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ABSTRACT  

Elastin is the main structural protein of elastic fibers that allows tissues in vertebrates to extend 

and recoil. Heterozygous loss of function mutations in the elastin gene (ELN) can cause 

supravalvular aortic stenosis (SVAS), a rare obstructive cardiovascular disease typically 

characterized by a narrowing of the ascending aorta. The association of SVAS with hypertension, 

valvular defects and other congenital heart defects (CHDs) is of broader public health 

significance. The main goal of this research is to generate and characterize a set of SVAS-like 

mutant zebrafish lines. Zebrafish have two elastin genes, elna and elnb. First, I investigated the 

genetic and transcript diversity of zebrafish elastins by sequencing 46 and 44 overlapping cDNA 

clones from elna and elnb, respectively. I uncovered substantial variation in from both genes with 

a total of 79 single nucleotide variants (SNVs) in elna and 89 in elnb. In addition, there were 

numerous in-del variants and alternative splicing events. To assess the role of elna in zebrafish 

development, a line of elna homozygous mutants was established.  The mutation (elnasa12235 

c.264T>A, p.Tyr88*) induces nonsense-mediated decay in a developmentally regulated fashion 

with close to complete elimination of the mutant transcript starting at 3 days post-fertilization. 

Phenotypic examination of mutant embryos displayed reduced blood flow, regurgitation, valve 

and heart looping abnormalities. Regurgitation and valve irregularities was also observed in a 

mutant adult male. Histological examination of the hearts in adult elna mutant fish showed 
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thinning and loss of the elastic cartilage-like morphology in bulboventricular valves.  Further work 

with larger numbers of fish needs to be done, to obtain reliable estimates of the frequency and 

possible sex specificity, and clutch-to-clutch variability of valve and other cardiovascular defects 

in elna mutants.  In conclusion, my studies show extensive sequence variation in elna and elnb. 

Mutants of elna have displayed promise to help explain cardiovascular development and 

detrimental effects of elastin mutations in humans with SVAS especially with respect to cardiac 

valve abnormalities.  
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1.0   INTRODUCTION 

1.1. EXTRACELLULAR MATRIX 

The extracellular matrix (ECM) is a multifaceted, complex network consisting of polysaccharide 

chains, proteoglycans, and glycoproteins, some of which form fibers. It is these constituents that 

allow for a diverse number of structures that make up tissues and support them (Alberts et al., 

2008). 

1.1.1. MAJOR COMPONENTS 

The ECM is produced by a wide variety of cells including fibroblasts, osteoblasts (in bone) 

chondroblasts (in cartilage).  Fibrous proteins of the ECM lie within a “gel-like” substance made 

from polysaccharide glycosaminoglycans (GAGs), that when bound to proteins are called 

proteoglycans and form a scaffold-like structure of highly extended conformations (Alberts et al., 

2008; Hynes & Naba, 2012). It is this complex nature that allows for cellular communication 

between blood and tissue, tissue repair and the passage of nutrients and hormones, while 

endowing tissues with mechanical properties requisite for their diverse functions. Over 300 ECM 

proteins make up the “core matrisome” in mammals, in conjunction with modifying enzymes, 

growth factors, and cytokines. The main components of ECM are proteoglycans, collagens, 
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fibronectins, tenascins, laminins and elastin (Alberts et al., 2008; Bosman & Stamenkovic, 2003; 

Hynes & Naba, 2012).  

1.2. ELASTIC FIBERS 

Elastic fibers are a type of fibrous component of the ECM, critical for tissue flexion, extension and 

resilience. They are found in large part in the cardiovascular system’s large vessels such as the 

aorta and pulmonary artery, the skin, lungs, and elastic cartilage. These dynamic tissues all 

require the ability to extend and recoil repeatedly over a lifetime, with the elastic fibers 

contributing to their unique biomechanical roles (Baldwin, Simpson, Steer, Cain, & Kielty, 2013; 

Kielty, Sherratt, & Shuttleworth, 2002). 

1.2.1. STRUCTURE AND FUNCTION OF ELASTIC FIBERS 

The elastic fibers are insoluble and robust, making it a challenge to understand their biological 

and molecular components. Thanks in part to electron microscopy, genetics, 

immunohistochemistry and biochemical studies, the number of known components has grown 

substantially in recent years (Kielty et al., 2002). The main structural molecules tropoelastin and 

fibrillins work with microfibril and elastic fiber-associated molecules like the latent transforming 

growth factor beta binding proteins (LTBPs), a disintegrin and metalloprotease with 

thrombospontin motifs (ADAMTS) proteins, microfibril-associated glycoproteins (MAGPs), 

fibulins and the lysyl oxidase (LOX) family (Baldwin et al., 2013).  
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Mesenchymal cells and functional necessity dictate the organizational structure of the elastic 

fibers. Mature elastic fibers are composed of an outer microfibrillar network casing, with a core 

of elastin. Microfibrils are composed of fibrillin molecules that mature over time into beaded 

transglutaminase-crosslinked microfibrils of about 10 nm in diameter. The distance between the 

beads in approximately 56 nm and is dependent on calcium and physical tension. These beaded 

microfibrils will assemble into parallel bundles. Tropoelastin, the soluble precursor to polymeric 

elastin is cross-linked and deposited onto microfibril bundles to form elastic fibers (Figure 1). 

When elastic fibers are paired with collagen fibrils, tissues become strengthened and flexible, 

forming a scaffold. The elastin provides the extension and flexibility and the collagen limits the 

extent to which the tissue is stretched (Alberts et al., 2008; Kielty et al., 2002). In addition to 

providing structure, resilience and flexibility, elastic fibers also bind growth factors such as the 

transforming growth factor β (TGFβ) family and influence when it becomes available for use. Cell 

surface receptors, such as integrins, bind components of the elastic fiber to modulate cell fate in 

embryogenesis, cell adhesion, wound healing and tumor growth (Alberts et al., 2008; Baldwin et 

al., 2013; Bosman & Stamenkovic, 2003; Kielty et al., 2002; Midwood & Schwarzbauer, 2002). 

1.2.2. ELASTIC TISSUES 

Blood vessels contain elastic fibers in the form of lamellae that lie between layers of smooth 

muscle cells (SMCs) allowing the vessels to adapt to blood flow. When the elastic properties are  
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Figure 1. Schematic Representation of Elastic Fiber Formation 

A) Fibrillin molecules (black solid lines) mature through cross-linking by transglutaminase into B) 
mature microfibrils (black dotted lines). The beaded fibrils form C) parallel bundles of microfibrils. D) 
The soluble precursor of elastin, tropoelastin (orange dots) is secreted from the cell. Through the 
endothermic process of coacervation, the E) tropoelastin aggregates on the cell surface. F) Lysyl 
oxidase (green oval) facilitates cross-linking (green lines) assembly of the tropoelastin molecules. G) 
The cross-linked tropoelastin is then deposited onto the microfibril bundles, where a mature elastic 
fiber is formed, containing an outer microfibrillar casing and a core of elastin. Diagram is not drawn 
to scale.  
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lost, hypertension and aneurysms can result (Kielty et al., 2002; Wagenseil & Mecham, 2012). In 

the skin, elastic fibers are found in the dermis and make up about 3% of the skin’s dry weight, 

thickening as you proceed from the outer(papillary) to the inner (reticular) dermis. The fibers 

support the skin’s integrity as they extend and recoil over time, maintaining its elasticity 

(Ackerman, Böer, Bennin, & Gottlieb, 2005; Pawlaczyk, Lelonkiewicz, & Wieczorowski, 2013; B. 

Starcher, Aycock, & Hill, 2005). In the lungs, elastic fibers play a role in the development of alveoli, 

lung function and the ability to expand and recoil during breathing. Elastic fibers are found 

throughout the lung interstitium, in the alveolar septa, the walls of the airways and blood vessels 

and in the pleura. Thin and highly branched, they provide support during breathing for normal 

functioning of the lungs (Kielty et al., 2002; Shifren & Mecham, 2006). 

1.2.3. ELASTIN 

Elastin, the main structural protein of elastic fibers is encoded by a single gene in amniotes. The 

human elastin gene contains 34 exons and is located at chromosome 7q11.23 (Fazio et al., 1991). 

The elastin gene encodes multiple soluble precursor proteins, tropoelastins, through the process 

of alternative splicing. Tropoelastins are crosslinked into the insoluble protein polymer of elastin 

in the extracellular matrix (ECM). Due to elastin’s insolubility, it wasn’t until tropoelastin was 

isolated from copper deficient animals with inhibited cross-linking, that its primary structure was 

determined (Gray, Sandberg, & Foster, 1973). 
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1.2.3.1. Tropoelastin structure 

Tropoelastin (TE) is about 70 kDa in size composed of alternating hydrophobic and hydrophilic 

domains. Each domain has a characteristic amino acid composition. Hydrophobic domains, 

accounting for about 82% of tropoelastin’s overall sequence, contain oligopeptide repeat 

sequences between three and six amino acid long and rich in the non-polar amino acids glycine, 

valine, proline and leucine, with VGVAPG (V - valine, G – glycine, A- alanine, P – proline) repeats 

being the most common. Crosslink domains on the other hand contain an abundance of lysines 

involved in crosslinking and alanines which ensure an alpha-helical conformation for the correct 

spacing of lysines (Vrhovski & Weiss, 1998; Wise et al., 2014). It is the flexible hydrophobic 

domains that account for recoil. They have a disordered structure in the relaxed state, with many 

possible conformations, and therefore high entropy. When elastin is stretched, the hydrophobic 

domains become more ordered with reduced entropy (Figure 2). Thus, the recoil of elastin is 

driven by the second law of thermodynamics, which states that entropy of a closed system 

increases with time (Wise & Weiss, 2009).  

 

In addition to hydrophobic and crosslink domains, all vertebrate tropoelastins contain a C-

terminal domain capable of cell adhesion and interaction with other ECM proteins essential for 

elastic fiber formation (Keeley, 2013). The C-terminal region is highly conserved throughout 

evolution, responsible for the assembly of elastic fibers and contains the only two cysteine amino 

acids in all of tropoelastin. The two cysteines create a disulfide bond, that when disrupted, 

hinders fiber assembly (Jensen, Vrhovski, & Weiss, 2000; Vrhovski & Weiss, 1998; Wise et al., 

2014). Tropoelastin (TE) has a moderately conserved sequence, but less conserved especially in 
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the hydrophobic domains from one species to another, suggesting an overall domain character 

is more important (Chung et al., 2006).  

 

 

 

Tropoelastin’s 3-dimensional structure was solved using small angle X-ray and neutron scattering 

experiments to reveal a structure composed of the N-terminus with a coil region, the C-terminus, 

bridge, foot, and hinge (Baldock et al., 2011).  The N-terminal region likely plays a role in the 

protein’s flexibility, structure, coacervation and integration into the ECM scaffold. It also contains 

a coiled region that may directly influence elasticity and the protein’s overall structure. This role 

is also true of the hinge region, which consist of domains 21-23 and does not contain α-helices 

nor β-sheets, allowing it to change conformation. Whereas all other mammalian elastins retain 

RELAXED  
              STRETCHED 

elastin molecule 

cross-link 

Figure 2. Molecular Basis of Elasticity 

In mature elastin, tropoelastin monomers (blue) are crosslinked by desmosine 
or isodesmosine cross-links (pink). The monomers consist of flexible 
hydrophobic domains interspersed with cross-link domains.  The  protein chains 
in elastin remain disordered when in a relaxed state. Entropy is reduced upon 
stretching (below) and a more orderly conformation is obtained.  
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domain 22, in human elastin it is constitutively spliced out. Without domain 22, the structure 

becomes rigid (Yeo et al., 2016). The more recently discovered and still poorly understood bridge 

region encompasses domains 25 and 26, of which 26 is important for coacervation (Wise et al., 

2014).  

1.2.3.2. Biophysical properties of tropoelastin     

Tropoelastin solutions can undergo a reversible phase separation process known as coacervation, 

the formation of droplets with high TE concentration suspended within a solution of low TE 

concentration (Cox, Starcher, & Urry, 1973; Kozel et al., 2006; Partridge, Davis, & Adair, 1955; B. 

C. Starcher & Urry, 1973). Increase in temperature, ionic strength and pH can induce coacervation 

(Ostuni, Bochicchio, Armentano, Bisaccia, & Tamburro, 2007; Vrhovski, Jensen, & Weiss, 1997) 

as can biomolecules such as  GAGs, especially heparan sulfate (Y. Tu & Weiss, 2008, 2010), and 

integrins on the surface of cells.  In vitro studies have shown that the process of coacervation 

occurs in two phases. The first phase is reversible, where the TE exists as a monomer and depends 

on a narrow window of temperature to begin assembling into a polymer as elastin. The second 

phase, maturation, is irreversible and has been shown through in vitro experiments to take place 

when temperatures reach levels close to normal body temperature of 37oC and a pH of 7 and 

kept for extended periods of time, allowing the coacervate to mature and tropoelastin molecules 

to more tightly bind each other (Bressan et al., 1986; Vrhovski et al., 1997; Vrhovski & Weiss, 

1998).  
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1.2.3.3. Elastin crosslinking, longevity and degradation    

Tropoelastin is secreted from smooth muscle cells, a variety of fibroblasts, and elastic 

chondrocytes and taken to the cell surface by elastin binding protein where it forms into globules, 

which are intermediate structures of elastic fiber formation (Czirok et al., 2006; Kozel et al., 

2006). Next, the globules are deposited onto microfibrils and fused through active cell 

movements to make larger, branched structures stabilized by cross-linking. Lysyl oxidase (LOX) 

enzymes are needed to initialize the cross-linking through oxidizing of the lysine residues to 

produce α-amino adipic δ-semialdehyde (allysine). This is followed by spontaneous reactions 

forming cross-links, especially tetrafunctional desmosine and isodesmosine which are unique to 

elastin. Each is composed of three allysines and one lysine residue (Kagan & Li, 2003; Vrhovski & 

Weiss, 1998). It is the cross-linking that leads to a stable, mature elastin.  

 

Elastin is produced early and has a long half-life. For example, human lung elastin has a mean 

carbon residence life of 74 years (Shapiro, Endicott, Province, Pierce, & Campbell, 1991). This 

longevity is partially explained by the resistance of elastin to degradation by most proteases. 

However, some proteases, called elastases, can degrade elastin and include the serine proteases 

neutrophil elastase, pancreatic elastase and cathepsin G as the most commonly seen in mammals 

(Vrhovski & Weiss, 1998). Matrix metalloproteinases (MMPs) -2, -9 and -12 also play a role in 

elastolysis (Van Doren, 2015). Controlled degradation of elastin is important for its other 

functions in wound healing, growth and tissue remodeling. 
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1.2.3.4. Expression and regulation of elastin    

Studies of human skin fibroblasts, sheep ligaments, rat lungs and chick aorta have shown that 

mRNA expression and synthesis of elastin is highest during early development. Both the amount 

of mRNA and TE synthesis seem to impact how much elastin is made, possibly inhibiting its 

production if excess TE is accumulated in the ECM. In humans, the 5’-flanking region contains 

various transcription factor binding sites and activators, a CAAT promoter but no TATA box. 

Complementary RNA sequencing has shown that the elastin gene (ELN) has multiple transcription 

start sites. Comparison of transcript and gene sequences revealed substantial alternative splicing 

(Rosenbloom et al., 1991; Vrhovski & Weiss, 1998). 

 

Elastin synthesis studies have shown a wide array of modulators that regulate elastin expression. 

In cell culture studies, soluble factors such as transforming growth factor-β (TGFβ) (Kahari, Olsen, 

et al., 1992; Kuang et al., 2007), insulin-like growth factor-I (IGF-I) (Badesch, Lee, Parks, & 

Stenmark, 1989), and interleukin-1β (IL-β) (Mauviel et al., 1993) upregulate expression of elastin 

(Milewicz, Urban, & Boyd, 2000). Tumor necrosis factor-α (TNF-α) (Kahari, Chen, Bashir, 

Rosenbloom, & Uitto, 1992), interferon-γ by inhibition of LOX (Song, Ford, Gordon, & Shanley, 

2000), and vitamin D3 (Pierce, Kolodziej, & Parks, 1992) down-regulate elastin (Comper, 1996; 

Milewicz et al., 2000). Vitamin D3’s effect on elastin was also demonstrated in a rabbit model. 

When an overdose of D3 was delivered transplacentally, the rabbits displayed SVAS-like 

pathology (Friedman & Roberts, 1966; Milewicz et al., 2000). 
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1.2.3.5. Alternative splicing of elastin    

Elastin transcripts show significant variation (Indik et al., 1987). Alignments of human elastin have 

shown six exons to display some form of alternative splicing, with early alignments differing only 

in small segments of sequence (Uitto, Christiano, Kahari, Bashir, & Rosenbloom, 1991). Generally, 

there are two types of alternative splicing observed (Figure 3): 1. Complete excision of an exon, 

demonstrated by human exons 22, 23, and 32.  2. Only a portion of the exon is excised, through 

the use of either the 5’ donor or 3’ acceptor site, as seen with exon 26A. Extensive alternative 

splicing produces numerous isoforms of tropoelastin in humans. In some species such as the cow, 

the frequency of alternative splicing is up-regulated as the cow ages, seen more in adults than in 

the calf, demonstrating that developmental stage influence this process (Vrhovski & Weiss, 

1998). Studies of various species have shown that alternative splicing is common, but species 

specific, and tissue-specificity has yet to be determined for the differing isoforms (Chung et al., 

2006; Keeley, 2013). 

 

A B 

 
Figure 3. Types of Alternative Splicing Observed in Elastin 

A) Complete excision of an exon. B) Portion of the exon is excised through an alternative 5’ donor site.  
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1.2.3.6. Evolution of elastin  

The evolution of elastin can be explained either through the conservation of the elastin sequence 

or the functional requirements of a species and its environment. The origin of tropoelastin is still 

unclear. Elastin is present in vertebrates, but absent in lower chordates and invertebrates, 

making it a rather new constituent of the ECM compared to collagens and fibrillins (Keeley, 2013). 

Elastin evolution has involved expansion of domains, making alignments of various species’ entire 

elastin sequence futile. Variability in the sequence does not permit for alignment of mammalian, 

avian, amphibian and teleost tropoelastin, except for in the C-terminus where the amino acid 

sequence appears to be conserved throughout evolution (Chung et al., 2006; Keeley, 2013). 

Because of this, researchers have concentrated on sequence alignment scores instead. The result 

was clustering of exons from either the same species or between exons of similar structure; 

hydrophobic or cross-linking domains with minimal overlap between the two domain types. 

Extensive exon duplication can also be seen, for example, a 6-times multiplication of hydrophobic 

and crosslink exon pairs representing exons 20-31 in zebrafish (Danio rerio) elna (He et al., 2007). 

