RR_FULL",RR); 
run; 
 
data _null_; 
  set RDvar0; 
  call symput("RD_FULL",RD); 
run; 
 
data &outcome._SW_F;  
set &outcome._csw &outcome._sw; 
run; 
 
data &outcome._PS_F;  
set &outcome._cps &outcome._ps; 
run; 
 
/*MSE:calculated from logRR????*/ 
data &outcome._RR_F;  
 set &outcome._cRR &outcome._RR &outcome._tRR; 
 lnRR=log(RR); 
 lnRR_full=log(&&RR_FULL); 
 lnuci=log(uci); 
 lnlci=log(lci); 
 variance=(((lnuci-lnlci)/2*1.96)*sqrt(&obscount))**2; 
 MSE=(lnRR-lnRR_full)**2+variance; 
run; 
 
data &outcome._RD_F;  
 set &outcome._cRD &outcome._RD &outcome._tRD; 
 variance=(((uci-lci)/2*1.96)*sqrt(&obscount))**2; 
 MSE=(RD-&&RD_FULL)**2+variance; 
run; 
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*delete dataset; 
proc datasets lib=work nolist; 
 delete  
 swvar0-swvar&number_cate2 
 psvar0-psvar&number_cate2 
 rrvar0-rrvar&number_cate2 
 rdvar0-rdvar&number_cate2 
 swcvar1-swcvar&number_con2 
 pscvar1-pscvar&number_con2 
 rrcvar1-rrcvar&number_con2 
 rdcvar1-rdcvar&number_con2 
 rdtsw1-rdtsw2 
 rrtsw1-rrtsw2 
 &outcome._SW 
 &outcome._cSW 
 &outcome._ps 
 &outcome._cps 
 &outcome._rr 
 &outcome._crr 
 &outcome._trr 
 &outcome._rd 
 &outcome._crd 
 &outcome._trd 
 vars vars1 
 cvars cvars1 
 pt 
; 
quit; 
run; 
 
/*Prepare dataset for bias variance tradeoff plot*/ 
data &outcome._RR_F1;set &outcome._RR_F; 
 if name="full" then name2="overall"; 
 if name^="full" then name1=name;   
 if name="full" then MSE=.; 
 RRCI = put(RR, 6.4) || " (" || put(LCI, 6.4) || ", "|| put(UCI, 6.4) || ")"; 
 RR_n="RR(95%CI)"; 
 LCI_n="LCI"; 
 UCI_n="UCI"; 
 MSE_n="MSE"; 
run; 
 
proc sort data=&outcome._RR_F1; 
by descending mse; 
run; 
 
ods graphics on / width=8in height=8.5in; 
title "Impact of excluding variables on bias and variance"; 
title2 h=10pt 'Risk Ratio and 95% CI'; 
proc sgplot data=&outcome._RR_F1 noautolegend; 
 scatter y=name2 x=rr / xerrorupper=uci xerrorlower=lci 
markerattrs=(symbol=squarefilled size=8); 
 scatter y=name2 x=rr_n / markerchar=rrci x2axis; 
 scatter y=name1 x=rr/ xerrorupper=uci xerrorlower=lci; 
 scatter y=name1 x=rr / markerattrs=(symbol=diamondfilled size=6); 
 scatter y=name1 x=rr_n / markerchar=rrci x2axis; 
 scatter y=name1 x=MSE_n / markerchar=MSE x2axis; 
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 refline 1 / axis=x; 
 refline 0.01 0.1 10  / axis=x lineattrs=(pattern=shortdash) 
 transparency=0.5; 
 xaxis type=log offsetmin=0 offsetmax=0.35 min=0.0 max=10 minor 
display=(nolabel) ; 
 x2axis offsetmin=0.70 display=(noticks nolabel) valueattrs=(size=8pt) 
labelattrs=(size=8pt); 
 yaxis display=(noticks nolabel)offsetmin=0.05 offsetmax=0.05 
valueattrs=(size=8pt) ; 
run; 
ods graphics off; 
 
/*Propensity score overlapped plots*/ 
proc sort data=&outcome._RR_F1;by varname;run; 
proc sort data=&outcome._PS_F;by varname;run; 
data =&outcome._PS_F1;  
      merge &outcome._RR_F1 (keep=varname mse)&outcome._PS_F; 
by varname;  
if varname in ("tsw1","tsw2") then delete;  
if name= "full" then mse=99999999; 
run; 
proc sort data=&outcome._PS_F1;by descending mse; run; 
 
ods graphics on / width=8in height=8.5in; 
title "Impact of excluding variables on propensity score overlap  "; 
proc sgplot data=&outcome._PS_F1 nocycleattrs; 
  highlow y=name high=max low=min / group=obesity groupdisplay=cluster 
clusterwidth=0.7; 
  highlow y=name high=q3 low=median / group=obesity type=bar 
groupdisplay=cluster grouporder=ascending clusterwidth=0.7 barwidth=0.7 
name='a'; 
  highlow y=name high=median low=q1 / group=obesity type=bar 
groupdisplay=cluster grouporder=ascending clusterwidth=0.7 barwidth=0.7; 
  scatter y=name x=mean / group=obesity groupdisplay=cluster 
grouporder=ascending clusterwidth=0.7 markerattrs=(size=9); 
  keylegend 'a'/TITLE= "Exposure"; 
  yaxis grid LABEL="Excluded variable"; 
  xaxis min=0.0 max=1 LABEL="Propensity score"; 
  run; 
ods graphics off; 
 

%mend bias_var; 
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