While there were certain motifs found throughout the various species, such as VPGVG for 

assembly coacervation and elasticity (Pepe et al., 2005), or PGVGA or PGVGV for self-assembly 

with fibrils, some motifs such as PGVGVA or GGVGVA resulted in abnormal tropoelastin 

aggregates in model peptides (He et al., 2007). However, it should be noted that short peptides 

may have different material behaviors when studied by themselves as opposed to in the context 

of the full-length TE molecule. Aside from the specific domain motifs found in elastin and TE, 

elastin may have adapted to a variety of species or taxons to fill a special functional role (Chung 

et al., 2006; Keeley, 2013). For example, in teleosts, elastin b (elnb) has evolved as a form of TE 
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specific to the bulbus arteriosus (BA) which helps regulate the pulsating pressure and protects 

the gills (Miao, Bruce, Bhanji, Davis, & Keeley, 2007).  

 

Elastin’s appearance coincides with the development of closed circulatory systems in higher 

organisms (R. P. Mecham, 2018). Amniotes and teleosts have vastly different blood pressures. 

The systolic blood pressure  in humans and mice is 120 mmHg (Wang et al., 2013), whereas the 

rainbow trout has a systolic blood pressure of 35mmHg (Stevens & Randall, 1967; Wang et al., 

2013). The elongation of hydrophobic domains in the teleosts may have allowed adaptation to 

altered physical demands. This is also demonstrated in zebrafish and other species with two eln 

genes (paralogues). The paralogue most similar to other organisms, elna, is expressed in the 

vascular tissue and functions similarly to other vertebrate elastins. In contrast, elnb has further 

diverged to have a specific function in the BA of teleosts (Keeley, 2013; Miao et al., 2007).  

 

Elastin may have also adapted over time to function in varying environmental temperatures to 

allow for coacervation to take place at lower temperatures than the body temperatures of 

mammals. Frog and teleost elastin has a higher molecular weight and large numbers of repetitive 

exons, which are predicted to lower the coacervation temperature of tropoelastin. Elastin 

evolution is also seen in the extension and recoil cycles of heart and lungs, and varying heart 

rates of mammals. As with blood pressure, the rate at which a heart beats also varies widely, 

even among mammals alone; ~30 beats per minute in a whale to ~500 beats per minute in a 

mouse (Gosline, 1980). The TE sequence and rearrangements throughout evolution may be in 

part due to a response to the differing range of extension and recoil under which it must operate 
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(Keeley, 2013). These adaptations to tropoelastin throughout evolution may also be of 

significance in maintaining the integrity of elastic fibers, but more research is needed to show if 

such factors affect the matrix structure over time. 

1.2.4. ELASTIC FIBER ASSEMBLY 

Elastic fiber assembly is a complex, hierarchical process involving a number of proteins and their 

accessories early in development. They are made up of two ultra-structurally distinct 

components of the elastic fibers: an outer microfibrillar sheath composed of fibrillins and other 

accessory proteins that serve as a template which elastin can bind though its C-terminal domain, 

and an inner elastin core (Sato et al., 2007). To begin the process, fibrillin must form close to the 

cell surface into beaded microfibrils that mature to form parallel bundles of cross-linked 

microfibril regions. The elastin precursor, tropoelastin, then undergoes the process of 

coacervation which allows for proper alignment tropoelastin monomers for cross-linking by lysyl 

oxidase. Coupled to cell motion in a hierarchical, coordinated manner, the TE globules aggregate 

creating larger elastic fiber structures (Czirok et al., 2006; Kielty et al., 2002).  

 

Elastin binding protein (EBP), integrins and GAGs, play integral parts in tropoelastin’s ability to 

bind cells. It is through the C-terminal domain that tropoelastin interacts with GAGs and integrins 

to mediate fibroblast adhesion to tropoelastin. The EBP has a role in modulating cell behavior 

and assists with alignment of tropoelastin during self-assembly and preventing degradation of 

the protein (Almine et al., 2010).   Although deposited mainly during late fetal stages and into 
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early neonatal periods, production of tropoelastin can be reactivated in the event of injury (Wise 

& Weiss, 2009). It also has the ability of influencing cell signaling and adhesion.  

 

Further cross-linking of elastin creates a network of fibers facilitated by LOX, latent TGFβ binding 

proteins (LTBPs) and fibulins, especially fibulin-4, to form the insoluble elastin core. This process 

of elastic fiber formation is referred to as “macro-assembly” (Baldwin et al., 2013). Elastic fiber 

formation can be tissue specific, depending on functional differences among tissues (Kielty et al., 

2002). Elastic fibers that are not assembled correctly are the source of various diseases.  

1.3. DISEASES CAUSED BY ELASTIN GENE MUTATIONS 

Elastin is synthesized early during development and has remarkable longevity required for 

maintaining its function throughout life (Shapiro et al., 1991).  Consequently, many common age-

related diseases including hypertension (Arribas, Hinek, & Gonzalez, 2006), aneurysms (Halloran 

& Baxter, 1995) and emphysema (Shifren & Mecham, 2006) are associated with loss of 

compliance and gradual breakdown of elastin in tissues (Uitto, Ryhanen, Abraham, & Perejda, 

1982). Human genetic studies provide evidence that elastic fiber abnormalities are not simply 

associated with age-related cardiovascular, pulmonary and connective tissue diseases, but can 

also cause them. Mutations in the elastin gene (ELN) can cause supravalvular aortic stenosis 

(SVAS) through a heterozygous loss of function mutation, and autosomal dominant cutis laxa 

(ADCL) by means of mutant elastin synthesis.   
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1.3.1 AUTOSOMAL DOMINANT CUTIS LAXA (ADCL) 

Autosomal dominant cutis laxa (ADCL, OMIM #123700) is characterized by redundant, sagging 

and inelastic skin, aortic aneurysms, and emphysema and is caused by ELN mutations resulting 

in the synthesis of mutant elastin (Callewaert et al., 2011; Szabo et al., 2006; Urban, Gao, Pope, 

& Davis, 2005).  

1.3.1.1. Clinical manifestations, natural history and management    

Unlike the more severe autosomal recessive forms of cutis laxa, that sometimes leads to 

childhood death, ADCL manifests itself in a range of systems with mild to severe phenotypic 

results. In addition to the common loose, sagging skin that may worsen with age, typical facial 

features include a high forehead, enlarged earlobes and a beaked nose (Berk, Bentley, Bayliss, 

Lind, & Urban, 2012). Other systemic manifestations may encompass the gastrointestinal, 

pulmonary and cardiovascular systems with problems such as hernias, artery stenosis, dilation 

and tortuosity and emphysema (Tofolean et al., 2015; Weir, Joffe, Blaufuss, & Beighton, 1977). 

Management of systemic lesions and preventative checkups involving echocardiography and 

pulmonary function tests should be conducted to prevent complications. (Berk et al., 2012). 

1.3.1.2. ELN Mutations in ADCL    

Most ADCL-related mutations cause a frame-shift within the last 5 exons of ELN resulting in the 

production of a mutant tropoelastin where the C-terminus is replaced by an extended peptide 

sequence translated in the new reading frame past the wild type stop codon (Callewaert et al., 

2011). This mutant protein has enhanced self-association properties but diminished binding 
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microfibrils, and thus interferes with elastic fiber formation in a dominant negative or a toxic gain 

of function manner (Callewaert et al., 2011; Q. Hu et al., 2010). 

1.3.1.3. Molecular mechanisms of ADCL    

Mouse models for ADCL have shown enlargement of airspace, emphysema, respiratory distress 

through a decrease in stiffness of the lung tissue, and premature death, but no skin abnormalities 

or cardiovascular pathologies (Q. Hu et al., 2010). Although increased endoplasmic reticulum (ER) 

stress and elevated TGFβ signaling have been found in both human cells and a mouse model of 

ADCL, it remains unclear if these pathways contribute to the disease or if they could be targeted 

in treating ADCL. 

1.3.2 SUPRAVALVULAR AORTIC STENOSIS (SVAS) 

Supravalvular aortic stenosis (SVAS; OMIM 185500) is an obstructive cardiovascular disease 

affecting 1 in 20,000 live births causing a narrowing of the aorta and hypertension (Baldwin et 

al., 2013; Metcalfe et al., 2000). It is caused by a heterozygous loss of function mutation in the 

elastin gene (ELN) and is inherited autosomal dominantly. SVAS is a progressive disease with 

incomplete penetrance and variable expressivity (Merla, Brunetti-Pierri, Piccolo, Micale, & 

Loviglio, 2012; Metcalfe et al., 2000; Park, Seo, Yoo, & Kim, 2006; Pober, Johnson, & Urban, 2008; 

Wagenseil & Mecham, 2012). 
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1.3.2.1. Clinical manifestations, natural history and management    

SVAS manifests at birth or in childhood as a narrowing of the ascending aorta and can be seen on 

its own as an isolated disease, or as part of Williams-Beuren syndrome (WBS; OMIM 194050). 

WBS is a complex developmental disorder associated with neurobehavioral, craniofacial, 

cardiovascular and metabolic abnormalities, caused by a microdeletion up to 1.8Mb in size at 

7q11.23, a region that contains 27 genes including ELN (Merla et al., 2012; Micale et al., 2010; 

Pober et al., 2008).  

 

The primarily affected artery in those with non-syndromic SVAS is the aorta, with thickening of 

the media (Figure 4) at the sinotubular junction (Figure 6) and can extend towards the ascending, 

transverse arch and descending aorta (McElhinney, Petrossian, Tworetzky, Silverman, & Hanley, 

2000; Scott et al., 2009). Other branches such as those of the pulmonary (Figure 5, Figure 6) or 

coronary arteries have been observed with narrowing of the lumen as well, so determining the 

extent of vascular involvement is important in management of this disease. Patients typically 

present with a systolic murmur, although one is not always present, and become symptomatic 

by the age of twenty. Cases are divided into three categories with two of the lesions present as 

a physiological invagination: stenosis only present as a fibrous ring above the valve (10%), a 

diffuse narrowing of the ascending aorta with medial thickening (20%), and the most common 

type is an hourglass shaped stenosis that has medial layer thickening and sometimes 

accompanied by a thickened, fibrous intimal layer (70%). The stenosis of the artery causes blood 

pressure to become elevated in the left side of the heart, accompanied by enlargement and 

thickening of the cardiac muscle (Merla et al., 2012; Milewicz et al., 2000). 
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Figure 4. The Structure of an Artery Wall 

Non-syndromic SVAS primarily affects the aorta and includes a thickening of the tunica 
media, made up of smooth muscle cells and elastin. Thickening of the media leads to 
a narrowing of the lumen. Blausen.com staff (2014). “Medical gallery of Blausen 
Medical 2014”. WikiJournal of Medicine 1 (2). DOI: 10.15347/wjm/2014.010. ISSN 
2002-4436. 

 

 
Figure 5 Anatomy of the Human Heart 

The aorta is the primary affected vessel in SVAS, although other arteries including the 
pulmonary and coronary arteries may also contain a narrowing of the lumen. 
Blausen.com staff (2014). "Medical gallery of Blausen Medical 2014". WikiJournal of 
Medicine 1 (2). DOI:10.15347/wjm/2014.010. ISSN 2002-4436 
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Figure 6 Segments of the Human Aorta 

 

Diagnosis is best confirmed by echocardiography or a magnetic resonance angiography (MRA). 

Children diagnosed early benefit from timely surgical intervention to repair the diseased artery 

(Greutmann et al., 2012). However, surgical repair during infancy can be challenging and at higher 

risk of mortality if accompanied by concomitant lesions (Mitchell & Goldberg, 2011). In a group 

study of 113 adults, 55% of which had WBS, those without WBS had an increase in the severity 

of SVAS and associated more often with left ventricular outflow tract obstructions. Patients with 
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WBS displayed more often with mitral valve regurgitation. The study also found that adults 

remained at risk for cardiac complications and reoperation of the valve, but progression of the 

disease was rare (Greutmann et al., 2012). 

 

The presenting aortic manifestations have been addressed as follows in some patients: removal 

of the affected area of the artery; balloon aortic catheter procedure to attempt to widen the 

stenosis; or incision of the artery to the root and augmentation with a tissue graft. No one type 

of surgical technique has shown to have an advantage over others in long term studies if the 

appropriate measures are taken to address the most prominent issue (McElhinney et al., 2000; 

Scott et al., 2009). Left untreated, SVAS has the potential to evolve into cardiac failure or death 

(Merla et al., 2012; Yeo, Keeley, & Weiss, 2011). 

1.3.2.2. ELN Mutations in SVAS    

Patients with SVAS have shown premature termination (nonsense or frameshift) mutations; 

some have splice site and very few have missense mutations or large deletions or translocations 

with breakpoints in the ELN gene (Metcalfe et al., 2000; Micale et al., 2010; Milewicz et al., 2000; 

Yeo et al., 2011). ELN gene mutations in SVAS often lead to a truncated reading frame and 

nonsense-mediated decay of the mutant transcript resulting in an inactive, null allele (Dietz & 

Mecham, 2000; Urban et al., 2000; Yeo et al., 2011). The amount of tropoelastin secreted can be 

decreased in those with a splice site mutation (Urban et al., 1999). Alternatively, tropoelastin is 

secreted at normal levels but coacervation and assembly of the elastic fibers is hindered (Wachi 

et al., 2007; Wu & Weiss, 1999).  
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1.3.2.3. Molecular mechanisms of SVAS    

The most widely supported molecular mechanism for SVAS is haploinsufficiency of the ELN gene 

(Baldwin et al., 2013; Micale et al., 2010). The haploinsufficiency can result from loss of an allele, 

unstable mRNA due to nonsense-mediated mRNA decay, or mutant protein production that 

hinders elastic fiber assembly (Dietz & Mecham, 2000). In a study conducted on patients with 

either isolated SVAS or syndromic WBS, patients exhibited a reduction in elastin mRNA levels 

resulting in low amounts of insoluble elastin deposition. In both cohorts, low levels of insoluble 

elastin in the artery walls led to an increase in proliferation of arterial SMCs and multilayer 

thickening of the tunica media, indicating that insoluble elastin is important for the regulation 

vascular cell division (Urban et al., 2002). 

 

Mouse models have also been used extensively to study the molecular mechanisms of SVAS. Mice 

lacking elastin (Eln-/-) due to a deletion of exon 1 and a portion of the promoter region, exhibited 

a perinatal lethal phenotype with an increase in vascular wall SMC proliferation that obstructed 

the artery lumen (Li, Brooke, et al., 1998). A model hemizygous for ELN (Eln+/-), like that seen in 

SVAS human patients did not have an obvious phenotype and had similar appearance and 

longevity when compared to the wildtype (Eln+/+) mice. Upon closer inspection of the vessels, the 

hemizygous mice had a 50% decrease in Eln mRNA at birth, with thinner lamellae. Although not 

all human SVAS characteristics were displayed, changes in the arterial wall was similar with 

characteristically increased number of lamellae, and increased blood pressure (Li, Faury, et al., 

1998). A third study in an SVAS mouse model found an increase in integrin levels in the aorta of 

Eln-/- mice. Integrin β1 was increased in the endothelial cells and some SMCs of the outer smooth 
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muscle layers, and integrin β3 was up-regulated in SMCs of the medial layer of the Eln-/-  aorta 

causing narrowing of the lumen. Inhibition of integrin β3 reduced the hyper-muscularization and 

stenosis (Ashish Misra et al., 2016). Results seen in these murine models suggest that the absence 

of elastin has effect on cell proliferation, adhesion and fate determination through 

downregulation of integrin expression and signaling. Fibrillins are potent ligands of integrins (Bax 

et al., 2003), therefore, elastin may inhibit integrin signaling by masking integrin ligands on 

microfibrils as a part of elastic fiber formation.  

 

Although other congenital heart defects (CHD) such as mitral valve prolapse, mitral valve 

insufficiency and bicuspid aortic valves are less common in WBS compared to SVAS (Lacro & 

Smooth, 2006) studies have nonetheless shown that elastin haploinsufficiency can affect valve 

development. Eln+/- mice had normal ECM organization except for in the aorta at birth. As the 

mice aged, valves became thin and elongated with increased ECM disorganization, tensile 

stiffening, increased valve interstitial cell proliferation and elastin fragmentation. Valve disease 

which included regurgitation in the aortic valve became progressively worse in the ELN+/- mice, 

with 70% of older adults displaying the valve abnormalities, establishing elastin’s role in valve 

pathogenesis. These same mice also exhibited a decrease in TGF-β signaling in cardiac valves 

(Hinton et al., 2010).  
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1.4. CARDIOVASCULAR DEVELOPMENT IN ZEBRAFISH 

As a disease model, zebrafish have come to be widely used for developmental biology studies 

due to their external fertilization, large numbers of offspring, and access to all stages of rapid 

development. Zebrafish embryos are transparent, and the heart is located in a prominent ventral 

position that allows for noninvasive in vivo observation of the cardiovascular system from the 

time of fertilization throughout the heart and vasculature’s development in the embryo (Bakkers, 

2011; Bournele & Beis, 2016; Lieschke & Currie, 2007; Nguyen, Lu, Wang, & Chen, 2008; S. Tu & 

Chi, 2012). Another advantage is the ease with which the developing embryo is able to be imaged. 

Fluorescent transgenic lines allow for easy visualization of cardiac and smooth muscle cells to 

determine cell differentiation (Bakkers, 2011; Lieschke & Currie, 2007). Zebrafish are also not 

dependent on the cardiovascular system within the first 7 days of life. Oxygen is acquired in 

sufficient amounts through passive diffusion (Pelster & Burggren, 1996), facilitating analysis of 

cardiac valve formation and the effects of mutations that would otherwise be lethal in mammals 

(Bournele & Beis, 2016). When compared to human cardiac disease-related genes, the Online 

Mendelian Inheritance in Man (OMIM) database shows that at least 82% of those genes contain 

at least one zebrafish ortholog. These genes are easily manipulated in the zebrafish and provide 

opportunities to study their function, especially in diseases of the cardiovascular system’s 

development (Asnani & Peterson, 2014). 

 

In vertebrates, the heart is the first functional organ formed (Moorman, Webb, Brown, Lamers, 

& Anderson, 2003; Schroeder, Jackson, Lee, & Camenisch, 2003). The zebrafish heart is made up 
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of four compartments that pump deoxygenated blood to the gills for oxygenation. The four parts 

are the sinus venosus, the atrium, the ventricle and the bulbus arteriosus (N. Hu, Sedmera, Yost, 

& Clark, 2000). The bulbus arteriosus is an elastic reservoir seen in the teleost outflow tract (OFT), 

comprised of smooth muscle cells and abundant elastic fibers, that absorbs high volumes of blood 

and prevents gill damage due to high blood pressure. (Grimes, Stadt, Shepherd, & Kirby, 2006; 

José M. Icardo, 2017; S. Tu & Chi, 2012).  

 

Despite the human heart containing four chambers (two atria and two ventricles), and the 

absence of a separate pulmonary circulatory system in the zebrafish (S. Tu & Chi, 2012), there 

are similarities between the two chambers in zebrafish to those of the human that may lead to a 

better understanding of cardiovascular pathologies (Asnani & Peterson, 2014). Both humans and 

zebrafish undergo similar cardiovascular morphogenetic development (Figure 7). The cardiac 

cells of zebrafish start off laterally and migrate to the midline during segmentation to form a 

primitive heart tube. The heart tube develops through formation of a cardiac disc structure fused 

at the midline. This is followed by cardiac looping at 36 hours post fertilization (hpf) where it 

differentiates into the chambers. Development is rapid and by 24 hpf, the embryo’s primitive 

heart tube begins peristatic contractions which transition to coordinated chamber contractions 

by 48 hpf (Bakkers, 2011; Nguyen et al., 2008; Yelon, 2001). 

The valves of the zebrafish heart appear at 5 dpf (N. Hu et al., 2000) but they are not mature, 

developing further in two phases. During the initial phase through 16 dpf the valves elongate, 

followed by maturation in which the ECM collagen and elastin deposits thicken the valve 

structures (Martin & Bartman, 2009). 
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Some examples of how zebrafish express mutations analogous to human cardiovascular disease 

are as follows: the gridlock mutation (grl) in the hey2 gene causes circulation development to fail 

by blocking aortic blood flow through occlusion of the proximal aorta, as seen in human aortic 

coarctation (Weinstein, Stemple, Driever, & Fishman, 1995; Zhong, Rosenberg, Mohideen, 

Figure 7. Stages of Cardiac Development  

A) The cardiac progenitor cells (pink and blue) of zebrafish start off laterally and migrate to the midline 
during segmentation to form a primitive heart tube (D). The heart tube develops through formation 
of a cardiac disc structure fused at the midline and the endocardium (green) forms the inner lining. 
This is followed by cardiac looping (F) at 36 hours post fertilization (hpf) where the ventricle moves 
towards the midline and the structure differentiates into the chambers. Looping continues and forms 
an S-shaped loop (G). Development is rapid and by 24 hpf, the embryo’s primitive heart tube begins 
peristatic contractions which transition to coordinated chamber contractions by 48 hpf. Bakkers, J. 
(2011). Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc 
Res, 91(2), 279-288. doi:10.1093/cvr/cvr098. Obtained for use with permission from publisher. 
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Weinstein, & Fishman, 2000). Symptoms similar to human arrhythmias of type 2 long QT, where 

the atrium contracts twice and the ventricle once, are seen in fish of the breakdance (bre) 

mutation (Chen et al., 1996; Langheinrich, Vacun, & Wagner, 2003). 

 

Zebrafish have also shown to be important in understanding advanced heart failure and end-

stage cardiomyopathy in humans and could provide future insight into small molecule drug 

treatments. Adult zebrafish have the ability to regenerate their ventricular tissue through 

dedifferentiation of cardiomyocytes, where cells revert to earlier developmental stages, and 

express a molecular marker important in cardiac development, gata4 (Asnani & Peterson, 2014; 

Jopling et al., 2010; Kikuchi, 2014; Kikuchi et al., 2010). 

 

Mutations in zebrafish also have the potential to increase the understanding of certain 

cardiovascular developmental regulations in the human and may help explain how embryonic 

myocardial function mutations lead to congenital heart disease in humans and impact valve 

development (Asnani & Peterson, 2014; Bartman et al., 2004). Embryos with the silent heart  

(sih-/,- or tnnt2a) and cardiofunk (cfk-/-) mutations, have irregularities in valve development and 

lack contraction as well as early blood flow (Bartman et al., 2004). A separate study has shown 

that endocardial cells differentiate in response to Notch signaling before the mesenchyme in 

valve formation (Beis et al., 2005). With the ability to easily observe cardiovascular development 

in the zebrafish, various groups have identified numerous genes that regulate cardiac patterning, 

cell fate determination and morphogenesis at various stages (Chen et al., 1996; Singh et al., 2016; 

Stainier et al., 1996; Yelon, 2001) (Table 1). 
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Table 1. Examples of Genes Related to Zebrafish Cardiovascular Development 

  
Zebrafish 

Gene 
Name 

Phenotype Zebrafish 
Mutant 

Human 
Gene 
Name 

Related Human 
Cardiovascular 

Disease 
Reference 

hey2  
alias: grl 

circulation fails to 
develop, blockage of 
aortic bloodflow 

Gridlock  
(grl-/-) 

HEY2 aortic 
coarctation 

(Weinstein et 
al., 1995; 
Zhong et al., 
2000) 

bre type 2 arrhythmia  
(long QT) 

Breakdance 
(bre-/-) 

 type 2 
arrhythmia 

(Chen et al., 
1996; 
Langheinrich et 
al., 2003) 

tnnt2a  lack of 
contractility/heart beat 

Silent heart 
(sih-/-) 

TNNT2 Familial 
hypertrophic 
cardiomyopathy 

(Bartman et al., 
2004) 

acta1b cardiac dilation and no 
early bloodflow 

Cardiofunk 
(cfk-/-) 

ACTA1 structural 
congenital heart 
disease 

(Bartman et al., 
2004) 

tbx2b impaired heart valve 
formation 

Ping pong 
(png+/-) 

TBX2 -- (Just, Hirth, 
Berger, 
Fishman, & 
Rottbauer, 
2016) 

ugdh heart valve formation 
initiation impaired 

Jekyll 
(jek-/-) 

UGDH -- (Walsh & 
Stainier, 2001) 
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1.5. ZEBRAFISH AS A MODEL IN ELASTIN STUDIES 

Zebrafish offer further advantages for elastin studies. Peak elastin expression occurs during the 

late fetal and early perinatal period in mammals (Kelleher, McLean, & Mecham, 2004) when the 

animals are less accessible to experimental manipulations. In contrast, zebrafish embryos and 

larvae have developmental stages with peak elastin expression (Miao et al., 2007) that are 

continually accessible and amenable to in vivo imaging. While the zebrafish elastin genes have 

been sequenced in their entirety, for comparison to each other and other species (Chung et al., 

2006; He et al., 2007), little has been published regarding the diversity of these gene transcripts 

in zebrafish. 

 

A limitation of zebrafish in genetic studies is that many of the human genes have two paralogs in 

zebrafish. Zebrafish have two tropoelastin genes, elna and elnb, due to whole-genome 

duplication in teleosts (Chung et al., 2006).  The orthologous relationships are sometimes 

challenging to establish, but not so for elastin, where sequence similarity, the size of the encoded 

protein and expression pattern supports elna (Table 2) as the ortholog of human elastin (Keeley, 

2013; Miao et al., 2007). Nevertheless, work on both elastin genes is of importance, as localized 

expression of elnb to the bulbus arteriosus (outflow tract of the heart), presents an opportunity 

to obtain mutants with phenotypes limited to this organ.  
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         Table 2. Human and Zebrafish Elastin Genes 
 

 Human  Zebrafish  (2 genes) 

Gene(s) ELN elna  elnb 

Exons 34 exons 56 exons 58 exons 
Location 7q11.23 chromosome 15 chromosome 21 
Coding  
sequence size 2.3kb 3.5kb 6.2kb 

Protein weight 69kDa ~100 kDa ~170 kDa 
 
 
 
There is some overlap of elastin expression in the zebrafish larvae. Previous research has shown 

that elna first appears in the brain at 1-day post fertilization (dpf). At 2 dpf it is in the cerebral 

ventricles, at 3 dpf it is present in the bulbus arteriosus (BA) and outflow tract and by 4 dpf elna 

is in the swim bladder. On the other hand, elnb does not appear until 3 dpf in the BA. At 4 dpf it 

is in the cranium, BA and in the swimbladder at 5 dpf. Both elna and elnb peak at 6-7 dpf, but 

elna is only expressed 24 times stronger at this time point than at 1 dpf, while elnb is 300 times 

more expressed. Transcript abundance begins to decrease at 8 dpf and reaches a basal expression 

at 23 dpf in both genes (Miao et al., 2007). Recently, zebrafish elnb morphants and mutants were 

found to have cardiac outflow tracts populated by cardiomyocytes instead of smooth muscle cells 

observed in control fish, indicating that elnb is essential for correct cell fate decisions in the 

developing teleost heart (Moriyama et al., 2016).  

 

While research has been done on the development of the cardiovascular system in zebrafish, not 

much is known about elastin’s role in its development, especially the valve leaflets. In humans, 

the valve cusps contain about 50% collagen and 13% elastin (Bashey, Torii, & Angrist, 1967). In 
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porcine aortic valve leaflets, elastin is required to maintain tissue integrity and to assist in 

returning the valves to their original shape through recoil once pressure from blood flow has 

ceased (Vesely, 1998). Research conducted in the teleost family, which includes zebrafish, has 

shown that the atrioventricular (AV) region of the heart gives rise to the valves through signaling 

pathways, conserved from zebrafish to mammals (J. M. Icardo & Colvee, 2011). The Notch 

pathway regulates bone morphogenetic protein (Bmp) signaling and defines the atrioventricular 

canal and inner curvature areas of the heart (Rutenberg et al., 2006). Notch (Timmerman et al., 

2004), Wnt/β-catenin (Hurlstone et al., 2003), ltbp3-TGFβ (Zhou et al., 2011) and Cox2 (Scherz, 

Huisken, Sahai-Hernandez, & Stainier, 2008) are needed for proper formation of the heart’s 

endocardial cushions and valves. Due to this conservation of elastin from zebrafish to humans, 

further research of elastin’s role in zebrafish cardiovascular development can lend some insight 

into human cardiovascular diseases.  

1.6. PUBLIC HEALTH SIGNIFICANCE 

Rare diseases are defined as having a prevalence of less than 4-5/10,000 (Richter et al., 2015) or 

less than 200,000 affected individuals in the United States, as specified in a 1984 amendment to 

the Orphan Drug Act (P.L. 97-414) of 1983. Although individually uncommon, rare diseases 

collectively affect approximately 25 million people in the US or about 10 % of the population.  

Many of 5,000-8,000 rare diseases are genetic in origin, which provides a clear path to 

understanding their cause and developing treatments for them. However, the large number of 
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different diseases and the scarcity of individuals affected by each pose a substantial challenge to 

progress and represent a major unmet medical need (Medicine, 2010).  

 

Animal models are essential for understanding the developmental and physiological basis of 

disease and as tools to develop and test therapeutic approaches (Simmons, 2008). The main goal 

of my study was to establish and characterize zebrafish with mutations in the elastin genes as 

possible models for SVAS, an obstructive cardiovascular disease affecting 1 in 20,000 live births 

that causes a narrowing of the aorta and hypertension (Baldwin et al., 2013; Metcalfe et al., 2000) 

that occurs as isolated, familial condition (OMIM 185500), or as a part of a multisystem 

developmental disorder, Williams-Beuren syndrome (OMIM 194050).  

 

The mechanistic and therapeutic insights from rare diseases are often applicable to common 

disorders because of a shared underlying biological pathway (Bauer-Mehren et al., 2011) or 

similarities in clinical presentation. The association of SVAS with hypertension (Wagenseil & 

Mecham, 2012), valvular defects (Greutmann et al., 2012) and other congenital heart defects 

(CHDs) is of broader public health relevance. The Centers for Disease Control and Prevention 

report that 1 in 3 adults suffers from hypertension and costs the United States $46 billion each 

year ("High Blood Pressure Facts," 2018; Nwankwo, Yoon, Burt, & Gu, 2013). Cardiovascular 

disease accounts for about 17 million deaths per year worldwide ("Cardiovascular diseases 

(CVDs)," 2017)  and in 2014 at least 1,100 deaths each day were due to hypertension in the United 

States alone ("High Blood Pressure Facts," 2018). About 40,000 infants in the United States are 

born each year with CHDs, the leading cause of birth defect related death, and over 2 million 
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people from infants to adults had some form of a CHD in 2010. Overall hospital costs for patients 

with CHD totaled about $1.4 billion in 2004, with the average cost per patient increasing based 

on the severity of their CHD ("Data & Statistics," 2018). 

1.7. DISSERTATION AIMS 

Zebrafish have two tropoelastin genes, elna and elnb. While research has been done to sequence 

the genes in their entirety, for comparison to each other and other species (Chung et al., 2006; 

He et al., 2007), little has been published about the genetic diversity of these gene transcripts in 

zebrafish. Characterizing the genetic and transcript diversity is important since genetic diversity 

helps to explain how adapting genomes contribute to the survival of a species. In addition, the 

sequence variation in the zebrafish elastin genes critically affects the design and interpretation 

of experiments that genetically manipulate them. 

 

While extensive research has been done on the development of the cardiovascular system in 

zebrafish, elastin’s role has received less attention. Only recently, zebrafish elnb morphants and 

mutants were found to have cardiac outflow tracts populated by cardiomyocytes instead of 

smooth muscle cells observed in control fish, indicating that elnb is essential for correct cell fate 

decisions in the developing heart (Moriyama et al., 2016).  

 

The main goal of this research is to generate and characterize a set of SVAS-like mutant zebrafish 

lines. The animals will be valuable tools for the understanding and development of molecular 
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mechanisms of elastin-related disorders and targeted treatments, as the zebrafish is an excellent 

animal model for small molecule screening and chemical genetics (Murphey & Zon, 2006).  

 

Based on published knowledge, I hypothesize that elastins are essential for the development of 

specific components of the cardiovascular system, including the cardiac valves and outflow tract. 

To address this hypothesis, the developmental and physiological consequences of elastin 

mutations in an in vivo zebrafish model must be investigated. Therefore, two specific aims were 

pursued:   

Aim 1: Characterize the genetic and transcript diversity of elna and elnb in zebrafish by 

sequencing cDNA clones.  

Aim 2: Characterize elna and elnb mutants by genetic and gene expression studies, 

investigate the cardiovascular and connective tissue phenotypes of mutants using 

transgenic reporter fish, confocal and video microscopy and echocardiography. 
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2.0   METHODS 

2.1. ZEBRAFISH MAINTENANCE AND CARE 

Adult zebrafish (Danio rerio) were housed in the Zebrafish Facility of the University of Pittsburgh. 

Animal maintenance and husbandry was conducted according to the facility’s standard operating 

procedures, NIH guidelines and The Zebrafish Book (Westerfield, 2007), and a research protocol 

approved by the University of Pittsburgh Institutional Animal Care and Use Committee (IACUC) . 

To limit pain and discomfort, the FDA-approved anesthetic tricaine (ethyl 3-aminobenzate 

methylsufonate) is prepared as a 4mg/mL solution and used as a 0.16mg/mL solution in tank 

water to minimize stress in handling fish when immobilizing for injection or photographic 

procedures. Embryos were staged using published guidelines (Kimmel, Ballard, Kimmel, Ullmann, 

& Schilling, 1995) and  grown at 28.5°C in 30% Danieau solution [17mM NaCl, 2mM KCl, 0.12mM 

MgSO4, 1.8 mM Ca(NO3)2, 1.5mM HEPES]. In cases where melanin development had to be 

prevented, the embryo medium also included 0.0003% phenylthiourea (PTU). 

2.2. ZEBRAFISH LINES 

The wildtype (WT) Tü/AB* line of fish is a cross between the wildtype Tübingen and AB lines 

(Staff, 2016). These fish are from established lines maintained in the lab. For elna and elnb, 
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mutant lines were obtained from the Sanger Institute Zebrafish Mutation Project, elnasa12235, 

c.264T>A, p.Tyr88* and elnbsa24024, c.1771C>T, p.Gly591Asp. Several rounds of breeding were 

done to establish a homozygous mutant elnasa/sa and elnbsa/sa lines. (For brevity, I will use elnasa 

and elnbsa for these mutants throughout the dissertation.) Homozygous mutants (elnasa/sa) were 

outcrossed with a Tg(acta2:mCherry)ca8;Tg(myl7:eGFP)twu34 transgenic line to develop a double 

transgenic mutant line of elna fish (Raya et al., 2003; Whitesell et al., 2014). 

2.3. EXISTING TRANSCRIPT INFORMATION 

Transcript sequences of elna and elnb were downloaded from the GenBank database of elna & 

elnb and imported into CLC Main Workbench 6 to be used as reference sequences. elna reference 

sequences are NM_001080063, and XM_009291325.1 – XM_009291348.1, and elnb reference 

sequences are NM_001048064.1, NM_001048064.2, and XM_005161444.1. The XM prefix 

associated with these sequences indicate model RefSeqs that contain differences, errors, or gaps 

in the sequence either predicted or from submissions and vary from the NM curated sequences 

available. The pipelines used to create these prediction sequences are automated and 

periodically the data are refreshed, and the sequences eliminated from the database ("The NCBI 

Eukaryotic Genome Annotation Pipeline," 2018). At the time of the download, June 15, 2015, 

these were the available reference sequences. 
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2.4. RNA EXTRACTION FOR TRANSCRIPT CLONING AND QUALITY CONTROL 

Total RNA was extracted from thirty 72 hours post fertilization (hpf) WT Tü/AB* larvae from a 

single clutch obtained by group breeding of 13 adults. I used 500µL Trizol and immediate 

homogenization with a pestle homogenizer. For phase separation, 50µL of BCP was added, 

shaken manually for 15 seconds to form an emulsion, incubated on ice for 5 minutes, then 

subjected to centrifugation at 12,000xg for 10 minutes at 4oC. The aqueous phase on top was 

transferred to a Qiagen RNeasy spin column from the RNeasy Mini Kit. The rest of RNA extraction 

was conducted by following the RNeasy protocol. Final concentrations of RNA were measured 

using UV spectrophotometry. RNA integrity was verified by agarose gel electrophoresis. 

2.5. REVERSE TRANSCRIPTION AND POLYMERASE CHAIN REACTION (RT-PCR) 

Reverse transcription was conducted using the Superscript IV Reverse Transcriptase Kit 

(Invitrogen) following the manufacturer’s instructions using 1µg of RNA and random hexamers. 

PCR amplification of elna and elnb cDNA fragments was done using the Qiagen Multiplex Kit with 

HotStarTaq DNA Polymerase using primer sets (Table 29, Table 30), with a 30 second annealing 

time, 1-minute extension for amplicons up to 1 kb, 3-minute extension for amplicons over 1 kb, 

and 35 total cycles. The sizes and quality of RT-PCR products were verified by agarose gel 

electrophoresis. 
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2.6. MOLECULAR CLONING, SEQUENCING, AND SNP CONFIRMATION 

Amplicons were cloned using the pCR™II-TOPO® TA vector with the TOPO Cloning Kit (Invitrogen) 

into One Shot® TOP10 chemically competent E. coli cells and plated onto LB agarose with 

ampicillin overnight at 37oC. Following incubation, colonies were picked and incubated overnight 

in 2mL LB Broth with 100 µg/mL ampicillin. Plasmid DNA was isolated using the Monarch Plasmid 

Miniprep Kit (New England Biolabs) according to the manufacturer’s instructions. For the final 

step, the plasmids were eluted from the column using 20µL of Elution Buffer to achieve high 

concentration, which was measured by UV spectrophotometry. Plasmid clones were digested 

with EcoRI to liberate the cDNA fragments and confirm their size by agarose gel electrophoresis. 

Plasmid clones were subjected to fluorescent dideoxy cycle sequencing using primers 

complementary to the plasmid backbone and additional, regularly spaced internal primers, 

(Table 31, Table 32) against the cDNA. Operon was used as a sequencing service provider. 

Sequence traces were imported into Sequencher v5.4, were trimmed to remove low quality 

regions and aligned. Vector sequences were removed. The alignments contained complete 

bidirectional coverage of each cDNA clone with the depth of coverage ranging 2-6. Complete 

cDNA clone sequences were imported into CLC Main Workbench v6 and annotated for exon and 

variant content using sequence searching and multiple alignment functions.  

 

Exon-exon boundaries were confirmed by comparisons against cDNA and genomic reference 

sequences. Amplification primer sequences were trimmed, and sequences were exported in 

FASTA format for submission to GenBank using the BankIt web interface. The splice site scores 
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were determined using a website algorithm (Reese, 2018). Variants with existing rs numbers 

were identified through data mining on the Ensembl website. Filters were applied to narrow 

down existing variants that were similar to those found in the sequences. 

2.7. SNP CONFIRMATON IN gDNA 

Confirmation of single nucleotide polymorphisms (SNPs) found in the cDNA from embryos was 

executed using gDNA from tail-clips of the adult zebrafish parents of the clutch. gDNA was 

amplified using the Qiagen Multiplex Kit with HotStarTaq DNA Polymerase and sets of primers 

(Table 3, Table 4), with a 30 second annealing time, 30 second extension and a total of 32 total 

cycles. PCR products underwent quality control by agarose gel electrophoresis, were treated with 

exonuclease I and shrimp alkaline phosphatase using 1 μL of ExoSAP-IT (Thermo Fisher Scientific) 

in a reaction with 5 μL of PCR sample and 9 μL of water. The reaction was incubated for 40 

minutes at 37°C followed by 20 minutes at 80°C to inactivate the enzymes. Samples were then 

sent to sequence using the Operon service and analyzed with the Sequencher v5.4 software. 
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Table 3. Primers to Confirm SNPs in elna gDNA 

Primer Name Sequence 
Intron (I) or 

Exon (E) # 

zf elna I10.1s* TCAAACCTCGTGATCATCAT 10 (I) 

zf elna I10.2s* TAGCTGCCCTCCATTACACAG 10 (I) 

zf elna I14.1s* ACCATGAGTATTGTCTGCT 14 (I) 

zf elna I17.1a* AGACCAACCTATCCCAGCAA 17 (I) 

zf elna I33.1s* TTCAGCAGGGATAGCATATTC 33 (I) 

zf elna I35.1a* AGACAGCTGAAACAGAAAAG 35 (I) 

zf elna I36.1s* TCTGAGGTTTTGAGGATTGT 36 (I) 

zf elna I39.1a* ATAAAGGGACTAAGCCGAAA 39 (I) 

zf elna I40.1s* ATGTGGCAATGTTGTGTATG 40 (I) 

zf elna I45E46.1a* GAAGCTTGGCTGTGGATAGA 45 (I), 46 (E) 

zf elna I50.1s* TGAACAGCAGACAGACAGTA 50 (I) 

zf elna I51.1a* ACAACACCACCTTCATCTCCA 51 (I) 

zf elna I13.1a* TTATTGGGTGCTAAAGCTGG 13 (I) 

zf elna I35.2a* AATACTCGATTCACACTCAG 35 (I) 

zf elna I39.2a* ATAAGTTGGCGGTTCATTCC 39 (I) 

zf elna I43.1s* ACCAACGAACAGGTCACAAT 43 (I) 

zf elna I41.1a* GAAACGCACTGTTATGACAA 41 (I) 

zf elna I50.2s* AAACAGCCCAACGGGTCAAA 50 (I) 
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Table 4. Primers to Confirm SNPs in elnb gDNA 

Primer Name Sequence 
Intron (I) or 

Exon (E) # 

zf elnb I6E7.1s TGCTTAAAGGTGTGGGTGGA 6 (I), 7 (E) 

zf elnb I9E10.1a ACCATAGCCACCTAAAAACA 9 (I), 10 (E) 

zf elnb I9E10.2a ATAAATACCTCCTGGCCCAC 9 (I), 10 (E) 

zf elnb E31I31.1s ATGGTACGGGGAAATGAAAC 13 (I) 

zf elnb E33.1a TTTAAGGCTTTTGCTCCAC 33 (I) 

zf elnb I33.1a AAAGCTGCAGAACAAAACAC 33 (I) 

zf elnb E40.1s TGATTGGCAGCCCTGATGG 40 (I) 

zf elnb I40.1s ACCCAATACCTAACCACAAC 40 (I) 

zf elnb I43.1a AAAATGCTAAGAGTCACGAG 43 (I) 

zf elnb E47.2a AATCCTGTGCCTGCAGCTC 47 (E) 

zf elnb E47.3a CAACACCTCCAACTCCAAGA 47 (E) 

zf elnb I33.2s GACATTGTGTTTTGTTCTGC 33 (I) 

zf elnb I34.1a AGTTGATCAGACTACAGCAT 34 (I) 

zf elnb I50.1a ACCCATGTTAACCCAAAACT 50 (I) 

zf elnb I50.2a GAAAATCCAAAAAGAGCCAC 50 (I) 
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2.8. GENOTYPING OF ZEBRAFISH BY dCAPS 

Confirmation of the mutations (elnasa12235, c.264T>A, p.Tyr88*) and (elnbsa24024, c.1771C>T, 

p.Gly591Asp) in mutants obtained from the Sanger Institute Zebrafish Mutation Project was done 

by genotyping using the derived cleaved amplified polymorphic sequences (dCAPS) method 

(Neff, Neff, Chory, & Pepper, 1998). The technique requires the creation of primers that 

introduce a polymorphism based on the target mutation and induce a restriction endonuclease 

recognition site in either the mutant or WT DNA sequence through base mismatch. Primers 

(Table 5) were designed using a web-based primer design software to detect the mutations (Neff, 

Turk, & Kalishman, 2002).  Genotyping was performed on whole embryos and adult tail-clip 

biopsies. Genomic DNA (gDNA) was isolated using the DNeasy Blood and Tissue Kit (QIAGEN). 

10ng of gDNA was used for each PCR amplification reaction.  The amplifications for elna and elnb 

were digested at 37oC for 90 minutes, using DdeI and Hpy188I respectively, and run on 3% 

Metaphor agarose gel.  DNA sequencing was done with the service provider Operon. 

  



 
 

 43 

Table 5. dCAPS Primers for Genotyping elna and elnb 

 

For both elna and elnb, the C mismatch (green and underlined) changed an A base in the original sequence. 
The enzyme cutting site (indicated by ^ in the recognition sequence) targeted the mutant alleles (elna: T>A, 
elnb: C>T). If the mutant allele was present, the enzyme would cut.   

2.9. RNA ISOLATION TO STUDY THE EXPRESSION OF MUTATIONS 

Total RNA was extracted from adult zebrafish hearts, swim bladders, tail-clips and 10-30 embryos 

using the same method as described in Section 2.4. The number of embryos was dependent on 

their age. Reverse transcription was performed as described in Section 2.5. PCR was done using 

the Qiagen Multiplex Kit with HotStarTaq DNA Polymerase, primers (Table 6) with a 30 second 

annealing time, 30 second extension and a total of 35 total cycles. The sizes and quality of RT-

PCR products were verified by agarose gel electrophoresis. PCR product cleanup and sequencing 

were performed as described in Section 2.7. 

  

Gene 
Amp 

Amp 
Size 
(bp) 

Primer Name Exon Sequence Enzyme 
Enzyme 

Recognition 
Sequence 

elna 276 
zf elna 

I4E5s*DdeI 
intron 4 –  

exon 5 TATCTCTCTGGCTGTAGGTGGCTA 
DdeI 5’…C^TNAG…3’ 

zf elna E6.1a* 6 ACCTCCAGGCAGAACTCCTC 

elnb 285 
zf elnb E17.1s 

Hpy188I 17 TCTCAGGCTAAAGCTGCCAAGTCTG 
Hpy188I 5’…TCN^GA…3’ 

zf elnb E18.3a 18 AATGCCTCCAACACCTGGTA 
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Table 6. RT- PCR primers to investigate the expression of mutations 

 
Gene 
Amp 

Amp 
Size 
(bp) 

Primer Name Exon Sequence 

elna 787 
zf elna KE1.1s 1 TTGCTCCTTCTCGGATTCTT 
zf elna E9.1a 13 TGGGAGATTTGAGGGGGT 

elnb 285 
zf elnb E17.1s 

Hpy188I 17 TCTCAGGCTAAAGCTGCCAAGTCTG 

zf elnb E18.3a 18 AATGCCTCCAACACCTGGTA 
 

2.10. EMBRYO HEART RATE MEASUREMENT 

Embryos were kept in individual wells of 24-well plates, removed from the incubator and brought 

to room temperature to equalize environmental conditions of all embryos. Embryos at 5 days 

post fertilization (dpf) and 7 dpf were placed into a drop of water to eliminate the need for 

tricaine and keep them in place for observation using a stereomicroscope. Heart rates were 

measured by counting heart beats for 1 minute through direct observation.  

2.11. ADULT ORGAN EXTRACTION, WHOLE-MOUNT HART’S ELASTIN STAINING 

Adult zebrafish were euthanized using 0.64mg/mL tricaine.  Dissection and extraction of the adult 

heart was done using published guidelines (Gupta & Mullins, 2010). The hearts were fixed in 10% 

buffered formalin (Protocol, Fisher Scientific) and stored at 4°C until ready for sectioning. The 

heart tissue was embedded in paraffin wax and sectioned by the Tissue and Research Pathology 

Services of the University of Pittsburgh Cancer Institute and mounted onto glass slides. A 
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modified version of the Hart’s Elastin Staining Protocol was used to stain the hearts for elastin (R. 

Mecham, 2018). Slides were first deparaffinized by soaking in Histo-clear (National Diagnostics) 

for 15 minutes, followed by rehydration in an ethanol series (100%, 95%, 80%, 70%, 50%, 30%, 

tap water) with 10 dips per solution. The slides then were immersed in 0.25% potassium 

permanganate solution for 5 minutes, rinsed by dipping 10 times in tap water, incubated in 5% 

oxalic acid solution for 5 minutes, and rinsed again by dipping 10 times in tap water. Slides were 

stained in resorcin-fuchsin working solution (PolyScientific) for 2 hours and rinsed in tap water 

by dipping 30 times, with a change of water every 10 dips, followed by a soak for 5 minutes. Slides 

were counterstained in tartrazine working solution (2% tartrazine, 2% acetic acid) for 2 hours, 

dipped once in tap water, and dehydrated in the same ethanol series in reverse order with 1 dip 

per concentration. The slides were soaked in histoclear for 2 minutes and mounted under 

coverslips using Permount. Viewing and imaging of slides was done using a Leica DM5000 

fluorescent microscope using transmitted light settings.  

2.12. WHOLE-MOUNT IMMUNOSTAINING 

Whole embryos were fixed in 4% paraformaldehyde (PFA) at 4°C overnight. After fixation, the 

embryos were washed 2 times for 5 min each with 0.1% Triton X-100 (TX-100) in 1X phosphate-

buffered saline (PBS), followed by an incubation in PBS containing 0.5% TX-100 at room 

temperature for one hour. After the incubation, the embryos were blocked in blocking buffer 

containing 1% dimethyl sulfoxide (DMSO), 1% TX-100, 0.2% bovine serum albumin (BSA) and 5% 

goat serum prepared in PBS for 3 hours. Embryos were then incubated overnight at 4°C in a 1:250 
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dilution of elna primary antibody prepared in blocking buffer. The following day, the embryos 

were washed in 1 mL of blocking buffer for 5 minutes, then washed 4 times with 500 μL of 0.1% 

TX-100 in PBS for 30 minutes each wash. Embryos were then blocked in 500 μL of blocking buffer 

for 1 hour, then stained with secondary antibody Alexa Fluor 568 anti-rabbit IgG (Thermo Fisher 

Scientific, A-11011) in a 1:250 dilution for 3 hours. Staining was followed by 4 washes of 5 minutes 

each in 0.1% TX-100 in PBS, then left overnight at 4°C in 1X PBS. Imaging of embryos was done 

using an Olympus BX51 microscope and DP71 camera. 

2.13. CONFOCAL IMAGING AND VIDEO MICROSCOPY 

Homozygous mutants (elnasa/sa) were outcrossed with a Tg(acta2:mCherry)ca8;Tg(myl7:eGFP)twu34 

transgenic line to obtain elnasa/+;Tg(acta2:mCherry)ca8;Tg(myl7:eGFP)twu34 adults, which were in-

crossed to obtain homozygous mutant double transgenic fish. Both wildtype 

Tg(acta2:mCherry;myl7:eGFP) and elnasa/sa Tg(acta2:mCherry;myl7:eGFP) embryos were grown 

in 30% Danieau solution [17mM NaCl, 2mM KCl, 0.12mM MgSO4, 1.8 mM Ca(NO3)2, 1.5mM 

HEPES] containing 0.0003% phenylthiourea (PTU) up to 7 dpf. Larvae were mounted ventral side 

down on 35mm glass bottom plates (MatTek, P35G-0.170-14-C) using 2% low-melt agarose with 

0.16mg/mL tricaine. Imaging was done using a Nikon A1 Confocal microscope at the Center for 

Biologic Imaging (CBI) at the University of Pittsburgh. Maximum projection images were then 

analyzed, and measurements taken using the Nikon NIS-Elements software. Wildtype Tü/AB* and 

elnasa/sa fish were also grown to 7 dpf in the same manner and mounted using the same technique 

for taking videos of the hearts using a differential interference contrast (DIC) microscope, the 
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Nikon Ti Live Cell microscope and Photometrics PRIME 95B camera, and the Nikon NIS-Elements 

software for analysis. 

2.14. ECHOCARDIOGRAPHY 

Working with one zebrafish at a time, an adult zebrafish was first placed into Tricaine at a 

concentration of 0.12mg/mL made in system water to induce anesthesia for a length of 2 

minutes. Fish were monitored to assure respiration did not cease. The fish was then transferred 

into a separate container containing Tricaine at a concentration of 0.096mg/mL used to maintain 

anesthesia for the length of the echocardiography scanning. Fish were held in the ventral position 

using a sponge immersed in a container with 0.096mg/mL maintenance Tricaine. Concentration 

of Tricaine for anesthesia induction and maintenance may need to be adjusted for each line. 

 

Echocardiography imaging was done using a Fujifilm Visualsonics Vevo 2100 Micro-ultrasound 

animal imaging system. The probe was placed on the ventral side of the immersed fish to obtain 

blood flow images using the system’s color Doppler modes. Once images were obtained, the 

zebrafish was placed into system water without Tricaine.  
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3.0    RESULTS 

3.1    TRANSCRIPT DIVERSITY IN ZEBRAFISH ELASTIN GENES 

To assess transcript diversity in elna and elnb, cDNA clones were generated from thirty 72 hours 

post fertilization (hpf) wildtype Tü/AB* larvae. The RNA was subjected to reverse transcription 

using random hexamers and to PCR amplification using sets of primers (Table 29, Table 30) 

designed to cover elna and elnb transcripts in 6 and 8 overlapping fragments, respectively. For 

each cDNA fragment, at least 5 clones were sequenced completely on both strands using primers 

complementary to the plasmid backbone and additional, regularly spaced internal primers (Table 

31, Table 32) against the cDNA. A total of 46 elna and 44 elnb clones were sequenced.  

 

I uncovered substantial variation in cDNA sequences from both genes (Table 7). The possible 

sources of these sequence variants include genetic variation, alternative splicing, and reverse 

transcriptase or PCR errors. Assignment of the observed sequence variation to these causes is 

not straightforward and required making the following assumptions. Single nucleotide variants 

and insertion deletion variation with breakpoints within exons were assumed to be genetic, 

whereas insertion-deletion variants with breakpoints at exon-exon junctions or at cryptic splice 

sites were assumed to be alternative splicing variants. I considered variants observed in more 

than one clone to less likely be the result of PCR errors.  
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The majority of variants were single nucleotide variants (SNVs) with a total of 79 SNVs in 

elna and 89 in elnb. In addition, there were numerous length variants, transcript and 

genetic diversity represented by alternative splicing events and in-del variants. All SNPs 

observed were cross-checked with the transcript sequences obtained from ensemble.org 

and the available variant table.  11 out of 79 variants in elna (9 silent and 2 missense), and 

2 out of 89 variants in elnb (both silent) were found to already have a corresponding 

accession number (rs #). The majority of SNVs for these genes with rs #s in the current 

dbSNP database are intronic. I found more silent SNVs in elna than elnb (51 and 36 

respectively), but elnb had a larger number of missense mutations than elna (41 and 19 

respectively). The full list of variations (Table 8 to Table 17, Table 19, Table 20) in elna and 

elnb that were found in the cDNA sequences are visualized in Figure 8 and Figure 9. 

 
  

Table 7. Summary of Variations in elna and elnb 

Alternative Splicing: elna – 5 (2), elnb – 3 (2) 
SNV (splice):  elna – 1 (0) 
SNV (silent):  elna – 52 (29), elnb – 36 (10) 
SNV (missense):  elna – 19 (6), elnb – 41 (13) 
SNV (nonsense): elnb – 2 (0) 
In-del variants:  elna – 9 (3), elnb – 10 (4)  

Note: the number of variants found in more than one 
clone is shown in brackets 
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Table 8. Silent SNVs Identified in Exons 2-39 of elna cDNA 

Variant 
Name Type Type Detail Exon # rs # # of Clones 

c.90A>G SNV Silent 2  2 
c.105A>G SNV Silent 2  3 
c.201A>G SNV Silent 4  1 
c.267G>A SNV Silent 5  1 
c.645A>G SNV Silent 10  1 
c.657A>G SNV Silent 11  1 
c.660A>G SNV Silent 11 rs503122350 1 
c.684G>A SNV Silent 11 rs508262317 4 
c.717G>A SNV Silent 12  3 
c.753G>A SNV Silent 13  1 
c.798C>T SNV Silent 13 rs505315146 1 
c.819T>C SNV Silent 14  1 
c.936G>A SNV Silent 15  5 
c.999T>C SNV Silent 17 rs509607459 3 
c.1008A>G SNV Silent 17  3 
c.1041T>C SNV Silent 17  3 
c.1287G>C SNV Silent 21  1 
c.1314C>T SNV Silent 31  1 
c.1647T>C SNV Silent 25  1 
c.1800T>G SNV Silent 27  1 
c.2010A>G SNV Silent 29  1 
c.2043A>G SNV Silent 30  1 
c.2058T>C SNV Silent 31  1 
c.2094T>C SNV Silent 31  1 
c.2262T>C SNV Silent 33  2 
c.2430T>C SNV Silent 36  1 
c.2481T>C SNV Silent 37  1 
c.2505G>T SNV Silent 38 rs40920497 11 
c.2571T>C SNV Silent 39  10 
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Table 9. Silent SNVs Identified in Exons 41-55 of elna cDNA 

Variant 
Name Type Type Detail Exon # rs # # of Clones 

c.2640A>T SNV Silent 41  10 
c.2643A>G SNV Silent 41  10 
c.2646T>C SNV Silent 41  1 
c.2655A>G SNV Silent 41  10 
c.2661A>T SNV Silent 41  3 
c.2667G>A SNV Silent 41  10 
c.2673A>T SNV Silent 41  3 
c.2676A>T SNV Silent 41  3 
c.2679A>G SNV Silent 41  3 
c.2682T>A SNV Silent 41  10 
c.2685T>A SNV Silent 41  16 
c.2688T>A SNV Silent 41  6 
c.2814T>C SNV Silent 43  2 
c.2847T>C SNV Silent 44  1 
c.2862G>T SNV Silent 45 rs41232150 17 
c.2892T>G SNV Silent 45 rs41056348 5 
c.2898C>T SNV Silent 45 rs41239681 5 
c.3219G>C SNV Silent 50 rs40973069 6 
c.3252T>G SNV Silent 51  6 
c.3255C>T SNV Silent 51  2 
c.3290A>G SNV Silent 52  1 
c.3363A>T SNV Silent 54  1 
c.3435A>G SNV Silent 55  1 
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Table 10. Silent SNVs Identified in Exons 8-39 of elnb cDNA 

Variant 
Name Type Type Detail Exon # rs # # of Clones 

c.678T>C SNV Silent 8  1 

c.726C>T SNV Silent 8  3 

c.747C>A SNV Silent 8  3 

c.891T>C SNV Silent 8  3 

c.1074G>A SNV Silent 9  3 

c.1392T>C SNV Silent 12  2 

c.2394A>G SNV Silent 22  1 

c.2514T>A SNV Silent 22  1 

c.2538G>A SNV Silent 23  1 

c.2583T>A SNV Silent 24  1 

c.2589T>C SNV Silent 24  1 

c.2595A>T SNV Silent 24  1 

c.2598T>C SNV Silent 24  1 

c.2692C>T SNV Silent 24  1 

c.3133T>C SNV Silent 26  1 

c.3168G>T SNV Silent 26  1 

c.3222A>G SNV Silent 27  1 

c.3304T>C SNV Silent 28 rs501804407 1 
c.3306A>G SNV Silent 28  2 

c.3423A>G SNV Silent 28  1 

c.3471T>C SNV Silent 30  1 

c.3531T>G SNV Silent 30  1 

c.3570A>G SNV Silent 30  1 

c.3717A>G SNV Silent 31  1 

c.3738T>C SNV Silent 32  1 
c.3909G>T SNV Silent 32 rs511964010 2 

c.3924A>T SNV Silent 32  2 

c.3933G>A SNV Silent 32  2 

c.4422A>G SNV Silent 39  2 

c.4425T>C SNV Silent 39  1 
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Table 11. Silent SNVs Identified in Exons 46-56 of elnb cDNA 

Variant 
Name Type Type Detail Exon # rs # # of Clones 

c.4743A>G SNV Silent 46  1 

c.4872A>G SNV Silent 46  1 

c.4965T>C SNV Silent 46  1 

c.5139T>C SNV Silent 46  1 

c.5391C>A SNV Silent 49  1 

c.6003A>G SNV Silent 56  1 
 
 
 
 
 
Table 12. Missense SNVs Identified in elna cDNA 

Variant Name Type Type Detail Exon # rs # # of Clones 

c.10A>G p.Arg3Gly SNV Missense 1  1 
c.627A>C p.Gln209His SNV Missense 10  1 
c.664G>A p.Val222Ile SNV Missense 11  1 
c.1037T>C p.Val346Asp SNV Missense 17  3 
c.1693A>G p.Ile565Val SNV Missense 25  1 
c.1876A>G p.Thr626Ala SNV Missense 27  3 
c.1973T>C p.Ile658Thr SNV Missense 29  1 
c.2168G>A p.Gly723Glu SNV Missense 31  1 
c.2341C>T p.Leu781Phe SNV Missense 34  4 
c.2587A>G p.Thr863Ala SNV Missense 39  1 
c.2683G>A p.Gly895Ser SNV Missense 41  1 
c.2735T>C p.Val912Ala SNV Missense 41  1 
c.2810G>A p.Gly937Ala SNV Missense 41  1 
c.2833G>A p.Gly945Ser SNV Missense 41  10 
c.2876C>T p.Thr959Ile SNV Missense 41 rs40859418 5 
c.3007C>T p.Leu1003Phe SNV Missense 41  1 
c.3214G>A p.Gly1072Arg SNV Missense 41  1 
c.3527A>G p.Glu1086Gly SNV Missense 41  1 
c.2876C>T p.Thr959Ile SNV Missense 45 rs40859418 5 

 
 
 
 
 



 
 

 54 

Table 13. Missense SNVs Identified in Exons 2-28 of elnb cDNA 

Variant Name Type Type Detail Exon # rs # Clone # 

c.235A>G p.Thr79Ala SNV Missense 2  1 

c.376G>A p.Gly126Ser SNV Missense 3  1 

c.580G>A p.Thr194Ala SNV Missense 5  1 

c.686T>C p.Thr229Ile SNV Missense 8  3 

c.709G>A p.Val237Ile SNV Missense 8  3 

c.1232C>T p.Ala411Val SNV Missense 11  2 

c.1294A>G p.Thr432Ala SNV Missense 11  1 

c.1375C>T p.Pro459Ser SNV Missense 12  2 

c.1498C>T p.Pro500Ser SNV Missense 13  1 

c.1553A>G p.Gln518Arg SNV Missense 14  1 

c.1571A>G p.Gln524Arg SNV Missense 15  1 

c.1624G>A p.Val542Met SNV Missense 16  1 

c.2077G>A p.Gly693Arg SNV Missense 20  2 

c.2179T>C p.Ser727Pro SNV Missense 20  2 

c.2230G>T p.Val744Leu SNV Missense 20  3 

c.2333G>A p.Gly778Asp SNV Missense 22  2 

c.2507G>A p.Gly836Glu SNV Missense 22  1 

c.2510T>C p.Ile837Thr SNV Missense 22  1 

c.2534C>T p.Thr845Ile SNV Missense 22  2 

c.2547C>G p.Asp849Glu SNV Missense 23  1 

c.2617A>G p.Thr873Ala SNV Missense 24  1 

c.2642G>T p.Gly881Val SNV Missense 24  1 

c.2830A>G p.Gly944Ala SNV Missense 24  1 

c.3181C>A p.Leu1061Ile SNV Missense 26  1 

c.3274G>A p.Gly1092Ser SNV Missense 28  1 

c.3427G>A p.Gly1143Arg SNV Missense 28  1 
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Table 14. Missense SNVs Identified in Exons 30-55 of elnb cDNA 

Variant Name Type Type Detail Exon # rs # # of Clones 

c.3551T>C, p.Ile1184Thr SNV Missense 30  1 

c.3604A>G, p.Ile1202Val SNV Missense 30  1 

c.3625C>T, p.Pro1209Ser SNV Missense 30  1 

c.3635T>C, p.Val1212Ala SNV Missense 30  1 

c.3653G>A, p.G1218E SNV Missense 30  1 

c.3725T>C, p.Ile1242Thr SNV Missense 32  2 

c.4175C>T, p.Pro1392Leu SNV Missense 34  1 

c.4354G>A, p.Gly1452Ser SNV Missense 38  10 

c.4943T>C, p.Val1648Ala SNV Missense 46  1 

c.5324A>G, p.Gln1775Arg SNV Missense 47  1 

c.5326A>G, p.Lys1776Glu SNV Missense 47  1 

c.5342A>G, p.Tyr1781Cys SNV Missense 48  2 

c.5533G>A, p.Gly1845Ser SNV Missense 50  4 

c.5762G>A, p.Gly1921Asp SNV Missense 52  1 

c.6007T>C, p.Phe2003Leu SNV Missense 55  1 
 

 

 

Table 15. Nonsense SNVs Variants Identified in elnb cDNA 

Variant Name Type Type Detail Exon # rs # Clone # 

c.3463A>T, p.K1155* SNV Nonsense 29  1 

c.4153C>T, p.Gln1385* SNV Nonsense 34  1 
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Table 16. Indel Variants Identified in elna cDNA 

Variant Name Type Type Detail Exon # rs # # of Clones 

c.107_109del Deletion In-frame 2  1 

c.330_345del Deletion +2 frameshift Part 5 to 
part 6 

 1 

c.1115_2188del Deletion In-frame Part 18 to 31  1 

c.1418_1636del Deletion In-frame Part 23 to      
part 25 

 1 

c.1453_2085del Deletion In-frame Part 23 to       
part 31 

 1 

c.1595_1636del Deletion In-frame 25  2 

c.1808_1828del Deletion In-frame 27  3 

c.434...468dup Duplication +2 frameshift Part 6 to 7  1 

c.1037_1078dup Duplication In-frame 17  4 
 

 

Table 17. Indel Variants Identified in elnb cDNA 

Variant Name Type Type Detail Exon # rs # # of Clones 

c.2071_2250del Deletion In-frame 20  1 

c.2198_2821del Deletion In frame Part 20 to 
part 24 

 1 

c.2629_3291del Deletion In-frame Part 24 to 
part 28 

 1 

c.2635_3042del Deletion In-frame Part 24 to 
part 26 

 1 

c.2704_3318del Deletion In-frame Part 24 to 
part 28 

 1 

c.2861_3556del Deletion In-frame Part 24 to 
part 30 

 1 

c.3902_3931del Deletion In-frame 32  5 

c.4872_5018del Deletion In-frame 46  3 

c.5095_5136del Deletion In-frame 46  2 

c.5538_5561del Deletion In frame 50  4 
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Figure 8. Graphical Representation of Transcript and Genetic Variants in elna  

Each exon of elna is displayed as a column of cells. The rows show transcripts annotated in Ensembl (X1-X24, 
top), or individual cDNA clones sequenced in this study (bottom). Each group of clones is surrounded by a 
black outline. A large number of SNVs are observed from exons 38-51. Pale green – the exon’s full sequence 
is present and matches the reference sequence. 
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Figure 9. Graphical Representation of Transcript and Genetic Variants in elnb   

Each exon of elna is displayed as a column of cells. The rows show transcripts annotated in Ensembl (101, 201, 
202, top), or individual cDNA clones sequenced in this study (bottom). Each group of clones is surrounded by a 
black outline. Pale green – the exon’s full sequence is present and matches the reference sequence. 

 

Upon annotating the sequences in CLC Main, I noticed a non-random distribution (clustering) of 

SNVs throughout the eln genes (Figure 8, Figure 9).  In elna, 3 exons had 4 or more SNVs (exon 11 

- 4, exon 41 - 13, and exon 45 - 4), and elnb had 2 exons with 5 SNVs each (exon 28 – 5, exon 46 

– 5). Exon 41 had the largest cluster (Figure 10) consisting of 13 SNVs (1 missense and 12 silent). 

Because I sequenced cDNA clones, it was possible to assign SNVs to haplotypes. Assuming 2 

parents for the clutch I would expect to find a minimum or 2 and a maximum of 4 haplotypes. 

For each cluster, there were more than 2 haplotypes, with the number of haplotypes ranging 

from 3 to 6 (Table 18). The finding of more than 4 haplotypes suggests that there were more than 

2 parents of the clutch used to isolate RNA. Indeed, I used a group breeding of 13 adults to obtain 

the embryos for this experiment. An alternative explanation, supported by the observation of 16 

haplotypes marked by a single SNV, is that some of the SNVs represent PCR errors.  
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Figure 10. A cluster of 13 SNVs in exon 41 of elna 

This is an example of how SNVs have shown a tendency to cluster in portions of the cDNA.  

 

 

Table 18. Clustering and Haplotypes in elna and elnb 

Gene Exon # of SNVs # and Type of SNV Haplotype 
# 

elna 

11 4 Silent – 3 
Missense - 1 4 

41 13 Silent – 12 
Missense – 1 3 

45 4 Silent – 3 
Missense – 1 3 

elnb 

28 5 Silent – 3 
Missense – 2 5 

46 7 
Silent – 4 
Missense – 1 
Deletions - 2 

6 

 

 

Splice site scores for SNVs located close to exon-exon boundaries and for sites of possible 

alternative 5’ or 3’ splice site use were determined using a website algorithm. The correlation 

coefficient cut off identifies real splice sites with 5-9% false negative, and 5% false positive rates. 

The closer the score is to 1, the more likely it is to be a real splice site. For example, the splice site 

variant, changing the last nucleotide of exon 3 in elna c.196G>Tp.A66S, returned a Wildtype Score 
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of 0.98 and a Mutant Score of 0.18., indicating that this variant is likely to inactivate the splice 

site.  Predicted exon skipping events could not be interrogated this way, as they involve the use 

of existing splice consensus sequences. I found 2 SNVs with substantial effect on the 

corresponding splice site scores, a new exon between exons 46 and 47, one instance of an 

alternative 3’ and another of an alternative 5’ splice site use and 3 exon skipping events in elna 

(Table 19). The newly discovered exon also has a high splice site score and encodes an overall 

hydrophobic sequence (Figure 11) with only a single lysine and glutamic acid. The amino acid 

sequence of this domain is similar to other hybrid hydrophobic/crosslink domains encoded by 

exons 45, 49 and 51, but one of the usual 2 lysines is replaced by a glutamic acid, which is very 

rare in elastin sequences. In elnb, only one alternative 5’ splice site and 2 exon skip events were 

noted (Table 20).  

 

Table 19. Annotated SNV Splice Sites and Splice Variants Identified in elna cDNA 

Variant Name Type Type Detail Exon # Splice Score # of 
Clones 

c.196G>Tp.A66S SNV Splice site 3 WT:  Score 0.98  GCAGgtga                                            
Var:  Score 0.18  GCATgtga   1 

c.431_445del Splice Alt splice 5' 6 WT:  Score 0.01  GGAGgtgg                                            
Var:  Score 0.08  GGAGgtgc                             1 

c.709_710insCTGCAG Splice Alt splice 3' 12 WT:  Score 0.25  TCAGgtgg                                             
Var:  Score 0.88  ctgcagGTGG                                           10 

c.1883_1927del Splice Exon skip 28  3 
c.2639_2731del Splice Exon skip 41 & 42  1 
c.2825_2857del Splice Exon skip 44  1 

g.46522_46563  New Exon Between 
46 & 47 

Score 0.95  gcagGACC   
Score 0.84  CCCAgtaa   1 

Exons and introns in the splice junction sequences are shown in capital and lower case type, respectively. 
Clone # indicates the number of clones that displayed variant upon sequencing.  
 
 
 
 



 
 

 61 

 

 
 
Figure 11. A Schematic Representation of the Domain Context and Sequence Features of a 
New Exon in elna 

Exons 41 through 52 are shown. Note that some exons (45, 46, 49 and 51) have both hydrophobic 
and crosslink sequences. The newly discovered exon (X) has high-scoring splice sites and encodes 
an overall hydrophobic sequence with a single lysine (K, blue) and glutamic acid (E, red).  

 
 
 
 
 
 
 
 
Table 20. Annotated SNV Splice Sites and Splice Variants Identified in elnb cDNA 

Variant Name Type Type Detail Exon # rs# # of 
Clones 

c.5519_5599del Splice Alt splice 5' 50 WT: Score 0.25  GGTGgtaa 
Var: Score: 0.25  CCAGgtgg 2 

c.2537_3199del Splice Exon skip 23 to 26  1 

c.4541_4567del Splice Exon skip 42  3 
Capital letters in the Splice Score sequence indicate EXON/intron boundary. Clone # indicates the number of 
clones that displayed variant upon sequencing.  
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Once all sequences were analyzed and annotated, the amplification primer sequences were 

trimmed, and sequences were exported in FASTA format and submitted to GenBank using the 

BankIt web interface (Table 33). 

 

For further confirmation, 30 SNVs were examined in gDNA isolated from tail clips in 5 of the 13 

possible parents that were bred to produce the embryos used to obtain the mRNA. I considered 

a variant confirmed if it was either found to be polymorphic in gDNA or monomorphic for the 

minor (non-reference) allele. Of the 30 mutations, 8 of them were not reproduced in gDNA. Three 

silent SNVs in the SNV cluster in elna’s exon 41 were not reproduced. The nonsense variant found 

in elnb cDNA was not reproduced in gDNA, and only 1 of 2 missense variants was reproduced 

(Table 21). 
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Table 21.  Genomic DNA Confirmation of SNVs in elna & elnb 

Exon SNV Name Type Type Detail 
cDNA  

# of clones 

gDNA  
# of clones              

 (AA, Aa, aa)* 
elna 

34 c.2341C>Tp.Leu781Phe SNV missense 4 of 9 0, 4, 1 

41 

c.2640A>T SNV silent 10 of 21 0, 0, 5 
c.2643A>G SNV silent 10 of 21 0, 0, 5 
c.2646T>C SNV silent 1 of 21 5, 0, 0 
c.2655A>G SNV silent 10 of 21 0, 0, 5 
c.2661A>T SNV silent 3 of 21 3, 2, 0 
c.2667G>A SNV silent 10 of 21 0, 0, 5 
c.2673A>T SNV silent 3 of 21 2, 3, 0 
c.2676A>T SNV silent 3 of 21 2, 3, 0 
c.2679A>G SNV silent  3 of 21 2, 3, 0 
c.2682T>A SNV silent 10 of 21 5, 0, 0 
c.2685T>A SNV silent 16 of 21 5, 0, 0 
c.2688T>A SNV silent 6 of 21 0, 0, 5 
c.2683G>Ap.Gly895Ser SNV missense 1 of 21 0, 0, 5 

44 c.2833G>Ap.Gly945Ser SNV missense 10 of 21 0, 5, 0 
c.2847T>C SNV silent 1 of 21 5, 0, 0 

45 

c.2862G>T SNV silent 17 of 21 0, 1, 4 
c.2876C>Tp.Thr959Ile SNV missense 5 of 21 0, 4, 1 
c.2892T>G SNV silent 5 of 21 0, 4, 1 
c.2898C>T SNV silent 5 of 21 0, 4, 1 

51 c.3252T>G SNV silent 6 of 7 2, 2, 1 
c.3255C>T SNV silent 2 of 7 5, 0, 0 

elnb 
29 c.3463A>Tp.K1155* SNV nonsense 2 of 13 5, 0, 0 

32 

c.3725T>Cp.Ile1242Thr SNV missense 2 of 5 5, 0, 0 
c.3738T>C SNV silent 1 of 5 5, 0, 0 
c.3909G>T    SNV silent 2 of 5 1, 2, 2 
c.3924A>T SNV silent 2 of 5 1, 2, 2 
c.3933G>A SNV silent 2 of 5 1, 2, 2 
c.3902_3931del Deletion   5 of 5 5, 0, 0 

38 c.4354G>Ap.Gly1452Ser SNV missense 10 of 10 0, 0, 5 
       *  A: major or reference allele, a: minor, derived or new allele. Variants not reproduced by genomic DNA 
sequencing are shaded grey. 
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This leads one to question the validity of the other SNVs found in cDNA. According to studies on 

PCR induced errors, base substitution errors and other false mutations can be induced via the 

PCR amplification process and make identifying rare genetic variations a challenge (Kebschull & 

Zador, 2015; Potapov & Ong, 2017). Otherwise one must consider PCR reaction conditions’ 

influence on fidelity and the primers used. Precautions were taken to assure that primers were 

unique to a specific sequence, but both elna and elnb have highly repetitive sequences that could 

lead to primers annealing to partially homologous complementary strands. As is seen in elna 

(Table 22), where even exons 20 to 30 are the same or differ by only a single base. 

 

In addition to PCR errors, the discrepancy between the cDNA and gDNA sequences could also be 

a result of allele dropout in gDNA amplicons, in which one allele is preferentially amplified so that 

at heterozygous loci the other allele is underrepresented or missing (Hahn, Garvin, Di Naro, & 

Holzgreve, 1998). Furthermore, genotyping variants in a subset of the breeding parents could 

Exon 20 gtgctggtgcactctcccccgctcaggcaaaagctgctaaatatg 
Exon 22 gtgctggtgcactctcccccgctcaggcaaaagctgctaaatatg 
Exon 24 gtgctggtgcactctcccccgctcaggcaaaagctgctaaatatg 
Exon 26 gtgctggtgcactctcccccgctcaggcaaaagctgctaaatatg 
Exon 28 gtgctggtgcactctcccctgctcaggcaaaagctgctaaatatg 
Exon 30 gtgctggtgcactctcccctgctcaggcaaaagctgctaaatatg 

 
The elastin genes have repetitive sequence throughout the genome. 
These sequences are from elna and are an example of how entire exons 
share the same sequence. The t bases in red found in exons 28 and 30 
are the only difference between those exons and the other three. 

Table 22. Whole Exons with Same Sequence 
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also explain not being able to reproduce all mutations in gDNA. The unreproducible mutations 

may have come from un-sequenced parents. Sequencing the other parental gDNA for the 

mutations could eliminate this as a concern, but because of cost and time considerations we 

decided against further sequencing. 

3.2 VALIDATION OF elna MUTANT (elnasa12235, c.264T>A, p.Tyr88*) 

To investigate the role of elna in zebrafish development, I obtained F0 elnasa/+ female (♀) mutants 

(elnasa12235, c.264T>A, p.Tyr88*) from the Sanger Institute Zebrafish Mutation Project. This 

nonsense mutation, located in exon 5, was confirmed by DNA sequencing of gDNA isolated from 

tail biopsies of F0 and F1 fish (Figure 12).  A genotyping assay was developed using the dCAPS 

method (Figure 13), which generates a restriction enzyme site.  F0 females were first out-crossed 

to Tü/AB* WT males. The resulting F1 generation was in-crossed (elnasa/+ ♂ x elnasa/+ ♀) and 341 

out of 1,001 embryos survived to adulthood (3 months). Genotyping of the 341 adults exhibited 

a distribution of Mendelian frequencies: elnasa/+ – 183 (54%), elnasa/sa – 80 (23%), elna+/+ – 78 

(23%) at 3 months of age., indicating that this mutation was compatible with survival to 

adulthood.  A series of F1 in-crosses established an elnasa/sa colony. 
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Figure 13. Genotyping of elna using dCAPS    

The assay allows for easy identification of the genotype by single or double bands. A 
wildtype (WT - yellow) will have a single band at 276bp (top band, not cleaved by DdeI), a 
heterozygous (Het - orange) mutant have 2 bands at 276bp and 254bp, and homozygous 
(Homo - blue) mutants have a single band (bottom) at 254bp (cleaved by DdeI). There are 
12 WT, 8 Het and 2 Homo. L- 1kb ladder 

 
 

Figure 12. Sequencing of the elna wildtype and mutant alleles in gDNA from adult tail biopsy 
 
Tail biopsies were taken at 3 months of age. The peaks of the mutant allele (A - green) and wildtype 
allele (T - red) are of close to equal height in the heterozygous fish. 
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3.3    STAGE-SPECIFIC DEGRADATION OF MUTANT RNA BY NONSENSE-MEDIATED DECAY 

To determine if the mutation (c.264T>A, p.Tyr88*) destabilizes the mRNA, I sequenced cDNA 

(Figure 14) from heterozygous (elnasa/+) embryos of various stages, from 1 dpf through 5 dpf, and 

7 dpf. The cDNA was obtained from a pooled clutch derived from a WT Tü/AB* to elnasa/sa cross, 

to assure that all embryos were heterozygous (elnasa/+) for the mutation. The wildtype allele (T) 

in heterozygous embryos gets higher as they age, while the mutant allele (A) is reduced and 

disappears by 3 dpf. Wildtype embryos and homozygous elna mutants only display their 

respective alleles. These findings support the conclusion this nonsense mutation activates 

nonsense-mediated decay in a developmentally regulated fashion with close to complete 

elimination of the mutant transcript at relevant developmental stages and therefore is a null 

mutation. 

 



 
 

 68 

 

3.4    REDUCED ELNA PROTEIN EXPRESSION IN elnasa MUTANTS 

To study the elna protein expression, I performed whole-mount immunostaining in elna+/+ , 

elnasa/+ and elnasa/sa larvae at 7 dpf (n = 3, 5, and 5 respectively). Wildtype had the most 

expression in the blood vessels and the skeleton of the head. Heterozygous elna larvae exhibited 

a decrease in expression, while homozygous mutants lacked elna expression in the head vessels 

and skeleton (Figure 15). 

 
 

Figure 14. Reduced Expression of the elnasa allele 

Embryos heterozygous (Het) for elna show a gradual increase in wildtype allele’s (T) peak (arrow) with 
development and the mutant allele (A) shown in red is gradually reduced. Wildtype embryos at 5 dpf (days 
post fertilization) show only the wildtype allele, and homozygous embryos only display the mutant allele  
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Figure 15. Whole-mount Immunostaining for elna in 7 dpf Embryos 

Wildtype elna+/+, (C,D) elnasa/+, (E,F) elnasa/sa 7dpf larvae in lateral (L) and ventral (V) views for 
immunostaining of elna expression. Expression of elna (fluorescence - bright red) is brightest in 
wildtype embryos (A,B), and decreased in heterozygotes (C,D). Homozygous mutants (E,F) do not 
display specific staining for elna. Scale bar: 200 µm 
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3.5   CIRCULATION DEFECTS IN elnasa MUTANTS  

WT and elnasa/sa embryos at 3 dpf, and larvae at 5 dpf, and 7 dpf were observed for heart 

abnormalities. Embryos were split into groups of fed and unfed at 5 dpf, as this is when the yolk 

has been fully absorbed and feeding is generally started under usual husbandry protocols. 

Mutant embryos fed starting at 5 dpf, displayed reduced blood flow through the heart in 32.5% 

and regurgitation between the atrium and ventricle (or ventricle and BA) in 32.5% of the clutch. 

Reduced blood flow was defined as the presence of fewer red blood cells, a reduction in the 

speed at which the cells flowed through the chambers of the heart or both. Regurgitation was 

not always observed to be associated with reduced blood flow. Mutants also exhibited heart 

looping abnormalities in 42.5%, where the atrium and ventricle were not in the proper 

orientation and position relative to the embryo’s developmental stage (Table 23, Figure 16). This 

experiment was performed once on a set of 100 WT and 100 elnasa/sa embryos. Each set of 100 

was split into two groups of 50 (fed and unfed) at 6 dpf. Further quantification of blood flow will 

need to be conducted and the experiment repeated to determine if the phenotype is observed 

in other embryo clutches.  
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Table 23. Wildtype and elnasa/sa Cardiovascular Developmental Observations 

 

This experiment was performed on n = 100 WT and n = 100 elnasa/sa embryos. Each set of 100 was split into 
two groups of n = 50 (fed and unfed) at 6 dpf. 
 

  

 WT Tü/AB*                  elnasa/sa 

 3 dpf 5 dpf 
7 dpf   
(fed) 

7 dpf 
(unfed) 3 dpf 5 dpf 

7 dpf  
(fed) 

7 dpf 
(unfed) 

Blood flow 6 4 9 9 26 30 13 17 
Regurgitation 2 1 4 3 14 31 13 27 
Edema 2 2 0 2 9 20 2 1 
Looping Issue 6 2 3 7 12 11 17 7 
Blood pooling 0 2 1 0 2 1 1 0 
Total Survival (n) 100 100 50 48 100 100 40 50 

%                 
Blood flow 6.0% 4.0% 18.0% 18.8% 26.0% 30.0% 32.5% 34.0% 
Regurgitation 2.0% 1.0% 8.0% 6.3% 14.0% 31.0% 32.5% 54.0% 
Edema 2.0% 2.0% 0.0% 4.2% 9.0% 20.0% 5.0% 2.0% 
Looping Issue 6.0% 2.0% 6.0% 14.6% 12.0% 11.0% 42.5% 14.0% 
Blood pooling 0.0% 2.0% 2.0% 0.0% 2.0% 1.0% 2.5% 0.0% 
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Figure 16. Circulation Defects in elnasa/sa mutants. The 7 
dpf values are of fed larvae.  
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Embryos of all three genotypes (wildtype Tü/AB*, elnasa/+, elnasa/sa) were also closely examined 

using a stereo microscope for phenotypic abnormalities including: heart rates, length, swim 

bladder inflation, head and heart structure and blood flow. Heterozygous mutant animals did not 

have any obvious abnormalities. Based on t-tests conducted, there was no significant difference 

between genotypes with respect to swim bladder inflation, length, or head structure. Heart rate 

varied significantly from one clutch to another, but overall there was no correlation with 

genotype at 5 dpf (Figure 18). However, at 7 dpf, there was a slightly but significantly reduced 

heart rate of in elnasa/sa mutants compared to wildtype (p = 0.01698) (Figure 17). Heart rates in 5 

dpf embryos were collected from 7 different clutches and in 7 dpf, WT and elnasa/sa embryo heart 

rates were obtained from single clutches of 42 embryos each.  

Figure 18. Heart Rates at 5 dpf by Genotype 

There was no significant difference between the 
wildtype Tü/AB* (blue), elnasa/+ (yellow) and 
elnasa/sa  (purple) heart rates at 5 dpf. Wildtype 
(n = 25) mean: 135.8 beats per minute, elnasa/+ 

(n = 45) mean: 127.9 beats per minute, elnasa/sa 

(n = 76) mean: 132.1 beats per minute. One-way 
ANOVA p = 0.2246. dpf – days post fertilization. 

Figure 17. Heart rates at 7 dpf by Genotype 

There was a significant difference between the 
wildtype Tü/AB* (blue) and elnasa/sa (purple) 
heart rates at 7 dpf. Wildtype (n = 42) mean: 
128.4 beats per minute, elnasa/sa (n = 42) mean: 
122.1 beats per minute. T-test p = 0.01698. 
dpf – days post fertilization. 
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To follow up on the common observation of blood regurgitation in the hearts of mutant fish, I 

used DIC video microscopy and obtained a closer look at the heart valve structure and function 

in wildtype (WT) and elnasa/sa mutants at 7dpf, at which stage I observed the highest frequency 

of regurgitation. Consistent with this observation elna expression peaks between 6 dpf and 7 dpf 

before decreasing to baseline (Miao et al., 2007). In the resulting videos, mutants display 

ventriculo-bulbar (VB) heart valve regurgitation and irregular formation and movement of the 

valves. Wildtype embryos (Figure 19) appear to have normal blood flow and valves that do not 

appear to have structural or functional defects. In addition to normal appearance of the valves 

in WT, the ventricular contraction appears to be stronger. The ventricle contracts (becomes 

rounder and shorter) and empties completely, while the elnasa/sa mutant ventricle remains 

elongated and does not empty completely, giving the appearance of a weaker contraction (Figure 

20). These results were consistent in two WT clutches (n = 4) but varied between the two mutant 

clutches (n = 8). This could be due to variable compensation by other genetic factors in this 

outbred line, health and natural variability of zebrafish clutches, or as will be discussed later, sex 

differences in adults as seen in human patients with SVAS; males have more severe phenotypes 

than females.  
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Figure 19. WT DIC Video Still of the Ventricular-Bulbar Valve at the End of Systole 
at 7dpf 

Wildtype 7dpf embryo heart (white outline) displays normal blood flow from the 
ventricle (V) to the bulbus arteriosus (BA). Ventricular-bulbar valves (yellow 
outline) appear to have normal development. The V has normal contraction with 
the ventricular lumen narrowing (green) and the V becoming shorter. The BA 
widens (blue) to accept blood cells (purple). Blood flows from the BA to the ventral 
aorta (arrow). dpf – days post fertilization 

Figure 20. elnasa/sa DIC Video Still of the Ventricular-Bulbar Valve at the End of Systole at 
7 dpf 

elnasa/sa mutant 7dpf embryo heart (white outline) displays blood regurgitation from the 
bulbus arteriosus (BA) to the ventricle (V). The Ventricular-bulbar valve (yellow outline) 
appears to have abnormal shape and an incomplete, more narrowed opening. The V has 
reduced contraction with the ventricular lumen and V remaining elongated (green). The 
BA widens (blue) to accept blood cells (purple). Blood flows from the BA to the OFT (arrow), 
but the V and BA do not empty completely of blood cells. dpf – days post fertilization 

V 

BA 

V 

BA 
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To investigate if there were alterations in the size of the cardiac chambers, colonies of 

Tg(myl7:eGFP);Tg(acta2:mCherry) transgenic elnasa/sa mutants and elna+/+ wildtype fish were 

developed. In these transgenic animals, mCherry marks smooth muscle cells in the bulbus 

arteriosus, ventricle, atrium and large arteries, and eGFP marks the myocardium.  Confocal 

microscopy was used to take high-resolution images of the heart at 7 dpf from a clutch of WT (n 

= 6) and a clutch of elnasa/sa mutants (n = 7). Wildtype embryos’ pharyngeal arch arteries were 

consistently more visible than in the mutants, suggesting reduced transcriptional activity of the 

acta2 promoter or incomplete covering of these vessels by smooth muscle cells. Mutant embryos 

displayed abnormalities of the ventricle and BA (Figure 21). Measurements were performed with 

the use of NIS-Elements software. Mutant fish had slightly larger ventricles, and smaller BA, but 

because of substantial variation in the size of these chambers in both groups of fish, these 

differences did not reach statistical significance (Table 24). 
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Table 24. Ventricle and Bulbus Measurements in WT and elnasa/sa transgenic larvae 

Genotype # 

Ventricle Length 

(µm) 

Aspect Ratio 

Ventricle 

(W:L) 

Bulbus Length 

(µm) 

Aspect Ratio 

Bulbus 

(W:L) 

elnasa/sa 1 151.18 0.79 75.39 0.75 

2 164.23 0.57 61.68 1.01 

3 147.56 0.70 57.30 1.08 

4 178.89 0.65 76.51 0.81 

5 168.31 0.51 59.76 1.07 

6 156.73 0.69 75.09 0.79 

7 165.09 0.82 100.62 0.85 

WT (Tü/AB*) 1 165.59 0.62 68.85 0.68 

2 165.16 0.72 81.86 0.57 

3 137.11 0.69 89.10 0.85 

4 133.25 0.65 81.52 0.98 

5 159.54 0.89 91.86 0.70 

6 142.94 0.64 77.59 0.77 

Unpaired T-test  (two-tailed) 

P-value 0.1416 0.6677 0.1952 0.0831 

t, df t=1.584 df=11 t=0.441 df=11 t=1.379 df=11 t=1.906 df=11 

Significant? No No No No 
Mean 
elna^sa/sa 161.71 0.68 72.34 0.91 
Mean WT 
Tu(AB*) 150.60 0.70 81.80 0.76 
Diff. of 
means 11.11 ± 7.019 -0.02595 ± 0.059 -9.461 ± 6.859 0.1502 ± 0.079 
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Figure 21. Abnormalities of the circulatory system in the developing embryo 

Representative images of the ventral view of wildtype Tü/AB* Tg(myl7:eGPF; ca8:mCherry) and elnasa/sa 

Tg(myl7:eGPF; ca8:mCherry) homozygous mutants at 7 dpf. Mutant embryos displayed abnormalities of the 
ventricle (V - yellow), atrium (A - red/orange), bulbus arteriosus (B - red) and ventral aorta (solid arrow). Scale 
bar: 100 µm. dpf – days post fertilization 
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3.6   ELASTIN STAINING IN THE ZEBRAFISH ADULT CARDIOVASCULAR SYSTEM 

Adult hearts were dissected from wildtype Tü/AB*, elnasa/+ and elnasa/sa male and female fish, 

fixed in formalin, embedded in paraffin, sectioned and stained using Hart’s elastin stain to 

visualize elastin deposition and the morphology of the hearts (Figure 22). Histological sections 

show thinner valves in mutants, supporting the notion that the valve form and function observed 

in the DIC videos of mutant embryos remains in adults (Figure 23). 

Figure 22. Hart's Elastin Stain of Adult Zebrafish Hearts 

(A) WT Tü/AB* male adult heart, (B) elnasa/+ female adult heart, (C) elna sa/sa female adult heart. Cardiac 
muscle (yellow) is observed throughout the ventricle (V) with elastin deposition (deep purple) in the bulbus 
arteriosus (BA). The ventricular-bulbar valves (arrow) appear thinner and more irregular in the mutant (C). 
Scale bar: 500 µM.



 
 

 80 

 

3.7    ECOCARDIOGRAPHY IN ADULT FISH 

Echocardiography was done on 18-month-old WT and elnasa/sa adult zebrafish hearts. These 

adults were obtained from the same elnasa/+ in-cross clutch to eliminate husbandry and 

environmental bias that may occur from observing different clutches. Four WT (3♀and 1♂) and 

four elnasa (3♀and 1♂) hearts were examined. The preliminary findings show blood regurgitation 

of the VB valve in the elnasa/sa male (Figure 24). None of the elnasa/sa females nor any of the WT 

hearts showed signs of VB valve regurgitation (Figure 25). Echocardiography of a larger number 

of fish will be necessary to determine if mutant males are more susceptible to developing valve 

disease than females, similar to increased cardiovascular disease in male WBS patients compared 

to females (Sadler et al., 2001).  

 

Figure 23. Hart's Elastin Stain of Adult Zebrafish Hearts – high-magnification view of the VB Valve 

(A) WT Tü/AB* female adult heart, (B) WT Tü/AB* male adult heart, (C) elnasa/sa female adult heart,  
(D) elnasa/sa male adult heart. Histological sections show thinner valves (dotted circle) in mutants (C,D) than 
in wildtype (A,B) adult hearts extracted at 18 months of age. Valve composition also seems to appear more 
cartilaginous in wildtype (A,B) hearts, while mutants (C,D) appear to have a more fibrous and dense 
composition. (BA: bulbus arteriosus. Scale bar: 100 µM) 

A) WT Tü/AB* ♀ B) WT Tü/AB* ♂ C) elna
sa/sa

♀ D) elna
sa/sa

 ♂ 

BA BA BA 
BA 
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Figure 24. elnasa/sa Echocardiography of a 18mo Male Heart 

Echocardiography of the male elnasa ventricular-bulbar valve (arrow) displays regurgitation. Forward flow of 
blood (dark blue) from ventricle (V) to bulbus arteriosus (BA) and backwards flow (red) from bulbus arteriosus 
towards ventricle. Red and blue colliding circles (light blue line) indicates blood flow regurgitation point.  

Figure 25. Echocardiography of a WT 18mo Female Heart 

Echocardiography of the female WT ventricular-bulbar valve (arrow) displays only forward blood flow (blue) 
from the ventricle (V) to the bulbus arteriosus (BA).  

V BA 

V 
BA 
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3.8    SURVIVAL OF elna MUTANTS TO ADULTHOOD 

The generation of embryos bred from an in-crossed elnasa/+ ♂ x elnasa/+ ♀ breeding resulted in 

341 out of 1,001 embryos surviving to 3 months (Table 25). Genotyping of the 341 survivors 

exhibited a distribution of Mendelian frequencies: elna+/+ – 78 (23%), elnasa/+ – 183 (54%), and 

elnasa/sa – 80 (23%).  A portion of those fish were used for experiments and the new ratios at 3.5 

months were as follows: elna+/+ – 66 (21.6%), elnasa/+ – 171 (56.1%), and elnasa/sa – 68 (22.3%). 

These fish were followed for survival until 18 months of age. 

 

At 18 months of age, homozygous elnasa/sa had the lowest percentage of survival at 19%, but WT 

elna+/+ fish also had poor survival (30%, Table 26) presumably as a result of sub-optimal 

husbandry conditions. Further analysis was done to compare survival between the genotypes 

and also by sex. Despite the log-rank test for survival P value showing significance of 0.0025 by 

genotype comparison, suggesting that survival curves by genotype are different, the log-rank test 

for trend showed no significant trends by genotype or by sex (Table 27).  The log-rank test for 

trend tests a null hypothesis that there is no linear trend between the groups and their median 

survival. With no significant P value for any of the groups, one can conclude that there is no 

significant trend of survival (Figure 26). The relatively low number of fish included in this 

preliminary experiment, as well as the high baseline mortality, reduced the power to detect 

significant genotype or sex effects. 
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Table 25. Survival of Genotyped Zebrafish at 3.5 months 

Genotyped at 3.5 months of age 
(% - Mendelian Ratios) 

Fish Genotyped @3.5 months of age 
Minus # Removed for Experiments  

Genotype # Females # Males 
Total # 

Survived # Females # Males 
Total # 

Survived 

elna+/+ 
54 24 78 

(22.87%) 
48 18 66 

elnasa/+ 
130 53 183 

(53.67%) 124 
47 

171 

elnasa/sa 
54 26 80 

(23.46%) 
48 20 68 

341 305 

Table 26. Survival of Genotyped Zebrafish at 18 months 

Survival of Fish Genotyped @3.5 months 
Minus # Removed for Experiments   

Until 18 months of age       
 (% survival of that genotype) 

Genotype # Females # Males 
Total # 

Survived 

elna+/+ 14 (29%) 6 (33%) 20 (30%) 
elnasa/+ 55(44%) 18 (38%) 72 (43%) 
elnasa/sa 11 (23%) 2 (10%) 13 (19%) 

106 

Table 27. Survival Analysis of Zebrafish at 18 months 

By Genotype Females Males 
Log-rank test 

Chi square 11.98 8.21 5.309 
P value 0.0025 0.0165 0.0703 
Are the survival curves 
significantly different? Yes Yes No 

Log-rank test for trend 
Chi square 1.948 0.4033 2.608 
P value 0.1628 0.5254 0.1063 
Significant trend? No No No 
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Figure 26. Survival of Zebrafish to 18 months 

(A) Total surviving number of zebrafish by genotype at 18 months of age. (B)
Survival of only female fish by genotype. (C) Survival of only male fish by genotype.
Zebrafish were genotyped at 3.5 months of age, represented by 0 on the X-axis. All
fish were siblings from an elnasa/+ in-cross.

A 

B 

C 
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3.9    VALIDATION OF elnb MUTANT 

For future studies on the developmental function elnb, I obtained F1 embryos with a splice site 

mutation in intron 17 of elnb (elnbsa24024, c.1771+1G>A) from the Sanger Institute Zebrafish 

Mutation Project. The embryos were allowed to reach adulthood and genotyped at 3 months, 

once again using the dCAPS method (Table 5). Sixty out of 101 embryos survived to adulthood, 

and of those, 47% were elnbsa/+ and 53% were elnb+/+. An in-cross series of breeding of elnbsa/+ ♂ 

and ♀ was performed to establish a colony of elnbsa/+ and elnbsa/sa. 24 out of 51 embryos survived 

to adulthood, with 71% elnbsa/+ and 29% were elnb+/+. Due to a lack of any homozygous adults, a 

time series was conducted to determine at what stage the homozygotes were dying. Embryos 

collected and genotyped at 4 dpf, 12 dpf and 25 dpf were acquired from the same breeding clutch 

and showed survival of elnbsa/sa up to 25 dpf (Table 28). The genotype of selected elnb+/+, elnbsa/+ 

and elnbsa/sa progeny was confirmed by DNA sequencing (Figure 27).  
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Table 28. Genotyping Distribution Results of elnb Heterozygous In-cross 

Age # of Embryos Genotype Count (%) 

4 dpf 22 
elnb

+/+ 4 (18) 

elnb
sa/+ 13 (59) 

elnb
sa/sa 5 (23) 

5 dpf 22 
elnb

+/+ 6 (30) 

elnb
sa/+ 14 (70) 

elnb
sa/sa 0 (0) 

12 dpf 25 
elnb

+/+ 2 (8) 

elnb
sa/+ 9 (36) 

elnb
sa/sa 14 (56) 

25 dpf 70 
elnb

+/+ 11 (16) 

elnb
sa/+ 25 (36) 

elnb
sa/sa 34 (48) 

Time Series 
(12 hpf – 5dpf) 

72 total 
for series 

elnb
+/+ 24 (33) 

elnb
sa/+ 30 (42) 

elnb
sa/sa 18 (25) 

3 mph (adults) 24 
elnb

+/+ 7 (29) 

elnb
sa/+ 17 (71) 

elnb
sa/sa 0 (0) 
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Figure 27. gDNA Sequencing of the Mutant Allele in elnb From Embryos at 12dpf 

The peaks of the mutant allele (G - black) and wildtype allele (A - green) are of close to equal height in the 
heterozygous fish. Wildtype and homozygous mutants display their respective alleles. 

3.10 EXPRESSION OF THE elnbsa24024 MUTANT ALLELE 

Because the mutation c.1771+1G>A eliminates a critical G residue of the donor splice site in 

intron 17, I expected that this mutation would interfere with splicing. To uncover the exact splice 

outcome of the mutation, I sequenced cDNA from larvae at 12 dpf (Figure 28). Sequence of the 

heterozygous fish displayed overlapping sequence of exons 17 and 18 in 100% of the sequences, 

indicating an exon 17 skipping induced by the mutation.  
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Figure 28. cDNA Sequencing of Heterozygous elnb Embryos at 12 dpf 
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4.0    DISCUSSION 

In this study I have characterized the genetic and transcript diversity of ELN in both zebrafish 

genes, elna and elnb. Little information was available about the genetic diversity of these gene 

transcripts in zebrafish, despite research that has been done to sequence the genes in their 

entirety, for comparison to each other and among species (Chung et al., 2006; He et al., 2007). 

Diversity helps to explain how adapting genomes contribute to the survival of a species. 

Understanding genetic and transcript variation is also essential for interpreting the functional 

consequences of targeted mutations. Furthermore, this work will help to assess the structural 

similarities and differences between elna and elnb to clarify the function of each gene and 

whether there is any genetic compensation in mutants. Looking at zebrafish with a mutation in 

elna and characterizing the phenotype will help uncover the contribution of elastin to the 

development of the cardiovascular system and the congenital heart defects associated with 

supravalvular aortic stenosis (SVAS). 

4.1    ELASTIN ISOFORM VARIATION AND ITS ROLE IN EVOLUTION 

To characterize genetic and transcript diversity in elna and elnb, cDNA clones were generated 

from WT zebrafish larvae. There was large variation (Table 7) in the sequences compared to 
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already available transcripts in Ensembl, GenBank and in the literature (Chung et al., 2006), with 

the majority being SNVs, along with alternative splicing, numerous length variations and in-dels. 

High sequence variability has also been observed in the human ELN gene (Indik et al., 1987), 

therefore I propose that extensive sequence variation is an evolutionarily conserved feature of 

vertebrate elastin genes, producing a large ensemble of protein isoforms. 

  

A closer look at the SNVs, and comparison to the available transcripts of elna and elnb (24 and 2 

respectively), reveals that the majority of SNVs with accession numbers in the current dbSNP 

database for zebrafish elastin were intronic. The same observation was made from studies in 

avian populations (Backstrom, Fagerberg, & Ellegren, 2008; Strand et al., 2012; Zhan et al., 2015). 

Since introns are not translated, intronic SNVs are considered benign unless they influence the 

splicing of introns or the function of intronic transcriptional regulatory regions. However, SNVs 

found in exons and conserved regions of the elastin genes may prove more useful in studying 

adaptation and fitness among species (Barreiro, Laval, Quach, Patin, & Quintana-Murci, 2008; 

Norrgard  & Schultz, 2008; Zhan et al., 2015)   

 

The density of SNVs has been extensively studied in the human genome, which is useful for 

providing a context to my results.  Overall, the ratio of non-synonymous (missense) to 

synonymous (silent) SNVs in the human genome is 1.18, which is less than half of what is expected 

under a neutral mutation theory (Zhao, Fu, Hewett-Emmett, & Boerwinkle, 2003). A reduced 

missense/silent SNV ratio is considered a measure of natural or purifying selection. By 

comparison, I found a missense/silent ratio of 18/51=0.35 in elna and 41/36=1.14 in elnb. Thus, 
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zebrafish elna is under a considerably stronger purifying selection than an average human gene, 

whereas the selection on elnb is similar to an average human gene. Strong purifying selection on 

elna is consistent with its widespread expression in multiple organs and its orthologous 

relationship to amniote elastin genes. In contrast, weaker purifying selection, and perhaps 

ongoing evolution of elnb may be related to its specialized function in the bulbus arteriosus and 

marked sequence divergence from a putative ancestral elastin gene.   

4.2    ZEBRAFISH ELNA’S FUNCTION AND ROLE IN CARDIOVASCULAR DEVELOPMENT 

Examination of the elnasa point mutation in mRNA from zebrafish embryos reveals that nonsense-

mediated decay (NMD) is activated through developmental regulation. In the elnasa/sa mutant, 

there is elimination of the mutant transcript, creating a null allele. NMD is essential in the 

detection and elimination of premature termination codons (PTCs) for proper gene expression. 

Both mammals (Nagy & Maquat, 1998) and zebrafish (Wittkopp et al., 2009) require an exon-

exon boundary at least 50 basepairs (bp) downstream of the PTC to efficiently activate NMD. 

While the PTC for elnasa is far upstream of the last exon-exon junction, and is thus expected to 

activate NMD, other factors may also play a role in the effectiveness of NMD. Several genes are 

found to make up a group of NMD effectors or surveillance complex, responsible for the 

acceleration of degradation when interacting with other pathway complexes (Behm-Ansmant & 

Izaurralde, 2006), such as the up-frameshift suppressor (UPF) 1, or suppressor with 

morphological effect on genitalia (SMG) proteins SMG1 and SMG7. Studies in zebrafish have 

shown mixed results, in which downregulating of SMG7 did not produce a phenotype, but the 
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downregulation of UPF1 through the use of morpholinos did produce a phenotype and had high 

mortality rates leaves questions as to whether NMD is necessary for embryo viability (Hwang & 

Maquat, 2011; Wittkopp et al., 2009). It is possible that these factors are developmentally 

regulated and thus would explain the late activation of NMD in elna. An alternative explanation 

for the late activation of NMD for the elnasa mutation is that NMD may require a certain threshold 

of mutant mRNA expression to be activated. Thus at developmental stages where elna expression 

is low, such as earlier than 3dpf, the mutant transcripts escape NMD. However, irrespective of 

whether the product of the elnasa allele is degraded by NMD or results in a truncated protein 

lacking most of the coding region, it is expected to be a null allele, which was confirmed by my 

immunostaining results. 

 

In light of evidence for elnasa being a null allele, and signs of strong purifying selection in elna, it 

is surprising that homozygous mutants are viable to adulthood (3 mpf) at Mendelian ratios. A 

possible explanation for the survival of elna mutants is genetic compensation where the 

expression of key genes is altered through development to counteract the phenotypic effects of 

the mutation. This was observed in egfl7 mutants, where genetic compensation was induced by 

deleterious mutations but not by gene knockdowns with the use of morpholinos and CRISPR 

(Rossi et al., 2015). Compensation may occur through the upregulation of a seemingly unrelated 

gene, such as emilin2a, emilin3a and emilin3b in the case of egfl7 mutants, or though the up-

regulation of the paralog of the mutated gene such as vegfab in vegfaa mutants.  
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Possible functional overlap and compensation between elna and elnb will be tested in future 

work with my elnbsa zebrafish line to create a double knockout for elna and elnb. A limitation that 

must be taken into consideration with the generation of a double mutant is lethality. Elastin is 

essential in a wide number of systems in the body and its elimination could prove fatal. Although, 

creation of a heterozygous loss of function elastin mutant, with complete elimination of elnb and 

only one functioning allele of elna, may prove more informative in relation to SVAS and cardiac 

development. In humans SVAS, especially when part of WBS, has variable manifestation of the 

phenotype and is often seen with valvular defects (Sadler et al., 2001) as observed in both the 

elnasa embryos and adults.  

 

In more detailed investigation of how elastin depletion affects cardiovascular development, DIC 

video microscopy of 7dpf embryos showed WT embryos with normal blood flow, ventricular 

contraction and valve development at the VB valve. Mutants displayed blood regurgitation, 

abnormal ventricular contraction and VB valve deformities but with varying degrees of 

abnormalities. When compared to adult hearts using echocardiography, a male elnasa/sa mutant 

had regurgitation, and histological sections show thinner valves in mutants. This is promising 

since cardiovascular deformities are seen more often in human males than in females. A 

limitation of this study is the small number of fish used for imaging and the variability that is 

observed in clutches. This may explain the lack of significant difference between WT and mutant 

heart rates observed as well as in the confocal heart measurements. The preliminary results are 

encouraging considering the variability of penetrance and phenotypes observed in human SVAS, 

thus further work with larger numbers of fish is needed. 
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5.0 CONCLUSIONS 

In summary, the work shows that elastin has been conserved through its ability to adapt to 

evolutionary stressors with extensive sequence variation, and in zebrafish in particular, the 

neofunctionalization of a second elastin gene elnb that may still be evolving. Mutants of elnasa 

have displayed promise to help explain cardiovascular development and detrimental effects of 

elastin mutations in humans with SVAS with a display of valvular abnormalities and regurgitation 

of blood flow in the heart. However, further testing must be done to determine the molecular 

mechanisms of this phenotype and to rule out genetic compensation through the presence of 

two elastin genes, elna and elnb, in zebrafish. 
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6.0  FUTURE WORK 

6.1   ADDITIONAL PHENOTYPE CONFIRMATION 

6.1.1 Additional Look at Valve Structures in Adult Zebrafish 

Based on the preliminary results obtained in the echocardiography and Hart’s elastin staining 

studies, a larger number of adult hearts obtained from the same elnasa/+ in-cross will need to be 

examined to determine the frequency of BA valve defects and other possible cardiac anomalies.  

 

Method: The same protocols established earlier in the dissertation will be used to assure 

consistency in the steps used to obtain results and to maintain the ability to compare preliminary 

data to those in the future. 

 

Expected Results: I expect to see regurgitation and valve developmental abnormalities in at least 

some of the mutant hearts. Given the variability of SVAS in humans, I may find the same in 

zebrafish. 
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6.1.2 Whole-mount In Situ Time Series of Zebrafish Embryos 

As another method to observe elastin expression in the embryos in addition to the whole-mount 

immunostaining, and to compare results to work done in previous research, a time series in 

embryos using whole-mount in situ hybridization will be conducted. 

 

Method: WT Tü/AB* and elnasa/sa embryos will be collected at 3dpf, 5dpf and 7dpf and treated 

with riboprobes for elna and elnb. Embryos from all 3 time points will be processed and imaged 

simultaneously.  

 

Expected Results: Some overlap of expression of elna and elnb is to be expected at earlier time 

points in WT embryos, but by 7dpf I except to see elnb expressed exclusively in the bulbus 

arteriosus. Mutants of elna should not show any expression. 

6.1.3   Generation of an elnb Mutant Line 

With the possibility of genetic compensation of elna and elnb, and to further the research of 

elnb’s function in zebrafish, a line of elnbsa/sa fish is to be established and crossed with the elnasa/sa 

fish.  

 

Method: Traditional husbandry methods will be used to cross the necessary lines. dCAPs will be 

used for genotyping and observation of the embryos for phenotypic abnormalities will be 

conducted as was done with elna. 
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Expected Results: It is likely that a double knockout of both elna and elnb will not produce a viable 

line of zebrafish for use in adult experiments. Examination of the onset and time course of 

lethality and identifying the cause of death in double mutants will inform our understanding of 

elastin function in zebrafish. For creating a non-lethal model of SVAS a heterozygous loss of 

function of elna and a total loss of elnb may be of interest. 

6.2   MECHANISTIC PATHWAYS ASSOCIATED WITH ELN LOSS 

A better understanding of the connection between elastin mutations and impaired 

cardiovascular development in zebrafish is needed through probing of the molecular 

mechanisms. This work will also help test if these pathways are evolutionarily conserved among 

vertebrates. Prior studies have associated two pathways with elastin deficiency in vertebrates, 

integrin beta 3 (Itgb3) signaling and the Hippo pathways.  

6.2.1   Integrin Beta 3 Signaling and Vessel Development 

Elevated integrin beta 3 (Itgb3) signaling was found to be critical for the development of vessel 

wall thickening in a mouse model of SVAS (Ashish Misra et al., 2016). The integrin signaling 

studies will focus on elna mutants, as this gene appears to be the ortholog of mammalian elastin. 

However, elnb mutants may also be used for comparison, especially if double mutant studies 

suggest a functional overlap. 
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Method:  Immunoblotting for phosphorylated and unphosphorylated focal adhesion kinase 

(FAK) and immunostaining for activated beta 3 integrin will be used quantify integrin signaling. 

In addition, the expression of the Itgb3 paralogs, itgb3a or itgb3b will be assessed by qPCR 

and/or in situ hybridization. For functional studies, Itgb3 signaling will be inhibited using the 

small molecule inhibitor cilengitide  (A. Misra et al., 2016). 

 

Expected Results: If elna is the ortholog of mammalian ELN, I expect elevated Itgb3 signaling 

upon elna deficiency, and a rescue of the mutant phenotype by Itgb3 inhibition. 

6.2.2   Hippo Signaling as a Mechanism of Disease 

A study of elnb in zebrafish observed that knockdown of yap, a signal transducer of the Hippo 

pathway, resulted in a similar expansion of cardiomyocytes into the bulbus arteriosus as elnb 

knockdown did (Moriyama et al., 2016). As this is a correlative result, I am interested in 

obtaining more functional evidence for altered Hippo signaling as a possible mechanism of 

disease in elnb deficiency.  

 

Method:  Immunoblotting for phosphorylated and unphosphorylated Yap and immunostaining 

for Yap/Taz will be used to quantify Hippo signaling. For functional studies, constitutively active 

yap (5SA) mRNA (Asaoka, Hata, Namae, Furutani-Seiki, & Nishina, 2014) will be injected into 

elnb deficient embryos. Alternatively, Hippo signaling will be inhibited using the small molecule 
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inhibitors verteporfin, which inhibits YAP-TEAD interaction and transcriptional activation, or by 

9E1, which inhibits MST1 kinase activity, or by MO knockdown of yap. 

 

Expected Results: If elnb-up-regulates Hippo signaling to facilitate the differentiation of smooth 

muscle cells from heart field progenitors, I expect reduced Hippo signaling in the absence of 

Elnb, a rescue of elnb-related defects by constitutively active yap, and an exacerbated elnb 

phenotype by Hippo inhibition. 
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APPENDIX: TABLES 

Table 29. Primers used in amplifying elna cDNA fragments 

Amp 
# 

Amp 
Name 

Clone 
# 

Amp Sizes 
(bp) Forward Primer Exon Sequence Reverse Primer Exon Sequence 

1 21wb 6 845-860 zf elna I5'1.1s 5' UTR aataaaaccagcacattcgg zf elna E9.1a 13 tgggagatttgagggggt 
2 22.1 6 416-422 zf elna E5.1s 9 agcaaaggctggaaaagc zf elna E16.1a* 16 atttagcagctttggcct 
3 22.2 5 410-1391 zf elna E9.1s 13 agcaaggagtgtttcacgga zf elna E32.1a* 32 tttggcttgagctggtgta 
4 22.3 4 601-712 zf elna E26.1s* 26 caggcaaaagctgctaaat zf elna E36.3a 40 atttaggtggttttgctcca 

22.3a 5 1009-1117 zf elna E23-24.1s* 23-24 tatcctgcgccaggaggt zf elna E36.3a 40 atttaggtggttttgctcca 
5 23.1 6 319-448 zf elna E36.1s 40 tggagcaaaaccacctaaat zf elna E41.1a 45 gccactgggaacagcaat 

23.1a 8 481-670 zf elna E36.1s* 36 tggaggaacaggttttgga zf elna E41.1a 45 gccactgggaacagcaat 
6 23.2 7 1003-1045 zf elna E41.1s* 41 aggagtacctggaggagtg zf elna I56.1a* 3’ UTR aaacgaacaggactgggg 

Amp: amplicon 
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Table 30. Primers used in amplifying elnb cDNA fragments 

Amp 
# 

Amp 
Name 

Clone 
# 

Amp Sizes 
(bp) Forward Primer Exon Sequence Reverse Primer Exon Sequence 

1 4.1w 5 772 zf elnb I5'1.1s 5' UTR cctaattacgtagtgttccttc zf elnb E8.1a 8 gtcctattcctccagtgctaa 

2 4.2b 4 1115 zf elnb E5.3s 5 tacctggtggttttggtgttggt zf elnb E16.1a 16 atatccaccaaacacgccag 
 

4.2b2 1 893 zf elnb E6-7.1s 6--7 aataggtgtgggtggaaag zf elnb E14.1a 14 cacctggcagaactcctctt 
3 4.4h 6 799-979 zf elnb E12.1s 12 taaagttggaaagcctgggaa zf elnb E22.2a 22 cccaagacctccaccaggaa 
4 15.1b 4 796-1444 zf elnb E20.4s 20 ttctggtttgggagggggtg zf elnb E30.2a 30 aacactccctggtccaaa 
  15.1b2 4 692-1388 zf elnb E20-21.1s 20-21 gtcccgaaggatatgctg zf elnb E30.2a 30 aacactccctggtccaaa 
5 15.2g 5 1080-1293 zf elnb E29.1s 29 atgcagaggcaaaagctc zf elnb E43.1a 43 tcccggcaactccataaa 
6 18.1a 5 456-483 zf elnb E38.1s 38 agttggtggagttggaagtg zf elnb E46.1a 46 ccaattccgctgcctatact 
7 18.2a 7 572-761 zf elnb E45.1s 45 aacattaccaggagccaaacca zf elnb E50.1a 50 tgcctgctccataaactttt 
8 18.3c 6 956-1013 zf elnb E48.1s 48 ttatggtggagctggaag zf elnb E58.2a 3' UTR gcgttgtgacaagttaaggga 

Amp: amplicon 
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Table 31. Primers used to sequence elna cDNA fragments 

Amp 
#, 

Name 

1, 
21wb 

2,  
22.1 

3,  
22.2 

4,  
22.3 

4,  
22.3a 

5,  
23.1 

5,  
23.1a 

6,  
23.2 

Pr
im

er
 N

am
e,

 S
eq

ue
nc

e 

zf elna I5'1.1s 
aataaaaccagcacattcgg 

zf elna 5.1s 
agcaaaggctggaaaagc 

zf elna E9.1s 
agcaaggagtgtttcacgga 

zf elna E26.1s* 
caggcaaaagctgctaaat 

zf elna E23-24.1s* 
tatcctgcgccaggaggt 

zf elna E36.1s 
tggagcaaaaccacctaaat 

zf elna E36.1s* 
tggaggaacaggttttgga 

zf elna E41.1s* 
aggagtacctggaggagtg 

zf elna 9.1a 
accccctcaaatctccca 

zf elna E16.1a* 
atttagcagctttggcct 

zf elna E32.1a* 
tttggcttgagctggtgta 

zf elna E36.3a 
atttaggtggttttgctcca 

zf elna E36.3a 
atttaggtggttttgctcca 

zf elna E41.1a 
gccactgggaacagcaat 

zf elna E41.1a 
gccactgggaacagcaat 

zf elna I56.1a* 
aaacgaacaggactgggg 

M13F -20 (18mer) 
tgtaaaacgacggccagt 

M13F -20 (18mer) 
tgtaaaacgacggccagt 

M13F -20 (18mer) 
tgtaaaacgacggccagt 

M13F -20 (18mer) 
tgtaaaacgacggccagt 

M13F -20 (18mer) 
tgtaaaacgacggccagt 

M13F -20 (18mer) 
tgtaaaacgacggccagt 

M13F -20 (18mer) 
tgtaaaacgacggccagt 

M13F -20 (18mer) 
tgtaaaacgacggccagt 

M13R (17mer) 
caggaaacagctatgac 

M13R (17mer) 
caggaaacagctatgac 

M13R (17mer) 
caggaaacagctatgac 

M13R (17mer) 
caggaaacagctatgac 

M13R (17mer) 
caggaaacagctatgac 

M13R (17mer) 
caggaaacagctatgac 

M13R (17mer) 
caggaaacagctatgac 

M13R (17mer) 
caggaaacagctatgac 

zf elna KE4.1s 
aggaggatatggaggagctg 

zf elna 9.1a 
accccctcaaatctccca 

zf elna 13.2a 
caccagcaccaccaggaaa 

zf elna E29.1s 
ccgggtgttggaggactgta 

zf elna E31.1a* 
aacaatcccagtcctacctg 

zf elna E36.1s* 
tggaggaacaggttttgga 

 zf elna E52.1a 
gatactcaaaccgaccgcc 

zf elna 1.1s 
gtggatatggtggtgctgga 

zf elna 11.1a 
tccagcacctccaccaaagc 

zf elna E16.1a* 
atttagcagctttggcct 

zf elna 34.1a 
ctggtgttgtgcctggact 

zf elna 32-33.1s* 
taaatacggtctaggtgcgg 

  zf elna E50-51.1s* 
caggtgttggactgggaa 

zf elna 5.1s 
agcaaaggctggaaaagc 

zf elna 5.1s 
agcaaaggctggaaaagc 

zf elna E18-19.1s* 
taaatatggtgctgtccctgg 

zf elna E36.3a 
atttaggtggttttgctcca 

zf elna E33.1a* 
acagtcctccaacacccgga 

  zf elna E41.1a 
attgctgttcccagtggc 

   zf elna E25.2a 
attcttcctggtggtgct 

zf elna E27.1s* 
attcttcctggtggtgccg 

  zf elna E51.1s 
aatacggtggtggactgaca 

   zf elna E36.1s* 
tggaggaacaggttttgga 

zf elna E37-38.1s* 
aaatatggtttgggaagtgg 

   

Amp: amplicon 
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Table 32. Primers used to sequence elnb cDNA fragments 

Amp 
#, 

Name 

1,  
4.1w 

2,  
4.2b 

2,  
4.2b2 

3,  
4.4h 

4,  
15.1b 

4,  
15.1b2 

5,  
15.2g 

6,  
18.1a 

7,  
18.2a 

8, 
18.3c 

Pr
im

er
 N

am
e,

 S
eq

ue
nc

e 

zf elnb I5’1.1s 
cctaattacgtagtgttccttc 

zf elnb E5.3s 
tacctggtggttttggtgttggt 

zf elnb E6-7.1s 
aataggtgtgggtggaaag 

zf elnb E12.1s 
taaagttggaaagcctgggaa 

zf elnb E20.4s 
ttctggtttgggagggggtg 

zf elnb E20-21.1s 
gtcccgaaggatatgctg 

zf elnb E29.1s 
atgcagaggcaaaagctc 

zf elnb E38.1s 
agttggtggagttggaagtg 

zf elnb E45.1s 
aacattaccaggagccaaacca 

zf elnb E48.1s 
ttatggtggagctggaag 

zf elnb E8.1a 
gtcctattcctccagtgctaa 

zf elnb E16.1a 
atatccaccaaacacgccag 

zf elnb E14.1a 
cacctggcagaactcctctt 

zf elnb 22.2a 
cccaagacctccaccaggaa 

zf elnb E30.2a 
aacactccctggtccaaa 

zf elnb E30.2a 
aacactccctggtccaaa 

zf elnb E43.1a 
tcccggcaactccataaav 

zf elnb E46.1a 
ccaattccgctgcctatact 

 zf elnb E50.1a 
tgcctgctccataaactttt 

zf elnb E58.2a 
gcgttgtgacaagttaaggga 

M13F -20 (18mer) 
tgtaaaacgacggccagt 

M13F -20 (18mer) 
tgtaaaacgacggccagt 

M13F -20 (18mer) 
tgtaaaacgacggccagt 

M13F -20 (18mer) 
tgtaaaacgacggccagt 

M13F -20 (18mer) 
tgtaaaacgacggccagt 

M13F -20 (18mer) 
tgtaaaacgacggccagt 

M13F -20 (18mer) 
tgtaaaacgacggccagt 

M13F -20 (18mer) 
tgtaaaacgacggccagt 

M13F -20 (18mer) 
tgtaaaacgacggccagt 

M13F -20 (18mer) 
tgtaaaacgacggccagt 

M13R (17mer) 
caggaaacagctatgac 

M13R (17mer) 
caggaaacagctatgac 

M13R (17mer) 
caggaaacagctatgac 

M13R (17mer) 
caggaaacagctatgac 

M13R (17mer) 
caggaaacagctatgac 

M13R (17mer) 
caggaaacagctatgac 

M13R (17mer) 
caggaaacagctatgac 

M13R (17mer) 
caggaaacagctatgac 

M13R (17mer) 
caggaaacagctatgac 

M13R (17mer) 
caggaaacagctatgac 

zf elnb E3.2s 
tggaggtcttgggggaattg 

 zf elnb E10.1s 
tgggccaggaggtatttatc 

zf elnb E18.1s 
ttggtgtaggaggagtacct 

zf elnb E24.2a 
agttcctaaagtcccaccac 

zf elnb E28.1a 
taatccaccaagtccaacacca 

zf elnb E30.1a 
tccttgtccaactccagatcct 

zf elnb E42.1a 
ttcagttttaggtgctttcg 

zf elnb E46.1a 
ccaattccgctgcctatact 

zf elnb E52.1s 
acaaggaggaattggtggag 

zf elnb E5.2s 
aggaattggagcaggtggta 

  zf elnb E20.3s 
tcttggaactggaggacttc 

zf elnb E26.2s 
tgttggacttggtggacta 

zf elnb E24.2a 
agttcctaaagtcccaccac 

zf elnb E38.1s 
agttggtggagttggaagtg 

zf elnb E43.1a 
tcccggcaactccataaa 

zf elnb E46.2a 
aactccaccaactccaccagga 

zf elnb E52.1a 
acaaggaggaattggtggag 

    zf elnb E24.1s 
aacttggaggtggacttgga 

zf elnb E20-21.1s 
gtcccgaaggatatgctg 

zf elnb E30.1s 
ttcctggaggtggatatgga 

zf elnb E45.1s 
aacattaccaggagccaaacca 

zf elnb E46.1s 
agttggtggagttcctggtg 

zf elnb E53.1s 
tttggaggttatgggggagtt 

    zf elnb E24.1a 
aaagtcccaccacgtccaag 

zf elnb E22.2a 
cccaagacctccaccaggaa 

  zf elnb E47.1s 
aaaagttatggtggagctggaa 

zf elnb E57.1a 
tatttggcggcttttgattg 

     zf elnb E25.1a   zf elnb e46.3s 
aaggaggacctggaagtata 

zf elnb E50.2a 
ataaccacctggaccccct 

     zf elnb E26.2s 
tgttggacttggtggacta 

   zf elnb E50.3s 
ttggaggcccaggtggata 

         zf elnb E50-51.1s 
ttggtggccttggttatggt 

         zf elnb E56.1s 
ttttggcggtcctggtgct 

Amp: amplicon 
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Table 33. GenBank accession numbers of cDNA clones 

Submission Name Submission ID 
(Begins w/ BankIt) 

GenBank Accession 
Number 

elna 
elna 21wb - 1 2010963 KY986538 
elna 21wb - 2 2013293 MF034388 
elna 21wb - 6 2013294 MF034389 
elna 21wb - 8 2013295 MF034390 
elna 21wb - 10 2013287 MF034386 
elna 21wb - 11 2013290 MF034387 
elna 22.1 - 6 2013308 MF034394 
elna 22.1 - 8 2013310 MF034395 
elna 22.1 - 9 2013312 MF034396 
elna 22.1 - 10 2013304 MF034392 
elna 22.1 - 11 2013307 MF034393 
elna 22.1 - 13 2013296 MF034391 
elna 22.2 - 5 2013337 MF034401 
elna 22.2 - 11 2013335 MF034399 
elna 22.2 - 38 2013336 MF034400 
elna 22.2 - 100 2013313 MF034397 
elna 22.2 - 101 2013334 MF034398 
elna 22.3 - 13 2013578 MF039678 
elna 22.3 - 15 2013579 MF039677 
elna 22.3 - 18 2015245 MF101833 
elna 22.3 - 21 2013581 MF039676 
elna 22.3a - 3 2013588 MF039675 
elna 22.3a - 4 2013590 MF039674 
elna 22.3a - 5 2013591 MF039673 
elna 22.3a - 6 2013592 MF039672 
elna 22.3a - 7 2013593 MF039671 
elna 23.1 - 4 2013601 MF039668 
elna 23.1 - 6 2013603 MF039667 
elna 23.1 - 8 2013604 MF039666 
elna 23.1 - 9 2013605 MF039665 
elna 23.1 - 11 2013599 MF039670 
elna 23.1 - 12 2013600 MF039669 
elna 23.1a - 1 2013840 MF039664 
elna 23.1a - 2 2013842 MF039663 
elna 23.1a - 3 2013844 MF039662 
elna 23.1a - 4 2013846 MF039661 
elna 23.1a - 5 2013853 MF039660 
elna 23.1a - 6 2013856 MF039659 
elna 23.1a - 7 2013858 MF039658 
elna 23.1a - 8 2013859 MF039657 
elna 23.2 - 8 2014488 MF067537 
elna 23.2 - 10 2013860 MF067532 
elna 23.2 - 14 2014470 MF067533 
elna 23.2 - 16 2014473 MF067534 
elna 23.2 - 20 2014475 MF067535 
elna 23.2 - 22 2014476 MF067536 
elna 23.2 -17 2014491 MF067538 
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elnb 
elnb 4.1w - 1 2016080 MF101834 
elnb 4.1w - 3 2016080 MF101835 
elnb 4.1w - 4 2016083 MF101836 
elnb 4.1w - 5 2016083 MF101837 
elnb 4.1w - 6 2016083 MF101838 
elnb 4.2b - 7 2016894 MF118562 
elnb 4.2b2 - 14 2016891 MF118563 
elnb 4.2b2 - 23 2016891 MF118564 
elnb 4.2b2 - 2 2016891 MF118565 
elnb 4.2b2 - 13 2016891 MF118566 
elnb 4.3h - 1 2016895 MF118567 
elnb 4.3h - 2 2016895 MF118568 
elnb 4.3h - 3 2016895 MF118569 
elnb 4.3h - 4 2016895 MF118570 
elnb 4.3h - 5 2016895 MF118571 
elnb 4.3h - 6 2016895 MF118572 
elnb 15.1b - 10 2016901 MF118573 
elnb 15.1b - 13 2016902 MF118574 
elnb 15.1b - 15 2016904 MF118575 
elnb 15.1b - 16 2016905 MF118576 
elnb 15.1b2 - 5 2016906 MF118577 
elnb 15.1b2 - 2 2016906 MF118578 
elnb 15.1b2 - 6 2016906 MF118579 
elnb 15.1b2 - 4 2016906 MF118580 
elnb 15.2g - 2 2016908 MF118581 
elnb 15.2g - 4 2016908 MF118582 
elnb 15.2g - 5 2016908 MF118583 
elnb 15.2g - 6 2016908 MF118584 
elnb 15.2g - 1 Failed Submission * 
elnb 18.1a - 3 2016910 MF118585 
elnb 18.1a - 4 2016910 MF118586 
elnb 18.1a - 5 2016910 MF118587 
elnb 18.1a - 6 2016910 MF118588 
elnb 18.1a - 1 2016910 MF118589 
elnb 18.2a - 2 2016911 MF118590 
elnb 18.2a - 3 2016911 MF118591 
elnb 18.2a - 4 2016911 MF118592 
elnb 18.2a - 5 2016911 MF118593 
elnb 18.2a - 6 2016911 MF118594 
elnb 18.2a -7 2016911 MF118595 
elnb 18.2a - 8 2016911 MF118596 
elnb 18.3c - 3 2016913 MF118597 
elnb 18.3c - 4 2016913 MF118598 
elnb 18.3c - 5 2016913 MF118599 
elnb 18.3c - 6 2016913 MF118600 
elnb 18.3c - 8 2016913 MF118601 
elnb 18.3c - 2 2016913 MF118602 

      * contains premature stop codon, so not allowed to submit to GenBank 
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